1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 static int 62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 63 void *cb_priv, enum tc_setup_type type, void *type_data, 64 void *data, 65 void (*cleanup)(struct flow_block_cb *block_cb)); 66 67 bool netif_is_ice(struct net_device *dev) 68 { 69 return dev && (dev->netdev_ops == &ice_netdev_ops); 70 } 71 72 /** 73 * ice_get_tx_pending - returns number of Tx descriptors not processed 74 * @ring: the ring of descriptors 75 */ 76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 77 { 78 u16 head, tail; 79 80 head = ring->next_to_clean; 81 tail = ring->next_to_use; 82 83 if (head != tail) 84 return (head < tail) ? 85 tail - head : (tail + ring->count - head); 86 return 0; 87 } 88 89 /** 90 * ice_check_for_hang_subtask - check for and recover hung queues 91 * @pf: pointer to PF struct 92 */ 93 static void ice_check_for_hang_subtask(struct ice_pf *pf) 94 { 95 struct ice_vsi *vsi = NULL; 96 struct ice_hw *hw; 97 unsigned int i; 98 int packets; 99 u32 v; 100 101 ice_for_each_vsi(pf, v) 102 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 103 vsi = pf->vsi[v]; 104 break; 105 } 106 107 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 108 return; 109 110 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 111 return; 112 113 hw = &vsi->back->hw; 114 115 ice_for_each_txq(vsi, i) { 116 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 117 118 if (!tx_ring) 119 continue; 120 if (ice_ring_ch_enabled(tx_ring)) 121 continue; 122 123 if (tx_ring->desc) { 124 /* If packet counter has not changed the queue is 125 * likely stalled, so force an interrupt for this 126 * queue. 127 * 128 * prev_pkt would be negative if there was no 129 * pending work. 130 */ 131 packets = tx_ring->stats.pkts & INT_MAX; 132 if (tx_ring->tx_stats.prev_pkt == packets) { 133 /* Trigger sw interrupt to revive the queue */ 134 ice_trigger_sw_intr(hw, tx_ring->q_vector); 135 continue; 136 } 137 138 /* Memory barrier between read of packet count and call 139 * to ice_get_tx_pending() 140 */ 141 smp_rmb(); 142 tx_ring->tx_stats.prev_pkt = 143 ice_get_tx_pending(tx_ring) ? packets : -1; 144 } 145 } 146 } 147 148 /** 149 * ice_init_mac_fltr - Set initial MAC filters 150 * @pf: board private structure 151 * 152 * Set initial set of MAC filters for PF VSI; configure filters for permanent 153 * address and broadcast address. If an error is encountered, netdevice will be 154 * unregistered. 155 */ 156 static int ice_init_mac_fltr(struct ice_pf *pf) 157 { 158 struct ice_vsi *vsi; 159 u8 *perm_addr; 160 161 vsi = ice_get_main_vsi(pf); 162 if (!vsi) 163 return -EINVAL; 164 165 perm_addr = vsi->port_info->mac.perm_addr; 166 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 167 } 168 169 /** 170 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 171 * @netdev: the net device on which the sync is happening 172 * @addr: MAC address to sync 173 * 174 * This is a callback function which is called by the in kernel device sync 175 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 176 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 177 * MAC filters from the hardware. 178 */ 179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 180 { 181 struct ice_netdev_priv *np = netdev_priv(netdev); 182 struct ice_vsi *vsi = np->vsi; 183 184 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 185 ICE_FWD_TO_VSI)) 186 return -EINVAL; 187 188 return 0; 189 } 190 191 /** 192 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 193 * @netdev: the net device on which the unsync is happening 194 * @addr: MAC address to unsync 195 * 196 * This is a callback function which is called by the in kernel device unsync 197 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 198 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 199 * delete the MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 /* Under some circumstances, we might receive a request to delete our 207 * own device address from our uc list. Because we store the device 208 * address in the VSI's MAC filter list, we need to ignore such 209 * requests and not delete our device address from this list. 210 */ 211 if (ether_addr_equal(addr, netdev->dev_addr)) 212 return 0; 213 214 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 215 ICE_FWD_TO_VSI)) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 /** 222 * ice_vsi_fltr_changed - check if filter state changed 223 * @vsi: VSI to be checked 224 * 225 * returns true if filter state has changed, false otherwise. 226 */ 227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 228 { 229 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 230 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 232 } 233 234 /** 235 * ice_set_promisc - Enable promiscuous mode for a given PF 236 * @vsi: the VSI being configured 237 * @promisc_m: mask of promiscuous config bits 238 * 239 */ 240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 241 { 242 int status; 243 244 if (vsi->type != ICE_VSI_PF) 245 return 0; 246 247 if (vsi->num_vlan > 1) 248 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 249 else 250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 251 return status; 252 } 253 254 /** 255 * ice_clear_promisc - Disable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (vsi->num_vlan > 1) 268 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 269 else 270 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 271 return status; 272 } 273 274 /** 275 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 276 * @vsi: ptr to the VSI 277 * 278 * Push any outstanding VSI filter changes through the AdminQ. 