1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_get_devlink_port - Get devlink port from netdev 301 * @netdev: the netdevice structure 302 */ 303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 304 { 305 struct ice_pf *pf = ice_netdev_to_pf(netdev); 306 307 if (!ice_is_switchdev_running(pf)) 308 return NULL; 309 310 return &pf->devlink_port; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 414 err = ice_set_dflt_vsi(pf->first_sw, vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 } 425 } else { 426 /* Clear Rx filter to remove traffic from wire */ 427 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 428 err = ice_clear_dflt_vsi(pf->first_sw); 429 if (err) { 430 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 431 err, vsi->vsi_num); 432 vsi->current_netdev_flags |= 433 IFF_PROMISC; 434 goto out_promisc; 435 } 436 if (vsi->current_netdev_flags & 437 NETIF_F_HW_VLAN_CTAG_FILTER) 438 vlan_ops->ena_rx_filtering(vsi); 439 } 440 } 441 } 442 goto exit; 443 444 out_promisc: 445 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 446 goto exit; 447 out: 448 /* if something went wrong then set the changed flag so we try again */ 449 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 450 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 451 exit: 452 clear_bit(ICE_CFG_BUSY, vsi->state); 453 return err; 454 } 455 456 /** 457 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 458 * @pf: board private structure 459 */ 460 static void ice_sync_fltr_subtask(struct ice_pf *pf) 461 { 462 int v; 463 464 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 465 return; 466 467 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 468 469 ice_for_each_vsi(pf, v) 470 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 471 ice_vsi_sync_fltr(pf->vsi[v])) { 472 /* come back and try again later */ 473 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 474 break; 475 } 476 } 477 478 /** 479 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 480 * @pf: the PF 481 * @locked: is the rtnl_lock already held 482 */ 483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 484 { 485 int node; 486 int v; 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v]) 490 ice_dis_vsi(pf->vsi[v], locked); 491 492 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 493 pf->pf_agg_node[node].num_vsis = 0; 494 495 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 496 pf->vf_agg_node[node].num_vsis = 0; 497 } 498 499 /** 500 * ice_clear_sw_switch_recipes - clear switch recipes 501 * @pf: board private structure 502 * 503 * Mark switch recipes as not created in sw structures. There are cases where 504 * rules (especially advanced rules) need to be restored, either re-read from 505 * hardware or added again. For example after the reset. 'recp_created' flag 506 * prevents from doing that and need to be cleared upfront. 507 */ 508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 509 { 510 struct ice_sw_recipe *recp; 511 u8 i; 512 513 recp = pf->hw.switch_info->recp_list; 514 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 515 recp[i].recp_created = false; 516 } 517 518 /** 519 * ice_prepare_for_reset - prep for reset 520 * @pf: board private structure 521 * @reset_type: reset type requested 522 * 523 * Inform or close all dependent features in prep for reset. 524 */ 525 static void 526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 527 { 528 struct ice_hw *hw = &pf->hw; 529 struct ice_vsi *vsi; 530 struct ice_vf *vf; 531 unsigned int bkt; 532 533 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 534 535 /* already prepared for reset */ 536 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 537 return; 538 539 ice_unplug_aux_dev(pf); 540 541 /* Notify VFs of impending reset */ 542 if (ice_check_sq_alive(hw, &hw->mailboxq)) 543 ice_vc_notify_reset(pf); 544 545 /* Disable VFs until reset is completed */ 546 mutex_lock(&pf->vfs.table_lock); 547 ice_for_each_vf(pf, bkt, vf) 548 ice_set_vf_state_qs_dis(vf); 549 mutex_unlock(&pf->vfs.table_lock); 550 551 if (ice_is_eswitch_mode_switchdev(pf)) { 552 if (reset_type != ICE_RESET_PFR) 553 ice_clear_sw_switch_recipes(pf); 554 } 555 556 /* release ADQ specific HW and SW resources */ 557 vsi = ice_get_main_vsi(pf); 558 if (!vsi) 559 goto skip; 560 561 /* to be on safe side, reset orig_rss_size so that normal flow 562 * of deciding rss_size can take precedence 563 */ 564 vsi->orig_rss_size = 0; 565 566 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 567 if (reset_type == ICE_RESET_PFR) { 568 vsi->old_ena_tc = vsi->all_enatc; 569 vsi->old_numtc = vsi->all_numtc; 570 } else { 571 ice_remove_q_channels(vsi, true); 572 573 /* for other reset type, do not support channel rebuild 574 * hence reset needed info 575 */ 576 vsi->old_ena_tc = 0; 577 vsi->all_enatc = 0; 578 vsi->old_numtc = 0; 579 vsi->all_numtc = 0; 580 vsi->req_txq = 0; 581 vsi->req_rxq = 0; 582 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 583 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 584 } 585 } 586 skip: 587 588 /* clear SW filtering DB */ 589 ice_clear_hw_tbls(hw); 590 /* disable the VSIs and their queues that are not already DOWN */ 591 ice_pf_dis_all_vsi(pf, false); 592 593 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 594 ice_ptp_prepare_for_reset(pf); 595 596 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 597 ice_gnss_exit(pf); 598 599 if (hw->port_info) 600 ice_sched_clear_port(hw->port_info); 601 602 ice_shutdown_all_ctrlq(hw); 603 604 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 605 } 606 607 /** 608 * ice_do_reset - Initiate one of many types of resets 609 * @pf: board private structure 610 * @reset_type: reset type requested before this function was called. 611 */ 612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 613 { 614 struct device *dev = ice_pf_to_dev(pf); 615 struct ice_hw *hw = &pf->hw; 616 617 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 618 619 ice_prepare_for_reset(pf, reset_type); 620 621 /* trigger the reset */ 622 if (ice_reset(hw, reset_type)) { 623 dev_err(dev, "reset %d failed\n", reset_type); 624 set_bit(ICE_RESET_FAILED, pf->state); 625 clear_bit(ICE_RESET_OICR_RECV, pf->state); 626 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 clear_bit(ICE_PFR_REQ, pf->state); 628 clear_bit(ICE_CORER_REQ, pf->state); 629 clear_bit(ICE_GLOBR_REQ, pf->state); 630 wake_up(&pf->reset_wait_queue); 631 return; 632 } 633 634 /* PFR is a bit of a special case because it doesn't result in an OICR 635 * interrupt. So for PFR, rebuild after the reset and clear the reset- 636 * associated state bits. 637 */ 638 if (reset_type == ICE_RESET_PFR) { 639 pf->pfr_count++; 640 ice_rebuild(pf, reset_type); 641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 642 clear_bit(ICE_PFR_REQ, pf->state); 643 wake_up(&pf->reset_wait_queue); 644 ice_reset_all_vfs(pf); 645 } 646 } 647 648 /** 649 * ice_reset_subtask - Set up for resetting the device and driver 650 * @pf: board private structure 651 */ 652 static void ice_reset_subtask(struct ice_pf *pf) 653 { 654 enum ice_reset_req reset_type = ICE_RESET_INVAL; 655 656 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 657 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 658 * of reset is pending and sets bits in pf->state indicating the reset 659 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 660 * prepare for pending reset if not already (for PF software-initiated 661 * global resets the software should already be prepared for it as 662 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 663 * by firmware or software on other PFs, that bit is not set so prepare 664 * for the reset now), poll for reset done, rebuild and return. 665 */ 666 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 667 /* Perform the largest reset requested */ 668 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 669 reset_type = ICE_RESET_CORER; 670 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 671 reset_type = ICE_RESET_GLOBR; 672 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 673 reset_type = ICE_RESET_EMPR; 674 /* return if no valid reset type requested */ 675 if (reset_type == ICE_RESET_INVAL) 676 return; 677 ice_prepare_for_reset(pf, reset_type); 678 679 /* make sure we are ready to rebuild */ 680 if (ice_check_reset(&pf->hw)) { 681 set_bit(ICE_RESET_FAILED, pf->state); 682 } else { 683 /* done with reset. start rebuild */ 684 pf->hw.reset_ongoing = false; 685 ice_rebuild(pf, reset_type); 686 /* clear bit to resume normal operations, but 687 * ICE_NEEDS_RESTART bit is set in case rebuild failed 688 */ 689 clear_bit(ICE_RESET_OICR_RECV, pf->state); 690 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 691 clear_bit(ICE_PFR_REQ, pf->state); 692 clear_bit(ICE_CORER_REQ, pf->state); 693 clear_bit(ICE_GLOBR_REQ, pf->state); 694 wake_up(&pf->reset_wait_queue); 695 ice_reset_all_vfs(pf); 696 } 697 698 return; 699 } 700 701 /* No pending resets to finish processing. Check for new resets */ 702 if (test_bit(ICE_PFR_REQ, pf->state)) 703 reset_type = ICE_RESET_PFR; 704 if (test_bit(ICE_CORER_REQ, pf->state)) 705 reset_type = ICE_RESET_CORER; 706 if (test_bit(ICE_GLOBR_REQ, pf->state)) 707 reset_type = ICE_RESET_GLOBR; 708 /* If no valid reset type requested just return */ 709 if (reset_type == ICE_RESET_INVAL) 710 return; 711 712 /* reset if not already down or busy */ 713 if (!test_bit(ICE_DOWN, pf->state) && 714 !test_bit(ICE_CFG_BUSY, pf->state)) { 715 ice_do_reset(pf, reset_type); 716 } 717 } 718 719 /** 720 * ice_print_topo_conflict - print topology conflict message 721 * @vsi: the VSI whose topology status is being checked 722 */ 723 static void ice_print_topo_conflict(struct ice_vsi *vsi) 724 { 725 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 726 case ICE_AQ_LINK_TOPO_CONFLICT: 727 case ICE_AQ_LINK_MEDIA_CONFLICT: 728 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 729 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 730 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 731 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 732 break; 733 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 734 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 735 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 736 else 737 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 738 break; 739 default: 740 break; 741 } 742 } 743 744 /** 745 * ice_print_link_msg - print link up or down message 746 * @vsi: the VSI whose link status is being queried 747 * @isup: boolean for if the link is now up or down 748 */ 749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 750 { 751 struct ice_aqc_get_phy_caps_data *caps; 752 const char *an_advertised; 753 const char *fec_req; 754 const char *speed; 755 const char *fec; 756 const char *fc; 757 const char *an; 758 int status; 759 760 if (!vsi) 761 return; 762 763 if (vsi->current_isup == isup) 764 return; 765 766 vsi->current_isup = isup; 767 768 if (!isup) { 769 netdev_info(vsi->netdev, "NIC Link is Down\n"); 770 return; 771 } 772 773 switch (vsi->port_info->phy.link_info.link_speed) { 774 case ICE_AQ_LINK_SPEED_100GB: 775 speed = "100 G"; 776 break; 777 case ICE_AQ_LINK_SPEED_50GB: 778 speed = "50 G"; 779 break; 780 case ICE_AQ_LINK_SPEED_40GB: 781 speed = "40 G"; 782 break; 783 case ICE_AQ_LINK_SPEED_25GB: 784 speed = "25 G"; 785 break; 786 case ICE_AQ_LINK_SPEED_20GB: 787 speed = "20 G"; 788 break; 789 case ICE_AQ_LINK_SPEED_10GB: 790 speed = "10 G"; 791 break; 792 case ICE_AQ_LINK_SPEED_5GB: 793 speed = "5 G"; 794 break; 795 case ICE_AQ_LINK_SPEED_2500MB: 796 speed = "2.5 G"; 797 break; 798 case ICE_AQ_LINK_SPEED_1000MB: 799 speed = "1 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100MB: 802 speed = "100 M"; 803 break; 804 default: 805 speed = "Unknown "; 806 break; 807 } 808 809 switch (vsi->port_info->fc.current_mode) { 810 case ICE_FC_FULL: 811 fc = "Rx/Tx"; 812 break; 813 case ICE_FC_TX_PAUSE: 814 fc = "Tx"; 815 break; 816 case ICE_FC_RX_PAUSE: 817 fc = "Rx"; 818 break; 819 case ICE_FC_NONE: 820 fc = "None"; 821 break; 822 default: 823 fc = "Unknown"; 824 break; 825 } 826 827 /* Get FEC mode based on negotiated link info */ 828 switch (vsi->port_info->phy.link_info.fec_info) { 829 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 830 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 831 fec = "RS-FEC"; 832 break; 833 case ICE_AQ_LINK_25G_KR_FEC_EN: 834 fec = "FC-FEC/BASE-R"; 835 break; 836 default: 837 fec = "NONE"; 838 break; 839 } 840 841 /* check if autoneg completed, might be false due to not supported */ 842 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 843 an = "True"; 844 else 845 an = "False"; 846 847 /* Get FEC mode requested based on PHY caps last SW configuration */ 848 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 849 if (!caps) { 850 fec_req = "Unknown"; 851 an_advertised = "Unknown"; 852 goto done; 853 } 854 855 status = ice_aq_get_phy_caps(vsi->port_info, false, 856 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 857 if (status) 858 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 859 860 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 861 862 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 863 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 864 fec_req = "RS-FEC"; 865 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 866 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 867 fec_req = "FC-FEC/BASE-R"; 868 else 869 fec_req = "NONE"; 870 871 kfree(caps); 872 873 done: 874 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 875 speed, fec_req, fec, an_advertised, an, fc); 876 ice_print_topo_conflict(vsi); 877 } 878 879 /** 880 * ice_vsi_link_event - update the VSI's netdev 881 * @vsi: the VSI on which the link event occurred 882 * @link_up: whether or not the VSI needs to be set up or down 883 */ 884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 885 { 886 if (!vsi) 887 return; 888 889 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 890 return; 891 892 if (vsi->type == ICE_VSI_PF) { 893 if (link_up == netif_carrier_ok(vsi->netdev)) 894 return; 895 896 if (link_up) { 897 netif_carrier_on(vsi->netdev); 898 netif_tx_wake_all_queues(vsi->netdev); 899 } else { 900 netif_carrier_off(vsi->netdev); 901 netif_tx_stop_all_queues(vsi->netdev); 902 } 903 } 904 } 905 906 /** 907 * ice_set_dflt_mib - send a default config MIB to the FW 908 * @pf: private PF struct 909 * 910 * This function sends a default configuration MIB to the FW. 911 * 912 * If this function errors out at any point, the driver is still able to 913 * function. The main impact is that LFC may not operate as expected. 914 * Therefore an error state in this function should be treated with a DBG 915 * message and continue on with driver rebuild/reenable. 916 */ 917 static void ice_set_dflt_mib(struct ice_pf *pf) 918 { 919 struct device *dev = ice_pf_to_dev(pf); 920 u8 mib_type, *buf, *lldpmib = NULL; 921 u16 len, typelen, offset = 0; 922 struct ice_lldp_org_tlv *tlv; 923 struct ice_hw *hw = &pf->hw; 924 u32 ouisubtype; 925 926 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 927 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 928 if (!lldpmib) { 929 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 930 __func__); 931 return; 932 } 933 934 /* Add ETS CFG TLV */ 935 tlv = (struct ice_lldp_org_tlv *)lldpmib; 936 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 937 ICE_IEEE_ETS_TLV_LEN); 938 tlv->typelen = htons(typelen); 939 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 940 ICE_IEEE_SUBTYPE_ETS_CFG); 941 tlv->ouisubtype = htonl(ouisubtype); 942 943 buf = tlv->tlvinfo; 944 buf[0] = 0; 945 946 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 947 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 948 * Octets 13 - 20 are TSA values - leave as zeros 949 */ 950 buf[5] = 0x64; 951 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 952 offset += len + 2; 953 tlv = (struct ice_lldp_org_tlv *) 954 ((char *)tlv + sizeof(tlv->typelen) + len); 955 956 /* Add ETS REC TLV */ 957 buf = tlv->tlvinfo; 958 tlv->typelen = htons(typelen); 959 960 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 961 ICE_IEEE_SUBTYPE_ETS_REC); 962 tlv->ouisubtype = htonl(ouisubtype); 963 964 /* First octet of buf is reserved 965 * Octets 1 - 4 map UP to TC - all UPs map to zero 966 * Octets 5 - 12 are BW values - set TC 0 to 100%. 967 * Octets 13 - 20 are TSA value - leave as zeros 968 */ 969 buf[5] = 0x64; 970 offset += len + 2; 971 tlv = (struct ice_lldp_org_tlv *) 972 ((char *)tlv + sizeof(tlv->typelen) + len); 973 974 /* Add PFC CFG TLV */ 975 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 976 ICE_IEEE_PFC_TLV_LEN); 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_PFC_CFG); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* Octet 1 left as all zeros - PFC disabled */ 984 buf[0] = 0x08; 985 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 986 offset += len + 2; 987 988 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 989 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 990 991 kfree(lldpmib); 992 } 993 994 /** 995 * ice_check_phy_fw_load - check if PHY FW load failed 996 * @pf: pointer to PF struct 997 * @link_cfg_err: bitmap from the link info structure 998 * 999 * check if external PHY FW load failed and print an error message if it did 1000 */ 1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1002 { 1003 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1004 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1005 return; 1006 } 1007 1008 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1009 return; 1010 1011 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1012 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1013 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1014 } 1015 } 1016 1017 /** 1018 * ice_check_module_power 1019 * @pf: pointer to PF struct 1020 * @link_cfg_err: bitmap from the link info structure 1021 * 1022 * check module power level returned by a previous call to aq_get_link_info 1023 * and print error messages if module power level is not supported 1024 */ 1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1026 { 1027 /* if module power level is supported, clear the flag */ 1028 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1029 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1030 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1031 return; 1032 } 1033 1034 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1035 * above block didn't clear this bit, there's nothing to do 1036 */ 1037 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1038 return; 1039 1040 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1041 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1042 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1043 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1044 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1045 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_link_cfg_err - check if link configuration failed 1051 * @pf: pointer to the PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * print if any link configuration failure happens due to the value in the 1055 * link_cfg_err parameter in the link info structure 1056 */ 1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 ice_check_module_power(pf, link_cfg_err); 1060 ice_check_phy_fw_load(pf, link_cfg_err); 1061 } 1062 1063 /** 1064 * ice_link_event - process the link event 1065 * @pf: PF that the link event is associated with 1066 * @pi: port_info for the port that the link event is associated with 1067 * @link_up: true if the physical link is up and false if it is down 1068 * @link_speed: current link speed received from the link event 1069 * 1070 * Returns 0 on success and negative on failure 1071 */ 1072 static int 1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1074 u16 link_speed) 1075 { 1076 struct device *dev = ice_pf_to_dev(pf); 1077 struct ice_phy_info *phy_info; 1078 struct ice_vsi *vsi; 1079 u16 old_link_speed; 1080 bool old_link; 1081 int status; 1082 1083 phy_info = &pi->phy; 1084 phy_info->link_info_old = phy_info->link_info; 1085 1086 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1087 old_link_speed = phy_info->link_info_old.link_speed; 1088 1089 /* update the link info structures and re-enable link events, 1090 * don't bail on failure due to other book keeping needed 1091 */ 1092 status = ice_update_link_info(pi); 1093 if (status) 1094 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1095 pi->lport, status, 1096 ice_aq_str(pi->hw->adminq.sq_last_status)); 1097 1098 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1099 1100 /* Check if the link state is up after updating link info, and treat 1101 * this event as an UP event since the link is actually UP now. 1102 */ 1103 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1104 link_up = true; 1105 1106 vsi = ice_get_main_vsi(pf); 1107 if (!vsi || !vsi->port_info) 1108 return -EINVAL; 1109 1110 /* turn off PHY if media was removed */ 1111 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1112 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1113 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1114 ice_set_link(vsi, false); 1115 } 1116 1117 /* if the old link up/down and speed is the same as the new */ 1118 if (link_up == old_link && link_speed == old_link_speed) 1119 return 0; 1120 1121 if (!ice_is_e810(&pf->hw)) 1122 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1123 1124 if (ice_is_dcb_active(pf)) { 1125 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1126 ice_dcb_rebuild(pf); 1127 } else { 1128 if (link_up) 1129 ice_set_dflt_mib(pf); 1130 } 1131 ice_vsi_link_event(vsi, link_up); 1132 ice_print_link_msg(vsi, link_up); 1133 1134 ice_vc_notify_link_state(pf); 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1141 * @pf: board private structure 1142 */ 1143 static void ice_watchdog_subtask(struct ice_pf *pf) 1144 { 1145 int i; 1146 1147 /* if interface is down do nothing */ 1148 if (test_bit(ICE_DOWN, pf->state) || 1149 test_bit(ICE_CFG_BUSY, pf->state)) 1150 return; 1151 1152 /* make sure we don't do these things too often */ 1153 if (time_before(jiffies, 1154 pf->serv_tmr_prev + pf->serv_tmr_period)) 1155 return; 1156 1157 pf->serv_tmr_prev = jiffies; 1158 1159 /* Update the stats for active netdevs so the network stack 1160 * can look at updated numbers whenever it cares to 1161 */ 1162 ice_update_pf_stats(pf); 1163 ice_for_each_vsi(pf, i) 1164 if (pf->vsi[i] && pf->vsi[i]->netdev) 1165 ice_update_vsi_stats(pf->vsi[i]); 1166 } 1167 1168 /** 1169 * ice_init_link_events - enable/initialize link events 1170 * @pi: pointer to the port_info instance 1171 * 1172 * Returns -EIO on failure, 0 on success 1173 */ 1174 static int ice_init_link_events(struct ice_port_info *pi) 1175 { 1176 u16 mask; 1177 1178 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1179 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1180 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1181 1182 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1183 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1184 pi->lport); 1185 return -EIO; 1186 } 1187 1188 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1189 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1190 pi->lport); 1191 return -EIO; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /** 1198 * ice_handle_link_event - handle link event via ARQ 1199 * @pf: PF that the link event is associated with 1200 * @event: event structure containing link status info 1201 */ 1202 static int 1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1204 { 1205 struct ice_aqc_get_link_status_data *link_data; 1206 struct ice_port_info *port_info; 1207 int status; 1208 1209 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1210 port_info = pf->hw.port_info; 1211 if (!port_info) 1212 return -EINVAL; 1213 1214 status = ice_link_event(pf, port_info, 1215 !!(link_data->link_info & ICE_AQ_LINK_UP), 1216 le16_to_cpu(link_data->link_speed)); 1217 if (status) 1218 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1219 status); 1220 1221 return status; 1222 } 1223 1224 enum ice_aq_task_state { 1225 ICE_AQ_TASK_WAITING = 0, 1226 ICE_AQ_TASK_COMPLETE, 1227 ICE_AQ_TASK_CANCELED, 1228 }; 1229 1230 struct ice_aq_task { 1231 struct hlist_node entry; 1232 1233 u16 opcode; 1234 struct ice_rq_event_info *event; 1235 enum ice_aq_task_state state; 1236 }; 1237 1238 /** 1239 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1240 * @pf: pointer to the PF private structure 1241 * @opcode: the opcode to wait for 1242 * @timeout: how long to wait, in jiffies 1243 * @event: storage for the event info 1244 * 1245 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1246 * current thread will be put to sleep until the specified event occurs or 1247 * until the given timeout is reached. 1248 * 1249 * To obtain only the descriptor contents, pass an event without an allocated 1250 * msg_buf. If the complete data buffer is desired, allocate the 1251 * event->msg_buf with enough space ahead of time. 1252 * 1253 * Returns: zero on success, or a negative error code on failure. 1254 */ 1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1256 struct ice_rq_event_info *event) 1257 { 1258 struct device *dev = ice_pf_to_dev(pf); 1259 struct ice_aq_task *task; 1260 unsigned long start; 1261 long ret; 1262 int err; 1263 1264 task = kzalloc(sizeof(*task), GFP_KERNEL); 1265 if (!task) 1266 return -ENOMEM; 1267 1268 INIT_HLIST_NODE(&task->entry); 1269 task->opcode = opcode; 1270 task->event = event; 1271 task->state = ICE_AQ_TASK_WAITING; 1272 1273 spin_lock_bh(&pf->aq_wait_lock); 1274 hlist_add_head(&task->entry, &pf->aq_wait_list); 1275 spin_unlock_bh(&pf->aq_wait_lock); 1276 1277 start = jiffies; 1278 1279 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1280 timeout); 1281 switch (task->state) { 1282 case ICE_AQ_TASK_WAITING: 1283 err = ret < 0 ? ret : -ETIMEDOUT; 1284 break; 1285 case ICE_AQ_TASK_CANCELED: 1286 err = ret < 0 ? ret : -ECANCELED; 1287 break; 1288 case ICE_AQ_TASK_COMPLETE: 1289 err = ret < 0 ? ret : 0; 1290 break; 1291 default: 1292 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1293 err = -EINVAL; 1294 break; 1295 } 1296 1297 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1298 jiffies_to_msecs(jiffies - start), 1299 jiffies_to_msecs(timeout), 1300 opcode); 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_del(&task->entry); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 kfree(task); 1306 1307 return err; 1308 } 1309 1310 /** 1311 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1312 * @pf: pointer to the PF private structure 1313 * @opcode: the opcode of the event 1314 * @event: the event to check 1315 * 1316 * Loops over the current list of pending threads waiting for an AdminQ event. 1317 * For each matching task, copy the contents of the event into the task 1318 * structure and wake up the thread. 1319 * 1320 * If multiple threads wait for the same opcode, they will all be woken up. 1321 * 1322 * Note that event->msg_buf will only be duplicated if the event has a buffer 1323 * with enough space already allocated. Otherwise, only the descriptor and 1324 * message length will be copied. 1325 * 1326 * Returns: true if an event was found, false otherwise 1327 */ 1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1329 struct ice_rq_event_info *event) 1330 { 1331 struct ice_aq_task *task; 1332 bool found = false; 1333 1334 spin_lock_bh(&pf->aq_wait_lock); 1335 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1336 if (task->state || task->opcode != opcode) 1337 continue; 1338 1339 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1340 task->event->msg_len = event->msg_len; 1341 1342 /* Only copy the data buffer if a destination was set */ 1343 if (task->event->msg_buf && 1344 task->event->buf_len > event->buf_len) { 1345 memcpy(task->event->msg_buf, event->msg_buf, 1346 event->buf_len); 1347 task->event->buf_len = event->buf_len; 1348 } 1349 1350 task->state = ICE_AQ_TASK_COMPLETE; 1351 found = true; 1352 } 1353 spin_unlock_bh(&pf->aq_wait_lock); 1354 1355 if (found) 1356 wake_up(&pf->aq_wait_queue); 1357 } 1358 1359 /** 1360 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1361 * @pf: the PF private structure 1362 * 1363 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1364 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1365 */ 1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1367 { 1368 struct ice_aq_task *task; 1369 1370 spin_lock_bh(&pf->aq_wait_lock); 1371 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1372 task->state = ICE_AQ_TASK_CANCELED; 1373 spin_unlock_bh(&pf->aq_wait_lock); 1374 1375 wake_up(&pf->aq_wait_queue); 1376 } 1377 1378 /** 1379 * __ice_clean_ctrlq - helper function to clean controlq rings 1380 * @pf: ptr to struct ice_pf 1381 * @q_type: specific Control queue type 1382 */ 1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1384 { 1385 struct device *dev = ice_pf_to_dev(pf); 1386 struct ice_rq_event_info event; 1387 struct ice_hw *hw = &pf->hw; 1388 struct ice_ctl_q_info *cq; 1389 u16 pending, i = 0; 1390 const char *qtype; 1391 u32 oldval, val; 1392 1393 /* Do not clean control queue if/when PF reset fails */ 1394 if (test_bit(ICE_RESET_FAILED, pf->state)) 1395 return 0; 1396 1397 switch (q_type) { 1398 case ICE_CTL_Q_ADMIN: 1399 cq = &hw->adminq; 1400 qtype = "Admin"; 1401 break; 1402 case ICE_CTL_Q_SB: 1403 cq = &hw->sbq; 1404 qtype = "Sideband"; 1405 break; 1406 case ICE_CTL_Q_MAILBOX: 1407 cq = &hw->mailboxq; 1408 qtype = "Mailbox"; 1409 /* we are going to try to detect a malicious VF, so set the 1410 * state to begin detection 1411 */ 1412 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1413 break; 1414 default: 1415 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1416 return 0; 1417 } 1418 1419 /* check for error indications - PF_xx_AxQLEN register layout for 1420 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1421 */ 1422 val = rd32(hw, cq->rq.len); 1423 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1424 PF_FW_ARQLEN_ARQCRIT_M)) { 1425 oldval = val; 1426 if (val & PF_FW_ARQLEN_ARQVFE_M) 1427 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1428 qtype); 1429 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1430 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1431 qtype); 1432 } 1433 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1434 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1435 qtype); 1436 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1437 PF_FW_ARQLEN_ARQCRIT_M); 1438 if (oldval != val) 1439 wr32(hw, cq->rq.len, val); 1440 } 1441 1442 val = rd32(hw, cq->sq.len); 1443 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1444 PF_FW_ATQLEN_ATQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ATQLEN_ATQVFE_M) 1447 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1450 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1454 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1457 PF_FW_ATQLEN_ATQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->sq.len, val); 1460 } 1461 1462 event.buf_len = cq->rq_buf_size; 1463 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1464 if (!event.msg_buf) 1465 return 0; 1466 1467 do { 1468 u16 opcode; 1469 int ret; 1470 1471 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1472 if (ret == -EALREADY) 1473 break; 1474 if (ret) { 1475 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1476 ret); 1477 break; 1478 } 1479 1480 opcode = le16_to_cpu(event.desc.opcode); 1481 1482 /* Notify any thread that might be waiting for this event */ 1483 ice_aq_check_events(pf, opcode, &event); 1484 1485 switch (opcode) { 1486 case ice_aqc_opc_get_link_status: 1487 if (ice_handle_link_event(pf, &event)) 1488 dev_err(dev, "Could not handle link event\n"); 1489 break; 1490 case ice_aqc_opc_event_lan_overflow: 1491 ice_vf_lan_overflow_event(pf, &event); 1492 break; 1493 case ice_mbx_opc_send_msg_to_pf: 1494 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1495 ice_vc_process_vf_msg(pf, &event); 1496 break; 1497 case ice_aqc_opc_fw_logging: 1498 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1499 break; 1500 case ice_aqc_opc_lldp_set_mib_change: 1501 ice_dcb_process_lldp_set_mib_change(pf, &event); 1502 break; 1503 default: 1504 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1505 qtype, opcode); 1506 break; 1507 } 1508 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1509 1510 kfree(event.msg_buf); 1511 1512 return pending && (i == ICE_DFLT_IRQ_WORK); 1513 } 1514 1515 /** 1516 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1517 * @hw: pointer to hardware info 1518 * @cq: control queue information 1519 * 1520 * returns true if there are pending messages in a queue, false if there aren't 1521 */ 1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1523 { 1524 u16 ntu; 1525 1526 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1527 return cq->rq.next_to_clean != ntu; 1528 } 1529 1530 /** 1531 * ice_clean_adminq_subtask - clean the AdminQ rings 1532 * @pf: board private structure 1533 */ 1534 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1535 { 1536 struct ice_hw *hw = &pf->hw; 1537 1538 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1539 return; 1540 1541 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1542 return; 1543 1544 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1545 1546 /* There might be a situation where new messages arrive to a control 1547 * queue between processing the last message and clearing the 1548 * EVENT_PENDING bit. So before exiting, check queue head again (using 1549 * ice_ctrlq_pending) and process new messages if any. 1550 */ 1551 if (ice_ctrlq_pending(hw, &hw->adminq)) 1552 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1553 1554 ice_flush(hw); 1555 } 1556 1557 /** 1558 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1559 * @pf: board private structure 1560 */ 1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1562 { 1563 struct ice_hw *hw = &pf->hw; 1564 1565 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1569 return; 1570 1571 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1572 1573 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1574 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1575 1576 ice_flush(hw); 1577 } 1578 1579 /** 1580 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1581 * @pf: board private structure 1582 */ 1583 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1584 { 1585 struct ice_hw *hw = &pf->hw; 1586 1587 /* Nothing to do here if sideband queue is not supported */ 1588 if (!ice_is_sbq_supported(hw)) { 1589 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1590 return; 1591 } 1592 1593 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1594 return; 1595 1596 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1597 return; 1598 1599 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1600 1601 if (ice_ctrlq_pending(hw, &hw->sbq)) 1602 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1603 1604 ice_flush(hw); 1605 } 1606 1607 /** 1608 * ice_service_task_schedule - schedule the service task to wake up 1609 * @pf: board private structure 1610 * 1611 * If not already scheduled, this puts the task into the work queue. 