1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 
271 	return status;
272 }
273 
274 /**
275  * ice_clear_promisc - Disable promiscuous mode for a given PF
276  * @vsi: the VSI being configured
277  * @promisc_m: mask of promiscuous config bits
278  *
279  */
280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
281 {
282 	int status;
283 
284 	if (vsi->type != ICE_VSI_PF)
285 		return 0;
286 
287 	if (ice_vsi_has_non_zero_vlans(vsi)) {
288 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
289 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
290 							 promisc_m);
291 	} else {
292 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
293 						    promisc_m, 0);
294 	}
295 
296 	return status;
297 }
298 
299 /**
300  * ice_get_devlink_port - Get devlink port from netdev
301  * @netdev: the netdevice structure
302  */
303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
304 {
305 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
306 
307 	if (!ice_is_switchdev_running(pf))
308 		return NULL;
309 
310 	return &pf->devlink_port;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
414 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 			}
425 		} else {
426 			/* Clear Rx filter to remove traffic from wire */
427 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
428 				err = ice_clear_dflt_vsi(pf->first_sw);
429 				if (err) {
430 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
431 						   err, vsi->vsi_num);
432 					vsi->current_netdev_flags |=
433 						IFF_PROMISC;
434 					goto out_promisc;
435 				}
436 				if (vsi->current_netdev_flags &
437 				    NETIF_F_HW_VLAN_CTAG_FILTER)
438 					vlan_ops->ena_rx_filtering(vsi);
439 			}
440 		}
441 	}
442 	goto exit;
443 
444 out_promisc:
445 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
446 	goto exit;
447 out:
448 	/* if something went wrong then set the changed flag so we try again */
449 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
450 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
451 exit:
452 	clear_bit(ICE_CFG_BUSY, vsi->state);
453 	return err;
454 }
455 
456 /**
457  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
458  * @pf: board private structure
459  */
460 static void ice_sync_fltr_subtask(struct ice_pf *pf)
461 {
462 	int v;
463 
464 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
465 		return;
466 
467 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
468 
469 	ice_for_each_vsi(pf, v)
470 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
471 		    ice_vsi_sync_fltr(pf->vsi[v])) {
472 			/* come back and try again later */
473 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
474 			break;
475 		}
476 }
477 
478 /**
479  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
480  * @pf: the PF
481  * @locked: is the rtnl_lock already held
482  */
483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
484 {
485 	int node;
486 	int v;
487 
488 	ice_for_each_vsi(pf, v)
489 		if (pf->vsi[v])
490 			ice_dis_vsi(pf->vsi[v], locked);
491 
492 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
493 		pf->pf_agg_node[node].num_vsis = 0;
494 
495 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
496 		pf->vf_agg_node[node].num_vsis = 0;
497 }
498 
499 /**
500  * ice_clear_sw_switch_recipes - clear switch recipes
501  * @pf: board private structure
502  *
503  * Mark switch recipes as not created in sw structures. There are cases where
504  * rules (especially advanced rules) need to be restored, either re-read from
505  * hardware or added again. For example after the reset. 'recp_created' flag
506  * prevents from doing that and need to be cleared upfront.
507  */
508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
509 {
510 	struct ice_sw_recipe *recp;
511 	u8 i;
512 
513 	recp = pf->hw.switch_info->recp_list;
514 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
515 		recp[i].recp_created = false;
516 }
517 
518 /**
519  * ice_prepare_for_reset - prep for reset
520  * @pf: board private structure
521  * @reset_type: reset type requested
522  *
523  * Inform or close all dependent features in prep for reset.
524  */
525 static void
526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
527 {
528 	struct ice_hw *hw = &pf->hw;
529 	struct ice_vsi *vsi;
530 	struct ice_vf *vf;
531 	unsigned int bkt;
532 
533 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
534 
535 	/* already prepared for reset */
536 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
537 		return;
538 
539 	ice_unplug_aux_dev(pf);
540 
541 	/* Notify VFs of impending reset */
542 	if (ice_check_sq_alive(hw, &hw->mailboxq))
543 		ice_vc_notify_reset(pf);
544 
545 	/* Disable VFs until reset is completed */
546 	mutex_lock(&pf->vfs.table_lock);
547 	ice_for_each_vf(pf, bkt, vf)
548 		ice_set_vf_state_qs_dis(vf);
549 	mutex_unlock(&pf->vfs.table_lock);
550 
551 	if (ice_is_eswitch_mode_switchdev(pf)) {
552 		if (reset_type != ICE_RESET_PFR)
553 			ice_clear_sw_switch_recipes(pf);
554 	}
555 
556 	/* release ADQ specific HW and SW resources */
557 	vsi = ice_get_main_vsi(pf);
558 	if (!vsi)
559 		goto skip;
560 
561 	/* to be on safe side, reset orig_rss_size so that normal flow
562 	 * of deciding rss_size can take precedence
563 	 */
564 	vsi->orig_rss_size = 0;
565 
566 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
567 		if (reset_type == ICE_RESET_PFR) {
568 			vsi->old_ena_tc = vsi->all_enatc;
569 			vsi->old_numtc = vsi->all_numtc;
570 		} else {
571 			ice_remove_q_channels(vsi, true);
572 
573 			/* for other reset type, do not support channel rebuild
574 			 * hence reset needed info
575 			 */
576 			vsi->old_ena_tc = 0;
577 			vsi->all_enatc = 0;
578 			vsi->old_numtc = 0;
579 			vsi->all_numtc = 0;
580 			vsi->req_txq = 0;
581 			vsi->req_rxq = 0;
582 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
583 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
584 		}
585 	}
586 skip:
587 
588 	/* clear SW filtering DB */
589 	ice_clear_hw_tbls(hw);
590 	/* disable the VSIs and their queues that are not already DOWN */
591 	ice_pf_dis_all_vsi(pf, false);
592 
593 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
594 		ice_ptp_prepare_for_reset(pf);
595 
596 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
597 		ice_gnss_exit(pf);
598 
599 	if (hw->port_info)
600 		ice_sched_clear_port(hw->port_info);
601 
602 	ice_shutdown_all_ctrlq(hw);
603 
604 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
605 }
606 
607 /**
608  * ice_do_reset - Initiate one of many types of resets
609  * @pf: board private structure
610  * @reset_type: reset type requested before this function was called.
611  */
612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
613 {
614 	struct device *dev = ice_pf_to_dev(pf);
615 	struct ice_hw *hw = &pf->hw;
616 
617 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
618 
619 	ice_prepare_for_reset(pf, reset_type);
620 
621 	/* trigger the reset */
622 	if (ice_reset(hw, reset_type)) {
623 		dev_err(dev, "reset %d failed\n", reset_type);
624 		set_bit(ICE_RESET_FAILED, pf->state);
625 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
626 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 		clear_bit(ICE_PFR_REQ, pf->state);
628 		clear_bit(ICE_CORER_REQ, pf->state);
629 		clear_bit(ICE_GLOBR_REQ, pf->state);
630 		wake_up(&pf->reset_wait_queue);
631 		return;
632 	}
633 
634 	/* PFR is a bit of a special case because it doesn't result in an OICR
635 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
636 	 * associated state bits.
637 	 */
638 	if (reset_type == ICE_RESET_PFR) {
639 		pf->pfr_count++;
640 		ice_rebuild(pf, reset_type);
641 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
642 		clear_bit(ICE_PFR_REQ, pf->state);
643 		wake_up(&pf->reset_wait_queue);
644 		ice_reset_all_vfs(pf);
645 	}
646 }
647 
648 /**
649  * ice_reset_subtask - Set up for resetting the device and driver
650  * @pf: board private structure
651  */
652 static void ice_reset_subtask(struct ice_pf *pf)
653 {
654 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
655 
656 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
657 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
658 	 * of reset is pending and sets bits in pf->state indicating the reset
659 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
660 	 * prepare for pending reset if not already (for PF software-initiated
661 	 * global resets the software should already be prepared for it as
662 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
663 	 * by firmware or software on other PFs, that bit is not set so prepare
664 	 * for the reset now), poll for reset done, rebuild and return.
665 	 */
666 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
667 		/* Perform the largest reset requested */
668 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
669 			reset_type = ICE_RESET_CORER;
670 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
671 			reset_type = ICE_RESET_GLOBR;
672 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
673 			reset_type = ICE_RESET_EMPR;
674 		/* return if no valid reset type requested */
675 		if (reset_type == ICE_RESET_INVAL)
676 			return;
677 		ice_prepare_for_reset(pf, reset_type);
678 
679 		/* make sure we are ready to rebuild */
680 		if (ice_check_reset(&pf->hw)) {
681 			set_bit(ICE_RESET_FAILED, pf->state);
682 		} else {
683 			/* done with reset. start rebuild */
684 			pf->hw.reset_ongoing = false;
685 			ice_rebuild(pf, reset_type);
686 			/* clear bit to resume normal operations, but
687 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
688 			 */
689 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
690 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
691 			clear_bit(ICE_PFR_REQ, pf->state);
692 			clear_bit(ICE_CORER_REQ, pf->state);
693 			clear_bit(ICE_GLOBR_REQ, pf->state);
694 			wake_up(&pf->reset_wait_queue);
695 			ice_reset_all_vfs(pf);
696 		}
697 
698 		return;
699 	}
700 
701 	/* No pending resets to finish processing. Check for new resets */
702 	if (test_bit(ICE_PFR_REQ, pf->state))
703 		reset_type = ICE_RESET_PFR;
704 	if (test_bit(ICE_CORER_REQ, pf->state))
705 		reset_type = ICE_RESET_CORER;
706 	if (test_bit(ICE_GLOBR_REQ, pf->state))
707 		reset_type = ICE_RESET_GLOBR;
708 	/* If no valid reset type requested just return */
709 	if (reset_type == ICE_RESET_INVAL)
710 		return;
711 
712 	/* reset if not already down or busy */
713 	if (!test_bit(ICE_DOWN, pf->state) &&
714 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
715 		ice_do_reset(pf, reset_type);
716 	}
717 }
718 
719 /**
720  * ice_print_topo_conflict - print topology conflict message
721  * @vsi: the VSI whose topology status is being checked
722  */
723 static void ice_print_topo_conflict(struct ice_vsi *vsi)
724 {
725 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
726 	case ICE_AQ_LINK_TOPO_CONFLICT:
727 	case ICE_AQ_LINK_MEDIA_CONFLICT:
728 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
729 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
730 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
731 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
732 		break;
733 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
734 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
735 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
736 		else
737 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
738 		break;
739 	default:
740 		break;
741 	}
742 }
743 
744 /**
745  * ice_print_link_msg - print link up or down message
746  * @vsi: the VSI whose link status is being queried
747  * @isup: boolean for if the link is now up or down
748  */
749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
750 {
751 	struct ice_aqc_get_phy_caps_data *caps;
752 	const char *an_advertised;
753 	const char *fec_req;
754 	const char *speed;
755 	const char *fec;
756 	const char *fc;
757 	const char *an;
758 	int status;
759 
760 	if (!vsi)
761 		return;
762 
763 	if (vsi->current_isup == isup)
764 		return;
765 
766 	vsi->current_isup = isup;
767 
768 	if (!isup) {
769 		netdev_info(vsi->netdev, "NIC Link is Down\n");
770 		return;
771 	}
772 
773 	switch (vsi->port_info->phy.link_info.link_speed) {
774 	case ICE_AQ_LINK_SPEED_100GB:
775 		speed = "100 G";
776 		break;
777 	case ICE_AQ_LINK_SPEED_50GB:
778 		speed = "50 G";
779 		break;
780 	case ICE_AQ_LINK_SPEED_40GB:
781 		speed = "40 G";
782 		break;
783 	case ICE_AQ_LINK_SPEED_25GB:
784 		speed = "25 G";
785 		break;
786 	case ICE_AQ_LINK_SPEED_20GB:
787 		speed = "20 G";
788 		break;
789 	case ICE_AQ_LINK_SPEED_10GB:
790 		speed = "10 G";
791 		break;
792 	case ICE_AQ_LINK_SPEED_5GB:
793 		speed = "5 G";
794 		break;
795 	case ICE_AQ_LINK_SPEED_2500MB:
796 		speed = "2.5 G";
797 		break;
798 	case ICE_AQ_LINK_SPEED_1000MB:
799 		speed = "1 G";
800 		break;
801 	case ICE_AQ_LINK_SPEED_100MB:
802 		speed = "100 M";
803 		break;
804 	default:
805 		speed = "Unknown ";
806 		break;
807 	}
808 
809 	switch (vsi->port_info->fc.current_mode) {
810 	case ICE_FC_FULL:
811 		fc = "Rx/Tx";
812 		break;
813 	case ICE_FC_TX_PAUSE:
814 		fc = "Tx";
815 		break;
816 	case ICE_FC_RX_PAUSE:
817 		fc = "Rx";
818 		break;
819 	case ICE_FC_NONE:
820 		fc = "None";
821 		break;
822 	default:
823 		fc = "Unknown";
824 		break;
825 	}
826 
827 	/* Get FEC mode based on negotiated link info */
828 	switch (vsi->port_info->phy.link_info.fec_info) {
829 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
830 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
831 		fec = "RS-FEC";
832 		break;
833 	case ICE_AQ_LINK_25G_KR_FEC_EN:
834 		fec = "FC-FEC/BASE-R";
835 		break;
836 	default:
837 		fec = "NONE";
838 		break;
839 	}
840 
841 	/* check if autoneg completed, might be false due to not supported */
842 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
843 		an = "True";
844 	else
845 		an = "False";
846 
847 	/* Get FEC mode requested based on PHY caps last SW configuration */
848 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
849 	if (!caps) {
850 		fec_req = "Unknown";
851 		an_advertised = "Unknown";
852 		goto done;
853 	}
854 
855 	status = ice_aq_get_phy_caps(vsi->port_info, false,
856 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
857 	if (status)
858 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
859 
860 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
861 
862 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
863 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
864 		fec_req = "RS-FEC";
865 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
866 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
867 		fec_req = "FC-FEC/BASE-R";
868 	else
869 		fec_req = "NONE";
870 
871 	kfree(caps);
872 
873 done:
874 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
875 		    speed, fec_req, fec, an_advertised, an, fc);
876 	ice_print_topo_conflict(vsi);
877 }
878 
879 /**
880  * ice_vsi_link_event - update the VSI's netdev
881  * @vsi: the VSI on which the link event occurred
882  * @link_up: whether or not the VSI needs to be set up or down
883  */
884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
885 {
886 	if (!vsi)
887 		return;
888 
889 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
890 		return;
891 
892 	if (vsi->type == ICE_VSI_PF) {
893 		if (link_up == netif_carrier_ok(vsi->netdev))
894 			return;
895 
896 		if (link_up) {
897 			netif_carrier_on(vsi->netdev);
898 			netif_tx_wake_all_queues(vsi->netdev);
899 		} else {
900 			netif_carrier_off(vsi->netdev);
901 			netif_tx_stop_all_queues(vsi->netdev);
902 		}
903 	}
904 }
905 
906 /**
907  * ice_set_dflt_mib - send a default config MIB to the FW
908  * @pf: private PF struct
909  *
910  * This function sends a default configuration MIB to the FW.
911  *
912  * If this function errors out at any point, the driver is still able to
913  * function.  The main impact is that LFC may not operate as expected.
914  * Therefore an error state in this function should be treated with a DBG
915  * message and continue on with driver rebuild/reenable.
916  */
917 static void ice_set_dflt_mib(struct ice_pf *pf)
918 {
919 	struct device *dev = ice_pf_to_dev(pf);
920 	u8 mib_type, *buf, *lldpmib = NULL;
921 	u16 len, typelen, offset = 0;
922 	struct ice_lldp_org_tlv *tlv;
923 	struct ice_hw *hw = &pf->hw;
924 	u32 ouisubtype;
925 
926 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
927 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
928 	if (!lldpmib) {
929 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
930 			__func__);
931 		return;
932 	}
933 
934 	/* Add ETS CFG TLV */
935 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
936 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
937 		   ICE_IEEE_ETS_TLV_LEN);
938 	tlv->typelen = htons(typelen);
939 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
940 		      ICE_IEEE_SUBTYPE_ETS_CFG);
941 	tlv->ouisubtype = htonl(ouisubtype);
942 
943 	buf = tlv->tlvinfo;
944 	buf[0] = 0;
945 
946 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
947 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
948 	 * Octets 13 - 20 are TSA values - leave as zeros
949 	 */
950 	buf[5] = 0x64;
951 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
952 	offset += len + 2;
953 	tlv = (struct ice_lldp_org_tlv *)
954 		((char *)tlv + sizeof(tlv->typelen) + len);
955 
956 	/* Add ETS REC TLV */
957 	buf = tlv->tlvinfo;
958 	tlv->typelen = htons(typelen);
959 
960 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
961 		      ICE_IEEE_SUBTYPE_ETS_REC);
962 	tlv->ouisubtype = htonl(ouisubtype);
963 
964 	/* First octet of buf is reserved
965 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
966 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
967 	 * Octets 13 - 20 are TSA value - leave as zeros
968 	 */
969 	buf[5] = 0x64;
970 	offset += len + 2;
971 	tlv = (struct ice_lldp_org_tlv *)
972 		((char *)tlv + sizeof(tlv->typelen) + len);
973 
974 	/* Add PFC CFG TLV */
975 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
976 		   ICE_IEEE_PFC_TLV_LEN);
977 	tlv->typelen = htons(typelen);
978 
979 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 		      ICE_IEEE_SUBTYPE_PFC_CFG);
981 	tlv->ouisubtype = htonl(ouisubtype);
982 
983 	/* Octet 1 left as all zeros - PFC disabled */
984 	buf[0] = 0x08;
985 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
986 	offset += len + 2;
987 
988 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
989 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
990 
991 	kfree(lldpmib);
992 }
993 
994 /**
995  * ice_check_phy_fw_load - check if PHY FW load failed
996  * @pf: pointer to PF struct
997  * @link_cfg_err: bitmap from the link info structure
998  *
999  * check if external PHY FW load failed and print an error message if it did
1000  */
1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1002 {
1003 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1004 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1005 		return;
1006 	}
1007 
1008 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1009 		return;
1010 
1011 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1012 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1013 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1014 	}
1015 }
1016 
1017 /**
1018  * ice_check_module_power
1019  * @pf: pointer to PF struct
1020  * @link_cfg_err: bitmap from the link info structure
1021  *
1022  * check module power level returned by a previous call to aq_get_link_info
1023  * and print error messages if module power level is not supported
1024  */
1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1026 {
1027 	/* if module power level is supported, clear the flag */
1028 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1029 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1030 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1035 	 * above block didn't clear this bit, there's nothing to do
1036 	 */
1037 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1038 		return;
1039 
1040 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1041 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1042 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1043 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1044 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1045 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_link_cfg_err - check if link configuration failed
1051  * @pf: pointer to the PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * print if any link configuration failure happens due to the value in the
1055  * link_cfg_err parameter in the link info structure
1056  */
1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	ice_check_module_power(pf, link_cfg_err);
1060 	ice_check_phy_fw_load(pf, link_cfg_err);
1061 }
1062 
1063 /**
1064  * ice_link_event - process the link event
1065  * @pf: PF that the link event is associated with
1066  * @pi: port_info for the port that the link event is associated with
1067  * @link_up: true if the physical link is up and false if it is down
1068  * @link_speed: current link speed received from the link event
1069  *
1070  * Returns 0 on success and negative on failure
1071  */
1072 static int
1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1074 	       u16 link_speed)
1075 {
1076 	struct device *dev = ice_pf_to_dev(pf);
1077 	struct ice_phy_info *phy_info;
1078 	struct ice_vsi *vsi;
1079 	u16 old_link_speed;
1080 	bool old_link;
1081 	int status;
1082 
1083 	phy_info = &pi->phy;
1084 	phy_info->link_info_old = phy_info->link_info;
1085 
1086 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1087 	old_link_speed = phy_info->link_info_old.link_speed;
1088 
1089 	/* update the link info structures and re-enable link events,
1090 	 * don't bail on failure due to other book keeping needed
1091 	 */
1092 	status = ice_update_link_info(pi);
1093 	if (status)
1094 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1095 			pi->lport, status,
1096 			ice_aq_str(pi->hw->adminq.sq_last_status));
1097 
1098 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1099 
1100 	/* Check if the link state is up after updating link info, and treat
1101 	 * this event as an UP event since the link is actually UP now.
1102 	 */
1103 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1104 		link_up = true;
1105 
1106 	vsi = ice_get_main_vsi(pf);
1107 	if (!vsi || !vsi->port_info)
1108 		return -EINVAL;
1109 
1110 	/* turn off PHY if media was removed */
1111 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1112 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1113 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1114 		ice_set_link(vsi, false);
1115 	}
1116 
1117 	/* if the old link up/down and speed is the same as the new */
1118 	if (link_up == old_link && link_speed == old_link_speed)
1119 		return 0;
1120 
1121 	if (!ice_is_e810(&pf->hw))
1122 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1123 
1124 	if (ice_is_dcb_active(pf)) {
1125 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1126 			ice_dcb_rebuild(pf);
1127 	} else {
1128 		if (link_up)
1129 			ice_set_dflt_mib(pf);
1130 	}
1131 	ice_vsi_link_event(vsi, link_up);
1132 	ice_print_link_msg(vsi, link_up);
1133 
1134 	ice_vc_notify_link_state(pf);
1135 
1136 	return 0;
1137 }
1138 
1139 /**
1140  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1141  * @pf: board private structure
1142  */
1143 static void ice_watchdog_subtask(struct ice_pf *pf)
1144 {
1145 	int i;
1146 
1147 	/* if interface is down do nothing */
1148 	if (test_bit(ICE_DOWN, pf->state) ||
1149 	    test_bit(ICE_CFG_BUSY, pf->state))
1150 		return;
1151 
1152 	/* make sure we don't do these things too often */
1153 	if (time_before(jiffies,
1154 			pf->serv_tmr_prev + pf->serv_tmr_period))
1155 		return;
1156 
1157 	pf->serv_tmr_prev = jiffies;
1158 
1159 	/* Update the stats for active netdevs so the network stack
1160 	 * can look at updated numbers whenever it cares to
1161 	 */
1162 	ice_update_pf_stats(pf);
1163 	ice_for_each_vsi(pf, i)
1164 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1165 			ice_update_vsi_stats(pf->vsi[i]);
1166 }
1167 
1168 /**
1169  * ice_init_link_events - enable/initialize link events
1170  * @pi: pointer to the port_info instance
1171  *
1172  * Returns -EIO on failure, 0 on success
1173  */
1174 static int ice_init_link_events(struct ice_port_info *pi)
1175 {
1176 	u16 mask;
1177 
1178 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1179 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1180 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1181 
1182 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1183 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1184 			pi->lport);
1185 		return -EIO;
1186 	}
1187 
1188 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1189 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1190 			pi->lport);
1191 		return -EIO;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * ice_handle_link_event - handle link event via ARQ
1199  * @pf: PF that the link event is associated with
1200  * @event: event structure containing link status info
1201  */
1202 static int
1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1204 {
1205 	struct ice_aqc_get_link_status_data *link_data;
1206 	struct ice_port_info *port_info;
1207 	int status;
1208 
1209 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1210 	port_info = pf->hw.port_info;
1211 	if (!port_info)
1212 		return -EINVAL;
1213 
1214 	status = ice_link_event(pf, port_info,
1215 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1216 				le16_to_cpu(link_data->link_speed));
1217 	if (status)
1218 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1219 			status);
1220 
1221 	return status;
1222 }
1223 
1224 enum ice_aq_task_state {
1225 	ICE_AQ_TASK_WAITING = 0,
1226 	ICE_AQ_TASK_COMPLETE,
1227 	ICE_AQ_TASK_CANCELED,
1228 };
1229 
1230 struct ice_aq_task {
1231 	struct hlist_node entry;
1232 
1233 	u16 opcode;
1234 	struct ice_rq_event_info *event;
1235 	enum ice_aq_task_state state;
1236 };
1237 
1238 /**
1239  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1240  * @pf: pointer to the PF private structure
1241  * @opcode: the opcode to wait for
1242  * @timeout: how long to wait, in jiffies
1243  * @event: storage for the event info
1244  *
1245  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1246  * current thread will be put to sleep until the specified event occurs or
1247  * until the given timeout is reached.
1248  *
1249  * To obtain only the descriptor contents, pass an event without an allocated
1250  * msg_buf. If the complete data buffer is desired, allocate the
1251  * event->msg_buf with enough space ahead of time.
1252  *
1253  * Returns: zero on success, or a negative error code on failure.
1254  */
1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1256 			  struct ice_rq_event_info *event)
1257 {
1258 	struct device *dev = ice_pf_to_dev(pf);
1259 	struct ice_aq_task *task;
1260 	unsigned long start;
1261 	long ret;
1262 	int err;
1263 
1264 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1265 	if (!task)
1266 		return -ENOMEM;
1267 
1268 	INIT_HLIST_NODE(&task->entry);
1269 	task->opcode = opcode;
1270 	task->event = event;
1271 	task->state = ICE_AQ_TASK_WAITING;
1272 
1273 	spin_lock_bh(&pf->aq_wait_lock);
1274 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1275 	spin_unlock_bh(&pf->aq_wait_lock);
1276 
1277 	start = jiffies;
1278 
1279 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1280 					       timeout);
1281 	switch (task->state) {
1282 	case ICE_AQ_TASK_WAITING:
1283 		err = ret < 0 ? ret : -ETIMEDOUT;
1284 		break;
1285 	case ICE_AQ_TASK_CANCELED:
1286 		err = ret < 0 ? ret : -ECANCELED;
1287 		break;
1288 	case ICE_AQ_TASK_COMPLETE:
1289 		err = ret < 0 ? ret : 0;
1290 		break;
1291 	default:
1292 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1293 		err = -EINVAL;
1294 		break;
1295 	}
1296 
1297 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1298 		jiffies_to_msecs(jiffies - start),
1299 		jiffies_to_msecs(timeout),
1300 		opcode);
1301 
1302 	spin_lock_bh(&pf->aq_wait_lock);
1303 	hlist_del(&task->entry);
1304 	spin_unlock_bh(&pf->aq_wait_lock);
1305 	kfree(task);
1306 
1307 	return err;
1308 }
1309 
1310 /**
1311  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1312  * @pf: pointer to the PF private structure
1313  * @opcode: the opcode of the event
1314  * @event: the event to check
1315  *
1316  * Loops over the current list of pending threads waiting for an AdminQ event.
1317  * For each matching task, copy the contents of the event into the task
1318  * structure and wake up the thread.
1319  *
1320  * If multiple threads wait for the same opcode, they will all be woken up.
1321  *
1322  * Note that event->msg_buf will only be duplicated if the event has a buffer
1323  * with enough space already allocated. Otherwise, only the descriptor and
1324  * message length will be copied.
1325  *
1326  * Returns: true if an event was found, false otherwise
1327  */
1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1329 				struct ice_rq_event_info *event)
1330 {
1331 	struct ice_aq_task *task;
1332 	bool found = false;
1333 
1334 	spin_lock_bh(&pf->aq_wait_lock);
1335 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1336 		if (task->state || task->opcode != opcode)
1337 			continue;
1338 
1339 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1340 		task->event->msg_len = event->msg_len;
1341 
1342 		/* Only copy the data buffer if a destination was set */
1343 		if (task->event->msg_buf &&
1344 		    task->event->buf_len > event->buf_len) {
1345 			memcpy(task->event->msg_buf, event->msg_buf,
1346 			       event->buf_len);
1347 			task->event->buf_len = event->buf_len;
1348 		}
1349 
1350 		task->state = ICE_AQ_TASK_COMPLETE;
1351 		found = true;
1352 	}
1353 	spin_unlock_bh(&pf->aq_wait_lock);
1354 
1355 	if (found)
1356 		wake_up(&pf->aq_wait_queue);
1357 }
1358 
1359 /**
1360  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1361  * @pf: the PF private structure
1362  *
1363  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1364  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1365  */
1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1367 {
1368 	struct ice_aq_task *task;
1369 
1370 	spin_lock_bh(&pf->aq_wait_lock);
1371 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1372 		task->state = ICE_AQ_TASK_CANCELED;
1373 	spin_unlock_bh(&pf->aq_wait_lock);
1374 
1375 	wake_up(&pf->aq_wait_queue);
1376 }
1377 
1378 /**
1379  * __ice_clean_ctrlq - helper function to clean controlq rings
1380  * @pf: ptr to struct ice_pf
1381  * @q_type: specific Control queue type
1382  */
1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1384 {
1385 	struct device *dev = ice_pf_to_dev(pf);
1386 	struct ice_rq_event_info event;
1387 	struct ice_hw *hw = &pf->hw;
1388 	struct ice_ctl_q_info *cq;
1389 	u16 pending, i = 0;
1390 	const char *qtype;
1391 	u32 oldval, val;
1392 
1393 	/* Do not clean control queue if/when PF reset fails */
1394 	if (test_bit(ICE_RESET_FAILED, pf->state))
1395 		return 0;
1396 
1397 	switch (q_type) {
1398 	case ICE_CTL_Q_ADMIN:
1399 		cq = &hw->adminq;
1400 		qtype = "Admin";
1401 		break;
1402 	case ICE_CTL_Q_SB:
1403 		cq = &hw->sbq;
1404 		qtype = "Sideband";
1405 		break;
1406 	case ICE_CTL_Q_MAILBOX:
1407 		cq = &hw->mailboxq;
1408 		qtype = "Mailbox";
1409 		/* we are going to try to detect a malicious VF, so set the
1410 		 * state to begin detection
1411 		 */
1412 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1413 		break;
1414 	default:
1415 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1416 		return 0;
1417 	}
1418 
1419 	/* check for error indications - PF_xx_AxQLEN register layout for
1420 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1421 	 */
1422 	val = rd32(hw, cq->rq.len);
1423 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1424 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1425 		oldval = val;
1426 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1427 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1428 				qtype);
1429 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1430 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1431 				qtype);
1432 		}
1433 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1434 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1435 				qtype);
1436 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1437 			 PF_FW_ARQLEN_ARQCRIT_M);
1438 		if (oldval != val)
1439 			wr32(hw, cq->rq.len, val);
1440 	}
1441 
1442 	val = rd32(hw, cq->sq.len);
1443 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1444 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1445 		oldval = val;
1446 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1447 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1448 				qtype);
1449 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1450 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1451 				qtype);
1452 		}
1453 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1454 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1455 				qtype);
1456 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1457 			 PF_FW_ATQLEN_ATQCRIT_M);
1458 		if (oldval != val)
1459 			wr32(hw, cq->sq.len, val);
1460 	}
1461 
1462 	event.buf_len = cq->rq_buf_size;
1463 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1464 	if (!event.msg_buf)
1465 		return 0;
1466 
1467 	do {
1468 		u16 opcode;
1469 		int ret;
1470 
1471 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1472 		if (ret == -EALREADY)
1473 			break;
1474 		if (ret) {
1475 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1476 				ret);
1477 			break;
1478 		}
1479 
1480 		opcode = le16_to_cpu(event.desc.opcode);
1481 
1482 		/* Notify any thread that might be waiting for this event */
1483 		ice_aq_check_events(pf, opcode, &event);
1484 
1485 		switch (opcode) {
1486 		case ice_aqc_opc_get_link_status:
1487 			if (ice_handle_link_event(pf, &event))
1488 				dev_err(dev, "Could not handle link event\n");
1489 			break;
1490 		case ice_aqc_opc_event_lan_overflow:
1491 			ice_vf_lan_overflow_event(pf, &event);
1492 			break;
1493 		case ice_mbx_opc_send_msg_to_pf:
1494 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1495 				ice_vc_process_vf_msg(pf, &event);
1496 			break;
1497 		case ice_aqc_opc_fw_logging:
1498 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1499 			break;
1500 		case ice_aqc_opc_lldp_set_mib_change:
1501 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1502 			break;
1503 		default:
1504 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1505 				qtype, opcode);
1506 			break;
1507 		}
1508 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1509 
1510 	kfree(event.msg_buf);
1511 
1512 	return pending && (i == ICE_DFLT_IRQ_WORK);
1513 }
1514 
1515 /**
1516  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1517  * @hw: pointer to hardware info
1518  * @cq: control queue information
1519  *
1520  * returns true if there are pending messages in a queue, false if there aren't
1521  */
1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1523 {
1524 	u16 ntu;
1525 
1526 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1527 	return cq->rq.next_to_clean != ntu;
1528 }
1529 
1530 /**
1531  * ice_clean_adminq_subtask - clean the AdminQ rings
1532  * @pf: board private structure
1533  */
1534 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1535 {
1536 	struct ice_hw *hw = &pf->hw;
1537 
1538 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1539 		return;
1540 
1541 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1542 		return;
1543 
1544 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1545 
1546 	/* There might be a situation where new messages arrive to a control
1547 	 * queue between processing the last message and clearing the
1548 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1549 	 * ice_ctrlq_pending) and process new messages if any.
