1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 301 * @vsi: ptr to the VSI 302 * 303 * Push any outstanding VSI filter changes through the AdminQ. 304 */ 305 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 306 { 307 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 308 struct device *dev = ice_pf_to_dev(vsi->back); 309 struct net_device *netdev = vsi->netdev; 310 bool promisc_forced_on = false; 311 struct ice_pf *pf = vsi->back; 312 struct ice_hw *hw = &pf->hw; 313 u32 changed_flags = 0; 314 int err; 315 316 if (!vsi->netdev) 317 return -EINVAL; 318 319 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 320 usleep_range(1000, 2000); 321 322 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 323 vsi->current_netdev_flags = vsi->netdev->flags; 324 325 INIT_LIST_HEAD(&vsi->tmp_sync_list); 326 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 327 328 if (ice_vsi_fltr_changed(vsi)) { 329 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 330 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 331 332 /* grab the netdev's addr_list_lock */ 333 netif_addr_lock_bh(netdev); 334 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 335 ice_add_mac_to_unsync_list); 336 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 337 ice_add_mac_to_unsync_list); 338 /* our temp lists are populated. release lock */ 339 netif_addr_unlock_bh(netdev); 340 } 341 342 /* Remove MAC addresses in the unsync list */ 343 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 344 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 345 if (err) { 346 netdev_err(netdev, "Failed to delete MAC filters\n"); 347 /* if we failed because of alloc failures, just bail */ 348 if (err == -ENOMEM) 349 goto out; 350 } 351 352 /* Add MAC addresses in the sync list */ 353 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 354 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 355 /* If filter is added successfully or already exists, do not go into 356 * 'if' condition and report it as error. Instead continue processing 357 * rest of the function. 358 */ 359 if (err && err != -EEXIST) { 360 netdev_err(netdev, "Failed to add MAC filters\n"); 361 /* If there is no more space for new umac filters, VSI 362 * should go into promiscuous mode. There should be some 363 * space reserved for promiscuous filters. 364 */ 365 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 366 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 367 vsi->state)) { 368 promisc_forced_on = true; 369 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 370 vsi->vsi_num); 371 } else { 372 goto out; 373 } 374 } 375 err = 0; 376 /* check for changes in promiscuous modes */ 377 if (changed_flags & IFF_ALLMULTI) { 378 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 379 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 380 if (err) { 381 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 382 goto out_promisc; 383 } 384 } else { 385 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 386 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 387 if (err) { 388 vsi->current_netdev_flags |= IFF_ALLMULTI; 389 goto out_promisc; 390 } 391 } 392 } 393 394 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 395 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 396 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 397 if (vsi->current_netdev_flags & IFF_PROMISC) { 398 /* Apply Rx filter rule to get traffic from wire */ 399 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 400 err = ice_set_dflt_vsi(pf->first_sw, vsi); 401 if (err && err != -EEXIST) { 402 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 403 err, vsi->vsi_num); 404 vsi->current_netdev_flags &= 405 ~IFF_PROMISC; 406 goto out_promisc; 407 } 408 err = 0; 409 vlan_ops->dis_rx_filtering(vsi); 410 } 411 } else { 412 /* Clear Rx filter to remove traffic from wire */ 413 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 414 err = ice_clear_dflt_vsi(pf->first_sw); 415 if (err) { 416 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags |= 419 IFF_PROMISC; 420 goto out_promisc; 421 } 422 if (vsi->current_netdev_flags & 423 NETIF_F_HW_VLAN_CTAG_FILTER) 424 vlan_ops->ena_rx_filtering(vsi); 425 } 426 } 427 } 428 goto exit; 429 430 out_promisc: 431 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 432 goto exit; 433 out: 434 /* if something went wrong then set the changed flag so we try again */ 435 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 436 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 437 exit: 438 clear_bit(ICE_CFG_BUSY, vsi->state); 439 return err; 440 } 441 442 /** 443 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 444 * @pf: board private structure 445 */ 446 static void ice_sync_fltr_subtask(struct ice_pf *pf) 447 { 448 int v; 449 450 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 451 return; 452 453 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 454 455 ice_for_each_vsi(pf, v) 456 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 457 ice_vsi_sync_fltr(pf->vsi[v])) { 458 /* come back and try again later */ 459 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 460 break; 461 } 462 } 463 464 /** 465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 466 * @pf: the PF 467 * @locked: is the rtnl_lock already held 468 */ 469 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 470 { 471 int node; 472 int v; 473 474 ice_for_each_vsi(pf, v) 475 if (pf->vsi[v]) 476 ice_dis_vsi(pf->vsi[v], locked); 477 478 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 479 pf->pf_agg_node[node].num_vsis = 0; 480 481 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 482 pf->vf_agg_node[node].num_vsis = 0; 483 } 484 485 /** 486 * ice_clear_sw_switch_recipes - clear switch recipes 487 * @pf: board private structure 488 * 489 * Mark switch recipes as not created in sw structures. There are cases where 490 * rules (especially advanced rules) need to be restored, either re-read from 491 * hardware or added again. For example after the reset. 'recp_created' flag 492 * prevents from doing that and need to be cleared upfront. 493 */ 494 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 495 { 496 struct ice_sw_recipe *recp; 497 u8 i; 498 499 recp = pf->hw.switch_info->recp_list; 500 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 501 recp[i].recp_created = false; 502 } 503 504 /** 505 * ice_prepare_for_reset - prep for reset 506 * @pf: board private structure 507 * @reset_type: reset type requested 508 * 509 * Inform or close all dependent features in prep for reset. 510 */ 511 static void 512 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 513 { 514 struct ice_hw *hw = &pf->hw; 515 struct ice_vsi *vsi; 516 struct ice_vf *vf; 517 unsigned int bkt; 518 519 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 520 521 /* already prepared for reset */ 522 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 523 return; 524 525 ice_unplug_aux_dev(pf); 526 527 /* Notify VFs of impending reset */ 528 if (ice_check_sq_alive(hw, &hw->mailboxq)) 529 ice_vc_notify_reset(pf); 530 531 /* Disable VFs until reset is completed */ 532 mutex_lock(&pf->vfs.table_lock); 533 ice_for_each_vf(pf, bkt, vf) 534 ice_set_vf_state_qs_dis(vf); 535 mutex_unlock(&pf->vfs.table_lock); 536 537 if (ice_is_eswitch_mode_switchdev(pf)) { 538 if (reset_type != ICE_RESET_PFR) 539 ice_clear_sw_switch_recipes(pf); 540 } 541 542 /* release ADQ specific HW and SW resources */ 543 vsi = ice_get_main_vsi(pf); 544 if (!vsi) 545 goto skip; 546 547 /* to be on safe side, reset orig_rss_size so that normal flow 548 * of deciding rss_size can take precedence 549 */ 550 vsi->orig_rss_size = 0; 551 552 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 553 if (reset_type == ICE_RESET_PFR) { 554 vsi->old_ena_tc = vsi->all_enatc; 555 vsi->old_numtc = vsi->all_numtc; 556 } else { 557 ice_remove_q_channels(vsi, true); 558 559 /* for other reset type, do not support channel rebuild 560 * hence reset needed info 561 */ 562 vsi->old_ena_tc = 0; 563 vsi->all_enatc = 0; 564 vsi->old_numtc = 0; 565 vsi->all_numtc = 0; 566 vsi->req_txq = 0; 567 vsi->req_rxq = 0; 568 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 569 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 570 } 571 } 572 skip: 573 574 /* clear SW filtering DB */ 575 ice_clear_hw_tbls(hw); 576 /* disable the VSIs and their queues that are not already DOWN */ 577 ice_pf_dis_all_vsi(pf, false); 578 579 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 580 ice_ptp_prepare_for_reset(pf); 581 582 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 583 ice_gnss_exit(pf); 584 585 if (hw->port_info) 586 ice_sched_clear_port(hw->port_info); 587 588 ice_shutdown_all_ctrlq(hw); 589 590 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 591 } 592 593 /** 594 * ice_do_reset - Initiate one of many types of resets 595 * @pf: board private structure 596 * @reset_type: reset type requested before this function was called. 597 */ 598 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 599 { 600 struct device *dev = ice_pf_to_dev(pf); 601 struct ice_hw *hw = &pf->hw; 602 603 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 604 605 ice_prepare_for_reset(pf, reset_type); 606 607 /* trigger the reset */ 608 if (ice_reset(hw, reset_type)) { 609 dev_err(dev, "reset %d failed\n", reset_type); 610 set_bit(ICE_RESET_FAILED, pf->state); 611 clear_bit(ICE_RESET_OICR_RECV, pf->state); 612 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 613 clear_bit(ICE_PFR_REQ, pf->state); 614 clear_bit(ICE_CORER_REQ, pf->state); 615 clear_bit(ICE_GLOBR_REQ, pf->state); 616 wake_up(&pf->reset_wait_queue); 617 return; 618 } 619 620 /* PFR is a bit of a special case because it doesn't result in an OICR 621 * interrupt. So for PFR, rebuild after the reset and clear the reset- 622 * associated state bits. 623 */ 624 if (reset_type == ICE_RESET_PFR) { 625 pf->pfr_count++; 626 ice_rebuild(pf, reset_type); 627 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 clear_bit(ICE_PFR_REQ, pf->state); 629 wake_up(&pf->reset_wait_queue); 630 ice_reset_all_vfs(pf); 631 } 632 } 633 634 /** 635 * ice_reset_subtask - Set up for resetting the device and driver 636 * @pf: board private structure 637 */ 638 static void ice_reset_subtask(struct ice_pf *pf) 639 { 640 enum ice_reset_req reset_type = ICE_RESET_INVAL; 641 642 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 643 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 644 * of reset is pending and sets bits in pf->state indicating the reset 645 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 646 * prepare for pending reset if not already (for PF software-initiated 647 * global resets the software should already be prepared for it as 648 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 649 * by firmware or software on other PFs, that bit is not set so prepare 650 * for the reset now), poll for reset done, rebuild and return. 651 */ 652 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 653 /* Perform the largest reset requested */ 654 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 655 reset_type = ICE_RESET_CORER; 656 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 657 reset_type = ICE_RESET_GLOBR; 658 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 659 reset_type = ICE_RESET_EMPR; 660 /* return if no valid reset type requested */ 661 if (reset_type == ICE_RESET_INVAL) 662 return; 663 ice_prepare_for_reset(pf, reset_type); 664 665 /* make sure we are ready to rebuild */ 666 if (ice_check_reset(&pf->hw)) { 667 set_bit(ICE_RESET_FAILED, pf->state); 668 } else { 669 /* done with reset. start rebuild */ 670 pf->hw.reset_ongoing = false; 671 ice_rebuild(pf, reset_type); 672 /* clear bit to resume normal operations, but 673 * ICE_NEEDS_RESTART bit is set in case rebuild failed 674 */ 675 clear_bit(ICE_RESET_OICR_RECV, pf->state); 676 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 677 clear_bit(ICE_PFR_REQ, pf->state); 678 clear_bit(ICE_CORER_REQ, pf->state); 679 clear_bit(ICE_GLOBR_REQ, pf->state); 680 wake_up(&pf->reset_wait_queue); 681 ice_reset_all_vfs(pf); 682 } 683 684 return; 685 } 686 687 /* No pending resets to finish processing. Check for new resets */ 688 if (test_bit(ICE_PFR_REQ, pf->state)) 689 reset_type = ICE_RESET_PFR; 690 if (test_bit(ICE_CORER_REQ, pf->state)) 691 reset_type = ICE_RESET_CORER; 692 if (test_bit(ICE_GLOBR_REQ, pf->state)) 693 reset_type = ICE_RESET_GLOBR; 694 /* If no valid reset type requested just return */ 695 if (reset_type == ICE_RESET_INVAL) 696 return; 697 698 /* reset if not already down or busy */ 699 if (!test_bit(ICE_DOWN, pf->state) && 700 !test_bit(ICE_CFG_BUSY, pf->state)) { 701 ice_do_reset(pf, reset_type); 702 } 703 } 704 705 /** 706 * ice_print_topo_conflict - print topology conflict message 707 * @vsi: the VSI whose topology status is being checked 708 */ 709 static void ice_print_topo_conflict(struct ice_vsi *vsi) 710 { 711 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 712 case ICE_AQ_LINK_TOPO_CONFLICT: 713 case ICE_AQ_LINK_MEDIA_CONFLICT: 714 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 715 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 716 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 717 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 718 break; 719 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 720 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 721 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 722 else 723 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 724 break; 725 default: 726 break; 727 } 728 } 729 730 /** 731 * ice_print_link_msg - print link up or down message 732 * @vsi: the VSI whose link status is being queried 733 * @isup: boolean for if the link is now up or down 734 */ 735 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 736 { 737 struct ice_aqc_get_phy_caps_data *caps; 738 const char *an_advertised; 739 const char *fec_req; 740 const char *speed; 741 const char *fec; 742 const char *fc; 743 const char *an; 744 int status; 745 746 if (!vsi) 747 return; 748 749 if (vsi->current_isup == isup) 750 return; 751 752 vsi->current_isup = isup; 753 754 if (!isup) { 755 netdev_info(vsi->netdev, "NIC Link is Down\n"); 756 return; 757 } 758 759 switch (vsi->port_info->phy.link_info.link_speed) { 760 case ICE_AQ_LINK_SPEED_100GB: 761 speed = "100 G"; 762 break; 763 case ICE_AQ_LINK_SPEED_50GB: 764 speed = "50 G"; 765 break; 766 case ICE_AQ_LINK_SPEED_40GB: 767 speed = "40 G"; 768 break; 769 case ICE_AQ_LINK_SPEED_25GB: 770 speed = "25 G"; 771 break; 772 case ICE_AQ_LINK_SPEED_20GB: 773 speed = "20 G"; 774 break; 775 case ICE_AQ_LINK_SPEED_10GB: 776 speed = "10 G"; 777 break; 778 case ICE_AQ_LINK_SPEED_5GB: 779 speed = "5 G"; 780 break; 781 case ICE_AQ_LINK_SPEED_2500MB: 782 speed = "2.5 G"; 783 break; 784 case ICE_AQ_LINK_SPEED_1000MB: 785 speed = "1 G"; 786 break; 787 case ICE_AQ_LINK_SPEED_100MB: 788 speed = "100 M"; 789 break; 790 default: 791 speed = "Unknown "; 792 break; 793 } 794 795 switch (vsi->port_info->fc.current_mode) { 796 case ICE_FC_FULL: 797 fc = "Rx/Tx"; 798 break; 799 case ICE_FC_TX_PAUSE: 800 fc = "Tx"; 801 break; 802 case ICE_FC_RX_PAUSE: 803 fc = "Rx"; 804 break; 805 case ICE_FC_NONE: 806 fc = "None"; 807 break; 808 default: 809 fc = "Unknown"; 810 break; 811 } 812 813 /* Get FEC mode based on negotiated link info */ 814 switch (vsi->port_info->phy.link_info.fec_info) { 815 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 816 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 817 fec = "RS-FEC"; 818 break; 819 case ICE_AQ_LINK_25G_KR_FEC_EN: 820 fec = "FC-FEC/BASE-R"; 821 break; 822 default: 823 fec = "NONE"; 824 break; 825 } 826 827 /* check if autoneg completed, might be false due to not supported */ 828 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 829 an = "True"; 830 else 831 an = "False"; 832 833 /* Get FEC mode requested based on PHY caps last SW configuration */ 834 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 835 if (!caps) { 836 fec_req = "Unknown"; 837 an_advertised = "Unknown"; 838 goto done; 839 } 840 841 status = ice_aq_get_phy_caps(vsi->port_info, false, 842 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 843 if (status) 844 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 845 846 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 847 848 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 849 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 850 fec_req = "RS-FEC"; 851 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 852 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 853 fec_req = "FC-FEC/BASE-R"; 854 else 855 fec_req = "NONE"; 856 857 kfree(caps); 858 859 done: 860 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 861 speed, fec_req, fec, an_advertised, an, fc); 862 ice_print_topo_conflict(vsi); 863 } 864 865 /** 866 * ice_vsi_link_event - update the VSI's netdev 867 * @vsi: the VSI on which the link event occurred 868 * @link_up: whether or not the VSI needs to be set up or down 869 */ 870 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 871 { 872 if (!vsi) 873 return; 874 875 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 876 return; 877 878 if (vsi->type == ICE_VSI_PF) { 879 if (link_up == netif_carrier_ok(vsi->netdev)) 880 return; 881 882 if (link_up) { 883 netif_carrier_on(vsi->netdev); 884 netif_tx_wake_all_queues(vsi->netdev); 885 } else { 886 netif_carrier_off(vsi->netdev); 887 netif_tx_stop_all_queues(vsi->netdev); 888 } 889 } 890 } 891 892 /** 893 * ice_set_dflt_mib - send a default config MIB to the FW 894 * @pf: private PF struct 895 * 896 * This function sends a default configuration MIB to the FW. 897 * 898 * If this function errors out at any point, the driver is still able to 899 * function. The main impact is that LFC may not operate as expected. 900 * Therefore an error state in this function should be treated with a DBG 901 * message and continue on with driver rebuild/reenable. 902 */ 903 static void ice_set_dflt_mib(struct ice_pf *pf) 904 { 905 struct device *dev = ice_pf_to_dev(pf); 906 u8 mib_type, *buf, *lldpmib = NULL; 907 u16 len, typelen, offset = 0; 908 struct ice_lldp_org_tlv *tlv; 909 struct ice_hw *hw = &pf->hw; 910 u32 ouisubtype; 911 912 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 913 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 914 if (!lldpmib) { 915 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 916 __func__); 917 return; 918 } 919 920 /* Add ETS CFG TLV */ 921 tlv = (struct ice_lldp_org_tlv *)lldpmib; 922 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 923 ICE_IEEE_ETS_TLV_LEN); 924 tlv->typelen = htons(typelen); 925 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 926 ICE_IEEE_SUBTYPE_ETS_CFG); 927 tlv->ouisubtype = htonl(ouisubtype); 928 929 buf = tlv->tlvinfo; 930 buf[0] = 0; 931 932 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 933 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 934 * Octets 13 - 20 are TSA values - leave as zeros 935 */ 936 buf[5] = 0x64; 937 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 938 offset += len + 2; 939 tlv = (struct ice_lldp_org_tlv *) 940 ((char *)tlv + sizeof(tlv->typelen) + len); 941 942 /* Add ETS REC TLV */ 943 buf = tlv->tlvinfo; 944 tlv->typelen = htons(typelen); 945 946 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 947 ICE_IEEE_SUBTYPE_ETS_REC); 948 tlv->ouisubtype = htonl(ouisubtype); 949 950 /* First octet of buf is reserved 951 * Octets 1 - 4 map UP to TC - all UPs map to zero 952 * Octets 5 - 12 are BW values - set TC 0 to 100%. 953 * Octets 13 - 20 are TSA value - leave as zeros 954 */ 955 buf[5] = 0x64; 956 offset += len + 2; 957 tlv = (struct ice_lldp_org_tlv *) 958 ((char *)tlv + sizeof(tlv->typelen) + len); 959 960 /* Add PFC CFG TLV */ 961 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 962 ICE_IEEE_PFC_TLV_LEN); 963 tlv->typelen = htons(typelen); 964 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_PFC_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 /* Octet 1 left as all zeros - PFC disabled */ 970 buf[0] = 0x08; 971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 972 offset += len + 2; 973 974 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 975 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 976 977 kfree(lldpmib); 978 } 979 980 /** 981 * ice_check_phy_fw_load - check if PHY FW load failed 982 * @pf: pointer to PF struct 983 * @link_cfg_err: bitmap from the link info structure 984 * 985 * check if external PHY FW load failed and print an error message if it did 986 */ 987 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 988 { 989 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 990 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 991 return; 992 } 993 994 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 995 return; 996 997 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 998 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 999 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1000 } 1001 } 1002 1003 /** 1004 * ice_check_module_power 1005 * @pf: pointer to PF struct 1006 * @link_cfg_err: bitmap from the link info structure 1007 * 1008 * check module power level returned by a previous call to aq_get_link_info 1009 * and print error messages if module power level is not supported 1010 */ 1011 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1012 { 1013 /* if module power level is supported, clear the flag */ 1014 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1015 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1016 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1017 return; 1018 } 1019 1020 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1021 * above block didn't clear this bit, there's nothing to do 1022 */ 1023 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1024 return; 1025 1026 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1027 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1028 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1029 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1030 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1031 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1032 } 1033 } 1034 1035 /** 1036 * ice_check_link_cfg_err - check if link configuration failed 1037 * @pf: pointer to the PF struct 1038 * @link_cfg_err: bitmap from the link info structure 1039 * 1040 * print if any link configuration failure happens due to the value in the 1041 * link_cfg_err parameter in the link info structure 1042 */ 1043 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1044 { 1045 ice_check_module_power(pf, link_cfg_err); 1046 ice_check_phy_fw_load(pf, link_cfg_err); 1047 } 1048 1049 /** 1050 * ice_link_event - process the link event 1051 * @pf: PF that the link event is associated with 1052 * @pi: port_info for the port that the link event is associated with 1053 * @link_up: true if the physical link is up and false if it is down 1054 * @link_speed: current link speed received from the link event 1055 * 1056 * Returns 0 on success and negative on failure 1057 */ 1058 static int 1059 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1060 u16 link_speed) 1061 { 1062 struct device *dev = ice_pf_to_dev(pf); 1063 struct ice_phy_info *phy_info; 1064 struct ice_vsi *vsi; 1065 u16 old_link_speed; 1066 bool old_link; 1067 int status; 1068 1069 phy_info = &pi->phy; 1070 phy_info->link_info_old = phy_info->link_info; 1071 1072 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1073 old_link_speed = phy_info->link_info_old.link_speed; 1074 1075 /* update the link info structures and re-enable link events, 1076 * don't bail on failure due to other book keeping needed 1077 */ 1078 status = ice_update_link_info(pi); 1079 if (status) 1080 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1081 pi->lport, status, 1082 ice_aq_str(pi->hw->adminq.sq_last_status)); 1083 1084 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1085 1086 /* Check if the link state is up after updating link info, and treat 1087 * this event as an UP event since the link is actually UP now. 1088 */ 1089 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1090 link_up = true; 1091 1092 vsi = ice_get_main_vsi(pf); 1093 if (!vsi || !vsi->port_info) 1094 return -EINVAL; 1095 1096 /* turn off PHY if media was removed */ 1097 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1098 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1099 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1100 ice_set_link(vsi, false); 1101 } 1102 1103 /* if the old link up/down and speed is the same as the new */ 1104 if (link_up == old_link && link_speed == old_link_speed) 1105 return 0; 1106 1107 if (!ice_is_e810(&pf->hw)) 1108 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1109 1110 if (ice_is_dcb_active(pf)) { 1111 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1112 ice_dcb_rebuild(pf); 1113 } else { 1114 if (link_up) 1115 ice_set_dflt_mib(pf); 1116 } 1117 ice_vsi_link_event(vsi, link_up); 1118 ice_print_link_msg(vsi, link_up); 1119 1120 ice_vc_notify_link_state(pf); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1127 * @pf: board private structure 1128 */ 1129 static void ice_watchdog_subtask(struct ice_pf *pf) 1130 { 1131 int i; 1132 1133 /* if interface is down do nothing */ 1134 if (test_bit(ICE_DOWN, pf->state) || 1135 test_bit(ICE_CFG_BUSY, pf->state)) 1136 return; 1137 1138 /* make sure we don't do these things too often */ 1139 if (time_before(jiffies, 1140 pf->serv_tmr_prev + pf->serv_tmr_period)) 1141 return; 1142 1143 pf->serv_tmr_prev = jiffies; 1144 1145 /* Update the stats for active netdevs so the network stack 1146 * can look at updated numbers whenever it cares to 1147 */ 1148 ice_update_pf_stats(pf); 1149 ice_for_each_vsi(pf, i) 1150 if (pf->vsi[i] && pf->vsi[i]->netdev) 1151 ice_update_vsi_stats(pf->vsi[i]); 1152 } 1153 1154 /** 1155 * ice_init_link_events - enable/initialize link events 1156 * @pi: pointer to the port_info instance 1157 * 1158 * Returns -EIO on failure, 0 on success 1159 */ 1160 static int ice_init_link_events(struct ice_port_info *pi) 1161 { 1162 u16 mask; 1163 1164 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1165 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1166 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1167 1168 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1169 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1170 pi->lport); 1171 return -EIO; 1172 } 1173 1174 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1175 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1176 pi->lport); 1177 return -EIO; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * ice_handle_link_event - handle link event via ARQ 1185 * @pf: PF that the link event is associated with 1186 * @event: event structure containing link status info 1187 */ 1188 static int 1189 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1190 { 1191 struct ice_aqc_get_link_status_data *link_data; 1192 struct ice_port_info *port_info; 1193 int status; 1194 1195 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1196 port_info = pf->hw.port_info; 1197 if (!port_info) 1198 return -EINVAL; 1199 1200 status = ice_link_event(pf, port_info, 1201 !!(link_data->link_info & ICE_AQ_LINK_UP), 1202 le16_to_cpu(link_data->link_speed)); 1203 if (status) 1204 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1205 status); 1206 1207 return status; 1208 } 1209 1210 enum ice_aq_task_state { 1211 ICE_AQ_TASK_WAITING = 0, 1212 ICE_AQ_TASK_COMPLETE, 1213 ICE_AQ_TASK_CANCELED, 1214 }; 1215 1216 struct ice_aq_task { 1217 struct hlist_node entry; 1218 1219 u16 opcode; 1220 struct ice_rq_event_info *event; 1221 enum ice_aq_task_state state; 1222 }; 1223 1224 /** 1225 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1226 * @pf: pointer to the PF private structure 1227 * @opcode: the opcode to wait for 1228 * @timeout: how long to wait, in jiffies 1229 * @event: storage for the event info 1230 * 1231 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1232 * current thread will be put to sleep until the specified event occurs or 1233 * until the given timeout is reached. 1234 * 1235 * To obtain only the descriptor contents, pass an event without an allocated 1236 * msg_buf. If the complete data buffer is desired, allocate the 1237 * event->msg_buf with enough space ahead of time. 1238 * 1239 * Returns: zero on success, or a negative error code on failure. 1240 */ 1241 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1242 struct ice_rq_event_info *event) 1243 { 1244 struct device *dev = ice_pf_to_dev(pf); 1245 struct ice_aq_task *task; 1246 unsigned long start; 1247 long ret; 1248 int err; 1249 1250 task = kzalloc(sizeof(*task), GFP_KERNEL); 1251 if (!task) 1252 return -ENOMEM; 1253 1254 INIT_HLIST_NODE(&task->entry); 1255 task->opcode = opcode; 1256 task->event = event; 1257 task->state = ICE_AQ_TASK_WAITING; 1258 1259 spin_lock_bh(&pf->aq_wait_lock); 1260 hlist_add_head(&task->entry, &pf->aq_wait_list); 1261 spin_unlock_bh(&pf->aq_wait_lock); 1262 1263 start = jiffies; 1264 1265 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1266 timeout); 1267 switch (task->state) { 1268 case ICE_AQ_TASK_WAITING: 1269 err = ret < 0 ? ret : -ETIMEDOUT; 1270 break; 1271 case ICE_AQ_TASK_CANCELED: 1272 err = ret < 0 ? ret : -ECANCELED; 1273 break; 1274 case ICE_AQ_TASK_COMPLETE: 1275 err = ret < 0 ? ret : 0; 1276 break; 1277 default: 1278 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1279 err = -EINVAL; 1280 break; 1281 } 1282 1283 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1284 jiffies_to_msecs(jiffies - start), 1285 jiffies_to_msecs(timeout), 1286 opcode); 1287 1288 spin_lock_bh(&pf->aq_wait_lock); 1289 hlist_del(&task->entry); 1290 spin_unlock_bh(&pf->aq_wait_lock); 1291 kfree(task); 1292 1293 return err; 1294 } 1295 1296 /** 1297 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1298 * @pf: pointer to the PF private structure 1299 * @opcode: the opcode of the event 1300 * @event: the event to check 1301 * 1302 * Loops over the current list of pending threads waiting for an AdminQ event. 1303 * For each matching task, copy the contents of the event into the task 1304 * structure and wake up the thread. 1305 * 1306 * If multiple threads wait for the same opcode, they will all be woken up. 1307 * 1308 * Note that event->msg_buf will only be duplicated if the event has a buffer 1309 * with enough space already allocated. Otherwise, only the descriptor and 1310 * message length will be copied. 