1612 */ 1613 void ice_service_task_schedule(struct ice_pf *pf) 1614 { 1615 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1616 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1617 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1618 queue_work(ice_wq, &pf->serv_task); 1619 } 1620 1621 /** 1622 * ice_service_task_complete - finish up the service task 1623 * @pf: board private structure 1624 */ 1625 static void ice_service_task_complete(struct ice_pf *pf) 1626 { 1627 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1628 1629 /* force memory (pf->state) to sync before next service task */ 1630 smp_mb__before_atomic(); 1631 clear_bit(ICE_SERVICE_SCHED, pf->state); 1632 } 1633 1634 /** 1635 * ice_service_task_stop - stop service task and cancel works 1636 * @pf: board private structure 1637 * 1638 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1639 * 1 otherwise. 1640 */ 1641 static int ice_service_task_stop(struct ice_pf *pf) 1642 { 1643 int ret; 1644 1645 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1646 1647 if (pf->serv_tmr.function) 1648 del_timer_sync(&pf->serv_tmr); 1649 if (pf->serv_task.func) 1650 cancel_work_sync(&pf->serv_task); 1651 1652 clear_bit(ICE_SERVICE_SCHED, pf->state); 1653 return ret; 1654 } 1655 1656 /** 1657 * ice_service_task_restart - restart service task and schedule works 1658 * @pf: board private structure 1659 * 1660 * This function is needed for suspend and resume works (e.g WoL scenario) 1661 */ 1662 static void ice_service_task_restart(struct ice_pf *pf) 1663 { 1664 clear_bit(ICE_SERVICE_DIS, pf->state); 1665 ice_service_task_schedule(pf); 1666 } 1667 1668 /** 1669 * ice_service_timer - timer callback to schedule service task 1670 * @t: pointer to timer_list 1671 */ 1672 static void ice_service_timer(struct timer_list *t) 1673 { 1674 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1675 1676 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1677 ice_service_task_schedule(pf); 1678 } 1679 1680 /** 1681 * ice_handle_mdd_event - handle malicious driver detect event 1682 * @pf: pointer to the PF structure 1683 * 1684 * Called from service task. OICR interrupt handler indicates MDD event. 1685 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1686 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1687 * disable the queue, the PF can be configured to reset the VF using ethtool 1688 * private flag mdd-auto-reset-vf. 1689 */ 1690 static void ice_handle_mdd_event(struct ice_pf *pf) 1691 { 1692 struct device *dev = ice_pf_to_dev(pf); 1693 struct ice_hw *hw = &pf->hw; 1694 struct ice_vf *vf; 1695 unsigned int bkt; 1696 u32 reg; 1697 1698 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1699 /* Since the VF MDD event logging is rate limited, check if 1700 * there are pending MDD events. 1701 */ 1702 ice_print_vfs_mdd_events(pf); 1703 return; 1704 } 1705 1706 /* find what triggered an MDD event */ 1707 reg = rd32(hw, GL_MDET_TX_PQM); 1708 if (reg & GL_MDET_TX_PQM_VALID_M) { 1709 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1710 GL_MDET_TX_PQM_PF_NUM_S; 1711 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1712 GL_MDET_TX_PQM_VF_NUM_S; 1713 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1714 GL_MDET_TX_PQM_MAL_TYPE_S; 1715 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1716 GL_MDET_TX_PQM_QNUM_S); 1717 1718 if (netif_msg_tx_err(pf)) 1719 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1720 event, queue, pf_num, vf_num); 1721 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1722 } 1723 1724 reg = rd32(hw, GL_MDET_TX_TCLAN); 1725 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1726 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1727 GL_MDET_TX_TCLAN_PF_NUM_S; 1728 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_VF_NUM_S; 1730 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1731 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1732 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1733 GL_MDET_TX_TCLAN_QNUM_S); 1734 1735 if (netif_msg_tx_err(pf)) 1736 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1737 event, queue, pf_num, vf_num); 1738 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1739 } 1740 1741 reg = rd32(hw, GL_MDET_RX); 1742 if (reg & GL_MDET_RX_VALID_M) { 1743 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1744 GL_MDET_RX_PF_NUM_S; 1745 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1746 GL_MDET_RX_VF_NUM_S; 1747 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1748 GL_MDET_RX_MAL_TYPE_S; 1749 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1750 GL_MDET_RX_QNUM_S); 1751 1752 if (netif_msg_rx_err(pf)) 1753 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1754 event, queue, pf_num, vf_num); 1755 wr32(hw, GL_MDET_RX, 0xffffffff); 1756 } 1757 1758 /* check to see if this PF caused an MDD event */ 1759 reg = rd32(hw, PF_MDET_TX_PQM); 1760 if (reg & PF_MDET_TX_PQM_VALID_M) { 1761 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1764 } 1765 1766 reg = rd32(hw, PF_MDET_TX_TCLAN); 1767 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1768 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1771 } 1772 1773 reg = rd32(hw, PF_MDET_RX); 1774 if (reg & PF_MDET_RX_VALID_M) { 1775 wr32(hw, PF_MDET_RX, 0xFFFF); 1776 if (netif_msg_rx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1778 } 1779 1780 /* Check to see if one of the VFs caused an MDD event, and then 1781 * increment counters and set print pending 1782 */ 1783 mutex_lock(&pf->vfs.table_lock); 1784 ice_for_each_vf(pf, bkt, vf) { 1785 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1786 if (reg & VP_MDET_TX_PQM_VALID_M) { 1787 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1788 vf->mdd_tx_events.count++; 1789 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1790 if (netif_msg_tx_err(pf)) 1791 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1792 vf->vf_id); 1793 } 1794 1795 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1796 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1797 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1798 vf->mdd_tx_events.count++; 1799 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1800 if (netif_msg_tx_err(pf)) 1801 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1802 vf->vf_id); 1803 } 1804 1805 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1806 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1807 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1808 vf->mdd_tx_events.count++; 1809 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1810 if (netif_msg_tx_err(pf)) 1811 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1812 vf->vf_id); 1813 } 1814 1815 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1816 if (reg & VP_MDET_RX_VALID_M) { 1817 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1818 vf->mdd_rx_events.count++; 1819 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1820 if (netif_msg_rx_err(pf)) 1821 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1822 vf->vf_id); 1823 1824 /* Since the queue is disabled on VF Rx MDD events, the 1825 * PF can be configured to reset the VF through ethtool 1826 * private flag mdd-auto-reset-vf. 1827 */ 1828 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1829 /* VF MDD event counters will be cleared by 1830 * reset, so print the event prior to reset. 1831 */ 1832 ice_print_vf_rx_mdd_event(vf); 1833 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1834 } 1835 } 1836 } 1837 mutex_unlock(&pf->vfs.table_lock); 1838 1839 ice_print_vfs_mdd_events(pf); 1840 } 1841 1842 /** 1843 * ice_force_phys_link_state - Force the physical link state 1844 * @vsi: VSI to force the physical link state to up/down 1845 * @link_up: true/false indicates to set the physical link to up/down 1846 * 1847 * Force the physical link state by getting the current PHY capabilities from 1848 * hardware and setting the PHY config based on the determined capabilities. If 1849 * link changes a link event will be triggered because both the Enable Automatic 1850 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1851 * 1852 * Returns 0 on success, negative on failure 1853 */ 1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1855 { 1856 struct ice_aqc_get_phy_caps_data *pcaps; 1857 struct ice_aqc_set_phy_cfg_data *cfg; 1858 struct ice_port_info *pi; 1859 struct device *dev; 1860 int retcode; 1861 1862 if (!vsi || !vsi->port_info || !vsi->back) 1863 return -EINVAL; 1864 if (vsi->type != ICE_VSI_PF) 1865 return 0; 1866 1867 dev = ice_pf_to_dev(vsi->back); 1868 1869 pi = vsi->port_info; 1870 1871 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1872 if (!pcaps) 1873 return -ENOMEM; 1874 1875 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1876 NULL); 1877 if (retcode) { 1878 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1879 vsi->vsi_num, retcode); 1880 retcode = -EIO; 1881 goto out; 1882 } 1883 1884 /* No change in link */ 1885 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1886 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1887 goto out; 1888 1889 /* Use the current user PHY configuration. The current user PHY 1890 * configuration is initialized during probe from PHY capabilities 1891 * software mode, and updated on set PHY configuration. 1892 */ 1893 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1894 if (!cfg) { 1895 retcode = -ENOMEM; 1896 goto out; 1897 } 1898 1899 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1900 if (link_up) 1901 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1902 else 1903 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1904 1905 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1906 if (retcode) { 1907 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1908 vsi->vsi_num, retcode); 1909 retcode = -EIO; 1910 } 1911 1912 kfree(cfg); 1913 out: 1914 kfree(pcaps); 1915 return retcode; 1916 } 1917 1918 /** 1919 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1920 * @pi: port info structure 1921 * 1922 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1923 */ 1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1925 { 1926 struct ice_aqc_get_phy_caps_data *pcaps; 1927 struct ice_pf *pf = pi->hw->back; 1928 int err; 1929 1930 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1931 if (!pcaps) 1932 return -ENOMEM; 1933 1934 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1935 pcaps, NULL); 1936 1937 if (err) { 1938 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1939 goto out; 1940 } 1941 1942 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1943 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1944 1945 out: 1946 kfree(pcaps); 1947 return err; 1948 } 1949 1950 /** 1951 * ice_init_link_dflt_override - Initialize link default override 1952 * @pi: port info structure 1953 * 1954 * Initialize link default override and PHY total port shutdown during probe 1955 */ 1956 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1957 { 1958 struct ice_link_default_override_tlv *ldo; 1959 struct ice_pf *pf = pi->hw->back; 1960 1961 ldo = &pf->link_dflt_override; 1962 if (ice_get_link_default_override(ldo, pi)) 1963 return; 1964 1965 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1966 return; 1967 1968 /* Enable Total Port Shutdown (override/replace link-down-on-close 1969 * ethtool private flag) for ports with Port Disable bit set. 1970 */ 1971 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1972 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1973 } 1974 1975 /** 1976 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1977 * @pi: port info structure 1978 * 1979 * If default override is enabled, initialize the user PHY cfg speed and FEC 1980 * settings using the default override mask from the NVM. 1981 * 1982 * The PHY should only be configured with the default override settings the 1983 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1984 * is used to indicate that the user PHY cfg default override is initialized 1985 * and the PHY has not been configured with the default override settings. The 1986 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1987 * configured. 1988 * 1989 * This function should be called only if the FW doesn't support default 1990 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1991 */ 1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1993 { 1994 struct ice_link_default_override_tlv *ldo; 1995 struct ice_aqc_set_phy_cfg_data *cfg; 1996 struct ice_phy_info *phy = &pi->phy; 1997 struct ice_pf *pf = pi->hw->back; 1998 1999 ldo = &pf->link_dflt_override; 2000 2001 /* If link default override is enabled, use to mask NVM PHY capabilities 2002 * for speed and FEC default configuration. 2003 */ 2004 cfg = &phy->curr_user_phy_cfg; 2005 2006 if (ldo->phy_type_low || ldo->phy_type_high) { 2007 cfg->phy_type_low = pf->nvm_phy_type_lo & 2008 cpu_to_le64(ldo->phy_type_low); 2009 cfg->phy_type_high = pf->nvm_phy_type_hi & 2010 cpu_to_le64(ldo->phy_type_high); 2011 } 2012 cfg->link_fec_opt = ldo->fec_options; 2013 phy->curr_user_fec_req = ICE_FEC_AUTO; 2014 2015 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2016 } 2017 2018 /** 2019 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2020 * @pi: port info structure 2021 * 2022 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2023 * mode to default. The PHY defaults are from get PHY capabilities topology 2024 * with media so call when media is first available. An error is returned if 2025 * called when media is not available. The PHY initialization completed state is 2026 * set here. 2027 * 2028 * These configurations are used when setting PHY 2029 * configuration. The user PHY configuration is updated on set PHY 2030 * configuration. Returns 0 on success, negative on failure 2031 */ 2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2033 { 2034 struct ice_aqc_get_phy_caps_data *pcaps; 2035 struct ice_phy_info *phy = &pi->phy; 2036 struct ice_pf *pf = pi->hw->back; 2037 int err; 2038 2039 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2040 return -EIO; 2041 2042 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2043 if (!pcaps) 2044 return -ENOMEM; 2045 2046 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2047 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2048 pcaps, NULL); 2049 else 2050 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2051 pcaps, NULL); 2052 if (err) { 2053 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2054 goto err_out; 2055 } 2056 2057 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2058 2059 /* check if lenient mode is supported and enabled */ 2060 if (ice_fw_supports_link_override(pi->hw) && 2061 !(pcaps->module_compliance_enforcement & 2062 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2063 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2064 2065 /* if the FW supports default PHY configuration mode, then the driver 2066 * does not have to apply link override settings. If not, 2067 * initialize user PHY configuration with link override values 2068 */ 2069 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2070 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2071 ice_init_phy_cfg_dflt_override(pi); 2072 goto out; 2073 } 2074 } 2075 2076 /* if link default override is not enabled, set user flow control and 2077 * FEC settings based on what get_phy_caps returned 2078 */ 2079 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2080 pcaps->link_fec_options); 2081 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2082 2083 out: 2084 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2085 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2086 err_out: 2087 kfree(pcaps); 2088 return err; 2089 } 2090 2091 /** 2092 * ice_configure_phy - configure PHY 2093 * @vsi: VSI of PHY 2094 * 2095 * Set the PHY configuration. If the current PHY configuration is the same as 2096 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2097 * configure the based get PHY capabilities for topology with media. 2098 */ 2099 static int ice_configure_phy(struct ice_vsi *vsi) 2100 { 2101 struct device *dev = ice_pf_to_dev(vsi->back); 2102 struct ice_port_info *pi = vsi->port_info; 2103 struct ice_aqc_get_phy_caps_data *pcaps; 2104 struct ice_aqc_set_phy_cfg_data *cfg; 2105 struct ice_phy_info *phy = &pi->phy; 2106 struct ice_pf *pf = vsi->back; 2107 int err; 2108 2109 /* Ensure we have media as we cannot configure a medialess port */ 2110 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2111 return -EPERM; 2112 2113 ice_print_topo_conflict(vsi); 2114 2115 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2116 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2117 return -EPERM; 2118 2119 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2120 return ice_force_phys_link_state(vsi, true); 2121 2122 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2123 if (!pcaps) 2124 return -ENOMEM; 2125 2126 /* Get current PHY config */ 2127 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2128 NULL); 2129 if (err) { 2130 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2131 vsi->vsi_num, err); 2132 goto done; 2133 } 2134 2135 /* If PHY enable link is configured and configuration has not changed, 2136 * there's nothing to do 2137 */ 2138 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2139 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2140 goto done; 2141 2142 /* Use PHY topology as baseline for configuration */ 2143 memset(pcaps, 0, sizeof(*pcaps)); 2144 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2146 pcaps, NULL); 2147 else 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2149 pcaps, NULL); 2150 if (err) { 2151 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2152 vsi->vsi_num, err); 2153 goto done; 2154 } 2155 2156 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2157 if (!cfg) { 2158 err = -ENOMEM; 2159 goto done; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2163 2164 /* Speed - If default override pending, use curr_user_phy_cfg set in 2165 * ice_init_phy_user_cfg_ldo. 2166 */ 2167 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2168 vsi->back->state)) { 2169 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2170 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2171 } else { 2172 u64 phy_low = 0, phy_high = 0; 2173 2174 ice_update_phy_type(&phy_low, &phy_high, 2175 pi->phy.curr_user_speed_req); 2176 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2177 cfg->phy_type_high = pcaps->phy_type_high & 2178 cpu_to_le64(phy_high); 2179 } 2180 2181 /* Can't provide what was requested; use PHY capabilities */ 2182 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2183 cfg->phy_type_low = pcaps->phy_type_low; 2184 cfg->phy_type_high = pcaps->phy_type_high; 2185 } 2186 2187 /* FEC */ 2188 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2189 2190 /* Can't provide what was requested; use PHY capabilities */ 2191 if (cfg->link_fec_opt != 2192 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2193 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2194 cfg->link_fec_opt = pcaps->link_fec_options; 2195 } 2196 2197 /* Flow Control - always supported; no need to check against 2198 * capabilities 2199 */ 2200 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2201 2202 /* Enable link and link update */ 2203 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2204 2205 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2206 if (err) 2207 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2208 vsi->vsi_num, err); 2209 2210 kfree(cfg); 2211 done: 2212 kfree(pcaps); 2213 return err; 2214 } 2215 2216 /** 2217 * ice_check_media_subtask - Check for media 2218 * @pf: pointer to PF struct 2219 * 2220 * If media is available, then initialize PHY user configuration if it is not 2221 * been, and configure the PHY if the interface is up. 2222 */ 2223 static void ice_check_media_subtask(struct ice_pf *pf) 2224 { 2225 struct ice_port_info *pi; 2226 struct ice_vsi *vsi; 2227 int err; 2228 2229 /* No need to check for media if it's already present */ 2230 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2231 return; 2232 2233 vsi = ice_get_main_vsi(pf); 2234 if (!vsi) 2235 return; 2236 2237 /* Refresh link info and check if media is present */ 2238 pi = vsi->port_info; 2239 err = ice_update_link_info(pi); 2240 if (err) 2241 return; 2242 2243 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2244 2245 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2246 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2247 ice_init_phy_user_cfg(pi); 2248 2249 /* PHY settings are reset on media insertion, reconfigure 2250 * PHY to preserve settings. 2251 */ 2252 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2253 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2254 return; 2255 2256 err = ice_configure_phy(vsi); 2257 if (!err) 2258 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2259 2260 /* A Link Status Event will be generated; the event handler 2261 * will complete bringing the interface up 2262 */ 2263 } 2264 } 2265 2266 /** 2267 * ice_service_task - manage and run subtasks 2268 * @work: pointer to work_struct contained by the PF struct 2269 */ 2270 static void ice_service_task(struct work_struct *work) 2271 { 2272 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2273 unsigned long start_time = jiffies; 2274 2275 /* subtasks */ 2276 2277 /* process reset requests first */ 2278 ice_reset_subtask(pf); 2279 2280 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2281 if (ice_is_reset_in_progress(pf->state) || 2282 test_bit(ICE_SUSPENDED, pf->state) || 2283 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2284 ice_service_task_complete(pf); 2285 return; 2286 } 2287 2288 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2289 struct iidc_event *event; 2290 2291 event = kzalloc(sizeof(*event), GFP_KERNEL); 2292 if (event) { 2293 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2294 /* report the entire OICR value to AUX driver */ 2295 swap(event->reg, pf->oicr_err_reg); 2296 ice_send_event_to_aux(pf, event); 2297 kfree(event); 2298 } 2299 } 2300 2301 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2302 /* Plug aux device per request */ 2303 ice_plug_aux_dev(pf); 2304 2305 /* Mark plugging as done but check whether unplug was 2306 * requested during ice_plug_aux_dev() call 2307 * (e.g. from ice_clear_rdma_cap()) and if so then 2308 * plug aux device. 2309 */ 2310 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2311 ice_unplug_aux_dev(pf); 2312 } 2313 2314 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2315 struct iidc_event *event; 2316 2317 event = kzalloc(sizeof(*event), GFP_KERNEL); 2318 if (event) { 2319 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2320 ice_send_event_to_aux(pf, event); 2321 kfree(event); 2322 } 2323 } 2324 2325 ice_clean_adminq_subtask(pf); 2326 ice_check_media_subtask(pf); 2327 ice_check_for_hang_subtask(pf); 2328 ice_sync_fltr_subtask(pf); 2329 ice_handle_mdd_event(pf); 2330 ice_watchdog_subtask(pf); 2331 2332 if (ice_is_safe_mode(pf)) { 2333 ice_service_task_complete(pf); 2334 return; 2335 } 2336 2337 ice_process_vflr_event(pf); 2338 ice_clean_mailboxq_subtask(pf); 2339 ice_clean_sbq_subtask(pf); 2340 ice_sync_arfs_fltrs(pf); 2341 ice_flush_fdir_ctx(pf); 2342 2343 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2344 ice_service_task_complete(pf); 2345 2346 /* If the tasks have taken longer than one service timer period 2347 * or there is more work to be done, reset the service timer to 2348 * schedule the service task now. 2349 */ 2350 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2351 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2352 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2353 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2355 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2357 mod_timer(&pf->serv_tmr, jiffies); 2358 } 2359 2360 /** 2361 * ice_set_ctrlq_len - helper function to set controlq length 2362 * @hw: pointer to the HW instance 2363 */ 2364 static void ice_set_ctrlq_len(struct ice_hw *hw) 2365 { 2366 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2367 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2368 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2369 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2370 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2371 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2372 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2373 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2374 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2375 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2376 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2377 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2378 } 2379 2380 /** 2381 * ice_schedule_reset - schedule a reset 2382 * @pf: board private structure 2383 * @reset: reset being requested 2384 */ 2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2386 { 2387 struct device *dev = ice_pf_to_dev(pf); 2388 2389 /* bail out if earlier reset has failed */ 2390 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2391 dev_dbg(dev, "earlier reset has failed\n"); 2392 return -EIO; 2393 } 2394 /* bail if reset/recovery already in progress */ 2395 if (ice_is_reset_in_progress(pf->state)) { 2396 dev_dbg(dev, "Reset already in progress\n"); 2397 return -EBUSY; 2398 } 2399 2400 ice_unplug_aux_dev(pf); 2401 2402 switch (reset) { 2403 case ICE_RESET_PFR: 2404 set_bit(ICE_PFR_REQ, pf->state); 2405 break; 2406 case ICE_RESET_CORER: 2407 set_bit(ICE_CORER_REQ, pf->state); 2408 break; 2409 case ICE_RESET_GLOBR: 2410 set_bit(ICE_GLOBR_REQ, pf->state); 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 2416 ice_service_task_schedule(pf); 2417 return 0; 2418 } 2419 2420 /** 2421 * ice_irq_affinity_notify - Callback for affinity changes 2422 * @notify: context as to what irq was changed 2423 * @mask: the new affinity mask 2424 * 2425 * This is a callback function used by the irq_set_affinity_notifier function 2426 * so that we may register to receive changes to the irq affinity masks. 2427 */ 2428 static void 2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2430 const cpumask_t *mask) 2431 { 2432 struct ice_q_vector *q_vector = 2433 container_of(notify, struct ice_q_vector, affinity_notify); 2434 2435 cpumask_copy(&q_vector->affinity_mask, mask); 2436 } 2437 2438 /** 2439 * ice_irq_affinity_release - Callback for affinity notifier release 2440 * @ref: internal core kernel usage 2441 * 2442 * This is a callback function used by the irq_set_affinity_notifier function 2443 * to inform the current notification subscriber that they will no longer 2444 * receive notifications. 