1550 	 */
1551 	if (ice_ctrlq_pending(hw, &hw->adminq))
1552 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1553 
1554 	ice_flush(hw);
1555 }
1556 
1557 /**
1558  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1559  * @pf: board private structure
1560  */
1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1562 {
1563 	struct ice_hw *hw = &pf->hw;
1564 
1565 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1566 		return;
1567 
1568 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1569 		return;
1570 
1571 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1572 
1573 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1574 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1575 
1576 	ice_flush(hw);
1577 }
1578 
1579 /**
1580  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1581  * @pf: board private structure
1582  */
1583 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1584 {
1585 	struct ice_hw *hw = &pf->hw;
1586 
1587 	/* Nothing to do here if sideband queue is not supported */
1588 	if (!ice_is_sbq_supported(hw)) {
1589 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1590 		return;
1591 	}
1592 
1593 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1594 		return;
1595 
1596 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1597 		return;
1598 
1599 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1600 
1601 	if (ice_ctrlq_pending(hw, &hw->sbq))
1602 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1603 
1604 	ice_flush(hw);
1605 }
1606 
1607 /**
1608  * ice_service_task_schedule - schedule the service task to wake up
1609  * @pf: board private structure
1610  *
1611  * If not already scheduled, this puts the task into the work queue.
1612  */
1613 void ice_service_task_schedule(struct ice_pf *pf)
1614 {
1615 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1616 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1617 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1618 		queue_work(ice_wq, &pf->serv_task);
1619 }
1620 
1621 /**
1622  * ice_service_task_complete - finish up the service task
1623  * @pf: board private structure
1624  */
1625 static void ice_service_task_complete(struct ice_pf *pf)
1626 {
1627 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1628 
1629 	/* force memory (pf->state) to sync before next service task */
1630 	smp_mb__before_atomic();
1631 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1632 }
1633 
1634 /**
1635  * ice_service_task_stop - stop service task and cancel works
1636  * @pf: board private structure
1637  *
1638  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1639  * 1 otherwise.
1640  */
1641 static int ice_service_task_stop(struct ice_pf *pf)
1642 {
1643 	int ret;
1644 
1645 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1646 
1647 	if (pf->serv_tmr.function)
1648 		del_timer_sync(&pf->serv_tmr);
1649 	if (pf->serv_task.func)
1650 		cancel_work_sync(&pf->serv_task);
1651 
1652 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1653 	return ret;
1654 }
1655 
1656 /**
1657  * ice_service_task_restart - restart service task and schedule works
1658  * @pf: board private structure
1659  *
1660  * This function is needed for suspend and resume works (e.g WoL scenario)
1661  */
1662 static void ice_service_task_restart(struct ice_pf *pf)
1663 {
1664 	clear_bit(ICE_SERVICE_DIS, pf->state);
1665 	ice_service_task_schedule(pf);
1666 }
1667 
1668 /**
1669  * ice_service_timer - timer callback to schedule service task
1670  * @t: pointer to timer_list
1671  */
1672 static void ice_service_timer(struct timer_list *t)
1673 {
1674 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1675 
1676 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1677 	ice_service_task_schedule(pf);
1678 }
1679 
1680 /**
1681  * ice_handle_mdd_event - handle malicious driver detect event
1682  * @pf: pointer to the PF structure
1683  *
1684  * Called from service task. OICR interrupt handler indicates MDD event.
1685  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1686  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1687  * disable the queue, the PF can be configured to reset the VF using ethtool
1688  * private flag mdd-auto-reset-vf.
1689  */
1690 static void ice_handle_mdd_event(struct ice_pf *pf)
1691 {
1692 	struct device *dev = ice_pf_to_dev(pf);
1693 	struct ice_hw *hw = &pf->hw;
1694 	struct ice_vf *vf;
1695 	unsigned int bkt;
1696 	u32 reg;
1697 
1698 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1699 		/* Since the VF MDD event logging is rate limited, check if
1700 		 * there are pending MDD events.
1701 		 */
1702 		ice_print_vfs_mdd_events(pf);
1703 		return;
1704 	}
1705 
1706 	/* find what triggered an MDD event */
1707 	reg = rd32(hw, GL_MDET_TX_PQM);
1708 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1709 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1710 				GL_MDET_TX_PQM_PF_NUM_S;
1711 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1712 				GL_MDET_TX_PQM_VF_NUM_S;
1713 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1714 				GL_MDET_TX_PQM_MAL_TYPE_S;
1715 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1716 				GL_MDET_TX_PQM_QNUM_S);
1717 
1718 		if (netif_msg_tx_err(pf))
1719 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1720 				 event, queue, pf_num, vf_num);
1721 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1722 	}
1723 
1724 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1725 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1726 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1727 				GL_MDET_TX_TCLAN_PF_NUM_S;
1728 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_VF_NUM_S;
1730 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1731 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1732 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1733 				GL_MDET_TX_TCLAN_QNUM_S);
1734 
1735 		if (netif_msg_tx_err(pf))
1736 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1737 				 event, queue, pf_num, vf_num);
1738 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1739 	}
1740 
1741 	reg = rd32(hw, GL_MDET_RX);
1742 	if (reg & GL_MDET_RX_VALID_M) {
1743 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1744 				GL_MDET_RX_PF_NUM_S;
1745 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1746 				GL_MDET_RX_VF_NUM_S;
1747 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1748 				GL_MDET_RX_MAL_TYPE_S;
1749 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1750 				GL_MDET_RX_QNUM_S);
1751 
1752 		if (netif_msg_rx_err(pf))
1753 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1754 				 event, queue, pf_num, vf_num);
1755 		wr32(hw, GL_MDET_RX, 0xffffffff);
1756 	}
1757 
1758 	/* check to see if this PF caused an MDD event */
1759 	reg = rd32(hw, PF_MDET_TX_PQM);
1760 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1761 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1762 		if (netif_msg_tx_err(pf))
1763 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1764 	}
1765 
1766 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1767 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1768 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1769 		if (netif_msg_tx_err(pf))
1770 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1771 	}
1772 
1773 	reg = rd32(hw, PF_MDET_RX);
1774 	if (reg & PF_MDET_RX_VALID_M) {
1775 		wr32(hw, PF_MDET_RX, 0xFFFF);
1776 		if (netif_msg_rx_err(pf))
1777 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1778 	}
1779 
1780 	/* Check to see if one of the VFs caused an MDD event, and then
1781 	 * increment counters and set print pending
1782 	 */
1783 	mutex_lock(&pf->vfs.table_lock);
1784 	ice_for_each_vf(pf, bkt, vf) {
1785 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1786 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1787 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1788 			vf->mdd_tx_events.count++;
1789 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1790 			if (netif_msg_tx_err(pf))
1791 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1792 					 vf->vf_id);
1793 		}
1794 
1795 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1796 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1797 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1798 			vf->mdd_tx_events.count++;
1799 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1800 			if (netif_msg_tx_err(pf))
1801 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1802 					 vf->vf_id);
1803 		}
1804 
1805 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1806 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1807 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1808 			vf->mdd_tx_events.count++;
1809 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1810 			if (netif_msg_tx_err(pf))
1811 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1812 					 vf->vf_id);
1813 		}
1814 
1815 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1816 		if (reg & VP_MDET_RX_VALID_M) {
1817 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1818 			vf->mdd_rx_events.count++;
1819 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1820 			if (netif_msg_rx_err(pf))
1821 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1822 					 vf->vf_id);
1823 
1824 			/* Since the queue is disabled on VF Rx MDD events, the
1825 			 * PF can be configured to reset the VF through ethtool
1826 			 * private flag mdd-auto-reset-vf.
1827 			 */
1828 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1829 				/* VF MDD event counters will be cleared by
1830 				 * reset, so print the event prior to reset.
1831 				 */
1832 				ice_print_vf_rx_mdd_event(vf);
1833 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1834 			}
1835 		}
1836 	}
1837 	mutex_unlock(&pf->vfs.table_lock);
1838 
1839 	ice_print_vfs_mdd_events(pf);
1840 }
1841 
1842 /**
1843  * ice_force_phys_link_state - Force the physical link state
1844  * @vsi: VSI to force the physical link state to up/down
1845  * @link_up: true/false indicates to set the physical link to up/down
1846  *
1847  * Force the physical link state by getting the current PHY capabilities from
1848  * hardware and setting the PHY config based on the determined capabilities. If
1849  * link changes a link event will be triggered because both the Enable Automatic
1850  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1851  *
1852  * Returns 0 on success, negative on failure
1853  */
1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1855 {
1856 	struct ice_aqc_get_phy_caps_data *pcaps;
1857 	struct ice_aqc_set_phy_cfg_data *cfg;
1858 	struct ice_port_info *pi;
1859 	struct device *dev;
1860 	int retcode;
1861 
1862 	if (!vsi || !vsi->port_info || !vsi->back)
1863 		return -EINVAL;
1864 	if (vsi->type != ICE_VSI_PF)
1865 		return 0;
1866 
1867 	dev = ice_pf_to_dev(vsi->back);
1868 
1869 	pi = vsi->port_info;
1870 
1871 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1872 	if (!pcaps)
1873 		return -ENOMEM;
1874 
1875 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1876 				      NULL);
1877 	if (retcode) {
1878 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1879 			vsi->vsi_num, retcode);
1880 		retcode = -EIO;
1881 		goto out;
1882 	}
1883 
1884 	/* No change in link */
1885 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1886 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1887 		goto out;
1888 
1889 	/* Use the current user PHY configuration. The current user PHY
1890 	 * configuration is initialized during probe from PHY capabilities
1891 	 * software mode, and updated on set PHY configuration.
1892 	 */
1893 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1894 	if (!cfg) {
1895 		retcode = -ENOMEM;
1896 		goto out;
1897 	}
1898 
1899 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1900 	if (link_up)
1901 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1902 	else
1903 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1904 
1905 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1906 	if (retcode) {
1907 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1908 			vsi->vsi_num, retcode);
1909 		retcode = -EIO;
1910 	}
1911 
1912 	kfree(cfg);
1913 out:
1914 	kfree(pcaps);
1915 	return retcode;
1916 }
1917 
1918 /**
1919  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1920  * @pi: port info structure
1921  *
1922  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1923  */
1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1925 {
1926 	struct ice_aqc_get_phy_caps_data *pcaps;
1927 	struct ice_pf *pf = pi->hw->back;
1928 	int err;
1929 
1930 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1931 	if (!pcaps)
1932 		return -ENOMEM;
1933 
1934 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1935 				  pcaps, NULL);
1936 
1937 	if (err) {
1938 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1939 		goto out;
1940 	}
1941 
1942 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1943 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1944 
1945 out:
1946 	kfree(pcaps);
1947 	return err;
1948 }
1949 
1950 /**
1951  * ice_init_link_dflt_override - Initialize link default override
1952  * @pi: port info structure
1953  *
1954  * Initialize link default override and PHY total port shutdown during probe
1955  */
1956 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1957 {
1958 	struct ice_link_default_override_tlv *ldo;
1959 	struct ice_pf *pf = pi->hw->back;
1960 
1961 	ldo = &pf->link_dflt_override;
1962 	if (ice_get_link_default_override(ldo, pi))
1963 		return;
1964 
1965 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1966 		return;
1967 
1968 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1969 	 * ethtool private flag) for ports with Port Disable bit set.
1970 	 */
1971 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1972 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1973 }
1974 
1975 /**
1976  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1977  * @pi: port info structure
1978  *
1979  * If default override is enabled, initialize the user PHY cfg speed and FEC
1980  * settings using the default override mask from the NVM.
1981  *
1982  * The PHY should only be configured with the default override settings the
1983  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1984  * is used to indicate that the user PHY cfg default override is initialized
1985  * and the PHY has not been configured with the default override settings. The
1986  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1987  * configured.
1988  *
1989  * This function should be called only if the FW doesn't support default
1990  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1991  */
1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1993 {
1994 	struct ice_link_default_override_tlv *ldo;
1995 	struct ice_aqc_set_phy_cfg_data *cfg;
1996 	struct ice_phy_info *phy = &pi->phy;
1997 	struct ice_pf *pf = pi->hw->back;
1998 
1999 	ldo = &pf->link_dflt_override;
2000 
2001 	/* If link default override is enabled, use to mask NVM PHY capabilities
2002 	 * for speed and FEC default configuration.
2003 	 */
2004 	cfg = &phy->curr_user_phy_cfg;
2005 
2006 	if (ldo->phy_type_low || ldo->phy_type_high) {
2007 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2008 				    cpu_to_le64(ldo->phy_type_low);
2009 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2010 				     cpu_to_le64(ldo->phy_type_high);
2011 	}
2012 	cfg->link_fec_opt = ldo->fec_options;
2013 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2014 
2015 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2016 }
2017 
2018 /**
2019  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2020  * @pi: port info structure
2021  *
2022  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2023  * mode to default. The PHY defaults are from get PHY capabilities topology
2024  * with media so call when media is first available. An error is returned if
2025  * called when media is not available. The PHY initialization completed state is
2026  * set here.
2027  *
2028  * These configurations are used when setting PHY
2029  * configuration. The user PHY configuration is updated on set PHY
2030  * configuration. Returns 0 on success, negative on failure
2031  */
2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2033 {
2034 	struct ice_aqc_get_phy_caps_data *pcaps;
2035 	struct ice_phy_info *phy = &pi->phy;
2036 	struct ice_pf *pf = pi->hw->back;
2037 	int err;
2038 
2039 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2040 		return -EIO;
2041 
2042 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2043 	if (!pcaps)
2044 		return -ENOMEM;
2045 
2046 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2047 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2048 					  pcaps, NULL);
2049 	else
2050 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2051 					  pcaps, NULL);
2052 	if (err) {
2053 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2054 		goto err_out;
2055 	}
2056 
2057 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2058 
2059 	/* check if lenient mode is supported and enabled */
2060 	if (ice_fw_supports_link_override(pi->hw) &&
2061 	    !(pcaps->module_compliance_enforcement &
2062 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2063 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2064 
2065 		/* if the FW supports default PHY configuration mode, then the driver
2066 		 * does not have to apply link override settings. If not,
2067 		 * initialize user PHY configuration with link override values
2068 		 */
2069 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2070 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2071 			ice_init_phy_cfg_dflt_override(pi);
2072 			goto out;
2073 		}
2074 	}
2075 
2076 	/* if link default override is not enabled, set user flow control and
2077 	 * FEC settings based on what get_phy_caps returned
2078 	 */
2079 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2080 						      pcaps->link_fec_options);
2081 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2082 
2083 out:
2084 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2085 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2086 err_out:
2087 	kfree(pcaps);
2088 	return err;
2089 }
2090 
2091 /**
2092  * ice_configure_phy - configure PHY
2093  * @vsi: VSI of PHY
2094  *
2095  * Set the PHY configuration. If the current PHY configuration is the same as
2096  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2097  * configure the based get PHY capabilities for topology with media.
2098  */
2099 static int ice_configure_phy(struct ice_vsi *vsi)
2100 {
2101 	struct device *dev = ice_pf_to_dev(vsi->back);
2102 	struct ice_port_info *pi = vsi->port_info;
2103 	struct ice_aqc_get_phy_caps_data *pcaps;
2104 	struct ice_aqc_set_phy_cfg_data *cfg;
2105 	struct ice_phy_info *phy = &pi->phy;
2106 	struct ice_pf *pf = vsi->back;
2107 	int err;
2108 
2109 	/* Ensure we have media as we cannot configure a medialess port */
2110 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2111 		return -EPERM;
2112 
2113 	ice_print_topo_conflict(vsi);
2114 
2115 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2116 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2117 		return -EPERM;
2118 
2119 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2120 		return ice_force_phys_link_state(vsi, true);
2121 
2122 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2123 	if (!pcaps)
2124 		return -ENOMEM;
2125 
2126 	/* Get current PHY config */
2127 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2128 				  NULL);
2129 	if (err) {
2130 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2131 			vsi->vsi_num, err);
2132 		goto done;
2133 	}
2134 
2135 	/* If PHY enable link is configured and configuration has not changed,
2136 	 * there's nothing to do
2137 	 */
2138 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2139 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2140 		goto done;
2141 
2142 	/* Use PHY topology as baseline for configuration */
2143 	memset(pcaps, 0, sizeof(*pcaps));
2144 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2145 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2146 					  pcaps, NULL);
2147 	else
2148 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2149 					  pcaps, NULL);
2150 	if (err) {
2151 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2152 			vsi->vsi_num, err);
2153 		goto done;
2154 	}
2155 
2156 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2157 	if (!cfg) {
2158 		err = -ENOMEM;
2159 		goto done;
2160 	}
2161 
2162 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2163 
2164 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2165 	 * ice_init_phy_user_cfg_ldo.
2166 	 */
2167 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2168 			       vsi->back->state)) {
2169 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2170 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2171 	} else {
2172 		u64 phy_low = 0, phy_high = 0;
2173 
2174 		ice_update_phy_type(&phy_low, &phy_high,
2175 				    pi->phy.curr_user_speed_req);
2176 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2177 		cfg->phy_type_high = pcaps->phy_type_high &
2178 				     cpu_to_le64(phy_high);
2179 	}
2180 
2181 	/* Can't provide what was requested; use PHY capabilities */
2182 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2183 		cfg->phy_type_low = pcaps->phy_type_low;
2184 		cfg->phy_type_high = pcaps->phy_type_high;
2185 	}
2186 
2187 	/* FEC */
2188 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2189 
2190 	/* Can't provide what was requested; use PHY capabilities */
2191 	if (cfg->link_fec_opt !=
2192 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2193 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2194 		cfg->link_fec_opt = pcaps->link_fec_options;
2195 	}
2196 
2197 	/* Flow Control - always supported; no need to check against
2198 	 * capabilities
2199 	 */
2200 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2201 
2202 	/* Enable link and link update */
2203 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2204 
2205 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2206 	if (err)
2207 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2208 			vsi->vsi_num, err);
2209 
2210 	kfree(cfg);
2211 done:
2212 	kfree(pcaps);
2213 	return err;
2214 }
2215 
2216 /**
2217  * ice_check_media_subtask - Check for media
2218  * @pf: pointer to PF struct
2219  *
2220  * If media is available, then initialize PHY user configuration if it is not
2221  * been, and configure the PHY if the interface is up.
2222  */
2223 static void ice_check_media_subtask(struct ice_pf *pf)
2224 {
2225 	struct ice_port_info *pi;
2226 	struct ice_vsi *vsi;
2227 	int err;
2228 
2229 	/* No need to check for media if it's already present */
2230 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2231 		return;
2232 
2233 	vsi = ice_get_main_vsi(pf);
2234 	if (!vsi)
2235 		return;
2236 
2237 	/* Refresh link info and check if media is present */
2238 	pi = vsi->port_info;
2239 	err = ice_update_link_info(pi);
2240 	if (err)
2241 		return;
2242 
2243 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2244 
2245 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2246 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2247 			ice_init_phy_user_cfg(pi);
2248 
2249 		/* PHY settings are reset on media insertion, reconfigure
2250 		 * PHY to preserve settings.
2251 		 */
2252 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2253 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2254 			return;
2255 
2256 		err = ice_configure_phy(vsi);
2257 		if (!err)
2258 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2259 
2260 		/* A Link Status Event will be generated; the event handler
2261 		 * will complete bringing the interface up
2262 		 */
2263 	}
2264 }
2265 
2266 /**
2267  * ice_service_task - manage and run subtasks
2268  * @work: pointer to work_struct contained by the PF struct
2269  */
2270 static void ice_service_task(struct work_struct *work)
2271 {
2272 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2273 	unsigned long start_time = jiffies;
2274 
2275 	/* subtasks */
2276 
2277 	/* process reset requests first */
2278 	ice_reset_subtask(pf);
2279 
2280 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2281 	if (ice_is_reset_in_progress(pf->state) ||
2282 	    test_bit(ICE_SUSPENDED, pf->state) ||
2283 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2284 		ice_service_task_complete(pf);
2285 		return;
2286 	}
2287 
2288 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2289 		struct iidc_event *event;
2290 
2291 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2292 		if (event) {
2293 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2294 			/* report the entire OICR value to AUX driver */
2295 			swap(event->reg, pf->oicr_err_reg);
2296 			ice_send_event_to_aux(pf, event);
2297 			kfree(event);
2298 		}
2299 	}
2300 
2301 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2302 		/* Plug aux device per request */
2303 		ice_plug_aux_dev(pf);
2304 
2305 		/* Mark plugging as done but check whether unplug was
2306 		 * requested during ice_plug_aux_dev() call
2307 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2308 		 * plug aux device.
2309 		 */
2310 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2311 			ice_unplug_aux_dev(pf);
2312 	}
2313 
2314 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2315 		struct iidc_event *event;
2316 
2317 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2318 		if (event) {
2319 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2320 			ice_send_event_to_aux(pf, event);
2321 			kfree(event);
2322 		}
2323 	}
2324 
2325 	ice_clean_adminq_subtask(pf);
2326 	ice_check_media_subtask(pf);
2327 	ice_check_for_hang_subtask(pf);
2328 	ice_sync_fltr_subtask(pf);
2329 	ice_handle_mdd_event(pf);
2330 	ice_watchdog_subtask(pf);
2331 
2332 	if (ice_is_safe_mode(pf)) {
2333 		ice_service_task_complete(pf);
2334 		return;
2335 	}
2336 
2337 	ice_process_vflr_event(pf);
2338 	ice_clean_mailboxq_subtask(pf);
2339 	ice_clean_sbq_subtask(pf);
2340 	ice_sync_arfs_fltrs(pf);
2341 	ice_flush_fdir_ctx(pf);
2342 
2343 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2344 	ice_service_task_complete(pf);
2345 
2346 	/* If the tasks have taken longer than one service timer period
2347 	 * or there is more work to be done, reset the service timer to
2348 	 * schedule the service task now.
2349 	 */
2350 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2351 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2352 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2353 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2355 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2357 		mod_timer(&pf->serv_tmr, jiffies);
2358 }
2359 
2360 /**
2361  * ice_set_ctrlq_len - helper function to set controlq length
2362  * @hw: pointer to the HW instance
2363  */
2364 static void ice_set_ctrlq_len(struct ice_hw *hw)
2365 {
2366 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2367 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2368 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2369 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2370 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2371 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2372 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2373 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2374 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2375 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2376 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2377 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2378 }
2379 
2380 /**
2381  * ice_schedule_reset - schedule a reset
2382  * @pf: board private structure
2383  * @reset: reset being requested
2384  */
2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2386 {
2387 	struct device *dev = ice_pf_to_dev(pf);
2388 
2389 	/* bail out if earlier reset has failed */
2390 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2391 		dev_dbg(dev, "earlier reset has failed\n");
2392 		return -EIO;
2393 	}
2394 	/* bail if reset/recovery already in progress */
2395 	if (ice_is_reset_in_progress(pf->state)) {
2396 		dev_dbg(dev, "Reset already in progress\n");
2397 		return -EBUSY;
2398 	}
2399 
2400 	ice_unplug_aux_dev(pf);
2401 
2402 	switch (reset) {
2403 	case ICE_RESET_PFR:
2404 		set_bit(ICE_PFR_REQ, pf->state);
2405 		break;
2406 	case ICE_RESET_CORER:
2407 		set_bit(ICE_CORER_REQ, pf->state);
2408 		break;
2409 	case ICE_RESET_GLOBR:
2410 		set_bit(ICE_GLOBR_REQ, pf->state);
2411 		break;
2412 	default:
2413 		return -EINVAL;
2414 	}
2415 
2416 	ice_service_task_schedule(pf);
2417 	return 0;
2418 }
2419 
2420 /**
2421  * ice_irq_affinity_notify - Callback for affinity changes
2422  * @notify: context as to what irq was changed
2423  * @mask: the new affinity mask
2424  *
2425  * This is a callback function used by the irq_set_affinity_notifier function
2426  * so that we may register to receive changes to the irq affinity masks.
2427  */
2428 static void
2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2430 			const cpumask_t *mask)
2431 {
2432 	struct ice_q_vector *q_vector =
2433 		container_of(notify, struct ice_q_vector, affinity_notify);
2434 
2435 	cpumask_copy(&q_vector->affinity_mask, mask);
2436 }
2437 
2438 /**
2439  * ice_irq_affinity_release - Callback for affinity notifier release
2440  * @ref: internal core kernel usage
2441  *
2442  * This is a callback function used by the irq_set_affinity_notifier function
2443  * to inform the current notification subscriber that they will no longer
2444  * receive notifications.
