1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 struct device *dev; 2494 int rx_int_idx = 0; 2495 int tx_int_idx = 0; 2496 int vector, err; 2497 int irq_num; 2498 2499 dev = ice_pf_to_dev(pf); 2500 for (vector = 0; vector < q_vectors; vector++) { 2501 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2502 2503 irq_num = q_vector->irq.virq; 2504 2505 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2506 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2507 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2508 tx_int_idx++; 2509 } else if (q_vector->rx.rx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "rx", rx_int_idx++); 2512 } else if (q_vector->tx.tx_ring) { 2513 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2514 "%s-%s-%d", basename, "tx", tx_int_idx++); 2515 } else { 2516 /* skip this unused q_vector */ 2517 continue; 2518 } 2519 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2520 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2521 IRQF_SHARED, q_vector->name, 2522 q_vector); 2523 else 2524 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2525 0, q_vector->name, q_vector); 2526 if (err) { 2527 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2528 err); 2529 goto free_q_irqs; 2530 } 2531 2532 /* register for affinity change notifications */ 2533 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2534 struct irq_affinity_notify *affinity_notify; 2535 2536 affinity_notify = &q_vector->affinity_notify; 2537 affinity_notify->notify = ice_irq_affinity_notify; 2538 affinity_notify->release = ice_irq_affinity_release; 2539 irq_set_affinity_notifier(irq_num, affinity_notify); 2540 } 2541 2542 /* assign the mask for this irq */ 2543 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2544 } 2545 2546 err = ice_set_cpu_rx_rmap(vsi); 2547 if (err) { 2548 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2549 vsi->vsi_num, ERR_PTR(err)); 2550 goto free_q_irqs; 2551 } 2552 2553 vsi->irqs_ready = true; 2554 return 0; 2555 2556 free_q_irqs: 2557 while (vector--) { 2558 irq_num = vsi->q_vectors[vector]->irq.virq; 2559 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2560 irq_set_affinity_notifier(irq_num, NULL); 2561 irq_set_affinity_hint(irq_num, NULL); 2562 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2563 } 2564 return err; 2565 } 2566 2567 /** 2568 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2569 * @vsi: VSI to setup Tx rings used by XDP 2570 * 2571 * Return 0 on success and negative value on error 2572 */ 2573 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2574 { 2575 struct device *dev = ice_pf_to_dev(vsi->back); 2576 struct ice_tx_desc *tx_desc; 2577 int i, j; 2578 2579 ice_for_each_xdp_txq(vsi, i) { 2580 u16 xdp_q_idx = vsi->alloc_txq + i; 2581 struct ice_ring_stats *ring_stats; 2582 struct ice_tx_ring *xdp_ring; 2583 2584 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2585 if (!xdp_ring) 2586 goto free_xdp_rings; 2587 2588 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2589 if (!ring_stats) { 2590 ice_free_tx_ring(xdp_ring); 2591 goto free_xdp_rings; 2592 } 2593 2594 xdp_ring->ring_stats = ring_stats; 2595 xdp_ring->q_index = xdp_q_idx; 2596 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2597 xdp_ring->vsi = vsi; 2598 xdp_ring->netdev = NULL; 2599 xdp_ring->dev = dev; 2600 xdp_ring->count = vsi->num_tx_desc; 2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2602 if (ice_setup_tx_ring(xdp_ring)) 2603 goto free_xdp_rings; 2604 ice_set_ring_xdp(xdp_ring); 2605 spin_lock_init(&xdp_ring->tx_lock); 2606 for (j = 0; j < xdp_ring->count; j++) { 2607 tx_desc = ICE_TX_DESC(xdp_ring, j); 2608 tx_desc->cmd_type_offset_bsz = 0; 2609 } 2610 } 2611 2612 return 0; 2613 2614 free_xdp_rings: 2615 for (; i >= 0; i--) { 2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2618 vsi->xdp_rings[i]->ring_stats = NULL; 2619 ice_free_tx_ring(vsi->xdp_rings[i]); 2620 } 2621 } 2622 return -ENOMEM; 2623 } 2624 2625 /** 2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2627 * @vsi: VSI to set the bpf prog on 2628 * @prog: the bpf prog pointer 2629 */ 2630 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2631 { 2632 struct bpf_prog *old_prog; 2633 int i; 2634 2635 old_prog = xchg(&vsi->xdp_prog, prog); 2636 if (old_prog) 2637 bpf_prog_put(old_prog); 2638 2639 ice_for_each_rxq(vsi, i) 2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2641 } 2642 2643 /** 2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2645 * @vsi: VSI to bring up Tx rings used by XDP 2646 * @prog: bpf program that will be assigned to VSI 2647 * 2648 * Return 0 on success and negative value on error 2649 */ 2650 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2651 { 2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2653 int xdp_rings_rem = vsi->num_xdp_txq; 2654 struct ice_pf *pf = vsi->back; 2655 struct ice_qs_cfg xdp_qs_cfg = { 2656 .qs_mutex = &pf->avail_q_mutex, 2657 .pf_map = pf->avail_txqs, 2658 .pf_map_size = pf->max_pf_txqs, 2659 .q_count = vsi->num_xdp_txq, 2660 .scatter_count = ICE_MAX_SCATTER_TXQS, 2661 .vsi_map = vsi->txq_map, 2662 .vsi_map_offset = vsi->alloc_txq, 2663 .mapping_mode = ICE_VSI_MAP_CONTIG 2664 }; 2665 struct device *dev; 2666 int i, v_idx; 2667 int status; 2668 2669 dev = ice_pf_to_dev(pf); 2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2671 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2672 if (!vsi->xdp_rings) 2673 return -ENOMEM; 2674 2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2676 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2677 goto err_map_xdp; 2678 2679 if (static_key_enabled(&ice_xdp_locking_key)) 2680 netdev_warn(vsi->netdev, 2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2682 2683 if (ice_xdp_alloc_setup_rings(vsi)) 2684 goto clear_xdp_rings; 2685 2686 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 int xdp_rings_per_v, q_id, q_base; 2690 2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2692 vsi->num_q_vectors - v_idx); 2693 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2694 2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2697 2698 xdp_ring->q_vector = q_vector; 2699 xdp_ring->next = q_vector->tx.tx_ring; 2700 q_vector->tx.tx_ring = xdp_ring; 2701 } 2702 xdp_rings_rem -= xdp_rings_per_v; 2703 } 2704 2705 ice_for_each_rxq(vsi, i) { 2706 if (static_key_enabled(&ice_xdp_locking_key)) { 2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2708 } else { 2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2710 struct ice_tx_ring *ring; 2711 2712 ice_for_each_tx_ring(ring, q_vector->tx) { 2713 if (ice_ring_is_xdp(ring)) { 2714 vsi->rx_rings[i]->xdp_ring = ring; 2715 break; 2716 } 2717 } 2718 } 2719 ice_tx_xsk_pool(vsi, i); 2720 } 2721 2722 /* omit the scheduler update if in reset path; XDP queues will be 2723 * taken into account at the end of ice_vsi_rebuild, where 2724 * ice_cfg_vsi_lan is being called 2725 */ 2726 if (ice_is_reset_in_progress(pf->state)) 2727 return 0; 2728 2729 /* tell the Tx scheduler that right now we have 2730 * additional queues 2731 */ 2732 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2734 2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 if (status) { 2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2739 status); 2740 goto clear_xdp_rings; 2741 } 2742 2743 /* assign the prog only when it's not already present on VSI; 2744 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2745 * VSI rebuild that happens under ethtool -L can expose us to 2746 * the bpf_prog refcount issues as we would be swapping same 2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2749 * this is not harmful as dev_xdp_install bumps the refcount 2750 * before calling the op exposed by the driver; 2751 */ 2752 if (!ice_is_xdp_ena_vsi(vsi)) 2753 ice_vsi_assign_bpf_prog(vsi, prog); 2754 2755 return 0; 2756 clear_xdp_rings: 2757 ice_for_each_xdp_txq(vsi, i) 2758 if (vsi->xdp_rings[i]) { 2759 kfree_rcu(vsi->xdp_rings[i], rcu); 2760 vsi->xdp_rings[i] = NULL; 2761 } 2762 2763 err_map_xdp: 2764 mutex_lock(&pf->avail_q_mutex); 2765 ice_for_each_xdp_txq(vsi, i) { 2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2768 } 2769 mutex_unlock(&pf->avail_q_mutex); 2770 2771 devm_kfree(dev, vsi->xdp_rings); 2772 return -ENOMEM; 2773 } 2774 2775 /** 2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2777 * @vsi: VSI to remove XDP rings 2778 * 2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2780 * resources 2781 */ 2782 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 int i, v_idx; 2787 2788 /* q_vectors are freed in reset path so there's no point in detaching 2789 * rings; in case of rebuild being triggered not from reset bits 2790 * in pf->state won't be set, so additionally check first q_vector 2791 * against NULL 2792 */ 2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2794 goto free_qmap; 2795 2796 ice_for_each_q_vector(vsi, v_idx) { 2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2798 struct ice_tx_ring *ring; 2799 2800 ice_for_each_tx_ring(ring, q_vector->tx) 2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2802 break; 2803 2804 /* restore the value of last node prior to XDP setup */ 2805 q_vector->tx.tx_ring = ring; 2806 } 2807 2808 free_qmap: 2809 mutex_lock(&pf->avail_q_mutex); 2810 ice_for_each_xdp_txq(vsi, i) { 2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2813 } 2814 mutex_unlock(&pf->avail_q_mutex); 2815 2816 ice_for_each_xdp_txq(vsi, i) 2817 if (vsi->xdp_rings[i]) { 2818 if (vsi->xdp_rings[i]->desc) { 2819 synchronize_rcu(); 2820 ice_free_tx_ring(vsi->xdp_rings[i]); 2821 } 2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2823 vsi->xdp_rings[i]->ring_stats = NULL; 2824 kfree_rcu(vsi->xdp_rings[i], rcu); 2825 vsi->xdp_rings[i] = NULL; 2826 } 2827 2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2829 vsi->xdp_rings = NULL; 2830 2831 if (static_key_enabled(&ice_xdp_locking_key)) 2832 static_branch_dec(&ice_xdp_locking_key); 2833 2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2835 return 0; 2836 2837 ice_vsi_assign_bpf_prog(vsi, NULL); 2838 2839 /* notify Tx scheduler that we destroyed XDP queues and bring 2840 * back the old number of child nodes 2841 */ 2842 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2843 max_txqs[i] = vsi->num_txq; 2844 2845 /* change number of XDP Tx queues to 0 */ 2846 vsi->num_xdp_txq = 0; 2847 2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2849 max_txqs); 2850 } 2851 2852 /** 2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2854 * @vsi: VSI to schedule napi on 2855 */ 2856 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2857 { 2858 int i; 2859 2860 ice_for_each_rxq(vsi, i) { 2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2862 2863 if (rx_ring->xsk_pool) 2864 napi_schedule(&rx_ring->q_vector->napi); 2865 } 2866 } 2867 2868 /** 2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2870 * @vsi: VSI to determine the count of XDP Tx qs 2871 * 2872 * returns 0 if Tx qs count is higher than at least half of CPU count, 2873 * -ENOMEM otherwise 2874 */ 2875 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2876 { 2877 u16 avail = ice_get_avail_txq_count(vsi->back); 2878 u16 cpus = num_possible_cpus(); 2879 2880 if (avail < cpus / 2) 2881 return -ENOMEM; 2882 2883 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2884 2885 if (vsi->num_xdp_txq < cpus) 2886 static_branch_inc(&ice_xdp_locking_key); 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2893 * @vsi: Pointer to VSI structure 2894 */ 2895 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2896 { 2897 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2898 return ICE_RXBUF_1664; 2899 else 2900 return ICE_RXBUF_3072; 2901 } 2902 2903 /** 2904 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2905 * @vsi: VSI to setup XDP for 2906 * @prog: XDP program 2907 * @extack: netlink extended ack 2908 */ 2909 static int 2910 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2911 struct netlink_ext_ack *extack) 2912 { 2913 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2914 bool if_running = netif_running(vsi->netdev); 2915 int ret = 0, xdp_ring_err = 0; 2916 2917 if (prog && !prog->aux->xdp_has_frags) { 2918 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2919 NL_SET_ERR_MSG_MOD(extack, 2920 "MTU is too large for linear frames and XDP prog does not support frags"); 2921 return -EOPNOTSUPP; 2922 } 2923 } 2924 2925 /* need to stop netdev while setting up the program for Rx rings */ 2926 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2927 ret = ice_down(vsi); 2928 if (ret) { 2929 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2930 return ret; 2931 } 2932 } 2933 2934 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2935 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2936 if (xdp_ring_err) { 2937 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2938 } else { 2939 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2940 if (xdp_ring_err) 2941 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2942 } 2943 xdp_features_set_redirect_target(vsi->netdev, true); 2944 /* reallocate Rx queues that are used for zero-copy */ 2945 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2946 if (xdp_ring_err) 2947 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2948 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2949 xdp_features_clear_redirect_target(vsi->netdev); 2950 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2951 if (xdp_ring_err) 2952 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2953 /* reallocate Rx queues that were used for zero-copy */ 2954 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2955 if (xdp_ring_err) 2956 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2957 } else { 2958 /* safe to call even when prog == vsi->xdp_prog as 2959 * dev_xdp_install in net/core/dev.c incremented prog's 2960 * refcount so corresponding bpf_prog_put won't cause 2961 * underflow 2962 */ 2963 ice_vsi_assign_bpf_prog(vsi, prog); 2964 } 2965 2966 if (if_running) 2967 ret = ice_up(vsi); 2968 2969 if (!ret && prog) 2970 ice_vsi_rx_napi_schedule(vsi); 2971 2972 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2973 } 2974 2975 /** 2976 * ice_xdp_safe_mode - XDP handler for safe mode 2977 * @dev: netdevice 2978 * @xdp: XDP command 2979 */ 2980 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2981 struct netdev_bpf *xdp) 2982 { 2983 NL_SET_ERR_MSG_MOD(xdp->extack, 2984 "Please provide working DDP firmware package in order to use XDP\n" 2985 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2986 return -EOPNOTSUPP; 2987 } 2988 2989 /** 2990 * ice_xdp - implements XDP handler 2991 * @dev: netdevice 2992 * @xdp: XDP command 2993 */ 2994 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2995 { 2996 struct ice_netdev_priv *np = netdev_priv(dev); 2997 struct ice_vsi *vsi = np->vsi; 2998 2999 if (vsi->type != ICE_VSI_PF) { 3000 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3001 return -EINVAL; 3002 } 3003 3004 switch (xdp->command) { 3005 case XDP_SETUP_PROG: 3006 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3007 case XDP_SETUP_XSK_POOL: 3008 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3009 xdp->xsk.queue_id); 3010 default: 3011 return -EINVAL; 3012 } 3013 } 3014 3015 /** 3016 * ice_ena_misc_vector - enable the non-queue interrupts 3017 * @pf: board private structure 3018 */ 3019 static void ice_ena_misc_vector(struct ice_pf *pf) 3020 { 3021 struct ice_hw *hw = &pf->hw; 3022 u32 val; 3023 3024 /* Disable anti-spoof detection interrupt to prevent spurious event 3025 * interrupts during a function reset. Anti-spoof functionally is 3026 * still supported. 3027 */ 3028 val = rd32(hw, GL_MDCK_TX_TDPU); 3029 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3030 wr32(hw, GL_MDCK_TX_TDPU, val); 3031 3032 /* clear things first */ 3033 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3034 rd32(hw, PFINT_OICR); /* read to clear */ 3035 3036 val = (PFINT_OICR_ECC_ERR_M | 3037 PFINT_OICR_MAL_DETECT_M | 3038 PFINT_OICR_GRST_M | 3039 PFINT_OICR_PCI_EXCEPTION_M | 3040 PFINT_OICR_VFLR_M | 3041 PFINT_OICR_HMC_ERR_M | 3042 PFINT_OICR_PE_PUSH_M | 3043 PFINT_OICR_PE_CRITERR_M); 3044 3045 wr32(hw, PFINT_OICR_ENA, val); 3046 3047 /* SW_ITR_IDX = 0, but don't change INTENA */ 3048 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3049 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3050 } 3051 3052 /** 3053 * ice_misc_intr - misc interrupt handler 3054 * @irq: interrupt number 3055 * @data: pointer to a q_vector 3056 */ 3057 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3058 { 3059 struct ice_pf *pf = (struct ice_pf *)data; 3060 struct ice_hw *hw = &pf->hw; 3061 irqreturn_t ret = IRQ_NONE; 3062 struct device *dev; 3063 u32 oicr, ena_mask; 3064 3065 dev = ice_pf_to_dev(pf); 3066 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3067 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3068 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3069 3070 oicr = rd32(hw, PFINT_OICR); 3071 ena_mask = rd32(hw, PFINT_OICR_ENA); 3072 3073 if (oicr & PFINT_OICR_SWINT_M) { 3074 ena_mask &= ~PFINT_OICR_SWINT_M; 3075 pf->sw_int_count++; 3076 } 3077 3078 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3079 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3080 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3081 } 3082 if (oicr & PFINT_OICR_VFLR_M) { 3083 /* disable any further VFLR event notifications */ 3084 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3085 u32 reg = rd32(hw, PFINT_OICR_ENA); 3086 3087 reg &= ~PFINT_OICR_VFLR_M; 3088 wr32(hw, PFINT_OICR_ENA, reg); 3089 } else { 3090 ena_mask &= ~PFINT_OICR_VFLR_M; 3091 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3092 } 3093 } 3094 3095 if (oicr & PFINT_OICR_GRST_M) { 3096 u32 reset; 3097 3098 /* we have a reset warning */ 3099 ena_mask &= ~PFINT_OICR_GRST_M; 3100 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3101 GLGEN_RSTAT_RESET_TYPE_S; 3102 3103 if (reset == ICE_RESET_CORER) 3104 pf->corer_count++; 3105 else if (reset == ICE_RESET_GLOBR) 3106 pf->globr_count++; 3107 else if (reset == ICE_RESET_EMPR) 3108 pf->empr_count++; 3109 else 3110 dev_dbg(dev, "Invalid reset type %d\n", reset); 3111 3112 /* If a reset cycle isn't already in progress, we set a bit in 3113 * pf->state so that the service task can start a reset/rebuild. 3114 */ 3115 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3116 if (reset == ICE_RESET_CORER) 3117 set_bit(ICE_CORER_RECV, pf->state); 3118 else if (reset == ICE_RESET_GLOBR) 3119 set_bit(ICE_GLOBR_RECV, pf->state); 3120 else 3121 set_bit(ICE_EMPR_RECV, pf->state); 3122 3123 /* There are couple of different bits at play here. 3124 * hw->reset_ongoing indicates whether the hardware is 3125 * in reset. This is set to true when a reset interrupt 3126 * is received and set back to false after the driver 3127 * has determined that the hardware is out of reset. 3128 * 3129 * ICE_RESET_OICR_RECV in pf->state indicates 3130 * that a post reset rebuild is required before the 3131 * driver is operational again. This is set above. 3132 * 3133 * As this is the start of the reset/rebuild cycle, set 3134 * both to indicate that. 3135 */ 3136 hw->reset_ongoing = true; 3137 } 3138 } 3139 3140 if (oicr & PFINT_OICR_TSYN_TX_M) { 3141 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3142 if (!hw->reset_ongoing) 3143 ret = IRQ_WAKE_THREAD; 3144 } 3145 3146 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3147 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3148 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3149 3150 /* Save EVENTs from GTSYN register */ 3151 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3152 GLTSYN_STAT_EVENT1_M | 3153 GLTSYN_STAT_EVENT2_M); 3154 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3155 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3156 } 3157 3158 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3159 if (oicr & ICE_AUX_CRIT_ERR) { 3160 pf->oicr_err_reg |= oicr; 3161 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3162 ena_mask &= ~ICE_AUX_CRIT_ERR; 3163 } 3164 3165 /* Report any remaining unexpected interrupts */ 3166 oicr &= ena_mask; 3167 if (oicr) { 3168 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3169 /* If a critical error is pending there is no choice but to 3170 * reset the device. 3171 */ 3172 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3173 PFINT_OICR_ECC_ERR_M)) { 3174 set_bit(ICE_PFR_REQ, pf->state); 3175 ice_service_task_schedule(pf); 3176 } 3177 } 3178 if (!ret) 3179 ret = IRQ_HANDLED; 3180 3181 ice_service_task_schedule(pf); 3182 ice_irq_dynamic_ena(hw, NULL, NULL); 3183 3184 return ret; 3185 } 3186 3187 /** 3188 * ice_misc_intr_thread_fn - misc interrupt thread function 3189 * @irq: interrupt number 3190 * @data: pointer to a q_vector 3191 */ 3192 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3193 { 3194 struct ice_pf *pf = data; 3195 3196 if (ice_is_reset_in_progress(pf->state)) 3197 return IRQ_HANDLED; 3198 3199 while (!ice_ptp_process_ts(pf)) 3200 usleep_range(50, 100); 3201 3202 return IRQ_HANDLED; 3203 } 3204 3205 /** 3206 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3207 * @hw: pointer to HW structure 3208 */ 3209 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3210 { 3211 /* disable Admin queue Interrupt causes */ 3212 wr32(hw, PFINT_FW_CTL, 3213 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3214 3215 /* disable Mailbox queue Interrupt causes */ 3216 wr32(hw, PFINT_MBX_CTL, 3217 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3218 3219 wr32(hw, PFINT_SB_CTL, 3220 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3221 3222 /* disable Control queue Interrupt causes */ 3223 wr32(hw, PFINT_OICR_CTL, 3224 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3225 3226 ice_flush(hw); 3227 } 3228 3229 /** 3230 * ice_free_irq_msix_misc - Unroll misc vector setup 3231 * @pf: board private structure 3232 */ 3233 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3234 { 3235 int misc_irq_num = pf->oicr_irq.virq; 3236 struct ice_hw *hw = &pf->hw; 3237 3238 ice_dis_ctrlq_interrupts(hw); 3239 3240 /* disable OICR interrupt */ 3241 wr32(hw, PFINT_OICR_ENA, 0); 3242 ice_flush(hw); 3243 3244 synchronize_irq(misc_irq_num); 3245 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3246 3247 ice_free_irq(pf, pf->oicr_irq); 3248 } 3249 3250 /** 3251 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3252 * @hw: pointer to HW structure 3253 * @reg_idx: HW vector index to associate the control queue interrupts with 3254 */ 3255 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3256 { 3257 u32 val; 3258 3259 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3260 PFINT_OICR_CTL_CAUSE_ENA_M); 3261 wr32(hw, PFINT_OICR_CTL, val); 3262 3263 /* enable Admin queue Interrupt causes */ 3264 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3265 PFINT_FW_CTL_CAUSE_ENA_M); 3266 wr32(hw, PFINT_FW_CTL, val); 3267 3268 /* enable Mailbox queue Interrupt causes */ 3269 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3270 PFINT_MBX_CTL_CAUSE_ENA_M); 3271 wr32(hw, PFINT_MBX_CTL, val); 3272 3273 /* This enables Sideband queue Interrupt causes */ 3274 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3275 PFINT_SB_CTL_CAUSE_ENA_M); 3276 wr32(hw, PFINT_SB_CTL, val); 3277 3278 ice_flush(hw); 3279 } 3280 3281 /** 3282 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3283 * @pf: board private structure 3284 * 3285 * This sets up the handler for MSIX 0, which is used to manage the 3286 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3287 * when in MSI or Legacy interrupt mode. 3288 */ 3289 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3290 { 3291 struct device *dev = ice_pf_to_dev(pf); 3292 struct ice_hw *hw = &pf->hw; 3293 struct msi_map oicr_irq; 3294 int err = 0; 3295 3296 if (!pf->int_name[0]) 3297 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3298 dev_driver_string(dev), dev_name(dev)); 3299 3300 /* Do not request IRQ but do enable OICR interrupt since settings are 3301 * lost during reset. Note that this function is called only during 3302 * rebuild path and not while reset is in progress. 