2445 */ 2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2447 2448 /** 2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2450 * @vsi: the VSI being configured 2451 */ 2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2453 { 2454 struct ice_hw *hw = &vsi->back->hw; 2455 int i; 2456 2457 ice_for_each_q_vector(vsi, i) 2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2459 2460 ice_flush(hw); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2466 * @vsi: the VSI being configured 2467 * @basename: name for the vector 2468 */ 2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2470 { 2471 int q_vectors = vsi->num_q_vectors; 2472 struct ice_pf *pf = vsi->back; 2473 int base = vsi->base_vector; 2474 struct device *dev; 2475 int rx_int_idx = 0; 2476 int tx_int_idx = 0; 2477 int vector, err; 2478 int irq_num; 2479 2480 dev = ice_pf_to_dev(pf); 2481 for (vector = 0; vector < q_vectors; vector++) { 2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2483 2484 irq_num = pf->msix_entries[base + vector].vector; 2485 2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2489 tx_int_idx++; 2490 } else if (q_vector->rx.rx_ring) { 2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2492 "%s-%s-%d", basename, "rx", rx_int_idx++); 2493 } else if (q_vector->tx.tx_ring) { 2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2495 "%s-%s-%d", basename, "tx", tx_int_idx++); 2496 } else { 2497 /* skip this unused q_vector */ 2498 continue; 2499 } 2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2502 IRQF_SHARED, q_vector->name, 2503 q_vector); 2504 else 2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2506 0, q_vector->name, q_vector); 2507 if (err) { 2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2509 err); 2510 goto free_q_irqs; 2511 } 2512 2513 /* register for affinity change notifications */ 2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2515 struct irq_affinity_notify *affinity_notify; 2516 2517 affinity_notify = &q_vector->affinity_notify; 2518 affinity_notify->notify = ice_irq_affinity_notify; 2519 affinity_notify->release = ice_irq_affinity_release; 2520 irq_set_affinity_notifier(irq_num, affinity_notify); 2521 } 2522 2523 /* assign the mask for this irq */ 2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2525 } 2526 2527 err = ice_set_cpu_rx_rmap(vsi); 2528 if (err) { 2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2530 vsi->vsi_num, ERR_PTR(err)); 2531 goto free_q_irqs; 2532 } 2533 2534 vsi->irqs_ready = true; 2535 return 0; 2536 2537 free_q_irqs: 2538 while (vector) { 2539 vector--; 2540 irq_num = pf->msix_entries[base + vector].vector; 2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2542 irq_set_affinity_notifier(irq_num, NULL); 2543 irq_set_affinity_hint(irq_num, NULL); 2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2545 } 2546 return err; 2547 } 2548 2549 /** 2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2551 * @vsi: VSI to setup Tx rings used by XDP 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2556 { 2557 struct device *dev = ice_pf_to_dev(vsi->back); 2558 struct ice_tx_desc *tx_desc; 2559 int i, j; 2560 2561 ice_for_each_xdp_txq(vsi, i) { 2562 u16 xdp_q_idx = vsi->alloc_txq + i; 2563 struct ice_tx_ring *xdp_ring; 2564 2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2566 2567 if (!xdp_ring) 2568 goto free_xdp_rings; 2569 2570 xdp_ring->q_index = xdp_q_idx; 2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2572 xdp_ring->vsi = vsi; 2573 xdp_ring->netdev = NULL; 2574 xdp_ring->dev = dev; 2575 xdp_ring->count = vsi->num_tx_desc; 2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2579 if (ice_setup_tx_ring(xdp_ring)) 2580 goto free_xdp_rings; 2581 ice_set_ring_xdp(xdp_ring); 2582 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2583 spin_lock_init(&xdp_ring->tx_lock); 2584 for (j = 0; j < xdp_ring->count; j++) { 2585 tx_desc = ICE_TX_DESC(xdp_ring, j); 2586 tx_desc->cmd_type_offset_bsz = 0; 2587 } 2588 } 2589 2590 ice_for_each_rxq(vsi, i) { 2591 if (static_key_enabled(&ice_xdp_locking_key)) 2592 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2593 else 2594 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2595 } 2596 2597 return 0; 2598 2599 free_xdp_rings: 2600 for (; i >= 0; i--) 2601 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2602 ice_free_tx_ring(vsi->xdp_rings[i]); 2603 return -ENOMEM; 2604 } 2605 2606 /** 2607 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2608 * @vsi: VSI to set the bpf prog on 2609 * @prog: the bpf prog pointer 2610 */ 2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2612 { 2613 struct bpf_prog *old_prog; 2614 int i; 2615 2616 old_prog = xchg(&vsi->xdp_prog, prog); 2617 if (old_prog) 2618 bpf_prog_put(old_prog); 2619 2620 ice_for_each_rxq(vsi, i) 2621 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2622 } 2623 2624 /** 2625 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2626 * @vsi: VSI to bring up Tx rings used by XDP 2627 * @prog: bpf program that will be assigned to VSI 2628 * 2629 * Return 0 on success and negative value on error 2630 */ 2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2632 { 2633 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2634 int xdp_rings_rem = vsi->num_xdp_txq; 2635 struct ice_pf *pf = vsi->back; 2636 struct ice_qs_cfg xdp_qs_cfg = { 2637 .qs_mutex = &pf->avail_q_mutex, 2638 .pf_map = pf->avail_txqs, 2639 .pf_map_size = pf->max_pf_txqs, 2640 .q_count = vsi->num_xdp_txq, 2641 .scatter_count = ICE_MAX_SCATTER_TXQS, 2642 .vsi_map = vsi->txq_map, 2643 .vsi_map_offset = vsi->alloc_txq, 2644 .mapping_mode = ICE_VSI_MAP_CONTIG 2645 }; 2646 struct device *dev; 2647 int i, v_idx; 2648 int status; 2649 2650 dev = ice_pf_to_dev(pf); 2651 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2652 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2653 if (!vsi->xdp_rings) 2654 return -ENOMEM; 2655 2656 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2657 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2658 goto err_map_xdp; 2659 2660 if (static_key_enabled(&ice_xdp_locking_key)) 2661 netdev_warn(vsi->netdev, 2662 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2663 2664 if (ice_xdp_alloc_setup_rings(vsi)) 2665 goto clear_xdp_rings; 2666 2667 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2668 ice_for_each_q_vector(vsi, v_idx) { 2669 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2670 int xdp_rings_per_v, q_id, q_base; 2671 2672 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2673 vsi->num_q_vectors - v_idx); 2674 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2675 2676 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2677 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2678 2679 xdp_ring->q_vector = q_vector; 2680 xdp_ring->next = q_vector->tx.tx_ring; 2681 q_vector->tx.tx_ring = xdp_ring; 2682 } 2683 xdp_rings_rem -= xdp_rings_per_v; 2684 } 2685 2686 /* omit the scheduler update if in reset path; XDP queues will be 2687 * taken into account at the end of ice_vsi_rebuild, where 2688 * ice_cfg_vsi_lan is being called 2689 */ 2690 if (ice_is_reset_in_progress(pf->state)) 2691 return 0; 2692 2693 /* tell the Tx scheduler that right now we have 2694 * additional queues 2695 */ 2696 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2697 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2698 2699 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2700 max_txqs); 2701 if (status) { 2702 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2703 status); 2704 goto clear_xdp_rings; 2705 } 2706 2707 /* assign the prog only when it's not already present on VSI; 2708 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2709 * VSI rebuild that happens under ethtool -L can expose us to 2710 * the bpf_prog refcount issues as we would be swapping same 2711 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2712 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2713 * this is not harmful as dev_xdp_install bumps the refcount 2714 * before calling the op exposed by the driver; 2715 */ 2716 if (!ice_is_xdp_ena_vsi(vsi)) 2717 ice_vsi_assign_bpf_prog(vsi, prog); 2718 2719 return 0; 2720 clear_xdp_rings: 2721 ice_for_each_xdp_txq(vsi, i) 2722 if (vsi->xdp_rings[i]) { 2723 kfree_rcu(vsi->xdp_rings[i], rcu); 2724 vsi->xdp_rings[i] = NULL; 2725 } 2726 2727 err_map_xdp: 2728 mutex_lock(&pf->avail_q_mutex); 2729 ice_for_each_xdp_txq(vsi, i) { 2730 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2731 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2732 } 2733 mutex_unlock(&pf->avail_q_mutex); 2734 2735 devm_kfree(dev, vsi->xdp_rings); 2736 return -ENOMEM; 2737 } 2738 2739 /** 2740 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2741 * @vsi: VSI to remove XDP rings 2742 * 2743 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2744 * resources 2745 */ 2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2747 { 2748 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2749 struct ice_pf *pf = vsi->back; 2750 int i, v_idx; 2751 2752 /* q_vectors are freed in reset path so there's no point in detaching 2753 * rings; in case of rebuild being triggered not from reset bits 2754 * in pf->state won't be set, so additionally check first q_vector 2755 * against NULL 2756 */ 2757 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2758 goto free_qmap; 2759 2760 ice_for_each_q_vector(vsi, v_idx) { 2761 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2762 struct ice_tx_ring *ring; 2763 2764 ice_for_each_tx_ring(ring, q_vector->tx) 2765 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2766 break; 2767 2768 /* restore the value of last node prior to XDP setup */ 2769 q_vector->tx.tx_ring = ring; 2770 } 2771 2772 free_qmap: 2773 mutex_lock(&pf->avail_q_mutex); 2774 ice_for_each_xdp_txq(vsi, i) { 2775 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2776 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2777 } 2778 mutex_unlock(&pf->avail_q_mutex); 2779 2780 ice_for_each_xdp_txq(vsi, i) 2781 if (vsi->xdp_rings[i]) { 2782 if (vsi->xdp_rings[i]->desc) { 2783 synchronize_rcu(); 2784 ice_free_tx_ring(vsi->xdp_rings[i]); 2785 } 2786 kfree_rcu(vsi->xdp_rings[i], rcu); 2787 vsi->xdp_rings[i] = NULL; 2788 } 2789 2790 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2791 vsi->xdp_rings = NULL; 2792 2793 if (static_key_enabled(&ice_xdp_locking_key)) 2794 static_branch_dec(&ice_xdp_locking_key); 2795 2796 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2797 return 0; 2798 2799 ice_vsi_assign_bpf_prog(vsi, NULL); 2800 2801 /* notify Tx scheduler that we destroyed XDP queues and bring 2802 * back the old number of child nodes 2803 */ 2804 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2805 max_txqs[i] = vsi->num_txq; 2806 2807 /* change number of XDP Tx queues to 0 */ 2808 vsi->num_xdp_txq = 0; 2809 2810 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2811 max_txqs); 2812 } 2813 2814 /** 2815 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2816 * @vsi: VSI to schedule napi on 2817 */ 2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2819 { 2820 int i; 2821 2822 ice_for_each_rxq(vsi, i) { 2823 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2824 2825 if (rx_ring->xsk_pool) 2826 napi_schedule(&rx_ring->q_vector->napi); 2827 } 2828 } 2829 2830 /** 2831 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2832 * @vsi: VSI to determine the count of XDP Tx qs 2833 * 2834 * returns 0 if Tx qs count is higher than at least half of CPU count, 2835 * -ENOMEM otherwise 2836 */ 2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2838 { 2839 u16 avail = ice_get_avail_txq_count(vsi->back); 2840 u16 cpus = num_possible_cpus(); 2841 2842 if (avail < cpus / 2) 2843 return -ENOMEM; 2844 2845 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2846 2847 if (vsi->num_xdp_txq < cpus) 2848 static_branch_inc(&ice_xdp_locking_key); 2849 2850 return 0; 2851 } 2852 2853 /** 2854 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2855 * @vsi: VSI to setup XDP for 2856 * @prog: XDP program 2857 * @extack: netlink extended ack 2858 */ 2859 static int 2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2861 struct netlink_ext_ack *extack) 2862 { 2863 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2864 bool if_running = netif_running(vsi->netdev); 2865 int ret = 0, xdp_ring_err = 0; 2866 2867 if (frame_size > vsi->rx_buf_len) { 2868 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2869 return -EOPNOTSUPP; 2870 } 2871 2872 /* need to stop netdev while setting up the program for Rx rings */ 2873 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2874 ret = ice_down(vsi); 2875 if (ret) { 2876 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2877 return ret; 2878 } 2879 } 2880 2881 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2882 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2883 if (xdp_ring_err) { 2884 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2885 } else { 2886 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2887 if (xdp_ring_err) 2888 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2889 } 2890 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2891 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2892 if (xdp_ring_err) 2893 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2894 } else { 2895 /* safe to call even when prog == vsi->xdp_prog as 2896 * dev_xdp_install in net/core/dev.c incremented prog's 2897 * refcount so corresponding bpf_prog_put won't cause 2898 * underflow 2899 */ 2900 ice_vsi_assign_bpf_prog(vsi, prog); 2901 } 2902 2903 if (if_running) 2904 ret = ice_up(vsi); 2905 2906 if (!ret && prog) 2907 ice_vsi_rx_napi_schedule(vsi); 2908 2909 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2910 } 2911 2912 /** 2913 * ice_xdp_safe_mode - XDP handler for safe mode 2914 * @dev: netdevice 2915 * @xdp: XDP command 2916 */ 2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2918 struct netdev_bpf *xdp) 2919 { 2920 NL_SET_ERR_MSG_MOD(xdp->extack, 2921 "Please provide working DDP firmware package in order to use XDP\n" 2922 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2923 return -EOPNOTSUPP; 2924 } 2925 2926 /** 2927 * ice_xdp - implements XDP handler 2928 * @dev: netdevice 2929 * @xdp: XDP command 2930 */ 2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2932 { 2933 struct ice_netdev_priv *np = netdev_priv(dev); 2934 struct ice_vsi *vsi = np->vsi; 2935 2936 if (vsi->type != ICE_VSI_PF) { 2937 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2938 return -EINVAL; 2939 } 2940 2941 switch (xdp->command) { 2942 case XDP_SETUP_PROG: 2943 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2944 case XDP_SETUP_XSK_POOL: 2945 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2946 xdp->xsk.queue_id); 2947 default: 2948 return -EINVAL; 2949 } 2950 } 2951 2952 /** 2953 * ice_ena_misc_vector - enable the non-queue interrupts 2954 * @pf: board private structure 2955 */ 2956 static void ice_ena_misc_vector(struct ice_pf *pf) 2957 { 2958 struct ice_hw *hw = &pf->hw; 2959 u32 val; 2960 2961 /* Disable anti-spoof detection interrupt to prevent spurious event 2962 * interrupts during a function reset. Anti-spoof functionally is 2963 * still supported. 2964 */ 2965 val = rd32(hw, GL_MDCK_TX_TDPU); 2966 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2967 wr32(hw, GL_MDCK_TX_TDPU, val); 2968 2969 /* clear things first */ 2970 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2971 rd32(hw, PFINT_OICR); /* read to clear */ 2972 2973 val = (PFINT_OICR_ECC_ERR_M | 2974 PFINT_OICR_MAL_DETECT_M | 2975 PFINT_OICR_GRST_M | 2976 PFINT_OICR_PCI_EXCEPTION_M | 2977 PFINT_OICR_VFLR_M | 2978 PFINT_OICR_HMC_ERR_M | 2979 PFINT_OICR_PE_PUSH_M | 2980 PFINT_OICR_PE_CRITERR_M); 2981 2982 wr32(hw, PFINT_OICR_ENA, val); 2983 2984 /* SW_ITR_IDX = 0, but don't change INTENA */ 2985 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2986 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2987 } 2988 2989 /** 2990 * ice_misc_intr - misc interrupt handler 2991 * @irq: interrupt number 2992 * @data: pointer to a q_vector 2993 */ 2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2995 { 2996 struct ice_pf *pf = (struct ice_pf *)data; 2997 struct ice_hw *hw = &pf->hw; 2998 irqreturn_t ret = IRQ_NONE; 2999 struct device *dev; 3000 u32 oicr, ena_mask; 3001 3002 dev = ice_pf_to_dev(pf); 3003 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3004 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3005 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3006 3007 oicr = rd32(hw, PFINT_OICR); 3008 ena_mask = rd32(hw, PFINT_OICR_ENA); 3009 3010 if (oicr & PFINT_OICR_SWINT_M) { 3011 ena_mask &= ~PFINT_OICR_SWINT_M; 3012 pf->sw_int_count++; 3013 } 3014 3015 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3016 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3017 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3018 } 3019 if (oicr & PFINT_OICR_VFLR_M) { 3020 /* disable any further VFLR event notifications */ 3021 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3022 u32 reg = rd32(hw, PFINT_OICR_ENA); 3023 3024 reg &= ~PFINT_OICR_VFLR_M; 3025 wr32(hw, PFINT_OICR_ENA, reg); 3026 } else { 3027 ena_mask &= ~PFINT_OICR_VFLR_M; 3028 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3029 } 3030 } 3031 3032 if (oicr & PFINT_OICR_GRST_M) { 3033 u32 reset; 3034 3035 /* we have a reset warning */ 3036 ena_mask &= ~PFINT_OICR_GRST_M; 3037 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3038 GLGEN_RSTAT_RESET_TYPE_S; 3039 3040 if (reset == ICE_RESET_CORER) 3041 pf->corer_count++; 3042 else if (reset == ICE_RESET_GLOBR) 3043 pf->globr_count++; 3044 else if (reset == ICE_RESET_EMPR) 3045 pf->empr_count++; 3046 else 3047 dev_dbg(dev, "Invalid reset type %d\n", reset); 3048 3049 /* If a reset cycle isn't already in progress, we set a bit in 3050 * pf->state so that the service task can start a reset/rebuild. 3051 */ 3052 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3053 if (reset == ICE_RESET_CORER) 3054 set_bit(ICE_CORER_RECV, pf->state); 3055 else if (reset == ICE_RESET_GLOBR) 3056 set_bit(ICE_GLOBR_RECV, pf->state); 3057 else 3058 set_bit(ICE_EMPR_RECV, pf->state); 3059 3060 /* There are couple of different bits at play here. 3061 * hw->reset_ongoing indicates whether the hardware is 3062 * in reset. This is set to true when a reset interrupt 3063 * is received and set back to false after the driver 3064 * has determined that the hardware is out of reset. 3065 * 3066 * ICE_RESET_OICR_RECV in pf->state indicates 3067 * that a post reset rebuild is required before the 3068 * driver is operational again. This is set above. 3069 * 3070 * As this is the start of the reset/rebuild cycle, set 3071 * both to indicate that. 3072 */ 3073 hw->reset_ongoing = true; 3074 } 3075 } 3076 3077 if (oicr & PFINT_OICR_TSYN_TX_M) { 3078 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3079 ice_ptp_process_ts(pf); 3080 } 3081 3082 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3083 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3084 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3085 3086 /* Save EVENTs from GTSYN register */ 3087 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3088 GLTSYN_STAT_EVENT1_M | 3089 GLTSYN_STAT_EVENT2_M); 3090 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3091 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3092 } 3093 3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3095 if (oicr & ICE_AUX_CRIT_ERR) { 3096 pf->oicr_err_reg |= oicr; 3097 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3098 ena_mask &= ~ICE_AUX_CRIT_ERR; 3099 } 3100 3101 /* Report any remaining unexpected interrupts */ 3102 oicr &= ena_mask; 3103 if (oicr) { 3104 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3105 /* If a critical error is pending there is no choice but to 3106 * reset the device. 3107 */ 3108 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3109 PFINT_OICR_ECC_ERR_M)) { 3110 set_bit(ICE_PFR_REQ, pf->state); 3111 ice_service_task_schedule(pf); 3112 } 3113 } 3114 ret = IRQ_HANDLED; 3115 3116 ice_service_task_schedule(pf); 3117 ice_irq_dynamic_ena(hw, NULL, NULL); 3118 3119 return ret; 3120 } 3121 3122 /** 3123 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3124 * @hw: pointer to HW structure 3125 */ 3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3127 { 3128 /* disable Admin queue Interrupt causes */ 3129 wr32(hw, PFINT_FW_CTL, 3130 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3131 3132 /* disable Mailbox queue Interrupt causes */ 3133 wr32(hw, PFINT_MBX_CTL, 3134 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3135 3136 wr32(hw, PFINT_SB_CTL, 3137 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3138 3139 /* disable Control queue Interrupt causes */ 3140 wr32(hw, PFINT_OICR_CTL, 3141 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3142 3143 ice_flush(hw); 3144 } 3145 3146 /** 3147 * ice_free_irq_msix_misc - Unroll misc vector setup 3148 * @pf: board private structure 3149 */ 3150 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3151 { 3152 struct ice_hw *hw = &pf->hw; 3153 3154 ice_dis_ctrlq_interrupts(hw); 3155 3156 /* disable OICR interrupt */ 3157 wr32(hw, PFINT_OICR_ENA, 0); 3158 ice_flush(hw); 3159 3160 if (pf->msix_entries) { 3161 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3162 devm_free_irq(ice_pf_to_dev(pf), 3163 pf->msix_entries[pf->oicr_idx].vector, pf); 3164 } 3165 3166 pf->num_avail_sw_msix += 1; 3167 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3168 } 3169 3170 /** 3171 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3172 * @hw: pointer to HW structure 3173 * @reg_idx: HW vector index to associate the control queue interrupts with 3174 */ 3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3176 { 3177 u32 val; 3178 3179 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3180 PFINT_OICR_CTL_CAUSE_ENA_M); 3181 wr32(hw, PFINT_OICR_CTL, val); 3182 3183 /* enable Admin queue Interrupt causes */ 3184 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3185 PFINT_FW_CTL_CAUSE_ENA_M); 3186 wr32(hw, PFINT_FW_CTL, val); 3187 3188 /* enable Mailbox queue Interrupt causes */ 3189 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3190 PFINT_MBX_CTL_CAUSE_ENA_M); 3191 wr32(hw, PFINT_MBX_CTL, val); 3192 3193 /* This enables Sideband queue Interrupt causes */ 3194 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3195 PFINT_SB_CTL_CAUSE_ENA_M); 3196 wr32(hw, PFINT_SB_CTL, val); 3197 3198 ice_flush(hw); 3199 } 3200 3201 /** 3202 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3203 * @pf: board private structure 3204 * 3205 * This sets up the handler for MSIX 0, which is used to manage the 3206 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3207 * when in MSI or Legacy interrupt mode. 3208 */ 3209 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3210 { 3211 struct device *dev = ice_pf_to_dev(pf); 3212 struct ice_hw *hw = &pf->hw; 3213 int oicr_idx, err = 0; 3214 3215 if (!pf->int_name[0]) 3216 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3217 dev_driver_string(dev), dev_name(dev)); 3218 3219 /* Do not request IRQ but do enable OICR interrupt since settings are 3220 * lost during reset. Note that this function is called only during 3221 * rebuild path and not while reset is in progress. 3222 */ 3223 if (ice_is_reset_in_progress(pf->state)) 3224 goto skip_req_irq; 3225 3226 /* reserve one vector in irq_tracker for misc interrupts */ 3227 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3228 if (oicr_idx < 0) 3229 return oicr_idx; 3230 3231 pf->num_avail_sw_msix -= 1; 3232 pf->oicr_idx = (u16)oicr_idx; 3233 3234 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3235 ice_misc_intr, 0, pf->int_name, pf); 3236 if (err) { 3237 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3238 pf->int_name, err); 3239 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3240 pf->num_avail_sw_msix += 1; 3241 return err; 3242 } 3243 3244 skip_req_irq: 3245 ice_ena_misc_vector(pf); 3246 3247 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3248 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3249 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3250 3251 ice_flush(hw); 3252 ice_irq_dynamic_ena(hw, NULL, NULL); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * ice_napi_add - register NAPI handler for the VSI 3259 * @vsi: VSI for which NAPI handler is to be registered 3260 * 3261 * This function is only called in the driver's load path. Registering the NAPI 3262 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3263 * reset/rebuild, etc.) 3264 */ 3265 static void ice_napi_add(struct ice_vsi *vsi) 3266 { 3267 int v_idx; 3268 3269 if (!vsi->netdev) 3270 return; 3271 3272 ice_for_each_q_vector(vsi, v_idx) 3273 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3274 ice_napi_poll, NAPI_POLL_WEIGHT); 3275 } 3276 3277 /** 3278 * ice_set_ops - set netdev and ethtools ops for the given netdev 3279 * @netdev: netdev instance 3280 */ 3281 static void ice_set_ops(struct net_device *netdev) 3282 { 3283 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3284 3285 if (ice_is_safe_mode(pf)) { 3286 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3287 ice_set_ethtool_safe_mode_ops(netdev); 3288 return; 3289 } 3290 3291 netdev->netdev_ops = &ice_netdev_ops; 3292 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3293 ice_set_ethtool_ops(netdev); 3294 } 3295 3296 /** 3297 * ice_set_netdev_features - set features for the given netdev 3298 * @netdev: netdev instance 3299 */ 3300 static void ice_set_netdev_features(struct net_device *netdev) 3301 { 3302 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3303 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3304 netdev_features_t csumo_features; 3305 netdev_features_t vlano_features; 3306 netdev_features_t dflt_features; 3307 netdev_features_t tso_features; 3308 3309 if (ice_is_safe_mode(pf)) { 3310 /* safe mode */ 3311 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3312 netdev->hw_features = netdev->features; 3313 return; 3314 } 3315 3316 dflt_features = NETIF_F_SG | 3317 NETIF_F_HIGHDMA | 3318 NETIF_F_NTUPLE | 3319 NETIF_F_RXHASH; 3320 3321 csumo_features = NETIF_F_RXCSUM | 3322 NETIF_F_IP_CSUM | 3323 NETIF_F_SCTP_CRC | 3324 NETIF_F_IPV6_CSUM; 3325 3326 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3327 NETIF_F_HW_VLAN_CTAG_TX | 3328 NETIF_F_HW_VLAN_CTAG_RX; 3329 3330 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3331 if (is_dvm_ena) 3332 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3333 3334 tso_features = NETIF_F_TSO | 3335 NETIF_F_TSO_ECN | 3336 NETIF_F_TSO6 | 3337 NETIF_F_GSO_GRE | 3338 NETIF_F_GSO_UDP_TUNNEL | 3339 NETIF_F_GSO_GRE_CSUM | 3340 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3341 NETIF_F_GSO_PARTIAL | 3342 NETIF_F_GSO_IPXIP4 | 3343 NETIF_F_GSO_IPXIP6 | 3344 NETIF_F_GSO_UDP_L4; 3345 3346 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3347 NETIF_F_GSO_GRE_CSUM; 3348 /* set features that user can change */ 3349 netdev->hw_features = dflt_features | csumo_features | 3350 vlano_features | tso_features; 3351 3352 /* add support for HW_CSUM on packets with MPLS header */ 3353 netdev->mpls_features = NETIF_F_HW_CSUM | 3354 NETIF_F_TSO | 3355 NETIF_F_TSO6; 3356 3357 /* enable features */ 3358 netdev->features |= netdev->hw_features; 3359 3360 netdev->hw_features |= NETIF_F_HW_TC; 3361 3362 /* encap and VLAN devices inherit default, csumo and tso features */ 3363 netdev->hw_enc_features |= dflt_features | csumo_features | 3364 tso_features; 3365 netdev->vlan_features |= dflt_features | csumo_features | 3366 tso_features; 3367 3368 /* advertise support but don't enable by default since only one type of 3369 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3370 * type turns on the other has to be turned off. This is enforced by the 3371 * ice_fix_features() ndo callback. 3372 */ 3373 if (is_dvm_ena) 3374 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3375 NETIF_F_HW_VLAN_STAG_TX; 3376 } 3377 3378 /** 3379 * ice_cfg_netdev - Allocate, configure and register a netdev 3380 * @vsi: the VSI associated with the new netdev 3381 * 3382 * Returns 0 on success, negative value on failure 3383 */ 3384 static int ice_cfg_netdev(struct ice_vsi *vsi) 3385 { 3386 struct ice_netdev_priv *np; 3387 struct net_device *netdev; 3388 u8 mac_addr[ETH_ALEN]; 3389 3390 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3391 vsi->alloc_rxq); 3392 if (!netdev) 3393 return -ENOMEM; 3394 3395 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3396 vsi->netdev = netdev; 3397 np = netdev_priv(netdev); 3398 np->vsi = vsi; 3399 3400 ice_set_netdev_features(netdev); 3401 3402 ice_set_ops(netdev); 3403 3404 if (vsi->type == ICE_VSI_PF) { 3405 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3406 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3407 eth_hw_addr_set(netdev, mac_addr); 3408 ether_addr_copy(netdev->perm_addr, mac_addr); 3409 } 3410 3411 netdev->priv_flags |= IFF_UNICAST_FLT; 3412 3413 /* Setup netdev TC information */ 3414 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3415 3416 /* setup watchdog timeout value to be 5 second */ 3417 netdev->watchdog_timeo = 5 * HZ; 3418 3419 netdev->min_mtu = ETH_MIN_MTU; 3420 netdev->max_mtu = ICE_MAX_MTU; 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3427 * @lut: Lookup table 3428 * @rss_table_size: Lookup table size 3429 * @rss_size: Range of queue number for hashing 3430 */ 3431 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3432 { 3433 u16 i; 3434 3435 for (i = 0; i < rss_table_size; i++) 3436 lut[i] = i % rss_size; 3437 } 3438 3439 /** 3440 * ice_pf_vsi_setup - Set up a PF VSI 3441 * @pf: board private structure 3442 * @pi: pointer to the port_info instance 3443 * 3444 * Returns pointer to the successfully allocated VSI software struct 3445 * on success, otherwise returns NULL on failure. 3446 */ 3447 static struct ice_vsi * 3448 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3449 { 3450 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3451 } 3452 3453 static struct ice_vsi * 3454 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3455 struct ice_channel *ch) 3456 { 3457 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3458 } 3459 3460 /** 3461 * ice_ctrl_vsi_setup - Set up a control VSI 3462 * @pf: board private structure 3463 * @pi: pointer to the port_info instance 3464 * 3465 * Returns pointer to the successfully allocated VSI software struct 3466 * on success, otherwise returns NULL on failure. 3467 */ 3468 static struct ice_vsi * 3469 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3470 { 3471 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3472 } 3473 3474 /** 3475 * ice_lb_vsi_setup - Set up a loopback VSI 3476 * @pf: board private structure 3477 * @pi: pointer to the port_info instance 3478 * 3479 * Returns pointer to the successfully allocated VSI software struct 3480 * on success, otherwise returns NULL on failure. 3481 */ 3482 struct ice_vsi * 3483 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3484 { 3485 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3486 } 3487 3488 /** 3489 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3490 * @netdev: network interface to be adjusted 3491 * @proto: VLAN TPID 3492 * @vid: VLAN ID to be added 3493 * 3494 * net_device_ops implementation for adding VLAN IDs 3495 */ 3496 static int 3497 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3498 { 3499 struct ice_netdev_priv *np = netdev_priv(netdev); 3500 struct ice_vsi_vlan_ops *vlan_ops; 3501 struct ice_vsi *vsi = np->vsi; 3502 struct ice_vlan vlan; 3503 int ret; 3504 3505 /* VLAN 0 is added by default during load/reset */ 3506 if (!vid) 3507 return 0; 3508 3509 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3510 usleep_range(1000, 2000); 3511 3512 /* Add multicast promisc rule for the VLAN ID to be added if 3513 * all-multicast is currently enabled. 