2445  */
2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2447 
2448 /**
2449  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2450  * @vsi: the VSI being configured
2451  */
2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2453 {
2454 	struct ice_hw *hw = &vsi->back->hw;
2455 	int i;
2456 
2457 	ice_for_each_q_vector(vsi, i)
2458 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2459 
2460 	ice_flush(hw);
2461 	return 0;
2462 }
2463 
2464 /**
2465  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2466  * @vsi: the VSI being configured
2467  * @basename: name for the vector
2468  */
2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2470 {
2471 	int q_vectors = vsi->num_q_vectors;
2472 	struct ice_pf *pf = vsi->back;
2473 	int base = vsi->base_vector;
2474 	struct device *dev;
2475 	int rx_int_idx = 0;
2476 	int tx_int_idx = 0;
2477 	int vector, err;
2478 	int irq_num;
2479 
2480 	dev = ice_pf_to_dev(pf);
2481 	for (vector = 0; vector < q_vectors; vector++) {
2482 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2483 
2484 		irq_num = pf->msix_entries[base + vector].vector;
2485 
2486 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2487 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2488 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2489 			tx_int_idx++;
2490 		} else if (q_vector->rx.rx_ring) {
2491 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2492 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2493 		} else if (q_vector->tx.tx_ring) {
2494 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2495 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2496 		} else {
2497 			/* skip this unused q_vector */
2498 			continue;
2499 		}
2500 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2501 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2502 					       IRQF_SHARED, q_vector->name,
2503 					       q_vector);
2504 		else
2505 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2506 					       0, q_vector->name, q_vector);
2507 		if (err) {
2508 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2509 				   err);
2510 			goto free_q_irqs;
2511 		}
2512 
2513 		/* register for affinity change notifications */
2514 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2515 			struct irq_affinity_notify *affinity_notify;
2516 
2517 			affinity_notify = &q_vector->affinity_notify;
2518 			affinity_notify->notify = ice_irq_affinity_notify;
2519 			affinity_notify->release = ice_irq_affinity_release;
2520 			irq_set_affinity_notifier(irq_num, affinity_notify);
2521 		}
2522 
2523 		/* assign the mask for this irq */
2524 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2525 	}
2526 
2527 	err = ice_set_cpu_rx_rmap(vsi);
2528 	if (err) {
2529 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2530 			   vsi->vsi_num, ERR_PTR(err));
2531 		goto free_q_irqs;
2532 	}
2533 
2534 	vsi->irqs_ready = true;
2535 	return 0;
2536 
2537 free_q_irqs:
2538 	while (vector) {
2539 		vector--;
2540 		irq_num = pf->msix_entries[base + vector].vector;
2541 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2542 			irq_set_affinity_notifier(irq_num, NULL);
2543 		irq_set_affinity_hint(irq_num, NULL);
2544 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2545 	}
2546 	return err;
2547 }
2548 
2549 /**
2550  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2551  * @vsi: VSI to setup Tx rings used by XDP
2552  *
2553  * Return 0 on success and negative value on error
2554  */
2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2556 {
2557 	struct device *dev = ice_pf_to_dev(vsi->back);
2558 	struct ice_tx_desc *tx_desc;
2559 	int i, j;
2560 
2561 	ice_for_each_xdp_txq(vsi, i) {
2562 		u16 xdp_q_idx = vsi->alloc_txq + i;
2563 		struct ice_tx_ring *xdp_ring;
2564 
2565 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2566 
2567 		if (!xdp_ring)
2568 			goto free_xdp_rings;
2569 
2570 		xdp_ring->q_index = xdp_q_idx;
2571 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2572 		xdp_ring->vsi = vsi;
2573 		xdp_ring->netdev = NULL;
2574 		xdp_ring->dev = dev;
2575 		xdp_ring->count = vsi->num_tx_desc;
2576 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2577 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2578 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2579 		if (ice_setup_tx_ring(xdp_ring))
2580 			goto free_xdp_rings;
2581 		ice_set_ring_xdp(xdp_ring);
2582 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2583 		spin_lock_init(&xdp_ring->tx_lock);
2584 		for (j = 0; j < xdp_ring->count; j++) {
2585 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2586 			tx_desc->cmd_type_offset_bsz = 0;
2587 		}
2588 	}
2589 
2590 	ice_for_each_rxq(vsi, i) {
2591 		if (static_key_enabled(&ice_xdp_locking_key))
2592 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2593 		else
2594 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2595 	}
2596 
2597 	return 0;
2598 
2599 free_xdp_rings:
2600 	for (; i >= 0; i--)
2601 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2602 			ice_free_tx_ring(vsi->xdp_rings[i]);
2603 	return -ENOMEM;
2604 }
2605 
2606 /**
2607  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2608  * @vsi: VSI to set the bpf prog on
2609  * @prog: the bpf prog pointer
2610  */
2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2612 {
2613 	struct bpf_prog *old_prog;
2614 	int i;
2615 
2616 	old_prog = xchg(&vsi->xdp_prog, prog);
2617 	if (old_prog)
2618 		bpf_prog_put(old_prog);
2619 
2620 	ice_for_each_rxq(vsi, i)
2621 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2622 }
2623 
2624 /**
2625  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2626  * @vsi: VSI to bring up Tx rings used by XDP
2627  * @prog: bpf program that will be assigned to VSI
2628  *
2629  * Return 0 on success and negative value on error
2630  */
2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2632 {
2633 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2634 	int xdp_rings_rem = vsi->num_xdp_txq;
2635 	struct ice_pf *pf = vsi->back;
2636 	struct ice_qs_cfg xdp_qs_cfg = {
2637 		.qs_mutex = &pf->avail_q_mutex,
2638 		.pf_map = pf->avail_txqs,
2639 		.pf_map_size = pf->max_pf_txqs,
2640 		.q_count = vsi->num_xdp_txq,
2641 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2642 		.vsi_map = vsi->txq_map,
2643 		.vsi_map_offset = vsi->alloc_txq,
2644 		.mapping_mode = ICE_VSI_MAP_CONTIG
2645 	};
2646 	struct device *dev;
2647 	int i, v_idx;
2648 	int status;
2649 
2650 	dev = ice_pf_to_dev(pf);
2651 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2652 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2653 	if (!vsi->xdp_rings)
2654 		return -ENOMEM;
2655 
2656 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2657 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2658 		goto err_map_xdp;
2659 
2660 	if (static_key_enabled(&ice_xdp_locking_key))
2661 		netdev_warn(vsi->netdev,
2662 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2663 
2664 	if (ice_xdp_alloc_setup_rings(vsi))
2665 		goto clear_xdp_rings;
2666 
2667 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2668 	ice_for_each_q_vector(vsi, v_idx) {
2669 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2670 		int xdp_rings_per_v, q_id, q_base;
2671 
2672 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2673 					       vsi->num_q_vectors - v_idx);
2674 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2675 
2676 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2677 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2678 
2679 			xdp_ring->q_vector = q_vector;
2680 			xdp_ring->next = q_vector->tx.tx_ring;
2681 			q_vector->tx.tx_ring = xdp_ring;
2682 		}
2683 		xdp_rings_rem -= xdp_rings_per_v;
2684 	}
2685 
2686 	/* omit the scheduler update if in reset path; XDP queues will be
2687 	 * taken into account at the end of ice_vsi_rebuild, where
2688 	 * ice_cfg_vsi_lan is being called
2689 	 */
2690 	if (ice_is_reset_in_progress(pf->state))
2691 		return 0;
2692 
2693 	/* tell the Tx scheduler that right now we have
2694 	 * additional queues
2695 	 */
2696 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2697 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2698 
2699 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2700 				 max_txqs);
2701 	if (status) {
2702 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2703 			status);
2704 		goto clear_xdp_rings;
2705 	}
2706 
2707 	/* assign the prog only when it's not already present on VSI;
2708 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2709 	 * VSI rebuild that happens under ethtool -L can expose us to
2710 	 * the bpf_prog refcount issues as we would be swapping same
2711 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2712 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2713 	 * this is not harmful as dev_xdp_install bumps the refcount
2714 	 * before calling the op exposed by the driver;
2715 	 */
2716 	if (!ice_is_xdp_ena_vsi(vsi))
2717 		ice_vsi_assign_bpf_prog(vsi, prog);
2718 
2719 	return 0;
2720 clear_xdp_rings:
2721 	ice_for_each_xdp_txq(vsi, i)
2722 		if (vsi->xdp_rings[i]) {
2723 			kfree_rcu(vsi->xdp_rings[i], rcu);
2724 			vsi->xdp_rings[i] = NULL;
2725 		}
2726 
2727 err_map_xdp:
2728 	mutex_lock(&pf->avail_q_mutex);
2729 	ice_for_each_xdp_txq(vsi, i) {
2730 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2731 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2732 	}
2733 	mutex_unlock(&pf->avail_q_mutex);
2734 
2735 	devm_kfree(dev, vsi->xdp_rings);
2736 	return -ENOMEM;
2737 }
2738 
2739 /**
2740  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2741  * @vsi: VSI to remove XDP rings
2742  *
2743  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2744  * resources
2745  */
2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2747 {
2748 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2749 	struct ice_pf *pf = vsi->back;
2750 	int i, v_idx;
2751 
2752 	/* q_vectors are freed in reset path so there's no point in detaching
2753 	 * rings; in case of rebuild being triggered not from reset bits
2754 	 * in pf->state won't be set, so additionally check first q_vector
2755 	 * against NULL
2756 	 */
2757 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2758 		goto free_qmap;
2759 
2760 	ice_for_each_q_vector(vsi, v_idx) {
2761 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2762 		struct ice_tx_ring *ring;
2763 
2764 		ice_for_each_tx_ring(ring, q_vector->tx)
2765 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2766 				break;
2767 
2768 		/* restore the value of last node prior to XDP setup */
2769 		q_vector->tx.tx_ring = ring;
2770 	}
2771 
2772 free_qmap:
2773 	mutex_lock(&pf->avail_q_mutex);
2774 	ice_for_each_xdp_txq(vsi, i) {
2775 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2776 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2777 	}
2778 	mutex_unlock(&pf->avail_q_mutex);
2779 
2780 	ice_for_each_xdp_txq(vsi, i)
2781 		if (vsi->xdp_rings[i]) {
2782 			if (vsi->xdp_rings[i]->desc) {
2783 				synchronize_rcu();
2784 				ice_free_tx_ring(vsi->xdp_rings[i]);
2785 			}
2786 			kfree_rcu(vsi->xdp_rings[i], rcu);
2787 			vsi->xdp_rings[i] = NULL;
2788 		}
2789 
2790 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2791 	vsi->xdp_rings = NULL;
2792 
2793 	if (static_key_enabled(&ice_xdp_locking_key))
2794 		static_branch_dec(&ice_xdp_locking_key);
2795 
2796 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2797 		return 0;
2798 
2799 	ice_vsi_assign_bpf_prog(vsi, NULL);
2800 
2801 	/* notify Tx scheduler that we destroyed XDP queues and bring
2802 	 * back the old number of child nodes
2803 	 */
2804 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2805 		max_txqs[i] = vsi->num_txq;
2806 
2807 	/* change number of XDP Tx queues to 0 */
2808 	vsi->num_xdp_txq = 0;
2809 
2810 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2811 			       max_txqs);
2812 }
2813 
2814 /**
2815  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2816  * @vsi: VSI to schedule napi on
2817  */
2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2819 {
2820 	int i;
2821 
2822 	ice_for_each_rxq(vsi, i) {
2823 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2824 
2825 		if (rx_ring->xsk_pool)
2826 			napi_schedule(&rx_ring->q_vector->napi);
2827 	}
2828 }
2829 
2830 /**
2831  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2832  * @vsi: VSI to determine the count of XDP Tx qs
2833  *
2834  * returns 0 if Tx qs count is higher than at least half of CPU count,
2835  * -ENOMEM otherwise
2836  */
2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2838 {
2839 	u16 avail = ice_get_avail_txq_count(vsi->back);
2840 	u16 cpus = num_possible_cpus();
2841 
2842 	if (avail < cpus / 2)
2843 		return -ENOMEM;
2844 
2845 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2846 
2847 	if (vsi->num_xdp_txq < cpus)
2848 		static_branch_inc(&ice_xdp_locking_key);
2849 
2850 	return 0;
2851 }
2852 
2853 /**
2854  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2855  * @vsi: VSI to setup XDP for
2856  * @prog: XDP program
2857  * @extack: netlink extended ack
2858  */
2859 static int
2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2861 		   struct netlink_ext_ack *extack)
2862 {
2863 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2864 	bool if_running = netif_running(vsi->netdev);
2865 	int ret = 0, xdp_ring_err = 0;
2866 
2867 	if (frame_size > vsi->rx_buf_len) {
2868 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2869 		return -EOPNOTSUPP;
2870 	}
2871 
2872 	/* need to stop netdev while setting up the program for Rx rings */
2873 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2874 		ret = ice_down(vsi);
2875 		if (ret) {
2876 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2877 			return ret;
2878 		}
2879 	}
2880 
2881 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2882 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2883 		if (xdp_ring_err) {
2884 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2885 		} else {
2886 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2887 			if (xdp_ring_err)
2888 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2889 		}
2890 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2891 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2892 		if (xdp_ring_err)
2893 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2894 	} else {
2895 		/* safe to call even when prog == vsi->xdp_prog as
2896 		 * dev_xdp_install in net/core/dev.c incremented prog's
2897 		 * refcount so corresponding bpf_prog_put won't cause
2898 		 * underflow
2899 		 */
2900 		ice_vsi_assign_bpf_prog(vsi, prog);
2901 	}
2902 
2903 	if (if_running)
2904 		ret = ice_up(vsi);
2905 
2906 	if (!ret && prog)
2907 		ice_vsi_rx_napi_schedule(vsi);
2908 
2909 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2910 }
2911 
2912 /**
2913  * ice_xdp_safe_mode - XDP handler for safe mode
2914  * @dev: netdevice
2915  * @xdp: XDP command
2916  */
2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2918 			     struct netdev_bpf *xdp)
2919 {
2920 	NL_SET_ERR_MSG_MOD(xdp->extack,
2921 			   "Please provide working DDP firmware package in order to use XDP\n"
2922 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2923 	return -EOPNOTSUPP;
2924 }
2925 
2926 /**
2927  * ice_xdp - implements XDP handler
2928  * @dev: netdevice
2929  * @xdp: XDP command
2930  */
2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2932 {
2933 	struct ice_netdev_priv *np = netdev_priv(dev);
2934 	struct ice_vsi *vsi = np->vsi;
2935 
2936 	if (vsi->type != ICE_VSI_PF) {
2937 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2938 		return -EINVAL;
2939 	}
2940 
2941 	switch (xdp->command) {
2942 	case XDP_SETUP_PROG:
2943 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2944 	case XDP_SETUP_XSK_POOL:
2945 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2946 					  xdp->xsk.queue_id);
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 }
2951 
2952 /**
2953  * ice_ena_misc_vector - enable the non-queue interrupts
2954  * @pf: board private structure
2955  */
2956 static void ice_ena_misc_vector(struct ice_pf *pf)
2957 {
2958 	struct ice_hw *hw = &pf->hw;
2959 	u32 val;
2960 
2961 	/* Disable anti-spoof detection interrupt to prevent spurious event
2962 	 * interrupts during a function reset. Anti-spoof functionally is
2963 	 * still supported.
2964 	 */
2965 	val = rd32(hw, GL_MDCK_TX_TDPU);
2966 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2967 	wr32(hw, GL_MDCK_TX_TDPU, val);
2968 
2969 	/* clear things first */
2970 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2971 	rd32(hw, PFINT_OICR);		/* read to clear */
2972 
2973 	val = (PFINT_OICR_ECC_ERR_M |
2974 	       PFINT_OICR_MAL_DETECT_M |
2975 	       PFINT_OICR_GRST_M |
2976 	       PFINT_OICR_PCI_EXCEPTION_M |
2977 	       PFINT_OICR_VFLR_M |
2978 	       PFINT_OICR_HMC_ERR_M |
2979 	       PFINT_OICR_PE_PUSH_M |
2980 	       PFINT_OICR_PE_CRITERR_M);
2981 
2982 	wr32(hw, PFINT_OICR_ENA, val);
2983 
2984 	/* SW_ITR_IDX = 0, but don't change INTENA */
2985 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2986 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2987 }
2988 
2989 /**
2990  * ice_misc_intr - misc interrupt handler
2991  * @irq: interrupt number
2992  * @data: pointer to a q_vector
2993  */
2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2995 {
2996 	struct ice_pf *pf = (struct ice_pf *)data;
2997 	struct ice_hw *hw = &pf->hw;
2998 	irqreturn_t ret = IRQ_NONE;
2999 	struct device *dev;
3000 	u32 oicr, ena_mask;
3001 
3002 	dev = ice_pf_to_dev(pf);
3003 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3004 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3005 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3006 
3007 	oicr = rd32(hw, PFINT_OICR);
3008 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3009 
3010 	if (oicr & PFINT_OICR_SWINT_M) {
3011 		ena_mask &= ~PFINT_OICR_SWINT_M;
3012 		pf->sw_int_count++;
3013 	}
3014 
3015 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3016 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3017 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3018 	}
3019 	if (oicr & PFINT_OICR_VFLR_M) {
3020 		/* disable any further VFLR event notifications */
3021 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3022 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3023 
3024 			reg &= ~PFINT_OICR_VFLR_M;
3025 			wr32(hw, PFINT_OICR_ENA, reg);
3026 		} else {
3027 			ena_mask &= ~PFINT_OICR_VFLR_M;
3028 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3029 		}
3030 	}
3031 
3032 	if (oicr & PFINT_OICR_GRST_M) {
3033 		u32 reset;
3034 
3035 		/* we have a reset warning */
3036 		ena_mask &= ~PFINT_OICR_GRST_M;
3037 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3038 			GLGEN_RSTAT_RESET_TYPE_S;
3039 
3040 		if (reset == ICE_RESET_CORER)
3041 			pf->corer_count++;
3042 		else if (reset == ICE_RESET_GLOBR)
3043 			pf->globr_count++;
3044 		else if (reset == ICE_RESET_EMPR)
3045 			pf->empr_count++;
3046 		else
3047 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3048 
3049 		/* If a reset cycle isn't already in progress, we set a bit in
3050 		 * pf->state so that the service task can start a reset/rebuild.
3051 		 */
3052 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3053 			if (reset == ICE_RESET_CORER)
3054 				set_bit(ICE_CORER_RECV, pf->state);
3055 			else if (reset == ICE_RESET_GLOBR)
3056 				set_bit(ICE_GLOBR_RECV, pf->state);
3057 			else
3058 				set_bit(ICE_EMPR_RECV, pf->state);
3059 
3060 			/* There are couple of different bits at play here.
3061 			 * hw->reset_ongoing indicates whether the hardware is
3062 			 * in reset. This is set to true when a reset interrupt
3063 			 * is received and set back to false after the driver
3064 			 * has determined that the hardware is out of reset.
3065 			 *
3066 			 * ICE_RESET_OICR_RECV in pf->state indicates
3067 			 * that a post reset rebuild is required before the
3068 			 * driver is operational again. This is set above.
3069 			 *
3070 			 * As this is the start of the reset/rebuild cycle, set
3071 			 * both to indicate that.
3072 			 */
3073 			hw->reset_ongoing = true;
3074 		}
3075 	}
3076 
3077 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3078 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3079 		ice_ptp_process_ts(pf);
3080 	}
3081 
3082 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3083 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3084 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3085 
3086 		/* Save EVENTs from GTSYN register */
3087 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3088 						     GLTSYN_STAT_EVENT1_M |
3089 						     GLTSYN_STAT_EVENT2_M);
3090 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3091 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3092 	}
3093 
3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3095 	if (oicr & ICE_AUX_CRIT_ERR) {
3096 		pf->oicr_err_reg |= oicr;
3097 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3098 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3099 	}
3100 
3101 	/* Report any remaining unexpected interrupts */
3102 	oicr &= ena_mask;
3103 	if (oicr) {
3104 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3105 		/* If a critical error is pending there is no choice but to
3106 		 * reset the device.
3107 		 */
3108 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3109 			    PFINT_OICR_ECC_ERR_M)) {
3110 			set_bit(ICE_PFR_REQ, pf->state);
3111 			ice_service_task_schedule(pf);
3112 		}
3113 	}
3114 	ret = IRQ_HANDLED;
3115 
3116 	ice_service_task_schedule(pf);
3117 	ice_irq_dynamic_ena(hw, NULL, NULL);
3118 
3119 	return ret;
3120 }
3121 
3122 /**
3123  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3124  * @hw: pointer to HW structure
3125  */
3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3127 {
3128 	/* disable Admin queue Interrupt causes */
3129 	wr32(hw, PFINT_FW_CTL,
3130 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3131 
3132 	/* disable Mailbox queue Interrupt causes */
3133 	wr32(hw, PFINT_MBX_CTL,
3134 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3135 
3136 	wr32(hw, PFINT_SB_CTL,
3137 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3138 
3139 	/* disable Control queue Interrupt causes */
3140 	wr32(hw, PFINT_OICR_CTL,
3141 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3142 
3143 	ice_flush(hw);
3144 }
3145 
3146 /**
3147  * ice_free_irq_msix_misc - Unroll misc vector setup
3148  * @pf: board private structure
3149  */
3150 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3151 {
3152 	struct ice_hw *hw = &pf->hw;
3153 
3154 	ice_dis_ctrlq_interrupts(hw);
3155 
3156 	/* disable OICR interrupt */
3157 	wr32(hw, PFINT_OICR_ENA, 0);
3158 	ice_flush(hw);
3159 
3160 	if (pf->msix_entries) {
3161 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3162 		devm_free_irq(ice_pf_to_dev(pf),
3163 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3164 	}
3165 
3166 	pf->num_avail_sw_msix += 1;
3167 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3168 }
3169 
3170 /**
3171  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3172  * @hw: pointer to HW structure
3173  * @reg_idx: HW vector index to associate the control queue interrupts with
3174  */
3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3176 {
3177 	u32 val;
3178 
3179 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3180 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3181 	wr32(hw, PFINT_OICR_CTL, val);
3182 
3183 	/* enable Admin queue Interrupt causes */
3184 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3185 	       PFINT_FW_CTL_CAUSE_ENA_M);
3186 	wr32(hw, PFINT_FW_CTL, val);
3187 
3188 	/* enable Mailbox queue Interrupt causes */
3189 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3190 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3191 	wr32(hw, PFINT_MBX_CTL, val);
3192 
3193 	/* This enables Sideband queue Interrupt causes */
3194 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3195 	       PFINT_SB_CTL_CAUSE_ENA_M);
3196 	wr32(hw, PFINT_SB_CTL, val);
3197 
3198 	ice_flush(hw);
3199 }
3200 
3201 /**
3202  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3203  * @pf: board private structure
3204  *
3205  * This sets up the handler for MSIX 0, which is used to manage the
3206  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3207  * when in MSI or Legacy interrupt mode.
3208  */
3209 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3210 {
3211 	struct device *dev = ice_pf_to_dev(pf);
3212 	struct ice_hw *hw = &pf->hw;
3213 	int oicr_idx, err = 0;
3214 
3215 	if (!pf->int_name[0])
3216 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3217 			 dev_driver_string(dev), dev_name(dev));
3218 
3219 	/* Do not request IRQ but do enable OICR interrupt since settings are
3220 	 * lost during reset. Note that this function is called only during
3221 	 * rebuild path and not while reset is in progress.
3222 	 */
3223 	if (ice_is_reset_in_progress(pf->state))
3224 		goto skip_req_irq;
3225 
3226 	/* reserve one vector in irq_tracker for misc interrupts */
3227 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3228 	if (oicr_idx < 0)
3229 		return oicr_idx;
3230 
3231 	pf->num_avail_sw_msix -= 1;
3232 	pf->oicr_idx = (u16)oicr_idx;
3233 
3234 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3235 			       ice_misc_intr, 0, pf->int_name, pf);
3236 	if (err) {
3237 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3238 			pf->int_name, err);
3239 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3240 		pf->num_avail_sw_msix += 1;
3241 		return err;
3242 	}
3243 
3244 skip_req_irq:
3245 	ice_ena_misc_vector(pf);
3246 
3247 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3248 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3249 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3250 
3251 	ice_flush(hw);
3252 	ice_irq_dynamic_ena(hw, NULL, NULL);
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * ice_napi_add - register NAPI handler for the VSI
3259  * @vsi: VSI for which NAPI handler is to be registered
3260  *
3261  * This function is only called in the driver's load path. Registering the NAPI
3262  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3263  * reset/rebuild, etc.)
3264  */
3265 static void ice_napi_add(struct ice_vsi *vsi)
3266 {
3267 	int v_idx;
3268 
3269 	if (!vsi->netdev)
3270 		return;
3271 
3272 	ice_for_each_q_vector(vsi, v_idx)
3273 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3274 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3275 }
3276 
3277 /**
3278  * ice_set_ops - set netdev and ethtools ops for the given netdev
3279  * @netdev: netdev instance
3280  */
3281 static void ice_set_ops(struct net_device *netdev)
3282 {
3283 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3284 
3285 	if (ice_is_safe_mode(pf)) {
3286 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3287 		ice_set_ethtool_safe_mode_ops(netdev);
3288 		return;
3289 	}
3290 
3291 	netdev->netdev_ops = &ice_netdev_ops;
3292 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3293 	ice_set_ethtool_ops(netdev);
3294 }
3295 
3296 /**
3297  * ice_set_netdev_features - set features for the given netdev
3298  * @netdev: netdev instance
3299  */
3300 static void ice_set_netdev_features(struct net_device *netdev)
3301 {
3302 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3303 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3304 	netdev_features_t csumo_features;
3305 	netdev_features_t vlano_features;
3306 	netdev_features_t dflt_features;
3307 	netdev_features_t tso_features;
3308 
3309 	if (ice_is_safe_mode(pf)) {
3310 		/* safe mode */
3311 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3312 		netdev->hw_features = netdev->features;
3313 		return;
3314 	}
3315 
3316 	dflt_features = NETIF_F_SG	|
3317 			NETIF_F_HIGHDMA	|
3318 			NETIF_F_NTUPLE	|
3319 			NETIF_F_RXHASH;
3320 
3321 	csumo_features = NETIF_F_RXCSUM	  |
3322 			 NETIF_F_IP_CSUM  |
3323 			 NETIF_F_SCTP_CRC |
3324 			 NETIF_F_IPV6_CSUM;
3325 
3326 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3327 			 NETIF_F_HW_VLAN_CTAG_TX     |
3328 			 NETIF_F_HW_VLAN_CTAG_RX;
3329 
3330 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3331 	if (is_dvm_ena)
3332 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3333 
3334 	tso_features = NETIF_F_TSO			|
3335 		       NETIF_F_TSO_ECN			|
3336 		       NETIF_F_TSO6			|
3337 		       NETIF_F_GSO_GRE			|
3338 		       NETIF_F_GSO_UDP_TUNNEL		|
3339 		       NETIF_F_GSO_GRE_CSUM		|
3340 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3341 		       NETIF_F_GSO_PARTIAL		|
3342 		       NETIF_F_GSO_IPXIP4		|
3343 		       NETIF_F_GSO_IPXIP6		|
3344 		       NETIF_F_GSO_UDP_L4;
3345 
3346 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3347 					NETIF_F_GSO_GRE_CSUM;
3348 	/* set features that user can change */
3349 	netdev->hw_features = dflt_features | csumo_features |
3350 			      vlano_features | tso_features;
3351 
3352 	/* add support for HW_CSUM on packets with MPLS header */
3353 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3354 				 NETIF_F_TSO     |
3355 				 NETIF_F_TSO6;
3356 
3357 	/* enable features */
3358 	netdev->features |= netdev->hw_features;
3359 
3360 	netdev->hw_features |= NETIF_F_HW_TC;
3361 
3362 	/* encap and VLAN devices inherit default, csumo and tso features */
3363 	netdev->hw_enc_features |= dflt_features | csumo_features |
3364 				   tso_features;
3365 	netdev->vlan_features |= dflt_features | csumo_features |
3366 				 tso_features;
3367 
3368 	/* advertise support but don't enable by default since only one type of
3369 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3370 	 * type turns on the other has to be turned off. This is enforced by the
3371 	 * ice_fix_features() ndo callback.
3372 	 */
3373 	if (is_dvm_ena)
3374 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3375 			NETIF_F_HW_VLAN_STAG_TX;
3376 }
3377 
3378 /**
3379  * ice_cfg_netdev - Allocate, configure and register a netdev
3380  * @vsi: the VSI associated with the new netdev
3381  *
3382  * Returns 0 on success, negative value on failure
3383  */
3384 static int ice_cfg_netdev(struct ice_vsi *vsi)
3385 {
3386 	struct ice_netdev_priv *np;
3387 	struct net_device *netdev;
3388 	u8 mac_addr[ETH_ALEN];
3389 
3390 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3391 				    vsi->alloc_rxq);
3392 	if (!netdev)
3393 		return -ENOMEM;
3394 
3395 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3396 	vsi->netdev = netdev;
3397 	np = netdev_priv(netdev);
3398 	np->vsi = vsi;
3399 
3400 	ice_set_netdev_features(netdev);
3401 
3402 	ice_set_ops(netdev);
3403 
3404 	if (vsi->type == ICE_VSI_PF) {
3405 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3406 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3407 		eth_hw_addr_set(netdev, mac_addr);
3408 		ether_addr_copy(netdev->perm_addr, mac_addr);
3409 	}
3410 
3411 	netdev->priv_flags |= IFF_UNICAST_FLT;
3412 
3413 	/* Setup netdev TC information */
3414 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3415 
3416 	/* setup watchdog timeout value to be 5 second */
3417 	netdev->watchdog_timeo = 5 * HZ;
3418 
3419 	netdev->min_mtu = ETH_MIN_MTU;
3420 	netdev->max_mtu = ICE_MAX_MTU;
3421 
3422 	return 0;
3423 }
3424 
3425 /**
3426  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3427  * @lut: Lookup table
3428  * @rss_table_size: Lookup table size
3429  * @rss_size: Range of queue number for hashing
3430  */
3431 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3432 {
3433 	u16 i;
3434 
3435 	for (i = 0; i < rss_table_size; i++)
3436 		lut[i] = i % rss_size;
3437 }
3438 
3439 /**
3440  * ice_pf_vsi_setup - Set up a PF VSI
3441  * @pf: board private structure
3442  * @pi: pointer to the port_info instance
3443  *
3444  * Returns pointer to the successfully allocated VSI software struct
3445  * on success, otherwise returns NULL on failure.
3446  */
3447 static struct ice_vsi *
3448 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3449 {
3450 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3451 }
3452 
3453 static struct ice_vsi *
3454 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3455 		   struct ice_channel *ch)
3456 {
3457 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3458 }
3459 
3460 /**
3461  * ice_ctrl_vsi_setup - Set up a control VSI
3462  * @pf: board private structure
3463  * @pi: pointer to the port_info instance
3464  *
3465  * Returns pointer to the successfully allocated VSI software struct
3466  * on success, otherwise returns NULL on failure.
3467  */
3468 static struct ice_vsi *
3469 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3470 {
3471 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3472 }
3473 
3474 /**
3475  * ice_lb_vsi_setup - Set up a loopback VSI
3476  * @pf: board private structure
3477  * @pi: pointer to the port_info instance
3478  *
3479  * Returns pointer to the successfully allocated VSI software struct
3480  * on success, otherwise returns NULL on failure.
3481  */
3482 struct ice_vsi *
3483 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3484 {
3485 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3486 }
3487 
3488 /**
3489  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3490  * @netdev: network interface to be adjusted
3491  * @proto: VLAN TPID
3492  * @vid: VLAN ID to be added
3493  *
3494  * net_device_ops implementation for adding VLAN IDs
3495  */
3496 static int
3497 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3498 {
3499 	struct ice_netdev_priv *np = netdev_priv(netdev);
3500 	struct ice_vsi_vlan_ops *vlan_ops;
3501 	struct ice_vsi *vsi = np->vsi;
3502 	struct ice_vlan vlan;
3503 	int ret;
3504 
3505 	/* VLAN 0 is added by default during load/reset */
3506 	if (!vid)
3507 		return 0;
3508 
3509 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3510 		usleep_range(1000, 2000);
3511 
3512 	/* Add multicast promisc rule for the VLAN ID to be added if
3513 	 * all-multicast is currently enabled.
3514 	 */
3515 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3516 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3517 					       ICE_MCAST_VLAN_PROMISC_BITS,
3518 					       vid);
3519 		if (ret)
3520 			goto finish;
3521 	}
3522 
3523 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3524 
3525 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3526 	 * packets aren't pruned by the device's internal switch on Rx
3527 	 */
3528 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3529 	ret = vlan_ops->add_vlan(vsi, &vlan);
3530 	if (ret)
3531 		goto finish;
3532 
3533 	/* If all-multicast is currently enabled and this VLAN ID is only one
3534 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3535 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3536 	 */
3537 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3538 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3539 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3540 					   ICE_MCAST_PROMISC_BITS, 0);
3541 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3542 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3543 	}
3544 
3545 finish:
3546 	clear_bit(ICE_CFG_BUSY, vsi->state);
3547 
3548 	return ret;
3549 }
3550 
3551 /**
3552  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3553  * @netdev: network interface to be adjusted
3554  * @proto: VLAN TPID
3555  * @vid: VLAN ID to be removed
3556  *
3557  * net_device_ops implementation for removing VLAN IDs
3558  */
3559 static int
3560 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3561 {
3562 	struct ice_netdev_priv *np = netdev_priv(netdev);
3563 	struct ice_vsi_vlan_ops *vlan_ops;
3564 	struct ice_vsi *vsi = np->vsi;
3565 	struct ice_vlan vlan;
3566 	int ret;
3567 
3568 	/* don't allow removal of VLAN 0 */
3569 	if (!vid)
3570 		return 0;
3571 
3572 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3573 		usleep_range(1000, 2000);
3574 
3575 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3576 
3577 	/* Make sure VLAN delete is successful before updating VLAN
3578 	 * information
3579 	 */
3580 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3581 	ret = vlan_ops->del_vlan(vsi, &vlan);
3582 	if (ret)
3583 		goto finish;
3584 
3585 	/* Remove multicast promisc rule for the removed VLAN ID if
3586 	 * all-multicast is enabled.