279 */ 280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 281 { 282 struct device *dev = ice_pf_to_dev(vsi->back); 283 struct net_device *netdev = vsi->netdev; 284 bool promisc_forced_on = false; 285 struct ice_pf *pf = vsi->back; 286 struct ice_hw *hw = &pf->hw; 287 u32 changed_flags = 0; 288 u8 promisc_m; 289 int err; 290 291 if (!vsi->netdev) 292 return -EINVAL; 293 294 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 295 usleep_range(1000, 2000); 296 297 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 298 vsi->current_netdev_flags = vsi->netdev->flags; 299 300 INIT_LIST_HEAD(&vsi->tmp_sync_list); 301 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 302 303 if (ice_vsi_fltr_changed(vsi)) { 304 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 305 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 306 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 307 308 /* grab the netdev's addr_list_lock */ 309 netif_addr_lock_bh(netdev); 310 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 311 ice_add_mac_to_unsync_list); 312 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 /* our temp lists are populated. release lock */ 315 netif_addr_unlock_bh(netdev); 316 } 317 318 /* Remove MAC addresses in the unsync list */ 319 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 320 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 321 if (err) { 322 netdev_err(netdev, "Failed to delete MAC filters\n"); 323 /* if we failed because of alloc failures, just bail */ 324 if (err == -ENOMEM) 325 goto out; 326 } 327 328 /* Add MAC addresses in the sync list */ 329 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 330 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 331 /* If filter is added successfully or already exists, do not go into 332 * 'if' condition and report it as error. Instead continue processing 333 * rest of the function. 334 */ 335 if (err && err != -EEXIST) { 336 netdev_err(netdev, "Failed to add MAC filters\n"); 337 /* If there is no more space for new umac filters, VSI 338 * should go into promiscuous mode. There should be some 339 * space reserved for promiscuous filters. 340 */ 341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 342 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 343 vsi->state)) { 344 promisc_forced_on = true; 345 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 346 vsi->vsi_num); 347 } else { 348 goto out; 349 } 350 } 351 err = 0; 352 /* check for changes in promiscuous modes */ 353 if (changed_flags & IFF_ALLMULTI) { 354 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 355 if (vsi->num_vlan > 1) 356 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 357 else 358 promisc_m = ICE_MCAST_PROMISC_BITS; 359 360 err = ice_set_promisc(vsi, promisc_m); 361 if (err) { 362 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 363 vsi->vsi_num); 364 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 365 goto out_promisc; 366 } 367 } else { 368 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 369 if (vsi->num_vlan > 1) 370 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 371 else 372 promisc_m = ICE_MCAST_PROMISC_BITS; 373 374 err = ice_clear_promisc(vsi, promisc_m); 375 if (err) { 376 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 377 vsi->vsi_num); 378 vsi->current_netdev_flags |= IFF_ALLMULTI; 379 goto out_promisc; 380 } 381 } 382 } 383 384 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 385 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 386 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 387 if (vsi->current_netdev_flags & IFF_PROMISC) { 388 /* Apply Rx filter rule to get traffic from wire */ 389 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 390 err = ice_set_dflt_vsi(pf->first_sw, vsi); 391 if (err && err != -EEXIST) { 392 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 393 err, vsi->vsi_num); 394 vsi->current_netdev_flags &= 395 ~IFF_PROMISC; 396 goto out_promisc; 397 } 398 err = 0; 399 ice_cfg_vlan_pruning(vsi, false); 400 } 401 } else { 402 /* Clear Rx filter to remove traffic from wire */ 403 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 404 err = ice_clear_dflt_vsi(pf->first_sw); 405 if (err) { 406 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 407 err, vsi->vsi_num); 408 vsi->current_netdev_flags |= 409 IFF_PROMISC; 410 goto out_promisc; 411 } 412 if (vsi->num_vlan > 1) 413 ice_cfg_vlan_pruning(vsi, true); 414 } 415 } 416 } 417 goto exit; 418 419 out_promisc: 420 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 421 goto exit; 422 out: 423 /* if something went wrong then set the changed flag so we try again */ 424 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 425 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 426 exit: 427 clear_bit(ICE_CFG_BUSY, vsi->state); 428 return err; 429 } 430 431 /** 432 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 433 * @pf: board private structure 434 */ 435 static void ice_sync_fltr_subtask(struct ice_pf *pf) 436 { 437 int v; 438 439 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 440 return; 441 