3514 */ 3515 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3516 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3517 ICE_MCAST_VLAN_PROMISC_BITS, 3518 vid); 3519 if (ret) 3520 goto finish; 3521 } 3522 3523 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3524 3525 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3526 * packets aren't pruned by the device's internal switch on Rx 3527 */ 3528 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3529 ret = vlan_ops->add_vlan(vsi, &vlan); 3530 if (ret) 3531 goto finish; 3532 3533 /* If all-multicast is currently enabled and this VLAN ID is only one 3534 * besides VLAN-0 we have to update look-up type of multicast promisc 3535 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3536 */ 3537 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3538 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3539 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3540 ICE_MCAST_PROMISC_BITS, 0); 3541 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3542 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3543 } 3544 3545 finish: 3546 clear_bit(ICE_CFG_BUSY, vsi->state); 3547 3548 return ret; 3549 } 3550 3551 /** 3552 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3553 * @netdev: network interface to be adjusted 3554 * @proto: VLAN TPID 3555 * @vid: VLAN ID to be removed 3556 * 3557 * net_device_ops implementation for removing VLAN IDs 3558 */ 3559 static int 3560 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3561 { 3562 struct ice_netdev_priv *np = netdev_priv(netdev); 3563 struct ice_vsi_vlan_ops *vlan_ops; 3564 struct ice_vsi *vsi = np->vsi; 3565 struct ice_vlan vlan; 3566 int ret; 3567 3568 /* don't allow removal of VLAN 0 */ 3569 if (!vid) 3570 return 0; 3571 3572 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3573 usleep_range(1000, 2000); 3574 3575 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3576 3577 /* Make sure VLAN delete is successful before updating VLAN 3578 * information 3579 */ 3580 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3581 ret = vlan_ops->del_vlan(vsi, &vlan); 3582 if (ret) 3583 goto finish; 3584 3585 /* Remove multicast promisc rule for the removed VLAN ID if 3586 * all-multicast is enabled. 3587 */ 3588 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3589 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3590 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3591 3592 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3593 /* Update look-up type of multicast promisc rule for VLAN 0 3594 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3595 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3596 */ 3597 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3598 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3599 ICE_MCAST_VLAN_PROMISC_BITS, 3600 0); 3601 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3602 ICE_MCAST_PROMISC_BITS, 0); 3603 } 3604 } 3605 3606 finish: 3607 clear_bit(ICE_CFG_BUSY, vsi->state); 3608 3609 return ret; 3610 } 3611 3612 /** 3613 * ice_rep_indr_tc_block_unbind 3614 * @cb_priv: indirection block private data 3615 */ 3616 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3617 { 3618 struct ice_indr_block_priv *indr_priv = cb_priv; 3619 3620 list_del(&indr_priv->list); 3621 kfree(indr_priv); 3622 } 3623 3624 /** 3625 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3626 * @vsi: VSI struct which has the netdev 3627 */ 3628 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3629 { 3630 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3631 3632 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3633 ice_rep_indr_tc_block_unbind); 3634 } 3635 3636 /** 3637 * ice_tc_indir_block_remove - clean indirect TC block notifications 3638 * @pf: PF structure 3639 */ 3640 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3641 { 3642 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3643 3644 if (!pf_vsi) 3645 return; 3646 3647 ice_tc_indir_block_unregister(pf_vsi); 3648 } 3649 3650 /** 3651 * ice_tc_indir_block_register - Register TC indirect block notifications 3652 * @vsi: VSI struct which has the netdev 3653 * 3654 * Returns 0 on success, negative value on failure 3655 */ 3656 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3657 { 3658 struct ice_netdev_priv *np; 3659 3660 if (!vsi || !vsi->netdev) 3661 return -EINVAL; 3662 3663 np = netdev_priv(vsi->netdev); 3664 3665 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3666 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3667 } 3668 3669 /** 3670 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3671 * @pf: board private structure 3672 * 3673 * Returns 0 on success, negative value on failure 3674 */ 3675 static int ice_setup_pf_sw(struct ice_pf *pf) 3676 { 3677 struct device *dev = ice_pf_to_dev(pf); 3678 bool dvm = ice_is_dvm_ena(&pf->hw); 3679 struct ice_vsi *vsi; 3680 int status; 3681 3682 if (ice_is_reset_in_progress(pf->state)) 3683 return -EBUSY; 3684 3685 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3686 if (status) 3687 return -EIO; 3688 3689 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3690 if (!vsi) 3691 return -ENOMEM; 3692 3693 /* init channel list */ 3694 INIT_LIST_HEAD(&vsi->ch_list); 3695 3696 status = ice_cfg_netdev(vsi); 3697 if (status) 3698 goto unroll_vsi_setup; 3699 /* netdev has to be configured before setting frame size */ 3700 ice_vsi_cfg_frame_size(vsi); 3701 3702 /* init indirect block notifications */ 3703 status = ice_tc_indir_block_register(vsi); 3704 if (status) { 3705 dev_err(dev, "Failed to register netdev notifier\n"); 3706 goto unroll_cfg_netdev; 3707 } 3708 3709 /* Setup DCB netlink interface */ 3710 ice_dcbnl_setup(vsi); 3711 3712 /* registering the NAPI handler requires both the queues and 3713 * netdev to be created, which are done in ice_pf_vsi_setup() 3714 * and ice_cfg_netdev() respectively 3715 */ 3716 ice_napi_add(vsi); 3717 3718 status = ice_init_mac_fltr(pf); 3719 if (status) 3720 goto unroll_napi_add; 3721 3722 return 0; 3723 3724 unroll_napi_add: 3725 ice_tc_indir_block_unregister(vsi); 3726 unroll_cfg_netdev: 3727 if (vsi) { 3728 ice_napi_del(vsi); 3729 if (vsi->netdev) { 3730 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3731 free_netdev(vsi->netdev); 3732 vsi->netdev = NULL; 3733 } 3734 } 3735 3736 unroll_vsi_setup: 3737 ice_vsi_release(vsi); 3738 return status; 3739 } 3740 3741 /** 3742 * ice_get_avail_q_count - Get count of queues in use 3743 * @pf_qmap: bitmap to get queue use count from 3744 * @lock: pointer to a mutex that protects access to pf_qmap 3745 * @size: size of the bitmap 3746 */ 3747 static u16 3748 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3749 { 3750 unsigned long bit; 3751 u16 count = 0; 3752 3753 mutex_lock(lock); 3754 for_each_clear_bit(bit, pf_qmap, size) 3755 count++; 3756 mutex_unlock(lock); 3757 3758 return count; 3759 } 3760 3761 /** 3762 * ice_get_avail_txq_count - Get count of Tx queues in use 3763 * @pf: pointer to an ice_pf instance 3764 */ 3765 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3766 { 3767 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3768 pf->max_pf_txqs); 3769 } 3770 3771 /** 3772 * ice_get_avail_rxq_count - Get count of Rx queues in use 3773 * @pf: pointer to an ice_pf instance 3774 */ 3775 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3776 { 3777 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3778 pf->max_pf_rxqs); 3779 } 3780 3781 /** 3782 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3783 * @pf: board private structure to initialize 3784 */ 3785 static void ice_deinit_pf(struct ice_pf *pf) 3786 { 3787 ice_service_task_stop(pf); 3788 mutex_destroy(&pf->adev_mutex); 3789 mutex_destroy(&pf->sw_mutex); 3790 mutex_destroy(&pf->tc_mutex); 3791 mutex_destroy(&pf->avail_q_mutex); 3792 mutex_destroy(&pf->vfs.table_lock); 3793 3794 if (pf->avail_txqs) { 3795 bitmap_free(pf->avail_txqs); 3796 pf->avail_txqs = NULL; 3797 } 3798 3799 if (pf->avail_rxqs) { 3800 bitmap_free(pf->avail_rxqs); 3801 pf->avail_rxqs = NULL; 3802 } 3803 3804 if (pf->ptp.clock) 3805 ptp_clock_unregister(pf->ptp.clock); 3806 } 3807 3808 /** 3809 * ice_set_pf_caps - set PFs capability flags 3810 * @pf: pointer to the PF instance 3811 */ 3812 static void ice_set_pf_caps(struct ice_pf *pf) 3813 { 3814 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3815 3816 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3817 if (func_caps->common_cap.rdma) 3818 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3819 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3820 if (func_caps->common_cap.dcb) 3821 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3822 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3823 if (func_caps->common_cap.sr_iov_1_1) { 3824 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3825 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3826 ICE_MAX_SRIOV_VFS); 3827 } 3828 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3829 if (func_caps->common_cap.rss_table_size) 3830 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3831 3832 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3833 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3834 u16 unused; 3835 3836 /* ctrl_vsi_idx will be set to a valid value when flow director 3837 * is setup by ice_init_fdir 3838 */ 3839 pf->ctrl_vsi_idx = ICE_NO_VSI; 3840 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3841 /* force guaranteed filter pool for PF */ 3842 ice_alloc_fd_guar_item(&pf->hw, &unused, 3843 func_caps->fd_fltr_guar); 3844 /* force shared filter pool for PF */ 3845 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3846 func_caps->fd_fltr_best_effort); 3847 } 3848 3849 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3850 if (func_caps->common_cap.ieee_1588) 3851 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3852 3853 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3854 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3855 } 3856 3857 /** 3858 * ice_init_pf - Initialize general software structures (struct ice_pf) 3859 * @pf: board private structure to initialize 3860 */ 3861 static int ice_init_pf(struct ice_pf *pf) 3862 { 3863 ice_set_pf_caps(pf); 3864 3865 mutex_init(&pf->sw_mutex); 3866 mutex_init(&pf->tc_mutex); 3867 mutex_init(&pf->adev_mutex); 3868 3869 INIT_HLIST_HEAD(&pf->aq_wait_list); 3870 spin_lock_init(&pf->aq_wait_lock); 3871 init_waitqueue_head(&pf->aq_wait_queue); 3872 3873 init_waitqueue_head(&pf->reset_wait_queue); 3874 3875 /* setup service timer and periodic service task */ 3876 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3877 pf->serv_tmr_period = HZ; 3878 INIT_WORK(&pf->serv_task, ice_service_task); 3879 clear_bit(ICE_SERVICE_SCHED, pf->state); 3880 3881 mutex_init(&pf->avail_q_mutex); 3882 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3883 if (!pf->avail_txqs) 3884 return -ENOMEM; 3885 3886 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3887 if (!pf->avail_rxqs) { 3888 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3889 pf->avail_txqs = NULL; 3890 return -ENOMEM; 3891 } 3892 3893 mutex_init(&pf->vfs.table_lock); 3894 hash_init(pf->vfs.table); 3895 3896 return 0; 3897 } 3898 3899 /** 3900 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3901 * @pf: board private structure 3902 * 3903 * compute the number of MSIX vectors required (v_budget) and request from 3904 * the OS. Return the number of vectors reserved or negative on failure 3905 */ 3906 static int ice_ena_msix_range(struct ice_pf *pf) 3907 { 3908 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3909 struct device *dev = ice_pf_to_dev(pf); 3910 int needed, err, i; 3911 3912 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3913 num_cpus = num_online_cpus(); 3914 3915 /* reserve for LAN miscellaneous handler */ 3916 needed = ICE_MIN_LAN_OICR_MSIX; 3917 if (v_left < needed) 3918 goto no_hw_vecs_left_err; 3919 v_budget += needed; 3920 v_left -= needed; 3921 3922 /* reserve for flow director */ 3923 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3924 needed = ICE_FDIR_MSIX; 3925 if (v_left < needed) 3926 goto no_hw_vecs_left_err; 3927 v_budget += needed; 3928 v_left -= needed; 3929 } 3930 3931 /* reserve for switchdev */ 3932 needed = ICE_ESWITCH_MSIX; 3933 if (v_left < needed) 3934 goto no_hw_vecs_left_err; 3935 v_budget += needed; 3936 v_left -= needed; 3937 3938 /* total used for non-traffic vectors */ 3939 v_other = v_budget; 3940 3941 /* reserve vectors for LAN traffic */ 3942 needed = num_cpus; 3943 if (v_left < needed) 3944 goto no_hw_vecs_left_err; 3945 pf->num_lan_msix = needed; 3946 v_budget += needed; 3947 v_left -= needed; 3948 3949 /* reserve vectors for RDMA auxiliary driver */ 3950 if (ice_is_rdma_ena(pf)) { 3951 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3952 if (v_left < needed) 3953 goto no_hw_vecs_left_err; 3954 pf->num_rdma_msix = needed; 3955 v_budget += needed; 3956 v_left -= needed; 3957 } 3958 3959 pf->msix_entries = devm_kcalloc(dev, v_budget, 3960 sizeof(*pf->msix_entries), GFP_KERNEL); 3961 if (!pf->msix_entries) { 3962 err = -ENOMEM; 3963 goto exit_err; 3964 } 3965 3966 for (i = 0; i < v_budget; i++) 3967 pf->msix_entries[i].entry = i; 3968 3969 /* actually reserve the vectors */ 3970 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3971 ICE_MIN_MSIX, v_budget); 3972 if (v_actual < 0) { 3973 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3974 err = v_actual; 3975 goto msix_err; 3976 } 3977 3978 if (v_actual < v_budget) { 3979 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3980 v_budget, v_actual); 3981 3982 if (v_actual < ICE_MIN_MSIX) { 3983 /* error if we can't get minimum vectors */ 3984 pci_disable_msix(pf->pdev); 3985 err = -ERANGE; 3986 goto msix_err; 3987 } else { 3988 int v_remain = v_actual - v_other; 3989 int v_rdma = 0, v_min_rdma = 0; 3990 3991 if (ice_is_rdma_ena(pf)) { 3992 /* Need at least 1 interrupt in addition to 3993 * AEQ MSIX 3994 */ 3995 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3996 v_min_rdma = ICE_MIN_RDMA_MSIX; 3997 } 3998 3999 if (v_actual == ICE_MIN_MSIX || 4000 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4001 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4002 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4003 4004 pf->num_rdma_msix = 0; 4005 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4006 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4007 (v_remain - v_rdma < v_rdma)) { 4008 /* Support minimum RDMA and give remaining 4009 * vectors to LAN MSIX 4010 */ 4011 pf->num_rdma_msix = v_min_rdma; 4012 pf->num_lan_msix = v_remain - v_min_rdma; 4013 } else { 4014 /* Split remaining MSIX with RDMA after 4015 * accounting for AEQ MSIX 4016 */ 4017 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4018 ICE_RDMA_NUM_AEQ_MSIX; 4019 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4020 } 4021 4022 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4023 pf->num_lan_msix); 4024 4025 if (ice_is_rdma_ena(pf)) 4026 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4027 pf->num_rdma_msix); 4028 } 4029 } 4030 4031 return v_actual; 4032 4033 msix_err: 4034 devm_kfree(dev, pf->msix_entries); 4035 goto exit_err; 4036 4037 no_hw_vecs_left_err: 4038 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4039 needed, v_left); 4040 err = -ERANGE; 4041 exit_err: 4042 pf->num_rdma_msix = 0; 4043 pf->num_lan_msix = 0; 4044 return err; 4045 } 4046 4047 /** 4048 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4049 * @pf: board private structure 4050 */ 4051 static void ice_dis_msix(struct ice_pf *pf) 4052 { 4053 pci_disable_msix(pf->pdev); 4054 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4055 pf->msix_entries = NULL; 4056 } 4057 4058 /** 4059 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4060 * @pf: board private structure 4061 */ 4062 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4063 { 4064 ice_dis_msix(pf); 4065 4066 if (pf->irq_tracker) { 4067 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4068 pf->irq_tracker = NULL; 4069 } 4070 } 4071 4072 /** 4073 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4074 * @pf: board private structure to initialize 4075 */ 4076 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4077 { 4078 int vectors; 4079 4080 vectors = ice_ena_msix_range(pf); 4081 4082 if (vectors < 0) 4083 return vectors; 4084 4085 /* set up vector assignment tracking */ 4086 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4087 struct_size(pf->irq_tracker, list, vectors), 4088 GFP_KERNEL); 4089 if (!pf->irq_tracker) { 4090 ice_dis_msix(pf); 4091 return -ENOMEM; 4092 } 4093 4094 /* populate SW interrupts pool with number of OS granted IRQs. */ 4095 pf->num_avail_sw_msix = (u16)vectors; 4096 pf->irq_tracker->num_entries = (u16)vectors; 4097 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4098 4099 return 0; 4100 } 4101 4102 /** 4103 * ice_is_wol_supported - check if WoL is supported 4104 * @hw: pointer to hardware info 4105 * 4106 * Check if WoL is supported based on the HW configuration. 4107 * Returns true if NVM supports and enables WoL for this port, false otherwise 4108 */ 4109 bool ice_is_wol_supported(struct ice_hw *hw) 4110 { 4111 u16 wol_ctrl; 4112 4113 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4114 * word) indicates WoL is not supported on the corresponding PF ID. 4115 */ 4116 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4117 return false; 4118 4119 return !(BIT(hw->port_info->lport) & wol_ctrl); 4120 } 4121 4122 /** 4123 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4124 * @vsi: VSI being changed 4125 * @new_rx: new number of Rx queues 4126 * @new_tx: new number of Tx queues 4127 * 4128 * Only change the number of queues if new_tx, or new_rx is non-0. 4129 * 4130 * Returns 0 on success. 4131 */ 4132 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4133 { 4134 struct ice_pf *pf = vsi->back; 4135 int err = 0, timeout = 50; 4136 4137 if (!new_rx && !new_tx) 4138 return -EINVAL; 4139 4140 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4141 timeout--; 4142 if (!timeout) 4143 return -EBUSY; 4144 usleep_range(1000, 2000); 4145 } 4146 4147 if (new_tx) 4148 vsi->req_txq = (u16)new_tx; 4149 if (new_rx) 4150 vsi->req_rxq = (u16)new_rx; 4151 4152 /* set for the next time the netdev is started */ 4153 if (!netif_running(vsi->netdev)) { 4154 ice_vsi_rebuild(vsi, false); 4155 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4156 goto done; 4157 } 4158 4159 ice_vsi_close(vsi); 4160 ice_vsi_rebuild(vsi, false); 4161 ice_pf_dcb_recfg(pf); 4162 ice_vsi_open(vsi); 4163 done: 4164 clear_bit(ICE_CFG_BUSY, pf->state); 4165 return err; 4166 } 4167 4168 /** 4169 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4170 * @pf: PF to configure 4171 * 4172 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4173 * VSI can still Tx/Rx VLAN tagged packets. 4174 */ 4175 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4176 { 4177 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4178 struct ice_vsi_ctx *ctxt; 4179 struct ice_hw *hw; 4180 int status; 4181 4182 if (!vsi) 4183 return; 4184 4185 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4186 if (!ctxt) 4187 return; 4188 4189 hw = &pf->hw; 4190 ctxt->info = vsi->info; 4191 4192 ctxt->info.valid_sections = 4193 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4194 ICE_AQ_VSI_PROP_SECURITY_VALID | 4195 ICE_AQ_VSI_PROP_SW_VALID); 4196 4197 /* disable VLAN anti-spoof */ 4198 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4199 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4200 4201 /* disable VLAN pruning and keep all other settings */ 4202 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4203 4204 /* allow all VLANs on Tx and don't strip on Rx */ 4205 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4206 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4207 4208 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4209 if (status) { 4210 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4211 status, ice_aq_str(hw->adminq.sq_last_status)); 4212 } else { 4213 vsi->info.sec_flags = ctxt->info.sec_flags; 4214 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4215 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4216 } 4217 4218 kfree(ctxt); 4219 } 4220 4221 /** 4222 * ice_log_pkg_init - log result of DDP package load 4223 * @hw: pointer to hardware info 4224 * @state: state of package load 4225 */ 4226 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4227 { 4228 struct ice_pf *pf = hw->back; 4229 struct device *dev; 4230 4231 dev = ice_pf_to_dev(pf); 4232 4233 switch (state) { 4234 case ICE_DDP_PKG_SUCCESS: 4235 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4236 hw->active_pkg_name, 4237 hw->active_pkg_ver.major, 4238 hw->active_pkg_ver.minor, 4239 hw->active_pkg_ver.update, 4240 hw->active_pkg_ver.draft); 4241 break; 4242 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4243 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4244 hw->active_pkg_name, 4245 hw->active_pkg_ver.major, 4246 hw->active_pkg_ver.minor, 4247 hw->active_pkg_ver.update, 4248 hw->active_pkg_ver.draft); 4249 break; 4250 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4251 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4252 hw->active_pkg_name, 4253 hw->active_pkg_ver.major, 4254 hw->active_pkg_ver.minor, 4255 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4256 break; 4257 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4258 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4259 hw->active_pkg_name, 4260 hw->active_pkg_ver.major, 4261 hw->active_pkg_ver.minor, 4262 hw->active_pkg_ver.update, 4263 hw->active_pkg_ver.draft, 4264 hw->pkg_name, 4265 hw->pkg_ver.major, 4266 hw->pkg_ver.minor, 4267 hw->pkg_ver.update, 4268 hw->pkg_ver.draft); 4269 break; 4270 case ICE_DDP_PKG_FW_MISMATCH: 4271 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4272 break; 4273 case ICE_DDP_PKG_INVALID_FILE: 4274 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4275 break; 4276 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4277 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4278 break; 4279 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4280 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4281 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4282 break; 4283 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4284 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4285 break; 4286 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4287 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4288 break; 4289 case ICE_DDP_PKG_LOAD_ERROR: 4290 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4291 /* poll for reset to complete */ 4292 if (ice_check_reset(hw)) 4293 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4294 break; 4295 case ICE_DDP_PKG_ERR: 4296 default: 4297 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4298 break; 4299 } 4300 } 4301 4302 /** 4303 * ice_load_pkg - load/reload the DDP Package file 4304 * @firmware: firmware structure when firmware requested or NULL for reload 4305 * @pf: pointer to the PF instance 4306 * 4307 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4308 * initialize HW tables. 4309 */ 4310 static void 4311 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4312 { 4313 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4314 struct device *dev = ice_pf_to_dev(pf); 4315 struct ice_hw *hw = &pf->hw; 4316 4317 /* Load DDP Package */ 4318 if (firmware && !hw->pkg_copy) { 4319 state = ice_copy_and_init_pkg(hw, firmware->data, 4320 firmware->size); 4321 ice_log_pkg_init(hw, state); 4322 } else if (!firmware && hw->pkg_copy) { 4323 /* Reload package during rebuild after CORER/GLOBR reset */ 4324 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4325 ice_log_pkg_init(hw, state); 4326 } else { 4327 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4328 } 4329 4330 if (!ice_is_init_pkg_successful(state)) { 4331 /* Safe Mode */ 4332 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4333 return; 4334 } 4335 4336 /* Successful download package is the precondition for advanced 4337 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4338 */ 4339 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4340 } 4341 4342 /** 4343 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4344 * @pf: pointer to the PF structure 4345 * 4346 * There is no error returned here because the driver should be able to handle 4347 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4348 * specifically with Tx. 4349 */ 4350 static void ice_verify_cacheline_size(struct ice_pf *pf) 4351 { 4352 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4353 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4354 ICE_CACHE_LINE_BYTES); 4355 } 4356 4357 /** 4358 * ice_send_version - update firmware with driver version 4359 * @pf: PF struct 4360 * 4361 * Returns 0 on success, else error code 4362 */ 4363 static int ice_send_version(struct ice_pf *pf) 4364 { 4365 struct ice_driver_ver dv; 4366 4367 dv.major_ver = 0xff; 4368 dv.minor_ver = 0xff; 4369 dv.build_ver = 0xff; 4370 dv.subbuild_ver = 0; 4371 strscpy((char *)dv.driver_string, UTS_RELEASE, 4372 sizeof(dv.driver_string)); 4373 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4374 } 4375 4376 /** 4377 * ice_init_fdir - Initialize flow director VSI and configuration 4378 * @pf: pointer to the PF instance 4379 * 4380 * returns 0 on success, negative on error 4381 */ 4382 static int ice_init_fdir(struct ice_pf *pf) 4383 { 4384 struct device *dev = ice_pf_to_dev(pf); 4385 struct ice_vsi *ctrl_vsi; 4386 int err; 4387 4388 /* Side Band Flow Director needs to have a control VSI. 4389 * Allocate it and store it in the PF. 4390 */ 4391 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4392 if (!ctrl_vsi) { 4393 dev_dbg(dev, "could not create control VSI\n"); 4394 return -ENOMEM; 4395 } 4396 4397 err = ice_vsi_open_ctrl(ctrl_vsi); 4398 if (err) { 4399 dev_dbg(dev, "could not open control VSI\n"); 4400 goto err_vsi_open; 4401 } 4402 4403 mutex_init(&pf->hw.fdir_fltr_lock); 4404 4405 err = ice_fdir_create_dflt_rules(pf); 4406 if (err) 4407 goto err_fdir_rule; 4408 4409 return 0; 4410 4411 err_fdir_rule: 4412 ice_fdir_release_flows(&pf->hw); 4413 ice_vsi_close(ctrl_vsi); 4414 err_vsi_open: 4415 ice_vsi_release(ctrl_vsi); 4416 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4417 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4418 pf->ctrl_vsi_idx = ICE_NO_VSI; 4419 } 4420 return err; 4421 } 4422 4423 /** 4424 * ice_get_opt_fw_name - return optional firmware file name or NULL 4425 * @pf: pointer to the PF instance 4426 */ 4427 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4428 { 4429 /* Optional firmware name same as default with additional dash 4430 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4431 */ 4432 struct pci_dev *pdev = pf->pdev; 4433 char *opt_fw_filename; 4434 u64 dsn; 4435 4436 /* Determine the name of the optional file using the DSN (two 4437 * dwords following the start of the DSN Capability). 4438 */ 4439 dsn = pci_get_dsn(pdev); 4440 if (!dsn) 4441 return NULL; 4442 4443 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4444 if (!opt_fw_filename) 4445 return NULL; 4446 4447 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4448 ICE_DDP_PKG_PATH, dsn); 4449 4450 return opt_fw_filename; 4451 } 4452 4453 /** 4454 * ice_request_fw - Device initialization routine 4455 * @pf: pointer to the PF instance 4456 */ 4457 static void ice_request_fw(struct ice_pf *pf) 4458 { 4459 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4460 const struct firmware *firmware = NULL; 4461 struct device *dev = ice_pf_to_dev(pf); 4462 int err = 0; 4463 4464 /* optional device-specific DDP (if present) overrides the default DDP 4465 * package file. kernel logs a debug message if the file doesn't exist, 4466 * and warning messages for other errors. 