1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 switch (reset) { 2403 case ICE_RESET_PFR: 2404 set_bit(ICE_PFR_REQ, pf->state); 2405 break; 2406 case ICE_RESET_CORER: 2407 set_bit(ICE_CORER_REQ, pf->state); 2408 break; 2409 case ICE_RESET_GLOBR: 2410 set_bit(ICE_GLOBR_REQ, pf->state); 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 2416 ice_service_task_schedule(pf); 2417 return 0; 2418 } 2419 2420 /** 2421 * ice_irq_affinity_notify - Callback for affinity changes 2422 * @notify: context as to what irq was changed 2423 * @mask: the new affinity mask 2424 * 2425 * This is a callback function used by the irq_set_affinity_notifier function 2426 * so that we may register to receive changes to the irq affinity masks. 2427 */ 2428 static void 2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2430 const cpumask_t *mask) 2431 { 2432 struct ice_q_vector *q_vector = 2433 container_of(notify, struct ice_q_vector, affinity_notify); 2434 2435 cpumask_copy(&q_vector->affinity_mask, mask); 2436 } 2437 2438 /** 2439 * ice_irq_affinity_release - Callback for affinity notifier release 2440 * @ref: internal core kernel usage 2441 * 2442 * This is a callback function used by the irq_set_affinity_notifier function 2443 * to inform the current notification subscriber that they will no longer 2444 * receive notifications. 2445 */ 2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2447 2448 /** 2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2450 * @vsi: the VSI being configured 2451 */ 2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2453 { 2454 struct ice_hw *hw = &vsi->back->hw; 2455 int i; 2456 2457 ice_for_each_q_vector(vsi, i) 2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2459 2460 ice_flush(hw); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2466 * @vsi: the VSI being configured 2467 * @basename: name for the vector 2468 */ 2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2470 { 2471 int q_vectors = vsi->num_q_vectors; 2472 struct ice_pf *pf = vsi->back; 2473 int base = vsi->base_vector; 2474 struct device *dev; 2475 int rx_int_idx = 0; 2476 int tx_int_idx = 0; 2477 int vector, err; 2478 int irq_num; 2479 2480 dev = ice_pf_to_dev(pf); 2481 for (vector = 0; vector < q_vectors; vector++) { 2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2483 2484 irq_num = pf->msix_entries[base + vector].vector; 2485 2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2489 tx_int_idx++; 2490 } else if (q_vector->rx.rx_ring) { 2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2492 "%s-%s-%d", basename, "rx", rx_int_idx++); 2493 } else if (q_vector->tx.tx_ring) { 2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2495 "%s-%s-%d", basename, "tx", tx_int_idx++); 2496 } else { 2497 /* skip this unused q_vector */ 2498 continue; 2499 } 2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2502 IRQF_SHARED, q_vector->name, 2503 q_vector); 2504 else 2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2506 0, q_vector->name, q_vector); 2507 if (err) { 2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2509 err); 2510 goto free_q_irqs; 2511 } 2512 2513 /* register for affinity change notifications */ 2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2515 struct irq_affinity_notify *affinity_notify; 2516 2517 affinity_notify = &q_vector->affinity_notify; 2518 affinity_notify->notify = ice_irq_affinity_notify; 2519 affinity_notify->release = ice_irq_affinity_release; 2520 irq_set_affinity_notifier(irq_num, affinity_notify); 2521 } 2522 2523 /* assign the mask for this irq */ 2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2525 } 2526 2527 err = ice_set_cpu_rx_rmap(vsi); 2528 if (err) { 2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2530 vsi->vsi_num, ERR_PTR(err)); 2531 goto free_q_irqs; 2532 } 2533 2534 vsi->irqs_ready = true; 2535 return 0; 2536 2537 free_q_irqs: 2538 while (vector) { 2539 vector--; 2540 irq_num = pf->msix_entries[base + vector].vector; 2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2542 irq_set_affinity_notifier(irq_num, NULL); 2543 irq_set_affinity_hint(irq_num, NULL); 2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2545 } 2546 return err; 2547 } 2548 2549 /** 2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2551 * @vsi: VSI to setup Tx rings used by XDP 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2556 { 2557 struct device *dev = ice_pf_to_dev(vsi->back); 2558 struct ice_tx_desc *tx_desc; 2559 int i, j; 2560 2561 ice_for_each_xdp_txq(vsi, i) { 2562 u16 xdp_q_idx = vsi->alloc_txq + i; 2563 struct ice_tx_ring *xdp_ring; 2564 2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2566 2567 if (!xdp_ring) 2568 goto free_xdp_rings; 2569 2570 xdp_ring->q_index = xdp_q_idx; 2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2572 xdp_ring->vsi = vsi; 2573 xdp_ring->netdev = NULL; 2574 xdp_ring->dev = dev; 2575 xdp_ring->count = vsi->num_tx_desc; 2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2579 if (ice_setup_tx_ring(xdp_ring)) 2580 goto free_xdp_rings; 2581 ice_set_ring_xdp(xdp_ring); 2582 spin_lock_init(&xdp_ring->tx_lock); 2583 for (j = 0; j < xdp_ring->count; j++) { 2584 tx_desc = ICE_TX_DESC(xdp_ring, j); 2585 tx_desc->cmd_type_offset_bsz = 0; 2586 } 2587 } 2588 2589 return 0; 2590 2591 free_xdp_rings: 2592 for (; i >= 0; i--) 2593 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2594 ice_free_tx_ring(vsi->xdp_rings[i]); 2595 return -ENOMEM; 2596 } 2597 2598 /** 2599 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2600 * @vsi: VSI to set the bpf prog on 2601 * @prog: the bpf prog pointer 2602 */ 2603 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2604 { 2605 struct bpf_prog *old_prog; 2606 int i; 2607 2608 old_prog = xchg(&vsi->xdp_prog, prog); 2609 if (old_prog) 2610 bpf_prog_put(old_prog); 2611 2612 ice_for_each_rxq(vsi, i) 2613 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2614 } 2615 2616 /** 2617 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2618 * @vsi: VSI to bring up Tx rings used by XDP 2619 * @prog: bpf program that will be assigned to VSI 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2624 { 2625 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2626 int xdp_rings_rem = vsi->num_xdp_txq; 2627 struct ice_pf *pf = vsi->back; 2628 struct ice_qs_cfg xdp_qs_cfg = { 2629 .qs_mutex = &pf->avail_q_mutex, 2630 .pf_map = pf->avail_txqs, 2631 .pf_map_size = pf->max_pf_txqs, 2632 .q_count = vsi->num_xdp_txq, 2633 .scatter_count = ICE_MAX_SCATTER_TXQS, 2634 .vsi_map = vsi->txq_map, 2635 .vsi_map_offset = vsi->alloc_txq, 2636 .mapping_mode = ICE_VSI_MAP_CONTIG 2637 }; 2638 struct device *dev; 2639 int i, v_idx; 2640 int status; 2641 2642 dev = ice_pf_to_dev(pf); 2643 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2644 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2645 if (!vsi->xdp_rings) 2646 return -ENOMEM; 2647 2648 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2649 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2650 goto err_map_xdp; 2651 2652 if (static_key_enabled(&ice_xdp_locking_key)) 2653 netdev_warn(vsi->netdev, 2654 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2655 2656 if (ice_xdp_alloc_setup_rings(vsi)) 2657 goto clear_xdp_rings; 2658 2659 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2660 ice_for_each_q_vector(vsi, v_idx) { 2661 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2662 int xdp_rings_per_v, q_id, q_base; 2663 2664 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2665 vsi->num_q_vectors - v_idx); 2666 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2667 2668 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2669 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2670 2671 xdp_ring->q_vector = q_vector; 2672 xdp_ring->next = q_vector->tx.tx_ring; 2673 q_vector->tx.tx_ring = xdp_ring; 2674 } 2675 xdp_rings_rem -= xdp_rings_per_v; 2676 } 2677 2678 ice_for_each_rxq(vsi, i) { 2679 if (static_key_enabled(&ice_xdp_locking_key)) { 2680 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2681 } else { 2682 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2683 struct ice_tx_ring *ring; 2684 2685 ice_for_each_tx_ring(ring, q_vector->tx) { 2686 if (ice_ring_is_xdp(ring)) { 2687 vsi->rx_rings[i]->xdp_ring = ring; 2688 break; 2689 } 2690 } 2691 } 2692 ice_tx_xsk_pool(vsi, i); 2693 } 2694 2695 /* omit the scheduler update if in reset path; XDP queues will be 2696 * taken into account at the end of ice_vsi_rebuild, where 2697 * ice_cfg_vsi_lan is being called 2698 */ 2699 if (ice_is_reset_in_progress(pf->state)) 2700 return 0; 2701 2702 /* tell the Tx scheduler that right now we have 2703 * additional queues 2704 */ 2705 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2706 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2707 2708 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2709 max_txqs); 2710 if (status) { 2711 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2712 status); 2713 goto clear_xdp_rings; 2714 } 2715 2716 /* assign the prog only when it's not already present on VSI; 2717 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2718 * VSI rebuild that happens under ethtool -L can expose us to 2719 * the bpf_prog refcount issues as we would be swapping same 2720 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2721 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2722 * this is not harmful as dev_xdp_install bumps the refcount 2723 * before calling the op exposed by the driver; 2724 */ 2725 if (!ice_is_xdp_ena_vsi(vsi)) 2726 ice_vsi_assign_bpf_prog(vsi, prog); 2727 2728 return 0; 2729 clear_xdp_rings: 2730 ice_for_each_xdp_txq(vsi, i) 2731 if (vsi->xdp_rings[i]) { 2732 kfree_rcu(vsi->xdp_rings[i], rcu); 2733 vsi->xdp_rings[i] = NULL; 2734 } 2735 2736 err_map_xdp: 2737 mutex_lock(&pf->avail_q_mutex); 2738 ice_for_each_xdp_txq(vsi, i) { 2739 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2740 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2741 } 2742 mutex_unlock(&pf->avail_q_mutex); 2743 2744 devm_kfree(dev, vsi->xdp_rings); 2745 return -ENOMEM; 2746 } 2747 2748 /** 2749 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2750 * @vsi: VSI to remove XDP rings 2751 * 2752 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2753 * resources 2754 */ 2755 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2756 { 2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2758 struct ice_pf *pf = vsi->back; 2759 int i, v_idx; 2760 2761 /* q_vectors are freed in reset path so there's no point in detaching 2762 * rings; in case of rebuild being triggered not from reset bits 2763 * in pf->state won't be set, so additionally check first q_vector 2764 * against NULL 2765 */ 2766 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2767 goto free_qmap; 2768 2769 ice_for_each_q_vector(vsi, v_idx) { 2770 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2771 struct ice_tx_ring *ring; 2772 2773 ice_for_each_tx_ring(ring, q_vector->tx) 2774 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2775 break; 2776 2777 /* restore the value of last node prior to XDP setup */ 2778 q_vector->tx.tx_ring = ring; 2779 } 2780 2781 free_qmap: 2782 mutex_lock(&pf->avail_q_mutex); 2783 ice_for_each_xdp_txq(vsi, i) { 2784 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2785 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2786 } 2787 mutex_unlock(&pf->avail_q_mutex); 2788 2789 ice_for_each_xdp_txq(vsi, i) 2790 if (vsi->xdp_rings[i]) { 2791 if (vsi->xdp_rings[i]->desc) { 2792 synchronize_rcu(); 2793 ice_free_tx_ring(vsi->xdp_rings[i]); 2794 } 2795 kfree_rcu(vsi->xdp_rings[i], rcu); 2796 vsi->xdp_rings[i] = NULL; 2797 } 2798 2799 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2800 vsi->xdp_rings = NULL; 2801 2802 if (static_key_enabled(&ice_xdp_locking_key)) 2803 static_branch_dec(&ice_xdp_locking_key); 2804 2805 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2806 return 0; 2807 2808 ice_vsi_assign_bpf_prog(vsi, NULL); 2809 2810 /* notify Tx scheduler that we destroyed XDP queues and bring 2811 * back the old number of child nodes 2812 */ 2813 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2814 max_txqs[i] = vsi->num_txq; 2815 2816 /* change number of XDP Tx queues to 0 */ 2817 vsi->num_xdp_txq = 0; 2818 2819 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2820 max_txqs); 2821 } 2822 2823 /** 2824 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2825 * @vsi: VSI to schedule napi on 2826 */ 2827 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2828 { 2829 int i; 2830 2831 ice_for_each_rxq(vsi, i) { 2832 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2833 2834 if (rx_ring->xsk_pool) 2835 napi_schedule(&rx_ring->q_vector->napi); 2836 } 2837 } 2838 2839 /** 2840 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2841 * @vsi: VSI to determine the count of XDP Tx qs 2842 * 2843 * returns 0 if Tx qs count is higher than at least half of CPU count, 2844 * -ENOMEM otherwise 2845 */ 2846 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2847 { 2848 u16 avail = ice_get_avail_txq_count(vsi->back); 2849 u16 cpus = num_possible_cpus(); 2850 2851 if (avail < cpus / 2) 2852 return -ENOMEM; 2853 2854 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2855 2856 if (vsi->num_xdp_txq < cpus) 2857 static_branch_inc(&ice_xdp_locking_key); 2858 2859 return 0; 2860 } 2861 2862 /** 2863 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2864 * @vsi: VSI to setup XDP for 2865 * @prog: XDP program 2866 * @extack: netlink extended ack 2867 */ 2868 static int 2869 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2870 struct netlink_ext_ack *extack) 2871 { 2872 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2873 bool if_running = netif_running(vsi->netdev); 2874 int ret = 0, xdp_ring_err = 0; 2875 2876 if (frame_size > vsi->rx_buf_len) { 2877 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2878 return -EOPNOTSUPP; 2879 } 2880 2881 /* need to stop netdev while setting up the program for Rx rings */ 2882 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2883 ret = ice_down(vsi); 2884 if (ret) { 2885 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2886 return ret; 2887 } 2888 } 2889 2890 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2891 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2892 if (xdp_ring_err) { 2893 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2894 } else { 2895 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2896 if (xdp_ring_err) 2897 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2898 } 2899 /* reallocate Rx queues that are used for zero-copy */ 2900 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2901 if (xdp_ring_err) 2902 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2903 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2904 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2905 if (xdp_ring_err) 2906 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2907 /* reallocate Rx queues that were used for zero-copy */ 2908 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2909 if (xdp_ring_err) 2910 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2911 } else { 2912 /* safe to call even when prog == vsi->xdp_prog as 2913 * dev_xdp_install in net/core/dev.c incremented prog's 2914 * refcount so corresponding bpf_prog_put won't cause 2915 * underflow 2916 */ 2917 ice_vsi_assign_bpf_prog(vsi, prog); 2918 } 2919 2920 if (if_running) 2921 ret = ice_up(vsi); 2922 2923 if (!ret && prog) 2924 ice_vsi_rx_napi_schedule(vsi); 2925 2926 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2927 } 2928 2929 /** 2930 * ice_xdp_safe_mode - XDP handler for safe mode 2931 * @dev: netdevice 2932 * @xdp: XDP command 2933 */ 2934 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2935 struct netdev_bpf *xdp) 2936 { 2937 NL_SET_ERR_MSG_MOD(xdp->extack, 2938 "Please provide working DDP firmware package in order to use XDP\n" 2939 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2940 return -EOPNOTSUPP; 2941 } 2942 2943 /** 2944 * ice_xdp - implements XDP handler 2945 * @dev: netdevice 2946 * @xdp: XDP command 2947 */ 2948 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2949 { 2950 struct ice_netdev_priv *np = netdev_priv(dev); 2951 struct ice_vsi *vsi = np->vsi; 2952 2953 if (vsi->type != ICE_VSI_PF) { 2954 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2955 return -EINVAL; 2956 } 2957 2958 switch (xdp->command) { 2959 case XDP_SETUP_PROG: 2960 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2961 case XDP_SETUP_XSK_POOL: 2962 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2963 xdp->xsk.queue_id); 2964 default: 2965 return -EINVAL; 2966 } 2967 } 2968 2969 /** 2970 * ice_ena_misc_vector - enable the non-queue interrupts 2971 * @pf: board private structure 2972 */ 2973 static void ice_ena_misc_vector(struct ice_pf *pf) 2974 { 2975 struct ice_hw *hw = &pf->hw; 2976 u32 val; 2977 2978 /* Disable anti-spoof detection interrupt to prevent spurious event 2979 * interrupts during a function reset. Anti-spoof functionally is 2980 * still supported. 2981 */ 2982 val = rd32(hw, GL_MDCK_TX_TDPU); 2983 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2984 wr32(hw, GL_MDCK_TX_TDPU, val); 2985 2986 /* clear things first */ 2987 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2988 rd32(hw, PFINT_OICR); /* read to clear */ 2989 2990 val = (PFINT_OICR_ECC_ERR_M | 2991 PFINT_OICR_MAL_DETECT_M | 2992 PFINT_OICR_GRST_M | 2993 PFINT_OICR_PCI_EXCEPTION_M | 2994 PFINT_OICR_VFLR_M | 2995 PFINT_OICR_HMC_ERR_M | 2996 PFINT_OICR_PE_PUSH_M | 2997 PFINT_OICR_PE_CRITERR_M); 2998 2999 wr32(hw, PFINT_OICR_ENA, val); 3000 3001 /* SW_ITR_IDX = 0, but don't change INTENA */ 3002 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3003 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3004 } 3005 3006 /** 3007 * ice_misc_intr - misc interrupt handler 3008 * @irq: interrupt number 3009 * @data: pointer to a q_vector 3010 */ 3011 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3012 { 3013 struct ice_pf *pf = (struct ice_pf *)data; 3014 struct ice_hw *hw = &pf->hw; 3015 irqreturn_t ret = IRQ_NONE; 3016 struct device *dev; 3017 u32 oicr, ena_mask; 3018 3019 dev = ice_pf_to_dev(pf); 3020 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3021 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3022 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3023 3024 oicr = rd32(hw, PFINT_OICR); 3025 ena_mask = rd32(hw, PFINT_OICR_ENA); 3026 3027 if (oicr & PFINT_OICR_SWINT_M) { 3028 ena_mask &= ~PFINT_OICR_SWINT_M; 3029 pf->sw_int_count++; 3030 } 3031 3032 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3033 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3034 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3035 } 3036 if (oicr & PFINT_OICR_VFLR_M) { 3037 /* disable any further VFLR event notifications */ 3038 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3039 u32 reg = rd32(hw, PFINT_OICR_ENA); 3040 3041 reg &= ~PFINT_OICR_VFLR_M; 3042 wr32(hw, PFINT_OICR_ENA, reg); 3043 } else { 3044 ena_mask &= ~PFINT_OICR_VFLR_M; 3045 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3046 } 3047 } 3048 3049 if (oicr & PFINT_OICR_GRST_M) { 3050 u32 reset; 3051 3052 /* we have a reset warning */ 3053 ena_mask &= ~PFINT_OICR_GRST_M; 3054 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3055 GLGEN_RSTAT_RESET_TYPE_S; 3056 3057 if (reset == ICE_RESET_CORER) 3058 pf->corer_count++; 3059 else if (reset == ICE_RESET_GLOBR) 3060 pf->globr_count++; 3061 else if (reset == ICE_RESET_EMPR) 3062 pf->empr_count++; 3063 else 3064 dev_dbg(dev, "Invalid reset type %d\n", reset); 3065 3066 /* If a reset cycle isn't already in progress, we set a bit in 3067 * pf->state so that the service task can start a reset/rebuild. 3068 */ 3069 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3070 if (reset == ICE_RESET_CORER) 3071 set_bit(ICE_CORER_RECV, pf->state); 3072 else if (reset == ICE_RESET_GLOBR) 3073 set_bit(ICE_GLOBR_RECV, pf->state); 3074 else 3075 set_bit(ICE_EMPR_RECV, pf->state); 3076 3077 /* There are couple of different bits at play here. 3078 * hw->reset_ongoing indicates whether the hardware is 3079 * in reset. This is set to true when a reset interrupt 3080 * is received and set back to false after the driver 3081 * has determined that the hardware is out of reset. 3082 * 3083 * ICE_RESET_OICR_RECV in pf->state indicates 3084 * that a post reset rebuild is required before the 3085 * driver is operational again. This is set above. 3086 * 3087 * As this is the start of the reset/rebuild cycle, set 3088 * both to indicate that. 3089 */ 3090 hw->reset_ongoing = true; 3091 } 3092 } 3093 3094 if (oicr & PFINT_OICR_TSYN_TX_M) { 3095 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3096 if (!hw->reset_ongoing) 3097 ret = IRQ_WAKE_THREAD; 3098 } 3099 3100 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3101 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3102 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3103 3104 /* Save EVENTs from GTSYN register */ 3105 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3106 GLTSYN_STAT_EVENT1_M | 3107 GLTSYN_STAT_EVENT2_M); 3108 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3109 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3110 } 3111 3112 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3113 if (oicr & ICE_AUX_CRIT_ERR) { 3114 pf->oicr_err_reg |= oicr; 3115 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3116 ena_mask &= ~ICE_AUX_CRIT_ERR; 3117 } 3118 3119 /* Report any remaining unexpected interrupts */ 3120 oicr &= ena_mask; 3121 if (oicr) { 3122 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3123 /* If a critical error is pending there is no choice but to 3124 * reset the device. 3125 */ 3126 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3127 PFINT_OICR_ECC_ERR_M)) { 3128 set_bit(ICE_PFR_REQ, pf->state); 3129 ice_service_task_schedule(pf); 3130 } 3131 } 3132 if (!ret) 3133 ret = IRQ_HANDLED; 3134 3135 ice_service_task_schedule(pf); 3136 ice_irq_dynamic_ena(hw, NULL, NULL); 3137 3138 return ret; 3139 } 3140 3141 /** 3142 * ice_misc_intr_thread_fn - misc interrupt thread function 3143 * @irq: interrupt number 3144 * @data: pointer to a q_vector 3145 */ 3146 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3147 { 3148 irqreturn_t ret = IRQ_HANDLED; 3149 struct ice_pf *pf = data; 3150 bool irq_handled; 3151 3152 irq_handled = ice_ptp_process_ts(pf); 3153 if (!irq_handled) 3154 ret = IRQ_WAKE_THREAD; 3155 3156 return ret; 3157 } 3158 3159 /** 3160 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3161 * @hw: pointer to HW structure 3162 */ 3163 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3164 { 3165 /* disable Admin queue Interrupt causes */ 3166 wr32(hw, PFINT_FW_CTL, 3167 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3168 3169 /* disable Mailbox queue Interrupt causes */ 3170 wr32(hw, PFINT_MBX_CTL, 3171 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3172 3173 wr32(hw, PFINT_SB_CTL, 3174 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3175 3176 /* disable Control queue Interrupt causes */ 3177 wr32(hw, PFINT_OICR_CTL, 3178 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3179 3180 ice_flush(hw); 3181 } 3182 3183 /** 3184 * ice_free_irq_msix_misc - Unroll misc vector setup 3185 * @pf: board private structure 3186 */ 3187 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3188 { 3189 struct ice_hw *hw = &pf->hw; 3190 3191 ice_dis_ctrlq_interrupts(hw); 3192 3193 /* disable OICR interrupt */ 3194 wr32(hw, PFINT_OICR_ENA, 0); 3195 ice_flush(hw); 3196 3197 if (pf->msix_entries) { 3198 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3199 devm_free_irq(ice_pf_to_dev(pf), 3200 pf->msix_entries[pf->oicr_idx].vector, pf); 3201 } 3202 3203 pf->num_avail_sw_msix += 1; 3204 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3205 } 3206 3207 /** 3208 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3209 * @hw: pointer to HW structure 3210 * @reg_idx: HW vector index to associate the control queue interrupts with 3211 */ 3212 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3213 { 3214 u32 val; 3215 3216 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3217 PFINT_OICR_CTL_CAUSE_ENA_M); 3218 wr32(hw, PFINT_OICR_CTL, val); 3219 3220 /* enable Admin queue Interrupt causes */ 3221 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3222 PFINT_FW_CTL_CAUSE_ENA_M); 3223 wr32(hw, PFINT_FW_CTL, val); 3224 3225 /* enable Mailbox queue Interrupt causes */ 3226 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3227 PFINT_MBX_CTL_CAUSE_ENA_M); 3228 wr32(hw, PFINT_MBX_CTL, val); 3229 3230 /* This enables Sideband queue Interrupt causes */ 3231 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3232 PFINT_SB_CTL_CAUSE_ENA_M); 3233 wr32(hw, PFINT_SB_CTL, val); 3234 3235 ice_flush(hw); 3236 } 3237 3238 /** 3239 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3240 * @pf: board private structure 3241 * 3242 * This sets up the handler for MSIX 0, which is used to manage the 3243 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3244 * when in MSI or Legacy interrupt mode. 3245 */ 3246 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3247 { 3248 struct device *dev = ice_pf_to_dev(pf); 3249 struct ice_hw *hw = &pf->hw; 3250 int oicr_idx, err = 0; 3251 3252 if (!pf->int_name[0]) 3253 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3254 dev_driver_string(dev), dev_name(dev)); 3255 3256 /* Do not request IRQ but do enable OICR interrupt since settings are 3257 * lost during reset. Note that this function is called only during 3258 * rebuild path and not while reset is in progress. 