442 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 446 ice_vsi_sync_fltr(pf->vsi[v])) { 447 /* come back and try again later */ 448 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 449 break; 450 } 451 } 452 453 /** 454 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 455 * @pf: the PF 456 * @locked: is the rtnl_lock already held 457 */ 458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 { 460 int node; 461 int v; 462 463 ice_for_each_vsi(pf, v) 464 if (pf->vsi[v]) 465 ice_dis_vsi(pf->vsi[v], locked); 466 467 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 468 pf->pf_agg_node[node].num_vsis = 0; 469 470 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 471 pf->vf_agg_node[node].num_vsis = 0; 472 } 473 474 /** 475 * ice_clear_sw_switch_recipes - clear switch recipes 476 * @pf: board private structure 477 * 478 * Mark switch recipes as not created in sw structures. There are cases where 479 * rules (especially advanced rules) need to be restored, either re-read from 480 * hardware or added again. For example after the reset. 'recp_created' flag 481 * prevents from doing that and need to be cleared upfront. 482 */ 483 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 484 { 485 struct ice_sw_recipe *recp; 486 u8 i; 487 488 recp = pf->hw.switch_info->recp_list; 489 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 490 recp[i].recp_created = false; 491 } 492 493 /** 494 * ice_prepare_for_reset - prep for reset 495 * @pf: board private structure 496 * @reset_type: reset type requested 497 * 498 * Inform or close all dependent features in prep for reset. 499 */ 500 static void 501 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 502 { 503 struct ice_hw *hw = &pf->hw; 504 struct ice_vsi *vsi; 505 unsigned int i; 506 507 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 508 509 /* already prepared for reset */ 510 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 511 return; 512 513 ice_unplug_aux_dev(pf); 514 515 /* Notify VFs of impending reset */ 516 if (ice_check_sq_alive(hw, &hw->mailboxq)) 517 ice_vc_notify_reset(pf); 518 519 /* Disable VFs until reset is completed */ 520 ice_for_each_vf(pf, i) 521 ice_set_vf_state_qs_dis(&pf->vf[i]); 522 523 if (ice_is_eswitch_mode_switchdev(pf)) { 524 if (reset_type != ICE_RESET_PFR) 525 ice_clear_sw_switch_recipes(pf); 526 } 527 528 /* release ADQ specific HW and SW resources */ 529 vsi = ice_get_main_vsi(pf); 530 if (!vsi) 531 goto skip; 532 533 /* to be on safe side, reset orig_rss_size so that normal flow 534 * of deciding rss_size can take precedence 535 */ 536 vsi->orig_rss_size = 0; 537 538 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 539 if (reset_type == ICE_RESET_PFR) { 540 vsi->old_ena_tc = vsi->all_enatc; 541 vsi->old_numtc = vsi->all_numtc; 542 } else { 543 ice_remove_q_channels(vsi, true); 544 545 /* for other reset type, do not support channel rebuild 546 * hence reset needed info 547 */ 548 vsi->old_ena_tc = 0; 549 vsi->all_enatc = 0; 550 vsi->old_numtc = 0; 551 vsi->all_numtc = 0; 552 vsi->req_txq = 0; 553 vsi->req_rxq = 0; 554 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 555 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 556 } 557 } 558 skip: 559 560 /* clear SW filtering DB */ 561 ice_clear_hw_tbls(hw); 562 /* disable the VSIs and their queues that are not already DOWN */ 563 ice_pf_dis_all_vsi(pf, false); 564 565 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 566 ice_ptp_prepare_for_reset(pf); 567 568 if (hw->port_info) 569 ice_sched_clear_port(hw->port_info); 570 571 ice_shutdown_all_ctrlq(hw); 572 573 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 574 } 575 576 /** 577 * ice_do_reset - Initiate one of many types of resets 578 * @pf: board private structure 579 * @reset_type: reset type requested before this function was called. 580 */ 581 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 582 { 583 struct device *dev = ice_pf_to_dev(pf); 584 struct ice_hw *hw = &pf->hw; 585 586 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 587 588 ice_prepare_for_reset(pf, reset_type); 589 590 /* trigger the reset */ 591 if (ice_reset(hw, reset_type)) { 592 dev_err(dev, "reset %d failed\n", reset_type); 593 set_bit(ICE_RESET_FAILED, pf->state); 594 clear_bit(ICE_RESET_OICR_RECV, pf->state); 595 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 596 clear_bit(ICE_PFR_REQ, pf->state); 597 clear_bit(ICE_CORER_REQ, pf->state); 598 clear_bit(ICE_GLOBR_REQ, pf->state); 599 wake_up(&pf->reset_wait_queue); 600 return; 601 } 602 603 /* PFR is a bit of a special case because it doesn't result in an OICR 604 * interrupt. So for PFR, rebuild after the reset and clear the reset- 605 * associated state bits. 606 */ 607 if (reset_type == ICE_RESET_PFR) { 608 pf->pfr_count++; 609 ice_rebuild(pf, reset_type); 610 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 611 clear_bit(ICE_PFR_REQ, pf->state); 612 wake_up(&pf->reset_wait_queue); 613 ice_reset_all_vfs(pf, true); 614 } 615 } 616 617 /** 618 * ice_reset_subtask - Set up for resetting the device and driver 619 * @pf: board private structure 620 */ 621 static void ice_reset_subtask(struct ice_pf *pf) 622 { 623 enum ice_reset_req reset_type = ICE_RESET_INVAL; 624 625 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 626 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 627 * of reset is pending and sets bits in pf->state indicating the reset 628 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 629 * prepare for pending reset if not already (for PF software-initiated 630 * global resets the software should already be prepared for it as 631 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 632 * by firmware or software on other PFs, that bit is not set so prepare 633 * for the reset now), poll for reset done, rebuild and return. 