1311 * 1312 * Returns: true if an event was found, false otherwise 1313 */ 1314 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1315 struct ice_rq_event_info *event) 1316 { 1317 struct ice_aq_task *task; 1318 bool found = false; 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1322 if (task->state || task->opcode != opcode) 1323 continue; 1324 1325 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1326 task->event->msg_len = event->msg_len; 1327 1328 /* Only copy the data buffer if a destination was set */ 1329 if (task->event->msg_buf && 1330 task->event->buf_len > event->buf_len) { 1331 memcpy(task->event->msg_buf, event->msg_buf, 1332 event->buf_len); 1333 task->event->buf_len = event->buf_len; 1334 } 1335 1336 task->state = ICE_AQ_TASK_COMPLETE; 1337 found = true; 1338 } 1339 spin_unlock_bh(&pf->aq_wait_lock); 1340 1341 if (found) 1342 wake_up(&pf->aq_wait_queue); 1343 } 1344 1345 /** 1346 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1347 * @pf: the PF private structure 1348 * 1349 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1350 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1351 */ 1352 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1353 { 1354 struct ice_aq_task *task; 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1358 task->state = ICE_AQ_TASK_CANCELED; 1359 spin_unlock_bh(&pf->aq_wait_lock); 1360 1361 wake_up(&pf->aq_wait_queue); 1362 } 1363 1364 /** 1365 * __ice_clean_ctrlq - helper function to clean controlq rings 1366 * @pf: ptr to struct ice_pf 1367 * @q_type: specific Control queue type 1368 */ 1369 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1370 { 1371 struct device *dev = ice_pf_to_dev(pf); 1372 struct ice_rq_event_info event; 1373 struct ice_hw *hw = &pf->hw; 1374 struct ice_ctl_q_info *cq; 1375 u16 pending, i = 0; 1376 const char *qtype; 1377 u32 oldval, val; 1378 1379 /* Do not clean control queue if/when PF reset fails */ 1380 if (test_bit(ICE_RESET_FAILED, pf->state)) 1381 return 0; 1382 1383 switch (q_type) { 1384 case ICE_CTL_Q_ADMIN: 1385 cq = &hw->adminq; 1386 qtype = "Admin"; 1387 break; 1388 case ICE_CTL_Q_SB: 1389 cq = &hw->sbq; 1390 qtype = "Sideband"; 1391 break; 1392 case ICE_CTL_Q_MAILBOX: 1393 cq = &hw->mailboxq; 1394 qtype = "Mailbox"; 1395 /* we are going to try to detect a malicious VF, so set the 1396 * state to begin detection 1397 */ 1398 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1399 break; 1400 default: 1401 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1402 return 0; 1403 } 1404 1405 /* check for error indications - PF_xx_AxQLEN register layout for 1406 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1407 */ 1408 val = rd32(hw, cq->rq.len); 1409 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1410 PF_FW_ARQLEN_ARQCRIT_M)) { 1411 oldval = val; 1412 if (val & PF_FW_ARQLEN_ARQVFE_M) 1413 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1414 qtype); 1415 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1416 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1417 qtype); 1418 } 1419 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1420 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1421 qtype); 1422 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1423 PF_FW_ARQLEN_ARQCRIT_M); 1424 if (oldval != val) 1425 wr32(hw, cq->rq.len, val); 1426 } 1427 1428 val = rd32(hw, cq->sq.len); 1429 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1430 PF_FW_ATQLEN_ATQCRIT_M)) { 1431 oldval = val; 1432 if (val & PF_FW_ATQLEN_ATQVFE_M) 1433 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1434 qtype); 1435 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1436 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1437 qtype); 1438 } 1439 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1440 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1441 qtype); 1442 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1443 PF_FW_ATQLEN_ATQCRIT_M); 1444 if (oldval != val) 1445 wr32(hw, cq->sq.len, val); 1446 } 1447 1448 event.buf_len = cq->rq_buf_size; 1449 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1450 if (!event.msg_buf) 1451 return 0; 1452 1453 do { 1454 u16 opcode; 1455 int ret; 1456 1457 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1458 if (ret == -EALREADY) 1459 break; 1460 if (ret) { 1461 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1462 ret); 1463 break; 1464 } 1465 1466 opcode = le16_to_cpu(event.desc.opcode); 1467 1468 /* Notify any thread that might be waiting for this event */ 1469 ice_aq_check_events(pf, opcode, &event); 1470 1471 switch (opcode) { 1472 case ice_aqc_opc_get_link_status: 1473 if (ice_handle_link_event(pf, &event)) 1474 dev_err(dev, "Could not handle link event\n"); 1475 break; 1476 case ice_aqc_opc_event_lan_overflow: 1477 ice_vf_lan_overflow_event(pf, &event); 1478 break; 1479 case ice_mbx_opc_send_msg_to_pf: 1480 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1481 ice_vc_process_vf_msg(pf, &event); 1482 break; 1483 case ice_aqc_opc_fw_logging: 1484 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1485 break; 1486 case ice_aqc_opc_lldp_set_mib_change: 1487 ice_dcb_process_lldp_set_mib_change(pf, &event); 1488 break; 1489 default: 1490 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1491 qtype, opcode); 1492 break; 1493 } 1494 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1495 1496 kfree(event.msg_buf); 1497 1498 return pending && (i == ICE_DFLT_IRQ_WORK); 1499 } 1500 1501 /** 1502 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1503 * @hw: pointer to hardware info 1504 * @cq: control queue information 1505 * 1506 * returns true if there are pending messages in a queue, false if there aren't 1507 */ 1508 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1509 { 1510 u16 ntu; 1511 1512 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1513 return cq->rq.next_to_clean != ntu; 1514 } 1515 1516 /** 1517 * ice_clean_adminq_subtask - clean the AdminQ rings 1518 * @pf: board private structure 1519 */ 1520 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1521 { 1522 struct ice_hw *hw = &pf->hw; 1523 1524 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1525 return; 1526 1527 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1528 return; 1529 1530 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1531 1532 /* There might be a situation where new messages arrive to a control 1533 * queue between processing the last message and clearing the 1534 * EVENT_PENDING bit. So before exiting, check queue head again (using 1535 * ice_ctrlq_pending) and process new messages if any. 1536 */ 1537 if (ice_ctrlq_pending(hw, &hw->adminq)) 1538 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1539 1540 ice_flush(hw); 1541 } 1542 1543 /** 1544 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1545 * @pf: board private structure 1546 */ 1547 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1548 { 1549 struct ice_hw *hw = &pf->hw; 1550 1551 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1552 return; 1553 1554 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1555 return; 1556 1557 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1558 1559 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1560 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1561 1562 ice_flush(hw); 1563 } 1564 1565 /** 1566 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1567 * @pf: board private structure 1568 */ 1569 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1570 { 1571 struct ice_hw *hw = &pf->hw; 1572 1573 /* Nothing to do here if sideband queue is not supported */ 1574 if (!ice_is_sbq_supported(hw)) { 1575 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1576 return; 1577 } 1578 1579 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1580 return; 1581 1582 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1583 return; 1584 1585 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1586 1587 if (ice_ctrlq_pending(hw, &hw->sbq)) 1588 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1589 1590 ice_flush(hw); 1591 } 1592 1593 /** 1594 * ice_service_task_schedule - schedule the service task to wake up 1595 * @pf: board private structure 1596 * 1597 * If not already scheduled, this puts the task into the work queue. 1598 */ 1599 void ice_service_task_schedule(struct ice_pf *pf) 1600 { 1601 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1602 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1603 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1604 queue_work(ice_wq, &pf->serv_task); 1605 } 1606 1607 /** 1608 * ice_service_task_complete - finish up the service task 1609 * @pf: board private structure 1610 */ 1611 static void ice_service_task_complete(struct ice_pf *pf) 1612 { 1613 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1614 1615 /* force memory (pf->state) to sync before next service task */ 1616 smp_mb__before_atomic(); 1617 clear_bit(ICE_SERVICE_SCHED, pf->state); 1618 } 1619 1620 /** 1621 * ice_service_task_stop - stop service task and cancel works 1622 * @pf: board private structure 1623 * 1624 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1625 * 1 otherwise. 1626 */ 1627 static int ice_service_task_stop(struct ice_pf *pf) 1628 { 1629 int ret; 1630 1631 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1632 1633 if (pf->serv_tmr.function) 1634 del_timer_sync(&pf->serv_tmr); 1635 if (pf->serv_task.func) 1636 cancel_work_sync(&pf->serv_task); 1637 1638 clear_bit(ICE_SERVICE_SCHED, pf->state); 1639 return ret; 1640 } 1641 1642 /** 1643 * ice_service_task_restart - restart service task and schedule works 1644 * @pf: board private structure 1645 * 1646 * This function is needed for suspend and resume works (e.g WoL scenario) 1647 */ 1648 static void ice_service_task_restart(struct ice_pf *pf) 1649 { 1650 clear_bit(ICE_SERVICE_DIS, pf->state); 1651 ice_service_task_schedule(pf); 1652 } 1653 1654 /** 1655 * ice_service_timer - timer callback to schedule service task 1656 * @t: pointer to timer_list 1657 */ 1658 static void ice_service_timer(struct timer_list *t) 1659 { 1660 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1661 1662 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1663 ice_service_task_schedule(pf); 1664 } 1665 1666 /** 1667 * ice_handle_mdd_event - handle malicious driver detect event 1668 * @pf: pointer to the PF structure 1669 * 1670 * Called from service task. OICR interrupt handler indicates MDD event. 1671 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1672 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1673 * disable the queue, the PF can be configured to reset the VF using ethtool 1674 * private flag mdd-auto-reset-vf. 1675 */ 1676 static void ice_handle_mdd_event(struct ice_pf *pf) 1677 { 1678 struct device *dev = ice_pf_to_dev(pf); 1679 struct ice_hw *hw = &pf->hw; 1680 struct ice_vf *vf; 1681 unsigned int bkt; 1682 u32 reg; 1683 1684 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1685 /* Since the VF MDD event logging is rate limited, check if 1686 * there are pending MDD events. 1687 */ 1688 ice_print_vfs_mdd_events(pf); 1689 return; 1690 } 1691 1692 /* find what triggered an MDD event */ 1693 reg = rd32(hw, GL_MDET_TX_PQM); 1694 if (reg & GL_MDET_TX_PQM_VALID_M) { 1695 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1696 GL_MDET_TX_PQM_PF_NUM_S; 1697 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1698 GL_MDET_TX_PQM_VF_NUM_S; 1699 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1700 GL_MDET_TX_PQM_MAL_TYPE_S; 1701 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1702 GL_MDET_TX_PQM_QNUM_S); 1703 1704 if (netif_msg_tx_err(pf)) 1705 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1706 event, queue, pf_num, vf_num); 1707 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1708 } 1709 1710 reg = rd32(hw, GL_MDET_TX_TCLAN); 1711 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1712 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1713 GL_MDET_TX_TCLAN_PF_NUM_S; 1714 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1715 GL_MDET_TX_TCLAN_VF_NUM_S; 1716 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1717 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1718 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1719 GL_MDET_TX_TCLAN_QNUM_S); 1720 1721 if (netif_msg_tx_err(pf)) 1722 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1723 event, queue, pf_num, vf_num); 1724 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1725 } 1726 1727 reg = rd32(hw, GL_MDET_RX); 1728 if (reg & GL_MDET_RX_VALID_M) { 1729 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1730 GL_MDET_RX_PF_NUM_S; 1731 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1732 GL_MDET_RX_VF_NUM_S; 1733 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1734 GL_MDET_RX_MAL_TYPE_S; 1735 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1736 GL_MDET_RX_QNUM_S); 1737 1738 if (netif_msg_rx_err(pf)) 1739 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1740 event, queue, pf_num, vf_num); 1741 wr32(hw, GL_MDET_RX, 0xffffffff); 1742 } 1743 1744 /* check to see if this PF caused an MDD event */ 1745 reg = rd32(hw, PF_MDET_TX_PQM); 1746 if (reg & PF_MDET_TX_PQM_VALID_M) { 1747 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1748 if (netif_msg_tx_err(pf)) 1749 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1750 } 1751 1752 reg = rd32(hw, PF_MDET_TX_TCLAN); 1753 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1754 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1757 } 1758 1759 reg = rd32(hw, PF_MDET_RX); 1760 if (reg & PF_MDET_RX_VALID_M) { 1761 wr32(hw, PF_MDET_RX, 0xFFFF); 1762 if (netif_msg_rx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1764 } 1765 1766 /* Check to see if one of the VFs caused an MDD event, and then 1767 * increment counters and set print pending 1768 */ 1769 mutex_lock(&pf->vfs.table_lock); 1770 ice_for_each_vf(pf, bkt, vf) { 1771 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1772 if (reg & VP_MDET_TX_PQM_VALID_M) { 1773 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1774 vf->mdd_tx_events.count++; 1775 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1776 if (netif_msg_tx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1778 vf->vf_id); 1779 } 1780 1781 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1782 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1783 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1784 vf->mdd_tx_events.count++; 1785 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1786 if (netif_msg_tx_err(pf)) 1787 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1788 vf->vf_id); 1789 } 1790 1791 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1792 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1793 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1794 vf->mdd_tx_events.count++; 1795 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1796 if (netif_msg_tx_err(pf)) 1797 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1798 vf->vf_id); 1799 } 1800 1801 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1802 if (reg & VP_MDET_RX_VALID_M) { 1803 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1804 vf->mdd_rx_events.count++; 1805 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1806 if (netif_msg_rx_err(pf)) 1807 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1808 vf->vf_id); 1809 1810 /* Since the queue is disabled on VF Rx MDD events, the 1811 * PF can be configured to reset the VF through ethtool 1812 * private flag mdd-auto-reset-vf. 1813 */ 1814 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1815 /* VF MDD event counters will be cleared by 1816 * reset, so print the event prior to reset. 1817 */ 1818 ice_print_vf_rx_mdd_event(vf); 1819 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1820 } 1821 } 1822 } 1823 mutex_unlock(&pf->vfs.table_lock); 1824 1825 ice_print_vfs_mdd_events(pf); 1826 } 1827 1828 /** 1829 * ice_force_phys_link_state - Force the physical link state 1830 * @vsi: VSI to force the physical link state to up/down 1831 * @link_up: true/false indicates to set the physical link to up/down 1832 * 1833 * Force the physical link state by getting the current PHY capabilities from 1834 * hardware and setting the PHY config based on the determined capabilities. If 1835 * link changes a link event will be triggered because both the Enable Automatic 1836 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1837 * 1838 * Returns 0 on success, negative on failure 1839 */ 1840 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1841 { 1842 struct ice_aqc_get_phy_caps_data *pcaps; 1843 struct ice_aqc_set_phy_cfg_data *cfg; 1844 struct ice_port_info *pi; 1845 struct device *dev; 1846 int retcode; 1847 1848 if (!vsi || !vsi->port_info || !vsi->back) 1849 return -EINVAL; 1850 if (vsi->type != ICE_VSI_PF) 1851 return 0; 1852 1853 dev = ice_pf_to_dev(vsi->back); 1854 1855 pi = vsi->port_info; 1856 1857 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1858 if (!pcaps) 1859 return -ENOMEM; 1860 1861 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1862 NULL); 1863 if (retcode) { 1864 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1865 vsi->vsi_num, retcode); 1866 retcode = -EIO; 1867 goto out; 1868 } 1869 1870 /* No change in link */ 1871 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1872 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1873 goto out; 1874 1875 /* Use the current user PHY configuration. The current user PHY 1876 * configuration is initialized during probe from PHY capabilities 1877 * software mode, and updated on set PHY configuration. 1878 */ 1879 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1880 if (!cfg) { 1881 retcode = -ENOMEM; 1882 goto out; 1883 } 1884 1885 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1886 if (link_up) 1887 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1888 else 1889 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1890 1891 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1892 if (retcode) { 1893 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1894 vsi->vsi_num, retcode); 1895 retcode = -EIO; 1896 } 1897 1898 kfree(cfg); 1899 out: 1900 kfree(pcaps); 1901 return retcode; 1902 } 1903 1904 /** 1905 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1906 * @pi: port info structure 1907 * 1908 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1909 */ 1910 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1911 { 1912 struct ice_aqc_get_phy_caps_data *pcaps; 1913 struct ice_pf *pf = pi->hw->back; 1914 int err; 1915 1916 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1917 if (!pcaps) 1918 return -ENOMEM; 1919 1920 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1921 pcaps, NULL); 1922 1923 if (err) { 1924 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1925 goto out; 1926 } 1927 1928 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1929 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1930 1931 out: 1932 kfree(pcaps); 1933 return err; 1934 } 1935 1936 /** 1937 * ice_init_link_dflt_override - Initialize link default override 1938 * @pi: port info structure 1939 * 1940 * Initialize link default override and PHY total port shutdown during probe 1941 */ 1942 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1943 { 1944 struct ice_link_default_override_tlv *ldo; 1945 struct ice_pf *pf = pi->hw->back; 1946 1947 ldo = &pf->link_dflt_override; 1948 if (ice_get_link_default_override(ldo, pi)) 1949 return; 1950 1951 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1952 return; 1953 1954 /* Enable Total Port Shutdown (override/replace link-down-on-close 1955 * ethtool private flag) for ports with Port Disable bit set. 1956 */ 1957 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1958 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1959 } 1960 1961 /** 1962 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1963 * @pi: port info structure 1964 * 1965 * If default override is enabled, initialize the user PHY cfg speed and FEC 1966 * settings using the default override mask from the NVM. 1967 * 1968 * The PHY should only be configured with the default override settings the 1969 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1970 * is used to indicate that the user PHY cfg default override is initialized 1971 * and the PHY has not been configured with the default override settings. The 1972 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1973 * configured. 1974 * 1975 * This function should be called only if the FW doesn't support default 1976 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1977 */ 1978 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1979 { 1980 struct ice_link_default_override_tlv *ldo; 1981 struct ice_aqc_set_phy_cfg_data *cfg; 1982 struct ice_phy_info *phy = &pi->phy; 1983 struct ice_pf *pf = pi->hw->back; 1984 1985 ldo = &pf->link_dflt_override; 1986 1987 /* If link default override is enabled, use to mask NVM PHY capabilities 1988 * for speed and FEC default configuration. 1989 */ 1990 cfg = &phy->curr_user_phy_cfg; 1991 1992 if (ldo->phy_type_low || ldo->phy_type_high) { 1993 cfg->phy_type_low = pf->nvm_phy_type_lo & 1994 cpu_to_le64(ldo->phy_type_low); 1995 cfg->phy_type_high = pf->nvm_phy_type_hi & 1996 cpu_to_le64(ldo->phy_type_high); 1997 } 1998 cfg->link_fec_opt = ldo->fec_options; 1999 phy->curr_user_fec_req = ICE_FEC_AUTO; 2000 2001 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2002 } 2003 2004 /** 2005 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2006 * @pi: port info structure 2007 * 2008 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2009 * mode to default. The PHY defaults are from get PHY capabilities topology 2010 * with media so call when media is first available. An error is returned if 2011 * called when media is not available. The PHY initialization completed state is 2012 * set here. 2013 * 2014 * These configurations are used when setting PHY 2015 * configuration. The user PHY configuration is updated on set PHY 2016 * configuration. Returns 0 on success, negative on failure 2017 */ 2018 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2019 { 2020 struct ice_aqc_get_phy_caps_data *pcaps; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2026 return -EIO; 2027 2028 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2029 if (!pcaps) 2030 return -ENOMEM; 2031 2032 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2033 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2034 pcaps, NULL); 2035 else 2036 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2037 pcaps, NULL); 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto err_out; 2041 } 2042 2043 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2044 2045 /* check if lenient mode is supported and enabled */ 2046 if (ice_fw_supports_link_override(pi->hw) && 2047 !(pcaps->module_compliance_enforcement & 2048 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2049 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2050 2051 /* if the FW supports default PHY configuration mode, then the driver 2052 * does not have to apply link override settings. If not, 2053 * initialize user PHY configuration with link override values 2054 */ 2055 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2056 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2057 ice_init_phy_cfg_dflt_override(pi); 2058 goto out; 2059 } 2060 } 2061 2062 /* if link default override is not enabled, set user flow control and 2063 * FEC settings based on what get_phy_caps returned 2064 */ 2065 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2066 pcaps->link_fec_options); 2067 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2068 2069 out: 2070 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2071 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2072 err_out: 2073 kfree(pcaps); 2074 return err; 2075 } 2076 2077 /** 2078 * ice_configure_phy - configure PHY 2079 * @vsi: VSI of PHY 2080 * 2081 * Set the PHY configuration. If the current PHY configuration is the same as 2082 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2083 * configure the based get PHY capabilities for topology with media. 2084 */ 2085 static int ice_configure_phy(struct ice_vsi *vsi) 2086 { 2087 struct device *dev = ice_pf_to_dev(vsi->back); 2088 struct ice_port_info *pi = vsi->port_info; 2089 struct ice_aqc_get_phy_caps_data *pcaps; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = vsi->back; 2093 int err; 2094 2095 /* Ensure we have media as we cannot configure a medialess port */ 2096 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2097 return -EPERM; 2098 2099 ice_print_topo_conflict(vsi); 2100 2101 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2102 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2103 return -EPERM; 2104 2105 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2106 return ice_force_phys_link_state(vsi, true); 2107 2108 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2109 if (!pcaps) 2110 return -ENOMEM; 2111 2112 /* Get current PHY config */ 2113 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2114 NULL); 2115 if (err) { 2116 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2117 vsi->vsi_num, err); 2118 goto done; 2119 } 2120 2121 /* If PHY enable link is configured and configuration has not changed, 2122 * there's nothing to do 2123 */ 2124 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2125 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2126 goto done; 2127 2128 /* Use PHY topology as baseline for configuration */ 2129 memset(pcaps, 0, sizeof(*pcaps)); 2130 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2132 pcaps, NULL); 2133 else 2134 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2135 pcaps, NULL); 2136 if (err) { 2137 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2138 vsi->vsi_num, err); 2139 goto done; 2140 } 2141 2142 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2143 if (!cfg) { 2144 err = -ENOMEM; 2145 goto done; 2146 } 2147 2148 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2149 2150 /* Speed - If default override pending, use curr_user_phy_cfg set in 2151 * ice_init_phy_user_cfg_ldo. 2152 */ 2153 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2154 vsi->back->state)) { 2155 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2156 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2157 } else { 2158 u64 phy_low = 0, phy_high = 0; 2159 2160 ice_update_phy_type(&phy_low, &phy_high, 2161 pi->phy.curr_user_speed_req); 2162 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2163 cfg->phy_type_high = pcaps->phy_type_high & 2164 cpu_to_le64(phy_high); 2165 } 2166 2167 /* Can't provide what was requested; use PHY capabilities */ 2168 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2169 cfg->phy_type_low = pcaps->phy_type_low; 2170 cfg->phy_type_high = pcaps->phy_type_high; 2171 } 2172 2173 /* FEC */ 2174 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2175 2176 /* Can't provide what was requested; use PHY capabilities */ 2177 if (cfg->link_fec_opt != 2178 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2179 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2180 cfg->link_fec_opt = pcaps->link_fec_options; 2181 } 2182 2183 /* Flow Control - always supported; no need to check against 2184 * capabilities 2185 */ 2186 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2187 2188 /* Enable link and link update */ 2189 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2190 2191 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2192 if (err) 2193 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2194 vsi->vsi_num, err); 2195 2196 kfree(cfg); 2197 done: 2198 kfree(pcaps); 2199 return err; 2200 } 2201 2202 /** 2203 * ice_check_media_subtask - Check for media 2204 * @pf: pointer to PF struct 2205 * 2206 * If media is available, then initialize PHY user configuration if it is not 2207 * been, and configure the PHY if the interface is up. 2208 */ 2209 static void ice_check_media_subtask(struct ice_pf *pf) 2210 { 2211 struct ice_port_info *pi; 2212 struct ice_vsi *vsi; 2213 int err; 2214 2215 /* No need to check for media if it's already present */ 2216 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2217 return; 2218 2219 vsi = ice_get_main_vsi(pf); 2220 if (!vsi) 2221 return; 2222 2223 /* Refresh link info and check if media is present */ 2224 pi = vsi->port_info; 2225 err = ice_update_link_info(pi); 2226 if (err) 2227 return; 2228 2229 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2230 2231 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2232 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2233 ice_init_phy_user_cfg(pi); 2234 2235 /* PHY settings are reset on media insertion, reconfigure 2236 * PHY to preserve settings. 2237 */ 2238 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2239 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2240 return; 2241 2242 err = ice_configure_phy(vsi); 2243 if (!err) 2244 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2245 2246 /* A Link Status Event will be generated; the event handler 2247 * will complete bringing the interface up 2248 */ 2249 } 2250 } 2251 2252 /** 2253 * ice_service_task - manage and run subtasks 2254 * @work: pointer to work_struct contained by the PF struct 2255 */ 2256 static void ice_service_task(struct work_struct *work) 2257 { 2258 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2259 unsigned long start_time = jiffies; 2260 2261 /* subtasks */ 2262 2263 /* process reset requests first */ 2264 ice_reset_subtask(pf); 2265 2266 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2267 if (ice_is_reset_in_progress(pf->state) || 2268 test_bit(ICE_SUSPENDED, pf->state) || 2269 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2270 ice_service_task_complete(pf); 2271 return; 2272 } 2273 2274 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2275 struct iidc_event *event; 2276 2277 event = kzalloc(sizeof(*event), GFP_KERNEL); 2278 if (event) { 2279 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2280 /* report the entire OICR value to AUX driver */ 2281 swap(event->reg, pf->oicr_err_reg); 2282 ice_send_event_to_aux(pf, event); 2283 kfree(event); 2284 } 2285 } 2286 2287 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2288 /* Plug aux device per request */ 2289 ice_plug_aux_dev(pf); 2290 2291 /* Mark plugging as done but check whether unplug was 2292 * requested during ice_plug_aux_dev() call 2293 * (e.g. from ice_clear_rdma_cap()) and if so then 2294 * plug aux device. 2295 */ 2296 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2297 ice_unplug_aux_dev(pf); 2298 } 2299 2300 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2301 struct iidc_event *event; 2302 2303 event = kzalloc(sizeof(*event), GFP_KERNEL); 2304 if (event) { 2305 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2306 ice_send_event_to_aux(pf, event); 2307 kfree(event); 2308 } 2309 } 2310 2311 ice_clean_adminq_subtask(pf); 2312 ice_check_media_subtask(pf); 2313 ice_check_for_hang_subtask(pf); 2314 ice_sync_fltr_subtask(pf); 2315 ice_handle_mdd_event(pf); 2316 ice_watchdog_subtask(pf); 2317 2318 if (ice_is_safe_mode(pf)) { 2319 ice_service_task_complete(pf); 2320 return; 2321 } 2322 2323 ice_process_vflr_event(pf); 2324 ice_clean_mailboxq_subtask(pf); 2325 ice_clean_sbq_subtask(pf); 2326 ice_sync_arfs_fltrs(pf); 2327 ice_flush_fdir_ctx(pf); 2328 2329 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2330 ice_service_task_complete(pf); 2331 2332 /* If the tasks have taken longer than one service timer period 2333 * or there is more work to be done, reset the service timer to 2334 * schedule the service task now. 2335 */ 2336 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2337 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2338 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2339 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2340 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2341 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2342 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2343 mod_timer(&pf->serv_tmr, jiffies); 2344 } 2345 2346 /** 2347 * ice_set_ctrlq_len - helper function to set controlq length 2348 * @hw: pointer to the HW instance 2349 */ 2350 static void ice_set_ctrlq_len(struct ice_hw *hw) 2351 { 2352 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2353 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2354 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2355 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2356 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2357 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2358 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2359 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2360 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2361 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2362 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2363 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2364 } 2365 2366 /** 2367 * ice_schedule_reset - schedule a reset 2368 * @pf: board private structure 2369 * @reset: reset being requested 2370 */ 2371 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2372 { 2373 struct device *dev = ice_pf_to_dev(pf); 2374 2375 /* bail out if earlier reset has failed */ 2376 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2377 dev_dbg(dev, "earlier reset has failed\n"); 2378 return -EIO; 2379 } 2380 /* bail if reset/recovery already in progress */ 2381 if (ice_is_reset_in_progress(pf->state)) { 2382 dev_dbg(dev, "Reset already in progress\n"); 2383 return -EBUSY; 2384 } 2385 2386 ice_unplug_aux_dev(pf); 2387 2388 switch (reset) { 2389 case ICE_RESET_PFR: 2390 set_bit(ICE_PFR_REQ, pf->state); 2391 break; 2392 case ICE_RESET_CORER: 2393 set_bit(ICE_CORER_REQ, pf->state); 2394 break; 2395 case ICE_RESET_GLOBR: 2396 set_bit(ICE_GLOBR_REQ, pf->state); 2397 break; 2398 default: 2399 return -EINVAL; 2400 } 2401 2402 ice_service_task_schedule(pf); 2403 return 0; 2404 } 2405 2406 /** 2407 * ice_irq_affinity_notify - Callback for affinity changes 2408 * @notify: context as to what irq was changed 2409 * @mask: the new affinity mask 2410 * 2411 * This is a callback function used by the irq_set_affinity_notifier function 2412 * so that we may register to receive changes to the irq affinity masks. 