3587 	 */
3588 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3589 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3590 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3591 
3592 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3593 		/* Update look-up type of multicast promisc rule for VLAN 0
3594 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3595 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3596 		 */
3597 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3598 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3599 						   ICE_MCAST_VLAN_PROMISC_BITS,
3600 						   0);
3601 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3602 						 ICE_MCAST_PROMISC_BITS, 0);
3603 		}
3604 	}
3605 
3606 finish:
3607 	clear_bit(ICE_CFG_BUSY, vsi->state);
3608 
3609 	return ret;
3610 }
3611 
3612 /**
3613  * ice_rep_indr_tc_block_unbind
3614  * @cb_priv: indirection block private data
3615  */
3616 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3617 {
3618 	struct ice_indr_block_priv *indr_priv = cb_priv;
3619 
3620 	list_del(&indr_priv->list);
3621 	kfree(indr_priv);
3622 }
3623 
3624 /**
3625  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3626  * @vsi: VSI struct which has the netdev
3627  */
3628 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3629 {
3630 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3631 
3632 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3633 				 ice_rep_indr_tc_block_unbind);
3634 }
3635 
3636 /**
3637  * ice_tc_indir_block_remove - clean indirect TC block notifications
3638  * @pf: PF structure
3639  */
3640 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3641 {
3642 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3643 
3644 	if (!pf_vsi)
3645 		return;
3646 
3647 	ice_tc_indir_block_unregister(pf_vsi);
3648 }
3649 
3650 /**
3651  * ice_tc_indir_block_register - Register TC indirect block notifications
3652  * @vsi: VSI struct which has the netdev
3653  *
3654  * Returns 0 on success, negative value on failure
3655  */
3656 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3657 {
3658 	struct ice_netdev_priv *np;
3659 
3660 	if (!vsi || !vsi->netdev)
3661 		return -EINVAL;
3662 
3663 	np = netdev_priv(vsi->netdev);
3664 
3665 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3666 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3667 }
3668 
3669 /**
3670  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3671  * @pf: board private structure
3672  *
3673  * Returns 0 on success, negative value on failure
3674  */
3675 static int ice_setup_pf_sw(struct ice_pf *pf)
3676 {
3677 	struct device *dev = ice_pf_to_dev(pf);
3678 	bool dvm = ice_is_dvm_ena(&pf->hw);
3679 	struct ice_vsi *vsi;
3680 	int status;
3681 
3682 	if (ice_is_reset_in_progress(pf->state))
3683 		return -EBUSY;
3684 
3685 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3686 	if (status)
3687 		return -EIO;
3688 
3689 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3690 	if (!vsi)
3691 		return -ENOMEM;
3692 
3693 	/* init channel list */
3694 	INIT_LIST_HEAD(&vsi->ch_list);
3695 
3696 	status = ice_cfg_netdev(vsi);
3697 	if (status)
3698 		goto unroll_vsi_setup;
3699 	/* netdev has to be configured before setting frame size */
3700 	ice_vsi_cfg_frame_size(vsi);
3701 
3702 	/* init indirect block notifications */
3703 	status = ice_tc_indir_block_register(vsi);
3704 	if (status) {
3705 		dev_err(dev, "Failed to register netdev notifier\n");
3706 		goto unroll_cfg_netdev;
3707 	}
3708 
3709 	/* Setup DCB netlink interface */
3710 	ice_dcbnl_setup(vsi);
3711 
3712 	/* registering the NAPI handler requires both the queues and
3713 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3714 	 * and ice_cfg_netdev() respectively
3715 	 */
3716 	ice_napi_add(vsi);
3717 
3718 	status = ice_init_mac_fltr(pf);
3719 	if (status)
3720 		goto unroll_napi_add;
3721 
3722 	return 0;
3723 
3724 unroll_napi_add:
3725 	ice_tc_indir_block_unregister(vsi);
3726 unroll_cfg_netdev:
3727 	if (vsi) {
3728 		ice_napi_del(vsi);
3729 		if (vsi->netdev) {
3730 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3731 			free_netdev(vsi->netdev);
3732 			vsi->netdev = NULL;
3733 		}
3734 	}
3735 
3736 unroll_vsi_setup:
3737 	ice_vsi_release(vsi);
3738 	return status;
3739 }
3740 
3741 /**
3742  * ice_get_avail_q_count - Get count of queues in use
3743  * @pf_qmap: bitmap to get queue use count from
3744  * @lock: pointer to a mutex that protects access to pf_qmap
3745  * @size: size of the bitmap
3746  */
3747 static u16
3748 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3749 {
3750 	unsigned long bit;
3751 	u16 count = 0;
3752 
3753 	mutex_lock(lock);
3754 	for_each_clear_bit(bit, pf_qmap, size)
3755 		count++;
3756 	mutex_unlock(lock);
3757 
3758 	return count;
3759 }
3760 
3761 /**
3762  * ice_get_avail_txq_count - Get count of Tx queues in use
3763  * @pf: pointer to an ice_pf instance
3764  */
3765 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3766 {
3767 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3768 				     pf->max_pf_txqs);
3769 }
3770 
3771 /**
3772  * ice_get_avail_rxq_count - Get count of Rx queues in use
3773  * @pf: pointer to an ice_pf instance
3774  */
3775 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3776 {
3777 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3778 				     pf->max_pf_rxqs);
3779 }
3780 
3781 /**
3782  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3783  * @pf: board private structure to initialize
3784  */
3785 static void ice_deinit_pf(struct ice_pf *pf)
3786 {
3787 	ice_service_task_stop(pf);
3788 	mutex_destroy(&pf->adev_mutex);
3789 	mutex_destroy(&pf->sw_mutex);
3790 	mutex_destroy(&pf->tc_mutex);
3791 	mutex_destroy(&pf->avail_q_mutex);
3792 	mutex_destroy(&pf->vfs.table_lock);
3793 
3794 	if (pf->avail_txqs) {
3795 		bitmap_free(pf->avail_txqs);
3796 		pf->avail_txqs = NULL;
3797 	}
3798 
3799 	if (pf->avail_rxqs) {
3800 		bitmap_free(pf->avail_rxqs);
3801 		pf->avail_rxqs = NULL;
3802 	}
3803 
3804 	if (pf->ptp.clock)
3805 		ptp_clock_unregister(pf->ptp.clock);
3806 }
3807 
3808 /**
3809  * ice_set_pf_caps - set PFs capability flags
3810  * @pf: pointer to the PF instance
3811  */
3812 static void ice_set_pf_caps(struct ice_pf *pf)
3813 {
3814 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3815 
3816 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3817 	if (func_caps->common_cap.rdma)
3818 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3819 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3820 	if (func_caps->common_cap.dcb)
3821 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3822 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3823 	if (func_caps->common_cap.sr_iov_1_1) {
3824 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3825 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3826 					      ICE_MAX_SRIOV_VFS);
3827 	}
3828 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3829 	if (func_caps->common_cap.rss_table_size)
3830 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3831 
3832 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3833 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3834 		u16 unused;
3835 
3836 		/* ctrl_vsi_idx will be set to a valid value when flow director
3837 		 * is setup by ice_init_fdir
3838 		 */
3839 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3840 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3841 		/* force guaranteed filter pool for PF */
3842 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3843 				       func_caps->fd_fltr_guar);
3844 		/* force shared filter pool for PF */
3845 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3846 				       func_caps->fd_fltr_best_effort);
3847 	}
3848 
3849 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3850 	if (func_caps->common_cap.ieee_1588)
3851 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3852 
3853 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3854 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3855 }
3856 
3857 /**
3858  * ice_init_pf - Initialize general software structures (struct ice_pf)
3859  * @pf: board private structure to initialize
3860  */
3861 static int ice_init_pf(struct ice_pf *pf)
3862 {
3863 	ice_set_pf_caps(pf);
3864 
3865 	mutex_init(&pf->sw_mutex);
3866 	mutex_init(&pf->tc_mutex);
3867 	mutex_init(&pf->adev_mutex);
3868 
3869 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3870 	spin_lock_init(&pf->aq_wait_lock);
3871 	init_waitqueue_head(&pf->aq_wait_queue);
3872 
3873 	init_waitqueue_head(&pf->reset_wait_queue);
3874 
3875 	/* setup service timer and periodic service task */
3876 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3877 	pf->serv_tmr_period = HZ;
3878 	INIT_WORK(&pf->serv_task, ice_service_task);
3879 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3880 
3881 	mutex_init(&pf->avail_q_mutex);
3882 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3883 	if (!pf->avail_txqs)
3884 		return -ENOMEM;
3885 
3886 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3887 	if (!pf->avail_rxqs) {
3888 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3889 		pf->avail_txqs = NULL;
3890 		return -ENOMEM;
3891 	}
3892 
3893 	mutex_init(&pf->vfs.table_lock);
3894 	hash_init(pf->vfs.table);
3895 
3896 	return 0;
3897 }
3898 
3899 /**
3900  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3901  * @pf: board private structure
3902  *
3903  * compute the number of MSIX vectors required (v_budget) and request from
3904  * the OS. Return the number of vectors reserved or negative on failure
3905  */
3906 static int ice_ena_msix_range(struct ice_pf *pf)
3907 {
3908 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3909 	struct device *dev = ice_pf_to_dev(pf);
3910 	int needed, err, i;
3911 
3912 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3913 	num_cpus = num_online_cpus();
3914 
3915 	/* reserve for LAN miscellaneous handler */
3916 	needed = ICE_MIN_LAN_OICR_MSIX;
3917 	if (v_left < needed)
3918 		goto no_hw_vecs_left_err;
3919 	v_budget += needed;
3920 	v_left -= needed;
3921 
3922 	/* reserve for flow director */
3923 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3924 		needed = ICE_FDIR_MSIX;
3925 		if (v_left < needed)
3926 			goto no_hw_vecs_left_err;
3927 		v_budget += needed;
3928 		v_left -= needed;
3929 	}
3930 
3931 	/* reserve for switchdev */
3932 	needed = ICE_ESWITCH_MSIX;
3933 	if (v_left < needed)
3934 		goto no_hw_vecs_left_err;
3935 	v_budget += needed;
3936 	v_left -= needed;
3937 
3938 	/* total used for non-traffic vectors */
3939 	v_other = v_budget;
3940 
3941 	/* reserve vectors for LAN traffic */
3942 	needed = num_cpus;
3943 	if (v_left < needed)
3944 		goto no_hw_vecs_left_err;
3945 	pf->num_lan_msix = needed;
3946 	v_budget += needed;
3947 	v_left -= needed;
3948 
3949 	/* reserve vectors for RDMA auxiliary driver */
3950 	if (ice_is_rdma_ena(pf)) {
3951 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3952 		if (v_left < needed)
3953 			goto no_hw_vecs_left_err;
3954 		pf->num_rdma_msix = needed;
3955 		v_budget += needed;
3956 		v_left -= needed;
3957 	}
3958 
3959 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3960 					sizeof(*pf->msix_entries), GFP_KERNEL);
3961 	if (!pf->msix_entries) {
3962 		err = -ENOMEM;
3963 		goto exit_err;
3964 	}
3965 
3966 	for (i = 0; i < v_budget; i++)
3967 		pf->msix_entries[i].entry = i;
3968 
3969 	/* actually reserve the vectors */
3970 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3971 					 ICE_MIN_MSIX, v_budget);
3972 	if (v_actual < 0) {
3973 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3974 		err = v_actual;
3975 		goto msix_err;
3976 	}
3977 
3978 	if (v_actual < v_budget) {
3979 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3980 			 v_budget, v_actual);
3981 
3982 		if (v_actual < ICE_MIN_MSIX) {
3983 			/* error if we can't get minimum vectors */
3984 			pci_disable_msix(pf->pdev);
3985 			err = -ERANGE;
3986 			goto msix_err;
3987 		} else {
3988 			int v_remain = v_actual - v_other;
3989 			int v_rdma = 0, v_min_rdma = 0;
3990 
3991 			if (ice_is_rdma_ena(pf)) {
3992 				/* Need at least 1 interrupt in addition to
3993 				 * AEQ MSIX
3994 				 */
3995 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3996 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3997 			}
3998 
3999 			if (v_actual == ICE_MIN_MSIX ||
4000 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4001 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4002 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4003 
4004 				pf->num_rdma_msix = 0;
4005 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4006 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4007 				   (v_remain - v_rdma < v_rdma)) {
4008 				/* Support minimum RDMA and give remaining
4009 				 * vectors to LAN MSIX
4010 				 */
4011 				pf->num_rdma_msix = v_min_rdma;
4012 				pf->num_lan_msix = v_remain - v_min_rdma;
4013 			} else {
4014 				/* Split remaining MSIX with RDMA after
4015 				 * accounting for AEQ MSIX
4016 				 */
4017 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4018 						    ICE_RDMA_NUM_AEQ_MSIX;
4019 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4020 			}
4021 
4022 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4023 				   pf->num_lan_msix);
4024 
4025 			if (ice_is_rdma_ena(pf))
4026 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4027 					   pf->num_rdma_msix);
4028 		}
4029 	}
4030 
4031 	return v_actual;
4032 
4033 msix_err:
4034 	devm_kfree(dev, pf->msix_entries);
4035 	goto exit_err;
4036 
4037 no_hw_vecs_left_err:
4038 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4039 		needed, v_left);
4040 	err = -ERANGE;
4041 exit_err:
4042 	pf->num_rdma_msix = 0;
4043 	pf->num_lan_msix = 0;
4044 	return err;
4045 }
4046 
4047 /**
4048  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4049  * @pf: board private structure
4050  */
4051 static void ice_dis_msix(struct ice_pf *pf)
4052 {
4053 	pci_disable_msix(pf->pdev);
4054 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4055 	pf->msix_entries = NULL;
4056 }
4057 
4058 /**
4059  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4060  * @pf: board private structure
4061  */
4062 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4063 {
4064 	ice_dis_msix(pf);
4065 
4066 	if (pf->irq_tracker) {
4067 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4068 		pf->irq_tracker = NULL;
4069 	}
4070 }
4071 
4072 /**
4073  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4074  * @pf: board private structure to initialize
4075  */
4076 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4077 {
4078 	int vectors;
4079 
4080 	vectors = ice_ena_msix_range(pf);
4081 
4082 	if (vectors < 0)
4083 		return vectors;
4084 
4085 	/* set up vector assignment tracking */
4086 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4087 				       struct_size(pf->irq_tracker, list, vectors),
4088 				       GFP_KERNEL);
4089 	if (!pf->irq_tracker) {
4090 		ice_dis_msix(pf);
4091 		return -ENOMEM;
4092 	}
4093 
4094 	/* populate SW interrupts pool with number of OS granted IRQs. */
4095 	pf->num_avail_sw_msix = (u16)vectors;
4096 	pf->irq_tracker->num_entries = (u16)vectors;
4097 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4098 
4099 	return 0;
4100 }
4101 
4102 /**
4103  * ice_is_wol_supported - check if WoL is supported
4104  * @hw: pointer to hardware info
4105  *
4106  * Check if WoL is supported based on the HW configuration.
4107  * Returns true if NVM supports and enables WoL for this port, false otherwise
4108  */
4109 bool ice_is_wol_supported(struct ice_hw *hw)
4110 {
4111 	u16 wol_ctrl;
4112 
4113 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4114 	 * word) indicates WoL is not supported on the corresponding PF ID.
4115 	 */
4116 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4117 		return false;
4118 
4119 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4120 }
4121 
4122 /**
4123  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4124  * @vsi: VSI being changed
4125  * @new_rx: new number of Rx queues
4126  * @new_tx: new number of Tx queues
4127  *
4128  * Only change the number of queues if new_tx, or new_rx is non-0.
4129  *
4130  * Returns 0 on success.
4131  */
4132 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4133 {
4134 	struct ice_pf *pf = vsi->back;
4135 	int err = 0, timeout = 50;
4136 
4137 	if (!new_rx && !new_tx)
4138 		return -EINVAL;
4139 
4140 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4141 		timeout--;
4142 		if (!timeout)
4143 			return -EBUSY;
4144 		usleep_range(1000, 2000);
4145 	}
4146 
4147 	if (new_tx)
4148 		vsi->req_txq = (u16)new_tx;
4149 	if (new_rx)
4150 		vsi->req_rxq = (u16)new_rx;
4151 
4152 	/* set for the next time the netdev is started */
4153 	if (!netif_running(vsi->netdev)) {
4154 		ice_vsi_rebuild(vsi, false);
4155 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4156 		goto done;
4157 	}
4158 
4159 	ice_vsi_close(vsi);
4160 	ice_vsi_rebuild(vsi, false);
4161 	ice_pf_dcb_recfg(pf);
4162 	ice_vsi_open(vsi);
4163 done:
4164 	clear_bit(ICE_CFG_BUSY, pf->state);
4165 	return err;
4166 }
4167 
4168 /**
4169  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4170  * @pf: PF to configure
4171  *
4172  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4173  * VSI can still Tx/Rx VLAN tagged packets.
4174  */
4175 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4176 {
4177 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4178 	struct ice_vsi_ctx *ctxt;
4179 	struct ice_hw *hw;
4180 	int status;
4181 
4182 	if (!vsi)
4183 		return;
4184 
4185 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4186 	if (!ctxt)
4187 		return;
4188 
4189 	hw = &pf->hw;
4190 	ctxt->info = vsi->info;
4191 
4192 	ctxt->info.valid_sections =
4193 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4194 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4195 			    ICE_AQ_VSI_PROP_SW_VALID);
4196 
4197 	/* disable VLAN anti-spoof */
4198 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4199 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4200 
4201 	/* disable VLAN pruning and keep all other settings */
4202 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4203 
4204 	/* allow all VLANs on Tx and don't strip on Rx */
4205 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4206 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4207 
4208 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4209 	if (status) {
4210 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4211 			status, ice_aq_str(hw->adminq.sq_last_status));
4212 	} else {
4213 		vsi->info.sec_flags = ctxt->info.sec_flags;
4214 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4215 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4216 	}
4217 
4218 	kfree(ctxt);
4219 }
4220 
4221 /**
4222  * ice_log_pkg_init - log result of DDP package load
4223  * @hw: pointer to hardware info
4224  * @state: state of package load
4225  */
4226 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4227 {
4228 	struct ice_pf *pf = hw->back;
4229 	struct device *dev;
4230 
4231 	dev = ice_pf_to_dev(pf);
4232 
4233 	switch (state) {
4234 	case ICE_DDP_PKG_SUCCESS:
4235 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4236 			 hw->active_pkg_name,
4237 			 hw->active_pkg_ver.major,
4238 			 hw->active_pkg_ver.minor,
4239 			 hw->active_pkg_ver.update,
4240 			 hw->active_pkg_ver.draft);
4241 		break;
4242 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4243 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4244 			 hw->active_pkg_name,
4245 			 hw->active_pkg_ver.major,
4246 			 hw->active_pkg_ver.minor,
4247 			 hw->active_pkg_ver.update,
4248 			 hw->active_pkg_ver.draft);
4249 		break;
4250 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4251 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4252 			hw->active_pkg_name,
4253 			hw->active_pkg_ver.major,
4254 			hw->active_pkg_ver.minor,
4255 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4256 		break;
4257 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4258 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4259 			 hw->active_pkg_name,
4260 			 hw->active_pkg_ver.major,
4261 			 hw->active_pkg_ver.minor,
4262 			 hw->active_pkg_ver.update,
4263 			 hw->active_pkg_ver.draft,
4264 			 hw->pkg_name,
4265 			 hw->pkg_ver.major,
4266 			 hw->pkg_ver.minor,
4267 			 hw->pkg_ver.update,
4268 			 hw->pkg_ver.draft);
4269 		break;
4270 	case ICE_DDP_PKG_FW_MISMATCH:
4271 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4272 		break;
4273 	case ICE_DDP_PKG_INVALID_FILE:
4274 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4275 		break;
4276 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4277 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4278 		break;
4279 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4280 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4281 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4282 		break;
4283 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4284 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4285 		break;
4286 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4287 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4288 		break;
4289 	case ICE_DDP_PKG_LOAD_ERROR:
4290 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4291 		/* poll for reset to complete */
4292 		if (ice_check_reset(hw))
4293 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4294 		break;
4295 	case ICE_DDP_PKG_ERR:
4296 	default:
4297 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4298 		break;
4299 	}
4300 }
4301 
4302 /**
4303  * ice_load_pkg - load/reload the DDP Package file
4304  * @firmware: firmware structure when firmware requested or NULL for reload
4305  * @pf: pointer to the PF instance
4306  *
4307  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4308  * initialize HW tables.
4309  */
4310 static void
4311 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4312 {
4313 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4314 	struct device *dev = ice_pf_to_dev(pf);
4315 	struct ice_hw *hw = &pf->hw;
4316 
4317 	/* Load DDP Package */
4318 	if (firmware && !hw->pkg_copy) {
4319 		state = ice_copy_and_init_pkg(hw, firmware->data,
4320 					      firmware->size);
4321 		ice_log_pkg_init(hw, state);
4322 	} else if (!firmware && hw->pkg_copy) {
4323 		/* Reload package during rebuild after CORER/GLOBR reset */
4324 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4325 		ice_log_pkg_init(hw, state);
4326 	} else {
4327 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4328 	}
4329 
4330 	if (!ice_is_init_pkg_successful(state)) {
4331 		/* Safe Mode */
4332 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4333 		return;
4334 	}
4335 
4336 	/* Successful download package is the precondition for advanced
4337 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4338 	 */
4339 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4340 }
4341 
4342 /**
4343  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4344  * @pf: pointer to the PF structure
4345  *
4346  * There is no error returned here because the driver should be able to handle
4347  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4348  * specifically with Tx.
4349  */
4350 static void ice_verify_cacheline_size(struct ice_pf *pf)
4351 {
4352 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4353 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4354 			 ICE_CACHE_LINE_BYTES);
4355 }
4356 
4357 /**
4358  * ice_send_version - update firmware with driver version
4359  * @pf: PF struct
4360  *
4361  * Returns 0 on success, else error code
4362  */
4363 static int ice_send_version(struct ice_pf *pf)
4364 {
4365 	struct ice_driver_ver dv;
4366 
4367 	dv.major_ver = 0xff;
4368 	dv.minor_ver = 0xff;
4369 	dv.build_ver = 0xff;
4370 	dv.subbuild_ver = 0;
4371 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4372 		sizeof(dv.driver_string));
4373 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4374 }
4375 
4376 /**
4377  * ice_init_fdir - Initialize flow director VSI and configuration
4378  * @pf: pointer to the PF instance
4379  *
4380  * returns 0 on success, negative on error
4381  */
4382 static int ice_init_fdir(struct ice_pf *pf)
4383 {
4384 	struct device *dev = ice_pf_to_dev(pf);
4385 	struct ice_vsi *ctrl_vsi;
4386 	int err;
4387 
4388 	/* Side Band Flow Director needs to have a control VSI.
4389 	 * Allocate it and store it in the PF.
4390 	 */
4391 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4392 	if (!ctrl_vsi) {
4393 		dev_dbg(dev, "could not create control VSI\n");
4394 		return -ENOMEM;
4395 	}
4396 
4397 	err = ice_vsi_open_ctrl(ctrl_vsi);
4398 	if (err) {
4399 		dev_dbg(dev, "could not open control VSI\n");
4400 		goto err_vsi_open;
4401 	}
4402 
4403 	mutex_init(&pf->hw.fdir_fltr_lock);
4404 
4405 	err = ice_fdir_create_dflt_rules(pf);
4406 	if (err)
4407 		goto err_fdir_rule;
4408 
4409 	return 0;
4410 
4411 err_fdir_rule:
4412 	ice_fdir_release_flows(&pf->hw);
4413 	ice_vsi_close(ctrl_vsi);
4414 err_vsi_open:
4415 	ice_vsi_release(ctrl_vsi);
4416 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4417 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4418 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4419 	}
4420 	return err;
4421 }
4422 
4423 /**
4424  * ice_get_opt_fw_name - return optional firmware file name or NULL
4425  * @pf: pointer to the PF instance
4426  */
4427 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4428 {
4429 	/* Optional firmware name same as default with additional dash
4430 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4431 	 */
4432 	struct pci_dev *pdev = pf->pdev;
4433 	char *opt_fw_filename;
4434 	u64 dsn;
4435 
4436 	/* Determine the name of the optional file using the DSN (two
4437 	 * dwords following the start of the DSN Capability).
4438 	 */
4439 	dsn = pci_get_dsn(pdev);
4440 	if (!dsn)
4441 		return NULL;
4442 
4443 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4444 	if (!opt_fw_filename)
4445 		return NULL;
4446 
4447 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4448 		 ICE_DDP_PKG_PATH, dsn);
4449 
4450 	return opt_fw_filename;
4451 }
4452 
4453 /**
4454  * ice_request_fw - Device initialization routine
4455  * @pf: pointer to the PF instance
4456  */
4457 static void ice_request_fw(struct ice_pf *pf)
4458 {
4459 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4460 	const struct firmware *firmware = NULL;
4461 	struct device *dev = ice_pf_to_dev(pf);
4462 	int err = 0;
4463 
4464 	/* optional device-specific DDP (if present) overrides the default DDP
4465 	 * package file. kernel logs a debug message if the file doesn't exist,
4466 	 * and warning messages for other errors.
4467 	 */
4468 	if (opt_fw_filename) {
4469 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4470 		if (err) {
4471 			kfree(opt_fw_filename);
4472 			goto dflt_pkg_load;
4473 		}
4474 
4475 		/* request for firmware was successful. Download to device */
4476 		ice_load_pkg(firmware, pf);
4477 		kfree(opt_fw_filename);
4478 		release_firmware(firmware);
4479 		return;
4480 	}
4481 
4482 dflt_pkg_load:
4483 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4484 	if (err) {
4485 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4486 		return;
4487 	}
4488 
4489 	/* request for firmware was successful. Download to device */
4490 	ice_load_pkg(firmware, pf);
4491 	release_firmware(firmware);
4492 }
4493 
4494 /**
4495  * ice_print_wake_reason - show the wake up cause in the log
4496  * @pf: pointer to the PF struct
4497  */
4498 static void ice_print_wake_reason(struct ice_pf *pf)
4499 {
4500 	u32 wus = pf->wakeup_reason;
4501 	const char *wake_str;
4502 
4503 	/* if no wake event, nothing to print */
4504 	if (!wus)
4505 		return;
4506 
4507 	if (wus & PFPM_WUS_LNKC_M)
4508 		wake_str = "Link\n";
4509 	else if (wus & PFPM_WUS_MAG_M)
4510 		wake_str = "Magic Packet\n";
4511 	else if (wus & PFPM_WUS_MNG_M)
4512 		wake_str = "Management\n";
4513 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4514 		wake_str = "Firmware Reset\n";
4515 	else
4516 		wake_str = "Unknown\n";
4517 
4518 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4519 }
4520 
4521 /**
4522  * ice_register_netdev - register netdev and devlink port
4523  * @pf: pointer to the PF struct
4524  */
4525 static int ice_register_netdev(struct ice_pf *pf)
4526 {
4527 	struct ice_vsi *vsi;
4528 	int err = 0;
4529 
4530 	vsi = ice_get_main_vsi(pf);
4531 	if (!vsi || !vsi->netdev)
4532 		return -EIO;
4533 
4534 	err = register_netdev(vsi->netdev);
4535 	if (err)
4536 		goto err_register_netdev;
4537 
4538 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4539 	netif_carrier_off(vsi->netdev);
4540 	netif_tx_stop_all_queues(vsi->netdev);
4541 	err = ice_devlink_create_pf_port(pf);
4542 	if (err)
4543 		goto err_devlink_create;
4544 
4545 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4546 
4547 	return 0;
4548 err_devlink_create:
4549 	unregister_netdev(vsi->netdev);
4550 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4551 err_register_netdev:
4552 	free_netdev(vsi->netdev);
4553 	vsi->netdev = NULL;
4554 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4555 	return err;
4556 }
4557 
4558 /**
4559  * ice_probe - Device initialization routine
4560  * @pdev: PCI device information struct
4561  * @ent: entry in ice_pci_tbl
4562  *
4563  * Returns 0 on success, negative on failure
4564  */
4565 static int
4566 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4567 {
4568 	struct device *dev = &pdev->dev;
4569 	struct ice_pf *pf;
4570 	struct ice_hw *hw;
4571 	int i, err;
4572 
4573 	if (pdev->is_virtfn) {
4574 		dev_err(dev, "can't probe a virtual function\n");
4575 		return -EINVAL;
4576 	}
4577 
4578 	/* this driver uses devres, see
4579 	 * Documentation/driver-api/driver-model/devres.rst
4580 	 */
4581 	err = pcim_enable_device(pdev);
4582 	if (err)
4583 		return err;
4584 
4585 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4586 	if (err) {
4587 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4588 		return err;
4589 	}
4590 
4591 	pf = ice_allocate_pf(dev);
4592 	if (!pf)
4593 		return -ENOMEM;
4594 
4595 	/* initialize Auxiliary index to invalid value */
4596 	pf->aux_idx = -1;
4597 
4598 	/* set up for high or low DMA */
4599 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4600 	if (err) {
4601 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4602 		return err;
4603 	}
4604 
4605 	pci_enable_pcie_error_reporting(pdev);
4606 	pci_set_master(pdev);
4607 
4608 	pf->pdev = pdev;
4609 	pci_set_drvdata(pdev, pf);
4610 	set_bit(ICE_DOWN, pf->state);
4611 	/* Disable service task until DOWN bit is cleared */
4612 	set_bit(ICE_SERVICE_DIS, pf->state);
4613 
4614 	hw = &pf->hw;
4615 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4616 	pci_save_state(pdev);
4617 
4618 	hw->back = pf;
4619 	hw->vendor_id = pdev->vendor;
4620 	hw->device_id = pdev->device;
4621 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4622 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4623 	hw->subsystem_device_id = pdev->subsystem_device;
4624 	hw->bus.device = PCI_SLOT(pdev->devfn);
4625 	hw->bus.func = PCI_FUNC(pdev->devfn);
4626 	ice_set_ctrlq_len(hw);
4627 
4628 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4629 
4630 #ifndef CONFIG_DYNAMIC_DEBUG
4631 	if (debug < -1)
4632 		hw->debug_mask = debug;
4633 #endif
4634 
4635 	err = ice_init_hw(hw);
4636 	if (err) {
4637 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4638 		err = -EIO;
4639 		goto err_exit_unroll;
4640 	}
4641 
4642 	ice_init_feature_support(pf);
4643 
4644 	ice_request_fw(pf);
4645 
4646 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4647 	 * set in pf->state, which will cause ice_is_safe_mode to return
4648 	 * true
4649 	 */
4650 	if (ice_is_safe_mode(pf)) {
4651 		/* we already got function/device capabilities but these don't
4652 		 * reflect what the driver needs to do in safe mode. Instead of
4653 		 * adding conditional logic everywhere to ignore these
4654 		 * device/function capabilities, override them.
4655 		 */
4656 		ice_set_safe_mode_caps(hw);
4657 	}
4658 
4659 	err = ice_init_pf(pf);
4660 	if (err) {
4661 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4662 		goto err_init_pf_unroll;
4663 	}
4664 
4665 	ice_devlink_init_regions(pf);
4666 
4667 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4668 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4669 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4670 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4671 	i = 0;
4672 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4673 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4674 			pf->hw.tnl.valid_count[TNL_VXLAN];
4675 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4676 			UDP_TUNNEL_TYPE_VXLAN;
4677 		i++;
4678 	}
4679 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4680 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4681 			pf->hw.tnl.valid_count[TNL_GENEVE];
4682 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4683 			UDP_TUNNEL_TYPE_GENEVE;
4684 		i++;
4685 	}
4686 
4687 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4688 	if (!pf->num_alloc_vsi) {
4689 		err = -EIO;
4690 		goto err_init_pf_unroll;
4691 	}
4692 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4693 		dev_warn(&pf->pdev->dev,
4694 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4695 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4696 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4697 	}
4698 
4699 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4700 			       GFP_KERNEL);
4701 	if (!pf->vsi) {
4702 		err = -ENOMEM;
4703 		goto err_init_pf_unroll;
4704 	}
4705 
4706 	err = ice_init_interrupt_scheme(pf);
4707 	if (err) {
4708 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4709 		err = -EIO;
4710 		goto err_init_vsi_unroll;
4711 	}
4712 
4713 	/* In case of MSIX we are going to setup the misc vector right here
4714 	 * to handle admin queue events etc. In case of legacy and MSI
4715 	 * the misc functionality and queue processing is combined in
4716 	 * the same vector and that gets setup at open.