634 */ 635 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 636 /* Perform the largest reset requested */ 637 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 638 reset_type = ICE_RESET_CORER; 639 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 640 reset_type = ICE_RESET_GLOBR; 641 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 642 reset_type = ICE_RESET_EMPR; 643 /* return if no valid reset type requested */ 644 if (reset_type == ICE_RESET_INVAL) 645 return; 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* make sure we are ready to rebuild */ 649 if (ice_check_reset(&pf->hw)) { 650 set_bit(ICE_RESET_FAILED, pf->state); 651 } else { 652 /* done with reset. start rebuild */ 653 pf->hw.reset_ongoing = false; 654 ice_rebuild(pf, reset_type); 655 /* clear bit to resume normal operations, but 656 * ICE_NEEDS_RESTART bit is set in case rebuild failed 657 */ 658 clear_bit(ICE_RESET_OICR_RECV, pf->state); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 clear_bit(ICE_CORER_REQ, pf->state); 662 clear_bit(ICE_GLOBR_REQ, pf->state); 663 wake_up(&pf->reset_wait_queue); 664 ice_reset_all_vfs(pf, true); 665 } 666 667 return; 668 } 669 670 /* No pending resets to finish processing. Check for new resets */ 671 if (test_bit(ICE_PFR_REQ, pf->state)) 672 reset_type = ICE_RESET_PFR; 673 if (test_bit(ICE_CORER_REQ, pf->state)) 674 reset_type = ICE_RESET_CORER; 675 if (test_bit(ICE_GLOBR_REQ, pf->state)) 676 reset_type = ICE_RESET_GLOBR; 677 /* If no valid reset type requested just return */ 678 if (reset_type == ICE_RESET_INVAL) 679 return; 680 681 /* reset if not already down or busy */ 682 if (!test_bit(ICE_DOWN, pf->state) && 683 !test_bit(ICE_CFG_BUSY, pf->state)) { 684 ice_do_reset(pf, reset_type); 685 } 686 } 687 688 /** 689 * ice_print_topo_conflict - print topology conflict message 690 * @vsi: the VSI whose topology status is being checked 691 */ 692 static void ice_print_topo_conflict(struct ice_vsi *vsi) 693 { 694 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 695 case ICE_AQ_LINK_TOPO_CONFLICT: 696 case ICE_AQ_LINK_MEDIA_CONFLICT: 697 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 698 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 699 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 700 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 701 break; 702 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 703 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 704 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 705 else 706 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 707 break; 708 default: 709 break; 710 } 711 } 712 713 /** 714 * ice_print_link_msg - print link up or down message 715 * @vsi: the VSI whose link status is being queried 716 * @isup: boolean for if the link is now up or down 717 */ 718 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 719 { 720 struct ice_aqc_get_phy_caps_data *caps; 721 const char *an_advertised; 722 const char *fec_req; 723 const char *speed; 724 const char *fec; 725 const char *fc; 726 const char *an; 727 int status; 728 729 if (!vsi) 730 return; 731 732 if (vsi->current_isup == isup) 733 return; 734 735 vsi->current_isup = isup; 736 737 if (!isup) { 738 netdev_info(vsi->netdev, "NIC Link is Down\n"); 739 return; 740 } 741 742 switch (vsi->port_info->phy.link_info.link_speed) { 743 case ICE_AQ_LINK_SPEED_100GB: 744 speed = "100 G"; 745 break; 746 case ICE_AQ_LINK_SPEED_50GB: 747 speed = "50 G"; 748 break; 749 case ICE_AQ_LINK_SPEED_40GB: 750 speed = "40 G"; 751 break; 752 case ICE_AQ_LINK_SPEED_25GB: 753 speed = "25 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_20GB: 756 speed = "20 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_10GB: 759 speed = "10 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_5GB: 762 speed = "5 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_2500MB: 765 speed = "2.5 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_1000MB: 768 speed = "1 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_100MB: 771 speed = "100 M"; 772 break; 773 default: 774 speed = "Unknown "; 775 break; 776 } 777 778 switch (vsi->port_info->fc.current_mode) { 779 case ICE_FC_FULL: 780 fc = "Rx/Tx"; 781 break; 782 case ICE_FC_TX_PAUSE: 783 fc = "Tx"; 784 break; 785 case ICE_FC_RX_PAUSE: 786 fc = "Rx"; 787 break; 788 case ICE_FC_NONE: 789 fc = "None"; 790 break; 791 default: 792 fc = "Unknown"; 793 break; 794 } 795 796 /* Get FEC mode based on negotiated link info */ 797 switch (vsi->port_info->phy.link_info.fec_info) { 798 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 799 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 800 fec = "RS-FEC"; 801 break; 802 case ICE_AQ_LINK_25G_KR_FEC_EN: 803 fec = "FC-FEC/BASE-R"; 804 break; 805 default: 806 fec = "NONE"; 807 break; 808 } 809 810 /* check if autoneg completed, might be false due to not supported */ 811 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 