2413 */ 2414 static void 2415 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2416 const cpumask_t *mask) 2417 { 2418 struct ice_q_vector *q_vector = 2419 container_of(notify, struct ice_q_vector, affinity_notify); 2420 2421 cpumask_copy(&q_vector->affinity_mask, mask); 2422 } 2423 2424 /** 2425 * ice_irq_affinity_release - Callback for affinity notifier release 2426 * @ref: internal core kernel usage 2427 * 2428 * This is a callback function used by the irq_set_affinity_notifier function 2429 * to inform the current notification subscriber that they will no longer 2430 * receive notifications. 2431 */ 2432 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2433 2434 /** 2435 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2436 * @vsi: the VSI being configured 2437 */ 2438 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2439 { 2440 struct ice_hw *hw = &vsi->back->hw; 2441 int i; 2442 2443 ice_for_each_q_vector(vsi, i) 2444 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2445 2446 ice_flush(hw); 2447 return 0; 2448 } 2449 2450 /** 2451 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2452 * @vsi: the VSI being configured 2453 * @basename: name for the vector 2454 */ 2455 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2456 { 2457 int q_vectors = vsi->num_q_vectors; 2458 struct ice_pf *pf = vsi->back; 2459 int base = vsi->base_vector; 2460 struct device *dev; 2461 int rx_int_idx = 0; 2462 int tx_int_idx = 0; 2463 int vector, err; 2464 int irq_num; 2465 2466 dev = ice_pf_to_dev(pf); 2467 for (vector = 0; vector < q_vectors; vector++) { 2468 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2469 2470 irq_num = pf->msix_entries[base + vector].vector; 2471 2472 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2473 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2474 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2475 tx_int_idx++; 2476 } else if (q_vector->rx.rx_ring) { 2477 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2478 "%s-%s-%d", basename, "rx", rx_int_idx++); 2479 } else if (q_vector->tx.tx_ring) { 2480 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2481 "%s-%s-%d", basename, "tx", tx_int_idx++); 2482 } else { 2483 /* skip this unused q_vector */ 2484 continue; 2485 } 2486 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2487 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2488 IRQF_SHARED, q_vector->name, 2489 q_vector); 2490 else 2491 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2492 0, q_vector->name, q_vector); 2493 if (err) { 2494 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2495 err); 2496 goto free_q_irqs; 2497 } 2498 2499 /* register for affinity change notifications */ 2500 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2501 struct irq_affinity_notify *affinity_notify; 2502 2503 affinity_notify = &q_vector->affinity_notify; 2504 affinity_notify->notify = ice_irq_affinity_notify; 2505 affinity_notify->release = ice_irq_affinity_release; 2506 irq_set_affinity_notifier(irq_num, affinity_notify); 2507 } 2508 2509 /* assign the mask for this irq */ 2510 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2511 } 2512 2513 err = ice_set_cpu_rx_rmap(vsi); 2514 if (err) { 2515 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2516 vsi->vsi_num, ERR_PTR(err)); 2517 goto free_q_irqs; 2518 } 2519 2520 vsi->irqs_ready = true; 2521 return 0; 2522 2523 free_q_irqs: 2524 while (vector) { 2525 vector--; 2526 irq_num = pf->msix_entries[base + vector].vector; 2527 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2528 irq_set_affinity_notifier(irq_num, NULL); 2529 irq_set_affinity_hint(irq_num, NULL); 2530 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2531 } 2532 return err; 2533 } 2534 2535 /** 2536 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2537 * @vsi: VSI to setup Tx rings used by XDP 2538 * 2539 * Return 0 on success and negative value on error 2540 */ 2541 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2542 { 2543 struct device *dev = ice_pf_to_dev(vsi->back); 2544 struct ice_tx_desc *tx_desc; 2545 int i, j; 2546 2547 ice_for_each_xdp_txq(vsi, i) { 2548 u16 xdp_q_idx = vsi->alloc_txq + i; 2549 struct ice_tx_ring *xdp_ring; 2550 2551 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2552 2553 if (!xdp_ring) 2554 goto free_xdp_rings; 2555 2556 xdp_ring->q_index = xdp_q_idx; 2557 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2558 xdp_ring->vsi = vsi; 2559 xdp_ring->netdev = NULL; 2560 xdp_ring->dev = dev; 2561 xdp_ring->count = vsi->num_tx_desc; 2562 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2563 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2564 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2565 if (ice_setup_tx_ring(xdp_ring)) 2566 goto free_xdp_rings; 2567 ice_set_ring_xdp(xdp_ring); 2568 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2569 spin_lock_init(&xdp_ring->tx_lock); 2570 for (j = 0; j < xdp_ring->count; j++) { 2571 tx_desc = ICE_TX_DESC(xdp_ring, j); 2572 tx_desc->cmd_type_offset_bsz = 0; 2573 } 2574 } 2575 2576 ice_for_each_rxq(vsi, i) { 2577 if (static_key_enabled(&ice_xdp_locking_key)) 2578 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2579 else 2580 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2581 } 2582 2583 return 0; 2584 2585 free_xdp_rings: 2586 for (; i >= 0; i--) 2587 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2588 ice_free_tx_ring(vsi->xdp_rings[i]); 2589 return -ENOMEM; 2590 } 2591 2592 /** 2593 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2594 * @vsi: VSI to set the bpf prog on 2595 * @prog: the bpf prog pointer 2596 */ 2597 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2598 { 2599 struct bpf_prog *old_prog; 2600 int i; 2601 2602 old_prog = xchg(&vsi->xdp_prog, prog); 2603 if (old_prog) 2604 bpf_prog_put(old_prog); 2605 2606 ice_for_each_rxq(vsi, i) 2607 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2608 } 2609 2610 /** 2611 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2612 * @vsi: VSI to bring up Tx rings used by XDP 2613 * @prog: bpf program that will be assigned to VSI 2614 * 2615 * Return 0 on success and negative value on error 2616 */ 2617 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2618 { 2619 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2620 int xdp_rings_rem = vsi->num_xdp_txq; 2621 struct ice_pf *pf = vsi->back; 2622 struct ice_qs_cfg xdp_qs_cfg = { 2623 .qs_mutex = &pf->avail_q_mutex, 2624 .pf_map = pf->avail_txqs, 2625 .pf_map_size = pf->max_pf_txqs, 2626 .q_count = vsi->num_xdp_txq, 2627 .scatter_count = ICE_MAX_SCATTER_TXQS, 2628 .vsi_map = vsi->txq_map, 2629 .vsi_map_offset = vsi->alloc_txq, 2630 .mapping_mode = ICE_VSI_MAP_CONTIG 2631 }; 2632 struct device *dev; 2633 int i, v_idx; 2634 int status; 2635 2636 dev = ice_pf_to_dev(pf); 2637 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2638 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2639 if (!vsi->xdp_rings) 2640 return -ENOMEM; 2641 2642 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2643 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2644 goto err_map_xdp; 2645 2646 if (static_key_enabled(&ice_xdp_locking_key)) 2647 netdev_warn(vsi->netdev, 2648 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2649 2650 if (ice_xdp_alloc_setup_rings(vsi)) 2651 goto clear_xdp_rings; 2652 2653 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2654 ice_for_each_q_vector(vsi, v_idx) { 2655 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2656 int xdp_rings_per_v, q_id, q_base; 2657 2658 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2659 vsi->num_q_vectors - v_idx); 2660 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2661 2662 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2663 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2664 2665 xdp_ring->q_vector = q_vector; 2666 xdp_ring->next = q_vector->tx.tx_ring; 2667 q_vector->tx.tx_ring = xdp_ring; 2668 } 2669 xdp_rings_rem -= xdp_rings_per_v; 2670 } 2671 2672 /* omit the scheduler update if in reset path; XDP queues will be 2673 * taken into account at the end of ice_vsi_rebuild, where 2674 * ice_cfg_vsi_lan is being called 2675 */ 2676 if (ice_is_reset_in_progress(pf->state)) 2677 return 0; 2678 2679 /* tell the Tx scheduler that right now we have 2680 * additional queues 2681 */ 2682 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2683 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2684 2685 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2686 max_txqs); 2687 if (status) { 2688 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2689 status); 2690 goto clear_xdp_rings; 2691 } 2692 2693 /* assign the prog only when it's not already present on VSI; 2694 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2695 * VSI rebuild that happens under ethtool -L can expose us to 2696 * the bpf_prog refcount issues as we would be swapping same 2697 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2698 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2699 * this is not harmful as dev_xdp_install bumps the refcount 2700 * before calling the op exposed by the driver; 2701 */ 2702 if (!ice_is_xdp_ena_vsi(vsi)) 2703 ice_vsi_assign_bpf_prog(vsi, prog); 2704 2705 return 0; 2706 clear_xdp_rings: 2707 ice_for_each_xdp_txq(vsi, i) 2708 if (vsi->xdp_rings[i]) { 2709 kfree_rcu(vsi->xdp_rings[i], rcu); 2710 vsi->xdp_rings[i] = NULL; 2711 } 2712 2713 err_map_xdp: 2714 mutex_lock(&pf->avail_q_mutex); 2715 ice_for_each_xdp_txq(vsi, i) { 2716 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2717 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2718 } 2719 mutex_unlock(&pf->avail_q_mutex); 2720 2721 devm_kfree(dev, vsi->xdp_rings); 2722 return -ENOMEM; 2723 } 2724 2725 /** 2726 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2727 * @vsi: VSI to remove XDP rings 2728 * 2729 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2730 * resources 2731 */ 2732 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2733 { 2734 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2735 struct ice_pf *pf = vsi->back; 2736 int i, v_idx; 2737 2738 /* q_vectors are freed in reset path so there's no point in detaching 2739 * rings; in case of rebuild being triggered not from reset bits 2740 * in pf->state won't be set, so additionally check first q_vector 2741 * against NULL 2742 */ 2743 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2744 goto free_qmap; 2745 2746 ice_for_each_q_vector(vsi, v_idx) { 2747 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2748 struct ice_tx_ring *ring; 2749 2750 ice_for_each_tx_ring(ring, q_vector->tx) 2751 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2752 break; 2753 2754 /* restore the value of last node prior to XDP setup */ 2755 q_vector->tx.tx_ring = ring; 2756 } 2757 2758 free_qmap: 2759 mutex_lock(&pf->avail_q_mutex); 2760 ice_for_each_xdp_txq(vsi, i) { 2761 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2762 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2763 } 2764 mutex_unlock(&pf->avail_q_mutex); 2765 2766 ice_for_each_xdp_txq(vsi, i) 2767 if (vsi->xdp_rings[i]) { 2768 if (vsi->xdp_rings[i]->desc) { 2769 synchronize_rcu(); 2770 ice_free_tx_ring(vsi->xdp_rings[i]); 2771 } 2772 kfree_rcu(vsi->xdp_rings[i], rcu); 2773 vsi->xdp_rings[i] = NULL; 2774 } 2775 2776 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2777 vsi->xdp_rings = NULL; 2778 2779 if (static_key_enabled(&ice_xdp_locking_key)) 2780 static_branch_dec(&ice_xdp_locking_key); 2781 2782 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2783 return 0; 2784 2785 ice_vsi_assign_bpf_prog(vsi, NULL); 2786 2787 /* notify Tx scheduler that we destroyed XDP queues and bring 2788 * back the old number of child nodes 2789 */ 2790 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2791 max_txqs[i] = vsi->num_txq; 2792 2793 /* change number of XDP Tx queues to 0 */ 2794 vsi->num_xdp_txq = 0; 2795 2796 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2797 max_txqs); 2798 } 2799 2800 /** 2801 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2802 * @vsi: VSI to schedule napi on 2803 */ 2804 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2805 { 2806 int i; 2807 2808 ice_for_each_rxq(vsi, i) { 2809 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2810 2811 if (rx_ring->xsk_pool) 2812 napi_schedule(&rx_ring->q_vector->napi); 2813 } 2814 } 2815 2816 /** 2817 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2818 * @vsi: VSI to determine the count of XDP Tx qs 2819 * 2820 * returns 0 if Tx qs count is higher than at least half of CPU count, 2821 * -ENOMEM otherwise 2822 */ 2823 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2824 { 2825 u16 avail = ice_get_avail_txq_count(vsi->back); 2826 u16 cpus = num_possible_cpus(); 2827 2828 if (avail < cpus / 2) 2829 return -ENOMEM; 2830 2831 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2832 2833 if (vsi->num_xdp_txq < cpus) 2834 static_branch_inc(&ice_xdp_locking_key); 2835 2836 return 0; 2837 } 2838 2839 /** 2840 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2841 * @vsi: VSI to setup XDP for 2842 * @prog: XDP program 2843 * @extack: netlink extended ack 2844 */ 2845 static int 2846 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2847 struct netlink_ext_ack *extack) 2848 { 2849 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2850 bool if_running = netif_running(vsi->netdev); 2851 int ret = 0, xdp_ring_err = 0; 2852 2853 if (frame_size > vsi->rx_buf_len) { 2854 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2855 return -EOPNOTSUPP; 2856 } 2857 2858 /* need to stop netdev while setting up the program for Rx rings */ 2859 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2860 ret = ice_down(vsi); 2861 if (ret) { 2862 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2863 return ret; 2864 } 2865 } 2866 2867 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2868 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2869 if (xdp_ring_err) { 2870 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2871 } else { 2872 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2873 if (xdp_ring_err) 2874 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2875 } 2876 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2877 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2878 if (xdp_ring_err) 2879 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2880 } else { 2881 /* safe to call even when prog == vsi->xdp_prog as 2882 * dev_xdp_install in net/core/dev.c incremented prog's 2883 * refcount so corresponding bpf_prog_put won't cause 2884 * underflow 2885 */ 2886 ice_vsi_assign_bpf_prog(vsi, prog); 2887 } 2888 2889 if (if_running) 2890 ret = ice_up(vsi); 2891 2892 if (!ret && prog) 2893 ice_vsi_rx_napi_schedule(vsi); 2894 2895 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2896 } 2897 2898 /** 2899 * ice_xdp_safe_mode - XDP handler for safe mode 2900 * @dev: netdevice 2901 * @xdp: XDP command 2902 */ 2903 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2904 struct netdev_bpf *xdp) 2905 { 2906 NL_SET_ERR_MSG_MOD(xdp->extack, 2907 "Please provide working DDP firmware package in order to use XDP\n" 2908 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2909 return -EOPNOTSUPP; 2910 } 2911 2912 /** 2913 * ice_xdp - implements XDP handler 2914 * @dev: netdevice 2915 * @xdp: XDP command 2916 */ 2917 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2918 { 2919 struct ice_netdev_priv *np = netdev_priv(dev); 2920 struct ice_vsi *vsi = np->vsi; 2921 2922 if (vsi->type != ICE_VSI_PF) { 2923 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2924 return -EINVAL; 2925 } 2926 2927 switch (xdp->command) { 2928 case XDP_SETUP_PROG: 2929 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2930 case XDP_SETUP_XSK_POOL: 2931 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2932 xdp->xsk.queue_id); 2933 default: 2934 return -EINVAL; 2935 } 2936 } 2937 2938 /** 2939 * ice_ena_misc_vector - enable the non-queue interrupts 2940 * @pf: board private structure 2941 */ 2942 static void ice_ena_misc_vector(struct ice_pf *pf) 2943 { 2944 struct ice_hw *hw = &pf->hw; 2945 u32 val; 2946 2947 /* Disable anti-spoof detection interrupt to prevent spurious event 2948 * interrupts during a function reset. Anti-spoof functionally is 2949 * still supported. 2950 */ 2951 val = rd32(hw, GL_MDCK_TX_TDPU); 2952 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2953 wr32(hw, GL_MDCK_TX_TDPU, val); 2954 2955 /* clear things first */ 2956 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2957 rd32(hw, PFINT_OICR); /* read to clear */ 2958 2959 val = (PFINT_OICR_ECC_ERR_M | 2960 PFINT_OICR_MAL_DETECT_M | 2961 PFINT_OICR_GRST_M | 2962 PFINT_OICR_PCI_EXCEPTION_M | 2963 PFINT_OICR_VFLR_M | 2964 PFINT_OICR_HMC_ERR_M | 2965 PFINT_OICR_PE_PUSH_M | 2966 PFINT_OICR_PE_CRITERR_M); 2967 2968 wr32(hw, PFINT_OICR_ENA, val); 2969 2970 /* SW_ITR_IDX = 0, but don't change INTENA */ 2971 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2972 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2973 } 2974 2975 /** 2976 * ice_misc_intr - misc interrupt handler 2977 * @irq: interrupt number 2978 * @data: pointer to a q_vector 2979 */ 2980 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2981 { 2982 struct ice_pf *pf = (struct ice_pf *)data; 2983 struct ice_hw *hw = &pf->hw; 2984 irqreturn_t ret = IRQ_NONE; 2985 struct device *dev; 2986 u32 oicr, ena_mask; 2987 2988 dev = ice_pf_to_dev(pf); 2989 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2990 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2991 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2992 2993 oicr = rd32(hw, PFINT_OICR); 2994 ena_mask = rd32(hw, PFINT_OICR_ENA); 2995 2996 if (oicr & PFINT_OICR_SWINT_M) { 2997 ena_mask &= ~PFINT_OICR_SWINT_M; 2998 pf->sw_int_count++; 2999 } 3000 3001 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3002 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3003 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3004 } 3005 if (oicr & PFINT_OICR_VFLR_M) { 3006 /* disable any further VFLR event notifications */ 3007 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3008 u32 reg = rd32(hw, PFINT_OICR_ENA); 3009 3010 reg &= ~PFINT_OICR_VFLR_M; 3011 wr32(hw, PFINT_OICR_ENA, reg); 3012 } else { 3013 ena_mask &= ~PFINT_OICR_VFLR_M; 3014 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3015 } 3016 } 3017 3018 if (oicr & PFINT_OICR_GRST_M) { 3019 u32 reset; 3020 3021 /* we have a reset warning */ 3022 ena_mask &= ~PFINT_OICR_GRST_M; 3023 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3024 GLGEN_RSTAT_RESET_TYPE_S; 3025 3026 if (reset == ICE_RESET_CORER) 3027 pf->corer_count++; 3028 else if (reset == ICE_RESET_GLOBR) 3029 pf->globr_count++; 3030 else if (reset == ICE_RESET_EMPR) 3031 pf->empr_count++; 3032 else 3033 dev_dbg(dev, "Invalid reset type %d\n", reset); 3034 3035 /* If a reset cycle isn't already in progress, we set a bit in 3036 * pf->state so that the service task can start a reset/rebuild. 3037 */ 3038 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3039 if (reset == ICE_RESET_CORER) 3040 set_bit(ICE_CORER_RECV, pf->state); 3041 else if (reset == ICE_RESET_GLOBR) 3042 set_bit(ICE_GLOBR_RECV, pf->state); 3043 else 3044 set_bit(ICE_EMPR_RECV, pf->state); 3045 3046 /* There are couple of different bits at play here. 3047 * hw->reset_ongoing indicates whether the hardware is 3048 * in reset. This is set to true when a reset interrupt 3049 * is received and set back to false after the driver 3050 * has determined that the hardware is out of reset. 3051 * 3052 * ICE_RESET_OICR_RECV in pf->state indicates 3053 * that a post reset rebuild is required before the 3054 * driver is operational again. This is set above. 3055 * 3056 * As this is the start of the reset/rebuild cycle, set 3057 * both to indicate that. 3058 */ 3059 hw->reset_ongoing = true; 3060 } 3061 } 3062 3063 if (oicr & PFINT_OICR_TSYN_TX_M) { 3064 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3065 ice_ptp_process_ts(pf); 3066 } 3067 3068 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3069 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3070 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3071 3072 /* Save EVENTs from GTSYN register */ 3073 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3074 GLTSYN_STAT_EVENT1_M | 3075 GLTSYN_STAT_EVENT2_M); 3076 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3077 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3078 } 3079 3080 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3081 if (oicr & ICE_AUX_CRIT_ERR) { 3082 pf->oicr_err_reg |= oicr; 3083 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3084 ena_mask &= ~ICE_AUX_CRIT_ERR; 3085 } 3086 3087 /* Report any remaining unexpected interrupts */ 3088 oicr &= ena_mask; 3089 if (oicr) { 3090 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3091 /* If a critical error is pending there is no choice but to 3092 * reset the device. 3093 */ 3094 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3095 PFINT_OICR_ECC_ERR_M)) { 3096 set_bit(ICE_PFR_REQ, pf->state); 3097 ice_service_task_schedule(pf); 3098 } 3099 } 3100 ret = IRQ_HANDLED; 3101 3102 ice_service_task_schedule(pf); 3103 ice_irq_dynamic_ena(hw, NULL, NULL); 3104 3105 return ret; 3106 } 3107 3108 /** 3109 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3110 * @hw: pointer to HW structure 3111 */ 3112 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3113 { 3114 /* disable Admin queue Interrupt causes */ 3115 wr32(hw, PFINT_FW_CTL, 3116 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3117 3118 /* disable Mailbox queue Interrupt causes */ 3119 wr32(hw, PFINT_MBX_CTL, 3120 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3121 3122 wr32(hw, PFINT_SB_CTL, 3123 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3124 3125 /* disable Control queue Interrupt causes */ 3126 wr32(hw, PFINT_OICR_CTL, 3127 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3128 3129 ice_flush(hw); 3130 } 3131 3132 /** 3133 * ice_free_irq_msix_misc - Unroll misc vector setup 3134 * @pf: board private structure 3135 */ 3136 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3137 { 3138 struct ice_hw *hw = &pf->hw; 3139 3140 ice_dis_ctrlq_interrupts(hw); 3141 3142 /* disable OICR interrupt */ 3143 wr32(hw, PFINT_OICR_ENA, 0); 3144 ice_flush(hw); 3145 3146 if (pf->msix_entries) { 3147 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3148 devm_free_irq(ice_pf_to_dev(pf), 3149 pf->msix_entries[pf->oicr_idx].vector, pf); 3150 } 3151 3152 pf->num_avail_sw_msix += 1; 3153 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3154 } 3155 3156 /** 3157 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3158 * @hw: pointer to HW structure 3159 * @reg_idx: HW vector index to associate the control queue interrupts with 3160 */ 3161 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3162 { 3163 u32 val; 3164 3165 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3166 PFINT_OICR_CTL_CAUSE_ENA_M); 3167 wr32(hw, PFINT_OICR_CTL, val); 3168 3169 /* enable Admin queue Interrupt causes */ 3170 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3171 PFINT_FW_CTL_CAUSE_ENA_M); 3172 wr32(hw, PFINT_FW_CTL, val); 3173 3174 /* enable Mailbox queue Interrupt causes */ 3175 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3176 PFINT_MBX_CTL_CAUSE_ENA_M); 3177 wr32(hw, PFINT_MBX_CTL, val); 3178 3179 /* This enables Sideband queue Interrupt causes */ 3180 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3181 PFINT_SB_CTL_CAUSE_ENA_M); 3182 wr32(hw, PFINT_SB_CTL, val); 3183 3184 ice_flush(hw); 3185 } 3186 3187 /** 3188 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3189 * @pf: board private structure 3190 * 3191 * This sets up the handler for MSIX 0, which is used to manage the 3192 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3193 * when in MSI or Legacy interrupt mode. 3194 */ 3195 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3196 { 3197 struct device *dev = ice_pf_to_dev(pf); 3198 struct ice_hw *hw = &pf->hw; 3199 int oicr_idx, err = 0; 3200 3201 if (!pf->int_name[0]) 3202 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3203 dev_driver_string(dev), dev_name(dev)); 3204 3205 /* Do not request IRQ but do enable OICR interrupt since settings are 3206 * lost during reset. Note that this function is called only during 3207 * rebuild path and not while reset is in progress. 3208 */ 3209 if (ice_is_reset_in_progress(pf->state)) 3210 goto skip_req_irq; 3211 3212 /* reserve one vector in irq_tracker for misc interrupts */ 3213 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3214 if (oicr_idx < 0) 3215 return oicr_idx; 3216 3217 pf->num_avail_sw_msix -= 1; 3218 pf->oicr_idx = (u16)oicr_idx; 3219 3220 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3221 ice_misc_intr, 0, pf->int_name, pf); 3222 if (err) { 3223 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3224 pf->int_name, err); 3225 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3226 pf->num_avail_sw_msix += 1; 3227 return err; 3228 } 3229 3230 skip_req_irq: 3231 ice_ena_misc_vector(pf); 3232 3233 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3234 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3235 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3236 3237 ice_flush(hw); 3238 ice_irq_dynamic_ena(hw, NULL, NULL); 3239 3240 return 0; 3241 } 3242 3243 /** 3244 * ice_napi_add - register NAPI handler for the VSI 3245 * @vsi: VSI for which NAPI handler is to be registered 3246 * 3247 * This function is only called in the driver's load path. Registering the NAPI 3248 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3249 * reset/rebuild, etc.) 3250 */ 3251 static void ice_napi_add(struct ice_vsi *vsi) 3252 { 3253 int v_idx; 3254 3255 if (!vsi->netdev) 3256 return; 3257 3258 ice_for_each_q_vector(vsi, v_idx) 3259 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3260 ice_napi_poll, NAPI_POLL_WEIGHT); 3261 } 3262 3263 /** 3264 * ice_set_ops - set netdev and ethtools ops for the given netdev 3265 * @netdev: netdev instance 3266 */ 3267 static void ice_set_ops(struct net_device *netdev) 3268 { 3269 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3270 3271 if (ice_is_safe_mode(pf)) { 3272 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3273 ice_set_ethtool_safe_mode_ops(netdev); 3274 return; 3275 } 3276 3277 netdev->netdev_ops = &ice_netdev_ops; 3278 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3279 ice_set_ethtool_ops(netdev); 3280 } 3281 3282 /** 3283 * ice_set_netdev_features - set features for the given netdev 3284 * @netdev: netdev instance 3285 */ 3286 static void ice_set_netdev_features(struct net_device *netdev) 3287 { 3288 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3289 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3290 netdev_features_t csumo_features; 3291 netdev_features_t vlano_features; 3292 netdev_features_t dflt_features; 3293 netdev_features_t tso_features; 3294 3295 if (ice_is_safe_mode(pf)) { 3296 /* safe mode */ 3297 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3298 netdev->hw_features = netdev->features; 3299 return; 3300 } 3301 3302 dflt_features = NETIF_F_SG | 3303 NETIF_F_HIGHDMA | 3304 NETIF_F_NTUPLE | 3305 NETIF_F_RXHASH; 3306 3307 csumo_features = NETIF_F_RXCSUM | 3308 NETIF_F_IP_CSUM | 3309 NETIF_F_SCTP_CRC | 3310 NETIF_F_IPV6_CSUM; 3311 3312 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3313 NETIF_F_HW_VLAN_CTAG_TX | 3314 NETIF_F_HW_VLAN_CTAG_RX; 3315 3316 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3317 if (is_dvm_ena) 3318 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3319 3320 tso_features = NETIF_F_TSO | 3321 NETIF_F_TSO_ECN | 3322 NETIF_F_TSO6 | 3323 NETIF_F_GSO_GRE | 3324 NETIF_F_GSO_UDP_TUNNEL | 3325 NETIF_F_GSO_GRE_CSUM | 3326 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3327 NETIF_F_GSO_PARTIAL | 3328 NETIF_F_GSO_IPXIP4 | 3329 NETIF_F_GSO_IPXIP6 | 3330 NETIF_F_GSO_UDP_L4; 3331 3332 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3333 NETIF_F_GSO_GRE_CSUM; 3334 /* set features that user can change */ 3335 netdev->hw_features = dflt_features | csumo_features | 3336 vlano_features | tso_features; 3337 3338 /* add support for HW_CSUM on packets with MPLS header */ 3339 netdev->mpls_features = NETIF_F_HW_CSUM; 3340 3341 /* enable features */ 3342 netdev->features |= netdev->hw_features; 3343 3344 netdev->hw_features |= NETIF_F_HW_TC; 3345 3346 /* encap and VLAN devices inherit default, csumo and tso features */ 3347 netdev->hw_enc_features |= dflt_features | csumo_features | 3348 tso_features; 3349 netdev->vlan_features |= dflt_features | csumo_features | 3350 tso_features; 3351 3352 /* advertise support but don't enable by default since only one type of 3353 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3354 * type turns on the other has to be turned off. This is enforced by the 3355 * ice_fix_features() ndo callback. 3356 */ 3357 if (is_dvm_ena) 3358 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3359 NETIF_F_HW_VLAN_STAG_TX; 3360 } 3361 3362 /** 3363 * ice_cfg_netdev - Allocate, configure and register a netdev 3364 * @vsi: the VSI associated with the new netdev 3365 * 3366 * Returns 0 on success, negative value on failure 3367 */ 3368 static int ice_cfg_netdev(struct ice_vsi *vsi) 3369 { 3370 struct ice_netdev_priv *np; 3371 struct net_device *netdev; 3372 u8 mac_addr[ETH_ALEN]; 3373 3374 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3375 vsi->alloc_rxq); 3376 if (!netdev) 3377 return -ENOMEM; 3378 3379 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3380 vsi->netdev = netdev; 3381 np = netdev_priv(netdev); 3382 np->vsi = vsi; 3383 3384 ice_set_netdev_features(netdev); 3385 3386 ice_set_ops(netdev); 3387 3388 if (vsi->type == ICE_VSI_PF) { 3389 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3390 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3391 eth_hw_addr_set(netdev, mac_addr); 3392 ether_addr_copy(netdev->perm_addr, mac_addr); 3393 } 3394 3395 netdev->priv_flags |= IFF_UNICAST_FLT; 3396 3397 /* Setup netdev TC information */ 3398 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3399 3400 /* setup watchdog timeout value to be 5 second */ 3401 netdev->watchdog_timeo = 5 * HZ; 3402 3403 netdev->min_mtu = ETH_MIN_MTU; 3404 netdev->max_mtu = ICE_MAX_MTU; 3405 3406 return 0; 3407 } 3408 3409 /** 3410 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3411 * @lut: Lookup table 3412 * @rss_table_size: Lookup table size 3413 * @rss_size: Range of queue number for hashing 3414 */ 3415 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3416 { 3417 u16 i; 3418 3419 for (i = 0; i < rss_table_size; i++) 3420 lut[i] = i % rss_size; 3421 } 3422 3423 /** 3424 * ice_pf_vsi_setup - Set up a PF VSI 3425 * @pf: board private structure 3426 * @pi: pointer to the port_info instance 3427 * 3428 * Returns pointer to the successfully allocated VSI software struct 3429 * on success, otherwise returns NULL on failure. 