1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 struct workqueue_struct *ice_lag_wq; 68 static const struct net_device_ops ice_netdev_safe_mode_ops; 69 static const struct net_device_ops ice_netdev_ops; 70 71 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 72 73 static void ice_vsi_release_all(struct ice_pf *pf); 74 75 static int ice_rebuild_channels(struct ice_pf *pf); 76 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 77 78 static int 79 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 80 void *cb_priv, enum tc_setup_type type, void *type_data, 81 void *data, 82 void (*cleanup)(struct flow_block_cb *block_cb)); 83 84 bool netif_is_ice(const struct net_device *dev) 85 { 86 return dev && (dev->netdev_ops == &ice_netdev_ops); 87 } 88 89 /** 90 * ice_get_tx_pending - returns number of Tx descriptors not processed 91 * @ring: the ring of descriptors 92 */ 93 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 94 { 95 u16 head, tail; 96 97 head = ring->next_to_clean; 98 tail = ring->next_to_use; 99 100 if (head != tail) 101 return (head < tail) ? 102 tail - head : (tail + ring->count - head); 103 return 0; 104 } 105 106 /** 107 * ice_check_for_hang_subtask - check for and recover hung queues 108 * @pf: pointer to PF struct 109 */ 110 static void ice_check_for_hang_subtask(struct ice_pf *pf) 111 { 112 struct ice_vsi *vsi = NULL; 113 struct ice_hw *hw; 114 unsigned int i; 115 int packets; 116 u32 v; 117 118 ice_for_each_vsi(pf, v) 119 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 120 vsi = pf->vsi[v]; 121 break; 122 } 123 124 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 125 return; 126 127 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 128 return; 129 130 hw = &vsi->back->hw; 131 132 ice_for_each_txq(vsi, i) { 133 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 134 struct ice_ring_stats *ring_stats; 135 136 if (!tx_ring) 137 continue; 138 if (ice_ring_ch_enabled(tx_ring)) 139 continue; 140 141 ring_stats = tx_ring->ring_stats; 142 if (!ring_stats) 143 continue; 144 145 if (tx_ring->desc) { 146 /* If packet counter has not changed the queue is 147 * likely stalled, so force an interrupt for this 148 * queue. 149 * 150 * prev_pkt would be negative if there was no 151 * pending work. 152 */ 153 packets = ring_stats->stats.pkts & INT_MAX; 154 if (ring_stats->tx_stats.prev_pkt == packets) { 155 /* Trigger sw interrupt to revive the queue */ 156 ice_trigger_sw_intr(hw, tx_ring->q_vector); 157 continue; 158 } 159 160 /* Memory barrier between read of packet count and call 161 * to ice_get_tx_pending() 162 */ 163 smp_rmb(); 164 ring_stats->tx_stats.prev_pkt = 165 ice_get_tx_pending(tx_ring) ? packets : -1; 166 } 167 } 168 } 169 170 /** 171 * ice_init_mac_fltr - Set initial MAC filters 172 * @pf: board private structure 173 * 174 * Set initial set of MAC filters for PF VSI; configure filters for permanent 175 * address and broadcast address. If an error is encountered, netdevice will be 176 * unregistered. 177 */ 178 static int ice_init_mac_fltr(struct ice_pf *pf) 179 { 180 struct ice_vsi *vsi; 181 u8 *perm_addr; 182 183 vsi = ice_get_main_vsi(pf); 184 if (!vsi) 185 return -EINVAL; 186 187 perm_addr = vsi->port_info->mac.perm_addr; 188 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 189 } 190 191 /** 192 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 193 * @netdev: the net device on which the sync is happening 194 * @addr: MAC address to sync 195 * 196 * This is a callback function which is called by the in kernel device sync 197 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 198 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 199 * MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 207 ICE_FWD_TO_VSI)) 208 return -EINVAL; 209 210 return 0; 211 } 212 213 /** 214 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 215 * @netdev: the net device on which the unsync is happening 216 * @addr: MAC address to unsync 217 * 218 * This is a callback function which is called by the in kernel device unsync 219 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 220 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 221 * delete the MAC filters from the hardware. 222 */ 223 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 224 { 225 struct ice_netdev_priv *np = netdev_priv(netdev); 226 struct ice_vsi *vsi = np->vsi; 227 228 /* Under some circumstances, we might receive a request to delete our 229 * own device address from our uc list. Because we store the device 230 * address in the VSI's MAC filter list, we need to ignore such 231 * requests and not delete our device address from this list. 232 */ 233 if (ether_addr_equal(addr, netdev->dev_addr)) 234 return 0; 235 236 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 237 ICE_FWD_TO_VSI)) 238 return -EINVAL; 239 240 return 0; 241 } 242 243 /** 244 * ice_vsi_fltr_changed - check if filter state changed 245 * @vsi: VSI to be checked 246 * 247 * returns true if filter state has changed, false otherwise. 248 */ 249 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 250 { 251 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 252 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 253 } 254 255 /** 256 * ice_set_promisc - Enable promiscuous mode for a given PF 257 * @vsi: the VSI being configured 258 * @promisc_m: mask of promiscuous config bits 259 * 260 */ 261 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 262 { 263 int status; 264 265 if (vsi->type != ICE_VSI_PF) 266 return 0; 267 268 if (ice_vsi_has_non_zero_vlans(vsi)) { 269 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 270 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 271 promisc_m); 272 } else { 273 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 274 promisc_m, 0); 275 } 276 if (status && status != -EEXIST) 277 return status; 278 279 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 280 vsi->vsi_num, promisc_m); 281 return 0; 282 } 283 284 /** 285 * ice_clear_promisc - Disable promiscuous mode for a given PF 286 * @vsi: the VSI being configured 287 * @promisc_m: mask of promiscuous config bits 288 * 289 */ 290 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 291 { 292 int status; 293 294 if (vsi->type != ICE_VSI_PF) 295 return 0; 296 297 if (ice_vsi_has_non_zero_vlans(vsi)) { 298 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 299 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 300 promisc_m); 301 } else { 302 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 303 promisc_m, 0); 304 } 305 306 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 307 vsi->vsi_num, promisc_m); 308 return status; 309 } 310 311 /** 312 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 313 * @vsi: ptr to the VSI 314 * 315 * Push any outstanding VSI filter changes through the AdminQ. 316 */ 317 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 318 { 319 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 320 struct device *dev = ice_pf_to_dev(vsi->back); 321 struct net_device *netdev = vsi->netdev; 322 bool promisc_forced_on = false; 323 struct ice_pf *pf = vsi->back; 324 struct ice_hw *hw = &pf->hw; 325 u32 changed_flags = 0; 326 int err; 327 328 if (!vsi->netdev) 329 return -EINVAL; 330 331 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 332 usleep_range(1000, 2000); 333 334 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 335 vsi->current_netdev_flags = vsi->netdev->flags; 336 337 INIT_LIST_HEAD(&vsi->tmp_sync_list); 338 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 339 340 if (ice_vsi_fltr_changed(vsi)) { 341 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 342 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 343 344 /* grab the netdev's addr_list_lock */ 345 netif_addr_lock_bh(netdev); 346 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 347 ice_add_mac_to_unsync_list); 348 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 /* our temp lists are populated. release lock */ 351 netif_addr_unlock_bh(netdev); 352 } 353 354 /* Remove MAC addresses in the unsync list */ 355 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 356 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 357 if (err) { 358 netdev_err(netdev, "Failed to delete MAC filters\n"); 359 /* if we failed because of alloc failures, just bail */ 360 if (err == -ENOMEM) 361 goto out; 362 } 363 364 /* Add MAC addresses in the sync list */ 365 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 366 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 367 /* If filter is added successfully or already exists, do not go into 368 * 'if' condition and report it as error. Instead continue processing 369 * rest of the function. 370 */ 371 if (err && err != -EEXIST) { 372 netdev_err(netdev, "Failed to add MAC filters\n"); 373 /* If there is no more space for new umac filters, VSI 374 * should go into promiscuous mode. There should be some 375 * space reserved for promiscuous filters. 376 */ 377 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 378 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 379 vsi->state)) { 380 promisc_forced_on = true; 381 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 382 vsi->vsi_num); 383 } else { 384 goto out; 385 } 386 } 387 err = 0; 388 /* check for changes in promiscuous modes */ 389 if (changed_flags & IFF_ALLMULTI) { 390 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 391 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 392 if (err) { 393 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 394 goto out_promisc; 395 } 396 } else { 397 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 398 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 399 if (err) { 400 vsi->current_netdev_flags |= IFF_ALLMULTI; 401 goto out_promisc; 402 } 403 } 404 } 405 406 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 407 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 408 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 409 if (vsi->current_netdev_flags & IFF_PROMISC) { 410 /* Apply Rx filter rule to get traffic from wire */ 411 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 412 err = ice_set_dflt_vsi(vsi); 413 if (err && err != -EEXIST) { 414 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 415 err, vsi->vsi_num); 416 vsi->current_netdev_flags &= 417 ~IFF_PROMISC; 418 goto out_promisc; 419 } 420 err = 0; 421 vlan_ops->dis_rx_filtering(vsi); 422 423 /* promiscuous mode implies allmulticast so 424 * that VSIs that are in promiscuous mode are 425 * subscribed to multicast packets coming to 426 * the port 427 */ 428 err = ice_set_promisc(vsi, 429 ICE_MCAST_PROMISC_BITS); 430 if (err) 431 goto out_promisc; 432 } 433 } else { 434 /* Clear Rx filter to remove traffic from wire */ 435 if (ice_is_vsi_dflt_vsi(vsi)) { 436 err = ice_clear_dflt_vsi(vsi); 437 if (err) { 438 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 439 err, vsi->vsi_num); 440 vsi->current_netdev_flags |= 441 IFF_PROMISC; 442 goto out_promisc; 443 } 444 if (vsi->netdev->features & 445 NETIF_F_HW_VLAN_CTAG_FILTER) 446 vlan_ops->ena_rx_filtering(vsi); 447 } 448 449 /* disable allmulti here, but only if allmulti is not 450 * still enabled for the netdev 451 */ 452 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 453 err = ice_clear_promisc(vsi, 454 ICE_MCAST_PROMISC_BITS); 455 if (err) { 456 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 457 err, vsi->vsi_num); 458 } 459 } 460 } 461 } 462 goto exit; 463 464 out_promisc: 465 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 466 goto exit; 467 out: 468 /* if something went wrong then set the changed flag so we try again */ 469 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 470 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 471 exit: 472 clear_bit(ICE_CFG_BUSY, vsi->state); 473 return err; 474 } 475 476 /** 477 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 478 * @pf: board private structure 479 */ 480 static void ice_sync_fltr_subtask(struct ice_pf *pf) 481 { 482 int v; 483 484 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 485 return; 486 487 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 488 489 ice_for_each_vsi(pf, v) 490 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 491 ice_vsi_sync_fltr(pf->vsi[v])) { 492 /* come back and try again later */ 493 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 494 break; 495 } 496 } 497 498 /** 499 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 500 * @pf: the PF 501 * @locked: is the rtnl_lock already held 502 */ 503 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 504 { 505 int node; 506 int v; 507 508 ice_for_each_vsi(pf, v) 509 if (pf->vsi[v]) 510 ice_dis_vsi(pf->vsi[v], locked); 511 512 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 513 pf->pf_agg_node[node].num_vsis = 0; 514 515 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 516 pf->vf_agg_node[node].num_vsis = 0; 517 } 518 519 /** 520 * ice_clear_sw_switch_recipes - clear switch recipes 521 * @pf: board private structure 522 * 523 * Mark switch recipes as not created in sw structures. There are cases where 524 * rules (especially advanced rules) need to be restored, either re-read from 525 * hardware or added again. For example after the reset. 'recp_created' flag 526 * prevents from doing that and need to be cleared upfront. 527 */ 528 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 529 { 530 struct ice_sw_recipe *recp; 531 u8 i; 532 533 recp = pf->hw.switch_info->recp_list; 534 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 535 recp[i].recp_created = false; 536 } 537 538 /** 539 * ice_prepare_for_reset - prep for reset 540 * @pf: board private structure 541 * @reset_type: reset type requested 542 * 543 * Inform or close all dependent features in prep for reset. 544 */ 545 static void 546 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 547 { 548 struct ice_hw *hw = &pf->hw; 549 struct ice_vsi *vsi; 550 struct ice_vf *vf; 551 unsigned int bkt; 552 553 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 554 555 /* already prepared for reset */ 556 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 557 return; 558 559 ice_unplug_aux_dev(pf); 560 561 /* Notify VFs of impending reset */ 562 if (ice_check_sq_alive(hw, &hw->mailboxq)) 563 ice_vc_notify_reset(pf); 564 565 /* Disable VFs until reset is completed */ 566 mutex_lock(&pf->vfs.table_lock); 567 ice_for_each_vf(pf, bkt, vf) 568 ice_set_vf_state_dis(vf); 569 mutex_unlock(&pf->vfs.table_lock); 570 571 if (ice_is_eswitch_mode_switchdev(pf)) { 572 if (reset_type != ICE_RESET_PFR) 573 ice_clear_sw_switch_recipes(pf); 574 } 575 576 /* release ADQ specific HW and SW resources */ 577 vsi = ice_get_main_vsi(pf); 578 if (!vsi) 579 goto skip; 580 581 /* to be on safe side, reset orig_rss_size so that normal flow 582 * of deciding rss_size can take precedence 583 */ 584 vsi->orig_rss_size = 0; 585 586 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 587 if (reset_type == ICE_RESET_PFR) { 588 vsi->old_ena_tc = vsi->all_enatc; 589 vsi->old_numtc = vsi->all_numtc; 590 } else { 591 ice_remove_q_channels(vsi, true); 592 593 /* for other reset type, do not support channel rebuild 594 * hence reset needed info 595 */ 596 vsi->old_ena_tc = 0; 597 vsi->all_enatc = 0; 598 vsi->old_numtc = 0; 599 vsi->all_numtc = 0; 600 vsi->req_txq = 0; 601 vsi->req_rxq = 0; 602 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 603 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 604 } 605 } 606 skip: 607 608 /* clear SW filtering DB */ 609 ice_clear_hw_tbls(hw); 610 /* disable the VSIs and their queues that are not already DOWN */ 611 ice_pf_dis_all_vsi(pf, false); 612 613 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 614 ice_ptp_prepare_for_reset(pf); 615 616 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 617 ice_gnss_exit(pf); 618 619 if (hw->port_info) 620 ice_sched_clear_port(hw->port_info); 621 622 ice_shutdown_all_ctrlq(hw); 623 624 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 625 } 626 627 /** 628 * ice_do_reset - Initiate one of many types of resets 629 * @pf: board private structure 630 * @reset_type: reset type requested before this function was called. 631 */ 632 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 633 { 634 struct device *dev = ice_pf_to_dev(pf); 635 struct ice_hw *hw = &pf->hw; 636 637 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 638 639 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 640 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 641 reset_type = ICE_RESET_CORER; 642 } 643 644 ice_prepare_for_reset(pf, reset_type); 645 646 /* trigger the reset */ 647 if (ice_reset(hw, reset_type)) { 648 dev_err(dev, "reset %d failed\n", reset_type); 649 set_bit(ICE_RESET_FAILED, pf->state); 650 clear_bit(ICE_RESET_OICR_RECV, pf->state); 651 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 652 clear_bit(ICE_PFR_REQ, pf->state); 653 clear_bit(ICE_CORER_REQ, pf->state); 654 clear_bit(ICE_GLOBR_REQ, pf->state); 655 wake_up(&pf->reset_wait_queue); 656 return; 657 } 658 659 /* PFR is a bit of a special case because it doesn't result in an OICR 660 * interrupt. So for PFR, rebuild after the reset and clear the reset- 661 * associated state bits. 662 */ 663 if (reset_type == ICE_RESET_PFR) { 664 pf->pfr_count++; 665 ice_rebuild(pf, reset_type); 666 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 667 clear_bit(ICE_PFR_REQ, pf->state); 668 wake_up(&pf->reset_wait_queue); 669 ice_reset_all_vfs(pf); 670 } 671 } 672 673 /** 674 * ice_reset_subtask - Set up for resetting the device and driver 675 * @pf: board private structure 676 */ 677 static void ice_reset_subtask(struct ice_pf *pf) 678 { 679 enum ice_reset_req reset_type = ICE_RESET_INVAL; 680 681 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 682 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 683 * of reset is pending and sets bits in pf->state indicating the reset 684 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 685 * prepare for pending reset if not already (for PF software-initiated 686 * global resets the software should already be prepared for it as 687 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 688 * by firmware or software on other PFs, that bit is not set so prepare 689 * for the reset now), poll for reset done, rebuild and return. 690 */ 691 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 692 /* Perform the largest reset requested */ 693 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 694 reset_type = ICE_RESET_CORER; 695 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 696 reset_type = ICE_RESET_GLOBR; 697 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 698 reset_type = ICE_RESET_EMPR; 699 /* return if no valid reset type requested */ 700 if (reset_type == ICE_RESET_INVAL) 701 return; 702 ice_prepare_for_reset(pf, reset_type); 703 704 /* make sure we are ready to rebuild */ 705 if (ice_check_reset(&pf->hw)) { 706 set_bit(ICE_RESET_FAILED, pf->state); 707 } else { 708 /* done with reset. start rebuild */ 709 pf->hw.reset_ongoing = false; 710 ice_rebuild(pf, reset_type); 711 /* clear bit to resume normal operations, but 712 * ICE_NEEDS_RESTART bit is set in case rebuild failed 713 */ 714 clear_bit(ICE_RESET_OICR_RECV, pf->state); 715 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 716 clear_bit(ICE_PFR_REQ, pf->state); 717 clear_bit(ICE_CORER_REQ, pf->state); 718 clear_bit(ICE_GLOBR_REQ, pf->state); 719 wake_up(&pf->reset_wait_queue); 720 ice_reset_all_vfs(pf); 721 } 722 723 return; 724 } 725 726 /* No pending resets to finish processing. Check for new resets */ 727 if (test_bit(ICE_PFR_REQ, pf->state)) { 728 reset_type = ICE_RESET_PFR; 729 if (pf->lag && pf->lag->bonded) { 730 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 731 reset_type = ICE_RESET_CORER; 732 } 733 } 734 if (test_bit(ICE_CORER_REQ, pf->state)) 735 reset_type = ICE_RESET_CORER; 736 if (test_bit(ICE_GLOBR_REQ, pf->state)) 737 reset_type = ICE_RESET_GLOBR; 738 /* If no valid reset type requested just return */ 739 if (reset_type == ICE_RESET_INVAL) 740 return; 741 742 /* reset if not already down or busy */ 743 if (!test_bit(ICE_DOWN, pf->state) && 744 !test_bit(ICE_CFG_BUSY, pf->state)) { 745 ice_do_reset(pf, reset_type); 746 } 747 } 748 749 /** 750 * ice_print_topo_conflict - print topology conflict message 751 * @vsi: the VSI whose topology status is being checked 752 */ 753 static void ice_print_topo_conflict(struct ice_vsi *vsi) 754 { 755 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 756 case ICE_AQ_LINK_TOPO_CONFLICT: 757 case ICE_AQ_LINK_MEDIA_CONFLICT: 758 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 759 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 760 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 761 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 762 break; 763 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 764 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 765 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 766 else 767 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 768 break; 769 default: 770 break; 771 } 772 } 773 774 /** 775 * ice_print_link_msg - print link up or down message 776 * @vsi: the VSI whose link status is being queried 777 * @isup: boolean for if the link is now up or down 778 */ 779 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 780 { 781 struct ice_aqc_get_phy_caps_data *caps; 782 const char *an_advertised; 783 const char *fec_req; 784 const char *speed; 785 const char *fec; 786 const char *fc; 787 const char *an; 788 int status; 789 790 if (!vsi) 791 return; 792 793 if (vsi->current_isup == isup) 794 return; 795 796 vsi->current_isup = isup; 797 798 if (!isup) { 799 netdev_info(vsi->netdev, "NIC Link is Down\n"); 800 return; 801 } 802 803 switch (vsi->port_info->phy.link_info.link_speed) { 804 case ICE_AQ_LINK_SPEED_100GB: 805 speed = "100 G"; 806 break; 807 case ICE_AQ_LINK_SPEED_50GB: 808 speed = "50 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_40GB: 811 speed = "40 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_25GB: 814 speed = "25 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_20GB: 817 speed = "20 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_10GB: 820 speed = "10 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_5GB: 823 speed = "5 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_2500MB: 826 speed = "2.5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_1000MB: 829 speed = "1 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_100MB: 832 speed = "100 M"; 833 break; 834 default: 835 speed = "Unknown "; 836 break; 837 } 838 839 switch (vsi->port_info->fc.current_mode) { 840 case ICE_FC_FULL: 841 fc = "Rx/Tx"; 842 break; 843 case ICE_FC_TX_PAUSE: 844 fc = "Tx"; 845 break; 846 case ICE_FC_RX_PAUSE: 847 fc = "Rx"; 848 break; 849 case ICE_FC_NONE: 850 fc = "None"; 851 break; 852 default: 853 fc = "Unknown"; 854 break; 855 } 856 857 /* Get FEC mode based on negotiated link info */ 858 switch (vsi->port_info->phy.link_info.fec_info) { 859 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 860 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 861 fec = "RS-FEC"; 862 break; 863 case ICE_AQ_LINK_25G_KR_FEC_EN: 864 fec = "FC-FEC/BASE-R"; 865 break; 866 default: 867 fec = "NONE"; 868 break; 869 } 870 871 /* check if autoneg completed, might be false due to not supported */ 872 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 873 an = "True"; 874 else 875 an = "False"; 876 877 /* Get FEC mode requested based on PHY caps last SW configuration */ 878 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 879 if (!caps) { 880 fec_req = "Unknown"; 881 an_advertised = "Unknown"; 882 goto done; 883 } 884 885 status = ice_aq_get_phy_caps(vsi->port_info, false, 886 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 887 if (status) 888 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 889 890 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 891 892 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 894 fec_req = "RS-FEC"; 895 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 897 fec_req = "FC-FEC/BASE-R"; 898 else 899 fec_req = "NONE"; 900 901 kfree(caps); 902 903 done: 904 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 905 speed, fec_req, fec, an_advertised, an, fc); 906 ice_print_topo_conflict(vsi); 907 } 908 909 /** 910 * ice_vsi_link_event - update the VSI's netdev 911 * @vsi: the VSI on which the link event occurred 912 * @link_up: whether or not the VSI needs to be set up or down 913 */ 914 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 915 { 916 if (!vsi) 917 return; 918 919 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 920 return; 921 922 if (vsi->type == ICE_VSI_PF) { 923 if (link_up == netif_carrier_ok(vsi->netdev)) 924 return; 925 926 if (link_up) { 927 netif_carrier_on(vsi->netdev); 928 netif_tx_wake_all_queues(vsi->netdev); 929 } else { 930 netif_carrier_off(vsi->netdev); 931 netif_tx_stop_all_queues(vsi->netdev); 932 } 933 } 934 } 935 936 /** 937 * ice_set_dflt_mib - send a default config MIB to the FW 938 * @pf: private PF struct 939 * 940 * This function sends a default configuration MIB to the FW. 941 * 942 * If this function errors out at any point, the driver is still able to 943 * function. The main impact is that LFC may not operate as expected. 944 * Therefore an error state in this function should be treated with a DBG 945 * message and continue on with driver rebuild/reenable. 946 */ 947 static void ice_set_dflt_mib(struct ice_pf *pf) 948 { 949 struct device *dev = ice_pf_to_dev(pf); 950 u8 mib_type, *buf, *lldpmib = NULL; 951 u16 len, typelen, offset = 0; 952 struct ice_lldp_org_tlv *tlv; 953 struct ice_hw *hw = &pf->hw; 954 u32 ouisubtype; 955 956 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 957 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 958 if (!lldpmib) { 959 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 960 __func__); 961 return; 962 } 963 964 /* Add ETS CFG TLV */ 965 tlv = (struct ice_lldp_org_tlv *)lldpmib; 966 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 967 ICE_IEEE_ETS_TLV_LEN); 968 tlv->typelen = htons(typelen); 969 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 970 ICE_IEEE_SUBTYPE_ETS_CFG); 971 tlv->ouisubtype = htonl(ouisubtype); 972 973 buf = tlv->tlvinfo; 974 buf[0] = 0; 975 976 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 977 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 978 * Octets 13 - 20 are TSA values - leave as zeros 979 */ 980 buf[5] = 0x64; 981 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 982 offset += len + 2; 983 tlv = (struct ice_lldp_org_tlv *) 984 ((char *)tlv + sizeof(tlv->typelen) + len); 985 986 /* Add ETS REC TLV */ 987 buf = tlv->tlvinfo; 988 tlv->typelen = htons(typelen); 989 990 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 991 ICE_IEEE_SUBTYPE_ETS_REC); 992 tlv->ouisubtype = htonl(ouisubtype); 993 994 /* First octet of buf is reserved 995 * Octets 1 - 4 map UP to TC - all UPs map to zero 996 * Octets 5 - 12 are BW values - set TC 0 to 100%. 997 * Octets 13 - 20 are TSA value - leave as zeros 998 */ 999 buf[5] = 0x64; 1000 offset += len + 2; 1001 tlv = (struct ice_lldp_org_tlv *) 1002 ((char *)tlv + sizeof(tlv->typelen) + len); 1003 1004 /* Add PFC CFG TLV */ 1005 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1006 ICE_IEEE_PFC_TLV_LEN); 1007 tlv->typelen = htons(typelen); 1008 1009 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1010 ICE_IEEE_SUBTYPE_PFC_CFG); 1011 tlv->ouisubtype = htonl(ouisubtype); 1012 1013 /* Octet 1 left as all zeros - PFC disabled */ 1014 buf[0] = 0x08; 1015 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1016 offset += len + 2; 1017 1018 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1019 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1020 1021 kfree(lldpmib); 1022 } 1023 1024 /** 1025 * ice_check_phy_fw_load - check if PHY FW load failed 1026 * @pf: pointer to PF struct 1027 * @link_cfg_err: bitmap from the link info structure 1028 * 1029 * check if external PHY FW load failed and print an error message if it did 1030 */ 1031 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1032 { 1033 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1034 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1035 return; 1036 } 1037 1038 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1039 return; 1040 1041 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1042 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1043 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1044 } 1045 } 1046 1047 /** 1048 * ice_check_module_power 1049 * @pf: pointer to PF struct 1050 * @link_cfg_err: bitmap from the link info structure 1051 * 1052 * check module power level returned by a previous call to aq_get_link_info 1053 * and print error messages if module power level is not supported 1054 */ 1055 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1056 { 1057 /* if module power level is supported, clear the flag */ 1058 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1059 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1060 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1061 return; 1062 } 1063 1064 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1065 * above block didn't clear this bit, there's nothing to do 1066 */ 1067 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1068 return; 1069 1070 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1071 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1074 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } 1077 } 1078 1079 /** 1080 * ice_check_link_cfg_err - check if link configuration failed 1081 * @pf: pointer to the PF struct 1082 * @link_cfg_err: bitmap from the link info structure 1083 * 1084 * print if any link configuration failure happens due to the value in the 1085 * link_cfg_err parameter in the link info structure 1086 */ 1087 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1088 { 1089 ice_check_module_power(pf, link_cfg_err); 1090 ice_check_phy_fw_load(pf, link_cfg_err); 1091 } 1092 1093 /** 1094 * ice_link_event - process the link event 1095 * @pf: PF that the link event is associated with 1096 * @pi: port_info for the port that the link event is associated with 1097 * @link_up: true if the physical link is up and false if it is down 1098 * @link_speed: current link speed received from the link event 1099 * 1100 * Returns 0 on success and negative on failure 1101 */ 1102 static int 1103 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1104 u16 link_speed) 1105 { 1106 struct device *dev = ice_pf_to_dev(pf); 1107 struct ice_phy_info *phy_info; 1108 struct ice_vsi *vsi; 1109 u16 old_link_speed; 1110 bool old_link; 1111 int status; 1112 1113 phy_info = &pi->phy; 1114 phy_info->link_info_old = phy_info->link_info; 1115 1116 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1117 old_link_speed = phy_info->link_info_old.link_speed; 1118 1119 /* update the link info structures and re-enable link events, 1120 * don't bail on failure due to other book keeping needed 1121 */ 1122 status = ice_update_link_info(pi); 1123 if (status) 1124 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1125 pi->lport, status, 1126 ice_aq_str(pi->hw->adminq.sq_last_status)); 1127 1128 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1129 1130 /* Check if the link state is up after updating link info, and treat 1131 * this event as an UP event since the link is actually UP now. 1132 */ 1133 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1134 link_up = true; 1135 1136 vsi = ice_get_main_vsi(pf); 1137 if (!vsi || !vsi->port_info) 1138 return -EINVAL; 1139 1140 /* turn off PHY if media was removed */ 1141 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1142 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1143 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1144 ice_set_link(vsi, false); 1145 } 1146 1147 /* if the old link up/down and speed is the same as the new */ 1148 if (link_up == old_link && link_speed == old_link_speed) 1149 return 0; 1150 1151 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1152 1153 if (ice_is_dcb_active(pf)) { 1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1155 ice_dcb_rebuild(pf); 1156 } else { 1157 if (link_up) 1158 ice_set_dflt_mib(pf); 1159 } 1160 ice_vsi_link_event(vsi, link_up); 1161 ice_print_link_msg(vsi, link_up); 1162 1163 ice_vc_notify_link_state(pf); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1170 * @pf: board private structure 1171 */ 1172 static void ice_watchdog_subtask(struct ice_pf *pf) 1173 { 1174 int i; 1175 1176 /* if interface is down do nothing */ 1177 if (test_bit(ICE_DOWN, pf->state) || 1178 test_bit(ICE_CFG_BUSY, pf->state)) 1179 return; 1180 1181 /* make sure we don't do these things too often */ 1182 if (time_before(jiffies, 1183 pf->serv_tmr_prev + pf->serv_tmr_period)) 1184 return; 1185 1186 pf->serv_tmr_prev = jiffies; 1187 1188 /* Update the stats for active netdevs so the network stack 1189 * can look at updated numbers whenever it cares to 1190 */ 1191 ice_update_pf_stats(pf); 1192 ice_for_each_vsi(pf, i) 1193 if (pf->vsi[i] && pf->vsi[i]->netdev) 1194 ice_update_vsi_stats(pf->vsi[i]); 1195 } 1196 1197 /** 1198 * ice_init_link_events - enable/initialize link events 1199 * @pi: pointer to the port_info instance 1200 * 1201 * Returns -EIO on failure, 0 on success 1202 */ 1203 static int ice_init_link_events(struct ice_port_info *pi) 1204 { 1205 u16 mask; 1206 1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1210 1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1213 pi->lport); 1214 return -EIO; 1215 } 1216 1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * ice_handle_link_event - handle link event via ARQ 1228 * @pf: PF that the link event is associated with 1229 * @event: event structure containing link status info 1230 */ 1231 static int 1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1233 { 1234 struct ice_aqc_get_link_status_data *link_data; 1235 struct ice_port_info *port_info; 1236 int status; 1237 1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1239 port_info = pf->hw.port_info; 1240 if (!port_info) 1241 return -EINVAL; 1242 1243 status = ice_link_event(pf, port_info, 1244 !!