3259 */ 3260 if (ice_is_reset_in_progress(pf->state)) 3261 goto skip_req_irq; 3262 3263 /* reserve one vector in irq_tracker for misc interrupts */ 3264 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3265 if (oicr_idx < 0) 3266 return oicr_idx; 3267 3268 pf->num_avail_sw_msix -= 1; 3269 pf->oicr_idx = (u16)oicr_idx; 3270 3271 err = devm_request_threaded_irq(dev, 3272 pf->msix_entries[pf->oicr_idx].vector, 3273 ice_misc_intr, ice_misc_intr_thread_fn, 3274 0, pf->int_name, pf); 3275 if (err) { 3276 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3277 pf->int_name, err); 3278 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3279 pf->num_avail_sw_msix += 1; 3280 return err; 3281 } 3282 3283 skip_req_irq: 3284 ice_ena_misc_vector(pf); 3285 3286 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3287 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3288 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3289 3290 ice_flush(hw); 3291 ice_irq_dynamic_ena(hw, NULL, NULL); 3292 3293 return 0; 3294 } 3295 3296 /** 3297 * ice_napi_add - register NAPI handler for the VSI 3298 * @vsi: VSI for which NAPI handler is to be registered 3299 * 3300 * This function is only called in the driver's load path. Registering the NAPI 3301 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3302 * reset/rebuild, etc.) 3303 */ 3304 static void ice_napi_add(struct ice_vsi *vsi) 3305 { 3306 int v_idx; 3307 3308 if (!vsi->netdev) 3309 return; 3310 3311 ice_for_each_q_vector(vsi, v_idx) 3312 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3313 ice_napi_poll); 3314 } 3315 3316 /** 3317 * ice_set_ops - set netdev and ethtools ops for the given netdev 3318 * @netdev: netdev instance 3319 */ 3320 static void ice_set_ops(struct net_device *netdev) 3321 { 3322 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3323 3324 if (ice_is_safe_mode(pf)) { 3325 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3326 ice_set_ethtool_safe_mode_ops(netdev); 3327 return; 3328 } 3329 3330 netdev->netdev_ops = &ice_netdev_ops; 3331 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3332 ice_set_ethtool_ops(netdev); 3333 } 3334 3335 /** 3336 * ice_set_netdev_features - set features for the given netdev 3337 * @netdev: netdev instance 3338 */ 3339 static void ice_set_netdev_features(struct net_device *netdev) 3340 { 3341 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3342 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3343 netdev_features_t csumo_features; 3344 netdev_features_t vlano_features; 3345 netdev_features_t dflt_features; 3346 netdev_features_t tso_features; 3347 3348 if (ice_is_safe_mode(pf)) { 3349 /* safe mode */ 3350 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3351 netdev->hw_features = netdev->features; 3352 return; 3353 } 3354 3355 dflt_features = NETIF_F_SG | 3356 NETIF_F_HIGHDMA | 3357 NETIF_F_NTUPLE | 3358 NETIF_F_RXHASH; 3359 3360 csumo_features = NETIF_F_RXCSUM | 3361 NETIF_F_IP_CSUM | 3362 NETIF_F_SCTP_CRC | 3363 NETIF_F_IPV6_CSUM; 3364 3365 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3366 NETIF_F_HW_VLAN_CTAG_TX | 3367 NETIF_F_HW_VLAN_CTAG_RX; 3368 3369 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3370 if (is_dvm_ena) 3371 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3372 3373 tso_features = NETIF_F_TSO | 3374 NETIF_F_TSO_ECN | 3375 NETIF_F_TSO6 | 3376 NETIF_F_GSO_GRE | 3377 NETIF_F_GSO_UDP_TUNNEL | 3378 NETIF_F_GSO_GRE_CSUM | 3379 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3380 NETIF_F_GSO_PARTIAL | 3381 NETIF_F_GSO_IPXIP4 | 3382 NETIF_F_GSO_IPXIP6 | 3383 NETIF_F_GSO_UDP_L4; 3384 3385 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3386 NETIF_F_GSO_GRE_CSUM; 3387 /* set features that user can change */ 3388 netdev->hw_features = dflt_features | csumo_features | 3389 vlano_features | tso_features; 3390 3391 /* add support for HW_CSUM on packets with MPLS header */ 3392 netdev->mpls_features = NETIF_F_HW_CSUM | 3393 NETIF_F_TSO | 3394 NETIF_F_TSO6; 3395 3396 /* enable features */ 3397 netdev->features |= netdev->hw_features; 3398 3399 netdev->hw_features |= NETIF_F_HW_TC; 3400 netdev->hw_features |= NETIF_F_LOOPBACK; 3401 3402 /* encap and VLAN devices inherit default, csumo and tso features */ 3403 netdev->hw_enc_features |= dflt_features | csumo_features | 3404 tso_features; 3405 netdev->vlan_features |= dflt_features | csumo_features | 3406 tso_features; 3407 3408 /* advertise support but don't enable by default since only one type of 3409 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3410 * type turns on the other has to be turned off. This is enforced by the 3411 * ice_fix_features() ndo callback. 3412 */ 3413 if (is_dvm_ena) 3414 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3415 NETIF_F_HW_VLAN_STAG_TX; 3416 3417 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3418 * be changed at runtime 3419 */ 3420 netdev->hw_features |= NETIF_F_RXFCS; 3421 } 3422 3423 /** 3424 * ice_cfg_netdev - Allocate, configure and register a netdev 3425 * @vsi: the VSI associated with the new netdev 3426 * 3427 * Returns 0 on success, negative value on failure 3428 */ 3429 static int ice_cfg_netdev(struct ice_vsi *vsi) 3430 { 3431 struct ice_netdev_priv *np; 3432 struct net_device *netdev; 3433 u8 mac_addr[ETH_ALEN]; 3434 3435 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3436 vsi->alloc_rxq); 3437 if (!netdev) 3438 return -ENOMEM; 3439 3440 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3441 vsi->netdev = netdev; 3442 np = netdev_priv(netdev); 3443 np->vsi = vsi; 3444 3445 ice_set_netdev_features(netdev); 3446 3447 ice_set_ops(netdev); 3448 3449 if (vsi->type == ICE_VSI_PF) { 3450 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3451 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3452 eth_hw_addr_set(netdev, mac_addr); 3453 ether_addr_copy(netdev->perm_addr, mac_addr); 3454 } 3455 3456 netdev->priv_flags |= IFF_UNICAST_FLT; 3457 3458 /* Setup netdev TC information */ 3459 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3460 3461 /* setup watchdog timeout value to be 5 second */ 3462 netdev->watchdog_timeo = 5 * HZ; 3463 3464 netdev->min_mtu = ETH_MIN_MTU; 3465 netdev->max_mtu = ICE_MAX_MTU; 3466 3467 return 0; 3468 } 3469 3470 /** 3471 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3472 * @lut: Lookup table 3473 * @rss_table_size: Lookup table size 3474 * @rss_size: Range of queue number for hashing 3475 */ 3476 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3477 { 3478 u16 i; 3479 3480 for (i = 0; i < rss_table_size; i++) 3481 lut[i] = i % rss_size; 3482 } 3483 3484 /** 3485 * ice_pf_vsi_setup - Set up a PF VSI 3486 * @pf: board private structure 3487 * @pi: pointer to the port_info instance 3488 * 3489 * Returns pointer to the successfully allocated VSI software struct 3490 * on success, otherwise returns NULL on failure. 3491 */ 3492 static struct ice_vsi * 3493 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3494 { 3495 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3496 } 3497 3498 static struct ice_vsi * 3499 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3500 struct ice_channel *ch) 3501 { 3502 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3503 } 3504 3505 /** 3506 * ice_ctrl_vsi_setup - Set up a control VSI 3507 * @pf: board private structure 3508 * @pi: pointer to the port_info instance 3509 * 3510 * Returns pointer to the successfully allocated VSI software struct 3511 * on success, otherwise returns NULL on failure. 3512 */ 3513 static struct ice_vsi * 3514 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3515 { 3516 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3517 } 3518 3519 /** 3520 * ice_lb_vsi_setup - Set up a loopback VSI 3521 * @pf: board private structure 3522 * @pi: pointer to the port_info instance 3523 * 3524 * Returns pointer to the successfully allocated VSI software struct 3525 * on success, otherwise returns NULL on failure. 3526 */ 3527 struct ice_vsi * 3528 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3529 { 3530 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3531 } 3532 3533 /** 3534 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3535 * @netdev: network interface to be adjusted 3536 * @proto: VLAN TPID 3537 * @vid: VLAN ID to be added 3538 * 3539 * net_device_ops implementation for adding VLAN IDs 3540 */ 3541 static int 3542 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3543 { 3544 struct ice_netdev_priv *np = netdev_priv(netdev); 3545 struct ice_vsi_vlan_ops *vlan_ops; 3546 struct ice_vsi *vsi = np->vsi; 3547 struct ice_vlan vlan; 3548 int ret; 3549 3550 /* VLAN 0 is added by default during load/reset */ 3551 if (!vid) 3552 return 0; 3553 3554 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3555 usleep_range(1000, 2000); 3556 3557 /* Add multicast promisc rule for the VLAN ID to be added if 3558 * all-multicast is currently enabled. 3559 */ 3560 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3561 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3562 ICE_MCAST_VLAN_PROMISC_BITS, 3563 vid); 3564 if (ret) 3565 goto finish; 3566 } 3567 3568 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3569 3570 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3571 * packets aren't pruned by the device's internal switch on Rx 3572 */ 3573 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3574 ret = vlan_ops->add_vlan(vsi, &vlan); 3575 if (ret) 3576 goto finish; 3577 3578 /* If all-multicast is currently enabled and this VLAN ID is only one 3579 * besides VLAN-0 we have to update look-up type of multicast promisc 3580 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3581 */ 3582 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3583 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3584 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3585 ICE_MCAST_PROMISC_BITS, 0); 3586 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3587 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3588 } 3589 3590 finish: 3591 clear_bit(ICE_CFG_BUSY, vsi->state); 3592 3593 return ret; 3594 } 3595 3596 /** 3597 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3598 * @netdev: network interface to be adjusted 3599 * @proto: VLAN TPID 3600 * @vid: VLAN ID to be removed 3601 * 3602 * net_device_ops implementation for removing VLAN IDs 3603 */ 3604 static int 3605 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3606 { 3607 struct ice_netdev_priv *np = netdev_priv(netdev); 3608 struct ice_vsi_vlan_ops *vlan_ops; 3609 struct ice_vsi *vsi = np->vsi; 3610 struct ice_vlan vlan; 3611 int ret; 3612 3613 /* don't allow removal of VLAN 0 */ 3614 if (!vid) 3615 return 0; 3616 3617 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3618 usleep_range(1000, 2000); 3619 3620 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3621 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3622 if (ret) { 3623 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3624 vsi->vsi_num); 3625 vsi->current_netdev_flags |= IFF_ALLMULTI; 3626 } 3627 3628 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3629 3630 /* Make sure VLAN delete is successful before updating VLAN 3631 * information 3632 */ 3633 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3634 ret = vlan_ops->del_vlan(vsi, &vlan); 3635 if (ret) 3636 goto finish; 3637 3638 /* Remove multicast promisc rule for the removed VLAN ID if 3639 * all-multicast is enabled. 3640 */ 3641 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3642 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3643 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3644 3645 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3646 /* Update look-up type of multicast promisc rule for VLAN 0 3647 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3648 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3649 */ 3650 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3651 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3652 ICE_MCAST_VLAN_PROMISC_BITS, 3653 0); 3654 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3655 ICE_MCAST_PROMISC_BITS, 0); 3656 } 3657 } 3658 3659 finish: 3660 clear_bit(ICE_CFG_BUSY, vsi->state); 3661 3662 return ret; 3663 } 3664 3665 /** 3666 * ice_rep_indr_tc_block_unbind 3667 * @cb_priv: indirection block private data 3668 */ 3669 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3670 { 3671 struct ice_indr_block_priv *indr_priv = cb_priv; 3672 3673 list_del(&indr_priv->list); 3674 kfree(indr_priv); 3675 } 3676 3677 /** 3678 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3679 * @vsi: VSI struct which has the netdev 3680 */ 3681 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3682 { 3683 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3684 3685 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3686 ice_rep_indr_tc_block_unbind); 3687 } 3688 3689 /** 3690 * ice_tc_indir_block_remove - clean indirect TC block notifications 3691 * @pf: PF structure 3692 */ 3693 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3694 { 3695 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3696 3697 if (!pf_vsi) 3698 return; 3699 3700 ice_tc_indir_block_unregister(pf_vsi); 3701 } 3702 3703 /** 3704 * ice_tc_indir_block_register - Register TC indirect block notifications 3705 * @vsi: VSI struct which has the netdev 3706 * 3707 * Returns 0 on success, negative value on failure 3708 */ 3709 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3710 { 3711 struct ice_netdev_priv *np; 3712 3713 if (!vsi || !vsi->netdev) 3714 return -EINVAL; 3715 3716 np = netdev_priv(vsi->netdev); 3717 3718 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3719 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3720 } 3721 3722 /** 3723 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3724 * @pf: board private structure 3725 * 3726 * Returns 0 on success, negative value on failure 3727 */ 3728 static int ice_setup_pf_sw(struct ice_pf *pf) 3729 { 3730 struct device *dev = ice_pf_to_dev(pf); 3731 bool dvm = ice_is_dvm_ena(&pf->hw); 3732 struct ice_vsi *vsi; 3733 int status; 3734 3735 if (ice_is_reset_in_progress(pf->state)) 3736 return -EBUSY; 3737 3738 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3739 if (status) 3740 return -EIO; 3741 3742 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3743 if (!vsi) 3744 return -ENOMEM; 3745 3746 /* init channel list */ 3747 INIT_LIST_HEAD(&vsi->ch_list); 3748 3749 status = ice_cfg_netdev(vsi); 3750 if (status) 3751 goto unroll_vsi_setup; 3752 /* netdev has to be configured before setting frame size */ 3753 ice_vsi_cfg_frame_size(vsi); 3754 3755 /* init indirect block notifications */ 3756 status = ice_tc_indir_block_register(vsi); 3757 if (status) { 3758 dev_err(dev, "Failed to register netdev notifier\n"); 3759 goto unroll_cfg_netdev; 3760 } 3761 3762 /* Setup DCB netlink interface */ 3763 ice_dcbnl_setup(vsi); 3764 3765 /* registering the NAPI handler requires both the queues and 3766 * netdev to be created, which are done in ice_pf_vsi_setup() 3767 * and ice_cfg_netdev() respectively 3768 */ 3769 ice_napi_add(vsi); 3770 3771 status = ice_init_mac_fltr(pf); 3772 if (status) 3773 goto unroll_napi_add; 3774 3775 return 0; 3776 3777 unroll_napi_add: 3778 ice_tc_indir_block_unregister(vsi); 3779 unroll_cfg_netdev: 3780 if (vsi) { 3781 ice_napi_del(vsi); 3782 if (vsi->netdev) { 3783 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3784 free_netdev(vsi->netdev); 3785 vsi->netdev = NULL; 3786 } 3787 } 3788 3789 unroll_vsi_setup: 3790 ice_vsi_release(vsi); 3791 return status; 3792 } 3793 3794 /** 3795 * ice_get_avail_q_count - Get count of queues in use 3796 * @pf_qmap: bitmap to get queue use count from 3797 * @lock: pointer to a mutex that protects access to pf_qmap 3798 * @size: size of the bitmap 3799 */ 3800 static u16 3801 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3802 { 3803 unsigned long bit; 3804 u16 count = 0; 3805 3806 mutex_lock(lock); 3807 for_each_clear_bit(bit, pf_qmap, size) 3808 count++; 3809 mutex_unlock(lock); 3810 3811 return count; 3812 } 3813 3814 /** 3815 * ice_get_avail_txq_count - Get count of Tx queues in use 3816 * @pf: pointer to an ice_pf instance 3817 */ 3818 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3819 { 3820 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3821 pf->max_pf_txqs); 3822 } 3823 3824 /** 3825 * ice_get_avail_rxq_count - Get count of Rx queues in use 3826 * @pf: pointer to an ice_pf instance 3827 */ 3828 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3829 { 3830 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3831 pf->max_pf_rxqs); 3832 } 3833 3834 /** 3835 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3836 * @pf: board private structure to initialize 3837 */ 3838 static void ice_deinit_pf(struct ice_pf *pf) 3839 { 3840 ice_service_task_stop(pf); 3841 mutex_destroy(&pf->adev_mutex); 3842 mutex_destroy(&pf->sw_mutex); 3843 mutex_destroy(&pf->tc_mutex); 3844 mutex_destroy(&pf->avail_q_mutex); 3845 mutex_destroy(&pf->vfs.table_lock); 3846 3847 if (pf->avail_txqs) { 3848 bitmap_free(pf->avail_txqs); 3849 pf->avail_txqs = NULL; 3850 } 3851 3852 if (pf->avail_rxqs) { 3853 bitmap_free(pf->avail_rxqs); 3854 pf->avail_rxqs = NULL; 3855 } 3856 3857 if (pf->ptp.clock) 3858 ptp_clock_unregister(pf->ptp.clock); 3859 } 3860 3861 /** 3862 * ice_set_pf_caps - set PFs capability flags 3863 * @pf: pointer to the PF instance 3864 */ 3865 static void ice_set_pf_caps(struct ice_pf *pf) 3866 { 3867 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3868 3869 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3870 if (func_caps->common_cap.rdma) 3871 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3872 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3873 if (func_caps->common_cap.dcb) 3874 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3875 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3876 if (func_caps->common_cap.sr_iov_1_1) { 3877 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3878 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3879 ICE_MAX_SRIOV_VFS); 3880 } 3881 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3882 if (func_caps->common_cap.rss_table_size) 3883 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3884 3885 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3886 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3887 u16 unused; 3888 3889 /* ctrl_vsi_idx will be set to a valid value when flow director 3890 * is setup by ice_init_fdir 3891 */ 3892 pf->ctrl_vsi_idx = ICE_NO_VSI; 3893 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3894 /* force guaranteed filter pool for PF */ 3895 ice_alloc_fd_guar_item(&pf->hw, &unused, 3896 func_caps->fd_fltr_guar); 3897 /* force shared filter pool for PF */ 3898 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3899 func_caps->fd_fltr_best_effort); 3900 } 3901 3902 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3903 if (func_caps->common_cap.ieee_1588) 3904 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3905 3906 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3907 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3908 } 3909 3910 /** 3911 * ice_init_pf - Initialize general software structures (struct ice_pf) 3912 * @pf: board private structure to initialize 3913 */ 3914 static int ice_init_pf(struct ice_pf *pf) 3915 { 3916 ice_set_pf_caps(pf); 3917 3918 mutex_init(&pf->sw_mutex); 3919 mutex_init(&pf->tc_mutex); 3920 mutex_init(&pf->adev_mutex); 3921 3922 INIT_HLIST_HEAD(&pf->aq_wait_list); 3923 spin_lock_init(&pf->aq_wait_lock); 3924 init_waitqueue_head(&pf->aq_wait_queue); 3925 3926 init_waitqueue_head(&pf->reset_wait_queue); 3927 3928 /* setup service timer and periodic service task */ 3929 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3930 pf->serv_tmr_period = HZ; 3931 INIT_WORK(&pf->serv_task, ice_service_task); 3932 clear_bit(ICE_SERVICE_SCHED, pf->state); 3933 3934 mutex_init(&pf->avail_q_mutex); 3935 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3936 if (!pf->avail_txqs) 3937 return -ENOMEM; 3938 3939 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3940 if (!pf->avail_rxqs) { 3941 bitmap_free(pf->avail_txqs); 3942 pf->avail_txqs = NULL; 3943 return -ENOMEM; 3944 } 3945 3946 mutex_init(&pf->vfs.table_lock); 3947 hash_init(pf->vfs.table); 3948 3949 return 0; 3950 } 3951 3952 /** 3953 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3954 * @pf: board private structure 3955 * @v_remain: number of remaining MSI-X vectors to be distributed 3956 * 3957 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3958 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3959 * remaining vectors. 3960 */ 3961 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3962 { 3963 int v_rdma; 3964 3965 if (!ice_is_rdma_ena(pf)) { 3966 pf->num_lan_msix = v_remain; 3967 return; 3968 } 3969 3970 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3971 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3972 3973 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3974 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3975 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3976 3977 pf->num_rdma_msix = 0; 3978 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3979 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3980 (v_remain - v_rdma < v_rdma)) { 3981 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3982 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3983 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3984 } else { 3985 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3986 */ 3987 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3988 ICE_RDMA_NUM_AEQ_MSIX; 3989 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3990 } 3991 } 3992 3993 /** 3994 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3995 * @pf: board private structure 3996 * 3997 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3998 * device usage if there are not enough vectors. Return the number of vectors 3999 * reserved or negative on failure. 