812 an = "True"; 813 else 814 an = "False"; 815 816 /* Get FEC mode requested based on PHY caps last SW configuration */ 817 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 818 if (!caps) { 819 fec_req = "Unknown"; 820 an_advertised = "Unknown"; 821 goto done; 822 } 823 824 status = ice_aq_get_phy_caps(vsi->port_info, false, 825 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 826 if (status) 827 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 828 829 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 830 831 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 832 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 833 fec_req = "RS-FEC"; 834 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 835 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 836 fec_req = "FC-FEC/BASE-R"; 837 else 838 fec_req = "NONE"; 839 840 kfree(caps); 841 842 done: 843 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 844 speed, fec_req, fec, an_advertised, an, fc); 845 ice_print_topo_conflict(vsi); 846 } 847 848 /** 849 * ice_vsi_link_event - update the VSI's netdev 850 * @vsi: the VSI on which the link event occurred 851 * @link_up: whether or not the VSI needs to be set up or down 852 */ 853 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 854 { 855 if (!vsi) 856 return; 857 858 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 859 return; 860 861 if (vsi->type == ICE_VSI_PF) { 862 if (link_up == netif_carrier_ok(vsi->netdev)) 863 return; 864 865 if (link_up) { 866 netif_carrier_on(vsi->netdev); 867 netif_tx_wake_all_queues(vsi->netdev); 868 } else { 869 netif_carrier_off(vsi->netdev); 870 netif_tx_stop_all_queues(vsi->netdev); 871 } 872 } 873 } 874 875 /** 876 * ice_set_dflt_mib - send a default config MIB to the FW 877 * @pf: private PF struct 878 * 879 * This function sends a default configuration MIB to the FW. 880 * 881 * If this function errors out at any point, the driver is still able to 882 * function. The main impact is that LFC may not operate as expected. 883 * Therefore an error state in this function should be treated with a DBG 884 * message and continue on with driver rebuild/reenable. 885 */ 886 static void ice_set_dflt_mib(struct ice_pf *pf) 887 { 888 struct device *dev = ice_pf_to_dev(pf); 889 u8 mib_type, *buf, *lldpmib = NULL; 890 u16 len, typelen, offset = 0; 891 struct ice_lldp_org_tlv *tlv; 892 struct ice_hw *hw = &pf->hw; 893 u32 ouisubtype; 894 895 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 896 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 897 if (!lldpmib) { 898 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 899 __func__); 900 return; 901 } 902 903 /* Add ETS CFG TLV */ 904 tlv = (struct ice_lldp_org_tlv *)lldpmib; 905 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 906 ICE_IEEE_ETS_TLV_LEN); 907 tlv->typelen = htons(typelen); 908 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 909 ICE_IEEE_SUBTYPE_ETS_CFG); 910 tlv->ouisubtype = htonl(ouisubtype); 911 912 buf = tlv->tlvinfo; 913 buf[0] = 0; 914 915 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 916 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 917 * Octets 13 - 20 are TSA values - leave as zeros 918 */ 919 buf[5] = 0x64; 920 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 921 offset += len + 2; 922 tlv = (struct ice_lldp_org_tlv *) 923 ((char *)tlv + sizeof(tlv->typelen) + len); 924 925 /* Add ETS REC TLV */ 926 buf = tlv->tlvinfo; 927 tlv->typelen = htons(typelen); 928 929 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 930 ICE_IEEE_SUBTYPE_ETS_REC); 931 tlv->ouisubtype = htonl(ouisubtype); 932 933 /* First octet of buf is reserved 934 * Octets 1 - 4 map UP to TC - all UPs map to zero 935 * Octets 5 - 12 are BW values - set TC 0 to 100%. 936 * Octets 13 - 20 are TSA value - leave as zeros 937 */ 938 buf[5] = 0x64; 939 offset += len + 2; 940 tlv = (struct ice_lldp_org_tlv *) 941 ((char *)tlv + sizeof(tlv->typelen) + len); 942 943 /* Add PFC CFG TLV */ 944 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 945 ICE_IEEE_PFC_TLV_LEN); 946 tlv->typelen = htons(typelen); 947 948 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 949 ICE_IEEE_SUBTYPE_PFC_CFG); 950 tlv->ouisubtype = htonl(ouisubtype); 951 952 /* Octet 1 left as all zeros - PFC disabled */ 953 buf[0] = 0x08; 954 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 955 offset += len + 2; 956 957 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 958 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 959 960 kfree(lldpmib); 961 } 962 963 /** 964 * ice_check_phy_fw_load - check if PHY FW load failed 965 * @pf: pointer to PF struct 966 * @link_cfg_err: bitmap from the link info structure 967 * 968 * check if external PHY FW load failed and print an error message if it did 969 */ 970 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 971 { 972 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 973 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 974 return; 975 } 976 977 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 978 return; 979 980 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 981 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 982 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 983 } 984 } 985 986 /** 987 * ice_check_module_power 988 * @pf: pointer to PF struct 989 * @link_cfg_err: bitmap