3430 */ 3431 static struct ice_vsi * 3432 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3433 { 3434 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3435 } 3436 3437 static struct ice_vsi * 3438 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3439 struct ice_channel *ch) 3440 { 3441 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3442 } 3443 3444 /** 3445 * ice_ctrl_vsi_setup - Set up a control VSI 3446 * @pf: board private structure 3447 * @pi: pointer to the port_info instance 3448 * 3449 * Returns pointer to the successfully allocated VSI software struct 3450 * on success, otherwise returns NULL on failure. 3451 */ 3452 static struct ice_vsi * 3453 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3454 { 3455 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3456 } 3457 3458 /** 3459 * ice_lb_vsi_setup - Set up a loopback VSI 3460 * @pf: board private structure 3461 * @pi: pointer to the port_info instance 3462 * 3463 * Returns pointer to the successfully allocated VSI software struct 3464 * on success, otherwise returns NULL on failure. 3465 */ 3466 struct ice_vsi * 3467 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3468 { 3469 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3470 } 3471 3472 /** 3473 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3474 * @netdev: network interface to be adjusted 3475 * @proto: VLAN TPID 3476 * @vid: VLAN ID to be added 3477 * 3478 * net_device_ops implementation for adding VLAN IDs 3479 */ 3480 static int 3481 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3482 { 3483 struct ice_netdev_priv *np = netdev_priv(netdev); 3484 struct ice_vsi_vlan_ops *vlan_ops; 3485 struct ice_vsi *vsi = np->vsi; 3486 struct ice_vlan vlan; 3487 int ret; 3488 3489 /* VLAN 0 is added by default during load/reset */ 3490 if (!vid) 3491 return 0; 3492 3493 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3494 usleep_range(1000, 2000); 3495 3496 /* Add multicast promisc rule for the VLAN ID to be added if 3497 * all-multicast is currently enabled. 3498 */ 3499 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3500 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3501 ICE_MCAST_VLAN_PROMISC_BITS, 3502 vid); 3503 if (ret) 3504 goto finish; 3505 } 3506 3507 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3508 3509 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3510 * packets aren't pruned by the device's internal switch on Rx 3511 */ 3512 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3513 ret = vlan_ops->add_vlan(vsi, &vlan); 3514 if (ret) 3515 goto finish; 3516 3517 /* If all-multicast is currently enabled and this VLAN ID is only one 3518 * besides VLAN-0 we have to update look-up type of multicast promisc 3519 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3520 */ 3521 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3522 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3523 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3524 ICE_MCAST_PROMISC_BITS, 0); 3525 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3526 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3527 } 3528 3529 finish: 3530 clear_bit(ICE_CFG_BUSY, vsi->state); 3531 3532 return ret; 3533 } 3534 3535 /** 3536 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3537 * @netdev: network interface to be adjusted 3538 * @proto: VLAN TPID 3539 * @vid: VLAN ID to be removed 3540 * 3541 * net_device_ops implementation for removing VLAN IDs 3542 */ 3543 static int 3544 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3545 { 3546 struct ice_netdev_priv *np = netdev_priv(netdev); 3547 struct ice_vsi_vlan_ops *vlan_ops; 3548 struct ice_vsi *vsi = np->vsi; 3549 struct ice_vlan vlan; 3550 int ret; 3551 3552 /* don't allow removal of VLAN 0 */ 3553 if (!vid) 3554 return 0; 3555 3556 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3557 usleep_range(1000, 2000); 3558 3559 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3560 3561 /* Make sure VLAN delete is successful before updating VLAN 3562 * information 3563 */ 3564 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3565 ret = vlan_ops->del_vlan(vsi, &vlan); 3566 if (ret) 3567 goto finish; 3568 3569 /* Remove multicast promisc rule for the removed VLAN ID if 3570 * all-multicast is enabled. 3571 */ 3572 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3573 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3574 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3575 3576 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3577 /* Update look-up type of multicast promisc rule for VLAN 0 3578 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3579 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3580 */ 3581 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3582 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3583 ICE_MCAST_VLAN_PROMISC_BITS, 3584 0); 3585 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3586 ICE_MCAST_PROMISC_BITS, 0); 3587 } 3588 } 3589 3590 finish: 3591 clear_bit(ICE_CFG_BUSY, vsi->state); 3592 3593 return ret; 3594 } 3595 3596 /** 3597 * ice_rep_indr_tc_block_unbind 3598 * @cb_priv: indirection block private data 3599 */ 3600 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3601 { 3602 struct ice_indr_block_priv *indr_priv = cb_priv; 3603 3604 list_del(&indr_priv->list); 3605 kfree(indr_priv); 3606 } 3607 3608 /** 3609 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3610 * @vsi: VSI struct which has the netdev 3611 */ 3612 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3613 { 3614 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3615 3616 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3617 ice_rep_indr_tc_block_unbind); 3618 } 3619 3620 /** 3621 * ice_tc_indir_block_remove - clean indirect TC block notifications 3622 * @pf: PF structure 3623 */ 3624 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3625 { 3626 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3627 3628 if (!pf_vsi) 3629 return; 3630 3631 ice_tc_indir_block_unregister(pf_vsi); 3632 } 3633 3634 /** 3635 * ice_tc_indir_block_register - Register TC indirect block notifications 3636 * @vsi: VSI struct which has the netdev 3637 * 3638 * Returns 0 on success, negative value on failure 3639 */ 3640 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3641 { 3642 struct ice_netdev_priv *np; 3643 3644 if (!vsi || !vsi->netdev) 3645 return -EINVAL; 3646 3647 np = netdev_priv(vsi->netdev); 3648 3649 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3650 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3651 } 3652 3653 /** 3654 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3655 * @pf: board private structure 3656 * 3657 * Returns 0 on success, negative value on failure 3658 */ 3659 static int ice_setup_pf_sw(struct ice_pf *pf) 3660 { 3661 struct device *dev = ice_pf_to_dev(pf); 3662 bool dvm = ice_is_dvm_ena(&pf->hw); 3663 struct ice_vsi *vsi; 3664 int status; 3665 3666 if (ice_is_reset_in_progress(pf->state)) 3667 return -EBUSY; 3668 3669 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3670 if (status) 3671 return -EIO; 3672 3673 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3674 if (!vsi) 3675 return -ENOMEM; 3676 3677 /* init channel list */ 3678 INIT_LIST_HEAD(&vsi->ch_list); 3679 3680 status = ice_cfg_netdev(vsi); 3681 if (status) 3682 goto unroll_vsi_setup; 3683 /* netdev has to be configured before setting frame size */ 3684 ice_vsi_cfg_frame_size(vsi); 3685 3686 /* init indirect block notifications */ 3687 status = ice_tc_indir_block_register(vsi); 3688 if (status) { 3689 dev_err(dev, "Failed to register netdev notifier\n"); 3690 goto unroll_cfg_netdev; 3691 } 3692 3693 /* Setup DCB netlink interface */ 3694 ice_dcbnl_setup(vsi); 3695 3696 /* registering the NAPI handler requires both the queues and 3697 * netdev to be created, which are done in ice_pf_vsi_setup() 3698 * and ice_cfg_netdev() respectively 3699 */ 3700 ice_napi_add(vsi); 3701 3702 status = ice_init_mac_fltr(pf); 3703 if (status) 3704 goto unroll_napi_add; 3705 3706 return 0; 3707 3708 unroll_napi_add: 3709 ice_tc_indir_block_unregister(vsi); 3710 unroll_cfg_netdev: 3711 if (vsi) { 3712 ice_napi_del(vsi); 3713 if (vsi->netdev) { 3714 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3715 free_netdev(vsi->netdev); 3716 vsi->netdev = NULL; 3717 } 3718 } 3719 3720 unroll_vsi_setup: 3721 ice_vsi_release(vsi); 3722 return status; 3723 } 3724 3725 /** 3726 * ice_get_avail_q_count - Get count of queues in use 3727 * @pf_qmap: bitmap to get queue use count from 3728 * @lock: pointer to a mutex that protects access to pf_qmap 3729 * @size: size of the bitmap 3730 */ 3731 static u16 3732 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3733 { 3734 unsigned long bit; 3735 u16 count = 0; 3736 3737 mutex_lock(lock); 3738 for_each_clear_bit(bit, pf_qmap, size) 3739 count++; 3740 mutex_unlock(lock); 3741 3742 return count; 3743 } 3744 3745 /** 3746 * ice_get_avail_txq_count - Get count of Tx queues in use 3747 * @pf: pointer to an ice_pf instance 3748 */ 3749 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3750 { 3751 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3752 pf->max_pf_txqs); 3753 } 3754 3755 /** 3756 * ice_get_avail_rxq_count - Get count of Rx queues in use 3757 * @pf: pointer to an ice_pf instance 3758 */ 3759 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3760 { 3761 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3762 pf->max_pf_rxqs); 3763 } 3764 3765 /** 3766 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3767 * @pf: board private structure to initialize 3768 */ 3769 static void ice_deinit_pf(struct ice_pf *pf) 3770 { 3771 ice_service_task_stop(pf); 3772 mutex_destroy(&pf->adev_mutex); 3773 mutex_destroy(&pf->sw_mutex); 3774 mutex_destroy(&pf->tc_mutex); 3775 mutex_destroy(&pf->avail_q_mutex); 3776 mutex_destroy(&pf->vfs.table_lock); 3777 3778 if (pf->avail_txqs) { 3779 bitmap_free(pf->avail_txqs); 3780 pf->avail_txqs = NULL; 3781 } 3782 3783 if (pf->avail_rxqs) { 3784 bitmap_free(pf->avail_rxqs); 3785 pf->avail_rxqs = NULL; 3786 } 3787 3788 if (pf->ptp.clock) 3789 ptp_clock_unregister(pf->ptp.clock); 3790 } 3791 3792 /** 3793 * ice_set_pf_caps - set PFs capability flags 3794 * @pf: pointer to the PF instance 3795 */ 3796 static void ice_set_pf_caps(struct ice_pf *pf) 3797 { 3798 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3799 3800 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3801 if (func_caps->common_cap.rdma) 3802 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3803 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3804 if (func_caps->common_cap.dcb) 3805 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3806 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3807 if (func_caps->common_cap.sr_iov_1_1) { 3808 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3809 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3810 ICE_MAX_SRIOV_VFS); 3811 } 3812 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3813 if (func_caps->common_cap.rss_table_size) 3814 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3815 3816 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3817 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3818 u16 unused; 3819 3820 /* ctrl_vsi_idx will be set to a valid value when flow director 3821 * is setup by ice_init_fdir 3822 */ 3823 pf->ctrl_vsi_idx = ICE_NO_VSI; 3824 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3825 /* force guaranteed filter pool for PF */ 3826 ice_alloc_fd_guar_item(&pf->hw, &unused, 3827 func_caps->fd_fltr_guar); 3828 /* force shared filter pool for PF */ 3829 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3830 func_caps->fd_fltr_best_effort); 3831 } 3832 3833 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3834 if (func_caps->common_cap.ieee_1588) 3835 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3836 3837 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3838 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3839 } 3840 3841 /** 3842 * ice_init_pf - Initialize general software structures (struct ice_pf) 3843 * @pf: board private structure to initialize 3844 */ 3845 static int ice_init_pf(struct ice_pf *pf) 3846 { 3847 ice_set_pf_caps(pf); 3848 3849 mutex_init(&pf->sw_mutex); 3850 mutex_init(&pf->tc_mutex); 3851 mutex_init(&pf->adev_mutex); 3852 3853 INIT_HLIST_HEAD(&pf->aq_wait_list); 3854 spin_lock_init(&pf->aq_wait_lock); 3855 init_waitqueue_head(&pf->aq_wait_queue); 3856 3857 init_waitqueue_head(&pf->reset_wait_queue); 3858 3859 /* setup service timer and periodic service task */ 3860 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3861 pf->serv_tmr_period = HZ; 3862 INIT_WORK(&pf->serv_task, ice_service_task); 3863 clear_bit(ICE_SERVICE_SCHED, pf->state); 3864 3865 mutex_init(&pf->avail_q_mutex); 3866 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3867 if (!pf->avail_txqs) 3868 return -ENOMEM; 3869 3870 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3871 if (!pf->avail_rxqs) { 3872 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3873 pf->avail_txqs = NULL; 3874 return -ENOMEM; 3875 } 3876 3877 mutex_init(&pf->vfs.table_lock); 3878 hash_init(pf->vfs.table); 3879 3880 return 0; 3881 } 3882 3883 /** 3884 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3885 * @pf: board private structure 3886 * 3887 * compute the number of MSIX vectors required (v_budget) and request from 3888 * the OS. Return the number of vectors reserved or negative on failure 3889 */ 3890 static int ice_ena_msix_range(struct ice_pf *pf) 3891 { 3892 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3893 struct device *dev = ice_pf_to_dev(pf); 3894 int needed, err, i; 3895 3896 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3897 num_cpus = num_online_cpus(); 3898 3899 /* reserve for LAN miscellaneous handler */ 3900 needed = ICE_MIN_LAN_OICR_MSIX; 3901 if (v_left < needed) 3902 goto no_hw_vecs_left_err; 3903 v_budget += needed; 3904 v_left -= needed; 3905 3906 /* reserve for flow director */ 3907 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3908 needed = ICE_FDIR_MSIX; 3909 if (v_left < needed) 3910 goto no_hw_vecs_left_err; 3911 v_budget += needed; 3912 v_left -= needed; 3913 } 3914 3915 /* reserve for switchdev */ 3916 needed = ICE_ESWITCH_MSIX; 3917 if (v_left < needed) 3918 goto no_hw_vecs_left_err; 3919 v_budget += needed; 3920 v_left -= needed; 3921 3922 /* total used for non-traffic vectors */ 3923 v_other = v_budget; 3924 3925 /* reserve vectors for LAN traffic */ 3926 needed = num_cpus; 3927 if (v_left < needed) 3928 goto no_hw_vecs_left_err; 3929 pf->num_lan_msix = needed; 3930 v_budget += needed; 3931 v_left -= needed; 3932 3933 /* reserve vectors for RDMA auxiliary driver */ 3934 if (ice_is_rdma_ena(pf)) { 3935 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3936 if (v_left < needed) 3937 goto no_hw_vecs_left_err; 3938 pf->num_rdma_msix = needed; 3939 v_budget += needed; 3940 v_left -= needed; 3941 } 3942 3943 pf->msix_entries = devm_kcalloc(dev, v_budget, 3944 sizeof(*pf->msix_entries), GFP_KERNEL); 3945 if (!pf->msix_entries) { 3946 err = -ENOMEM; 3947 goto exit_err; 3948 } 3949 3950 for (i = 0; i < v_budget; i++) 3951 pf->msix_entries[i].entry = i; 3952 3953 /* actually reserve the vectors */ 3954 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3955 ICE_MIN_MSIX, v_budget); 3956 if (v_actual < 0) { 3957 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3958 err = v_actual; 3959 goto msix_err; 3960 } 3961 3962 if (v_actual < v_budget) { 3963 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3964 v_budget, v_actual); 3965 3966 if (v_actual < ICE_MIN_MSIX) { 3967 /* error if we can't get minimum vectors */ 3968 pci_disable_msix(pf->pdev); 3969 err = -ERANGE; 3970 goto msix_err; 3971 } else { 3972 int v_remain = v_actual - v_other; 3973 int v_rdma = 0, v_min_rdma = 0; 3974 3975 if (ice_is_rdma_ena(pf)) { 3976 /* Need at least 1 interrupt in addition to 3977 * AEQ MSIX 3978 */ 3979 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3980 v_min_rdma = ICE_MIN_RDMA_MSIX; 3981 } 3982 3983 if (v_actual == ICE_MIN_MSIX || 3984 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3985 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3986 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3987 3988 pf->num_rdma_msix = 0; 3989 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3990 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3991 (v_remain - v_rdma < v_rdma)) { 3992 /* Support minimum RDMA and give remaining 3993 * vectors to LAN MSIX 3994 */ 3995 pf->num_rdma_msix = v_min_rdma; 3996 pf->num_lan_msix = v_remain - v_min_rdma; 3997 } else { 3998 /* Split remaining MSIX with RDMA after 3999 * accounting for AEQ MSIX 4000 */ 4001 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4002 ICE_RDMA_NUM_AEQ_MSIX; 4003 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4004 } 4005 4006 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4007 pf->num_lan_msix); 4008 4009 if (ice_is_rdma_ena(pf)) 4010 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4011 pf->num_rdma_msix); 4012 } 4013 } 4014 4015 return v_actual; 4016 4017 msix_err: 4018 devm_kfree(dev, pf->msix_entries); 4019 goto exit_err; 4020 4021 no_hw_vecs_left_err: 4022 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4023 needed, v_left); 4024 err = -ERANGE; 4025 exit_err: 4026 pf->num_rdma_msix = 0; 4027 pf->num_lan_msix = 0; 4028 return err; 4029 } 4030 4031 /** 4032 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4033 * @pf: board private structure 4034 */ 4035 static void ice_dis_msix(struct ice_pf *pf) 4036 { 4037 pci_disable_msix(pf->pdev); 4038 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4039 pf->msix_entries = NULL; 4040 } 4041 4042 /** 4043 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4044 * @pf: board private structure 4045 */ 4046 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4047 { 4048 ice_dis_msix(pf); 4049 4050 if (pf->irq_tracker) { 4051 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4052 pf->irq_tracker = NULL; 4053 } 4054 } 4055 4056 /** 4057 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4058 * @pf: board private structure to initialize 4059 */ 4060 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4061 { 4062 int vectors; 4063 4064 vectors = ice_ena_msix_range(pf); 4065 4066 if (vectors < 0) 4067 return vectors; 4068 4069 /* set up vector assignment tracking */ 4070 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4071 struct_size(pf->irq_tracker, list, vectors), 4072 GFP_KERNEL); 4073 if (!pf->irq_tracker) { 4074 ice_dis_msix(pf); 4075 return -ENOMEM; 4076 } 4077 4078 /* populate SW interrupts pool with number of OS granted IRQs. */ 4079 pf->num_avail_sw_msix = (u16)vectors; 4080 pf->irq_tracker->num_entries = (u16)vectors; 4081 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4082 4083 return 0; 4084 } 4085 4086 /** 4087 * ice_is_wol_supported - check if WoL is supported 4088 * @hw: pointer to hardware info 4089 * 4090 * Check if WoL is supported based on the HW configuration. 4091 * Returns true if NVM supports and enables WoL for this port, false otherwise 4092 */ 4093 bool ice_is_wol_supported(struct ice_hw *hw) 4094 { 4095 u16 wol_ctrl; 4096 4097 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4098 * word) indicates WoL is not supported on the corresponding PF ID. 4099 */ 4100 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4101 return false; 4102 4103 return !(BIT(hw->port_info->lport) & wol_ctrl); 4104 } 4105 4106 /** 4107 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4108 * @vsi: VSI being changed 4109 * @new_rx: new number of Rx queues 4110 * @new_tx: new number of Tx queues 4111 * 4112 * Only change the number of queues if new_tx, or new_rx is non-0. 4113 * 4114 * Returns 0 on success. 4115 */ 4116 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4117 { 4118 struct ice_pf *pf = vsi->back; 4119 int err = 0, timeout = 50; 4120 4121 if (!new_rx && !new_tx) 4122 return -EINVAL; 4123 4124 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4125 timeout--; 4126 if (!timeout) 4127 return -EBUSY; 4128 usleep_range(1000, 2000); 4129 } 4130 4131 if (new_tx) 4132 vsi->req_txq = (u16)new_tx; 4133 if (new_rx) 4134 vsi->req_rxq = (u16)new_rx; 4135 4136 /* set for the next time the netdev is started */ 4137 if (!netif_running(vsi->netdev)) { 4138 ice_vsi_rebuild(vsi, false); 4139 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4140 goto done; 4141 } 4142 4143 ice_vsi_close(vsi); 4144 ice_vsi_rebuild(vsi, false); 4145 ice_pf_dcb_recfg(pf); 4146 ice_vsi_open(vsi); 4147 done: 4148 clear_bit(ICE_CFG_BUSY, pf->state); 4149 return err; 4150 } 4151 4152 /** 4153 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4154 * @pf: PF to configure 4155 * 4156 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4157 * VSI can still Tx/Rx VLAN tagged packets. 4158 */ 4159 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4160 { 4161 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4162 struct ice_vsi_ctx *ctxt; 4163 struct ice_hw *hw; 4164 int status; 4165 4166 if (!vsi) 4167 return; 4168 4169 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4170 if (!ctxt) 4171 return; 4172 4173 hw = &pf->hw; 4174 ctxt->info = vsi->info; 4175 4176 ctxt->info.valid_sections = 4177 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4178 ICE_AQ_VSI_PROP_SECURITY_VALID | 4179 ICE_AQ_VSI_PROP_SW_VALID); 4180 4181 /* disable VLAN anti-spoof */ 4182 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4183 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4184 4185 /* disable VLAN pruning and keep all other settings */ 4186 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4187 4188 /* allow all VLANs on Tx and don't strip on Rx */ 4189 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4190 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4191 4192 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4193 if (status) { 4194 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4195 status, ice_aq_str(hw->adminq.sq_last_status)); 4196 } else { 4197 vsi->info.sec_flags = ctxt->info.sec_flags; 4198 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4199 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4200 } 4201 4202 kfree(ctxt); 4203 } 4204 4205 /** 4206 * ice_log_pkg_init - log result of DDP package load 4207 * @hw: pointer to hardware info 4208 * @state: state of package load 4209 */ 4210 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4211 { 4212 struct ice_pf *pf = hw->back; 4213 struct device *dev; 4214 4215 dev = ice_pf_to_dev(pf); 4216 4217 switch (state) { 4218 case ICE_DDP_PKG_SUCCESS: 4219 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4220 hw->active_pkg_name, 4221 hw->active_pkg_ver.major, 4222 hw->active_pkg_ver.minor, 4223 hw->active_pkg_ver.update, 4224 hw->active_pkg_ver.draft); 4225 break; 4226 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4227 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4228 hw->active_pkg_name, 4229 hw->active_pkg_ver.major, 4230 hw->active_pkg_ver.minor, 4231 hw->active_pkg_ver.update, 4232 hw->active_pkg_ver.draft); 4233 break; 4234 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4235 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4236 hw->active_pkg_name, 4237 hw->active_pkg_ver.major, 4238 hw->active_pkg_ver.minor, 4239 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4240 break; 4241 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4242 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4243 hw->active_pkg_name, 4244 hw->active_pkg_ver.major, 4245 hw->active_pkg_ver.minor, 4246 hw->active_pkg_ver.update, 4247 hw->active_pkg_ver.draft, 4248 hw->pkg_name, 4249 hw->pkg_ver.major, 4250 hw->pkg_ver.minor, 4251 hw->pkg_ver.update, 4252 hw->pkg_ver.draft); 4253 break; 4254 case ICE_DDP_PKG_FW_MISMATCH: 4255 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4256 break; 4257 case ICE_DDP_PKG_INVALID_FILE: 4258 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4259 break; 4260 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4261 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4262 break; 4263 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4264 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4265 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4266 break; 4267 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4268 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4269 break; 4270 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4271 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4272 break; 4273 case ICE_DDP_PKG_LOAD_ERROR: 4274 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4275 /* poll for reset to complete */ 4276 if (ice_check_reset(hw)) 4277 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4278 break; 4279 case ICE_DDP_PKG_ERR: 4280 default: 4281 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4282 break; 4283 } 4284 } 4285 4286 /** 4287 * ice_load_pkg - load/reload the DDP Package file 4288 * @firmware: firmware structure when firmware requested or NULL for reload 4289 * @pf: pointer to the PF instance 4290 * 4291 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4292 * initialize HW tables. 4293 */ 4294 static void 4295 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4296 { 4297 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4298 struct device *dev = ice_pf_to_dev(pf); 4299 struct ice_hw *hw = &pf->hw; 4300 4301 /* Load DDP Package */ 4302 if (firmware && !hw->pkg_copy) { 4303 state = ice_copy_and_init_pkg(hw, firmware->data, 4304 firmware->size); 4305 ice_log_pkg_init(hw, state); 4306 } else if (!firmware && hw->pkg_copy) { 4307 /* Reload package during rebuild after CORER/GLOBR reset */ 4308 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4309 ice_log_pkg_init(hw, state); 4310 } else { 4311 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4312 } 4313 4314 if (!ice_is_init_pkg_successful(state)) { 4315 /* Safe Mode */ 4316 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4317 return; 4318 } 4319 4320 /* Successful download package is the precondition for advanced 4321 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4322 */ 4323 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4324 } 4325 4326 /** 4327 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4328 * @pf: pointer to the PF structure 4329 * 4330 * There is no error returned here because the driver should be able to handle 4331 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4332 * specifically with Tx. 4333 */ 4334 static void ice_verify_cacheline_size(struct ice_pf *pf) 4335 { 4336 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4337 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4338 ICE_CACHE_LINE_BYTES); 4339 } 4340 4341 /** 4342 * ice_send_version - update firmware with driver version 4343 * @pf: PF struct 4344 * 4345 * Returns 0 on success, else error code 4346 */ 4347 static int ice_send_version(struct ice_pf *pf) 4348 { 4349 struct ice_driver_ver dv; 4350 4351 dv.major_ver = 0xff; 4352 dv.minor_ver = 0xff; 4353 dv.build_ver = 0xff; 4354 dv.subbuild_ver = 0; 4355 strscpy((char *)dv.driver_string, UTS_RELEASE, 4356 sizeof(dv.driver_string)); 4357 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4358 } 4359 4360 /** 4361 * ice_init_fdir - Initialize flow director VSI and configuration 4362 * @pf: pointer to the PF instance 4363 * 4364 * returns 0 on success, negative on error 4365 */ 4366 static int ice_init_fdir(struct ice_pf *pf) 4367 { 4368 struct device *dev = ice_pf_to_dev(pf); 4369 struct ice_vsi *ctrl_vsi; 4370 int err; 4371 4372 /* Side Band Flow Director needs to have a control VSI. 4373 * Allocate it and store it in the PF. 4374 */ 4375 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4376 if (!ctrl_vsi) { 4377 dev_dbg(dev, "could not create control VSI\n"); 4378 return -ENOMEM; 4379 } 4380 4381 err = ice_vsi_open_ctrl(ctrl_vsi); 4382 if (err) { 4383 dev_dbg(dev, "could not open control VSI\n"); 4384 goto err_vsi_open; 4385 } 4386 4387 mutex_init(&pf->hw.fdir_fltr_lock); 4388 4389 err = ice_fdir_create_dflt_rules(pf); 4390 if (err) 4391 goto err_fdir_rule; 4392 4393 return 0; 4394 4395 err_fdir_rule: 4396 ice_fdir_release_flows(&pf->hw); 4397 ice_vsi_close(ctrl_vsi); 4398 err_vsi_open: 4399 ice_vsi_release(ctrl_vsi); 4400 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4401 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4402 pf->ctrl_vsi_idx = ICE_NO_VSI; 4403 } 4404 return err; 4405 } 4406 4407 /** 4408 * ice_get_opt_fw_name - return optional firmware file name or NULL 4409 * @pf: pointer to the PF instance 4410 */ 4411 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4412 { 4413 /* Optional firmware name same as default with additional dash 4414 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4415 */ 4416 struct pci_dev *pdev = pf->pdev; 4417 char *opt_fw_filename; 4418 u64 dsn; 4419 4420 /* Determine the name of the optional file using the DSN (two 4421 * dwords following the start of the DSN Capability). 4422 */ 4423 dsn = pci_get_dsn(pdev); 4424 if (!dsn) 4425 return NULL; 4426 4427 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4428 if (!opt_fw_filename) 4429 return NULL; 4430 4431 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4432 ICE_DDP_PKG_PATH, dsn); 4433 4434 return opt_fw_filename; 4435 } 4436 4437 /** 4438 * ice_request_fw - Device initialization routine 4439 * @pf: pointer to the PF instance 4440 */ 4441 static void ice_request_fw(struct ice_pf *pf) 4442 { 4443 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4444 const struct firmware *firmware = NULL; 4445 struct device *dev = ice_pf_to_dev(pf); 4446 int err = 0; 4447 4448 /* optional device-specific DDP (if present) overrides the default DDP 4449 * package file. kernel logs a debug message if the file doesn't exist, 4450 * and warning messages for other errors. 