4000 */ 4001 static int ice_ena_msix_range(struct ice_pf *pf) 4002 { 4003 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 4004 struct device *dev = ice_pf_to_dev(pf); 4005 int err, i; 4006 4007 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 4008 num_cpus = num_online_cpus(); 4009 4010 /* LAN miscellaneous handler */ 4011 v_other = ICE_MIN_LAN_OICR_MSIX; 4012 4013 /* Flow Director */ 4014 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 4015 v_other += ICE_FDIR_MSIX; 4016 4017 /* switchdev */ 4018 v_other += ICE_ESWITCH_MSIX; 4019 4020 v_wanted = v_other; 4021 4022 /* LAN traffic */ 4023 pf->num_lan_msix = num_cpus; 4024 v_wanted += pf->num_lan_msix; 4025 4026 /* RDMA auxiliary driver */ 4027 if (ice_is_rdma_ena(pf)) { 4028 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4029 v_wanted += pf->num_rdma_msix; 4030 } 4031 4032 if (v_wanted > hw_num_msix) { 4033 int v_remain; 4034 4035 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4036 v_wanted, hw_num_msix); 4037 4038 if (hw_num_msix < ICE_MIN_MSIX) { 4039 err = -ERANGE; 4040 goto exit_err; 4041 } 4042 4043 v_remain = hw_num_msix - v_other; 4044 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4045 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4046 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4047 } 4048 4049 ice_reduce_msix_usage(pf, v_remain); 4050 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4051 4052 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4053 pf->num_lan_msix); 4054 if (ice_is_rdma_ena(pf)) 4055 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4056 pf->num_rdma_msix); 4057 } 4058 4059 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4060 sizeof(*pf->msix_entries), GFP_KERNEL); 4061 if (!pf->msix_entries) { 4062 err = -ENOMEM; 4063 goto exit_err; 4064 } 4065 4066 for (i = 0; i < v_wanted; i++) 4067 pf->msix_entries[i].entry = i; 4068 4069 /* actually reserve the vectors */ 4070 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4071 ICE_MIN_MSIX, v_wanted); 4072 if (v_actual < 0) { 4073 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4074 err = v_actual; 4075 goto msix_err; 4076 } 4077 4078 if (v_actual < v_wanted) { 4079 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4080 v_wanted, v_actual); 4081 4082 if (v_actual < ICE_MIN_MSIX) { 4083 /* error if we can't get minimum vectors */ 4084 pci_disable_msix(pf->pdev); 4085 err = -ERANGE; 4086 goto msix_err; 4087 } else { 4088 int v_remain = v_actual - v_other; 4089 4090 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4091 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4092 4093 ice_reduce_msix_usage(pf, v_remain); 4094 4095 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4096 pf->num_lan_msix); 4097 4098 if (ice_is_rdma_ena(pf)) 4099 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4100 pf->num_rdma_msix); 4101 } 4102 } 4103 4104 return v_actual; 4105 4106 msix_err: 4107 devm_kfree(dev, pf->msix_entries); 4108 4109 exit_err: 4110 pf->num_rdma_msix = 0; 4111 pf->num_lan_msix = 0; 4112 return err; 4113 } 4114 4115 /** 4116 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4117 * @pf: board private structure 4118 */ 4119 static void ice_dis_msix(struct ice_pf *pf) 4120 { 4121 pci_disable_msix(pf->pdev); 4122 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4123 pf->msix_entries = NULL; 4124 } 4125 4126 /** 4127 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4128 * @pf: board private structure 4129 */ 4130 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4131 { 4132 ice_dis_msix(pf); 4133 4134 if (pf->irq_tracker) { 4135 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4136 pf->irq_tracker = NULL; 4137 } 4138 } 4139 4140 /** 4141 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4142 * @pf: board private structure to initialize 4143 */ 4144 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4145 { 4146 int vectors; 4147 4148 vectors = ice_ena_msix_range(pf); 4149 4150 if (vectors < 0) 4151 return vectors; 4152 4153 /* set up vector assignment tracking */ 4154 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4155 struct_size(pf->irq_tracker, list, vectors), 4156 GFP_KERNEL); 4157 if (!pf->irq_tracker) { 4158 ice_dis_msix(pf); 4159 return -ENOMEM; 4160 } 4161 4162 /* populate SW interrupts pool with number of OS granted IRQs. */ 4163 pf->num_avail_sw_msix = (u16)vectors; 4164 pf->irq_tracker->num_entries = (u16)vectors; 4165 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4166 4167 return 0; 4168 } 4169 4170 /** 4171 * ice_is_wol_supported - check if WoL is supported 4172 * @hw: pointer to hardware info 4173 * 4174 * Check if WoL is supported based on the HW configuration. 4175 * Returns true if NVM supports and enables WoL for this port, false otherwise 4176 */ 4177 bool ice_is_wol_supported(struct ice_hw *hw) 4178 { 4179 u16 wol_ctrl; 4180 4181 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4182 * word) indicates WoL is not supported on the corresponding PF ID. 4183 */ 4184 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4185 return false; 4186 4187 return !(BIT(hw->port_info->lport) & wol_ctrl); 4188 } 4189 4190 /** 4191 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4192 * @vsi: VSI being changed 4193 * @new_rx: new number of Rx queues 4194 * @new_tx: new number of Tx queues 4195 * 4196 * Only change the number of queues if new_tx, or new_rx is non-0. 4197 * 4198 * Returns 0 on success. 4199 */ 4200 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4201 { 4202 struct ice_pf *pf = vsi->back; 4203 int err = 0, timeout = 50; 4204 4205 if (!new_rx && !new_tx) 4206 return -EINVAL; 4207 4208 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4209 timeout--; 4210 if (!timeout) 4211 return -EBUSY; 4212 usleep_range(1000, 2000); 4213 } 4214 4215 if (new_tx) 4216 vsi->req_txq = (u16)new_tx; 4217 if (new_rx) 4218 vsi->req_rxq = (u16)new_rx; 4219 4220 /* set for the next time the netdev is started */ 4221 if (!netif_running(vsi->netdev)) { 4222 ice_vsi_rebuild(vsi, false); 4223 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4224 goto done; 4225 } 4226 4227 ice_vsi_close(vsi); 4228 ice_vsi_rebuild(vsi, false); 4229 ice_pf_dcb_recfg(pf); 4230 ice_vsi_open(vsi); 4231 done: 4232 clear_bit(ICE_CFG_BUSY, pf->state); 4233 return err; 4234 } 4235 4236 /** 4237 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4238 * @pf: PF to configure 4239 * 4240 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4241 * VSI can still Tx/Rx VLAN tagged packets. 4242 */ 4243 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4244 { 4245 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4246 struct ice_vsi_ctx *ctxt; 4247 struct ice_hw *hw; 4248 int status; 4249 4250 if (!vsi) 4251 return; 4252 4253 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4254 if (!ctxt) 4255 return; 4256 4257 hw = &pf->hw; 4258 ctxt->info = vsi->info; 4259 4260 ctxt->info.valid_sections = 4261 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4262 ICE_AQ_VSI_PROP_SECURITY_VALID | 4263 ICE_AQ_VSI_PROP_SW_VALID); 4264 4265 /* disable VLAN anti-spoof */ 4266 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4267 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4268 4269 /* disable VLAN pruning and keep all other settings */ 4270 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4271 4272 /* allow all VLANs on Tx and don't strip on Rx */ 4273 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4274 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4275 4276 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4277 if (status) { 4278 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4279 status, ice_aq_str(hw->adminq.sq_last_status)); 4280 } else { 4281 vsi->info.sec_flags = ctxt->info.sec_flags; 4282 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4283 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4284 } 4285 4286 kfree(ctxt); 4287 } 4288 4289 /** 4290 * ice_log_pkg_init - log result of DDP package load 4291 * @hw: pointer to hardware info 4292 * @state: state of package load 4293 */ 4294 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4295 { 4296 struct ice_pf *pf = hw->back; 4297 struct device *dev; 4298 4299 dev = ice_pf_to_dev(pf); 4300 4301 switch (state) { 4302 case ICE_DDP_PKG_SUCCESS: 4303 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4304 hw->active_pkg_name, 4305 hw->active_pkg_ver.major, 4306 hw->active_pkg_ver.minor, 4307 hw->active_pkg_ver.update, 4308 hw->active_pkg_ver.draft); 4309 break; 4310 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4311 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4312 hw->active_pkg_name, 4313 hw->active_pkg_ver.major, 4314 hw->active_pkg_ver.minor, 4315 hw->active_pkg_ver.update, 4316 hw->active_pkg_ver.draft); 4317 break; 4318 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4319 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4320 hw->active_pkg_name, 4321 hw->active_pkg_ver.major, 4322 hw->active_pkg_ver.minor, 4323 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4324 break; 4325 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4326 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4327 hw->active_pkg_name, 4328 hw->active_pkg_ver.major, 4329 hw->active_pkg_ver.minor, 4330 hw->active_pkg_ver.update, 4331 hw->active_pkg_ver.draft, 4332 hw->pkg_name, 4333 hw->pkg_ver.major, 4334 hw->pkg_ver.minor, 4335 hw->pkg_ver.update, 4336 hw->pkg_ver.draft); 4337 break; 4338 case ICE_DDP_PKG_FW_MISMATCH: 4339 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4340 break; 4341 case ICE_DDP_PKG_INVALID_FILE: 4342 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4343 break; 4344 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4345 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4346 break; 4347 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4348 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4349 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4350 break; 4351 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4352 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4353 break; 4354 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4355 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4356 break; 4357 case ICE_DDP_PKG_LOAD_ERROR: 4358 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4359 /* poll for reset to complete */ 4360 if (ice_check_reset(hw)) 4361 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4362 break; 4363 case ICE_DDP_PKG_ERR: 4364 default: 4365 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4366 break; 4367 } 4368 } 4369 4370 /** 4371 * ice_load_pkg - load/reload the DDP Package file 4372 * @firmware: firmware structure when firmware requested or NULL for reload 4373 * @pf: pointer to the PF instance 4374 * 4375 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4376 * initialize HW tables. 4377 */ 4378 static void 4379 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4380 { 4381 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4382 struct device *dev = ice_pf_to_dev(pf); 4383 struct ice_hw *hw = &pf->hw; 4384 4385 /* Load DDP Package */ 4386 if (firmware && !hw->pkg_copy) { 4387 state = ice_copy_and_init_pkg(hw, firmware->data, 4388 firmware->size); 4389 ice_log_pkg_init(hw, state); 4390 } else if (!firmware && hw->pkg_copy) { 4391 /* Reload package during rebuild after CORER/GLOBR reset */ 4392 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4393 ice_log_pkg_init(hw, state); 4394 } else { 4395 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4396 } 4397 4398 if (!ice_is_init_pkg_successful(state)) { 4399 /* Safe Mode */ 4400 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4401 return; 4402 } 4403 4404 /* Successful download package is the precondition for advanced 4405 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4406 */ 4407 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4408 } 4409 4410 /** 4411 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4412 * @pf: pointer to the PF structure 4413 * 4414 * There is no error returned here because the driver should be able to handle 4415 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4416 * specifically with Tx. 4417 */ 4418 static void ice_verify_cacheline_size(struct ice_pf *pf) 4419 { 4420 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4421 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4422 ICE_CACHE_LINE_BYTES); 4423 } 4424 4425 /** 4426 * ice_send_version - update firmware with driver version 4427 * @pf: PF struct 4428 * 4429 * Returns 0 on success, else error code 4430 */ 4431 static int ice_send_version(struct ice_pf *pf) 4432 { 4433 struct ice_driver_ver dv; 4434 4435 dv.major_ver = 0xff; 4436 dv.minor_ver = 0xff; 4437 dv.build_ver = 0xff; 4438 dv.subbuild_ver = 0; 4439 strscpy((char *)dv.driver_string, UTS_RELEASE, 4440 sizeof(dv.driver_string)); 4441 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4442 } 4443 4444 /** 4445 * ice_init_fdir - Initialize flow director VSI and configuration 4446 * @pf: pointer to the PF instance 4447 * 4448 * returns 0 on success, negative on error 4449 */ 4450 static int ice_init_fdir(struct ice_pf *pf) 4451 { 4452 struct device *dev = ice_pf_to_dev(pf); 4453 struct ice_vsi *ctrl_vsi; 4454 int err; 4455 4456 /* Side Band Flow Director needs to have a control VSI. 4457 * Allocate it and store it in the PF. 4458 */ 4459 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4460 if (!ctrl_vsi) { 4461 dev_dbg(dev, "could not create control VSI\n"); 4462 return -ENOMEM; 4463 } 4464 4465 err = ice_vsi_open_ctrl(ctrl_vsi); 4466 if (err) { 4467 dev_dbg(dev, "could not open control VSI\n"); 4468 goto err_vsi_open; 4469 } 4470 4471 mutex_init(&pf->hw.fdir_fltr_lock); 4472 4473 err = ice_fdir_create_dflt_rules(pf); 4474 if (err) 4475 goto err_fdir_rule; 4476 4477 return 0; 4478 4479 err_fdir_rule: 4480 ice_fdir_release_flows(&pf->hw); 4481 ice_vsi_close(ctrl_vsi); 4482 err_vsi_open: 4483 ice_vsi_release(ctrl_vsi); 4484 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4485 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4486 pf->ctrl_vsi_idx = ICE_NO_VSI; 4487 } 4488 return err; 4489 } 4490 4491 /** 4492 * ice_get_opt_fw_name - return optional firmware file name or NULL 4493 * @pf: pointer to the PF instance 4494 */ 4495 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4496 { 4497 /* Optional firmware name same as default with additional dash 4498 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4499 */ 4500 struct pci_dev *pdev = pf->pdev; 4501 char *opt_fw_filename; 4502 u64 dsn; 4503 4504 /* Determine the name of the optional file using the DSN (two 4505 * dwords following the start of the DSN Capability). 4506 */ 4507 dsn = pci_get_dsn(pdev); 4508 if (!dsn) 4509 return NULL; 4510 4511 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4512 if (!opt_fw_filename) 4513 return NULL; 4514 4515 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4516 ICE_DDP_PKG_PATH, dsn); 4517 4518 return opt_fw_filename; 4519 } 4520 4521 /** 4522 * ice_request_fw - Device initialization routine 4523 * @pf: pointer to the PF instance 4524 */ 4525 static void ice_request_fw(struct ice_pf *pf) 4526 { 4527 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4528 const struct firmware *firmware = NULL; 4529 struct device *dev = ice_pf_to_dev(pf); 4530 int err = 0; 4531 4532 /* optional device-specific DDP (if present) overrides the default DDP 4533 * package file. kernel logs a debug message if the file doesn't exist, 4534 * and warning messages for other errors. 4535 */ 4536 if (opt_fw_filename) { 4537 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4538 if (err) { 4539 kfree(opt_fw_filename); 4540 goto dflt_pkg_load; 4541 } 4542 4543 /* request for firmware was successful. Download to device */ 4544 ice_load_pkg(firmware, pf); 4545 kfree(opt_fw_filename); 4546 release_firmware(firmware); 4547 return; 4548 } 4549 4550 dflt_pkg_load: 4551 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4552 if (err) { 4553 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4554 return; 4555 } 4556 4557 /* request for firmware was successful. Download to device */ 4558 ice_load_pkg(firmware, pf); 4559 release_firmware(firmware); 4560 } 4561 4562 /** 4563 * ice_print_wake_reason - show the wake up cause in the log 4564 * @pf: pointer to the PF struct 4565 */ 4566 static void ice_print_wake_reason(struct ice_pf *pf) 4567 { 4568 u32 wus = pf->wakeup_reason; 4569 const char *wake_str; 4570 4571 /* if no wake event, nothing to print */ 4572 if (!wus) 4573 return; 4574 4575 if (wus & PFPM_WUS_LNKC_M) 4576 wake_str = "Link\n"; 4577 else if (wus & PFPM_WUS_MAG_M) 4578 wake_str = "Magic Packet\n"; 4579 else if (wus & PFPM_WUS_MNG_M) 4580 wake_str = "Management\n"; 4581 else if (wus & PFPM_WUS_FW_RST_WK_M) 4582 wake_str = "Firmware Reset\n"; 4583 else 4584 wake_str = "Unknown\n"; 4585 4586 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4587 } 4588 4589 /** 4590 * ice_register_netdev - register netdev and devlink port 4591 * @pf: pointer to the PF struct 4592 */ 4593 static int ice_register_netdev(struct ice_pf *pf) 4594 { 4595 struct ice_vsi *vsi; 4596 int err = 0; 4597 4598 vsi = ice_get_main_vsi(pf); 4599 if (!vsi || !vsi->netdev) 4600 return -EIO; 4601 4602 err = ice_devlink_create_pf_port(pf); 4603 if (err) 4604 goto err_devlink_create; 4605 4606 err = register_netdev(vsi->netdev); 4607 if (err) 4608 goto err_register_netdev; 4609 4610 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4611 netif_carrier_off(vsi->netdev); 4612 netif_tx_stop_all_queues(vsi->netdev); 4613 4614 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4615 4616 return 0; 4617 err_register_netdev: 4618 ice_devlink_destroy_pf_port(pf); 4619 err_devlink_create: 4620 free_netdev(vsi->netdev); 4621 vsi->netdev = NULL; 4622 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4623 return err; 4624 } 4625 4626 /** 4627 * ice_probe - Device initialization routine 4628 * @pdev: PCI device information struct 4629 * @ent: entry in ice_pci_tbl 4630 * 4631 * Returns 0 on success, negative on failure 4632 */ 4633 static int 4634 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4635 { 4636 struct device *dev = &pdev->dev; 4637 struct ice_pf *pf; 4638 struct ice_hw *hw; 4639 int i, err; 4640 4641 if (pdev->is_virtfn) { 4642 dev_err(dev, "can't probe a virtual function\n"); 4643 return -EINVAL; 4644 } 4645 4646 /* this driver uses devres, see 4647 * Documentation/driver-api/driver-model/devres.rst 4648 */ 4649 err = pcim_enable_device(pdev); 4650 if (err) 4651 return err; 4652 4653 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4654 if (err) { 4655 dev_err(dev, "BAR0 I/O map error %d\n", err); 4656 return err; 4657 } 4658 4659 pf = ice_allocate_pf(dev); 4660 if (!pf) 4661 return -ENOMEM; 4662 4663 /* initialize Auxiliary index to invalid value */ 4664 pf->aux_idx = -1; 4665 4666 /* set up for high or low DMA */ 4667 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4668 if (err) { 4669 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4670 return err; 4671 } 4672 4673 pci_enable_pcie_error_reporting(pdev); 4674 pci_set_master(pdev); 4675 4676 pf->pdev = pdev; 4677 pci_set_drvdata(pdev, pf); 4678 set_bit(ICE_DOWN, pf->state); 4679 /* Disable service task until DOWN bit is cleared */ 4680 set_bit(ICE_SERVICE_DIS, pf->state); 4681 4682 hw = &pf->hw; 4683 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4684 pci_save_state(pdev); 4685 4686 hw->back = pf; 4687 hw->vendor_id = pdev->vendor; 4688 hw->device_id = pdev->device; 4689 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4690 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4691 hw->subsystem_device_id = pdev->subsystem_device; 4692 hw->bus.device = PCI_SLOT(pdev->devfn); 4693 hw->bus.func = PCI_FUNC(pdev->devfn); 4694 ice_set_ctrlq_len(hw); 4695 4696 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4697 4698 #ifndef CONFIG_DYNAMIC_DEBUG 4699 if (debug < -1) 4700 hw->debug_mask = debug; 4701 #endif 4702 4703 err = ice_init_hw(hw); 4704 if (err) { 4705 dev_err(dev, "ice_init_hw failed: %d\n", err); 4706 err = -EIO; 4707 goto err_exit_unroll; 4708 } 4709 4710 ice_init_feature_support(pf); 4711 4712 ice_request_fw(pf); 4713 4714 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4715 * set in pf->state, which will cause ice_is_safe_mode to return 4716 * true 4717 */ 4718 if (ice_is_safe_mode(pf)) { 4719 /* we already got function/device capabilities but these don't 4720 * reflect what the driver needs to do in safe mode. Instead of 4721 * adding conditional logic everywhere to ignore these 4722 * device/function capabilities, override them. 4723 */ 4724 ice_set_safe_mode_caps(hw); 4725 } 4726 4727 err = ice_init_pf(pf); 4728 if (err) { 4729 dev_err(dev, "ice_init_pf failed: %d\n", err); 4730 goto err_init_pf_unroll; 4731 } 4732 4733 ice_devlink_init_regions(pf); 4734 4735 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4736 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4737 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4738 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4739 i = 0; 4740 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4741 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4742 pf->hw.tnl.valid_count[TNL_VXLAN]; 4743 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4744 UDP_TUNNEL_TYPE_VXLAN; 4745 i++; 4746 } 4747 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4748 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4749 pf->hw.tnl.valid_count[TNL_GENEVE]; 4750 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4751 UDP_TUNNEL_TYPE_GENEVE; 4752 i++; 4753 } 4754 4755 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4756 if (!pf->num_alloc_vsi) { 4757 err = -EIO; 4758 goto err_init_pf_unroll; 4759 } 4760 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4761 dev_warn(&pf->pdev->dev, 4762 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4763 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4764 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4765 } 4766 4767 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4768 GFP_KERNEL); 4769 if (!pf->vsi) { 4770 err = -ENOMEM; 4771 goto err_init_pf_unroll; 4772 } 4773 4774 err = ice_init_interrupt_scheme(pf); 4775 if (err) { 4776 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4777 err = -EIO; 4778 goto err_init_vsi_unroll; 4779 } 4780 4781 /* In case of MSIX we are going to setup the misc vector right here 4782 * to handle admin queue events etc. In case of legacy and MSI 4783 * the misc functionality and queue processing is combined in 4784 * the same vector and that gets setup at open. 4785 */ 4786 err = ice_req_irq_msix_misc(pf); 4787 if (err) { 4788 dev_err(dev, "setup of misc vector failed: %d\n", err); 4789 goto err_init_interrupt_unroll; 4790 } 4791 4792 /* create switch struct for the switch element created by FW on boot */ 4793 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4794 if (!pf->first_sw) { 4795 err = -ENOMEM; 4796 goto err_msix_misc_unroll; 4797 } 4798 4799 if (hw->evb_veb) 4800 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4801 else 4802 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4803 4804 pf->first_sw->pf = pf; 4805 4806 /* record the sw_id available for later use */ 4807 pf->first_sw->sw_id = hw->port_info->sw_id; 4808 4809 err = ice_setup_pf_sw(pf); 4810 if (err) { 4811 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4812 goto err_alloc_sw_unroll; 4813 } 4814 4815 clear_bit(ICE_SERVICE_DIS, pf->state); 4816 4817 /* tell the firmware we are up */ 4818 err = ice_send_version(pf); 4819 if (err) { 4820 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4821 UTS_RELEASE, err); 4822 goto err_send_version_unroll; 4823 } 4824 4825 /* since everything is good, start the service timer */ 4826 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4827 4828 err = ice_init_link_events(pf->hw.port_info); 4829 if (err) { 4830 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4831 goto err_send_version_unroll; 4832 } 4833 4834 /* not a fatal error if this fails */ 4835 err = ice_init_nvm_phy_type(pf->hw.port_info); 4836 if (err) 4837 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4838 4839 /* not a fatal error if this fails */ 4840 err = ice_update_link_info(pf->hw.port_info); 4841 if (err) 4842 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4843 4844 ice_init_link_dflt_override(pf->hw.port_info); 4845 4846 ice_check_link_cfg_err(pf, 4847 pf->hw.port_info->phy.link_info.link_cfg_err); 4848 4849 /* if media available, initialize PHY settings */ 4850 if (pf->hw.port_info->phy.link_info.link_info & 4851 ICE_AQ_MEDIA_AVAILABLE) { 4852 /* not a fatal error if this fails */ 4853 err = ice_init_phy_user_cfg(pf->hw.port_info); 4854 if (err) 4855 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4856 4857 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4858 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4859 4860 if (vsi) 4861 ice_configure_phy(vsi); 4862 } 4863 } else { 4864 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4865 } 4866 4867 ice_verify_cacheline_size(pf); 4868 4869 /* Save wakeup reason register for later use */ 4870 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4871 4872 /* check for a power management event */ 4873 ice_print_wake_reason(pf); 4874 4875 /* clear wake status, all bits */ 4876 wr32(hw, PFPM_WUS, U32_MAX); 4877 4878 /* Disable WoL at init, wait for user to enable */ 4879 device_set_wakeup_enable(dev, false); 4880 4881 if (ice_is_safe_mode(pf)) { 4882 ice_set_safe_mode_vlan_cfg(pf); 4883 goto probe_done; 4884 } 4885 4886 /* initialize DDP driven features */ 4887 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4888 ice_ptp_init(pf); 4889 4890 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4891 ice_gnss_init(pf); 4892 4893 /* Note: Flow director init failure is non-fatal to load */ 4894 if (ice_init_fdir(pf)) 4895 dev_err(dev, "could not initialize flow director\n"); 4896 4897 /* Note: DCB init failure is non-fatal to load */ 4898 if (ice_init_pf_dcb(pf, false)) { 4899 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4900 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4901 } else { 4902 ice_cfg_lldp_mib_change(&pf->hw, true); 4903 } 4904 4905 if (ice_init_lag(pf)) 4906 dev_warn(dev, "Failed to init link aggregation