(link_data->link_info & ICE_AQ_LINK_UP), 1245 le16_to_cpu(link_data->link_speed)); 1246 if (status) 1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1248 status); 1249 1250 return status; 1251 } 1252 1253 enum ice_aq_task_state { 1254 ICE_AQ_TASK_WAITING = 0, 1255 ICE_AQ_TASK_COMPLETE, 1256 ICE_AQ_TASK_CANCELED, 1257 }; 1258 1259 struct ice_aq_task { 1260 struct hlist_node entry; 1261 1262 u16 opcode; 1263 struct ice_rq_event_info *event; 1264 enum ice_aq_task_state state; 1265 }; 1266 1267 /** 1268 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1269 * @pf: pointer to the PF private structure 1270 * @opcode: the opcode to wait for 1271 * @timeout: how long to wait, in jiffies 1272 * @event: storage for the event info 1273 * 1274 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1275 * current thread will be put to sleep until the specified event occurs or 1276 * until the given timeout is reached. 1277 * 1278 * To obtain only the descriptor contents, pass an event without an allocated 1279 * msg_buf. If the complete data buffer is desired, allocate the 1280 * event->msg_buf with enough space ahead of time. 1281 * 1282 * Returns: zero on success, or a negative error code on failure. 1283 */ 1284 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1285 struct ice_rq_event_info *event) 1286 { 1287 struct device *dev = ice_pf_to_dev(pf); 1288 struct ice_aq_task *task; 1289 unsigned long start; 1290 long ret; 1291 int err; 1292 1293 task = kzalloc(sizeof(*task), GFP_KERNEL); 1294 if (!task) 1295 return -ENOMEM; 1296 1297 INIT_HLIST_NODE(&task->entry); 1298 task->opcode = opcode; 1299 task->event = event; 1300 task->state = ICE_AQ_TASK_WAITING; 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_add_head(&task->entry, &pf->aq_wait_list); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 1306 start = jiffies; 1307 1308 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1309 timeout); 1310 switch (task->state) { 1311 case ICE_AQ_TASK_WAITING: 1312 err = ret < 0 ? ret : -ETIMEDOUT; 1313 break; 1314 case ICE_AQ_TASK_CANCELED: 1315 err = ret < 0 ? ret : -ECANCELED; 1316 break; 1317 case ICE_AQ_TASK_COMPLETE: 1318 err = ret < 0 ? ret : 0; 1319 break; 1320 default: 1321 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1322 err = -EINVAL; 1323 break; 1324 } 1325 1326 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1327 jiffies_to_msecs(jiffies - start), 1328 jiffies_to_msecs(timeout), 1329 opcode); 1330 1331 spin_lock_bh(&pf->aq_wait_lock); 1332 hlist_del(&task->entry); 1333 spin_unlock_bh(&pf->aq_wait_lock); 1334 kfree(task); 1335 1336 return err; 1337 } 1338 1339 /** 1340 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1341 * @pf: pointer to the PF private structure 1342 * @opcode: the opcode of the event 1343 * @event: the event to check 1344 * 1345 * Loops over the current list of pending threads waiting for an AdminQ event. 1346 * For each matching task, copy the contents of the event into the task 1347 * structure and wake up the thread. 1348 * 1349 * If multiple threads wait for the same opcode, they will all be woken up. 1350 * 1351 * Note that event->msg_buf will only be duplicated if the event has a buffer 1352 * with enough space already allocated. Otherwise, only the descriptor and 1353 * message length will be copied. 1354 * 1355 * Returns: true if an event was found, false otherwise 1356 */ 1357 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1358 struct ice_rq_event_info *event) 1359 { 1360 struct ice_aq_task *task; 1361 bool found = false; 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1365 if (task->state || task->opcode != opcode) 1366 continue; 1367 1368 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1369 task->event->msg_len = event->msg_len; 1370 1371 /* Only copy the data buffer if a destination was set */ 1372 if (task->event->msg_buf && 1373 task->event->buf_len > event->buf_len) { 1374 memcpy(task->event->msg_buf, event->msg_buf, 1375 event->buf_len); 1376 task->event->buf_len = event->buf_len; 1377 } 1378 1379 task->state = ICE_AQ_TASK_COMPLETE; 1380 found = true; 1381 } 1382 spin_unlock_bh(&pf->aq_wait_lock); 1383 1384 if (found) 1385 wake_up(&pf->aq_wait_queue); 1386 } 1387 1388 /** 1389 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1390 * @pf: the PF private structure 1391 * 1392 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1393 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1394 */ 1395 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1396 { 1397 struct ice_aq_task *task; 1398 1399 spin_lock_bh(&pf->aq_wait_lock); 1400 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1401 task->state = ICE_AQ_TASK_CANCELED; 1402 spin_unlock_bh(&pf->aq_wait_lock); 1403 1404 wake_up(&pf->aq_wait_queue); 1405 } 1406 1407 #define ICE_MBX_OVERFLOW_WATERMARK 64 1408 1409 /** 1410 * __ice_clean_ctrlq - helper function to clean controlq rings 1411 * @pf: ptr to struct ice_pf 1412 * @q_type: specific Control queue type 1413 */ 1414 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1415 { 1416 struct device *dev = ice_pf_to_dev(pf); 1417 struct ice_rq_event_info event; 1418 struct ice_hw *hw = &pf->hw; 1419 struct ice_ctl_q_info *cq; 1420 u16 pending, i = 0; 1421 const char *qtype; 1422 u32 oldval, val; 1423 1424 /* Do not clean control queue if/when PF reset fails */ 1425 if (test_bit(ICE_RESET_FAILED, pf->state)) 1426 return 0; 1427 1428 switch (q_type) { 1429 case ICE_CTL_Q_ADMIN: 1430 cq = &hw->adminq; 1431 qtype = "Admin"; 1432 break; 1433 case ICE_CTL_Q_SB: 1434 cq = &hw->sbq; 1435 qtype = "Sideband"; 1436 break; 1437 case ICE_CTL_Q_MAILBOX: 1438 cq = &hw->mailboxq; 1439 qtype = "Mailbox"; 1440 /* we are going to try to detect a malicious VF, so set the 1441 * state to begin detection 1442 */ 1443 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1444 break; 1445 default: 1446 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1447 return 0; 1448 } 1449 1450 /* check for error indications - PF_xx_AxQLEN register layout for 1451 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1452 */ 1453 val = rd32(hw, cq->rq.len); 1454 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1455 PF_FW_ARQLEN_ARQCRIT_M)) { 1456 oldval = val; 1457 if (val & PF_FW_ARQLEN_ARQVFE_M) 1458 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1459 qtype); 1460 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1461 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1462 qtype); 1463 } 1464 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1465 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1466 qtype); 1467 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1468 PF_FW_ARQLEN_ARQCRIT_M); 1469 if (oldval != val) 1470 wr32(hw, cq->rq.len, val); 1471 } 1472 1473 val = rd32(hw, cq->sq.len); 1474 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1475 PF_FW_ATQLEN_ATQCRIT_M)) { 1476 oldval = val; 1477 if (val & PF_FW_ATQLEN_ATQVFE_M) 1478 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1479 qtype); 1480 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1481 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1482 qtype); 1483 } 1484 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1485 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1486 qtype); 1487 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1488 PF_FW_ATQLEN_ATQCRIT_M); 1489 if (oldval != val) 1490 wr32(hw, cq->sq.len, val); 1491 } 1492 1493 event.buf_len = cq->rq_buf_size; 1494 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1495 if (!event.msg_buf) 1496 return 0; 1497 1498 do { 1499 struct ice_mbx_data data = {}; 1500 u16 opcode; 1501 int ret; 1502 1503 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1504 if (ret == -EALREADY) 1505 break; 1506 if (ret) { 1507 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1508 ret); 1509 break; 1510 } 1511 1512 opcode = le16_to_cpu(event.desc.opcode); 1513 1514 /* Notify any thread that might be waiting for this event */ 1515 ice_aq_check_events(pf, opcode, &event); 1516 1517 switch (opcode) { 1518 case ice_aqc_opc_get_link_status: 1519 if (ice_handle_link_event(pf, &event)) 1520 dev_err(dev, "Could not handle link event\n"); 1521 break; 1522 case ice_aqc_opc_event_lan_overflow: 1523 ice_vf_lan_overflow_event(pf, &event); 1524 break; 1525 case ice_mbx_opc_send_msg_to_pf: 1526 data.num_msg_proc = i; 1527 data.num_pending_arq = pending; 1528 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1529 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1530 1531 ice_vc_process_vf_msg(pf, &event, &data); 1532 break; 1533 case ice_aqc_opc_fw_logging: 1534 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1535 break; 1536 case ice_aqc_opc_lldp_set_mib_change: 1537 ice_dcb_process_lldp_set_mib_change(pf, &event); 1538 break; 1539 default: 1540 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1541 qtype, opcode); 1542 break; 1543 } 1544 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1545 1546 kfree(event.msg_buf); 1547 1548 return pending && (i == ICE_DFLT_IRQ_WORK); 1549 } 1550 1551 /** 1552 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1553 * @hw: pointer to hardware info 1554 * @cq: control queue information 1555 * 1556 * returns true if there are pending messages in a queue, false if there aren't 1557 */ 1558 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1559 { 1560 u16 ntu; 1561 1562 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1563 return cq->rq.next_to_clean != ntu; 1564 } 1565 1566 /** 1567 * ice_clean_adminq_subtask - clean the AdminQ rings 1568 * @pf: board private structure 1569 */ 1570 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1571 { 1572 struct ice_hw *hw = &pf->hw; 1573 1574 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1575 return; 1576 1577 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1578 return; 1579 1580 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1581 1582 /* There might be a situation where new messages arrive to a control 1583 * queue between processing the last message and clearing the 1584 * EVENT_PENDING bit. So before exiting, check queue head again (using 1585 * ice_ctrlq_pending) and process new messages if any. 1586 */ 1587 if (ice_ctrlq_pending(hw, &hw->adminq)) 1588 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1589 1590 ice_flush(hw); 1591 } 1592 1593 /** 1594 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1595 * @pf: board private structure 1596 */ 1597 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1598 { 1599 struct ice_hw *hw = &pf->hw; 1600 1601 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1602 return; 1603 1604 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1605 return; 1606 1607 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1608 1609 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1610 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1611 1612 ice_flush(hw); 1613 } 1614 1615 /** 1616 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1617 * @pf: board private structure 1618 */ 1619 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1620 { 1621 struct ice_hw *hw = &pf->hw; 1622 1623 /* Nothing to do here if sideband queue is not supported */ 1624 if (!ice_is_sbq_supported(hw)) { 1625 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1626 return; 1627 } 1628 1629 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1630 return; 1631 1632 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1633 return; 1634 1635 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1636 1637 if (ice_ctrlq_pending(hw, &hw->sbq)) 1638 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1639 1640 ice_flush(hw); 1641 } 1642 1643 /** 1644 * ice_service_task_schedule - schedule the service task to wake up 1645 * @pf: board private structure 1646 * 1647 * If not already scheduled, this puts the task into the work queue. 1648 */ 1649 void ice_service_task_schedule(struct ice_pf *pf) 1650 { 1651 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1652 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1653 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1654 queue_work(ice_wq, &pf->serv_task); 1655 } 1656 1657 /** 1658 * ice_service_task_complete - finish up the service task 1659 * @pf: board private structure 1660 */ 1661 static void ice_service_task_complete(struct ice_pf *pf) 1662 { 1663 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1664 1665 /* force memory (pf->state) to sync before next service task */ 1666 smp_mb__before_atomic(); 1667 clear_bit(ICE_SERVICE_SCHED, pf->state); 1668 } 1669 1670 /** 1671 * ice_service_task_stop - stop service task and cancel works 1672 * @pf: board private structure 1673 * 1674 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1675 * 1 otherwise. 1676 */ 1677 static int ice_service_task_stop(struct ice_pf *pf) 1678 { 1679 int ret; 1680 1681 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1682 1683 if (pf->serv_tmr.function) 1684 del_timer_sync(&pf->serv_tmr); 1685 if (pf->serv_task.func) 1686 cancel_work_sync(&pf->serv_task); 1687 1688 clear_bit(ICE_SERVICE_SCHED, pf->state); 1689 return ret; 1690 } 1691 1692 /** 1693 * ice_service_task_restart - restart service task and schedule works 1694 * @pf: board private structure 1695 * 1696 * This function is needed for suspend and resume works (e.g WoL scenario) 1697 */ 1698 static void ice_service_task_restart(struct ice_pf *pf) 1699 { 1700 clear_bit(ICE_SERVICE_DIS, pf->state); 1701 ice_service_task_schedule(pf); 1702 } 1703 1704 /** 1705 * ice_service_timer - timer callback to schedule service task 1706 * @t: pointer to timer_list 1707 */ 1708 static void ice_service_timer(struct timer_list *t) 1709 { 1710 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1711 1712 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1713 ice_service_task_schedule(pf); 1714 } 1715 1716 /** 1717 * ice_handle_mdd_event - handle malicious driver detect event 1718 * @pf: pointer to the PF structure 1719 * 1720 * Called from service task. OICR interrupt handler indicates MDD event. 1721 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1722 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1723 * disable the queue, the PF can be configured to reset the VF using ethtool 1724 * private flag mdd-auto-reset-vf. 1725 */ 1726 static void ice_handle_mdd_event(struct ice_pf *pf) 1727 { 1728 struct device *dev = ice_pf_to_dev(pf); 1729 struct ice_hw *hw = &pf->hw; 1730 struct ice_vf *vf; 1731 unsigned int bkt; 1732 u32 reg; 1733 1734 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1735 /* Since the VF MDD event logging is rate limited, check if 1736 * there are pending MDD events. 1737 */ 1738 ice_print_vfs_mdd_events(pf); 1739 return; 1740 } 1741 1742 /* find what triggered an MDD event */ 1743 reg = rd32(hw, GL_MDET_TX_PQM); 1744 if (reg & GL_MDET_TX_PQM_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1746 GL_MDET_TX_PQM_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1748 GL_MDET_TX_PQM_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1750 GL_MDET_TX_PQM_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1752 GL_MDET_TX_PQM_QNUM_S); 1753 1754 if (netif_msg_tx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1758 } 1759 1760 reg = rd32(hw, GL_MDET_TX_TCLAN); 1761 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1762 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1763 GL_MDET_TX_TCLAN_PF_NUM_S; 1764 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1765 GL_MDET_TX_TCLAN_VF_NUM_S; 1766 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1767 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1768 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1769 GL_MDET_TX_TCLAN_QNUM_S); 1770 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1773 event, queue, pf_num, vf_num); 1774 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1775 } 1776 1777 reg = rd32(hw, GL_MDET_RX); 1778 if (reg & GL_MDET_RX_VALID_M) { 1779 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1780 GL_MDET_RX_PF_NUM_S; 1781 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1782 GL_MDET_RX_VF_NUM_S; 1783 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1784 GL_MDET_RX_MAL_TYPE_S; 1785 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1786 GL_MDET_RX_QNUM_S); 1787 1788 if (netif_msg_rx_err(pf)) 1789 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1790 event, queue, pf_num, vf_num); 1791 wr32(hw, GL_MDET_RX, 0xffffffff); 1792 } 1793 1794 /* check to see if this PF caused an MDD event */ 1795 reg = rd32(hw, PF_MDET_TX_PQM); 1796 if (reg & PF_MDET_TX_PQM_VALID_M) { 1797 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1798 if (netif_msg_tx_err(pf)) 1799 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1800 } 1801 1802 reg = rd32(hw, PF_MDET_TX_TCLAN); 1803 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1804 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1805 if (netif_msg_tx_err(pf)) 1806 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1807 } 1808 1809 reg = rd32(hw, PF_MDET_RX); 1810 if (reg & PF_MDET_RX_VALID_M) { 1811 wr32(hw, PF_MDET_RX, 0xFFFF); 1812 if (netif_msg_rx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1814 } 1815 1816 /* Check to see if one of the VFs caused an MDD event, and then 1817 * increment counters and set print pending 1818 */ 1819 mutex_lock(&pf->vfs.table_lock); 1820 ice_for_each_vf(pf, bkt, vf) { 1821 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1822 if (reg & VP_MDET_TX_PQM_VALID_M) { 1823 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1824 vf->mdd_tx_events.count++; 1825 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1826 if (netif_msg_tx_err(pf)) 1827 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1828 vf->vf_id); 1829 } 1830 1831 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1832 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1833 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1834 vf->mdd_tx_events.count++; 1835 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1836 if (netif_msg_tx_err(pf)) 1837 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1838 vf->vf_id); 1839 } 1840 1841 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1842 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1843 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1844 vf->mdd_tx_events.count++; 1845 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1846 if (netif_msg_tx_err(pf)) 1847 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1848 vf->vf_id); 1849 } 1850 1851 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1852 if (reg & VP_MDET_RX_VALID_M) { 1853 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1854 vf->mdd_rx_events.count++; 1855 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1856 if (netif_msg_rx_err(pf)) 1857 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1858 vf->vf_id); 1859 1860 /* Since the queue is disabled on VF Rx MDD events, the 1861 * PF can be configured to reset the VF through ethtool 1862 * private flag mdd-auto-reset-vf. 1863 */ 1864 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1865 /* VF MDD event counters will be cleared by 1866 * reset, so print the event prior to reset. 1867 */ 1868 ice_print_vf_rx_mdd_event(vf); 1869 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1870 } 1871 } 1872 } 1873 mutex_unlock(&pf->vfs.table_lock); 1874 1875 ice_print_vfs_mdd_events(pf); 1876 } 1877 1878 /** 1879 * ice_force_phys_link_state - Force the physical link state 1880 * @vsi: VSI to force the physical link state to up/down 1881 * @link_up: true/false indicates to set the physical link to up/down 1882 * 1883 * Force the physical link state by getting the current PHY capabilities from 1884 * hardware and setting the PHY config based on the determined capabilities. If 1885 * link changes a link event will be triggered because both the Enable Automatic 1886 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1887 * 1888 * Returns 0 on success, negative on failure 1889 */ 1890 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1891 { 1892 struct ice_aqc_get_phy_caps_data *pcaps; 1893 struct ice_aqc_set_phy_cfg_data *cfg; 1894 struct ice_port_info *pi; 1895 struct device *dev; 1896 int retcode; 1897 1898 if (!vsi || !vsi->port_info || !vsi->back) 1899 return -EINVAL; 1900 if (vsi->type != ICE_VSI_PF) 1901 return 0; 1902 1903 dev = ice_pf_to_dev(vsi->back); 1904 1905 pi = vsi->port_info; 1906 1907 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1908 if (!pcaps) 1909 return -ENOMEM; 1910 1911 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1912 NULL); 1913 if (retcode) { 1914 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1915 vsi->vsi_num, retcode); 1916 retcode = -EIO; 1917 goto out; 1918 } 1919 1920 /* No change in link */ 1921 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1922 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1923 goto out; 1924 1925 /* Use the current user PHY configuration. The current user PHY 1926 * configuration is initialized during probe from PHY capabilities 1927 * software mode, and updated on set PHY configuration. 1928 */ 1929 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1930 if (!cfg) { 1931 retcode = -ENOMEM; 1932 goto out; 1933 } 1934 1935 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1936 if (link_up) 1937 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1938 else 1939 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1940 1941 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1942 if (retcode) { 1943 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1944 vsi->vsi_num, retcode); 1945 retcode = -EIO; 1946 } 1947 1948 kfree(cfg); 1949 out: 1950 kfree(pcaps); 1951 return retcode; 1952 } 1953 1954 /** 1955 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1956 * @pi: port info structure 1957 * 1958 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1959 */ 1960 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1961 { 1962 struct ice_aqc_get_phy_caps_data *pcaps; 1963 struct ice_pf *pf = pi->hw->back; 1964 int err; 1965 1966 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1967 if (!pcaps) 1968 return -ENOMEM; 1969 1970 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1971 pcaps, NULL); 1972 1973 if (err) { 1974 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1975 goto out; 1976 } 1977 1978 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1979 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1980 1981 out: 1982 kfree(pcaps); 1983 return err; 1984 } 1985 1986 /** 1987 * ice_init_link_dflt_override - Initialize link default override 1988 * @pi: port info structure 1989 * 1990 * Initialize link default override and PHY total port shutdown during probe 1991 */ 1992 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1993 { 1994 struct ice_link_default_override_tlv *ldo; 1995 struct ice_pf *pf = pi->hw->back; 1996 1997 ldo = &pf->link_dflt_override; 1998 if (ice_get_link_default_override(ldo, pi)) 1999 return; 2000 2001 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2002 return; 2003 2004 /* Enable Total Port Shutdown (override/replace link-down-on-close 2005 * ethtool private flag) for ports with Port Disable bit set. 2006 */ 2007 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2008 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2009 } 2010 2011 /** 2012 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2013 * @pi: port info structure 2014 * 2015 * If default override is enabled, initialize the user PHY cfg speed and FEC 2016 * settings using the default override mask from the NVM. 2017 * 2018 * The PHY should only be configured with the default override settings the 2019 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2020 * is used to indicate that the user PHY cfg default override is initialized 2021 * and the PHY has not been configured with the default override settings. The 2022 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2023 * configured. 2024 * 2025 * This function should be called only if the FW doesn't support default 2026 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2027 */ 2028 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2029 { 2030 struct ice_link_default_override_tlv *ldo; 2031 struct ice_aqc_set_phy_cfg_data *cfg; 2032 struct ice_phy_info *phy = &pi->phy; 2033 struct ice_pf *pf = pi->hw->back; 2034 2035 ldo = &pf->link_dflt_override; 2036 2037 /* If link default override is enabled, use to mask NVM PHY capabilities 2038 * for speed and FEC default configuration. 2039 */ 2040 cfg = &phy->curr_user_phy_cfg; 2041 2042 if (ldo->phy_type_low || ldo->phy_type_high) { 2043 cfg->phy_type_low = pf->nvm_phy_type_lo & 2044 cpu_to_le64(ldo->phy_type_low); 2045 cfg->phy_type_high = pf->nvm_phy_type_hi & 2046 cpu_to_le64(ldo->phy_type_high); 2047 } 2048 cfg->link_fec_opt = ldo->fec_options; 2049 phy->curr_user_fec_req = ICE_FEC_AUTO; 2050 2051 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2052 } 2053 2054 /** 2055 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2056 * @pi: port info structure 2057 * 2058 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2059 * mode to default. The PHY defaults are from get PHY capabilities topology 2060 * with media so call when media is first available. An error is returned if 2061 * called when media is not available. The PHY initialization completed state is 2062 * set here. 2063 * 2064 * These configurations are used when setting PHY 2065 * configuration. The user PHY configuration is updated on set PHY 2066 * configuration. Returns 0 on success, negative on failure 2067 */ 2068 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2069 { 2070 struct ice_aqc_get_phy_caps_data *pcaps; 2071 struct ice_phy_info *phy = &pi->phy; 2072 struct ice_pf *pf = pi->hw->back; 2073 int err; 2074 2075 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2076 return -EIO; 2077 2078 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2079 if (!pcaps) 2080 return -ENOMEM; 2081 2082 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2083 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2084 pcaps, NULL); 2085 else 2086 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2087 pcaps, NULL); 2088 if (err) { 2089 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2090 goto err_out; 2091 } 2092 2093 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2094 2095 /* check if lenient mode is supported and enabled */ 2096 if (ice_fw_supports_link_override(pi->hw) && 2097 !(pcaps->module_compliance_enforcement & 2098 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2099 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2100 2101 /* if the FW supports default PHY configuration mode, then the driver 2102 * does not have to apply link override settings. If not, 2103 * initialize user PHY configuration with link override values 2104 */ 2105 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2106 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2107 ice_init_phy_cfg_dflt_override(pi); 2108 goto out; 2109 } 2110 } 2111 2112 /* if link default override is not enabled, set user flow control and 2113 * FEC settings based on what get_phy_caps returned 2114 */ 2115 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2116 pcaps->link_fec_options); 2117 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2118 2119 out: 2120 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2121 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2122 err_out: 2123 kfree(pcaps); 2124 return err; 2125 } 2126 2127 /** 2128 * ice_configure_phy - configure PHY 2129 * @vsi: VSI of PHY 2130 * 2131 * Set the PHY configuration. If the current PHY configuration is the same as 2132 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2133 * configure the based get PHY capabilities for topology with media. 2134 */ 2135 static int ice_configure_phy(struct ice_vsi *vsi) 2136 { 2137 struct device *dev = ice_pf_to_dev(vsi->back); 2138 struct ice_port_info *pi = vsi->port_info; 2139 struct ice_aqc_get_phy_caps_data *pcaps; 2140 struct ice_aqc_set_phy_cfg_data *cfg; 2141 struct ice_phy_info *phy = &pi->phy; 2142 struct ice_pf *pf = vsi->back; 2143 int err; 2144 2145 /* Ensure we have media as we cannot configure a medialess port */ 2146 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2147 return -EPERM; 2148 2149 ice_print_topo_conflict(vsi); 2150 2151 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2152 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2153 return -EPERM; 2154 2155 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2156 return ice_force_phys_link_state(vsi, true); 2157 2158 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2159 if (!pcaps) 2160 return -ENOMEM; 2161 2162 /* Get current PHY config */ 2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2164 NULL); 2165 if (err) { 2166 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2167 vsi->vsi_num, err); 2168 goto done; 2169 } 2170 2171 /* If PHY enable link is configured and configuration has not changed, 2172 * there's nothing to do 2173 */ 2174 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2175 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2176 goto done; 2177 2178 /* Use PHY topology as baseline for configuration */ 2179 memset(pcaps, 0, sizeof(*pcaps)); 2180 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2181 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2182 pcaps, NULL); 2183 else 2184 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2185 pcaps, NULL); 2186 if (err) { 2187 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2188 vsi->vsi_num, err); 2189 goto done; 2190 } 2191 2192 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2193 if (!cfg) { 2194 err = -ENOMEM; 2195 goto done; 2196 } 2197 2198 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2199 2200 /* Speed - If default override pending, use curr_user_phy_cfg set in 2201 * ice_init_phy_user_cfg_ldo. 2202 */ 2203 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2204 vsi->back->state)) { 2205 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2206 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2207 } else { 2208 u64 phy_low = 0, phy_high = 0; 2209 2210 ice_update_phy_type(&phy_low, &phy_high, 2211 pi->phy.curr_user_speed_req); 2212 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2213 cfg->phy_type_high = pcaps->phy_type_high & 2214 cpu_to_le64(phy_high); 2215 } 2216 2217 /* Can't provide what was requested; use PHY capabilities */ 2218 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2219 cfg->phy_type_low = pcaps->phy_type_low; 2220 cfg->phy_type_high = pcaps->phy_type_high; 2221 } 2222 2223 /* FEC */ 2224 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2225 2226 /* Can't provide what was requested; use PHY capabilities */ 2227 if (cfg->link_fec_opt != 2228 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2229 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2230 cfg->link_fec_opt = pcaps->link_fec_options; 2231 } 2232 2233 /* Flow Control - always supported; no need to check against 2234 * capabilities 2235 */ 2236 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2237 2238 /* Enable link and link update */ 2239 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2240 2241 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2242 if (err) 2243 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2244 vsi->vsi_num, err); 2245 2246 kfree(cfg); 2247 done: 2248 kfree(pcaps); 2249 return err; 2250 } 2251 2252 /** 2253 * ice_check_media_subtask - Check for media 2254 * @pf: pointer to PF struct 2255 * 2256 * If media is available, then initialize PHY user configuration if it is not 2257 * been, and configure the PHY if the interface is up. 2258 */ 2259 static void ice_check_media_subtask(struct ice_pf *pf) 2260 { 2261 struct ice_port_info *pi; 2262 struct ice_vsi *vsi; 2263 int err; 2264 2265 /* No need to check for media if it's already present */ 2266 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2267 return; 2268 2269 vsi = ice_get_main_vsi(pf); 2270 if (!vsi) 2271 return; 2272 2273 /* Refresh link info and check if media is present */ 2274 pi = vsi->port_info; 2275 err = ice_update_link_info(pi); 2276 if (err) 2277 return; 2278 2279 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2280 2281 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2282 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2283 ice_init_phy_user_cfg(pi); 2284 2285 /* PHY settings are reset on media insertion, reconfigure 2286 * PHY to preserve settings. 