4717 	 */
4718 	err = ice_req_irq_msix_misc(pf);
4719 	if (err) {
4720 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4721 		goto err_init_interrupt_unroll;
4722 	}
4723 
4724 	/* create switch struct for the switch element created by FW on boot */
4725 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4726 	if (!pf->first_sw) {
4727 		err = -ENOMEM;
4728 		goto err_msix_misc_unroll;
4729 	}
4730 
4731 	if (hw->evb_veb)
4732 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4733 	else
4734 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4735 
4736 	pf->first_sw->pf = pf;
4737 
4738 	/* record the sw_id available for later use */
4739 	pf->first_sw->sw_id = hw->port_info->sw_id;
4740 
4741 	err = ice_setup_pf_sw(pf);
4742 	if (err) {
4743 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4744 		goto err_alloc_sw_unroll;
4745 	}
4746 
4747 	clear_bit(ICE_SERVICE_DIS, pf->state);
4748 
4749 	/* tell the firmware we are up */
4750 	err = ice_send_version(pf);
4751 	if (err) {
4752 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4753 			UTS_RELEASE, err);
4754 		goto err_send_version_unroll;
4755 	}
4756 
4757 	/* since everything is good, start the service timer */
4758 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4759 
4760 	err = ice_init_link_events(pf->hw.port_info);
4761 	if (err) {
4762 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4763 		goto err_send_version_unroll;
4764 	}
4765 
4766 	/* not a fatal error if this fails */
4767 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4768 	if (err)
4769 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4770 
4771 	/* not a fatal error if this fails */
4772 	err = ice_update_link_info(pf->hw.port_info);
4773 	if (err)
4774 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4775 
4776 	ice_init_link_dflt_override(pf->hw.port_info);
4777 
4778 	ice_check_link_cfg_err(pf,
4779 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4780 
4781 	/* if media available, initialize PHY settings */
4782 	if (pf->hw.port_info->phy.link_info.link_info &
4783 	    ICE_AQ_MEDIA_AVAILABLE) {
4784 		/* not a fatal error if this fails */
4785 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4786 		if (err)
4787 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4788 
4789 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4790 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4791 
4792 			if (vsi)
4793 				ice_configure_phy(vsi);
4794 		}
4795 	} else {
4796 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4797 	}
4798 
4799 	ice_verify_cacheline_size(pf);
4800 
4801 	/* Save wakeup reason register for later use */
4802 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4803 
4804 	/* check for a power management event */
4805 	ice_print_wake_reason(pf);
4806 
4807 	/* clear wake status, all bits */
4808 	wr32(hw, PFPM_WUS, U32_MAX);
4809 
4810 	/* Disable WoL at init, wait for user to enable */
4811 	device_set_wakeup_enable(dev, false);
4812 
4813 	if (ice_is_safe_mode(pf)) {
4814 		ice_set_safe_mode_vlan_cfg(pf);
4815 		goto probe_done;
4816 	}
4817 
4818 	/* initialize DDP driven features */
4819 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4820 		ice_ptp_init(pf);
4821 
4822 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4823 		ice_gnss_init(pf);
4824 
4825 	/* Note: Flow director init failure is non-fatal to load */
4826 	if (ice_init_fdir(pf))
4827 		dev_err(dev, "could not initialize flow director\n");
4828 
4829 	/* Note: DCB init failure is non-fatal to load */
4830 	if (ice_init_pf_dcb(pf, false)) {
4831 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4832 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4833 	} else {
4834 		ice_cfg_lldp_mib_change(&pf->hw, true);
4835 	}
4836 
4837 	if (ice_init_lag(pf))
4838 		dev_warn(dev, "Failed to init link aggregation support\n");
4839 
4840 	/* print PCI link speed and width */
4841 	pcie_print_link_status(pf->pdev);
4842 
4843 probe_done:
4844 	err = ice_register_netdev(pf);
4845 	if (err)
4846 		goto err_netdev_reg;
4847 
4848 	err = ice_devlink_register_params(pf);
4849 	if (err)
4850 		goto err_netdev_reg;
4851 
4852 	/* ready to go, so clear down state bit */
4853 	clear_bit(ICE_DOWN, pf->state);
4854 	if (ice_is_rdma_ena(pf)) {
4855 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4856 		if (pf->aux_idx < 0) {
4857 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4858 			err = -ENOMEM;
4859 			goto err_devlink_reg_param;
4860 		}
4861 
4862 		err = ice_init_rdma(pf);
4863 		if (err) {
4864 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4865 			err = -EIO;
4866 			goto err_init_aux_unroll;
4867 		}
4868 	} else {
4869 		dev_warn(dev, "RDMA is not supported on this device\n");
4870 	}
4871 
4872 	ice_devlink_register(pf);
4873 	return 0;
4874 
4875 err_init_aux_unroll:
4876 	pf->adev = NULL;
4877 	ida_free(&ice_aux_ida, pf->aux_idx);
4878 err_devlink_reg_param:
4879 	ice_devlink_unregister_params(pf);
4880 err_netdev_reg:
4881 err_send_version_unroll:
4882 	ice_vsi_release_all(pf);
4883 err_alloc_sw_unroll:
4884 	set_bit(ICE_SERVICE_DIS, pf->state);
4885 	set_bit(ICE_DOWN, pf->state);
4886 	devm_kfree(dev, pf->first_sw);
4887 err_msix_misc_unroll:
4888 	ice_free_irq_msix_misc(pf);
4889 err_init_interrupt_unroll:
4890 	ice_clear_interrupt_scheme(pf);
4891 err_init_vsi_unroll:
4892 	devm_kfree(dev, pf->vsi);
4893 err_init_pf_unroll:
4894 	ice_deinit_pf(pf);
4895 	ice_devlink_destroy_regions(pf);
4896 	ice_deinit_hw(hw);
4897 err_exit_unroll:
4898 	pci_disable_pcie_error_reporting(pdev);
4899 	pci_disable_device(pdev);
4900 	return err;
4901 }
4902 
4903 /**
4904  * ice_set_wake - enable or disable Wake on LAN
4905  * @pf: pointer to the PF struct
4906  *
4907  * Simple helper for WoL control
4908  */
4909 static void ice_set_wake(struct ice_pf *pf)
4910 {
4911 	struct ice_hw *hw = &pf->hw;
4912 	bool wol = pf->wol_ena;
4913 
4914 	/* clear wake state, otherwise new wake events won't fire */
4915 	wr32(hw, PFPM_WUS, U32_MAX);
4916 
4917 	/* enable / disable APM wake up, no RMW needed */
4918 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4919 
4920 	/* set magic packet filter enabled */
4921 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4922 }
4923 
4924 /**
4925  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4926  * @pf: pointer to the PF struct
4927  *
4928  * Issue firmware command to enable multicast magic wake, making
4929  * sure that any locally administered address (LAA) is used for
4930  * wake, and that PF reset doesn't undo the LAA.
4931  */
4932 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4933 {
4934 	struct device *dev = ice_pf_to_dev(pf);
4935 	struct ice_hw *hw = &pf->hw;
4936 	u8 mac_addr[ETH_ALEN];
4937 	struct ice_vsi *vsi;
4938 	int status;
4939 	u8 flags;
4940 
4941 	if (!pf->wol_ena)
4942 		return;
4943 
4944 	vsi = ice_get_main_vsi(pf);
4945 	if (!vsi)
4946 		return;
4947 
4948 	/* Get current MAC address in case it's an LAA */
4949 	if (vsi->netdev)
4950 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4951 	else
4952 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4953 
4954 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4955 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4956 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4957 
4958 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4959 	if (status)
4960 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4961 			status, ice_aq_str(hw->adminq.sq_last_status));
4962 }
4963 
4964 /**
4965  * ice_remove - Device removal routine
4966  * @pdev: PCI device information struct
4967  */
4968 static void ice_remove(struct pci_dev *pdev)
4969 {
4970 	struct ice_pf *pf = pci_get_drvdata(pdev);
4971 	int i;
4972 
4973 	ice_devlink_unregister(pf);
4974 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4975 		if (!ice_is_reset_in_progress(pf->state))
4976 			break;
4977 		msleep(100);
4978 	}
4979 
4980 	ice_tc_indir_block_remove(pf);
4981 
4982 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4983 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4984 		ice_free_vfs(pf);
4985 	}
4986 
4987 	ice_service_task_stop(pf);
4988 
4989 	ice_aq_cancel_waiting_tasks(pf);
4990 	ice_unplug_aux_dev(pf);
4991 	if (pf->aux_idx >= 0)
4992 		ida_free(&ice_aux_ida, pf->aux_idx);
4993 	ice_devlink_unregister_params(pf);
4994 	set_bit(ICE_DOWN, pf->state);
4995 
4996 	ice_deinit_lag(pf);
4997 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4998 		ice_ptp_release(pf);
4999 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5000 		ice_gnss_exit(pf);
5001 	if (!ice_is_safe_mode(pf))
5002 		ice_remove_arfs(pf);
5003 	ice_setup_mc_magic_wake(pf);
5004 	ice_vsi_release_all(pf);
5005 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5006 	ice_set_wake(pf);
5007 	ice_free_irq_msix_misc(pf);
5008 	ice_for_each_vsi(pf, i) {
5009 		if (!pf->vsi[i])
5010 			continue;
5011 		ice_vsi_free_q_vectors(pf->vsi[i]);
5012 	}
5013 	ice_deinit_pf(pf);
5014 	ice_devlink_destroy_regions(pf);
5015 	ice_deinit_hw(&pf->hw);
5016 
5017 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5018 	 * do it via ice_schedule_reset() since there is no need to rebuild
5019 	 * and the service task is already stopped.
5020 	 */
5021 	ice_reset(&pf->hw, ICE_RESET_PFR);
5022 	pci_wait_for_pending_transaction(pdev);
5023 	ice_clear_interrupt_scheme(pf);
5024 	pci_disable_pcie_error_reporting(pdev);
5025 	pci_disable_device(pdev);
5026 }
5027 
5028 /**
5029  * ice_shutdown - PCI callback for shutting down device
5030  * @pdev: PCI device information struct
5031  */
5032 static void ice_shutdown(struct pci_dev *pdev)
5033 {
5034 	struct ice_pf *pf = pci_get_drvdata(pdev);
5035 
5036 	ice_remove(pdev);
5037 
5038 	if (system_state == SYSTEM_POWER_OFF) {
5039 		pci_wake_from_d3(pdev, pf->wol_ena);
5040 		pci_set_power_state(pdev, PCI_D3hot);
5041 	}
5042 }
5043 
5044 #ifdef CONFIG_PM
5045 /**
5046  * ice_prepare_for_shutdown - prep for PCI shutdown
5047  * @pf: board private structure
5048  *
5049  * Inform or close all dependent features in prep for PCI device shutdown
5050  */
5051 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5052 {
5053 	struct ice_hw *hw = &pf->hw;
5054 	u32 v;
5055 
5056 	/* Notify VFs of impending reset */
5057 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5058 		ice_vc_notify_reset(pf);
5059 
5060 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5061 
5062 	/* disable the VSIs and their queues that are not already DOWN */
5063 	ice_pf_dis_all_vsi(pf, false);
5064 
5065 	ice_for_each_vsi(pf, v)
5066 		if (pf->vsi[v])
5067 			pf->vsi[v]->vsi_num = 0;
5068 
5069 	ice_shutdown_all_ctrlq(hw);
5070 }
5071 
5072 /**
5073  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5074  * @pf: board private structure to reinitialize
5075  *
5076  * This routine reinitialize interrupt scheme that was cleared during
5077  * power management suspend callback.
5078  *
5079  * This should be called during resume routine to re-allocate the q_vectors
5080  * and reacquire interrupts.
5081  */
5082 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5083 {
5084 	struct device *dev = ice_pf_to_dev(pf);
5085 	int ret, v;
5086 
5087 	/* Since we clear MSIX flag during suspend, we need to
5088 	 * set it back during resume...
5089 	 */
5090 
5091 	ret = ice_init_interrupt_scheme(pf);
5092 	if (ret) {
5093 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5094 		return ret;
5095 	}
5096 
5097 	/* Remap vectors and rings, after successful re-init interrupts */
5098 	ice_for_each_vsi(pf, v) {
5099 		if (!pf->vsi[v])
5100 			continue;
5101 
5102 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5103 		if (ret)
5104 			goto err_reinit;
5105 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5106 	}
5107 
5108 	ret = ice_req_irq_msix_misc(pf);
5109 	if (ret) {
5110 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5111 			ret);
5112 		goto err_reinit;
5113 	}
5114 
5115 	return 0;
5116 
5117 err_reinit:
5118 	while (v--)
5119 		if (pf->vsi[v])
5120 			ice_vsi_free_q_vectors(pf->vsi[v]);
5121 
5122 	return ret;
5123 }
5124 
5125 /**
5126  * ice_suspend
5127  * @dev: generic device information structure
5128  *
5129  * Power Management callback to quiesce the device and prepare
5130  * for D3 transition.
5131  */
5132 static int __maybe_unused ice_suspend(struct device *dev)
5133 {
5134 	struct pci_dev *pdev = to_pci_dev(dev);
5135 	struct ice_pf *pf;
5136 	int disabled, v;
5137 
5138 	pf = pci_get_drvdata(pdev);
5139 
5140 	if (!ice_pf_state_is_nominal(pf)) {
5141 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5142 		return -EBUSY;
5143 	}
5144 
5145 	/* Stop watchdog tasks until resume completion.
5146 	 * Even though it is most likely that the service task is
5147 	 * disabled if the device is suspended or down, the service task's
5148 	 * state is controlled by a different state bit, and we should
5149 	 * store and honor whatever state that bit is in at this point.
5150 	 */
5151 	disabled = ice_service_task_stop(pf);
5152 
5153 	ice_unplug_aux_dev(pf);
5154 
5155 	/* Already suspended?, then there is nothing to do */
5156 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5157 		if (!disabled)
5158 			ice_service_task_restart(pf);
5159 		return 0;
5160 	}
5161 
5162 	if (test_bit(ICE_DOWN, pf->state) ||
5163 	    ice_is_reset_in_progress(pf->state)) {
5164 		dev_err(dev, "can't suspend device in reset or already down\n");
5165 		if (!disabled)
5166 			ice_service_task_restart(pf);
5167 		return 0;
5168 	}
5169 
5170 	ice_setup_mc_magic_wake(pf);
5171 
5172 	ice_prepare_for_shutdown(pf);
5173 
5174 	ice_set_wake(pf);
5175 
5176 	/* Free vectors, clear the interrupt scheme and release IRQs
5177 	 * for proper hibernation, especially with large number of CPUs.
5178 	 * Otherwise hibernation might fail when mapping all the vectors back
5179 	 * to CPU0.
5180 	 */
5181 	ice_free_irq_msix_misc(pf);
5182 	ice_for_each_vsi(pf, v) {
5183 		if (!pf->vsi[v])
5184 			continue;
5185 		ice_vsi_free_q_vectors(pf->vsi[v]);
5186 	}
5187 	ice_clear_interrupt_scheme(pf);
5188 
5189 	pci_save_state(pdev);
5190 	pci_wake_from_d3(pdev, pf->wol_ena);
5191 	pci_set_power_state(pdev, PCI_D3hot);
5192 	return 0;
5193 }
5194 
5195 /**
5196  * ice_resume - PM callback for waking up from D3
5197  * @dev: generic device information structure
5198  */
5199 static int __maybe_unused ice_resume(struct device *dev)
5200 {
5201 	struct pci_dev *pdev = to_pci_dev(dev);
5202 	enum ice_reset_req reset_type;
5203 	struct ice_pf *pf;
5204 	struct ice_hw *hw;
5205 	int ret;
5206 
5207 	pci_set_power_state(pdev, PCI_D0);
5208 	pci_restore_state(pdev);
5209 	pci_save_state(pdev);
5210 
5211 	if (!pci_device_is_present(pdev))
5212 		return -ENODEV;
5213 
5214 	ret = pci_enable_device_mem(pdev);
5215 	if (ret) {
5216 		dev_err(dev, "Cannot enable device after suspend\n");
5217 		return ret;
5218 	}
5219 
5220 	pf = pci_get_drvdata(pdev);
5221 	hw = &pf->hw;
5222 
5223 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5224 	ice_print_wake_reason(pf);
5225 
5226 	/* We cleared the interrupt scheme when we suspended, so we need to
5227 	 * restore it now to resume device functionality.
5228 	 */
5229 	ret = ice_reinit_interrupt_scheme(pf);
5230 	if (ret)
5231 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5232 
5233 	clear_bit(ICE_DOWN, pf->state);
5234 	/* Now perform PF reset and rebuild */
5235 	reset_type = ICE_RESET_PFR;
5236 	/* re-enable service task for reset, but allow reset to schedule it */
5237 	clear_bit(ICE_SERVICE_DIS, pf->state);
5238 
5239 	if (ice_schedule_reset(pf, reset_type))
5240 		dev_err(dev, "Reset during resume failed.\n");
5241 
5242 	clear_bit(ICE_SUSPENDED, pf->state);
5243 	ice_service_task_restart(pf);
5244 
5245 	/* Restart the service task */
5246 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5247 
5248 	return 0;
5249 }
5250 #endif /* CONFIG_PM */
5251 
5252 /**
5253  * ice_pci_err_detected - warning that PCI error has been detected
5254  * @pdev: PCI device information struct
5255  * @err: the type of PCI error
5256  *
5257  * Called to warn that something happened on the PCI bus and the error handling
5258  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5259  */
5260 static pci_ers_result_t
5261 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5262 {
5263 	struct ice_pf *pf = pci_get_drvdata(pdev);
5264 
5265 	if (!pf) {
5266 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5267 			__func__, err);
5268 		return PCI_ERS_RESULT_DISCONNECT;
5269 	}
5270 
5271 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5272 		ice_service_task_stop(pf);
5273 
5274 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5275 			set_bit(ICE_PFR_REQ, pf->state);
5276 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5277 		}
5278 	}
5279 
5280 	return PCI_ERS_RESULT_NEED_RESET;
5281 }
5282 
5283 /**
5284  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5285  * @pdev: PCI device information struct
5286  *
5287  * Called to determine if the driver can recover from the PCI slot reset by
5288  * using a register read to determine if the device is recoverable.
5289  */
5290 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5291 {
5292 	struct ice_pf *pf = pci_get_drvdata(pdev);
5293 	pci_ers_result_t result;
5294 	int err;
5295 	u32 reg;
5296 
5297 	err = pci_enable_device_mem(pdev);
5298 	if (err) {
5299 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5300 			err);
5301 		result = PCI_ERS_RESULT_DISCONNECT;
5302 	} else {
5303 		pci_set_master(pdev);
5304 		pci_restore_state(pdev);
5305 		pci_save_state(pdev);
5306 		pci_wake_from_d3(pdev, false);
5307 
5308 		/* Check for life */
5309 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5310 		if (!reg)
5311 			result = PCI_ERS_RESULT_RECOVERED;
5312 		else
5313 			result = PCI_ERS_RESULT_DISCONNECT;
5314 	}
5315 
5316 	return result;
5317 }
5318 
5319 /**
5320  * ice_pci_err_resume - restart operations after PCI error recovery
5321  * @pdev: PCI device information struct
5322  *
5323  * Called to allow the driver to bring things back up after PCI error and/or
5324  * reset recovery have finished
5325  */
5326 static void ice_pci_err_resume(struct pci_dev *pdev)
5327 {
5328 	struct ice_pf *pf = pci_get_drvdata(pdev);
5329 
5330 	if (!pf) {
5331 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5332 			__func__);
5333 		return;
5334 	}
5335 
5336 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5337 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5338 			__func__);
5339 		return;
5340 	}
5341 
5342 	ice_restore_all_vfs_msi_state(pdev);
5343 
5344 	ice_do_reset(pf, ICE_RESET_PFR);
5345 	ice_service_task_restart(pf);
5346 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5347 }
5348 
5349 /**
5350  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5351  * @pdev: PCI device information struct
5352  */
5353 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5354 {
5355 	struct ice_pf *pf = pci_get_drvdata(pdev);
5356 
5357 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5358 		ice_service_task_stop(pf);
5359 
5360 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5361 			set_bit(ICE_PFR_REQ, pf->state);
5362 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5363 		}
5364 	}
5365 }
5366 
5367 /**
5368  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5369  * @pdev: PCI device information struct
5370  */
5371 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5372 {
5373 	ice_pci_err_resume(pdev);
5374 }
5375 
5376 /* ice_pci_tbl - PCI Device ID Table
5377  *
5378  * Wildcard entries (PCI_ANY_ID) should come last
5379  * Last entry must be all 0s
5380  *
5381  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5382  *   Class, Class Mask, private data (not used) }
5383  */
5384 static const struct pci_device_id ice_pci_tbl[] = {
5385 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5386 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5387 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5388 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5389 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5390 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5391 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5392 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5393 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5394 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5395 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5396 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5397 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5398 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5399 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5400 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5401 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5402 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5403 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5404 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5405 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5406 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5407 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5408 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5409 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5410 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5411 	/* required last entry */
5412 	{ 0, }
5413 };
5414 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5415 
5416 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5417 
5418 static const struct pci_error_handlers ice_pci_err_handler = {
5419 	.error_detected = ice_pci_err_detected,
5420 	.slot_reset = ice_pci_err_slot_reset,
5421 	.reset_prepare = ice_pci_err_reset_prepare,
5422 	.reset_done = ice_pci_err_reset_done,
5423 	.resume = ice_pci_err_resume
5424 };
5425 
5426 static struct pci_driver ice_driver = {
5427 	.name = KBUILD_MODNAME,
5428 	.id_table = ice_pci_tbl,
5429 	.probe = ice_probe,
5430 	.remove = ice_remove,
5431 #ifdef CONFIG_PM
5432 	.driver.pm = &ice_pm_ops,
5433 #endif /* CONFIG_PM */
5434 	.shutdown = ice_shutdown,
5435 	.sriov_configure = ice_sriov_configure,
5436 	.err_handler = &ice_pci_err_handler
5437 };
5438 
5439 /**
5440  * ice_module_init - Driver registration routine
5441  *
5442  * ice_module_init is the first routine called when the driver is
5443  * loaded. All it does is register with the PCI subsystem.
5444  */
5445 static int __init ice_module_init(void)
5446 {
5447 	int status;
5448 
5449 	pr_info("%s\n", ice_driver_string);
5450 	pr_info("%s\n", ice_copyright);
5451 
5452 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5453 	if (!ice_wq) {
5454 		pr_err("Failed to create workqueue\n");
5455 		return -ENOMEM;
5456 	}
5457 
5458 	status = pci_register_driver(&ice_driver);
5459 	if (status) {
5460 		pr_err("failed to register PCI driver, err %d\n", status);
5461 		destroy_workqueue(ice_wq);
5462 	}
5463 
5464 	return status;
5465 }
5466 module_init(ice_module_init);
5467 
5468 /**
5469  * ice_module_exit - Driver exit cleanup routine
5470  *
5471  * ice_module_exit is called just before the driver is removed
5472  * from memory.
5473  */
5474 static void __exit ice_module_exit(void)
5475 {
5476 	pci_unregister_driver(&ice_driver);
5477 	destroy_workqueue(ice_wq);
5478 	pr_info("module unloaded\n");
5479 }
5480 module_exit(ice_module_exit);
5481 
5482 /**
5483  * ice_set_mac_address - NDO callback to set MAC address
5484  * @netdev: network interface device structure
5485  * @pi: pointer to an address structure
5486  *
5487  * Returns 0 on success, negative on failure
5488  */
5489 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5490 {
5491 	struct ice_netdev_priv *np = netdev_priv(netdev);
5492 	struct ice_vsi *vsi = np->vsi;
5493 	struct ice_pf *pf = vsi->back;
5494 	struct ice_hw *hw = &pf->hw;
5495 	struct sockaddr *addr = pi;
5496 	u8 old_mac[ETH_ALEN];
5497 	u8 flags = 0;
5498 	u8 *mac;
5499 	int err;
5500 
5501 	mac = (u8 *)addr->sa_data;
5502 
5503 	if (!is_valid_ether_addr(mac))
5504 		return -EADDRNOTAVAIL;
5505 
5506 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5507 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5508 		return 0;
5509 	}
5510 
5511 	if (test_bit(ICE_DOWN, pf->state) ||
5512 	    ice_is_reset_in_progress(pf->state)) {
5513 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5514 			   mac);
5515 		return -EBUSY;
5516 	}
5517 
5518 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5519 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5520 			   mac);
5521 		return -EAGAIN;
5522 	}
5523 
5524 	netif_addr_lock_bh(netdev);
5525 	ether_addr_copy(old_mac, netdev->dev_addr);
5526 	/* change the netdev's MAC address */
5527 	eth_hw_addr_set(netdev, mac);
5528 	netif_addr_unlock_bh(netdev);
5529 
5530 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5531 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5532 	if (err && err != -ENOENT) {
5533 		err = -EADDRNOTAVAIL;
5534 		goto err_update_filters;
5535 	}
5536 
5537 	/* Add filter for new MAC. If filter exists, return success */
5538 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5539 	if (err == -EEXIST) {
5540 		/* Although this MAC filter is already present in hardware it's
5541 		 * possible in some cases (e.g. bonding) that dev_addr was
5542 		 * modified outside of the driver and needs to be restored back
5543 		 * to this value.
5544 		 */
5545 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5546 
5547 		return 0;
5548 	} else if (err) {
5549 		/* error if the new filter addition failed */
5550 		err = -EADDRNOTAVAIL;
5551 	}
5552 
5553 err_update_filters:
5554 	if (err) {
5555 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5556 			   mac);
5557 		netif_addr_lock_bh(netdev);
5558 		eth_hw_addr_set(netdev, old_mac);
5559 		netif_addr_unlock_bh(netdev);
5560 		return err;
5561 	}
5562 
5563 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5564 		   netdev->dev_addr);
5565 
5566 	/* write new MAC address to the firmware */
5567 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5568 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5569 	if (err) {
5570 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5571 			   mac, err);
5572 	}
5573 	return 0;
5574 }
5575 
5576 /**
5577  * ice_set_rx_mode - NDO callback to set the netdev filters
5578  * @netdev: network interface device structure
5579  */
5580 static void ice_set_rx_mode(struct net_device *netdev)
5581 {
5582 	struct ice_netdev_priv *np = netdev_priv(netdev);
5583 	struct ice_vsi *vsi = np->vsi;
5584 
5585 	if (!vsi)
5586 		return;
5587 
5588 	/* Set the flags to synchronize filters
5589 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5590 	 * flags
5591 	 */
5592 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5593 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5594 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5595 
5596 	/* schedule our worker thread which will take care of
5597 	 * applying the new filter changes
5598 	 */
5599 	ice_service_task_schedule(vsi->back);
5600 }
5601 
5602 /**
5603  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5604  * @netdev: network interface device structure
5605  * @queue_index: Queue ID
5606  * @maxrate: maximum bandwidth in Mbps
5607  */
5608 static int
5609 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5610 {
5611 	struct ice_netdev_priv *np = netdev_priv(netdev);
5612 	struct ice_vsi *vsi = np->vsi;
5613 	u16 q_handle;
5614 	int status;
5615 	u8 tc;
5616 
5617 	/* Validate maxrate requested is within permitted range */
5618 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5619 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5620 			   maxrate, queue_index);
5621 		return -EINVAL;
5622 	}
5623 
5624 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5625 	tc = ice_dcb_get_tc(vsi, queue_index);
5626 
5627 	/* Set BW back to default, when user set maxrate to 0 */
5628 	if (!maxrate)
5629 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5630 					       q_handle, ICE_MAX_BW);
5631 	else
5632 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5633 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5634 	if (status)
5635 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5636 			   status);
5637 
5638 	return status;
5639 }
5640 
5641 /**
5642  * ice_fdb_add - add an entry to the hardware database
5643  * @ndm: the input from the stack
5644  * @tb: pointer to array of nladdr (unused)
5645  * @dev: the net device pointer
5646  * @addr: the MAC address entry being added
5647  * @vid: VLAN ID
5648  * @flags: instructions from stack about fdb operation
5649  * @extack: netlink extended ack
5650  */
5651 static int
5652 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5653 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5654 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5655 {
5656 	int err;
5657 
5658 	if (vid) {
5659 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5660 		return -EINVAL;
5661 	}
5662 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5663 		netdev_err(dev, "FDB only supports static addresses\n");
5664 		return -EINVAL;
5665 	}
5666 
5667 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5668 		err = dev_uc_add_excl(dev, addr);
5669 	else if (is_multicast_ether_addr(addr))
5670 		err = dev_mc_add_excl(dev, addr);
5671 	else
5672 		err = -EINVAL;
5673 
5674 	/* Only return duplicate errors if NLM_F_EXCL is set */
5675 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5676 		err = 0;
5677 
5678 	return err;
5679 }
5680 
5681 /**
5682  * ice_fdb_del - delete an entry from the hardware database
5683  * @ndm: the input from the stack
5684  * @tb: pointer to array of nladdr (unused)
5685  * @dev: the net device pointer
5686  * @addr: the MAC address entry being added
5687  * @vid: VLAN ID
5688  * @extack: netlink extended ack
5689  */
5690 static int
5691 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5692 	    struct net_device *dev, const unsigned char *addr,
5693 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5694 {
5695 	int err;
5696 
5697 	if (ndm->ndm_state & NUD_PERMANENT) {
5698 		netdev_err(dev, "FDB only supports static addresses\n");
5699 		return -EINVAL;
5700 	}
5701 
5702 	if (is_unicast_ether_addr(addr))
5703 		err = dev_uc_del(dev, addr);
5704 	else if (is_multicast_ether_addr(addr))
5705 		err = dev_mc_del(dev, addr);
5706 	else
5707 		err = -EINVAL;
5708 
5709 	return err;
5710 }
5711 
5712 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5713 					 NETIF_F_HW_VLAN_CTAG_TX | \
5714 					 NETIF_F_HW_VLAN_STAG_RX | \
5715 					 NETIF_F_HW_VLAN_STAG_TX)
5716 
5717 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5718 					 NETIF_F_HW_VLAN_STAG_FILTER)
5719 
5720 /**
5721  * ice_fix_features - fix the netdev features flags based on device limitations
5722  * @netdev: ptr to the netdev that flags are being fixed on
5723  * @features: features that need to be checked and possibly fixed
5724  *
5725  * Make sure any fixups are made to features in this callback. This enables the
5726  * driver to not have to check unsupported configurations throughout the driver
5727  * because that's the responsiblity of this callback.
5728  *
5729  * Single VLAN Mode (SVM) Supported Features:
5730  *	NETIF_F_HW_VLAN_CTAG_FILTER
5731  *	NETIF_F_HW_VLAN_CTAG_RX
5732  *	NETIF_F_HW_VLAN_CTAG_TX
5733  *
5734  * Double VLAN Mode (DVM) Supported Features:
5735  *	NETIF_F_HW_VLAN_CTAG_FILTER
5736  *	NETIF_F_HW_VLAN_CTAG_RX
5737  *	NETIF_F_HW_VLAN_CTAG_TX
5738  *
5739  *	NETIF_F_HW_VLAN_STAG_FILTER
5740  *	NETIF_HW_VLAN_STAG_RX
5741  *	NETIF_HW_VLAN_STAG_TX
5742  *
5743  * Features that need fixing:
5744  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5745  *	These are mutually exlusive as the VSI context cannot support multiple
5746  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5747  *	is not done, then default to clearing the requested STAG offload
5748  *	settings.
5749  *
5750  *	All supported filtering has to be enabled or disabled together. For
5751  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5752  *	together. If this is not done, then default to VLAN filtering disabled.
5753  *	These are mutually exclusive as there is currently no way to
5754  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5755  *	prune rules.
5756  */
5757 static netdev_features_t
5758 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5759 {
5760 	struct ice_netdev_priv *np = netdev_priv(netdev);
5761 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5762 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5763 
5764 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5765 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5766 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5767 
5768 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5769 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5770 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5771 
5772 	if (req_vlan_fltr != cur_vlan_fltr) {
5773 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5774 			if (req_ctag && req_stag) {
5775 				features |= NETIF_VLAN_FILTERING_FEATURES;
5776 			} else if (!req_ctag && !req_stag) {
5777 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5778 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5779 				   (!cur_stag && req_stag && !cur_ctag)) {
5780 				features |= NETIF_VLAN_FILTERING_FEATURES;
5781 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5782 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5783 				   (cur_stag && !req_stag && cur_ctag)) {
5784 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5785 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5786 			}
5787 		} else {
5788 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5789 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5790 
5791 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5792 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5793 		}
5794 	}
5795 
5796 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5797 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5798 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5799 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5800 			      NETIF_F_HW_VLAN_STAG_TX);
5801 	}
5802 
5803 	return features;
5804 }
5805 
5806 /**
5807  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5808  * @vsi: PF's VSI
5809  * @features: features used to determine VLAN offload settings
5810  *
5811  * First, determine the vlan_ethertype based on the VLAN offload bits in
5812  * features. Then determine if stripping and insertion should be enabled or
5813  * disabled. Finally enable or disable VLAN stripping and insertion.