support\n"); 4907 4908 /* print PCI link speed and width */ 4909 pcie_print_link_status(pf->pdev); 4910 4911 probe_done: 4912 err = ice_register_netdev(pf); 4913 if (err) 4914 goto err_netdev_reg; 4915 4916 err = ice_devlink_register_params(pf); 4917 if (err) 4918 goto err_netdev_reg; 4919 4920 /* ready to go, so clear down state bit */ 4921 clear_bit(ICE_DOWN, pf->state); 4922 if (ice_is_rdma_ena(pf)) { 4923 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4924 if (pf->aux_idx < 0) { 4925 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4926 err = -ENOMEM; 4927 goto err_devlink_reg_param; 4928 } 4929 4930 err = ice_init_rdma(pf); 4931 if (err) { 4932 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4933 err = -EIO; 4934 goto err_init_aux_unroll; 4935 } 4936 } else { 4937 dev_warn(dev, "RDMA is not supported on this device\n"); 4938 } 4939 4940 ice_devlink_register(pf); 4941 return 0; 4942 4943 err_init_aux_unroll: 4944 pf->adev = NULL; 4945 ida_free(&ice_aux_ida, pf->aux_idx); 4946 err_devlink_reg_param: 4947 ice_devlink_unregister_params(pf); 4948 err_netdev_reg: 4949 err_send_version_unroll: 4950 ice_vsi_release_all(pf); 4951 err_alloc_sw_unroll: 4952 set_bit(ICE_SERVICE_DIS, pf->state); 4953 set_bit(ICE_DOWN, pf->state); 4954 devm_kfree(dev, pf->first_sw); 4955 err_msix_misc_unroll: 4956 ice_free_irq_msix_misc(pf); 4957 err_init_interrupt_unroll: 4958 ice_clear_interrupt_scheme(pf); 4959 err_init_vsi_unroll: 4960 devm_kfree(dev, pf->vsi); 4961 err_init_pf_unroll: 4962 ice_deinit_pf(pf); 4963 ice_devlink_destroy_regions(pf); 4964 ice_deinit_hw(hw); 4965 err_exit_unroll: 4966 pci_disable_pcie_error_reporting(pdev); 4967 pci_disable_device(pdev); 4968 return err; 4969 } 4970 4971 /** 4972 * ice_set_wake - enable or disable Wake on LAN 4973 * @pf: pointer to the PF struct 4974 * 4975 * Simple helper for WoL control 4976 */ 4977 static void ice_set_wake(struct ice_pf *pf) 4978 { 4979 struct ice_hw *hw = &pf->hw; 4980 bool wol = pf->wol_ena; 4981 4982 /* clear wake state, otherwise new wake events won't fire */ 4983 wr32(hw, PFPM_WUS, U32_MAX); 4984 4985 /* enable / disable APM wake up, no RMW needed */ 4986 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4987 4988 /* set magic packet filter enabled */ 4989 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4990 } 4991 4992 /** 4993 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4994 * @pf: pointer to the PF struct 4995 * 4996 * Issue firmware command to enable multicast magic wake, making 4997 * sure that any locally administered address (LAA) is used for 4998 * wake, and that PF reset doesn't undo the LAA. 4999 */ 5000 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5001 { 5002 struct device *dev = ice_pf_to_dev(pf); 5003 struct ice_hw *hw = &pf->hw; 5004 u8 mac_addr[ETH_ALEN]; 5005 struct ice_vsi *vsi; 5006 int status; 5007 u8 flags; 5008 5009 if (!pf->wol_ena) 5010 return; 5011 5012 vsi = ice_get_main_vsi(pf); 5013 if (!vsi) 5014 return; 5015 5016 /* Get current MAC address in case it's an LAA */ 5017 if (vsi->netdev) 5018 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5019 else 5020 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5021 5022 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5023 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5024 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5025 5026 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5027 if (status) 5028 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5029 status, ice_aq_str(hw->adminq.sq_last_status)); 5030 } 5031 5032 /** 5033 * ice_remove - Device removal routine 5034 * @pdev: PCI device information struct 5035 */ 5036 static void ice_remove(struct pci_dev *pdev) 5037 { 5038 struct ice_pf *pf = pci_get_drvdata(pdev); 5039 int i; 5040 5041 ice_devlink_unregister(pf); 5042 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5043 if (!ice_is_reset_in_progress(pf->state)) 5044 break; 5045 msleep(100); 5046 } 5047 5048 ice_tc_indir_block_remove(pf); 5049 5050 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5051 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5052 ice_free_vfs(pf); 5053 } 5054 5055 ice_service_task_stop(pf); 5056 5057 ice_aq_cancel_waiting_tasks(pf); 5058 ice_unplug_aux_dev(pf); 5059 if (pf->aux_idx >= 0) 5060 ida_free(&ice_aux_ida, pf->aux_idx); 5061 ice_devlink_unregister_params(pf); 5062 set_bit(ICE_DOWN, pf->state); 5063 5064 ice_deinit_lag(pf); 5065 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5066 ice_ptp_release(pf); 5067 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5068 ice_gnss_exit(pf); 5069 if (!ice_is_safe_mode(pf)) 5070 ice_remove_arfs(pf); 5071 ice_setup_mc_magic_wake(pf); 5072 ice_vsi_release_all(pf); 5073 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5074 ice_set_wake(pf); 5075 ice_free_irq_msix_misc(pf); 5076 ice_for_each_vsi(pf, i) { 5077 if (!pf->vsi[i]) 5078 continue; 5079 ice_vsi_free_q_vectors(pf->vsi[i]); 5080 } 5081 ice_deinit_pf(pf); 5082 ice_devlink_destroy_regions(pf); 5083 ice_deinit_hw(&pf->hw); 5084 5085 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5086 * do it via ice_schedule_reset() since there is no need to rebuild 5087 * and the service task is already stopped. 5088 */ 5089 ice_reset(&pf->hw, ICE_RESET_PFR); 5090 pci_wait_for_pending_transaction(pdev); 5091 ice_clear_interrupt_scheme(pf); 5092 pci_disable_pcie_error_reporting(pdev); 5093 pci_disable_device(pdev); 5094 } 5095 5096 /** 5097 * ice_shutdown - PCI callback for shutting down device 5098 * @pdev: PCI device information struct 5099 */ 5100 static void ice_shutdown(struct pci_dev *pdev) 5101 { 5102 struct ice_pf *pf = pci_get_drvdata(pdev); 5103 5104 ice_remove(pdev); 5105 5106 if (system_state == SYSTEM_POWER_OFF) { 5107 pci_wake_from_d3(pdev, pf->wol_ena); 5108 pci_set_power_state(pdev, PCI_D3hot); 5109 } 5110 } 5111 5112 #ifdef CONFIG_PM 5113 /** 5114 * ice_prepare_for_shutdown - prep for PCI shutdown 5115 * @pf: board private structure 5116 * 5117 * Inform or close all dependent features in prep for PCI device shutdown 5118 */ 5119 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5120 { 5121 struct ice_hw *hw = &pf->hw; 5122 u32 v; 5123 5124 /* Notify VFs of impending reset */ 5125 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5126 ice_vc_notify_reset(pf); 5127 5128 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5129 5130 /* disable the VSIs and their queues that are not already DOWN */ 5131 ice_pf_dis_all_vsi(pf, false); 5132 5133 ice_for_each_vsi(pf, v) 5134 if (pf->vsi[v]) 5135 pf->vsi[v]->vsi_num = 0; 5136 5137 ice_shutdown_all_ctrlq(hw); 5138 } 5139 5140 /** 5141 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5142 * @pf: board private structure to reinitialize 5143 * 5144 * This routine reinitialize interrupt scheme that was cleared during 5145 * power management suspend callback. 5146 * 5147 * This should be called during resume routine to re-allocate the q_vectors 5148 * and reacquire interrupts. 5149 */ 5150 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5151 { 5152 struct device *dev = ice_pf_to_dev(pf); 5153 int ret, v; 5154 5155 /* Since we clear MSIX flag during suspend, we need to 5156 * set it back during resume... 5157 */ 5158 5159 ret = ice_init_interrupt_scheme(pf); 5160 if (ret) { 5161 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5162 return ret; 5163 } 5164 5165 /* Remap vectors and rings, after successful re-init interrupts */ 5166 ice_for_each_vsi(pf, v) { 5167 if (!pf->vsi[v]) 5168 continue; 5169 5170 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5171 if (ret) 5172 goto err_reinit; 5173 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5174 } 5175 5176 ret = ice_req_irq_msix_misc(pf); 5177 if (ret) { 5178 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5179 ret); 5180 goto err_reinit; 5181 } 5182 5183 return 0; 5184 5185 err_reinit: 5186 while (v--) 5187 if (pf->vsi[v]) 5188 ice_vsi_free_q_vectors(pf->vsi[v]); 5189 5190 return ret; 5191 } 5192 5193 /** 5194 * ice_suspend 5195 * @dev: generic device information structure 5196 * 5197 * Power Management callback to quiesce the device and prepare 5198 * for D3 transition. 5199 */ 5200 static int __maybe_unused ice_suspend(struct device *dev) 5201 { 5202 struct pci_dev *pdev = to_pci_dev(dev); 5203 struct ice_pf *pf; 5204 int disabled, v; 5205 5206 pf = pci_get_drvdata(pdev); 5207 5208 if (!ice_pf_state_is_nominal(pf)) { 5209 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5210 return -EBUSY; 5211 } 5212 5213 /* Stop watchdog tasks until resume completion. 5214 * Even though it is most likely that the service task is 5215 * disabled if the device is suspended or down, the service task's 5216 * state is controlled by a different state bit, and we should 5217 * store and honor whatever state that bit is in at this point. 5218 */ 5219 disabled = ice_service_task_stop(pf); 5220 5221 ice_unplug_aux_dev(pf); 5222 5223 /* Already suspended?, then there is nothing to do */ 5224 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5225 if (!disabled) 5226 ice_service_task_restart(pf); 5227 return 0; 5228 } 5229 5230 if (test_bit(ICE_DOWN, pf->state) || 5231 ice_is_reset_in_progress(pf->state)) { 5232 dev_err(dev, "can't suspend device in reset or already down\n"); 5233 if (!disabled) 5234 ice_service_task_restart(pf); 5235 return 0; 5236 } 5237 5238 ice_setup_mc_magic_wake(pf); 5239 5240 ice_prepare_for_shutdown(pf); 5241 5242 ice_set_wake(pf); 5243 5244 /* Free vectors, clear the interrupt scheme and release IRQs 5245 * for proper hibernation, especially with large number of CPUs. 5246 * Otherwise hibernation might fail when mapping all the vectors back 5247 * to CPU0. 5248 */ 5249 ice_free_irq_msix_misc(pf); 5250 ice_for_each_vsi(pf, v) { 5251 if (!pf->vsi[v]) 5252 continue; 5253 ice_vsi_free_q_vectors(pf->vsi[v]); 5254 } 5255 ice_clear_interrupt_scheme(pf); 5256 5257 pci_save_state(pdev); 5258 pci_wake_from_d3(pdev, pf->wol_ena); 5259 pci_set_power_state(pdev, PCI_D3hot); 5260 return 0; 5261 } 5262 5263 /** 5264 * ice_resume - PM callback for waking up from D3 5265 * @dev: generic device information structure 5266 */ 5267 static int __maybe_unused ice_resume(struct device *dev) 5268 { 5269 struct pci_dev *pdev = to_pci_dev(dev); 5270 enum ice_reset_req reset_type; 5271 struct ice_pf *pf; 5272 struct ice_hw *hw; 5273 int ret; 5274 5275 pci_set_power_state(pdev, PCI_D0); 5276 pci_restore_state(pdev); 5277 pci_save_state(pdev); 5278 5279 if (!pci_device_is_present(pdev)) 5280 return -ENODEV; 5281 5282 ret = pci_enable_device_mem(pdev); 5283 if (ret) { 5284 dev_err(dev, "Cannot enable device after suspend\n"); 5285 return ret; 5286 } 5287 5288 pf = pci_get_drvdata(pdev); 5289 hw = &pf->hw; 5290 5291 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5292 ice_print_wake_reason(pf); 5293 5294 /* We cleared the interrupt scheme when we suspended, so we need to 5295 * restore it now to resume device functionality. 5296 */ 5297 ret = ice_reinit_interrupt_scheme(pf); 5298 if (ret) 5299 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5300 5301 clear_bit(ICE_DOWN, pf->state); 5302 /* Now perform PF reset and rebuild */ 5303 reset_type = ICE_RESET_PFR; 5304 /* re-enable service task for reset, but allow reset to schedule it */ 5305 clear_bit(ICE_SERVICE_DIS, pf->state); 5306 5307 if (ice_schedule_reset(pf, reset_type)) 5308 dev_err(dev, "Reset during resume failed.\n"); 5309 5310 clear_bit(ICE_SUSPENDED, pf->state); 5311 ice_service_task_restart(pf); 5312 5313 /* Restart the service task */ 5314 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5315 5316 return 0; 5317 } 5318 #endif /* CONFIG_PM */ 5319 5320 /** 5321 * ice_pci_err_detected - warning that PCI error has been detected 5322 * @pdev: PCI device information struct 5323 * @err: the type of PCI error 5324 * 5325 * Called to warn that something happened on the PCI bus and the error handling 5326 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5327 */ 5328 static pci_ers_result_t 5329 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5330 { 5331 struct ice_pf *pf = pci_get_drvdata(pdev); 5332 5333 if (!pf) { 5334 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5335 __func__, err); 5336 return PCI_ERS_RESULT_DISCONNECT; 5337 } 5338 5339 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5340 ice_service_task_stop(pf); 5341 5342 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5343 set_bit(ICE_PFR_REQ, pf->state); 5344 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5345 } 5346 } 5347 5348 return PCI_ERS_RESULT_NEED_RESET; 5349 } 5350 5351 /** 5352 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5353 * @pdev: PCI device information struct 5354 * 5355 * Called to determine if the driver can recover from the PCI slot reset by 5356 * using a register read to determine if the device is recoverable. 5357 */ 5358 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5359 { 5360 struct ice_pf *pf = pci_get_drvdata(pdev); 5361 pci_ers_result_t result; 5362 int err; 5363 u32 reg; 5364 5365 err = pci_enable_device_mem(pdev); 5366 if (err) { 5367 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5368 err); 5369 result = PCI_ERS_RESULT_DISCONNECT; 5370 } else { 5371 pci_set_master(pdev); 5372 pci_restore_state(pdev); 5373 pci_save_state(pdev); 5374 pci_wake_from_d3(pdev, false); 5375 5376 /* Check for life */ 5377 reg = rd32(&pf->hw, GLGEN_RTRIG); 5378 if (!reg) 5379 result = PCI_ERS_RESULT_RECOVERED; 5380 else 5381 result = PCI_ERS_RESULT_DISCONNECT; 5382 } 5383 5384 return result; 5385 } 5386 5387 /** 5388 * ice_pci_err_resume - restart operations after PCI error recovery 5389 * @pdev: PCI device information struct 5390 * 5391 * Called to allow the driver to bring things back up after PCI error and/or 5392 * reset recovery have finished 5393 */ 5394 static void ice_pci_err_resume(struct pci_dev *pdev) 5395 { 5396 struct ice_pf *pf = pci_get_drvdata(pdev); 5397 5398 if (!pf) { 5399 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5400 __func__); 5401 return; 5402 } 5403 5404 if (test_bit(ICE_SUSPENDED, pf->state)) { 5405 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5406 __func__); 5407 return; 5408 } 5409 5410 ice_restore_all_vfs_msi_state(pdev); 5411 5412 ice_do_reset(pf, ICE_RESET_PFR); 5413 ice_service_task_restart(pf); 5414 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5415 } 5416 5417 /** 5418 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5419 * @pdev: PCI device information struct 5420 */ 5421 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5422 { 5423 struct ice_pf *pf = pci_get_drvdata(pdev); 5424 5425 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5426 ice_service_task_stop(pf); 5427 5428 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5429 set_bit(ICE_PFR_REQ, pf->state); 5430 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5431 } 5432 } 5433 } 5434 5435 /** 5436 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5437 * @pdev: PCI device information struct 5438 */ 5439 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5440 { 5441 ice_pci_err_resume(pdev); 5442 } 5443 5444 /* ice_pci_tbl - PCI Device ID Table 5445 * 5446 * Wildcard entries (PCI_ANY_ID) should come last 5447 * Last entry must be all 0s 5448 * 5449 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5450 * Class, Class Mask, private data (not used) } 5451 */ 5452 static const struct pci_device_id ice_pci_tbl[] = { 5453 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5454 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5455 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5456 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5457 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5458 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5459 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5460 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5461 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5462 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5463 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5464 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5465 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5466 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5467 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5468 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5469 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5470 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5471 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5472 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5473 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5474 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5475 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5476 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5477 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5478 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5479 /* required last entry */ 5480 { 0, } 5481 }; 5482 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5483 5484 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5485 5486 static const struct pci_error_handlers ice_pci_err_handler = { 5487 .error_detected = ice_pci_err_detected, 5488 .slot_reset = ice_pci_err_slot_reset, 5489 .reset_prepare = ice_pci_err_reset_prepare, 5490 .reset_done = ice_pci_err_reset_done, 5491 .resume = ice_pci_err_resume 5492 }; 5493 5494 static struct pci_driver ice_driver = { 5495 .name = KBUILD_MODNAME, 5496 .id_table = ice_pci_tbl, 5497 .probe = ice_probe, 5498 .remove = ice_remove, 5499 #ifdef CONFIG_PM 5500 .driver.pm = &ice_pm_ops, 5501 #endif /* CONFIG_PM */ 5502 .shutdown = ice_shutdown, 5503 .sriov_configure = ice_sriov_configure, 5504 .err_handler = &ice_pci_err_handler 5505 }; 5506 5507 /** 5508 * ice_module_init - Driver registration routine 5509 * 5510 * ice_module_init is the first routine called when the driver is 5511 * loaded. All it does is register with the PCI subsystem. 5512 */ 5513 static int __init ice_module_init(void) 5514 { 5515 int status; 5516 5517 pr_info("%s\n", ice_driver_string); 5518 pr_info("%s\n", ice_copyright); 5519 5520 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5521 if (!ice_wq) { 5522 pr_err("Failed to create workqueue\n"); 5523 return -ENOMEM; 5524 } 5525 5526 status = pci_register_driver(&ice_driver); 5527 if (status) { 5528 pr_err("failed to register PCI driver, err %d\n", status); 5529 destroy_workqueue(ice_wq); 5530 } 5531 5532 return status; 5533 } 5534 module_init(ice_module_init); 5535 5536 /** 5537 * ice_module_exit - Driver exit cleanup routine 5538 * 5539 * ice_module_exit is called just before the driver is removed 5540 * from memory. 5541 */ 5542 static void __exit ice_module_exit(void) 5543 { 5544 pci_unregister_driver(&ice_driver); 5545 destroy_workqueue(ice_wq); 5546 pr_info("module unloaded\n"); 5547 } 5548 module_exit(ice_module_exit); 5549 5550 /** 5551 * ice_set_mac_address - NDO callback to set MAC address 5552 * @netdev: network interface device structure 5553 * @pi: pointer to an address structure 5554 * 5555 * Returns 0 on success, negative on failure 5556 */ 5557 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5558 { 5559 struct ice_netdev_priv *np = netdev_priv(netdev); 5560 struct ice_vsi *vsi = np->vsi; 5561 struct ice_pf *pf = vsi->back; 5562 struct ice_hw *hw = &pf->hw; 5563 struct sockaddr *addr = pi; 5564 u8 old_mac[ETH_ALEN]; 5565 u8 flags = 0; 5566 u8 *mac; 5567 int err; 5568 5569 mac = (u8 *)addr->sa_data; 5570 5571 if (!is_valid_ether_addr(mac)) 5572 return -EADDRNOTAVAIL; 5573 5574 if (ether_addr_equal(netdev->dev_addr, mac)) { 5575 netdev_dbg(netdev, "already using mac %pM\n", mac); 5576 return 0; 5577 } 5578 5579 if (test_bit(ICE_DOWN, pf->state) || 5580 ice_is_reset_in_progress(pf->state)) { 5581 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5582 mac); 5583 return -EBUSY; 5584 } 5585 5586 if (ice_chnl_dmac_fltr_cnt(pf)) { 5587 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5588 mac); 5589 return -EAGAIN; 5590 } 5591 5592 netif_addr_lock_bh(netdev); 5593 ether_addr_copy(old_mac, netdev->dev_addr); 5594 /* change the netdev's MAC address */ 5595 eth_hw_addr_set(netdev, mac); 5596 netif_addr_unlock_bh(netdev); 5597 5598 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5599 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5600 if (err && err != -ENOENT) { 5601 err = -EADDRNOTAVAIL; 5602 goto err_update_filters; 5603 } 5604 5605 /* Add filter for new MAC. If filter exists, return success */ 5606 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5607 if (err == -EEXIST) { 5608 /* Although this MAC filter is already present in hardware it's 5609 * possible in some cases (e.g. bonding) that dev_addr was 5610 * modified outside of the driver and needs to be restored back 5611 * to this value. 5612 */ 5613 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5614 5615 return 0; 5616 } else if (err) { 5617 /* error if the new filter addition failed */ 5618 err = -EADDRNOTAVAIL; 5619 } 5620 5621 err_update_filters: 5622 if (err) { 5623 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5624 mac); 5625 netif_addr_lock_bh(netdev); 5626 eth_hw_addr_set(netdev, old_mac); 5627 netif_addr_unlock_bh(netdev); 5628 return err; 5629 } 5630 5631 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5632 netdev->dev_addr); 5633 5634 /* write new MAC address to the firmware */ 5635 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5636 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5637 if (err) { 5638 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5639 mac, err); 5640 } 5641 return 0; 5642 } 5643 5644 /** 5645 * ice_set_rx_mode - NDO callback to set the netdev filters 5646 * @netdev: network interface device structure 5647 */ 5648 static void ice_set_rx_mode(struct net_device *netdev) 5649 { 5650 struct ice_netdev_priv *np = netdev_priv(netdev); 5651 struct ice_vsi *vsi = np->vsi; 5652 5653 if (!vsi) 5654 return; 5655 5656 /* Set the flags to synchronize filters 5657 * ndo_set_rx_mode may be triggered even without a change in netdev 5658 * flags 5659 */ 5660 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5661 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5662 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5663 5664 /* schedule our worker thread which will take care of 5665 * applying the new filter changes 5666 */ 5667 ice_service_task_schedule(vsi->back); 5668 } 5669 5670 /** 5671 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5672 * @netdev: network interface device structure 5673 * @queue_index: Queue ID 5674 * @maxrate: maximum bandwidth in Mbps 5675 */ 5676 static int 5677 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5678 { 5679 struct ice_netdev_priv *np = netdev_priv(netdev); 5680 struct ice_vsi *vsi = np->vsi; 5681 u16 q_handle; 5682 int status; 5683 u8 tc; 5684 5685 /* Validate maxrate requested is within permitted range */ 5686 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5687 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5688 maxrate, queue_index); 5689 return -EINVAL; 5690 } 5691 5692 q_handle = vsi->tx_rings[queue_index]->q_handle; 5693 tc = ice_dcb_get_tc(vsi, queue_index); 5694 5695 /* Set BW back to default, when user set maxrate to 0 */ 5696 if (!maxrate) 5697 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5698 q_handle, ICE_MAX_BW); 5699 else 5700 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5701 q_handle, ICE_MAX_BW, maxrate * 1000); 5702 if (status) 5703 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5704 status); 5705 5706 return status; 5707 } 5708 5709 /** 5710 * ice_fdb_add - add an entry to the hardware database 5711 * @ndm: the input from the stack 5712 * @tb: pointer to array of nladdr (unused) 5713 * @dev: the net device pointer 5714 * @addr: the MAC address entry being added 5715 * @vid: VLAN ID 5716 * @flags: instructions from stack about fdb operation 5717 * @extack: netlink extended ack 5718 */ 5719 static int 5720 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5721 struct net_device *dev, const unsigned char *addr, u16 vid, 5722 u16 flags, struct netlink_ext_ack __always_unused *extack) 5723 { 5724 int err; 5725 5726 if (vid) { 5727 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5728 return -EINVAL; 5729 } 5730 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5731 netdev_err(dev, "FDB only supports static addresses\n"); 5732 return -EINVAL; 5733 } 5734 5735 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5736 err = dev_uc_add_excl(dev, addr); 5737 else if (is_multicast_ether_addr(addr)) 5738 err = dev_mc_add_excl(dev, addr); 5739 else 5740 err = -EINVAL; 5741 5742 /* Only return duplicate errors if NLM_F_EXCL is set */ 5743 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5744 err = 0; 5745 5746 return err; 5747 } 5748 5749 /** 5750 * ice_fdb_del - delete an entry from the hardware database 5751 * @ndm: the input from the stack 5752 * @tb: pointer to array of nladdr (unused) 5753 * @dev: the net device pointer 5754 * @addr: the MAC address entry being added 5755 * @vid: VLAN ID 5756 * @extack: netlink extended ack 5757 */ 5758 static int 5759 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5760 struct net_device *dev, const unsigned char *addr, 5761 __always_unused u16 vid, struct netlink_ext_ack *extack) 5762 { 5763 int err; 5764 5765 if (ndm->ndm_state & NUD_PERMANENT) { 5766 netdev_err(dev, "FDB only supports static addresses\n"); 5767 return -EINVAL; 5768 } 5769 5770 if (is_unicast_ether_addr(addr)) 5771 err = dev_uc_del(dev, addr); 5772 else if (is_multicast_ether_addr(addr)) 5773 err = dev_mc_del(dev, addr); 5774 else 5775 err = -EINVAL; 5776 5777 return err; 5778 } 5779 5780 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5781 NETIF_F_HW_VLAN_CTAG_TX | \ 5782 NETIF_F_HW_VLAN_STAG_RX | \ 5783 NETIF_F_HW_VLAN_STAG_TX) 5784 5785 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5786 NETIF_F_HW_VLAN_STAG_RX) 5787 5788 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5789 NETIF_F_HW_VLAN_STAG_FILTER) 5790 5791 /** 5792 * ice_fix_features - fix the netdev features flags based on device limitations 5793 * @netdev: ptr to the netdev that flags are being fixed on 5794 * @features: features that need to be checked and possibly fixed 5795 * 5796 * Make sure any fixups are made to features in this callback. This enables the 5797 * driver to not have to check unsupported configurations throughout the driver 5798 * because that's the responsiblity of this callback. 