2287 */ 2288 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2289 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2290 return; 2291 2292 err = ice_configure_phy(vsi); 2293 if (!err) 2294 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2295 2296 /* A Link Status Event will be generated; the event handler 2297 * will complete bringing the interface up 2298 */ 2299 } 2300 } 2301 2302 /** 2303 * ice_service_task - manage and run subtasks 2304 * @work: pointer to work_struct contained by the PF struct 2305 */ 2306 static void ice_service_task(struct work_struct *work) 2307 { 2308 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2309 unsigned long start_time = jiffies; 2310 2311 /* subtasks */ 2312 2313 /* process reset requests first */ 2314 ice_reset_subtask(pf); 2315 2316 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2317 if (ice_is_reset_in_progress(pf->state) || 2318 test_bit(ICE_SUSPENDED, pf->state) || 2319 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2320 ice_service_task_complete(pf); 2321 return; 2322 } 2323 2324 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2325 struct iidc_event *event; 2326 2327 event = kzalloc(sizeof(*event), GFP_KERNEL); 2328 if (event) { 2329 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2330 /* report the entire OICR value to AUX driver */ 2331 swap(event->reg, pf->oicr_err_reg); 2332 ice_send_event_to_aux(pf, event); 2333 kfree(event); 2334 } 2335 } 2336 2337 /* unplug aux dev per request, if an unplug request came in 2338 * while processing a plug request, this will handle it 2339 */ 2340 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2341 ice_unplug_aux_dev(pf); 2342 2343 /* Plug aux device per request */ 2344 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2345 ice_plug_aux_dev(pf); 2346 2347 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2348 struct iidc_event *event; 2349 2350 event = kzalloc(sizeof(*event), GFP_KERNEL); 2351 if (event) { 2352 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2353 ice_send_event_to_aux(pf, event); 2354 kfree(event); 2355 } 2356 } 2357 2358 ice_clean_adminq_subtask(pf); 2359 ice_check_media_subtask(pf); 2360 ice_check_for_hang_subtask(pf); 2361 ice_sync_fltr_subtask(pf); 2362 ice_handle_mdd_event(pf); 2363 ice_watchdog_subtask(pf); 2364 2365 if (ice_is_safe_mode(pf)) { 2366 ice_service_task_complete(pf); 2367 return; 2368 } 2369 2370 ice_process_vflr_event(pf); 2371 ice_clean_mailboxq_subtask(pf); 2372 ice_clean_sbq_subtask(pf); 2373 ice_sync_arfs_fltrs(pf); 2374 ice_flush_fdir_ctx(pf); 2375 2376 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2377 ice_service_task_complete(pf); 2378 2379 /* If the tasks have taken longer than one service timer period 2380 * or there is more work to be done, reset the service timer to 2381 * schedule the service task now. 2382 */ 2383 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2384 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2385 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2386 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2387 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2388 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2389 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2390 mod_timer(&pf->serv_tmr, jiffies); 2391 } 2392 2393 /** 2394 * ice_set_ctrlq_len - helper function to set controlq length 2395 * @hw: pointer to the HW instance 2396 */ 2397 static void ice_set_ctrlq_len(struct ice_hw *hw) 2398 { 2399 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2400 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2401 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2402 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2403 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2404 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2405 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2406 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2407 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2408 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2409 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2410 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2411 } 2412 2413 /** 2414 * ice_schedule_reset - schedule a reset 2415 * @pf: board private structure 2416 * @reset: reset being requested 2417 */ 2418 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2419 { 2420 struct device *dev = ice_pf_to_dev(pf); 2421 2422 /* bail out if earlier reset has failed */ 2423 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2424 dev_dbg(dev, "earlier reset has failed\n"); 2425 return -EIO; 2426 } 2427 /* bail if reset/recovery already in progress */ 2428 if (ice_is_reset_in_progress(pf->state)) { 2429 dev_dbg(dev, "Reset already in progress\n"); 2430 return -EBUSY; 2431 } 2432 2433 switch (reset) { 2434 case ICE_RESET_PFR: 2435 set_bit(ICE_PFR_REQ, pf->state); 2436 break; 2437 case ICE_RESET_CORER: 2438 set_bit(ICE_CORER_REQ, pf->state); 2439 break; 2440 case ICE_RESET_GLOBR: 2441 set_bit(ICE_GLOBR_REQ, pf->state); 2442 break; 2443 default: 2444 return -EINVAL; 2445 } 2446 2447 ice_service_task_schedule(pf); 2448 return 0; 2449 } 2450 2451 /** 2452 * ice_irq_affinity_notify - Callback for affinity changes 2453 * @notify: context as to what irq was changed 2454 * @mask: the new affinity mask 2455 * 2456 * This is a callback function used by the irq_set_affinity_notifier function 2457 * so that we may register to receive changes to the irq affinity masks. 2458 */ 2459 static void 2460 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2461 const cpumask_t *mask) 2462 { 2463 struct ice_q_vector *q_vector = 2464 container_of(notify, struct ice_q_vector, affinity_notify); 2465 2466 cpumask_copy(&q_vector->affinity_mask, mask); 2467 } 2468 2469 /** 2470 * ice_irq_affinity_release - Callback for affinity notifier release 2471 * @ref: internal core kernel usage 2472 * 2473 * This is a callback function used by the irq_set_affinity_notifier function 2474 * to inform the current notification subscriber that they will no longer 2475 * receive notifications. 2476 */ 2477 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2478 2479 /** 2480 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2481 * @vsi: the VSI being configured 2482 */ 2483 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2484 { 2485 struct ice_hw *hw = &vsi->back->hw; 2486 int i; 2487 2488 ice_for_each_q_vector(vsi, i) 2489 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2490 2491 ice_flush(hw); 2492 return 0; 2493 } 2494 2495 /** 2496 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2497 * @vsi: the VSI being configured 2498 * @basename: name for the vector 2499 */ 2500 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2501 { 2502 int q_vectors = vsi->num_q_vectors; 2503 struct ice_pf *pf = vsi->back; 2504 struct device *dev; 2505 int rx_int_idx = 0; 2506 int tx_int_idx = 0; 2507 int vector, err; 2508 int irq_num; 2509 2510 dev = ice_pf_to_dev(pf); 2511 for (vector = 0; vector < q_vectors; vector++) { 2512 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2513 2514 irq_num = q_vector->irq.virq; 2515 2516 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2517 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2518 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2519 tx_int_idx++; 2520 } else if (q_vector->rx.rx_ring) { 2521 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2522 "%s-%s-%d", basename, "rx", rx_int_idx++); 2523 } else if (q_vector->tx.tx_ring) { 2524 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2525 "%s-%s-%d", basename, "tx", tx_int_idx++); 2526 } else { 2527 /* skip this unused q_vector */ 2528 continue; 2529 } 2530 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2531 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2532 IRQF_SHARED, q_vector->name, 2533 q_vector); 2534 else 2535 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2536 0, q_vector->name, q_vector); 2537 if (err) { 2538 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2539 err); 2540 goto free_q_irqs; 2541 } 2542 2543 /* register for affinity change notifications */ 2544 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2545 struct irq_affinity_notify *affinity_notify; 2546 2547 affinity_notify = &q_vector->affinity_notify; 2548 affinity_notify->notify = ice_irq_affinity_notify; 2549 affinity_notify->release = ice_irq_affinity_release; 2550 irq_set_affinity_notifier(irq_num, affinity_notify); 2551 } 2552 2553 /* assign the mask for this irq */ 2554 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2555 } 2556 2557 err = ice_set_cpu_rx_rmap(vsi); 2558 if (err) { 2559 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2560 vsi->vsi_num, ERR_PTR(err)); 2561 goto free_q_irqs; 2562 } 2563 2564 vsi->irqs_ready = true; 2565 return 0; 2566 2567 free_q_irqs: 2568 while (vector--) { 2569 irq_num = vsi->q_vectors[vector]->irq.virq; 2570 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2571 irq_set_affinity_notifier(irq_num, NULL); 2572 irq_set_affinity_hint(irq_num, NULL); 2573 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2574 } 2575 return err; 2576 } 2577 2578 /** 2579 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2580 * @vsi: VSI to setup Tx rings used by XDP 2581 * 2582 * Return 0 on success and negative value on error 2583 */ 2584 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2585 { 2586 struct device *dev = ice_pf_to_dev(vsi->back); 2587 struct ice_tx_desc *tx_desc; 2588 int i, j; 2589 2590 ice_for_each_xdp_txq(vsi, i) { 2591 u16 xdp_q_idx = vsi->alloc_txq + i; 2592 struct ice_ring_stats *ring_stats; 2593 struct ice_tx_ring *xdp_ring; 2594 2595 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2596 if (!xdp_ring) 2597 goto free_xdp_rings; 2598 2599 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2600 if (!ring_stats) { 2601 ice_free_tx_ring(xdp_ring); 2602 goto free_xdp_rings; 2603 } 2604 2605 xdp_ring->ring_stats = ring_stats; 2606 xdp_ring->q_index = xdp_q_idx; 2607 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2608 xdp_ring->vsi = vsi; 2609 xdp_ring->netdev = NULL; 2610 xdp_ring->dev = dev; 2611 xdp_ring->count = vsi->num_tx_desc; 2612 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2613 if (ice_setup_tx_ring(xdp_ring)) 2614 goto free_xdp_rings; 2615 ice_set_ring_xdp(xdp_ring); 2616 spin_lock_init(&xdp_ring->tx_lock); 2617 for (j = 0; j < xdp_ring->count; j++) { 2618 tx_desc = ICE_TX_DESC(xdp_ring, j); 2619 tx_desc->cmd_type_offset_bsz = 0; 2620 } 2621 } 2622 2623 return 0; 2624 2625 free_xdp_rings: 2626 for (; i >= 0; i--) { 2627 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2628 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2629 vsi->xdp_rings[i]->ring_stats = NULL; 2630 ice_free_tx_ring(vsi->xdp_rings[i]); 2631 } 2632 } 2633 return -ENOMEM; 2634 } 2635 2636 /** 2637 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2638 * @vsi: VSI to set the bpf prog on 2639 * @prog: the bpf prog pointer 2640 */ 2641 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2642 { 2643 struct bpf_prog *old_prog; 2644 int i; 2645 2646 old_prog = xchg(&vsi->xdp_prog, prog); 2647 ice_for_each_rxq(vsi, i) 2648 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2649 2650 if (old_prog) 2651 bpf_prog_put(old_prog); 2652 } 2653 2654 /** 2655 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2656 * @vsi: VSI to bring up Tx rings used by XDP 2657 * @prog: bpf program that will be assigned to VSI 2658 * 2659 * Return 0 on success and negative value on error 2660 */ 2661 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2662 { 2663 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2664 int xdp_rings_rem = vsi->num_xdp_txq; 2665 struct ice_pf *pf = vsi->back; 2666 struct ice_qs_cfg xdp_qs_cfg = { 2667 .qs_mutex = &pf->avail_q_mutex, 2668 .pf_map = pf->avail_txqs, 2669 .pf_map_size = pf->max_pf_txqs, 2670 .q_count = vsi->num_xdp_txq, 2671 .scatter_count = ICE_MAX_SCATTER_TXQS, 2672 .vsi_map = vsi->txq_map, 2673 .vsi_map_offset = vsi->alloc_txq, 2674 .mapping_mode = ICE_VSI_MAP_CONTIG 2675 }; 2676 struct device *dev; 2677 int i, v_idx; 2678 int status; 2679 2680 dev = ice_pf_to_dev(pf); 2681 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2682 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2683 if (!vsi->xdp_rings) 2684 return -ENOMEM; 2685 2686 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2687 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2688 goto err_map_xdp; 2689 2690 if (static_key_enabled(&ice_xdp_locking_key)) 2691 netdev_warn(vsi->netdev, 2692 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2693 2694 if (ice_xdp_alloc_setup_rings(vsi)) 2695 goto clear_xdp_rings; 2696 2697 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2698 ice_for_each_q_vector(vsi, v_idx) { 2699 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2700 int xdp_rings_per_v, q_id, q_base; 2701 2702 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2703 vsi->num_q_vectors - v_idx); 2704 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2705 2706 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2707 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2708 2709 xdp_ring->q_vector = q_vector; 2710 xdp_ring->next = q_vector->tx.tx_ring; 2711 q_vector->tx.tx_ring = xdp_ring; 2712 } 2713 xdp_rings_rem -= xdp_rings_per_v; 2714 } 2715 2716 ice_for_each_rxq(vsi, i) { 2717 if (static_key_enabled(&ice_xdp_locking_key)) { 2718 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2719 } else { 2720 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2721 struct ice_tx_ring *ring; 2722 2723 ice_for_each_tx_ring(ring, q_vector->tx) { 2724 if (ice_ring_is_xdp(ring)) { 2725 vsi->rx_rings[i]->xdp_ring = ring; 2726 break; 2727 } 2728 } 2729 } 2730 ice_tx_xsk_pool(vsi, i); 2731 } 2732 2733 /* omit the scheduler update if in reset path; XDP queues will be 2734 * taken into account at the end of ice_vsi_rebuild, where 2735 * ice_cfg_vsi_lan is being called 2736 */ 2737 if (ice_is_reset_in_progress(pf->state)) 2738 return 0; 2739 2740 /* tell the Tx scheduler that right now we have 2741 * additional queues 2742 */ 2743 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2744 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2745 2746 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2747 max_txqs); 2748 if (status) { 2749 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2750 status); 2751 goto clear_xdp_rings; 2752 } 2753 2754 /* assign the prog only when it's not already present on VSI; 2755 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2756 * VSI rebuild that happens under ethtool -L can expose us to 2757 * the bpf_prog refcount issues as we would be swapping same 2758 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2759 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2760 * this is not harmful as dev_xdp_install bumps the refcount 2761 * before calling the op exposed by the driver; 2762 */ 2763 if (!ice_is_xdp_ena_vsi(vsi)) 2764 ice_vsi_assign_bpf_prog(vsi, prog); 2765 2766 return 0; 2767 clear_xdp_rings: 2768 ice_for_each_xdp_txq(vsi, i) 2769 if (vsi->xdp_rings[i]) { 2770 kfree_rcu(vsi->xdp_rings[i], rcu); 2771 vsi->xdp_rings[i] = NULL; 2772 } 2773 2774 err_map_xdp: 2775 mutex_lock(&pf->avail_q_mutex); 2776 ice_for_each_xdp_txq(vsi, i) { 2777 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2778 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2779 } 2780 mutex_unlock(&pf->avail_q_mutex); 2781 2782 devm_kfree(dev, vsi->xdp_rings); 2783 return -ENOMEM; 2784 } 2785 2786 /** 2787 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2788 * @vsi: VSI to remove XDP rings 2789 * 2790 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2791 * resources 2792 */ 2793 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2794 { 2795 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2796 struct ice_pf *pf = vsi->back; 2797 int i, v_idx; 2798 2799 /* q_vectors are freed in reset path so there's no point in detaching 2800 * rings; in case of rebuild being triggered not from reset bits 2801 * in pf->state won't be set, so additionally check first q_vector 2802 * against NULL 2803 */ 2804 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2805 goto free_qmap; 2806 2807 ice_for_each_q_vector(vsi, v_idx) { 2808 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2809 struct ice_tx_ring *ring; 2810 2811 ice_for_each_tx_ring(ring, q_vector->tx) 2812 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2813 break; 2814 2815 /* restore the value of last node prior to XDP setup */ 2816 q_vector->tx.tx_ring = ring; 2817 } 2818 2819 free_qmap: 2820 mutex_lock(&pf->avail_q_mutex); 2821 ice_for_each_xdp_txq(vsi, i) { 2822 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2823 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2824 } 2825 mutex_unlock(&pf->avail_q_mutex); 2826 2827 ice_for_each_xdp_txq(vsi, i) 2828 if (vsi->xdp_rings[i]) { 2829 if (vsi->xdp_rings[i]->desc) { 2830 synchronize_rcu(); 2831 ice_free_tx_ring(vsi->xdp_rings[i]); 2832 } 2833 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2834 vsi->xdp_rings[i]->ring_stats = NULL; 2835 kfree_rcu(vsi->xdp_rings[i], rcu); 2836 vsi->xdp_rings[i] = NULL; 2837 } 2838 2839 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2840 vsi->xdp_rings = NULL; 2841 2842 if (static_key_enabled(&ice_xdp_locking_key)) 2843 static_branch_dec(&ice_xdp_locking_key); 2844 2845 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2846 return 0; 2847 2848 ice_vsi_assign_bpf_prog(vsi, NULL); 2849 2850 /* notify Tx scheduler that we destroyed XDP queues and bring 2851 * back the old number of child nodes 2852 */ 2853 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2854 max_txqs[i] = vsi->num_txq; 2855 2856 /* change number of XDP Tx queues to 0 */ 2857 vsi->num_xdp_txq = 0; 2858 2859 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2860 max_txqs); 2861 } 2862 2863 /** 2864 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2865 * @vsi: VSI to schedule napi on 2866 */ 2867 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2868 { 2869 int i; 2870 2871 ice_for_each_rxq(vsi, i) { 2872 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2873 2874 if (rx_ring->xsk_pool) 2875 napi_schedule(&rx_ring->q_vector->napi); 2876 } 2877 } 2878 2879 /** 2880 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2881 * @vsi: VSI to determine the count of XDP Tx qs 2882 * 2883 * returns 0 if Tx qs count is higher than at least half of CPU count, 2884 * -ENOMEM otherwise 2885 */ 2886 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2887 { 2888 u16 avail = ice_get_avail_txq_count(vsi->back); 2889 u16 cpus = num_possible_cpus(); 2890 2891 if (avail < cpus / 2) 2892 return -ENOMEM; 2893 2894 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2895 2896 if (vsi->num_xdp_txq < cpus) 2897 static_branch_inc(&ice_xdp_locking_key); 2898 2899 return 0; 2900 } 2901 2902 /** 2903 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2904 * @vsi: Pointer to VSI structure 2905 */ 2906 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2907 { 2908 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2909 return ICE_RXBUF_1664; 2910 else 2911 return ICE_RXBUF_3072; 2912 } 2913 2914 /** 2915 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2916 * @vsi: VSI to setup XDP for 2917 * @prog: XDP program 2918 * @extack: netlink extended ack 2919 */ 2920 static int 2921 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2922 struct netlink_ext_ack *extack) 2923 { 2924 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2925 bool if_running = netif_running(vsi->netdev); 2926 int ret = 0, xdp_ring_err = 0; 2927 2928 if (prog && !prog->aux->xdp_has_frags) { 2929 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2930 NL_SET_ERR_MSG_MOD(extack, 2931 "MTU is too large for linear frames and XDP prog does not support frags"); 2932 return -EOPNOTSUPP; 2933 } 2934 } 2935 2936 /* hot swap progs and avoid toggling link */ 2937 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2938 ice_vsi_assign_bpf_prog(vsi, prog); 2939 return 0; 2940 } 2941 2942 /* need to stop netdev while setting up the program for Rx rings */ 2943 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2944 ret = ice_down(vsi); 2945 if (ret) { 2946 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2947 return ret; 2948 } 2949 } 2950 2951 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2952 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2953 if (xdp_ring_err) { 2954 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2955 } else { 2956 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2957 if (xdp_ring_err) 2958 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2959 } 2960 xdp_features_set_redirect_target(vsi->netdev, true); 2961 /* reallocate Rx queues that are used for zero-copy */ 2962 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2963 if (xdp_ring_err) 2964 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2965 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2966 xdp_features_clear_redirect_target(vsi->netdev); 2967 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2968 if (xdp_ring_err) 2969 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2970 /* reallocate Rx queues that were used for zero-copy */ 2971 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2972 if (xdp_ring_err) 2973 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2974 } 2975 2976 if (if_running) 2977 ret = ice_up(vsi); 2978 2979 if (!ret && prog) 2980 ice_vsi_rx_napi_schedule(vsi); 2981 2982 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2983 } 2984 2985 /** 2986 * ice_xdp_safe_mode - XDP handler for safe mode 2987 * @dev: netdevice 2988 * @xdp: XDP command 2989 */ 2990 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2991 struct netdev_bpf *xdp) 2992 { 2993 NL_SET_ERR_MSG_MOD(xdp->extack, 2994 "Please provide working DDP firmware package in order to use XDP\n" 2995 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2996 return -EOPNOTSUPP; 2997 } 2998 2999 /** 3000 * ice_xdp - implements XDP handler 3001 * @dev: netdevice 3002 * @xdp: XDP command 3003 */ 3004 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3005 { 3006 struct ice_netdev_priv *np = netdev_priv(dev); 3007 struct ice_vsi *vsi = np->vsi; 3008 3009 if (vsi->type != ICE_VSI_PF) { 3010 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3011 return -EINVAL; 3012 } 3013 3014 switch (xdp->command) { 3015 case XDP_SETUP_PROG: 3016 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3017 case XDP_SETUP_XSK_POOL: 3018 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3019 xdp->xsk.queue_id); 3020 default: 3021 return -EINVAL; 3022 } 3023 } 3024 3025 /** 3026 * ice_ena_misc_vector - enable the non-queue interrupts 3027 * @pf: board private structure 3028 */ 3029 static void ice_ena_misc_vector(struct ice_pf *pf) 3030 { 3031 struct ice_hw *hw = &pf->hw; 3032 u32 val; 3033 3034 /* Disable anti-spoof detection interrupt to prevent spurious event 3035 * interrupts during a function reset. Anti-spoof functionally is 3036 * still supported. 3037 */ 3038 val = rd32(hw, GL_MDCK_TX_TDPU); 3039 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3040 wr32(hw, GL_MDCK_TX_TDPU, val); 3041 3042 /* clear things first */ 3043 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3044 rd32(hw, PFINT_OICR); /* read to clear */ 3045 3046 val = (PFINT_OICR_ECC_ERR_M | 3047 PFINT_OICR_MAL_DETECT_M | 3048 PFINT_OICR_GRST_M | 3049 PFINT_OICR_PCI_EXCEPTION_M | 3050 PFINT_OICR_VFLR_M | 3051 PFINT_OICR_HMC_ERR_M | 3052 PFINT_OICR_PE_PUSH_M | 3053 PFINT_OICR_PE_CRITERR_M); 3054 3055 wr32(hw, PFINT_OICR_ENA, val); 3056 3057 /* SW_ITR_IDX = 0, but don't change INTENA */ 3058 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3059 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3060 } 3061 3062 /** 3063 * ice_misc_intr - misc interrupt handler 3064 * @irq: interrupt number 3065 * @data: pointer to a q_vector 3066 */ 3067 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3068 { 3069 struct ice_pf *pf = (struct ice_pf *)data; 3070 struct ice_hw *hw = &pf->hw; 3071 struct device *dev; 3072 u32 oicr, ena_mask; 3073 3074 dev = ice_pf_to_dev(pf); 3075 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3076 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3077 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3078 3079 oicr = rd32(hw, PFINT_OICR); 3080 ena_mask = rd32(hw, PFINT_OICR_ENA); 3081 3082 if (oicr & PFINT_OICR_SWINT_M) { 3083 ena_mask &= ~PFINT_OICR_SWINT_M; 3084 pf->sw_int_count++; 3085 } 3086 3087 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3088 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3089 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3090 } 3091 if (oicr & PFINT_OICR_VFLR_M) { 3092 /* disable any further VFLR event notifications */ 3093 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3094 u32 reg = rd32(hw, PFINT_OICR_ENA); 3095 3096 reg &= ~PFINT_OICR_VFLR_M; 3097 wr32(hw, PFINT_OICR_ENA, reg); 3098 } else { 3099 ena_mask &= ~PFINT_OICR_VFLR_M; 3100 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3101 } 3102 } 3103 3104 if (oicr & PFINT_OICR_GRST_M) { 3105 u32 reset; 3106 3107 /* we have a reset warning */ 3108 ena_mask &= ~PFINT_OICR_GRST_M; 3109 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3110 GLGEN_RSTAT_RESET_TYPE_S; 3111 3112 if (reset == ICE_RESET_CORER) 3113 pf->corer_count++; 3114 else if (reset == ICE_RESET_GLOBR) 3115 pf->globr_count++; 3116 else if (reset == ICE_RESET_EMPR) 3117 pf->empr_count++; 3118 else 3119 dev_dbg(dev, "Invalid reset type %d\n", reset); 3120 3121 /* If a reset cycle isn't already in progress, we set a bit in 3122 * pf->state so that the service task can start a reset/rebuild. 3123 */ 3124 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3125 if (reset == ICE_RESET_CORER) 3126 set_bit(ICE_CORER_RECV, pf->state); 3127 else if (reset == ICE_RESET_GLOBR) 3128 set_bit(ICE_GLOBR_RECV, pf->state); 3129 else 3130 set_bit(ICE_EMPR_RECV, pf->state); 3131 3132 /* There are couple of different bits at play here. 3133 * hw->reset_ongoing indicates whether the hardware is 3134 * in reset. This is set to true when a reset interrupt 3135 * is received and set back to false after the driver 3136 * has determined that the hardware is out of reset. 3137 * 3138 * ICE_RESET_OICR_RECV in pf->state indicates 3139 * that a post reset rebuild is required before the 3140 * driver is operational again. This is set above. 3141 * 3142 * As this is the start of the reset/rebuild cycle, set 3143 * both to indicate that. 3144 */ 3145 hw->reset_ongoing = true; 3146 } 3147 } 3148 3149 if (oicr & PFINT_OICR_TSYN_TX_M) { 3150 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3151 if (!hw->reset_ongoing) 3152 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3153 } 3154 3155 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3156 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3157 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3158 3159 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3160 3161 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3162 /* Save EVENTs from GLTSYN register */ 3163 pf->ptp.ext_ts_irq |= gltsyn_stat & 3164 (GLTSYN_STAT_EVENT0_M | 3165 GLTSYN_STAT_EVENT1_M | 3166 GLTSYN_STAT_EVENT2_M); 3167 3168 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3169 } 3170 } 3171 3172 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3173 if (oicr & ICE_AUX_CRIT_ERR) { 3174 pf->oicr_err_reg |= oicr; 3175 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3176 ena_mask &= ~ICE_AUX_CRIT_ERR; 3177 } 3178 3179 /* Report any remaining unexpected interrupts */ 3180 oicr &= ena_mask; 3181 if (oicr) { 3182 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3183 /* If a critical error is pending there is no choice but to 3184 * reset the device. 3185 */ 3186 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3187 PFINT_OICR_ECC_ERR_M)) { 3188 set_bit(ICE_PFR_REQ, pf->state); 3189 } 3190 } 3191 3192 return IRQ_WAKE_THREAD; 3193 } 3194 3195 /** 3196 * ice_misc_intr_thread_fn - misc interrupt thread function 3197 * @irq: interrupt number 3198 * @data: pointer to a q_vector 3199 */ 3200 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3201 { 3202 struct ice_pf *pf = data; 3203 struct ice_hw *hw; 3204 3205 hw = &pf->hw; 3206 3207 if (ice_is_reset_in_progress(pf->state)) 3208 return IRQ_HANDLED; 3209 3210 ice_service_task_schedule(pf); 3211 3212 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3213 ice_ptp_extts_event(pf); 3214 3215 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3216 /* Process outstanding Tx timestamps. If there is more work, 3217 * re-arm the interrupt to trigger again. 3218 */ 3219 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3220 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3221 ice_flush(hw); 3222 } 3223 } 3224 3225 ice_irq_dynamic_ena(hw, NULL, NULL); 3226 3227 return IRQ_HANDLED; 3228 } 3229 3230 /** 3231 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3232 * @hw: pointer to HW structure 3233 */ 3234 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3235 { 3236 /* disable Admin queue Interrupt causes */ 3237 wr32(hw, PFINT_FW_CTL, 3238 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3239 3240 /* disable Mailbox queue Interrupt causes */ 3241 wr32(hw, PFINT_MBX_CTL, 3242 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3243 3244 wr32(hw, PFINT_SB_CTL, 3245 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3246 3247 /* disable Control queue Interrupt causes */ 3248 wr32(hw, PFINT_OICR_CTL, 3249 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3250 3251 ice_flush(hw); 3252 } 3253 3254 /** 3255 * ice_free_irq_msix_misc - Unroll misc vector setup 3256 * @pf: board private structure 3257 */ 3258 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3259 { 3260 int misc_irq_num = pf->oicr_irq.virq; 3261 struct ice_hw *hw = &pf->hw; 3262 3263 ice_dis_ctrlq_interrupts(hw); 3264 3265 /* disable OICR interrupt */ 3266 wr32(hw, PFINT_OICR_ENA, 0); 3267 ice_flush(hw); 3268 3269 synchronize_irq(misc_irq_num); 3270 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3271 3272 ice_free_irq(pf, pf->oicr_irq); 3273 } 3274 3275 /** 3276 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3277 * @hw: pointer to HW structure 3278 * @reg_idx: HW vector index to associate the control queue interrupts with 3279 */ 3280 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3281 { 3282 u32 val; 3283 3284 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3285 PFINT_OICR_CTL_CAUSE_ENA_M); 3286 wr32(hw, PFINT_OICR_CTL, val); 3287 3288 /* enable Admin queue Interrupt causes */ 3289 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3290 PFINT_FW_CTL_CAUSE_ENA_M); 3291 wr32(hw, PFINT_FW_CTL, val); 3292 3293 /* enable Mailbox queue Interrupt causes */ 3294 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3295 PFINT_MBX_CTL_CAUSE_ENA_M); 3296 wr32(hw, PFINT_MBX_CTL, val); 3297 3298 /* This enables Sideband queue Interrupt causes */ 3299 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3300 PFINT_SB_CTL_CAUSE_ENA_M); 3301 wr32(hw, PFINT_SB_CTL, val); 3302 3303 ice_flush(hw); 3304 } 3305 3306 /** 3307 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3308 * @pf: board private structure 3309 * 3310 * This sets up the handler for MSIX 0, which is used to manage the 3311 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3312 * when in MSI or Legacy interrupt mode. 3313 */ 3314 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3315 { 3316 struct device *dev = ice_pf_to_dev(pf); 3317 struct ice_hw *hw = &pf->hw; 3318 struct msi_map oicr_irq; 3319 int err = 0; 3320 3321 if (!pf->int_name[0]) 3322 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3323 dev_driver_string(dev), dev_name(dev)); 3324 3325 /* Do not request IRQ but do enable OICR interrupt since settings are 3326 * lost during reset. Note that this function is called only during 3327 * rebuild path and not while reset is in progress. 