4451 */ 4452 if (opt_fw_filename) { 4453 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4454 if (err) { 4455 kfree(opt_fw_filename); 4456 goto dflt_pkg_load; 4457 } 4458 4459 /* request for firmware was successful. Download to device */ 4460 ice_load_pkg(firmware, pf); 4461 kfree(opt_fw_filename); 4462 release_firmware(firmware); 4463 return; 4464 } 4465 4466 dflt_pkg_load: 4467 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4468 if (err) { 4469 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4470 return; 4471 } 4472 4473 /* request for firmware was successful. Download to device */ 4474 ice_load_pkg(firmware, pf); 4475 release_firmware(firmware); 4476 } 4477 4478 /** 4479 * ice_print_wake_reason - show the wake up cause in the log 4480 * @pf: pointer to the PF struct 4481 */ 4482 static void ice_print_wake_reason(struct ice_pf *pf) 4483 { 4484 u32 wus = pf->wakeup_reason; 4485 const char *wake_str; 4486 4487 /* if no wake event, nothing to print */ 4488 if (!wus) 4489 return; 4490 4491 if (wus & PFPM_WUS_LNKC_M) 4492 wake_str = "Link\n"; 4493 else if (wus & PFPM_WUS_MAG_M) 4494 wake_str = "Magic Packet\n"; 4495 else if (wus & PFPM_WUS_MNG_M) 4496 wake_str = "Management\n"; 4497 else if (wus & PFPM_WUS_FW_RST_WK_M) 4498 wake_str = "Firmware Reset\n"; 4499 else 4500 wake_str = "Unknown\n"; 4501 4502 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4503 } 4504 4505 /** 4506 * ice_register_netdev - register netdev and devlink port 4507 * @pf: pointer to the PF struct 4508 */ 4509 static int ice_register_netdev(struct ice_pf *pf) 4510 { 4511 struct ice_vsi *vsi; 4512 int err = 0; 4513 4514 vsi = ice_get_main_vsi(pf); 4515 if (!vsi || !vsi->netdev) 4516 return -EIO; 4517 4518 err = register_netdev(vsi->netdev); 4519 if (err) 4520 goto err_register_netdev; 4521 4522 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4523 netif_carrier_off(vsi->netdev); 4524 netif_tx_stop_all_queues(vsi->netdev); 4525 err = ice_devlink_create_pf_port(pf); 4526 if (err) 4527 goto err_devlink_create; 4528 4529 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4530 4531 return 0; 4532 err_devlink_create: 4533 unregister_netdev(vsi->netdev); 4534 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4535 err_register_netdev: 4536 free_netdev(vsi->netdev); 4537 vsi->netdev = NULL; 4538 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4539 return err; 4540 } 4541 4542 /** 4543 * ice_probe - Device initialization routine 4544 * @pdev: PCI device information struct 4545 * @ent: entry in ice_pci_tbl 4546 * 4547 * Returns 0 on success, negative on failure 4548 */ 4549 static int 4550 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4551 { 4552 struct device *dev = &pdev->dev; 4553 struct ice_pf *pf; 4554 struct ice_hw *hw; 4555 int i, err; 4556 4557 if (pdev->is_virtfn) { 4558 dev_err(dev, "can't probe a virtual function\n"); 4559 return -EINVAL; 4560 } 4561 4562 /* this driver uses devres, see 4563 * Documentation/driver-api/driver-model/devres.rst 4564 */ 4565 err = pcim_enable_device(pdev); 4566 if (err) 4567 return err; 4568 4569 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4570 if (err) { 4571 dev_err(dev, "BAR0 I/O map error %d\n", err); 4572 return err; 4573 } 4574 4575 pf = ice_allocate_pf(dev); 4576 if (!pf) 4577 return -ENOMEM; 4578 4579 /* initialize Auxiliary index to invalid value */ 4580 pf->aux_idx = -1; 4581 4582 /* set up for high or low DMA */ 4583 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4584 if (err) { 4585 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4586 return err; 4587 } 4588 4589 pci_enable_pcie_error_reporting(pdev); 4590 pci_set_master(pdev); 4591 4592 pf->pdev = pdev; 4593 pci_set_drvdata(pdev, pf); 4594 set_bit(ICE_DOWN, pf->state); 4595 /* Disable service task until DOWN bit is cleared */ 4596 set_bit(ICE_SERVICE_DIS, pf->state); 4597 4598 hw = &pf->hw; 4599 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4600 pci_save_state(pdev); 4601 4602 hw->back = pf; 4603 hw->vendor_id = pdev->vendor; 4604 hw->device_id = pdev->device; 4605 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4606 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4607 hw->subsystem_device_id = pdev->subsystem_device; 4608 hw->bus.device = PCI_SLOT(pdev->devfn); 4609 hw->bus.func = PCI_FUNC(pdev->devfn); 4610 ice_set_ctrlq_len(hw); 4611 4612 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4613 4614 #ifndef CONFIG_DYNAMIC_DEBUG 4615 if (debug < -1) 4616 hw->debug_mask = debug; 4617 #endif 4618 4619 err = ice_init_hw(hw); 4620 if (err) { 4621 dev_err(dev, "ice_init_hw failed: %d\n", err); 4622 err = -EIO; 4623 goto err_exit_unroll; 4624 } 4625 4626 ice_init_feature_support(pf); 4627 4628 ice_request_fw(pf); 4629 4630 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4631 * set in pf->state, which will cause ice_is_safe_mode to return 4632 * true 4633 */ 4634 if (ice_is_safe_mode(pf)) { 4635 /* we already got function/device capabilities but these don't 4636 * reflect what the driver needs to do in safe mode. Instead of 4637 * adding conditional logic everywhere to ignore these 4638 * device/function capabilities, override them. 4639 */ 4640 ice_set_safe_mode_caps(hw); 4641 } 4642 4643 err = ice_init_pf(pf); 4644 if (err) { 4645 dev_err(dev, "ice_init_pf failed: %d\n", err); 4646 goto err_init_pf_unroll; 4647 } 4648 4649 ice_devlink_init_regions(pf); 4650 4651 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4652 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4653 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4654 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4655 i = 0; 4656 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4657 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4658 pf->hw.tnl.valid_count[TNL_VXLAN]; 4659 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4660 UDP_TUNNEL_TYPE_VXLAN; 4661 i++; 4662 } 4663 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4664 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4665 pf->hw.tnl.valid_count[TNL_GENEVE]; 4666 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4667 UDP_TUNNEL_TYPE_GENEVE; 4668 i++; 4669 } 4670 4671 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4672 if (!pf->num_alloc_vsi) { 4673 err = -EIO; 4674 goto err_init_pf_unroll; 4675 } 4676 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4677 dev_warn(&pf->pdev->dev, 4678 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4679 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4680 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4681 } 4682 4683 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4684 GFP_KERNEL); 4685 if (!pf->vsi) { 4686 err = -ENOMEM; 4687 goto err_init_pf_unroll; 4688 } 4689 4690 err = ice_init_interrupt_scheme(pf); 4691 if (err) { 4692 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4693 err = -EIO; 4694 goto err_init_vsi_unroll; 4695 } 4696 4697 /* In case of MSIX we are going to setup the misc vector right here 4698 * to handle admin queue events etc. In case of legacy and MSI 4699 * the misc functionality and queue processing is combined in 4700 * the same vector and that gets setup at open. 4701 */ 4702 err = ice_req_irq_msix_misc(pf); 4703 if (err) { 4704 dev_err(dev, "setup of misc vector failed: %d\n", err); 4705 goto err_init_interrupt_unroll; 4706 } 4707 4708 /* create switch struct for the switch element created by FW on boot */ 4709 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4710 if (!pf->first_sw) { 4711 err = -ENOMEM; 4712 goto err_msix_misc_unroll; 4713 } 4714 4715 if (hw->evb_veb) 4716 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4717 else 4718 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4719 4720 pf->first_sw->pf = pf; 4721 4722 /* record the sw_id available for later use */ 4723 pf->first_sw->sw_id = hw->port_info->sw_id; 4724 4725 err = ice_setup_pf_sw(pf); 4726 if (err) { 4727 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4728 goto err_alloc_sw_unroll; 4729 } 4730 4731 clear_bit(ICE_SERVICE_DIS, pf->state); 4732 4733 /* tell the firmware we are up */ 4734 err = ice_send_version(pf); 4735 if (err) { 4736 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4737 UTS_RELEASE, err); 4738 goto err_send_version_unroll; 4739 } 4740 4741 /* since everything is good, start the service timer */ 4742 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4743 4744 err = ice_init_link_events(pf->hw.port_info); 4745 if (err) { 4746 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4747 goto err_send_version_unroll; 4748 } 4749 4750 /* not a fatal error if this fails */ 4751 err = ice_init_nvm_phy_type(pf->hw.port_info); 4752 if (err) 4753 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4754 4755 /* not a fatal error if this fails */ 4756 err = ice_update_link_info(pf->hw.port_info); 4757 if (err) 4758 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4759 4760 ice_init_link_dflt_override(pf->hw.port_info); 4761 4762 ice_check_link_cfg_err(pf, 4763 pf->hw.port_info->phy.link_info.link_cfg_err); 4764 4765 /* if media available, initialize PHY settings */ 4766 if (pf->hw.port_info->phy.link_info.link_info & 4767 ICE_AQ_MEDIA_AVAILABLE) { 4768 /* not a fatal error if this fails */ 4769 err = ice_init_phy_user_cfg(pf->hw.port_info); 4770 if (err) 4771 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4772 4773 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4774 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4775 4776 if (vsi) 4777 ice_configure_phy(vsi); 4778 } 4779 } else { 4780 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4781 } 4782 4783 ice_verify_cacheline_size(pf); 4784 4785 /* Save wakeup reason register for later use */ 4786 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4787 4788 /* check for a power management event */ 4789 ice_print_wake_reason(pf); 4790 4791 /* clear wake status, all bits */ 4792 wr32(hw, PFPM_WUS, U32_MAX); 4793 4794 /* Disable WoL at init, wait for user to enable */ 4795 device_set_wakeup_enable(dev, false); 4796 4797 if (ice_is_safe_mode(pf)) { 4798 ice_set_safe_mode_vlan_cfg(pf); 4799 goto probe_done; 4800 } 4801 4802 /* initialize DDP driven features */ 4803 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4804 ice_ptp_init(pf); 4805 4806 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4807 ice_gnss_init(pf); 4808 4809 /* Note: Flow director init failure is non-fatal to load */ 4810 if (ice_init_fdir(pf)) 4811 dev_err(dev, "could not initialize flow director\n"); 4812 4813 /* Note: DCB init failure is non-fatal to load */ 4814 if (ice_init_pf_dcb(pf, false)) { 4815 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4816 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4817 } else { 4818 ice_cfg_lldp_mib_change(&pf->hw, true); 4819 } 4820 4821 if (ice_init_lag(pf)) 4822 dev_warn(dev, "Failed to init link aggregation support\n"); 4823 4824 /* print PCI link speed and width */ 4825 pcie_print_link_status(pf->pdev); 4826 4827 probe_done: 4828 err = ice_register_netdev(pf); 4829 if (err) 4830 goto err_netdev_reg; 4831 4832 err = ice_devlink_register_params(pf); 4833 if (err) 4834 goto err_netdev_reg; 4835 4836 /* ready to go, so clear down state bit */ 4837 clear_bit(ICE_DOWN, pf->state); 4838 if (ice_is_rdma_ena(pf)) { 4839 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4840 if (pf->aux_idx < 0) { 4841 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4842 err = -ENOMEM; 4843 goto err_devlink_reg_param; 4844 } 4845 4846 err = ice_init_rdma(pf); 4847 if (err) { 4848 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4849 err = -EIO; 4850 goto err_init_aux_unroll; 4851 } 4852 } else { 4853 dev_warn(dev, "RDMA is not supported on this device\n"); 4854 } 4855 4856 ice_devlink_register(pf); 4857 return 0; 4858 4859 err_init_aux_unroll: 4860 pf->adev = NULL; 4861 ida_free(&ice_aux_ida, pf->aux_idx); 4862 err_devlink_reg_param: 4863 ice_devlink_unregister_params(pf); 4864 err_netdev_reg: 4865 err_send_version_unroll: 4866 ice_vsi_release_all(pf); 4867 err_alloc_sw_unroll: 4868 set_bit(ICE_SERVICE_DIS, pf->state); 4869 set_bit(ICE_DOWN, pf->state); 4870 devm_kfree(dev, pf->first_sw); 4871 err_msix_misc_unroll: 4872 ice_free_irq_msix_misc(pf); 4873 err_init_interrupt_unroll: 4874 ice_clear_interrupt_scheme(pf); 4875 err_init_vsi_unroll: 4876 devm_kfree(dev, pf->vsi); 4877 err_init_pf_unroll: 4878 ice_deinit_pf(pf); 4879 ice_devlink_destroy_regions(pf); 4880 ice_deinit_hw(hw); 4881 err_exit_unroll: 4882 pci_disable_pcie_error_reporting(pdev); 4883 pci_disable_device(pdev); 4884 return err; 4885 } 4886 4887 /** 4888 * ice_set_wake - enable or disable Wake on LAN 4889 * @pf: pointer to the PF struct 4890 * 4891 * Simple helper for WoL control 4892 */ 4893 static void ice_set_wake(struct ice_pf *pf) 4894 { 4895 struct ice_hw *hw = &pf->hw; 4896 bool wol = pf->wol_ena; 4897 4898 /* clear wake state, otherwise new wake events won't fire */ 4899 wr32(hw, PFPM_WUS, U32_MAX); 4900 4901 /* enable / disable APM wake up, no RMW needed */ 4902 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4903 4904 /* set magic packet filter enabled */ 4905 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4906 } 4907 4908 /** 4909 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4910 * @pf: pointer to the PF struct 4911 * 4912 * Issue firmware command to enable multicast magic wake, making 4913 * sure that any locally administered address (LAA) is used for 4914 * wake, and that PF reset doesn't undo the LAA. 4915 */ 4916 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4917 { 4918 struct device *dev = ice_pf_to_dev(pf); 4919 struct ice_hw *hw = &pf->hw; 4920 u8 mac_addr[ETH_ALEN]; 4921 struct ice_vsi *vsi; 4922 int status; 4923 u8 flags; 4924 4925 if (!pf->wol_ena) 4926 return; 4927 4928 vsi = ice_get_main_vsi(pf); 4929 if (!vsi) 4930 return; 4931 4932 /* Get current MAC address in case it's an LAA */ 4933 if (vsi->netdev) 4934 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4935 else 4936 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4937 4938 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4939 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4940 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4941 4942 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4943 if (status) 4944 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4945 status, ice_aq_str(hw->adminq.sq_last_status)); 4946 } 4947 4948 /** 4949 * ice_remove - Device removal routine 4950 * @pdev: PCI device information struct 4951 */ 4952 static void ice_remove(struct pci_dev *pdev) 4953 { 4954 struct ice_pf *pf = pci_get_drvdata(pdev); 4955 int i; 4956 4957 ice_devlink_unregister(pf); 4958 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4959 if (!ice_is_reset_in_progress(pf->state)) 4960 break; 4961 msleep(100); 4962 } 4963 4964 ice_tc_indir_block_remove(pf); 4965 4966 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4967 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4968 ice_free_vfs(pf); 4969 } 4970 4971 ice_service_task_stop(pf); 4972 4973 ice_aq_cancel_waiting_tasks(pf); 4974 ice_unplug_aux_dev(pf); 4975 if (pf->aux_idx >= 0) 4976 ida_free(&ice_aux_ida, pf->aux_idx); 4977 ice_devlink_unregister_params(pf); 4978 set_bit(ICE_DOWN, pf->state); 4979 4980 ice_deinit_lag(pf); 4981 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4982 ice_ptp_release(pf); 4983 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4984 ice_gnss_exit(pf); 4985 if (!ice_is_safe_mode(pf)) 4986 ice_remove_arfs(pf); 4987 ice_setup_mc_magic_wake(pf); 4988 ice_vsi_release_all(pf); 4989 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4990 ice_set_wake(pf); 4991 ice_free_irq_msix_misc(pf); 4992 ice_for_each_vsi(pf, i) { 4993 if (!pf->vsi[i]) 4994 continue; 4995 ice_vsi_free_q_vectors(pf->vsi[i]); 4996 } 4997 ice_deinit_pf(pf); 4998 ice_devlink_destroy_regions(pf); 4999 ice_deinit_hw(&pf->hw); 5000 5001 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5002 * do it via ice_schedule_reset() since there is no need to rebuild 5003 * and the service task is already stopped. 5004 */ 5005 ice_reset(&pf->hw, ICE_RESET_PFR); 5006 pci_wait_for_pending_transaction(pdev); 5007 ice_clear_interrupt_scheme(pf); 5008 pci_disable_pcie_error_reporting(pdev); 5009 pci_disable_device(pdev); 5010 } 5011 5012 /** 5013 * ice_shutdown - PCI callback for shutting down device 5014 * @pdev: PCI device information struct 5015 */ 5016 static void ice_shutdown(struct pci_dev *pdev) 5017 { 5018 struct ice_pf *pf = pci_get_drvdata(pdev); 5019 5020 ice_remove(pdev); 5021 5022 if (system_state == SYSTEM_POWER_OFF) { 5023 pci_wake_from_d3(pdev, pf->wol_ena); 5024 pci_set_power_state(pdev, PCI_D3hot); 5025 } 5026 } 5027 5028 #ifdef CONFIG_PM 5029 /** 5030 * ice_prepare_for_shutdown - prep for PCI shutdown 5031 * @pf: board private structure 5032 * 5033 * Inform or close all dependent features in prep for PCI device shutdown 5034 */ 5035 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5036 { 5037 struct ice_hw *hw = &pf->hw; 5038 u32 v; 5039 5040 /* Notify VFs of impending reset */ 5041 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5042 ice_vc_notify_reset(pf); 5043 5044 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5045 5046 /* disable the VSIs and their queues that are not already DOWN */ 5047 ice_pf_dis_all_vsi(pf, false); 5048 5049 ice_for_each_vsi(pf, v) 5050 if (pf->vsi[v]) 5051 pf->vsi[v]->vsi_num = 0; 5052 5053 ice_shutdown_all_ctrlq(hw); 5054 } 5055 5056 /** 5057 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5058 * @pf: board private structure to reinitialize 5059 * 5060 * This routine reinitialize interrupt scheme that was cleared during 5061 * power management suspend callback. 5062 * 5063 * This should be called during resume routine to re-allocate the q_vectors 5064 * and reacquire interrupts. 5065 */ 5066 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5067 { 5068 struct device *dev = ice_pf_to_dev(pf); 5069 int ret, v; 5070 5071 /* Since we clear MSIX flag during suspend, we need to 5072 * set it back during resume... 5073 */ 5074 5075 ret = ice_init_interrupt_scheme(pf); 5076 if (ret) { 5077 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5078 return ret; 5079 } 5080 5081 /* Remap vectors and rings, after successful re-init interrupts */ 5082 ice_for_each_vsi(pf, v) { 5083 if (!pf->vsi[v]) 5084 continue; 5085 5086 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5087 if (ret) 5088 goto err_reinit; 5089 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5090 } 5091 5092 ret = ice_req_irq_msix_misc(pf); 5093 if (ret) { 5094 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5095 ret); 5096 goto err_reinit; 5097 } 5098 5099 return 0; 5100 5101 err_reinit: 5102 while (v--) 5103 if (pf->vsi[v]) 5104 ice_vsi_free_q_vectors(pf->vsi[v]); 5105 5106 return ret; 5107 } 5108 5109 /** 5110 * ice_suspend 5111 * @dev: generic device information structure 5112 * 5113 * Power Management callback to quiesce the device and prepare 5114 * for D3 transition. 5115 */ 5116 static int __maybe_unused ice_suspend(struct device *dev) 5117 { 5118 struct pci_dev *pdev = to_pci_dev(dev); 5119 struct ice_pf *pf; 5120 int disabled, v; 5121 5122 pf = pci_get_drvdata(pdev); 5123 5124 if (!ice_pf_state_is_nominal(pf)) { 5125 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5126 return -EBUSY; 5127 } 5128 5129 /* Stop watchdog tasks until resume completion. 5130 * Even though it is most likely that the service task is 5131 * disabled if the device is suspended or down, the service task's 5132 * state is controlled by a different state bit, and we should 5133 * store and honor whatever state that bit is in at this point. 5134 */ 5135 disabled = ice_service_task_stop(pf); 5136 5137 ice_unplug_aux_dev(pf); 5138 5139 /* Already suspended?, then there is nothing to do */ 5140 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5141 if (!disabled) 5142 ice_service_task_restart(pf); 5143 return 0; 5144 } 5145 5146 if (test_bit(ICE_DOWN, pf->state) || 5147 ice_is_reset_in_progress(pf->state)) { 5148 dev_err(dev, "can't suspend device in reset or already down\n"); 5149 if (!disabled) 5150 ice_service_task_restart(pf); 5151 return 0; 5152 } 5153 5154 ice_setup_mc_magic_wake(pf); 5155 5156 ice_prepare_for_shutdown(pf); 5157 5158 ice_set_wake(pf); 5159 5160 /* Free vectors, clear the interrupt scheme and release IRQs 5161 * for proper hibernation, especially with large number of CPUs. 5162 * Otherwise hibernation might fail when mapping all the vectors back 5163 * to CPU0. 5164 */ 5165 ice_free_irq_msix_misc(pf); 5166 ice_for_each_vsi(pf, v) { 5167 if (!pf->vsi[v]) 5168 continue; 5169 ice_vsi_free_q_vectors(pf->vsi[v]); 5170 } 5171 ice_clear_interrupt_scheme(pf); 5172 5173 pci_save_state(pdev); 5174 pci_wake_from_d3(pdev, pf->wol_ena); 5175 pci_set_power_state(pdev, PCI_D3hot); 5176 return 0; 5177 } 5178 5179 /** 5180 * ice_resume - PM callback for waking up from D3 5181 * @dev: generic device information structure 5182 */ 5183 static int __maybe_unused ice_resume(struct device *dev) 5184 { 5185 struct pci_dev *pdev = to_pci_dev(dev); 5186 enum ice_reset_req reset_type; 5187 struct ice_pf *pf; 5188 struct ice_hw *hw; 5189 int ret; 5190 5191 pci_set_power_state(pdev, PCI_D0); 5192 pci_restore_state(pdev); 5193 pci_save_state(pdev); 5194 5195 if (!pci_device_is_present(pdev)) 5196 return -ENODEV; 5197 5198 ret = pci_enable_device_mem(pdev); 5199 if (ret) { 5200 dev_err(dev, "Cannot enable device after suspend\n"); 5201 return ret; 5202 } 5203 5204 pf = pci_get_drvdata(pdev); 5205 hw = &pf->hw; 5206 5207 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5208 ice_print_wake_reason(pf); 5209 5210 /* We cleared the interrupt scheme when we suspended, so we need to 5211 * restore it now to resume device functionality. 5212 */ 5213 ret = ice_reinit_interrupt_scheme(pf); 5214 if (ret) 5215 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5216 5217 clear_bit(ICE_DOWN, pf->state); 5218 /* Now perform PF reset and rebuild */ 5219 reset_type = ICE_RESET_PFR; 5220 /* re-enable service task for reset, but allow reset to schedule it */ 5221 clear_bit(ICE_SERVICE_DIS, pf->state); 5222 5223 if (ice_schedule_reset(pf, reset_type)) 5224 dev_err(dev, "Reset during resume failed.\n"); 5225 5226 clear_bit(ICE_SUSPENDED, pf->state); 5227 ice_service_task_restart(pf); 5228 5229 /* Restart the service task */ 5230 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5231 5232 return 0; 5233 } 5234 #endif /* CONFIG_PM */ 5235 5236 /** 5237 * ice_pci_err_detected - warning that PCI error has been detected 5238 * @pdev: PCI device information struct 5239 * @err: the type of PCI error 5240 * 5241 * Called to warn that something happened on the PCI bus and the error handling 5242 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5243 */ 5244 static pci_ers_result_t 5245 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5246 { 5247 struct ice_pf *pf = pci_get_drvdata(pdev); 5248 5249 if (!pf) { 5250 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5251 __func__, err); 5252 return PCI_ERS_RESULT_DISCONNECT; 5253 } 5254 5255 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5256 ice_service_task_stop(pf); 5257 5258 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5259 set_bit(ICE_PFR_REQ, pf->state); 5260 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5261 } 5262 } 5263 5264 return PCI_ERS_RESULT_NEED_RESET; 5265 } 5266 5267 /** 5268 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5269 * @pdev: PCI device information struct 5270 * 5271 * Called to determine if the driver can recover from the PCI slot reset by 5272 * using a register read to determine if the device is recoverable. 5273 */ 5274 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5275 { 5276 struct ice_pf *pf = pci_get_drvdata(pdev); 5277 pci_ers_result_t result; 5278 int err; 5279 u32 reg; 5280 5281 err = pci_enable_device_mem(pdev); 5282 if (err) { 5283 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5284 err); 5285 result = PCI_ERS_RESULT_DISCONNECT; 5286 } else { 5287 pci_set_master(pdev); 5288 pci_restore_state(pdev); 5289 pci_save_state(pdev); 5290 pci_wake_from_d3(pdev, false); 5291 5292 /* Check for life */ 5293 reg = rd32(&pf->hw, GLGEN_RTRIG); 5294 if (!reg) 5295 result = PCI_ERS_RESULT_RECOVERED; 5296 else 5297 result = PCI_ERS_RESULT_DISCONNECT; 5298 } 5299 5300 err = pci_aer_clear_nonfatal_status(pdev); 5301 if (err) 5302 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5303 err); 5304 /* non-fatal, continue */ 5305 5306 return result; 5307 } 5308 5309 /** 5310 * ice_pci_err_resume - restart operations after PCI error recovery 5311 * @pdev: PCI device information struct 5312 * 5313 * Called to allow the driver to bring things back up after PCI error and/or 5314 * reset recovery have finished 5315 */ 5316 static void ice_pci_err_resume(struct pci_dev *pdev) 5317 { 5318 struct ice_pf *pf = pci_get_drvdata(pdev); 5319 5320 if (!pf) { 5321 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5322 __func__); 5323 return; 5324 } 5325 5326 if (test_bit(ICE_SUSPENDED, pf->state)) { 5327 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5328 __func__); 5329 return; 5330 } 5331 5332 ice_restore_all_vfs_msi_state(pdev); 5333 5334 ice_do_reset(pf, ICE_RESET_PFR); 5335 ice_service_task_restart(pf); 5336 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5337 } 5338 5339 /** 5340 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5341 * @pdev: PCI device information struct 5342 */ 5343 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5344 { 5345 struct ice_pf *pf = pci_get_drvdata(pdev); 5346 5347 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5348 ice_service_task_stop(pf); 5349 5350 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5351 set_bit(ICE_PFR_REQ, pf->state); 5352 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5353 } 5354 } 5355 } 5356 5357 /** 5358 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5359 * @pdev: PCI device information struct 5360 */ 5361 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5362 { 5363 ice_pci_err_resume(pdev); 5364 } 5365 5366 /* ice_pci_tbl - PCI Device ID Table 5367 * 5368 * Wildcard entries (PCI_ANY_ID) should come last 5369 * Last entry must be all 0s 5370 * 5371 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5372 * Class, Class Mask, private data (not used) } 5373 */ 5374 static const struct pci_device_id ice_pci_tbl[] = { 5375 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5376 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5377 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5378 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5379 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5380 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5381 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5382 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5383 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5384 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5385 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5386 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5387 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5388 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5389 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5390 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5398 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5399 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5400 /* required last entry */ 5401 { 0, } 5402 }; 5403 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5404 5405 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5406 5407 static const struct pci_error_handlers ice_pci_err_handler = { 5408 .error_detected = ice_pci_err_detected, 5409 .slot_reset = ice_pci_err_slot_reset, 5410 .reset_prepare = ice_pci_err_reset_prepare, 5411 .reset_done = ice_pci_err_reset_done, 5412 .resume = ice_pci_err_resume 5413 }; 5414 5415 static struct pci_driver ice_driver = { 5416 .name = KBUILD_MODNAME, 5417 .id_table = ice_pci_tbl, 5418 .probe = ice_probe, 5419 .remove = ice_remove, 5420 #ifdef CONFIG_PM 5421 .driver.pm = &ice_pm_ops, 5422 #endif /* CONFIG_PM */ 5423 .shutdown = ice_shutdown, 5424 .sriov_configure = ice_sriov_configure, 5425 .err_handler = &ice_pci_err_handler 5426 }; 5427 5428 /** 5429 * ice_module_init - Driver registration routine 5430 * 5431 * ice_module_init is the first routine called when the driver is 5432 * loaded. All it does is register with the PCI subsystem. 5433 */ 5434 static int __init ice_module_init(void) 5435 { 5436 int status; 5437 5438 pr_info("%s\n", ice_driver_string); 5439 pr_info("%s\n", ice_copyright); 5440 5441 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5442 if (!ice_wq) { 5443 pr_err("Failed to create workqueue\n"); 5444 return -ENOMEM; 5445 } 5446 5447 status = pci_register_driver(&ice_driver); 5448 if (status) { 5449 pr_err("failed to register PCI driver, err %d\n", status); 5450 destroy_workqueue(ice_wq); 5451 } 5452 5453 return status; 5454 } 5455 module_init(ice_module_init); 5456 5457 /** 5458 * ice_module_exit - Driver exit cleanup routine 5459 * 5460 * ice_module_exit is called just before the driver is removed 5461 * from memory. 5462 */ 5463 static void __exit ice_module_exit(void) 5464 { 5465 pci_unregister_driver(&ice_driver); 5466 destroy_workqueue(ice_wq); 5467 pr_info("module unloaded\n"); 5468 } 5469 module_exit(ice_module_exit); 5470 5471 /** 5472 * ice_set_mac_address - NDO callback to set MAC address 5473 * @netdev: network interface device structure 5474 * @pi: pointer to an address structure 5475 * 5476 * Returns 0 on success, negative on failure 5477 */ 5478 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5479 { 5480 struct ice_netdev_priv *np = netdev_priv(netdev); 5481 struct ice_vsi *vsi = np->vsi; 5482 struct ice_pf *pf = vsi->back; 5483 struct ice_hw *hw = &pf->hw; 5484 struct sockaddr *addr = pi; 5485 u8 old_mac[ETH_ALEN]; 5486 u8 flags = 0; 5487 u8 *mac; 5488 int err; 5489 5490 mac = (u8 *)addr->sa_data; 5491 5492 if (!is_valid_ether_addr(mac)) 5493 return -EADDRNOTAVAIL; 5494 5495 if (ether_addr_equal(netdev->dev_addr, mac)) { 5496 netdev_dbg(netdev, "already using mac %pM\n", mac); 5497 return 0; 5498 } 5499 5500 if (test_bit(ICE_DOWN, pf->state) || 5501 ice_is_reset_in_progress(pf->state)) { 5502 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5503 mac); 5504 return -EBUSY; 5505 } 5506 5507 if (ice_chnl_dmac_fltr_cnt(pf)) { 5508 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5509 mac); 5510 return -EAGAIN; 5511 } 5512 5513 netif_addr_lock_bh(netdev); 5514 ether_addr_copy(old_mac, netdev->dev_addr); 5515 /* change the netdev's MAC address */ 5516 eth_hw_addr_set(netdev, mac); 5517 netif_addr_unlock_bh(netdev); 5518 5519 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5520 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5521 if (err && err != -ENOENT) { 5522 err = -EADDRNOTAVAIL; 5523 goto err_update_filters; 5524 } 5525 5526 /* Add filter for new MAC. If filter exists, return success */ 5527 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5528 if (err == -EEXIST) { 5529 /* Although this MAC filter is already present in hardware it's 5530 * possible in some cases (e.g. bonding) that dev_addr was 5531 * modified outside of the driver and needs to be restored back 5532 * to this value. 5533 */ 5534 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5535 5536 return 0; 5537 } else if (err) { 5538 /* error if the new filter addition failed */ 5539 err = -EADDRNOTAVAIL; 5540 } 5541 5542 err_update_filters: 5543 if (err) { 5544 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5545 mac); 5546 netif_addr_lock_bh(netdev); 5547 eth_hw_addr_set(netdev, old_mac); 5548 netif_addr_unlock_bh(netdev); 5549 return err; 5550 } 5551 5552 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5553 netdev->dev_addr); 5554 5555 /* write new MAC address to the firmware */ 5556 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5557 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5558 if (err) { 5559 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5560 mac, err); 5561 } 5562 return 0; 5563 } 5564 5565 /** 5566 * ice_set_rx_mode - NDO callback to set the netdev filters 5567 * @netdev: network interface device structure 5568 */ 5569 static void ice_set_rx_mode(struct net_device *netdev) 5570 { 5571 struct ice_netdev_priv *np = netdev_priv(netdev); 5572 struct ice_vsi *vsi = np->vsi; 5573 5574 if (!vsi) 5575 return; 5576 5577 /* Set the flags to synchronize filters 5578 * ndo_set_rx_mode may be triggered even without a change in netdev 5579 * flags 5580 */ 5581 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5582 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5583 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5584 5585 /* schedule our worker thread which will take care of 5586 * applying the new filter changes 5587 */ 5588 ice_service_task_schedule(vsi->back); 5589 } 5590 5591 /** 5592 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5593 * @netdev: network interface device structure 5594 * @queue_index: Queue ID 5595 * @maxrate: maximum bandwidth in Mbps 5596 */ 5597 static int 5598 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5599 { 5600 struct ice_netdev_priv *np = netdev_priv(netdev); 5601 struct ice_vsi *vsi = np->vsi; 5602 u16 q_handle; 5603 int status; 5604 u8 tc; 5605 5606 /* Validate maxrate requested is within permitted range */ 5607 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5608 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5609 maxrate, queue_index); 5610 return -EINVAL; 5611 } 5612 5613 q_handle = vsi->tx_rings[queue_index]->q_handle; 5614 tc = ice_dcb_get_tc(vsi, queue_index); 5615 5616 /* Set BW back to default, when user set maxrate to 0 */ 5617 if (!maxrate) 5618 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5619 q_handle, ICE_MAX_BW); 5620 else 5621 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5622 q_handle, ICE_MAX_BW, maxrate * 1000); 5623 if (status) 5624 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5625 status); 5626 5627 return status; 5628 } 5629 5630 /** 5631 * ice_fdb_add - add an entry to the hardware database 5632 * @ndm: the input from the stack 5633 * @tb: pointer to array of nladdr (unused) 5634 * @dev: the net device pointer 5635 * @addr: the MAC address entry being added 5636 * @vid: VLAN ID 5637 * @flags: instructions from stack about fdb operation 5638 * @extack: netlink extended ack 5639 */ 5640 static int 5641 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5642 struct net_device *dev, const unsigned char *addr, u16 vid, 5643 u16 flags, struct netlink_ext_ack __always_unused *extack) 5644 { 5645 int err; 5646 5647 if (vid) { 5648 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5649 return -EINVAL; 5650 } 5651 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5652 netdev_err(dev, "FDB only supports static addresses\n"); 5653 return -EINVAL; 5654 } 5655 5656 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5657 err = dev_uc_add_excl(dev, addr); 5658 else if (is_multicast_ether_addr(addr)) 5659 err = dev_mc_add_excl(dev, addr); 5660 else 5661 err = -EINVAL; 5662 5663 /* Only return duplicate errors if NLM_F_EXCL is set */ 5664 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5665 err = 0; 5666 5667 return err; 5668 } 5669 5670 /** 5671 * ice_fdb_del - delete an entry from the hardware database 5672 * @ndm: the input from the stack 5673 * @tb: pointer to array of nladdr (unused) 5674 * @dev: the net device pointer 5675 * @addr: the MAC address entry being added 5676 * @vid: VLAN ID 5677 */ 5678 static int 5679 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5680 struct net_device *dev, const unsigned char *addr, 5681 __always_unused u16 vid) 5682 { 5683 int err; 5684 5685 if (ndm->ndm_state & NUD_PERMANENT) { 5686 netdev_err(dev, "FDB only supports static addresses\n"); 5687 return -EINVAL; 5688 } 5689 5690 if (is_unicast_ether_addr(addr)) 5691 err = dev_uc_del(dev, addr); 5692 else if (is_multicast_ether_addr(addr)) 5693 err = dev_mc_del(dev, addr); 5694 else 5695 err = -EINVAL; 5696 5697 return err; 5698 } 5699 5700 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5701 NETIF_F_HW_VLAN_CTAG_TX | \ 5702 NETIF_F_HW_VLAN_STAG_RX | \ 5703 NETIF_F_HW_VLAN_STAG_TX) 5704 5705 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5706 NETIF_F_HW_VLAN_STAG_FILTER) 5707 5708 /** 5709 * ice_fix_features - fix the netdev features flags based on device limitations 5710 * @netdev: ptr to the netdev that flags are being fixed on 5711 * @features: features that need to be checked and possibly fixed 5712 * 5713 * Make sure any fixups are made to features in this callback. This enables the 5714 * driver to not have to check unsupported configurations throughout the driver 5715 * because that's the responsiblity of this callback. 