4467 */ 4468 if (opt_fw_filename) { 4469 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4470 if (err) { 4471 kfree(opt_fw_filename); 4472 goto dflt_pkg_load; 4473 } 4474 4475 /* request for firmware was successful. Download to device */ 4476 ice_load_pkg(firmware, pf); 4477 kfree(opt_fw_filename); 4478 release_firmware(firmware); 4479 return; 4480 } 4481 4482 dflt_pkg_load: 4483 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4484 if (err) { 4485 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4486 return; 4487 } 4488 4489 /* request for firmware was successful. Download to device */ 4490 ice_load_pkg(firmware, pf); 4491 release_firmware(firmware); 4492 } 4493 4494 /** 4495 * ice_print_wake_reason - show the wake up cause in the log 4496 * @pf: pointer to the PF struct 4497 */ 4498 static void ice_print_wake_reason(struct ice_pf *pf) 4499 { 4500 u32 wus = pf->wakeup_reason; 4501 const char *wake_str; 4502 4503 /* if no wake event, nothing to print */ 4504 if (!wus) 4505 return; 4506 4507 if (wus & PFPM_WUS_LNKC_M) 4508 wake_str = "Link\n"; 4509 else if (wus & PFPM_WUS_MAG_M) 4510 wake_str = "Magic Packet\n"; 4511 else if (wus & PFPM_WUS_MNG_M) 4512 wake_str = "Management\n"; 4513 else if (wus & PFPM_WUS_FW_RST_WK_M) 4514 wake_str = "Firmware Reset\n"; 4515 else 4516 wake_str = "Unknown\n"; 4517 4518 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4519 } 4520 4521 /** 4522 * ice_register_netdev - register netdev and devlink port 4523 * @pf: pointer to the PF struct 4524 */ 4525 static int ice_register_netdev(struct ice_pf *pf) 4526 { 4527 struct ice_vsi *vsi; 4528 int err = 0; 4529 4530 vsi = ice_get_main_vsi(pf); 4531 if (!vsi || !vsi->netdev) 4532 return -EIO; 4533 4534 err = register_netdev(vsi->netdev); 4535 if (err) 4536 goto err_register_netdev; 4537 4538 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4539 netif_carrier_off(vsi->netdev); 4540 netif_tx_stop_all_queues(vsi->netdev); 4541 err = ice_devlink_create_pf_port(pf); 4542 if (err) 4543 goto err_devlink_create; 4544 4545 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4546 4547 return 0; 4548 err_devlink_create: 4549 unregister_netdev(vsi->netdev); 4550 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4551 err_register_netdev: 4552 free_netdev(vsi->netdev); 4553 vsi->netdev = NULL; 4554 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4555 return err; 4556 } 4557 4558 /** 4559 * ice_probe - Device initialization routine 4560 * @pdev: PCI device information struct 4561 * @ent: entry in ice_pci_tbl 4562 * 4563 * Returns 0 on success, negative on failure 4564 */ 4565 static int 4566 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4567 { 4568 struct device *dev = &pdev->dev; 4569 struct ice_pf *pf; 4570 struct ice_hw *hw; 4571 int i, err; 4572 4573 if (pdev->is_virtfn) { 4574 dev_err(dev, "can't probe a virtual function\n"); 4575 return -EINVAL; 4576 } 4577 4578 /* this driver uses devres, see 4579 * Documentation/driver-api/driver-model/devres.rst 4580 */ 4581 err = pcim_enable_device(pdev); 4582 if (err) 4583 return err; 4584 4585 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4586 if (err) { 4587 dev_err(dev, "BAR0 I/O map error %d\n", err); 4588 return err; 4589 } 4590 4591 pf = ice_allocate_pf(dev); 4592 if (!pf) 4593 return -ENOMEM; 4594 4595 /* initialize Auxiliary index to invalid value */ 4596 pf->aux_idx = -1; 4597 4598 /* set up for high or low DMA */ 4599 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4600 if (err) { 4601 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4602 return err; 4603 } 4604 4605 pci_enable_pcie_error_reporting(pdev); 4606 pci_set_master(pdev); 4607 4608 pf->pdev = pdev; 4609 pci_set_drvdata(pdev, pf); 4610 set_bit(ICE_DOWN, pf->state); 4611 /* Disable service task until DOWN bit is cleared */ 4612 set_bit(ICE_SERVICE_DIS, pf->state); 4613 4614 hw = &pf->hw; 4615 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4616 pci_save_state(pdev); 4617 4618 hw->back = pf; 4619 hw->vendor_id = pdev->vendor; 4620 hw->device_id = pdev->device; 4621 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4622 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4623 hw->subsystem_device_id = pdev->subsystem_device; 4624 hw->bus.device = PCI_SLOT(pdev->devfn); 4625 hw->bus.func = PCI_FUNC(pdev->devfn); 4626 ice_set_ctrlq_len(hw); 4627 4628 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4629 4630 #ifndef CONFIG_DYNAMIC_DEBUG 4631 if (debug < -1) 4632 hw->debug_mask = debug; 4633 #endif 4634 4635 err = ice_init_hw(hw); 4636 if (err) { 4637 dev_err(dev, "ice_init_hw failed: %d\n", err); 4638 err = -EIO; 4639 goto err_exit_unroll; 4640 } 4641 4642 ice_init_feature_support(pf); 4643 4644 ice_request_fw(pf); 4645 4646 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4647 * set in pf->state, which will cause ice_is_safe_mode to return 4648 * true 4649 */ 4650 if (ice_is_safe_mode(pf)) { 4651 /* we already got function/device capabilities but these don't 4652 * reflect what the driver needs to do in safe mode. Instead of 4653 * adding conditional logic everywhere to ignore these 4654 * device/function capabilities, override them. 4655 */ 4656 ice_set_safe_mode_caps(hw); 4657 } 4658 4659 err = ice_init_pf(pf); 4660 if (err) { 4661 dev_err(dev, "ice_init_pf failed: %d\n", err); 4662 goto err_init_pf_unroll; 4663 } 4664 4665 ice_devlink_init_regions(pf); 4666 4667 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4668 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4669 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4670 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4671 i = 0; 4672 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4673 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4674 pf->hw.tnl.valid_count[TNL_VXLAN]; 4675 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4676 UDP_TUNNEL_TYPE_VXLAN; 4677 i++; 4678 } 4679 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4680 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4681 pf->hw.tnl.valid_count[TNL_GENEVE]; 4682 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4683 UDP_TUNNEL_TYPE_GENEVE; 4684 i++; 4685 } 4686 4687 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4688 if (!pf->num_alloc_vsi) { 4689 err = -EIO; 4690 goto err_init_pf_unroll; 4691 } 4692 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4693 dev_warn(&pf->pdev->dev, 4694 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4695 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4696 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4697 } 4698 4699 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4700 GFP_KERNEL); 4701 if (!pf->vsi) { 4702 err = -ENOMEM; 4703 goto err_init_pf_unroll; 4704 } 4705 4706 err = ice_init_interrupt_scheme(pf); 4707 if (err) { 4708 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4709 err = -EIO; 4710 goto err_init_vsi_unroll; 4711 } 4712 4713 /* In case of MSIX we are going to setup the misc vector right here 4714 * to handle admin queue events etc. In case of legacy and MSI 4715 * the misc functionality and queue processing is combined in 4716 * the same vector and that gets setup at open. 4717 */ 4718 err = ice_req_irq_msix_misc(pf); 4719 if (err) { 4720 dev_err(dev, "setup of misc vector failed: %d\n", err); 4721 goto err_init_interrupt_unroll; 4722 } 4723 4724 /* create switch struct for the switch element created by FW on boot */ 4725 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4726 if (!pf->first_sw) { 4727 err = -ENOMEM; 4728 goto err_msix_misc_unroll; 4729 } 4730 4731 if (hw->evb_veb) 4732 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4733 else 4734 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4735 4736 pf->first_sw->pf = pf; 4737 4738 /* record the sw_id available for later use */ 4739 pf->first_sw->sw_id = hw->port_info->sw_id; 4740 4741 err = ice_setup_pf_sw(pf); 4742 if (err) { 4743 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4744 goto err_alloc_sw_unroll; 4745 } 4746 4747 clear_bit(ICE_SERVICE_DIS, pf->state); 4748 4749 /* tell the firmware we are up */ 4750 err = ice_send_version(pf); 4751 if (err) { 4752 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4753 UTS_RELEASE, err); 4754 goto err_send_version_unroll; 4755 } 4756 4757 /* since everything is good, start the service timer */ 4758 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4759 4760 err = ice_init_link_events(pf->hw.port_info); 4761 if (err) { 4762 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4763 goto err_send_version_unroll; 4764 } 4765 4766 /* not a fatal error if this fails */ 4767 err = ice_init_nvm_phy_type(pf->hw.port_info); 4768 if (err) 4769 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4770 4771 /* not a fatal error if this fails */ 4772 err = ice_update_link_info(pf->hw.port_info); 4773 if (err) 4774 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4775 4776 ice_init_link_dflt_override(pf->hw.port_info); 4777 4778 ice_check_link_cfg_err(pf, 4779 pf->hw.port_info->phy.link_info.link_cfg_err); 4780 4781 /* if media available, initialize PHY settings */ 4782 if (pf->hw.port_info->phy.link_info.link_info & 4783 ICE_AQ_MEDIA_AVAILABLE) { 4784 /* not a fatal error if this fails */ 4785 err = ice_init_phy_user_cfg(pf->hw.port_info); 4786 if (err) 4787 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4788 4789 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4790 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4791 4792 if (vsi) 4793 ice_configure_phy(vsi); 4794 } 4795 } else { 4796 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4797 } 4798 4799 ice_verify_cacheline_size(pf); 4800 4801 /* Save wakeup reason register for later use */ 4802 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4803 4804 /* check for a power management event */ 4805 ice_print_wake_reason(pf); 4806 4807 /* clear wake status, all bits */ 4808 wr32(hw, PFPM_WUS, U32_MAX); 4809 4810 /* Disable WoL at init, wait for user to enable */ 4811 device_set_wakeup_enable(dev, false); 4812 4813 if (ice_is_safe_mode(pf)) { 4814 ice_set_safe_mode_vlan_cfg(pf); 4815 goto probe_done; 4816 } 4817 4818 /* initialize DDP driven features */ 4819 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4820 ice_ptp_init(pf); 4821 4822 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4823 ice_gnss_init(pf); 4824 4825 /* Note: Flow director init failure is non-fatal to load */ 4826 if (ice_init_fdir(pf)) 4827 dev_err(dev, "could not initialize flow director\n"); 4828 4829 /* Note: DCB init failure is non-fatal to load */ 4830 if (ice_init_pf_dcb(pf, false)) { 4831 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4832 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4833 } else { 4834 ice_cfg_lldp_mib_change(&pf->hw, true); 4835 } 4836 4837 if (ice_init_lag(pf)) 4838 dev_warn(dev, "Failed to init link aggregation support\n"); 4839 4840 /* print PCI link speed and width */ 4841 pcie_print_link_status(pf->pdev); 4842 4843 probe_done: 4844 err = ice_register_netdev(pf); 4845 if (err) 4846 goto err_netdev_reg; 4847 4848 err = ice_devlink_register_params(pf); 4849 if (err) 4850 goto err_netdev_reg; 4851 4852 /* ready to go, so clear down state bit */ 4853 clear_bit(ICE_DOWN, pf->state); 4854 if (ice_is_rdma_ena(pf)) { 4855 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4856 if (pf->aux_idx < 0) { 4857 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4858 err = -ENOMEM; 4859 goto err_devlink_reg_param; 4860 } 4861 4862 err = ice_init_rdma(pf); 4863 if (err) { 4864 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4865 err = -EIO; 4866 goto err_init_aux_unroll; 4867 } 4868 } else { 4869 dev_warn(dev, "RDMA is not supported on this device\n"); 4870 } 4871 4872 ice_devlink_register(pf); 4873 return 0; 4874 4875 err_init_aux_unroll: 4876 pf->adev = NULL; 4877 ida_free(&ice_aux_ida, pf->aux_idx); 4878 err_devlink_reg_param: 4879 ice_devlink_unregister_params(pf); 4880 err_netdev_reg: 4881 err_send_version_unroll: 4882 ice_vsi_release_all(pf); 4883 err_alloc_sw_unroll: 4884 set_bit(ICE_SERVICE_DIS, pf->state); 4885 set_bit(ICE_DOWN, pf->state); 4886 devm_kfree(dev, pf->first_sw); 4887 err_msix_misc_unroll: 4888 ice_free_irq_msix_misc(pf); 4889 err_init_interrupt_unroll: 4890 ice_clear_interrupt_scheme(pf); 4891 err_init_vsi_unroll: 4892 devm_kfree(dev, pf->vsi); 4893 err_init_pf_unroll: 4894 ice_deinit_pf(pf); 4895 ice_devlink_destroy_regions(pf); 4896 ice_deinit_hw(hw); 4897 err_exit_unroll: 4898 pci_disable_pcie_error_reporting(pdev); 4899 pci_disable_device(pdev); 4900 return err; 4901 } 4902 4903 /** 4904 * ice_set_wake - enable or disable Wake on LAN 4905 * @pf: pointer to the PF struct 4906 * 4907 * Simple helper for WoL control 4908 */ 4909 static void ice_set_wake(struct ice_pf *pf) 4910 { 4911 struct ice_hw *hw = &pf->hw; 4912 bool wol = pf->wol_ena; 4913 4914 /* clear wake state, otherwise new wake events won't fire */ 4915 wr32(hw, PFPM_WUS, U32_MAX); 4916 4917 /* enable / disable APM wake up, no RMW needed */ 4918 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4919 4920 /* set magic packet filter enabled */ 4921 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4922 } 4923 4924 /** 4925 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4926 * @pf: pointer to the PF struct 4927 * 4928 * Issue firmware command to enable multicast magic wake, making 4929 * sure that any locally administered address (LAA) is used for 4930 * wake, and that PF reset doesn't undo the LAA. 4931 */ 4932 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4933 { 4934 struct device *dev = ice_pf_to_dev(pf); 4935 struct ice_hw *hw = &pf->hw; 4936 u8 mac_addr[ETH_ALEN]; 4937 struct ice_vsi *vsi; 4938 int status; 4939 u8 flags; 4940 4941 if (!pf->wol_ena) 4942 return; 4943 4944 vsi = ice_get_main_vsi(pf); 4945 if (!vsi) 4946 return; 4947 4948 /* Get current MAC address in case it's an LAA */ 4949 if (vsi->netdev) 4950 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4951 else 4952 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4953 4954 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4955 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4956 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4957 4958 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4959 if (status) 4960 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4961 status, ice_aq_str(hw->adminq.sq_last_status)); 4962 } 4963 4964 /** 4965 * ice_remove - Device removal routine 4966 * @pdev: PCI device information struct 4967 */ 4968 static void ice_remove(struct pci_dev *pdev) 4969 { 4970 struct ice_pf *pf = pci_get_drvdata(pdev); 4971 int i; 4972 4973 ice_devlink_unregister(pf); 4974 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4975 if (!ice_is_reset_in_progress(pf->state)) 4976 break; 4977 msleep(100); 4978 } 4979 4980 ice_tc_indir_block_remove(pf); 4981 4982 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4983 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4984 ice_free_vfs(pf); 4985 } 4986 4987 ice_service_task_stop(pf); 4988 4989 ice_aq_cancel_waiting_tasks(pf); 4990 ice_unplug_aux_dev(pf); 4991 if (pf->aux_idx >= 0) 4992 ida_free(&ice_aux_ida, pf->aux_idx); 4993 ice_devlink_unregister_params(pf); 4994 set_bit(ICE_DOWN, pf->state); 4995 4996 ice_deinit_lag(pf); 4997 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4998 ice_ptp_release(pf); 4999 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5000 ice_gnss_exit(pf); 5001 if (!ice_is_safe_mode(pf)) 5002 ice_remove_arfs(pf); 5003 ice_setup_mc_magic_wake(pf); 5004 ice_vsi_release_all(pf); 5005 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5006 ice_set_wake(pf); 5007 ice_free_irq_msix_misc(pf); 5008 ice_for_each_vsi(pf, i) { 5009 if (!pf->vsi[i]) 5010 continue; 5011 ice_vsi_free_q_vectors(pf->vsi[i]); 5012 } 5013 ice_deinit_pf(pf); 5014 ice_devlink_destroy_regions(pf); 5015 ice_deinit_hw(&pf->hw); 5016 5017 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5018 * do it via ice_schedule_reset() since there is no need to rebuild 5019 * and the service task is already stopped. 5020 */ 5021 ice_reset(&pf->hw, ICE_RESET_PFR); 5022 pci_wait_for_pending_transaction(pdev); 5023 ice_clear_interrupt_scheme(pf); 5024 pci_disable_pcie_error_reporting(pdev); 5025 pci_disable_device(pdev); 5026 } 5027 5028 /** 5029 * ice_shutdown - PCI callback for shutting down device 5030 * @pdev: PCI device information struct 5031 */ 5032 static void ice_shutdown(struct pci_dev *pdev) 5033 { 5034 struct ice_pf *pf = pci_get_drvdata(pdev); 5035 5036 ice_remove(pdev); 5037 5038 if (system_state == SYSTEM_POWER_OFF) { 5039 pci_wake_from_d3(pdev, pf->wol_ena); 5040 pci_set_power_state(pdev, PCI_D3hot); 5041 } 5042 } 5043 5044 #ifdef CONFIG_PM 5045 /** 5046 * ice_prepare_for_shutdown - prep for PCI shutdown 5047 * @pf: board private structure 5048 * 5049 * Inform or close all dependent features in prep for PCI device shutdown 5050 */ 5051 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5052 { 5053 struct ice_hw *hw = &pf->hw; 5054 u32 v; 5055 5056 /* Notify VFs of impending reset */ 5057 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5058 ice_vc_notify_reset(pf); 5059 5060 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5061 5062 /* disable the VSIs and their queues that are not already DOWN */ 5063 ice_pf_dis_all_vsi(pf, false); 5064 5065 ice_for_each_vsi(pf, v) 5066 if (pf->vsi[v]) 5067 pf->vsi[v]->vsi_num = 0; 5068 5069 ice_shutdown_all_ctrlq(hw); 5070 } 5071 5072 /** 5073 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5074 * @pf: board private structure to reinitialize 5075 * 5076 * This routine reinitialize interrupt scheme that was cleared during 5077 * power management suspend callback. 5078 * 5079 * This should be called during resume routine to re-allocate the q_vectors 5080 * and reacquire interrupts. 5081 */ 5082 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5083 { 5084 struct device *dev = ice_pf_to_dev(pf); 5085 int ret, v; 5086 5087 /* Since we clear MSIX flag during suspend, we need to 5088 * set it back during resume... 5089 */ 5090 5091 ret = ice_init_interrupt_scheme(pf); 5092 if (ret) { 5093 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5094 return ret; 5095 } 5096 5097 /* Remap vectors and rings, after successful re-init interrupts */ 5098 ice_for_each_vsi(pf, v) { 5099 if (!pf->vsi[v]) 5100 continue; 5101 5102 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5103 if (ret) 5104 goto err_reinit; 5105 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5106 } 5107 5108 ret = ice_req_irq_msix_misc(pf); 5109 if (ret) { 5110 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5111 ret); 5112 goto err_reinit; 5113 } 5114 5115 return 0; 5116 5117 err_reinit: 5118 while (v--) 5119 if (pf->vsi[v]) 5120 ice_vsi_free_q_vectors(pf->vsi[v]); 5121 5122 return ret; 5123 } 5124 5125 /** 5126 * ice_suspend 5127 * @dev: generic device information structure 5128 * 5129 * Power Management callback to quiesce the device and prepare 5130 * for D3 transition. 5131 */ 5132 static int __maybe_unused ice_suspend(struct device *dev) 5133 { 5134 struct pci_dev *pdev = to_pci_dev(dev); 5135 struct ice_pf *pf; 5136 int disabled, v; 5137 5138 pf = pci_get_drvdata(pdev); 5139 5140 if (!ice_pf_state_is_nominal(pf)) { 5141 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5142 return -EBUSY; 5143 } 5144 5145 /* Stop watchdog tasks until resume completion. 5146 * Even though it is most likely that the service task is 5147 * disabled if the device is suspended or down, the service task's 5148 * state is controlled by a different state bit, and we should 5149 * store and honor whatever state that bit is in at this point. 5150 */ 5151 disabled = ice_service_task_stop(pf); 5152 5153 ice_unplug_aux_dev(pf); 5154 5155 /* Already suspended?, then there is nothing to do */ 5156 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5157 if (!disabled) 5158 ice_service_task_restart(pf); 5159 return 0; 5160 } 5161 5162 if (test_bit(ICE_DOWN, pf->state) || 5163 ice_is_reset_in_progress(pf->state)) { 5164 dev_err(dev, "can't suspend device in reset or already down\n"); 5165 if (!disabled) 5166 ice_service_task_restart(pf); 5167 return 0; 5168 } 5169 5170 ice_setup_mc_magic_wake(pf); 5171 5172 ice_prepare_for_shutdown(pf); 5173 5174 ice_set_wake(pf); 5175 5176 /* Free vectors, clear the interrupt scheme and release IRQs 5177 * for proper hibernation, especially with large number of CPUs. 5178 * Otherwise hibernation might fail when mapping all the vectors back 5179 * to CPU0. 5180 */ 5181 ice_free_irq_msix_misc(pf); 5182 ice_for_each_vsi(pf, v) { 5183 if (!pf->vsi[v]) 5184 continue; 5185 ice_vsi_free_q_vectors(pf->vsi[v]); 5186 } 5187 ice_clear_interrupt_scheme(pf); 5188 5189 pci_save_state(pdev); 5190 pci_wake_from_d3(pdev, pf->wol_ena); 5191 pci_set_power_state(pdev, PCI_D3hot); 5192 return 0; 5193 } 5194 5195 /** 5196 * ice_resume - PM callback for waking up from D3 5197 * @dev: generic device information structure 5198 */ 5199 static int __maybe_unused ice_resume(struct device *dev) 5200 { 5201 struct pci_dev *pdev = to_pci_dev(dev); 5202 enum ice_reset_req reset_type; 5203 struct ice_pf *pf; 5204 struct ice_hw *hw; 5205 int ret; 5206 5207 pci_set_power_state(pdev, PCI_D0); 5208 pci_restore_state(pdev); 5209 pci_save_state(pdev); 5210 5211 if (!pci_device_is_present(pdev)) 5212 return -ENODEV; 5213 5214 ret = pci_enable_device_mem(pdev); 5215 if (ret) { 5216 dev_err(dev, "Cannot enable device after suspend\n"); 5217 return ret; 5218 } 5219 5220 pf = pci_get_drvdata(pdev); 5221 hw = &pf->hw; 5222 5223 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5224 ice_print_wake_reason(pf); 5225 5226 /* We cleared the interrupt scheme when we suspended, so we need to 5227 * restore it now to resume device functionality. 5228 */ 5229 ret = ice_reinit_interrupt_scheme(pf); 5230 if (ret) 5231 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5232 5233 clear_bit(ICE_DOWN, pf->state); 5234 /* Now perform PF reset and rebuild */ 5235 reset_type = ICE_RESET_PFR; 5236 /* re-enable service task for reset, but allow reset to schedule it */ 5237 clear_bit(ICE_SERVICE_DIS, pf->state); 5238 5239 if (ice_schedule_reset(pf, reset_type)) 5240 dev_err(dev, "Reset during resume failed.\n"); 5241 5242 clear_bit(ICE_SUSPENDED, pf->state); 5243 ice_service_task_restart(pf); 5244 5245 /* Restart the service task */ 5246 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5247 5248 return 0; 5249 } 5250 #endif /* CONFIG_PM */ 5251 5252 /** 5253 * ice_pci_err_detected - warning that PCI error has been detected 5254 * @pdev: PCI device information struct 5255 * @err: the type of PCI error 5256 * 5257 * Called to warn that something happened on the PCI bus and the error handling 5258 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5259 */ 5260 static pci_ers_result_t 5261 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5262 { 5263 struct ice_pf *pf = pci_get_drvdata(pdev); 5264 5265 if (!pf) { 5266 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5267 __func__, err); 5268 return PCI_ERS_RESULT_DISCONNECT; 5269 } 5270 5271 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5272 ice_service_task_stop(pf); 5273 5274 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5275 set_bit(ICE_PFR_REQ, pf->state); 5276 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5277 } 5278 } 5279 5280 return PCI_ERS_RESULT_NEED_RESET; 5281 } 5282 5283 /** 5284 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5285 * @pdev: PCI device information struct 5286 * 5287 * Called to determine if the driver can recover from the PCI slot reset by 5288 * using a register read to determine if the device is recoverable. 5289 */ 5290 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5291 { 5292 struct ice_pf *pf = pci_get_drvdata(pdev); 5293 pci_ers_result_t result; 5294 int err; 5295 u32 reg; 5296 5297 err = pci_enable_device_mem(pdev); 5298 if (err) { 5299 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5300 err); 5301 result = PCI_ERS_RESULT_DISCONNECT; 5302 } else { 5303 pci_set_master(pdev); 5304 pci_restore_state(pdev); 5305 pci_save_state(pdev); 5306 pci_wake_from_d3(pdev, false); 5307 5308 /* Check for life */ 5309 reg = rd32(&pf->hw, GLGEN_RTRIG); 5310 if (!reg) 5311 result = PCI_ERS_RESULT_RECOVERED; 5312 else 5313 result = PCI_ERS_RESULT_DISCONNECT; 5314 } 5315 5316 err = pci_aer_clear_nonfatal_status(pdev); 5317 if (err) 5318 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5319 err); 5320 /* non-fatal, continue */ 5321 5322 return result; 5323 } 5324 5325 /** 5326 * ice_pci_err_resume - restart operations after PCI error recovery 5327 * @pdev: PCI device information struct 5328 * 5329 * Called to allow the driver to bring things back up after PCI error and/or 5330 * reset recovery have finished 5331 */ 5332 static void ice_pci_err_resume(struct pci_dev *pdev) 5333 { 5334 struct ice_pf *pf = pci_get_drvdata(pdev); 5335 5336 if (!pf) { 5337 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5338 __func__); 5339 return; 5340 } 5341 5342 if (test_bit(ICE_SUSPENDED, pf->state)) { 5343 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5344 __func__); 5345 return; 5346 } 5347 5348 ice_restore_all_vfs_msi_state(pdev); 5349 5350 ice_do_reset(pf, ICE_RESET_PFR); 5351 ice_service_task_restart(pf); 5352 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5353 } 5354 5355 /** 5356 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5357 * @pdev: PCI device information struct 5358 */ 5359 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5360 { 5361 struct ice_pf *pf = pci_get_drvdata(pdev); 5362 5363 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5364 ice_service_task_stop(pf); 5365 5366 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5367 set_bit(ICE_PFR_REQ, pf->state); 5368 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5369 } 5370 } 5371 } 5372 5373 /** 5374 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5375 * @pdev: PCI device information struct 5376 */ 5377 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5378 { 5379 ice_pci_err_resume(pdev); 5380 } 5381 5382 /* ice_pci_tbl - PCI Device ID Table 5383 * 5384 * Wildcard entries (PCI_ANY_ID) should come last 5385 * Last entry must be all 0s 5386 * 5387 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5388 * Class, Class Mask, private data (not used) } 5389 */ 5390 static const struct pci_device_id ice_pci_tbl[] = { 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5398 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5399 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5400 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5401 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5402 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5403 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5404 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5405 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5406 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5407 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5408 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5409 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5410 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5411 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5412 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5414 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5415 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5416 /* required last entry */ 5417 { 0, } 5418 }; 5419 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5420 5421 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5422 5423 static const struct pci_error_handlers ice_pci_err_handler = { 5424 .error_detected = ice_pci_err_detected, 5425 .slot_reset = ice_pci_err_slot_reset, 5426 .reset_prepare = ice_pci_err_reset_prepare, 5427 .reset_done = ice_pci_err_reset_done, 5428 .resume = ice_pci_err_resume 5429 }; 5430 5431 static struct pci_driver ice_driver = { 5432 .name = KBUILD_MODNAME, 5433 .id_table = ice_pci_tbl, 5434 .probe = ice_probe, 5435 .remove = ice_remove, 5436 #ifdef CONFIG_PM 5437 .driver.pm = &ice_pm_ops, 5438 #endif /* CONFIG_PM */ 5439 .shutdown = ice_shutdown, 5440 .sriov_configure = ice_sriov_configure, 5441 .err_handler = &ice_pci_err_handler 5442 }; 5443 5444 /** 5445 * ice_module_init - Driver registration routine 5446 * 5447 * ice_module_init is the first routine called when the driver is 5448 * loaded. All it does is register with the PCI subsystem. 5449 */ 5450 static int __init ice_module_init(void) 5451 { 5452 int status; 5453 5454 pr_info("%s\n", ice_driver_string); 5455 pr_info("%s\n", ice_copyright); 5456 5457 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5458 if (!ice_wq) { 5459 pr_err("Failed to create workqueue\n"); 5460 return -ENOMEM; 5461 } 5462 5463 status = pci_register_driver(&ice_driver); 5464 if (status) { 5465 pr_err("failed to register PCI driver, err %d\n", status); 5466 destroy_workqueue(ice_wq); 5467 } 5468 5469 return status; 5470 } 5471 module_init(ice_module_init); 5472 5473 /** 5474 * ice_module_exit - Driver exit cleanup routine 5475 * 5476 * ice_module_exit is called just before the driver is removed 5477 * from memory. 5478 */ 5479 static void __exit ice_module_exit(void) 5480 { 5481 pci_unregister_driver(&ice_driver); 5482 destroy_workqueue(ice_wq); 5483 pr_info("module unloaded\n"); 5484 } 5485 module_exit(ice_module_exit); 5486 5487 /** 5488 * ice_set_mac_address - NDO callback to set MAC address 5489 * @netdev: network interface device structure 5490 * @pi: pointer to an address structure 5491 * 5492 * Returns 0 on success, negative on failure 5493 */ 5494 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5495 { 5496 struct ice_netdev_priv *np = netdev_priv(netdev); 5497 struct ice_vsi *vsi = np->vsi; 5498 struct ice_pf *pf = vsi->back; 5499 struct ice_hw *hw = &pf->hw; 5500 struct sockaddr *addr = pi; 5501 u8 old_mac[ETH_ALEN]; 5502 u8 flags = 0; 5503 u8 *mac; 5504 int err; 5505 5506 mac = (u8 *)addr->sa_data; 5507 5508 if (!is_valid_ether_addr(mac)) 5509 return -EADDRNOTAVAIL; 5510 5511 if (ether_addr_equal(netdev->dev_addr, mac)) { 5512 netdev_dbg(netdev, "already using mac %pM\n", mac); 5513 return 0; 5514 } 5515 5516 if (test_bit(ICE_DOWN, pf->state) || 5517 ice_is_reset_in_progress(pf->state)) { 5518 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5519 mac); 5520 return -EBUSY; 5521 } 5522 5523 if (ice_chnl_dmac_fltr_cnt(pf)) { 5524 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5525 mac); 5526 return -EAGAIN; 5527 } 5528 5529 netif_addr_lock_bh(netdev); 5530 ether_addr_copy(old_mac, netdev->dev_addr); 5531 /* change the netdev's MAC address */ 5532 eth_hw_addr_set(netdev, mac); 5533 netif_addr_unlock_bh(netdev); 5534 5535 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5536 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5537 if (err && err != -ENOENT) { 5538 err = -EADDRNOTAVAIL; 5539 goto err_update_filters; 5540 } 5541 5542 /* Add filter for new MAC. If filter exists, return success */ 5543 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5544 if (err == -EEXIST) { 5545 /* Although this MAC filter is already present in hardware it's 5546 * possible in some cases (e.g. bonding) that dev_addr was 5547 * modified outside of the driver and needs to be restored back 5548 * to this value. 5549 */ 5550 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5551 5552 return 0; 5553 } else if (err) { 5554 /* error if the new filter addition failed */ 5555 err = -EADDRNOTAVAIL; 5556 } 5557 5558 err_update_filters: 5559 if (err) { 5560 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5561 mac); 5562 netif_addr_lock_bh(netdev); 5563 eth_hw_addr_set(netdev, old_mac); 5564 netif_addr_unlock_bh(netdev); 5565 return err; 5566 } 5567 5568 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5569 netdev->dev_addr); 5570 5571 /* write new MAC address to the firmware */ 5572 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5573 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5574 if (err) { 5575 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5576 mac, err); 5577 } 5578 return 0; 5579 } 5580 5581 /** 5582 * ice_set_rx_mode - NDO callback to set the netdev filters 5583 * @netdev: network interface device structure 5584 */ 5585 static void ice_set_rx_mode(struct net_device *netdev) 5586 { 5587 struct ice_netdev_priv *np = netdev_priv(netdev); 5588 struct ice_vsi *vsi = np->vsi; 5589 5590 if (!vsi) 5591 return; 5592 5593 /* Set the flags to synchronize filters 5594 * ndo_set_rx_mode may be triggered even without a change in netdev 5595 * flags 5596 */ 5597 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5598 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5599 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5600 5601 /* schedule our worker thread which will take care of 5602 * applying the new filter changes 5603 */ 5604 ice_service_task_schedule(vsi->back); 5605 } 5606 5607 /** 5608 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5609 * @netdev: network interface device structure 5610 * @queue_index: Queue ID 5611 * @maxrate: maximum bandwidth in Mbps 5612 */ 5613 static int 5614 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5615 { 5616 struct ice_netdev_priv *np = netdev_priv(netdev); 5617 struct ice_vsi *vsi = np->vsi; 5618 u16 q_handle; 5619 int status; 5620 u8 tc; 5621 5622 /* Validate maxrate requested is within permitted range */ 5623 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5624 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5625 maxrate, queue_index); 5626 return -EINVAL; 5627 } 5628 5629 q_handle = vsi->tx_rings[queue_index]->q_handle; 5630 tc = ice_dcb_get_tc(vsi, queue_index); 5631 5632 /* Set BW back to default, when user set maxrate to 0 */ 5633 if (!maxrate) 5634 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5635 q_handle, ICE_MAX_BW); 5636 else 5637 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5638 q_handle, ICE_MAX_BW, maxrate * 1000); 5639 if (status) 5640 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5641 status); 5642 5643 return status; 5644 } 5645 5646 /** 5647 * ice_fdb_add - add an entry to the hardware database 5648 * @ndm: the input from the stack 5649 * @tb: pointer to array of nladdr (unused) 5650 * @dev: the net device pointer 5651 * @addr: the MAC address entry being added 5652 * @vid: VLAN ID 5653 * @flags: instructions from stack about fdb operation 5654 * @extack: netlink extended ack 5655 */ 5656 static int 5657 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5658 struct net_device *dev, const unsigned char *addr, u16 vid, 5659 u16 flags, struct netlink_ext_ack __always_unused *extack) 5660 { 5661 int err; 5662 5663 if (vid) { 5664 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5665 return -EINVAL; 5666 } 5667 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5668 netdev_err(dev, "FDB only supports static addresses\n"); 5669 return -EINVAL; 5670 } 5671 5672 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5673 err = dev_uc_add_excl(dev, addr); 5674 else if (is_multicast_ether_addr(addr)) 5675 err = dev_mc_add_excl(dev, addr); 5676 else 5677 err = -EINVAL; 5678 5679 /* Only return duplicate errors if NLM_F_EXCL is set */ 5680 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5681 err = 0; 5682 5683 return err; 5684 } 5685 5686 /** 5687 * ice_fdb_del - delete an entry from the hardware database 5688 * @ndm: the input from the stack 5689 * @tb: pointer to array of nladdr (unused) 5690 * @dev: the net device pointer 5691 * @addr: the MAC address entry being added 5692 * @vid: VLAN ID 5693 * @extack: netlink extended ack 5694 */ 5695 static int 5696 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5697 struct net_device *dev, const unsigned char *addr, 5698 __always_unused u16 vid, struct netlink_ext_ack *extack) 5699 { 5700 int err; 5701 5702 if (ndm->ndm_state & NUD_PERMANENT) { 5703 netdev_err(dev, "FDB only supports static addresses\n"); 5704 return -EINVAL; 5705 } 5706 5707 if (is_unicast_ether_addr(addr)) 5708 err = dev_uc_del(dev, addr); 5709 else if (is_multicast_ether_addr(addr)) 5710 err = dev_mc_del(dev, addr); 5711 else 5712 err = -EINVAL; 5713 5714 return err; 5715 } 5716 5717 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5718 NETIF_F_HW_VLAN_CTAG_TX | \ 5719 NETIF_F_HW_VLAN_STAG_RX | \ 5720 NETIF_F_HW_VLAN_STAG_TX) 5721 5722 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5723 NETIF_F_HW_VLAN_STAG_FILTER) 5724 5725 /** 5726 * ice_fix_features - fix the netdev features flags based on device limitations 5727 * @netdev: ptr to the netdev that flags are being fixed on 5728 * @features: features that need to be checked and possibly fixed 5729 * 5730 * Make sure any fixups are made to features in this callback. This enables the 5731 * driver to not have to check unsupported configurations throughout the driver 5732 * because that's the responsiblity of this callback. 