3303 */ 3304 if (ice_is_reset_in_progress(pf->state)) 3305 goto skip_req_irq; 3306 3307 /* reserve one vector in irq_tracker for misc interrupts */ 3308 oicr_irq = ice_alloc_irq(pf, false); 3309 if (oicr_irq.index < 0) 3310 return oicr_irq.index; 3311 3312 pf->oicr_irq = oicr_irq; 3313 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3314 ice_misc_intr_thread_fn, 0, 3315 pf->int_name, pf); 3316 if (err) { 3317 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3318 pf->int_name, err); 3319 ice_free_irq(pf, pf->oicr_irq); 3320 return err; 3321 } 3322 3323 skip_req_irq: 3324 ice_ena_misc_vector(pf); 3325 3326 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3327 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3328 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3329 3330 ice_flush(hw); 3331 ice_irq_dynamic_ena(hw, NULL, NULL); 3332 3333 return 0; 3334 } 3335 3336 /** 3337 * ice_napi_add - register NAPI handler for the VSI 3338 * @vsi: VSI for which NAPI handler is to be registered 3339 * 3340 * This function is only called in the driver's load path. Registering the NAPI 3341 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3342 * reset/rebuild, etc.) 3343 */ 3344 static void ice_napi_add(struct ice_vsi *vsi) 3345 { 3346 int v_idx; 3347 3348 if (!vsi->netdev) 3349 return; 3350 3351 ice_for_each_q_vector(vsi, v_idx) 3352 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3353 ice_napi_poll); 3354 } 3355 3356 /** 3357 * ice_set_ops - set netdev and ethtools ops for the given netdev 3358 * @vsi: the VSI associated with the new netdev 3359 */ 3360 static void ice_set_ops(struct ice_vsi *vsi) 3361 { 3362 struct net_device *netdev = vsi->netdev; 3363 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3364 3365 if (ice_is_safe_mode(pf)) { 3366 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3367 ice_set_ethtool_safe_mode_ops(netdev); 3368 return; 3369 } 3370 3371 netdev->netdev_ops = &ice_netdev_ops; 3372 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3373 ice_set_ethtool_ops(netdev); 3374 3375 if (vsi->type != ICE_VSI_PF) 3376 return; 3377 3378 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3379 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3380 NETDEV_XDP_ACT_RX_SG; 3381 } 3382 3383 /** 3384 * ice_set_netdev_features - set features for the given netdev 3385 * @netdev: netdev instance 3386 */ 3387 static void ice_set_netdev_features(struct net_device *netdev) 3388 { 3389 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3390 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3391 netdev_features_t csumo_features; 3392 netdev_features_t vlano_features; 3393 netdev_features_t dflt_features; 3394 netdev_features_t tso_features; 3395 3396 if (ice_is_safe_mode(pf)) { 3397 /* safe mode */ 3398 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3399 netdev->hw_features = netdev->features; 3400 return; 3401 } 3402 3403 dflt_features = NETIF_F_SG | 3404 NETIF_F_HIGHDMA | 3405 NETIF_F_NTUPLE | 3406 NETIF_F_RXHASH; 3407 3408 csumo_features = NETIF_F_RXCSUM | 3409 NETIF_F_IP_CSUM | 3410 NETIF_F_SCTP_CRC | 3411 NETIF_F_IPV6_CSUM; 3412 3413 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3414 NETIF_F_HW_VLAN_CTAG_TX | 3415 NETIF_F_HW_VLAN_CTAG_RX; 3416 3417 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3418 if (is_dvm_ena) 3419 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3420 3421 tso_features = NETIF_F_TSO | 3422 NETIF_F_TSO_ECN | 3423 NETIF_F_TSO6 | 3424 NETIF_F_GSO_GRE | 3425 NETIF_F_GSO_UDP_TUNNEL | 3426 NETIF_F_GSO_GRE_CSUM | 3427 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3428 NETIF_F_GSO_PARTIAL | 3429 NETIF_F_GSO_IPXIP4 | 3430 NETIF_F_GSO_IPXIP6 | 3431 NETIF_F_GSO_UDP_L4; 3432 3433 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3434 NETIF_F_GSO_GRE_CSUM; 3435 /* set features that user can change */ 3436 netdev->hw_features = dflt_features | csumo_features | 3437 vlano_features | tso_features; 3438 3439 /* add support for HW_CSUM on packets with MPLS header */ 3440 netdev->mpls_features = NETIF_F_HW_CSUM | 3441 NETIF_F_TSO | 3442 NETIF_F_TSO6; 3443 3444 /* enable features */ 3445 netdev->features |= netdev->hw_features; 3446 3447 netdev->hw_features |= NETIF_F_HW_TC; 3448 netdev->hw_features |= NETIF_F_LOOPBACK; 3449 3450 /* encap and VLAN devices inherit default, csumo and tso features */ 3451 netdev->hw_enc_features |= dflt_features | csumo_features | 3452 tso_features; 3453 netdev->vlan_features |= dflt_features | csumo_features | 3454 tso_features; 3455 3456 /* advertise support but don't enable by default since only one type of 3457 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3458 * type turns on the other has to be turned off. This is enforced by the 3459 * ice_fix_features() ndo callback. 3460 */ 3461 if (is_dvm_ena) 3462 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3463 NETIF_F_HW_VLAN_STAG_TX; 3464 3465 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3466 * be changed at runtime 3467 */ 3468 netdev->hw_features |= NETIF_F_RXFCS; 3469 3470 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3471 } 3472 3473 /** 3474 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3475 * @lut: Lookup table 3476 * @rss_table_size: Lookup table size 3477 * @rss_size: Range of queue number for hashing 3478 */ 3479 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3480 { 3481 u16 i; 3482 3483 for (i = 0; i < rss_table_size; i++) 3484 lut[i] = i % rss_size; 3485 } 3486 3487 /** 3488 * ice_pf_vsi_setup - Set up a PF VSI 3489 * @pf: board private structure 3490 * @pi: pointer to the port_info instance 3491 * 3492 * Returns pointer to the successfully allocated VSI software struct 3493 * on success, otherwise returns NULL on failure. 3494 */ 3495 static struct ice_vsi * 3496 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3497 { 3498 struct ice_vsi_cfg_params params = {}; 3499 3500 params.type = ICE_VSI_PF; 3501 params.pi = pi; 3502 params.flags = ICE_VSI_FLAG_INIT; 3503 3504 return ice_vsi_setup(pf, ¶ms); 3505 } 3506 3507 static struct ice_vsi * 3508 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3509 struct ice_channel *ch) 3510 { 3511 struct ice_vsi_cfg_params params = {}; 3512 3513 params.type = ICE_VSI_CHNL; 3514 params.pi = pi; 3515 params.ch = ch; 3516 params.flags = ICE_VSI_FLAG_INIT; 3517 3518 return ice_vsi_setup(pf, ¶ms); 3519 } 3520 3521 /** 3522 * ice_ctrl_vsi_setup - Set up a control VSI 3523 * @pf: board private structure 3524 * @pi: pointer to the port_info instance 3525 * 3526 * Returns pointer to the successfully allocated VSI software struct 3527 * on success, otherwise returns NULL on failure. 3528 */ 3529 static struct ice_vsi * 3530 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3531 { 3532 struct ice_vsi_cfg_params params = {}; 3533 3534 params.type = ICE_VSI_CTRL; 3535 params.pi = pi; 3536 params.flags = ICE_VSI_FLAG_INIT; 3537 3538 return ice_vsi_setup(pf, ¶ms); 3539 } 3540 3541 /** 3542 * ice_lb_vsi_setup - Set up a loopback VSI 3543 * @pf: board private structure 3544 * @pi: pointer to the port_info instance 3545 * 3546 * Returns pointer to the successfully allocated VSI software struct 3547 * on success, otherwise returns NULL on failure. 3548 */ 3549 struct ice_vsi * 3550 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3551 { 3552 struct ice_vsi_cfg_params params = {}; 3553 3554 params.type = ICE_VSI_LB; 3555 params.pi = pi; 3556 params.flags = ICE_VSI_FLAG_INIT; 3557 3558 return ice_vsi_setup(pf, ¶ms); 3559 } 3560 3561 /** 3562 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3563 * @netdev: network interface to be adjusted 3564 * @proto: VLAN TPID 3565 * @vid: VLAN ID to be added 3566 * 3567 * net_device_ops implementation for adding VLAN IDs 3568 */ 3569 static int 3570 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3571 { 3572 struct ice_netdev_priv *np = netdev_priv(netdev); 3573 struct ice_vsi_vlan_ops *vlan_ops; 3574 struct ice_vsi *vsi = np->vsi; 3575 struct ice_vlan vlan; 3576 int ret; 3577 3578 /* VLAN 0 is added by default during load/reset */ 3579 if (!vid) 3580 return 0; 3581 3582 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3583 usleep_range(1000, 2000); 3584 3585 /* Add multicast promisc rule for the VLAN ID to be added if 3586 * all-multicast is currently enabled. 3587 */ 3588 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3589 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3590 ICE_MCAST_VLAN_PROMISC_BITS, 3591 vid); 3592 if (ret) 3593 goto finish; 3594 } 3595 3596 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3597 3598 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3599 * packets aren't pruned by the device's internal switch on Rx 3600 */ 3601 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3602 ret = vlan_ops->add_vlan(vsi, &vlan); 3603 if (ret) 3604 goto finish; 3605 3606 /* If all-multicast is currently enabled and this VLAN ID is only one 3607 * besides VLAN-0 we have to update look-up type of multicast promisc 3608 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3609 */ 3610 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3611 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3612 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3613 ICE_MCAST_PROMISC_BITS, 0); 3614 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3615 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3616 } 3617 3618 finish: 3619 clear_bit(ICE_CFG_BUSY, vsi->state); 3620 3621 return ret; 3622 } 3623 3624 /** 3625 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3626 * @netdev: network interface to be adjusted 3627 * @proto: VLAN TPID 3628 * @vid: VLAN ID to be removed 3629 * 3630 * net_device_ops implementation for removing VLAN IDs 3631 */ 3632 static int 3633 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3634 { 3635 struct ice_netdev_priv *np = netdev_priv(netdev); 3636 struct ice_vsi_vlan_ops *vlan_ops; 3637 struct ice_vsi *vsi = np->vsi; 3638 struct ice_vlan vlan; 3639 int ret; 3640 3641 /* don't allow removal of VLAN 0 */ 3642 if (!vid) 3643 return 0; 3644 3645 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3646 usleep_range(1000, 2000); 3647 3648 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3649 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3650 if (ret) { 3651 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3652 vsi->vsi_num); 3653 vsi->current_netdev_flags |= IFF_ALLMULTI; 3654 } 3655 3656 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3657 3658 /* Make sure VLAN delete is successful before updating VLAN 3659 * information 3660 */ 3661 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3662 ret = vlan_ops->del_vlan(vsi, &vlan); 3663 if (ret) 3664 goto finish; 3665 3666 /* Remove multicast promisc rule for the removed VLAN ID if 3667 * all-multicast is enabled. 3668 */ 3669 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3670 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3671 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3672 3673 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3674 /* Update look-up type of multicast promisc rule for VLAN 0 3675 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3676 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3677 */ 3678 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3679 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3680 ICE_MCAST_VLAN_PROMISC_BITS, 3681 0); 3682 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3683 ICE_MCAST_PROMISC_BITS, 0); 3684 } 3685 } 3686 3687 finish: 3688 clear_bit(ICE_CFG_BUSY, vsi->state); 3689 3690 return ret; 3691 } 3692 3693 /** 3694 * ice_rep_indr_tc_block_unbind 3695 * @cb_priv: indirection block private data 3696 */ 3697 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3698 { 3699 struct ice_indr_block_priv *indr_priv = cb_priv; 3700 3701 list_del(&indr_priv->list); 3702 kfree(indr_priv); 3703 } 3704 3705 /** 3706 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3707 * @vsi: VSI struct which has the netdev 3708 */ 3709 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3710 { 3711 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3712 3713 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3714 ice_rep_indr_tc_block_unbind); 3715 } 3716 3717 /** 3718 * ice_tc_indir_block_register - Register TC indirect block notifications 3719 * @vsi: VSI struct which has the netdev 3720 * 3721 * Returns 0 on success, negative value on failure 3722 */ 3723 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3724 { 3725 struct ice_netdev_priv *np; 3726 3727 if (!vsi || !vsi->netdev) 3728 return -EINVAL; 3729 3730 np = netdev_priv(vsi->netdev); 3731 3732 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3733 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3734 } 3735 3736 /** 3737 * ice_get_avail_q_count - Get count of queues in use 3738 * @pf_qmap: bitmap to get queue use count from 3739 * @lock: pointer to a mutex that protects access to pf_qmap 3740 * @size: size of the bitmap 3741 */ 3742 static u16 3743 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3744 { 3745 unsigned long bit; 3746 u16 count = 0; 3747 3748 mutex_lock(lock); 3749 for_each_clear_bit(bit, pf_qmap, size) 3750 count++; 3751 mutex_unlock(lock); 3752 3753 return count; 3754 } 3755 3756 /** 3757 * ice_get_avail_txq_count - Get count of Tx queues in use 3758 * @pf: pointer to an ice_pf instance 3759 */ 3760 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3761 { 3762 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3763 pf->max_pf_txqs); 3764 } 3765 3766 /** 3767 * ice_get_avail_rxq_count - Get count of Rx queues in use 3768 * @pf: pointer to an ice_pf instance 3769 */ 3770 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3771 { 3772 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3773 pf->max_pf_rxqs); 3774 } 3775 3776 /** 3777 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3778 * @pf: board private structure to initialize 3779 */ 3780 static void ice_deinit_pf(struct ice_pf *pf) 3781 { 3782 ice_service_task_stop(pf); 3783 mutex_destroy(&pf->adev_mutex); 3784 mutex_destroy(&pf->sw_mutex); 3785 mutex_destroy(&pf->tc_mutex); 3786 mutex_destroy(&pf->avail_q_mutex); 3787 mutex_destroy(&pf->vfs.table_lock); 3788 3789 if (pf->avail_txqs) { 3790 bitmap_free(pf->avail_txqs); 3791 pf->avail_txqs = NULL; 3792 } 3793 3794 if (pf->avail_rxqs) { 3795 bitmap_free(pf->avail_rxqs); 3796 pf->avail_rxqs = NULL; 3797 } 3798 3799 if (pf->ptp.clock) 3800 ptp_clock_unregister(pf->ptp.clock); 3801 } 3802 3803 /** 3804 * ice_set_pf_caps - set PFs capability flags 3805 * @pf: pointer to the PF instance 3806 */ 3807 static void ice_set_pf_caps(struct ice_pf *pf) 3808 { 3809 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3810 3811 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3812 if (func_caps->common_cap.rdma) 3813 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3814 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3815 if (func_caps->common_cap.dcb) 3816 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3817 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3818 if (func_caps->common_cap.sr_iov_1_1) { 3819 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3820 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3821 ICE_MAX_SRIOV_VFS); 3822 } 3823 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3824 if (func_caps->common_cap.rss_table_size) 3825 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3826 3827 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3828 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3829 u16 unused; 3830 3831 /* ctrl_vsi_idx will be set to a valid value when flow director 3832 * is setup by ice_init_fdir 3833 */ 3834 pf->ctrl_vsi_idx = ICE_NO_VSI; 3835 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3836 /* force guaranteed filter pool for PF */ 3837 ice_alloc_fd_guar_item(&pf->hw, &unused, 3838 func_caps->fd_fltr_guar); 3839 /* force shared filter pool for PF */ 3840 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3841 func_caps->fd_fltr_best_effort); 3842 } 3843 3844 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3845 if (func_caps->common_cap.ieee_1588) 3846 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3847 3848 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3849 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3850 } 3851 3852 /** 3853 * ice_init_pf - Initialize general software structures (struct ice_pf) 3854 * @pf: board private structure to initialize 3855 */ 3856 static int ice_init_pf(struct ice_pf *pf) 3857 { 3858 ice_set_pf_caps(pf); 3859 3860 mutex_init(&pf->sw_mutex); 3861 mutex_init(&pf->tc_mutex); 3862 mutex_init(&pf->adev_mutex); 3863 3864 INIT_HLIST_HEAD(&pf->aq_wait_list); 3865 spin_lock_init(&pf->aq_wait_lock); 3866 init_waitqueue_head(&pf->aq_wait_queue); 3867 3868 init_waitqueue_head(&pf->reset_wait_queue); 3869 3870 /* setup service timer and periodic service task */ 3871 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3872 pf->serv_tmr_period = HZ; 3873 INIT_WORK(&pf->serv_task, ice_service_task); 3874 clear_bit(ICE_SERVICE_SCHED, pf->state); 3875 3876 mutex_init(&pf->avail_q_mutex); 3877 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3878 if (!pf->avail_txqs) 3879 return -ENOMEM; 3880 3881 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3882 if (!pf->avail_rxqs) { 3883 bitmap_free(pf->avail_txqs); 3884 pf->avail_txqs = NULL; 3885 return -ENOMEM; 3886 } 3887 3888 mutex_init(&pf->vfs.table_lock); 3889 hash_init(pf->vfs.table); 3890 ice_mbx_init_snapshot(&pf->hw); 3891 3892 return 0; 3893 } 3894 3895 /** 3896 * ice_is_wol_supported - check if WoL is supported 3897 * @hw: pointer to hardware info 3898 * 3899 * Check if WoL is supported based on the HW configuration. 3900 * Returns true if NVM supports and enables WoL for this port, false otherwise 3901 */ 3902 bool ice_is_wol_supported(struct ice_hw *hw) 3903 { 3904 u16 wol_ctrl; 3905 3906 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3907 * word) indicates WoL is not supported on the corresponding PF ID. 3908 */ 3909 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3910 return false; 3911 3912 return !(BIT(hw->port_info->lport) & wol_ctrl); 3913 } 3914 3915 /** 3916 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3917 * @vsi: VSI being changed 3918 * @new_rx: new number of Rx queues 3919 * @new_tx: new number of Tx queues 3920 * @locked: is adev device_lock held 3921 * 3922 * Only change the number of queues if new_tx, or new_rx is non-0. 3923 * 3924 * Returns 0 on success. 3925 */ 3926 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3927 { 3928 struct ice_pf *pf = vsi->back; 3929 int err = 0, timeout = 50; 3930 3931 if (!new_rx && !new_tx) 3932 return -EINVAL; 3933 3934 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3935 timeout--; 3936 if (!timeout) 3937 return -EBUSY; 3938 usleep_range(1000, 2000); 3939 } 3940 3941 if (new_tx) 3942 vsi->req_txq = (u16)new_tx; 3943 if (new_rx) 3944 vsi->req_rxq = (u16)new_rx; 3945 3946 /* set for the next time the netdev is started */ 3947 if (!netif_running(vsi->netdev)) { 3948 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3949 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3950 goto done; 3951 } 3952 3953 ice_vsi_close(vsi); 3954 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3955 ice_pf_dcb_recfg(pf, locked); 3956 ice_vsi_open(vsi); 3957 done: 3958 clear_bit(ICE_CFG_BUSY, pf->state); 3959 return err; 3960 } 3961 3962 /** 3963 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3964 * @pf: PF to configure 3965 * 3966 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3967 * VSI can still Tx/Rx VLAN tagged packets. 3968 */ 3969 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3970 { 3971 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3972 struct ice_vsi_ctx *ctxt; 3973 struct ice_hw *hw; 3974 int status; 3975 3976 if (!vsi) 3977 return; 3978 3979 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3980 if (!ctxt) 3981 return; 3982 3983 hw = &pf->hw; 3984 ctxt->info = vsi->info; 3985 3986 ctxt->info.valid_sections = 3987 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3988 ICE_AQ_VSI_PROP_SECURITY_VALID | 3989 ICE_AQ_VSI_PROP_SW_VALID); 3990 3991 /* disable VLAN anti-spoof */ 3992 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3993 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3994 3995 /* disable VLAN pruning and keep all other settings */ 3996 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3997 3998 /* allow all VLANs on Tx and don't strip on Rx */ 3999 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4000 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4001 4002 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4003 if (status) { 4004 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4005 status, ice_aq_str(hw->adminq.sq_last_status)); 4006 } else { 4007 vsi->info.sec_flags = ctxt->info.sec_flags; 4008 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4009 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4010 } 4011 4012 kfree(ctxt); 4013 } 4014 4015 /** 4016 * ice_log_pkg_init - log result of DDP package load 4017 * @hw: pointer to hardware info 4018 * @state: state of package load 4019 */ 4020 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4021 { 4022 struct ice_pf *pf = hw->back; 4023 struct device *dev; 4024 4025 dev = ice_pf_to_dev(pf); 4026 4027 switch (state) { 4028 case ICE_DDP_PKG_SUCCESS: 4029 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4030 hw->active_pkg_name, 4031 hw->active_pkg_ver.major, 4032 hw->active_pkg_ver.minor, 4033 hw->active_pkg_ver.update, 4034 hw->active_pkg_ver.draft); 4035 break; 4036 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4037 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4038 hw->active_pkg_name, 4039 hw->active_pkg_ver.major, 4040 hw->active_pkg_ver.minor, 4041 hw->active_pkg_ver.update, 4042 hw->active_pkg_ver.draft); 4043 break; 4044 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4045 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4046 hw->active_pkg_name, 4047 hw->active_pkg_ver.major, 4048 hw->active_pkg_ver.minor, 4049 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4050 break; 4051 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4052 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4053 hw->active_pkg_name, 4054 hw->active_pkg_ver.major, 4055 hw->active_pkg_ver.minor, 4056 hw->active_pkg_ver.update, 4057 hw->active_pkg_ver.draft, 4058 hw->pkg_name, 4059 hw->pkg_ver.major, 4060 hw->pkg_ver.minor, 4061 hw->pkg_ver.update, 4062 hw->pkg_ver.draft); 4063 break; 4064 case ICE_DDP_PKG_FW_MISMATCH: 4065 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4066 break; 4067 case ICE_DDP_PKG_INVALID_FILE: 4068 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4069 break; 4070 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4071 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4072 break; 4073 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4074 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4075 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4076 break; 4077 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4078 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4079 break; 4080 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4081 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4082 break; 4083 case ICE_DDP_PKG_LOAD_ERROR: 4084 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4085 /* poll for reset to complete */ 4086 if (ice_check_reset(hw)) 4087 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4088 break; 4089 case ICE_DDP_PKG_ERR: 4090 default: 4091 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4092 break; 4093 } 4094 } 4095 4096 /** 4097 * ice_load_pkg - load/reload the DDP Package file 4098 * @firmware: firmware structure when firmware requested or NULL for reload 4099 * @pf: pointer to the PF instance 4100 * 4101 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4102 * initialize HW tables. 