5799 * 5800 * Single VLAN Mode (SVM) Supported Features: 5801 * NETIF_F_HW_VLAN_CTAG_FILTER 5802 * NETIF_F_HW_VLAN_CTAG_RX 5803 * NETIF_F_HW_VLAN_CTAG_TX 5804 * 5805 * Double VLAN Mode (DVM) Supported Features: 5806 * NETIF_F_HW_VLAN_CTAG_FILTER 5807 * NETIF_F_HW_VLAN_CTAG_RX 5808 * NETIF_F_HW_VLAN_CTAG_TX 5809 * 5810 * NETIF_F_HW_VLAN_STAG_FILTER 5811 * NETIF_HW_VLAN_STAG_RX 5812 * NETIF_HW_VLAN_STAG_TX 5813 * 5814 * Features that need fixing: 5815 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5816 * These are mutually exlusive as the VSI context cannot support multiple 5817 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5818 * is not done, then default to clearing the requested STAG offload 5819 * settings. 5820 * 5821 * All supported filtering has to be enabled or disabled together. For 5822 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5823 * together. If this is not done, then default to VLAN filtering disabled. 5824 * These are mutually exclusive as there is currently no way to 5825 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5826 * prune rules. 5827 */ 5828 static netdev_features_t 5829 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5830 { 5831 struct ice_netdev_priv *np = netdev_priv(netdev); 5832 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5833 bool cur_ctag, cur_stag, req_ctag, req_stag; 5834 5835 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5836 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5837 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5838 5839 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5840 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5841 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5842 5843 if (req_vlan_fltr != cur_vlan_fltr) { 5844 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5845 if (req_ctag && req_stag) { 5846 features |= NETIF_VLAN_FILTERING_FEATURES; 5847 } else if (!req_ctag && !req_stag) { 5848 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5849 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5850 (!cur_stag && req_stag && !cur_ctag)) { 5851 features |= NETIF_VLAN_FILTERING_FEATURES; 5852 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5853 } else if ((cur_ctag && !req_ctag && cur_stag) || 5854 (cur_stag && !req_stag && cur_ctag)) { 5855 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5856 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5857 } 5858 } else { 5859 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5860 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5861 5862 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5863 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5864 } 5865 } 5866 5867 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5868 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5869 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5870 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5871 NETIF_F_HW_VLAN_STAG_TX); 5872 } 5873 5874 if (!(netdev->features & NETIF_F_RXFCS) && 5875 (features & NETIF_F_RXFCS) && 5876 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5877 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5878 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5879 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5880 } 5881 5882 return features; 5883 } 5884 5885 /** 5886 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5887 * @vsi: PF's VSI 5888 * @features: features used to determine VLAN offload settings 5889 * 5890 * First, determine the vlan_ethertype based on the VLAN offload bits in 5891 * features. Then determine if stripping and insertion should be enabled or 5892 * disabled. Finally enable or disable VLAN stripping and insertion. 5893 */ 5894 static int 5895 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5896 { 5897 bool enable_stripping = true, enable_insertion = true; 5898 struct ice_vsi_vlan_ops *vlan_ops; 5899 int strip_err = 0, insert_err = 0; 5900 u16 vlan_ethertype = 0; 5901 5902 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5903 5904 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5905 vlan_ethertype = ETH_P_8021AD; 5906 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5907 vlan_ethertype = ETH_P_8021Q; 5908 5909 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5910 enable_stripping = false; 5911 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5912 enable_insertion = false; 5913 5914 if (enable_stripping) 5915 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5916 else 5917 strip_err = vlan_ops->dis_stripping(vsi); 5918 5919 if (enable_insertion) 5920 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5921 else 5922 insert_err = vlan_ops->dis_insertion(vsi); 5923 5924 if (strip_err || insert_err) 5925 return -EIO; 5926 5927 return 0; 5928 } 5929 5930 /** 5931 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5932 * @vsi: PF's VSI 5933 * @features: features used to determine VLAN filtering settings 5934 * 5935 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5936 * features. 5937 */ 5938 static int 5939 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5940 { 5941 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5942 int err = 0; 5943 5944 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5945 * if either bit is set 5946 */ 5947 if (features & 5948 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5949 err = vlan_ops->ena_rx_filtering(vsi); 5950 else 5951 err = vlan_ops->dis_rx_filtering(vsi); 5952 5953 return err; 5954 } 5955 5956 /** 5957 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5958 * @netdev: ptr to the netdev being adjusted 5959 * @features: the feature set that the stack is suggesting 5960 * 5961 * Only update VLAN settings if the requested_vlan_features are different than 5962 * the current_vlan_features. 5963 */ 5964 static int 5965 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5966 { 5967 netdev_features_t current_vlan_features, requested_vlan_features; 5968 struct ice_netdev_priv *np = netdev_priv(netdev); 5969 struct ice_vsi *vsi = np->vsi; 5970 int err; 5971 5972 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5973 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5974 if (current_vlan_features ^ requested_vlan_features) { 5975 if ((features & NETIF_F_RXFCS) && 5976 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5977 dev_err(ice_pf_to_dev(vsi->back), 5978 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5979 return -EIO; 5980 } 5981 5982 err = ice_set_vlan_offload_features(vsi, features); 5983 if (err) 5984 return err; 5985 } 5986 5987 current_vlan_features = netdev->features & 5988 NETIF_VLAN_FILTERING_FEATURES; 5989 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5990 if (current_vlan_features ^ requested_vlan_features) { 5991 err = ice_set_vlan_filtering_features(vsi, features); 5992 if (err) 5993 return err; 5994 } 5995 5996 return 0; 5997 } 5998 5999 /** 6000 * ice_set_loopback - turn on/off loopback mode on underlying PF 6001 * @vsi: ptr to VSI 6002 * @ena: flag to indicate the on/off setting 6003 */ 6004 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6005 { 6006 bool if_running = netif_running(vsi->netdev); 6007 int ret; 6008 6009 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6010 ret = ice_down(vsi); 6011 if (ret) { 6012 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6013 return ret; 6014 } 6015 } 6016 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6017 if (ret) 6018 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6019 if (if_running) 6020 ret = ice_up(vsi); 6021 6022 return ret; 6023 } 6024 6025 /** 6026 * ice_set_features - set the netdev feature flags 6027 * @netdev: ptr to the netdev being adjusted 6028 * @features: the feature set that the stack is suggesting 6029 */ 6030 static int 6031 ice_set_features(struct net_device *netdev, netdev_features_t features) 6032 { 6033 netdev_features_t changed = netdev->features ^ features; 6034 struct ice_netdev_priv *np = netdev_priv(netdev); 6035 struct ice_vsi *vsi = np->vsi; 6036 struct ice_pf *pf = vsi->back; 6037 int ret = 0; 6038 6039 /* Don't set any netdev advanced features with device in Safe Mode */ 6040 if (ice_is_safe_mode(pf)) { 6041 dev_err(ice_pf_to_dev(pf), 6042 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6043 return ret; 6044 } 6045 6046 /* Do not change setting during reset */ 6047 if (ice_is_reset_in_progress(pf->state)) { 6048 dev_err(ice_pf_to_dev(pf), 6049 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6050 return -EBUSY; 6051 } 6052 6053 /* Multiple features can be changed in one call so keep features in 6054 * separate if/else statements to guarantee each feature is checked 6055 */ 6056 if (changed & NETIF_F_RXHASH) 6057 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6058 6059 ret = ice_set_vlan_features(netdev, features); 6060 if (ret) 6061 return ret; 6062 6063 /* Turn on receive of FCS aka CRC, and after setting this 6064 * flag the packet data will have the 4 byte CRC appended 6065 */ 6066 if (changed & NETIF_F_RXFCS) { 6067 if ((features & NETIF_F_RXFCS) && 6068 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6069 dev_err(ice_pf_to_dev(vsi->back), 6070 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6071 return -EIO; 6072 } 6073 6074 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6075 ret = ice_down_up(vsi); 6076 if (ret) 6077 return ret; 6078 } 6079 6080 if (changed & NETIF_F_NTUPLE) { 6081 bool ena = !!(features & NETIF_F_NTUPLE); 6082 6083 ice_vsi_manage_fdir(vsi, ena); 6084 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6085 } 6086 6087 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6088 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6089 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6090 return -EACCES; 6091 } 6092 6093 if (changed & NETIF_F_HW_TC) { 6094 bool ena = !!(features & NETIF_F_HW_TC); 6095 6096 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6097 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6098 } 6099 6100 if (changed & NETIF_F_LOOPBACK) 6101 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6102 6103 return ret; 6104 } 6105 6106 /** 6107 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6108 * @vsi: VSI to setup VLAN properties for 6109 */ 6110 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6111 { 6112 int err; 6113 6114 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6115 if (err) 6116 return err; 6117 6118 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6119 if (err) 6120 return err; 6121 6122 return ice_vsi_add_vlan_zero(vsi); 6123 } 6124 6125 /** 6126 * ice_vsi_cfg - Setup the VSI 6127 * @vsi: the VSI being configured 6128 * 6129 * Return 0 on success and negative value on error 6130 */ 6131 int ice_vsi_cfg(struct ice_vsi *vsi) 6132 { 6133 int err; 6134 6135 if (vsi->netdev) { 6136 ice_set_rx_mode(vsi->netdev); 6137 6138 if (vsi->type != ICE_VSI_LB) { 6139 err = ice_vsi_vlan_setup(vsi); 6140 6141 if (err) 6142 return err; 6143 } 6144 } 6145 ice_vsi_cfg_dcb_rings(vsi); 6146 6147 err = ice_vsi_cfg_lan_txqs(vsi); 6148 if (!err && ice_is_xdp_ena_vsi(vsi)) 6149 err = ice_vsi_cfg_xdp_txqs(vsi); 6150 if (!err) 6151 err = ice_vsi_cfg_rxqs(vsi); 6152 6153 return err; 6154 } 6155 6156 /* THEORY OF MODERATION: 6157 * The ice driver hardware works differently than the hardware that DIMLIB was 6158 * originally made for. ice hardware doesn't have packet count limits that 6159 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6160 * which is hard-coded to a limit of 250,000 ints/second. 6161 * If not using dynamic moderation, the INTRL value can be modified 6162 * by ethtool rx-usecs-high. 6163 */ 6164 struct ice_dim { 6165 /* the throttle rate for interrupts, basically worst case delay before 6166 * an initial interrupt fires, value is stored in microseconds. 6167 */ 6168 u16 itr; 6169 }; 6170 6171 /* Make a different profile for Rx that doesn't allow quite so aggressive 6172 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6173 * second. 6174 */ 6175 static const struct ice_dim rx_profile[] = { 6176 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6177 {8}, /* 125,000 ints/s */ 6178 {16}, /* 62,500 ints/s */ 6179 {62}, /* 16,129 ints/s */ 6180 {126} /* 7,936 ints/s */ 6181 }; 6182 6183 /* The transmit profile, which has the same sorts of values 6184 * as the previous struct 6185 */ 6186 static const struct ice_dim tx_profile[] = { 6187 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6188 {8}, /* 125,000 ints/s */ 6189 {40}, /* 16,125 ints/s */ 6190 {128}, /* 7,812 ints/s */ 6191 {256} /* 3,906 ints/s */ 6192 }; 6193 6194 static void ice_tx_dim_work(struct work_struct *work) 6195 { 6196 struct ice_ring_container *rc; 6197 struct dim *dim; 6198 u16 itr; 6199 6200 dim = container_of(work, struct dim, work); 6201 rc = (struct ice_ring_container *)dim->priv; 6202 6203 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6204 6205 /* look up the values in our local table */ 6206 itr = tx_profile[dim->profile_ix].itr; 6207 6208 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6209 ice_write_itr(rc, itr); 6210 6211 dim->state = DIM_START_MEASURE; 6212 } 6213 6214 static void ice_rx_dim_work(struct work_struct *work) 6215 { 6216 struct ice_ring_container *rc; 6217 struct dim *dim; 6218 u16 itr; 6219 6220 dim = container_of(work, struct dim, work); 6221 rc = (struct ice_ring_container *)dim->priv; 6222 6223 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6224 6225 /* look up the values in our local table */ 6226 itr = rx_profile[dim->profile_ix].itr; 6227 6228 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6229 ice_write_itr(rc, itr); 6230 6231 dim->state = DIM_START_MEASURE; 6232 } 6233 6234 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6235 6236 /** 6237 * ice_init_moderation - set up interrupt moderation 6238 * @q_vector: the vector containing rings to be configured 6239 * 6240 * Set up interrupt moderation registers, with the intent to do the right thing 6241 * when called from reset or from probe, and whether or not dynamic moderation 6242 * is enabled or not. Take special care to write all the registers in both 6243 * dynamic moderation mode or not in order to make sure hardware is in a known 6244 * state. 6245 */ 6246 static void ice_init_moderation(struct ice_q_vector *q_vector) 6247 { 6248 struct ice_ring_container *rc; 6249 bool tx_dynamic, rx_dynamic; 6250 6251 rc = &q_vector->tx; 6252 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6253 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6254 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6255 rc->dim.priv = rc; 6256 tx_dynamic = ITR_IS_DYNAMIC(rc); 6257 6258 /* set the initial TX ITR to match the above */ 6259 ice_write_itr(rc, tx_dynamic ? 6260 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6261 6262 rc = &q_vector->rx; 6263 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6264 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6265 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6266 rc->dim.priv = rc; 6267 rx_dynamic = ITR_IS_DYNAMIC(rc); 6268 6269 /* set the initial RX ITR to match the above */ 6270 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6271 rc->itr_setting); 6272 6273 ice_set_q_vector_intrl(q_vector); 6274 } 6275 6276 /** 6277 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6278 * @vsi: the VSI being configured 6279 */ 6280 static void ice_napi_enable_all(struct ice_vsi *vsi) 6281 { 6282 int q_idx; 6283 6284 if (!vsi->netdev) 6285 return; 6286 6287 ice_for_each_q_vector(vsi, q_idx) { 6288 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6289 6290 ice_init_moderation(q_vector); 6291 6292 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6293 napi_enable(&q_vector->napi); 6294 } 6295 } 6296 6297 /** 6298 * ice_up_complete - Finish the last steps of bringing up a connection 6299 * @vsi: The VSI being configured 6300 * 6301 * Return 0 on success and negative value on error 6302 */ 6303 static int ice_up_complete(struct ice_vsi *vsi) 6304 { 6305 struct ice_pf *pf = vsi->back; 6306 int err; 6307 6308 ice_vsi_cfg_msix(vsi); 6309 6310 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6311 * Tx queue group list was configured and the context bits were 6312 * programmed using ice_vsi_cfg_txqs 6313 */ 6314 err = ice_vsi_start_all_rx_rings(vsi); 6315 if (err) 6316 return err; 6317 6318 clear_bit(ICE_VSI_DOWN, vsi->state); 6319 ice_napi_enable_all(vsi); 6320 ice_vsi_ena_irq(vsi); 6321 6322 if (vsi->port_info && 6323 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6324 vsi->netdev) { 6325 ice_print_link_msg(vsi, true); 6326 netif_tx_start_all_queues(vsi->netdev); 6327 netif_carrier_on(vsi->netdev); 6328 if (!ice_is_e810(&pf->hw)) 6329 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6330 } 6331 6332 /* Perform an initial read of the statistics registers now to 6333 * set the baseline so counters are ready when interface is up 6334 */ 6335 ice_update_eth_stats(vsi); 6336 ice_service_task_schedule(pf); 6337 6338 return 0; 6339 } 6340 6341 /** 6342 * ice_up - Bring the connection back up after being down 6343 * @vsi: VSI being configured 6344 */ 6345 int ice_up(struct ice_vsi *vsi) 6346 { 6347 int err; 6348 6349 err = ice_vsi_cfg(vsi); 6350 if (!err) 6351 err = ice_up_complete(vsi); 6352 6353 return err; 6354 } 6355 6356 /** 6357 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6358 * @syncp: pointer to u64_stats_sync 6359 * @stats: stats that pkts and bytes count will be taken from 6360 * @pkts: packets stats counter 6361 * @bytes: bytes stats counter 6362 * 6363 * This function fetches stats from the ring considering the atomic operations 6364 * that needs to be performed to read u64 values in 32 bit machine. 6365 */ 6366 void 6367 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6368 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6369 { 6370 unsigned int start; 6371 6372 do { 6373 start = u64_stats_fetch_begin_irq(syncp); 6374 *pkts = stats.pkts; 6375 *bytes = stats.bytes; 6376 } while (u64_stats_fetch_retry_irq(syncp, start)); 6377 } 6378 6379 /** 6380 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6381 * @vsi: the VSI to be updated 6382 * @vsi_stats: the stats struct to be updated 6383 * @rings: rings to work on 6384 * @count: number of rings 6385 */ 6386 static void 6387 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6388 struct rtnl_link_stats64 *vsi_stats, 6389 struct ice_tx_ring **rings, u16 count) 6390 { 6391 u16 i; 6392 6393 for (i = 0; i < count; i++) { 6394 struct ice_tx_ring *ring; 6395 u64 pkts = 0, bytes = 0; 6396 6397 ring = READ_ONCE(rings[i]); 6398 if (!ring) 6399 continue; 6400 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6401 vsi_stats->tx_packets += pkts; 6402 vsi_stats->tx_bytes += bytes; 6403 vsi->tx_restart += ring->tx_stats.restart_q; 6404 vsi->tx_busy += ring->tx_stats.tx_busy; 6405 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6406 } 6407 } 6408 6409 /** 6410 * ice_update_vsi_ring_stats - Update VSI stats counters 6411 * @vsi: the VSI to be updated 6412 */ 6413 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6414 { 6415 struct rtnl_link_stats64 *vsi_stats; 6416 u64 pkts, bytes; 6417 int i; 6418 6419 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6420 if (!vsi_stats) 6421 return; 6422 6423 /* reset non-netdev (extended) stats */ 6424 vsi->tx_restart = 0; 6425 vsi->tx_busy = 0; 6426 vsi->tx_linearize = 0; 6427 vsi->rx_buf_failed = 0; 6428 vsi->rx_page_failed = 0; 6429 6430 rcu_read_lock(); 6431 6432 /* update Tx rings counters */ 6433 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6434 vsi->num_txq); 6435 6436 /* update Rx rings counters */ 6437 ice_for_each_rxq(vsi, i) { 6438 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6439 6440 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6441 vsi_stats->rx_packets += pkts; 6442 vsi_stats->rx_bytes += bytes; 6443 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6444 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6445 } 6446 6447 /* update XDP Tx rings counters */ 6448 if (ice_is_xdp_ena_vsi(vsi)) 6449 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6450 vsi->num_xdp_txq); 6451 6452 rcu_read_unlock(); 6453 6454 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6455 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6456 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6457 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6458 6459 kfree(vsi_stats); 6460 } 6461 6462 /** 6463 * ice_update_vsi_stats - Update VSI stats counters 6464 * @vsi: the VSI to be updated 6465 */ 6466 void ice_update_vsi_stats(struct ice_vsi *vsi) 6467 { 6468 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6469 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6470 struct ice_pf *pf = vsi->back; 6471 6472 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6473 test_bit(ICE_CFG_BUSY, pf->state)) 6474 return; 6475 6476 /* get stats as recorded by Tx/Rx rings */ 6477 ice_update_vsi_ring_stats(vsi); 6478 6479 /* get VSI stats as recorded by the hardware */ 6480 ice_update_eth_stats(vsi); 6481 6482 cur_ns->tx_errors = cur_es->tx_errors; 6483 cur_ns->rx_dropped = cur_es->rx_discards; 6484 cur_ns->tx_dropped = cur_es->tx_discards; 6485 cur_ns->multicast = cur_es->rx_multicast; 6486 6487 /* update some more netdev stats if this is main VSI */ 6488 if (vsi->type == ICE_VSI_PF) { 6489 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6490 cur_ns->rx_errors = pf->stats.crc_errors + 6491 pf->stats.illegal_bytes + 6492 pf->stats.rx_len_errors + 6493 pf->stats.rx_undersize + 6494 pf->hw_csum_rx_error + 6495 pf->stats.rx_jabber + 6496 pf->stats.rx_fragments + 6497 pf->stats.rx_oversize; 6498 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6499 /* record drops from the port level */ 6500 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6501 } 6502 } 6503 6504 /** 6505 * ice_update_pf_stats - Update PF port stats counters 6506 * @pf: PF whose stats needs to be updated 6507 */ 6508 void ice_update_pf_stats(struct ice_pf *pf) 6509 { 6510 struct ice_hw_port_stats *prev_ps, *cur_ps; 6511 struct ice_hw *hw = &pf->hw; 6512 u16 fd_ctr_base; 6513 u8 port; 6514 6515 port = hw->port_info->lport; 6516 prev_ps = &pf->stats_prev; 6517 cur_ps = &pf->stats; 6518 6519 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6520 &prev_ps->eth.rx_bytes, 6521 &cur_ps->eth.rx_bytes); 6522 6523 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6524 &prev_ps->eth.rx_unicast, 6525 &cur_ps->eth.rx_unicast); 6526 6527 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6528 &prev_ps->eth.rx_multicast, 6529 &cur_ps->eth.rx_multicast); 6530 6531 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6532 &prev_ps->eth.rx_broadcast, 6533 &cur_ps->eth.rx_broadcast); 6534 6535 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6536 &prev_ps->eth.rx_discards, 6537 &cur_ps->eth.rx_discards); 6538 6539 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6540 &prev_ps->eth.tx_bytes, 6541 &cur_ps->eth.tx_bytes); 6542 6543 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6544 &prev_ps->eth.tx_unicast, 6545 &cur_ps->eth.tx_unicast); 6546 6547 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6548 &prev_ps->eth.tx_multicast, 6549 &cur_ps->eth.tx_multicast); 6550 6551 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6552 &prev_ps->eth.tx_broadcast, 6553 &cur_ps->eth.tx_broadcast); 6554 6555 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6556 &prev_ps->tx_dropped_link_down, 6557 &cur_ps->tx_dropped_link_down); 6558 6559 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6560 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6561 6562 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6563 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6564 6565 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6566 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6567 6568 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6569 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6570 6571 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6572 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6573 6574 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6575 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6576 6577 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6578 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6579 6580 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6581 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6582 6583 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6584 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6585 6586 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6587 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6588 6589 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6590 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6591 6592 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6593 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6594 6595 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6596 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6597 6598 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6599 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6600 6601 fd_ctr_base = hw->fd_ctr_base; 6602 6603 ice_stat_update40(hw, 6604 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6605 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6606 &cur_ps->fd_sb_match); 6607 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6608 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6609 6610 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6611 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6612 6613 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6614 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6615 6616 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6617 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6618 6619 ice_update_dcb_stats(pf); 6620 6621 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6622 &prev_ps->crc_errors, &cur_ps->crc_errors); 6623 6624 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6625 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6626 6627 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6628 &prev_ps->mac_local_faults, 6629 &cur_ps->mac_local_faults); 6630 6631 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6632 &prev_ps->mac_remote_faults, 6633 &cur_ps->mac_remote_faults); 6634 6635 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6636 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6637 6638 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6639 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6640 6641 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6642 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6643 6644 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6645 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6646 6647 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6648 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6649 6650 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6651 6652 pf->stat_prev_loaded = true; 6653 } 6654 6655 /** 6656 * ice_get_stats64 - get statistics for network device structure 6657 * @netdev: network interface device structure 6658 * @stats: main device statistics structure 6659 */ 6660 static 6661 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6662 { 6663 struct ice_netdev_priv *np = netdev_priv(netdev); 6664 struct rtnl_link_stats64 *vsi_stats; 6665 struct ice_vsi *vsi = np->vsi; 6666 6667 vsi_stats = &vsi->net_stats; 6668 6669 if (!vsi->num_txq || !vsi->num_rxq) 6670 return; 6671 6672 /* netdev packet/byte stats come from ring counter. These are obtained 6673 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6674 * But, only call the update routine and read the registers if VSI is 6675 * not down. 6676 */ 6677 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6678 ice_update_vsi_ring_stats(vsi); 6679 stats->tx_packets = vsi_stats->tx_packets; 6680 stats->tx_bytes = vsi_stats->tx_bytes; 6681 stats->rx_packets = vsi_stats->rx_packets; 6682 stats->rx_bytes = vsi_stats->rx_bytes; 6683 6684 /* The rest of the stats can be read from the hardware but instead we 6685 * just return values that the watchdog task has already obtained from 6686 * the hardware. 6687 */ 6688 stats->multicast = vsi_stats->multicast; 6689 stats->tx_errors = vsi_stats->tx_errors; 6690 stats->tx_dropped = vsi_stats->tx_dropped; 6691 stats->rx_errors = vsi_stats->rx_errors; 6692 stats->rx_dropped = vsi_stats->rx_dropped; 6693 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6694 stats->rx_length_errors = vsi_stats->rx_length_errors; 6695 } 6696 6697 /** 6698 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6699 * @vsi: VSI having NAPI disabled 6700 */ 6701 static void ice_napi_disable_all(struct ice_vsi *vsi) 6702 { 6703 int q_idx; 6704 6705 if (!vsi->netdev) 6706 return; 6707 6708 ice_for_each_q_vector(vsi, q_idx) { 6709 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6710 6711 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6712 napi_disable(&q_vector->napi); 6713 6714 cancel_work_sync(&q_vector->tx.dim.work); 6715 cancel_work_sync(&q_vector->rx.dim.work); 6716 } 6717 } 6718 6719 /** 6720 * ice_down - Shutdown the connection 6721 * @vsi: The VSI being stopped 6722 * 6723 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6724 */ 6725 int ice_down(struct ice_vsi *vsi) 6726 { 6727 int i, tx_err, rx_err, vlan_err = 0; 6728 6729 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6730 6731 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6732 vlan_err = ice_vsi_del_vlan_zero(vsi); 6733 if (!ice_is_e810(&vsi->back->hw)) 6734 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6735 netif_carrier_off(vsi->netdev); 6736 netif_tx_disable(vsi->netdev); 6737 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6738 ice_eswitch_stop_all_tx_queues(vsi->back); 6739 } 6740 6741 ice_vsi_dis_irq(vsi); 6742 6743 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6744 if (tx_err) 6745 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6746 vsi->vsi_num, tx_err); 6747 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6748 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6749 if (tx_err) 6750 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6751 vsi->vsi_num, tx_err); 6752 } 6753 6754 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6755 if (rx_err) 6756 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6757 vsi->vsi_num, rx_err); 6758 6759 ice_napi_disable_all(vsi); 6760 6761 ice_for_each_txq(vsi, i) 6762 ice_clean_tx_ring(vsi->tx_rings[i]); 6763 6764 ice_for_each_rxq(vsi, i) 6765 ice_clean_rx_ring(vsi->rx_rings[i]); 6766 6767 if (tx_err || rx_err || vlan_err) { 6768 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6769 vsi->vsi_num, vsi->vsw->sw_id); 6770 return -EIO; 6771 } 6772 6773 return 0; 6774 } 6775 6776 /** 6777 * ice_down_up - shutdown the VSI connection and bring it up 6778 * @vsi: the VSI to be reconnected 6779 */ 6780 int ice_down_up(struct ice_vsi *vsi) 6781 { 6782 int ret; 6783 6784 /* if DOWN already set, nothing to do */ 6785 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6786 return 0; 6787 6788 ret = ice_down(vsi); 6789 if (ret) 6790 return ret; 6791 6792 ret = ice_up(vsi); 6793 if (ret) { 6794 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6795 return ret; 6796 } 6797 6798 return 0; 6799 } 6800 6801 /** 6802 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6803 * @vsi: VSI having resources allocated 6804 * 6805 * Return 0 on success, negative on failure 6806 */ 6807 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6808 { 6809 int i, err = 0; 6810 6811 if (!vsi->num_txq) { 6812 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6813 vsi->vsi_num); 6814 return -EINVAL; 6815 } 6816 6817 ice_for_each_txq(vsi, i) { 6818 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6819 6820 if (!ring) 6821 return -EINVAL; 6822 6823 if (vsi->netdev) 6824 ring->netdev = vsi->netdev; 6825 err = ice_setup_tx_ring(ring); 6826 if (err) 6827 break; 6828 } 6829 6830 return err; 6831 } 6832 6833 /** 6834 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6835 * @vsi: VSI having resources allocated 6836 * 6837 * Return 0 on success, negative on failure 6838 */ 6839 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6840 { 6841 int i, err = 0; 6842 6843 if (!vsi->num_rxq) { 6844 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6845 vsi->vsi_num); 6846 return -EINVAL; 6847 } 6848 6849 ice_for_each_rxq(vsi, i) { 6850 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6851 6852 if (!ring) 6853 return -EINVAL; 6854 6855 if (vsi->netdev) 6856 ring->netdev = vsi->netdev; 6857 err = ice_setup_rx_ring(ring); 6858 if (err) 6859 break; 6860 } 6861 6862 return err; 6863 } 6864 6865 /** 6866 * ice_vsi_open_ctrl - open control VSI for use 6867 * @vsi: the VSI to open 6868 * 6869 * Initialization of the Control VSI 6870 * 6871 * Returns 0 on success, negative value on error 6872 */ 6873 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6874 { 6875 char int_name[ICE_INT_NAME_STR_LEN]; 6876 struct ice_pf *pf = vsi->back; 6877 struct device *dev; 6878 int err; 6879 6880 dev = ice_pf_to_dev(pf); 6881 /* allocate descriptors */ 6882 err = ice_vsi_setup_tx_rings(vsi); 6883 if (err) 6884 goto err_setup_tx; 6885 6886 err = ice_vsi_setup_rx_rings(vsi); 6887 if (err) 6888 goto err_setup_rx; 6889 6890 err = ice_vsi_cfg(vsi); 6891 if (err) 6892 goto err_setup_rx; 6893 6894 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6895 dev_driver_string(dev), dev_name(dev)); 6896 err = ice_vsi_req_irq_msix(vsi, int_name); 6897 if (err) 6898 goto err_setup_rx; 6899 6900 ice_vsi_cfg_msix(vsi); 6901 6902 err = ice_vsi_start_all_rx_rings(vsi); 6903 if (err) 6904 goto err_up_complete; 6905 6906 clear_bit(ICE_VSI_DOWN, vsi->state); 6907 ice_vsi_ena_irq(vsi); 6908 6909 return 0; 6910 6911 err_up_complete: 6912 ice_down(vsi); 6913 err_setup_rx: 6914 ice_vsi_free_rx_rings(vsi); 6915 err_setup_tx: 6916 ice_vsi_free_tx_rings(vsi); 6917 6918 return err; 6919 } 6920 6921 /** 6922 * ice_vsi_open - Called when a network interface is made active 6923 * @vsi: the VSI to open 6924 * 6925 * Initialization of the VSI 6926 * 6927 * Returns 0 on success, negative value on error 6928 */ 6929 int ice_vsi_open(struct ice_vsi *vsi) 6930 { 6931 char int_name[ICE_INT_NAME_STR_LEN]; 6932 struct ice_pf *pf = vsi->back; 6933 int err; 6934 6935 /* allocate descriptors */ 6936 err = ice_vsi_setup_tx_rings(vsi); 6937 if (err) 6938 goto err_setup_tx; 6939 6940 err = ice_vsi_setup_rx_rings(vsi); 6941 if (err) 6942 goto err_setup_rx; 6943 6944 err = ice_vsi_cfg(vsi); 6945 if (err) 6946 goto err_setup_rx; 6947 6948 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6949 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6950 err = ice_vsi_req_irq_msix(vsi, int_name); 6951 if (err) 6952 goto err_setup_rx; 6953 6954 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 6955 6956 if (vsi->type == ICE_VSI_PF) { 6957 /* Notify the stack of the actual queue counts. */ 6958 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6959 if (err) 6960 goto err_set_qs; 6961 6962 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6963 if (err) 6964 goto err_set_qs; 6965 } 6966 6967 err = ice_up_complete(vsi); 6968 if (err) 6969 goto err_up_complete; 6970 6971 return 0; 6972 6973 err_up_complete: 6974 ice_down(vsi); 6975 err_set_qs: 6976 ice_vsi_free_irq(vsi); 6977 err_setup_rx: 6978 ice_vsi_free_rx_rings(vsi); 6979 err_setup_tx: 6980 ice_vsi_free_tx_rings(vsi); 6981 6982 return err; 6983 } 6984 6985 /** 6986 * ice_vsi_release_all - Delete all VSIs 6987 * @pf: PF from which all VSIs are being removed 6988 */ 6989 static void ice_vsi_release_all(struct ice_pf *pf) 6990 { 6991 int err, i; 6992 6993 if (!pf->vsi) 6994 return; 6995 6996 ice_for_each_vsi(pf, i) { 6997 if (!pf->vsi[i]) 6998 continue; 6999 7000 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7001 continue; 7002 7003 err = ice_vsi_release(pf->vsi[i]); 7004 if (err) 7005 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7006 i, err, pf->vsi[i]->vsi_num); 7007 } 7008 } 7009 7010 /** 7011 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7012 * @pf: pointer to the PF instance 7013 * @type: VSI type to rebuild 7014 * 7015 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7016 */ 7017 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7018 { 7019 struct device *dev = ice_pf_to_dev(pf); 7020 int i, err; 7021 7022 ice_for_each_vsi(pf, i) { 7023 struct ice_vsi *vsi = pf->vsi[i]; 7024 7025 if (!vsi || vsi->type != type) 7026 continue; 7027 7028 /* rebuild the VSI */ 7029 err = ice_vsi_rebuild(vsi, true); 7030 if (err) { 7031 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7032 err, vsi->idx, ice_vsi_type_str(type)); 7033 return err; 7034 } 7035 7036 /* replay filters for the VSI */ 7037 err = ice_replay_vsi(&pf->hw, vsi->idx); 7038 if (err) { 7039 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7040 err, vsi->idx, ice_vsi_type_str(type)); 7041 return err; 7042 } 7043 7044 /* Re-map HW VSI number, using VSI handle that has been 7045 * previously validated in ice_replay_vsi() call above 7046 */ 7047 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7048 7049 /* enable the VSI */ 7050 err = ice_ena_vsi(vsi, false); 7051 if (err) { 7052 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7053 err, vsi->idx, ice_vsi_type_str(type)); 7054 return err; 7055 } 7056 7057 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7058 ice_vsi_type_str(type)); 7059 } 7060 7061 return 0; 7062 } 7063 7064 /** 7065 * ice_update_pf_netdev_link - Update PF netdev link status 7066 * @pf: pointer to the PF instance 7067 */ 7068 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7069 { 7070 bool link_up; 7071 int i; 7072 7073 ice_for_each_vsi(pf, i) { 7074 struct ice_vsi *vsi = pf->vsi[i]; 7075 7076 if (!vsi || vsi->type != ICE_VSI_PF) 7077 return; 7078 7079 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7080 if (link_up) { 7081 netif_carrier_on(pf->vsi[i]->netdev); 7082 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7083 } else { 7084 netif_carrier_off(pf->vsi[i]->netdev); 7085 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7086 } 7087 } 7088 } 7089 7090 /** 7091 * ice_rebuild - rebuild after reset 7092 * @pf: PF to rebuild 7093 * @reset_type: type of reset 7094 * 7095 * Do not rebuild VF VSI in this flow because that is already handled via 7096 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7097 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7098 * to reset/rebuild all the VF VSI twice. 7099 */ 7100 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7101 { 7102 struct device *dev = ice_pf_to_dev(pf); 7103 struct ice_hw *hw = &pf->hw; 7104 bool dvm; 7105 int err; 7106 7107 if (test_bit(ICE_DOWN, pf->state)) 7108 goto clear_recovery; 7109 7110 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7111 7112 #define ICE_EMP_RESET_SLEEP_MS 5000 7113 if (reset_type == ICE_RESET_EMPR) { 7114 /* If an EMP reset has occurred, any previously pending flash 7115 * update will have completed. We no longer know whether or 7116 * not the NVM update EMP reset is restricted. 7117 */ 7118 pf->fw_emp_reset_disabled = false; 7119 7120 msleep(ICE_EMP_RESET_SLEEP_MS); 7121 } 7122 7123 err = ice_init_all_ctrlq(hw); 7124 if (err) { 7125 dev_err(dev, "control queues init failed %d\n", err); 7126 goto err_init_ctrlq; 7127 } 7128 7129 /* if DDP was previously loaded successfully */ 7130 if (!ice_is_safe_mode(pf)) { 7131 /* reload the SW DB of filter tables */ 7132 if (reset_type == ICE_RESET_PFR) 7133 ice_fill_blk_tbls(hw); 7134 else 7135 /* Reload DDP Package after CORER/GLOBR reset */ 7136 ice_load_pkg(NULL, pf); 7137 } 7138 7139 err = ice_clear_pf_cfg(hw); 7140 if (err) { 7141 dev_err(dev, "clear PF configuration failed %d\n", err); 7142 goto err_init_ctrlq; 7143 } 7144 7145 ice_clear_pxe_mode(hw); 7146 7147 err = ice_init_nvm(hw); 7148 if (err) { 7149 dev_err(dev, "ice_init_nvm failed %d\n", err); 7150 goto err_init_ctrlq; 7151 } 7152 7153 err = ice_get_caps(hw); 7154 if (err) { 7155 dev_err(dev, "ice_get_caps failed %d\n", err); 7156 goto err_init_ctrlq; 7157 } 7158 7159 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7160 if (err) { 7161 dev_err(dev, "set_mac_cfg failed %d\n", err); 7162 goto err_init_ctrlq; 7163 } 7164 7165 dvm = ice_is_dvm_ena(hw); 7166 7167 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7168 if (err) 7169 goto err_init_ctrlq; 7170 7171 err = ice_sched_init_port(hw->port_info); 7172 if (err) 7173 goto err_sched_init_port; 7174 7175 /* start misc vector */ 7176 err = ice_req_irq_msix_misc(pf); 7177 if (err) { 7178 dev_err(dev, "misc vector setup failed: %d\n", err); 7179 goto err_sched_init_port; 7180 } 7181 7182 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7183 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7184 if (!rd32(hw, PFQF_FD_SIZE)) { 7185 u16 unused, guar, b_effort; 7186 7187 guar = hw->func_caps.fd_fltr_guar; 7188 b_effort = hw->func_caps.fd_fltr_best_effort; 7189 7190 /* force guaranteed filter pool for PF */ 7191 ice_alloc_fd_guar_item(hw, &unused, guar); 7192 /* force shared filter pool for PF */ 7193 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7194 } 7195 } 7196 7197 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7198 ice_dcb_rebuild(pf); 7199 7200 /* If the PF previously had enabled PTP, PTP init needs to happen before 7201 * the VSI rebuild. If not, this causes the PTP link status events to 7202 * fail. 7203 */ 7204 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7205 ice_ptp_reset(pf); 7206 7207 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7208 ice_gnss_init(pf); 7209 7210 /* rebuild PF VSI */ 7211 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7212 if (err) { 7213 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7214 goto err_vsi_rebuild; 7215 } 7216 7217 /* configure PTP timestamping after VSI rebuild */ 7218 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7219 ice_ptp_cfg_timestamp(pf, false); 7220 7221 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7222 if (err) { 7223 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7224 goto err_vsi_rebuild; 7225 } 7226 7227 if (reset_type == ICE_RESET_PFR) { 7228 err = ice_rebuild_channels(pf); 7229 if (err) { 7230 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7231 err); 7232 goto err_vsi_rebuild; 7233 } 7234 } 7235 7236 /* If Flow Director is active */ 7237 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7238 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7239 if (err) { 7240 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7241 goto err_vsi_rebuild; 7242 } 7243 7244 /* replay HW Flow Director recipes */ 7245 if (hw->fdir_prof) 7246 ice_fdir_replay_flows(hw); 7247 7248 /* replay Flow Director filters */ 7249 ice_fdir_replay_fltrs(pf); 7250 7251 ice_rebuild_arfs(pf); 7252 } 7253 7254 ice_update_pf_netdev_link(pf); 7255 7256 /* tell the firmware we are up */ 7257 err = ice_send_version(pf); 7258 if (err) { 7259 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7260 err); 7261 goto err_vsi_rebuild; 7262 } 7263 7264 ice_replay_post(hw); 7265 7266 /* if we get here, reset flow is successful */ 7267 clear_bit(ICE_RESET_FAILED, pf->state); 7268 7269 ice_plug_aux_dev(pf); 7270 return; 7271 7272 err_vsi_rebuild: 7273 err_sched_init_port: 7274 ice_sched_cleanup_all(hw); 7275 err_init_ctrlq: 7276 ice_shutdown_all_ctrlq(hw); 7277 set_bit(ICE_RESET_FAILED, pf->state); 7278 clear_recovery: 7279 /* set this bit in PF state to control service task scheduling */ 7280 set_bit(ICE_NEEDS_RESTART, pf->state); 7281 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7282 } 7283 7284 /** 7285 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7286 * @vsi: Pointer to VSI structure 7287 */ 7288 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7289 { 7290 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7291 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7292 else 7293 return ICE_RXBUF_3072; 7294 } 7295 7296 /** 7297 * ice_change_mtu - NDO callback to change the MTU 7298 * @netdev: network interface device structure 7299 * @new_mtu: new value for maximum frame size 7300 * 7301 * Returns 0 on success, negative on failure 7302 */ 7303 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7304 { 7305 struct ice_netdev_priv *np = netdev_priv(netdev); 7306 struct ice_vsi *vsi = np->vsi; 7307 struct ice_pf *pf = vsi->back; 7308 u8 count = 0; 7309 int err = 0; 7310 7311 if (new_mtu == (int)netdev->mtu) { 7312 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7313 return 0; 7314 } 7315 7316 if (ice_is_xdp_ena_vsi(vsi)) { 7317 int frame_size = ice_max_xdp_frame_size(vsi); 7318 7319 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7320 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7321 frame_size - ICE_ETH_PKT_HDR_PAD); 7322 return -EINVAL; 7323 } 7324 } 7325 7326 /* if a reset is in progress, wait for some time for it to complete */ 7327 do { 7328 if (ice_is_reset_in_progress(pf->state)) { 7329 count++; 7330 usleep_range(1000, 2000); 7331 } else { 7332 break; 7333 } 7334 7335 } while (count < 100); 7336 7337 if (count == 100) { 7338 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7339 return -EBUSY; 7340 } 7341 7342 netdev->mtu = (unsigned int)new_mtu; 7343 7344 /* if VSI is up, bring it down and then back up */ 7345 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7346 err = ice_down(vsi); 7347 if (err) { 7348 netdev_err(netdev, "change MTU if_down err %d\n", err); 7349 return err; 7350 } 7351 7352 err = ice_up(vsi); 7353 if (err) { 7354 netdev_err(netdev, "change MTU if_up err %d\n", err); 7355 return err; 7356 } 7357 } 7358 7359 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7360 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7361 7362 return err; 7363 } 7364 7365 /** 7366 * ice_eth_ioctl - Access the hwtstamp interface 7367 * @netdev: network interface device structure 7368 * @ifr: interface request data 7369 * @cmd: ioctl command 7370 */ 7371 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7372 { 7373 struct ice_netdev_priv *np = netdev_priv(netdev); 7374 struct ice_pf *pf = np->vsi->back; 7375 7376 switch (cmd) { 7377 case SIOCGHWTSTAMP: 7378 return ice_ptp_get_ts_config(pf, ifr); 7379 case SIOCSHWTSTAMP: 7380 return ice_ptp_set_ts_config(pf, ifr); 7381 default: 7382 return -EOPNOTSUPP; 7383 } 7384 } 7385 7386 /** 7387 * ice_aq_str - convert AQ err code to a string 7388 * @aq_err: the AQ error code to convert 7389 */ 7390 const char *ice_aq_str(enum ice_aq_err aq_err) 7391 { 7392 switch (aq_err) { 7393 case ICE_AQ_RC_OK: 7394 return "OK"; 7395 case ICE_AQ_RC_EPERM: 7396 return "ICE_AQ_RC_EPERM"; 7397 case ICE_AQ_RC_ENOENT: 7398 return "ICE_AQ_RC_ENOENT"; 7399 case ICE_AQ_RC_ENOMEM: 7400 return "ICE_AQ_RC_ENOMEM"; 7401 case ICE_AQ_RC_EBUSY: 7402 return "ICE_AQ_RC_EBUSY"; 7403 case ICE_AQ_RC_EEXIST: 7404 return "ICE_AQ_RC_EEXIST"; 7405 case ICE_AQ_RC_EINVAL: 7406 return "ICE_AQ_RC_EINVAL"; 7407 case ICE_AQ_RC_ENOSPC: 7408 return "ICE_AQ_RC_ENOSPC"; 7409 case ICE_AQ_RC_ENOSYS: 7410 return "ICE_AQ_RC_ENOSYS"; 7411 case ICE_AQ_RC_EMODE: 7412 return "ICE_AQ_RC_EMODE"; 7413 case ICE_AQ_RC_ENOSEC: 7414 return "ICE_AQ_RC_ENOSEC"; 7415 case ICE_AQ_RC_EBADSIG: 7416 return "ICE_AQ_RC_EBADSIG"; 7417 case ICE_AQ_RC_ESVN: 7418 return "ICE_AQ_RC_ESVN"; 7419 case ICE_AQ_RC_EBADMAN: 