from the link info structure 990 * 991 * check module power level returned by a previous call to aq_get_link_info 992 * and print error messages if module power level is not supported 993 */ 994 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 995 { 996 /* if module power level is supported, clear the flag */ 997 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 998 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 999 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1000 return; 1001 } 1002 1003 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1004 * above block didn't clear this bit, there's nothing to do 1005 */ 1006 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1007 return; 1008 1009 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1010 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1011 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1012 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1013 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1014 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1015 } 1016 } 1017 1018 /** 1019 * ice_check_link_cfg_err - check if link configuration failed 1020 * @pf: pointer to the PF struct 1021 * @link_cfg_err: bitmap from the link info structure 1022 * 1023 * print if any link configuration failure happens due to the value in the 1024 * link_cfg_err parameter in the link info structure 1025 */ 1026 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1027 { 1028 ice_check_module_power(pf, link_cfg_err); 1029 ice_check_phy_fw_load(pf, link_cfg_err); 1030 } 1031 1032 /** 1033 * ice_link_event - process the link event 1034 * @pf: PF that the link event is associated with 1035 * @pi: port_info for the port that the link event is associated with 1036 * @link_up: true if the physical link is up and false if it is down 1037 * @link_speed: current link speed received from the link event 1038 * 1039 * Returns 0 on success and negative on failure 1040 */ 1041 static int 1042 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1043 u16 link_speed) 1044 { 1045 struct device *dev = ice_pf_to_dev(pf); 1046 struct ice_phy_info *phy_info; 1047 struct ice_vsi *vsi; 1048 u16 old_link_speed; 1049 bool old_link; 1050 int status; 1051 1052 phy_info = &pi->phy; 1053 phy_info->link_info_old = phy_info->link_info; 1054 1055 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1056 old_link_speed = phy_info->link_info_old.link_speed; 1057 1058 /* update the link info structures and re-enable link events, 1059 * don't bail on failure due to other book keeping needed 1060 */ 1061 status = ice_update_link_info(pi); 1062 if (status) 1063 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1064 pi->lport, status, 1065 ice_aq_str(pi->hw->adminq.sq_last_status)); 1066 1067 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1068 1069 /* Check if the link state is up after updating link info, and treat 1070 * this event as an UP event since the link is actually UP now. 1071 */ 1072 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1073 link_up = true; 1074 1075 vsi = ice_get_main_vsi(pf); 1076 if (!vsi || !vsi->port_info) 1077 return -EINVAL; 1078 1079 /* turn off PHY if media was removed */ 1080 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1081 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1082 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1083 ice_set_link(vsi, false); 1084 } 1085 1086 /* if the old link up/down and speed is the same as the new */ 1087 if (link_up == old_link && link_speed == old_link_speed) 1088 return 0; 1089 1090 if (!ice_is_e810(&pf->hw)) 1091 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1092 1093 if (ice_is_dcb_active(pf)) { 1094 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1095 ice_dcb_rebuild(pf); 1096 } else { 1097 if (link_up) 1098 ice_set_dflt_mib(pf); 1099 } 1100 ice_vsi_link_event(vsi, link_up); 1101 ice_print_link_msg(vsi, link_up); 1102 1103 ice_vc_notify_link_state(pf); 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1110 * @pf: board private structure 1111 */ 1112 static void ice_watchdog_subtask(struct ice_pf *pf) 1113 { 1114 int i; 1115 1116 /* if interface is down do nothing */ 1117 if (test_bit(ICE_DOWN, pf->state) || 1118 test_bit(ICE_CFG_BUSY, pf->state)) 1119 return; 1120 1121 /* make sure we don't do these things too often */ 1122 if (time_before(jiffies, 1123 pf->serv_tmr_prev + pf->serv_tmr_period)) 1124 return; 1125 1126 pf->serv_tmr_prev = jiffies; 1127 1128 /* Update the stats for active netdevs so the network stack 1129 * can look at updated numbers whenever it cares to 1130 */ 1131 ice_update_pf_stats(pf); 1132 ice_for_each_vsi(pf, i) 1133 if (pf->vsi[i] && pf->vsi[i]->netdev) 1134 ice_update_vsi_stats(pf->vsi[i]); 1135 } 1136 1137 /** 1138 * ice_init_link_events - enable/initialize link events 1139 * @pi: pointer to the port_info instance 1140 * 1141 * Returns -EIO on failure, 0 on success 1142 */ 1143 static int ice_init_link_events(struct ice_port_info *pi) 1144 { 1145 u16 mask; 1146 1147 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1148 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1149 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1150 1151 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1152 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1153 pi->lport); 1154 return -EIO; 1155 } 1156 1157 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1158 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1159 pi->lport); 1160 return -EIO; 1161 } 1162 1163 return 0; 1164 } 1165 1166 /** 1167 * ice_handle_link_event - handle link event via ARQ 1168 * @pf: PF that the link event is associated with 1169 * @event: event structure containing link status info 1170 */ 1171 static int 1172 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1173 { 1174 struct ice_aqc_get_link_status_data *link_data; 1175 struct ice_port_info *port_info; 1176 int status; 1177 1178 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1179 port_info = pf->hw.port_info; 1180 if (!port_info) 1181 return -EINVAL; 1182 1183 status = ice_link_event(pf, port_info, 1184 !!