5733 * 5734 * Single VLAN Mode (SVM) Supported Features: 5735 * NETIF_F_HW_VLAN_CTAG_FILTER 5736 * NETIF_F_HW_VLAN_CTAG_RX 5737 * NETIF_F_HW_VLAN_CTAG_TX 5738 * 5739 * Double VLAN Mode (DVM) Supported Features: 5740 * NETIF_F_HW_VLAN_CTAG_FILTER 5741 * NETIF_F_HW_VLAN_CTAG_RX 5742 * NETIF_F_HW_VLAN_CTAG_TX 5743 * 5744 * NETIF_F_HW_VLAN_STAG_FILTER 5745 * NETIF_HW_VLAN_STAG_RX 5746 * NETIF_HW_VLAN_STAG_TX 5747 * 5748 * Features that need fixing: 5749 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5750 * These are mutually exlusive as the VSI context cannot support multiple 5751 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5752 * is not done, then default to clearing the requested STAG offload 5753 * settings. 5754 * 5755 * All supported filtering has to be enabled or disabled together. For 5756 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5757 * together. If this is not done, then default to VLAN filtering disabled. 5758 * These are mutually exclusive as there is currently no way to 5759 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5760 * prune rules. 5761 */ 5762 static netdev_features_t 5763 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5764 { 5765 struct ice_netdev_priv *np = netdev_priv(netdev); 5766 netdev_features_t supported_vlan_filtering; 5767 netdev_features_t requested_vlan_filtering; 5768 struct ice_vsi *vsi = np->vsi; 5769 5770 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5771 5772 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5773 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5774 if (ice_is_dvm_ena(&vsi->back->hw)) 5775 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5776 5777 if (requested_vlan_filtering && 5778 requested_vlan_filtering != supported_vlan_filtering) { 5779 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5780 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5781 features |= supported_vlan_filtering; 5782 } else { 5783 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5784 features &= ~supported_vlan_filtering; 5785 } 5786 } 5787 5788 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5789 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5790 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5791 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5792 NETIF_F_HW_VLAN_STAG_TX); 5793 } 5794 5795 return features; 5796 } 5797 5798 /** 5799 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5800 * @vsi: PF's VSI 5801 * @features: features used to determine VLAN offload settings 5802 * 5803 * First, determine the vlan_ethertype based on the VLAN offload bits in 5804 * features. Then determine if stripping and insertion should be enabled or 5805 * disabled. Finally enable or disable VLAN stripping and insertion. 5806 */ 5807 static int 5808 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5809 { 5810 bool enable_stripping = true, enable_insertion = true; 5811 struct ice_vsi_vlan_ops *vlan_ops; 5812 int strip_err = 0, insert_err = 0; 5813 u16 vlan_ethertype = 0; 5814 5815 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5816 5817 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5818 vlan_ethertype = ETH_P_8021AD; 5819 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5820 vlan_ethertype = ETH_P_8021Q; 5821 5822 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5823 enable_stripping = false; 5824 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5825 enable_insertion = false; 5826 5827 if (enable_stripping) 5828 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5829 else 5830 strip_err = vlan_ops->dis_stripping(vsi); 5831 5832 if (enable_insertion) 5833 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5834 else 5835 insert_err = vlan_ops->dis_insertion(vsi); 5836 5837 if (strip_err || insert_err) 5838 return -EIO; 5839 5840 return 0; 5841 } 5842 5843 /** 5844 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5845 * @vsi: PF's VSI 5846 * @features: features used to determine VLAN filtering settings 5847 * 5848 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5849 * features. 5850 */ 5851 static int 5852 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5853 { 5854 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5855 int err = 0; 5856 5857 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5858 * if either bit is set 5859 */ 5860 if (features & 5861 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5862 err = vlan_ops->ena_rx_filtering(vsi); 5863 else 5864 err = vlan_ops->dis_rx_filtering(vsi); 5865 5866 return err; 5867 } 5868 5869 /** 5870 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5871 * @netdev: ptr to the netdev being adjusted 5872 * @features: the feature set that the stack is suggesting 5873 * 5874 * Only update VLAN settings if the requested_vlan_features are different than 5875 * the current_vlan_features. 5876 */ 5877 static int 5878 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5879 { 5880 netdev_features_t current_vlan_features, requested_vlan_features; 5881 struct ice_netdev_priv *np = netdev_priv(netdev); 5882 struct ice_vsi *vsi = np->vsi; 5883 int err; 5884 5885 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5886 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5887 if (current_vlan_features ^ requested_vlan_features) { 5888 err = ice_set_vlan_offload_features(vsi, features); 5889 if (err) 5890 return err; 5891 } 5892 5893 current_vlan_features = netdev->features & 5894 NETIF_VLAN_FILTERING_FEATURES; 5895 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5896 if (current_vlan_features ^ requested_vlan_features) { 5897 err = ice_set_vlan_filtering_features(vsi, features); 5898 if (err) 5899 return err; 5900 } 5901 5902 return 0; 5903 } 5904 5905 /** 5906 * ice_set_features - set the netdev feature flags 5907 * @netdev: ptr to the netdev being adjusted 5908 * @features: the feature set that the stack is suggesting 5909 */ 5910 static int 5911 ice_set_features(struct net_device *netdev, netdev_features_t features) 5912 { 5913 struct ice_netdev_priv *np = netdev_priv(netdev); 5914 struct ice_vsi *vsi = np->vsi; 5915 struct ice_pf *pf = vsi->back; 5916 int ret = 0; 5917 5918 /* Don't set any netdev advanced features with device in Safe Mode */ 5919 if (ice_is_safe_mode(vsi->back)) { 5920 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5921 return ret; 5922 } 5923 5924 /* Do not change setting during reset */ 5925 if (ice_is_reset_in_progress(pf->state)) { 5926 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5927 return -EBUSY; 5928 } 5929 5930 /* Multiple features can be changed in one call so keep features in 5931 * separate if/else statements to guarantee each feature is checked 5932 */ 5933 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5934 ice_vsi_manage_rss_lut(vsi, true); 5935 else if (!(features & NETIF_F_RXHASH) && 5936 netdev->features & NETIF_F_RXHASH) 5937 ice_vsi_manage_rss_lut(vsi, false); 5938 5939 ret = ice_set_vlan_features(netdev, features); 5940 if (ret) 5941 return ret; 5942 5943 if ((features & NETIF_F_NTUPLE) && 5944 !(netdev->features & NETIF_F_NTUPLE)) { 5945 ice_vsi_manage_fdir(vsi, true); 5946 ice_init_arfs(vsi); 5947 } else if (!(features & NETIF_F_NTUPLE) && 5948 (netdev->features & NETIF_F_NTUPLE)) { 5949 ice_vsi_manage_fdir(vsi, false); 5950 ice_clear_arfs(vsi); 5951 } 5952 5953 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5954 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5955 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5956 return -EACCES; 5957 } 5958 5959 if ((features & NETIF_F_HW_TC) && 5960 !(netdev->features & NETIF_F_HW_TC)) 5961 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5962 else 5963 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5964 5965 return 0; 5966 } 5967 5968 /** 5969 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5970 * @vsi: VSI to setup VLAN properties for 5971 */ 5972 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5973 { 5974 int err; 5975 5976 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5977 if (err) 5978 return err; 5979 5980 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5981 if (err) 5982 return err; 5983 5984 return ice_vsi_add_vlan_zero(vsi); 5985 } 5986 5987 /** 5988 * ice_vsi_cfg - Setup the VSI 5989 * @vsi: the VSI being configured 5990 * 5991 * Return 0 on success and negative value on error 5992 */ 5993 int ice_vsi_cfg(struct ice_vsi *vsi) 5994 { 5995 int err; 5996 5997 if (vsi->netdev) { 5998 ice_set_rx_mode(vsi->netdev); 5999 6000 err = ice_vsi_vlan_setup(vsi); 6001 6002 if (err) 6003 return err; 6004 } 6005 ice_vsi_cfg_dcb_rings(vsi); 6006 6007 err = ice_vsi_cfg_lan_txqs(vsi); 6008 if (!err && ice_is_xdp_ena_vsi(vsi)) 6009 err = ice_vsi_cfg_xdp_txqs(vsi); 6010 if (!err) 6011 err = ice_vsi_cfg_rxqs(vsi); 6012 6013 return err; 6014 } 6015 6016 /* THEORY OF MODERATION: 6017 * The ice driver hardware works differently than the hardware that DIMLIB was 6018 * originally made for. ice hardware doesn't have packet count limits that 6019 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6020 * which is hard-coded to a limit of 250,000 ints/second. 6021 * If not using dynamic moderation, the INTRL value can be modified 6022 * by ethtool rx-usecs-high. 6023 */ 6024 struct ice_dim { 6025 /* the throttle rate for interrupts, basically worst case delay before 6026 * an initial interrupt fires, value is stored in microseconds. 6027 */ 6028 u16 itr; 6029 }; 6030 6031 /* Make a different profile for Rx that doesn't allow quite so aggressive 6032 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6033 * second. 6034 */ 6035 static const struct ice_dim rx_profile[] = { 6036 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6037 {8}, /* 125,000 ints/s */ 6038 {16}, /* 62,500 ints/s */ 6039 {62}, /* 16,129 ints/s */ 6040 {126} /* 7,936 ints/s */ 6041 }; 6042 6043 /* The transmit profile, which has the same sorts of values 6044 * as the previous struct 6045 */ 6046 static const struct ice_dim tx_profile[] = { 6047 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6048 {8}, /* 125,000 ints/s */ 6049 {40}, /* 16,125 ints/s */ 6050 {128}, /* 7,812 ints/s */ 6051 {256} /* 3,906 ints/s */ 6052 }; 6053 6054 static void ice_tx_dim_work(struct work_struct *work) 6055 { 6056 struct ice_ring_container *rc; 6057 struct dim *dim; 6058 u16 itr; 6059 6060 dim = container_of(work, struct dim, work); 6061 rc = (struct ice_ring_container *)dim->priv; 6062 6063 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6064 6065 /* look up the values in our local table */ 6066 itr = tx_profile[dim->profile_ix].itr; 6067 6068 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6069 ice_write_itr(rc, itr); 6070 6071 dim->state = DIM_START_MEASURE; 6072 } 6073 6074 static void ice_rx_dim_work(struct work_struct *work) 6075 { 6076 struct ice_ring_container *rc; 6077 struct dim *dim; 6078 u16 itr; 6079 6080 dim = container_of(work, struct dim, work); 6081 rc = (struct ice_ring_container *)dim->priv; 6082 6083 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6084 6085 /* look up the values in our local table */ 6086 itr = rx_profile[dim->profile_ix].itr; 6087 6088 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6089 ice_write_itr(rc, itr); 6090 6091 dim->state = DIM_START_MEASURE; 6092 } 6093 6094 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6095 6096 /** 6097 * ice_init_moderation - set up interrupt moderation 6098 * @q_vector: the vector containing rings to be configured 6099 * 6100 * Set up interrupt moderation registers, with the intent to do the right thing 6101 * when called from reset or from probe, and whether or not dynamic moderation 6102 * is enabled or not. Take special care to write all the registers in both 6103 * dynamic moderation mode or not in order to make sure hardware is in a known 6104 * state. 6105 */ 6106 static void ice_init_moderation(struct ice_q_vector *q_vector) 6107 { 6108 struct ice_ring_container *rc; 6109 bool tx_dynamic, rx_dynamic; 6110 6111 rc = &q_vector->tx; 6112 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6113 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6114 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6115 rc->dim.priv = rc; 6116 tx_dynamic = ITR_IS_DYNAMIC(rc); 6117 6118 /* set the initial TX ITR to match the above */ 6119 ice_write_itr(rc, tx_dynamic ? 6120 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6121 6122 rc = &q_vector->rx; 6123 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6124 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6125 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6126 rc->dim.priv = rc; 6127 rx_dynamic = ITR_IS_DYNAMIC(rc); 6128 6129 /* set the initial RX ITR to match the above */ 6130 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6131 rc->itr_setting); 6132 6133 ice_set_q_vector_intrl(q_vector); 6134 } 6135 6136 /** 6137 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6138 * @vsi: the VSI being configured 6139 */ 6140 static void ice_napi_enable_all(struct ice_vsi *vsi) 6141 { 6142 int q_idx; 6143 6144 if (!vsi->netdev) 6145 return; 6146 6147 ice_for_each_q_vector(vsi, q_idx) { 6148 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6149 6150 ice_init_moderation(q_vector); 6151 6152 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6153 napi_enable(&q_vector->napi); 6154 } 6155 } 6156 6157 /** 6158 * ice_up_complete - Finish the last steps of bringing up a connection 6159 * @vsi: The VSI being configured 6160 * 6161 * Return 0 on success and negative value on error 6162 */ 6163 static int ice_up_complete(struct ice_vsi *vsi) 6164 { 6165 struct ice_pf *pf = vsi->back; 6166 int err; 6167 6168 ice_vsi_cfg_msix(vsi); 6169 6170 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6171 * Tx queue group list was configured and the context bits were 6172 * programmed using ice_vsi_cfg_txqs 6173 */ 6174 err = ice_vsi_start_all_rx_rings(vsi); 6175 if (err) 6176 return err; 6177 6178 clear_bit(ICE_VSI_DOWN, vsi->state); 6179 ice_napi_enable_all(vsi); 6180 ice_vsi_ena_irq(vsi); 6181 6182 if (vsi->port_info && 6183 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6184 vsi->netdev) { 6185 ice_print_link_msg(vsi, true); 6186 netif_tx_start_all_queues(vsi->netdev); 6187 netif_carrier_on(vsi->netdev); 6188 if (!ice_is_e810(&pf->hw)) 6189 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6190 } 6191 6192 /* Perform an initial read of the statistics registers now to 6193 * set the baseline so counters are ready when interface is up 6194 */ 6195 ice_update_eth_stats(vsi); 6196 ice_service_task_schedule(pf); 6197 6198 return 0; 6199 } 6200 6201 /** 6202 * ice_up - Bring the connection back up after being down 6203 * @vsi: VSI being configured 6204 */ 6205 int ice_up(struct ice_vsi *vsi) 6206 { 6207 int err; 6208 6209 err = ice_vsi_cfg(vsi); 6210 if (!err) 6211 err = ice_up_complete(vsi); 6212 6213 return err; 6214 } 6215 6216 /** 6217 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6218 * @syncp: pointer to u64_stats_sync 6219 * @stats: stats that pkts and bytes count will be taken from 6220 * @pkts: packets stats counter 6221 * @bytes: bytes stats counter 6222 * 6223 * This function fetches stats from the ring considering the atomic operations 6224 * that needs to be performed to read u64 values in 32 bit machine. 6225 */ 6226 void 6227 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6228 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6229 { 6230 unsigned int start; 6231 6232 do { 6233 start = u64_stats_fetch_begin_irq(syncp); 6234 *pkts = stats.pkts; 6235 *bytes = stats.bytes; 6236 } while (u64_stats_fetch_retry_irq(syncp, start)); 6237 } 6238 6239 /** 6240 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6241 * @vsi: the VSI to be updated 6242 * @vsi_stats: the stats struct to be updated 6243 * @rings: rings to work on 6244 * @count: number of rings 6245 */ 6246 static void 6247 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6248 struct rtnl_link_stats64 *vsi_stats, 6249 struct ice_tx_ring **rings, u16 count) 6250 { 6251 u16 i; 6252 6253 for (i = 0; i < count; i++) { 6254 struct ice_tx_ring *ring; 6255 u64 pkts = 0, bytes = 0; 6256 6257 ring = READ_ONCE(rings[i]); 6258 if (!ring) 6259 continue; 6260 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6261 vsi_stats->tx_packets += pkts; 6262 vsi_stats->tx_bytes += bytes; 6263 vsi->tx_restart += ring->tx_stats.restart_q; 6264 vsi->tx_busy += ring->tx_stats.tx_busy; 6265 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6266 } 6267 } 6268 6269 /** 6270 * ice_update_vsi_ring_stats - Update VSI stats counters 6271 * @vsi: the VSI to be updated 6272 */ 6273 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6274 { 6275 struct rtnl_link_stats64 *vsi_stats; 6276 u64 pkts, bytes; 6277 int i; 6278 6279 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6280 if (!vsi_stats) 6281 return; 6282 6283 /* reset non-netdev (extended) stats */ 6284 vsi->tx_restart = 0; 6285 vsi->tx_busy = 0; 6286 vsi->tx_linearize = 0; 6287 vsi->rx_buf_failed = 0; 6288 vsi->rx_page_failed = 0; 6289 6290 rcu_read_lock(); 6291 6292 /* update Tx rings counters */ 6293 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6294 vsi->num_txq); 6295 6296 /* update Rx rings counters */ 6297 ice_for_each_rxq(vsi, i) { 6298 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6299 6300 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6301 vsi_stats->rx_packets += pkts; 6302 vsi_stats->rx_bytes += bytes; 6303 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6304 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6305 } 6306 6307 /* update XDP Tx rings counters */ 6308 if (ice_is_xdp_ena_vsi(vsi)) 6309 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6310 vsi->num_xdp_txq); 6311 6312 rcu_read_unlock(); 6313 6314 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6315 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6316 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6317 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6318 6319 kfree(vsi_stats); 6320 } 6321 6322 /** 6323 * ice_update_vsi_stats - Update VSI stats counters 6324 * @vsi: the VSI to be updated 6325 */ 6326 void ice_update_vsi_stats(struct ice_vsi *vsi) 6327 { 6328 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6329 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6330 struct ice_pf *pf = vsi->back; 6331 6332 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6333 test_bit(ICE_CFG_BUSY, pf->state)) 6334 return; 6335 6336 /* get stats as recorded by Tx/Rx rings */ 6337 ice_update_vsi_ring_stats(vsi); 6338 6339 /* get VSI stats as recorded by the hardware */ 6340 ice_update_eth_stats(vsi); 6341 6342 cur_ns->tx_errors = cur_es->tx_errors; 6343 cur_ns->rx_dropped = cur_es->rx_discards; 6344 cur_ns->tx_dropped = cur_es->tx_discards; 6345 cur_ns->multicast = cur_es->rx_multicast; 6346 6347 /* update some more netdev stats if this is main VSI */ 6348 if (vsi->type == ICE_VSI_PF) { 6349 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6350 cur_ns->rx_errors = pf->stats.crc_errors + 6351 pf->stats.illegal_bytes + 6352 pf->stats.rx_len_errors + 6353 pf->stats.rx_undersize + 6354 pf->hw_csum_rx_error + 6355 pf->stats.rx_jabber + 6356 pf->stats.rx_fragments + 6357 pf->stats.rx_oversize; 6358 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6359 /* record drops from the port level */ 6360 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6361 } 6362 } 6363 6364 /** 6365 * ice_update_pf_stats - Update PF port stats counters 6366 * @pf: PF whose stats needs to be updated 6367 */ 6368 void ice_update_pf_stats(struct ice_pf *pf) 6369 { 6370 struct ice_hw_port_stats *prev_ps, *cur_ps; 6371 struct ice_hw *hw = &pf->hw; 6372 u16 fd_ctr_base; 6373 u8 port; 6374 6375 port = hw->port_info->lport; 6376 prev_ps = &pf->stats_prev; 6377 cur_ps = &pf->stats; 6378 6379 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6380 &prev_ps->eth.rx_bytes, 6381 &cur_ps->eth.rx_bytes); 6382 6383 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6384 &prev_ps->eth.rx_unicast, 6385 &cur_ps->eth.rx_unicast); 6386 6387 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6388 &prev_ps->eth.rx_multicast, 6389 &cur_ps->eth.rx_multicast); 6390 6391 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6392 &prev_ps->eth.rx_broadcast, 6393 &cur_ps->eth.rx_broadcast); 6394 6395 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6396 &prev_ps->eth.rx_discards, 6397 &cur_ps->eth.rx_discards); 6398 6399 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6400 &prev_ps->eth.tx_bytes, 6401 &cur_ps->eth.tx_bytes); 6402 6403 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6404 &prev_ps->eth.tx_unicast, 6405 &cur_ps->eth.tx_unicast); 6406 6407 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6408 &prev_ps->eth.tx_multicast, 6409 &cur_ps->eth.tx_multicast); 6410 6411 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6412 &prev_ps->eth.tx_broadcast, 6413 &cur_ps->eth.tx_broadcast); 6414 6415 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6416 &prev_ps->tx_dropped_link_down, 6417 &cur_ps->tx_dropped_link_down); 6418 6419 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6420 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6421 6422 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6423 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6424 6425 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6426 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6427 6428 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6429 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6430 6431 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6432 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6433 6434 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6435 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6436 6437 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6438 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6439 6440 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6441 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6442 6443 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6444 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6445 6446 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6447 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6448 6449 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6450 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6451 6452 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6453 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6454 6455 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6456 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6457 6458 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6459 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6460 6461 fd_ctr_base = hw->fd_ctr_base; 6462 6463 ice_stat_update40(hw, 6464 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6465 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6466 &cur_ps->fd_sb_match); 6467 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6468 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6469 6470 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6471 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6472 6473 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6474 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6475 6476 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6477 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6478 6479 ice_update_dcb_stats(pf); 6480 6481 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6482 &prev_ps->crc_errors, &cur_ps->crc_errors); 6483 6484 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6485 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6486 6487 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6488 &prev_ps->mac_local_faults, 6489 &cur_ps->mac_local_faults); 6490 6491 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6492 &prev_ps->mac_remote_faults, 6493 &cur_ps->mac_remote_faults); 6494 6495 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6496 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6497 6498 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6499 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6500 6501 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6502 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6503 6504 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6505 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6506 6507 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6508 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6509 6510 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6511 6512 pf->stat_prev_loaded = true; 6513 } 6514 6515 /** 6516 * ice_get_stats64 - get statistics for network device structure 6517 * @netdev: network interface device structure 6518 * @stats: main device statistics structure 6519 */ 6520 static 6521 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6522 { 6523 struct ice_netdev_priv *np = netdev_priv(netdev); 6524 struct rtnl_link_stats64 *vsi_stats; 6525 struct ice_vsi *vsi = np->vsi; 6526 6527 vsi_stats = &vsi->net_stats; 6528 6529 if (!vsi->num_txq || !vsi->num_rxq) 6530 return; 6531 6532 /* netdev packet/byte stats come from ring counter. These are obtained 6533 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6534 * But, only call the update routine and read the registers if VSI is 6535 * not down. 6536 */ 6537 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6538 ice_update_vsi_ring_stats(vsi); 6539 stats->tx_packets = vsi_stats->tx_packets; 6540 stats->tx_bytes = vsi_stats->tx_bytes; 6541 stats->rx_packets = vsi_stats->rx_packets; 6542 stats->rx_bytes = vsi_stats->rx_bytes; 6543 6544 /* The rest of the stats can be read from the hardware but instead we 6545 * just return values that the watchdog task has already obtained from 6546 * the hardware. 6547 */ 6548 stats->multicast = vsi_stats->multicast; 6549 stats->tx_errors = vsi_stats->tx_errors; 6550 stats->tx_dropped = vsi_stats->tx_dropped; 6551 stats->rx_errors = vsi_stats->rx_errors; 6552 stats->rx_dropped = vsi_stats->rx_dropped; 6553 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6554 stats->rx_length_errors = vsi_stats->rx_length_errors; 6555 } 6556 6557 /** 6558 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6559 * @vsi: VSI having NAPI disabled 6560 */ 6561 static void ice_napi_disable_all(struct ice_vsi *vsi) 6562 { 6563 int q_idx; 6564 6565 if (!vsi->netdev) 6566 return; 6567 6568 ice_for_each_q_vector(vsi, q_idx) { 6569 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6570 6571 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6572 napi_disable(&q_vector->napi); 6573 6574 cancel_work_sync(&q_vector->tx.dim.work); 6575 cancel_work_sync(&q_vector->rx.dim.work); 6576 } 6577 } 6578 6579 /** 6580 * ice_down - Shutdown the connection 6581 * @vsi: The VSI being stopped 6582 * 6583 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6584 */ 6585 int ice_down(struct ice_vsi *vsi) 6586 { 6587 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6588 6589 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6590 6591 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6592 vlan_err = ice_vsi_del_vlan_zero(vsi); 6593 if (!ice_is_e810(&vsi->back->hw)) 6594 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6595 netif_carrier_off(vsi->netdev); 6596 netif_tx_disable(vsi->netdev); 6597 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6598 ice_eswitch_stop_all_tx_queues(vsi->back); 6599 } 6600 6601 ice_vsi_dis_irq(vsi); 6602 6603 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6604 if (tx_err) 6605 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6606 vsi->vsi_num, tx_err); 6607 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6608 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6609 if (tx_err) 6610 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6611 vsi->vsi_num, tx_err); 6612 } 6613 6614 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6615 if (rx_err) 6616 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6617 vsi->vsi_num, rx_err); 6618 6619 ice_napi_disable_all(vsi); 6620 6621 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6622 link_err = ice_force_phys_link_state(vsi, false); 6623 if (link_err) 6624 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6625 vsi->vsi_num, link_err); 6626 } 6627 6628 ice_for_each_txq(vsi, i) 6629 ice_clean_tx_ring(vsi->tx_rings[i]); 6630 6631 ice_for_each_rxq(vsi, i) 6632 ice_clean_rx_ring(vsi->rx_rings[i]); 6633 6634 if (tx_err || rx_err || link_err || vlan_err) { 6635 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6636 vsi->vsi_num, vsi->vsw->sw_id); 6637 return -EIO; 6638 } 6639 6640 return 0; 6641 } 6642 6643 /** 6644 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6645 * @vsi: VSI having resources allocated 6646 * 6647 * Return 0 on success, negative on failure 6648 */ 6649 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6650 { 6651 int i, err = 0; 6652 6653 if (!vsi->num_txq) { 6654 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6655 vsi->vsi_num); 6656 return -EINVAL; 6657 } 6658 6659 ice_for_each_txq(vsi, i) { 6660 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6661 6662 if (!ring) 6663 return -EINVAL; 6664 6665 if (vsi->netdev) 6666 ring->netdev = vsi->netdev; 6667 err = ice_setup_tx_ring(ring); 6668 if (err) 6669 break; 6670 } 6671 6672 return err; 6673 } 6674 6675 /** 6676 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6677 * @vsi: VSI having resources allocated 6678 * 6679 * Return 0 on success, negative on failure 6680 */ 6681 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6682 { 6683 int i, err = 0; 6684 6685 if (!vsi->num_rxq) { 6686 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6687 vsi->vsi_num); 6688 return -EINVAL; 6689 } 6690 6691 ice_for_each_rxq(vsi, i) { 6692 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6693 6694 if (!ring) 6695 return -EINVAL; 6696 6697 if (vsi->netdev) 6698 ring->netdev = vsi->netdev; 6699 err = ice_setup_rx_ring(ring); 6700 if (err) 6701 break; 6702 } 6703 6704 return err; 6705 } 6706 6707 /** 6708 * ice_vsi_open_ctrl - open control VSI for use 6709 * @vsi: the VSI to open 6710 * 6711 * Initialization of the Control VSI 6712 * 6713 * Returns 0 on success, negative value on error 6714 */ 6715 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6716 { 6717 char int_name[ICE_INT_NAME_STR_LEN]; 6718 struct ice_pf *pf = vsi->back; 6719 struct device *dev; 6720 int err; 6721 6722 dev = ice_pf_to_dev(pf); 6723 /* allocate descriptors */ 6724 err = ice_vsi_setup_tx_rings(vsi); 6725 if (err) 6726 goto err_setup_tx; 6727 6728 err = ice_vsi_setup_rx_rings(vsi); 6729 if (err) 6730 goto err_setup_rx; 6731 6732 err = ice_vsi_cfg(vsi); 6733 if (err) 6734 goto