3328 */ 3329 if (ice_is_reset_in_progress(pf->state)) 3330 goto skip_req_irq; 3331 3332 /* reserve one vector in irq_tracker for misc interrupts */ 3333 oicr_irq = ice_alloc_irq(pf, false); 3334 if (oicr_irq.index < 0) 3335 return oicr_irq.index; 3336 3337 pf->oicr_irq = oicr_irq; 3338 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3339 ice_misc_intr_thread_fn, 0, 3340 pf->int_name, pf); 3341 if (err) { 3342 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3343 pf->int_name, err); 3344 ice_free_irq(pf, pf->oicr_irq); 3345 return err; 3346 } 3347 3348 skip_req_irq: 3349 ice_ena_misc_vector(pf); 3350 3351 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3352 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3353 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3354 3355 ice_flush(hw); 3356 ice_irq_dynamic_ena(hw, NULL, NULL); 3357 3358 return 0; 3359 } 3360 3361 /** 3362 * ice_napi_add - register NAPI handler for the VSI 3363 * @vsi: VSI for which NAPI handler is to be registered 3364 * 3365 * This function is only called in the driver's load path. Registering the NAPI 3366 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3367 * reset/rebuild, etc.) 3368 */ 3369 static void ice_napi_add(struct ice_vsi *vsi) 3370 { 3371 int v_idx; 3372 3373 if (!vsi->netdev) 3374 return; 3375 3376 ice_for_each_q_vector(vsi, v_idx) 3377 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3378 ice_napi_poll); 3379 } 3380 3381 /** 3382 * ice_set_ops - set netdev and ethtools ops for the given netdev 3383 * @vsi: the VSI associated with the new netdev 3384 */ 3385 static void ice_set_ops(struct ice_vsi *vsi) 3386 { 3387 struct net_device *netdev = vsi->netdev; 3388 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3389 3390 if (ice_is_safe_mode(pf)) { 3391 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3392 ice_set_ethtool_safe_mode_ops(netdev); 3393 return; 3394 } 3395 3396 netdev->netdev_ops = &ice_netdev_ops; 3397 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3398 ice_set_ethtool_ops(netdev); 3399 3400 if (vsi->type != ICE_VSI_PF) 3401 return; 3402 3403 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3404 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3405 NETDEV_XDP_ACT_RX_SG; 3406 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3407 } 3408 3409 /** 3410 * ice_set_netdev_features - set features for the given netdev 3411 * @netdev: netdev instance 3412 */ 3413 static void ice_set_netdev_features(struct net_device *netdev) 3414 { 3415 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3416 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3417 netdev_features_t csumo_features; 3418 netdev_features_t vlano_features; 3419 netdev_features_t dflt_features; 3420 netdev_features_t tso_features; 3421 3422 if (ice_is_safe_mode(pf)) { 3423 /* safe mode */ 3424 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3425 netdev->hw_features = netdev->features; 3426 return; 3427 } 3428 3429 dflt_features = NETIF_F_SG | 3430 NETIF_F_HIGHDMA | 3431 NETIF_F_NTUPLE | 3432 NETIF_F_RXHASH; 3433 3434 csumo_features = NETIF_F_RXCSUM | 3435 NETIF_F_IP_CSUM | 3436 NETIF_F_SCTP_CRC | 3437 NETIF_F_IPV6_CSUM; 3438 3439 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3440 NETIF_F_HW_VLAN_CTAG_TX | 3441 NETIF_F_HW_VLAN_CTAG_RX; 3442 3443 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3444 if (is_dvm_ena) 3445 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3446 3447 tso_features = NETIF_F_TSO | 3448 NETIF_F_TSO_ECN | 3449 NETIF_F_TSO6 | 3450 NETIF_F_GSO_GRE | 3451 NETIF_F_GSO_UDP_TUNNEL | 3452 NETIF_F_GSO_GRE_CSUM | 3453 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3454 NETIF_F_GSO_PARTIAL | 3455 NETIF_F_GSO_IPXIP4 | 3456 NETIF_F_GSO_IPXIP6 | 3457 NETIF_F_GSO_UDP_L4; 3458 3459 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3460 NETIF_F_GSO_GRE_CSUM; 3461 /* set features that user can change */ 3462 netdev->hw_features = dflt_features | csumo_features | 3463 vlano_features | tso_features; 3464 3465 /* add support for HW_CSUM on packets with MPLS header */ 3466 netdev->mpls_features = NETIF_F_HW_CSUM | 3467 NETIF_F_TSO | 3468 NETIF_F_TSO6; 3469 3470 /* enable features */ 3471 netdev->features |= netdev->hw_features; 3472 3473 netdev->hw_features |= NETIF_F_HW_TC; 3474 netdev->hw_features |= NETIF_F_LOOPBACK; 3475 3476 /* encap and VLAN devices inherit default, csumo and tso features */ 3477 netdev->hw_enc_features |= dflt_features | csumo_features | 3478 tso_features; 3479 netdev->vlan_features |= dflt_features | csumo_features | 3480 tso_features; 3481 3482 /* advertise support but don't enable by default since only one type of 3483 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3484 * type turns on the other has to be turned off. This is enforced by the 3485 * ice_fix_features() ndo callback. 3486 */ 3487 if (is_dvm_ena) 3488 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3489 NETIF_F_HW_VLAN_STAG_TX; 3490 3491 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3492 * be changed at runtime 3493 */ 3494 netdev->hw_features |= NETIF_F_RXFCS; 3495 3496 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3497 } 3498 3499 /** 3500 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3501 * @lut: Lookup table 3502 * @rss_table_size: Lookup table size 3503 * @rss_size: Range of queue number for hashing 3504 */ 3505 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3506 { 3507 u16 i; 3508 3509 for (i = 0; i < rss_table_size; i++) 3510 lut[i] = i % rss_size; 3511 } 3512 3513 /** 3514 * ice_pf_vsi_setup - Set up a PF VSI 3515 * @pf: board private structure 3516 * @pi: pointer to the port_info instance 3517 * 3518 * Returns pointer to the successfully allocated VSI software struct 3519 * on success, otherwise returns NULL on failure. 3520 */ 3521 static struct ice_vsi * 3522 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3523 { 3524 struct ice_vsi_cfg_params params = {}; 3525 3526 params.type = ICE_VSI_PF; 3527 params.pi = pi; 3528 params.flags = ICE_VSI_FLAG_INIT; 3529 3530 return ice_vsi_setup(pf, ¶ms); 3531 } 3532 3533 static struct ice_vsi * 3534 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3535 struct ice_channel *ch) 3536 { 3537 struct ice_vsi_cfg_params params = {}; 3538 3539 params.type = ICE_VSI_CHNL; 3540 params.pi = pi; 3541 params.ch = ch; 3542 params.flags = ICE_VSI_FLAG_INIT; 3543 3544 return ice_vsi_setup(pf, ¶ms); 3545 } 3546 3547 /** 3548 * ice_ctrl_vsi_setup - Set up a control VSI 3549 * @pf: board private structure 3550 * @pi: pointer to the port_info instance 3551 * 3552 * Returns pointer to the successfully allocated VSI software struct 3553 * on success, otherwise returns NULL on failure. 3554 */ 3555 static struct ice_vsi * 3556 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3557 { 3558 struct ice_vsi_cfg_params params = {}; 3559 3560 params.type = ICE_VSI_CTRL; 3561 params.pi = pi; 3562 params.flags = ICE_VSI_FLAG_INIT; 3563 3564 return ice_vsi_setup(pf, ¶ms); 3565 } 3566 3567 /** 3568 * ice_lb_vsi_setup - Set up a loopback VSI 3569 * @pf: board private structure 3570 * @pi: pointer to the port_info instance 3571 * 3572 * Returns pointer to the successfully allocated VSI software struct 3573 * on success, otherwise returns NULL on failure. 3574 */ 3575 struct ice_vsi * 3576 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3577 { 3578 struct ice_vsi_cfg_params params = {}; 3579 3580 params.type = ICE_VSI_LB; 3581 params.pi = pi; 3582 params.flags = ICE_VSI_FLAG_INIT; 3583 3584 return ice_vsi_setup(pf, ¶ms); 3585 } 3586 3587 /** 3588 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3589 * @netdev: network interface to be adjusted 3590 * @proto: VLAN TPID 3591 * @vid: VLAN ID to be added 3592 * 3593 * net_device_ops implementation for adding VLAN IDs 3594 */ 3595 static int 3596 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3597 { 3598 struct ice_netdev_priv *np = netdev_priv(netdev); 3599 struct ice_vsi_vlan_ops *vlan_ops; 3600 struct ice_vsi *vsi = np->vsi; 3601 struct ice_vlan vlan; 3602 int ret; 3603 3604 /* VLAN 0 is added by default during load/reset */ 3605 if (!vid) 3606 return 0; 3607 3608 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3609 usleep_range(1000, 2000); 3610 3611 /* Add multicast promisc rule for the VLAN ID to be added if 3612 * all-multicast is currently enabled. 3613 */ 3614 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3615 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3616 ICE_MCAST_VLAN_PROMISC_BITS, 3617 vid); 3618 if (ret) 3619 goto finish; 3620 } 3621 3622 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3623 3624 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3625 * packets aren't pruned by the device's internal switch on Rx 3626 */ 3627 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3628 ret = vlan_ops->add_vlan(vsi, &vlan); 3629 if (ret) 3630 goto finish; 3631 3632 /* If all-multicast is currently enabled and this VLAN ID is only one 3633 * besides VLAN-0 we have to update look-up type of multicast promisc 3634 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3635 */ 3636 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3637 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3638 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3639 ICE_MCAST_PROMISC_BITS, 0); 3640 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3641 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3642 } 3643 3644 finish: 3645 clear_bit(ICE_CFG_BUSY, vsi->state); 3646 3647 return ret; 3648 } 3649 3650 /** 3651 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3652 * @netdev: network interface to be adjusted 3653 * @proto: VLAN TPID 3654 * @vid: VLAN ID to be removed 3655 * 3656 * net_device_ops implementation for removing VLAN IDs 3657 */ 3658 static int 3659 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3660 { 3661 struct ice_netdev_priv *np = netdev_priv(netdev); 3662 struct ice_vsi_vlan_ops *vlan_ops; 3663 struct ice_vsi *vsi = np->vsi; 3664 struct ice_vlan vlan; 3665 int ret; 3666 3667 /* don't allow removal of VLAN 0 */ 3668 if (!vid) 3669 return 0; 3670 3671 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3672 usleep_range(1000, 2000); 3673 3674 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3675 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3676 if (ret) { 3677 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3678 vsi->vsi_num); 3679 vsi->current_netdev_flags |= IFF_ALLMULTI; 3680 } 3681 3682 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3683 3684 /* Make sure VLAN delete is successful before updating VLAN 3685 * information 3686 */ 3687 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3688 ret = vlan_ops->del_vlan(vsi, &vlan); 3689 if (ret) 3690 goto finish; 3691 3692 /* Remove multicast promisc rule for the removed VLAN ID if 3693 * all-multicast is enabled. 3694 */ 3695 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3696 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3697 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3698 3699 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3700 /* Update look-up type of multicast promisc rule for VLAN 0 3701 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3702 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3703 */ 3704 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3705 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3706 ICE_MCAST_VLAN_PROMISC_BITS, 3707 0); 3708 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3709 ICE_MCAST_PROMISC_BITS, 0); 3710 } 3711 } 3712 3713 finish: 3714 clear_bit(ICE_CFG_BUSY, vsi->state); 3715 3716 return ret; 3717 } 3718 3719 /** 3720 * ice_rep_indr_tc_block_unbind 3721 * @cb_priv: indirection block private data 3722 */ 3723 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3724 { 3725 struct ice_indr_block_priv *indr_priv = cb_priv; 3726 3727 list_del(&indr_priv->list); 3728 kfree(indr_priv); 3729 } 3730 3731 /** 3732 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3733 * @vsi: VSI struct which has the netdev 3734 */ 3735 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3736 { 3737 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3738 3739 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3740 ice_rep_indr_tc_block_unbind); 3741 } 3742 3743 /** 3744 * ice_tc_indir_block_register - Register TC indirect block notifications 3745 * @vsi: VSI struct which has the netdev 3746 * 3747 * Returns 0 on success, negative value on failure 3748 */ 3749 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3750 { 3751 struct ice_netdev_priv *np; 3752 3753 if (!vsi || !vsi->netdev) 3754 return -EINVAL; 3755 3756 np = netdev_priv(vsi->netdev); 3757 3758 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3759 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3760 } 3761 3762 /** 3763 * ice_get_avail_q_count - Get count of queues in use 3764 * @pf_qmap: bitmap to get queue use count from 3765 * @lock: pointer to a mutex that protects access to pf_qmap 3766 * @size: size of the bitmap 3767 */ 3768 static u16 3769 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3770 { 3771 unsigned long bit; 3772 u16 count = 0; 3773 3774 mutex_lock(lock); 3775 for_each_clear_bit(bit, pf_qmap, size) 3776 count++; 3777 mutex_unlock(lock); 3778 3779 return count; 3780 } 3781 3782 /** 3783 * ice_get_avail_txq_count - Get count of Tx queues in use 3784 * @pf: pointer to an ice_pf instance 3785 */ 3786 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3787 { 3788 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3789 pf->max_pf_txqs); 3790 } 3791 3792 /** 3793 * ice_get_avail_rxq_count - Get count of Rx queues in use 3794 * @pf: pointer to an ice_pf instance 3795 */ 3796 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3797 { 3798 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3799 pf->max_pf_rxqs); 3800 } 3801 3802 /** 3803 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3804 * @pf: board private structure to initialize 3805 */ 3806 static void ice_deinit_pf(struct ice_pf *pf) 3807 { 3808 ice_service_task_stop(pf); 3809 mutex_destroy(&pf->lag_mutex); 3810 mutex_destroy(&pf->adev_mutex); 3811 mutex_destroy(&pf->sw_mutex); 3812 mutex_destroy(&pf->tc_mutex); 3813 mutex_destroy(&pf->avail_q_mutex); 3814 mutex_destroy(&pf->vfs.table_lock); 3815 3816 if (pf->avail_txqs) { 3817 bitmap_free(pf->avail_txqs); 3818 pf->avail_txqs = NULL; 3819 } 3820 3821 if (pf->avail_rxqs) { 3822 bitmap_free(pf->avail_rxqs); 3823 pf->avail_rxqs = NULL; 3824 } 3825 3826 if (pf->ptp.clock) 3827 ptp_clock_unregister(pf->ptp.clock); 3828 } 3829 3830 /** 3831 * ice_set_pf_caps - set PFs capability flags 3832 * @pf: pointer to the PF instance 3833 */ 3834 static void ice_set_pf_caps(struct ice_pf *pf) 3835 { 3836 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3837 3838 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3839 if (func_caps->common_cap.rdma) 3840 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3841 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3842 if (func_caps->common_cap.dcb) 3843 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3844 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3845 if (func_caps->common_cap.sr_iov_1_1) { 3846 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3847 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3848 ICE_MAX_SRIOV_VFS); 3849 } 3850 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3851 if (func_caps->common_cap.rss_table_size) 3852 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3853 3854 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3855 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3856 u16 unused; 3857 3858 /* ctrl_vsi_idx will be set to a valid value when flow director 3859 * is setup by ice_init_fdir 3860 */ 3861 pf->ctrl_vsi_idx = ICE_NO_VSI; 3862 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3863 /* force guaranteed filter pool for PF */ 3864 ice_alloc_fd_guar_item(&pf->hw, &unused, 3865 func_caps->fd_fltr_guar); 3866 /* force shared filter pool for PF */ 3867 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3868 func_caps->fd_fltr_best_effort); 3869 } 3870 3871 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3872 if (func_caps->common_cap.ieee_1588) 3873 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3874 3875 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3876 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3877 } 3878 3879 /** 3880 * ice_init_pf - Initialize general software structures (struct ice_pf) 3881 * @pf: board private structure to initialize 3882 */ 3883 static int ice_init_pf(struct ice_pf *pf) 3884 { 3885 ice_set_pf_caps(pf); 3886 3887 mutex_init(&pf->sw_mutex); 3888 mutex_init(&pf->tc_mutex); 3889 mutex_init(&pf->adev_mutex); 3890 mutex_init(&pf->lag_mutex); 3891 3892 INIT_HLIST_HEAD(&pf->aq_wait_list); 3893 spin_lock_init(&pf->aq_wait_lock); 3894 init_waitqueue_head(&pf->aq_wait_queue); 3895 3896 init_waitqueue_head(&pf->reset_wait_queue); 3897 3898 /* setup service timer and periodic service task */ 3899 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3900 pf->serv_tmr_period = HZ; 3901 INIT_WORK(&pf->serv_task, ice_service_task); 3902 clear_bit(ICE_SERVICE_SCHED, pf->state); 3903 3904 mutex_init(&pf->avail_q_mutex); 3905 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3906 if (!pf->avail_txqs) 3907 return -ENOMEM; 3908 3909 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3910 if (!pf->avail_rxqs) { 3911 bitmap_free(pf->avail_txqs); 3912 pf->avail_txqs = NULL; 3913 return -ENOMEM; 3914 } 3915 3916 mutex_init(&pf->vfs.table_lock); 3917 hash_init(pf->vfs.table); 3918 ice_mbx_init_snapshot(&pf->hw); 3919 3920 return 0; 3921 } 3922 3923 /** 3924 * ice_is_wol_supported - check if WoL is supported 3925 * @hw: pointer to hardware info 3926 * 3927 * Check if WoL is supported based on the HW configuration. 3928 * Returns true if NVM supports and enables WoL for this port, false otherwise 3929 */ 3930 bool ice_is_wol_supported(struct ice_hw *hw) 3931 { 3932 u16 wol_ctrl; 3933 3934 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3935 * word) indicates WoL is not supported on the corresponding PF ID. 3936 */ 3937 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3938 return false; 3939 3940 return !(BIT(hw->port_info->lport) & wol_ctrl); 3941 } 3942 3943 /** 3944 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3945 * @vsi: VSI being changed 3946 * @new_rx: new number of Rx queues 3947 * @new_tx: new number of Tx queues 3948 * @locked: is adev device_lock held 3949 * 3950 * Only change the number of queues if new_tx, or new_rx is non-0. 3951 * 3952 * Returns 0 on success. 3953 */ 3954 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3955 { 3956 struct ice_pf *pf = vsi->back; 3957 int err = 0, timeout = 50; 3958 3959 if (!new_rx && !new_tx) 3960 return -EINVAL; 3961 3962 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3963 timeout--; 3964 if (!timeout) 3965 return -EBUSY; 3966 usleep_range(1000, 2000); 3967 } 3968 3969 if (new_tx) 3970 vsi->req_txq = (u16)new_tx; 3971 if (new_rx) 3972 vsi->req_rxq = (u16)new_rx; 3973 3974 /* set for the next time the netdev is started */ 3975 if (!netif_running(vsi->netdev)) { 3976 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3977 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3978 goto done; 3979 } 3980 3981 ice_vsi_close(vsi); 3982 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3983 ice_pf_dcb_recfg(pf, locked); 3984 ice_vsi_open(vsi); 3985 done: 3986 clear_bit(ICE_CFG_BUSY, pf->state); 3987 return err; 3988 } 3989 3990 /** 3991 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3992 * @pf: PF to configure 3993 * 3994 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3995 * VSI can still Tx/Rx VLAN tagged packets. 3996 */ 3997 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3998 { 3999 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4000 struct ice_vsi_ctx *ctxt; 4001 struct ice_hw *hw; 4002 int status; 4003 4004 if (!vsi) 4005 return; 4006 4007 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4008 if (!ctxt) 4009 return; 4010 4011 hw = &pf->hw; 4012 ctxt->info = vsi->info; 4013 4014 ctxt->info.valid_sections = 4015 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4016 ICE_AQ_VSI_PROP_SECURITY_VALID | 4017 ICE_AQ_VSI_PROP_SW_VALID); 4018 4019 /* disable VLAN anti-spoof */ 4020 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4021 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4022 4023 /* disable VLAN pruning and keep all other settings */ 4024 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4025 4026 /* allow all VLANs on Tx and don't strip on Rx */ 4027 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4028 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4029 4030 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4031 if (status) { 4032 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4033 status, ice_aq_str(hw->adminq.sq_last_status)); 4034 } else { 4035 vsi->info.sec_flags = ctxt->info.sec_flags; 4036 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4037 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4038 } 4039 4040 kfree(ctxt); 4041 } 4042 4043 /** 4044 * ice_log_pkg_init - log result of DDP package load 4045 * @hw: pointer to hardware info 4046 * @state: state of package load 4047 */ 4048 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4049 { 4050 struct ice_pf *pf = hw->back; 4051 struct device *dev; 4052 4053 dev = ice_pf_to_dev(pf); 4054 4055 switch (state) { 4056 case ICE_DDP_PKG_SUCCESS: 4057 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4058 hw->active_pkg_name, 4059 hw->active_pkg_ver.major, 4060 hw->active_pkg_ver.minor, 4061 hw->active_pkg_ver.update, 4062 hw->active_pkg_ver.draft); 4063 break; 4064 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4065 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4066 hw->active_pkg_name, 4067 hw->active_pkg_ver.major, 4068 hw->active_pkg_ver.minor, 4069 hw->active_pkg_ver.update, 4070 hw->active_pkg_ver.draft); 4071 break; 4072 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4073 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4074 hw->active_pkg_name, 4075 hw->active_pkg_ver.major, 4076 hw->active_pkg_ver.minor, 4077 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4078 break; 4079 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4080 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4081 hw->active_pkg_name, 4082 hw->active_pkg_ver.major, 4083 hw->active_pkg_ver.minor, 4084 hw->active_pkg_ver.update, 4085 hw->active_pkg_ver.draft, 4086 hw->pkg_name, 4087 hw->pkg_ver.major, 4088 hw->pkg_ver.minor, 4089 hw->pkg_ver.update, 4090 hw->pkg_ver.draft); 4091 break; 4092 case ICE_DDP_PKG_FW_MISMATCH: 4093 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4094 break; 4095 case ICE_DDP_PKG_INVALID_FILE: 4096 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4097 break; 4098 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4099 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4100 break; 4101 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4102 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4103 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4104 break; 4105 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4106 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4107 break; 4108 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4109 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4110 break; 4111 case ICE_DDP_PKG_LOAD_ERROR: 4112 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4113 /* poll for reset to complete */ 4114 if (ice_check_reset(hw)) 4115 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4116 break; 4117 case ICE_DDP_PKG_ERR: 4118 default: 4119 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4120 break; 4121 } 4122 } 4123 4124 /** 4125 * ice_load_pkg - load/reload the DDP Package file 4126 * @firmware: firmware structure when firmware requested or NULL for reload 4127 * @pf: pointer to the PF instance 4128 * 4129 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4130 * initialize HW tables. 4131 */ 4132 static void 4133 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4134 { 4135 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4136 struct device *dev = ice_pf_to_dev(pf); 4137 struct ice_hw *hw = &pf->hw; 4138 4139 /* Load DDP Package */ 4140 if (firmware && !hw->pkg_copy) { 4141 state = ice_copy_and_init_pkg(hw, firmware->data, 4142 firmware->size); 4143 ice_log_pkg_init(hw, state); 4144 } else if (!firmware && hw->pkg_copy) { 4145 /* Reload package during rebuild after CORER/GLOBR reset */ 4146 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4147 ice_log_pkg_init(hw, state); 4148 } else { 4149 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4150 } 4151 4152 if (!ice_is_init_pkg_successful(state)) { 4153 /* Safe Mode */ 4154 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4155 return; 4156 } 4157 4158 /* Successful download package is the precondition for advanced 4159 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4160 */ 4161 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4162 } 4163 4164 /** 4165 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4166 * @pf: pointer to the PF structure 4167 * 4168 * There is no error returned here because the driver should be able to handle 4169 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4170 * specifically with Tx. 4171 */ 4172 static void ice_verify_cacheline_size(struct ice_pf *pf) 4173 { 4174 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4175 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4176 ICE_CACHE_LINE_BYTES); 4177 } 4178 4179 /** 4180 * ice_send_version - update firmware with driver version 4181 * @pf: PF struct 4182 * 4183 * Returns 0 on success, else error code 4184 */ 4185 static int ice_send_version(struct ice_pf *pf) 4186 { 4187 struct ice_driver_ver dv; 4188 4189 dv.major_ver = 0xff; 4190 dv.minor_ver = 0xff; 4191 dv.build_ver = 0xff; 4192 dv.subbuild_ver = 0; 4193 strscpy((char *)dv.driver_string, UTS_RELEASE, 4194 sizeof(dv.driver_string)); 4195 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4196 } 4197 4198 /** 4199 * ice_init_fdir - Initialize flow director VSI and configuration 4200 * @pf: pointer to the PF instance 4201 * 4202 * returns 0 on success, negative on error 4203 */ 4204 static int ice_init_fdir(struct ice_pf *pf) 4205 { 4206 struct device *dev = ice_pf_to_dev(pf); 4207 struct ice_vsi *ctrl_vsi; 4208 int err; 4209 4210 /* Side Band Flow Director needs to have a control VSI. 4211 * Allocate it and store it in the PF. 4212 */ 4213 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4214 if (!ctrl_vsi) { 4215 dev_dbg(dev, "could not create control VSI\n"); 4216 return -ENOMEM; 4217 } 4218 4219 err = ice_vsi_open_ctrl(ctrl_vsi); 4220 if (err) { 4221 dev_dbg(dev, "could not open control VSI\n"); 4222 goto err_vsi_open; 4223 } 4224 4225 mutex_init(&pf->hw.fdir_fltr_lock); 4226 4227 err = ice_fdir_create_dflt_rules(pf); 4228 if (err) 4229 goto err_fdir_rule; 4230 4231 return 0; 4232 4233 err_fdir_rule: 4234 ice_fdir_release_flows(&pf->hw); 4235 ice_vsi_close(ctrl_vsi); 4236 err_vsi_open: 4237 ice_vsi_release(ctrl_vsi); 4238 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4239 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4240 pf->ctrl_vsi_idx = ICE_NO_VSI; 4241 } 4242 return err; 4243 } 4244 4245 static void ice_deinit_fdir(struct ice_pf *pf) 4246 { 4247 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4248 4249 if (!vsi) 4250 return; 4251 4252 ice_vsi_manage_fdir(vsi, false); 4253 ice_vsi_release(vsi); 4254 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4255 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4256 pf->ctrl_vsi_idx = ICE_NO_VSI; 4257 } 4258 4259 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4260 } 4261 4262 /** 4263 * ice_get_opt_fw_name - return optional firmware file name or NULL 4264 * @pf: pointer to the PF instance 4265 */ 4266 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4267 { 4268 /* Optional firmware name same as default with additional dash 4269 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4270 */ 4271 struct pci_dev *pdev = pf->pdev; 4272 char *opt_fw_filename; 4273 u64 dsn; 4274 4275 /* Determine the name of the optional file using the DSN (two 4276 * dwords following the start of the DSN Capability). 4277 */ 4278 dsn = pci_get_dsn(pdev); 4279 if (!dsn) 4280 return NULL; 4281 4282 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4283 if (!opt_fw_filename) 4284 return NULL; 4285 4286 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4287 ICE_DDP_PKG_PATH, dsn); 4288 4289 return opt_fw_filename; 4290 } 4291 4292 /** 4293 * ice_request_fw - Device initialization routine 4294 * @pf: pointer to the PF instance 4295 */ 4296 static void ice_request_fw(struct ice_pf *pf) 4297 { 4298 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4299 const struct firmware *firmware = NULL; 4300 struct device *dev = ice_pf_to_dev(pf); 4301 int err = 0; 4302 4303 /* optional device-specific DDP (if present) overrides the default DDP 4304 * package file. kernel logs a debug message if the file doesn't exist, 4305 * and warning messages for other errors. 4306 */ 4307 if (opt_fw_filename) { 4308 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4309 if (err) { 4310 kfree(opt_fw_filename); 4311 goto dflt_pkg_load; 4312 } 4313 4314 /* request for firmware was successful. Download to device */ 4315 ice_load_pkg(firmware, pf); 4316 kfree(opt_fw_filename); 4317 release_firmware(firmware); 4318 return; 4319 } 4320 4321 dflt_pkg_load: 4322 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4323 if (err) { 4324 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4325 return; 4326 } 4327 4328 /* request for firmware was successful. Download to device */ 4329 ice_load_pkg(firmware, pf); 4330 release_firmware(firmware); 4331 } 4332 4333 /** 4334 * ice_print_wake_reason - show the wake up cause in the log 4335 * @pf: pointer to the PF struct 4336 */ 4337 static void ice_print_wake_reason(struct ice_pf *pf) 4338 { 4339 u32 wus = pf->wakeup_reason; 4340 const char *wake_str; 4341 4342 /* if no wake event, nothing to print */ 4343 if (!wus) 4344 return; 4345 4346 if (wus & PFPM_WUS_LNKC_M) 4347 wake_str = "Link\n"; 4348 else if (wus & PFPM_WUS_MAG_M) 4349 wake_str = "Magic Packet\n"; 4350 else if (wus & PFPM_WUS_MNG_M) 4351 wake_str = "Management\n"; 4352 else if (wus & PFPM_WUS_FW_RST_WK_M) 4353 wake_str = "Firmware Reset\n"; 4354 else 4355 wake_str = "Unknown\n"; 4356 4357 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4358 } 4359 4360 /** 4361 * ice_register_netdev - register netdev 4362 * @vsi: pointer to the VSI struct 4363 */ 4364 static int ice_register_netdev(struct ice_vsi *vsi) 4365 { 4366 int err; 4367 4368 if (!vsi || !vsi->netdev) 4369 return -EIO; 4370 4371 err = register_netdev(vsi->netdev); 4372 if (err) 4373 return err; 4374 4375 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4376 netif_carrier_off(vsi->netdev); 4377 netif_tx_stop_all_queues(vsi->netdev); 4378 4379 return 0; 4380 } 4381 4382 static void ice_unregister_netdev(struct ice_vsi *vsi) 4383 { 4384 if (!vsi || !vsi->netdev) 4385 return; 4386 4387 unregister_netdev(vsi->netdev); 4388 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4389 } 4390 4391 /** 4392 * ice_cfg_netdev - Allocate, configure and register a netdev 4393 * @vsi: the VSI associated with the new netdev 4394 * 4395 * Returns 0 on success, negative value on failure 4396 */ 4397 static int ice_cfg_netdev(struct ice_vsi *vsi) 4398 { 4399 struct ice_netdev_priv *np; 4400 struct net_device *netdev; 4401 u8 mac_addr[ETH_ALEN]; 4402 4403 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4404 vsi->alloc_rxq); 4405 if (!netdev) 4406 return -ENOMEM; 4407 4408 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4409 vsi->netdev = netdev; 4410 np = netdev_priv(netdev); 4411 np->vsi = vsi; 4412 4413 ice_set_netdev_features(netdev); 4414 ice_set_ops(vsi); 4415 4416 if (vsi->type == ICE_VSI_PF) { 4417 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4418 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4419 eth_hw_addr_set(netdev, mac_addr); 4420 } 4421 4422 netdev->priv_flags |= IFF_UNICAST_FLT; 4423 4424 /* Setup netdev TC information */ 4425 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4426 4427 netdev->max_mtu = ICE_MAX_MTU; 4428 4429 return 0; 4430 } 4431 4432 static void ice_decfg_netdev(struct ice_vsi *vsi) 4433 { 4434 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4435 free_netdev(vsi->netdev); 4436 vsi->netdev = NULL; 4437 } 4438 4439 static int ice_start_eth(struct ice_vsi *vsi) 4440 { 4441 int err; 4442 4443 err = ice_init_mac_fltr(vsi->back); 4444 if (err) 4445 return err; 4446 4447 err = ice_vsi_open(vsi); 4448 if (err) 4449 ice_fltr_remove_all(vsi); 4450 4451 return err; 4452 } 4453 4454 static void ice_stop_eth(struct ice_vsi *vsi) 4455 { 4456 ice_fltr_remove_all(vsi); 4457 ice_vsi_close(vsi); 4458 } 4459 4460 static int ice_init_eth(struct ice_pf *pf) 4461 { 4462 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4463 int err; 4464 4465 if (!vsi) 4466 return -EINVAL; 4467 4468 /* init channel list */ 4469 INIT_LIST_HEAD(&vsi->ch_list); 4470 4471 err = ice_cfg_netdev(vsi); 4472 if (err) 4473 return err; 4474 /* Setup DCB netlink interface */ 4475 ice_dcbnl_setup(vsi); 4476 4477 err = ice_init_mac_fltr(pf); 4478 if (err) 4479 goto err_init_mac_fltr; 4480 4481 err = ice_devlink_create_pf_port(pf); 4482 if (err) 4483 goto err_devlink_create_pf_port; 4484 4485 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4486 4487 err = ice_register_netdev(vsi); 4488 if (err) 4489 goto err_register_netdev; 4490 4491 err = ice_tc_indir_block_register(vsi); 4492 if (err) 4493 goto err_tc_indir_block_register; 4494 4495 ice_napi_add(vsi); 4496 4497 return 0; 4498 4499 err_tc_indir_block_register: 4500 ice_unregister_netdev(vsi); 4501 err_register_netdev: 4502 ice_devlink_destroy_pf_port(pf); 4503 err_devlink_create_pf_port: 4504 err_init_mac_fltr: 4505 ice_decfg_netdev(vsi); 4506 return err; 4507 } 4508 4509 static void ice_deinit_eth(struct ice_pf *pf) 4510 { 4511 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4512 4513 if (!vsi) 4514 return; 4515 4516 ice_vsi_close(vsi); 4517 ice_unregister_netdev(vsi); 4518 ice_devlink_destroy_pf_port(pf); 4519 ice_tc_indir_block_unregister(vsi); 4520 ice_decfg_netdev(vsi); 4521 } 4522 4523 static int ice_init_dev(struct ice_pf *pf) 4524 { 4525 struct device *dev = ice_pf_to_dev(pf); 4526 struct ice_hw *hw = &pf->hw; 4527 int err; 4528 4529 err = ice_init_hw(hw); 4530 if (err) { 4531 dev_err(dev, "ice_init_hw failed: %d\n", err); 4532 return err; 4533 } 4534 4535 ice_init_feature_support(pf); 4536 4537 ice_request_fw(pf); 4538 4539 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4540 * set in pf->state, which will cause ice_is_safe_mode to return 4541 * true 4542 */ 4543 if (ice_is_safe_mode(pf)) { 4544 /* we already got function/device capabilities but these don't 4545 * reflect what the driver needs to do in safe mode. Instead of 4546 * adding conditional logic everywhere to ignore these 4547 * device/function capabilities, override them. 4548 */ 4549 ice_set_safe_mode_caps(hw); 4550 } 4551 4552 err = ice_init_pf(pf); 4553 if (err) { 4554 dev_err(dev, "ice_init_pf failed: %d\n", err); 4555 goto err_init_pf; 4556 } 4557 4558 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4559 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4560 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4561 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4562 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4563 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4564 