5716 * 5717 * Single VLAN Mode (SVM) Supported Features: 5718 * NETIF_F_HW_VLAN_CTAG_FILTER 5719 * NETIF_F_HW_VLAN_CTAG_RX 5720 * NETIF_F_HW_VLAN_CTAG_TX 5721 * 5722 * Double VLAN Mode (DVM) Supported Features: 5723 * NETIF_F_HW_VLAN_CTAG_FILTER 5724 * NETIF_F_HW_VLAN_CTAG_RX 5725 * NETIF_F_HW_VLAN_CTAG_TX 5726 * 5727 * NETIF_F_HW_VLAN_STAG_FILTER 5728 * NETIF_HW_VLAN_STAG_RX 5729 * NETIF_HW_VLAN_STAG_TX 5730 * 5731 * Features that need fixing: 5732 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5733 * These are mutually exlusive as the VSI context cannot support multiple 5734 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5735 * is not done, then default to clearing the requested STAG offload 5736 * settings. 5737 * 5738 * All supported filtering has to be enabled or disabled together. For 5739 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5740 * together. If this is not done, then default to VLAN filtering disabled. 5741 * These are mutually exclusive as there is currently no way to 5742 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5743 * prune rules. 5744 */ 5745 static netdev_features_t 5746 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5747 { 5748 struct ice_netdev_priv *np = netdev_priv(netdev); 5749 netdev_features_t supported_vlan_filtering; 5750 netdev_features_t requested_vlan_filtering; 5751 struct ice_vsi *vsi = np->vsi; 5752 5753 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5754 5755 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5756 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5757 if (ice_is_dvm_ena(&vsi->back->hw)) 5758 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5759 5760 if (requested_vlan_filtering && 5761 requested_vlan_filtering != supported_vlan_filtering) { 5762 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5763 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5764 features |= supported_vlan_filtering; 5765 } else { 5766 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5767 features &= ~supported_vlan_filtering; 5768 } 5769 } 5770 5771 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5772 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5773 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5774 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5775 NETIF_F_HW_VLAN_STAG_TX); 5776 } 5777 5778 return features; 5779 } 5780 5781 /** 5782 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5783 * @vsi: PF's VSI 5784 * @features: features used to determine VLAN offload settings 5785 * 5786 * First, determine the vlan_ethertype based on the VLAN offload bits in 5787 * features. Then determine if stripping and insertion should be enabled or 5788 * disabled. Finally enable or disable VLAN stripping and insertion. 5789 */ 5790 static int 5791 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5792 { 5793 bool enable_stripping = true, enable_insertion = true; 5794 struct ice_vsi_vlan_ops *vlan_ops; 5795 int strip_err = 0, insert_err = 0; 5796 u16 vlan_ethertype = 0; 5797 5798 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5799 5800 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5801 vlan_ethertype = ETH_P_8021AD; 5802 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5803 vlan_ethertype = ETH_P_8021Q; 5804 5805 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5806 enable_stripping = false; 5807 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5808 enable_insertion = false; 5809 5810 if (enable_stripping) 5811 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5812 else 5813 strip_err = vlan_ops->dis_stripping(vsi); 5814 5815 if (enable_insertion) 5816 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5817 else 5818 insert_err = vlan_ops->dis_insertion(vsi); 5819 5820 if (strip_err || insert_err) 5821 return -EIO; 5822 5823 return 0; 5824 } 5825 5826 /** 5827 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5828 * @vsi: PF's VSI 5829 * @features: features used to determine VLAN filtering settings 5830 * 5831 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5832 * features. 5833 */ 5834 static int 5835 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5836 { 5837 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5838 int err = 0; 5839 5840 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5841 * if either bit is set 5842 */ 5843 if (features & 5844 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5845 err = vlan_ops->ena_rx_filtering(vsi); 5846 else 5847 err = vlan_ops->dis_rx_filtering(vsi); 5848 5849 return err; 5850 } 5851 5852 /** 5853 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5854 * @netdev: ptr to the netdev being adjusted 5855 * @features: the feature set that the stack is suggesting 5856 * 5857 * Only update VLAN settings if the requested_vlan_features are different than 5858 * the current_vlan_features. 5859 */ 5860 static int 5861 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5862 { 5863 netdev_features_t current_vlan_features, requested_vlan_features; 5864 struct ice_netdev_priv *np = netdev_priv(netdev); 5865 struct ice_vsi *vsi = np->vsi; 5866 int err; 5867 5868 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5869 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5870 if (current_vlan_features ^ requested_vlan_features) { 5871 err = ice_set_vlan_offload_features(vsi, features); 5872 if (err) 5873 return err; 5874 } 5875 5876 current_vlan_features = netdev->features & 5877 NETIF_VLAN_FILTERING_FEATURES; 5878 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5879 if (current_vlan_features ^ requested_vlan_features) { 5880 err = ice_set_vlan_filtering_features(vsi, features); 5881 if (err) 5882 return err; 5883 } 5884 5885 return 0; 5886 } 5887 5888 /** 5889 * ice_set_features - set the netdev feature flags 5890 * @netdev: ptr to the netdev being adjusted 5891 * @features: the feature set that the stack is suggesting 5892 */ 5893 static int 5894 ice_set_features(struct net_device *netdev, netdev_features_t features) 5895 { 5896 struct ice_netdev_priv *np = netdev_priv(netdev); 5897 struct ice_vsi *vsi = np->vsi; 5898 struct ice_pf *pf = vsi->back; 5899 int ret = 0; 5900 5901 /* Don't set any netdev advanced features with device in Safe Mode */ 5902 if (ice_is_safe_mode(vsi->back)) { 5903 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5904 return ret; 5905 } 5906 5907 /* Do not change setting during reset */ 5908 if (ice_is_reset_in_progress(pf->state)) { 5909 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5910 return -EBUSY; 5911 } 5912 5913 /* Multiple features can be changed in one call so keep features in 5914 * separate if/else statements to guarantee each feature is checked 5915 */ 5916 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5917 ice_vsi_manage_rss_lut(vsi, true); 5918 else if (!(features & NETIF_F_RXHASH) && 5919 netdev->features & NETIF_F_RXHASH) 5920 ice_vsi_manage_rss_lut(vsi, false); 5921 5922 ret = ice_set_vlan_features(netdev, features); 5923 if (ret) 5924 return ret; 5925 5926 if ((features & NETIF_F_NTUPLE) && 5927 !(netdev->features & NETIF_F_NTUPLE)) { 5928 ice_vsi_manage_fdir(vsi, true); 5929 ice_init_arfs(vsi); 5930 } else if (!(features & NETIF_F_NTUPLE) && 5931 (netdev->features & NETIF_F_NTUPLE)) { 5932 ice_vsi_manage_fdir(vsi, false); 5933 ice_clear_arfs(vsi); 5934 } 5935 5936 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5937 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5938 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5939 return -EACCES; 5940 } 5941 5942 if ((features & NETIF_F_HW_TC) && 5943 !(netdev->features & NETIF_F_HW_TC)) 5944 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5945 else 5946 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5947 5948 return 0; 5949 } 5950 5951 /** 5952 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5953 * @vsi: VSI to setup VLAN properties for 5954 */ 5955 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5956 { 5957 int err; 5958 5959 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5960 if (err) 5961 return err; 5962 5963 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5964 if (err) 5965 return err; 5966 5967 return ice_vsi_add_vlan_zero(vsi); 5968 } 5969 5970 /** 5971 * ice_vsi_cfg - Setup the VSI 5972 * @vsi: the VSI being configured 5973 * 5974 * Return 0 on success and negative value on error 5975 */ 5976 int ice_vsi_cfg(struct ice_vsi *vsi) 5977 { 5978 int err; 5979 5980 if (vsi->netdev) { 5981 ice_set_rx_mode(vsi->netdev); 5982 5983 err = ice_vsi_vlan_setup(vsi); 5984 5985 if (err) 5986 return err; 5987 } 5988 ice_vsi_cfg_dcb_rings(vsi); 5989 5990 err = ice_vsi_cfg_lan_txqs(vsi); 5991 if (!err && ice_is_xdp_ena_vsi(vsi)) 5992 err = ice_vsi_cfg_xdp_txqs(vsi); 5993 if (!err) 5994 err = ice_vsi_cfg_rxqs(vsi); 5995 5996 return err; 5997 } 5998 5999 /* THEORY OF MODERATION: 6000 * The ice driver hardware works differently than the hardware that DIMLIB was 6001 * originally made for. ice hardware doesn't have packet count limits that 6002 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6003 * which is hard-coded to a limit of 250,000 ints/second. 6004 * If not using dynamic moderation, the INTRL value can be modified 6005 * by ethtool rx-usecs-high. 6006 */ 6007 struct ice_dim { 6008 /* the throttle rate for interrupts, basically worst case delay before 6009 * an initial interrupt fires, value is stored in microseconds. 6010 */ 6011 u16 itr; 6012 }; 6013 6014 /* Make a different profile for Rx that doesn't allow quite so aggressive 6015 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6016 * second. 6017 */ 6018 static const struct ice_dim rx_profile[] = { 6019 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6020 {8}, /* 125,000 ints/s */ 6021 {16}, /* 62,500 ints/s */ 6022 {62}, /* 16,129 ints/s */ 6023 {126} /* 7,936 ints/s */ 6024 }; 6025 6026 /* The transmit profile, which has the same sorts of values 6027 * as the previous struct 6028 */ 6029 static const struct ice_dim tx_profile[] = { 6030 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6031 {8}, /* 125,000 ints/s */ 6032 {40}, /* 16,125 ints/s */ 6033 {128}, /* 7,812 ints/s */ 6034 {256} /* 3,906 ints/s */ 6035 }; 6036 6037 static void ice_tx_dim_work(struct work_struct *work) 6038 { 6039 struct ice_ring_container *rc; 6040 struct dim *dim; 6041 u16 itr; 6042 6043 dim = container_of(work, struct dim, work); 6044 rc = (struct ice_ring_container *)dim->priv; 6045 6046 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6047 6048 /* look up the values in our local table */ 6049 itr = tx_profile[dim->profile_ix].itr; 6050 6051 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6052 ice_write_itr(rc, itr); 6053 6054 dim->state = DIM_START_MEASURE; 6055 } 6056 6057 static void ice_rx_dim_work(struct work_struct *work) 6058 { 6059 struct ice_ring_container *rc; 6060 struct dim *dim; 6061 u16 itr; 6062 6063 dim = container_of(work, struct dim, work); 6064 rc = (struct ice_ring_container *)dim->priv; 6065 6066 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6067 6068 /* look up the values in our local table */ 6069 itr = rx_profile[dim->profile_ix].itr; 6070 6071 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6072 ice_write_itr(rc, itr); 6073 6074 dim->state = DIM_START_MEASURE; 6075 } 6076 6077 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6078 6079 /** 6080 * ice_init_moderation - set up interrupt moderation 6081 * @q_vector: the vector containing rings to be configured 6082 * 6083 * Set up interrupt moderation registers, with the intent to do the right thing 6084 * when called from reset or from probe, and whether or not dynamic moderation 6085 * is enabled or not. Take special care to write all the registers in both 6086 * dynamic moderation mode or not in order to make sure hardware is in a known 6087 * state. 6088 */ 6089 static void ice_init_moderation(struct ice_q_vector *q_vector) 6090 { 6091 struct ice_ring_container *rc; 6092 bool tx_dynamic, rx_dynamic; 6093 6094 rc = &q_vector->tx; 6095 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6096 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6097 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6098 rc->dim.priv = rc; 6099 tx_dynamic = ITR_IS_DYNAMIC(rc); 6100 6101 /* set the initial TX ITR to match the above */ 6102 ice_write_itr(rc, tx_dynamic ? 6103 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6104 6105 rc = &q_vector->rx; 6106 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6107 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6108 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6109 rc->dim.priv = rc; 6110 rx_dynamic = ITR_IS_DYNAMIC(rc); 6111 6112 /* set the initial RX ITR to match the above */ 6113 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6114 rc->itr_setting); 6115 6116 ice_set_q_vector_intrl(q_vector); 6117 } 6118 6119 /** 6120 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6121 * @vsi: the VSI being configured 6122 */ 6123 static void ice_napi_enable_all(struct ice_vsi *vsi) 6124 { 6125 int q_idx; 6126 6127 if (!vsi->netdev) 6128 return; 6129 6130 ice_for_each_q_vector(vsi, q_idx) { 6131 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6132 6133 ice_init_moderation(q_vector); 6134 6135 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6136 napi_enable(&q_vector->napi); 6137 } 6138 } 6139 6140 /** 6141 * ice_up_complete - Finish the last steps of bringing up a connection 6142 * @vsi: The VSI being configured 6143 * 6144 * Return 0 on success and negative value on error 6145 */ 6146 static int ice_up_complete(struct ice_vsi *vsi) 6147 { 6148 struct ice_pf *pf = vsi->back; 6149 int err; 6150 6151 ice_vsi_cfg_msix(vsi); 6152 6153 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6154 * Tx queue group list was configured and the context bits were 6155 * programmed using ice_vsi_cfg_txqs 6156 */ 6157 err = ice_vsi_start_all_rx_rings(vsi); 6158 if (err) 6159 return err; 6160 6161 clear_bit(ICE_VSI_DOWN, vsi->state); 6162 ice_napi_enable_all(vsi); 6163 ice_vsi_ena_irq(vsi); 6164 6165 if (vsi->port_info && 6166 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6167 vsi->netdev) { 6168 ice_print_link_msg(vsi, true); 6169 netif_tx_start_all_queues(vsi->netdev); 6170 netif_carrier_on(vsi->netdev); 6171 if (!ice_is_e810(&pf->hw)) 6172 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6173 } 6174 6175 /* Perform an initial read of the statistics registers now to 6176 * set the baseline so counters are ready when interface is up 6177 */ 6178 ice_update_eth_stats(vsi); 6179 ice_service_task_schedule(pf); 6180 6181 return 0; 6182 } 6183 6184 /** 6185 * ice_up - Bring the connection back up after being down 6186 * @vsi: VSI being configured 6187 */ 6188 int ice_up(struct ice_vsi *vsi) 6189 { 6190 int err; 6191 6192 err = ice_vsi_cfg(vsi); 6193 if (!err) 6194 err = ice_up_complete(vsi); 6195 6196 return err; 6197 } 6198 6199 /** 6200 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6201 * @syncp: pointer to u64_stats_sync 6202 * @stats: stats that pkts and bytes count will be taken from 6203 * @pkts: packets stats counter 6204 * @bytes: bytes stats counter 6205 * 6206 * This function fetches stats from the ring considering the atomic operations 6207 * that needs to be performed to read u64 values in 32 bit machine. 6208 */ 6209 void 6210 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6211 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6212 { 6213 unsigned int start; 6214 6215 do { 6216 start = u64_stats_fetch_begin_irq(syncp); 6217 *pkts = stats.pkts; 6218 *bytes = stats.bytes; 6219 } while (u64_stats_fetch_retry_irq(syncp, start)); 6220 } 6221 6222 /** 6223 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6224 * @vsi: the VSI to be updated 6225 * @vsi_stats: the stats struct to be updated 6226 * @rings: rings to work on 6227 * @count: number of rings 6228 */ 6229 static void 6230 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6231 struct rtnl_link_stats64 *vsi_stats, 6232 struct ice_tx_ring **rings, u16 count) 6233 { 6234 u16 i; 6235 6236 for (i = 0; i < count; i++) { 6237 struct ice_tx_ring *ring; 6238 u64 pkts = 0, bytes = 0; 6239 6240 ring = READ_ONCE(rings[i]); 6241 if (!ring) 6242 continue; 6243 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6244 vsi_stats->tx_packets += pkts; 6245 vsi_stats->tx_bytes += bytes; 6246 vsi->tx_restart += ring->tx_stats.restart_q; 6247 vsi->tx_busy += ring->tx_stats.tx_busy; 6248 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6249 } 6250 } 6251 6252 /** 6253 * ice_update_vsi_ring_stats - Update VSI stats counters 6254 * @vsi: the VSI to be updated 6255 */ 6256 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6257 { 6258 struct rtnl_link_stats64 *vsi_stats; 6259 u64 pkts, bytes; 6260 int i; 6261 6262 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6263 if (!vsi_stats) 6264 return; 6265 6266 /* reset non-netdev (extended) stats */ 6267 vsi->tx_restart = 0; 6268 vsi->tx_busy = 0; 6269 vsi->tx_linearize = 0; 6270 vsi->rx_buf_failed = 0; 6271 vsi->rx_page_failed = 0; 6272 6273 rcu_read_lock(); 6274 6275 /* update Tx rings counters */ 6276 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6277 vsi->num_txq); 6278 6279 /* update Rx rings counters */ 6280 ice_for_each_rxq(vsi, i) { 6281 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6282 6283 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6284 vsi_stats->rx_packets += pkts; 6285 vsi_stats->rx_bytes += bytes; 6286 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6287 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6288 } 6289 6290 /* update XDP Tx rings counters */ 6291 if (ice_is_xdp_ena_vsi(vsi)) 6292 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6293 vsi->num_xdp_txq); 6294 6295 rcu_read_unlock(); 6296 6297 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6298 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6299 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6300 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6301 6302 kfree(vsi_stats); 6303 } 6304 6305 /** 6306 * ice_update_vsi_stats - Update VSI stats counters 6307 * @vsi: the VSI to be updated 6308 */ 6309 void ice_update_vsi_stats(struct ice_vsi *vsi) 6310 { 6311 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6312 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6313 struct ice_pf *pf = vsi->back; 6314 6315 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6316 test_bit(ICE_CFG_BUSY, pf->state)) 6317 return; 6318 6319 /* get stats as recorded by Tx/Rx rings */ 6320 ice_update_vsi_ring_stats(vsi); 6321 6322 /* get VSI stats as recorded by the hardware */ 6323 ice_update_eth_stats(vsi); 6324 6325 cur_ns->tx_errors = cur_es->tx_errors; 6326 cur_ns->rx_dropped = cur_es->rx_discards; 6327 cur_ns->tx_dropped = cur_es->tx_discards; 6328 cur_ns->multicast = cur_es->rx_multicast; 6329 6330 /* update some more netdev stats if this is main VSI */ 6331 if (vsi->type == ICE_VSI_PF) { 6332 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6333 cur_ns->rx_errors = pf->stats.crc_errors + 6334 pf->stats.illegal_bytes + 6335 pf->stats.rx_len_errors + 6336 pf->stats.rx_undersize + 6337 pf->hw_csum_rx_error + 6338 pf->stats.rx_jabber + 6339 pf->stats.rx_fragments + 6340 pf->stats.rx_oversize; 6341 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6342 /* record drops from the port level */ 6343 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6344 } 6345 } 6346 6347 /** 6348 * ice_update_pf_stats - Update PF port stats counters 6349 * @pf: PF whose stats needs to be updated 6350 */ 6351 void ice_update_pf_stats(struct ice_pf *pf) 6352 { 6353 struct ice_hw_port_stats *prev_ps, *cur_ps; 6354 struct ice_hw *hw = &pf->hw; 6355 u16 fd_ctr_base; 6356 u8 port; 6357 6358 port = hw->port_info->lport; 6359 prev_ps = &pf->stats_prev; 6360 cur_ps = &pf->stats; 6361 6362 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6363 &prev_ps->eth.rx_bytes, 6364 &cur_ps->eth.rx_bytes); 6365 6366 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6367 &prev_ps->eth.rx_unicast, 6368 &cur_ps->eth.rx_unicast); 6369 6370 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6371 &prev_ps->eth.rx_multicast, 6372 &cur_ps->eth.rx_multicast); 6373 6374 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6375 &prev_ps->eth.rx_broadcast, 6376 &cur_ps->eth.rx_broadcast); 6377 6378 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6379 &prev_ps->eth.rx_discards, 6380 &cur_ps->eth.rx_discards); 6381 6382 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6383 &prev_ps->eth.tx_bytes, 6384 &cur_ps->eth.tx_bytes); 6385 6386 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6387 &prev_ps->eth.tx_unicast, 6388 &cur_ps->eth.tx_unicast); 6389 6390 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6391 &prev_ps->eth.tx_multicast, 6392 &cur_ps->eth.tx_multicast); 6393 6394 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6395 &prev_ps->eth.tx_broadcast, 6396 &cur_ps->eth.tx_broadcast); 6397 6398 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6399 &prev_ps->tx_dropped_link_down, 6400 &cur_ps->tx_dropped_link_down); 6401 6402 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6403 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6404 6405 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6406 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6407 6408 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6409 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6410 6411 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6412 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6413 6414 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6415 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6416 6417 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6418 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6419 6420 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6421 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6422 6423 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6424 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6425 6426 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6427 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6428 6429 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6430 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6431 6432 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6433 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6434 6435 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6436 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6437 6438 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6439 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6440 6441 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6442 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6443 6444 fd_ctr_base = hw->fd_ctr_base; 6445 6446 ice_stat_update40(hw, 6447 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6448 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6449 &cur_ps->fd_sb_match); 6450 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6451 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6452 6453 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6454 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6455 6456 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6457 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6458 6459 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6460 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6461 6462 ice_update_dcb_stats(pf); 6463 6464 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6465 &prev_ps->crc_errors, &cur_ps->crc_errors); 6466 6467 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6468 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6469 6470 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6471 &prev_ps->mac_local_faults, 6472 &cur_ps->mac_local_faults); 6473 6474 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6475 &prev_ps->mac_remote_faults, 6476 &cur_ps->mac_remote_faults); 6477 6478 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6479 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6480 6481 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6482 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6483 6484 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6485 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6486 6487 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6488 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6489 6490 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6491 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6492 6493 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6494 6495 pf->stat_prev_loaded = true; 6496 } 6497 6498 /** 6499 * ice_get_stats64 - get statistics for network device structure 6500 * @netdev: network interface device structure 6501 * @stats: main device statistics structure 6502 */ 6503 static 6504 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6505 { 6506 struct ice_netdev_priv *np = netdev_priv(netdev); 6507 struct rtnl_link_stats64 *vsi_stats; 6508 struct ice_vsi *vsi = np->vsi; 6509 6510 vsi_stats = &vsi->net_stats; 6511 6512 if (!vsi->num_txq || !vsi->num_rxq) 6513 return; 6514 6515 /* netdev packet/byte stats come from ring counter. These are obtained 6516 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6517 * But, only call the update routine and read the registers if VSI is 6518 * not down. 6519 */ 6520 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6521 ice_update_vsi_ring_stats(vsi); 6522 stats->tx_packets = vsi_stats->tx_packets; 6523 stats->tx_bytes = vsi_stats->tx_bytes; 6524 stats->rx_packets = vsi_stats->rx_packets; 6525 stats->rx_bytes = vsi_stats->rx_bytes; 6526 6527 /* The rest of the stats can be read from the hardware but instead we 6528 * just return values that the watchdog task has already obtained from 6529 * the hardware. 