err_setup_rx; 6735 6736 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6737 dev_driver_string(dev), dev_name(dev)); 6738 err = ice_vsi_req_irq_msix(vsi, int_name); 6739 if (err) 6740 goto err_setup_rx; 6741 6742 ice_vsi_cfg_msix(vsi); 6743 6744 err = ice_vsi_start_all_rx_rings(vsi); 6745 if (err) 6746 goto err_up_complete; 6747 6748 clear_bit(ICE_VSI_DOWN, vsi->state); 6749 ice_vsi_ena_irq(vsi); 6750 6751 return 0; 6752 6753 err_up_complete: 6754 ice_down(vsi); 6755 err_setup_rx: 6756 ice_vsi_free_rx_rings(vsi); 6757 err_setup_tx: 6758 ice_vsi_free_tx_rings(vsi); 6759 6760 return err; 6761 } 6762 6763 /** 6764 * ice_vsi_open - Called when a network interface is made active 6765 * @vsi: the VSI to open 6766 * 6767 * Initialization of the VSI 6768 * 6769 * Returns 0 on success, negative value on error 6770 */ 6771 int ice_vsi_open(struct ice_vsi *vsi) 6772 { 6773 char int_name[ICE_INT_NAME_STR_LEN]; 6774 struct ice_pf *pf = vsi->back; 6775 int err; 6776 6777 /* allocate descriptors */ 6778 err = ice_vsi_setup_tx_rings(vsi); 6779 if (err) 6780 goto err_setup_tx; 6781 6782 err = ice_vsi_setup_rx_rings(vsi); 6783 if (err) 6784 goto err_setup_rx; 6785 6786 err = ice_vsi_cfg(vsi); 6787 if (err) 6788 goto err_setup_rx; 6789 6790 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6791 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6792 err = ice_vsi_req_irq_msix(vsi, int_name); 6793 if (err) 6794 goto err_setup_rx; 6795 6796 if (vsi->type == ICE_VSI_PF) { 6797 /* Notify the stack of the actual queue counts. */ 6798 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6799 if (err) 6800 goto err_set_qs; 6801 6802 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6803 if (err) 6804 goto err_set_qs; 6805 } 6806 6807 err = ice_up_complete(vsi); 6808 if (err) 6809 goto err_up_complete; 6810 6811 return 0; 6812 6813 err_up_complete: 6814 ice_down(vsi); 6815 err_set_qs: 6816 ice_vsi_free_irq(vsi); 6817 err_setup_rx: 6818 ice_vsi_free_rx_rings(vsi); 6819 err_setup_tx: 6820 ice_vsi_free_tx_rings(vsi); 6821 6822 return err; 6823 } 6824 6825 /** 6826 * ice_vsi_release_all - Delete all VSIs 6827 * @pf: PF from which all VSIs are being removed 6828 */ 6829 static void ice_vsi_release_all(struct ice_pf *pf) 6830 { 6831 int err, i; 6832 6833 if (!pf->vsi) 6834 return; 6835 6836 ice_for_each_vsi(pf, i) { 6837 if (!pf->vsi[i]) 6838 continue; 6839 6840 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6841 continue; 6842 6843 err = ice_vsi_release(pf->vsi[i]); 6844 if (err) 6845 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6846 i, err, pf->vsi[i]->vsi_num); 6847 } 6848 } 6849 6850 /** 6851 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6852 * @pf: pointer to the PF instance 6853 * @type: VSI type to rebuild 6854 * 6855 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6856 */ 6857 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6858 { 6859 struct device *dev = ice_pf_to_dev(pf); 6860 int i, err; 6861 6862 ice_for_each_vsi(pf, i) { 6863 struct ice_vsi *vsi = pf->vsi[i]; 6864 6865 if (!vsi || vsi->type != type) 6866 continue; 6867 6868 /* rebuild the VSI */ 6869 err = ice_vsi_rebuild(vsi, true); 6870 if (err) { 6871 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6872 err, vsi->idx, ice_vsi_type_str(type)); 6873 return err; 6874 } 6875 6876 /* replay filters for the VSI */ 6877 err = ice_replay_vsi(&pf->hw, vsi->idx); 6878 if (err) { 6879 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6880 err, vsi->idx, ice_vsi_type_str(type)); 6881 return err; 6882 } 6883 6884 /* Re-map HW VSI number, using VSI handle that has been 6885 * previously validated in ice_replay_vsi() call above 6886 */ 6887 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6888 6889 /* enable the VSI */ 6890 err = ice_ena_vsi(vsi, false); 6891 if (err) { 6892 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6893 err, vsi->idx, ice_vsi_type_str(type)); 6894 return err; 6895 } 6896 6897 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6898 ice_vsi_type_str(type)); 6899 } 6900 6901 return 0; 6902 } 6903 6904 /** 6905 * ice_update_pf_netdev_link - Update PF netdev link status 6906 * @pf: pointer to the PF instance 6907 */ 6908 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6909 { 6910 bool link_up; 6911 int i; 6912 6913 ice_for_each_vsi(pf, i) { 6914 struct ice_vsi *vsi = pf->vsi[i]; 6915 6916 if (!vsi || vsi->type != ICE_VSI_PF) 6917 return; 6918 6919 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6920 if (link_up) { 6921 netif_carrier_on(pf->vsi[i]->netdev); 6922 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6923 } else { 6924 netif_carrier_off(pf->vsi[i]->netdev); 6925 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6926 } 6927 } 6928 } 6929 6930 /** 6931 * ice_rebuild - rebuild after reset 6932 * @pf: PF to rebuild 6933 * @reset_type: type of reset 6934 * 6935 * Do not rebuild VF VSI in this flow because that is already handled via 6936 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6937 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6938 * to reset/rebuild all the VF VSI twice. 6939 */ 6940 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6941 { 6942 struct device *dev = ice_pf_to_dev(pf); 6943 struct ice_hw *hw = &pf->hw; 6944 bool dvm; 6945 int err; 6946 6947 if (test_bit(ICE_DOWN, pf->state)) 6948 goto clear_recovery; 6949 6950 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6951 6952 #define ICE_EMP_RESET_SLEEP_MS 5000 6953 if (reset_type == ICE_RESET_EMPR) { 6954 /* If an EMP reset has occurred, any previously pending flash 6955 * update will have completed. We no longer know whether or 6956 * not the NVM update EMP reset is restricted. 6957 */ 6958 pf->fw_emp_reset_disabled = false; 6959 6960 msleep(ICE_EMP_RESET_SLEEP_MS); 6961 } 6962 6963 err = ice_init_all_ctrlq(hw); 6964 if (err) { 6965 dev_err(dev, "control queues init failed %d\n", err); 6966 goto err_init_ctrlq; 6967 } 6968 6969 /* if DDP was previously loaded successfully */ 6970 if (!ice_is_safe_mode(pf)) { 6971 /* reload the SW DB of filter tables */ 6972 if (reset_type == ICE_RESET_PFR) 6973 ice_fill_blk_tbls(hw); 6974 else 6975 /* Reload DDP Package after CORER/GLOBR reset */ 6976 ice_load_pkg(NULL, pf); 6977 } 6978 6979 err = ice_clear_pf_cfg(hw); 6980 if (err) { 6981 dev_err(dev, "clear PF configuration failed %d\n", err); 6982 goto err_init_ctrlq; 6983 } 6984 6985 if (pf->first_sw->dflt_vsi_ena) 6986 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6987 /* clear the default VSI configuration if it exists */ 6988 pf->first_sw->dflt_vsi = NULL; 6989 pf->first_sw->dflt_vsi_ena = false; 6990 6991 ice_clear_pxe_mode(hw); 6992 6993 err = ice_init_nvm(hw); 6994 if (err) { 6995 dev_err(dev, "ice_init_nvm failed %d\n", err); 6996 goto err_init_ctrlq; 6997 } 6998 6999 err = ice_get_caps(hw); 7000 if (err) { 7001 dev_err(dev, "ice_get_caps failed %d\n", err); 7002 goto err_init_ctrlq; 7003 } 7004 7005 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7006 if (err) { 7007 dev_err(dev, "set_mac_cfg failed %d\n", err); 7008 goto err_init_ctrlq; 7009 } 7010 7011 dvm = ice_is_dvm_ena(hw); 7012 7013 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7014 if (err) 7015 goto err_init_ctrlq; 7016 7017 err = ice_sched_init_port(hw->port_info); 7018 if (err) 7019 goto err_sched_init_port; 7020 7021 /* start misc vector */ 7022 err = ice_req_irq_msix_misc(pf); 7023 if (err) { 7024 dev_err(dev, "misc vector setup failed: %d\n", err); 7025 goto err_sched_init_port; 7026 } 7027 7028 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7029 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7030 if (!rd32(hw, PFQF_FD_SIZE)) { 7031 u16 unused, guar, b_effort; 7032 7033 guar = hw->func_caps.fd_fltr_guar; 7034 b_effort = hw->func_caps.fd_fltr_best_effort; 7035 7036 /* force guaranteed filter pool for PF */ 7037 ice_alloc_fd_guar_item(hw, &unused, guar); 7038 /* force shared filter pool for PF */ 7039 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7040 } 7041 } 7042 7043 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7044 ice_dcb_rebuild(pf); 7045 7046 /* If the PF previously had enabled PTP, PTP init needs to happen before 7047 * the VSI rebuild. If not, this causes the PTP link status events to 7048 * fail. 7049 */ 7050 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7051 ice_ptp_reset(pf); 7052 7053 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7054 ice_gnss_init(pf); 7055 7056 /* rebuild PF VSI */ 7057 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7058 if (err) { 7059 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7060 goto err_vsi_rebuild; 7061 } 7062 7063 /* configure PTP timestamping after VSI rebuild */ 7064 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7065 ice_ptp_cfg_timestamp(pf, false); 7066 7067 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7068 if (err) { 7069 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7070 goto err_vsi_rebuild; 7071 } 7072 7073 if (reset_type == ICE_RESET_PFR) { 7074 err = ice_rebuild_channels(pf); 7075 if (err) { 7076 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7077 err); 7078 goto err_vsi_rebuild; 7079 } 7080 } 7081 7082 /* If Flow Director is active */ 7083 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7084 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7085 if (err) { 7086 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7087 goto err_vsi_rebuild; 7088 } 7089 7090 /* replay HW Flow Director recipes */ 7091 if (hw->fdir_prof) 7092 ice_fdir_replay_flows(hw); 7093 7094 /* replay Flow Director filters */ 7095 ice_fdir_replay_fltrs(pf); 7096 7097 ice_rebuild_arfs(pf); 7098 } 7099 7100 ice_update_pf_netdev_link(pf); 7101 7102 /* tell the firmware we are up */ 7103 err = ice_send_version(pf); 7104 if (err) { 7105 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7106 err); 7107 goto err_vsi_rebuild; 7108 } 7109 7110 ice_replay_post(hw); 7111 7112 /* if we get here, reset flow is successful */ 7113 clear_bit(ICE_RESET_FAILED, pf->state); 7114 7115 ice_plug_aux_dev(pf); 7116 return; 7117 7118 err_vsi_rebuild: 7119 err_sched_init_port: 7120 ice_sched_cleanup_all(hw); 7121 err_init_ctrlq: 7122 ice_shutdown_all_ctrlq(hw); 7123 set_bit(ICE_RESET_FAILED, pf->state); 7124 clear_recovery: 7125 /* set this bit in PF state to control service task scheduling */ 7126 set_bit(ICE_NEEDS_RESTART, pf->state); 7127 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7128 } 7129 7130 /** 7131 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7132 * @vsi: Pointer to VSI structure 7133 */ 7134 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7135 { 7136 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7137 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7138 else 7139 return ICE_RXBUF_3072; 7140 } 7141 7142 /** 7143 * ice_change_mtu - NDO callback to change the MTU 7144 * @netdev: network interface device structure 7145 * @new_mtu: new value for maximum frame size 7146 * 7147 * Returns 0 on success, negative on failure 7148 */ 7149 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7150 { 7151 struct ice_netdev_priv *np = netdev_priv(netdev); 7152 struct ice_vsi *vsi = np->vsi; 7153 struct ice_pf *pf = vsi->back; 7154 u8 count = 0; 7155 int err = 0; 7156 7157 if (new_mtu == (int)netdev->mtu) { 7158 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7159 return 0; 7160 } 7161 7162 if (ice_is_xdp_ena_vsi(vsi)) { 7163 int frame_size = ice_max_xdp_frame_size(vsi); 7164 7165 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7166 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7167 frame_size - ICE_ETH_PKT_HDR_PAD); 7168 return -EINVAL; 7169 } 7170 } 7171 7172 /* if a reset is in progress, wait for some time for it to complete */ 7173 do { 7174 if (ice_is_reset_in_progress(pf->state)) { 7175 count++; 7176 usleep_range(1000, 2000); 7177 } else { 7178 break; 7179 } 7180 7181 } while (count < 100); 7182 7183 if (count == 100) { 7184 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7185 return -EBUSY; 7186 } 7187 7188 netdev->mtu = (unsigned int)new_mtu; 7189 7190 /* if VSI is up, bring it down and then back up */ 7191 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7192 err = ice_down(vsi); 7193 if (err) { 7194 netdev_err(netdev, "change MTU if_down err %d\n", err); 7195 return err; 7196 } 7197 7198 err = ice_up(vsi); 7199 if (err) { 7200 netdev_err(netdev, "change MTU if_up err %d\n", err); 7201 return err; 7202 } 7203 } 7204 7205 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7206 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7207 7208 return err; 7209 } 7210 7211 /** 7212 * ice_eth_ioctl - Access the hwtstamp interface 7213 * @netdev: network interface device structure 7214 * @ifr: interface request data 7215 * @cmd: ioctl command 7216 */ 7217 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7218 { 7219 struct ice_netdev_priv *np = netdev_priv(netdev); 7220 struct ice_pf *pf = np->vsi->back; 7221 7222 switch (cmd) { 7223 case SIOCGHWTSTAMP: 7224 return ice_ptp_get_ts_config(pf, ifr); 7225 case SIOCSHWTSTAMP: 7226 return ice_ptp_set_ts_config(pf, ifr); 7227 default: 7228 return -EOPNOTSUPP; 7229 } 7230 } 7231 7232 /** 7233 * ice_aq_str - convert AQ err code to a string 7234 * @aq_err: the AQ error code to convert 7235 */ 7236 const char *ice_aq_str(enum ice_aq_err aq_err) 7237 { 7238 switch (aq_err) { 7239 case ICE_AQ_RC_OK: 7240 return "OK"; 7241 case ICE_AQ_RC_EPERM: 7242 return "ICE_AQ_RC_EPERM"; 7243 case ICE_AQ_RC_ENOENT: 7244 return "ICE_AQ_RC_ENOENT"; 7245 case ICE_AQ_RC_ENOMEM: 7246 return "ICE_AQ_RC_ENOMEM"; 7247 case ICE_AQ_RC_EBUSY: 7248 return "ICE_AQ_RC_EBUSY"; 7249 case ICE_AQ_RC_EEXIST: 7250 return "ICE_AQ_RC_EEXIST"; 7251 case ICE_AQ_RC_EINVAL: 7252 return "ICE_AQ_RC_EINVAL"; 7253 case ICE_AQ_RC_ENOSPC: 7254 return "ICE_AQ_RC_ENOSPC"; 7255 case ICE_AQ_RC_ENOSYS: 7256 return "ICE_AQ_RC_ENOSYS"; 7257 case ICE_AQ_RC_EMODE: 7258 return "ICE_AQ_RC_EMODE"; 7259 case ICE_AQ_RC_ENOSEC: 7260 return "ICE_AQ_RC_ENOSEC"; 7261 case ICE_AQ_RC_EBADSIG: 7262 return "ICE_AQ_RC_EBADSIG"; 7263 case ICE_AQ_RC_ESVN: 7264 return "ICE_AQ_RC_ESVN"; 7265 case ICE_AQ_RC_EBADMAN: 7266 return "ICE_AQ_RC_EBADMAN"; 7267 case ICE_AQ_RC_EBADBUF: 7268 return "ICE_AQ_RC_EBADBUF"; 7269 } 7270 7271 return "ICE_AQ_RC_UNKNOWN"; 7272 } 7273 7274 /** 7275 * ice_set_rss_lut - Set RSS LUT 7276 * @vsi: Pointer to VSI structure 7277 * @lut: Lookup table 7278 * @lut_size: Lookup table size 7279 * 7280 * Returns 0 on success, negative on failure 7281 */ 7282 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7283 { 7284 struct ice_aq_get_set_rss_lut_params params = {}; 7285 struct ice_hw *hw = &vsi->back->hw; 7286 int status; 7287 7288 if (!lut) 7289 return -EINVAL; 7290 7291 params.vsi_handle = vsi->idx; 7292 params.lut_size = lut_size; 7293 params.lut_type = vsi->rss_lut_type; 7294 params.lut = lut; 7295 7296 status = ice_aq_set_rss_lut(hw, ¶ms); 7297 if (status) 7298 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7299 status, ice_aq_str(hw->adminq.sq_last_status)); 7300 7301 return status; 7302 } 7303 7304 /** 7305 * ice_set_rss_key - Set RSS key 7306 * @vsi: Pointer to the VSI structure 7307 * @seed: RSS hash seed 7308 * 7309 * Returns 0 on success, negative on failure 7310 */ 7311 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7312 { 7313 struct ice_hw *hw = &vsi->back->hw; 7314 int status; 7315 7316 if (!seed) 7317 return -EINVAL; 7318 7319 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7320 if (status) 7321 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7322 status, ice_aq_str(hw->adminq.sq_last_status)); 7323 7324 return status; 7325 } 7326 7327 /** 7328 * ice_get_rss_lut - Get RSS LUT 7329 * @vsi: Pointer to VSI structure 7330 * @lut: Buffer to store the lookup table entries 7331 * @lut_size: Size of buffer to store the lookup table entries 7332 * 7333 * Returns 0 on success, negative on failure 7334 */ 7335 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7336 { 7337 struct ice_aq_get_set_rss_lut_params params = {}; 7338 struct ice_hw *hw = &vsi->back->hw; 7339 int status; 7340 7341 if (!lut) 7342 return -EINVAL; 7343 7344 params.vsi_handle = vsi->idx; 7345 params.lut_size = lut_size; 7346 params.lut_type = vsi->rss_lut_type; 7347 params.lut = lut; 7348 7349 status = ice_aq_get_rss_lut(hw, ¶ms); 7350 if (status) 7351 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7352 status, ice_aq_str(hw->adminq.sq_last_status)); 7353 7354 return status; 7355 } 7356 7357 /** 7358 * ice_get_rss_key - Get RSS key 7359 * @vsi: Pointer to VSI structure 7360 * @seed: Buffer to store the key in 7361 * 7362 * Returns 0 on success, negative on failure 7363 */ 7364 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7365 { 7366 struct ice_hw *hw = &vsi->back->hw; 7367 int status; 7368 7369 if (!seed) 7370 return -EINVAL; 7371 7372 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7373 if (status) 7374 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7375 status, ice_aq_str(hw->adminq.sq_last_status)); 7376 7377 return status; 7378 } 7379 7380 /** 7381 * ice_bridge_getlink - Get the hardware bridge mode 7382 * @skb: skb buff 7383 * @pid: process ID 7384 * @seq: RTNL message seq 7385 * @dev: the netdev being configured 7386 * @filter_mask: filter mask passed in 7387 * @nlflags: netlink flags passed in 7388 * 7389 * Return the bridge mode (VEB/VEPA) 7390 */ 7391 static int 7392 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7393 struct net_device *dev, u32 filter_mask, int nlflags) 7394 { 7395 struct ice_netdev_priv *np = netdev_priv(dev); 7396 struct ice_vsi *vsi = np->vsi; 7397 struct ice_pf *pf = vsi->back; 7398 u16 bmode; 7399 7400 bmode = pf->first_sw->bridge_mode; 7401 7402 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7403 filter_mask, NULL); 7404 } 7405 7406 /** 7407 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7408 * @vsi: Pointer to VSI structure 7409 * @bmode: Hardware bridge mode (VEB/VEPA) 7410 * 7411 * Returns 0 on success, negative on failure 7412 */ 7413 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7414 { 7415 struct ice_aqc_vsi_props *vsi_props; 7416 struct ice_hw *hw = &vsi->back->hw; 7417 struct ice_vsi_ctx *ctxt; 7418 int ret; 7419 7420 vsi_props = &vsi->info; 7421 7422 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7423 if (!ctxt) 7424 return -ENOMEM; 7425 7426 ctxt->info = vsi->info; 7427 7428 if (bmode == BRIDGE_MODE_VEB) 7429 /* change from VEPA to VEB mode */ 7430 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7431 else 7432 /* change from VEB to VEPA mode */ 7433 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7434 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7435 7436 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7437 if (ret) { 7438 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7439 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7440 goto out; 7441 } 7442 /* Update sw flags for book keeping */ 7443 vsi_props->sw_flags = ctxt->info.sw_flags; 7444 7445 out: 7446 kfree(ctxt); 7447 return ret; 7448 } 7449 7450 /** 7451 * ice_bridge_setlink - Set the hardware bridge mode 7452 * @dev: the netdev being configured 7453 * @nlh: RTNL message 7454 * @flags: bridge setlink flags 7455 * @extack: netlink extended ack 7456 * 7457 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7458 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7459 * not already set for all VSIs connected to this switch. And also update the 7460 * unicast switch filter rules for the corresponding switch of the netdev. 7461 */ 7462 static int 7463 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7464 u16 __always_unused flags, 7465 struct netlink_ext_ack __always_unused *extack) 7466 { 7467 struct ice_netdev_priv *np = netdev_priv(dev); 7468 struct ice_pf *pf = np->vsi->back; 7469 struct nlattr *attr, *br_spec; 7470 struct ice_hw *hw = &pf->hw; 7471 struct ice_sw *pf_sw; 7472 int rem, v, err = 0; 7473 7474 pf_sw = pf->first_sw; 7475 /* find the attribute in the netlink message */ 7476 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7477 7478 nla_for_each_nested(attr, br_spec, rem) { 7479 __u16 mode; 7480 7481 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7482 continue; 7483 mode = nla_get_u16(attr); 7484 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7485 return -EINVAL; 7486 /* Continue if bridge mode is not being flipped */ 7487 if (mode == pf_sw->bridge_mode) 7488 continue; 7489 /* Iterates through the PF VSI list and update the loopback 7490 * mode of the VSI 7491 */ 7492 ice_for_each_vsi(pf, v) { 7493 if (!pf->vsi[v]) 7494 continue; 7495 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7496 if (err) 7497 return err; 7498 } 7499 7500 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7501 /* Update the unicast switch filter rules for the corresponding 7502 * switch of the netdev 7503 */ 7504 err = ice_update_sw_rule_bridge_mode(hw); 7505 if (err) { 7506 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7507 mode, err, 7508 ice_aq_str(hw->adminq.sq_last_status)); 7509 /* revert hw->evb_veb */ 7510 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7511 return err; 7512 } 7513 7514 pf_sw->bridge_mode = mode; 7515 } 7516 7517 return 0; 7518 } 7519 7520 /** 7521 * ice_tx_timeout - Respond to a Tx Hang 7522 * @netdev: network interface device structure 7523 * @txqueue: Tx queue 7524 */ 7525 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7526 { 7527 struct ice_netdev_priv *np = netdev_priv(netdev); 7528 struct ice_tx_ring *tx_ring = NULL; 7529 struct ice_vsi *vsi = np->vsi; 7530 struct ice_pf *pf = vsi->back; 7531 u32 i; 7532 7533 pf->tx_timeout_count++; 7534 7535 /* Check if PFC is enabled for the TC to which the queue belongs 7536 * to. If yes then Tx timeout is not caused by a hung queue, no 7537 * need to reset and rebuild 7538 */ 7539 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7540 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7541 txqueue); 7542 return; 7543 } 7544 7545 /* now that we have an index, find the tx_ring struct */ 7546 ice_for_each_txq(vsi, i) 7547 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7548 if (txqueue == vsi->tx_rings[i]->q_index) { 7549 tx_ring = vsi->tx_rings[i]; 7550 break; 7551 } 7552 7553 /* Reset recovery level if enough time has elapsed after last timeout. 7554 * Also ensure no new reset action happens before next timeout period. 7555 */ 7556 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7557 pf->tx_timeout_recovery_level = 1; 7558 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7559 netdev->watchdog_timeo))) 7560 return; 7561 7562 if (tx_ring) { 7563 struct ice_hw *hw = &pf->hw; 7564 u32 head, val = 0; 7565 7566 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7567 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7568 /* Read interrupt register */ 7569 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7570 7571 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7572 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7573 head, tx_ring->next_to_use, val); 7574 } 7575 7576 pf->tx_timeout_last_recovery = jiffies; 7577 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7578 pf->tx_timeout_recovery_level, txqueue); 7579 7580 switch (pf->tx_timeout_recovery_level) { 7581 case 1: 7582 set_bit(ICE_PFR_REQ, pf->state); 7583 break; 7584 case 2: 7585 set_bit(ICE_CORER_REQ, pf->state); 7586 break; 7587 case 3: 7588 set_bit(ICE_GLOBR_REQ, pf->state); 7589 break; 7590 default: 7591 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7592 set_bit(ICE_DOWN, pf->state); 7593 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7594 set_bit(ICE_SERVICE_DIS, pf->state); 7595 break; 7596 } 7597 7598 ice_service_task_schedule(pf); 7599 pf->tx_timeout_recovery_level++; 7600 } 7601 7602 /** 7603 * ice_setup_tc_cls_flower - flower classifier offloads 7604 * @np: net device to configure 7605 * @filter_dev: device on which filter is added 7606 * @cls_flower: offload data 7607 */ 7608 static int 7609 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7610 struct net_device *filter_dev, 7611 struct flow_cls_offload *cls_flower) 7612 { 7613 struct ice_vsi *vsi = np->vsi; 7614 7615 if (cls_flower->common.chain_index) 7616 return -EOPNOTSUPP; 7617 7618 switch (cls_flower->command) { 7619 case FLOW_CLS_REPLACE: 7620 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7621 case FLOW_CLS_DESTROY: 7622 return ice_del_cls_flower(vsi, cls_flower); 7623 default: 7624 return -EINVAL; 7625 } 7626 } 7627 7628 /** 7629 * ice_setup_tc_block_cb - callback handler registered for TC block 7630 * @type: TC SETUP type 7631 * @type_data: TC flower offload data that contains user input 7632 * @cb_priv: netdev private data 7633 */ 7634 static int 7635 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7636 { 7637 struct ice_netdev_priv *np = cb_priv; 7638 7639 switch (type) { 7640 case TC_SETUP_CLSFLOWER: 7641 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7642 type_data); 7643 default: 7644 return -EOPNOTSUPP; 7645 } 7646 } 7647 7648 /** 7649 * ice_validate_mqprio_qopt - Validate TCF input parameters 7650 * @vsi: Pointer to VSI 7651 * @mqprio_qopt: input parameters for mqprio queue configuration 7652 * 7653 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7654 * needed), and make sure user doesn't specify qcount and BW rate limit 7655 * for TCs, which are more than "num_tc" 7656 */ 7657 static int 7658 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7659 struct tc_mqprio_qopt_offload *mqprio_qopt) 7660 { 7661 u64 sum_max_rate = 0, sum_min_rate = 0; 7662 int non_power_of_2_qcount = 0; 7663 struct ice_pf *pf = vsi->back; 7664 int max_rss_q_cnt = 0; 7665 struct device *dev; 7666 int i, speed; 7667 u8 num_tc; 7668 7669 if (vsi->type != ICE_VSI_PF) 7670 return -EINVAL; 7671 7672 if (mqprio_qopt->qopt.offset[0] != 0 || 7673 mqprio_qopt->qopt.num_tc < 1 || 7674 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7675 return -EINVAL; 7676 7677 dev = ice_pf_to_dev(pf); 7678 vsi->ch_rss_size = 0; 7679 num_tc = mqprio_qopt->qopt.num_tc; 7680 7681 for (i = 0; num_tc; i++) { 7682 int qcount = mqprio_qopt->qopt.count[i]; 7683 u64 max_rate, min_rate, rem; 7684 7685 if (!qcount) 7686 return -EINVAL; 7687 7688 if (is_power_of_2(qcount)) { 7689 if (non_power_of_2_qcount && 7690 qcount > non_power_of_2_qcount) { 7691 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7692 qcount, non_power_of_2_qcount); 7693 return -EINVAL; 7694 } 7695 if (qcount > max_rss_q_cnt) 7696 max_rss_q_cnt = qcount; 7697 } else { 7698 if (non_power_of_2_qcount && 7699 qcount != non_power_of_2_qcount) { 7700 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7701 qcount, non_power_of_2_qcount); 7702 return -EINVAL; 7703 } 7704 if (qcount < max_rss_q_cnt) { 7705 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7706 qcount, max_rss_q_cnt); 7707 return -EINVAL; 7708 } 7709 max_rss_q_cnt = qcount; 7710 non_power_of_2_qcount = qcount; 7711 } 7712 7713 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7714 * converts the bandwidth rate limit into Bytes/s when 7715 * passing it down to the driver. So convert input bandwidth 7716 * from Bytes/s to Kbps 7717 */ 7718 max_rate = mqprio_qopt->max_rate[i]; 7719 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7720 sum_max_rate += max_rate; 7721 7722 /* min_rate is minimum guaranteed rate and it can't be zero */ 7723 min_rate = mqprio_qopt->min_rate[i]; 7724 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7725 sum_min_rate += min_rate; 7726 7727 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7728 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7729 min_rate, ICE_MIN_BW_LIMIT); 7730 return -EINVAL; 7731 } 7732 7733 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7734 if (rem) { 7735 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7736 i, ICE_MIN_BW_LIMIT); 7737 return -EINVAL; 7738 } 7739 7740 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7741 if (rem) { 7742 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7743 i, ICE_MIN_BW_LIMIT); 7744 return -EINVAL; 7745 } 7746 7747 /* min_rate can't be more than max_rate, except when max_rate 7748 * is zero (implies max_rate sought is max line rate). In such 7749 * a case min_rate can be more than max. 7750 */ 7751 if (max_rate && min_rate > max_rate) { 7752 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7753 min_rate, max_rate); 7754 return -EINVAL; 7755 } 7756 7757 if (i >= mqprio_qopt->qopt.num_tc - 1) 7758 break; 7759 if (mqprio_qopt->qopt.offset[i + 1] != 7760 (mqprio_qopt->qopt.offset[i] + qcount)) 7761 return -EINVAL; 7762 } 7763 if (vsi->num_rxq < 7764 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7765 return -EINVAL; 7766 if (vsi->num_txq < 7767 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7768 return -EINVAL; 7769 7770 speed = ice_get_link_speed_kbps(vsi); 7771 if (sum_max_rate && sum_max_rate > (u64)speed) { 7772 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7773 sum_max_rate, speed); 7774 return -EINVAL; 7775 } 7776 if (sum_min_rate && sum_min_rate > (u64)speed) { 7777 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7778 sum_min_rate, speed); 7779 return -EINVAL; 7780 } 7781 7782 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7783 vsi->ch_rss_size = max_rss_q_cnt; 7784 7785 return 0; 7786 } 7787 7788 /** 7789 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7790 * @pf: ptr to PF device 7791 * @vsi: ptr to VSI 7792 */ 7793 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7794 { 7795 struct device *dev = ice_pf_to_dev(pf); 7796 bool added = false; 7797 struct ice_hw *hw; 7798 int flow; 7799 7800 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7801 return -EINVAL; 7802 7803 hw = &pf->hw; 7804 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7805 struct ice_fd_hw_prof *prof; 7806 int tun, status; 7807 u64 entry_h; 7808 7809 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7810 hw->fdir_prof[flow]->cnt)) 7811 continue; 7812 7813 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7814 enum ice_flow_priority prio; 7815 u64 prof_id; 7816 7817 /* add this VSI to FDir profile for this flow */ 7818 prio = ICE_FLOW_PRIO_NORMAL; 7819 prof = hw->fdir_prof[flow]; 7820 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7821 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7822 prof->vsi_h[0], vsi->idx, 7823 prio, prof->fdir_seg[tun], 7824 &entry_h); 7825 if (status) { 7826 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7827 vsi->idx, flow); 7828 continue; 7829 } 7830 7831 prof->entry_h[prof->cnt][tun] = entry_h; 7832 } 7833 7834 /* store VSI for filter replay and delete */ 7835 prof->vsi_h[prof->cnt] = vsi->idx; 7836 prof->cnt++; 7837 7838 added = true; 7839 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7840 flow); 7841 } 7842 7843 if (!added) 7844 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7845 7846 return 0; 7847 } 7848 7849 /** 7850 * ice_add_channel - add a channel by adding VSI 7851 * @pf: ptr to PF device 7852 * @sw_id: underlying HW switching element ID 7853 * @ch: ptr to channel structure 7854 * 7855 * Add a channel (VSI) using add_vsi and queue_map 7856 */ 7857 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7858 { 7859 struct device *dev = ice_pf_to_dev(pf); 7860 struct ice_vsi *vsi; 7861 7862 if (ch->type != ICE_VSI_CHNL) { 7863 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7864 return -EINVAL; 7865 } 7866 7867 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7868 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7869 dev_err(dev, "create chnl VSI failure\n"); 7870 return -EINVAL; 7871 } 7872 7873 ice_add_vsi_to_fdir(pf, vsi); 7874 7875 ch->sw_id = sw_id; 7876 ch->vsi_num = vsi->vsi_num; 7877 ch->info.mapping_flags = vsi->info.mapping_flags; 7878 ch->ch_vsi = vsi; 7879 /* set the back pointer of channel for newly created VSI */ 7880 vsi->ch = ch; 7881 7882 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7883 sizeof(vsi->info.q_mapping)); 7884 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7885 sizeof(vsi->info.tc_mapping)); 7886 7887 return 0; 7888 } 7889 7890 /** 7891 * ice_chnl_cfg_res 7892 * @vsi: the VSI being setup 7893 * @ch: ptr to channel structure 7894 * 7895 * Configure channel specific resources such as rings, vector. 