pf->hw.tnl.valid_count[TNL_VXLAN]; 4565 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4566 UDP_TUNNEL_TYPE_VXLAN; 4567 } 4568 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4569 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4570 pf->hw.tnl.valid_count[TNL_GENEVE]; 4571 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4572 UDP_TUNNEL_TYPE_GENEVE; 4573 } 4574 4575 err = ice_init_interrupt_scheme(pf); 4576 if (err) { 4577 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4578 err = -EIO; 4579 goto err_init_interrupt_scheme; 4580 } 4581 4582 /* In case of MSIX we are going to setup the misc vector right here 4583 * to handle admin queue events etc. In case of legacy and MSI 4584 * the misc functionality and queue processing is combined in 4585 * the same vector and that gets setup at open. 4586 */ 4587 err = ice_req_irq_msix_misc(pf); 4588 if (err) { 4589 dev_err(dev, "setup of misc vector failed: %d\n", err); 4590 goto err_req_irq_msix_misc; 4591 } 4592 4593 return 0; 4594 4595 err_req_irq_msix_misc: 4596 ice_clear_interrupt_scheme(pf); 4597 err_init_interrupt_scheme: 4598 ice_deinit_pf(pf); 4599 err_init_pf: 4600 ice_deinit_hw(hw); 4601 return err; 4602 } 4603 4604 static void ice_deinit_dev(struct ice_pf *pf) 4605 { 4606 ice_free_irq_msix_misc(pf); 4607 ice_deinit_pf(pf); 4608 ice_deinit_hw(&pf->hw); 4609 4610 /* Service task is already stopped, so call reset directly. */ 4611 ice_reset(&pf->hw, ICE_RESET_PFR); 4612 pci_wait_for_pending_transaction(pf->pdev); 4613 ice_clear_interrupt_scheme(pf); 4614 } 4615 4616 static void ice_init_features(struct ice_pf *pf) 4617 { 4618 struct device *dev = ice_pf_to_dev(pf); 4619 4620 if (ice_is_safe_mode(pf)) 4621 return; 4622 4623 /* initialize DDP driven features */ 4624 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4625 ice_ptp_init(pf); 4626 4627 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4628 ice_gnss_init(pf); 4629 4630 /* Note: Flow director init failure is non-fatal to load */ 4631 if (ice_init_fdir(pf)) 4632 dev_err(dev, "could not initialize flow director\n"); 4633 4634 /* Note: DCB init failure is non-fatal to load */ 4635 if (ice_init_pf_dcb(pf, false)) { 4636 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4637 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4638 } else { 4639 ice_cfg_lldp_mib_change(&pf->hw, true); 4640 } 4641 4642 if (ice_init_lag(pf)) 4643 dev_warn(dev, "Failed to init link aggregation support\n"); 4644 } 4645 4646 static void ice_deinit_features(struct ice_pf *pf) 4647 { 4648 ice_deinit_lag(pf); 4649 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4650 ice_cfg_lldp_mib_change(&pf->hw, false); 4651 ice_deinit_fdir(pf); 4652 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4653 ice_gnss_exit(pf); 4654 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4655 ice_ptp_release(pf); 4656 } 4657 4658 static void ice_init_wakeup(struct ice_pf *pf) 4659 { 4660 /* Save wakeup reason register for later use */ 4661 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4662 4663 /* check for a power management event */ 4664 ice_print_wake_reason(pf); 4665 4666 /* clear wake status, all bits */ 4667 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4668 4669 /* Disable WoL at init, wait for user to enable */ 4670 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4671 } 4672 4673 static int ice_init_link(struct ice_pf *pf) 4674 { 4675 struct device *dev = ice_pf_to_dev(pf); 4676 int err; 4677 4678 err = ice_init_link_events(pf->hw.port_info); 4679 if (err) { 4680 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4681 return err; 4682 } 4683 4684 /* not a fatal error if this fails */ 4685 err = ice_init_nvm_phy_type(pf->hw.port_info); 4686 if (err) 4687 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4688 4689 /* not a fatal error if this fails */ 4690 err = ice_update_link_info(pf->hw.port_info); 4691 if (err) 4692 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4693 4694 ice_init_link_dflt_override(pf->hw.port_info); 4695 4696 ice_check_link_cfg_err(pf, 4697 pf->hw.port_info->phy.link_info.link_cfg_err); 4698 4699 /* if media available, initialize PHY settings */ 4700 if (pf->hw.port_info->phy.link_info.link_info & 4701 ICE_AQ_MEDIA_AVAILABLE) { 4702 /* not a fatal error if this fails */ 4703 err = ice_init_phy_user_cfg(pf->hw.port_info); 4704 if (err) 4705 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4706 4707 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4708 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4709 4710 if (vsi) 4711 ice_configure_phy(vsi); 4712 } 4713 } else { 4714 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4715 } 4716 4717 return err; 4718 } 4719 4720 static int ice_init_pf_sw(struct ice_pf *pf) 4721 { 4722 bool dvm = ice_is_dvm_ena(&pf->hw); 4723 struct ice_vsi *vsi; 4724 int err; 4725 4726 /* create switch struct for the switch element created by FW on boot */ 4727 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4728 if (!pf->first_sw) 4729 return -ENOMEM; 4730 4731 if (pf->hw.evb_veb) 4732 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4733 else 4734 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4735 4736 pf->first_sw->pf = pf; 4737 4738 /* record the sw_id available for later use */ 4739 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4740 4741 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4742 if (err) 4743 goto err_aq_set_port_params; 4744 4745 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4746 if (!vsi) { 4747 err = -ENOMEM; 4748 goto err_pf_vsi_setup; 4749 } 4750 4751 return 0; 4752 4753 err_pf_vsi_setup: 4754 err_aq_set_port_params: 4755 kfree(pf->first_sw); 4756 return err; 4757 } 4758 4759 static void ice_deinit_pf_sw(struct ice_pf *pf) 4760 { 4761 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4762 4763 if (!vsi) 4764 return; 4765 4766 ice_vsi_release(vsi); 4767 kfree(pf->first_sw); 4768 } 4769 4770 static int ice_alloc_vsis(struct ice_pf *pf) 4771 { 4772 struct device *dev = ice_pf_to_dev(pf); 4773 4774 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4775 if (!pf->num_alloc_vsi) 4776 return -EIO; 4777 4778 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4779 dev_warn(dev, 4780 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4781 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4782 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4783 } 4784 4785 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4786 GFP_KERNEL); 4787 if (!pf->vsi) 4788 return -ENOMEM; 4789 4790 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4791 sizeof(*pf->vsi_stats), GFP_KERNEL); 4792 if (!pf->vsi_stats) { 4793 devm_kfree(dev, pf->vsi); 4794 return -ENOMEM; 4795 } 4796 4797 return 0; 4798 } 4799 4800 static void ice_dealloc_vsis(struct ice_pf *pf) 4801 { 4802 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4803 pf->vsi_stats = NULL; 4804 4805 pf->num_alloc_vsi = 0; 4806 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4807 pf->vsi = NULL; 4808 } 4809 4810 static int ice_init_devlink(struct ice_pf *pf) 4811 { 4812 int err; 4813 4814 err = ice_devlink_register_params(pf); 4815 if (err) 4816 return err; 4817 4818 ice_devlink_init_regions(pf); 4819 ice_devlink_register(pf); 4820 4821 return 0; 4822 } 4823 4824 static void ice_deinit_devlink(struct ice_pf *pf) 4825 { 4826 ice_devlink_unregister(pf); 4827 ice_devlink_destroy_regions(pf); 4828 ice_devlink_unregister_params(pf); 4829 } 4830 4831 static int ice_init(struct ice_pf *pf) 4832 { 4833 int err; 4834 4835 err = ice_init_dev(pf); 4836 if (err) 4837 return err; 4838 4839 err = ice_alloc_vsis(pf); 4840 if (err) 4841 goto err_alloc_vsis; 4842 4843 err = ice_init_pf_sw(pf); 4844 if (err) 4845 goto err_init_pf_sw; 4846 4847 ice_init_wakeup(pf); 4848 4849 err = ice_init_link(pf); 4850 if (err) 4851 goto err_init_link; 4852 4853 err = ice_send_version(pf); 4854 if (err) 4855 goto err_init_link; 4856 4857 ice_verify_cacheline_size(pf); 4858 4859 if (ice_is_safe_mode(pf)) 4860 ice_set_safe_mode_vlan_cfg(pf); 4861 else 4862 /* print PCI link speed and width */ 4863 pcie_print_link_status(pf->pdev); 4864 4865 /* ready to go, so clear down state bit */ 4866 clear_bit(ICE_DOWN, pf->state); 4867 clear_bit(ICE_SERVICE_DIS, pf->state); 4868 4869 /* since everything is good, start the service timer */ 4870 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4871 4872 return 0; 4873 4874 err_init_link: 4875 ice_deinit_pf_sw(pf); 4876 err_init_pf_sw: 4877 ice_dealloc_vsis(pf); 4878 err_alloc_vsis: 4879 ice_deinit_dev(pf); 4880 return err; 4881 } 4882 4883 static void ice_deinit(struct ice_pf *pf) 4884 { 4885 set_bit(ICE_SERVICE_DIS, pf->state); 4886 set_bit(ICE_DOWN, pf->state); 4887 4888 ice_deinit_pf_sw(pf); 4889 ice_dealloc_vsis(pf); 4890 ice_deinit_dev(pf); 4891 } 4892 4893 /** 4894 * ice_load - load pf by init hw and starting VSI 4895 * @pf: pointer to the pf instance 4896 */ 4897 int ice_load(struct ice_pf *pf) 4898 { 4899 struct ice_vsi_cfg_params params = {}; 4900 struct ice_vsi *vsi; 4901 int err; 4902 4903 err = ice_init_dev(pf); 4904 if (err) 4905 return err; 4906 4907 vsi = ice_get_main_vsi(pf); 4908 4909 params = ice_vsi_to_params(vsi); 4910 params.flags = ICE_VSI_FLAG_INIT; 4911 4912 rtnl_lock(); 4913 err = ice_vsi_cfg(vsi, ¶ms); 4914 if (err) 4915 goto err_vsi_cfg; 4916 4917 err = ice_start_eth(ice_get_main_vsi(pf)); 4918 if (err) 4919 goto err_start_eth; 4920 rtnl_unlock(); 4921 4922 err = ice_init_rdma(pf); 4923 if (err) 4924 goto err_init_rdma; 4925 4926 ice_init_features(pf); 4927 ice_service_task_restart(pf); 4928 4929 clear_bit(ICE_DOWN, pf->state); 4930 4931 return 0; 4932 4933 err_init_rdma: 4934 ice_vsi_close(ice_get_main_vsi(pf)); 4935 rtnl_lock(); 4936 err_start_eth: 4937 ice_vsi_decfg(ice_get_main_vsi(pf)); 4938 err_vsi_cfg: 4939 rtnl_unlock(); 4940 ice_deinit_dev(pf); 4941 return err; 4942 } 4943 4944 /** 4945 * ice_unload - unload pf by stopping VSI and deinit hw 4946 * @pf: pointer to the pf instance 4947 */ 4948 void ice_unload(struct ice_pf *pf) 4949 { 4950 ice_deinit_features(pf); 4951 ice_deinit_rdma(pf); 4952 rtnl_lock(); 4953 ice_stop_eth(ice_get_main_vsi(pf)); 4954 ice_vsi_decfg(ice_get_main_vsi(pf)); 4955 rtnl_unlock(); 4956 ice_deinit_dev(pf); 4957 } 4958 4959 /** 4960 * ice_probe - Device initialization routine 4961 * @pdev: PCI device information struct 4962 * @ent: entry in ice_pci_tbl 4963 * 4964 * Returns 0 on success, negative on failure 4965 */ 4966 static int 4967 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4968 { 4969 struct device *dev = &pdev->dev; 4970 struct ice_pf *pf; 4971 struct ice_hw *hw; 4972 int err; 4973 4974 if (pdev->is_virtfn) { 4975 dev_err(dev, "can't probe a virtual function\n"); 4976 return -EINVAL; 4977 } 4978 4979 /* this driver uses devres, see 4980 * Documentation/driver-api/driver-model/devres.rst 4981 */ 4982 err = pcim_enable_device(pdev); 4983 if (err) 4984 return err; 4985 4986 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4987 if (err) { 4988 dev_err(dev, "BAR0 I/O map error %d\n", err); 4989 return err; 4990 } 4991 4992 pf = ice_allocate_pf(dev); 4993 if (!pf) 4994 return -ENOMEM; 4995 4996 /* initialize Auxiliary index to invalid value */ 4997 pf->aux_idx = -1; 4998 4999 /* set up for high or low DMA */ 5000 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5001 if (err) { 5002 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5003 return err; 5004 } 5005 5006 pci_set_master(pdev); 5007 5008 pf->pdev = pdev; 5009 pci_set_drvdata(pdev, pf); 5010 set_bit(ICE_DOWN, pf->state); 5011 /* Disable service task until DOWN bit is cleared */ 5012 set_bit(ICE_SERVICE_DIS, pf->state); 5013 5014 hw = &pf->hw; 5015 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5016 pci_save_state(pdev); 5017 5018 hw->back = pf; 5019 hw->port_info = NULL; 5020 hw->vendor_id = pdev->vendor; 5021 hw->device_id = pdev->device; 5022 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5023 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5024 hw->subsystem_device_id = pdev->subsystem_device; 5025 hw->bus.device = PCI_SLOT(pdev->devfn); 5026 hw->bus.func = PCI_FUNC(pdev->devfn); 5027 ice_set_ctrlq_len(hw); 5028 5029 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5030 5031 #ifndef CONFIG_DYNAMIC_DEBUG 5032 if (debug < -1) 5033 hw->debug_mask = debug; 5034 #endif 5035 5036 err = ice_init(pf); 5037 if (err) 5038 goto err_init; 5039 5040 err = ice_init_eth(pf); 5041 if (err) 5042 goto err_init_eth; 5043 5044 err = ice_init_rdma(pf); 5045 if (err) 5046 goto err_init_rdma; 5047 5048 err = ice_init_devlink(pf); 5049 if (err) 5050 goto err_init_devlink; 5051 5052 ice_init_features(pf); 5053 5054 return 0; 5055 5056 err_init_devlink: 5057 ice_deinit_rdma(pf); 5058 err_init_rdma: 5059 ice_deinit_eth(pf); 5060 err_init_eth: 5061 ice_deinit(pf); 5062 err_init: 5063 pci_disable_device(pdev); 5064 return err; 5065 } 5066 5067 /** 5068 * ice_set_wake - enable or disable Wake on LAN 5069 * @pf: pointer to the PF struct 5070 * 5071 * Simple helper for WoL control 5072 */ 5073 static void ice_set_wake(struct ice_pf *pf) 5074 { 5075 struct ice_hw *hw = &pf->hw; 5076 bool wol = pf->wol_ena; 5077 5078 /* clear wake state, otherwise new wake events won't fire */ 5079 wr32(hw, PFPM_WUS, U32_MAX); 5080 5081 /* enable / disable APM wake up, no RMW needed */ 5082 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5083 5084 /* set magic packet filter enabled */ 5085 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5086 } 5087 5088 /** 5089 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5090 * @pf: pointer to the PF struct 5091 * 5092 * Issue firmware command to enable multicast magic wake, making 5093 * sure that any locally administered address (LAA) is used for 5094 * wake, and that PF reset doesn't undo the LAA. 5095 */ 5096 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5097 { 5098 struct device *dev = ice_pf_to_dev(pf); 5099 struct ice_hw *hw = &pf->hw; 5100 u8 mac_addr[ETH_ALEN]; 5101 struct ice_vsi *vsi; 5102 int status; 5103 u8 flags; 5104 5105 if (!pf->wol_ena) 5106 return; 5107 5108 vsi = ice_get_main_vsi(pf); 5109 if (!vsi) 5110 return; 5111 5112 /* Get current MAC address in case it's an LAA */ 5113 if (vsi->netdev) 5114 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5115 else 5116 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5117 5118 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5119 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5120 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5121 5122 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5123 if (status) 5124 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5125 status, ice_aq_str(hw->adminq.sq_last_status)); 5126 } 5127 5128 /** 5129 * ice_remove - Device removal routine 5130 * @pdev: PCI device information struct 5131 */ 5132 static void ice_remove(struct pci_dev *pdev) 5133 { 5134 struct ice_pf *pf = pci_get_drvdata(pdev); 5135 int i; 5136 5137 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5138 if (!ice_is_reset_in_progress(pf->state)) 5139 break; 5140 msleep(100); 5141 } 5142 5143 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5144 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5145 ice_free_vfs(pf); 5146 } 5147 5148 ice_service_task_stop(pf); 5149 ice_aq_cancel_waiting_tasks(pf); 5150 set_bit(ICE_DOWN, pf->state); 5151 5152 if (!ice_is_safe_mode(pf)) 5153 ice_remove_arfs(pf); 5154 ice_deinit_features(pf); 5155 ice_deinit_devlink(pf); 5156 ice_deinit_rdma(pf); 5157 ice_deinit_eth(pf); 5158 ice_deinit(pf); 5159 5160 ice_vsi_release_all(pf); 5161 5162 ice_setup_mc_magic_wake(pf); 5163 ice_set_wake(pf); 5164 5165 pci_disable_device(pdev); 5166 } 5167 5168 /** 5169 * ice_shutdown - PCI callback for shutting down device 5170 * @pdev: PCI device information struct 5171 */ 5172 static void ice_shutdown(struct pci_dev *pdev) 5173 { 5174 struct ice_pf *pf = pci_get_drvdata(pdev); 5175 5176 ice_remove(pdev); 5177 5178 if (system_state == SYSTEM_POWER_OFF) { 5179 pci_wake_from_d3(pdev, pf->wol_ena); 5180 pci_set_power_state(pdev, PCI_D3hot); 5181 } 5182 } 5183 5184 #ifdef CONFIG_PM 5185 /** 5186 * ice_prepare_for_shutdown - prep for PCI shutdown 5187 * @pf: board private structure 5188 * 5189 * Inform or close all dependent features in prep for PCI device shutdown 5190 */ 5191 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5192 { 5193 struct ice_hw *hw = &pf->hw; 5194 u32 v; 5195 5196 /* Notify VFs of impending reset */ 5197 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5198 ice_vc_notify_reset(pf); 5199 5200 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5201 5202 /* disable the VSIs and their queues that are not already DOWN */ 5203 ice_pf_dis_all_vsi(pf, false); 5204 5205 ice_for_each_vsi(pf, v) 5206 if (pf->vsi[v]) 5207 pf->vsi[v]->vsi_num = 0; 5208 5209 ice_shutdown_all_ctrlq(hw); 5210 } 5211 5212 /** 5213 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5214 * @pf: board private structure to reinitialize 5215 * 5216 * This routine reinitialize interrupt scheme that was cleared during 5217 * power management suspend callback. 5218 * 5219 * This should be called during resume routine to re-allocate the q_vectors 5220 * and reacquire interrupts. 5221 */ 5222 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5223 { 5224 struct device *dev = ice_pf_to_dev(pf); 5225 int ret, v; 5226 5227 /* Since we clear MSIX flag during suspend, we need to 5228 * set it back during resume... 5229 */ 5230 5231 ret = ice_init_interrupt_scheme(pf); 5232 if (ret) { 5233 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5234 return ret; 5235 } 5236 5237 /* Remap vectors and rings, after successful re-init interrupts */ 5238 ice_for_each_vsi(pf, v) { 5239 if (!pf->vsi[v]) 5240 continue; 5241 5242 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5243 if (ret) 5244 goto err_reinit; 5245 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5246 } 5247 5248 ret = ice_req_irq_msix_misc(pf); 5249 if (ret) { 5250 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5251 ret); 5252 goto err_reinit; 5253 } 5254 5255 return 0; 5256 5257 err_reinit: 5258 while (v--) 5259 if (pf->vsi[v]) 5260 ice_vsi_free_q_vectors(pf->vsi[v]); 5261 5262 return ret; 5263 } 5264 5265 /** 5266 * ice_suspend 5267 * @dev: generic device information structure 5268 * 5269 * Power Management callback to quiesce the device and prepare 5270 * for D3 transition. 5271 */ 5272 static int __maybe_unused ice_suspend(struct device *dev) 5273 { 5274 struct pci_dev *pdev = to_pci_dev(dev); 5275 struct ice_pf *pf; 5276 int disabled, v; 5277 5278 pf = pci_get_drvdata(pdev); 5279 5280 if (!ice_pf_state_is_nominal(pf)) { 5281 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5282 return -EBUSY; 5283 } 5284 5285 /* Stop watchdog tasks until resume completion. 5286 * Even though it is most likely that the service task is 5287 * disabled if the device is suspended or down, the service task's 5288 * state is controlled by a different state bit, and we should 5289 * store and honor whatever state that bit is in at this point. 5290 */ 5291 disabled = ice_service_task_stop(pf); 5292 5293 ice_unplug_aux_dev(pf); 5294 5295 /* Already suspended?, then there is nothing to do */ 5296 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5297 if (!disabled) 5298 ice_service_task_restart(pf); 5299 return 0; 5300 } 5301 5302 if (test_bit(ICE_DOWN, pf->state) || 5303 ice_is_reset_in_progress(pf->state)) { 5304 dev_err(dev, "can't suspend device in reset or already down\n"); 5305 if (!disabled) 5306 ice_service_task_restart(pf); 5307 return 0; 5308 } 5309 5310 ice_setup_mc_magic_wake(pf); 5311 5312 ice_prepare_for_shutdown(pf); 5313 5314 ice_set_wake(pf); 5315 5316 /* Free vectors, clear the interrupt scheme and release IRQs 5317 * for proper hibernation, especially with large number of CPUs. 5318 * Otherwise hibernation might fail when mapping all the vectors back 5319 * to CPU0. 5320 */ 5321 ice_free_irq_msix_misc(pf); 5322 ice_for_each_vsi(pf, v) { 5323 if (!pf->vsi[v]) 5324 continue; 5325 ice_vsi_free_q_vectors(pf->vsi[v]); 5326 } 5327 ice_clear_interrupt_scheme(pf); 5328 5329 pci_save_state(pdev); 5330 pci_wake_from_d3(pdev, pf->wol_ena); 5331 pci_set_power_state(pdev, PCI_D3hot); 5332 return 0; 5333 } 5334 5335 /** 5336 * ice_resume - PM callback for waking up from D3 5337 * @dev: generic device information structure 5338 */ 5339 static int __maybe_unused ice_resume(struct device *dev) 5340 { 5341 struct pci_dev *pdev = to_pci_dev(dev); 5342 enum ice_reset_req reset_type; 5343 struct ice_pf *pf; 5344 struct ice_hw *hw; 5345 int ret; 5346 5347 pci_set_power_state(pdev, PCI_D0); 5348 pci_restore_state(pdev); 5349 pci_save_state(pdev); 5350 5351 if (!pci_device_is_present(pdev)) 5352 return -ENODEV; 5353 5354 ret = pci_enable_device_mem(pdev); 5355 if (ret) { 5356 dev_err(dev, "Cannot enable device after suspend\n"); 5357 return ret; 5358 } 5359 5360 pf = pci_get_drvdata(pdev); 5361 hw = &pf->hw; 5362 5363 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5364 ice_print_wake_reason(pf); 5365 5366 /* We cleared the interrupt scheme when we suspended, so we need to 5367 * restore it now to resume device functionality. 5368 */ 5369 ret = ice_reinit_interrupt_scheme(pf); 5370 if (ret) 5371 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5372 5373 clear_bit(ICE_DOWN, pf->state); 5374 /* Now perform PF reset and rebuild */ 5375 reset_type = ICE_RESET_PFR; 5376 /* re-enable service task for reset, but allow reset to schedule it */ 5377 clear_bit(ICE_SERVICE_DIS, pf->state); 5378 5379 if (ice_schedule_reset(pf, reset_type)) 5380 dev_err(dev, "Reset during resume failed.\n"); 5381 5382 clear_bit(ICE_SUSPENDED, pf->state); 5383 ice_service_task_restart(pf); 5384 5385 /* Restart the service task */ 5386 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5387 5388 return 0; 5389 } 5390 #endif /* CONFIG_PM */ 5391 5392 /** 5393 * ice_pci_err_detected - warning that PCI error has been detected 5394 * @pdev: PCI device information struct 5395 * @err: the type of PCI error 5396 * 5397 * Called to warn that something happened on the PCI bus and the error handling 5398 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5399 */ 5400 static pci_ers_result_t 5401 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5402 { 5403 struct ice_pf *pf = pci_get_drvdata(pdev); 5404 5405 if (!pf) { 5406 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5407 __func__, err); 5408 return PCI_ERS_RESULT_DISCONNECT; 5409 } 5410 5411 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5412 ice_service_task_stop(pf); 5413 5414 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5415 set_bit(ICE_PFR_REQ, pf->state); 5416 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5417 } 5418 } 5419 5420 return PCI_ERS_RESULT_NEED_RESET; 5421 } 5422 5423 /** 5424 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5425 * @pdev: PCI device information struct 5426 * 5427 * Called to determine if the driver can recover from the PCI slot reset by 5428 * using a register read to determine if the device is recoverable. 5429 */ 5430 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5431 { 5432 struct ice_pf *pf = pci_get_drvdata(pdev); 5433 pci_ers_result_t result; 5434 int err; 5435 u32 reg; 5436 5437 err = pci_enable_device_mem(pdev); 5438 if (err) { 5439 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5440 err); 5441 result = PCI_ERS_RESULT_DISCONNECT; 5442 } else { 5443 pci_set_master(pdev); 5444 pci_restore_state(pdev); 5445 pci_save_state(pdev); 5446 pci_wake_from_d3(pdev, false); 5447 5448 /* Check for life */ 5449 reg = rd32(&pf->hw, GLGEN_RTRIG); 5450 if (!reg) 5451 result = PCI_ERS_RESULT_RECOVERED; 5452 else 5453 result = PCI_ERS_RESULT_DISCONNECT; 5454 } 5455 5456 return result; 5457 } 5458 5459 /** 5460 * ice_pci_err_resume - restart operations after PCI error recovery 5461 * @pdev: PCI device information struct 5462 * 5463 * Called to allow the driver to bring things back up after PCI error and/or 5464 * reset recovery have finished 5465 */ 5466 static void ice_pci_err_resume(struct pci_dev *pdev) 5467 { 5468 struct ice_pf *pf = pci_get_drvdata(pdev); 5469 5470 if (!pf) { 5471 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5472 __func__); 5473 return; 5474 } 5475 5476 if (test_bit(ICE_SUSPENDED, pf->state)) { 5477 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5478 __func__); 5479 return; 5480 } 5481 5482 ice_restore_all_vfs_msi_state(pdev); 5483 5484 ice_do_reset(pf, ICE_RESET_PFR); 5485 ice_service_task_restart(pf); 5486 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5487 } 5488 5489 /** 5490 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5491 * @pdev: PCI device information struct 5492 */ 5493 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5494 { 5495 struct ice_pf *pf = pci_get_drvdata(pdev); 5496 5497 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5498 ice_service_task_stop(pf); 5499 5500 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5501 set_bit(ICE_PFR_REQ, pf->state); 5502 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5503 } 5504 } 5505 } 5506 5507 /** 5508 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5509 * @pdev: PCI device information struct 5510 */ 5511 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5512 { 5513 ice_pci_err_resume(pdev); 5514 } 5515 5516 /* ice_pci_tbl - PCI Device ID Table 5517 * 5518 * Wildcard entries (PCI_ANY_ID) should come last 5519 * Last entry must be all 0s 5520 * 5521 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5522 * Class, Class Mask, private data (not used) } 5523 */ 5524 static const struct pci_device_id ice_pci_tbl[] = { 5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5529 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5530 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5531 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5532 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5533 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5534 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5535 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5536 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5537 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5538 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5539 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5540 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5541 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5542 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5543 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5544 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5545 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5546 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5547 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5548 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5549 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5550 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5551 /* required last entry */ 5552 { 0, } 5553 }; 5554 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5555 5556 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5557 5558 static const struct pci_error_handlers ice_pci_err_handler = { 5559 .error_detected = ice_pci_err_detected, 5560 .slot_reset = ice_pci_err_slot_reset, 5561 .reset_prepare = ice_pci_err_reset_prepare, 5562 .reset_done = ice_pci_err_reset_done, 5563 .resume = ice_pci_err_resume 5564 }; 5565 5566 static struct pci_driver ice_driver = { 5567 .name = KBUILD_MODNAME, 5568 .id_table = ice_pci_tbl, 5569 .probe = ice_probe, 5570 .remove = ice_remove, 5571 #ifdef CONFIG_PM 5572 .driver.pm = &ice_pm_ops, 5573 #endif /* CONFIG_PM */ 5574 .shutdown = ice_shutdown, 5575 .sriov_configure = ice_sriov_configure, 5576 .err_handler = &ice_pci_err_handler 5577 }; 5578 5579 /** 5580 * ice_module_init - Driver registration routine 5581 * 5582 * ice_module_init is the first routine called when the driver is 5583 * loaded. All it does is register with the PCI subsystem. 5584 */ 5585 static int __init ice_module_init(void) 5586 { 5587 int status = -ENOMEM; 5588 5589 pr_info("%s\n", ice_driver_string); 5590 pr_info("%s\n", ice_copyright); 5591 5592 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5593 if (!ice_wq) { 5594 pr_err("Failed to create workqueue\n"); 5595 return status; 5596 } 5597 5598 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5599 if (!ice_lag_wq) { 5600 pr_err("Failed to create LAG workqueue\n"); 5601 goto err_dest_wq; 5602 } 5603 5604 status = pci_register_driver(&ice_driver); 5605 if (status) { 5606 pr_err("failed to register PCI driver, err %d\n", status); 5607 goto err_dest_lag_wq; 5608 } 5609 5610 return 0; 5611 5612 err_dest_lag_wq: 5613 destroy_workqueue(ice_lag_wq); 5614 err_dest_wq: 5615 destroy_workqueue(ice_wq); 5616 return status; 5617 } 5618 module_init(ice_module_init); 5619 5620 /** 5621 * ice_module_exit - Driver exit cleanup routine 5622 * 5623 * ice_module_exit is called just before the driver is removed 5624 * from memory. 5625 */ 5626 static void __exit ice_module_exit(void) 5627 { 5628 pci_unregister_driver(&ice_driver); 5629 destroy_workqueue(ice_wq); 5630 destroy_workqueue(ice_lag_wq); 5631 pr_info("module unloaded\n"); 5632 } 5633 module_exit(ice_module_exit); 5634 5635 /** 5636 * ice_set_mac_address - NDO callback to set MAC address 5637 * @netdev: network interface device structure 5638 * @pi: pointer to an address structure 5639 * 5640 * Returns 0 on success, negative on failure 5641 */ 5642 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5643 { 5644 struct ice_netdev_priv *np = netdev_priv(netdev); 5645 struct ice_vsi *vsi = np->vsi; 5646 struct ice_pf *pf = vsi->back; 5647 struct ice_hw *hw = &pf->hw; 5648 struct sockaddr *addr = pi; 5649 u8 old_mac[ETH_ALEN]; 5650 u8 flags = 0; 5651 u8 *mac; 5652 int err; 5653 5654 mac = (u8 *)addr->sa_data; 5655 5656 if (!is_valid_ether_addr(mac)) 5657 return -EADDRNOTAVAIL; 5658 5659 if (test_bit(ICE_DOWN, pf->state) || 5660 ice_is_reset_in_progress(pf->state)) { 5661 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5662 mac); 5663 return -EBUSY; 5664 } 5665 5666 if (ice_chnl_dmac_fltr_cnt(pf)) { 5667 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5668 mac); 5669 return -EAGAIN; 5670 } 5671 5672 netif_addr_lock_bh(netdev); 5673 ether_addr_copy(old_mac, netdev->dev_addr); 5674 /* change the netdev's MAC address */ 5675 eth_hw_addr_set(netdev, mac); 5676 netif_addr_unlock_bh(netdev); 5677 5678 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5679 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5680 if (err && err != -ENOENT) { 5681 err = -EADDRNOTAVAIL; 5682 goto err_update_filters; 5683 } 5684 5685 /* Add filter for new MAC. If filter exists, return success */ 5686 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5687 if (err == -EEXIST) { 5688 /* Although this MAC filter is already present in hardware it's 5689 * possible in some cases (e.g. bonding) that dev_addr was 5690 * modified outside of the driver and needs to be restored back 5691 * to this value. 