(link_data->link_info & ICE_AQ_LINK_UP), 1185 le16_to_cpu(link_data->link_speed)); 1186 if (status) 1187 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1188 status); 1189 1190 return status; 1191 } 1192 1193 enum ice_aq_task_state { 1194 ICE_AQ_TASK_WAITING = 0, 1195 ICE_AQ_TASK_COMPLETE, 1196 ICE_AQ_TASK_CANCELED, 1197 }; 1198 1199 struct ice_aq_task { 1200 struct hlist_node entry; 1201 1202 u16 opcode; 1203 struct ice_rq_event_info *event; 1204 enum ice_aq_task_state state; 1205 }; 1206 1207 /** 1208 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1209 * @pf: pointer to the PF private structure 1210 * @opcode: the opcode to wait for 1211 * @timeout: how long to wait, in jiffies 1212 * @event: storage for the event info 1213 * 1214 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1215 * current thread will be put to sleep until the specified event occurs or 1216 * until the given timeout is reached. 1217 * 1218 * To obtain only the descriptor contents, pass an event without an allocated 1219 * msg_buf. If the complete data buffer is desired, allocate the 1220 * event->msg_buf with enough space ahead of time. 1221 * 1222 * Returns: zero on success, or a negative error code on failure. 1223 */ 1224 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1225 struct ice_rq_event_info *event) 1226 { 1227 struct device *dev = ice_pf_to_dev(pf); 1228 struct ice_aq_task *task; 1229 unsigned long start; 1230 long ret; 1231 int err; 1232 1233 task = kzalloc(sizeof(*task), GFP_KERNEL); 1234 if (!task) 1235 return -ENOMEM; 1236 1237 INIT_HLIST_NODE(&task->entry); 1238 task->opcode = opcode; 1239 task->event = event; 1240 task->state = ICE_AQ_TASK_WAITING; 1241 1242 spin_lock_bh(&pf->aq_wait_lock); 1243 hlist_add_head(&task->entry, &pf->aq_wait_list); 1244 spin_unlock_bh(&pf->aq_wait_lock); 1245 1246 start = jiffies; 1247 1248 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1249 timeout); 1250 switch (task->state) { 1251 case ICE_AQ_TASK_WAITING: 1252 err = ret < 0 ? ret : -ETIMEDOUT; 1253 break; 1254 case ICE_AQ_TASK_CANCELED: 1255 err = ret < 0 ? ret : -ECANCELED; 1256 break; 1257 case ICE_AQ_TASK_COMPLETE: 1258 err = ret < 0 ? ret : 0; 1259 break; 1260 default: 1261 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1262 err = -EINVAL; 1263 break; 1264 } 1265 1266 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1267 jiffies_to_msecs(jiffies - start), 1268 jiffies_to_msecs(timeout), 1269 opcode); 1270 1271 spin_lock_bh(&pf->aq_wait_lock); 1272 hlist_del(&task->entry); 1273 spin_unlock_bh(&pf->aq_wait_lock); 1274 kfree(task); 1275 1276 return err; 1277 } 1278 1279 /** 1280 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1281 * @pf: pointer to the PF private structure 1282 * @opcode: the opcode of the event 1283 * @event: the event to check 1284 * 1285 * Loops over the current list of pending threads waiting for an AdminQ event. 1286 * For each matching task, copy the contents of the event into the task 1287 * structure and wake up the thread. 1288 * 1289 * If multiple threads wait for the same opcode, they will all be woken up. 1290 * 1291 * Note that event->msg_buf will only be duplicated if the event has a buffer 1292 * with enough space already allocated. Otherwise, only the descriptor and 1293 * message length will be copied. 1294 * 1295 * Returns: true if an event was found, false otherwise 1296 */ 1297 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1298 struct ice_rq_event_info *event) 1299 { 1300 struct ice_aq_task *task; 1301 bool found = false; 1302 1303 spin_lock_bh(&pf->aq_wait_lock); 1304 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1305 if (task->state || task->opcode != opcode) 1306 continue; 1307 1308 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1309 task->event->msg_len = event->msg_len; 1310 1311 /* Only copy the data buffer if a destination was set */ 1312 if (task->event->msg_buf && 1313 task->event->buf_len > event->buf_len) { 1314 memcpy(task->event->msg_buf, event->msg_buf, 1315 event->buf_len); 1316 task->event->buf_len = event->buf_len; 1317 } 1318 1319 task->state = ICE_AQ_TASK_COMPLETE; 1320 found = true; 1321 } 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 1324 if (found) 1325 wake_up(&pf->aq_wait_queue); 1326 } 1327 1328 /** 1329 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1330 * @pf: the PF private structure 1331 * 1332 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1333 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1334 */ 1335 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1336 { 1337 struct ice_aq_task *task; 1338 1339 