7420 return "ICE_AQ_RC_EBADMAN"; 7421 case ICE_AQ_RC_EBADBUF: 7422 return "ICE_AQ_RC_EBADBUF"; 7423 } 7424 7425 return "ICE_AQ_RC_UNKNOWN"; 7426 } 7427 7428 /** 7429 * ice_set_rss_lut - Set RSS LUT 7430 * @vsi: Pointer to VSI structure 7431 * @lut: Lookup table 7432 * @lut_size: Lookup table size 7433 * 7434 * Returns 0 on success, negative on failure 7435 */ 7436 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7437 { 7438 struct ice_aq_get_set_rss_lut_params params = {}; 7439 struct ice_hw *hw = &vsi->back->hw; 7440 int status; 7441 7442 if (!lut) 7443 return -EINVAL; 7444 7445 params.vsi_handle = vsi->idx; 7446 params.lut_size = lut_size; 7447 params.lut_type = vsi->rss_lut_type; 7448 params.lut = lut; 7449 7450 status = ice_aq_set_rss_lut(hw, ¶ms); 7451 if (status) 7452 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7453 status, ice_aq_str(hw->adminq.sq_last_status)); 7454 7455 return status; 7456 } 7457 7458 /** 7459 * ice_set_rss_key - Set RSS key 7460 * @vsi: Pointer to the VSI structure 7461 * @seed: RSS hash seed 7462 * 7463 * Returns 0 on success, negative on failure 7464 */ 7465 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7466 { 7467 struct ice_hw *hw = &vsi->back->hw; 7468 int status; 7469 7470 if (!seed) 7471 return -EINVAL; 7472 7473 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7474 if (status) 7475 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7476 status, ice_aq_str(hw->adminq.sq_last_status)); 7477 7478 return status; 7479 } 7480 7481 /** 7482 * ice_get_rss_lut - Get RSS LUT 7483 * @vsi: Pointer to VSI structure 7484 * @lut: Buffer to store the lookup table entries 7485 * @lut_size: Size of buffer to store the lookup table entries 7486 * 7487 * Returns 0 on success, negative on failure 7488 */ 7489 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7490 { 7491 struct ice_aq_get_set_rss_lut_params params = {}; 7492 struct ice_hw *hw = &vsi->back->hw; 7493 int status; 7494 7495 if (!lut) 7496 return -EINVAL; 7497 7498 params.vsi_handle = vsi->idx; 7499 params.lut_size = lut_size; 7500 params.lut_type = vsi->rss_lut_type; 7501 params.lut = lut; 7502 7503 status = ice_aq_get_rss_lut(hw, ¶ms); 7504 if (status) 7505 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7506 status, ice_aq_str(hw->adminq.sq_last_status)); 7507 7508 return status; 7509 } 7510 7511 /** 7512 * ice_get_rss_key - Get RSS key 7513 * @vsi: Pointer to VSI structure 7514 * @seed: Buffer to store the key in 7515 * 7516 * Returns 0 on success, negative on failure 7517 */ 7518 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7519 { 7520 struct ice_hw *hw = &vsi->back->hw; 7521 int status; 7522 7523 if (!seed) 7524 return -EINVAL; 7525 7526 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7527 if (status) 7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7529 status, ice_aq_str(hw->adminq.sq_last_status)); 7530 7531 return status; 7532 } 7533 7534 /** 7535 * ice_bridge_getlink - Get the hardware bridge mode 7536 * @skb: skb buff 7537 * @pid: process ID 7538 * @seq: RTNL message seq 7539 * @dev: the netdev being configured 7540 * @filter_mask: filter mask passed in 7541 * @nlflags: netlink flags passed in 7542 * 7543 * Return the bridge mode (VEB/VEPA) 7544 */ 7545 static int 7546 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7547 struct net_device *dev, u32 filter_mask, int nlflags) 7548 { 7549 struct ice_netdev_priv *np = netdev_priv(dev); 7550 struct ice_vsi *vsi = np->vsi; 7551 struct ice_pf *pf = vsi->back; 7552 u16 bmode; 7553 7554 bmode = pf->first_sw->bridge_mode; 7555 7556 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7557 filter_mask, NULL); 7558 } 7559 7560 /** 7561 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7562 * @vsi: Pointer to VSI structure 7563 * @bmode: Hardware bridge mode (VEB/VEPA) 7564 * 7565 * Returns 0 on success, negative on failure 7566 */ 7567 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7568 { 7569 struct ice_aqc_vsi_props *vsi_props; 7570 struct ice_hw *hw = &vsi->back->hw; 7571 struct ice_vsi_ctx *ctxt; 7572 int ret; 7573 7574 vsi_props = &vsi->info; 7575 7576 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7577 if (!ctxt) 7578 return -ENOMEM; 7579 7580 ctxt->info = vsi->info; 7581 7582 if (bmode == BRIDGE_MODE_VEB) 7583 /* change from VEPA to VEB mode */ 7584 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7585 else 7586 /* change from VEB to VEPA mode */ 7587 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7588 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7589 7590 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7591 if (ret) { 7592 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7593 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7594 goto out; 7595 } 7596 /* Update sw flags for book keeping */ 7597 vsi_props->sw_flags = ctxt->info.sw_flags; 7598 7599 out: 7600 kfree(ctxt); 7601 return ret; 7602 } 7603 7604 /** 7605 * ice_bridge_setlink - Set the hardware bridge mode 7606 * @dev: the netdev being configured 7607 * @nlh: RTNL message 7608 * @flags: bridge setlink flags 7609 * @extack: netlink extended ack 7610 * 7611 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7612 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7613 * not already set for all VSIs connected to this switch. And also update the 7614 * unicast switch filter rules for the corresponding switch of the netdev. 7615 */ 7616 static int 7617 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7618 u16 __always_unused flags, 7619 struct netlink_ext_ack __always_unused *extack) 7620 { 7621 struct ice_netdev_priv *np = netdev_priv(dev); 7622 struct ice_pf *pf = np->vsi->back; 7623 struct nlattr *attr, *br_spec; 7624 struct ice_hw *hw = &pf->hw; 7625 struct ice_sw *pf_sw; 7626 int rem, v, err = 0; 7627 7628 pf_sw = pf->first_sw; 7629 /* find the attribute in the netlink message */ 7630 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7631 7632 nla_for_each_nested(attr, br_spec, rem) { 7633 __u16 mode; 7634 7635 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7636 continue; 7637 mode = nla_get_u16(attr); 7638 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7639 return -EINVAL; 7640 /* Continue if bridge mode is not being flipped */ 7641 if (mode == pf_sw->bridge_mode) 7642 continue; 7643 /* Iterates through the PF VSI list and update the loopback 7644 * mode of the VSI 7645 */ 7646 ice_for_each_vsi(pf, v) { 7647 if (!pf->vsi[v]) 7648 continue; 7649 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7650 if (err) 7651 return err; 7652 } 7653 7654 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7655 /* Update the unicast switch filter rules for the corresponding 7656 * switch of the netdev 7657 */ 7658 err = ice_update_sw_rule_bridge_mode(hw); 7659 if (err) { 7660 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7661 mode, err, 7662 ice_aq_str(hw->adminq.sq_last_status)); 7663 /* revert hw->evb_veb */ 7664 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7665 return err; 7666 } 7667 7668 pf_sw->bridge_mode = mode; 7669 } 7670 7671 return 0; 7672 } 7673 7674 /** 7675 * ice_tx_timeout - Respond to a Tx Hang 7676 * @netdev: network interface device structure 7677 * @txqueue: Tx queue 7678 */ 7679 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7680 { 7681 struct ice_netdev_priv *np = netdev_priv(netdev); 7682 struct ice_tx_ring *tx_ring = NULL; 7683 struct ice_vsi *vsi = np->vsi; 7684 struct ice_pf *pf = vsi->back; 7685 u32 i; 7686 7687 pf->tx_timeout_count++; 7688 7689 /* Check if PFC is enabled for the TC to which the queue belongs 7690 * to. If yes then Tx timeout is not caused by a hung queue, no 7691 * need to reset and rebuild 7692 */ 7693 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7694 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7695 txqueue); 7696 return; 7697 } 7698 7699 /* now that we have an index, find the tx_ring struct */ 7700 ice_for_each_txq(vsi, i) 7701 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7702 if (txqueue == vsi->tx_rings[i]->q_index) { 7703 tx_ring = vsi->tx_rings[i]; 7704 break; 7705 } 7706 7707 /* Reset recovery level if enough time has elapsed after last timeout. 7708 * Also ensure no new reset action happens before next timeout period. 7709 */ 7710 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7711 pf->tx_timeout_recovery_level = 1; 7712 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7713 netdev->watchdog_timeo))) 7714 return; 7715 7716 if (tx_ring) { 7717 struct ice_hw *hw = &pf->hw; 7718 u32 head, val = 0; 7719 7720 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7721 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7722 /* Read interrupt register */ 7723 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7724 7725 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7726 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7727 head, tx_ring->next_to_use, val); 7728 } 7729 7730 pf->tx_timeout_last_recovery = jiffies; 7731 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7732 pf->tx_timeout_recovery_level, txqueue); 7733 7734 switch (pf->tx_timeout_recovery_level) { 7735 case 1: 7736 set_bit(ICE_PFR_REQ, pf->state); 7737 break; 7738 case 2: 7739 set_bit(ICE_CORER_REQ, pf->state); 7740 break; 7741 case 3: 7742 set_bit(ICE_GLOBR_REQ, pf->state); 7743 break; 7744 default: 7745 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7746 set_bit(ICE_DOWN, pf->state); 7747 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7748 set_bit(ICE_SERVICE_DIS, pf->state); 7749 break; 7750 } 7751 7752 ice_service_task_schedule(pf); 7753 pf->tx_timeout_recovery_level++; 7754 } 7755 7756 /** 7757 * ice_setup_tc_cls_flower - flower classifier offloads 7758 * @np: net device to configure 7759 * @filter_dev: device on which filter is added 7760 * @cls_flower: offload data 7761 */ 7762 static int 7763 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7764 struct net_device *filter_dev, 7765 struct flow_cls_offload *cls_flower) 7766 { 7767 struct ice_vsi *vsi = np->vsi; 7768 7769 if (cls_flower->common.chain_index) 7770 return -EOPNOTSUPP; 7771 7772 switch (cls_flower->command) { 7773 case FLOW_CLS_REPLACE: 7774 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7775 case FLOW_CLS_DESTROY: 7776 return ice_del_cls_flower(vsi, cls_flower); 7777 default: 7778 return -EINVAL; 7779 } 7780 } 7781 7782 /** 7783 * ice_setup_tc_block_cb - callback handler registered for TC block 7784 * @type: TC SETUP type 7785 * @type_data: TC flower offload data that contains user input 7786 * @cb_priv: netdev private data 7787 */ 7788 static int 7789 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7790 { 7791 struct ice_netdev_priv *np = cb_priv; 7792 7793 switch (type) { 7794 case TC_SETUP_CLSFLOWER: 7795 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7796 type_data); 7797 default: 7798 return -EOPNOTSUPP; 7799 } 7800 } 7801 7802 /** 7803 * ice_validate_mqprio_qopt - Validate TCF input parameters 7804 * @vsi: Pointer to VSI 7805 * @mqprio_qopt: input parameters for mqprio queue configuration 7806 * 7807 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7808 * needed), and make sure user doesn't specify qcount and BW rate limit 7809 * for TCs, which are more than "num_tc" 7810 */ 7811 static int 7812 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7813 struct tc_mqprio_qopt_offload *mqprio_qopt) 7814 { 7815 u64 sum_max_rate = 0, sum_min_rate = 0; 7816 int non_power_of_2_qcount = 0; 7817 struct ice_pf *pf = vsi->back; 7818 int max_rss_q_cnt = 0; 7819 struct device *dev; 7820 int i, speed; 7821 u8 num_tc; 7822 7823 if (vsi->type != ICE_VSI_PF) 7824 return -EINVAL; 7825 7826 if (mqprio_qopt->qopt.offset[0] != 0 || 7827 mqprio_qopt->qopt.num_tc < 1 || 7828 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7829 return -EINVAL; 7830 7831 dev = ice_pf_to_dev(pf); 7832 vsi->ch_rss_size = 0; 7833 num_tc = mqprio_qopt->qopt.num_tc; 7834 7835 for (i = 0; num_tc; i++) { 7836 int qcount = mqprio_qopt->qopt.count[i]; 7837 u64 max_rate, min_rate, rem; 7838 7839 if (!qcount) 7840 return -EINVAL; 7841 7842 if (is_power_of_2(qcount)) { 7843 if (non_power_of_2_qcount && 7844 qcount > non_power_of_2_qcount) { 7845 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7846 qcount, non_power_of_2_qcount); 7847 return -EINVAL; 7848 } 7849 if (qcount > max_rss_q_cnt) 7850 max_rss_q_cnt = qcount; 7851 } else { 7852 if (non_power_of_2_qcount && 7853 qcount != non_power_of_2_qcount) { 7854 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7855 qcount, non_power_of_2_qcount); 7856 return -EINVAL; 7857 } 7858 if (qcount < max_rss_q_cnt) { 7859 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7860 qcount, max_rss_q_cnt); 7861 return -EINVAL; 7862 } 7863 max_rss_q_cnt = qcount; 7864 non_power_of_2_qcount = qcount; 7865 } 7866 7867 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7868 * converts the bandwidth rate limit into Bytes/s when 7869 * passing it down to the driver. So convert input bandwidth 7870 * from Bytes/s to Kbps 7871 */ 7872 max_rate = mqprio_qopt->max_rate[i]; 7873 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7874 sum_max_rate += max_rate; 7875 7876 /* min_rate is minimum guaranteed rate and it can't be zero */ 7877 min_rate = mqprio_qopt->min_rate[i]; 7878 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7879 sum_min_rate += min_rate; 7880 7881 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7882 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7883 min_rate, ICE_MIN_BW_LIMIT); 7884 return -EINVAL; 7885 } 7886 7887 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7888 if (rem) { 7889 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7890 i, ICE_MIN_BW_LIMIT); 7891 return -EINVAL; 7892 } 7893 7894 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7895 if (rem) { 7896 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7897 i, ICE_MIN_BW_LIMIT); 7898 return -EINVAL; 7899 } 7900 7901 /* min_rate can't be more than max_rate, except when max_rate 7902 * is zero (implies max_rate sought is max line rate). In such 7903 * a case min_rate can be more than max. 7904 */ 7905 if (max_rate && min_rate > max_rate) { 7906 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7907 min_rate, max_rate); 7908 return -EINVAL; 7909 } 7910 7911 if (i >= mqprio_qopt->qopt.num_tc - 1) 7912 break; 7913 if (mqprio_qopt->qopt.offset[i + 1] != 7914 (mqprio_qopt->qopt.offset[i] + qcount)) 7915 return -EINVAL; 7916 } 7917 if (vsi->num_rxq < 7918 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7919 return -EINVAL; 7920 if (vsi->num_txq < 7921 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7922 return -EINVAL; 7923 7924 speed = ice_get_link_speed_kbps(vsi); 7925 if (sum_max_rate && sum_max_rate > (u64)speed) { 7926 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7927 sum_max_rate, speed); 7928 return -EINVAL; 7929 } 7930 if (sum_min_rate && sum_min_rate > (u64)speed) { 7931 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7932 sum_min_rate, speed); 7933 return -EINVAL; 7934 } 7935 7936 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7937 vsi->ch_rss_size = max_rss_q_cnt; 7938 7939 return 0; 7940 } 7941 7942 /** 7943 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7944 * @pf: ptr to PF device 7945 * @vsi: ptr to VSI 7946 */ 7947 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7948 { 7949 struct device *dev = ice_pf_to_dev(pf); 7950 bool added = false; 7951 struct ice_hw *hw; 7952 int flow; 7953 7954 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7955 return -EINVAL; 7956 7957 hw = &pf->hw; 7958 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7959 struct ice_fd_hw_prof *prof; 7960 int tun, status; 7961 u64 entry_h; 7962 7963 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7964 hw->fdir_prof[flow]->cnt)) 7965 continue; 7966 7967 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7968 enum ice_flow_priority prio; 7969 u64 prof_id; 7970 7971 /* add this VSI to FDir profile for this flow */ 7972 prio = ICE_FLOW_PRIO_NORMAL; 7973 prof = hw->fdir_prof[flow]; 7974 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7975 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7976 prof->vsi_h[0], vsi->idx, 7977 prio, prof->fdir_seg[tun], 7978 &entry_h); 7979 if (status) { 7980 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7981 vsi->idx, flow); 7982 continue; 7983 } 7984 7985 prof->entry_h[prof->cnt][tun] = entry_h; 7986 } 7987 7988 /* store VSI for filter replay and delete */ 7989 prof->vsi_h[prof->cnt] = vsi->idx; 7990 prof->cnt++; 7991 7992 added = true; 7993 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7994 flow); 7995 } 7996 7997 if (!added) 7998 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7999 8000 return 0; 8001 } 8002 8003 /** 8004 * ice_add_channel - add a channel by adding VSI 8005 * @pf: ptr to PF device 8006 * @sw_id: underlying HW switching element ID 8007 * @ch: ptr to channel structure 8008 * 8009 * Add a channel (VSI) using add_vsi and queue_map 8010 */ 8011 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8012 { 8013 struct device *dev = ice_pf_to_dev(pf); 8014 struct ice_vsi *vsi; 8015 8016 if (ch->type != ICE_VSI_CHNL) { 8017 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8018 return -EINVAL; 8019 } 8020 8021 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8022 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8023 dev_err(dev, "create chnl VSI failure\n"); 8024 return -EINVAL; 8025 } 8026 8027 ice_add_vsi_to_fdir(pf, vsi); 8028 8029 ch->sw_id = sw_id; 8030 ch->vsi_num = vsi->vsi_num; 8031 ch->info.mapping_flags = vsi->info.mapping_flags; 8032 ch->ch_vsi = vsi; 8033 /* set the back pointer of channel for newly created VSI */ 8034 vsi->ch = ch; 8035 8036 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8037 sizeof(vsi->info.q_mapping)); 8038 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8039 sizeof(vsi->info.tc_mapping)); 8040 8041 return 0; 8042 } 8043 8044 /** 8045 * ice_chnl_cfg_res 8046 * @vsi: the VSI being setup 8047 * @ch: ptr to channel structure 8048 * 8049 * Configure channel specific resources such as rings, vector. 8050 */ 8051 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8052 { 8053 int i; 8054 8055 for (i = 0; i < ch->num_txq; i++) { 8056 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8057 struct ice_ring_container *rc; 8058 struct ice_tx_ring *tx_ring; 8059 struct ice_rx_ring *rx_ring; 8060 8061 tx_ring = vsi->tx_rings[ch->base_q + i]; 8062 rx_ring = vsi->rx_rings[ch->base_q + i]; 8063 if (!tx_ring || !rx_ring) 8064 continue; 8065 8066 /* setup ring being channel enabled */ 8067 tx_ring->ch = ch; 8068 rx_ring->ch = ch; 8069 8070 /* following code block sets up vector specific attributes */ 8071 tx_q_vector = tx_ring->q_vector; 8072 rx_q_vector = rx_ring->q_vector; 8073 if (!tx_q_vector && !rx_q_vector) 8074 continue; 8075 8076 if (tx_q_vector) { 8077 tx_q_vector->ch = ch; 8078 /* setup Tx and Rx ITR setting if DIM is off */ 8079 rc = &tx_q_vector->tx; 8080 if (!ITR_IS_DYNAMIC(rc)) 8081 ice_write_itr(rc, rc->itr_setting); 8082 } 8083 if (rx_q_vector) { 8084 rx_q_vector->ch = ch; 8085 /* setup Tx and Rx ITR setting if DIM is off */ 8086 rc = &rx_q_vector->rx; 8087 if (!ITR_IS_DYNAMIC(rc)) 8088 ice_write_itr(rc, rc->itr_setting); 8089 } 8090 } 8091 8092 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8093 * GLINT_ITR register would have written to perform in-context 8094 * update, hence perform flush 8095 */ 8096 if (ch->num_txq || ch->num_rxq) 8097 ice_flush(&vsi->back->hw); 8098 } 8099 8100 /** 8101 * ice_cfg_chnl_all_res - configure channel resources 8102 * @vsi: pte to main_vsi 8103 * @ch: ptr to channel structure 8104 * 8105 * This function configures channel specific resources such as flow-director 8106 * counter index, and other resources such as queues, vectors, ITR settings 8107 */ 8108 static void 8109 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8110 { 8111 /* configure channel (aka ADQ) resources such as queues, vectors, 8112 * ITR settings for channel specific vectors and anything else 8113 */ 8114 ice_chnl_cfg_res(vsi, ch); 8115 } 8116 8117 /** 8118 * ice_setup_hw_channel - setup new channel 8119 * @pf: ptr to PF device 8120 * @vsi: the VSI being setup 8121 * @ch: ptr to channel structure 8122 * @sw_id: underlying HW switching element ID 8123 * @type: type of channel to be created (VMDq2/VF) 8124 * 8125 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8126 * and configures Tx rings accordingly 8127 */ 8128 static int 8129 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8130 struct ice_channel *ch, u16 sw_id, u8 type) 8131 { 8132 struct device *dev = ice_pf_to_dev(pf); 8133 int ret; 8134 8135 ch->base_q = vsi->next_base_q; 8136 ch->type = type; 8137 8138 ret = ice_add_channel(pf, sw_id, ch); 8139 if (ret) { 8140 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8141 return ret; 8142 } 8143 8144 /* configure/setup ADQ specific resources */ 8145 ice_cfg_chnl_all_res(vsi, ch); 8146 8147 /* make sure to update the next_base_q so that subsequent channel's 8148 * (aka ADQ) VSI queue map is correct 8149 */ 8150 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8151 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8152 ch->num_rxq); 8153 8154 return 0; 8155 } 8156 8157 /** 8158 * ice_setup_channel - setup new channel using uplink element 8159 * @pf: ptr to PF device 8160 * @vsi: the VSI being setup 8161 * @ch: ptr to channel structure 8162 * 8163 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8164 * and uplink switching element 8165 */ 8166 static bool 8167 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8168 struct ice_channel *ch) 8169 { 8170 struct device *dev = ice_pf_to_dev(pf); 8171 u16 sw_id; 8172 int ret; 8173 8174 if (vsi->type != ICE_VSI_PF) { 8175 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8176 return false; 8177 } 8178 8179 sw_id = pf->first_sw->sw_id; 8180 8181 /* create channel (VSI) */ 8182 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8183 if (ret) { 8184 dev_err(dev, "failed to setup hw_channel\n"); 8185 return false; 8186 } 8187 dev_dbg(dev, "successfully created channel()\n"); 8188 8189 return ch->ch_vsi ? true : false; 8190 } 8191 8192 /** 8193 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8194 * @vsi: VSI to be configured 8195 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8196 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8197 */ 8198 static int 8199 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8200 { 8201 int err; 8202 8203 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8204 if (err) 8205 return err; 8206 8207 return ice_set_max_bw_limit(vsi, max_tx_rate); 8208 } 8209 8210 /** 8211 * ice_create_q_channel - function to create channel 8212 * @vsi: VSI to be configured 8213 * @ch: ptr to channel (it contains channel specific params) 8214 * 8215 * This function creates channel (VSI) using num_queues specified by user, 8216 * reconfigs RSS if needed. 