5692 */ 5693 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5694 5695 return 0; 5696 } else if (err) { 5697 /* error if the new filter addition failed */ 5698 err = -EADDRNOTAVAIL; 5699 } 5700 5701 err_update_filters: 5702 if (err) { 5703 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5704 mac); 5705 netif_addr_lock_bh(netdev); 5706 eth_hw_addr_set(netdev, old_mac); 5707 netif_addr_unlock_bh(netdev); 5708 return err; 5709 } 5710 5711 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5712 netdev->dev_addr); 5713 5714 /* write new MAC address to the firmware */ 5715 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5716 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5717 if (err) { 5718 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5719 mac, err); 5720 } 5721 return 0; 5722 } 5723 5724 /** 5725 * ice_set_rx_mode - NDO callback to set the netdev filters 5726 * @netdev: network interface device structure 5727 */ 5728 static void ice_set_rx_mode(struct net_device *netdev) 5729 { 5730 struct ice_netdev_priv *np = netdev_priv(netdev); 5731 struct ice_vsi *vsi = np->vsi; 5732 5733 if (!vsi || ice_is_switchdev_running(vsi->back)) 5734 return; 5735 5736 /* Set the flags to synchronize filters 5737 * ndo_set_rx_mode may be triggered even without a change in netdev 5738 * flags 5739 */ 5740 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5741 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5742 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5743 5744 /* schedule our worker thread which will take care of 5745 * applying the new filter changes 5746 */ 5747 ice_service_task_schedule(vsi->back); 5748 } 5749 5750 /** 5751 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5752 * @netdev: network interface device structure 5753 * @queue_index: Queue ID 5754 * @maxrate: maximum bandwidth in Mbps 5755 */ 5756 static int 5757 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5758 { 5759 struct ice_netdev_priv *np = netdev_priv(netdev); 5760 struct ice_vsi *vsi = np->vsi; 5761 u16 q_handle; 5762 int status; 5763 u8 tc; 5764 5765 /* Validate maxrate requested is within permitted range */ 5766 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5767 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5768 maxrate, queue_index); 5769 return -EINVAL; 5770 } 5771 5772 q_handle = vsi->tx_rings[queue_index]->q_handle; 5773 tc = ice_dcb_get_tc(vsi, queue_index); 5774 5775 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5776 if (!vsi) { 5777 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5778 queue_index); 5779 return -EINVAL; 5780 } 5781 5782 /* Set BW back to default, when user set maxrate to 0 */ 5783 if (!maxrate) 5784 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5785 q_handle, ICE_MAX_BW); 5786 else 5787 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5788 q_handle, ICE_MAX_BW, maxrate * 1000); 5789 if (status) 5790 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5791 status); 5792 5793 return status; 5794 } 5795 5796 /** 5797 * ice_fdb_add - add an entry to the hardware database 5798 * @ndm: the input from the stack 5799 * @tb: pointer to array of nladdr (unused) 5800 * @dev: the net device pointer 5801 * @addr: the MAC address entry being added 5802 * @vid: VLAN ID 5803 * @flags: instructions from stack about fdb operation 5804 * @extack: netlink extended ack 5805 */ 5806 static int 5807 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5808 struct net_device *dev, const unsigned char *addr, u16 vid, 5809 u16 flags, struct netlink_ext_ack __always_unused *extack) 5810 { 5811 int err; 5812 5813 if (vid) { 5814 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5815 return -EINVAL; 5816 } 5817 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5818 netdev_err(dev, "FDB only supports static addresses\n"); 5819 return -EINVAL; 5820 } 5821 5822 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5823 err = dev_uc_add_excl(dev, addr); 5824 else if (is_multicast_ether_addr(addr)) 5825 err = dev_mc_add_excl(dev, addr); 5826 else 5827 err = -EINVAL; 5828 5829 /* Only return duplicate errors if NLM_F_EXCL is set */ 5830 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5831 err = 0; 5832 5833 return err; 5834 } 5835 5836 /** 5837 * ice_fdb_del - delete an entry from the hardware database 5838 * @ndm: the input from the stack 5839 * @tb: pointer to array of nladdr (unused) 5840 * @dev: the net device pointer 5841 * @addr: the MAC address entry being added 5842 * @vid: VLAN ID 5843 * @extack: netlink extended ack 5844 */ 5845 static int 5846 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5847 struct net_device *dev, const unsigned char *addr, 5848 __always_unused u16 vid, struct netlink_ext_ack *extack) 5849 { 5850 int err; 5851 5852 if (ndm->ndm_state & NUD_PERMANENT) { 5853 netdev_err(dev, "FDB only supports static addresses\n"); 5854 return -EINVAL; 5855 } 5856 5857 if (is_unicast_ether_addr(addr)) 5858 err = dev_uc_del(dev, addr); 5859 else if (is_multicast_ether_addr(addr)) 5860 err = dev_mc_del(dev, addr); 5861 else 5862 err = -EINVAL; 5863 5864 return err; 5865 } 5866 5867 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5868 NETIF_F_HW_VLAN_CTAG_TX | \ 5869 NETIF_F_HW_VLAN_STAG_RX | \ 5870 NETIF_F_HW_VLAN_STAG_TX) 5871 5872 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5873 NETIF_F_HW_VLAN_STAG_RX) 5874 5875 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5876 NETIF_F_HW_VLAN_STAG_FILTER) 5877 5878 /** 5879 * ice_fix_features - fix the netdev features flags based on device limitations 5880 * @netdev: ptr to the netdev that flags are being fixed on 5881 * @features: features that need to be checked and possibly fixed 5882 * 5883 * Make sure any fixups are made to features in this callback. This enables the 5884 * driver to not have to check unsupported configurations throughout the driver 5885 * because that's the responsiblity of this callback. 5886 * 5887 * Single VLAN Mode (SVM) Supported Features: 5888 * NETIF_F_HW_VLAN_CTAG_FILTER 5889 * NETIF_F_HW_VLAN_CTAG_RX 5890 * NETIF_F_HW_VLAN_CTAG_TX 5891 * 5892 * Double VLAN Mode (DVM) Supported Features: 5893 * NETIF_F_HW_VLAN_CTAG_FILTER 5894 * NETIF_F_HW_VLAN_CTAG_RX 5895 * NETIF_F_HW_VLAN_CTAG_TX 5896 * 5897 * NETIF_F_HW_VLAN_STAG_FILTER 5898 * NETIF_HW_VLAN_STAG_RX 5899 * NETIF_HW_VLAN_STAG_TX 5900 * 5901 * Features that need fixing: 5902 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5903 * These are mutually exlusive as the VSI context cannot support multiple 5904 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5905 * is not done, then default to clearing the requested STAG offload 5906 * settings. 5907 * 5908 * All supported filtering has to be enabled or disabled together. For 5909 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5910 * together. If this is not done, then default to VLAN filtering disabled. 5911 * These are mutually exclusive as there is currently no way to 5912 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5913 * prune rules. 5914 */ 5915 static netdev_features_t 5916 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5917 { 5918 struct ice_netdev_priv *np = netdev_priv(netdev); 5919 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5920 bool cur_ctag, cur_stag, req_ctag, req_stag; 5921 5922 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5923 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5924 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5925 5926 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5927 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5928 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5929 5930 if (req_vlan_fltr != cur_vlan_fltr) { 5931 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5932 if (req_ctag && req_stag) { 5933 features |= NETIF_VLAN_FILTERING_FEATURES; 5934 } else if (!req_ctag && !req_stag) { 5935 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5936 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5937 (!cur_stag && req_stag && !cur_ctag)) { 5938 features |= NETIF_VLAN_FILTERING_FEATURES; 5939 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5940 } else if ((cur_ctag && !req_ctag && cur_stag) || 5941 (cur_stag && !req_stag && cur_ctag)) { 5942 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5943 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5944 } 5945 } else { 5946 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5947 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5948 5949 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5950 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5951 } 5952 } 5953 5954 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5955 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5956 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5957 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5958 NETIF_F_HW_VLAN_STAG_TX); 5959 } 5960 5961 if (!(netdev->features & NETIF_F_RXFCS) && 5962 (features & NETIF_F_RXFCS) && 5963 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5964 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5965 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5966 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5967 } 5968 5969 return features; 5970 } 5971 5972 /** 5973 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5974 * @vsi: PF's VSI 5975 * @features: features used to determine VLAN offload settings 5976 * 5977 * First, determine the vlan_ethertype based on the VLAN offload bits in 5978 * features. Then determine if stripping and insertion should be enabled or 5979 * disabled. Finally enable or disable VLAN stripping and insertion. 5980 */ 5981 static int 5982 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5983 { 5984 bool enable_stripping = true, enable_insertion = true; 5985 struct ice_vsi_vlan_ops *vlan_ops; 5986 int strip_err = 0, insert_err = 0; 5987 u16 vlan_ethertype = 0; 5988 5989 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5990 5991 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5992 vlan_ethertype = ETH_P_8021AD; 5993 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5994 vlan_ethertype = ETH_P_8021Q; 5995 5996 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5997 enable_stripping = false; 5998 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5999 enable_insertion = false; 6000 6001 if (enable_stripping) 6002 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6003 else 6004 strip_err = vlan_ops->dis_stripping(vsi); 6005 6006 if (enable_insertion) 6007 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6008 else 6009 insert_err = vlan_ops->dis_insertion(vsi); 6010 6011 if (strip_err || insert_err) 6012 return -EIO; 6013 6014 return 0; 6015 } 6016 6017 /** 6018 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6019 * @vsi: PF's VSI 6020 * @features: features used to determine VLAN filtering settings 6021 * 6022 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6023 * features. 6024 */ 6025 static int 6026 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6027 { 6028 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6029 int err = 0; 6030 6031 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6032 * if either bit is set 6033 */ 6034 if (features & 6035 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6036 err = vlan_ops->ena_rx_filtering(vsi); 6037 else 6038 err = vlan_ops->dis_rx_filtering(vsi); 6039 6040 return err; 6041 } 6042 6043 /** 6044 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6045 * @netdev: ptr to the netdev being adjusted 6046 * @features: the feature set that the stack is suggesting 6047 * 6048 * Only update VLAN settings if the requested_vlan_features are different than 6049 * the current_vlan_features. 6050 */ 6051 static int 6052 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6053 { 6054 netdev_features_t current_vlan_features, requested_vlan_features; 6055 struct ice_netdev_priv *np = netdev_priv(netdev); 6056 struct ice_vsi *vsi = np->vsi; 6057 int err; 6058 6059 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6060 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6061 if (current_vlan_features ^ requested_vlan_features) { 6062 if ((features & NETIF_F_RXFCS) && 6063 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6064 dev_err(ice_pf_to_dev(vsi->back), 6065 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6066 return -EIO; 6067 } 6068 6069 err = ice_set_vlan_offload_features(vsi, features); 6070 if (err) 6071 return err; 6072 } 6073 6074 current_vlan_features = netdev->features & 6075 NETIF_VLAN_FILTERING_FEATURES; 6076 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6077 if (current_vlan_features ^ requested_vlan_features) { 6078 err = ice_set_vlan_filtering_features(vsi, features); 6079 if (err) 6080 return err; 6081 } 6082 6083 return 0; 6084 } 6085 6086 /** 6087 * ice_set_loopback - turn on/off loopback mode on underlying PF 6088 * @vsi: ptr to VSI 6089 * @ena: flag to indicate the on/off setting 6090 */ 6091 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6092 { 6093 bool if_running = netif_running(vsi->netdev); 6094 int ret; 6095 6096 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6097 ret = ice_down(vsi); 6098 if (ret) { 6099 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6100 return ret; 6101 } 6102 } 6103 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6104 if (ret) 6105 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6106 if (if_running) 6107 ret = ice_up(vsi); 6108 6109 return ret; 6110 } 6111 6112 /** 6113 * ice_set_features - set the netdev feature flags 6114 * @netdev: ptr to the netdev being adjusted 6115 * @features: the feature set that the stack is suggesting 6116 */ 6117 static int 6118 ice_set_features(struct net_device *netdev, netdev_features_t features) 6119 { 6120 netdev_features_t changed = netdev->features ^ features; 6121 struct ice_netdev_priv *np = netdev_priv(netdev); 6122 struct ice_vsi *vsi = np->vsi; 6123 struct ice_pf *pf = vsi->back; 6124 int ret = 0; 6125 6126 /* Don't set any netdev advanced features with device in Safe Mode */ 6127 if (ice_is_safe_mode(pf)) { 6128 dev_err(ice_pf_to_dev(pf), 6129 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6130 return ret; 6131 } 6132 6133 /* Do not change setting during reset */ 6134 if (ice_is_reset_in_progress(pf->state)) { 6135 dev_err(ice_pf_to_dev(pf), 6136 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6137 return -EBUSY; 6138 } 6139 6140 /* Multiple features can be changed in one call so keep features in 6141 * separate if/else statements to guarantee each feature is checked 6142 */ 6143 if (changed & NETIF_F_RXHASH) 6144 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6145 6146 ret = ice_set_vlan_features(netdev, features); 6147 if (ret) 6148 return ret; 6149 6150 /* Turn on receive of FCS aka CRC, and after setting this 6151 * flag the packet data will have the 4 byte CRC appended 6152 */ 6153 if (changed & NETIF_F_RXFCS) { 6154 if ((features & NETIF_F_RXFCS) && 6155 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6156 dev_err(ice_pf_to_dev(vsi->back), 6157 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6158 return -EIO; 6159 } 6160 6161 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6162 ret = ice_down_up(vsi); 6163 if (ret) 6164 return ret; 6165 } 6166 6167 if (changed & NETIF_F_NTUPLE) { 6168 bool ena = !!(features & NETIF_F_NTUPLE); 6169 6170 ice_vsi_manage_fdir(vsi, ena); 6171 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6172 } 6173 6174 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6175 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6176 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6177 return -EACCES; 6178 } 6179 6180 if (changed & NETIF_F_HW_TC) { 6181 bool ena = !!(features & NETIF_F_HW_TC); 6182 6183 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6184 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6185 } 6186 6187 if (changed & NETIF_F_LOOPBACK) 6188 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6189 6190 return ret; 6191 } 6192 6193 /** 6194 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6195 * @vsi: VSI to setup VLAN properties for 6196 */ 6197 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6198 { 6199 int err; 6200 6201 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6202 if (err) 6203 return err; 6204 6205 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6206 if (err) 6207 return err; 6208 6209 return ice_vsi_add_vlan_zero(vsi); 6210 } 6211 6212 /** 6213 * ice_vsi_cfg_lan - Setup the VSI lan related config 6214 * @vsi: the VSI being configured 6215 * 6216 * Return 0 on success and negative value on error 6217 */ 6218 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6219 { 6220 int err; 6221 6222 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6223 ice_set_rx_mode(vsi->netdev); 6224 6225 err = ice_vsi_vlan_setup(vsi); 6226 if (err) 6227 return err; 6228 } 6229 ice_vsi_cfg_dcb_rings(vsi); 6230 6231 err = ice_vsi_cfg_lan_txqs(vsi); 6232 if (!err && ice_is_xdp_ena_vsi(vsi)) 6233 err = ice_vsi_cfg_xdp_txqs(vsi); 6234 if (!err) 6235 err = ice_vsi_cfg_rxqs(vsi); 6236 6237 return err; 6238 } 6239 6240 /* THEORY OF MODERATION: 6241 * The ice driver hardware works differently than the hardware that DIMLIB was 6242 * originally made for. ice hardware doesn't have packet count limits that 6243 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6244 * which is hard-coded to a limit of 250,000 ints/second. 6245 * If not using dynamic moderation, the INTRL value can be modified 6246 * by ethtool rx-usecs-high. 6247 */ 6248 struct ice_dim { 6249 /* the throttle rate for interrupts, basically worst case delay before 6250 * an initial interrupt fires, value is stored in microseconds. 6251 */ 6252 u16 itr; 6253 }; 6254 6255 /* Make a different profile for Rx that doesn't allow quite so aggressive 6256 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6257 * second. 6258 */ 6259 static const struct ice_dim rx_profile[] = { 6260 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6261 {8}, /* 125,000 ints/s */ 6262 {16}, /* 62,500 ints/s */ 6263 {62}, /* 16,129 ints/s */ 6264 {126} /* 7,936 ints/s */ 6265 }; 6266 6267 /* The transmit profile, which has the same sorts of values 6268 * as the previous struct 6269 */ 6270 static const struct ice_dim tx_profile[] = { 6271 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6272 {8}, /* 125,000 ints/s */ 6273 {40}, /* 16,125 ints/s */ 6274 {128}, /* 7,812 ints/s */ 6275 {256} /* 3,906 ints/s */ 6276 }; 6277 6278 static void ice_tx_dim_work(struct work_struct *work) 6279 { 6280 struct ice_ring_container *rc; 6281 struct dim *dim; 6282 u16 itr; 6283 6284 dim = container_of(work, struct dim, work); 6285 rc = dim->priv; 6286 6287 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6288 6289 /* look up the values in our local table */ 6290 itr = tx_profile[dim->profile_ix].itr; 6291 6292 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6293 ice_write_itr(rc, itr); 6294 6295 dim->state = DIM_START_MEASURE; 6296 } 6297 6298 static void ice_rx_dim_work(struct work_struct *work) 6299 { 6300 struct ice_ring_container *rc; 6301 struct dim *dim; 6302 u16 itr; 6303 6304 dim = container_of(work, struct dim, work); 6305 rc = dim->priv; 6306 6307 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6308 6309 /* look up the values in our local table */ 6310 itr = rx_profile[dim->profile_ix].itr; 6311 6312 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6313 ice_write_itr(rc, itr); 6314 6315 dim->state = DIM_START_MEASURE; 6316 } 6317 6318 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6319 6320 /** 6321 * ice_init_moderation - set up interrupt moderation 6322 * @q_vector: the vector containing rings to be configured 6323 * 6324 * Set up interrupt moderation registers, with the intent to do the right thing 6325 * when called from reset or from probe, and whether or not dynamic moderation 6326 * is enabled or not. Take special care to write all the registers in both 6327 * dynamic moderation mode or not in order to make sure hardware is in a known 6328 * state. 6329 */ 6330 static void ice_init_moderation(struct ice_q_vector *q_vector) 6331 { 6332 struct ice_ring_container *rc; 6333 bool tx_dynamic, rx_dynamic; 6334 6335 rc = &q_vector->tx; 6336 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6337 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6338 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6339 rc->dim.priv = rc; 6340 tx_dynamic = ITR_IS_DYNAMIC(rc); 6341 6342 /* set the initial TX ITR to match the above */ 6343 ice_write_itr(rc, tx_dynamic ? 6344 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6345 6346 rc = &q_vector->rx; 6347 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6348 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6349 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6350 rc->dim.priv = rc; 6351 rx_dynamic = ITR_IS_DYNAMIC(rc); 6352 6353 /* set the initial RX ITR to match the above */ 6354 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6355 rc->itr_setting); 6356 6357 ice_set_q_vector_intrl(q_vector); 6358 } 6359 6360 /** 6361 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6362 * @vsi: the VSI being configured 6363 */ 6364 static void ice_napi_enable_all(struct ice_vsi *vsi) 6365 { 6366 int q_idx; 6367 6368 if (!vsi->netdev) 6369 return; 6370 6371 ice_for_each_q_vector(vsi, q_idx) { 6372 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6373 6374 ice_init_moderation(q_vector); 6375 6376 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6377 napi_enable(&q_vector->napi); 6378 } 6379 } 6380 6381 /** 6382 * ice_up_complete - Finish the last steps of bringing up a connection 6383 * @vsi: The VSI being configured 6384 * 6385 * Return 0 on success and negative value on error 6386 */ 6387 static int ice_up_complete(struct ice_vsi *vsi) 6388 { 6389 struct ice_pf *pf = vsi->back; 6390 int err; 6391 6392 ice_vsi_cfg_msix(vsi); 6393 6394 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6395 * Tx queue group list was configured and the context bits were 6396 * programmed using ice_vsi_cfg_txqs 6397 */ 6398 err = ice_vsi_start_all_rx_rings(vsi); 6399 if (err) 6400 return err; 6401 6402 clear_bit(ICE_VSI_DOWN, vsi->state); 6403 ice_napi_enable_all(vsi); 6404 ice_vsi_ena_irq(vsi); 6405 6406 if (vsi->port_info && 6407 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6408 vsi->netdev && vsi->type == ICE_VSI_PF) { 6409 ice_print_link_msg(vsi, true); 6410 netif_tx_start_all_queues(vsi->netdev); 6411 netif_carrier_on(vsi->netdev); 6412 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6413 } 6414 6415 /* Perform an initial read of the statistics registers now to 6416 * set the baseline so counters are ready when interface is up 6417 */ 6418 ice_update_eth_stats(vsi); 6419 6420 if (vsi->type == ICE_VSI_PF) 6421 ice_service_task_schedule(pf); 6422 6423 return 0; 6424 } 6425 6426 /** 6427 * ice_up - Bring the connection back up after being down 6428 * @vsi: VSI being configured 6429 */ 6430 int ice_up(struct ice_vsi *vsi) 6431 { 6432 int err; 6433 6434 err = ice_vsi_cfg_lan(vsi); 6435 if (!err) 6436 err = ice_up_complete(vsi); 6437 6438 return err; 6439 } 6440 6441 /** 6442 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6443 * @syncp: pointer to u64_stats_sync 6444 * @stats: stats that pkts and bytes count will be taken from 6445 * @pkts: packets stats counter 6446 * @bytes: bytes stats counter 6447 * 6448 * This function fetches stats from the ring considering the atomic operations 6449 * that needs to be performed to read u64 values in 32 bit machine. 6450 */ 6451 void 6452 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6453 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6454 { 6455 unsigned int start; 6456 6457 do { 6458 start = u64_stats_fetch_begin(syncp); 6459 *pkts = stats.pkts; 6460 *bytes = stats.bytes; 6461 } while (u64_stats_fetch_retry(syncp, start)); 6462 } 6463 6464 /** 6465 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6466 * @vsi: the VSI to be updated 6467 * @vsi_stats: the stats struct to be updated 6468 * @rings: rings to work on 6469 * @count: number of rings 6470 */ 6471 static void 6472 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6473 struct rtnl_link_stats64 *vsi_stats, 6474 struct ice_tx_ring **rings, u16 count) 6475 { 6476 u16 i; 6477 6478 for (i = 0; i < count; i++) { 6479 struct ice_tx_ring *ring; 6480 u64 pkts = 0, bytes = 0; 6481 6482 ring = READ_ONCE(rings[i]); 6483 if (!ring || !ring->ring_stats) 6484 continue; 6485 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6486 ring->ring_stats->stats, &pkts, 6487 &bytes); 6488 vsi_stats->tx_packets += pkts; 6489 vsi_stats->tx_bytes += bytes; 6490 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6491 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6492 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6493 } 6494 } 6495 6496 /** 6497 * ice_update_vsi_ring_stats - Update VSI stats counters 6498 * @vsi: the VSI to be updated 6499 */ 6500 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6501 { 6502 struct rtnl_link_stats64 *net_stats, *stats_prev; 6503 struct rtnl_link_stats64 *vsi_stats; 6504 u64 pkts, bytes; 6505 int i; 6506 6507 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6508 if (!vsi_stats) 6509 return; 6510 6511 /* reset non-netdev (extended) stats */ 6512 vsi->tx_restart = 0; 6513 vsi->tx_busy = 0; 6514 vsi->tx_linearize = 0; 6515 vsi->rx_buf_failed = 0; 6516 vsi->rx_page_failed = 0; 6517 6518 rcu_read_lock(); 6519 6520 /* update Tx rings counters */ 6521 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6522 vsi->num_txq); 6523 6524 /* update Rx rings counters */ 6525 ice_for_each_rxq(vsi, i) { 6526 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6527 struct ice_ring_stats *ring_stats; 6528 6529 ring_stats = ring->ring_stats; 6530 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6531 ring_stats->stats, &pkts, 6532 &bytes); 6533 vsi_stats->rx_packets += pkts; 6534 vsi_stats->rx_bytes += bytes; 6535 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6536 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6537 } 6538 6539 /* update XDP Tx rings counters */ 6540 if (ice_is_xdp_ena_vsi(vsi)) 6541 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6542 vsi->num_xdp_txq); 6543 6544 rcu_read_unlock(); 6545 6546 net_stats = &vsi->net_stats; 6547 stats_prev = &vsi->net_stats_prev; 6548 6549 /* clear prev counters after reset */ 6550 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6551 vsi_stats->rx_packets < stats_prev->rx_packets) { 6552 stats_prev->tx_packets = 0; 6553 stats_prev->tx_bytes = 0; 6554 stats_prev->rx_packets = 0; 6555 stats_prev->rx_bytes = 0; 6556 } 6557 6558 /* update netdev counters */ 6559 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6560 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6561 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6562 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6563 6564 stats_prev->tx_packets = vsi_stats->tx_packets; 6565 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6566 stats_prev->rx_packets = vsi_stats->rx_packets; 6567 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6568 6569 kfree(vsi_stats); 6570 } 6571 6572 /** 6573 * ice_update_vsi_stats - Update VSI stats counters 6574 * @vsi: the VSI to be updated 6575 */ 6576 void ice_update_vsi_stats(struct ice_vsi *vsi) 6577 { 6578 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6579 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6580 struct ice_pf *pf = vsi->back; 6581 6582 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6583 test_bit(ICE_CFG_BUSY, pf->state)) 6584 return; 6585 6586 /* get stats as recorded by Tx/Rx rings */ 6587 ice_update_vsi_ring_stats(vsi); 6588 6589 /* get VSI stats as recorded by the hardware */ 6590 ice_update_eth_stats(vsi); 6591 6592 cur_ns->tx_errors = cur_es->tx_errors; 6593 cur_ns->rx_dropped = cur_es->rx_discards; 6594 cur_ns->tx_dropped = cur_es->tx_discards; 6595 cur_ns->multicast = cur_es->rx_multicast; 6596 6597 /* update some more netdev stats if this is main VSI */ 6598 if (vsi->type == ICE_VSI_PF) { 6599 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6600 cur_ns->rx_errors = pf->stats.crc_errors + 6601 pf->stats.illegal_bytes + 6602 pf->stats.rx_len_errors + 6603 pf->stats.rx_undersize + 6604 pf->hw_csum_rx_error + 6605 pf->stats.rx_jabber + 6606 pf->stats.rx_fragments + 6607 pf->stats.rx_oversize; 6608 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6609 /* record drops from the port level */ 6610 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6611 } 6612 } 6613 6614 /** 6615 * ice_update_pf_stats - Update PF port stats counters 6616 * @pf: PF whose stats needs to be updated 6617 */ 6618 void ice_update_pf_stats(struct ice_pf *pf) 6619 { 6620 struct ice_hw_port_stats *prev_ps, *cur_ps; 6621 struct ice_hw *hw = &pf->hw; 6622 u16 fd_ctr_base; 6623 u8 port; 6624 6625 port = hw->port_info->lport; 6626 prev_ps = &pf->stats_prev; 6627 cur_ps = &pf->stats; 6628 6629 if (ice_is_reset_in_progress(pf->state)) 6630 pf->stat_prev_loaded = false; 6631 6632 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6633 &prev_ps->eth.rx_bytes, 6634 &cur_ps->eth.rx_bytes); 6635 6636 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6637 &prev_ps->eth.rx_unicast, 6638 &cur_ps->eth.rx_unicast); 6639 6640 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6641 &prev_ps->eth.rx_multicast, 6642 &cur_ps->eth.rx_multicast); 6643 6644 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6645 &prev_ps->eth.rx_broadcast, 6646 &cur_ps->eth.rx_broadcast); 6647 6648 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6649 &prev_ps->eth.rx_discards, 6650 &cur_ps->eth.rx_discards); 6651 6652 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6653 &prev_ps->eth.tx_bytes, 6654 &cur_ps->eth.tx_bytes); 6655 6656 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6657 &prev_ps->eth.tx_unicast, 6658 &cur_ps->eth.tx_unicast); 6659 6660 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6661 &prev_ps->eth.tx_multicast, 6662 &cur_ps->eth.tx_multicast); 6663 6664 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6665 &prev_ps->eth.tx_broadcast, 6666 &cur_ps->eth.tx_broadcast); 6667 6668 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6669 &prev_ps->tx_dropped_link_down, 6670 &cur_ps->tx_dropped_link_down); 6671 6672 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6673 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6674 6675 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6676 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6677 6678 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6679 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6680 6681 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6682 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6683 6684 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6685 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6686 6687 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6688 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6689 6690 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6691 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6692 6693 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6694 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6695 6696 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6697 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6698 6699 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6700 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6701 6702 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6703 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6704 6705 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6706 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6707 6708 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6709 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6710 6711 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6712 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6713 6714 fd_ctr_base = hw->fd_ctr_base; 6715 6716 ice_stat_update40(hw, 6717 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6718 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6719 &cur_ps->fd_sb_match); 6720 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6721 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6722 6723 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6724 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6725 6726 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6727 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6728 6729 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6730 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6731 6732 ice_update_dcb_stats(pf); 6733 6734 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6735 &prev_ps->crc_errors, &cur_ps->crc_errors); 6736 6737 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6738 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6739 6740 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6741 &prev_ps->mac_local_faults, 6742 &cur_ps->mac_local_faults); 6743 6744 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6745 &prev_ps->mac_remote_faults, 6746 &cur_ps->mac_remote_faults); 6747 6748 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6749 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6750 6751 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6752 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6753 6754 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6755 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6756 6757 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6758 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6759 6760 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6761 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6762 6763 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6764 6765 pf->stat_prev_loaded = true; 6766 } 6767 6768 /** 6769 * ice_get_stats64 - get statistics for network device structure 6770 * @netdev: network interface device structure 6771 * @stats: main device statistics structure 6772 */ 6773 static 6774 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6775 { 6776 struct ice_netdev_priv *np = netdev_priv(netdev); 6777 struct rtnl_link_stats64 *vsi_stats; 6778 struct ice_vsi *vsi = np->vsi; 6779 6780 vsi_stats = &vsi->net_stats; 6781 6782 if (!vsi->num_txq || !vsi->num_rxq) 6783 return; 6784 6785 /* netdev packet/byte stats come from ring counter. These are obtained 6786 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6787 * But, only call the update routine and read the registers if VSI is 6788 * not down. 6789 */ 6790 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6791 ice_update_vsi_ring_stats(vsi); 6792 stats->tx_packets = vsi_stats->tx_packets; 6793 stats->tx_bytes = vsi_stats->tx_bytes; 6794 stats->rx_packets = vsi_stats->rx_packets; 6795 stats->rx_bytes = vsi_stats->rx_bytes; 6796 6797 /* The rest of the stats can be read from the hardware but instead we 6798 * just return values that the watchdog task has already obtained from 6799 * the hardware. 