4103 */ 4104 static void 4105 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4106 { 4107 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4108 struct device *dev = ice_pf_to_dev(pf); 4109 struct ice_hw *hw = &pf->hw; 4110 4111 /* Load DDP Package */ 4112 if (firmware && !hw->pkg_copy) { 4113 state = ice_copy_and_init_pkg(hw, firmware->data, 4114 firmware->size); 4115 ice_log_pkg_init(hw, state); 4116 } else if (!firmware && hw->pkg_copy) { 4117 /* Reload package during rebuild after CORER/GLOBR reset */ 4118 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4119 ice_log_pkg_init(hw, state); 4120 } else { 4121 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4122 } 4123 4124 if (!ice_is_init_pkg_successful(state)) { 4125 /* Safe Mode */ 4126 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4127 return; 4128 } 4129 4130 /* Successful download package is the precondition for advanced 4131 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4132 */ 4133 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4134 } 4135 4136 /** 4137 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4138 * @pf: pointer to the PF structure 4139 * 4140 * There is no error returned here because the driver should be able to handle 4141 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4142 * specifically with Tx. 4143 */ 4144 static void ice_verify_cacheline_size(struct ice_pf *pf) 4145 { 4146 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4147 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4148 ICE_CACHE_LINE_BYTES); 4149 } 4150 4151 /** 4152 * ice_send_version - update firmware with driver version 4153 * @pf: PF struct 4154 * 4155 * Returns 0 on success, else error code 4156 */ 4157 static int ice_send_version(struct ice_pf *pf) 4158 { 4159 struct ice_driver_ver dv; 4160 4161 dv.major_ver = 0xff; 4162 dv.minor_ver = 0xff; 4163 dv.build_ver = 0xff; 4164 dv.subbuild_ver = 0; 4165 strscpy((char *)dv.driver_string, UTS_RELEASE, 4166 sizeof(dv.driver_string)); 4167 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4168 } 4169 4170 /** 4171 * ice_init_fdir - Initialize flow director VSI and configuration 4172 * @pf: pointer to the PF instance 4173 * 4174 * returns 0 on success, negative on error 4175 */ 4176 static int ice_init_fdir(struct ice_pf *pf) 4177 { 4178 struct device *dev = ice_pf_to_dev(pf); 4179 struct ice_vsi *ctrl_vsi; 4180 int err; 4181 4182 /* Side Band Flow Director needs to have a control VSI. 4183 * Allocate it and store it in the PF. 4184 */ 4185 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4186 if (!ctrl_vsi) { 4187 dev_dbg(dev, "could not create control VSI\n"); 4188 return -ENOMEM; 4189 } 4190 4191 err = ice_vsi_open_ctrl(ctrl_vsi); 4192 if (err) { 4193 dev_dbg(dev, "could not open control VSI\n"); 4194 goto err_vsi_open; 4195 } 4196 4197 mutex_init(&pf->hw.fdir_fltr_lock); 4198 4199 err = ice_fdir_create_dflt_rules(pf); 4200 if (err) 4201 goto err_fdir_rule; 4202 4203 return 0; 4204 4205 err_fdir_rule: 4206 ice_fdir_release_flows(&pf->hw); 4207 ice_vsi_close(ctrl_vsi); 4208 err_vsi_open: 4209 ice_vsi_release(ctrl_vsi); 4210 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4211 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4212 pf->ctrl_vsi_idx = ICE_NO_VSI; 4213 } 4214 return err; 4215 } 4216 4217 static void ice_deinit_fdir(struct ice_pf *pf) 4218 { 4219 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4220 4221 if (!vsi) 4222 return; 4223 4224 ice_vsi_manage_fdir(vsi, false); 4225 ice_vsi_release(vsi); 4226 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4227 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4228 pf->ctrl_vsi_idx = ICE_NO_VSI; 4229 } 4230 4231 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4232 } 4233 4234 /** 4235 * ice_get_opt_fw_name - return optional firmware file name or NULL 4236 * @pf: pointer to the PF instance 4237 */ 4238 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4239 { 4240 /* Optional firmware name same as default with additional dash 4241 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4242 */ 4243 struct pci_dev *pdev = pf->pdev; 4244 char *opt_fw_filename; 4245 u64 dsn; 4246 4247 /* Determine the name of the optional file using the DSN (two 4248 * dwords following the start of the DSN Capability). 4249 */ 4250 dsn = pci_get_dsn(pdev); 4251 if (!dsn) 4252 return NULL; 4253 4254 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4255 if (!opt_fw_filename) 4256 return NULL; 4257 4258 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4259 ICE_DDP_PKG_PATH, dsn); 4260 4261 return opt_fw_filename; 4262 } 4263 4264 /** 4265 * ice_request_fw - Device initialization routine 4266 * @pf: pointer to the PF instance 4267 */ 4268 static void ice_request_fw(struct ice_pf *pf) 4269 { 4270 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4271 const struct firmware *firmware = NULL; 4272 struct device *dev = ice_pf_to_dev(pf); 4273 int err = 0; 4274 4275 /* optional device-specific DDP (if present) overrides the default DDP 4276 * package file. kernel logs a debug message if the file doesn't exist, 4277 * and warning messages for other errors. 4278 */ 4279 if (opt_fw_filename) { 4280 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4281 if (err) { 4282 kfree(opt_fw_filename); 4283 goto dflt_pkg_load; 4284 } 4285 4286 /* request for firmware was successful. Download to device */ 4287 ice_load_pkg(firmware, pf); 4288 kfree(opt_fw_filename); 4289 release_firmware(firmware); 4290 return; 4291 } 4292 4293 dflt_pkg_load: 4294 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4295 if (err) { 4296 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4297 return; 4298 } 4299 4300 /* request for firmware was successful. Download to device */ 4301 ice_load_pkg(firmware, pf); 4302 release_firmware(firmware); 4303 } 4304 4305 /** 4306 * ice_print_wake_reason - show the wake up cause in the log 4307 * @pf: pointer to the PF struct 4308 */ 4309 static void ice_print_wake_reason(struct ice_pf *pf) 4310 { 4311 u32 wus = pf->wakeup_reason; 4312 const char *wake_str; 4313 4314 /* if no wake event, nothing to print */ 4315 if (!wus) 4316 return; 4317 4318 if (wus & PFPM_WUS_LNKC_M) 4319 wake_str = "Link\n"; 4320 else if (wus & PFPM_WUS_MAG_M) 4321 wake_str = "Magic Packet\n"; 4322 else if (wus & PFPM_WUS_MNG_M) 4323 wake_str = "Management\n"; 4324 else if (wus & PFPM_WUS_FW_RST_WK_M) 4325 wake_str = "Firmware Reset\n"; 4326 else 4327 wake_str = "Unknown\n"; 4328 4329 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4330 } 4331 4332 /** 4333 * ice_register_netdev - register netdev 4334 * @vsi: pointer to the VSI struct 4335 */ 4336 static int ice_register_netdev(struct ice_vsi *vsi) 4337 { 4338 int err; 4339 4340 if (!vsi || !vsi->netdev) 4341 return -EIO; 4342 4343 err = register_netdev(vsi->netdev); 4344 if (err) 4345 return err; 4346 4347 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4348 netif_carrier_off(vsi->netdev); 4349 netif_tx_stop_all_queues(vsi->netdev); 4350 4351 return 0; 4352 } 4353 4354 static void ice_unregister_netdev(struct ice_vsi *vsi) 4355 { 4356 if (!vsi || !vsi->netdev) 4357 return; 4358 4359 unregister_netdev(vsi->netdev); 4360 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4361 } 4362 4363 /** 4364 * ice_cfg_netdev - Allocate, configure and register a netdev 4365 * @vsi: the VSI associated with the new netdev 4366 * 4367 * Returns 0 on success, negative value on failure 4368 */ 4369 static int ice_cfg_netdev(struct ice_vsi *vsi) 4370 { 4371 struct ice_netdev_priv *np; 4372 struct net_device *netdev; 4373 u8 mac_addr[ETH_ALEN]; 4374 4375 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4376 vsi->alloc_rxq); 4377 if (!netdev) 4378 return -ENOMEM; 4379 4380 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4381 vsi->netdev = netdev; 4382 np = netdev_priv(netdev); 4383 np->vsi = vsi; 4384 4385 ice_set_netdev_features(netdev); 4386 ice_set_ops(vsi); 4387 4388 if (vsi->type == ICE_VSI_PF) { 4389 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4390 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4391 eth_hw_addr_set(netdev, mac_addr); 4392 } 4393 4394 netdev->priv_flags |= IFF_UNICAST_FLT; 4395 4396 /* Setup netdev TC information */ 4397 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4398 4399 netdev->max_mtu = ICE_MAX_MTU; 4400 4401 return 0; 4402 } 4403 4404 static void ice_decfg_netdev(struct ice_vsi *vsi) 4405 { 4406 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4407 free_netdev(vsi->netdev); 4408 vsi->netdev = NULL; 4409 } 4410 4411 static int ice_start_eth(struct ice_vsi *vsi) 4412 { 4413 int err; 4414 4415 err = ice_init_mac_fltr(vsi->back); 4416 if (err) 4417 return err; 4418 4419 rtnl_lock(); 4420 err = ice_vsi_open(vsi); 4421 rtnl_unlock(); 4422 4423 return err; 4424 } 4425 4426 static void ice_stop_eth(struct ice_vsi *vsi) 4427 { 4428 ice_fltr_remove_all(vsi); 4429 ice_vsi_close(vsi); 4430 } 4431 4432 static int ice_init_eth(struct ice_pf *pf) 4433 { 4434 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4435 int err; 4436 4437 if (!vsi) 4438 return -EINVAL; 4439 4440 /* init channel list */ 4441 INIT_LIST_HEAD(&vsi->ch_list); 4442 4443 err = ice_cfg_netdev(vsi); 4444 if (err) 4445 return err; 4446 /* Setup DCB netlink interface */ 4447 ice_dcbnl_setup(vsi); 4448 4449 err = ice_init_mac_fltr(pf); 4450 if (err) 4451 goto err_init_mac_fltr; 4452 4453 err = ice_devlink_create_pf_port(pf); 4454 if (err) 4455 goto err_devlink_create_pf_port; 4456 4457 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4458 4459 err = ice_register_netdev(vsi); 4460 if (err) 4461 goto err_register_netdev; 4462 4463 err = ice_tc_indir_block_register(vsi); 4464 if (err) 4465 goto err_tc_indir_block_register; 4466 4467 ice_napi_add(vsi); 4468 4469 return 0; 4470 4471 err_tc_indir_block_register: 4472 ice_unregister_netdev(vsi); 4473 err_register_netdev: 4474 ice_devlink_destroy_pf_port(pf); 4475 err_devlink_create_pf_port: 4476 err_init_mac_fltr: 4477 ice_decfg_netdev(vsi); 4478 return err; 4479 } 4480 4481 static void ice_deinit_eth(struct ice_pf *pf) 4482 { 4483 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4484 4485 if (!vsi) 4486 return; 4487 4488 ice_vsi_close(vsi); 4489 ice_unregister_netdev(vsi); 4490 ice_devlink_destroy_pf_port(pf); 4491 ice_tc_indir_block_unregister(vsi); 4492 ice_decfg_netdev(vsi); 4493 } 4494 4495 static int ice_init_dev(struct ice_pf *pf) 4496 { 4497 struct device *dev = ice_pf_to_dev(pf); 4498 struct ice_hw *hw = &pf->hw; 4499 int err; 4500 4501 err = ice_init_hw(hw); 4502 if (err) { 4503 dev_err(dev, "ice_init_hw failed: %d\n", err); 4504 return err; 4505 } 4506 4507 ice_init_feature_support(pf); 4508 4509 ice_request_fw(pf); 4510 4511 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4512 * set in pf->state, which will cause ice_is_safe_mode to return 4513 * true 4514 */ 4515 if (ice_is_safe_mode(pf)) { 4516 /* we already got function/device capabilities but these don't 4517 * reflect what the driver needs to do in safe mode. Instead of 4518 * adding conditional logic everywhere to ignore these 4519 * device/function capabilities, override them. 4520 */ 4521 ice_set_safe_mode_caps(hw); 4522 } 4523 4524 err = ice_init_pf(pf); 4525 if (err) { 4526 dev_err(dev, "ice_init_pf failed: %d\n", err); 4527 goto err_init_pf; 4528 } 4529 4530 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4531 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4532 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4533 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4534 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4535 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4536 pf->hw.tnl.valid_count[TNL_VXLAN]; 4537 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4538 UDP_TUNNEL_TYPE_VXLAN; 4539 } 4540 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4541 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4542 pf->hw.tnl.valid_count[TNL_GENEVE]; 4543 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4544 UDP_TUNNEL_TYPE_GENEVE; 4545 } 4546 4547 err = ice_init_interrupt_scheme(pf); 4548 if (err) { 4549 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4550 err = -EIO; 4551 goto err_init_interrupt_scheme; 4552 } 4553 4554 /* In case of MSIX we are going to setup the misc vector right here 4555 * to handle admin queue events etc. In case of legacy and MSI 4556 * the misc functionality and queue processing is combined in 4557 * the same vector and that gets setup at open. 4558 */ 4559 err = ice_req_irq_msix_misc(pf); 4560 if (err) { 4561 dev_err(dev, "setup of misc vector failed: %d\n", err); 4562 goto err_req_irq_msix_misc; 4563 } 4564 4565 return 0; 4566 4567 err_req_irq_msix_misc: 4568 ice_clear_interrupt_scheme(pf); 4569 err_init_interrupt_scheme: 4570 ice_deinit_pf(pf); 4571 err_init_pf: 4572 ice_deinit_hw(hw); 4573 return err; 4574 } 4575 4576 static void ice_deinit_dev(struct ice_pf *pf) 4577 { 4578 ice_free_irq_msix_misc(pf); 4579 ice_clear_interrupt_scheme(pf); 4580 ice_deinit_pf(pf); 4581 ice_deinit_hw(&pf->hw); 4582 } 4583 4584 static void ice_init_features(struct ice_pf *pf) 4585 { 4586 struct device *dev = ice_pf_to_dev(pf); 4587 4588 if (ice_is_safe_mode(pf)) 4589 return; 4590 4591 /* initialize DDP driven features */ 4592 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4593 ice_ptp_init(pf); 4594 4595 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4596 ice_gnss_init(pf); 4597 4598 /* Note: Flow director init failure is non-fatal to load */ 4599 if (ice_init_fdir(pf)) 4600 dev_err(dev, "could not initialize flow director\n"); 4601 4602 /* Note: DCB init failure is non-fatal to load */ 4603 if (ice_init_pf_dcb(pf, false)) { 4604 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4605 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4606 } else { 4607 ice_cfg_lldp_mib_change(&pf->hw, true); 4608 } 4609 4610 if (ice_init_lag(pf)) 4611 dev_warn(dev, "Failed to init link aggregation support\n"); 4612 } 4613 4614 static void ice_deinit_features(struct ice_pf *pf) 4615 { 4616 ice_deinit_lag(pf); 4617 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4618 ice_cfg_lldp_mib_change(&pf->hw, false); 4619 ice_deinit_fdir(pf); 4620 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4621 ice_gnss_exit(pf); 4622 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4623 ice_ptp_release(pf); 4624 } 4625 4626 static void ice_init_wakeup(struct ice_pf *pf) 4627 { 4628 /* Save wakeup reason register for later use */ 4629 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4630 4631 /* check for a power management event */ 4632 ice_print_wake_reason(pf); 4633 4634 /* clear wake status, all bits */ 4635 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4636 4637 /* Disable WoL at init, wait for user to enable */ 4638 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4639 } 4640 4641 static int ice_init_link(struct ice_pf *pf) 4642 { 4643 struct device *dev = ice_pf_to_dev(pf); 4644 int err; 4645 4646 err = ice_init_link_events(pf->hw.port_info); 4647 if (err) { 4648 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4649 return err; 4650 } 4651 4652 /* not a fatal error if this fails */ 4653 err = ice_init_nvm_phy_type(pf->hw.port_info); 4654 if (err) 4655 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4656 4657 /* not a fatal error if this fails */ 4658 err = ice_update_link_info(pf->hw.port_info); 4659 if (err) 4660 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4661 4662 ice_init_link_dflt_override(pf->hw.port_info); 4663 4664 ice_check_link_cfg_err(pf, 4665 pf->hw.port_info->phy.link_info.link_cfg_err); 4666 4667 /* if media available, initialize PHY settings */ 4668 if (pf->hw.port_info->phy.link_info.link_info & 4669 ICE_AQ_MEDIA_AVAILABLE) { 4670 /* not a fatal error if this fails */ 4671 err = ice_init_phy_user_cfg(pf->hw.port_info); 4672 if (err) 4673 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4674 4675 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4676 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4677 4678 if (vsi) 4679 ice_configure_phy(vsi); 4680 } 4681 } else { 4682 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4683 } 4684 4685 return err; 4686 } 4687 4688 static int ice_init_pf_sw(struct ice_pf *pf) 4689 { 4690 bool dvm = ice_is_dvm_ena(&pf->hw); 4691 struct ice_vsi *vsi; 4692 int err; 4693 4694 /* create switch struct for the switch element created by FW on boot */ 4695 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4696 if (!pf->first_sw) 4697 return -ENOMEM; 4698 4699 if (pf->hw.evb_veb) 4700 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4701 else 4702 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4703 4704 pf->first_sw->pf = pf; 4705 4706 /* record the sw_id available for later use */ 4707 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4708 4709 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4710 if (err) 4711 goto err_aq_set_port_params; 4712 4713 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4714 if (!vsi) { 4715 err = -ENOMEM; 4716 goto err_pf_vsi_setup; 4717 } 4718 4719 return 0; 4720 4721 err_pf_vsi_setup: 4722 err_aq_set_port_params: 4723 kfree(pf->first_sw); 4724 return err; 4725 } 4726 4727 static void ice_deinit_pf_sw(struct ice_pf *pf) 4728 { 4729 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4730 4731 if (!vsi) 4732 return; 4733 4734 ice_vsi_release(vsi); 4735 kfree(pf->first_sw); 4736 } 4737 4738 static int ice_alloc_vsis(struct ice_pf *pf) 4739 { 4740 struct device *dev = ice_pf_to_dev(pf); 4741 4742 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4743 if (!pf->num_alloc_vsi) 4744 return -EIO; 4745 4746 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4747 dev_warn(dev, 4748 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4749 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4750 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4751 } 4752 4753 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4754 GFP_KERNEL); 4755 if (!pf->vsi) 4756 return -ENOMEM; 4757 4758 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4759 sizeof(*pf->vsi_stats), GFP_KERNEL); 4760 if (!pf->vsi_stats) { 4761 devm_kfree(dev, pf->vsi); 4762 return -ENOMEM; 4763 } 4764 4765 return 0; 4766 } 4767 4768 static void ice_dealloc_vsis(struct ice_pf *pf) 4769 { 4770 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4771 pf->vsi_stats = NULL; 4772 4773 pf->num_alloc_vsi = 0; 4774 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4775 pf->vsi = NULL; 4776 } 4777 4778 static int ice_init_devlink(struct ice_pf *pf) 4779 { 4780 int err; 4781 4782 err = ice_devlink_register_params(pf); 4783 if (err) 4784 return err; 4785 4786 ice_devlink_init_regions(pf); 4787 ice_devlink_register(pf); 4788 4789 return 0; 4790 } 4791 4792 static void ice_deinit_devlink(struct ice_pf *pf) 4793 { 4794 ice_devlink_unregister(pf); 4795 ice_devlink_destroy_regions(pf); 4796 ice_devlink_unregister_params(pf); 4797 } 4798 4799 static int ice_init(struct ice_pf *pf) 4800 { 4801 int err; 4802 4803 err = ice_init_dev(pf); 4804 if (err) 4805 return err; 4806 4807 err = ice_alloc_vsis(pf); 4808 if (err) 4809 goto err_alloc_vsis; 4810 4811 err = ice_init_pf_sw(pf); 4812 if (err) 4813 goto err_init_pf_sw; 4814 4815 ice_init_wakeup(pf); 4816 4817 err = ice_init_link(pf); 4818 if (err) 4819 goto err_init_link; 4820 4821 err = ice_send_version(pf); 4822 if (err) 4823 goto err_init_link; 4824 4825 ice_verify_cacheline_size(pf); 4826 4827 if (ice_is_safe_mode(pf)) 4828 ice_set_safe_mode_vlan_cfg(pf); 4829 else 4830 /* print PCI link speed and width */ 4831 pcie_print_link_status(pf->pdev); 4832 4833 /* ready to go, so clear down state bit */ 4834 clear_bit(ICE_DOWN, pf->state); 4835 clear_bit(ICE_SERVICE_DIS, pf->state); 4836 4837 /* since everything is good, start the service timer */ 4838 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4839 4840 return 0; 4841 4842 err_init_link: 4843 ice_deinit_pf_sw(pf); 4844 err_init_pf_sw: 4845 ice_dealloc_vsis(pf); 4846 err_alloc_vsis: 4847 ice_deinit_dev(pf); 4848 return err; 4849 } 4850 4851 static void ice_deinit(struct ice_pf *pf) 4852 { 4853 set_bit(ICE_SERVICE_DIS, pf->state); 4854 set_bit(ICE_DOWN, pf->state); 4855 4856 ice_deinit_pf_sw(pf); 4857 ice_dealloc_vsis(pf); 4858 ice_deinit_dev(pf); 4859 } 4860 4861 /** 4862 * ice_load - load pf by init hw and starting VSI 4863 * @pf: pointer to the pf instance 4864 */ 4865 int ice_load(struct ice_pf *pf) 4866 { 4867 struct ice_vsi_cfg_params params = {}; 4868 struct ice_vsi *vsi; 4869 int err; 4870 4871 err = ice_reset(&pf->hw, ICE_RESET_PFR); 4872 if (err) 4873 return err; 4874 4875 err = ice_init_dev(pf); 4876 if (err) 4877 return err; 4878 4879 vsi = ice_get_main_vsi(pf); 4880 4881 params = ice_vsi_to_params(vsi); 4882 params.flags = ICE_VSI_FLAG_INIT; 4883 4884 err = ice_vsi_cfg(vsi, ¶ms); 4885 if (err) 4886 goto err_vsi_cfg; 4887 4888 err = ice_start_eth(ice_get_main_vsi(pf)); 4889 if (err) 4890 goto err_start_eth; 4891 4892 err = ice_init_rdma(pf); 4893 if (err) 4894 goto err_init_rdma; 4895 4896 ice_init_features(pf); 4897 ice_service_task_restart(pf); 4898 4899 clear_bit(ICE_DOWN, pf->state); 4900 4901 return 0; 4902 4903 err_init_rdma: 4904 ice_vsi_close(ice_get_main_vsi(pf)); 4905 err_start_eth: 4906 ice_vsi_decfg(ice_get_main_vsi(pf)); 4907 err_vsi_cfg: 4908 ice_deinit_dev(pf); 4909 return err; 4910 } 4911 4912 /** 4913 * ice_unload - unload pf by stopping VSI and deinit hw 4914 * @pf: pointer to the pf instance 4915 */ 4916 void ice_unload(struct ice_pf *pf) 4917 { 4918 ice_deinit_features(pf); 4919 ice_deinit_rdma(pf); 4920 ice_stop_eth(ice_get_main_vsi(pf)); 4921 ice_vsi_decfg(ice_get_main_vsi(pf)); 4922 ice_deinit_dev(pf); 4923 } 4924 4925 /** 4926 * ice_probe - Device initialization routine 4927 * @pdev: PCI device information struct 4928 * @ent: entry in ice_pci_tbl 4929 * 4930 * Returns 0 on success, negative on failure 4931 */ 4932 static int 4933 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4934 { 4935 struct device *dev = &pdev->dev; 4936 struct ice_pf *pf; 4937 struct ice_hw *hw; 4938 int err; 4939 4940 if (pdev->is_virtfn) { 4941 dev_err(dev, "can't probe a virtual function\n"); 4942 return -EINVAL; 4943 } 4944 4945 /* this driver uses devres, see 4946 * Documentation/driver-api/driver-model/devres.rst 4947 */ 4948 err = pcim_enable_device(pdev); 4949 if (err) 4950 return err; 4951 4952 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4953 if (err) { 4954 dev_err(dev, "BAR0 I/O map error %d\n", err); 4955 return err; 4956 } 4957 4958 pf = ice_allocate_pf(dev); 4959 if (!pf) 4960 return -ENOMEM; 4961 4962 /* initialize Auxiliary index to invalid value */ 4963 pf->aux_idx = -1; 4964 4965 /* set up for high or low DMA */ 4966 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4967 if (err) { 4968 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4969 return err; 4970 } 4971 4972 pci_set_master(pdev); 4973 4974 pf->pdev = pdev; 4975 pci_set_drvdata(pdev, pf); 4976 set_bit(ICE_DOWN, pf->state); 4977 /* Disable service task until DOWN bit is cleared */ 4978 set_bit(ICE_SERVICE_DIS, pf->state); 4979 4980 hw = &pf->hw; 4981 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4982 pci_save_state(pdev); 4983 4984 hw->back = pf; 4985 hw->port_info = NULL; 4986 hw->vendor_id = pdev->vendor; 4987 hw->device_id = pdev->device; 4988 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4989 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4990 hw->subsystem_device_id = pdev->subsystem_device; 4991 hw->bus.device = PCI_SLOT(pdev->devfn); 4992 hw->bus.func = PCI_FUNC(pdev->devfn); 4993 ice_set_ctrlq_len(hw); 4994 4995 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4996 4997 #ifndef CONFIG_DYNAMIC_DEBUG 4998 if (debug < -1) 4999 hw->debug_mask = debug; 5000 #endif 5001 5002 err = ice_init(pf); 5003 if (err) 5004 goto err_init; 5005 5006 err = ice_init_eth(pf); 5007 if (err) 5008 goto err_init_eth; 5009 5010 err = ice_init_rdma(pf); 5011 if (err) 5012 goto err_init_rdma; 5013 5014 err = ice_init_devlink(pf); 5015 if (err) 5016 goto err_init_devlink; 5017 5018 ice_init_features(pf); 5019 5020 return 0; 5021 5022 err_init_devlink: 5023 ice_deinit_rdma(pf); 5024 err_init_rdma: 5025 ice_deinit_eth(pf); 5026 err_init_eth: 5027 ice_deinit(pf); 5028 err_init: 5029 pci_disable_device(pdev); 5030 return err; 5031 } 5032 5033 /** 5034 * ice_set_wake - enable or disable Wake on LAN 5035 * @pf: pointer to the PF struct 5036 * 5037 * Simple helper for WoL control 5038 */ 5039 static void ice_set_wake(struct ice_pf *pf) 5040 { 5041 struct ice_hw *hw = &pf->hw; 5042 bool wol = pf->wol_ena; 5043 5044 /* clear wake state, otherwise new wake events won't fire */ 5045 wr32(hw, PFPM_WUS, U32_MAX); 5046 5047 /* enable / disable APM wake up, no RMW needed */ 5048 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5049 5050 /* set magic packet filter enabled */ 5051 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5052 } 5053 5054 /** 5055 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5056 * @pf: pointer to the PF struct 5057 * 5058 * Issue firmware command to enable multicast magic wake, making 5059 * sure that any locally administered address (LAA) is used for 5060 * wake, and that PF reset doesn't undo the LAA. 5061 */ 5062 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5063 { 5064 struct device *dev = ice_pf_to_dev(pf); 5065 struct ice_hw *hw = &pf->hw; 5066 u8 mac_addr[ETH_ALEN]; 5067 struct ice_vsi *vsi; 5068 int status; 5069 u8 flags; 5070 5071 if (!pf->wol_ena) 5072 return; 5073 5074 vsi = ice_get_main_vsi(pf); 5075 if (!vsi) 5076 return; 5077 5078 /* Get current MAC address in case it's an LAA */ 5079 if (vsi->netdev) 5080 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5081 else 5082 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5083 5084 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5085 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5086 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5087 5088 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5089 if (status) 5090 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5091 status, ice_aq_str(hw->adminq.sq_last_status)); 5092 } 5093 5094 /** 5095 * ice_remove - Device removal routine 5096 * @pdev: PCI device information struct 5097 */ 5098 static void ice_remove(struct pci_dev *pdev) 5099 { 5100 struct ice_pf *pf = pci_get_drvdata(pdev); 5101 int i; 5102 5103 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5104 if (!ice_is_reset_in_progress(pf->state)) 5105 break; 5106 msleep(100); 5107 } 5108 5109 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5110 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5111 ice_free_vfs(pf); 5112 } 5113 5114 ice_service_task_stop(pf); 5115 ice_aq_cancel_waiting_tasks(pf); 5116 set_bit(ICE_DOWN, pf->state); 5117 5118 if (!ice_is_safe_mode(pf)) 5119 ice_remove_arfs(pf); 5120 ice_deinit_features(pf); 5121 ice_deinit_devlink(pf); 5122 ice_deinit_rdma(pf); 5123 ice_deinit_eth(pf); 5124 ice_deinit(pf); 5125 5126 ice_vsi_release_all(pf); 5127 5128 ice_setup_mc_magic_wake(pf); 5129 ice_set_wake(pf); 5130 5131 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5132 * do it via ice_schedule_reset() since there is no need to rebuild 5133 * and the service task is already stopped. 