8217 */ 8218 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8219 { 8220 struct ice_pf *pf = vsi->back; 8221 struct device *dev; 8222 8223 if (!ch) 8224 return -EINVAL; 8225 8226 dev = ice_pf_to_dev(pf); 8227 if (!ch->num_txq || !ch->num_rxq) { 8228 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8229 return -EINVAL; 8230 } 8231 8232 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8233 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8234 vsi->cnt_q_avail, ch->num_txq); 8235 return -EINVAL; 8236 } 8237 8238 if (!ice_setup_channel(pf, vsi, ch)) { 8239 dev_info(dev, "Failed to setup channel\n"); 8240 return -EINVAL; 8241 } 8242 /* configure BW rate limit */ 8243 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8244 int ret; 8245 8246 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8247 ch->min_tx_rate); 8248 if (ret) 8249 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8250 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8251 else 8252 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8253 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8254 } 8255 8256 vsi->cnt_q_avail -= ch->num_txq; 8257 8258 return 0; 8259 } 8260 8261 /** 8262 * ice_rem_all_chnl_fltrs - removes all channel filters 8263 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8264 * 8265 * Remove all advanced switch filters only if they are channel specific 8266 * tc-flower based filter 8267 */ 8268 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8269 { 8270 struct ice_tc_flower_fltr *fltr; 8271 struct hlist_node *node; 8272 8273 /* to remove all channel filters, iterate an ordered list of filters */ 8274 hlist_for_each_entry_safe(fltr, node, 8275 &pf->tc_flower_fltr_list, 8276 tc_flower_node) { 8277 struct ice_rule_query_data rule; 8278 int status; 8279 8280 /* for now process only channel specific filters */ 8281 if (!ice_is_chnl_fltr(fltr)) 8282 continue; 8283 8284 rule.rid = fltr->rid; 8285 rule.rule_id = fltr->rule_id; 8286 rule.vsi_handle = fltr->dest_id; 8287 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8288 if (status) { 8289 if (status == -ENOENT) 8290 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8291 rule.rule_id); 8292 else 8293 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8294 status); 8295 } else if (fltr->dest_vsi) { 8296 /* update advanced switch filter count */ 8297 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8298 u32 flags = fltr->flags; 8299 8300 fltr->dest_vsi->num_chnl_fltr--; 8301 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8302 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8303 pf->num_dmac_chnl_fltrs--; 8304 } 8305 } 8306 8307 hlist_del(&fltr->tc_flower_node); 8308 kfree(fltr); 8309 } 8310 } 8311 8312 /** 8313 * ice_remove_q_channels - Remove queue channels for the TCs 8314 * @vsi: VSI to be configured 8315 * @rem_fltr: delete advanced switch filter or not 8316 * 8317 * Remove queue channels for the TCs 8318 */ 8319 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8320 { 8321 struct ice_channel *ch, *ch_tmp; 8322 struct ice_pf *pf = vsi->back; 8323 int i; 8324 8325 /* remove all tc-flower based filter if they are channel filters only */ 8326 if (rem_fltr) 8327 ice_rem_all_chnl_fltrs(pf); 8328 8329 /* remove ntuple filters since queue configuration is being changed */ 8330 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8331 struct ice_hw *hw = &pf->hw; 8332 8333 mutex_lock(&hw->fdir_fltr_lock); 8334 ice_fdir_del_all_fltrs(vsi); 8335 mutex_unlock(&hw->fdir_fltr_lock); 8336 } 8337 8338 /* perform cleanup for channels if they exist */ 8339 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8340 struct ice_vsi *ch_vsi; 8341 8342 list_del(&ch->list); 8343 ch_vsi = ch->ch_vsi; 8344 if (!ch_vsi) { 8345 kfree(ch); 8346 continue; 8347 } 8348 8349 /* Reset queue contexts */ 8350 for (i = 0; i < ch->num_rxq; i++) { 8351 struct ice_tx_ring *tx_ring; 8352 struct ice_rx_ring *rx_ring; 8353 8354 tx_ring = vsi->tx_rings[ch->base_q + i]; 8355 rx_ring = vsi->rx_rings[ch->base_q + i]; 8356 if (tx_ring) { 8357 tx_ring->ch = NULL; 8358 if (tx_ring->q_vector) 8359 tx_ring->q_vector->ch = NULL; 8360 } 8361 if (rx_ring) { 8362 rx_ring->ch = NULL; 8363 if (rx_ring->q_vector) 8364 rx_ring->q_vector->ch = NULL; 8365 } 8366 } 8367 8368 /* Release FD resources for the channel VSI */ 8369 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8370 8371 /* clear the VSI from scheduler tree */ 8372 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8373 8374 /* Delete VSI from FW */ 8375 ice_vsi_delete(ch->ch_vsi); 8376 8377 /* Delete VSI from PF and HW VSI arrays */ 8378 ice_vsi_clear(ch->ch_vsi); 8379 8380 /* free the channel */ 8381 kfree(ch); 8382 } 8383 8384 /* clear the channel VSI map which is stored in main VSI */ 8385 ice_for_each_chnl_tc(i) 8386 vsi->tc_map_vsi[i] = NULL; 8387 8388 /* reset main VSI's all TC information */ 8389 vsi->all_enatc = 0; 8390 vsi->all_numtc = 0; 8391 } 8392 8393 /** 8394 * ice_rebuild_channels - rebuild channel 8395 * @pf: ptr to PF 8396 * 8397 * Recreate channel VSIs and replay filters 8398 */ 8399 static int ice_rebuild_channels(struct ice_pf *pf) 8400 { 8401 struct device *dev = ice_pf_to_dev(pf); 8402 struct ice_vsi *main_vsi; 8403 bool rem_adv_fltr = true; 8404 struct ice_channel *ch; 8405 struct ice_vsi *vsi; 8406 int tc_idx = 1; 8407 int i, err; 8408 8409 main_vsi = ice_get_main_vsi(pf); 8410 if (!main_vsi) 8411 return 0; 8412 8413 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8414 main_vsi->old_numtc == 1) 8415 return 0; /* nothing to be done */ 8416 8417 /* reconfigure main VSI based on old value of TC and cached values 8418 * for MQPRIO opts 8419 */ 8420 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8421 if (err) { 8422 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8423 main_vsi->old_ena_tc, main_vsi->vsi_num); 8424 return err; 8425 } 8426 8427 /* rebuild ADQ VSIs */ 8428 ice_for_each_vsi(pf, i) { 8429 enum ice_vsi_type type; 8430 8431 vsi = pf->vsi[i]; 8432 if (!vsi || vsi->type != ICE_VSI_CHNL) 8433 continue; 8434 8435 type = vsi->type; 8436 8437 /* rebuild ADQ VSI */ 8438 err = ice_vsi_rebuild(vsi, true); 8439 if (err) { 8440 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8441 ice_vsi_type_str(type), vsi->idx, err); 8442 goto cleanup; 8443 } 8444 8445 /* Re-map HW VSI number, using VSI handle that has been 8446 * previously validated in ice_replay_vsi() call above 8447 */ 8448 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8449 8450 /* replay filters for the VSI */ 8451 err = ice_replay_vsi(&pf->hw, vsi->idx); 8452 if (err) { 8453 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8454 ice_vsi_type_str(type), err, vsi->idx); 8455 rem_adv_fltr = false; 8456 goto cleanup; 8457 } 8458 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8459 ice_vsi_type_str(type), vsi->idx); 8460 8461 /* store ADQ VSI at correct TC index in main VSI's 8462 * map of TC to VSI 8463 */ 8464 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8465 } 8466 8467 /* ADQ VSI(s) has been rebuilt successfully, so setup 8468 * channel for main VSI's Tx and Rx rings 8469 */ 8470 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8471 struct ice_vsi *ch_vsi; 8472 8473 ch_vsi = ch->ch_vsi; 8474 if (!ch_vsi) 8475 continue; 8476 8477 /* reconfig channel resources */ 8478 ice_cfg_chnl_all_res(main_vsi, ch); 8479 8480 /* replay BW rate limit if it is non-zero */ 8481 if (!ch->max_tx_rate && !ch->min_tx_rate) 8482 continue; 8483 8484 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8485 ch->min_tx_rate); 8486 if (err) 8487 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8488 err, ch->max_tx_rate, ch->min_tx_rate, 8489 ch_vsi->vsi_num); 8490 else 8491 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8492 ch->max_tx_rate, ch->min_tx_rate, 8493 ch_vsi->vsi_num); 8494 } 8495 8496 /* reconfig RSS for main VSI */ 8497 if (main_vsi->ch_rss_size) 8498 ice_vsi_cfg_rss_lut_key(main_vsi); 8499 8500 return 0; 8501 8502 cleanup: 8503 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8504 return err; 8505 } 8506 8507 /** 8508 * ice_create_q_channels - Add queue channel for the given TCs 8509 * @vsi: VSI to be configured 8510 * 8511 * Configures queue channel mapping to the given TCs 8512 */ 8513 static int ice_create_q_channels(struct ice_vsi *vsi) 8514 { 8515 struct ice_pf *pf = vsi->back; 8516 struct ice_channel *ch; 8517 int ret = 0, i; 8518 8519 ice_for_each_chnl_tc(i) { 8520 if (!(vsi->all_enatc & BIT(i))) 8521 continue; 8522 8523 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8524 if (!ch) { 8525 ret = -ENOMEM; 8526 goto err_free; 8527 } 8528 INIT_LIST_HEAD(&ch->list); 8529 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8530 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8531 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8532 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8533 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8534 8535 /* convert to Kbits/s */ 8536 if (ch->max_tx_rate) 8537 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8538 ICE_BW_KBPS_DIVISOR); 8539 if (ch->min_tx_rate) 8540 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8541 ICE_BW_KBPS_DIVISOR); 8542 8543 ret = ice_create_q_channel(vsi, ch); 8544 if (ret) { 8545 dev_err(ice_pf_to_dev(pf), 8546 "failed creating channel TC:%d\n", i); 8547 kfree(ch); 8548 goto err_free; 8549 } 8550 list_add_tail(&ch->list, &vsi->ch_list); 8551 vsi->tc_map_vsi[i] = ch->ch_vsi; 8552 dev_dbg(ice_pf_to_dev(pf), 8553 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8554 } 8555 return 0; 8556 8557 err_free: 8558 ice_remove_q_channels(vsi, false); 8559 8560 return ret; 8561 } 8562 8563 /** 8564 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8565 * @netdev: net device to configure 8566 * @type_data: TC offload data 8567 */ 8568 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8569 { 8570 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8571 struct ice_netdev_priv *np = netdev_priv(netdev); 8572 struct ice_vsi *vsi = np->vsi; 8573 struct ice_pf *pf = vsi->back; 8574 u16 mode, ena_tc_qdisc = 0; 8575 int cur_txq, cur_rxq; 8576 u8 hw = 0, num_tcf; 8577 struct device *dev; 8578 int ret, i; 8579 8580 dev = ice_pf_to_dev(pf); 8581 num_tcf = mqprio_qopt->qopt.num_tc; 8582 hw = mqprio_qopt->qopt.hw; 8583 mode = mqprio_qopt->mode; 8584 if (!hw) { 8585 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8586 vsi->ch_rss_size = 0; 8587 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8588 goto config_tcf; 8589 } 8590 8591 /* Generate queue region map for number of TCF requested */ 8592 for (i = 0; i < num_tcf; i++) 8593 ena_tc_qdisc |= BIT(i); 8594 8595 switch (mode) { 8596 case TC_MQPRIO_MODE_CHANNEL: 8597 8598 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8599 if (ret) { 8600 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8601 ret); 8602 return ret; 8603 } 8604 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8605 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8606 /* don't assume state of hw_tc_offload during driver load 8607 * and set the flag for TC flower filter if hw_tc_offload 8608 * already ON 8609 */ 8610 if (vsi->netdev->features & NETIF_F_HW_TC) 8611 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8612 break; 8613 default: 8614 return -EINVAL; 8615 } 8616 8617 config_tcf: 8618 8619 /* Requesting same TCF configuration as already enabled */ 8620 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8621 mode != TC_MQPRIO_MODE_CHANNEL) 8622 return 0; 8623 8624 /* Pause VSI queues */ 8625 ice_dis_vsi(vsi, true); 8626 8627 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8628 ice_remove_q_channels(vsi, true); 8629 8630 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8631 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8632 num_online_cpus()); 8633 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8634 num_online_cpus()); 8635 } else { 8636 /* logic to rebuild VSI, same like ethtool -L */ 8637 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8638 8639 for (i = 0; i < num_tcf; i++) { 8640 if (!(ena_tc_qdisc & BIT(i))) 8641 continue; 8642 8643 offset = vsi->mqprio_qopt.qopt.offset[i]; 8644 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8645 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8646 } 8647 vsi->req_txq = offset + qcount_tx; 8648 vsi->req_rxq = offset + qcount_rx; 8649 8650 /* store away original rss_size info, so that it gets reused 8651 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8652 * determine, what should be the rss_sizefor main VSI 8653 */ 8654 vsi->orig_rss_size = vsi->rss_size; 8655 } 8656 8657 /* save current values of Tx and Rx queues before calling VSI rebuild 8658 * for fallback option 8659 */ 8660 cur_txq = vsi->num_txq; 8661 cur_rxq = vsi->num_rxq; 8662 8663 /* proceed with rebuild main VSI using correct number of queues */ 8664 ret = ice_vsi_rebuild(vsi, false); 8665 if (ret) { 8666 /* fallback to current number of queues */ 8667 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8668 vsi->req_txq = cur_txq; 8669 vsi->req_rxq = cur_rxq; 8670 clear_bit(ICE_RESET_FAILED, pf->state); 8671 if (ice_vsi_rebuild(vsi, false)) { 8672 dev_err(dev, "Rebuild of main VSI failed again\n"); 8673 return ret; 8674 } 8675 } 8676 8677 vsi->all_numtc = num_tcf; 8678 vsi->all_enatc = ena_tc_qdisc; 8679 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8680 if (ret) { 8681 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8682 vsi->vsi_num); 8683 goto exit; 8684 } 8685 8686 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8687 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8688 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8689 8690 /* set TC0 rate limit if specified */ 8691 if (max_tx_rate || min_tx_rate) { 8692 /* convert to Kbits/s */ 8693 if (max_tx_rate) 8694 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8695 if (min_tx_rate) 8696 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8697 8698 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8699 if (!ret) { 8700 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8701 max_tx_rate, min_tx_rate, vsi->vsi_num); 8702 } else { 8703 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8704 max_tx_rate, min_tx_rate, vsi->vsi_num); 8705 goto exit; 8706 } 8707 } 8708 ret = ice_create_q_channels(vsi); 8709 if (ret) { 8710 netdev_err(netdev, "failed configuring queue channels\n"); 8711 goto exit; 8712 } else { 8713 netdev_dbg(netdev, "successfully configured channels\n"); 8714 } 8715 } 8716 8717 if (vsi->ch_rss_size) 8718 ice_vsi_cfg_rss_lut_key(vsi); 8719 8720 exit: 8721 /* if error, reset the all_numtc and all_enatc */ 8722 if (ret) { 8723 vsi->all_numtc = 0; 8724 vsi->all_enatc = 0; 8725 } 8726 /* resume VSI */ 8727 ice_ena_vsi(vsi, true); 8728 8729 return ret; 8730 } 8731 8732 static LIST_HEAD(ice_block_cb_list); 8733 8734 static int 8735 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8736 void *type_data) 8737 { 8738 struct ice_netdev_priv *np = netdev_priv(netdev); 8739 struct ice_pf *pf = np->vsi->back; 8740 int err; 8741 8742 switch (type) { 8743 case TC_SETUP_BLOCK: 8744 return flow_block_cb_setup_simple(type_data, 8745 &ice_block_cb_list, 8746 ice_setup_tc_block_cb, 8747 np, np, true); 8748 case TC_SETUP_QDISC_MQPRIO: 8749 /* setup traffic classifier for receive side */ 8750 mutex_lock(&pf->tc_mutex); 8751 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8752 mutex_unlock(&pf->tc_mutex); 8753 return err; 8754 default: 8755 return -EOPNOTSUPP; 8756 } 8757 return -EOPNOTSUPP; 8758 } 8759 8760 static struct ice_indr_block_priv * 8761 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8762 struct net_device *netdev) 8763 { 8764 struct ice_indr_block_priv *cb_priv; 8765 8766 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8767 if (!cb_priv->netdev) 8768 return NULL; 8769 if (cb_priv->netdev == netdev) 8770 return cb_priv; 8771 } 8772 return NULL; 8773 } 8774 8775 static int 8776 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8777 void *indr_priv) 8778 { 8779 struct ice_indr_block_priv *priv = indr_priv; 8780 struct ice_netdev_priv *np = priv->np; 8781 8782 switch (type) { 8783 case TC_SETUP_CLSFLOWER: 8784 return ice_setup_tc_cls_flower(np, priv->netdev, 8785 (struct flow_cls_offload *) 8786 type_data); 8787 default: 8788 return -EOPNOTSUPP; 8789 } 8790 } 8791 8792 static int 8793 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8794 struct ice_netdev_priv *np, 8795 struct flow_block_offload *f, void *data, 8796 void (*cleanup)(struct flow_block_cb *block_cb)) 8797 { 8798 struct ice_indr_block_priv *indr_priv; 8799 struct flow_block_cb *block_cb; 8800 8801 if (!ice_is_tunnel_supported(netdev) && 8802 !(is_vlan_dev(netdev) && 8803 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8804 return -EOPNOTSUPP; 8805 8806 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8807 return -EOPNOTSUPP; 8808 8809 switch (f->command) { 8810 case FLOW_BLOCK_BIND: 8811 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8812 if (indr_priv) 8813 return -EEXIST; 8814 8815 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8816 if (!indr_priv) 8817 return -ENOMEM; 8818 8819 indr_priv->netdev = netdev; 8820 indr_priv->np = np; 8821 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8822 8823 block_cb = 8824 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8825 indr_priv, indr_priv, 8826 ice_rep_indr_tc_block_unbind, 8827 f, netdev, sch, data, np, 8828 cleanup); 8829 8830 if (IS_ERR(block_cb)) { 8831 list_del(&indr_priv->list); 8832 kfree(indr_priv); 8833 return PTR_ERR(block_cb); 8834 } 8835 flow_block_cb_add(block_cb, f); 8836 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8837 break; 8838 case FLOW_BLOCK_UNBIND: 8839 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8840 if (!indr_priv) 8841 return -ENOENT; 8842 8843 block_cb = flow_block_cb_lookup(f->block, 8844 ice_indr_setup_block_cb, 8845 indr_priv); 8846 if (!block_cb) 8847 return -ENOENT; 8848 8849 flow_indr_block_cb_remove(block_cb, f); 8850 8851 list_del(&block_cb->driver_list); 8852 break; 8853 default: 8854 return -EOPNOTSUPP; 8855 } 8856 return 0; 8857 } 8858 8859 static int 8860 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8861 void *cb_priv, enum tc_setup_type type, void *type_data, 8862 void *data, 8863 void (*cleanup)(struct flow_block_cb *block_cb)) 8864 { 8865 switch (type) { 8866 case TC_SETUP_BLOCK: 8867 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8868 data, cleanup); 8869 8870 default: 8871 return -EOPNOTSUPP; 8872 } 8873 } 8874 8875 /** 8876 * ice_open - Called when a network interface becomes active 8877 * @netdev: network interface device structure 8878 * 8879 * The open entry point is called when a network interface is made 8880 * active by the system (IFF_UP). At this point all resources needed 8881 * for transmit and receive operations are allocated, the interrupt 8882 * handler is registered with the OS, the netdev watchdog is enabled, 8883 * and the stack is notified that the interface is ready. 8884 * 8885 * Returns 0 on success, negative value on failure 8886 */ 8887 int ice_open(struct net_device *netdev) 8888 { 8889 struct ice_netdev_priv *np = netdev_priv(netdev); 8890 struct ice_pf *pf = np->vsi->back; 8891 8892 if (ice_is_reset_in_progress(pf->state)) { 8893 netdev_err(netdev, "can't open net device while reset is in progress"); 8894 return -EBUSY; 8895 } 8896 8897 return ice_open_internal(netdev); 8898 } 8899 8900 /** 8901 * ice_open_internal - Called when a network interface becomes active 8902 * @netdev: network interface device structure 8903 * 8904 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8905 * handling routine 8906 * 8907 * Returns 0 on success, negative value on failure 8908 */ 8909 int ice_open_internal(struct net_device *netdev) 8910 { 8911 struct ice_netdev_priv *np = netdev_priv(netdev); 8912 struct ice_vsi *vsi = np->vsi; 8913 struct ice_pf *pf = vsi->back; 8914 struct ice_port_info *pi; 8915 int err; 8916 8917 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8918 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8919 return -EIO; 8920 } 8921 8922 netif_carrier_off(netdev); 8923 8924 pi = vsi->port_info; 8925 err = ice_update_link_info(pi); 8926 if (err) { 8927 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8928 return err; 8929 } 8930 8931 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8932 8933 /* Set PHY if there is media, otherwise, turn off PHY */ 8934 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8935 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8936 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8937 err = ice_init_phy_user_cfg(pi); 8938 if (err) { 8939 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8940 err); 8941 return err; 8942 } 8943 } 8944 8945 err = ice_configure_phy(vsi); 8946 if (err) { 8947 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8948 err); 8949 return err; 8950 } 8951 } else { 8952 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8953 ice_set_link(vsi, false); 8954 } 8955 8956 err = ice_vsi_open(vsi); 8957 if (err) 8958 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8959 vsi->vsi_num, vsi->vsw->sw_id); 8960 8961 /* Update existing tunnels information */ 8962 udp_tunnel_get_rx_info(netdev); 8963 8964 return err; 8965 } 8966 8967 /** 8968 * ice_stop - Disables a network interface 8969 * @netdev: network interface device structure 8970 * 8971 * The stop entry point is called when an interface is de-activated by the OS, 8972 * and the netdevice enters the DOWN state. The hardware is still under the 8973 * driver's control, but the netdev interface is disabled. 8974 * 8975 * Returns success only - not allowed to fail 8976 */ 8977 int ice_stop(struct net_device *netdev) 8978 { 8979 struct ice_netdev_priv *np = netdev_priv(netdev); 8980 struct ice_vsi *vsi = np->vsi; 8981 struct ice_pf *pf = vsi->back; 8982 8983 if (ice_is_reset_in_progress(pf->state)) { 8984 netdev_err(netdev, "can't stop net device while reset is in progress"); 8985 return -EBUSY; 8986 } 8987 8988 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 8989 int link_err = ice_force_phys_link_state(vsi, false); 8990 8991 if (link_err) { 8992 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 8993 vsi->vsi_num, link_err); 8994 return -EIO; 8995 } 8996 } 8997 8998 ice_vsi_close(vsi); 8999 9000 return 0; 9001 } 9002 9003 /** 9004 * ice_features_check - Validate encapsulated packet conforms to limits 9005 * @skb: skb buffer 9006 * @netdev: This port's netdev 9007 * @features: Offload features that the stack believes apply 9008 */ 9009 static netdev_features_t 9010 ice_features_check(struct sk_buff *skb, 9011 struct net_device __always_unused *netdev, 9012 netdev_features_t features) 9013 { 9014 bool gso = skb_is_gso(skb); 9015 size_t len; 9016 9017 /* No point in doing any of this if neither checksum nor GSO are 9018 * being requested for this frame. We can rule out both by just 9019 * checking for CHECKSUM_PARTIAL 9020 */ 9021 if (skb->ip_summed != CHECKSUM_PARTIAL) 9022 return features; 9023 9024 /* We cannot support GSO if the MSS is going to be less than 9025 * 64 bytes. If it is then we need to drop support for GSO. 9026 */ 9027 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9028 features &= ~NETIF_F_GSO_MASK; 9029 9030 len = skb_network_offset(skb); 9031 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9032 goto out_rm_features; 9033 9034 len = skb_network_header_len(skb); 9035 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9036 goto out_rm_features; 9037 9038 if (skb->encapsulation) { 9039 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9040 * the case of IPIP frames, the transport header pointer is 9041 * after the inner header! So check to make sure that this 9042 * is a GRE or UDP_TUNNEL frame before doing that math. 9043 */ 9044 if (gso && (skb_shinfo(skb)->gso_type & 9045 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9046 len = skb_inner_network_header(skb) - 9047 skb_transport_header(skb); 9048 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9049 goto out_rm_features; 9050 } 9051 9052 len = skb_inner_network_header_len(skb); 9053 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9054 goto out_rm_features; 9055 } 9056 9057 return features; 9058 out_rm_features: 9059 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9060 } 9061 9062 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9063 .ndo_open = ice_open, 9064 .ndo_stop = ice_stop, 9065 .ndo_start_xmit = ice_start_xmit, 9066 .ndo_set_mac_address = ice_set_mac_address, 9067 .ndo_validate_addr = eth_validate_addr, 9068 .ndo_change_mtu = ice_change_mtu, 9069 .ndo_get_stats64 = ice_get_stats64, 9070 .ndo_tx_timeout = ice_tx_timeout, 9071 .ndo_bpf = ice_xdp_safe_mode, 9072 }; 9073 9074 static const struct net_device_ops ice_netdev_ops = { 9075 .ndo_open = ice_open, 9076 .ndo_stop = ice_stop, 9077 .ndo_start_xmit = ice_start_xmit, 9078 .ndo_select_queue = ice_select_queue, 9079 .ndo_features_check = ice_features_check, 9080 .ndo_fix_features = ice_fix_features, 9081 .ndo_set_rx_mode = ice_set_rx_mode, 9082 .ndo_set_mac_address = ice_set_mac_address, 9083 .ndo_validate_addr = eth_validate_addr, 9084 .ndo_change_mtu = ice_change_mtu, 9085 .ndo_get_stats64 = ice_get_stats64, 9086 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9087 .ndo_eth_ioctl = ice_eth_ioctl, 9088 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9089 .ndo_set_vf_mac = ice_set_vf_mac, 9090 .ndo_get_vf_config = ice_get_vf_cfg, 9091 .ndo_set_vf_trust = ice_set_vf_trust, 9092 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9093 .ndo_set_vf_link_state = ice_set_vf_link_state, 9094 .ndo_get_vf_stats = ice_get_vf_stats, 9095 .ndo_set_vf_rate = ice_set_vf_bw, 9096 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9097 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9098 .ndo_setup_tc = ice_setup_tc, 9099 .ndo_set_features = ice_set_features, 9100 .ndo_bridge_getlink = ice_bridge_getlink, 9101 .ndo_bridge_setlink = ice_bridge_setlink, 9102 .ndo_fdb_add = ice_fdb_add, 9103 .ndo_fdb_del = ice_fdb_del, 9104 #ifdef CONFIG_RFS_ACCEL 9105 .ndo_rx_flow_steer = ice_rx_flow_steer, 9106 #endif 9107 .ndo_tx_timeout = ice_tx_timeout, 9108 .ndo_bpf = ice_xdp, 9109 .ndo_xdp_xmit = ice_xdp_xmit, 9110 .ndo_xsk_wakeup = ice_xsk_wakeup, 9111 .ndo_get_devlink_port = ice_get_devlink_port, 9112 }; 9113