6800 */ 6801 stats->multicast = vsi_stats->multicast; 6802 stats->tx_errors = vsi_stats->tx_errors; 6803 stats->tx_dropped = vsi_stats->tx_dropped; 6804 stats->rx_errors = vsi_stats->rx_errors; 6805 stats->rx_dropped = vsi_stats->rx_dropped; 6806 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6807 stats->rx_length_errors = vsi_stats->rx_length_errors; 6808 } 6809 6810 /** 6811 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6812 * @vsi: VSI having NAPI disabled 6813 */ 6814 static void ice_napi_disable_all(struct ice_vsi *vsi) 6815 { 6816 int q_idx; 6817 6818 if (!vsi->netdev) 6819 return; 6820 6821 ice_for_each_q_vector(vsi, q_idx) { 6822 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6823 6824 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6825 napi_disable(&q_vector->napi); 6826 6827 cancel_work_sync(&q_vector->tx.dim.work); 6828 cancel_work_sync(&q_vector->rx.dim.work); 6829 } 6830 } 6831 6832 /** 6833 * ice_down - Shutdown the connection 6834 * @vsi: The VSI being stopped 6835 * 6836 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6837 */ 6838 int ice_down(struct ice_vsi *vsi) 6839 { 6840 int i, tx_err, rx_err, vlan_err = 0; 6841 6842 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6843 6844 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6845 vlan_err = ice_vsi_del_vlan_zero(vsi); 6846 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6847 netif_carrier_off(vsi->netdev); 6848 netif_tx_disable(vsi->netdev); 6849 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6850 ice_eswitch_stop_all_tx_queues(vsi->back); 6851 } 6852 6853 ice_vsi_dis_irq(vsi); 6854 6855 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6856 if (tx_err) 6857 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6858 vsi->vsi_num, tx_err); 6859 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6860 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6861 if (tx_err) 6862 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6863 vsi->vsi_num, tx_err); 6864 } 6865 6866 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6867 if (rx_err) 6868 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6869 vsi->vsi_num, rx_err); 6870 6871 ice_napi_disable_all(vsi); 6872 6873 ice_for_each_txq(vsi, i) 6874 ice_clean_tx_ring(vsi->tx_rings[i]); 6875 6876 if (ice_is_xdp_ena_vsi(vsi)) 6877 ice_for_each_xdp_txq(vsi, i) 6878 ice_clean_tx_ring(vsi->xdp_rings[i]); 6879 6880 ice_for_each_rxq(vsi, i) 6881 ice_clean_rx_ring(vsi->rx_rings[i]); 6882 6883 if (tx_err || rx_err || vlan_err) { 6884 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6885 vsi->vsi_num, vsi->vsw->sw_id); 6886 return -EIO; 6887 } 6888 6889 return 0; 6890 } 6891 6892 /** 6893 * ice_down_up - shutdown the VSI connection and bring it up 6894 * @vsi: the VSI to be reconnected 6895 */ 6896 int ice_down_up(struct ice_vsi *vsi) 6897 { 6898 int ret; 6899 6900 /* if DOWN already set, nothing to do */ 6901 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6902 return 0; 6903 6904 ret = ice_down(vsi); 6905 if (ret) 6906 return ret; 6907 6908 ret = ice_up(vsi); 6909 if (ret) { 6910 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6911 return ret; 6912 } 6913 6914 return 0; 6915 } 6916 6917 /** 6918 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6919 * @vsi: VSI having resources allocated 6920 * 6921 * Return 0 on success, negative on failure 6922 */ 6923 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6924 { 6925 int i, err = 0; 6926 6927 if (!vsi->num_txq) { 6928 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6929 vsi->vsi_num); 6930 return -EINVAL; 6931 } 6932 6933 ice_for_each_txq(vsi, i) { 6934 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6935 6936 if (!ring) 6937 return -EINVAL; 6938 6939 if (vsi->netdev) 6940 ring->netdev = vsi->netdev; 6941 err = ice_setup_tx_ring(ring); 6942 if (err) 6943 break; 6944 } 6945 6946 return err; 6947 } 6948 6949 /** 6950 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6951 * @vsi: VSI having resources allocated 6952 * 6953 * Return 0 on success, negative on failure 6954 */ 6955 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6956 { 6957 int i, err = 0; 6958 6959 if (!vsi->num_rxq) { 6960 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6961 vsi->vsi_num); 6962 return -EINVAL; 6963 } 6964 6965 ice_for_each_rxq(vsi, i) { 6966 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6967 6968 if (!ring) 6969 return -EINVAL; 6970 6971 if (vsi->netdev) 6972 ring->netdev = vsi->netdev; 6973 err = ice_setup_rx_ring(ring); 6974 if (err) 6975 break; 6976 } 6977 6978 return err; 6979 } 6980 6981 /** 6982 * ice_vsi_open_ctrl - open control VSI for use 6983 * @vsi: the VSI to open 6984 * 6985 * Initialization of the Control VSI 6986 * 6987 * Returns 0 on success, negative value on error 6988 */ 6989 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6990 { 6991 char int_name[ICE_INT_NAME_STR_LEN]; 6992 struct ice_pf *pf = vsi->back; 6993 struct device *dev; 6994 int err; 6995 6996 dev = ice_pf_to_dev(pf); 6997 /* allocate descriptors */ 6998 err = ice_vsi_setup_tx_rings(vsi); 6999 if (err) 7000 goto err_setup_tx; 7001 7002 err = ice_vsi_setup_rx_rings(vsi); 7003 if (err) 7004 goto err_setup_rx; 7005 7006 err = ice_vsi_cfg_lan(vsi); 7007 if (err) 7008 goto err_setup_rx; 7009 7010 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7011 dev_driver_string(dev), dev_name(dev)); 7012 err = ice_vsi_req_irq_msix(vsi, int_name); 7013 if (err) 7014 goto err_setup_rx; 7015 7016 ice_vsi_cfg_msix(vsi); 7017 7018 err = ice_vsi_start_all_rx_rings(vsi); 7019 if (err) 7020 goto err_up_complete; 7021 7022 clear_bit(ICE_VSI_DOWN, vsi->state); 7023 ice_vsi_ena_irq(vsi); 7024 7025 return 0; 7026 7027 err_up_complete: 7028 ice_down(vsi); 7029 err_setup_rx: 7030 ice_vsi_free_rx_rings(vsi); 7031 err_setup_tx: 7032 ice_vsi_free_tx_rings(vsi); 7033 7034 return err; 7035 } 7036 7037 /** 7038 * ice_vsi_open - Called when a network interface is made active 7039 * @vsi: the VSI to open 7040 * 7041 * Initialization of the VSI 7042 * 7043 * Returns 0 on success, negative value on error 7044 */ 7045 int ice_vsi_open(struct ice_vsi *vsi) 7046 { 7047 char int_name[ICE_INT_NAME_STR_LEN]; 7048 struct ice_pf *pf = vsi->back; 7049 int err; 7050 7051 /* allocate descriptors */ 7052 err = ice_vsi_setup_tx_rings(vsi); 7053 if (err) 7054 goto err_setup_tx; 7055 7056 err = ice_vsi_setup_rx_rings(vsi); 7057 if (err) 7058 goto err_setup_rx; 7059 7060 err = ice_vsi_cfg_lan(vsi); 7061 if (err) 7062 goto err_setup_rx; 7063 7064 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7065 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7066 err = ice_vsi_req_irq_msix(vsi, int_name); 7067 if (err) 7068 goto err_setup_rx; 7069 7070 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7071 7072 if (vsi->type == ICE_VSI_PF) { 7073 /* Notify the stack of the actual queue counts. */ 7074 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7075 if (err) 7076 goto err_set_qs; 7077 7078 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7079 if (err) 7080 goto err_set_qs; 7081 } 7082 7083 err = ice_up_complete(vsi); 7084 if (err) 7085 goto err_up_complete; 7086 7087 return 0; 7088 7089 err_up_complete: 7090 ice_down(vsi); 7091 err_set_qs: 7092 ice_vsi_free_irq(vsi); 7093 err_setup_rx: 7094 ice_vsi_free_rx_rings(vsi); 7095 err_setup_tx: 7096 ice_vsi_free_tx_rings(vsi); 7097 7098 return err; 7099 } 7100 7101 /** 7102 * ice_vsi_release_all - Delete all VSIs 7103 * @pf: PF from which all VSIs are being removed 7104 */ 7105 static void ice_vsi_release_all(struct ice_pf *pf) 7106 { 7107 int err, i; 7108 7109 if (!pf->vsi) 7110 return; 7111 7112 ice_for_each_vsi(pf, i) { 7113 if (!pf->vsi[i]) 7114 continue; 7115 7116 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7117 continue; 7118 7119 err = ice_vsi_release(pf->vsi[i]); 7120 if (err) 7121 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7122 i, err, pf->vsi[i]->vsi_num); 7123 } 7124 } 7125 7126 /** 7127 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7128 * @pf: pointer to the PF instance 7129 * @type: VSI type to rebuild 7130 * 7131 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7132 */ 7133 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7134 { 7135 struct device *dev = ice_pf_to_dev(pf); 7136 int i, err; 7137 7138 ice_for_each_vsi(pf, i) { 7139 struct ice_vsi *vsi = pf->vsi[i]; 7140 7141 if (!vsi || vsi->type != type) 7142 continue; 7143 7144 /* rebuild the VSI */ 7145 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7146 if (err) { 7147 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7148 err, vsi->idx, ice_vsi_type_str(type)); 7149 return err; 7150 } 7151 7152 /* replay filters for the VSI */ 7153 err = ice_replay_vsi(&pf->hw, vsi->idx); 7154 if (err) { 7155 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7156 err, vsi->idx, ice_vsi_type_str(type)); 7157 return err; 7158 } 7159 7160 /* Re-map HW VSI number, using VSI handle that has been 7161 * previously validated in ice_replay_vsi() call above 7162 */ 7163 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7164 7165 /* enable the VSI */ 7166 err = ice_ena_vsi(vsi, false); 7167 if (err) { 7168 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7169 err, vsi->idx, ice_vsi_type_str(type)); 7170 return err; 7171 } 7172 7173 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7174 ice_vsi_type_str(type)); 7175 } 7176 7177 return 0; 7178 } 7179 7180 /** 7181 * ice_update_pf_netdev_link - Update PF netdev link status 7182 * @pf: pointer to the PF instance 7183 */ 7184 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7185 { 7186 bool link_up; 7187 int i; 7188 7189 ice_for_each_vsi(pf, i) { 7190 struct ice_vsi *vsi = pf->vsi[i]; 7191 7192 if (!vsi || vsi->type != ICE_VSI_PF) 7193 return; 7194 7195 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7196 if (link_up) { 7197 netif_carrier_on(pf->vsi[i]->netdev); 7198 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7199 } else { 7200 netif_carrier_off(pf->vsi[i]->netdev); 7201 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7202 } 7203 } 7204 } 7205 7206 /** 7207 * ice_rebuild - rebuild after reset 7208 * @pf: PF to rebuild 7209 * @reset_type: type of reset 7210 * 7211 * Do not rebuild VF VSI in this flow because that is already handled via 7212 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7213 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7214 * to reset/rebuild all the VF VSI twice. 7215 */ 7216 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7217 { 7218 struct device *dev = ice_pf_to_dev(pf); 7219 struct ice_hw *hw = &pf->hw; 7220 bool dvm; 7221 int err; 7222 7223 if (test_bit(ICE_DOWN, pf->state)) 7224 goto clear_recovery; 7225 7226 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7227 7228 #define ICE_EMP_RESET_SLEEP_MS 5000 7229 if (reset_type == ICE_RESET_EMPR) { 7230 /* If an EMP reset has occurred, any previously pending flash 7231 * update will have completed. We no longer know whether or 7232 * not the NVM update EMP reset is restricted. 7233 */ 7234 pf->fw_emp_reset_disabled = false; 7235 7236 msleep(ICE_EMP_RESET_SLEEP_MS); 7237 } 7238 7239 err = ice_init_all_ctrlq(hw); 7240 if (err) { 7241 dev_err(dev, "control queues init failed %d\n", err); 7242 goto err_init_ctrlq; 7243 } 7244 7245 /* if DDP was previously loaded successfully */ 7246 if (!ice_is_safe_mode(pf)) { 7247 /* reload the SW DB of filter tables */ 7248 if (reset_type == ICE_RESET_PFR) 7249 ice_fill_blk_tbls(hw); 7250 else 7251 /* Reload DDP Package after CORER/GLOBR reset */ 7252 ice_load_pkg(NULL, pf); 7253 } 7254 7255 err = ice_clear_pf_cfg(hw); 7256 if (err) { 7257 dev_err(dev, "clear PF configuration failed %d\n", err); 7258 goto err_init_ctrlq; 7259 } 7260 7261 ice_clear_pxe_mode(hw); 7262 7263 err = ice_init_nvm(hw); 7264 if (err) { 7265 dev_err(dev, "ice_init_nvm failed %d\n", err); 7266 goto err_init_ctrlq; 7267 } 7268 7269 err = ice_get_caps(hw); 7270 if (err) { 7271 dev_err(dev, "ice_get_caps failed %d\n", err); 7272 goto err_init_ctrlq; 7273 } 7274 7275 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7276 if (err) { 7277 dev_err(dev, "set_mac_cfg failed %d\n", err); 7278 goto err_init_ctrlq; 7279 } 7280 7281 dvm = ice_is_dvm_ena(hw); 7282 7283 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7284 if (err) 7285 goto err_init_ctrlq; 7286 7287 err = ice_sched_init_port(hw->port_info); 7288 if (err) 7289 goto err_sched_init_port; 7290 7291 /* start misc vector */ 7292 err = ice_req_irq_msix_misc(pf); 7293 if (err) { 7294 dev_err(dev, "misc vector setup failed: %d\n", err); 7295 goto err_sched_init_port; 7296 } 7297 7298 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7299 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7300 if (!rd32(hw, PFQF_FD_SIZE)) { 7301 u16 unused, guar, b_effort; 7302 7303 guar = hw->func_caps.fd_fltr_guar; 7304 b_effort = hw->func_caps.fd_fltr_best_effort; 7305 7306 /* force guaranteed filter pool for PF */ 7307 ice_alloc_fd_guar_item(hw, &unused, guar); 7308 /* force shared filter pool for PF */ 7309 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7310 } 7311 } 7312 7313 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7314 ice_dcb_rebuild(pf); 7315 7316 /* If the PF previously had enabled PTP, PTP init needs to happen before 7317 * the VSI rebuild. If not, this causes the PTP link status events to 7318 * fail. 7319 */ 7320 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7321 ice_ptp_reset(pf); 7322 7323 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7324 ice_gnss_init(pf); 7325 7326 /* rebuild PF VSI */ 7327 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7328 if (err) { 7329 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7330 goto err_vsi_rebuild; 7331 } 7332 7333 /* configure PTP timestamping after VSI rebuild */ 7334 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7335 ice_ptp_cfg_timestamp(pf, false); 7336 7337 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7338 if (err) { 7339 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7340 goto err_vsi_rebuild; 7341 } 7342 7343 if (reset_type == ICE_RESET_PFR) { 7344 err = ice_rebuild_channels(pf); 7345 if (err) { 7346 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7347 err); 7348 goto err_vsi_rebuild; 7349 } 7350 } 7351 7352 /* If Flow Director is active */ 7353 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7354 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7355 if (err) { 7356 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7357 goto err_vsi_rebuild; 7358 } 7359 7360 /* replay HW Flow Director recipes */ 7361 if (hw->fdir_prof) 7362 ice_fdir_replay_flows(hw); 7363 7364 /* replay Flow Director filters */ 7365 ice_fdir_replay_fltrs(pf); 7366 7367 ice_rebuild_arfs(pf); 7368 } 7369 7370 ice_update_pf_netdev_link(pf); 7371 7372 /* tell the firmware we are up */ 7373 err = ice_send_version(pf); 7374 if (err) { 7375 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7376 err); 7377 goto err_vsi_rebuild; 7378 } 7379 7380 ice_replay_post(hw); 7381 7382 /* if we get here, reset flow is successful */ 7383 clear_bit(ICE_RESET_FAILED, pf->state); 7384 7385 ice_plug_aux_dev(pf); 7386 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7387 ice_lag_rebuild(pf); 7388 return; 7389 7390 err_vsi_rebuild: 7391 err_sched_init_port: 7392 ice_sched_cleanup_all(hw); 7393 err_init_ctrlq: 7394 ice_shutdown_all_ctrlq(hw); 7395 set_bit(ICE_RESET_FAILED, pf->state); 7396 clear_recovery: 7397 /* set this bit in PF state to control service task scheduling */ 7398 set_bit(ICE_NEEDS_RESTART, pf->state); 7399 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7400 } 7401 7402 /** 7403 * ice_change_mtu - NDO callback to change the MTU 7404 * @netdev: network interface device structure 7405 * @new_mtu: new value for maximum frame size 7406 * 7407 * Returns 0 on success, negative on failure 7408 */ 7409 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7410 { 7411 struct ice_netdev_priv *np = netdev_priv(netdev); 7412 struct ice_vsi *vsi = np->vsi; 7413 struct ice_pf *pf = vsi->back; 7414 struct bpf_prog *prog; 7415 u8 count = 0; 7416 int err = 0; 7417 7418 if (new_mtu == (int)netdev->mtu) { 7419 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7420 return 0; 7421 } 7422 7423 prog = vsi->xdp_prog; 7424 if (prog && !prog->aux->xdp_has_frags) { 7425 int frame_size = ice_max_xdp_frame_size(vsi); 7426 7427 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7428 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7429 frame_size - ICE_ETH_PKT_HDR_PAD); 7430 return -EINVAL; 7431 } 7432 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7433 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7434 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7435 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7436 return -EINVAL; 7437 } 7438 } 7439 7440 /* if a reset is in progress, wait for some time for it to complete */ 7441 do { 7442 if (ice_is_reset_in_progress(pf->state)) { 7443 count++; 7444 usleep_range(1000, 2000); 7445 } else { 7446 break; 7447 } 7448 7449 } while (count < 100); 7450 7451 if (count == 100) { 7452 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7453 return -EBUSY; 7454 } 7455 7456 netdev->mtu = (unsigned int)new_mtu; 7457 err = ice_down_up(vsi); 7458 if (err) 7459 return err; 7460 7461 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7462 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7463 7464 return err; 7465 } 7466 7467 /** 7468 * ice_eth_ioctl - Access the hwtstamp interface 7469 * @netdev: network interface device structure 7470 * @ifr: interface request data 7471 * @cmd: ioctl command 7472 */ 7473 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7474 { 7475 struct ice_netdev_priv *np = netdev_priv(netdev); 7476 struct ice_pf *pf = np->vsi->back; 7477 7478 switch (cmd) { 7479 case SIOCGHWTSTAMP: 7480 return ice_ptp_get_ts_config(pf, ifr); 7481 case SIOCSHWTSTAMP: 7482 return ice_ptp_set_ts_config(pf, ifr); 7483 default: 7484 return -EOPNOTSUPP; 7485 } 7486 } 7487 7488 /** 7489 * ice_aq_str - convert AQ err code to a string 7490 * @aq_err: the AQ error code to convert 7491 */ 7492 const char *ice_aq_str(enum ice_aq_err aq_err) 7493 { 7494 switch (aq_err) { 7495 case ICE_AQ_RC_OK: 7496 return "OK"; 7497 case ICE_AQ_RC_EPERM: 7498 return "ICE_AQ_RC_EPERM"; 7499 case ICE_AQ_RC_ENOENT: 7500 return "ICE_AQ_RC_ENOENT"; 7501 case ICE_AQ_RC_ENOMEM: 7502 return "ICE_AQ_RC_ENOMEM"; 7503 case ICE_AQ_RC_EBUSY: 7504 return "ICE_AQ_RC_EBUSY"; 7505 case ICE_AQ_RC_EEXIST: 7506 return "ICE_AQ_RC_EEXIST"; 7507 case ICE_AQ_RC_EINVAL: 7508 return "ICE_AQ_RC_EINVAL"; 7509 case ICE_AQ_RC_ENOSPC: 7510 return "ICE_AQ_RC_ENOSPC"; 7511 case ICE_AQ_RC_ENOSYS: 7512 return "ICE_AQ_RC_ENOSYS"; 7513 case ICE_AQ_RC_EMODE: 7514 return "ICE_AQ_RC_EMODE"; 7515 case ICE_AQ_RC_ENOSEC: 7516 return "ICE_AQ_RC_ENOSEC"; 7517 case ICE_AQ_RC_EBADSIG: 7518 return "ICE_AQ_RC_EBADSIG"; 7519 case ICE_AQ_RC_ESVN: 7520 return "ICE_AQ_RC_ESVN"; 7521 case ICE_AQ_RC_EBADMAN: 7522 return "ICE_AQ_RC_EBADMAN"; 7523 case ICE_AQ_RC_EBADBUF: 7524 return "ICE_AQ_RC_EBADBUF"; 7525 } 7526 7527 return "ICE_AQ_RC_UNKNOWN"; 7528 } 7529 7530 /** 7531 * ice_set_rss_lut - Set RSS LUT 7532 * @vsi: Pointer to VSI structure 7533 * @lut: Lookup table 7534 * @lut_size: Lookup table size 7535 * 7536 * Returns 0 on success, negative on failure 7537 */ 7538 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7539 { 7540 struct ice_aq_get_set_rss_lut_params params = {}; 7541 struct ice_hw *hw = &vsi->back->hw; 7542 int status; 7543 7544 if (!lut) 7545 return -EINVAL; 7546 7547 params.vsi_handle = vsi->idx; 7548 params.lut_size = lut_size; 7549 params.lut_type = vsi->rss_lut_type; 7550 params.lut = lut; 7551 7552 status = ice_aq_set_rss_lut(hw, ¶ms); 7553 if (status) 7554 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7555 status, ice_aq_str(hw->adminq.sq_last_status)); 7556 7557 return status; 7558 } 7559 7560 /** 7561 * ice_set_rss_key - Set RSS key 7562 * @vsi: Pointer to the VSI structure 7563 * @seed: RSS hash seed 7564 * 7565 * Returns 0 on success, negative on failure 7566 */ 7567 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7568 { 7569 struct ice_hw *hw = &vsi->back->hw; 7570 int status; 7571 7572 if (!seed) 7573 return -EINVAL; 7574 7575 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7576 if (status) 7577 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7578 status, ice_aq_str(hw->adminq.sq_last_status)); 7579 7580 return status; 7581 } 7582 7583 /** 7584 * ice_get_rss_lut - Get RSS LUT 7585 * @vsi: Pointer to VSI structure 7586 * @lut: Buffer to store the lookup table entries 7587 * @lut_size: Size of buffer to store the lookup table entries 7588 * 7589 * Returns 0 on success, negative on failure 7590 */ 7591 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7592 { 7593 struct ice_aq_get_set_rss_lut_params params = {}; 7594 struct ice_hw *hw = &vsi->back->hw; 7595 int status; 7596 7597 if (!lut) 7598 return -EINVAL; 7599 7600 params.vsi_handle = vsi->idx; 7601 params.lut_size = lut_size; 7602 params.lut_type = vsi->rss_lut_type; 7603 params.lut = lut; 7604 7605 status = ice_aq_get_rss_lut(hw, ¶ms); 7606 if (status) 7607 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7608 status, ice_aq_str(hw->adminq.sq_last_status)); 7609 7610 return status; 7611 } 7612 7613 /** 7614 * ice_get_rss_key - Get RSS key 7615 * @vsi: Pointer to VSI structure 7616 * @seed: Buffer to store the key in 7617 * 7618 * Returns 0 on success, negative on failure 7619 */ 7620 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7621 { 7622 struct ice_hw *hw = &vsi->back->hw; 7623 int status; 7624 7625 if (!seed) 7626 return -EINVAL; 7627 7628 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7629 if (status) 7630 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7631 status, ice_aq_str(hw->adminq.sq_last_status)); 7632 7633 return status; 7634 } 7635 7636 /** 7637 * ice_bridge_getlink - Get the hardware bridge mode 7638 * @skb: skb buff 7639 * @pid: process ID 7640 * @seq: RTNL message seq 7641 * @dev: the netdev being configured 7642 * @filter_mask: filter mask passed in 7643 * @nlflags: netlink flags passed in 7644 * 7645 * Return the bridge mode (VEB/VEPA) 7646 */ 7647 static int 7648 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7649 struct net_device *dev, u32 filter_mask, int nlflags) 7650 { 7651 struct ice_netdev_priv *np = netdev_priv(dev); 7652 struct ice_vsi *vsi = np->vsi; 7653 struct ice_pf *pf = vsi->back; 7654 u16 bmode; 7655 7656 bmode = pf->first_sw->bridge_mode; 7657 7658 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7659 filter_mask, NULL); 7660 } 7661 7662 /** 7663 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7664 * @vsi: Pointer to VSI structure 7665 * @bmode: Hardware bridge mode (VEB/VEPA) 7666 * 7667 * Returns 0 on success, negative on failure 7668 */ 7669 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7670 { 7671 struct ice_aqc_vsi_props *vsi_props; 7672 struct ice_hw *hw = &vsi->back->hw; 7673 struct ice_vsi_ctx *ctxt; 7674 int ret; 7675 7676 vsi_props = &vsi->info; 7677 7678 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7679 if (!ctxt) 7680 return -ENOMEM; 7681 7682 ctxt->info = vsi->info; 7683 7684 if (bmode == BRIDGE_MODE_VEB) 7685 /* change from VEPA to VEB mode */ 7686 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7687 else 7688 /* change from VEB to VEPA mode */ 7689 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7690 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7691 7692 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7693 if (ret) { 7694 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7695 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7696 goto out; 7697 } 7698 /* Update sw flags for book keeping */ 7699 vsi_props->sw_flags = ctxt->info.sw_flags; 7700 7701 out: 7702 kfree(ctxt); 7703 return ret; 7704 } 7705 7706 /** 7707 * ice_bridge_setlink - Set the hardware bridge mode 7708 * @dev: the netdev being configured 7709 * @nlh: RTNL message 7710 * @flags: bridge setlink flags 7711 * @extack: netlink extended ack 7712 * 7713 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7714 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7715 * not already set for all VSIs connected to this switch. And also update the 7716 * unicast switch filter rules for the corresponding switch of the netdev. 7717 */ 7718 static int 7719 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7720 u16 __always_unused flags, 7721 struct netlink_ext_ack __always_unused *extack) 7722 { 7723 struct ice_netdev_priv *np = netdev_priv(dev); 7724 struct ice_pf *pf = np->vsi->back; 7725 struct nlattr *attr, *br_spec; 7726 struct ice_hw *hw = &pf->hw; 7727 struct ice_sw *pf_sw; 7728 int rem, v, err = 0; 7729 7730 pf_sw = pf->first_sw; 7731 /* find the attribute in the netlink message */ 7732 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7733 7734 nla_for_each_nested(attr, br_spec, rem) { 7735 __u16 mode; 7736 7737 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7738 continue; 7739 mode = nla_get_u16(attr); 7740 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7741 return -EINVAL; 7742 /* Continue if bridge mode is not being flipped */ 7743 if (mode == pf_sw->bridge_mode) 7744 continue; 7745 /* Iterates through the PF VSI list and update the loopback 7746 * mode of the VSI 7747 */ 7748 ice_for_each_vsi(pf, v) { 7749 if (!pf->vsi[v]) 7750 continue; 7751 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7752 if (err) 7753 return err; 7754 } 7755 7756 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7757 /* Update the unicast switch filter rules for the corresponding 7758 * switch of the netdev 7759 */ 7760 err = ice_update_sw_rule_bridge_mode(hw); 7761 if (err) { 7762 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7763 mode, err, 7764 ice_aq_str(hw->adminq.sq_last_status)); 7765 /* revert hw->evb_veb */ 7766 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7767 return err; 7768 } 7769 7770 pf_sw->bridge_mode = mode; 7771 } 7772 7773 return 0; 7774 } 7775 7776 /** 7777 * ice_tx_timeout - Respond to a Tx Hang 7778 * @netdev: network interface device structure 7779 * @txqueue: Tx queue 7780 */ 7781 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7782 { 7783 struct ice_netdev_priv *np = netdev_priv(netdev); 7784 struct ice_tx_ring *tx_ring = NULL; 7785 struct ice_vsi *vsi = np->vsi; 7786 struct ice_pf *pf = vsi->back; 7787 u32 i; 7788 7789 pf->tx_timeout_count++; 7790 7791 /* Check if PFC is enabled for the TC to which the queue belongs 7792 * to. If yes then Tx timeout is not caused by a hung queue, no 7793 * need to reset and rebuild 7794 */ 7795 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7796 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7797 txqueue); 7798 return; 7799 } 7800 7801 /* now that we have an index, find the tx_ring struct */ 7802 ice_for_each_txq(vsi, i) 7803 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7804 if (txqueue == vsi->tx_rings[i]->q_index) { 7805 tx_ring = vsi->tx_rings[i]; 7806 break; 7807 } 7808 7809 /* Reset recovery level if enough time has elapsed after last timeout. 7810 * Also ensure no new reset action happens before next timeout period. 7811 */ 7812 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7813 pf->tx_timeout_recovery_level = 1; 7814 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7815 netdev->watchdog_timeo))) 7816 return; 7817 7818 if (tx_ring) { 7819 struct ice_hw *hw = &pf->hw; 7820 u32 head, val = 0; 7821 7822 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7823 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7824 /* Read interrupt register */ 7825 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7826 7827 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7828 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7829 head, tx_ring->next_to_use, val); 7830 } 7831 7832 pf->tx_timeout_last_recovery = jiffies; 7833 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7834 pf->tx_timeout_recovery_level, txqueue); 7835 7836 switch (pf->tx_timeout_recovery_level) { 7837 case 1: 7838 set_bit(ICE_PFR_REQ, pf->state); 7839 break; 7840 case 2: 7841 set_bit(ICE_CORER_REQ, pf->state); 7842 break; 7843 case 3: 7844 set_bit(ICE_GLOBR_REQ, pf->state); 7845 break; 7846 default: 7847 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7848 set_bit(ICE_DOWN, pf->state); 7849 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7850 set_bit(ICE_SERVICE_DIS, pf->state); 7851 break; 7852 } 7853 7854 ice_service_task_schedule(pf); 7855 pf->tx_timeout_recovery_level++; 7856 } 7857 7858 /** 7859 * ice_setup_tc_cls_flower - flower classifier offloads 7860 * @np: net device to configure 7861 * @filter_dev: device on which filter is added 7862 * @cls_flower: offload data 7863 */ 7864 static int 7865 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7866 struct net_device *filter_dev, 7867 struct flow_cls_offload *cls_flower) 7868 { 7869 struct ice_vsi *vsi = np->vsi; 7870 7871 if (cls_flower->common.chain_index) 7872 return -EOPNOTSUPP; 7873 7874 switch (cls_flower->command) { 7875 case FLOW_CLS_REPLACE: 7876 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7877 case FLOW_CLS_DESTROY: 7878 return ice_del_cls_flower(vsi, cls_flower); 7879 default: 7880 return -EINVAL; 7881 } 7882 } 7883 7884 /** 7885 * ice_setup_tc_block_cb - callback handler registered for TC block 7886 * @type: TC SETUP type 7887 * @type_data: TC flower offload data that contains user input 7888 * @cb_priv: netdev private data 7889 */ 7890 static int 7891 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7892 { 7893 struct ice_netdev_priv *np = cb_priv; 7894 7895 switch (type) { 7896 case TC_SETUP_CLSFLOWER: 7897 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7898 type_data); 7899 default: 7900 return -EOPNOTSUPP; 7901 } 7902 } 7903 7904 /** 7905 * ice_validate_mqprio_qopt - Validate TCF input parameters 7906 * @vsi: Pointer to VSI 7907 * @mqprio_qopt: input parameters for mqprio queue configuration 7908 * 7909 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7910 * needed), and make sure user doesn't specify qcount and BW rate limit 7911 * for TCs, which are more than "num_tc" 7912 */ 7913 static int 7914 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7915 struct tc_mqprio_qopt_offload *mqprio_qopt) 7916 { 7917 int non_power_of_2_qcount = 0; 7918 struct ice_pf *pf = vsi->back; 7919 int max_rss_q_cnt = 0; 7920 u64 sum_min_rate = 0; 7921 struct device *dev; 7922 int i, speed; 7923 u8 num_tc; 7924 7925 if (vsi->type != ICE_VSI_PF) 7926 return -EINVAL; 7927 7928 if (mqprio_qopt->qopt.offset[0] != 0 || 7929 mqprio_qopt->qopt.num_tc < 1 || 7930 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7931 return -EINVAL; 7932 7933 dev = ice_pf_to_dev(pf); 7934 vsi->ch_rss_size = 0; 7935 num_tc = mqprio_qopt->qopt.num_tc; 7936 speed = ice_get_link_speed_kbps(vsi); 7937 7938 for (i = 0; num_tc; i++) { 7939 int qcount = mqprio_qopt->qopt.count[i]; 7940 u64 max_rate, min_rate, rem; 7941 7942 if (!qcount) 7943 return -EINVAL; 7944 7945 if (is_power_of_2(qcount)) { 7946 if (non_power_of_2_qcount && 7947 qcount > non_power_of_2_qcount) { 7948 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7949 qcount, non_power_of_2_qcount); 7950 return -EINVAL; 7951 } 7952 if (qcount > max_rss_q_cnt) 7953 max_rss_q_cnt = qcount; 7954 } else { 7955 if (non_power_of_2_qcount && 7956 qcount != non_power_of_2_qcount) { 7957 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7958 qcount, non_power_of_2_qcount); 7959 return -EINVAL; 7960 } 7961 if (qcount < max_rss_q_cnt) { 7962 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7963 qcount, max_rss_q_cnt); 7964 return -EINVAL; 7965 } 7966 max_rss_q_cnt = qcount; 7967 non_power_of_2_qcount = qcount; 7968 } 7969 7970 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7971 * converts the bandwidth rate limit into Bytes/s when 7972 * passing it down to the driver. So convert input bandwidth 7973 * from Bytes/s to Kbps 7974 */ 7975 max_rate = mqprio_qopt->max_rate[i]; 7976 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7977 7978 /* min_rate is minimum guaranteed rate and it can't be zero */ 7979 min_rate = mqprio_qopt->min_rate[i]; 7980 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7981 sum_min_rate += min_rate; 7982 7983 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7984 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7985 min_rate, ICE_MIN_BW_LIMIT); 7986 return -EINVAL; 7987 } 7988 7989 if (max_rate && max_rate > speed) { 7990 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 7991 i, max_rate, speed); 7992 return -EINVAL; 7993 } 7994 7995 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7996 if (rem) { 7997 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7998 i, ICE_MIN_BW_LIMIT); 7999 return -EINVAL; 8000 } 8001 8002 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8003 if (rem) { 8004 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8005 i, ICE_MIN_BW_LIMIT); 8006 return -EINVAL; 8007 } 8008 8009 /* min_rate can't be more than max_rate, except when max_rate 8010 * is zero (implies max_rate sought is max line rate). In such 8011 * a case min_rate can be more than max. 8012 */ 8013 if (max_rate && min_rate > max_rate) { 8014 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8015 min_rate, max_rate); 8016 return -EINVAL; 8017 } 8018 8019 if (i >= mqprio_qopt->qopt.num_tc - 1) 8020 break; 8021 if (mqprio_qopt->qopt.offset[i + 1] != 8022 (mqprio_qopt->qopt.offset[i] + qcount)) 8023 return -EINVAL; 8024 } 8025 if (vsi->num_rxq < 8026 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8027 return -EINVAL; 8028 if (vsi->num_txq < 8029 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8030 return -EINVAL; 8031 8032 if (sum_min_rate && sum_min_rate > (u64)speed) { 8033 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8034 sum_min_rate, speed); 8035 return -EINVAL; 8036 } 8037 8038 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8039 vsi->ch_rss_size = max_rss_q_cnt; 8040 8041 return 0; 8042 } 8043 8044 /** 8045 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8046 * @pf: ptr to PF device 8047 * @vsi: ptr to VSI 8048 */ 8049 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8050 { 8051 struct device *dev = ice_pf_to_dev(pf); 8052 bool added = false; 8053 struct ice_hw *hw; 8054 int flow; 8055 8056 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8057 return -EINVAL; 8058 8059 hw = &pf->hw; 8060 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8061 struct ice_fd_hw_prof *prof; 8062 int tun, status; 8063 u64 entry_h; 8064 8065 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8066 hw->fdir_prof[flow]->cnt)) 8067 continue; 8068 8069 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8070 enum ice_flow_priority prio; 8071 u64 prof_id; 8072 8073 /* add this VSI to FDir profile for this flow */ 8074 prio = ICE_FLOW_PRIO_NORMAL; 8075 prof = hw->fdir_prof[flow]; 8076 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8077 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8078 prof->vsi_h[0], vsi->idx, 8079 prio, prof->fdir_seg[tun], 8080 &entry_h); 8081 if (status) { 8082 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8083 vsi->idx, flow); 8084 continue; 8085 } 8086 8087 prof->entry_h[prof->cnt][tun] = entry_h; 8088 } 8089 8090 /* store VSI for filter replay and delete */ 8091 prof->vsi_h[prof->cnt] = vsi->idx; 8092 prof->cnt++; 8093 8094 added = true; 8095 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8096 flow); 8097 } 8098 8099 if (!added) 8100 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8101 8102 return 0; 8103 } 8104 8105 /** 8106 * ice_add_channel - add a channel by adding VSI 8107 * @pf: ptr to PF device 8108 * @sw_id: underlying HW switching element ID 8109 * @ch: ptr to channel structure 8110 * 8111 * Add a channel (VSI) using add_vsi and queue_map 8112 */ 8113 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8114 { 8115 struct device *dev = ice_pf_to_dev(pf); 8116 struct ice_vsi *vsi; 8117 8118 if (ch->type != ICE_VSI_CHNL) { 8119 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8120 return -EINVAL; 8121 } 8122 8123 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8124 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8125 dev_err(dev, "create chnl VSI failure\n"); 8126 return -EINVAL; 8127 } 8128 8129 ice_add_vsi_to_fdir(pf, vsi); 8130 8131 ch->sw_id = sw_id; 8132 ch->vsi_num = vsi->vsi_num; 8133 ch->info.mapping_flags = vsi->info.mapping_flags; 8134 ch->ch_vsi = vsi; 8135 /* set the back pointer of channel for newly created VSI */ 8136 vsi->ch = ch; 8137 8138 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8139 sizeof(vsi->info.q_mapping)); 8140 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8141 sizeof(vsi->info.tc_mapping)); 8142 8143 return 0; 8144 } 8145 8146 /** 8147 * ice_chnl_cfg_res 8148 * @vsi: the VSI being setup 8149 * @ch: ptr to channel structure 8150 * 8151 * Configure channel specific resources such as rings, vector. 