5134 */ 5135 ice_reset(&pf->hw, ICE_RESET_PFR); 5136 pci_wait_for_pending_transaction(pdev); 5137 pci_disable_device(pdev); 5138 } 5139 5140 /** 5141 * ice_shutdown - PCI callback for shutting down device 5142 * @pdev: PCI device information struct 5143 */ 5144 static void ice_shutdown(struct pci_dev *pdev) 5145 { 5146 struct ice_pf *pf = pci_get_drvdata(pdev); 5147 5148 ice_remove(pdev); 5149 5150 if (system_state == SYSTEM_POWER_OFF) { 5151 pci_wake_from_d3(pdev, pf->wol_ena); 5152 pci_set_power_state(pdev, PCI_D3hot); 5153 } 5154 } 5155 5156 #ifdef CONFIG_PM 5157 /** 5158 * ice_prepare_for_shutdown - prep for PCI shutdown 5159 * @pf: board private structure 5160 * 5161 * Inform or close all dependent features in prep for PCI device shutdown 5162 */ 5163 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5164 { 5165 struct ice_hw *hw = &pf->hw; 5166 u32 v; 5167 5168 /* Notify VFs of impending reset */ 5169 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5170 ice_vc_notify_reset(pf); 5171 5172 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5173 5174 /* disable the VSIs and their queues that are not already DOWN */ 5175 ice_pf_dis_all_vsi(pf, false); 5176 5177 ice_for_each_vsi(pf, v) 5178 if (pf->vsi[v]) 5179 pf->vsi[v]->vsi_num = 0; 5180 5181 ice_shutdown_all_ctrlq(hw); 5182 } 5183 5184 /** 5185 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5186 * @pf: board private structure to reinitialize 5187 * 5188 * This routine reinitialize interrupt scheme that was cleared during 5189 * power management suspend callback. 5190 * 5191 * This should be called during resume routine to re-allocate the q_vectors 5192 * and reacquire interrupts. 5193 */ 5194 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5195 { 5196 struct device *dev = ice_pf_to_dev(pf); 5197 int ret, v; 5198 5199 /* Since we clear MSIX flag during suspend, we need to 5200 * set it back during resume... 5201 */ 5202 5203 ret = ice_init_interrupt_scheme(pf); 5204 if (ret) { 5205 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5206 return ret; 5207 } 5208 5209 /* Remap vectors and rings, after successful re-init interrupts */ 5210 ice_for_each_vsi(pf, v) { 5211 if (!pf->vsi[v]) 5212 continue; 5213 5214 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5215 if (ret) 5216 goto err_reinit; 5217 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5218 } 5219 5220 ret = ice_req_irq_msix_misc(pf); 5221 if (ret) { 5222 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5223 ret); 5224 goto err_reinit; 5225 } 5226 5227 return 0; 5228 5229 err_reinit: 5230 while (v--) 5231 if (pf->vsi[v]) 5232 ice_vsi_free_q_vectors(pf->vsi[v]); 5233 5234 return ret; 5235 } 5236 5237 /** 5238 * ice_suspend 5239 * @dev: generic device information structure 5240 * 5241 * Power Management callback to quiesce the device and prepare 5242 * for D3 transition. 5243 */ 5244 static int __maybe_unused ice_suspend(struct device *dev) 5245 { 5246 struct pci_dev *pdev = to_pci_dev(dev); 5247 struct ice_pf *pf; 5248 int disabled, v; 5249 5250 pf = pci_get_drvdata(pdev); 5251 5252 if (!ice_pf_state_is_nominal(pf)) { 5253 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5254 return -EBUSY; 5255 } 5256 5257 /* Stop watchdog tasks until resume completion. 5258 * Even though it is most likely that the service task is 5259 * disabled if the device is suspended or down, the service task's 5260 * state is controlled by a different state bit, and we should 5261 * store and honor whatever state that bit is in at this point. 5262 */ 5263 disabled = ice_service_task_stop(pf); 5264 5265 ice_unplug_aux_dev(pf); 5266 5267 /* Already suspended?, then there is nothing to do */ 5268 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5269 if (!disabled) 5270 ice_service_task_restart(pf); 5271 return 0; 5272 } 5273 5274 if (test_bit(ICE_DOWN, pf->state) || 5275 ice_is_reset_in_progress(pf->state)) { 5276 dev_err(dev, "can't suspend device in reset or already down\n"); 5277 if (!disabled) 5278 ice_service_task_restart(pf); 5279 return 0; 5280 } 5281 5282 ice_setup_mc_magic_wake(pf); 5283 5284 ice_prepare_for_shutdown(pf); 5285 5286 ice_set_wake(pf); 5287 5288 /* Free vectors, clear the interrupt scheme and release IRQs 5289 * for proper hibernation, especially with large number of CPUs. 5290 * Otherwise hibernation might fail when mapping all the vectors back 5291 * to CPU0. 5292 */ 5293 ice_free_irq_msix_misc(pf); 5294 ice_for_each_vsi(pf, v) { 5295 if (!pf->vsi[v]) 5296 continue; 5297 ice_vsi_free_q_vectors(pf->vsi[v]); 5298 } 5299 ice_clear_interrupt_scheme(pf); 5300 5301 pci_save_state(pdev); 5302 pci_wake_from_d3(pdev, pf->wol_ena); 5303 pci_set_power_state(pdev, PCI_D3hot); 5304 return 0; 5305 } 5306 5307 /** 5308 * ice_resume - PM callback for waking up from D3 5309 * @dev: generic device information structure 5310 */ 5311 static int __maybe_unused ice_resume(struct device *dev) 5312 { 5313 struct pci_dev *pdev = to_pci_dev(dev); 5314 enum ice_reset_req reset_type; 5315 struct ice_pf *pf; 5316 struct ice_hw *hw; 5317 int ret; 5318 5319 pci_set_power_state(pdev, PCI_D0); 5320 pci_restore_state(pdev); 5321 pci_save_state(pdev); 5322 5323 if (!pci_device_is_present(pdev)) 5324 return -ENODEV; 5325 5326 ret = pci_enable_device_mem(pdev); 5327 if (ret) { 5328 dev_err(dev, "Cannot enable device after suspend\n"); 5329 return ret; 5330 } 5331 5332 pf = pci_get_drvdata(pdev); 5333 hw = &pf->hw; 5334 5335 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5336 ice_print_wake_reason(pf); 5337 5338 /* We cleared the interrupt scheme when we suspended, so we need to 5339 * restore it now to resume device functionality. 5340 */ 5341 ret = ice_reinit_interrupt_scheme(pf); 5342 if (ret) 5343 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5344 5345 clear_bit(ICE_DOWN, pf->state); 5346 /* Now perform PF reset and rebuild */ 5347 reset_type = ICE_RESET_PFR; 5348 /* re-enable service task for reset, but allow reset to schedule it */ 5349 clear_bit(ICE_SERVICE_DIS, pf->state); 5350 5351 if (ice_schedule_reset(pf, reset_type)) 5352 dev_err(dev, "Reset during resume failed.\n"); 5353 5354 clear_bit(ICE_SUSPENDED, pf->state); 5355 ice_service_task_restart(pf); 5356 5357 /* Restart the service task */ 5358 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5359 5360 return 0; 5361 } 5362 #endif /* CONFIG_PM */ 5363 5364 /** 5365 * ice_pci_err_detected - warning that PCI error has been detected 5366 * @pdev: PCI device information struct 5367 * @err: the type of PCI error 5368 * 5369 * Called to warn that something happened on the PCI bus and the error handling 5370 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5371 */ 5372 static pci_ers_result_t 5373 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5374 { 5375 struct ice_pf *pf = pci_get_drvdata(pdev); 5376 5377 if (!pf) { 5378 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5379 __func__, err); 5380 return PCI_ERS_RESULT_DISCONNECT; 5381 } 5382 5383 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5384 ice_service_task_stop(pf); 5385 5386 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5387 set_bit(ICE_PFR_REQ, pf->state); 5388 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5389 } 5390 } 5391 5392 return PCI_ERS_RESULT_NEED_RESET; 5393 } 5394 5395 /** 5396 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5397 * @pdev: PCI device information struct 5398 * 5399 * Called to determine if the driver can recover from the PCI slot reset by 5400 * using a register read to determine if the device is recoverable. 5401 */ 5402 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5403 { 5404 struct ice_pf *pf = pci_get_drvdata(pdev); 5405 pci_ers_result_t result; 5406 int err; 5407 u32 reg; 5408 5409 err = pci_enable_device_mem(pdev); 5410 if (err) { 5411 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5412 err); 5413 result = PCI_ERS_RESULT_DISCONNECT; 5414 } else { 5415 pci_set_master(pdev); 5416 pci_restore_state(pdev); 5417 pci_save_state(pdev); 5418 pci_wake_from_d3(pdev, false); 5419 5420 /* Check for life */ 5421 reg = rd32(&pf->hw, GLGEN_RTRIG); 5422 if (!reg) 5423 result = PCI_ERS_RESULT_RECOVERED; 5424 else 5425 result = PCI_ERS_RESULT_DISCONNECT; 5426 } 5427 5428 return result; 5429 } 5430 5431 /** 5432 * ice_pci_err_resume - restart operations after PCI error recovery 5433 * @pdev: PCI device information struct 5434 * 5435 * Called to allow the driver to bring things back up after PCI error and/or 5436 * reset recovery have finished 5437 */ 5438 static void ice_pci_err_resume(struct pci_dev *pdev) 5439 { 5440 struct ice_pf *pf = pci_get_drvdata(pdev); 5441 5442 if (!pf) { 5443 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5444 __func__); 5445 return; 5446 } 5447 5448 if (test_bit(ICE_SUSPENDED, pf->state)) { 5449 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5450 __func__); 5451 return; 5452 } 5453 5454 ice_restore_all_vfs_msi_state(pdev); 5455 5456 ice_do_reset(pf, ICE_RESET_PFR); 5457 ice_service_task_restart(pf); 5458 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5459 } 5460 5461 /** 5462 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5463 * @pdev: PCI device information struct 5464 */ 5465 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5466 { 5467 struct ice_pf *pf = pci_get_drvdata(pdev); 5468 5469 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5470 ice_service_task_stop(pf); 5471 5472 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5473 set_bit(ICE_PFR_REQ, pf->state); 5474 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5475 } 5476 } 5477 } 5478 5479 /** 5480 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5481 * @pdev: PCI device information struct 5482 */ 5483 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5484 { 5485 ice_pci_err_resume(pdev); 5486 } 5487 5488 /* ice_pci_tbl - PCI Device ID Table 5489 * 5490 * Wildcard entries (PCI_ANY_ID) should come last 5491 * Last entry must be all 0s 5492 * 5493 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5494 * Class, Class Mask, private data (not used) } 5495 */ 5496 static const struct pci_device_id ice_pci_tbl[] = { 5497 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5498 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5499 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5500 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5501 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5502 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5503 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5504 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5523 /* required last entry */ 5524 { 0, } 5525 }; 5526 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5527 5528 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5529 5530 static const struct pci_error_handlers ice_pci_err_handler = { 5531 .error_detected = ice_pci_err_detected, 5532 .slot_reset = ice_pci_err_slot_reset, 5533 .reset_prepare = ice_pci_err_reset_prepare, 5534 .reset_done = ice_pci_err_reset_done, 5535 .resume = ice_pci_err_resume 5536 }; 5537 5538 static struct pci_driver ice_driver = { 5539 .name = KBUILD_MODNAME, 5540 .id_table = ice_pci_tbl, 5541 .probe = ice_probe, 5542 .remove = ice_remove, 5543 #ifdef CONFIG_PM 5544 .driver.pm = &ice_pm_ops, 5545 #endif /* CONFIG_PM */ 5546 .shutdown = ice_shutdown, 5547 .sriov_configure = ice_sriov_configure, 5548 .err_handler = &ice_pci_err_handler 5549 }; 5550 5551 /** 5552 * ice_module_init - Driver registration routine 5553 * 5554 * ice_module_init is the first routine called when the driver is 5555 * loaded. All it does is register with the PCI subsystem. 5556 */ 5557 static int __init ice_module_init(void) 5558 { 5559 int status; 5560 5561 pr_info("%s\n", ice_driver_string); 5562 pr_info("%s\n", ice_copyright); 5563 5564 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5565 if (!ice_wq) { 5566 pr_err("Failed to create workqueue\n"); 5567 return -ENOMEM; 5568 } 5569 5570 status = pci_register_driver(&ice_driver); 5571 if (status) { 5572 pr_err("failed to register PCI driver, err %d\n", status); 5573 destroy_workqueue(ice_wq); 5574 } 5575 5576 return status; 5577 } 5578 module_init(ice_module_init); 5579 5580 /** 5581 * ice_module_exit - Driver exit cleanup routine 5582 * 5583 * ice_module_exit is called just before the driver is removed 5584 * from memory. 5585 */ 5586 static void __exit ice_module_exit(void) 5587 { 5588 pci_unregister_driver(&ice_driver); 5589 destroy_workqueue(ice_wq); 5590 pr_info("module unloaded\n"); 5591 } 5592 module_exit(ice_module_exit); 5593 5594 /** 5595 * ice_set_mac_address - NDO callback to set MAC address 5596 * @netdev: network interface device structure 5597 * @pi: pointer to an address structure 5598 * 5599 * Returns 0 on success, negative on failure 5600 */ 5601 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5602 { 5603 struct ice_netdev_priv *np = netdev_priv(netdev); 5604 struct ice_vsi *vsi = np->vsi; 5605 struct ice_pf *pf = vsi->back; 5606 struct ice_hw *hw = &pf->hw; 5607 struct sockaddr *addr = pi; 5608 u8 old_mac[ETH_ALEN]; 5609 u8 flags = 0; 5610 u8 *mac; 5611 int err; 5612 5613 mac = (u8 *)addr->sa_data; 5614 5615 if (!is_valid_ether_addr(mac)) 5616 return -EADDRNOTAVAIL; 5617 5618 if (ether_addr_equal(netdev->dev_addr, mac)) { 5619 netdev_dbg(netdev, "already using mac %pM\n", mac); 5620 return 0; 5621 } 5622 5623 if (test_bit(ICE_DOWN, pf->state) || 5624 ice_is_reset_in_progress(pf->state)) { 5625 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5626 mac); 5627 return -EBUSY; 5628 } 5629 5630 if (ice_chnl_dmac_fltr_cnt(pf)) { 5631 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5632 mac); 5633 return -EAGAIN; 5634 } 5635 5636 netif_addr_lock_bh(netdev); 5637 ether_addr_copy(old_mac, netdev->dev_addr); 5638 /* change the netdev's MAC address */ 5639 eth_hw_addr_set(netdev, mac); 5640 netif_addr_unlock_bh(netdev); 5641 5642 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5643 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5644 if (err && err != -ENOENT) { 5645 err = -EADDRNOTAVAIL; 5646 goto err_update_filters; 5647 } 5648 5649 /* Add filter for new MAC. If filter exists, return success */ 5650 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5651 if (err == -EEXIST) { 5652 /* Although this MAC filter is already present in hardware it's 5653 * possible in some cases (e.g. bonding) that dev_addr was 5654 * modified outside of the driver and needs to be restored back 5655 * to this value. 5656 */ 5657 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5658 5659 return 0; 5660 } else if (err) { 5661 /* error if the new filter addition failed */ 5662 err = -EADDRNOTAVAIL; 5663 } 5664 5665 err_update_filters: 5666 if (err) { 5667 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5668 mac); 5669 netif_addr_lock_bh(netdev); 5670 eth_hw_addr_set(netdev, old_mac); 5671 netif_addr_unlock_bh(netdev); 5672 return err; 5673 } 5674 5675 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5676 netdev->dev_addr); 5677 5678 /* write new MAC address to the firmware */ 5679 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5680 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5681 if (err) { 5682 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5683 mac, err); 5684 } 5685 return 0; 5686 } 5687 5688 /** 5689 * ice_set_rx_mode - NDO callback to set the netdev filters 5690 * @netdev: network interface device structure 5691 */ 5692 static void ice_set_rx_mode(struct net_device *netdev) 5693 { 5694 struct ice_netdev_priv *np = netdev_priv(netdev); 5695 struct ice_vsi *vsi = np->vsi; 5696 5697 if (!vsi) 5698 return; 5699 5700 /* Set the flags to synchronize filters 5701 * ndo_set_rx_mode may be triggered even without a change in netdev 5702 * flags 5703 */ 5704 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5705 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5706 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5707 5708 /* schedule our worker thread which will take care of 5709 * applying the new filter changes 5710 */ 5711 ice_service_task_schedule(vsi->back); 5712 } 5713 5714 /** 5715 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5716 * @netdev: network interface device structure 5717 * @queue_index: Queue ID 5718 * @maxrate: maximum bandwidth in Mbps 5719 */ 5720 static int 5721 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5722 { 5723 struct ice_netdev_priv *np = netdev_priv(netdev); 5724 struct ice_vsi *vsi = np->vsi; 5725 u16 q_handle; 5726 int status; 5727 u8 tc; 5728 5729 /* Validate maxrate requested is within permitted range */ 5730 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5731 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5732 maxrate, queue_index); 5733 return -EINVAL; 5734 } 5735 5736 q_handle = vsi->tx_rings[queue_index]->q_handle; 5737 tc = ice_dcb_get_tc(vsi, queue_index); 5738 5739 /* Set BW back to default, when user set maxrate to 0 */ 5740 if (!maxrate) 5741 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5742 q_handle, ICE_MAX_BW); 5743 else 5744 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5745 q_handle, ICE_MAX_BW, maxrate * 1000); 5746 if (status) 5747 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5748 status); 5749 5750 return status; 5751 } 5752 5753 /** 5754 * ice_fdb_add - add an entry to the hardware database 5755 * @ndm: the input from the stack 5756 * @tb: pointer to array of nladdr (unused) 5757 * @dev: the net device pointer 5758 * @addr: the MAC address entry being added 5759 * @vid: VLAN ID 5760 * @flags: instructions from stack about fdb operation 5761 * @extack: netlink extended ack 5762 */ 5763 static int 5764 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5765 struct net_device *dev, const unsigned char *addr, u16 vid, 5766 u16 flags, struct netlink_ext_ack __always_unused *extack) 5767 { 5768 int err; 5769 5770 if (vid) { 5771 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5772 return -EINVAL; 5773 } 5774 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5775 netdev_err(dev, "FDB only supports static addresses\n"); 5776 return -EINVAL; 5777 } 5778 5779 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5780 err = dev_uc_add_excl(dev, addr); 5781 else if (is_multicast_ether_addr(addr)) 5782 err = dev_mc_add_excl(dev, addr); 5783 else 5784 err = -EINVAL; 5785 5786 /* Only return duplicate errors if NLM_F_EXCL is set */ 5787 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5788 err = 0; 5789 5790 return err; 5791 } 5792 5793 /** 5794 * ice_fdb_del - delete an entry from the hardware database 5795 * @ndm: the input from the stack 5796 * @tb: pointer to array of nladdr (unused) 5797 * @dev: the net device pointer 5798 * @addr: the MAC address entry being added 5799 * @vid: VLAN ID 5800 * @extack: netlink extended ack 5801 */ 5802 static int 5803 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5804 struct net_device *dev, const unsigned char *addr, 5805 __always_unused u16 vid, struct netlink_ext_ack *extack) 5806 { 5807 int err; 5808 5809 if (ndm->ndm_state & NUD_PERMANENT) { 5810 netdev_err(dev, "FDB only supports static addresses\n"); 5811 return -EINVAL; 5812 } 5813 5814 if (is_unicast_ether_addr(addr)) 5815 err = dev_uc_del(dev, addr); 5816 else if (is_multicast_ether_addr(addr)) 5817 err = dev_mc_del(dev, addr); 5818 else 5819 err = -EINVAL; 5820 5821 return err; 5822 } 5823 5824 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5825 NETIF_F_HW_VLAN_CTAG_TX | \ 5826 NETIF_F_HW_VLAN_STAG_RX | \ 5827 NETIF_F_HW_VLAN_STAG_TX) 5828 5829 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5830 NETIF_F_HW_VLAN_STAG_RX) 5831 5832 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5833 NETIF_F_HW_VLAN_STAG_FILTER) 5834 5835 /** 5836 * ice_fix_features - fix the netdev features flags based on device limitations 5837 * @netdev: ptr to the netdev that flags are being fixed on 5838 * @features: features that need to be checked and possibly fixed 5839 * 5840 * Make sure any fixups are made to features in this callback. This enables the 5841 * driver to not have to check unsupported configurations throughout the driver 5842 * because that's the responsiblity of this callback. 5843 * 5844 * Single VLAN Mode (SVM) Supported Features: 5845 * NETIF_F_HW_VLAN_CTAG_FILTER 5846 * NETIF_F_HW_VLAN_CTAG_RX 5847 * NETIF_F_HW_VLAN_CTAG_TX 5848 * 5849 * Double VLAN Mode (DVM) Supported Features: 5850 * NETIF_F_HW_VLAN_CTAG_FILTER 5851 * NETIF_F_HW_VLAN_CTAG_RX 5852 * NETIF_F_HW_VLAN_CTAG_TX 5853 * 5854 * NETIF_F_HW_VLAN_STAG_FILTER 5855 * NETIF_HW_VLAN_STAG_RX 5856 * NETIF_HW_VLAN_STAG_TX 5857 * 5858 * Features that need fixing: 5859 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5860 * These are mutually exlusive as the VSI context cannot support multiple 5861 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5862 * is not done, then default to clearing the requested STAG offload 5863 * settings. 5864 * 5865 * All supported filtering has to be enabled or disabled together. For 5866 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5867 * together. If this is not done, then default to VLAN filtering disabled. 5868 * These are mutually exclusive as there is currently no way to 5869 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5870 * prune rules. 