6530 */ 6531 stats->multicast = vsi_stats->multicast; 6532 stats->tx_errors = vsi_stats->tx_errors; 6533 stats->tx_dropped = vsi_stats->tx_dropped; 6534 stats->rx_errors = vsi_stats->rx_errors; 6535 stats->rx_dropped = vsi_stats->rx_dropped; 6536 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6537 stats->rx_length_errors = vsi_stats->rx_length_errors; 6538 } 6539 6540 /** 6541 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6542 * @vsi: VSI having NAPI disabled 6543 */ 6544 static void ice_napi_disable_all(struct ice_vsi *vsi) 6545 { 6546 int q_idx; 6547 6548 if (!vsi->netdev) 6549 return; 6550 6551 ice_for_each_q_vector(vsi, q_idx) { 6552 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6553 6554 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6555 napi_disable(&q_vector->napi); 6556 6557 cancel_work_sync(&q_vector->tx.dim.work); 6558 cancel_work_sync(&q_vector->rx.dim.work); 6559 } 6560 } 6561 6562 /** 6563 * ice_down - Shutdown the connection 6564 * @vsi: The VSI being stopped 6565 * 6566 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6567 */ 6568 int ice_down(struct ice_vsi *vsi) 6569 { 6570 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6571 6572 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6573 6574 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6575 vlan_err = ice_vsi_del_vlan_zero(vsi); 6576 if (!ice_is_e810(&vsi->back->hw)) 6577 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6578 netif_carrier_off(vsi->netdev); 6579 netif_tx_disable(vsi->netdev); 6580 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6581 ice_eswitch_stop_all_tx_queues(vsi->back); 6582 } 6583 6584 ice_vsi_dis_irq(vsi); 6585 6586 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6587 if (tx_err) 6588 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6589 vsi->vsi_num, tx_err); 6590 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6591 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6592 if (tx_err) 6593 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6594 vsi->vsi_num, tx_err); 6595 } 6596 6597 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6598 if (rx_err) 6599 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6600 vsi->vsi_num, rx_err); 6601 6602 ice_napi_disable_all(vsi); 6603 6604 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6605 link_err = ice_force_phys_link_state(vsi, false); 6606 if (link_err) 6607 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6608 vsi->vsi_num, link_err); 6609 } 6610 6611 ice_for_each_txq(vsi, i) 6612 ice_clean_tx_ring(vsi->tx_rings[i]); 6613 6614 ice_for_each_rxq(vsi, i) 6615 ice_clean_rx_ring(vsi->rx_rings[i]); 6616 6617 if (tx_err || rx_err || link_err || vlan_err) { 6618 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6619 vsi->vsi_num, vsi->vsw->sw_id); 6620 return -EIO; 6621 } 6622 6623 return 0; 6624 } 6625 6626 /** 6627 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6628 * @vsi: VSI having resources allocated 6629 * 6630 * Return 0 on success, negative on failure 6631 */ 6632 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6633 { 6634 int i, err = 0; 6635 6636 if (!vsi->num_txq) { 6637 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6638 vsi->vsi_num); 6639 return -EINVAL; 6640 } 6641 6642 ice_for_each_txq(vsi, i) { 6643 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6644 6645 if (!ring) 6646 return -EINVAL; 6647 6648 if (vsi->netdev) 6649 ring->netdev = vsi->netdev; 6650 err = ice_setup_tx_ring(ring); 6651 if (err) 6652 break; 6653 } 6654 6655 return err; 6656 } 6657 6658 /** 6659 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6660 * @vsi: VSI having resources allocated 6661 * 6662 * Return 0 on success, negative on failure 6663 */ 6664 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6665 { 6666 int i, err = 0; 6667 6668 if (!vsi->num_rxq) { 6669 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6670 vsi->vsi_num); 6671 return -EINVAL; 6672 } 6673 6674 ice_for_each_rxq(vsi, i) { 6675 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6676 6677 if (!ring) 6678 return -EINVAL; 6679 6680 if (vsi->netdev) 6681 ring->netdev = vsi->netdev; 6682 err = ice_setup_rx_ring(ring); 6683 if (err) 6684 break; 6685 } 6686 6687 return err; 6688 } 6689 6690 /** 6691 * ice_vsi_open_ctrl - open control VSI for use 6692 * @vsi: the VSI to open 6693 * 6694 * Initialization of the Control VSI 6695 * 6696 * Returns 0 on success, negative value on error 6697 */ 6698 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6699 { 6700 char int_name[ICE_INT_NAME_STR_LEN]; 6701 struct ice_pf *pf = vsi->back; 6702 struct device *dev; 6703 int err; 6704 6705 dev = ice_pf_to_dev(pf); 6706 /* allocate descriptors */ 6707 err = ice_vsi_setup_tx_rings(vsi); 6708 if (err) 6709 goto err_setup_tx; 6710 6711 err = ice_vsi_setup_rx_rings(vsi); 6712 if (err) 6713 goto err_setup_rx; 6714 6715 err = ice_vsi_cfg(vsi); 6716 if (err) 6717 goto err_setup_rx; 6718 6719 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6720 dev_driver_string(dev), dev_name(dev)); 6721 err = ice_vsi_req_irq_msix(vsi, int_name); 6722 if (err) 6723 goto err_setup_rx; 6724 6725 ice_vsi_cfg_msix(vsi); 6726 6727 err = ice_vsi_start_all_rx_rings(vsi); 6728 if (err) 6729 goto err_up_complete; 6730 6731 clear_bit(ICE_VSI_DOWN, vsi->state); 6732 ice_vsi_ena_irq(vsi); 6733 6734 return 0; 6735 6736 err_up_complete: 6737 ice_down(vsi); 6738 err_setup_rx: 6739 ice_vsi_free_rx_rings(vsi); 6740 err_setup_tx: 6741 ice_vsi_free_tx_rings(vsi); 6742 6743 return err; 6744 } 6745 6746 /** 6747 * ice_vsi_open - Called when a network interface is made active 6748 * @vsi: the VSI to open 6749 * 6750 * Initialization of the VSI 6751 * 6752 * Returns 0 on success, negative value on error 6753 */ 6754 int ice_vsi_open(struct ice_vsi *vsi) 6755 { 6756 char int_name[ICE_INT_NAME_STR_LEN]; 6757 struct ice_pf *pf = vsi->back; 6758 int err; 6759 6760 /* allocate descriptors */ 6761 err = ice_vsi_setup_tx_rings(vsi); 6762 if (err) 6763 goto err_setup_tx; 6764 6765 err = ice_vsi_setup_rx_rings(vsi); 6766 if (err) 6767 goto err_setup_rx; 6768 6769 err = ice_vsi_cfg(vsi); 6770 if (err) 6771 goto err_setup_rx; 6772 6773 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6774 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6775 err = ice_vsi_req_irq_msix(vsi, int_name); 6776 if (err) 6777 goto err_setup_rx; 6778 6779 if (vsi->type == ICE_VSI_PF) { 6780 /* Notify the stack of the actual queue counts. */ 6781 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6782 if (err) 6783 goto err_set_qs; 6784 6785 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6786 if (err) 6787 goto err_set_qs; 6788 } 6789 6790 err = ice_up_complete(vsi); 6791 if (err) 6792 goto err_up_complete; 6793 6794 return 0; 6795 6796 err_up_complete: 6797 ice_down(vsi); 6798 err_set_qs: 6799 ice_vsi_free_irq(vsi); 6800 err_setup_rx: 6801 ice_vsi_free_rx_rings(vsi); 6802 err_setup_tx: 6803 ice_vsi_free_tx_rings(vsi); 6804 6805 return err; 6806 } 6807 6808 /** 6809 * ice_vsi_release_all - Delete all VSIs 6810 * @pf: PF from which all VSIs are being removed 6811 */ 6812 static void ice_vsi_release_all(struct ice_pf *pf) 6813 { 6814 int err, i; 6815 6816 if (!pf->vsi) 6817 return; 6818 6819 ice_for_each_vsi(pf, i) { 6820 if (!pf->vsi[i]) 6821 continue; 6822 6823 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6824 continue; 6825 6826 err = ice_vsi_release(pf->vsi[i]); 6827 if (err) 6828 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6829 i, err, pf->vsi[i]->vsi_num); 6830 } 6831 } 6832 6833 /** 6834 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6835 * @pf: pointer to the PF instance 6836 * @type: VSI type to rebuild 6837 * 6838 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6839 */ 6840 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6841 { 6842 struct device *dev = ice_pf_to_dev(pf); 6843 int i, err; 6844 6845 ice_for_each_vsi(pf, i) { 6846 struct ice_vsi *vsi = pf->vsi[i]; 6847 6848 if (!vsi || vsi->type != type) 6849 continue; 6850 6851 /* rebuild the VSI */ 6852 err = ice_vsi_rebuild(vsi, true); 6853 if (err) { 6854 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6855 err, vsi->idx, ice_vsi_type_str(type)); 6856 return err; 6857 } 6858 6859 /* replay filters for the VSI */ 6860 err = ice_replay_vsi(&pf->hw, vsi->idx); 6861 if (err) { 6862 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6863 err, vsi->idx, ice_vsi_type_str(type)); 6864 return err; 6865 } 6866 6867 /* Re-map HW VSI number, using VSI handle that has been 6868 * previously validated in ice_replay_vsi() call above 6869 */ 6870 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6871 6872 /* enable the VSI */ 6873 err = ice_ena_vsi(vsi, false); 6874 if (err) { 6875 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6876 err, vsi->idx, ice_vsi_type_str(type)); 6877 return err; 6878 } 6879 6880 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6881 ice_vsi_type_str(type)); 6882 } 6883 6884 return 0; 6885 } 6886 6887 /** 6888 * ice_update_pf_netdev_link - Update PF netdev link status 6889 * @pf: pointer to the PF instance 6890 */ 6891 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6892 { 6893 bool link_up; 6894 int i; 6895 6896 ice_for_each_vsi(pf, i) { 6897 struct ice_vsi *vsi = pf->vsi[i]; 6898 6899 if (!vsi || vsi->type != ICE_VSI_PF) 6900 return; 6901 6902 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6903 if (link_up) { 6904 netif_carrier_on(pf->vsi[i]->netdev); 6905 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6906 } else { 6907 netif_carrier_off(pf->vsi[i]->netdev); 6908 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6909 } 6910 } 6911 } 6912 6913 /** 6914 * ice_rebuild - rebuild after reset 6915 * @pf: PF to rebuild 6916 * @reset_type: type of reset 6917 * 6918 * Do not rebuild VF VSI in this flow because that is already handled via 6919 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6920 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6921 * to reset/rebuild all the VF VSI twice. 6922 */ 6923 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6924 { 6925 struct device *dev = ice_pf_to_dev(pf); 6926 struct ice_hw *hw = &pf->hw; 6927 bool dvm; 6928 int err; 6929 6930 if (test_bit(ICE_DOWN, pf->state)) 6931 goto clear_recovery; 6932 6933 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6934 6935 #define ICE_EMP_RESET_SLEEP_MS 5000 6936 if (reset_type == ICE_RESET_EMPR) { 6937 /* If an EMP reset has occurred, any previously pending flash 6938 * update will have completed. We no longer know whether or 6939 * not the NVM update EMP reset is restricted. 6940 */ 6941 pf->fw_emp_reset_disabled = false; 6942 6943 msleep(ICE_EMP_RESET_SLEEP_MS); 6944 } 6945 6946 err = ice_init_all_ctrlq(hw); 6947 if (err) { 6948 dev_err(dev, "control queues init failed %d\n", err); 6949 goto err_init_ctrlq; 6950 } 6951 6952 /* if DDP was previously loaded successfully */ 6953 if (!ice_is_safe_mode(pf)) { 6954 /* reload the SW DB of filter tables */ 6955 if (reset_type == ICE_RESET_PFR) 6956 ice_fill_blk_tbls(hw); 6957 else 6958 /* Reload DDP Package after CORER/GLOBR reset */ 6959 ice_load_pkg(NULL, pf); 6960 } 6961 6962 err = ice_clear_pf_cfg(hw); 6963 if (err) { 6964 dev_err(dev, "clear PF configuration failed %d\n", err); 6965 goto err_init_ctrlq; 6966 } 6967 6968 if (pf->first_sw->dflt_vsi_ena) 6969 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6970 /* clear the default VSI configuration if it exists */ 6971 pf->first_sw->dflt_vsi = NULL; 6972 pf->first_sw->dflt_vsi_ena = false; 6973 6974 ice_clear_pxe_mode(hw); 6975 6976 err = ice_init_nvm(hw); 6977 if (err) { 6978 dev_err(dev, "ice_init_nvm failed %d\n", err); 6979 goto err_init_ctrlq; 6980 } 6981 6982 err = ice_get_caps(hw); 6983 if (err) { 6984 dev_err(dev, "ice_get_caps failed %d\n", err); 6985 goto err_init_ctrlq; 6986 } 6987 6988 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6989 if (err) { 6990 dev_err(dev, "set_mac_cfg failed %d\n", err); 6991 goto err_init_ctrlq; 6992 } 6993 6994 dvm = ice_is_dvm_ena(hw); 6995 6996 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6997 if (err) 6998 goto err_init_ctrlq; 6999 7000 err = ice_sched_init_port(hw->port_info); 7001 if (err) 7002 goto err_sched_init_port; 7003 7004 /* start misc vector */ 7005 err = ice_req_irq_msix_misc(pf); 7006 if (err) { 7007 dev_err(dev, "misc vector setup failed: %d\n", err); 7008 goto err_sched_init_port; 7009 } 7010 7011 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7012 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7013 if (!rd32(hw, PFQF_FD_SIZE)) { 7014 u16 unused, guar, b_effort; 7015 7016 guar = hw->func_caps.fd_fltr_guar; 7017 b_effort = hw->func_caps.fd_fltr_best_effort; 7018 7019 /* force guaranteed filter pool for PF */ 7020 ice_alloc_fd_guar_item(hw, &unused, guar); 7021 /* force shared filter pool for PF */ 7022 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7023 } 7024 } 7025 7026 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7027 ice_dcb_rebuild(pf); 7028 7029 /* If the PF previously had enabled PTP, PTP init needs to happen before 7030 * the VSI rebuild. If not, this causes the PTP link status events to 7031 * fail. 7032 */ 7033 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7034 ice_ptp_reset(pf); 7035 7036 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7037 ice_gnss_init(pf); 7038 7039 /* rebuild PF VSI */ 7040 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7041 if (err) { 7042 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7043 goto err_vsi_rebuild; 7044 } 7045 7046 /* configure PTP timestamping after VSI rebuild */ 7047 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7048 ice_ptp_cfg_timestamp(pf, false); 7049 7050 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7051 if (err) { 7052 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7053 goto err_vsi_rebuild; 7054 } 7055 7056 if (reset_type == ICE_RESET_PFR) { 7057 err = ice_rebuild_channels(pf); 7058 if (err) { 7059 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7060 err); 7061 goto err_vsi_rebuild; 7062 } 7063 } 7064 7065 /* If Flow Director is active */ 7066 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7067 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7068 if (err) { 7069 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7070 goto err_vsi_rebuild; 7071 } 7072 7073 /* replay HW Flow Director recipes */ 7074 if (hw->fdir_prof) 7075 ice_fdir_replay_flows(hw); 7076 7077 /* replay Flow Director filters */ 7078 ice_fdir_replay_fltrs(pf); 7079 7080 ice_rebuild_arfs(pf); 7081 } 7082 7083 ice_update_pf_netdev_link(pf); 7084 7085 /* tell the firmware we are up */ 7086 err = ice_send_version(pf); 7087 if (err) { 7088 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7089 err); 7090 goto err_vsi_rebuild; 7091 } 7092 7093 ice_replay_post(hw); 7094 7095 /* if we get here, reset flow is successful */ 7096 clear_bit(ICE_RESET_FAILED, pf->state); 7097 7098 ice_plug_aux_dev(pf); 7099 return; 7100 7101 err_vsi_rebuild: 7102 err_sched_init_port: 7103 ice_sched_cleanup_all(hw); 7104 err_init_ctrlq: 7105 ice_shutdown_all_ctrlq(hw); 7106 set_bit(ICE_RESET_FAILED, pf->state); 7107 clear_recovery: 7108 /* set this bit in PF state to control service task scheduling */ 7109 set_bit(ICE_NEEDS_RESTART, pf->state); 7110 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7111 } 7112 7113 /** 7114 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7115 * @vsi: Pointer to VSI structure 7116 */ 7117 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7118 { 7119 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7120 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7121 else 7122 return ICE_RXBUF_3072; 7123 } 7124 7125 /** 7126 * ice_change_mtu - NDO callback to change the MTU 7127 * @netdev: network interface device structure 7128 * @new_mtu: new value for maximum frame size 7129 * 7130 * Returns 0 on success, negative on failure 7131 */ 7132 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7133 { 7134 struct ice_netdev_priv *np = netdev_priv(netdev); 7135 struct ice_vsi *vsi = np->vsi; 7136 struct ice_pf *pf = vsi->back; 7137 u8 count = 0; 7138 int err = 0; 7139 7140 if (new_mtu == (int)netdev->mtu) { 7141 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7142 return 0; 7143 } 7144 7145 if (ice_is_xdp_ena_vsi(vsi)) { 7146 int frame_size = ice_max_xdp_frame_size(vsi); 7147 7148 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7149 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7150 frame_size - ICE_ETH_PKT_HDR_PAD); 7151 return -EINVAL; 7152 } 7153 } 7154 7155 /* if a reset is in progress, wait for some time for it to complete */ 7156 do { 7157 if (ice_is_reset_in_progress(pf->state)) { 7158 count++; 7159 usleep_range(1000, 2000); 7160 } else { 7161 break; 7162 } 7163 7164 } while (count < 100); 7165 7166 if (count == 100) { 7167 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7168 return -EBUSY; 7169 } 7170 7171 netdev->mtu = (unsigned int)new_mtu; 7172 7173 /* if VSI is up, bring it down and then back up */ 7174 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7175 err = ice_down(vsi); 7176 if (err) { 7177 netdev_err(netdev, "change MTU if_down err %d\n", err); 7178 return err; 7179 } 7180 7181 err = ice_up(vsi); 7182 if (err) { 7183 netdev_err(netdev, "change MTU if_up err %d\n", err); 7184 return err; 7185 } 7186 } 7187 7188 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7189 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7190 7191 return err; 7192 } 7193 7194 /** 7195 * ice_eth_ioctl - Access the hwtstamp interface 7196 * @netdev: network interface device structure 7197 * @ifr: interface request data 7198 * @cmd: ioctl command 7199 */ 7200 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7201 { 7202 struct ice_netdev_priv *np = netdev_priv(netdev); 7203 struct ice_pf *pf = np->vsi->back; 7204 7205 switch (cmd) { 7206 case SIOCGHWTSTAMP: 7207 return ice_ptp_get_ts_config(pf, ifr); 7208 case SIOCSHWTSTAMP: 7209 return ice_ptp_set_ts_config(pf, ifr); 7210 default: 7211 return -EOPNOTSUPP; 7212 } 7213 } 7214 7215 /** 7216 * ice_aq_str - convert AQ err code to a string 7217 * @aq_err: the AQ error code to convert 7218 */ 7219 const char *ice_aq_str(enum ice_aq_err aq_err) 7220 { 7221 switch (aq_err) { 7222 case ICE_AQ_RC_OK: 7223 return "OK"; 7224 case ICE_AQ_RC_EPERM: 7225 return "ICE_AQ_RC_EPERM"; 7226 case ICE_AQ_RC_ENOENT: 7227 return "ICE_AQ_RC_ENOENT"; 7228 case ICE_AQ_RC_ENOMEM: 7229 return "ICE_AQ_RC_ENOMEM"; 7230 case ICE_AQ_RC_EBUSY: 7231 return "ICE_AQ_RC_EBUSY"; 7232 case ICE_AQ_RC_EEXIST: 7233 return "ICE_AQ_RC_EEXIST"; 7234 case ICE_AQ_RC_EINVAL: 7235 return "ICE_AQ_RC_EINVAL"; 7236 case ICE_AQ_RC_ENOSPC: 7237 return "ICE_AQ_RC_ENOSPC"; 7238 case ICE_AQ_RC_ENOSYS: 7239 return "ICE_AQ_RC_ENOSYS"; 7240 case ICE_AQ_RC_EMODE: 7241 return "ICE_AQ_RC_EMODE"; 7242 case ICE_AQ_RC_ENOSEC: 7243 return "ICE_AQ_RC_ENOSEC"; 7244 case ICE_AQ_RC_EBADSIG: 7245 return "ICE_AQ_RC_EBADSIG"; 7246 case ICE_AQ_RC_ESVN: 7247 return "ICE_AQ_RC_ESVN"; 7248 case ICE_AQ_RC_EBADMAN: 7249 return "ICE_AQ_RC_EBADMAN"; 7250 case ICE_AQ_RC_EBADBUF: 7251 return "ICE_AQ_RC_EBADBUF"; 7252 } 7253 7254 return "ICE_AQ_RC_UNKNOWN"; 7255 } 7256 7257 /** 7258 * ice_set_rss_lut - Set RSS LUT 7259 * @vsi: Pointer to VSI structure 7260 * @lut: Lookup table 7261 * @lut_size: Lookup table size 7262 * 7263 * Returns 0 on success, negative on failure 7264 */ 7265 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7266 { 7267 struct ice_aq_get_set_rss_lut_params params = {}; 7268 struct ice_hw *hw = &vsi->back->hw; 7269 int status; 7270 7271 if (!lut) 7272 return -EINVAL; 7273 7274 params.vsi_handle = vsi->idx; 7275 params.lut_size = lut_size; 7276 params.lut_type = vsi->rss_lut_type; 7277 params.lut = lut; 7278 7279 status = ice_aq_set_rss_lut(hw, ¶ms); 7280 if (status) 7281 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7282 status, ice_aq_str(hw->adminq.sq_last_status)); 7283 7284 return status; 7285 } 7286 7287 /** 7288 * ice_set_rss_key - Set RSS key 7289 * @vsi: Pointer to the VSI structure 7290 * @seed: RSS hash seed 7291 * 7292 * Returns 0 on success, negative on failure 7293 */ 7294 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7295 { 7296 struct ice_hw *hw = &vsi->back->hw; 7297 int status; 7298 7299 if (!seed) 7300 return -EINVAL; 7301 7302 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7303 if (status) 7304 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7305 status, ice_aq_str(hw->adminq.sq_last_status)); 7306 7307 return status; 7308 } 7309 7310 /** 7311 * ice_get_rss_lut - Get RSS LUT 7312 * @vsi: Pointer to VSI structure 7313 * @lut: Buffer to store the lookup table entries 7314 * @lut_size: Size of buffer to store the lookup table entries 7315 * 7316 * Returns 0 on success, negative on failure 7317 */ 7318 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7319 { 7320 struct ice_aq_get_set_rss_lut_params params = {}; 7321 struct ice_hw *hw = &vsi->back->hw; 7322 int status; 7323 7324 if (!lut) 7325 return -EINVAL; 7326 7327 params.vsi_handle = vsi->idx; 7328 params.lut_size = lut_size; 7329 params.lut_type = vsi->rss_lut_type; 7330 params.lut = lut; 7331 7332 status = ice_aq_get_rss_lut(hw, ¶ms); 7333 if (status) 7334 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7335 status, ice_aq_str(hw->adminq.sq_last_status)); 7336 7337 return status; 7338 } 7339 7340 /** 7341 * ice_get_rss_key - Get RSS key 7342 * @vsi: Pointer to VSI structure 7343 * @seed: Buffer to store the key in 7344 * 7345 * Returns 0 on success, negative on failure 7346 */ 7347 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7348 { 7349 struct ice_hw *hw = &vsi->back->hw; 7350 int status; 7351 7352 if (!seed) 7353 return -EINVAL; 7354 7355 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7356 if (status) 7357 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7358 status, ice_aq_str(hw->adminq.sq_last_status)); 7359 7360 return status; 7361 } 7362 7363 /** 7364 * ice_bridge_getlink - Get the hardware bridge mode 7365 * @skb: skb buff 7366 * @pid: process ID 7367 * @seq: RTNL message seq 7368 * @dev: the netdev being configured 7369 * @filter_mask: filter mask passed in 7370 * @nlflags: netlink flags passed in 7371 * 7372 * Return the bridge mode (VEB/VEPA) 7373 */ 7374 static int 7375 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7376 struct net_device *dev, u32 filter_mask, int nlflags) 7377 { 7378 struct ice_netdev_priv *np = netdev_priv(dev); 7379 struct ice_vsi *vsi = np->vsi; 7380 struct ice_pf *pf = vsi->back; 7381 u16 bmode; 7382 7383 bmode = pf->first_sw->bridge_mode; 7384 7385 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7386 filter_mask, NULL); 7387 } 7388 7389 /** 7390 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7391 * @vsi: Pointer to VSI structure 7392 * @bmode: Hardware bridge mode (VEB/VEPA) 7393 * 7394 * Returns 0 on success, negative on failure 7395 */ 7396 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7397 { 7398 struct ice_aqc_vsi_props *vsi_props; 7399 struct ice_hw *hw = &vsi->back->hw; 7400 struct ice_vsi_ctx *ctxt; 7401 int ret; 7402 7403 vsi_props = &vsi->info; 7404 7405 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7406 if (!ctxt) 7407 return -ENOMEM; 7408 7409 ctxt->info = vsi->info; 7410 7411 if (bmode == BRIDGE_MODE_VEB) 7412 /* change from VEPA to VEB mode */ 7413 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7414 else 7415 /* change from VEB to VEPA mode */ 7416 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7417 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7418 7419 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7420 if (ret) { 7421 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7422 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7423 goto out; 7424 } 7425 /* Update sw flags for book keeping */ 7426 vsi_props->sw_flags = ctxt->info.sw_flags; 7427 7428 out: 7429 kfree(ctxt); 7430 return ret; 7431 } 7432 7433 /** 7434 * ice_bridge_setlink - Set the hardware bridge mode 7435 * @dev: the netdev being configured 7436 * @nlh: RTNL message 7437 * @flags: bridge setlink flags 7438 * @extack: netlink extended ack 7439 * 7440 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7441 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7442 * not already set for all VSIs connected to this switch. And also update the 7443 * unicast switch filter rules for the corresponding switch of the netdev. 7444 */ 7445 static int 7446 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7447 u16 __always_unused flags, 7448 struct netlink_ext_ack __always_unused *extack) 7449 { 7450 struct ice_netdev_priv *np = netdev_priv(dev); 7451 struct ice_pf *pf = np->vsi->back; 7452 struct nlattr *attr, *br_spec; 7453 struct ice_hw *hw = &pf->hw; 7454 struct ice_sw *pf_sw; 7455 int rem, v, err = 0; 7456 7457 pf_sw = pf->first_sw; 7458 /* find the attribute in the netlink message */ 7459 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7460 7461 nla_for_each_nested(attr, br_spec, rem) { 7462 __u16 mode; 7463 7464 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7465 continue; 7466 mode = nla_get_u16(attr); 7467 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7468 return -EINVAL; 7469 /* Continue if bridge mode is not being flipped */ 7470 if (mode == pf_sw->bridge_mode) 7471 continue; 7472 /* Iterates through the PF VSI list and update the loopback 7473 * mode of the VSI 7474 */ 7475 ice_for_each_vsi(pf, v) { 7476 if (!pf->vsi[v]) 7477 continue; 7478 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7479 if (err) 7480 return err; 7481 } 7482 7483 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7484 /* Update the unicast switch filter rules for the corresponding 7485 * switch of the netdev 7486 */ 7487 err = ice_update_sw_rule_bridge_mode(hw); 7488 if (err) { 7489 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7490 mode, err, 7491 ice_aq_str(hw->adminq.sq_last_status)); 7492 /* revert hw->evb_veb */ 7493 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7494 return err; 7495 } 7496 7497 pf_sw->bridge_mode = mode; 7498 } 7499 7500 return 0; 7501 } 7502 7503 /** 7504 * ice_tx_timeout - Respond to a Tx Hang 7505 * @netdev: network interface device structure 7506 * @txqueue: Tx queue 7507 */ 7508 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7509 { 7510 struct ice_netdev_priv *np = netdev_priv(netdev); 7511 struct ice_tx_ring *tx_ring = NULL; 7512 struct ice_vsi *vsi = np->vsi; 7513 struct ice_pf *pf = vsi->back; 7514 u32 i; 7515 7516 pf->tx_timeout_count++; 7517 7518 /* Check if PFC is enabled for the TC to which the queue belongs 7519 * to. If yes then Tx timeout is not caused by a hung queue, no 7520 * need to reset and rebuild 7521 */ 7522 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7523 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7524 txqueue); 7525 return; 7526 } 7527 7528 /* now that we have an index, find the tx_ring struct */ 7529 ice_for_each_txq(vsi, i) 7530 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7531 if (txqueue == vsi->tx_rings[i]->q_index) { 7532 tx_ring = vsi->tx_rings[i]; 7533 break; 7534 } 7535 7536 /* Reset recovery level if enough time has elapsed after last timeout. 7537 * Also ensure no new reset action happens before next timeout period. 7538 */ 7539 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7540 pf->tx_timeout_recovery_level = 1; 7541 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7542 netdev->watchdog_timeo))) 7543 return; 7544 7545 if (tx_ring) { 7546 struct ice_hw *hw = &pf->hw; 7547 u32 head, val = 0; 7548 7549 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7550 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7551 /* Read interrupt register */ 7552 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7553 7554 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7555 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7556 head, tx_ring->next_to_use, val); 7557 } 7558 7559 pf->tx_timeout_last_recovery = jiffies; 7560 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7561 pf->tx_timeout_recovery_level, txqueue); 7562 7563 switch (pf->tx_timeout_recovery_level) { 7564 case 1: 7565 set_bit(ICE_PFR_REQ, pf->state); 7566 break; 7567 case 2: 7568 set_bit(ICE_CORER_REQ, pf->state); 7569 break; 7570 case 3: 7571 set_bit(ICE_GLOBR_REQ, pf->state); 7572 break; 7573 default: 7574 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7575 set_bit(ICE_DOWN, pf->state); 7576 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7577 set_bit(ICE_SERVICE_DIS, pf->state); 7578 break; 7579 } 7580 7581 ice_service_task_schedule(pf); 7582 pf->tx_timeout_recovery_level++; 7583 } 7584 7585 /** 7586 * ice_setup_tc_cls_flower - flower classifier offloads 7587 * @np: net device to configure 7588 * @filter_dev: device on which filter is added 7589 * @cls_flower: offload data 7590 */ 7591 static int 7592 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7593 struct net_device *filter_dev, 7594 struct flow_cls_offload *cls_flower) 7595 { 7596 struct ice_vsi *vsi = np->vsi; 7597 7598 if (cls_flower->common.chain_index) 7599 return -EOPNOTSUPP; 7600 7601 switch (cls_flower->command) { 7602 case FLOW_CLS_REPLACE: 7603 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7604 case FLOW_CLS_DESTROY: 7605 return ice_del_cls_flower(vsi, cls_flower); 7606 default: 7607 return -EINVAL; 7608 } 7609 } 7610 7611 /** 7612 * ice_setup_tc_block_cb - callback handler registered for TC block 7613 * @type: TC SETUP type 7614 * @type_data: TC flower offload data that contains user input 7615 * @cb_priv: netdev private data 7616 */ 7617 static int 7618 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7619 { 7620 struct ice_netdev_priv *np = cb_priv; 7621 7622 switch (type) { 7623 case TC_SETUP_CLSFLOWER: 7624 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7625 type_data); 7626 default: 7627 return -EOPNOTSUPP; 7628 } 7629 } 7630 7631 /** 7632 * ice_validate_mqprio_qopt - Validate TCF input parameters 7633 * @vsi: Pointer to VSI 7634 * @mqprio_qopt: input parameters for mqprio queue configuration 7635 * 7636 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7637 * needed), and make sure user doesn't specify qcount and BW rate limit 7638 * for TCs, which are more than "num_tc" 7639 */ 7640 static int 7641 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7642 struct tc_mqprio_qopt_offload *mqprio_qopt) 7643 { 7644 u64 sum_max_rate = 0, sum_min_rate = 0; 7645 int non_power_of_2_qcount = 0; 7646 struct ice_pf *pf = vsi->back; 7647 int max_rss_q_cnt = 0; 7648 struct device *dev; 7649 int i, speed; 7650 u8 num_tc; 7651 7652 if (vsi->type != ICE_VSI_PF) 7653 return -EINVAL; 7654 7655 if (mqprio_qopt->qopt.offset[0] != 0 || 7656 mqprio_qopt->qopt.num_tc < 1 || 7657 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7658 return -EINVAL; 7659 7660 dev = ice_pf_to_dev(pf); 7661 vsi->ch_rss_size = 0; 7662 num_tc = mqprio_qopt->qopt.num_tc; 7663 7664 for (i = 0; num_tc; i++) { 7665 int qcount = mqprio_qopt->qopt.count[i]; 7666 u64 max_rate, min_rate, rem; 7667 7668 if (!qcount) 7669 return -EINVAL; 7670 7671 if (is_power_of_2(qcount)) { 7672 if (non_power_of_2_qcount && 7673 qcount > non_power_of_2_qcount) { 7674 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7675 qcount, non_power_of_2_qcount); 7676 return -EINVAL; 7677 } 7678 if (qcount > max_rss_q_cnt) 7679 max_rss_q_cnt = qcount; 7680 } else { 7681 if (non_power_of_2_qcount && 7682 qcount != non_power_of_2_qcount) { 7683 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7684 qcount, non_power_of_2_qcount); 7685 return -EINVAL; 7686 } 7687 if (qcount < max_rss_q_cnt) { 7688 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7689 qcount, max_rss_q_cnt); 7690 return -EINVAL; 7691 } 7692 max_rss_q_cnt = qcount; 7693 non_power_of_2_qcount = qcount; 7694 } 7695 7696 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7697 * converts the bandwidth rate limit into Bytes/s when 7698 * passing it down to the driver. So convert input bandwidth 7699 * from Bytes/s to Kbps 7700 */ 7701 max_rate = mqprio_qopt->max_rate[i]; 7702 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7703 sum_max_rate += max_rate; 7704 7705 /* min_rate is minimum guaranteed rate and it can't be zero */ 7706 min_rate = mqprio_qopt->min_rate[i]; 7707 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7708 sum_min_rate += min_rate; 7709 7710 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7711 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7712 min_rate, ICE_MIN_BW_LIMIT); 7713 return -EINVAL; 7714 } 7715 7716 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7717 if (rem) { 7718 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7719 i, ICE_MIN_BW_LIMIT); 7720 return -EINVAL; 7721 } 7722 7723 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7724 if (rem) { 7725 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7726 i, ICE_MIN_BW_LIMIT); 7727 return -EINVAL; 7728 } 7729 7730 /* min_rate can't be more than max_rate, except when max_rate 7731 * is zero (implies max_rate sought is max line rate). In such 7732 * a case min_rate can be more than max. 7733 */ 7734 if (max_rate && min_rate > max_rate) { 7735 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7736 min_rate, max_rate); 7737 return -EINVAL; 7738 } 7739 7740 if (i >= mqprio_qopt->qopt.num_tc - 1) 7741 break; 7742 if (mqprio_qopt->qopt.offset[i + 1] != 7743 (mqprio_qopt->qopt.offset[i] + qcount)) 7744 return -EINVAL; 7745 } 7746 if (vsi->num_rxq < 7747 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7748 return -EINVAL; 7749 if (vsi->num_txq < 7750 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7751 return -EINVAL; 7752 7753 speed = ice_get_link_speed_kbps(vsi); 7754 if (sum_max_rate && sum_max_rate > (u64)speed) { 7755 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7756 sum_max_rate, speed); 7757 return -EINVAL; 7758 } 7759 if (sum_min_rate && sum_min_rate > (u64)speed) { 7760 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7761 sum_min_rate, speed); 7762 return -EINVAL; 7763 } 7764 7765 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7766 vsi->ch_rss_size = max_rss_q_cnt; 7767 7768 return 0; 7769 } 7770 7771 /** 7772 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7773 * @pf: ptr to PF device 7774 * @vsi: ptr to VSI 7775 */ 7776 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7777 { 7778 struct device *dev = ice_pf_to_dev(pf); 7779 bool added = false; 7780 struct ice_hw *hw; 7781 int flow; 7782 7783 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7784 return -EINVAL; 7785 7786 hw = &pf->hw; 7787 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7788 struct ice_fd_hw_prof *prof; 7789 int tun, status; 7790 u64 entry_h; 7791 7792 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7793 hw->fdir_prof[flow]->cnt)) 7794 continue; 7795 7796 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7797 enum ice_flow_priority prio; 7798 u64 prof_id; 7799 7800 /* add this VSI to FDir profile for this flow */ 7801 prio = ICE_FLOW_PRIO_NORMAL; 7802 prof = hw->fdir_prof[flow]; 7803 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7804 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7805 prof->vsi_h[0], vsi->idx, 7806 prio, prof->fdir_seg[tun], 7807 &entry_h); 7808 if (status) { 7809 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7810 vsi->idx, flow); 7811 continue; 7812 } 7813 7814 prof->entry_h[prof->cnt][tun] = entry_h; 7815 } 7816 7817 /* store VSI for filter replay and delete */ 7818 prof->vsi_h[prof->cnt] = vsi->idx; 7819 prof->cnt++; 7820 7821 added = true; 7822 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7823 flow); 7824 } 7825 7826 if (!added) 7827 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7828 7829 return 0; 7830 } 7831 7832 /** 7833 * ice_add_channel - add a channel by adding VSI 7834 * @pf: ptr to PF device 7835 * @sw_id: underlying HW switching element ID 7836 * @ch: ptr to channel structure 7837 * 7838 * Add a channel (VSI) using add_vsi and queue_map 7839 */ 7840 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7841 { 7842 struct device *dev = ice_pf_to_dev(pf); 7843 struct ice_vsi *vsi; 7844 7845 if (ch->type != ICE_VSI_CHNL) { 7846 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7847 return -EINVAL; 7848 } 7849 7850 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7851 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7852 dev_err(dev, "create chnl VSI failure\n"); 7853 return -EINVAL; 7854 } 7855 7856 ice_add_vsi_to_fdir(pf, vsi); 7857 7858 ch->sw_id = sw_id; 7859 ch->vsi_num = vsi->vsi_num; 7860 ch->info.mapping_flags = vsi->info.mapping_flags; 7861 ch->ch_vsi = vsi; 7862 /* set the back pointer of channel for newly created VSI */ 7863 vsi->ch = ch; 7864 7865 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7866 sizeof(vsi->info.q_mapping)); 7867 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7868 sizeof(vsi->info.tc_mapping)); 7869 7870 return 0; 7871 } 7872 7873 /** 7874 * ice_chnl_cfg_res 7875 * @vsi: the VSI being setup 7876 * @ch: ptr to channel structure 7877 * 7878 * Configure channel specific resources such as rings, vector. 