8152 */ 8153 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8154 { 8155 int i; 8156 8157 for (i = 0; i < ch->num_txq; i++) { 8158 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8159 struct ice_ring_container *rc; 8160 struct ice_tx_ring *tx_ring; 8161 struct ice_rx_ring *rx_ring; 8162 8163 tx_ring = vsi->tx_rings[ch->base_q + i]; 8164 rx_ring = vsi->rx_rings[ch->base_q + i]; 8165 if (!tx_ring || !rx_ring) 8166 continue; 8167 8168 /* setup ring being channel enabled */ 8169 tx_ring->ch = ch; 8170 rx_ring->ch = ch; 8171 8172 /* following code block sets up vector specific attributes */ 8173 tx_q_vector = tx_ring->q_vector; 8174 rx_q_vector = rx_ring->q_vector; 8175 if (!tx_q_vector && !rx_q_vector) 8176 continue; 8177 8178 if (tx_q_vector) { 8179 tx_q_vector->ch = ch; 8180 /* setup Tx and Rx ITR setting if DIM is off */ 8181 rc = &tx_q_vector->tx; 8182 if (!ITR_IS_DYNAMIC(rc)) 8183 ice_write_itr(rc, rc->itr_setting); 8184 } 8185 if (rx_q_vector) { 8186 rx_q_vector->ch = ch; 8187 /* setup Tx and Rx ITR setting if DIM is off */ 8188 rc = &rx_q_vector->rx; 8189 if (!ITR_IS_DYNAMIC(rc)) 8190 ice_write_itr(rc, rc->itr_setting); 8191 } 8192 } 8193 8194 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8195 * GLINT_ITR register would have written to perform in-context 8196 * update, hence perform flush 8197 */ 8198 if (ch->num_txq || ch->num_rxq) 8199 ice_flush(&vsi->back->hw); 8200 } 8201 8202 /** 8203 * ice_cfg_chnl_all_res - configure channel resources 8204 * @vsi: pte to main_vsi 8205 * @ch: ptr to channel structure 8206 * 8207 * This function configures channel specific resources such as flow-director 8208 * counter index, and other resources such as queues, vectors, ITR settings 8209 */ 8210 static void 8211 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8212 { 8213 /* configure channel (aka ADQ) resources such as queues, vectors, 8214 * ITR settings for channel specific vectors and anything else 8215 */ 8216 ice_chnl_cfg_res(vsi, ch); 8217 } 8218 8219 /** 8220 * ice_setup_hw_channel - setup new channel 8221 * @pf: ptr to PF device 8222 * @vsi: the VSI being setup 8223 * @ch: ptr to channel structure 8224 * @sw_id: underlying HW switching element ID 8225 * @type: type of channel to be created (VMDq2/VF) 8226 * 8227 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8228 * and configures Tx rings accordingly 8229 */ 8230 static int 8231 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8232 struct ice_channel *ch, u16 sw_id, u8 type) 8233 { 8234 struct device *dev = ice_pf_to_dev(pf); 8235 int ret; 8236 8237 ch->base_q = vsi->next_base_q; 8238 ch->type = type; 8239 8240 ret = ice_add_channel(pf, sw_id, ch); 8241 if (ret) { 8242 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8243 return ret; 8244 } 8245 8246 /* configure/setup ADQ specific resources */ 8247 ice_cfg_chnl_all_res(vsi, ch); 8248 8249 /* make sure to update the next_base_q so that subsequent channel's 8250 * (aka ADQ) VSI queue map is correct 8251 */ 8252 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8253 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8254 ch->num_rxq); 8255 8256 return 0; 8257 } 8258 8259 /** 8260 * ice_setup_channel - setup new channel using uplink element 8261 * @pf: ptr to PF device 8262 * @vsi: the VSI being setup 8263 * @ch: ptr to channel structure 8264 * 8265 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8266 * and uplink switching element 8267 */ 8268 static bool 8269 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8270 struct ice_channel *ch) 8271 { 8272 struct device *dev = ice_pf_to_dev(pf); 8273 u16 sw_id; 8274 int ret; 8275 8276 if (vsi->type != ICE_VSI_PF) { 8277 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8278 return false; 8279 } 8280 8281 sw_id = pf->first_sw->sw_id; 8282 8283 /* create channel (VSI) */ 8284 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8285 if (ret) { 8286 dev_err(dev, "failed to setup hw_channel\n"); 8287 return false; 8288 } 8289 dev_dbg(dev, "successfully created channel()\n"); 8290 8291 return ch->ch_vsi ? true : false; 8292 } 8293 8294 /** 8295 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8296 * @vsi: VSI to be configured 8297 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8298 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8299 */ 8300 static int 8301 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8302 { 8303 int err; 8304 8305 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8306 if (err) 8307 return err; 8308 8309 return ice_set_max_bw_limit(vsi, max_tx_rate); 8310 } 8311 8312 /** 8313 * ice_create_q_channel - function to create channel 8314 * @vsi: VSI to be configured 8315 * @ch: ptr to channel (it contains channel specific params) 8316 * 8317 * This function creates channel (VSI) using num_queues specified by user, 8318 * reconfigs RSS if needed. 8319 */ 8320 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8321 { 8322 struct ice_pf *pf = vsi->back; 8323 struct device *dev; 8324 8325 if (!ch) 8326 return -EINVAL; 8327 8328 dev = ice_pf_to_dev(pf); 8329 if (!ch->num_txq || !ch->num_rxq) { 8330 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8331 return -EINVAL; 8332 } 8333 8334 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8335 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8336 vsi->cnt_q_avail, ch->num_txq); 8337 return -EINVAL; 8338 } 8339 8340 if (!ice_setup_channel(pf, vsi, ch)) { 8341 dev_info(dev, "Failed to setup channel\n"); 8342 return -EINVAL; 8343 } 8344 /* configure BW rate limit */ 8345 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8346 int ret; 8347 8348 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8349 ch->min_tx_rate); 8350 if (ret) 8351 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8352 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8353 else 8354 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8355 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8356 } 8357 8358 vsi->cnt_q_avail -= ch->num_txq; 8359 8360 return 0; 8361 } 8362 8363 /** 8364 * ice_rem_all_chnl_fltrs - removes all channel filters 8365 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8366 * 8367 * Remove all advanced switch filters only if they are channel specific 8368 * tc-flower based filter 8369 */ 8370 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8371 { 8372 struct ice_tc_flower_fltr *fltr; 8373 struct hlist_node *node; 8374 8375 /* to remove all channel filters, iterate an ordered list of filters */ 8376 hlist_for_each_entry_safe(fltr, node, 8377 &pf->tc_flower_fltr_list, 8378 tc_flower_node) { 8379 struct ice_rule_query_data rule; 8380 int status; 8381 8382 /* for now process only channel specific filters */ 8383 if (!ice_is_chnl_fltr(fltr)) 8384 continue; 8385 8386 rule.rid = fltr->rid; 8387 rule.rule_id = fltr->rule_id; 8388 rule.vsi_handle = fltr->dest_vsi_handle; 8389 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8390 if (status) { 8391 if (status == -ENOENT) 8392 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8393 rule.rule_id); 8394 else 8395 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8396 status); 8397 } else if (fltr->dest_vsi) { 8398 /* update advanced switch filter count */ 8399 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8400 u32 flags = fltr->flags; 8401 8402 fltr->dest_vsi->num_chnl_fltr--; 8403 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8404 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8405 pf->num_dmac_chnl_fltrs--; 8406 } 8407 } 8408 8409 hlist_del(&fltr->tc_flower_node); 8410 kfree(fltr); 8411 } 8412 } 8413 8414 /** 8415 * ice_remove_q_channels - Remove queue channels for the TCs 8416 * @vsi: VSI to be configured 8417 * @rem_fltr: delete advanced switch filter or not 8418 * 8419 * Remove queue channels for the TCs 8420 */ 8421 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8422 { 8423 struct ice_channel *ch, *ch_tmp; 8424 struct ice_pf *pf = vsi->back; 8425 int i; 8426 8427 /* remove all tc-flower based filter if they are channel filters only */ 8428 if (rem_fltr) 8429 ice_rem_all_chnl_fltrs(pf); 8430 8431 /* remove ntuple filters since queue configuration is being changed */ 8432 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8433 struct ice_hw *hw = &pf->hw; 8434 8435 mutex_lock(&hw->fdir_fltr_lock); 8436 ice_fdir_del_all_fltrs(vsi); 8437 mutex_unlock(&hw->fdir_fltr_lock); 8438 } 8439 8440 /* perform cleanup for channels if they exist */ 8441 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8442 struct ice_vsi *ch_vsi; 8443 8444 list_del(&ch->list); 8445 ch_vsi = ch->ch_vsi; 8446 if (!ch_vsi) { 8447 kfree(ch); 8448 continue; 8449 } 8450 8451 /* Reset queue contexts */ 8452 for (i = 0; i < ch->num_rxq; i++) { 8453 struct ice_tx_ring *tx_ring; 8454 struct ice_rx_ring *rx_ring; 8455 8456 tx_ring = vsi->tx_rings[ch->base_q + i]; 8457 rx_ring = vsi->rx_rings[ch->base_q + i]; 8458 if (tx_ring) { 8459 tx_ring->ch = NULL; 8460 if (tx_ring->q_vector) 8461 tx_ring->q_vector->ch = NULL; 8462 } 8463 if (rx_ring) { 8464 rx_ring->ch = NULL; 8465 if (rx_ring->q_vector) 8466 rx_ring->q_vector->ch = NULL; 8467 } 8468 } 8469 8470 /* Release FD resources for the channel VSI */ 8471 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8472 8473 /* clear the VSI from scheduler tree */ 8474 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8475 8476 /* Delete VSI from FW, PF and HW VSI arrays */ 8477 ice_vsi_delete(ch->ch_vsi); 8478 8479 /* free the channel */ 8480 kfree(ch); 8481 } 8482 8483 /* clear the channel VSI map which is stored in main VSI */ 8484 ice_for_each_chnl_tc(i) 8485 vsi->tc_map_vsi[i] = NULL; 8486 8487 /* reset main VSI's all TC information */ 8488 vsi->all_enatc = 0; 8489 vsi->all_numtc = 0; 8490 } 8491 8492 /** 8493 * ice_rebuild_channels - rebuild channel 8494 * @pf: ptr to PF 8495 * 8496 * Recreate channel VSIs and replay filters 8497 */ 8498 static int ice_rebuild_channels(struct ice_pf *pf) 8499 { 8500 struct device *dev = ice_pf_to_dev(pf); 8501 struct ice_vsi *main_vsi; 8502 bool rem_adv_fltr = true; 8503 struct ice_channel *ch; 8504 struct ice_vsi *vsi; 8505 int tc_idx = 1; 8506 int i, err; 8507 8508 main_vsi = ice_get_main_vsi(pf); 8509 if (!main_vsi) 8510 return 0; 8511 8512 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8513 main_vsi->old_numtc == 1) 8514 return 0; /* nothing to be done */ 8515 8516 /* reconfigure main VSI based on old value of TC and cached values 8517 * for MQPRIO opts 8518 */ 8519 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8520 if (err) { 8521 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8522 main_vsi->old_ena_tc, main_vsi->vsi_num); 8523 return err; 8524 } 8525 8526 /* rebuild ADQ VSIs */ 8527 ice_for_each_vsi(pf, i) { 8528 enum ice_vsi_type type; 8529 8530 vsi = pf->vsi[i]; 8531 if (!vsi || vsi->type != ICE_VSI_CHNL) 8532 continue; 8533 8534 type = vsi->type; 8535 8536 /* rebuild ADQ VSI */ 8537 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8538 if (err) { 8539 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8540 ice_vsi_type_str(type), vsi->idx, err); 8541 goto cleanup; 8542 } 8543 8544 /* Re-map HW VSI number, using VSI handle that has been 8545 * previously validated in ice_replay_vsi() call above 8546 */ 8547 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8548 8549 /* replay filters for the VSI */ 8550 err = ice_replay_vsi(&pf->hw, vsi->idx); 8551 if (err) { 8552 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8553 ice_vsi_type_str(type), err, vsi->idx); 8554 rem_adv_fltr = false; 8555 goto cleanup; 8556 } 8557 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8558 ice_vsi_type_str(type), vsi->idx); 8559 8560 /* store ADQ VSI at correct TC index in main VSI's 8561 * map of TC to VSI 8562 */ 8563 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8564 } 8565 8566 /* ADQ VSI(s) has been rebuilt successfully, so setup 8567 * channel for main VSI's Tx and Rx rings 8568 */ 8569 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8570 struct ice_vsi *ch_vsi; 8571 8572 ch_vsi = ch->ch_vsi; 8573 if (!ch_vsi) 8574 continue; 8575 8576 /* reconfig channel resources */ 8577 ice_cfg_chnl_all_res(main_vsi, ch); 8578 8579 /* replay BW rate limit if it is non-zero */ 8580 if (!ch->max_tx_rate && !ch->min_tx_rate) 8581 continue; 8582 8583 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8584 ch->min_tx_rate); 8585 if (err) 8586 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8587 err, ch->max_tx_rate, ch->min_tx_rate, 8588 ch_vsi->vsi_num); 8589 else 8590 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8591 ch->max_tx_rate, ch->min_tx_rate, 8592 ch_vsi->vsi_num); 8593 } 8594 8595 /* reconfig RSS for main VSI */ 8596 if (main_vsi->ch_rss_size) 8597 ice_vsi_cfg_rss_lut_key(main_vsi); 8598 8599 return 0; 8600 8601 cleanup: 8602 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8603 return err; 8604 } 8605 8606 /** 8607 * ice_create_q_channels - Add queue channel for the given TCs 8608 * @vsi: VSI to be configured 8609 * 8610 * Configures queue channel mapping to the given TCs 8611 */ 8612 static int ice_create_q_channels(struct ice_vsi *vsi) 8613 { 8614 struct ice_pf *pf = vsi->back; 8615 struct ice_channel *ch; 8616 int ret = 0, i; 8617 8618 ice_for_each_chnl_tc(i) { 8619 if (!(vsi->all_enatc & BIT(i))) 8620 continue; 8621 8622 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8623 if (!ch) { 8624 ret = -ENOMEM; 8625 goto err_free; 8626 } 8627 INIT_LIST_HEAD(&ch->list); 8628 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8629 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8630 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8631 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8632 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8633 8634 /* convert to Kbits/s */ 8635 if (ch->max_tx_rate) 8636 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8637 ICE_BW_KBPS_DIVISOR); 8638 if (ch->min_tx_rate) 8639 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8640 ICE_BW_KBPS_DIVISOR); 8641 8642 ret = ice_create_q_channel(vsi, ch); 8643 if (ret) { 8644 dev_err(ice_pf_to_dev(pf), 8645 "failed creating channel TC:%d\n", i); 8646 kfree(ch); 8647 goto err_free; 8648 } 8649 list_add_tail(&ch->list, &vsi->ch_list); 8650 vsi->tc_map_vsi[i] = ch->ch_vsi; 8651 dev_dbg(ice_pf_to_dev(pf), 8652 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8653 } 8654 return 0; 8655 8656 err_free: 8657 ice_remove_q_channels(vsi, false); 8658 8659 return ret; 8660 } 8661 8662 /** 8663 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8664 * @netdev: net device to configure 8665 * @type_data: TC offload data 8666 */ 8667 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8668 { 8669 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8670 struct ice_netdev_priv *np = netdev_priv(netdev); 8671 struct ice_vsi *vsi = np->vsi; 8672 struct ice_pf *pf = vsi->back; 8673 u16 mode, ena_tc_qdisc = 0; 8674 int cur_txq, cur_rxq; 8675 u8 hw = 0, num_tcf; 8676 struct device *dev; 8677 int ret, i; 8678 8679 dev = ice_pf_to_dev(pf); 8680 num_tcf = mqprio_qopt->qopt.num_tc; 8681 hw = mqprio_qopt->qopt.hw; 8682 mode = mqprio_qopt->mode; 8683 if (!hw) { 8684 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8685 vsi->ch_rss_size = 0; 8686 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8687 goto config_tcf; 8688 } 8689 8690 /* Generate queue region map for number of TCF requested */ 8691 for (i = 0; i < num_tcf; i++) 8692 ena_tc_qdisc |= BIT(i); 8693 8694 switch (mode) { 8695 case TC_MQPRIO_MODE_CHANNEL: 8696 8697 if (pf->hw.port_info->is_custom_tx_enabled) { 8698 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8699 return -EBUSY; 8700 } 8701 ice_tear_down_devlink_rate_tree(pf); 8702 8703 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8704 if (ret) { 8705 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8706 ret); 8707 return ret; 8708 } 8709 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8710 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8711 /* don't assume state of hw_tc_offload during driver load 8712 * and set the flag for TC flower filter if hw_tc_offload 8713 * already ON 8714 */ 8715 if (vsi->netdev->features & NETIF_F_HW_TC) 8716 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8717 break; 8718 default: 8719 return -EINVAL; 8720 } 8721 8722 config_tcf: 8723 8724 /* Requesting same TCF configuration as already enabled */ 8725 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8726 mode != TC_MQPRIO_MODE_CHANNEL) 8727 return 0; 8728 8729 /* Pause VSI queues */ 8730 ice_dis_vsi(vsi, true); 8731 8732 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8733 ice_remove_q_channels(vsi, true); 8734 8735 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8736 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8737 num_online_cpus()); 8738 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8739 num_online_cpus()); 8740 } else { 8741 /* logic to rebuild VSI, same like ethtool -L */ 8742 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8743 8744 for (i = 0; i < num_tcf; i++) { 8745 if (!(ena_tc_qdisc & BIT(i))) 8746 continue; 8747 8748 offset = vsi->mqprio_qopt.qopt.offset[i]; 8749 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8750 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8751 } 8752 vsi->req_txq = offset + qcount_tx; 8753 vsi->req_rxq = offset + qcount_rx; 8754 8755 /* store away original rss_size info, so that it gets reused 8756 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8757 * determine, what should be the rss_sizefor main VSI 8758 */ 8759 vsi->orig_rss_size = vsi->rss_size; 8760 } 8761 8762 /* save current values of Tx and Rx queues before calling VSI rebuild 8763 * for fallback option 8764 */ 8765 cur_txq = vsi->num_txq; 8766 cur_rxq = vsi->num_rxq; 8767 8768 /* proceed with rebuild main VSI using correct number of queues */ 8769 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8770 if (ret) { 8771 /* fallback to current number of queues */ 8772 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8773 vsi->req_txq = cur_txq; 8774 vsi->req_rxq = cur_rxq; 8775 clear_bit(ICE_RESET_FAILED, pf->state); 8776 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8777 dev_err(dev, "Rebuild of main VSI failed again\n"); 8778 return ret; 8779 } 8780 } 8781 8782 vsi->all_numtc = num_tcf; 8783 vsi->all_enatc = ena_tc_qdisc; 8784 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8785 if (ret) { 8786 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8787 vsi->vsi_num); 8788 goto exit; 8789 } 8790 8791 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8792 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8793 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8794 8795 /* set TC0 rate limit if specified */ 8796 if (max_tx_rate || min_tx_rate) { 8797 /* convert to Kbits/s */ 8798 if (max_tx_rate) 8799 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8800 if (min_tx_rate) 8801 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8802 8803 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8804 if (!ret) { 8805 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8806 max_tx_rate, min_tx_rate, vsi->vsi_num); 8807 } else { 8808 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8809 max_tx_rate, min_tx_rate, vsi->vsi_num); 8810 goto exit; 8811 } 8812 } 8813 ret = ice_create_q_channels(vsi); 8814 if (ret) { 8815 netdev_err(netdev, "failed configuring queue channels\n"); 8816 goto exit; 8817 } else { 8818 netdev_dbg(netdev, "successfully configured channels\n"); 8819 } 8820 } 8821 8822 if (vsi->ch_rss_size) 8823 ice_vsi_cfg_rss_lut_key(vsi); 8824 8825 exit: 8826 /* if error, reset the all_numtc and all_enatc */ 8827 if (ret) { 8828 vsi->all_numtc = 0; 8829 vsi->all_enatc = 0; 8830 } 8831 /* resume VSI */ 8832 ice_ena_vsi(vsi, true); 8833 8834 return ret; 8835 } 8836 8837 static LIST_HEAD(ice_block_cb_list); 8838 8839 static int 8840 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8841 void *type_data) 8842 { 8843 struct ice_netdev_priv *np = netdev_priv(netdev); 8844 struct ice_pf *pf = np->vsi->back; 8845 int err; 8846 8847 switch (type) { 8848 case TC_SETUP_BLOCK: 8849 return flow_block_cb_setup_simple(type_data, 8850 &ice_block_cb_list, 8851 ice_setup_tc_block_cb, 8852 np, np, true); 8853 case TC_SETUP_QDISC_MQPRIO: 8854 /* setup traffic classifier for receive side */ 8855 mutex_lock(&pf->tc_mutex); 8856 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8857 mutex_unlock(&pf->tc_mutex); 8858 return err; 8859 default: 8860 return -EOPNOTSUPP; 8861 } 8862 return -EOPNOTSUPP; 8863 } 8864 8865 static struct ice_indr_block_priv * 8866 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8867 struct net_device *netdev) 8868 { 8869 struct ice_indr_block_priv *cb_priv; 8870 8871 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8872 if (!cb_priv->netdev) 8873 return NULL; 8874 if (cb_priv->netdev == netdev) 8875 return cb_priv; 8876 } 8877 return NULL; 8878 } 8879 8880 static int 8881 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8882 void *indr_priv) 8883 { 8884 struct ice_indr_block_priv *priv = indr_priv; 8885 struct ice_netdev_priv *np = priv->np; 8886 8887 switch (type) { 8888 case TC_SETUP_CLSFLOWER: 8889 return ice_setup_tc_cls_flower(np, priv->netdev, 8890 (struct flow_cls_offload *) 8891 type_data); 8892 default: 8893 return -EOPNOTSUPP; 8894 } 8895 } 8896 8897 static int 8898 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8899 struct ice_netdev_priv *np, 8900 struct flow_block_offload *f, void *data, 8901 void (*cleanup)(struct flow_block_cb *block_cb)) 8902 { 8903 struct ice_indr_block_priv *indr_priv; 8904 struct flow_block_cb *block_cb; 8905 8906 if (!ice_is_tunnel_supported(netdev) && 8907 !(is_vlan_dev(netdev) && 8908 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8909 return -EOPNOTSUPP; 8910 8911 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8912 return -EOPNOTSUPP; 8913 8914 switch (f->command) { 8915 case FLOW_BLOCK_BIND: 8916 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8917 if (indr_priv) 8918 return -EEXIST; 8919 8920 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8921 if (!indr_priv) 8922 return -ENOMEM; 8923 8924 indr_priv->netdev = netdev; 8925 indr_priv->np = np; 8926 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8927 8928 block_cb = 8929 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8930 indr_priv, indr_priv, 8931 ice_rep_indr_tc_block_unbind, 8932 f, netdev, sch, data, np, 8933 cleanup); 8934 8935 if (IS_ERR(block_cb)) { 8936 list_del(&indr_priv->list); 8937 kfree(indr_priv); 8938 return PTR_ERR(block_cb); 8939 } 8940 flow_block_cb_add(block_cb, f); 8941 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8942 break; 8943 case FLOW_BLOCK_UNBIND: 8944 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8945 if (!indr_priv) 8946 return -ENOENT; 8947 8948 block_cb = flow_block_cb_lookup(f->block, 8949 ice_indr_setup_block_cb, 8950 indr_priv); 8951 if (!block_cb) 8952 return -ENOENT; 8953 8954 flow_indr_block_cb_remove(block_cb, f); 8955 8956 list_del(&block_cb->driver_list); 8957 break; 8958 default: 8959 return -EOPNOTSUPP; 8960 } 8961 return 0; 8962 } 8963 8964 static int 8965 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8966 void *cb_priv, enum tc_setup_type type, void *type_data, 8967 void *data, 8968 void (*cleanup)(struct flow_block_cb *block_cb)) 8969 { 8970 switch (type) { 8971 case TC_SETUP_BLOCK: 8972 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8973 data, cleanup); 8974 8975 default: 8976 return -EOPNOTSUPP; 8977 } 8978 } 8979 8980 /** 8981 * ice_open - Called when a network interface becomes active 8982 * @netdev: network interface device structure 8983 * 8984 * The open entry point is called when a network interface is made 8985 * active by the system (IFF_UP). At this point all resources needed 8986 * for transmit and receive operations are allocated, the interrupt 8987 * handler is registered with the OS, the netdev watchdog is enabled, 8988 * and the stack is notified that the interface is ready. 8989 * 8990 * Returns 0 on success, negative value on failure 8991 */ 8992 int ice_open(struct net_device *netdev) 8993 { 8994 struct ice_netdev_priv *np = netdev_priv(netdev); 8995 struct ice_pf *pf = np->vsi->back; 8996 8997 if (ice_is_reset_in_progress(pf->state)) { 8998 netdev_err(netdev, "can't open net device while reset is in progress"); 8999 return -EBUSY; 9000 } 9001 9002 return ice_open_internal(netdev); 9003 } 9004 9005 /** 9006 * ice_open_internal - Called when a network interface becomes active 9007 * @netdev: network interface device structure 9008 * 9009 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9010 * handling routine 9011 * 9012 * Returns 0 on success, negative value on failure 9013 */ 9014 int ice_open_internal(struct net_device *netdev) 9015 { 9016 struct ice_netdev_priv *np = netdev_priv(netdev); 9017 struct ice_vsi *vsi = np->vsi; 9018 struct ice_pf *pf = vsi->back; 9019 struct ice_port_info *pi; 9020 int err; 9021 9022 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9023 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9024 return -EIO; 9025 } 9026 9027 netif_carrier_off(netdev); 9028 9029 pi = vsi->port_info; 9030 err = ice_update_link_info(pi); 9031 if (err) { 9032 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9033 return err; 9034 } 9035 9036 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9037 9038 /* Set PHY if there is media, otherwise, turn off PHY */ 9039 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9040 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9041 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9042 err = ice_init_phy_user_cfg(pi); 9043 if (err) { 9044 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9045 err); 9046 return err; 9047 } 9048 } 9049 9050 err = ice_configure_phy(vsi); 9051 if (err) { 9052 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9053 err); 9054 return err; 9055 } 9056 } else { 9057 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9058 ice_set_link(vsi, false); 9059 } 9060 9061 err = ice_vsi_open(vsi); 9062 if (err) 9063 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9064 vsi->vsi_num, vsi->vsw->sw_id); 9065 9066 /* Update existing tunnels information */ 9067 udp_tunnel_get_rx_info(netdev); 9068 9069 return err; 9070 } 9071 9072 /** 9073 * ice_stop - Disables a network interface 9074 * @netdev: network interface device structure 9075 * 9076 * The stop entry point is called when an interface is de-activated by the OS, 9077 * and the netdevice enters the DOWN state. The hardware is still under the 9078 * driver's control, but the netdev interface is disabled. 9079 * 9080 * Returns success only - not allowed to fail 9081 */ 9082 int ice_stop(struct net_device *netdev) 9083 { 9084 struct ice_netdev_priv *np = netdev_priv(netdev); 9085 struct ice_vsi *vsi = np->vsi; 9086 struct ice_pf *pf = vsi->back; 9087 9088 if (ice_is_reset_in_progress(pf->state)) { 9089 netdev_err(netdev, "can't stop net device while reset is in progress"); 9090 return -EBUSY; 9091 } 9092 9093 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9094 int link_err = ice_force_phys_link_state(vsi, false); 9095 9096 if (link_err) { 9097 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9098 vsi->vsi_num, link_err); 9099 return -EIO; 9100 } 9101 } 9102 9103 ice_vsi_close(vsi); 9104 9105 return 0; 9106 } 9107 9108 /** 9109 * ice_features_check - Validate encapsulated packet conforms to limits 9110 * @skb: skb buffer 9111 * @netdev: This port's netdev 9112 * @features: Offload features that the stack believes apply 9113 */ 9114 static netdev_features_t 9115 ice_features_check(struct sk_buff *skb, 9116 struct net_device __always_unused *netdev, 9117 netdev_features_t features) 9118 { 9119 bool gso = skb_is_gso(skb); 9120 size_t len; 9121 9122 /* No point in doing any of this if neither checksum nor GSO are 9123 * being requested for this frame. We can rule out both by just 9124 * checking for CHECKSUM_PARTIAL 9125 */ 9126 if (skb->ip_summed != CHECKSUM_PARTIAL) 9127 return features; 9128 9129 /* We cannot support GSO if the MSS is going to be less than 9130 * 64 bytes. If it is then we need to drop support for GSO. 9131 */ 9132 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9133 features &= ~NETIF_F_GSO_MASK; 9134 9135 len = skb_network_offset(skb); 9136 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9137 goto out_rm_features; 9138 9139 len = skb_network_header_len(skb); 9140 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9141 goto out_rm_features; 9142 9143 if (skb->encapsulation) { 9144 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9145 * the case of IPIP frames, the transport header pointer is 9146 * after the inner header! So check to make sure that this 9147 * is a GRE or UDP_TUNNEL frame before doing that math. 9148 */ 9149 if (gso && (skb_shinfo(skb)->gso_type & 9150 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9151 len = skb_inner_network_header(skb) - 9152 skb_transport_header(skb); 9153 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9154 goto out_rm_features; 9155 } 9156 9157 len = skb_inner_network_header_len(skb); 9158 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9159 goto out_rm_features; 9160 } 9161 9162 return features; 9163 out_rm_features: 9164 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9165 } 9166 9167 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9168 .ndo_open = ice_open, 9169 .ndo_stop = ice_stop, 9170 .ndo_start_xmit = ice_start_xmit, 9171 .ndo_set_mac_address = ice_set_mac_address, 9172 .ndo_validate_addr = eth_validate_addr, 9173 .ndo_change_mtu = ice_change_mtu, 9174 .ndo_get_stats64 = ice_get_stats64, 9175 .ndo_tx_timeout = ice_tx_timeout, 9176 .ndo_bpf = ice_xdp_safe_mode, 9177 }; 9178 9179 static const struct net_device_ops ice_netdev_ops = { 9180 .ndo_open = ice_open, 9181 .ndo_stop = ice_stop, 9182 .ndo_start_xmit = ice_start_xmit, 9183 .ndo_select_queue = ice_select_queue, 9184 .ndo_features_check = ice_features_check, 9185 .ndo_fix_features = ice_fix_features, 9186 .ndo_set_rx_mode = ice_set_rx_mode, 9187 .ndo_set_mac_address = ice_set_mac_address, 9188 .ndo_validate_addr = eth_validate_addr, 9189 .ndo_change_mtu = ice_change_mtu, 9190 .ndo_get_stats64 = ice_get_stats64, 9191 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9192 .ndo_eth_ioctl = ice_eth_ioctl, 9193 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9194 .ndo_set_vf_mac = ice_set_vf_mac, 9195 .ndo_get_vf_config = ice_get_vf_cfg, 9196 .ndo_set_vf_trust = ice_set_vf_trust, 9197 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9198 .ndo_set_vf_link_state = ice_set_vf_link_state, 9199 .ndo_get_vf_stats = ice_get_vf_stats, 9200 .ndo_set_vf_rate = ice_set_vf_bw, 9201 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9202 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9203 .ndo_setup_tc = ice_setup_tc, 9204 .ndo_set_features = ice_set_features, 9205 .ndo_bridge_getlink = ice_bridge_getlink, 9206 .ndo_bridge_setlink = ice_bridge_setlink, 9207 .ndo_fdb_add = ice_fdb_add, 9208 .ndo_fdb_del = ice_fdb_del, 9209 #ifdef CONFIG_RFS_ACCEL 9210 .ndo_rx_flow_steer = ice_rx_flow_steer, 9211 #endif 9212 .ndo_tx_timeout = ice_tx_timeout, 9213 .ndo_bpf = ice_xdp, 9214 .ndo_xdp_xmit = ice_xdp_xmit, 9215 .ndo_xsk_wakeup = ice_xsk_wakeup, 9216 }; 9217