5871 */ 5872 static netdev_features_t 5873 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5874 { 5875 struct ice_netdev_priv *np = netdev_priv(netdev); 5876 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5877 bool cur_ctag, cur_stag, req_ctag, req_stag; 5878 5879 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5880 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5881 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5882 5883 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5884 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5885 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5886 5887 if (req_vlan_fltr != cur_vlan_fltr) { 5888 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5889 if (req_ctag && req_stag) { 5890 features |= NETIF_VLAN_FILTERING_FEATURES; 5891 } else if (!req_ctag && !req_stag) { 5892 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5893 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5894 (!cur_stag && req_stag && !cur_ctag)) { 5895 features |= NETIF_VLAN_FILTERING_FEATURES; 5896 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5897 } else if ((cur_ctag && !req_ctag && cur_stag) || 5898 (cur_stag && !req_stag && cur_ctag)) { 5899 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5900 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5901 } 5902 } else { 5903 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5904 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5905 5906 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5907 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5908 } 5909 } 5910 5911 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5912 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5913 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5914 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5915 NETIF_F_HW_VLAN_STAG_TX); 5916 } 5917 5918 if (!(netdev->features & NETIF_F_RXFCS) && 5919 (features & NETIF_F_RXFCS) && 5920 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5921 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5922 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5923 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5924 } 5925 5926 return features; 5927 } 5928 5929 /** 5930 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5931 * @vsi: PF's VSI 5932 * @features: features used to determine VLAN offload settings 5933 * 5934 * First, determine the vlan_ethertype based on the VLAN offload bits in 5935 * features. Then determine if stripping and insertion should be enabled or 5936 * disabled. Finally enable or disable VLAN stripping and insertion. 5937 */ 5938 static int 5939 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5940 { 5941 bool enable_stripping = true, enable_insertion = true; 5942 struct ice_vsi_vlan_ops *vlan_ops; 5943 int strip_err = 0, insert_err = 0; 5944 u16 vlan_ethertype = 0; 5945 5946 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5947 5948 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5949 vlan_ethertype = ETH_P_8021AD; 5950 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5951 vlan_ethertype = ETH_P_8021Q; 5952 5953 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5954 enable_stripping = false; 5955 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5956 enable_insertion = false; 5957 5958 if (enable_stripping) 5959 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5960 else 5961 strip_err = vlan_ops->dis_stripping(vsi); 5962 5963 if (enable_insertion) 5964 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5965 else 5966 insert_err = vlan_ops->dis_insertion(vsi); 5967 5968 if (strip_err || insert_err) 5969 return -EIO; 5970 5971 return 0; 5972 } 5973 5974 /** 5975 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5976 * @vsi: PF's VSI 5977 * @features: features used to determine VLAN filtering settings 5978 * 5979 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5980 * features. 5981 */ 5982 static int 5983 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5984 { 5985 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5986 int err = 0; 5987 5988 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5989 * if either bit is set 5990 */ 5991 if (features & 5992 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5993 err = vlan_ops->ena_rx_filtering(vsi); 5994 else 5995 err = vlan_ops->dis_rx_filtering(vsi); 5996 5997 return err; 5998 } 5999 6000 /** 6001 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6002 * @netdev: ptr to the netdev being adjusted 6003 * @features: the feature set that the stack is suggesting 6004 * 6005 * Only update VLAN settings if the requested_vlan_features are different than 6006 * the current_vlan_features. 6007 */ 6008 static int 6009 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6010 { 6011 netdev_features_t current_vlan_features, requested_vlan_features; 6012 struct ice_netdev_priv *np = netdev_priv(netdev); 6013 struct ice_vsi *vsi = np->vsi; 6014 int err; 6015 6016 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6017 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6018 if (current_vlan_features ^ requested_vlan_features) { 6019 if ((features & NETIF_F_RXFCS) && 6020 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6021 dev_err(ice_pf_to_dev(vsi->back), 6022 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6023 return -EIO; 6024 } 6025 6026 err = ice_set_vlan_offload_features(vsi, features); 6027 if (err) 6028 return err; 6029 } 6030 6031 current_vlan_features = netdev->features & 6032 NETIF_VLAN_FILTERING_FEATURES; 6033 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6034 if (current_vlan_features ^ requested_vlan_features) { 6035 err = ice_set_vlan_filtering_features(vsi, features); 6036 if (err) 6037 return err; 6038 } 6039 6040 return 0; 6041 } 6042 6043 /** 6044 * ice_set_loopback - turn on/off loopback mode on underlying PF 6045 * @vsi: ptr to VSI 6046 * @ena: flag to indicate the on/off setting 6047 */ 6048 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6049 { 6050 bool if_running = netif_running(vsi->netdev); 6051 int ret; 6052 6053 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6054 ret = ice_down(vsi); 6055 if (ret) { 6056 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6057 return ret; 6058 } 6059 } 6060 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6061 if (ret) 6062 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6063 if (if_running) 6064 ret = ice_up(vsi); 6065 6066 return ret; 6067 } 6068 6069 /** 6070 * ice_set_features - set the netdev feature flags 6071 * @netdev: ptr to the netdev being adjusted 6072 * @features: the feature set that the stack is suggesting 6073 */ 6074 static int 6075 ice_set_features(struct net_device *netdev, netdev_features_t features) 6076 { 6077 netdev_features_t changed = netdev->features ^ features; 6078 struct ice_netdev_priv *np = netdev_priv(netdev); 6079 struct ice_vsi *vsi = np->vsi; 6080 struct ice_pf *pf = vsi->back; 6081 int ret = 0; 6082 6083 /* Don't set any netdev advanced features with device in Safe Mode */ 6084 if (ice_is_safe_mode(pf)) { 6085 dev_err(ice_pf_to_dev(pf), 6086 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6087 return ret; 6088 } 6089 6090 /* Do not change setting during reset */ 6091 if (ice_is_reset_in_progress(pf->state)) { 6092 dev_err(ice_pf_to_dev(pf), 6093 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6094 return -EBUSY; 6095 } 6096 6097 /* Multiple features can be changed in one call so keep features in 6098 * separate if/else statements to guarantee each feature is checked 6099 */ 6100 if (changed & NETIF_F_RXHASH) 6101 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6102 6103 ret = ice_set_vlan_features(netdev, features); 6104 if (ret) 6105 return ret; 6106 6107 /* Turn on receive of FCS aka CRC, and after setting this 6108 * flag the packet data will have the 4 byte CRC appended 6109 */ 6110 if (changed & NETIF_F_RXFCS) { 6111 if ((features & NETIF_F_RXFCS) && 6112 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6113 dev_err(ice_pf_to_dev(vsi->back), 6114 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6115 return -EIO; 6116 } 6117 6118 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6119 ret = ice_down_up(vsi); 6120 if (ret) 6121 return ret; 6122 } 6123 6124 if (changed & NETIF_F_NTUPLE) { 6125 bool ena = !!(features & NETIF_F_NTUPLE); 6126 6127 ice_vsi_manage_fdir(vsi, ena); 6128 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6129 } 6130 6131 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6132 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6133 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6134 return -EACCES; 6135 } 6136 6137 if (changed & NETIF_F_HW_TC) { 6138 bool ena = !!(features & NETIF_F_HW_TC); 6139 6140 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6141 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6142 } 6143 6144 if (changed & NETIF_F_LOOPBACK) 6145 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6146 6147 return ret; 6148 } 6149 6150 /** 6151 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6152 * @vsi: VSI to setup VLAN properties for 6153 */ 6154 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6155 { 6156 int err; 6157 6158 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6159 if (err) 6160 return err; 6161 6162 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6163 if (err) 6164 return err; 6165 6166 return ice_vsi_add_vlan_zero(vsi); 6167 } 6168 6169 /** 6170 * ice_vsi_cfg_lan - Setup the VSI lan related config 6171 * @vsi: the VSI being configured 6172 * 6173 * Return 0 on success and negative value on error 6174 */ 6175 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6176 { 6177 int err; 6178 6179 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6180 ice_set_rx_mode(vsi->netdev); 6181 6182 err = ice_vsi_vlan_setup(vsi); 6183 if (err) 6184 return err; 6185 } 6186 ice_vsi_cfg_dcb_rings(vsi); 6187 6188 err = ice_vsi_cfg_lan_txqs(vsi); 6189 if (!err && ice_is_xdp_ena_vsi(vsi)) 6190 err = ice_vsi_cfg_xdp_txqs(vsi); 6191 if (!err) 6192 err = ice_vsi_cfg_rxqs(vsi); 6193 6194 return err; 6195 } 6196 6197 /* THEORY OF MODERATION: 6198 * The ice driver hardware works differently than the hardware that DIMLIB was 6199 * originally made for. ice hardware doesn't have packet count limits that 6200 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6201 * which is hard-coded to a limit of 250,000 ints/second. 6202 * If not using dynamic moderation, the INTRL value can be modified 6203 * by ethtool rx-usecs-high. 6204 */ 6205 struct ice_dim { 6206 /* the throttle rate for interrupts, basically worst case delay before 6207 * an initial interrupt fires, value is stored in microseconds. 6208 */ 6209 u16 itr; 6210 }; 6211 6212 /* Make a different profile for Rx that doesn't allow quite so aggressive 6213 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6214 * second. 6215 */ 6216 static const struct ice_dim rx_profile[] = { 6217 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6218 {8}, /* 125,000 ints/s */ 6219 {16}, /* 62,500 ints/s */ 6220 {62}, /* 16,129 ints/s */ 6221 {126} /* 7,936 ints/s */ 6222 }; 6223 6224 /* The transmit profile, which has the same sorts of values 6225 * as the previous struct 6226 */ 6227 static const struct ice_dim tx_profile[] = { 6228 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6229 {8}, /* 125,000 ints/s */ 6230 {40}, /* 16,125 ints/s */ 6231 {128}, /* 7,812 ints/s */ 6232 {256} /* 3,906 ints/s */ 6233 }; 6234 6235 static void ice_tx_dim_work(struct work_struct *work) 6236 { 6237 struct ice_ring_container *rc; 6238 struct dim *dim; 6239 u16 itr; 6240 6241 dim = container_of(work, struct dim, work); 6242 rc = (struct ice_ring_container *)dim->priv; 6243 6244 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6245 6246 /* look up the values in our local table */ 6247 itr = tx_profile[dim->profile_ix].itr; 6248 6249 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6250 ice_write_itr(rc, itr); 6251 6252 dim->state = DIM_START_MEASURE; 6253 } 6254 6255 static void ice_rx_dim_work(struct work_struct *work) 6256 { 6257 struct ice_ring_container *rc; 6258 struct dim *dim; 6259 u16 itr; 6260 6261 dim = container_of(work, struct dim, work); 6262 rc = (struct ice_ring_container *)dim->priv; 6263 6264 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6265 6266 /* look up the values in our local table */ 6267 itr = rx_profile[dim->profile_ix].itr; 6268 6269 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6270 ice_write_itr(rc, itr); 6271 6272 dim->state = DIM_START_MEASURE; 6273 } 6274 6275 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6276 6277 /** 6278 * ice_init_moderation - set up interrupt moderation 6279 * @q_vector: the vector containing rings to be configured 6280 * 6281 * Set up interrupt moderation registers, with the intent to do the right thing 6282 * when called from reset or from probe, and whether or not dynamic moderation 6283 * is enabled or not. Take special care to write all the registers in both 6284 * dynamic moderation mode or not in order to make sure hardware is in a known 6285 * state. 6286 */ 6287 static void ice_init_moderation(struct ice_q_vector *q_vector) 6288 { 6289 struct ice_ring_container *rc; 6290 bool tx_dynamic, rx_dynamic; 6291 6292 rc = &q_vector->tx; 6293 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6294 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6295 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6296 rc->dim.priv = rc; 6297 tx_dynamic = ITR_IS_DYNAMIC(rc); 6298 6299 /* set the initial TX ITR to match the above */ 6300 ice_write_itr(rc, tx_dynamic ? 6301 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6302 6303 rc = &q_vector->rx; 6304 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6305 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6306 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6307 rc->dim.priv = rc; 6308 rx_dynamic = ITR_IS_DYNAMIC(rc); 6309 6310 /* set the initial RX ITR to match the above */ 6311 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6312 rc->itr_setting); 6313 6314 ice_set_q_vector_intrl(q_vector); 6315 } 6316 6317 /** 6318 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6319 * @vsi: the VSI being configured 6320 */ 6321 static void ice_napi_enable_all(struct ice_vsi *vsi) 6322 { 6323 int q_idx; 6324 6325 if (!vsi->netdev) 6326 return; 6327 6328 ice_for_each_q_vector(vsi, q_idx) { 6329 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6330 6331 ice_init_moderation(q_vector); 6332 6333 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6334 napi_enable(&q_vector->napi); 6335 } 6336 } 6337 6338 /** 6339 * ice_up_complete - Finish the last steps of bringing up a connection 6340 * @vsi: The VSI being configured 6341 * 6342 * Return 0 on success and negative value on error 6343 */ 6344 static int ice_up_complete(struct ice_vsi *vsi) 6345 { 6346 struct ice_pf *pf = vsi->back; 6347 int err; 6348 6349 ice_vsi_cfg_msix(vsi); 6350 6351 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6352 * Tx queue group list was configured and the context bits were 6353 * programmed using ice_vsi_cfg_txqs 6354 */ 6355 err = ice_vsi_start_all_rx_rings(vsi); 6356 if (err) 6357 return err; 6358 6359 clear_bit(ICE_VSI_DOWN, vsi->state); 6360 ice_napi_enable_all(vsi); 6361 ice_vsi_ena_irq(vsi); 6362 6363 if (vsi->port_info && 6364 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6365 vsi->netdev && vsi->type == ICE_VSI_PF) { 6366 ice_print_link_msg(vsi, true); 6367 netif_tx_start_all_queues(vsi->netdev); 6368 netif_carrier_on(vsi->netdev); 6369 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6370 } 6371 6372 /* Perform an initial read of the statistics registers now to 6373 * set the baseline so counters are ready when interface is up 6374 */ 6375 ice_update_eth_stats(vsi); 6376 6377 if (vsi->type == ICE_VSI_PF) 6378 ice_service_task_schedule(pf); 6379 6380 return 0; 6381 } 6382 6383 /** 6384 * ice_up - Bring the connection back up after being down 6385 * @vsi: VSI being configured 6386 */ 6387 int ice_up(struct ice_vsi *vsi) 6388 { 6389 int err; 6390 6391 err = ice_vsi_cfg_lan(vsi); 6392 if (!err) 6393 err = ice_up_complete(vsi); 6394 6395 return err; 6396 } 6397 6398 /** 6399 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6400 * @syncp: pointer to u64_stats_sync 6401 * @stats: stats that pkts and bytes count will be taken from 6402 * @pkts: packets stats counter 6403 * @bytes: bytes stats counter 6404 * 6405 * This function fetches stats from the ring considering the atomic operations 6406 * that needs to be performed to read u64 values in 32 bit machine. 6407 */ 6408 void 6409 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6410 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6411 { 6412 unsigned int start; 6413 6414 do { 6415 start = u64_stats_fetch_begin(syncp); 6416 *pkts = stats.pkts; 6417 *bytes = stats.bytes; 6418 } while (u64_stats_fetch_retry(syncp, start)); 6419 } 6420 6421 /** 6422 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6423 * @vsi: the VSI to be updated 6424 * @vsi_stats: the stats struct to be updated 6425 * @rings: rings to work on 6426 * @count: number of rings 6427 */ 6428 static void 6429 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6430 struct rtnl_link_stats64 *vsi_stats, 6431 struct ice_tx_ring **rings, u16 count) 6432 { 6433 u16 i; 6434 6435 for (i = 0; i < count; i++) { 6436 struct ice_tx_ring *ring; 6437 u64 pkts = 0, bytes = 0; 6438 6439 ring = READ_ONCE(rings[i]); 6440 if (!ring || !ring->ring_stats) 6441 continue; 6442 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6443 ring->ring_stats->stats, &pkts, 6444 &bytes); 6445 vsi_stats->tx_packets += pkts; 6446 vsi_stats->tx_bytes += bytes; 6447 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6448 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6449 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6450 } 6451 } 6452 6453 /** 6454 * ice_update_vsi_ring_stats - Update VSI stats counters 6455 * @vsi: the VSI to be updated 6456 */ 6457 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6458 { 6459 struct rtnl_link_stats64 *net_stats, *stats_prev; 6460 struct rtnl_link_stats64 *vsi_stats; 6461 u64 pkts, bytes; 6462 int i; 6463 6464 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6465 if (!vsi_stats) 6466 return; 6467 6468 /* reset non-netdev (extended) stats */ 6469 vsi->tx_restart = 0; 6470 vsi->tx_busy = 0; 6471 vsi->tx_linearize = 0; 6472 vsi->rx_buf_failed = 0; 6473 vsi->rx_page_failed = 0; 6474 6475 rcu_read_lock(); 6476 6477 /* update Tx rings counters */ 6478 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6479 vsi->num_txq); 6480 6481 /* update Rx rings counters */ 6482 ice_for_each_rxq(vsi, i) { 6483 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6484 struct ice_ring_stats *ring_stats; 6485 6486 ring_stats = ring->ring_stats; 6487 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6488 ring_stats->stats, &pkts, 6489 &bytes); 6490 vsi_stats->rx_packets += pkts; 6491 vsi_stats->rx_bytes += bytes; 6492 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6493 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6494 } 6495 6496 /* update XDP Tx rings counters */ 6497 if (ice_is_xdp_ena_vsi(vsi)) 6498 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6499 vsi->num_xdp_txq); 6500 6501 rcu_read_unlock(); 6502 6503 net_stats = &vsi->net_stats; 6504 stats_prev = &vsi->net_stats_prev; 6505 6506 /* clear prev counters after reset */ 6507 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6508 vsi_stats->rx_packets < stats_prev->rx_packets) { 6509 stats_prev->tx_packets = 0; 6510 stats_prev->tx_bytes = 0; 6511 stats_prev->rx_packets = 0; 6512 stats_prev->rx_bytes = 0; 6513 } 6514 6515 /* update netdev counters */ 6516 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6517 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6518 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6519 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6520 6521 stats_prev->tx_packets = vsi_stats->tx_packets; 6522 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6523 stats_prev->rx_packets = vsi_stats->rx_packets; 6524 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6525 6526 kfree(vsi_stats); 6527 } 6528 6529 /** 6530 * ice_update_vsi_stats - Update VSI stats counters 6531 * @vsi: the VSI to be updated 6532 */ 6533 void ice_update_vsi_stats(struct ice_vsi *vsi) 6534 { 6535 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6536 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6537 struct ice_pf *pf = vsi->back; 6538 6539 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6540 test_bit(ICE_CFG_BUSY, pf->state)) 6541 return; 6542 6543 /* get stats as recorded by Tx/Rx rings */ 6544 ice_update_vsi_ring_stats(vsi); 6545 6546 /* get VSI stats as recorded by the hardware */ 6547 ice_update_eth_stats(vsi); 6548 6549 cur_ns->tx_errors = cur_es->tx_errors; 6550 cur_ns->rx_dropped = cur_es->rx_discards; 6551 cur_ns->tx_dropped = cur_es->tx_discards; 6552 cur_ns->multicast = cur_es->rx_multicast; 6553 6554 /* update some more netdev stats if this is main VSI */ 6555 if (vsi->type == ICE_VSI_PF) { 6556 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6557 cur_ns->rx_errors = pf->stats.crc_errors + 6558 pf->stats.illegal_bytes + 6559 pf->stats.rx_len_errors + 6560 pf->stats.rx_undersize + 6561 pf->hw_csum_rx_error + 6562 pf->stats.rx_jabber + 6563 pf->stats.rx_fragments + 6564 pf->stats.rx_oversize; 6565 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6566 /* record drops from the port level */ 6567 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6568 } 6569 } 6570 6571 /** 6572 * ice_update_pf_stats - Update PF port stats counters 6573 * @pf: PF whose stats needs to be updated 6574 */ 6575 void ice_update_pf_stats(struct ice_pf *pf) 6576 { 6577 struct ice_hw_port_stats *prev_ps, *cur_ps; 6578 struct ice_hw *hw = &pf->hw; 6579 u16 fd_ctr_base; 6580 u8 port; 6581 6582 port = hw->port_info->lport; 6583 prev_ps = &pf->stats_prev; 6584 cur_ps = &pf->stats; 6585 6586 if (ice_is_reset_in_progress(pf->state)) 6587 pf->stat_prev_loaded = false; 6588 6589 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6590 &prev_ps->eth.rx_bytes, 6591 &cur_ps->eth.rx_bytes); 6592 6593 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6594 &prev_ps->eth.rx_unicast, 6595 &cur_ps->eth.rx_unicast); 6596 6597 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6598 &prev_ps->eth.rx_multicast, 6599 &cur_ps->eth.rx_multicast); 6600 6601 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6602 &prev_ps->eth.rx_broadcast, 6603 &cur_ps->eth.rx_broadcast); 6604 6605 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6606 &prev_ps->eth.rx_discards, 6607 &cur_ps->eth.rx_discards); 6608 6609 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6610 &prev_ps->eth.tx_bytes, 6611 &cur_ps->eth.tx_bytes); 6612 6613 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6614 &prev_ps->eth.tx_unicast, 6615 &cur_ps->eth.tx_unicast); 6616 6617 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6618 &prev_ps->eth.tx_multicast, 6619 &cur_ps->eth.tx_multicast); 6620 6621 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6622 &prev_ps->eth.tx_broadcast, 6623 &cur_ps->eth.tx_broadcast); 6624 6625 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6626 &prev_ps->tx_dropped_link_down, 6627 &cur_ps->tx_dropped_link_down); 6628 6629 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6630 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6631 6632 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6633 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6634 6635 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6636 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6637 6638 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6639 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6640 6641 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6642 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6643 6644 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6645 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6646 6647 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6648 