7879 */ 7880 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7881 { 7882 int i; 7883 7884 for (i = 0; i < ch->num_txq; i++) { 7885 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7886 struct ice_ring_container *rc; 7887 struct ice_tx_ring *tx_ring; 7888 struct ice_rx_ring *rx_ring; 7889 7890 tx_ring = vsi->tx_rings[ch->base_q + i]; 7891 rx_ring = vsi->rx_rings[ch->base_q + i]; 7892 if (!tx_ring || !rx_ring) 7893 continue; 7894 7895 /* setup ring being channel enabled */ 7896 tx_ring->ch = ch; 7897 rx_ring->ch = ch; 7898 7899 /* following code block sets up vector specific attributes */ 7900 tx_q_vector = tx_ring->q_vector; 7901 rx_q_vector = rx_ring->q_vector; 7902 if (!tx_q_vector && !rx_q_vector) 7903 continue; 7904 7905 if (tx_q_vector) { 7906 tx_q_vector->ch = ch; 7907 /* setup Tx and Rx ITR setting if DIM is off */ 7908 rc = &tx_q_vector->tx; 7909 if (!ITR_IS_DYNAMIC(rc)) 7910 ice_write_itr(rc, rc->itr_setting); 7911 } 7912 if (rx_q_vector) { 7913 rx_q_vector->ch = ch; 7914 /* setup Tx and Rx ITR setting if DIM is off */ 7915 rc = &rx_q_vector->rx; 7916 if (!ITR_IS_DYNAMIC(rc)) 7917 ice_write_itr(rc, rc->itr_setting); 7918 } 7919 } 7920 7921 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7922 * GLINT_ITR register would have written to perform in-context 7923 * update, hence perform flush 7924 */ 7925 if (ch->num_txq || ch->num_rxq) 7926 ice_flush(&vsi->back->hw); 7927 } 7928 7929 /** 7930 * ice_cfg_chnl_all_res - configure channel resources 7931 * @vsi: pte to main_vsi 7932 * @ch: ptr to channel structure 7933 * 7934 * This function configures channel specific resources such as flow-director 7935 * counter index, and other resources such as queues, vectors, ITR settings 7936 */ 7937 static void 7938 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7939 { 7940 /* configure channel (aka ADQ) resources such as queues, vectors, 7941 * ITR settings for channel specific vectors and anything else 7942 */ 7943 ice_chnl_cfg_res(vsi, ch); 7944 } 7945 7946 /** 7947 * ice_setup_hw_channel - setup new channel 7948 * @pf: ptr to PF device 7949 * @vsi: the VSI being setup 7950 * @ch: ptr to channel structure 7951 * @sw_id: underlying HW switching element ID 7952 * @type: type of channel to be created (VMDq2/VF) 7953 * 7954 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7955 * and configures Tx rings accordingly 7956 */ 7957 static int 7958 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7959 struct ice_channel *ch, u16 sw_id, u8 type) 7960 { 7961 struct device *dev = ice_pf_to_dev(pf); 7962 int ret; 7963 7964 ch->base_q = vsi->next_base_q; 7965 ch->type = type; 7966 7967 ret = ice_add_channel(pf, sw_id, ch); 7968 if (ret) { 7969 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7970 return ret; 7971 } 7972 7973 /* configure/setup ADQ specific resources */ 7974 ice_cfg_chnl_all_res(vsi, ch); 7975 7976 /* make sure to update the next_base_q so that subsequent channel's 7977 * (aka ADQ) VSI queue map is correct 7978 */ 7979 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7980 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7981 ch->num_rxq); 7982 7983 return 0; 7984 } 7985 7986 /** 7987 * ice_setup_channel - setup new channel using uplink element 7988 * @pf: ptr to PF device 7989 * @vsi: the VSI being setup 7990 * @ch: ptr to channel structure 7991 * 7992 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7993 * and uplink switching element 7994 */ 7995 static bool 7996 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7997 struct ice_channel *ch) 7998 { 7999 struct device *dev = ice_pf_to_dev(pf); 8000 u16 sw_id; 8001 int ret; 8002 8003 if (vsi->type != ICE_VSI_PF) { 8004 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8005 return false; 8006 } 8007 8008 sw_id = pf->first_sw->sw_id; 8009 8010 /* create channel (VSI) */ 8011 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8012 if (ret) { 8013 dev_err(dev, "failed to setup hw_channel\n"); 8014 return false; 8015 } 8016 dev_dbg(dev, "successfully created channel()\n"); 8017 8018 return ch->ch_vsi ? true : false; 8019 } 8020 8021 /** 8022 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8023 * @vsi: VSI to be configured 8024 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8025 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8026 */ 8027 static int 8028 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8029 { 8030 int err; 8031 8032 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8033 if (err) 8034 return err; 8035 8036 return ice_set_max_bw_limit(vsi, max_tx_rate); 8037 } 8038 8039 /** 8040 * ice_create_q_channel - function to create channel 8041 * @vsi: VSI to be configured 8042 * @ch: ptr to channel (it contains channel specific params) 8043 * 8044 * This function creates channel (VSI) using num_queues specified by user, 8045 * reconfigs RSS if needed. 8046 */ 8047 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8048 { 8049 struct ice_pf *pf = vsi->back; 8050 struct device *dev; 8051 8052 if (!ch) 8053 return -EINVAL; 8054 8055 dev = ice_pf_to_dev(pf); 8056 if (!ch->num_txq || !ch->num_rxq) { 8057 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8058 return -EINVAL; 8059 } 8060 8061 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8062 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8063 vsi->cnt_q_avail, ch->num_txq); 8064 return -EINVAL; 8065 } 8066 8067 if (!ice_setup_channel(pf, vsi, ch)) { 8068 dev_info(dev, "Failed to setup channel\n"); 8069 return -EINVAL; 8070 } 8071 /* configure BW rate limit */ 8072 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8073 int ret; 8074 8075 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8076 ch->min_tx_rate); 8077 if (ret) 8078 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8079 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8080 else 8081 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8082 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8083 } 8084 8085 vsi->cnt_q_avail -= ch->num_txq; 8086 8087 return 0; 8088 } 8089 8090 /** 8091 * ice_rem_all_chnl_fltrs - removes all channel filters 8092 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8093 * 8094 * Remove all advanced switch filters only if they are channel specific 8095 * tc-flower based filter 8096 */ 8097 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8098 { 8099 struct ice_tc_flower_fltr *fltr; 8100 struct hlist_node *node; 8101 8102 /* to remove all channel filters, iterate an ordered list of filters */ 8103 hlist_for_each_entry_safe(fltr, node, 8104 &pf->tc_flower_fltr_list, 8105 tc_flower_node) { 8106 struct ice_rule_query_data rule; 8107 int status; 8108 8109 /* for now process only channel specific filters */ 8110 if (!ice_is_chnl_fltr(fltr)) 8111 continue; 8112 8113 rule.rid = fltr->rid; 8114 rule.rule_id = fltr->rule_id; 8115 rule.vsi_handle = fltr->dest_id; 8116 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8117 if (status) { 8118 if (status == -ENOENT) 8119 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8120 rule.rule_id); 8121 else 8122 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8123 status); 8124 } else if (fltr->dest_vsi) { 8125 /* update advanced switch filter count */ 8126 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8127 u32 flags = fltr->flags; 8128 8129 fltr->dest_vsi->num_chnl_fltr--; 8130 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8131 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8132 pf->num_dmac_chnl_fltrs--; 8133 } 8134 } 8135 8136 hlist_del(&fltr->tc_flower_node); 8137 kfree(fltr); 8138 } 8139 } 8140 8141 /** 8142 * ice_remove_q_channels - Remove queue channels for the TCs 8143 * @vsi: VSI to be configured 8144 * @rem_fltr: delete advanced switch filter or not 8145 * 8146 * Remove queue channels for the TCs 8147 */ 8148 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8149 { 8150 struct ice_channel *ch, *ch_tmp; 8151 struct ice_pf *pf = vsi->back; 8152 int i; 8153 8154 /* remove all tc-flower based filter if they are channel filters only */ 8155 if (rem_fltr) 8156 ice_rem_all_chnl_fltrs(pf); 8157 8158 /* remove ntuple filters since queue configuration is being changed */ 8159 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8160 struct ice_hw *hw = &pf->hw; 8161 8162 mutex_lock(&hw->fdir_fltr_lock); 8163 ice_fdir_del_all_fltrs(vsi); 8164 mutex_unlock(&hw->fdir_fltr_lock); 8165 } 8166 8167 /* perform cleanup for channels if they exist */ 8168 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8169 struct ice_vsi *ch_vsi; 8170 8171 list_del(&ch->list); 8172 ch_vsi = ch->ch_vsi; 8173 if (!ch_vsi) { 8174 kfree(ch); 8175 continue; 8176 } 8177 8178 /* Reset queue contexts */ 8179 for (i = 0; i < ch->num_rxq; i++) { 8180 struct ice_tx_ring *tx_ring; 8181 struct ice_rx_ring *rx_ring; 8182 8183 tx_ring = vsi->tx_rings[ch->base_q + i]; 8184 rx_ring = vsi->rx_rings[ch->base_q + i]; 8185 if (tx_ring) { 8186 tx_ring->ch = NULL; 8187 if (tx_ring->q_vector) 8188 tx_ring->q_vector->ch = NULL; 8189 } 8190 if (rx_ring) { 8191 rx_ring->ch = NULL; 8192 if (rx_ring->q_vector) 8193 rx_ring->q_vector->ch = NULL; 8194 } 8195 } 8196 8197 /* Release FD resources for the channel VSI */ 8198 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8199 8200 /* clear the VSI from scheduler tree */ 8201 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8202 8203 /* Delete VSI from FW */ 8204 ice_vsi_delete(ch->ch_vsi); 8205 8206 /* Delete VSI from PF and HW VSI arrays */ 8207 ice_vsi_clear(ch->ch_vsi); 8208 8209 /* free the channel */ 8210 kfree(ch); 8211 } 8212 8213 /* clear the channel VSI map which is stored in main VSI */ 8214 ice_for_each_chnl_tc(i) 8215 vsi->tc_map_vsi[i] = NULL; 8216 8217 /* reset main VSI's all TC information */ 8218 vsi->all_enatc = 0; 8219 vsi->all_numtc = 0; 8220 } 8221 8222 /** 8223 * ice_rebuild_channels - rebuild channel 8224 * @pf: ptr to PF 8225 * 8226 * Recreate channel VSIs and replay filters 8227 */ 8228 static int ice_rebuild_channels(struct ice_pf *pf) 8229 { 8230 struct device *dev = ice_pf_to_dev(pf); 8231 struct ice_vsi *main_vsi; 8232 bool rem_adv_fltr = true; 8233 struct ice_channel *ch; 8234 struct ice_vsi *vsi; 8235 int tc_idx = 1; 8236 int i, err; 8237 8238 main_vsi = ice_get_main_vsi(pf); 8239 if (!main_vsi) 8240 return 0; 8241 8242 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8243 main_vsi->old_numtc == 1) 8244 return 0; /* nothing to be done */ 8245 8246 /* reconfigure main VSI based on old value of TC and cached values 8247 * for MQPRIO opts 8248 */ 8249 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8250 if (err) { 8251 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8252 main_vsi->old_ena_tc, main_vsi->vsi_num); 8253 return err; 8254 } 8255 8256 /* rebuild ADQ VSIs */ 8257 ice_for_each_vsi(pf, i) { 8258 enum ice_vsi_type type; 8259 8260 vsi = pf->vsi[i]; 8261 if (!vsi || vsi->type != ICE_VSI_CHNL) 8262 continue; 8263 8264 type = vsi->type; 8265 8266 /* rebuild ADQ VSI */ 8267 err = ice_vsi_rebuild(vsi, true); 8268 if (err) { 8269 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8270 ice_vsi_type_str(type), vsi->idx, err); 8271 goto cleanup; 8272 } 8273 8274 /* Re-map HW VSI number, using VSI handle that has been 8275 * previously validated in ice_replay_vsi() call above 8276 */ 8277 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8278 8279 /* replay filters for the VSI */ 8280 err = ice_replay_vsi(&pf->hw, vsi->idx); 8281 if (err) { 8282 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8283 ice_vsi_type_str(type), err, vsi->idx); 8284 rem_adv_fltr = false; 8285 goto cleanup; 8286 } 8287 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8288 ice_vsi_type_str(type), vsi->idx); 8289 8290 /* store ADQ VSI at correct TC index in main VSI's 8291 * map of TC to VSI 8292 */ 8293 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8294 } 8295 8296 /* ADQ VSI(s) has been rebuilt successfully, so setup 8297 * channel for main VSI's Tx and Rx rings 8298 */ 8299 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8300 struct ice_vsi *ch_vsi; 8301 8302 ch_vsi = ch->ch_vsi; 8303 if (!ch_vsi) 8304 continue; 8305 8306 /* reconfig channel resources */ 8307 ice_cfg_chnl_all_res(main_vsi, ch); 8308 8309 /* replay BW rate limit if it is non-zero */ 8310 if (!ch->max_tx_rate && !ch->min_tx_rate) 8311 continue; 8312 8313 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8314 ch->min_tx_rate); 8315 if (err) 8316 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8317 err, ch->max_tx_rate, ch->min_tx_rate, 8318 ch_vsi->vsi_num); 8319 else 8320 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8321 ch->max_tx_rate, ch->min_tx_rate, 8322 ch_vsi->vsi_num); 8323 } 8324 8325 /* reconfig RSS for main VSI */ 8326 if (main_vsi->ch_rss_size) 8327 ice_vsi_cfg_rss_lut_key(main_vsi); 8328 8329 return 0; 8330 8331 cleanup: 8332 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8333 return err; 8334 } 8335 8336 /** 8337 * ice_create_q_channels - Add queue channel for the given TCs 8338 * @vsi: VSI to be configured 8339 * 8340 * Configures queue channel mapping to the given TCs 8341 */ 8342 static int ice_create_q_channels(struct ice_vsi *vsi) 8343 { 8344 struct ice_pf *pf = vsi->back; 8345 struct ice_channel *ch; 8346 int ret = 0, i; 8347 8348 ice_for_each_chnl_tc(i) { 8349 if (!(vsi->all_enatc & BIT(i))) 8350 continue; 8351 8352 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8353 if (!ch) { 8354 ret = -ENOMEM; 8355 goto err_free; 8356 } 8357 INIT_LIST_HEAD(&ch->list); 8358 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8359 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8360 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8361 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8362 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8363 8364 /* convert to Kbits/s */ 8365 if (ch->max_tx_rate) 8366 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8367 ICE_BW_KBPS_DIVISOR); 8368 if (ch->min_tx_rate) 8369 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8370 ICE_BW_KBPS_DIVISOR); 8371 8372 ret = ice_create_q_channel(vsi, ch); 8373 if (ret) { 8374 dev_err(ice_pf_to_dev(pf), 8375 "failed creating channel TC:%d\n", i); 8376 kfree(ch); 8377 goto err_free; 8378 } 8379 list_add_tail(&ch->list, &vsi->ch_list); 8380 vsi->tc_map_vsi[i] = ch->ch_vsi; 8381 dev_dbg(ice_pf_to_dev(pf), 8382 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8383 } 8384 return 0; 8385 8386 err_free: 8387 ice_remove_q_channels(vsi, false); 8388 8389 return ret; 8390 } 8391 8392 /** 8393 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8394 * @netdev: net device to configure 8395 * @type_data: TC offload data 8396 */ 8397 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8398 { 8399 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8400 struct ice_netdev_priv *np = netdev_priv(netdev); 8401 struct ice_vsi *vsi = np->vsi; 8402 struct ice_pf *pf = vsi->back; 8403 u16 mode, ena_tc_qdisc = 0; 8404 int cur_txq, cur_rxq; 8405 u8 hw = 0, num_tcf; 8406 struct device *dev; 8407 int ret, i; 8408 8409 dev = ice_pf_to_dev(pf); 8410 num_tcf = mqprio_qopt->qopt.num_tc; 8411 hw = mqprio_qopt->qopt.hw; 8412 mode = mqprio_qopt->mode; 8413 if (!hw) { 8414 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8415 vsi->ch_rss_size = 0; 8416 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8417 goto config_tcf; 8418 } 8419 8420 /* Generate queue region map for number of TCF requested */ 8421 for (i = 0; i < num_tcf; i++) 8422 ena_tc_qdisc |= BIT(i); 8423 8424 switch (mode) { 8425 case TC_MQPRIO_MODE_CHANNEL: 8426 8427 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8428 if (ret) { 8429 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8430 ret); 8431 return ret; 8432 } 8433 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8434 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8435 /* don't assume state of hw_tc_offload during driver load 8436 * and set the flag for TC flower filter if hw_tc_offload 8437 * already ON 8438 */ 8439 if (vsi->netdev->features & NETIF_F_HW_TC) 8440 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8441 break; 8442 default: 8443 return -EINVAL; 8444 } 8445 8446 config_tcf: 8447 8448 /* Requesting same TCF configuration as already enabled */ 8449 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8450 mode != TC_MQPRIO_MODE_CHANNEL) 8451 return 0; 8452 8453 /* Pause VSI queues */ 8454 ice_dis_vsi(vsi, true); 8455 8456 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8457 ice_remove_q_channels(vsi, true); 8458 8459 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8460 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8461 num_online_cpus()); 8462 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8463 num_online_cpus()); 8464 } else { 8465 /* logic to rebuild VSI, same like ethtool -L */ 8466 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8467 8468 for (i = 0; i < num_tcf; i++) { 8469 if (!(ena_tc_qdisc & BIT(i))) 8470 continue; 8471 8472 offset = vsi->mqprio_qopt.qopt.offset[i]; 8473 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8474 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8475 } 8476 vsi->req_txq = offset + qcount_tx; 8477 vsi->req_rxq = offset + qcount_rx; 8478 8479 /* store away original rss_size info, so that it gets reused 8480 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8481 * determine, what should be the rss_sizefor main VSI 8482 */ 8483 vsi->orig_rss_size = vsi->rss_size; 8484 } 8485 8486 /* save current values of Tx and Rx queues before calling VSI rebuild 8487 * for fallback option 8488 */ 8489 cur_txq = vsi->num_txq; 8490 cur_rxq = vsi->num_rxq; 8491 8492 /* proceed with rebuild main VSI using correct number of queues */ 8493 ret = ice_vsi_rebuild(vsi, false); 8494 if (ret) { 8495 /* fallback to current number of queues */ 8496 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8497 vsi->req_txq = cur_txq; 8498 vsi->req_rxq = cur_rxq; 8499 clear_bit(ICE_RESET_FAILED, pf->state); 8500 if (ice_vsi_rebuild(vsi, false)) { 8501 dev_err(dev, "Rebuild of main VSI failed again\n"); 8502 return ret; 8503 } 8504 } 8505 8506 vsi->all_numtc = num_tcf; 8507 vsi->all_enatc = ena_tc_qdisc; 8508 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8509 if (ret) { 8510 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8511 vsi->vsi_num); 8512 goto exit; 8513 } 8514 8515 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8516 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8517 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8518 8519 /* set TC0 rate limit if specified */ 8520 if (max_tx_rate || min_tx_rate) { 8521 /* convert to Kbits/s */ 8522 if (max_tx_rate) 8523 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8524 if (min_tx_rate) 8525 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8526 8527 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8528 if (!ret) { 8529 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8530 max_tx_rate, min_tx_rate, vsi->vsi_num); 8531 } else { 8532 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8533 max_tx_rate, min_tx_rate, vsi->vsi_num); 8534 goto exit; 8535 } 8536 } 8537 ret = ice_create_q_channels(vsi); 8538 if (ret) { 8539 netdev_err(netdev, "failed configuring queue channels\n"); 8540 goto exit; 8541 } else { 8542 netdev_dbg(netdev, "successfully configured channels\n"); 8543 } 8544 } 8545 8546 if (vsi->ch_rss_size) 8547 ice_vsi_cfg_rss_lut_key(vsi); 8548 8549 exit: 8550 /* if error, reset the all_numtc and all_enatc */ 8551 if (ret) { 8552 vsi->all_numtc = 0; 8553 vsi->all_enatc = 0; 8554 } 8555 /* resume VSI */ 8556 ice_ena_vsi(vsi, true); 8557 8558 return ret; 8559 } 8560 8561 static LIST_HEAD(ice_block_cb_list); 8562 8563 static int 8564 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8565 void *type_data) 8566 { 8567 struct ice_netdev_priv *np = netdev_priv(netdev); 8568 struct ice_pf *pf = np->vsi->back; 8569 int err; 8570 8571 switch (type) { 8572 case TC_SETUP_BLOCK: 8573 return flow_block_cb_setup_simple(type_data, 8574 &ice_block_cb_list, 8575 ice_setup_tc_block_cb, 8576 np, np, true); 8577 case TC_SETUP_QDISC_MQPRIO: 8578 /* setup traffic classifier for receive side */ 8579 mutex_lock(&pf->tc_mutex); 8580 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8581 mutex_unlock(&pf->tc_mutex); 8582 return err; 8583 default: 8584 return -EOPNOTSUPP; 8585 } 8586 return -EOPNOTSUPP; 8587 } 8588 8589 static struct ice_indr_block_priv * 8590 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8591 struct net_device *netdev) 8592 { 8593 struct ice_indr_block_priv *cb_priv; 8594 8595 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8596 if (!cb_priv->netdev) 8597 return NULL; 8598 if (cb_priv->netdev == netdev) 8599 return cb_priv; 8600 } 8601 return NULL; 8602 } 8603 8604 static int 8605 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8606 void *indr_priv) 8607 { 8608 struct ice_indr_block_priv *priv = indr_priv; 8609 struct ice_netdev_priv *np = priv->np; 8610 8611 switch (type) { 8612 case TC_SETUP_CLSFLOWER: 8613 return ice_setup_tc_cls_flower(np, priv->netdev, 8614 (struct flow_cls_offload *) 8615 type_data); 8616 default: 8617 return -EOPNOTSUPP; 8618 } 8619 } 8620 8621 static int 8622 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8623 struct ice_netdev_priv *np, 8624 struct flow_block_offload *f, void *data, 8625 void (*cleanup)(struct flow_block_cb *block_cb)) 8626 { 8627 struct ice_indr_block_priv *indr_priv; 8628 struct flow_block_cb *block_cb; 8629 8630 if (!ice_is_tunnel_supported(netdev) && 8631 !(is_vlan_dev(netdev) && 8632 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8633 return -EOPNOTSUPP; 8634 8635 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8636 return -EOPNOTSUPP; 8637 8638 switch (f->command) { 8639 case FLOW_BLOCK_BIND: 8640 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8641 if (indr_priv) 8642 return -EEXIST; 8643 8644 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8645 if (!indr_priv) 8646 return -ENOMEM; 8647 8648 indr_priv->netdev = netdev; 8649 indr_priv->np = np; 8650 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8651 8652 block_cb = 8653 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8654 indr_priv, indr_priv, 8655 ice_rep_indr_tc_block_unbind, 8656 f, netdev, sch, data, np, 8657 cleanup); 8658 8659 if (IS_ERR(block_cb)) { 8660 list_del(&indr_priv->list); 8661 kfree(indr_priv); 8662 return PTR_ERR(block_cb); 8663 } 8664 flow_block_cb_add(block_cb, f); 8665 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8666 break; 8667 case FLOW_BLOCK_UNBIND: 8668 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8669 if (!indr_priv) 8670 return -ENOENT; 8671 8672 block_cb = flow_block_cb_lookup(f->block, 8673 ice_indr_setup_block_cb, 8674 indr_priv); 8675 if (!block_cb) 8676 return -ENOENT; 8677 8678 flow_indr_block_cb_remove(block_cb, f); 8679 8680 list_del(&block_cb->driver_list); 8681 break; 8682 default: 8683 return -EOPNOTSUPP; 8684 } 8685 return 0; 8686 } 8687 8688 static int 8689 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8690 void *cb_priv, enum tc_setup_type type, void *type_data, 8691 void *data, 8692 void (*cleanup)(struct flow_block_cb *block_cb)) 8693 { 8694 switch (type) { 8695 case TC_SETUP_BLOCK: 8696 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8697 data, cleanup); 8698 8699 default: 8700 return -EOPNOTSUPP; 8701 } 8702 } 8703 8704 /** 8705 * ice_open - Called when a network interface becomes active 8706 * @netdev: network interface device structure 8707 * 8708 * The open entry point is called when a network interface is made 8709 * active by the system (IFF_UP). At this point all resources needed 8710 * for transmit and receive operations are allocated, the interrupt 8711 * handler is registered with the OS, the netdev watchdog is enabled, 8712 * and the stack is notified that the interface is ready. 8713 * 8714 * Returns 0 on success, negative value on failure 8715 */ 8716 int ice_open(struct net_device *netdev) 8717 { 8718 struct ice_netdev_priv *np = netdev_priv(netdev); 8719 struct ice_pf *pf = np->vsi->back; 8720 8721 if (ice_is_reset_in_progress(pf->state)) { 8722 netdev_err(netdev, "can't open net device while reset is in progress"); 8723 return -EBUSY; 8724 } 8725 8726 return ice_open_internal(netdev); 8727 } 8728 8729 /** 8730 * ice_open_internal - Called when a network interface becomes active 8731 * @netdev: network interface device structure 8732 * 8733 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8734 * handling routine 8735 * 8736 * Returns 0 on success, negative value on failure 8737 */ 8738 int ice_open_internal(struct net_device *netdev) 8739 { 8740 struct ice_netdev_priv *np = netdev_priv(netdev); 8741 struct ice_vsi *vsi = np->vsi; 8742 struct ice_pf *pf = vsi->back; 8743 struct ice_port_info *pi; 8744 int err; 8745 8746 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8747 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8748 return -EIO; 8749 } 8750 8751 netif_carrier_off(netdev); 8752 8753 pi = vsi->port_info; 8754 err = ice_update_link_info(pi); 8755 if (err) { 8756 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8757 return err; 8758 } 8759 8760 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8761 8762 /* Set PHY if there is media, otherwise, turn off PHY */ 8763 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8764 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8765 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8766 err = ice_init_phy_user_cfg(pi); 8767 if (err) { 8768 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8769 err); 8770 return err; 8771 } 8772 } 8773 8774 err = ice_configure_phy(vsi); 8775 if (err) { 8776 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8777 err); 8778 return err; 8779 } 8780 } else { 8781 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8782 ice_set_link(vsi, false); 8783 } 8784 8785 err = ice_vsi_open(vsi); 8786 if (err) 8787 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8788 vsi->vsi_num, vsi->vsw->sw_id); 8789 8790 /* Update existing tunnels information */ 8791 udp_tunnel_get_rx_info(netdev); 8792 8793 return err; 8794 } 8795 8796 /** 8797 * ice_stop - Disables a network interface 8798 * @netdev: network interface device structure 8799 * 8800 * The stop entry point is called when an interface is de-activated by the OS, 8801 * and the netdevice enters the DOWN state. The hardware is still under the 8802 * driver's control, but the netdev interface is disabled. 8803 * 8804 * Returns success only - not allowed to fail 8805 */ 8806 int ice_stop(struct net_device *netdev) 8807 { 8808 struct ice_netdev_priv *np = netdev_priv(netdev); 8809 struct ice_vsi *vsi = np->vsi; 8810 struct ice_pf *pf = vsi->back; 8811 8812 if (ice_is_reset_in_progress(pf->state)) { 8813 netdev_err(netdev, "can't stop net device while reset is in progress"); 8814 return -EBUSY; 8815 } 8816 8817 ice_vsi_close(vsi); 8818 8819 return 0; 8820 } 8821 8822 /** 8823 * ice_features_check - Validate encapsulated packet conforms to limits 8824 * @skb: skb buffer 8825 * @netdev: This port's netdev 8826 * @features: Offload features that the stack believes apply 8827 */ 8828 static netdev_features_t 8829 ice_features_check(struct sk_buff *skb, 8830 struct net_device __always_unused *netdev, 8831 netdev_features_t features) 8832 { 8833 bool gso = skb_is_gso(skb); 8834 size_t len; 8835 8836 /* No point in doing any of this if neither checksum nor GSO are 8837 * being requested for this frame. We can rule out both by just 8838 * checking for CHECKSUM_PARTIAL 8839 */ 8840 if (skb->ip_summed != CHECKSUM_PARTIAL) 8841 return features; 8842 8843 /* We cannot support GSO if the MSS is going to be less than 8844 * 64 bytes. If it is then we need to drop support for GSO. 8845 */ 8846 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8847 features &= ~NETIF_F_GSO_MASK; 8848 8849 len = skb_network_offset(skb); 8850 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8851 goto out_rm_features; 8852 8853 len = skb_network_header_len(skb); 8854 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8855 goto out_rm_features; 8856 8857 if (skb->encapsulation) { 8858 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8859 * the case of IPIP frames, the transport header pointer is 8860 * after the inner header! So check to make sure that this 8861 * is a GRE or UDP_TUNNEL frame before doing that math. 8862 */ 8863 if (gso && (skb_shinfo(skb)->gso_type & 8864 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8865 len = skb_inner_network_header(skb) - 8866 skb_transport_header(skb); 8867 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8868 goto out_rm_features; 8869 } 8870 8871 len = skb_inner_network_header_len(skb); 8872 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8873 goto out_rm_features; 8874 } 8875 8876 return features; 8877 out_rm_features: 8878 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8879 } 8880 8881 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8882 .ndo_open = ice_open, 8883 .ndo_stop = ice_stop, 8884 .ndo_start_xmit = ice_start_xmit, 8885 .ndo_set_mac_address = ice_set_mac_address, 8886 .ndo_validate_addr = eth_validate_addr, 8887 .ndo_change_mtu = ice_change_mtu, 8888 .ndo_get_stats64 = ice_get_stats64, 8889 .ndo_tx_timeout = ice_tx_timeout, 8890 .ndo_bpf = ice_xdp_safe_mode, 8891 }; 8892 8893 static const struct net_device_ops ice_netdev_ops = { 8894 .ndo_open = ice_open, 8895 .ndo_stop = ice_stop, 8896 .ndo_start_xmit = ice_start_xmit, 8897 .ndo_select_queue = ice_select_queue, 8898 .ndo_features_check = ice_features_check, 8899 .ndo_fix_features = ice_fix_features, 8900 .ndo_set_rx_mode = ice_set_rx_mode, 8901 .ndo_set_mac_address = ice_set_mac_address, 8902 .ndo_validate_addr = eth_validate_addr, 8903 .ndo_change_mtu = ice_change_mtu, 8904 .ndo_get_stats64 = ice_get_stats64, 8905 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8906 .ndo_eth_ioctl = ice_eth_ioctl, 8907 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8908 .ndo_set_vf_mac = ice_set_vf_mac, 8909 .ndo_get_vf_config = ice_get_vf_cfg, 8910 .ndo_set_vf_trust = ice_set_vf_trust, 8911 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8912 .ndo_set_vf_link_state = ice_set_vf_link_state, 8913 .ndo_get_vf_stats = ice_get_vf_stats, 8914 .ndo_set_vf_rate = ice_set_vf_bw, 8915 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8916 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8917 .ndo_setup_tc = ice_setup_tc, 8918 .ndo_set_features = ice_set_features, 8919 .ndo_bridge_getlink = ice_bridge_getlink, 8920 .ndo_bridge_setlink = ice_bridge_setlink, 8921 .ndo_fdb_add = ice_fdb_add, 8922 .ndo_fdb_del = ice_fdb_del, 8923 #ifdef CONFIG_RFS_ACCEL 8924 .ndo_rx_flow_steer = ice_rx_flow_steer, 8925 #endif 8926 .ndo_tx_timeout = ice_tx_timeout, 8927 .ndo_bpf = ice_xdp, 8928 .ndo_xdp_xmit = ice_xdp_xmit, 8929 .ndo_xsk_wakeup = ice_xsk_wakeup, 8930 }; 8931