5814  */
5815 static int
5816 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5817 {
5818 	bool enable_stripping = true, enable_insertion = true;
5819 	struct ice_vsi_vlan_ops *vlan_ops;
5820 	int strip_err = 0, insert_err = 0;
5821 	u16 vlan_ethertype = 0;
5822 
5823 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5824 
5825 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5826 		vlan_ethertype = ETH_P_8021AD;
5827 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5828 		vlan_ethertype = ETH_P_8021Q;
5829 
5830 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5831 		enable_stripping = false;
5832 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5833 		enable_insertion = false;
5834 
5835 	if (enable_stripping)
5836 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5837 	else
5838 		strip_err = vlan_ops->dis_stripping(vsi);
5839 
5840 	if (enable_insertion)
5841 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5842 	else
5843 		insert_err = vlan_ops->dis_insertion(vsi);
5844 
5845 	if (strip_err || insert_err)
5846 		return -EIO;
5847 
5848 	return 0;
5849 }
5850 
5851 /**
5852  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5853  * @vsi: PF's VSI
5854  * @features: features used to determine VLAN filtering settings
5855  *
5856  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5857  * features.
5858  */
5859 static int
5860 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5861 {
5862 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5863 	int err = 0;
5864 
5865 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5866 	 * if either bit is set
5867 	 */
5868 	if (features &
5869 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5870 		err = vlan_ops->ena_rx_filtering(vsi);
5871 	else
5872 		err = vlan_ops->dis_rx_filtering(vsi);
5873 
5874 	return err;
5875 }
5876 
5877 /**
5878  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5879  * @netdev: ptr to the netdev being adjusted
5880  * @features: the feature set that the stack is suggesting
5881  *
5882  * Only update VLAN settings if the requested_vlan_features are different than
5883  * the current_vlan_features.
5884  */
5885 static int
5886 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5887 {
5888 	netdev_features_t current_vlan_features, requested_vlan_features;
5889 	struct ice_netdev_priv *np = netdev_priv(netdev);
5890 	struct ice_vsi *vsi = np->vsi;
5891 	int err;
5892 
5893 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5894 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5895 	if (current_vlan_features ^ requested_vlan_features) {
5896 		err = ice_set_vlan_offload_features(vsi, features);
5897 		if (err)
5898 			return err;
5899 	}
5900 
5901 	current_vlan_features = netdev->features &
5902 		NETIF_VLAN_FILTERING_FEATURES;
5903 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5904 	if (current_vlan_features ^ requested_vlan_features) {
5905 		err = ice_set_vlan_filtering_features(vsi, features);
5906 		if (err)
5907 			return err;
5908 	}
5909 
5910 	return 0;
5911 }
5912 
5913 /**
5914  * ice_set_features - set the netdev feature flags
5915  * @netdev: ptr to the netdev being adjusted
5916  * @features: the feature set that the stack is suggesting
5917  */
5918 static int
5919 ice_set_features(struct net_device *netdev, netdev_features_t features)
5920 {
5921 	struct ice_netdev_priv *np = netdev_priv(netdev);
5922 	struct ice_vsi *vsi = np->vsi;
5923 	struct ice_pf *pf = vsi->back;
5924 	int ret = 0;
5925 
5926 	/* Don't set any netdev advanced features with device in Safe Mode */
5927 	if (ice_is_safe_mode(vsi->back)) {
5928 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5929 		return ret;
5930 	}
5931 
5932 	/* Do not change setting during reset */
5933 	if (ice_is_reset_in_progress(pf->state)) {
5934 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5935 		return -EBUSY;
5936 	}
5937 
5938 	/* Multiple features can be changed in one call so keep features in
5939 	 * separate if/else statements to guarantee each feature is checked
5940 	 */
5941 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5942 		ice_vsi_manage_rss_lut(vsi, true);
5943 	else if (!(features & NETIF_F_RXHASH) &&
5944 		 netdev->features & NETIF_F_RXHASH)
5945 		ice_vsi_manage_rss_lut(vsi, false);
5946 
5947 	ret = ice_set_vlan_features(netdev, features);
5948 	if (ret)
5949 		return ret;
5950 
5951 	if ((features & NETIF_F_NTUPLE) &&
5952 	    !(netdev->features & NETIF_F_NTUPLE)) {
5953 		ice_vsi_manage_fdir(vsi, true);
5954 		ice_init_arfs(vsi);
5955 	} else if (!(features & NETIF_F_NTUPLE) &&
5956 		 (netdev->features & NETIF_F_NTUPLE)) {
5957 		ice_vsi_manage_fdir(vsi, false);
5958 		ice_clear_arfs(vsi);
5959 	}
5960 
5961 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5962 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5963 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5964 		return -EACCES;
5965 	}
5966 
5967 	if ((features & NETIF_F_HW_TC) &&
5968 	    !(netdev->features & NETIF_F_HW_TC))
5969 		set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5970 	else
5971 		clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5972 
5973 	return 0;
5974 }
5975 
5976 /**
5977  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
5978  * @vsi: VSI to setup VLAN properties for
5979  */
5980 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5981 {
5982 	int err;
5983 
5984 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
5985 	if (err)
5986 		return err;
5987 
5988 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
5989 	if (err)
5990 		return err;
5991 
5992 	return ice_vsi_add_vlan_zero(vsi);
5993 }
5994 
5995 /**
5996  * ice_vsi_cfg - Setup the VSI
5997  * @vsi: the VSI being configured
5998  *
5999  * Return 0 on success and negative value on error
6000  */
6001 int ice_vsi_cfg(struct ice_vsi *vsi)
6002 {
6003 	int err;
6004 
6005 	if (vsi->netdev) {
6006 		ice_set_rx_mode(vsi->netdev);
6007 
6008 		err = ice_vsi_vlan_setup(vsi);
6009 
6010 		if (err)
6011 			return err;
6012 	}
6013 	ice_vsi_cfg_dcb_rings(vsi);
6014 
6015 	err = ice_vsi_cfg_lan_txqs(vsi);
6016 	if (!err && ice_is_xdp_ena_vsi(vsi))
6017 		err = ice_vsi_cfg_xdp_txqs(vsi);
6018 	if (!err)
6019 		err = ice_vsi_cfg_rxqs(vsi);
6020 
6021 	return err;
6022 }
6023 
6024 /* THEORY OF MODERATION:
6025  * The ice driver hardware works differently than the hardware that DIMLIB was
6026  * originally made for. ice hardware doesn't have packet count limits that
6027  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6028  * which is hard-coded to a limit of 250,000 ints/second.
6029  * If not using dynamic moderation, the INTRL value can be modified
6030  * by ethtool rx-usecs-high.
6031  */
6032 struct ice_dim {
6033 	/* the throttle rate for interrupts, basically worst case delay before
6034 	 * an initial interrupt fires, value is stored in microseconds.
6035 	 */
6036 	u16 itr;
6037 };
6038 
6039 /* Make a different profile for Rx that doesn't allow quite so aggressive
6040  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6041  * second.
6042  */
6043 static const struct ice_dim rx_profile[] = {
6044 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6045 	{8},    /* 125,000 ints/s */
6046 	{16},   /*  62,500 ints/s */
6047 	{62},   /*  16,129 ints/s */
6048 	{126}   /*   7,936 ints/s */
6049 };
6050 
6051 /* The transmit profile, which has the same sorts of values
6052  * as the previous struct
6053  */
6054 static const struct ice_dim tx_profile[] = {
6055 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6056 	{8},    /* 125,000 ints/s */
6057 	{40},   /*  16,125 ints/s */
6058 	{128},  /*   7,812 ints/s */
6059 	{256}   /*   3,906 ints/s */
6060 };
6061 
6062 static void ice_tx_dim_work(struct work_struct *work)
6063 {
6064 	struct ice_ring_container *rc;
6065 	struct dim *dim;
6066 	u16 itr;
6067 
6068 	dim = container_of(work, struct dim, work);
6069 	rc = (struct ice_ring_container *)dim->priv;
6070 
6071 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6072 
6073 	/* look up the values in our local table */
6074 	itr = tx_profile[dim->profile_ix].itr;
6075 
6076 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6077 	ice_write_itr(rc, itr);
6078 
6079 	dim->state = DIM_START_MEASURE;
6080 }
6081 
6082 static void ice_rx_dim_work(struct work_struct *work)
6083 {
6084 	struct ice_ring_container *rc;
6085 	struct dim *dim;
6086 	u16 itr;
6087 
6088 	dim = container_of(work, struct dim, work);
6089 	rc = (struct ice_ring_container *)dim->priv;
6090 
6091 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6092 
6093 	/* look up the values in our local table */
6094 	itr = rx_profile[dim->profile_ix].itr;
6095 
6096 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6097 	ice_write_itr(rc, itr);
6098 
6099 	dim->state = DIM_START_MEASURE;
6100 }
6101 
6102 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6103 
6104 /**
6105  * ice_init_moderation - set up interrupt moderation
6106  * @q_vector: the vector containing rings to be configured
6107  *
6108  * Set up interrupt moderation registers, with the intent to do the right thing
6109  * when called from reset or from probe, and whether or not dynamic moderation
6110  * is enabled or not. Take special care to write all the registers in both
6111  * dynamic moderation mode or not in order to make sure hardware is in a known
6112  * state.
6113  */
6114 static void ice_init_moderation(struct ice_q_vector *q_vector)
6115 {
6116 	struct ice_ring_container *rc;
6117 	bool tx_dynamic, rx_dynamic;
6118 
6119 	rc = &q_vector->tx;
6120 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6121 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6122 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6123 	rc->dim.priv = rc;
6124 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6125 
6126 	/* set the initial TX ITR to match the above */
6127 	ice_write_itr(rc, tx_dynamic ?
6128 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6129 
6130 	rc = &q_vector->rx;
6131 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6132 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6133 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6134 	rc->dim.priv = rc;
6135 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6136 
6137 	/* set the initial RX ITR to match the above */
6138 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6139 				       rc->itr_setting);
6140 
6141 	ice_set_q_vector_intrl(q_vector);
6142 }
6143 
6144 /**
6145  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6146  * @vsi: the VSI being configured
6147  */
6148 static void ice_napi_enable_all(struct ice_vsi *vsi)
6149 {
6150 	int q_idx;
6151 
6152 	if (!vsi->netdev)
6153 		return;
6154 
6155 	ice_for_each_q_vector(vsi, q_idx) {
6156 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6157 
6158 		ice_init_moderation(q_vector);
6159 
6160 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6161 			napi_enable(&q_vector->napi);
6162 	}
6163 }
6164 
6165 /**
6166  * ice_up_complete - Finish the last steps of bringing up a connection
6167  * @vsi: The VSI being configured
6168  *
6169  * Return 0 on success and negative value on error
6170  */
6171 static int ice_up_complete(struct ice_vsi *vsi)
6172 {
6173 	struct ice_pf *pf = vsi->back;
6174 	int err;
6175 
6176 	ice_vsi_cfg_msix(vsi);
6177 
6178 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6179 	 * Tx queue group list was configured and the context bits were
6180 	 * programmed using ice_vsi_cfg_txqs
6181 	 */
6182 	err = ice_vsi_start_all_rx_rings(vsi);
6183 	if (err)
6184 		return err;
6185 
6186 	clear_bit(ICE_VSI_DOWN, vsi->state);
6187 	ice_napi_enable_all(vsi);
6188 	ice_vsi_ena_irq(vsi);
6189 
6190 	if (vsi->port_info &&
6191 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6192 	    vsi->netdev) {
6193 		ice_print_link_msg(vsi, true);
6194 		netif_tx_start_all_queues(vsi->netdev);
6195 		netif_carrier_on(vsi->netdev);
6196 		if (!ice_is_e810(&pf->hw))
6197 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6198 	}
6199 
6200 	/* Perform an initial read of the statistics registers now to
6201 	 * set the baseline so counters are ready when interface is up
6202 	 */
6203 	ice_update_eth_stats(vsi);
6204 	ice_service_task_schedule(pf);
6205 
6206 	return 0;
6207 }
6208 
6209 /**
6210  * ice_up - Bring the connection back up after being down
6211  * @vsi: VSI being configured
6212  */
6213 int ice_up(struct ice_vsi *vsi)
6214 {
6215 	int err;
6216 
6217 	err = ice_vsi_cfg(vsi);
6218 	if (!err)
6219 		err = ice_up_complete(vsi);
6220 
6221 	return err;
6222 }
6223 
6224 /**
6225  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6226  * @syncp: pointer to u64_stats_sync
6227  * @stats: stats that pkts and bytes count will be taken from
6228  * @pkts: packets stats counter
6229  * @bytes: bytes stats counter
6230  *
6231  * This function fetches stats from the ring considering the atomic operations
6232  * that needs to be performed to read u64 values in 32 bit machine.
6233  */
6234 void
6235 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6236 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6237 {
6238 	unsigned int start;
6239 
6240 	do {
6241 		start = u64_stats_fetch_begin_irq(syncp);
6242 		*pkts = stats.pkts;
6243 		*bytes = stats.bytes;
6244 	} while (u64_stats_fetch_retry_irq(syncp, start));
6245 }
6246 
6247 /**
6248  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6249  * @vsi: the VSI to be updated
6250  * @vsi_stats: the stats struct to be updated
6251  * @rings: rings to work on
6252  * @count: number of rings
6253  */
6254 static void
6255 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6256 			     struct rtnl_link_stats64 *vsi_stats,
6257 			     struct ice_tx_ring **rings, u16 count)
6258 {
6259 	u16 i;
6260 
6261 	for (i = 0; i < count; i++) {
6262 		struct ice_tx_ring *ring;
6263 		u64 pkts = 0, bytes = 0;
6264 
6265 		ring = READ_ONCE(rings[i]);
6266 		if (!ring)
6267 			continue;
6268 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6269 		vsi_stats->tx_packets += pkts;
6270 		vsi_stats->tx_bytes += bytes;
6271 		vsi->tx_restart += ring->tx_stats.restart_q;
6272 		vsi->tx_busy += ring->tx_stats.tx_busy;
6273 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6274 	}
6275 }
6276 
6277 /**
6278  * ice_update_vsi_ring_stats - Update VSI stats counters
6279  * @vsi: the VSI to be updated
6280  */
6281 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6282 {
6283 	struct rtnl_link_stats64 *vsi_stats;
6284 	u64 pkts, bytes;
6285 	int i;
6286 
6287 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6288 	if (!vsi_stats)
6289 		return;
6290 
6291 	/* reset non-netdev (extended) stats */
6292 	vsi->tx_restart = 0;
6293 	vsi->tx_busy = 0;
6294 	vsi->tx_linearize = 0;
6295 	vsi->rx_buf_failed = 0;
6296 	vsi->rx_page_failed = 0;
6297 
6298 	rcu_read_lock();
6299 
6300 	/* update Tx rings counters */
6301 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6302 				     vsi->num_txq);
6303 
6304 	/* update Rx rings counters */
6305 	ice_for_each_rxq(vsi, i) {
6306 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6307 
6308 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6309 		vsi_stats->rx_packets += pkts;
6310 		vsi_stats->rx_bytes += bytes;
6311 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6312 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6313 	}
6314 
6315 	/* update XDP Tx rings counters */
6316 	if (ice_is_xdp_ena_vsi(vsi))
6317 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6318 					     vsi->num_xdp_txq);
6319 
6320 	rcu_read_unlock();
6321 
6322 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6323 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6324 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6325 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6326 
6327 	kfree(vsi_stats);
6328 }
6329 
6330 /**
6331  * ice_update_vsi_stats - Update VSI stats counters
6332  * @vsi: the VSI to be updated
6333  */
6334 void ice_update_vsi_stats(struct ice_vsi *vsi)
6335 {
6336 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6337 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6338 	struct ice_pf *pf = vsi->back;
6339 
6340 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6341 	    test_bit(ICE_CFG_BUSY, pf->state))
6342 		return;
6343 
6344 	/* get stats as recorded by Tx/Rx rings */
6345 	ice_update_vsi_ring_stats(vsi);
6346 
6347 	/* get VSI stats as recorded by the hardware */
6348 	ice_update_eth_stats(vsi);
6349 
6350 	cur_ns->tx_errors = cur_es->tx_errors;
6351 	cur_ns->rx_dropped = cur_es->rx_discards;
6352 	cur_ns->tx_dropped = cur_es->tx_discards;
6353 	cur_ns->multicast = cur_es->rx_multicast;
6354 
6355 	/* update some more netdev stats if this is main VSI */
6356 	if (vsi->type == ICE_VSI_PF) {
6357 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6358 		cur_ns->rx_errors = pf->stats.crc_errors +
6359 				    pf->stats.illegal_bytes +
6360 				    pf->stats.rx_len_errors +
6361 				    pf->stats.rx_undersize +
6362 				    pf->hw_csum_rx_error +
6363 				    pf->stats.rx_jabber +
6364 				    pf->stats.rx_fragments +
6365 				    pf->stats.rx_oversize;
6366 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6367 		/* record drops from the port level */
6368 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6369 	}
6370 }
6371 
6372 /**
6373  * ice_update_pf_stats - Update PF port stats counters
6374  * @pf: PF whose stats needs to be updated
6375  */
6376 void ice_update_pf_stats(struct ice_pf *pf)
6377 {
6378 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6379 	struct ice_hw *hw = &pf->hw;
6380 	u16 fd_ctr_base;
6381 	u8 port;
6382 
6383 	port = hw->port_info->lport;
6384 	prev_ps = &pf->stats_prev;
6385 	cur_ps = &pf->stats;
6386 
6387 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6388 			  &prev_ps->eth.rx_bytes,
6389 			  &cur_ps->eth.rx_bytes);
6390 
6391 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6392 			  &prev_ps->eth.rx_unicast,
6393 			  &cur_ps->eth.rx_unicast);
6394 
6395 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6396 			  &prev_ps->eth.rx_multicast,
6397 			  &cur_ps->eth.rx_multicast);
6398 
6399 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6400 			  &prev_ps->eth.rx_broadcast,
6401 			  &cur_ps->eth.rx_broadcast);
6402 
6403 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6404 			  &prev_ps->eth.rx_discards,
6405 			  &cur_ps->eth.rx_discards);
6406 
6407 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6408 			  &prev_ps->eth.tx_bytes,
6409 			  &cur_ps->eth.tx_bytes);
6410 
6411 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6412 			  &prev_ps->eth.tx_unicast,
6413 			  &cur_ps->eth.tx_unicast);
6414 
6415 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6416 			  &prev_ps->eth.tx_multicast,
6417 			  &cur_ps->eth.tx_multicast);
6418 
6419 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6420 			  &prev_ps->eth.tx_broadcast,
6421 			  &cur_ps->eth.tx_broadcast);
6422 
6423 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6424 			  &prev_ps->tx_dropped_link_down,
6425 			  &cur_ps->tx_dropped_link_down);
6426 
6427 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6428 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6429 
6430 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6431 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6432 
6433 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6434 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6435 
6436 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6437 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6438 
6439 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6440 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6441 
6442 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6443 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6444 
6445 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6446 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6447 
6448 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6449 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6450 
6451 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6452 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6453 
6454 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6455 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6456 
6457 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6458 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6459 
6460 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6461 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6462 
6463 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6464 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6465 
6466 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6467 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6468 
6469 	fd_ctr_base = hw->fd_ctr_base;
6470 
6471 	ice_stat_update40(hw,
6472 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6473 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6474 			  &cur_ps->fd_sb_match);
6475 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6476 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6477 
6478 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6479 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6480 
6481 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6482 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6483 
6484 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6485 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6486 
6487 	ice_update_dcb_stats(pf);
6488 
6489 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6490 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6491 
6492 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6493 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6494 
6495 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6496 			  &prev_ps->mac_local_faults,
6497 			  &cur_ps->mac_local_faults);
6498 
6499 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6500 			  &prev_ps->mac_remote_faults,
6501 			  &cur_ps->mac_remote_faults);
6502 
6503 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6504 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6505 
6506 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6507 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6508 
6509 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6510 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6511 
6512 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6513 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6514 
6515 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6516 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6517 
6518 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6519 
6520 	pf->stat_prev_loaded = true;
6521 }
6522 
6523 /**
6524  * ice_get_stats64 - get statistics for network device structure
6525  * @netdev: network interface device structure
6526  * @stats: main device statistics structure
6527  */
6528 static
6529 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6530 {
6531 	struct ice_netdev_priv *np = netdev_priv(netdev);
6532 	struct rtnl_link_stats64 *vsi_stats;
6533 	struct ice_vsi *vsi = np->vsi;
6534 
6535 	vsi_stats = &vsi->net_stats;
6536 
6537 	if (!vsi->num_txq || !vsi->num_rxq)
6538 		return;
6539 
6540 	/* netdev packet/byte stats come from ring counter. These are obtained
6541 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6542 	 * But, only call the update routine and read the registers if VSI is
6543 	 * not down.
6544 	 */
6545 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6546 		ice_update_vsi_ring_stats(vsi);
6547 	stats->tx_packets = vsi_stats->tx_packets;
6548 	stats->tx_bytes = vsi_stats->tx_bytes;
6549 	stats->rx_packets = vsi_stats->rx_packets;
6550 	stats->rx_bytes = vsi_stats->rx_bytes;
6551 
6552 	/* The rest of the stats can be read from the hardware but instead we
6553 	 * just return values that the watchdog task has already obtained from
6554 	 * the hardware.
6555 	 */
6556 	stats->multicast = vsi_stats->multicast;
6557 	stats->tx_errors = vsi_stats->tx_errors;
6558 	stats->tx_dropped = vsi_stats->tx_dropped;
6559 	stats->rx_errors = vsi_stats->rx_errors;
6560 	stats->rx_dropped = vsi_stats->rx_dropped;
6561 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6562 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6563 }
6564 
6565 /**
6566  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6567  * @vsi: VSI having NAPI disabled
6568  */
6569 static void ice_napi_disable_all(struct ice_vsi *vsi)
6570 {
6571 	int q_idx;
6572 
6573 	if (!vsi->netdev)
6574 		return;
6575 
6576 	ice_for_each_q_vector(vsi, q_idx) {
6577 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6578 
6579 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6580 			napi_disable(&q_vector->napi);
6581 
6582 		cancel_work_sync(&q_vector->tx.dim.work);
6583 		cancel_work_sync(&q_vector->rx.dim.work);
6584 	}
6585 }
6586 
6587 /**
6588  * ice_down - Shutdown the connection
6589  * @vsi: The VSI being stopped
6590  *
6591  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6592  */
6593 int ice_down(struct ice_vsi *vsi)
6594 {
6595 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6596 
6597 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6598 
6599 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6600 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6601 		if (!ice_is_e810(&vsi->back->hw))
6602 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6603 		netif_carrier_off(vsi->netdev);
6604 		netif_tx_disable(vsi->netdev);
6605 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6606 		ice_eswitch_stop_all_tx_queues(vsi->back);
6607 	}
6608 
6609 	ice_vsi_dis_irq(vsi);
6610 
6611 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6612 	if (tx_err)
6613 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6614 			   vsi->vsi_num, tx_err);
6615 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6616 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6617 		if (tx_err)
6618 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6619 				   vsi->vsi_num, tx_err);
6620 	}
6621 
6622 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6623 	if (rx_err)
6624 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6625 			   vsi->vsi_num, rx_err);
6626 
6627 	ice_napi_disable_all(vsi);
6628 
6629 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6630 		link_err = ice_force_phys_link_state(vsi, false);
6631 		if (link_err)
6632 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6633 				   vsi->vsi_num, link_err);
6634 	}
6635 
6636 	ice_for_each_txq(vsi, i)
6637 		ice_clean_tx_ring(vsi->tx_rings[i]);
6638 
6639 	ice_for_each_rxq(vsi, i)
6640 		ice_clean_rx_ring(vsi->rx_rings[i]);
6641 
6642 	if (tx_err || rx_err || link_err || vlan_err) {
6643 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6644 			   vsi->vsi_num, vsi->vsw->sw_id);
6645 		return -EIO;
6646 	}
6647 
6648 	return 0;
6649 }
6650 
6651 /**
6652  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6653  * @vsi: VSI having resources allocated
6654  *
6655  * Return 0 on success, negative on failure
6656  */
6657 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6658 {
6659 	int i, err = 0;
6660 
6661 	if (!vsi->num_txq) {
6662 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6663 			vsi->vsi_num);
6664 		return -EINVAL;
6665 	}
6666 
6667 	ice_for_each_txq(vsi, i) {
6668 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6669 
6670 		if (!ring)
6671 			return -EINVAL;
6672 
6673 		if (vsi->netdev)
6674 			ring->netdev = vsi->netdev;
6675 		err = ice_setup_tx_ring(ring);
6676 		if (err)
6677 			break;
6678 	}
6679 
6680 	return err;
6681 }
6682 
6683 /**
6684  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6685  * @vsi: VSI having resources allocated
6686  *
6687  * Return 0 on success, negative on failure
6688  */
6689 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6690 {
6691 	int i, err = 0;
6692 
6693 	if (!vsi->num_rxq) {
6694 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6695 			vsi->vsi_num);
6696 		return -EINVAL;
6697 	}
6698 
6699 	ice_for_each_rxq(vsi, i) {
6700 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6701 
6702 		if (!ring)
6703 			return -EINVAL;
6704 
6705 		if (vsi->netdev)
6706 			ring->netdev = vsi->netdev;
6707 		err = ice_setup_rx_ring(ring);
6708 		if (err)
6709 			break;
6710 	}
6711 
6712 	return err;
6713 }
6714 
6715 /**
6716  * ice_vsi_open_ctrl - open control VSI for use
6717  * @vsi: the VSI to open
6718  *
6719  * Initialization of the Control VSI
6720  *
6721  * Returns 0 on success, negative value on error
6722  */
6723 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6724 {
6725 	char int_name[ICE_INT_NAME_STR_LEN];
6726 	struct ice_pf *pf = vsi->back;
6727 	struct device *dev;
6728 	int err;
6729 
6730 	dev = ice_pf_to_dev(pf);
6731 	/* allocate descriptors */
6732 	err = ice_vsi_setup_tx_rings(vsi);
6733 	if (err)
6734 		goto err_setup_tx;
6735 
6736 	err = ice_vsi_setup_rx_rings(vsi);
6737 	if (err)
6738 		goto err_setup_rx;
6739 
6740 	err = ice_vsi_cfg(vsi);
6741 	if (err)
6742 		goto err_setup_rx;
6743 
6744 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6745 		 dev_driver_string(dev), dev_name(dev));
6746 	err = ice_vsi_req_irq_msix(vsi, int_name);
6747 	if (err)
6748 		goto err_setup_rx;
6749 
6750 	ice_vsi_cfg_msix(vsi);
6751 
6752 	err = ice_vsi_start_all_rx_rings(vsi);
6753 	if (err)
6754 		goto err_up_complete;
6755 
6756 	clear_bit(ICE_VSI_DOWN, vsi->state);
6757 	ice_vsi_ena_irq(vsi);
6758 
6759 	return 0;
6760 
6761 err_up_complete:
6762 	ice_down(vsi);
6763 err_setup_rx:
6764 	ice_vsi_free_rx_rings(vsi);
6765 err_setup_tx:
6766 	ice_vsi_free_tx_rings(vsi);
6767 
6768 	return err;
6769 }
6770 
6771 /**
6772  * ice_vsi_open - Called when a network interface is made active
6773  * @vsi: the VSI to open
6774  *
6775  * Initialization of the VSI
6776  *
6777  * Returns 0 on success, negative value on error
6778  */
6779 int ice_vsi_open(struct ice_vsi *vsi)
6780 {
6781 	char int_name[ICE_INT_NAME_STR_LEN];
6782 	struct ice_pf *pf = vsi->back;
6783 	int err;
6784 
6785 	/* allocate descriptors */
6786 	err = ice_vsi_setup_tx_rings(vsi);
6787 	if (err)
6788 		goto err_setup_tx;
6789 
6790 	err = ice_vsi_setup_rx_rings(vsi);
6791 	if (err)
6792 		goto err_setup_rx;
6793 
6794 	err = ice_vsi_cfg(vsi);
6795 	if (err)
6796 		goto err_setup_rx;
6797 
6798 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6799 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6800 	err = ice_vsi_req_irq_msix(vsi, int_name);
6801 	if (err)
6802 		goto err_setup_rx;
6803 
6804 	if (vsi->type == ICE_VSI_PF) {
6805 		/* Notify the stack of the actual queue counts. */
6806 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6807 		if (err)
6808 			goto err_set_qs;
6809 
6810 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6811 		if (err)
6812 			goto err_set_qs;
6813 	}
6814 
6815 	err = ice_up_complete(vsi);
6816 	if (err)
6817 		goto err_up_complete;
6818 
6819 	return 0;
6820 
6821 err_up_complete:
6822 	ice_down(vsi);
6823 err_set_qs:
6824 	ice_vsi_free_irq(vsi);
6825 err_setup_rx:
6826 	ice_vsi_free_rx_rings(vsi);
6827 err_setup_tx:
6828 	ice_vsi_free_tx_rings(vsi);
6829 
6830 	return err;
6831 }
6832 
6833 /**
6834  * ice_vsi_release_all - Delete all VSIs
6835  * @pf: PF from which all VSIs are being removed
6836  */
6837 static void ice_vsi_release_all(struct ice_pf *pf)
6838 {
6839 	int err, i;
6840 
6841 	if (!pf->vsi)
6842 		return;
6843 
6844 	ice_for_each_vsi(pf, i) {
6845 		if (!pf->vsi[i])
6846 			continue;
6847 
6848 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6849 			continue;
6850 
6851 		err = ice_vsi_release(pf->vsi[i]);
6852 		if (err)
6853 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6854 				i, err, pf->vsi[i]->vsi_num);
6855 	}
6856 }
6857 
6858 /**
6859  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6860  * @pf: pointer to the PF instance
6861  * @type: VSI type to rebuild
6862  *
6863  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6864  */
6865 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6866 {
6867 	struct device *dev = ice_pf_to_dev(pf);
6868 	int i, err;
6869 
6870 	ice_for_each_vsi(pf, i) {
6871 		struct ice_vsi *vsi = pf->vsi[i];
6872 
6873 		if (!vsi || vsi->type != type)
6874 			continue;
6875 
6876 		/* rebuild the VSI */
6877 		err = ice_vsi_rebuild(vsi, true);
6878 		if (err) {
6879 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6880 				err, vsi->idx, ice_vsi_type_str(type));
6881 			return err;
6882 		}
6883 
6884 		/* replay filters for the VSI */
6885 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6886 		if (err) {
6887 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6888 				err, vsi->idx, ice_vsi_type_str(type));
6889 			return err;
6890 		}
6891 
6892 		/* Re-map HW VSI number, using VSI handle that has been
6893 		 * previously validated in ice_replay_vsi() call above
6894 		 */
6895 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6896 
6897 		/* enable the VSI */
6898 		err = ice_ena_vsi(vsi, false);
6899 		if (err) {
6900 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6901 				err, vsi->idx, ice_vsi_type_str(type));
6902 			return err;
6903 		}
6904 
6905 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6906 			 ice_vsi_type_str(type));
6907 	}
6908 
6909 	return 0;
6910 }
6911 
6912 /**
6913  * ice_update_pf_netdev_link - Update PF netdev link status
6914  * @pf: pointer to the PF instance
6915  */
6916 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6917 {
6918 	bool link_up;
6919 	int i;
6920 
6921 	ice_for_each_vsi(pf, i) {
6922 		struct ice_vsi *vsi = pf->vsi[i];
6923 
6924 		if (!vsi || vsi->type != ICE_VSI_PF)
6925 			return;
6926 
6927 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6928 		if (link_up) {
6929 			netif_carrier_on(pf->vsi[i]->netdev);
6930 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6931 		} else {
6932 			netif_carrier_off(pf->vsi[i]->netdev);
6933 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6934 		}
6935 	}
6936 }
6937 
6938 /**
6939  * ice_rebuild - rebuild after reset
6940  * @pf: PF to rebuild
6941  * @reset_type: type of reset
6942  *
6943  * Do not rebuild VF VSI in this flow because that is already handled via
6944  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6945  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6946  * to reset/rebuild all the VF VSI twice.