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6649 6650 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6651 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6652 6653 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6654 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6655 6656 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6657 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6658 6659 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6660 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6661 6662 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6663 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6664 6665 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6666 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6667 6668 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6669 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6670 6671 fd_ctr_base = hw->fd_ctr_base; 6672 6673 ice_stat_update40(hw, 6674 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6675 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6676 &cur_ps->fd_sb_match); 6677 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6678 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6679 6680 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6681 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6682 6683 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6684 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6685 6686 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6687 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6688 6689 ice_update_dcb_stats(pf); 6690 6691 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6692 &prev_ps->crc_errors, &cur_ps->crc_errors); 6693 6694 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6695 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6696 6697 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6698 &prev_ps->mac_local_faults, 6699 &cur_ps->mac_local_faults); 6700 6701 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6702 &prev_ps->mac_remote_faults, 6703 &cur_ps->mac_remote_faults); 6704 6705 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6706 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6707 6708 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6709 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6710 6711 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6712 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6713 6714 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6715 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6716 6717 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6718 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6719 6720 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6721 6722 pf->stat_prev_loaded = true; 6723 } 6724 6725 /** 6726 * ice_get_stats64 - get statistics for network device structure 6727 * @netdev: network interface device structure 6728 * @stats: main device statistics structure 6729 */ 6730 static 6731 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6732 { 6733 struct ice_netdev_priv *np = netdev_priv(netdev); 6734 struct rtnl_link_stats64 *vsi_stats; 6735 struct ice_vsi *vsi = np->vsi; 6736 6737 vsi_stats = &vsi->net_stats; 6738 6739 if (!vsi->num_txq || !vsi->num_rxq) 6740 return; 6741 6742 /* netdev packet/byte stats come from ring counter. These are obtained 6743 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6744 * But, only call the update routine and read the registers if VSI is 6745 * not down. 6746 */ 6747 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6748 ice_update_vsi_ring_stats(vsi); 6749 stats->tx_packets = vsi_stats->tx_packets; 6750 stats->tx_bytes = vsi_stats->tx_bytes; 6751 stats->rx_packets = vsi_stats->rx_packets; 6752 stats->rx_bytes = vsi_stats->rx_bytes; 6753 6754 /* The rest of the stats can be read from the hardware but instead we 6755 * just return values that the watchdog task has already obtained from 6756 * the hardware. 6757 */ 6758 stats->multicast = vsi_stats->multicast; 6759 stats->tx_errors = vsi_stats->tx_errors; 6760 stats->tx_dropped = vsi_stats->tx_dropped; 6761 stats->rx_errors = vsi_stats->rx_errors; 6762 stats->rx_dropped = vsi_stats->rx_dropped; 6763 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6764 stats->rx_length_errors = vsi_stats->rx_length_errors; 6765 } 6766 6767 /** 6768 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6769 * @vsi: VSI having NAPI disabled 6770 */ 6771 static void ice_napi_disable_all(struct ice_vsi *vsi) 6772 { 6773 int q_idx; 6774 6775 if (!vsi->netdev) 6776 return; 6777 6778 ice_for_each_q_vector(vsi, q_idx) { 6779 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6780 6781 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6782 napi_disable(&q_vector->napi); 6783 6784 cancel_work_sync(&q_vector->tx.dim.work); 6785 cancel_work_sync(&q_vector->rx.dim.work); 6786 } 6787 } 6788 6789 /** 6790 * ice_down - Shutdown the connection 6791 * @vsi: The VSI being stopped 6792 * 6793 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6794 */ 6795 int ice_down(struct ice_vsi *vsi) 6796 { 6797 int i, tx_err, rx_err, vlan_err = 0; 6798 6799 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6800 6801 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6802 vlan_err = ice_vsi_del_vlan_zero(vsi); 6803 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6804 netif_carrier_off(vsi->netdev); 6805 netif_tx_disable(vsi->netdev); 6806 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6807 ice_eswitch_stop_all_tx_queues(vsi->back); 6808 } 6809 6810 ice_vsi_dis_irq(vsi); 6811 6812 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6813 if (tx_err) 6814 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6815 vsi->vsi_num, tx_err); 6816 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6817 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6818 if (tx_err) 6819 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6820 vsi->vsi_num, tx_err); 6821 } 6822 6823 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6824 if (rx_err) 6825 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6826 vsi->vsi_num, rx_err); 6827 6828 ice_napi_disable_all(vsi); 6829 6830 ice_for_each_txq(vsi, i) 6831 ice_clean_tx_ring(vsi->tx_rings[i]); 6832 6833 ice_for_each_rxq(vsi, i) 6834 ice_clean_rx_ring(vsi->rx_rings[i]); 6835 6836 if (tx_err || rx_err || vlan_err) { 6837 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6838 vsi->vsi_num, vsi->vsw->sw_id); 6839 return -EIO; 6840 } 6841 6842 return 0; 6843 } 6844 6845 /** 6846 * ice_down_up - shutdown the VSI connection and bring it up 6847 * @vsi: the VSI to be reconnected 6848 */ 6849 int ice_down_up(struct ice_vsi *vsi) 6850 { 6851 int ret; 6852 6853 /* if DOWN already set, nothing to do */ 6854 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6855 return 0; 6856 6857 ret = ice_down(vsi); 6858 if (ret) 6859 return ret; 6860 6861 ret = ice_up(vsi); 6862 if (ret) { 6863 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6864 return ret; 6865 } 6866 6867 return 0; 6868 } 6869 6870 /** 6871 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6872 * @vsi: VSI having resources allocated 6873 * 6874 * Return 0 on success, negative on failure 6875 */ 6876 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6877 { 6878 int i, err = 0; 6879 6880 if (!vsi->num_txq) { 6881 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6882 vsi->vsi_num); 6883 return -EINVAL; 6884 } 6885 6886 ice_for_each_txq(vsi, i) { 6887 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6888 6889 if (!ring) 6890 return -EINVAL; 6891 6892 if (vsi->netdev) 6893 ring->netdev = vsi->netdev; 6894 err = ice_setup_tx_ring(ring); 6895 if (err) 6896 break; 6897 } 6898 6899 return err; 6900 } 6901 6902 /** 6903 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6904 * @vsi: VSI having resources allocated 6905 * 6906 * Return 0 on success, negative on failure 6907 */ 6908 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6909 { 6910 int i, err = 0; 6911 6912 if (!vsi->num_rxq) { 6913 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6914 vsi->vsi_num); 6915 return -EINVAL; 6916 } 6917 6918 ice_for_each_rxq(vsi, i) { 6919 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6920 6921 if (!ring) 6922 return -EINVAL; 6923 6924 if (vsi->netdev) 6925 ring->netdev = vsi->netdev; 6926 err = ice_setup_rx_ring(ring); 6927 if (err) 6928 break; 6929 } 6930 6931 return err; 6932 } 6933 6934 /** 6935 * ice_vsi_open_ctrl - open control VSI for use 6936 * @vsi: the VSI to open 6937 * 6938 * Initialization of the Control VSI 6939 * 6940 * Returns 0 on success, negative value on error 6941 */ 6942 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6943 { 6944 char int_name[ICE_INT_NAME_STR_LEN]; 6945 struct ice_pf *pf = vsi->back; 6946 struct device *dev; 6947 int err; 6948 6949 dev = ice_pf_to_dev(pf); 6950 /* allocate descriptors */ 6951 err = ice_vsi_setup_tx_rings(vsi); 6952 if (err) 6953 goto err_setup_tx; 6954 6955 err = ice_vsi_setup_rx_rings(vsi); 6956 if (err) 6957 goto err_setup_rx; 6958 6959 err = ice_vsi_cfg_lan(vsi); 6960 if (err) 6961 goto err_setup_rx; 6962 6963 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6964 dev_driver_string(dev), dev_name(dev)); 6965 err = ice_vsi_req_irq_msix(vsi, int_name); 6966 if (err) 6967 goto err_setup_rx; 6968 6969 ice_vsi_cfg_msix(vsi); 6970 6971 err = ice_vsi_start_all_rx_rings(vsi); 6972 if (err) 6973 goto err_up_complete; 6974 6975 clear_bit(ICE_VSI_DOWN, vsi->state); 6976 ice_vsi_ena_irq(vsi); 6977 6978 return 0; 6979 6980 err_up_complete: 6981 ice_down(vsi); 6982 err_setup_rx: 6983 ice_vsi_free_rx_rings(vsi); 6984 err_setup_tx: 6985 ice_vsi_free_tx_rings(vsi); 6986 6987 return err; 6988 } 6989 6990 /** 6991 * ice_vsi_open - Called when a network interface is made active 6992 * @vsi: the VSI to open 6993 * 6994 * Initialization of the VSI 6995 * 6996 * Returns 0 on success, negative value on error 6997 */ 6998 int ice_vsi_open(struct ice_vsi *vsi) 6999 { 7000 char int_name[ICE_INT_NAME_STR_LEN]; 7001 struct ice_pf *pf = vsi->back; 7002 int err; 7003 7004 /* allocate descriptors */ 7005 err = ice_vsi_setup_tx_rings(vsi); 7006 if (err) 7007 goto err_setup_tx; 7008 7009 err = ice_vsi_setup_rx_rings(vsi); 7010 if (err) 7011 goto err_setup_rx; 7012 7013 err = ice_vsi_cfg_lan(vsi); 7014 if (err) 7015 goto err_setup_rx; 7016 7017 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7018 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7019 err = ice_vsi_req_irq_msix(vsi, int_name); 7020 if (err) 7021 goto err_setup_rx; 7022 7023 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7024 7025 if (vsi->type == ICE_VSI_PF) { 7026 /* Notify the stack of the actual queue counts. */ 7027 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7028 if (err) 7029 goto err_set_qs; 7030 7031 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7032 if (err) 7033 goto err_set_qs; 7034 } 7035 7036 err = ice_up_complete(vsi); 7037 if (err) 7038 goto err_up_complete; 7039 7040 return 0; 7041 7042 err_up_complete: 7043 ice_down(vsi); 7044 err_set_qs: 7045 ice_vsi_free_irq(vsi); 7046 err_setup_rx: 7047 ice_vsi_free_rx_rings(vsi); 7048 err_setup_tx: 7049 ice_vsi_free_tx_rings(vsi); 7050 7051 return err; 7052 } 7053 7054 /** 7055 * ice_vsi_release_all - Delete all VSIs 7056 * @pf: PF from which all VSIs are being removed 7057 */ 7058 static void ice_vsi_release_all(struct ice_pf *pf) 7059 { 7060 int err, i; 7061 7062 if (!pf->vsi) 7063 return; 7064 7065 ice_for_each_vsi(pf, i) { 7066 if (!pf->vsi[i]) 7067 continue; 7068 7069 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7070 continue; 7071 7072 err = ice_vsi_release(pf->vsi[i]); 7073 if (err) 7074 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7075 i, err, pf->vsi[i]->vsi_num); 7076 } 7077 } 7078 7079 /** 7080 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7081 * @pf: pointer to the PF instance 7082 * @type: VSI type to rebuild 7083 * 7084 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7085 */ 7086 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7087 { 7088 struct device *dev = ice_pf_to_dev(pf); 7089 int i, err; 7090 7091 ice_for_each_vsi(pf, i) { 7092 struct ice_vsi *vsi = pf->vsi[i]; 7093 7094 if (!vsi || vsi->type != type) 7095 continue; 7096 7097 /* rebuild the VSI */ 7098 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7099 if (err) { 7100 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7101 err, vsi->idx, ice_vsi_type_str(type)); 7102 return err; 7103 } 7104 7105 /* replay filters for the VSI */ 7106 err = ice_replay_vsi(&pf->hw, vsi->idx); 7107 if (err) { 7108 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7109 err, vsi->idx, ice_vsi_type_str(type)); 7110 return err; 7111 } 7112 7113 /* Re-map HW VSI number, using VSI handle that has been 7114 * previously validated in ice_replay_vsi() call above 7115 */ 7116 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7117 7118 /* enable the VSI */ 7119 err = ice_ena_vsi(vsi, false); 7120 if (err) { 7121 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7122 err, vsi->idx, ice_vsi_type_str(type)); 7123 return err; 7124 } 7125 7126 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7127 ice_vsi_type_str(type)); 7128 } 7129 7130 return 0; 7131 } 7132 7133 /** 7134 * ice_update_pf_netdev_link - Update PF netdev link status 7135 * @pf: pointer to the PF instance 7136 */ 7137 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7138 { 7139 bool link_up; 7140 int i; 7141 7142 ice_for_each_vsi(pf, i) { 7143 struct ice_vsi *vsi = pf->vsi[i]; 7144 7145 if (!vsi || vsi->type != ICE_VSI_PF) 7146 return; 7147 7148 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7149 if (link_up) { 7150 netif_carrier_on(pf->vsi[i]->netdev); 7151 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7152 } else { 7153 netif_carrier_off(pf->vsi[i]->netdev); 7154 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7155 } 7156 } 7157 } 7158 7159 /** 7160 * ice_rebuild - rebuild after reset 7161 * @pf: PF to rebuild 7162 * @reset_type: type of reset 7163 * 7164 * Do not rebuild VF VSI in this flow because that is already handled via 7165 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7166 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7167 * to reset/rebuild all the VF VSI twice. 7168 */ 7169 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7170 { 7171 struct device *dev = ice_pf_to_dev(pf); 7172 struct ice_hw *hw = &pf->hw; 7173 bool dvm; 7174 int err; 7175 7176 if (test_bit(ICE_DOWN, pf->state)) 7177 goto clear_recovery; 7178 7179 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7180 7181 #define ICE_EMP_RESET_SLEEP_MS 5000 7182 if (reset_type == ICE_RESET_EMPR) { 7183 /* If an EMP reset has occurred, any previously pending flash 7184 * update will have completed. We no longer know whether or 7185 * not the NVM update EMP reset is restricted. 7186 */ 7187 pf->fw_emp_reset_disabled = false; 7188 7189 msleep(ICE_EMP_RESET_SLEEP_MS); 7190 } 7191 7192 err = ice_init_all_ctrlq(hw); 7193 if (err) { 7194 dev_err(dev, "control queues init failed %d\n", err); 7195 goto err_init_ctrlq; 7196 } 7197 7198 /* if DDP was previously loaded successfully */ 7199 if (!ice_is_safe_mode(pf)) { 7200 /* reload the SW DB of filter tables */ 7201 if (reset_type == ICE_RESET_PFR) 7202 ice_fill_blk_tbls(hw); 7203 else 7204 /* Reload DDP Package after CORER/GLOBR reset */ 7205 ice_load_pkg(NULL, pf); 7206 } 7207 7208 err = ice_clear_pf_cfg(hw); 7209 if (err) { 7210 dev_err(dev, "clear PF configuration failed %d\n", err); 7211 goto err_init_ctrlq; 7212 } 7213 7214 ice_clear_pxe_mode(hw); 7215 7216 err = ice_init_nvm(hw); 7217 if (err) { 7218 dev_err(dev, "ice_init_nvm failed %d\n", err); 7219 goto err_init_ctrlq; 7220 } 7221 7222 err = ice_get_caps(hw); 7223 if (err) { 7224 dev_err(dev, "ice_get_caps failed %d\n", err); 7225 goto err_init_ctrlq; 7226 } 7227 7228 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7229 if (err) { 7230 dev_err(dev, "set_mac_cfg failed %d\n", err); 7231 goto err_init_ctrlq; 7232 } 7233 7234 dvm = ice_is_dvm_ena(hw); 7235 7236 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7237 if (err) 7238 goto err_init_ctrlq; 7239 7240 err = ice_sched_init_port(hw->port_info); 7241 if (err) 7242 goto err_sched_init_port; 7243 7244 /* start misc vector */ 7245 err = ice_req_irq_msix_misc(pf); 7246 if (err) { 7247 dev_err(dev, "misc vector setup failed: %d\n", err); 7248 goto err_sched_init_port; 7249 } 7250 7251 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7252 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7253 if (!rd32(hw, PFQF_FD_SIZE)) { 7254 u16 unused, guar, b_effort; 7255 7256 guar = hw->func_caps.fd_fltr_guar; 7257 b_effort = hw->func_caps.fd_fltr_best_effort; 7258 7259 /* force guaranteed filter pool for PF */ 7260 ice_alloc_fd_guar_item(hw, &unused, guar); 7261 /* force shared filter pool for PF */ 7262 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7263 } 7264 } 7265 7266 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7267 ice_dcb_rebuild(pf); 7268 7269 /* If the PF previously had enabled PTP, PTP init needs to happen before 7270 * the VSI rebuild. If not, this causes the PTP link status events to 7271 * fail. 7272 */ 7273 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7274 ice_ptp_reset(pf); 7275 7276 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7277 ice_gnss_init(pf); 7278 7279 /* rebuild PF VSI */ 7280 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7281 if (err) { 7282 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7283 goto err_vsi_rebuild; 7284 } 7285 7286 /* configure PTP timestamping after VSI rebuild */ 7287 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7288 ice_ptp_cfg_timestamp(pf, false); 7289 7290 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7291 if (err) { 7292 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7293 goto err_vsi_rebuild; 7294 } 7295 7296 if (reset_type == ICE_RESET_PFR) { 7297 err = ice_rebuild_channels(pf); 7298 if (err) { 7299 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7300 err); 7301 goto err_vsi_rebuild; 7302 } 7303 } 7304 7305 /* If Flow Director is active */ 7306 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7307 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7308 if (err) { 7309 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7310 goto err_vsi_rebuild; 7311 } 7312 7313 /* replay HW Flow Director recipes */ 7314 if (hw->fdir_prof) 7315 ice_fdir_replay_flows(hw); 7316 7317 /* replay Flow Director filters */ 7318 ice_fdir_replay_fltrs(pf); 7319 7320 ice_rebuild_arfs(pf); 7321 } 7322 7323 ice_update_pf_netdev_link(pf); 7324 7325 /* tell the firmware we are up */ 7326 err = ice_send_version(pf); 7327 if (err) { 7328 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7329 err); 7330 goto err_vsi_rebuild; 7331 } 7332 7333 ice_replay_post(hw); 7334 7335 /* if we get here, reset flow is successful */ 7336 clear_bit(ICE_RESET_FAILED, pf->state); 7337 7338 ice_plug_aux_dev(pf); 7339 return; 7340 7341 err_vsi_rebuild: 7342 err_sched_init_port: 7343 ice_sched_cleanup_all(hw); 7344 err_init_ctrlq: 7345 ice_shutdown_all_ctrlq(hw); 7346 set_bit(ICE_RESET_FAILED, pf->state); 7347 clear_recovery: 7348 /* set this bit in PF state to control service task scheduling */ 7349 set_bit(ICE_NEEDS_RESTART, pf->state); 7350 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7351 } 7352 7353 /** 7354 * ice_change_mtu - NDO callback to change the MTU 7355 * @netdev: network interface device structure 7356 * @new_mtu: new value for maximum frame size 7357 * 7358 * Returns 0 on success, negative on failure 7359 */ 7360 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7361 { 7362 struct ice_netdev_priv *np = netdev_priv(netdev); 7363 struct ice_vsi *vsi = np->vsi; 7364 struct ice_pf *pf = vsi->back; 7365 struct bpf_prog *prog; 7366 u8 count = 0; 7367 int err = 0; 7368 7369 if (new_mtu == (int)netdev->mtu) { 7370 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7371 return 0; 7372 } 7373 7374 prog = vsi->xdp_prog; 7375 if (prog && !prog->aux->xdp_has_frags) { 7376 int frame_size = ice_max_xdp_frame_size(vsi); 7377 7378 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7379 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7380 frame_size - ICE_ETH_PKT_HDR_PAD); 7381 return -EINVAL; 7382 } 7383 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7384 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7385 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7386 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7387 return -EINVAL; 7388 } 7389 } 7390 7391 /* if a reset is in progress, wait for some time for it to complete */ 7392 do { 7393 if (ice_is_reset_in_progress(pf->state)) { 7394 count++; 7395 usleep_range(1000, 2000); 7396 } else { 7397 break; 7398 } 7399 7400 } while (count < 100); 7401 7402 if (count == 100) { 7403 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7404 return -EBUSY; 7405 } 7406 7407 netdev->mtu = (unsigned int)new_mtu; 7408 7409 /* if VSI is up, bring it down and then back up */ 7410 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7411 err = ice_down(vsi); 7412 if (err) { 7413 netdev_err(netdev, "change MTU if_down err %d\n", err); 7414 return err; 7415 } 7416 7417 err = ice_up(vsi); 7418 if (err) { 7419 netdev_err(netdev, "change MTU if_up err %d\n", err); 7420 return err; 7421 } 7422 } 7423 7424 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7425 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7426 7427 return err; 7428 } 7429 7430 /** 7431 * ice_eth_ioctl - Access the hwtstamp interface 7432 * @netdev: network interface device structure 7433 * @ifr: interface request data 7434 * @cmd: ioctl command 7435 */ 7436 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7437 { 7438 struct ice_netdev_priv *np = netdev_priv(netdev); 7439 struct ice_pf *pf = np->vsi->back; 7440 7441 switch (cmd) { 7442 case SIOCGHWTSTAMP: 7443 return ice_ptp_get_ts_config(pf, ifr); 7444 case SIOCSHWTSTAMP: 7445 return ice_ptp_set_ts_config(pf, ifr); 7446 default: 7447 return -EOPNOTSUPP; 7448 } 7449 } 7450 7451 /** 7452 * ice_aq_str - convert AQ err code to a string 7453 * @aq_err: the AQ error code to convert 7454 */ 7455 const char *ice_aq_str(enum ice_aq_err aq_err) 7456 { 7457 switch (aq_err) { 7458 case ICE_AQ_RC_OK: 7459 return "OK"; 7460 case ICE_AQ_RC_EPERM: 7461 return "ICE_AQ_RC_EPERM"; 7462 case ICE_AQ_RC_ENOENT: 7463 return "ICE_AQ_RC_ENOENT"; 7464 case ICE_AQ_RC_ENOMEM: 7465 return "ICE_AQ_RC_ENOMEM"; 7466 case ICE_AQ_RC_EBUSY: 7467 return "ICE_AQ_RC_EBUSY"; 7468 case ICE_AQ_RC_EEXIST: 7469 return "ICE_AQ_RC_EEXIST"; 7470 case ICE_AQ_RC_EINVAL: 7471 return "ICE_AQ_RC_EINVAL"; 7472 case ICE_AQ_RC_ENOSPC: 7473 return "ICE_AQ_RC_ENOSPC"; 7474 case ICE_AQ_RC_ENOSYS: 7475 return "ICE_AQ_RC_ENOSYS"; 7476 case ICE_AQ_RC_EMODE: 7477 return "ICE_AQ_RC_EMODE"; 7478 case ICE_AQ_RC_ENOSEC: 7479 return "ICE_AQ_RC_ENOSEC"; 7480 case ICE_AQ_RC_EBADSIG: 7481 return "ICE_AQ_RC_EBADSIG"; 7482 case ICE_AQ_RC_ESVN: 7483 return "ICE_AQ_RC_ESVN"; 7484 case ICE_AQ_RC_EBADMAN: 7485 return "ICE_AQ_RC_EBADMAN"; 7486 case ICE_AQ_RC_EBADBUF: 7487 return "ICE_AQ_RC_EBADBUF"; 7488 } 7489 7490 return "ICE_AQ_RC_UNKNOWN"; 7491 } 7492 7493 /** 7494 * ice_set_rss_lut - Set RSS LUT 7495 * @vsi: Pointer to VSI structure 7496 * @lut: Lookup table 7497 * @lut_size: Lookup table size 7498 * 7499 * Returns 0 on success, negative on failure 7500 */ 7501 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7502 { 7503 struct ice_aq_get_set_rss_lut_params params = {}; 7504 struct ice_hw *hw = &vsi->back->hw; 7505 int status; 7506 7507 if (!lut) 7508 return -EINVAL; 7509 7510 params.vsi_handle = vsi->idx; 7511 params.lut_size = lut_size; 7512 params.lut_type = vsi->rss_lut_type; 7513 params.lut = lut; 7514 7515 status = ice_aq_set_rss_lut(hw, ¶ms); 7516 if (status) 7517 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7518 status, ice_aq_str(hw->adminq.sq_last_status)); 7519 7520 return status; 7521 } 7522 7523 /** 7524 * ice_set_rss_key - Set RSS key 7525 * @vsi: Pointer to the VSI structure 7526 * @seed: RSS hash seed 7527 * 7528 * Returns 0 on