7896 */ 7897 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7898 { 7899 int i; 7900 7901 for (i = 0; i < ch->num_txq; i++) { 7902 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7903 struct ice_ring_container *rc; 7904 struct ice_tx_ring *tx_ring; 7905 struct ice_rx_ring *rx_ring; 7906 7907 tx_ring = vsi->tx_rings[ch->base_q + i]; 7908 rx_ring = vsi->rx_rings[ch->base_q + i]; 7909 if (!tx_ring || !rx_ring) 7910 continue; 7911 7912 /* setup ring being channel enabled */ 7913 tx_ring->ch = ch; 7914 rx_ring->ch = ch; 7915 7916 /* following code block sets up vector specific attributes */ 7917 tx_q_vector = tx_ring->q_vector; 7918 rx_q_vector = rx_ring->q_vector; 7919 if (!tx_q_vector && !rx_q_vector) 7920 continue; 7921 7922 if (tx_q_vector) { 7923 tx_q_vector->ch = ch; 7924 /* setup Tx and Rx ITR setting if DIM is off */ 7925 rc = &tx_q_vector->tx; 7926 if (!ITR_IS_DYNAMIC(rc)) 7927 ice_write_itr(rc, rc->itr_setting); 7928 } 7929 if (rx_q_vector) { 7930 rx_q_vector->ch = ch; 7931 /* setup Tx and Rx ITR setting if DIM is off */ 7932 rc = &rx_q_vector->rx; 7933 if (!ITR_IS_DYNAMIC(rc)) 7934 ice_write_itr(rc, rc->itr_setting); 7935 } 7936 } 7937 7938 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7939 * GLINT_ITR register would have written to perform in-context 7940 * update, hence perform flush 7941 */ 7942 if (ch->num_txq || ch->num_rxq) 7943 ice_flush(&vsi->back->hw); 7944 } 7945 7946 /** 7947 * ice_cfg_chnl_all_res - configure channel resources 7948 * @vsi: pte to main_vsi 7949 * @ch: ptr to channel structure 7950 * 7951 * This function configures channel specific resources such as flow-director 7952 * counter index, and other resources such as queues, vectors, ITR settings 7953 */ 7954 static void 7955 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7956 { 7957 /* configure channel (aka ADQ) resources such as queues, vectors, 7958 * ITR settings for channel specific vectors and anything else 7959 */ 7960 ice_chnl_cfg_res(vsi, ch); 7961 } 7962 7963 /** 7964 * ice_setup_hw_channel - setup new channel 7965 * @pf: ptr to PF device 7966 * @vsi: the VSI being setup 7967 * @ch: ptr to channel structure 7968 * @sw_id: underlying HW switching element ID 7969 * @type: type of channel to be created (VMDq2/VF) 7970 * 7971 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7972 * and configures Tx rings accordingly 7973 */ 7974 static int 7975 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7976 struct ice_channel *ch, u16 sw_id, u8 type) 7977 { 7978 struct device *dev = ice_pf_to_dev(pf); 7979 int ret; 7980 7981 ch->base_q = vsi->next_base_q; 7982 ch->type = type; 7983 7984 ret = ice_add_channel(pf, sw_id, ch); 7985 if (ret) { 7986 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7987 return ret; 7988 } 7989 7990 /* configure/setup ADQ specific resources */ 7991 ice_cfg_chnl_all_res(vsi, ch); 7992 7993 /* make sure to update the next_base_q so that subsequent channel's 7994 * (aka ADQ) VSI queue map is correct 7995 */ 7996 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7997 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7998 ch->num_rxq); 7999 8000 return 0; 8001 } 8002 8003 /** 8004 * ice_setup_channel - setup new channel using uplink element 8005 * @pf: ptr to PF device 8006 * @vsi: the VSI being setup 8007 * @ch: ptr to channel structure 8008 * 8009 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8010 * and uplink switching element 8011 */ 8012 static bool 8013 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8014 struct ice_channel *ch) 8015 { 8016 struct device *dev = ice_pf_to_dev(pf); 8017 u16 sw_id; 8018 int ret; 8019 8020 if (vsi->type != ICE_VSI_PF) { 8021 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8022 return false; 8023 } 8024 8025 sw_id = pf->first_sw->sw_id; 8026 8027 /* create channel (VSI) */ 8028 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8029 if (ret) { 8030 dev_err(dev, "failed to setup hw_channel\n"); 8031 return false; 8032 } 8033 dev_dbg(dev, "successfully created channel()\n"); 8034 8035 return ch->ch_vsi ? true : false; 8036 } 8037 8038 /** 8039 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8040 * @vsi: VSI to be configured 8041 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8042 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8043 */ 8044 static int 8045 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8046 { 8047 int err; 8048 8049 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8050 if (err) 8051 return err; 8052 8053 return ice_set_max_bw_limit(vsi, max_tx_rate); 8054 } 8055 8056 /** 8057 * ice_create_q_channel - function to create channel 8058 * @vsi: VSI to be configured 8059 * @ch: ptr to channel (it contains channel specific params) 8060 * 8061 * This function creates channel (VSI) using num_queues specified by user, 8062 * reconfigs RSS if needed. 8063 */ 8064 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8065 { 8066 struct ice_pf *pf = vsi->back; 8067 struct device *dev; 8068 8069 if (!ch) 8070 return -EINVAL; 8071 8072 dev = ice_pf_to_dev(pf); 8073 if (!ch->num_txq || !ch->num_rxq) { 8074 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8075 return -EINVAL; 8076 } 8077 8078 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8079 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8080 vsi->cnt_q_avail, ch->num_txq); 8081 return -EINVAL; 8082 } 8083 8084 if (!ice_setup_channel(pf, vsi, ch)) { 8085 dev_info(dev, "Failed to setup channel\n"); 8086 return -EINVAL; 8087 } 8088 /* configure BW rate limit */ 8089 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8090 int ret; 8091 8092 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8093 ch->min_tx_rate); 8094 if (ret) 8095 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8096 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8097 else 8098 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8099 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8100 } 8101 8102 vsi->cnt_q_avail -= ch->num_txq; 8103 8104 return 0; 8105 } 8106 8107 /** 8108 * ice_rem_all_chnl_fltrs - removes all channel filters 8109 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8110 * 8111 * Remove all advanced switch filters only if they are channel specific 8112 * tc-flower based filter 8113 */ 8114 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8115 { 8116 struct ice_tc_flower_fltr *fltr; 8117 struct hlist_node *node; 8118 8119 /* to remove all channel filters, iterate an ordered list of filters */ 8120 hlist_for_each_entry_safe(fltr, node, 8121 &pf->tc_flower_fltr_list, 8122 tc_flower_node) { 8123 struct ice_rule_query_data rule; 8124 int status; 8125 8126 /* for now process only channel specific filters */ 8127 if (!ice_is_chnl_fltr(fltr)) 8128 continue; 8129 8130 rule.rid = fltr->rid; 8131 rule.rule_id = fltr->rule_id; 8132 rule.vsi_handle = fltr->dest_id; 8133 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8134 if (status) { 8135 if (status == -ENOENT) 8136 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8137 rule.rule_id); 8138 else 8139 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8140 status); 8141 } else if (fltr->dest_vsi) { 8142 /* update advanced switch filter count */ 8143 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8144 u32 flags = fltr->flags; 8145 8146 fltr->dest_vsi->num_chnl_fltr--; 8147 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8148 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8149 pf->num_dmac_chnl_fltrs--; 8150 } 8151 } 8152 8153 hlist_del(&fltr->tc_flower_node); 8154 kfree(fltr); 8155 } 8156 } 8157 8158 /** 8159 * ice_remove_q_channels - Remove queue channels for the TCs 8160 * @vsi: VSI to be configured 8161 * @rem_fltr: delete advanced switch filter or not 8162 * 8163 * Remove queue channels for the TCs 8164 */ 8165 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8166 { 8167 struct ice_channel *ch, *ch_tmp; 8168 struct ice_pf *pf = vsi->back; 8169 int i; 8170 8171 /* remove all tc-flower based filter if they are channel filters only */ 8172 if (rem_fltr) 8173 ice_rem_all_chnl_fltrs(pf); 8174 8175 /* remove ntuple filters since queue configuration is being changed */ 8176 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8177 struct ice_hw *hw = &pf->hw; 8178 8179 mutex_lock(&hw->fdir_fltr_lock); 8180 ice_fdir_del_all_fltrs(vsi); 8181 mutex_unlock(&hw->fdir_fltr_lock); 8182 } 8183 8184 /* perform cleanup for channels if they exist */ 8185 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8186 struct ice_vsi *ch_vsi; 8187 8188 list_del(&ch->list); 8189 ch_vsi = ch->ch_vsi; 8190 if (!ch_vsi) { 8191 kfree(ch); 8192 continue; 8193 } 8194 8195 /* Reset queue contexts */ 8196 for (i = 0; i < ch->num_rxq; i++) { 8197 struct ice_tx_ring *tx_ring; 8198 struct ice_rx_ring *rx_ring; 8199 8200 tx_ring = vsi->tx_rings[ch->base_q + i]; 8201 rx_ring = vsi->rx_rings[ch->base_q + i]; 8202 if (tx_ring) { 8203 tx_ring->ch = NULL; 8204 if (tx_ring->q_vector) 8205 tx_ring->q_vector->ch = NULL; 8206 } 8207 if (rx_ring) { 8208 rx_ring->ch = NULL; 8209 if (rx_ring->q_vector) 8210 rx_ring->q_vector->ch = NULL; 8211 } 8212 } 8213 8214 /* Release FD resources for the channel VSI */ 8215 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8216 8217 /* clear the VSI from scheduler tree */ 8218 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8219 8220 /* Delete VSI from FW */ 8221 ice_vsi_delete(ch->ch_vsi); 8222 8223 /* Delete VSI from PF and HW VSI arrays */ 8224 ice_vsi_clear(ch->ch_vsi); 8225 8226 /* free the channel */ 8227 kfree(ch); 8228 } 8229 8230 /* clear the channel VSI map which is stored in main VSI */ 8231 ice_for_each_chnl_tc(i) 8232 vsi->tc_map_vsi[i] = NULL; 8233 8234 /* reset main VSI's all TC information */ 8235 vsi->all_enatc = 0; 8236 vsi->all_numtc = 0; 8237 } 8238 8239 /** 8240 * ice_rebuild_channels - rebuild channel 8241 * @pf: ptr to PF 8242 * 8243 * Recreate channel VSIs and replay filters 8244 */ 8245 static int ice_rebuild_channels(struct ice_pf *pf) 8246 { 8247 struct device *dev = ice_pf_to_dev(pf); 8248 struct ice_vsi *main_vsi; 8249 bool rem_adv_fltr = true; 8250 struct ice_channel *ch; 8251 struct ice_vsi *vsi; 8252 int tc_idx = 1; 8253 int i, err; 8254 8255 main_vsi = ice_get_main_vsi(pf); 8256 if (!main_vsi) 8257 return 0; 8258 8259 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8260 main_vsi->old_numtc == 1) 8261 return 0; /* nothing to be done */ 8262 8263 /* reconfigure main VSI based on old value of TC and cached values 8264 * for MQPRIO opts 8265 */ 8266 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8267 if (err) { 8268 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8269 main_vsi->old_ena_tc, main_vsi->vsi_num); 8270 return err; 8271 } 8272 8273 /* rebuild ADQ VSIs */ 8274 ice_for_each_vsi(pf, i) { 8275 enum ice_vsi_type type; 8276 8277 vsi = pf->vsi[i]; 8278 if (!vsi || vsi->type != ICE_VSI_CHNL) 8279 continue; 8280 8281 type = vsi->type; 8282 8283 /* rebuild ADQ VSI */ 8284 err = ice_vsi_rebuild(vsi, true); 8285 if (err) { 8286 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8287 ice_vsi_type_str(type), vsi->idx, err); 8288 goto cleanup; 8289 } 8290 8291 /* Re-map HW VSI number, using VSI handle that has been 8292 * previously validated in ice_replay_vsi() call above 8293 */ 8294 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8295 8296 /* replay filters for the VSI */ 8297 err = ice_replay_vsi(&pf->hw, vsi->idx); 8298 if (err) { 8299 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8300 ice_vsi_type_str(type), err, vsi->idx); 8301 rem_adv_fltr = false; 8302 goto cleanup; 8303 } 8304 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8305 ice_vsi_type_str(type), vsi->idx); 8306 8307 /* store ADQ VSI at correct TC index in main VSI's 8308 * map of TC to VSI 8309 */ 8310 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8311 } 8312 8313 /* ADQ VSI(s) has been rebuilt successfully, so setup 8314 * channel for main VSI's Tx and Rx rings 8315 */ 8316 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8317 struct ice_vsi *ch_vsi; 8318 8319 ch_vsi = ch->ch_vsi; 8320 if (!ch_vsi) 8321 continue; 8322 8323 /* reconfig channel resources */ 8324 ice_cfg_chnl_all_res(main_vsi, ch); 8325 8326 /* replay BW rate limit if it is non-zero */ 8327 if (!ch->max_tx_rate && !ch->min_tx_rate) 8328 continue; 8329 8330 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8331 ch->min_tx_rate); 8332 if (err) 8333 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8334 err, ch->max_tx_rate, ch->min_tx_rate, 8335 ch_vsi->vsi_num); 8336 else 8337 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8338 ch->max_tx_rate, ch->min_tx_rate, 8339 ch_vsi->vsi_num); 8340 } 8341 8342 /* reconfig RSS for main VSI */ 8343 if (main_vsi->ch_rss_size) 8344 ice_vsi_cfg_rss_lut_key(main_vsi); 8345 8346 return 0; 8347 8348 cleanup: 8349 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8350 return err; 8351 } 8352 8353 /** 8354 * ice_create_q_channels - Add queue channel for the given TCs 8355 * @vsi: VSI to be configured 8356 * 8357 * Configures queue channel mapping to the given TCs 8358 */ 8359 static int ice_create_q_channels(struct ice_vsi *vsi) 8360 { 8361 struct ice_pf *pf = vsi->back; 8362 struct ice_channel *ch; 8363 int ret = 0, i; 8364 8365 ice_for_each_chnl_tc(i) { 8366 if (!(vsi->all_enatc & BIT(i))) 8367 continue; 8368 8369 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8370 if (!ch) { 8371 ret = -ENOMEM; 8372 goto err_free; 8373 } 8374 INIT_LIST_HEAD(&ch->list); 8375 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8376 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8377 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8378 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8379 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8380 8381 /* convert to Kbits/s */ 8382 if (ch->max_tx_rate) 8383 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8384 ICE_BW_KBPS_DIVISOR); 8385 if (ch->min_tx_rate) 8386 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8387 ICE_BW_KBPS_DIVISOR); 8388 8389 ret = ice_create_q_channel(vsi, ch); 8390 if (ret) { 8391 dev_err(ice_pf_to_dev(pf), 8392 "failed creating channel TC:%d\n", i); 8393 kfree(ch); 8394 goto err_free; 8395 } 8396 list_add_tail(&ch->list, &vsi->ch_list); 8397 vsi->tc_map_vsi[i] = ch->ch_vsi; 8398 dev_dbg(ice_pf_to_dev(pf), 8399 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8400 } 8401 return 0; 8402 8403 err_free: 8404 ice_remove_q_channels(vsi, false); 8405 8406 return ret; 8407 } 8408 8409 /** 8410 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8411 * @netdev: net device to configure 8412 * @type_data: TC offload data 8413 */ 8414 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8415 { 8416 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8417 struct ice_netdev_priv *np = netdev_priv(netdev); 8418 struct ice_vsi *vsi = np->vsi; 8419 struct ice_pf *pf = vsi->back; 8420 u16 mode, ena_tc_qdisc = 0; 8421 int cur_txq, cur_rxq; 8422 u8 hw = 0, num_tcf; 8423 struct device *dev; 8424 int ret, i; 8425 8426 dev = ice_pf_to_dev(pf); 8427 num_tcf = mqprio_qopt->qopt.num_tc; 8428 hw = mqprio_qopt->qopt.hw; 8429 mode = mqprio_qopt->mode; 8430 if (!hw) { 8431 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8432 vsi->ch_rss_size = 0; 8433 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8434 goto config_tcf; 8435 } 8436 8437 /* Generate queue region map for number of TCF requested */ 8438 for (i = 0; i < num_tcf; i++) 8439 ena_tc_qdisc |= BIT(i); 8440 8441 switch (mode) { 8442 case TC_MQPRIO_MODE_CHANNEL: 8443 8444 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8445 if (ret) { 8446 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8447 ret); 8448 return ret; 8449 } 8450 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8451 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8452 /* don't assume state of hw_tc_offload during driver load 8453 * and set the flag for TC flower filter if hw_tc_offload 8454 * already ON 8455 */ 8456 if (vsi->netdev->features & NETIF_F_HW_TC) 8457 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8458 break; 8459 default: 8460 return -EINVAL; 8461 } 8462 8463 config_tcf: 8464 8465 /* Requesting same TCF configuration as already enabled */ 8466 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8467 mode != TC_MQPRIO_MODE_CHANNEL) 8468 return 0; 8469 8470 /* Pause VSI queues */ 8471 ice_dis_vsi(vsi, true); 8472 8473 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8474 ice_remove_q_channels(vsi, true); 8475 8476 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8477 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8478 num_online_cpus()); 8479 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8480 num_online_cpus()); 8481 } else { 8482 /* logic to rebuild VSI, same like ethtool -L */ 8483 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8484 8485 for (i = 0; i < num_tcf; i++) { 8486 if (!(ena_tc_qdisc & BIT(i))) 8487 continue; 8488 8489 offset = vsi->mqprio_qopt.qopt.offset[i]; 8490 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8491 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8492 } 8493 vsi->req_txq = offset + qcount_tx; 8494 vsi->req_rxq = offset + qcount_rx; 8495 8496 /* store away original rss_size info, so that it gets reused 8497 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8498 * determine, what should be the rss_sizefor main VSI 8499 */ 8500 vsi->orig_rss_size = vsi->rss_size; 8501 } 8502 8503 /* save current values of Tx and Rx queues before calling VSI rebuild 8504 * for fallback option 8505 */ 8506 cur_txq = vsi->num_txq; 8507 cur_rxq = vsi->num_rxq; 8508 8509 /* proceed with rebuild main VSI using correct number of queues */ 8510 ret = ice_vsi_rebuild(vsi, false); 8511 if (ret) { 8512 /* fallback to current number of queues */ 8513 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8514 vsi->req_txq = cur_txq; 8515 vsi->req_rxq = cur_rxq; 8516 clear_bit(ICE_RESET_FAILED, pf->state); 8517 if (ice_vsi_rebuild(vsi, false)) { 8518 dev_err(dev, "Rebuild of main VSI failed again\n"); 8519 return ret; 8520 } 8521 } 8522 8523 vsi->all_numtc = num_tcf; 8524 vsi->all_enatc = ena_tc_qdisc; 8525 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8526 if (ret) { 8527 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8528 vsi->vsi_num); 8529 goto exit; 8530 } 8531 8532 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8533 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8534 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8535 8536 /* set TC0 rate limit if specified */ 8537 if (max_tx_rate || min_tx_rate) { 8538 /* convert to Kbits/s */ 8539 if (max_tx_rate) 8540 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8541 if (min_tx_rate) 8542 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8543 8544 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8545 if (!ret) { 8546 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8547 max_tx_rate, min_tx_rate, vsi->vsi_num); 8548 } else { 8549 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8550 max_tx_rate, min_tx_rate, vsi->vsi_num); 8551 goto exit; 8552 } 8553 } 8554 ret = ice_create_q_channels(vsi); 8555 if (ret) { 8556 netdev_err(netdev, "failed configuring queue channels\n"); 8557 goto exit; 8558 } else { 8559 netdev_dbg(netdev, "successfully configured channels\n"); 8560 } 8561 } 8562 8563 if (vsi->ch_rss_size) 8564 ice_vsi_cfg_rss_lut_key(vsi); 8565 8566 exit: 8567 /* if error, reset the all_numtc and all_enatc */ 8568 if (ret) { 8569 vsi->all_numtc = 0; 8570 vsi->all_enatc = 0; 8571 } 8572 /* resume VSI */ 8573 ice_ena_vsi(vsi, true); 8574 8575 return ret; 8576 } 8577 8578 static LIST_HEAD(ice_block_cb_list); 8579 8580 static int 8581 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8582 void *type_data) 8583 { 8584 struct ice_netdev_priv *np = netdev_priv(netdev); 8585 struct ice_pf *pf = np->vsi->back; 8586 int err; 8587 8588 switch (type) { 8589 case TC_SETUP_BLOCK: 8590 return flow_block_cb_setup_simple(type_data, 8591 &ice_block_cb_list, 8592 ice_setup_tc_block_cb, 8593 np, np, true); 8594 case TC_SETUP_QDISC_MQPRIO: 8595 /* setup traffic classifier for receive side */ 8596 mutex_lock(&pf->tc_mutex); 8597 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8598 mutex_unlock(&pf->tc_mutex); 8599 return err; 8600 default: 8601 return -EOPNOTSUPP; 8602 } 8603 return -EOPNOTSUPP; 8604 } 8605 8606 static struct ice_indr_block_priv * 8607 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8608 struct net_device *netdev) 8609 { 8610 struct ice_indr_block_priv *cb_priv; 8611 8612 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8613 if (!cb_priv->netdev) 8614 return NULL; 8615 if (cb_priv->netdev == netdev) 8616 return cb_priv; 8617 } 8618 return NULL; 8619 } 8620 8621 static int 8622 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8623 void *indr_priv) 8624 { 8625 struct ice_indr_block_priv *priv = indr_priv; 8626 struct ice_netdev_priv *np = priv->np; 8627 8628 switch (type) { 8629 case TC_SETUP_CLSFLOWER: 8630 return ice_setup_tc_cls_flower(np, priv->netdev, 8631 (struct flow_cls_offload *) 8632 type_data); 8633 default: 8634 return -EOPNOTSUPP; 8635 } 8636 } 8637 8638 static int 8639 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8640 struct ice_netdev_priv *np, 8641 struct flow_block_offload *f, void *data, 8642 void (*cleanup)(struct flow_block_cb *block_cb)) 8643 { 8644 struct ice_indr_block_priv *indr_priv; 8645 struct flow_block_cb *block_cb; 8646 8647 if (!ice_is_tunnel_supported(netdev) && 8648 !(is_vlan_dev(netdev) && 8649 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8650 return -EOPNOTSUPP; 8651 8652 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8653 return -EOPNOTSUPP; 8654 8655 switch (f->command) { 8656 case FLOW_BLOCK_BIND: 8657 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8658 if (indr_priv) 8659 return -EEXIST; 8660 8661 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8662 if (!indr_priv) 8663 return -ENOMEM; 8664 8665 indr_priv->netdev = netdev; 8666 indr_priv->np = np; 8667 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8668 8669 block_cb = 8670 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8671 indr_priv, indr_priv, 8672 ice_rep_indr_tc_block_unbind, 8673 f, netdev, sch, data, np, 8674 cleanup); 8675 8676 if (IS_ERR(block_cb)) { 8677 list_del(&indr_priv->list); 8678 kfree(indr_priv); 8679 return PTR_ERR(block_cb); 8680 } 8681 flow_block_cb_add(block_cb, f); 8682 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8683 break; 8684 case FLOW_BLOCK_UNBIND: 8685 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8686 if (!indr_priv) 8687 return -ENOENT; 8688 8689 block_cb = flow_block_cb_lookup(f->block, 8690 ice_indr_setup_block_cb, 8691 indr_priv); 8692 if (!block_cb) 8693 return -ENOENT; 8694 8695 flow_indr_block_cb_remove(block_cb, f); 8696 8697 list_del(&block_cb->driver_list); 8698 break; 8699 default: 8700 return -EOPNOTSUPP; 8701 } 8702 return 0; 8703 } 8704 8705 static int 8706 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8707 void *cb_priv, enum tc_setup_type type, void *type_data, 8708 void *data, 8709 void (*cleanup)(struct flow_block_cb *block_cb)) 8710 { 8711 switch (type) { 8712 case TC_SETUP_BLOCK: 8713 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8714 data, cleanup); 8715 8716 default: 8717 return -EOPNOTSUPP; 8718 } 8719 } 8720 8721 /** 8722 * ice_open - Called when a network interface becomes active 8723 * @netdev: network interface device structure 8724 * 8725 * The open entry point is called when a network interface is made 8726 * active by the system (IFF_UP). At this point all resources needed 8727 * for transmit and receive operations are allocated, the interrupt 8728 * handler is registered with the OS, the netdev watchdog is enabled, 8729 * and the stack is notified that the interface is ready. 8730 * 8731 * Returns 0 on success, negative value on failure 8732 */ 8733 int ice_open(struct net_device *netdev) 8734 { 8735 struct ice_netdev_priv *np = netdev_priv(netdev); 8736 struct ice_pf *pf = np->vsi->back; 8737 8738 if (ice_is_reset_in_progress(pf->state)) { 8739 netdev_err(netdev, "can't open net device while reset is in progress"); 8740 return -EBUSY; 8741 } 8742 8743 return ice_open_internal(netdev); 8744 } 8745 8746 /** 8747 * ice_open_internal - Called when a network interface becomes active 8748 * @netdev: network interface device structure 8749 * 8750 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8751 * handling routine 8752 * 8753 * Returns 0 on success, negative value on failure 8754 */ 8755 int ice_open_internal(struct net_device *netdev) 8756 { 8757 struct ice_netdev_priv *np = netdev_priv(netdev); 8758 struct ice_vsi *vsi = np->vsi; 8759 struct ice_pf *pf = vsi->back; 8760 struct ice_port_info *pi; 8761 int err; 8762 8763 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8764 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8765 return -EIO; 8766 } 8767 8768 netif_carrier_off(netdev); 8769 8770 pi = vsi->port_info; 8771 err = ice_update_link_info(pi); 8772 if (err) { 8773 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8774 return err; 8775 } 8776 8777 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8778 8779 /* Set PHY if there is media, otherwise, turn off PHY */ 8780 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8781 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8782 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8783 err = ice_init_phy_user_cfg(pi); 8784 if (err) { 8785 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8786 err); 8787 return err; 8788 } 8789 } 8790 8791 err = ice_configure_phy(vsi); 8792 if (err) { 8793 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8794 err); 8795 return err; 8796 } 8797 } else { 8798 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8799 ice_set_link(vsi, false); 8800 } 8801 8802 err = ice_vsi_open(vsi); 8803 if (err) 8804 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8805 vsi->vsi_num, vsi->vsw->sw_id); 8806 8807 /* Update existing tunnels information */ 8808 udp_tunnel_get_rx_info(netdev); 8809 8810 return err; 8811 } 8812 8813 /** 8814 * ice_stop - Disables a network interface 8815 * @netdev: network interface device structure 8816 * 8817 * The stop entry point is called when an interface is de-activated by the OS, 8818 * and the netdevice enters the DOWN state. The hardware is still under the 8819 * driver's control, but the netdev interface is disabled. 8820 * 8821 * Returns success only - not allowed to fail 8822 */ 8823 int ice_stop(struct net_device *netdev) 8824 { 8825 struct ice_netdev_priv *np = netdev_priv(netdev); 8826 struct ice_vsi *vsi = np->vsi; 8827 struct ice_pf *pf = vsi->back; 8828 8829 if (ice_is_reset_in_progress(pf->state)) { 8830 netdev_err(netdev, "can't stop net device while reset is in progress"); 8831 return -EBUSY; 8832 } 8833 8834 ice_vsi_close(vsi); 8835 8836 return 0; 8837 } 8838 8839 /** 8840 * ice_features_check - Validate encapsulated packet conforms to limits 8841 * @skb: skb buffer 8842 * @netdev: This port's netdev 8843 * @features: Offload features that the stack believes apply 8844 */ 8845 static netdev_features_t 8846 ice_features_check(struct sk_buff *skb, 8847 struct net_device __always_unused *netdev, 8848 netdev_features_t features) 8849 { 8850 bool gso = skb_is_gso(skb); 8851 size_t len; 8852 8853 /* No point in doing any of this if neither checksum nor GSO are 8854 * being requested for this frame. We can rule out both by just 8855 * checking for CHECKSUM_PARTIAL 8856 */ 8857 if (skb->ip_summed != CHECKSUM_PARTIAL) 8858 return features; 8859 8860 /* We cannot support GSO if the MSS is going to be less than 8861 * 64 bytes. If it is then we need to drop support for GSO. 8862 */ 8863 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8864 features &= ~NETIF_F_GSO_MASK; 8865 8866 len = skb_network_offset(skb); 8867 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8868 goto out_rm_features; 8869 8870 len = skb_network_header_len(skb); 8871 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8872 goto out_rm_features; 8873 8874 if (skb->encapsulation) { 8875 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8876 * the case of IPIP frames, the transport header pointer is 8877 * after the inner header! So check to make sure that this 8878 * is a GRE or UDP_TUNNEL frame before doing that math. 8879 */ 8880 if (gso && (skb_shinfo(skb)->gso_type & 8881 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8882 len = skb_inner_network_header(skb) - 8883 skb_transport_header(skb); 8884 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8885 goto out_rm_features; 8886 } 8887 8888 len = skb_inner_network_header_len(skb); 8889 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8890 goto out_rm_features; 8891 } 8892 8893 return features; 8894 out_rm_features: 8895 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8896 } 8897 8898 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8899 .ndo_open = ice_open, 8900 .ndo_stop = ice_stop, 8901 .ndo_start_xmit = ice_start_xmit, 8902 .ndo_set_mac_address = ice_set_mac_address, 8903 .ndo_validate_addr = eth_validate_addr, 8904 .ndo_change_mtu = ice_change_mtu, 8905 .ndo_get_stats64 = ice_get_stats64, 8906 .ndo_tx_timeout = ice_tx_timeout, 8907 .ndo_bpf = ice_xdp_safe_mode, 8908 }; 8909 8910 static const struct net_device_ops ice_netdev_ops = { 8911 .ndo_open = ice_open, 8912 .ndo_stop = ice_stop, 8913 .ndo_start_xmit = ice_start_xmit, 8914 .ndo_select_queue = ice_select_queue, 8915 .ndo_features_check = ice_features_check, 8916 .ndo_fix_features = ice_fix_features, 8917 .ndo_set_rx_mode = ice_set_rx_mode, 8918 .ndo_set_mac_address = ice_set_mac_address, 8919 .ndo_validate_addr = eth_validate_addr, 8920 .ndo_change_mtu = ice_change_mtu, 8921 .ndo_get_stats64 = ice_get_stats64, 8922 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8923 .ndo_eth_ioctl = ice_eth_ioctl, 8924 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8925 .ndo_set_vf_mac = ice_set_vf_mac, 8926 .ndo_get_vf_config = ice_get_vf_cfg, 8927 .ndo_set_vf_trust = ice_set_vf_trust, 8928 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8929 .ndo_set_vf_link_state = ice_set_vf_link_state, 8930 .ndo_get_vf_stats = ice_get_vf_stats, 8931 .ndo_set_vf_rate = ice_set_vf_bw, 8932 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8933 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8934 .ndo_setup_tc = ice_setup_tc, 8935 .ndo_set_features = ice_set_features, 8936 .ndo_bridge_getlink = ice_bridge_getlink, 8937 .ndo_bridge_setlink = ice_bridge_setlink, 8938 .ndo_fdb_add = ice_fdb_add, 8939 .ndo_fdb_del = ice_fdb_del, 8940 #ifdef CONFIG_RFS_ACCEL 8941 .ndo_rx_flow_steer = ice_rx_flow_steer, 8942 #endif 8943 .ndo_tx_timeout = ice_tx_timeout, 8944 .ndo_bpf = ice_xdp, 8945 .ndo_xdp_xmit = ice_xdp_xmit, 8946 .ndo_xsk_wakeup = ice_xsk_wakeup, 8947 .ndo_get_devlink_port = ice_get_devlink_port, 8948 }; 8949