6947  */
6948 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6949 {
6950 	struct device *dev = ice_pf_to_dev(pf);
6951 	struct ice_hw *hw = &pf->hw;
6952 	bool dvm;
6953 	int err;
6954 
6955 	if (test_bit(ICE_DOWN, pf->state))
6956 		goto clear_recovery;
6957 
6958 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6959 
6960 #define ICE_EMP_RESET_SLEEP_MS 5000
6961 	if (reset_type == ICE_RESET_EMPR) {
6962 		/* If an EMP reset has occurred, any previously pending flash
6963 		 * update will have completed. We no longer know whether or
6964 		 * not the NVM update EMP reset is restricted.
6965 		 */
6966 		pf->fw_emp_reset_disabled = false;
6967 
6968 		msleep(ICE_EMP_RESET_SLEEP_MS);
6969 	}
6970 
6971 	err = ice_init_all_ctrlq(hw);
6972 	if (err) {
6973 		dev_err(dev, "control queues init failed %d\n", err);
6974 		goto err_init_ctrlq;
6975 	}
6976 
6977 	/* if DDP was previously loaded successfully */
6978 	if (!ice_is_safe_mode(pf)) {
6979 		/* reload the SW DB of filter tables */
6980 		if (reset_type == ICE_RESET_PFR)
6981 			ice_fill_blk_tbls(hw);
6982 		else
6983 			/* Reload DDP Package after CORER/GLOBR reset */
6984 			ice_load_pkg(NULL, pf);
6985 	}
6986 
6987 	err = ice_clear_pf_cfg(hw);
6988 	if (err) {
6989 		dev_err(dev, "clear PF configuration failed %d\n", err);
6990 		goto err_init_ctrlq;
6991 	}
6992 
6993 	if (pf->first_sw->dflt_vsi_ena)
6994 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6995 	/* clear the default VSI configuration if it exists */
6996 	pf->first_sw->dflt_vsi = NULL;
6997 	pf->first_sw->dflt_vsi_ena = false;
6998 
6999 	ice_clear_pxe_mode(hw);
7000 
7001 	err = ice_init_nvm(hw);
7002 	if (err) {
7003 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7004 		goto err_init_ctrlq;
7005 	}
7006 
7007 	err = ice_get_caps(hw);
7008 	if (err) {
7009 		dev_err(dev, "ice_get_caps failed %d\n", err);
7010 		goto err_init_ctrlq;
7011 	}
7012 
7013 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7014 	if (err) {
7015 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7016 		goto err_init_ctrlq;
7017 	}
7018 
7019 	dvm = ice_is_dvm_ena(hw);
7020 
7021 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7022 	if (err)
7023 		goto err_init_ctrlq;
7024 
7025 	err = ice_sched_init_port(hw->port_info);
7026 	if (err)
7027 		goto err_sched_init_port;
7028 
7029 	/* start misc vector */
7030 	err = ice_req_irq_msix_misc(pf);
7031 	if (err) {
7032 		dev_err(dev, "misc vector setup failed: %d\n", err);
7033 		goto err_sched_init_port;
7034 	}
7035 
7036 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7037 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7038 		if (!rd32(hw, PFQF_FD_SIZE)) {
7039 			u16 unused, guar, b_effort;
7040 
7041 			guar = hw->func_caps.fd_fltr_guar;
7042 			b_effort = hw->func_caps.fd_fltr_best_effort;
7043 
7044 			/* force guaranteed filter pool for PF */
7045 			ice_alloc_fd_guar_item(hw, &unused, guar);
7046 			/* force shared filter pool for PF */
7047 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7048 		}
7049 	}
7050 
7051 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7052 		ice_dcb_rebuild(pf);
7053 
7054 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7055 	 * the VSI rebuild. If not, this causes the PTP link status events to
7056 	 * fail.
7057 	 */
7058 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7059 		ice_ptp_reset(pf);
7060 
7061 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7062 		ice_gnss_init(pf);
7063 
7064 	/* rebuild PF VSI */
7065 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7066 	if (err) {
7067 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7068 		goto err_vsi_rebuild;
7069 	}
7070 
7071 	/* configure PTP timestamping after VSI rebuild */
7072 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7073 		ice_ptp_cfg_timestamp(pf, false);
7074 
7075 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7076 	if (err) {
7077 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7078 		goto err_vsi_rebuild;
7079 	}
7080 
7081 	if (reset_type == ICE_RESET_PFR) {
7082 		err = ice_rebuild_channels(pf);
7083 		if (err) {
7084 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7085 				err);
7086 			goto err_vsi_rebuild;
7087 		}
7088 	}
7089 
7090 	/* If Flow Director is active */
7091 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7092 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7093 		if (err) {
7094 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7095 			goto err_vsi_rebuild;
7096 		}
7097 
7098 		/* replay HW Flow Director recipes */
7099 		if (hw->fdir_prof)
7100 			ice_fdir_replay_flows(hw);
7101 
7102 		/* replay Flow Director filters */
7103 		ice_fdir_replay_fltrs(pf);
7104 
7105 		ice_rebuild_arfs(pf);
7106 	}
7107 
7108 	ice_update_pf_netdev_link(pf);
7109 
7110 	/* tell the firmware we are up */
7111 	err = ice_send_version(pf);
7112 	if (err) {
7113 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7114 			err);
7115 		goto err_vsi_rebuild;
7116 	}
7117 
7118 	ice_replay_post(hw);
7119 
7120 	/* if we get here, reset flow is successful */
7121 	clear_bit(ICE_RESET_FAILED, pf->state);
7122 
7123 	ice_plug_aux_dev(pf);
7124 	return;
7125 
7126 err_vsi_rebuild:
7127 err_sched_init_port:
7128 	ice_sched_cleanup_all(hw);
7129 err_init_ctrlq:
7130 	ice_shutdown_all_ctrlq(hw);
7131 	set_bit(ICE_RESET_FAILED, pf->state);
7132 clear_recovery:
7133 	/* set this bit in PF state to control service task scheduling */
7134 	set_bit(ICE_NEEDS_RESTART, pf->state);
7135 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7136 }
7137 
7138 /**
7139  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7140  * @vsi: Pointer to VSI structure
7141  */
7142 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7143 {
7144 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7145 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7146 	else
7147 		return ICE_RXBUF_3072;
7148 }
7149 
7150 /**
7151  * ice_change_mtu - NDO callback to change the MTU
7152  * @netdev: network interface device structure
7153  * @new_mtu: new value for maximum frame size
7154  *
7155  * Returns 0 on success, negative on failure
7156  */
7157 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7158 {
7159 	struct ice_netdev_priv *np = netdev_priv(netdev);
7160 	struct ice_vsi *vsi = np->vsi;
7161 	struct ice_pf *pf = vsi->back;
7162 	u8 count = 0;
7163 	int err = 0;
7164 
7165 	if (new_mtu == (int)netdev->mtu) {
7166 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7167 		return 0;
7168 	}
7169 
7170 	if (ice_is_xdp_ena_vsi(vsi)) {
7171 		int frame_size = ice_max_xdp_frame_size(vsi);
7172 
7173 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7174 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7175 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7176 			return -EINVAL;
7177 		}
7178 	}
7179 
7180 	/* if a reset is in progress, wait for some time for it to complete */
7181 	do {
7182 		if (ice_is_reset_in_progress(pf->state)) {
7183 			count++;
7184 			usleep_range(1000, 2000);
7185 		} else {
7186 			break;
7187 		}
7188 
7189 	} while (count < 100);
7190 
7191 	if (count == 100) {
7192 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7193 		return -EBUSY;
7194 	}
7195 
7196 	netdev->mtu = (unsigned int)new_mtu;
7197 
7198 	/* if VSI is up, bring it down and then back up */
7199 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7200 		err = ice_down(vsi);
7201 		if (err) {
7202 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7203 			return err;
7204 		}
7205 
7206 		err = ice_up(vsi);
7207 		if (err) {
7208 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7209 			return err;
7210 		}
7211 	}
7212 
7213 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7214 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7215 
7216 	return err;
7217 }
7218 
7219 /**
7220  * ice_eth_ioctl - Access the hwtstamp interface
7221  * @netdev: network interface device structure
7222  * @ifr: interface request data
7223  * @cmd: ioctl command
7224  */
7225 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7226 {
7227 	struct ice_netdev_priv *np = netdev_priv(netdev);
7228 	struct ice_pf *pf = np->vsi->back;
7229 
7230 	switch (cmd) {
7231 	case SIOCGHWTSTAMP:
7232 		return ice_ptp_get_ts_config(pf, ifr);
7233 	case SIOCSHWTSTAMP:
7234 		return ice_ptp_set_ts_config(pf, ifr);
7235 	default:
7236 		return -EOPNOTSUPP;
7237 	}
7238 }
7239 
7240 /**
7241  * ice_aq_str - convert AQ err code to a string
7242  * @aq_err: the AQ error code to convert
7243  */
7244 const char *ice_aq_str(enum ice_aq_err aq_err)
7245 {
7246 	switch (aq_err) {
7247 	case ICE_AQ_RC_OK:
7248 		return "OK";
7249 	case ICE_AQ_RC_EPERM:
7250 		return "ICE_AQ_RC_EPERM";
7251 	case ICE_AQ_RC_ENOENT:
7252 		return "ICE_AQ_RC_ENOENT";
7253 	case ICE_AQ_RC_ENOMEM:
7254 		return "ICE_AQ_RC_ENOMEM";
7255 	case ICE_AQ_RC_EBUSY:
7256 		return "ICE_AQ_RC_EBUSY";
7257 	case ICE_AQ_RC_EEXIST:
7258 		return "ICE_AQ_RC_EEXIST";
7259 	case ICE_AQ_RC_EINVAL:
7260 		return "ICE_AQ_RC_EINVAL";
7261 	case ICE_AQ_RC_ENOSPC:
7262 		return "ICE_AQ_RC_ENOSPC";
7263 	case ICE_AQ_RC_ENOSYS:
7264 		return "ICE_AQ_RC_ENOSYS";
7265 	case ICE_AQ_RC_EMODE:
7266 		return "ICE_AQ_RC_EMODE";
7267 	case ICE_AQ_RC_ENOSEC:
7268 		return "ICE_AQ_RC_ENOSEC";
7269 	case ICE_AQ_RC_EBADSIG:
7270 		return "ICE_AQ_RC_EBADSIG";
7271 	case ICE_AQ_RC_ESVN:
7272 		return "ICE_AQ_RC_ESVN";
7273 	case ICE_AQ_RC_EBADMAN:
7274 		return "ICE_AQ_RC_EBADMAN";
7275 	case ICE_AQ_RC_EBADBUF:
7276 		return "ICE_AQ_RC_EBADBUF";
7277 	}
7278 
7279 	return "ICE_AQ_RC_UNKNOWN";
7280 }
7281 
7282 /**
7283  * ice_set_rss_lut - Set RSS LUT
7284  * @vsi: Pointer to VSI structure
7285  * @lut: Lookup table
7286  * @lut_size: Lookup table size
7287  *
7288  * Returns 0 on success, negative on failure
7289  */
7290 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7291 {
7292 	struct ice_aq_get_set_rss_lut_params params = {};
7293 	struct ice_hw *hw = &vsi->back->hw;
7294 	int status;
7295 
7296 	if (!lut)
7297 		return -EINVAL;
7298 
7299 	params.vsi_handle = vsi->idx;
7300 	params.lut_size = lut_size;
7301 	params.lut_type = vsi->rss_lut_type;
7302 	params.lut = lut;
7303 
7304 	status = ice_aq_set_rss_lut(hw, &params);
7305 	if (status)
7306 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7307 			status, ice_aq_str(hw->adminq.sq_last_status));
7308 
7309 	return status;
7310 }
7311 
7312 /**
7313  * ice_set_rss_key - Set RSS key
7314  * @vsi: Pointer to the VSI structure
7315  * @seed: RSS hash seed
7316  *
7317  * Returns 0 on success, negative on failure
7318  */
7319 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7320 {
7321 	struct ice_hw *hw = &vsi->back->hw;
7322 	int status;
7323 
7324 	if (!seed)
7325 		return -EINVAL;
7326 
7327 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7328 	if (status)
7329 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7330 			status, ice_aq_str(hw->adminq.sq_last_status));
7331 
7332 	return status;
7333 }
7334 
7335 /**
7336  * ice_get_rss_lut - Get RSS LUT
7337  * @vsi: Pointer to VSI structure
7338  * @lut: Buffer to store the lookup table entries
7339  * @lut_size: Size of buffer to store the lookup table entries
7340  *
7341  * Returns 0 on success, negative on failure
7342  */
7343 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7344 {
7345 	struct ice_aq_get_set_rss_lut_params params = {};
7346 	struct ice_hw *hw = &vsi->back->hw;
7347 	int status;
7348 
7349 	if (!lut)
7350 		return -EINVAL;
7351 
7352 	params.vsi_handle = vsi->idx;
7353 	params.lut_size = lut_size;
7354 	params.lut_type = vsi->rss_lut_type;
7355 	params.lut = lut;
7356 
7357 	status = ice_aq_get_rss_lut(hw, &params);
7358 	if (status)
7359 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7360 			status, ice_aq_str(hw->adminq.sq_last_status));
7361 
7362 	return status;
7363 }
7364 
7365 /**
7366  * ice_get_rss_key - Get RSS key
7367  * @vsi: Pointer to VSI structure
7368  * @seed: Buffer to store the key in
7369  *
7370  * Returns 0 on success, negative on failure
7371  */
7372 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7373 {
7374 	struct ice_hw *hw = &vsi->back->hw;
7375 	int status;
7376 
7377 	if (!seed)
7378 		return -EINVAL;
7379 
7380 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7381 	if (status)
7382 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7383 			status, ice_aq_str(hw->adminq.sq_last_status));
7384 
7385 	return status;
7386 }
7387 
7388 /**
7389  * ice_bridge_getlink - Get the hardware bridge mode
7390  * @skb: skb buff
7391  * @pid: process ID
7392  * @seq: RTNL message seq
7393  * @dev: the netdev being configured
7394  * @filter_mask: filter mask passed in
7395  * @nlflags: netlink flags passed in
7396  *
7397  * Return the bridge mode (VEB/VEPA)
7398  */
7399 static int
7400 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7401 		   struct net_device *dev, u32 filter_mask, int nlflags)
7402 {
7403 	struct ice_netdev_priv *np = netdev_priv(dev);
7404 	struct ice_vsi *vsi = np->vsi;
7405 	struct ice_pf *pf = vsi->back;
7406 	u16 bmode;
7407 
7408 	bmode = pf->first_sw->bridge_mode;
7409 
7410 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7411 				       filter_mask, NULL);
7412 }
7413 
7414 /**
7415  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7416  * @vsi: Pointer to VSI structure
7417  * @bmode: Hardware bridge mode (VEB/VEPA)
7418  *
7419  * Returns 0 on success, negative on failure
7420  */
7421 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7422 {
7423 	struct ice_aqc_vsi_props *vsi_props;
7424 	struct ice_hw *hw = &vsi->back->hw;
7425 	struct ice_vsi_ctx *ctxt;
7426 	int ret;
7427 
7428 	vsi_props = &vsi->info;
7429 
7430 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7431 	if (!ctxt)
7432 		return -ENOMEM;
7433 
7434 	ctxt->info = vsi->info;
7435 
7436 	if (bmode == BRIDGE_MODE_VEB)
7437 		/* change from VEPA to VEB mode */
7438 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7439 	else
7440 		/* change from VEB to VEPA mode */
7441 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7442 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7443 
7444 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7445 	if (ret) {
7446 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7447 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7448 		goto out;
7449 	}
7450 	/* Update sw flags for book keeping */
7451 	vsi_props->sw_flags = ctxt->info.sw_flags;
7452 
7453 out:
7454 	kfree(ctxt);
7455 	return ret;
7456 }
7457 
7458 /**
7459  * ice_bridge_setlink - Set the hardware bridge mode
7460  * @dev: the netdev being configured
7461  * @nlh: RTNL message
7462  * @flags: bridge setlink flags
7463  * @extack: netlink extended ack
7464  *
7465  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7466  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7467  * not already set for all VSIs connected to this switch. And also update the
7468  * unicast switch filter rules for the corresponding switch of the netdev.
7469  */
7470 static int
7471 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7472 		   u16 __always_unused flags,
7473 		   struct netlink_ext_ack __always_unused *extack)
7474 {
7475 	struct ice_netdev_priv *np = netdev_priv(dev);
7476 	struct ice_pf *pf = np->vsi->back;
7477 	struct nlattr *attr, *br_spec;
7478 	struct ice_hw *hw = &pf->hw;
7479 	struct ice_sw *pf_sw;
7480 	int rem, v, err = 0;
7481 
7482 	pf_sw = pf->first_sw;
7483 	/* find the attribute in the netlink message */
7484 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7485 
7486 	nla_for_each_nested(attr, br_spec, rem) {
7487 		__u16 mode;
7488 
7489 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7490 			continue;
7491 		mode = nla_get_u16(attr);
7492 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7493 			return -EINVAL;
7494 		/* Continue  if bridge mode is not being flipped */
7495 		if (mode == pf_sw->bridge_mode)
7496 			continue;
7497 		/* Iterates through the PF VSI list and update the loopback
7498 		 * mode of the VSI
7499 		 */
7500 		ice_for_each_vsi(pf, v) {
7501 			if (!pf->vsi[v])
7502 				continue;
7503 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7504 			if (err)
7505 				return err;
7506 		}
7507 
7508 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7509 		/* Update the unicast switch filter rules for the corresponding
7510 		 * switch of the netdev
7511 		 */
7512 		err = ice_update_sw_rule_bridge_mode(hw);
7513 		if (err) {
7514 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7515 				   mode, err,
7516 				   ice_aq_str(hw->adminq.sq_last_status));
7517 			/* revert hw->evb_veb */
7518 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7519 			return err;
7520 		}
7521 
7522 		pf_sw->bridge_mode = mode;
7523 	}
7524 
7525 	return 0;
7526 }
7527 
7528 /**
7529  * ice_tx_timeout - Respond to a Tx Hang
7530  * @netdev: network interface device structure
7531  * @txqueue: Tx queue
7532  */
7533 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7534 {
7535 	struct ice_netdev_priv *np = netdev_priv(netdev);
7536 	struct ice_tx_ring *tx_ring = NULL;
7537 	struct ice_vsi *vsi = np->vsi;
7538 	struct ice_pf *pf = vsi->back;
7539 	u32 i;
7540 
7541 	pf->tx_timeout_count++;
7542 
7543 	/* Check if PFC is enabled for the TC to which the queue belongs
7544 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7545 	 * need to reset and rebuild
7546 	 */
7547 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7548 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7549 			 txqueue);
7550 		return;
7551 	}
7552 
7553 	/* now that we have an index, find the tx_ring struct */
7554 	ice_for_each_txq(vsi, i)
7555 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7556 			if (txqueue == vsi->tx_rings[i]->q_index) {
7557 				tx_ring = vsi->tx_rings[i];
7558 				break;
7559 			}
7560 
7561 	/* Reset recovery level if enough time has elapsed after last timeout.
7562 	 * Also ensure no new reset action happens before next timeout period.
7563 	 */
7564 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7565 		pf->tx_timeout_recovery_level = 1;
7566 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7567 				       netdev->watchdog_timeo)))
7568 		return;
7569 
7570 	if (tx_ring) {
7571 		struct ice_hw *hw = &pf->hw;
7572 		u32 head, val = 0;
7573 
7574 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7575 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7576 		/* Read interrupt register */
7577 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7578 
7579 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7580 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7581 			    head, tx_ring->next_to_use, val);
7582 	}
7583 
7584 	pf->tx_timeout_last_recovery = jiffies;
7585 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7586 		    pf->tx_timeout_recovery_level, txqueue);
7587 
7588 	switch (pf->tx_timeout_recovery_level) {
7589 	case 1:
7590 		set_bit(ICE_PFR_REQ, pf->state);
7591 		break;
7592 	case 2:
7593 		set_bit(ICE_CORER_REQ, pf->state);
7594 		break;
7595 	case 3:
7596 		set_bit(ICE_GLOBR_REQ, pf->state);
7597 		break;
7598 	default:
7599 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7600 		set_bit(ICE_DOWN, pf->state);
7601 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7602 		set_bit(ICE_SERVICE_DIS, pf->state);
7603 		break;
7604 	}
7605 
7606 	ice_service_task_schedule(pf);
7607 	pf->tx_timeout_recovery_level++;
7608 }
7609 
7610 /**
7611  * ice_setup_tc_cls_flower - flower classifier offloads
7612  * @np: net device to configure
7613  * @filter_dev: device on which filter is added
7614  * @cls_flower: offload data
7615  */
7616 static int
7617 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7618 			struct net_device *filter_dev,
7619 			struct flow_cls_offload *cls_flower)
7620 {
7621 	struct ice_vsi *vsi = np->vsi;
7622 
7623 	if (cls_flower->common.chain_index)
7624 		return -EOPNOTSUPP;
7625 
7626 	switch (cls_flower->command) {
7627 	case FLOW_CLS_REPLACE:
7628 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7629 	case FLOW_CLS_DESTROY:
7630 		return ice_del_cls_flower(vsi, cls_flower);
7631 	default:
7632 		return -EINVAL;
7633 	}
7634 }
7635 
7636 /**
7637  * ice_setup_tc_block_cb - callback handler registered for TC block
7638  * @type: TC SETUP type
7639  * @type_data: TC flower offload data that contains user input
7640  * @cb_priv: netdev private data
7641  */
7642 static int
7643 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7644 {
7645 	struct ice_netdev_priv *np = cb_priv;
7646 
7647 	switch (type) {
7648 	case TC_SETUP_CLSFLOWER:
7649 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7650 					       type_data);
7651 	default:
7652 		return -EOPNOTSUPP;
7653 	}
7654 }
7655 
7656 /**
7657  * ice_validate_mqprio_qopt - Validate TCF input parameters
7658  * @vsi: Pointer to VSI
7659  * @mqprio_qopt: input parameters for mqprio queue configuration
7660  *
7661  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7662  * needed), and make sure user doesn't specify qcount and BW rate limit
7663  * for TCs, which are more than "num_tc"
7664  */
7665 static int
7666 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7667 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7668 {
7669 	u64 sum_max_rate = 0, sum_min_rate = 0;
7670 	int non_power_of_2_qcount = 0;
7671 	struct ice_pf *pf = vsi->back;
7672 	int max_rss_q_cnt = 0;
7673 	struct device *dev;
7674 	int i, speed;
7675 	u8 num_tc;
7676 
7677 	if (vsi->type != ICE_VSI_PF)
7678 		return -EINVAL;
7679 
7680 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7681 	    mqprio_qopt->qopt.num_tc < 1 ||
7682 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7683 		return -EINVAL;
7684 
7685 	dev = ice_pf_to_dev(pf);
7686 	vsi->ch_rss_size = 0;
7687 	num_tc = mqprio_qopt->qopt.num_tc;
7688 
7689 	for (i = 0; num_tc; i++) {
7690 		int qcount = mqprio_qopt->qopt.count[i];
7691 		u64 max_rate, min_rate, rem;
7692 
7693 		if (!qcount)
7694 			return -EINVAL;
7695 
7696 		if (is_power_of_2(qcount)) {
7697 			if (non_power_of_2_qcount &&
7698 			    qcount > non_power_of_2_qcount) {
7699 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7700 					qcount, non_power_of_2_qcount);
7701 				return -EINVAL;
7702 			}
7703 			if (qcount > max_rss_q_cnt)
7704 				max_rss_q_cnt = qcount;
7705 		} else {
7706 			if (non_power_of_2_qcount &&
7707 			    qcount != non_power_of_2_qcount) {
7708 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7709 					qcount, non_power_of_2_qcount);
7710 				return -EINVAL;
7711 			}
7712 			if (qcount < max_rss_q_cnt) {
7713 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7714 					qcount, max_rss_q_cnt);
7715 				return -EINVAL;
7716 			}
7717 			max_rss_q_cnt = qcount;
7718 			non_power_of_2_qcount = qcount;
7719 		}
7720 
7721 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7722 		 * converts the bandwidth rate limit into Bytes/s when
7723 		 * passing it down to the driver. So convert input bandwidth
7724 		 * from Bytes/s to Kbps
7725 		 */
7726 		max_rate = mqprio_qopt->max_rate[i];
7727 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7728 		sum_max_rate += max_rate;
7729 
7730 		/* min_rate is minimum guaranteed rate and it can't be zero */
7731 		min_rate = mqprio_qopt->min_rate[i];
7732 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7733 		sum_min_rate += min_rate;
7734 
7735 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7736 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7737 				min_rate, ICE_MIN_BW_LIMIT);
7738 			return -EINVAL;
7739 		}
7740 
7741 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7742 		if (rem) {
7743 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7744 				i, ICE_MIN_BW_LIMIT);
7745 			return -EINVAL;
7746 		}
7747 
7748 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7749 		if (rem) {
7750 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7751 				i, ICE_MIN_BW_LIMIT);
7752 			return -EINVAL;
7753 		}
7754 
7755 		/* min_rate can't be more than max_rate, except when max_rate
7756 		 * is zero (implies max_rate sought is max line rate). In such
7757 		 * a case min_rate can be more than max.
7758 		 */
7759 		if (max_rate && min_rate > max_rate) {
7760 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7761 				min_rate, max_rate);
7762 			return -EINVAL;
7763 		}
7764 
7765 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7766 			break;
7767 		if (mqprio_qopt->qopt.offset[i + 1] !=
7768 		    (mqprio_qopt->qopt.offset[i] + qcount))
7769 			return -EINVAL;
7770 	}
7771 	if (vsi->num_rxq <
7772 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7773 		return -EINVAL;
7774 	if (vsi->num_txq <
7775 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7776 		return -EINVAL;
7777 
7778 	speed = ice_get_link_speed_kbps(vsi);
7779 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7780 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7781 			sum_max_rate, speed);
7782 		return -EINVAL;
7783 	}
7784 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7785 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7786 			sum_min_rate, speed);
7787 		return -EINVAL;
7788 	}
7789 
7790 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7791 	vsi->ch_rss_size = max_rss_q_cnt;
7792 
7793 	return 0;
7794 }
7795 
7796 /**
7797  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7798  * @pf: ptr to PF device
7799  * @vsi: ptr to VSI
7800  */
7801 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7802 {
7803 	struct device *dev = ice_pf_to_dev(pf);
7804 	bool added = false;
7805 	struct ice_hw *hw;
7806 	int flow;
7807 
7808 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7809 		return -EINVAL;
7810 
7811 	hw = &pf->hw;
7812 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7813 		struct ice_fd_hw_prof *prof;
7814 		int tun, status;
7815 		u64 entry_h;
7816 
7817 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7818 		      hw->fdir_prof[flow]->cnt))
7819 			continue;
7820 
7821 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7822 			enum ice_flow_priority prio;
7823 			u64 prof_id;
7824 
7825 			/* add this VSI to FDir profile for this flow */
7826 			prio = ICE_FLOW_PRIO_NORMAL;
7827 			prof = hw->fdir_prof[flow];
7828 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7829 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7830 						    prof->vsi_h[0], vsi->idx,
7831 						    prio, prof->fdir_seg[tun],
7832 						    &entry_h);
7833 			if (status) {
7834 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7835 					vsi->idx, flow);
7836 				continue;
7837 			}
7838 
7839 			prof->entry_h[prof->cnt][tun] = entry_h;
7840 		}
7841 
7842 		/* store VSI for filter replay and delete */
7843 		prof->vsi_h[prof->cnt] = vsi->idx;
7844 		prof->cnt++;
7845 
7846 		added = true;
7847 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7848 			flow);
7849 	}
7850 
7851 	if (!added)
7852 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7853 
7854 	return 0;
7855 }
7856 
7857 /**
7858  * ice_add_channel - add a channel by adding VSI
7859  * @pf: ptr to PF device
7860  * @sw_id: underlying HW switching element ID
7861  * @ch: ptr to channel structure
7862  *
7863  * Add a channel (VSI) using add_vsi and queue_map
7864  */
7865 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7866 {
7867 	struct device *dev = ice_pf_to_dev(pf);
7868 	struct ice_vsi *vsi;
7869 
7870 	if (ch->type != ICE_VSI_CHNL) {
7871 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7872 		return -EINVAL;
7873 	}
7874 
7875 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7876 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7877 		dev_err(dev, "create chnl VSI failure\n");
7878 		return -EINVAL;
7879 	}
7880 
7881 	ice_add_vsi_to_fdir(pf, vsi);
7882 
7883 	ch->sw_id = sw_id;
7884 	ch->vsi_num = vsi->vsi_num;
7885 	ch->info.mapping_flags = vsi->info.mapping_flags;
7886 	ch->ch_vsi = vsi;
7887 	/* set the back pointer of channel for newly created VSI */
7888 	vsi->ch = ch;
7889 
7890 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7891 	       sizeof(vsi->info.q_mapping));
7892 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7893 	       sizeof(vsi->info.tc_mapping));
7894 
7895 	return 0;
7896 }
7897 
7898 /**
7899  * ice_chnl_cfg_res
7900  * @vsi: the VSI being setup
7901  * @ch: ptr to channel structure
7902  *
7903  * Configure channel specific resources such as rings, vector.