success, negative on failure 7529 */ 7530 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7531 { 7532 struct ice_hw *hw = &vsi->back->hw; 7533 int status; 7534 7535 if (!seed) 7536 return -EINVAL; 7537 7538 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7539 if (status) 7540 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7541 status, ice_aq_str(hw->adminq.sq_last_status)); 7542 7543 return status; 7544 } 7545 7546 /** 7547 * ice_get_rss_lut - Get RSS LUT 7548 * @vsi: Pointer to VSI structure 7549 * @lut: Buffer to store the lookup table entries 7550 * @lut_size: Size of buffer to store the lookup table entries 7551 * 7552 * Returns 0 on success, negative on failure 7553 */ 7554 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7555 { 7556 struct ice_aq_get_set_rss_lut_params params = {}; 7557 struct ice_hw *hw = &vsi->back->hw; 7558 int status; 7559 7560 if (!lut) 7561 return -EINVAL; 7562 7563 params.vsi_handle = vsi->idx; 7564 params.lut_size = lut_size; 7565 params.lut_type = vsi->rss_lut_type; 7566 params.lut = lut; 7567 7568 status = ice_aq_get_rss_lut(hw, ¶ms); 7569 if (status) 7570 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7571 status, ice_aq_str(hw->adminq.sq_last_status)); 7572 7573 return status; 7574 } 7575 7576 /** 7577 * ice_get_rss_key - Get RSS key 7578 * @vsi: Pointer to VSI structure 7579 * @seed: Buffer to store the key in 7580 * 7581 * Returns 0 on success, negative on failure 7582 */ 7583 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7584 { 7585 struct ice_hw *hw = &vsi->back->hw; 7586 int status; 7587 7588 if (!seed) 7589 return -EINVAL; 7590 7591 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7592 if (status) 7593 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7594 status, ice_aq_str(hw->adminq.sq_last_status)); 7595 7596 return status; 7597 } 7598 7599 /** 7600 * ice_bridge_getlink - Get the hardware bridge mode 7601 * @skb: skb buff 7602 * @pid: process ID 7603 * @seq: RTNL message seq 7604 * @dev: the netdev being configured 7605 * @filter_mask: filter mask passed in 7606 * @nlflags: netlink flags passed in 7607 * 7608 * Return the bridge mode (VEB/VEPA) 7609 */ 7610 static int 7611 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7612 struct net_device *dev, u32 filter_mask, int nlflags) 7613 { 7614 struct ice_netdev_priv *np = netdev_priv(dev); 7615 struct ice_vsi *vsi = np->vsi; 7616 struct ice_pf *pf = vsi->back; 7617 u16 bmode; 7618 7619 bmode = pf->first_sw->bridge_mode; 7620 7621 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7622 filter_mask, NULL); 7623 } 7624 7625 /** 7626 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7627 * @vsi: Pointer to VSI structure 7628 * @bmode: Hardware bridge mode (VEB/VEPA) 7629 * 7630 * Returns 0 on success, negative on failure 7631 */ 7632 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7633 { 7634 struct ice_aqc_vsi_props *vsi_props; 7635 struct ice_hw *hw = &vsi->back->hw; 7636 struct ice_vsi_ctx *ctxt; 7637 int ret; 7638 7639 vsi_props = &vsi->info; 7640 7641 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7642 if (!ctxt) 7643 return -ENOMEM; 7644 7645 ctxt->info = vsi->info; 7646 7647 if (bmode == BRIDGE_MODE_VEB) 7648 /* change from VEPA to VEB mode */ 7649 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7650 else 7651 /* change from VEB to VEPA mode */ 7652 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7653 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7654 7655 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7656 if (ret) { 7657 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7658 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7659 goto out; 7660 } 7661 /* Update sw flags for book keeping */ 7662 vsi_props->sw_flags = ctxt->info.sw_flags; 7663 7664 out: 7665 kfree(ctxt); 7666 return ret; 7667 } 7668 7669 /** 7670 * ice_bridge_setlink - Set the hardware bridge mode 7671 * @dev: the netdev being configured 7672 * @nlh: RTNL message 7673 * @flags: bridge setlink flags 7674 * @extack: netlink extended ack 7675 * 7676 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7677 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7678 * not already set for all VSIs connected to this switch. And also update the 7679 * unicast switch filter rules for the corresponding switch of the netdev. 7680 */ 7681 static int 7682 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7683 u16 __always_unused flags, 7684 struct netlink_ext_ack __always_unused *extack) 7685 { 7686 struct ice_netdev_priv *np = netdev_priv(dev); 7687 struct ice_pf *pf = np->vsi->back; 7688 struct nlattr *attr, *br_spec; 7689 struct ice_hw *hw = &pf->hw; 7690 struct ice_sw *pf_sw; 7691 int rem, v, err = 0; 7692 7693 pf_sw = pf->first_sw; 7694 /* find the attribute in the netlink message */ 7695 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7696 7697 nla_for_each_nested(attr, br_spec, rem) { 7698 __u16 mode; 7699 7700 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7701 continue; 7702 mode = nla_get_u16(attr); 7703 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7704 return -EINVAL; 7705 /* Continue if bridge mode is not being flipped */ 7706 if (mode == pf_sw->bridge_mode) 7707 continue; 7708 /* Iterates through the PF VSI list and update the loopback 7709 * mode of the VSI 7710 */ 7711 ice_for_each_vsi(pf, v) { 7712 if (!pf->vsi[v]) 7713 continue; 7714 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7715 if (err) 7716 return err; 7717 } 7718 7719 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7720 /* Update the unicast switch filter rules for the corresponding 7721 * switch of the netdev 7722 */ 7723 err = ice_update_sw_rule_bridge_mode(hw); 7724 if (err) { 7725 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7726 mode, err, 7727 ice_aq_str(hw->adminq.sq_last_status)); 7728 /* revert hw->evb_veb */ 7729 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7730 return err; 7731 } 7732 7733 pf_sw->bridge_mode = mode; 7734 } 7735 7736 return 0; 7737 } 7738 7739 /** 7740 * ice_tx_timeout - Respond to a Tx Hang 7741 * @netdev: network interface device structure 7742 * @txqueue: Tx queue 7743 */ 7744 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7745 { 7746 struct ice_netdev_priv *np = netdev_priv(netdev); 7747 struct ice_tx_ring *tx_ring = NULL; 7748 struct ice_vsi *vsi = np->vsi; 7749 struct ice_pf *pf = vsi->back; 7750 u32 i; 7751 7752 pf->tx_timeout_count++; 7753 7754 /* Check if PFC is enabled for the TC to which the queue belongs 7755 * to. If yes then Tx timeout is not caused by a hung queue, no 7756 * need to reset and rebuild 7757 */ 7758 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7759 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7760 txqueue); 7761 return; 7762 } 7763 7764 /* now that we have an index, find the tx_ring struct */ 7765 ice_for_each_txq(vsi, i) 7766 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7767 if (txqueue == vsi->tx_rings[i]->q_index) { 7768 tx_ring = vsi->tx_rings[i]; 7769 break; 7770 } 7771 7772 /* Reset recovery level if enough time has elapsed after last timeout. 7773 * Also ensure no new reset action happens before next timeout period. 7774 */ 7775 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7776 pf->tx_timeout_recovery_level = 1; 7777 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7778 netdev->watchdog_timeo))) 7779 return; 7780 7781 if (tx_ring) { 7782 struct ice_hw *hw = &pf->hw; 7783 u32 head, val = 0; 7784 7785 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7786 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7787 /* Read interrupt register */ 7788 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7789 7790 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7791 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7792 head, tx_ring->next_to_use, val); 7793 } 7794 7795 pf->tx_timeout_last_recovery = jiffies; 7796 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7797 pf->tx_timeout_recovery_level, txqueue); 7798 7799 switch (pf->tx_timeout_recovery_level) { 7800 case 1: 7801 set_bit(ICE_PFR_REQ, pf->state); 7802 break; 7803 case 2: 7804 set_bit(ICE_CORER_REQ, pf->state); 7805 break; 7806 case 3: 7807 set_bit(ICE_GLOBR_REQ, pf->state); 7808 break; 7809 default: 7810 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7811 set_bit(ICE_DOWN, pf->state); 7812 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7813 set_bit(ICE_SERVICE_DIS, pf->state); 7814 break; 7815 } 7816 7817 ice_service_task_schedule(pf); 7818 pf->tx_timeout_recovery_level++; 7819 } 7820 7821 /** 7822 * ice_setup_tc_cls_flower - flower classifier offloads 7823 * @np: net device to configure 7824 * @filter_dev: device on which filter is added 7825 * @cls_flower: offload data 7826 */ 7827 static int 7828 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7829 struct net_device *filter_dev, 7830 struct flow_cls_offload *cls_flower) 7831 { 7832 struct ice_vsi *vsi = np->vsi; 7833 7834 if (cls_flower->common.chain_index) 7835 return -EOPNOTSUPP; 7836 7837 switch (cls_flower->command) { 7838 case FLOW_CLS_REPLACE: 7839 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7840 case FLOW_CLS_DESTROY: 7841 return ice_del_cls_flower(vsi, cls_flower); 7842 default: 7843 return -EINVAL; 7844 } 7845 } 7846 7847 /** 7848 * ice_setup_tc_block_cb - callback handler registered for TC block 7849 * @type: TC SETUP type 7850 * @type_data: TC flower offload data that contains user input 7851 * @cb_priv: netdev private data 7852 */ 7853 static int 7854 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7855 { 7856 struct ice_netdev_priv *np = cb_priv; 7857 7858 switch (type) { 7859 case TC_SETUP_CLSFLOWER: 7860 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7861 type_data); 7862 default: 7863 return -EOPNOTSUPP; 7864 } 7865 } 7866 7867 /** 7868 * ice_validate_mqprio_qopt - Validate TCF input parameters 7869 * @vsi: Pointer to VSI 7870 * @mqprio_qopt: input parameters for mqprio queue configuration 7871 * 7872 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7873 * needed), and make sure user doesn't specify qcount and BW rate limit 7874 * for TCs, which are more than "num_tc" 7875 */ 7876 static int 7877 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7878 struct tc_mqprio_qopt_offload *mqprio_qopt) 7879 { 7880 u64 sum_max_rate = 0, sum_min_rate = 0; 7881 int non_power_of_2_qcount = 0; 7882 struct ice_pf *pf = vsi->back; 7883 int max_rss_q_cnt = 0; 7884 struct device *dev; 7885 int i, speed; 7886 u8 num_tc; 7887 7888 if (vsi->type != ICE_VSI_PF) 7889 return -EINVAL; 7890 7891 if (mqprio_qopt->qopt.offset[0] != 0 || 7892 mqprio_qopt->qopt.num_tc < 1 || 7893 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7894 return -EINVAL; 7895 7896 dev = ice_pf_to_dev(pf); 7897 vsi->ch_rss_size = 0; 7898 num_tc = mqprio_qopt->qopt.num_tc; 7899 7900 for (i = 0; num_tc; i++) { 7901 int qcount = mqprio_qopt->qopt.count[i]; 7902 u64 max_rate, min_rate, rem; 7903 7904 if (!qcount) 7905 return -EINVAL; 7906 7907 if (is_power_of_2(qcount)) { 7908 if (non_power_of_2_qcount && 7909 qcount > non_power_of_2_qcount) { 7910 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7911 qcount, non_power_of_2_qcount); 7912 return -EINVAL; 7913 } 7914 if (qcount > max_rss_q_cnt) 7915 max_rss_q_cnt = qcount; 7916 } else { 7917 if (non_power_of_2_qcount && 7918 qcount != non_power_of_2_qcount) { 7919 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7920 qcount, non_power_of_2_qcount); 7921 return -EINVAL; 7922 } 7923 if (qcount < max_rss_q_cnt) { 7924 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7925 qcount, max_rss_q_cnt); 7926 return -EINVAL; 7927 } 7928 max_rss_q_cnt = qcount; 7929 non_power_of_2_qcount = qcount; 7930 } 7931 7932 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7933 * converts the bandwidth rate limit into Bytes/s when 7934 * passing it down to the driver. So convert input bandwidth 7935 * from Bytes/s to Kbps 7936 */ 7937 max_rate = mqprio_qopt->max_rate[i]; 7938 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7939 sum_max_rate += max_rate; 7940 7941 /* min_rate is minimum guaranteed rate and it can't be zero */ 7942 min_rate = mqprio_qopt->min_rate[i]; 7943 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7944 sum_min_rate += min_rate; 7945 7946 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7947 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7948 min_rate, ICE_MIN_BW_LIMIT); 7949 return -EINVAL; 7950 } 7951 7952 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7953 if (rem) { 7954 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7955 i, ICE_MIN_BW_LIMIT); 7956 return -EINVAL; 7957 } 7958 7959 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7960 if (rem) { 7961 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7962 i, ICE_MIN_BW_LIMIT); 7963 return -EINVAL; 7964 } 7965 7966 /* min_rate can't be more than max_rate, except when max_rate 7967 * is zero (implies max_rate sought is max line rate). In such 7968 * a case min_rate can be more than max. 7969 */ 7970 if (max_rate && min_rate > max_rate) { 7971 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7972 min_rate, max_rate); 7973 return -EINVAL; 7974 } 7975 7976 if (i >= mqprio_qopt->qopt.num_tc - 1) 7977 break; 7978 if (mqprio_qopt->qopt.offset[i + 1] != 7979 (mqprio_qopt->qopt.offset[i] + qcount)) 7980 return -EINVAL; 7981 } 7982 if (vsi->num_rxq < 7983 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7984 return -EINVAL; 7985 if (vsi->num_txq < 7986 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7987 return -EINVAL; 7988 7989 speed = ice_get_link_speed_kbps(vsi); 7990 if (sum_max_rate && sum_max_rate > (u64)speed) { 7991 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7992 sum_max_rate, speed); 7993 return -EINVAL; 7994 } 7995 if (sum_min_rate && sum_min_rate > (u64)speed) { 7996 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7997 sum_min_rate, speed); 7998 return -EINVAL; 7999 } 8000 8001 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8002 vsi->ch_rss_size = max_rss_q_cnt; 8003 8004 return 0; 8005 } 8006 8007 /** 8008 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8009 * @pf: ptr to PF device 8010 * @vsi: ptr to VSI 8011 */ 8012 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8013 { 8014 struct device *dev = ice_pf_to_dev(pf); 8015 bool added = false; 8016 struct ice_hw *hw; 8017 int flow; 8018 8019 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8020 return -EINVAL; 8021 8022 hw = &pf->hw; 8023 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8024 struct ice_fd_hw_prof *prof; 8025 int tun, status; 8026 u64 entry_h; 8027 8028 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8029 hw->fdir_prof[flow]->cnt)) 8030 continue; 8031 8032 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8033 enum ice_flow_priority prio; 8034 u64 prof_id; 8035 8036 /* add this VSI to FDir profile for this flow */ 8037 prio = ICE_FLOW_PRIO_NORMAL; 8038 prof = hw->fdir_prof[flow]; 8039 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8040 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8041 prof->vsi_h[0], vsi->idx, 8042 prio, prof->fdir_seg[tun], 8043 &entry_h); 8044 if (status) { 8045 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8046 vsi->idx, flow); 8047 continue; 8048 } 8049 8050 prof->entry_h[prof->cnt][tun] = entry_h; 8051 } 8052 8053 /* store VSI for filter replay and delete */ 8054 prof->vsi_h[prof->cnt] = vsi->idx; 8055 prof->cnt++; 8056 8057 added = true; 8058 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8059 flow); 8060 } 8061 8062 if (!added) 8063 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8064 8065 return 0; 8066 } 8067 8068 /** 8069 * ice_add_channel - add a channel by adding VSI 8070 * @pf: ptr to PF device 8071 * @sw_id: underlying HW switching element ID 8072 * @ch: ptr to channel structure 8073 * 8074 * Add a channel (VSI) using add_vsi and queue_map 8075 */ 8076 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8077 { 8078 struct device *dev = ice_pf_to_dev(pf); 8079 struct ice_vsi *vsi; 8080 8081 if (ch->type != ICE_VSI_CHNL) { 8082 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8083 return -EINVAL; 8084 } 8085 8086 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8087 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8088 dev_err(dev, "create chnl VSI failure\n"); 8089 return -EINVAL; 8090 } 8091 8092 ice_add_vsi_to_fdir(pf, vsi); 8093 8094 ch->sw_id = sw_id; 8095 ch->vsi_num = vsi->vsi_num; 8096 ch->info.mapping_flags = vsi->info.mapping_flags; 8097 ch->ch_vsi = vsi; 8098 /* set the back pointer of channel for newly created VSI */ 8099 vsi->ch = ch; 8100 8101 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8102 sizeof(vsi->info.q_mapping)); 8103 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8104 sizeof(vsi->info.tc_mapping)); 8105 8106 return 0; 8107 } 8108 8109 /** 8110 * ice_chnl_cfg_res 8111 * @vsi: the VSI being setup 8112 * @ch: ptr to channel structure 8113 * 8114 * Configure channel specific resources such as rings, vector. 8115 */ 8116 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8117 { 8118 int i; 8119 8120 for (i = 0; i < ch->num_txq; i++) { 8121 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8122 struct ice_ring_container *rc; 8123 struct ice_tx_ring *tx_ring; 8124 struct ice_rx_ring *rx_ring; 8125 8126 tx_ring = vsi->tx_rings[ch->base_q + i]; 8127 rx_ring = vsi->rx_rings[ch->base_q + i]; 8128 if (!tx_ring || !rx_ring) 8129 continue; 8130 8131 /* setup ring being channel enabled */ 8132 tx_ring->ch = ch; 8133 rx_ring->ch = ch; 8134 8135 /* following code block sets up vector specific attributes */ 8136 tx_q_vector = tx_ring->q_vector; 8137 rx_q_vector = rx_ring->q_vector; 8138 if (!tx_q_vector && !rx_q_vector) 8139 continue; 8140 8141 if (tx_q_vector) { 8142 tx_q_vector->ch = ch; 8143 /* setup Tx and Rx ITR setting if DIM is off */ 8144 rc = &tx_q_vector->tx; 8145 if (!ITR_IS_DYNAMIC(rc)) 8146 ice_write_itr(rc, rc->itr_setting); 8147 } 8148 if (rx_q_vector) { 8149 rx_q_vector->ch = ch; 8150 /* setup Tx and Rx ITR setting if DIM is off */ 8151 rc = &rx_q_vector->rx; 8152 if (!ITR_IS_DYNAMIC(rc)) 8153 ice_write_itr(rc, rc->itr_setting); 8154 } 8155 } 8156 8157 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8158 * GLINT_ITR register would have written to perform in-context 8159 * update, hence perform flush 8160 */ 8161 if (ch->num_txq || ch->num_rxq) 8162 ice_flush(&vsi->back->hw); 8163 } 8164 8165 /** 8166 * ice_cfg_chnl_all_res - configure channel resources 8167 * @vsi: pte to main_vsi 8168 * @ch: ptr to channel structure 8169 * 8170 * This function configures channel specific resources such as flow-director 8171 * counter index, and other resources such as queues, vectors, ITR settings 8172 */ 8173 static void 8174 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8175 { 8176 /* configure channel (aka ADQ) resources such as queues, vectors, 8177 * ITR settings for channel specific vectors and anything else 8178 */ 8179 ice_chnl_cfg_res(vsi, ch); 8180 } 8181 8182 /** 8183 * ice_setup_hw_channel - setup new channel 8184 * @pf: ptr to PF device 8185 * @vsi: the VSI being setup 8186 * @ch: ptr to channel structure 8187 * @sw_id: underlying HW switching element ID 8188 * @type: type of channel to be created (VMDq2/VF) 8189 * 8190 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8191 * and configures Tx rings accordingly 8192 */ 8193 static int 8194 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8195 struct ice_channel *ch, u16 sw_id, u8 type) 8196 { 8197 struct device *dev = ice_pf_to_dev(pf); 8198 int ret; 8199 8200 ch->base_q = vsi->next_base_q; 8201 ch->type = type; 8202 8203 ret = ice_add_channel(pf, sw_id, ch); 8204 if (ret) { 8205 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8206 return ret; 8207 } 8208 8209 /* configure/setup ADQ specific resources */ 8210 ice_cfg_chnl_all_res(vsi, ch); 8211 8212 /* make sure to update the next_base_q so that subsequent channel's 8213 * (aka ADQ) VSI queue map is correct 8214 */ 8215 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8216 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8217 ch->num_rxq); 8218 8219 return 0; 8220 } 8221 8222 /** 8223 * ice_setup_channel - setup new channel using uplink element 8224 * @pf: ptr to PF device 8225 * @vsi: the VSI being setup 8226 * @ch: ptr to channel structure 8227 * 8228 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8229 * and uplink switching element 8230 */ 8231 static bool 8232 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8233 struct ice_channel *ch) 8234 { 8235 struct device *dev = ice_pf_to_dev(pf); 8236 u16 sw_id; 8237 int ret; 8238 8239 if (vsi->type != ICE_VSI_PF) { 8240 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8241 return false; 8242 } 8243 8244 sw_id = pf->first_sw->sw_id; 8245 8246 /* create channel (VSI) */ 8247 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8248 if (ret) { 8249 dev_err(dev, "failed to setup hw_channel\n"); 8250 return false; 8251 } 8252 dev_dbg(dev, "successfully created channel()\n"); 8253 8254 return ch->ch_vsi ? true : false; 8255 } 8256 8257 /** 8258 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8259 * @vsi: VSI to be configured 8260 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8261 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8262 */ 8263 static int 8264 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8265 { 8266 int err; 8267 8268 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8269 if (err) 8270 return err; 8271 8272 return ice_set_max_bw_limit(vsi, max_tx_rate); 8273 } 8274 8275 /** 8276 * ice_create_q_channel - function to create channel 8277 * @vsi: VSI to be configured 8278 * @ch: ptr to channel (it contains channel specific params) 8279 * 8280 * This function creates channel (VSI) using num_queues specified by user, 8281 * reconfigs RSS if needed. 