7904  */
7905 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7906 {
7907 	int i;
7908 
7909 	for (i = 0; i < ch->num_txq; i++) {
7910 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7911 		struct ice_ring_container *rc;
7912 		struct ice_tx_ring *tx_ring;
7913 		struct ice_rx_ring *rx_ring;
7914 
7915 		tx_ring = vsi->tx_rings[ch->base_q + i];
7916 		rx_ring = vsi->rx_rings[ch->base_q + i];
7917 		if (!tx_ring || !rx_ring)
7918 			continue;
7919 
7920 		/* setup ring being channel enabled */
7921 		tx_ring->ch = ch;
7922 		rx_ring->ch = ch;
7923 
7924 		/* following code block sets up vector specific attributes */
7925 		tx_q_vector = tx_ring->q_vector;
7926 		rx_q_vector = rx_ring->q_vector;
7927 		if (!tx_q_vector && !rx_q_vector)
7928 			continue;
7929 
7930 		if (tx_q_vector) {
7931 			tx_q_vector->ch = ch;
7932 			/* setup Tx and Rx ITR setting if DIM is off */
7933 			rc = &tx_q_vector->tx;
7934 			if (!ITR_IS_DYNAMIC(rc))
7935 				ice_write_itr(rc, rc->itr_setting);
7936 		}
7937 		if (rx_q_vector) {
7938 			rx_q_vector->ch = ch;
7939 			/* setup Tx and Rx ITR setting if DIM is off */
7940 			rc = &rx_q_vector->rx;
7941 			if (!ITR_IS_DYNAMIC(rc))
7942 				ice_write_itr(rc, rc->itr_setting);
7943 		}
7944 	}
7945 
7946 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7947 	 * GLINT_ITR register would have written to perform in-context
7948 	 * update, hence perform flush
7949 	 */
7950 	if (ch->num_txq || ch->num_rxq)
7951 		ice_flush(&vsi->back->hw);
7952 }
7953 
7954 /**
7955  * ice_cfg_chnl_all_res - configure channel resources
7956  * @vsi: pte to main_vsi
7957  * @ch: ptr to channel structure
7958  *
7959  * This function configures channel specific resources such as flow-director
7960  * counter index, and other resources such as queues, vectors, ITR settings
7961  */
7962 static void
7963 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7964 {
7965 	/* configure channel (aka ADQ) resources such as queues, vectors,
7966 	 * ITR settings for channel specific vectors and anything else
7967 	 */
7968 	ice_chnl_cfg_res(vsi, ch);
7969 }
7970 
7971 /**
7972  * ice_setup_hw_channel - setup new channel
7973  * @pf: ptr to PF device
7974  * @vsi: the VSI being setup
7975  * @ch: ptr to channel structure
7976  * @sw_id: underlying HW switching element ID
7977  * @type: type of channel to be created (VMDq2/VF)
7978  *
7979  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7980  * and configures Tx rings accordingly
7981  */
7982 static int
7983 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7984 		     struct ice_channel *ch, u16 sw_id, u8 type)
7985 {
7986 	struct device *dev = ice_pf_to_dev(pf);
7987 	int ret;
7988 
7989 	ch->base_q = vsi->next_base_q;
7990 	ch->type = type;
7991 
7992 	ret = ice_add_channel(pf, sw_id, ch);
7993 	if (ret) {
7994 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
7995 		return ret;
7996 	}
7997 
7998 	/* configure/setup ADQ specific resources */
7999 	ice_cfg_chnl_all_res(vsi, ch);
8000 
8001 	/* make sure to update the next_base_q so that subsequent channel's
8002 	 * (aka ADQ) VSI queue map is correct
8003 	 */
8004 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8005 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8006 		ch->num_rxq);
8007 
8008 	return 0;
8009 }
8010 
8011 /**
8012  * ice_setup_channel - setup new channel using uplink element
8013  * @pf: ptr to PF device
8014  * @vsi: the VSI being setup
8015  * @ch: ptr to channel structure
8016  *
8017  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8018  * and uplink switching element
8019  */
8020 static bool
8021 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8022 		  struct ice_channel *ch)
8023 {
8024 	struct device *dev = ice_pf_to_dev(pf);
8025 	u16 sw_id;
8026 	int ret;
8027 
8028 	if (vsi->type != ICE_VSI_PF) {
8029 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8030 		return false;
8031 	}
8032 
8033 	sw_id = pf->first_sw->sw_id;
8034 
8035 	/* create channel (VSI) */
8036 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8037 	if (ret) {
8038 		dev_err(dev, "failed to setup hw_channel\n");
8039 		return false;
8040 	}
8041 	dev_dbg(dev, "successfully created channel()\n");
8042 
8043 	return ch->ch_vsi ? true : false;
8044 }
8045 
8046 /**
8047  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8048  * @vsi: VSI to be configured
8049  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8050  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8051  */
8052 static int
8053 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8054 {
8055 	int err;
8056 
8057 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8058 	if (err)
8059 		return err;
8060 
8061 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8062 }
8063 
8064 /**
8065  * ice_create_q_channel - function to create channel
8066  * @vsi: VSI to be configured
8067  * @ch: ptr to channel (it contains channel specific params)
8068  *
8069  * This function creates channel (VSI) using num_queues specified by user,
8070  * reconfigs RSS if needed.
8071  */
8072 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8073 {
8074 	struct ice_pf *pf = vsi->back;
8075 	struct device *dev;
8076 
8077 	if (!ch)
8078 		return -EINVAL;
8079 
8080 	dev = ice_pf_to_dev(pf);
8081 	if (!ch->num_txq || !ch->num_rxq) {
8082 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8083 		return -EINVAL;
8084 	}
8085 
8086 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8087 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8088 			vsi->cnt_q_avail, ch->num_txq);
8089 		return -EINVAL;
8090 	}
8091 
8092 	if (!ice_setup_channel(pf, vsi, ch)) {
8093 		dev_info(dev, "Failed to setup channel\n");
8094 		return -EINVAL;
8095 	}
8096 	/* configure BW rate limit */
8097 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8098 		int ret;
8099 
8100 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8101 				       ch->min_tx_rate);
8102 		if (ret)
8103 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8104 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8105 		else
8106 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8107 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8108 	}
8109 
8110 	vsi->cnt_q_avail -= ch->num_txq;
8111 
8112 	return 0;
8113 }
8114 
8115 /**
8116  * ice_rem_all_chnl_fltrs - removes all channel filters
8117  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8118  *
8119  * Remove all advanced switch filters only if they are channel specific
8120  * tc-flower based filter
8121  */
8122 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8123 {
8124 	struct ice_tc_flower_fltr *fltr;
8125 	struct hlist_node *node;
8126 
8127 	/* to remove all channel filters, iterate an ordered list of filters */
8128 	hlist_for_each_entry_safe(fltr, node,
8129 				  &pf->tc_flower_fltr_list,
8130 				  tc_flower_node) {
8131 		struct ice_rule_query_data rule;
8132 		int status;
8133 
8134 		/* for now process only channel specific filters */
8135 		if (!ice_is_chnl_fltr(fltr))
8136 			continue;
8137 
8138 		rule.rid = fltr->rid;
8139 		rule.rule_id = fltr->rule_id;
8140 		rule.vsi_handle = fltr->dest_id;
8141 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8142 		if (status) {
8143 			if (status == -ENOENT)
8144 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8145 					rule.rule_id);
8146 			else
8147 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8148 					status);
8149 		} else if (fltr->dest_vsi) {
8150 			/* update advanced switch filter count */
8151 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8152 				u32 flags = fltr->flags;
8153 
8154 				fltr->dest_vsi->num_chnl_fltr--;
8155 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8156 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8157 					pf->num_dmac_chnl_fltrs--;
8158 			}
8159 		}
8160 
8161 		hlist_del(&fltr->tc_flower_node);
8162 		kfree(fltr);
8163 	}
8164 }
8165 
8166 /**
8167  * ice_remove_q_channels - Remove queue channels for the TCs
8168  * @vsi: VSI to be configured
8169  * @rem_fltr: delete advanced switch filter or not
8170  *
8171  * Remove queue channels for the TCs
8172  */
8173 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8174 {
8175 	struct ice_channel *ch, *ch_tmp;
8176 	struct ice_pf *pf = vsi->back;
8177 	int i;
8178 
8179 	/* remove all tc-flower based filter if they are channel filters only */
8180 	if (rem_fltr)
8181 		ice_rem_all_chnl_fltrs(pf);
8182 
8183 	/* remove ntuple filters since queue configuration is being changed */
8184 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8185 		struct ice_hw *hw = &pf->hw;
8186 
8187 		mutex_lock(&hw->fdir_fltr_lock);
8188 		ice_fdir_del_all_fltrs(vsi);
8189 		mutex_unlock(&hw->fdir_fltr_lock);
8190 	}
8191 
8192 	/* perform cleanup for channels if they exist */
8193 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8194 		struct ice_vsi *ch_vsi;
8195 
8196 		list_del(&ch->list);
8197 		ch_vsi = ch->ch_vsi;
8198 		if (!ch_vsi) {
8199 			kfree(ch);
8200 			continue;
8201 		}
8202 
8203 		/* Reset queue contexts */
8204 		for (i = 0; i < ch->num_rxq; i++) {
8205 			struct ice_tx_ring *tx_ring;
8206 			struct ice_rx_ring *rx_ring;
8207 
8208 			tx_ring = vsi->tx_rings[ch->base_q + i];
8209 			rx_ring = vsi->rx_rings[ch->base_q + i];
8210 			if (tx_ring) {
8211 				tx_ring->ch = NULL;
8212 				if (tx_ring->q_vector)
8213 					tx_ring->q_vector->ch = NULL;
8214 			}
8215 			if (rx_ring) {
8216 				rx_ring->ch = NULL;
8217 				if (rx_ring->q_vector)
8218 					rx_ring->q_vector->ch = NULL;
8219 			}
8220 		}
8221 
8222 		/* Release FD resources for the channel VSI */
8223 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8224 
8225 		/* clear the VSI from scheduler tree */
8226 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8227 
8228 		/* Delete VSI from FW */
8229 		ice_vsi_delete(ch->ch_vsi);
8230 
8231 		/* Delete VSI from PF and HW VSI arrays */
8232 		ice_vsi_clear(ch->ch_vsi);
8233 
8234 		/* free the channel */
8235 		kfree(ch);
8236 	}
8237 
8238 	/* clear the channel VSI map which is stored in main VSI */
8239 	ice_for_each_chnl_tc(i)
8240 		vsi->tc_map_vsi[i] = NULL;
8241 
8242 	/* reset main VSI's all TC information */
8243 	vsi->all_enatc = 0;
8244 	vsi->all_numtc = 0;
8245 }
8246 
8247 /**
8248  * ice_rebuild_channels - rebuild channel
8249  * @pf: ptr to PF
8250  *
8251  * Recreate channel VSIs and replay filters
8252  */
8253 static int ice_rebuild_channels(struct ice_pf *pf)
8254 {
8255 	struct device *dev = ice_pf_to_dev(pf);
8256 	struct ice_vsi *main_vsi;
8257 	bool rem_adv_fltr = true;
8258 	struct ice_channel *ch;
8259 	struct ice_vsi *vsi;
8260 	int tc_idx = 1;
8261 	int i, err;
8262 
8263 	main_vsi = ice_get_main_vsi(pf);
8264 	if (!main_vsi)
8265 		return 0;
8266 
8267 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8268 	    main_vsi->old_numtc == 1)
8269 		return 0; /* nothing to be done */
8270 
8271 	/* reconfigure main VSI based on old value of TC and cached values
8272 	 * for MQPRIO opts
8273 	 */
8274 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8275 	if (err) {
8276 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8277 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8278 		return err;
8279 	}
8280 
8281 	/* rebuild ADQ VSIs */
8282 	ice_for_each_vsi(pf, i) {
8283 		enum ice_vsi_type type;
8284 
8285 		vsi = pf->vsi[i];
8286 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8287 			continue;
8288 
8289 		type = vsi->type;
8290 
8291 		/* rebuild ADQ VSI */
8292 		err = ice_vsi_rebuild(vsi, true);
8293 		if (err) {
8294 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8295 				ice_vsi_type_str(type), vsi->idx, err);
8296 			goto cleanup;
8297 		}
8298 
8299 		/* Re-map HW VSI number, using VSI handle that has been
8300 		 * previously validated in ice_replay_vsi() call above
8301 		 */
8302 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8303 
8304 		/* replay filters for the VSI */
8305 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8306 		if (err) {
8307 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8308 				ice_vsi_type_str(type), err, vsi->idx);
8309 			rem_adv_fltr = false;
8310 			goto cleanup;
8311 		}
8312 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8313 			 ice_vsi_type_str(type), vsi->idx);
8314 
8315 		/* store ADQ VSI at correct TC index in main VSI's
8316 		 * map of TC to VSI
8317 		 */
8318 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8319 	}
8320 
8321 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8322 	 * channel for main VSI's Tx and Rx rings
8323 	 */
8324 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8325 		struct ice_vsi *ch_vsi;
8326 
8327 		ch_vsi = ch->ch_vsi;
8328 		if (!ch_vsi)
8329 			continue;
8330 
8331 		/* reconfig channel resources */
8332 		ice_cfg_chnl_all_res(main_vsi, ch);
8333 
8334 		/* replay BW rate limit if it is non-zero */
8335 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8336 			continue;
8337 
8338 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8339 				       ch->min_tx_rate);
8340 		if (err)
8341 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8342 				err, ch->max_tx_rate, ch->min_tx_rate,
8343 				ch_vsi->vsi_num);
8344 		else
8345 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8346 				ch->max_tx_rate, ch->min_tx_rate,
8347 				ch_vsi->vsi_num);
8348 	}
8349 
8350 	/* reconfig RSS for main VSI */
8351 	if (main_vsi->ch_rss_size)
8352 		ice_vsi_cfg_rss_lut_key(main_vsi);
8353 
8354 	return 0;
8355 
8356 cleanup:
8357 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8358 	return err;
8359 }
8360 
8361 /**
8362  * ice_create_q_channels - Add queue channel for the given TCs
8363  * @vsi: VSI to be configured
8364  *
8365  * Configures queue channel mapping to the given TCs
8366  */
8367 static int ice_create_q_channels(struct ice_vsi *vsi)
8368 {
8369 	struct ice_pf *pf = vsi->back;
8370 	struct ice_channel *ch;
8371 	int ret = 0, i;
8372 
8373 	ice_for_each_chnl_tc(i) {
8374 		if (!(vsi->all_enatc & BIT(i)))
8375 			continue;
8376 
8377 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8378 		if (!ch) {
8379 			ret = -ENOMEM;
8380 			goto err_free;
8381 		}
8382 		INIT_LIST_HEAD(&ch->list);
8383 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8384 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8385 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8386 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8387 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8388 
8389 		/* convert to Kbits/s */
8390 		if (ch->max_tx_rate)
8391 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8392 						  ICE_BW_KBPS_DIVISOR);
8393 		if (ch->min_tx_rate)
8394 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8395 						  ICE_BW_KBPS_DIVISOR);
8396 
8397 		ret = ice_create_q_channel(vsi, ch);
8398 		if (ret) {
8399 			dev_err(ice_pf_to_dev(pf),
8400 				"failed creating channel TC:%d\n", i);
8401 			kfree(ch);
8402 			goto err_free;
8403 		}
8404 		list_add_tail(&ch->list, &vsi->ch_list);
8405 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8406 		dev_dbg(ice_pf_to_dev(pf),
8407 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8408 	}
8409 	return 0;
8410 
8411 err_free:
8412 	ice_remove_q_channels(vsi, false);
8413 
8414 	return ret;
8415 }
8416 
8417 /**
8418  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8419  * @netdev: net device to configure
8420  * @type_data: TC offload data
8421  */
8422 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8423 {
8424 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8425 	struct ice_netdev_priv *np = netdev_priv(netdev);
8426 	struct ice_vsi *vsi = np->vsi;
8427 	struct ice_pf *pf = vsi->back;
8428 	u16 mode, ena_tc_qdisc = 0;
8429 	int cur_txq, cur_rxq;
8430 	u8 hw = 0, num_tcf;
8431 	struct device *dev;
8432 	int ret, i;
8433 
8434 	dev = ice_pf_to_dev(pf);
8435 	num_tcf = mqprio_qopt->qopt.num_tc;
8436 	hw = mqprio_qopt->qopt.hw;
8437 	mode = mqprio_qopt->mode;
8438 	if (!hw) {
8439 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8440 		vsi->ch_rss_size = 0;
8441 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8442 		goto config_tcf;
8443 	}
8444 
8445 	/* Generate queue region map for number of TCF requested */
8446 	for (i = 0; i < num_tcf; i++)
8447 		ena_tc_qdisc |= BIT(i);
8448 
8449 	switch (mode) {
8450 	case TC_MQPRIO_MODE_CHANNEL:
8451 
8452 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8453 		if (ret) {
8454 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8455 				   ret);
8456 			return ret;
8457 		}
8458 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8459 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8460 		/* don't assume state of hw_tc_offload during driver load
8461 		 * and set the flag for TC flower filter if hw_tc_offload
8462 		 * already ON
8463 		 */
8464 		if (vsi->netdev->features & NETIF_F_HW_TC)
8465 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8466 		break;
8467 	default:
8468 		return -EINVAL;
8469 	}
8470 
8471 config_tcf:
8472 
8473 	/* Requesting same TCF configuration as already enabled */
8474 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8475 	    mode != TC_MQPRIO_MODE_CHANNEL)
8476 		return 0;
8477 
8478 	/* Pause VSI queues */
8479 	ice_dis_vsi(vsi, true);
8480 
8481 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8482 		ice_remove_q_channels(vsi, true);
8483 
8484 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8485 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8486 				     num_online_cpus());
8487 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8488 				     num_online_cpus());
8489 	} else {
8490 		/* logic to rebuild VSI, same like ethtool -L */
8491 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8492 
8493 		for (i = 0; i < num_tcf; i++) {
8494 			if (!(ena_tc_qdisc & BIT(i)))
8495 				continue;
8496 
8497 			offset = vsi->mqprio_qopt.qopt.offset[i];
8498 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8499 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8500 		}
8501 		vsi->req_txq = offset + qcount_tx;
8502 		vsi->req_rxq = offset + qcount_rx;
8503 
8504 		/* store away original rss_size info, so that it gets reused
8505 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8506 		 * determine, what should be the rss_sizefor main VSI
8507 		 */
8508 		vsi->orig_rss_size = vsi->rss_size;
8509 	}
8510 
8511 	/* save current values of Tx and Rx queues before calling VSI rebuild
8512 	 * for fallback option
8513 	 */
8514 	cur_txq = vsi->num_txq;
8515 	cur_rxq = vsi->num_rxq;
8516 
8517 	/* proceed with rebuild main VSI using correct number of queues */
8518 	ret = ice_vsi_rebuild(vsi, false);
8519 	if (ret) {
8520 		/* fallback to current number of queues */
8521 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8522 		vsi->req_txq = cur_txq;
8523 		vsi->req_rxq = cur_rxq;
8524 		clear_bit(ICE_RESET_FAILED, pf->state);
8525 		if (ice_vsi_rebuild(vsi, false)) {
8526 			dev_err(dev, "Rebuild of main VSI failed again\n");
8527 			return ret;
8528 		}
8529 	}
8530 
8531 	vsi->all_numtc = num_tcf;
8532 	vsi->all_enatc = ena_tc_qdisc;
8533 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8534 	if (ret) {
8535 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8536 			   vsi->vsi_num);
8537 		goto exit;
8538 	}
8539 
8540 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8541 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8542 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8543 
8544 		/* set TC0 rate limit if specified */
8545 		if (max_tx_rate || min_tx_rate) {
8546 			/* convert to Kbits/s */
8547 			if (max_tx_rate)
8548 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8549 			if (min_tx_rate)
8550 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8551 
8552 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8553 			if (!ret) {
8554 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8555 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8556 			} else {
8557 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8558 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8559 				goto exit;
8560 			}
8561 		}
8562 		ret = ice_create_q_channels(vsi);
8563 		if (ret) {
8564 			netdev_err(netdev, "failed configuring queue channels\n");
8565 			goto exit;
8566 		} else {
8567 			netdev_dbg(netdev, "successfully configured channels\n");
8568 		}
8569 	}
8570 
8571 	if (vsi->ch_rss_size)
8572 		ice_vsi_cfg_rss_lut_key(vsi);
8573 
8574 exit:
8575 	/* if error, reset the all_numtc and all_enatc */
8576 	if (ret) {
8577 		vsi->all_numtc = 0;
8578 		vsi->all_enatc = 0;
8579 	}
8580 	/* resume VSI */
8581 	ice_ena_vsi(vsi, true);
8582 
8583 	return ret;
8584 }
8585 
8586 static LIST_HEAD(ice_block_cb_list);
8587 
8588 static int
8589 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8590 	     void *type_data)
8591 {
8592 	struct ice_netdev_priv *np = netdev_priv(netdev);
8593 	struct ice_pf *pf = np->vsi->back;
8594 	int err;
8595 
8596 	switch (type) {
8597 	case TC_SETUP_BLOCK:
8598 		return flow_block_cb_setup_simple(type_data,
8599 						  &ice_block_cb_list,
8600 						  ice_setup_tc_block_cb,
8601 						  np, np, true);
8602 	case TC_SETUP_QDISC_MQPRIO:
8603 		/* setup traffic classifier for receive side */
8604 		mutex_lock(&pf->tc_mutex);
8605 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8606 		mutex_unlock(&pf->tc_mutex);
8607 		return err;
8608 	default:
8609 		return -EOPNOTSUPP;
8610 	}
8611 	return -EOPNOTSUPP;
8612 }
8613 
8614 static struct ice_indr_block_priv *
8615 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8616 			   struct net_device *netdev)
8617 {
8618 	struct ice_indr_block_priv *cb_priv;
8619 
8620 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8621 		if (!cb_priv->netdev)
8622 			return NULL;
8623 		if (cb_priv->netdev == netdev)
8624 			return cb_priv;
8625 	}
8626 	return NULL;
8627 }
8628 
8629 static int
8630 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8631 			void *indr_priv)
8632 {
8633 	struct ice_indr_block_priv *priv = indr_priv;
8634 	struct ice_netdev_priv *np = priv->np;
8635 
8636 	switch (type) {
8637 	case TC_SETUP_CLSFLOWER:
8638 		return ice_setup_tc_cls_flower(np, priv->netdev,
8639 					       (struct flow_cls_offload *)
8640 					       type_data);
8641 	default:
8642 		return -EOPNOTSUPP;
8643 	}
8644 }
8645 
8646 static int
8647 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8648 			struct ice_netdev_priv *np,
8649 			struct flow_block_offload *f, void *data,
8650 			void (*cleanup)(struct flow_block_cb *block_cb))
8651 {
8652 	struct ice_indr_block_priv *indr_priv;
8653 	struct flow_block_cb *block_cb;
8654 
8655 	if (!ice_is_tunnel_supported(netdev) &&
8656 	    !(is_vlan_dev(netdev) &&
8657 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8658 		return -EOPNOTSUPP;
8659 
8660 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8661 		return -EOPNOTSUPP;
8662 
8663 	switch (f->command) {
8664 	case FLOW_BLOCK_BIND:
8665 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8666 		if (indr_priv)
8667 			return -EEXIST;
8668 
8669 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8670 		if (!indr_priv)
8671 			return -ENOMEM;
8672 
8673 		indr_priv->netdev = netdev;
8674 		indr_priv->np = np;
8675 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8676 
8677 		block_cb =
8678 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8679 						 indr_priv, indr_priv,
8680 						 ice_rep_indr_tc_block_unbind,
8681 						 f, netdev, sch, data, np,
8682 						 cleanup);
8683 
8684 		if (IS_ERR(block_cb)) {
8685 			list_del(&indr_priv->list);
8686 			kfree(indr_priv);
8687 			return PTR_ERR(block_cb);
8688 		}
8689 		flow_block_cb_add(block_cb, f);
8690 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8691 		break;
8692 	case FLOW_BLOCK_UNBIND:
8693 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8694 		if (!indr_priv)
8695 			return -ENOENT;
8696 
8697 		block_cb = flow_block_cb_lookup(f->block,
8698 						ice_indr_setup_block_cb,
8699 						indr_priv);
8700 		if (!block_cb)
8701 			return -ENOENT;
8702 
8703 		flow_indr_block_cb_remove(block_cb, f);
8704 
8705 		list_del(&block_cb->driver_list);
8706 		break;
8707 	default:
8708 		return -EOPNOTSUPP;
8709 	}
8710 	return 0;
8711 }
8712 
8713 static int
8714 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8715 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8716 		     void *data,
8717 		     void (*cleanup)(struct flow_block_cb *block_cb))
8718 {
8719 	switch (type) {
8720 	case TC_SETUP_BLOCK:
8721 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8722 					       data, cleanup);
8723 
8724 	default:
8725 		return -EOPNOTSUPP;
8726 	}
8727 }
8728 
8729 /**
8730  * ice_open - Called when a network interface becomes active
8731  * @netdev: network interface device structure
8732  *
8733  * The open entry point is called when a network interface is made
8734  * active by the system (IFF_UP). At this point all resources needed
8735  * for transmit and receive operations are allocated, the interrupt
8736  * handler is registered with the OS, the netdev watchdog is enabled,
8737  * and the stack is notified that the interface is ready.
8738  *
8739  * Returns 0 on success, negative value on failure
8740  */
8741 int ice_open(struct net_device *netdev)
8742 {
8743 	struct ice_netdev_priv *np = netdev_priv(netdev);
8744 	struct ice_pf *pf = np->vsi->back;
8745 
8746 	if (ice_is_reset_in_progress(pf->state)) {
8747 		netdev_err(netdev, "can't open net device while reset is in progress");
8748 		return -EBUSY;
8749 	}
8750 
8751 	return ice_open_internal(netdev);
8752 }
8753 
8754 /**
8755  * ice_open_internal - Called when a network interface becomes active
8756  * @netdev: network interface device structure
8757  *
8758  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8759  * handling routine
8760  *
8761  * Returns 0 on success, negative value on failure
8762  */
8763 int ice_open_internal(struct net_device *netdev)
8764 {
8765 	struct ice_netdev_priv *np = netdev_priv(netdev);
8766 	struct ice_vsi *vsi = np->vsi;
8767 	struct ice_pf *pf = vsi->back;
8768 	struct ice_port_info *pi;
8769 	int err;
8770 
8771 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8772 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8773 		return -EIO;
8774 	}
8775 
8776 	netif_carrier_off(netdev);
8777 
8778 	pi = vsi->port_info;
8779 	err = ice_update_link_info(pi);
8780 	if (err) {
8781 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8782 		return err;
8783 	}
8784 
8785 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8786 
8787 	/* Set PHY if there is media, otherwise, turn off PHY */
8788 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8789 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8790 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8791 			err = ice_init_phy_user_cfg(pi);
8792 			if (err) {
8793 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8794 					   err);
8795 				return err;
8796 			}
8797 		}
8798 
8799 		err = ice_configure_phy(vsi);
8800 		if (err) {
8801 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8802 				   err);
8803 			return err;
8804 		}
8805 	} else {
8806 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8807 		ice_set_link(vsi, false);
8808 	}
8809 
8810 	err = ice_vsi_open(vsi);
8811 	if (err)
8812 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8813 			   vsi->vsi_num, vsi->vsw->sw_id);
8814 
8815 	/* Update existing tunnels information */
8816 	udp_tunnel_get_rx_info(netdev);
8817 
8818 	return err;
8819 }
8820 
8821 /**
8822  * ice_stop - Disables a network interface
8823  * @netdev: network interface device structure
8824  *
8825  * The stop entry point is called when an interface is de-activated by the OS,
8826  * and the netdevice enters the DOWN state. The hardware is still under the
8827  * driver's control, but the netdev interface is disabled.
8828  *
8829  * Returns success only - not allowed to fail
8830  */
8831 int ice_stop(struct net_device *netdev)
8832 {
8833 	struct ice_netdev_priv *np = netdev_priv(netdev);
8834 	struct ice_vsi *vsi = np->vsi;
8835 	struct ice_pf *pf = vsi->back;
8836 
8837 	if (ice_is_reset_in_progress(pf->state)) {
8838 		netdev_err(netdev, "can't stop net device while reset is in progress");
8839 		return -EBUSY;
8840 	}
8841 
8842 	ice_vsi_close(vsi);
8843 
8844 	return 0;
8845 }
8846 
8847 /**
8848  * ice_features_check - Validate encapsulated packet conforms to limits
8849  * @skb: skb buffer
8850  * @netdev: This port's netdev
8851  * @features: Offload features that the stack believes apply
8852  */
8853 static netdev_features_t
8854 ice_features_check(struct sk_buff *skb,
8855 		   struct net_device __always_unused *netdev,
8856 		   netdev_features_t features)
8857 {
8858 	bool gso = skb_is_gso(skb);
8859 	size_t len;
8860 
8861 	/* No point in doing any of this if neither checksum nor GSO are
8862 	 * being requested for this frame. We can rule out both by just
8863 	 * checking for CHECKSUM_PARTIAL
8864 	 */
8865 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8866 		return features;
8867 
8868 	/* We cannot support GSO if the MSS is going to be less than
8869 	 * 64 bytes. If it is then we need to drop support for GSO.
8870 	 */
8871 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8872 		features &= ~NETIF_F_GSO_MASK;
8873 
8874 	len = skb_network_offset(skb);
8875 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8876 		goto out_rm_features;
8877 
8878 	len = skb_network_header_len(skb);
8879 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8880 		goto out_rm_features;
8881 
8882 	if (skb->encapsulation) {
8883 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8884 		 * the case of IPIP frames, the transport header pointer is
8885 		 * after the inner header! So check to make sure that this
8886 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8887 		 */
8888 		if (gso && (skb_shinfo(skb)->gso_type &
8889 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8890 			len = skb_inner_network_header(skb) -
8891 			      skb_transport_header(skb);
8892 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8893 				goto out_rm_features;
8894 		}
8895 
8896 		len = skb_inner_network_header_len(skb);
8897 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8898 			goto out_rm_features;
8899 	}
8900 
8901 	return features;
8902 out_rm_features:
8903 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8904 }
8905 
8906 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8907 	.ndo_open = ice_open,
8908 	.ndo_stop = ice_stop,
8909 	.ndo_start_xmit = ice_start_xmit,
8910 	.ndo_set_mac_address = ice_set_mac_address,
8911 	.ndo_validate_addr = eth_validate_addr,
8912 	.ndo_change_mtu = ice_change_mtu,
8913 	.ndo_get_stats64 = ice_get_stats64,
8914 	.ndo_tx_timeout = ice_tx_timeout,
8915 	.ndo_bpf = ice_xdp_safe_mode,
8916 };
8917 
8918 static const struct net_device_ops ice_netdev_ops = {
8919 	.ndo_open = ice_open,
8920 	.ndo_stop = ice_stop,
8921 	.ndo_start_xmit = ice_start_xmit,
8922 	.ndo_select_queue = ice_select_queue,
8923 	.ndo_features_check = ice_features_check,
8924 	.ndo_fix_features = ice_fix_features,
8925 	.ndo_set_rx_mode = ice_set_rx_mode,
8926 	.ndo_set_mac_address = ice_set_mac_address,
8927 	.ndo_validate_addr = eth_validate_addr,
8928 	.ndo_change_mtu = ice_change_mtu,
8929 	.ndo_get_stats64 = ice_get_stats64,
8930 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8931 	.ndo_eth_ioctl = ice_eth_ioctl,
8932 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8933 	.ndo_set_vf_mac = ice_set_vf_mac,
8934 	.ndo_get_vf_config = ice_get_vf_cfg,
8935 	.ndo_set_vf_trust = ice_set_vf_trust,
8936 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8937 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8938 	.ndo_get_vf_stats = ice_get_vf_stats,
8939 	.ndo_set_vf_rate = ice_set_vf_bw,
8940 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8941 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8942 	.ndo_setup_tc = ice_setup_tc,
8943 	.ndo_set_features = ice_set_features,
8944 	.ndo_bridge_getlink = ice_bridge_getlink,
8945 	.ndo_bridge_setlink = ice_bridge_setlink,
8946 	.ndo_fdb_add = ice_fdb_add,
8947 	.ndo_fdb_del = ice_fdb_del,
8948 #ifdef CONFIG_RFS_ACCEL
8949 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8950 #endif
8951 	.ndo_tx_timeout = ice_tx_timeout,
8952 	.ndo_bpf = ice_xdp,
8953 	.ndo_xdp_xmit = ice_xdp_xmit,
8954 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8955 	.ndo_get_devlink_port = ice_get_devlink_port,
8956 };
8957