8282 */ 8283 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8284 { 8285 struct ice_pf *pf = vsi->back; 8286 struct device *dev; 8287 8288 if (!ch) 8289 return -EINVAL; 8290 8291 dev = ice_pf_to_dev(pf); 8292 if (!ch->num_txq || !ch->num_rxq) { 8293 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8294 return -EINVAL; 8295 } 8296 8297 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8298 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8299 vsi->cnt_q_avail, ch->num_txq); 8300 return -EINVAL; 8301 } 8302 8303 if (!ice_setup_channel(pf, vsi, ch)) { 8304 dev_info(dev, "Failed to setup channel\n"); 8305 return -EINVAL; 8306 } 8307 /* configure BW rate limit */ 8308 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8309 int ret; 8310 8311 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8312 ch->min_tx_rate); 8313 if (ret) 8314 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8315 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8316 else 8317 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8318 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8319 } 8320 8321 vsi->cnt_q_avail -= ch->num_txq; 8322 8323 return 0; 8324 } 8325 8326 /** 8327 * ice_rem_all_chnl_fltrs - removes all channel filters 8328 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8329 * 8330 * Remove all advanced switch filters only if they are channel specific 8331 * tc-flower based filter 8332 */ 8333 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8334 { 8335 struct ice_tc_flower_fltr *fltr; 8336 struct hlist_node *node; 8337 8338 /* to remove all channel filters, iterate an ordered list of filters */ 8339 hlist_for_each_entry_safe(fltr, node, 8340 &pf->tc_flower_fltr_list, 8341 tc_flower_node) { 8342 struct ice_rule_query_data rule; 8343 int status; 8344 8345 /* for now process only channel specific filters */ 8346 if (!ice_is_chnl_fltr(fltr)) 8347 continue; 8348 8349 rule.rid = fltr->rid; 8350 rule.rule_id = fltr->rule_id; 8351 rule.vsi_handle = fltr->dest_vsi_handle; 8352 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8353 if (status) { 8354 if (status == -ENOENT) 8355 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8356 rule.rule_id); 8357 else 8358 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8359 status); 8360 } else if (fltr->dest_vsi) { 8361 /* update advanced switch filter count */ 8362 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8363 u32 flags = fltr->flags; 8364 8365 fltr->dest_vsi->num_chnl_fltr--; 8366 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8367 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8368 pf->num_dmac_chnl_fltrs--; 8369 } 8370 } 8371 8372 hlist_del(&fltr->tc_flower_node); 8373 kfree(fltr); 8374 } 8375 } 8376 8377 /** 8378 * ice_remove_q_channels - Remove queue channels for the TCs 8379 * @vsi: VSI to be configured 8380 * @rem_fltr: delete advanced switch filter or not 8381 * 8382 * Remove queue channels for the TCs 8383 */ 8384 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8385 { 8386 struct ice_channel *ch, *ch_tmp; 8387 struct ice_pf *pf = vsi->back; 8388 int i; 8389 8390 /* remove all tc-flower based filter if they are channel filters only */ 8391 if (rem_fltr) 8392 ice_rem_all_chnl_fltrs(pf); 8393 8394 /* remove ntuple filters since queue configuration is being changed */ 8395 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8396 struct ice_hw *hw = &pf->hw; 8397 8398 mutex_lock(&hw->fdir_fltr_lock); 8399 ice_fdir_del_all_fltrs(vsi); 8400 mutex_unlock(&hw->fdir_fltr_lock); 8401 } 8402 8403 /* perform cleanup for channels if they exist */ 8404 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8405 struct ice_vsi *ch_vsi; 8406 8407 list_del(&ch->list); 8408 ch_vsi = ch->ch_vsi; 8409 if (!ch_vsi) { 8410 kfree(ch); 8411 continue; 8412 } 8413 8414 /* Reset queue contexts */ 8415 for (i = 0; i < ch->num_rxq; i++) { 8416 struct ice_tx_ring *tx_ring; 8417 struct ice_rx_ring *rx_ring; 8418 8419 tx_ring = vsi->tx_rings[ch->base_q + i]; 8420 rx_ring = vsi->rx_rings[ch->base_q + i]; 8421 if (tx_ring) { 8422 tx_ring->ch = NULL; 8423 if (tx_ring->q_vector) 8424 tx_ring->q_vector->ch = NULL; 8425 } 8426 if (rx_ring) { 8427 rx_ring->ch = NULL; 8428 if (rx_ring->q_vector) 8429 rx_ring->q_vector->ch = NULL; 8430 } 8431 } 8432 8433 /* Release FD resources for the channel VSI */ 8434 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8435 8436 /* clear the VSI from scheduler tree */ 8437 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8438 8439 /* Delete VSI from FW, PF and HW VSI arrays */ 8440 ice_vsi_delete(ch->ch_vsi); 8441 8442 /* free the channel */ 8443 kfree(ch); 8444 } 8445 8446 /* clear the channel VSI map which is stored in main VSI */ 8447 ice_for_each_chnl_tc(i) 8448 vsi->tc_map_vsi[i] = NULL; 8449 8450 /* reset main VSI's all TC information */ 8451 vsi->all_enatc = 0; 8452 vsi->all_numtc = 0; 8453 } 8454 8455 /** 8456 * ice_rebuild_channels - rebuild channel 8457 * @pf: ptr to PF 8458 * 8459 * Recreate channel VSIs and replay filters 8460 */ 8461 static int ice_rebuild_channels(struct ice_pf *pf) 8462 { 8463 struct device *dev = ice_pf_to_dev(pf); 8464 struct ice_vsi *main_vsi; 8465 bool rem_adv_fltr = true; 8466 struct ice_channel *ch; 8467 struct ice_vsi *vsi; 8468 int tc_idx = 1; 8469 int i, err; 8470 8471 main_vsi = ice_get_main_vsi(pf); 8472 if (!main_vsi) 8473 return 0; 8474 8475 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8476 main_vsi->old_numtc == 1) 8477 return 0; /* nothing to be done */ 8478 8479 /* reconfigure main VSI based on old value of TC and cached values 8480 * for MQPRIO opts 8481 */ 8482 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8483 if (err) { 8484 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8485 main_vsi->old_ena_tc, main_vsi->vsi_num); 8486 return err; 8487 } 8488 8489 /* rebuild ADQ VSIs */ 8490 ice_for_each_vsi(pf, i) { 8491 enum ice_vsi_type type; 8492 8493 vsi = pf->vsi[i]; 8494 if (!vsi || vsi->type != ICE_VSI_CHNL) 8495 continue; 8496 8497 type = vsi->type; 8498 8499 /* rebuild ADQ VSI */ 8500 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8501 if (err) { 8502 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8503 ice_vsi_type_str(type), vsi->idx, err); 8504 goto cleanup; 8505 } 8506 8507 /* Re-map HW VSI number, using VSI handle that has been 8508 * previously validated in ice_replay_vsi() call above 8509 */ 8510 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8511 8512 /* replay filters for the VSI */ 8513 err = ice_replay_vsi(&pf->hw, vsi->idx); 8514 if (err) { 8515 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8516 ice_vsi_type_str(type), err, vsi->idx); 8517 rem_adv_fltr = false; 8518 goto cleanup; 8519 } 8520 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8521 ice_vsi_type_str(type), vsi->idx); 8522 8523 /* store ADQ VSI at correct TC index in main VSI's 8524 * map of TC to VSI 8525 */ 8526 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8527 } 8528 8529 /* ADQ VSI(s) has been rebuilt successfully, so setup 8530 * channel for main VSI's Tx and Rx rings 8531 */ 8532 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8533 struct ice_vsi *ch_vsi; 8534 8535 ch_vsi = ch->ch_vsi; 8536 if (!ch_vsi) 8537 continue; 8538 8539 /* reconfig channel resources */ 8540 ice_cfg_chnl_all_res(main_vsi, ch); 8541 8542 /* replay BW rate limit if it is non-zero */ 8543 if (!ch->max_tx_rate && !ch->min_tx_rate) 8544 continue; 8545 8546 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8547 ch->min_tx_rate); 8548 if (err) 8549 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8550 err, ch->max_tx_rate, ch->min_tx_rate, 8551 ch_vsi->vsi_num); 8552 else 8553 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8554 ch->max_tx_rate, ch->min_tx_rate, 8555 ch_vsi->vsi_num); 8556 } 8557 8558 /* reconfig RSS for main VSI */ 8559 if (main_vsi->ch_rss_size) 8560 ice_vsi_cfg_rss_lut_key(main_vsi); 8561 8562 return 0; 8563 8564 cleanup: 8565 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8566 return err; 8567 } 8568 8569 /** 8570 * ice_create_q_channels - Add queue channel for the given TCs 8571 * @vsi: VSI to be configured 8572 * 8573 * Configures queue channel mapping to the given TCs 8574 */ 8575 static int ice_create_q_channels(struct ice_vsi *vsi) 8576 { 8577 struct ice_pf *pf = vsi->back; 8578 struct ice_channel *ch; 8579 int ret = 0, i; 8580 8581 ice_for_each_chnl_tc(i) { 8582 if (!(vsi->all_enatc & BIT(i))) 8583 continue; 8584 8585 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8586 if (!ch) { 8587 ret = -ENOMEM; 8588 goto err_free; 8589 } 8590 INIT_LIST_HEAD(&ch->list); 8591 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8592 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8593 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8594 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8595 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8596 8597 /* convert to Kbits/s */ 8598 if (ch->max_tx_rate) 8599 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8600 ICE_BW_KBPS_DIVISOR); 8601 if (ch->min_tx_rate) 8602 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8603 ICE_BW_KBPS_DIVISOR); 8604 8605 ret = ice_create_q_channel(vsi, ch); 8606 if (ret) { 8607 dev_err(ice_pf_to_dev(pf), 8608 "failed creating channel TC:%d\n", i); 8609 kfree(ch); 8610 goto err_free; 8611 } 8612 list_add_tail(&ch->list, &vsi->ch_list); 8613 vsi->tc_map_vsi[i] = ch->ch_vsi; 8614 dev_dbg(ice_pf_to_dev(pf), 8615 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8616 } 8617 return 0; 8618 8619 err_free: 8620 ice_remove_q_channels(vsi, false); 8621 8622 return ret; 8623 } 8624 8625 /** 8626 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8627 * @netdev: net device to configure 8628 * @type_data: TC offload data 8629 */ 8630 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8631 { 8632 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8633 struct ice_netdev_priv *np = netdev_priv(netdev); 8634 struct ice_vsi *vsi = np->vsi; 8635 struct ice_pf *pf = vsi->back; 8636 u16 mode, ena_tc_qdisc = 0; 8637 int cur_txq, cur_rxq; 8638 u8 hw = 0, num_tcf; 8639 struct device *dev; 8640 int ret, i; 8641 8642 dev = ice_pf_to_dev(pf); 8643 num_tcf = mqprio_qopt->qopt.num_tc; 8644 hw = mqprio_qopt->qopt.hw; 8645 mode = mqprio_qopt->mode; 8646 if (!hw) { 8647 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8648 vsi->ch_rss_size = 0; 8649 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8650 goto config_tcf; 8651 } 8652 8653 /* Generate queue region map for number of TCF requested */ 8654 for (i = 0; i < num_tcf; i++) 8655 ena_tc_qdisc |= BIT(i); 8656 8657 switch (mode) { 8658 case TC_MQPRIO_MODE_CHANNEL: 8659 8660 if (pf->hw.port_info->is_custom_tx_enabled) { 8661 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8662 return -EBUSY; 8663 } 8664 ice_tear_down_devlink_rate_tree(pf); 8665 8666 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8667 if (ret) { 8668 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8669 ret); 8670 return ret; 8671 } 8672 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8673 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8674 /* don't assume state of hw_tc_offload during driver load 8675 * and set the flag for TC flower filter if hw_tc_offload 8676 * already ON 8677 */ 8678 if (vsi->netdev->features & NETIF_F_HW_TC) 8679 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8680 break; 8681 default: 8682 return -EINVAL; 8683 } 8684 8685 config_tcf: 8686 8687 /* Requesting same TCF configuration as already enabled */ 8688 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8689 mode != TC_MQPRIO_MODE_CHANNEL) 8690 return 0; 8691 8692 /* Pause VSI queues */ 8693 ice_dis_vsi(vsi, true); 8694 8695 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8696 ice_remove_q_channels(vsi, true); 8697 8698 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8699 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8700 num_online_cpus()); 8701 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8702 num_online_cpus()); 8703 } else { 8704 /* logic to rebuild VSI, same like ethtool -L */ 8705 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8706 8707 for (i = 0; i < num_tcf; i++) { 8708 if (!(ena_tc_qdisc & BIT(i))) 8709 continue; 8710 8711 offset = vsi->mqprio_qopt.qopt.offset[i]; 8712 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8713 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8714 } 8715 vsi->req_txq = offset + qcount_tx; 8716 vsi->req_rxq = offset + qcount_rx; 8717 8718 /* store away original rss_size info, so that it gets reused 8719 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8720 * determine, what should be the rss_sizefor main VSI 8721 */ 8722 vsi->orig_rss_size = vsi->rss_size; 8723 } 8724 8725 /* save current values of Tx and Rx queues before calling VSI rebuild 8726 * for fallback option 8727 */ 8728 cur_txq = vsi->num_txq; 8729 cur_rxq = vsi->num_rxq; 8730 8731 /* proceed with rebuild main VSI using correct number of queues */ 8732 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8733 if (ret) { 8734 /* fallback to current number of queues */ 8735 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8736 vsi->req_txq = cur_txq; 8737 vsi->req_rxq = cur_rxq; 8738 clear_bit(ICE_RESET_FAILED, pf->state); 8739 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8740 dev_err(dev, "Rebuild of main VSI failed again\n"); 8741 return ret; 8742 } 8743 } 8744 8745 vsi->all_numtc = num_tcf; 8746 vsi->all_enatc = ena_tc_qdisc; 8747 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8748 if (ret) { 8749 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8750 vsi->vsi_num); 8751 goto exit; 8752 } 8753 8754 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8755 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8756 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8757 8758 /* set TC0 rate limit if specified */ 8759 if (max_tx_rate || min_tx_rate) { 8760 /* convert to Kbits/s */ 8761 if (max_tx_rate) 8762 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8763 if (min_tx_rate) 8764 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8765 8766 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8767 if (!ret) { 8768 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8769 max_tx_rate, min_tx_rate, vsi->vsi_num); 8770 } else { 8771 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8772 max_tx_rate, min_tx_rate, vsi->vsi_num); 8773 goto exit; 8774 } 8775 } 8776 ret = ice_create_q_channels(vsi); 8777 if (ret) { 8778 netdev_err(netdev, "failed configuring queue channels\n"); 8779 goto exit; 8780 } else { 8781 netdev_dbg(netdev, "successfully configured channels\n"); 8782 } 8783 } 8784 8785 if (vsi->ch_rss_size) 8786 ice_vsi_cfg_rss_lut_key(vsi); 8787 8788 exit: 8789 /* if error, reset the all_numtc and all_enatc */ 8790 if (ret) { 8791 vsi->all_numtc = 0; 8792 vsi->all_enatc = 0; 8793 } 8794 /* resume VSI */ 8795 ice_ena_vsi(vsi, true); 8796 8797 return ret; 8798 } 8799 8800 static LIST_HEAD(ice_block_cb_list); 8801 8802 static int 8803 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8804 void *type_data) 8805 { 8806 struct ice_netdev_priv *np = netdev_priv(netdev); 8807 struct ice_pf *pf = np->vsi->back; 8808 int err; 8809 8810 switch (type) { 8811 case TC_SETUP_BLOCK: 8812 return flow_block_cb_setup_simple(type_data, 8813 &ice_block_cb_list, 8814 ice_setup_tc_block_cb, 8815 np, np, true); 8816 case TC_SETUP_QDISC_MQPRIO: 8817 /* setup traffic classifier for receive side */ 8818 mutex_lock(&pf->tc_mutex); 8819 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8820 mutex_unlock(&pf->tc_mutex); 8821 return err; 8822 default: 8823 return -EOPNOTSUPP; 8824 } 8825 return -EOPNOTSUPP; 8826 } 8827 8828 static struct ice_indr_block_priv * 8829 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8830 struct net_device *netdev) 8831 { 8832 struct ice_indr_block_priv *cb_priv; 8833 8834 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8835 if (!cb_priv->netdev) 8836 return NULL; 8837 if (cb_priv->netdev == netdev) 8838 return cb_priv; 8839 } 8840 return NULL; 8841 } 8842 8843 static int 8844 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8845 void *indr_priv) 8846 { 8847 struct ice_indr_block_priv *priv = indr_priv; 8848 struct ice_netdev_priv *np = priv->np; 8849 8850 switch (type) { 8851 case TC_SETUP_CLSFLOWER: 8852 return ice_setup_tc_cls_flower(np, priv->netdev, 8853 (struct flow_cls_offload *) 8854 type_data); 8855 default: 8856 return -EOPNOTSUPP; 8857 } 8858 } 8859 8860 static int 8861 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8862 struct ice_netdev_priv *np, 8863 struct flow_block_offload *f, void *data, 8864 void (*cleanup)(struct flow_block_cb *block_cb)) 8865 { 8866 struct ice_indr_block_priv *indr_priv; 8867 struct flow_block_cb *block_cb; 8868 8869 if (!ice_is_tunnel_supported(netdev) && 8870 !(is_vlan_dev(netdev) && 8871 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8872 return -EOPNOTSUPP; 8873 8874 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8875 return -EOPNOTSUPP; 8876 8877 switch (f->command) { 8878 case FLOW_BLOCK_BIND: 8879 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8880 if (indr_priv) 8881 return -EEXIST; 8882 8883 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8884 if (!indr_priv) 8885 return -ENOMEM; 8886 8887 indr_priv->netdev = netdev; 8888 indr_priv->np = np; 8889 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8890 8891 block_cb = 8892 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8893 indr_priv, indr_priv, 8894 ice_rep_indr_tc_block_unbind, 8895 f, netdev, sch, data, np, 8896 cleanup); 8897 8898 if (IS_ERR(block_cb)) { 8899 list_del(&indr_priv->list); 8900 kfree(indr_priv); 8901 return PTR_ERR(block_cb); 8902 } 8903 flow_block_cb_add(block_cb, f); 8904 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8905 break; 8906 case FLOW_BLOCK_UNBIND: 8907 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8908 if (!indr_priv) 8909 return -ENOENT; 8910 8911 block_cb = flow_block_cb_lookup(f->block, 8912 ice_indr_setup_block_cb, 8913 indr_priv); 8914 if (!block_cb) 8915 return -ENOENT; 8916 8917 flow_indr_block_cb_remove(block_cb, f); 8918 8919 list_del(&block_cb->driver_list); 8920 break; 8921 default: 8922 return -EOPNOTSUPP; 8923 } 8924 return 0; 8925 } 8926 8927 static int 8928 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8929 void *cb_priv, enum tc_setup_type type, void *type_data, 8930 void *data, 8931 void (*cleanup)(struct flow_block_cb *block_cb)) 8932 { 8933 switch (type) { 8934 case TC_SETUP_BLOCK: 8935 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8936 data, cleanup); 8937 8938 default: 8939 return -EOPNOTSUPP; 8940 } 8941 } 8942 8943 /** 8944 * ice_open - Called when a network interface becomes active 8945 * @netdev: network interface device structure 8946 * 8947 * The open entry point is called when a network interface is made 8948 * active by the system (IFF_UP). At this point all resources needed 8949 * for transmit and receive operations are allocated, the interrupt 8950 * handler is registered with the OS, the netdev watchdog is enabled, 8951 * and the stack is notified that the interface is ready. 8952 * 8953 * Returns 0 on success, negative value on failure 8954 */ 8955 int ice_open(struct net_device *netdev) 8956 { 8957 struct ice_netdev_priv *np = netdev_priv(netdev); 8958 struct ice_pf *pf = np->vsi->back; 8959 8960 if (ice_is_reset_in_progress(pf->state)) { 8961 netdev_err(netdev, "can't open net device while reset is in progress"); 8962 return -EBUSY; 8963 } 8964 8965 return ice_open_internal(netdev); 8966 } 8967 8968 /** 8969 * ice_open_internal - Called when a network interface becomes active 8970 * @netdev: network interface device structure 8971 * 8972 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8973 * handling routine 8974 * 8975 * Returns 0 on success, negative value on failure 8976 */ 8977 int ice_open_internal(struct net_device *netdev) 8978 { 8979 struct ice_netdev_priv *np = netdev_priv(netdev); 8980 struct ice_vsi *vsi = np->vsi; 8981 struct ice_pf *pf = vsi->back; 8982 struct ice_port_info *pi; 8983 int err; 8984 8985 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8986 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8987 return -EIO; 8988 } 8989 8990 netif_carrier_off(netdev); 8991 8992 pi = vsi->port_info; 8993 err = ice_update_link_info(pi); 8994 if (err) { 8995 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8996 return err; 8997 } 8998 8999 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9000 9001 /* Set PHY if there is media, otherwise, turn off PHY */ 9002 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9003 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9004 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9005 err = ice_init_phy_user_cfg(pi); 9006 if (err) { 9007 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9008 err); 9009 return err; 9010 } 9011 } 9012 9013 err = ice_configure_phy(vsi); 9014 if (err) { 9015 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9016 err); 9017 return err; 9018 } 9019 } else { 9020 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9021 ice_set_link(vsi, false); 9022 } 9023 9024 err = ice_vsi_open(vsi); 9025 if (err) 9026 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9027 vsi->vsi_num, vsi->vsw->sw_id); 9028 9029 /* Update existing tunnels information */ 9030 udp_tunnel_get_rx_info(netdev); 9031 9032 return err; 9033 } 9034 9035 /** 9036 * ice_stop - Disables a network interface 9037 * @netdev: network interface device structure 9038 * 9039 * The stop entry point is called when an interface is de-activated by the OS, 9040 * and the netdevice enters the DOWN state. The hardware is still under the 9041 * driver's control, but the netdev interface is disabled. 9042 * 9043 * Returns success only - not allowed to fail 9044 */ 9045 int ice_stop(struct net_device *netdev) 9046 { 9047 struct ice_netdev_priv *np = netdev_priv(netdev); 9048 struct ice_vsi *vsi = np->vsi; 9049 struct ice_pf *pf = vsi->back; 9050 9051 if (ice_is_reset_in_progress(pf->state)) { 9052 netdev_err(netdev, "can't stop net device while reset is in progress"); 9053 return -EBUSY; 9054 } 9055 9056 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9057 int link_err = ice_force_phys_link_state(vsi, false); 9058 9059 if (link_err) { 9060 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9061 vsi->vsi_num, link_err); 9062 return -EIO; 9063 } 9064 } 9065 9066 ice_vsi_close(vsi); 9067 9068 return 0; 9069 } 9070 9071 /** 9072 * ice_features_check - Validate encapsulated packet conforms to limits 9073 * @skb: skb buffer 9074 * @netdev: This port's netdev 9075 * @features: Offload features that the stack believes apply 9076 */ 9077 static netdev_features_t 9078 ice_features_check(struct sk_buff *skb, 9079 struct net_device __always_unused *netdev, 9080 netdev_features_t features) 9081 { 9082 bool gso = skb_is_gso(skb); 9083 size_t len; 9084 9085 /* No point in doing any of this if neither checksum nor GSO are 9086 * being requested for this frame. We can rule out both by just 9087 * checking for CHECKSUM_PARTIAL 9088 */ 9089 if (skb->ip_summed != CHECKSUM_PARTIAL) 9090 return features; 9091 9092 /* We cannot support GSO if the MSS is going to be less than 9093 * 64 bytes. If it is then we need to drop support for GSO. 9094 */ 9095 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9096 features &= ~NETIF_F_GSO_MASK; 9097 9098 len = skb_network_offset(skb); 9099 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9100 goto out_rm_features; 9101 9102 len = skb_network_header_len(skb); 9103 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9104 goto out_rm_features; 9105 9106 if (skb->encapsulation) { 9107 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9108 * the case of IPIP frames, the transport header pointer is 9109 * after the inner header! So check to make sure that this 9110 * is a GRE or UDP_TUNNEL frame before doing that math. 9111 */ 9112 if (gso && (skb_shinfo(skb)->gso_type & 9113 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9114 len = skb_inner_network_header(skb) - 9115 skb_transport_header(skb); 9116 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9117 goto out_rm_features; 9118 } 9119 9120 len = skb_inner_network_header_len(skb); 9121 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9122 goto out_rm_features; 9123 } 9124 9125 return features; 9126 out_rm_features: 9127 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9128 } 9129 9130 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9131 .ndo_open = ice_open, 9132 .ndo_stop = ice_stop, 9133 .ndo_start_xmit = ice_start_xmit, 9134 .ndo_set_mac_address = ice_set_mac_address, 9135 .ndo_validate_addr = eth_validate_addr, 9136 .ndo_change_mtu = ice_change_mtu, 9137 .ndo_get_stats64 = ice_get_stats64, 9138 .ndo_tx_timeout = ice_tx_timeout, 9139 .ndo_bpf = ice_xdp_safe_mode, 9140 }; 9141 9142 static const struct net_device_ops ice_netdev_ops = { 9143 .ndo_open = ice_open, 9144 .ndo_stop = ice_stop, 9145 .ndo_start_xmit = ice_start_xmit, 9146 .ndo_select_queue = ice_select_queue, 9147 .ndo_features_check = ice_features_check, 9148 .ndo_fix_features = ice_fix_features, 9149 .ndo_set_rx_mode = ice_set_rx_mode, 9150 .ndo_set_mac_address = ice_set_mac_address, 9151 .ndo_validate_addr = eth_validate_addr, 9152 .ndo_change_mtu = ice_change_mtu, 9153 .ndo_get_stats64 = ice_get_stats64, 9154 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9155 .ndo_eth_ioctl = ice_eth_ioctl, 9156 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9157 .ndo_set_vf_mac = ice_set_vf_mac, 9158 .ndo_get_vf_config = ice_get_vf_cfg, 9159 .ndo_set_vf_trust = ice_set_vf_trust, 9160 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9161 .ndo_set_vf_link_state = ice_set_vf_link_state, 9162 .ndo_get_vf_stats = ice_get_vf_stats, 9163 .ndo_set_vf_rate = ice_set_vf_bw, 9164 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9165 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9166 .ndo_setup_tc = ice_setup_tc, 9167 .ndo_set_features = ice_set_features, 9168 .ndo_bridge_getlink = ice_bridge_getlink, 9169 .ndo_bridge_setlink = ice_bridge_setlink, 9170 .ndo_fdb_add = ice_fdb_add, 9171 .ndo_fdb_del = ice_fdb_del, 9172 #ifdef CONFIG_RFS_ACCEL 9173 .ndo_rx_flow_steer = ice_rx_flow_steer, 9174 #endif 9175 .ndo_tx_timeout = ice_tx_timeout, 9176 .ndo_bpf = ice_xdp, 9177 .ndo_xdp_xmit = ice_xdp_xmit, 9178 .ndo_xsk_wakeup = ice_xsk_wakeup, 9179 }; 9180