spin_lock_bh(&pf->aq_wait_lock); 1340 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1341 task->state = ICE_AQ_TASK_CANCELED; 1342 spin_unlock_bh(&pf->aq_wait_lock); 1343 1344 wake_up(&pf->aq_wait_queue); 1345 } 1346 1347 /** 1348 * __ice_clean_ctrlq - helper function to clean controlq rings 1349 * @pf: ptr to struct ice_pf 1350 * @q_type: specific Control queue type 1351 */ 1352 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1353 { 1354 struct device *dev = ice_pf_to_dev(pf); 1355 struct ice_rq_event_info event; 1356 struct ice_hw *hw = &pf->hw; 1357 struct ice_ctl_q_info *cq; 1358 u16 pending, i = 0; 1359 const char *qtype; 1360 u32 oldval, val; 1361 1362 /* Do not clean control queue if/when PF reset fails */ 1363 if (test_bit(ICE_RESET_FAILED, pf->state)) 1364 return 0; 1365 1366 switch (q_type) { 1367 case ICE_CTL_Q_ADMIN: 1368 cq = &hw->adminq; 1369 qtype = "Admin"; 1370 break; 1371 case ICE_CTL_Q_SB: 1372 cq = &hw->sbq; 1373 qtype = "Sideband"; 1374 break; 1375 case ICE_CTL_Q_MAILBOX: 1376 cq = &hw->mailboxq; 1377 qtype = "Mailbox"; 1378 /* we are going to try to detect a malicious VF, so set the 1379 * state to begin detection 1380 */ 1381 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1382 break; 1383 default: 1384 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1385 return 0; 1386 } 1387 1388 /* check for error indications - PF_xx_AxQLEN register layout for 1389 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1390 */ 1391 val = rd32(hw, cq->rq.len); 1392 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1393 PF_FW_ARQLEN_ARQCRIT_M)) { 1394 oldval = val; 1395 if (val & PF_FW_ARQLEN_ARQVFE_M) 1396 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1397 qtype); 1398 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1399 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1400 qtype); 1401 } 1402 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1403 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1404 qtype); 1405 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1406 PF_FW_ARQLEN_ARQCRIT_M); 1407 if (oldval != val) 1408 wr32(hw, cq->rq.len, val); 1409 } 1410 1411 val = rd32(hw, cq->sq.len); 1412 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1413 PF_FW_ATQLEN_ATQCRIT_M)) { 1414 oldval = val; 1415 if (val & PF_FW_ATQLEN_ATQVFE_M) 1416 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1417 qtype); 1418 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1419 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1420 qtype); 1421 } 1422 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1423 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1424 qtype); 1425 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1426 PF_FW_ATQLEN_ATQCRIT_M); 1427 if (oldval != val) 1428 wr32(hw, cq->sq.len, val); 1429 } 1430 1431 event.buf_len = cq->rq_buf_size; 1432 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1433 if (!event.msg_buf) 1434 return 0; 1435 1436 do { 1437 u16 opcode; 1438 int ret; 1439 1440 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1441 if (ret == -EALREADY) 1442 break; 1443 if (ret) { 1444 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1445 ret); 1446 break; 1447 } 1448 1449 opcode = le16_to_cpu(event.desc.opcode); 1450 1451 /* Notify any thread that might be waiting for this event */ 1452 ice_aq_check_events(pf, opcode, &event); 1453 1454 switch (opcode) { 1455 case ice_aqc_opc_get_link_status: 1456 if (ice_handle_link_event(pf, &event)) 1457 dev_err(dev, "Could not handle link event\n"); 1458 break; 1459 case ice_aqc_opc_event_lan_overflow: 1460 ice_vf_lan_overflow_event(pf, &event); 1461 break; 1462 case ice_mbx_opc_send_msg_to_pf: 1463 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1464 ice_vc_process_vf_msg(pf, &event); 1465 break; 1466 case ice_aqc_opc_fw_logging: 1467 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1468 break; 1469 case ice_aqc_opc_lldp_set_mib_change: 1470 ice_dcb_process_lldp_set_mib_change(pf, &event); 1471 break; 1472 default: 1473 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1474 qtype, opcode); 1475 break; 1476 } 1477 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1478 1479 kfree(event.msg_buf); 1480 1481 return pending && (i == ICE_DFLT_IRQ_WORK); 1482 } 1483 1484 /** 1485 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1486 * @hw: pointer to hardware info 1487 * @cq: control queue information 1488 * 1489 * returns true if there are pending messages in a queue, false if there aren't 1490 */ 1491 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1492 { 1493 u16 ntu; 1494 1495 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1496 return cq->rq.next_to_clean != ntu; 1497 } 1498 1499 /** 1500 * ice_clean_adminq_subtask - clean the AdminQ rings 1501 * @pf: board private structure 1502 */ 1503 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1504 { 1505 struct ice_hw *hw = &pf->hw; 1506 1507 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1508 return; 1509 1510 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1511 return; 1512 1513 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1514 1515 /* There might be a situation where new messages arrive to a control 1516 * queue between processing the last message and clearing the 1517 * EVENT_PENDING bit. So before exiting, check queue head again (using 1518 * ice_ctrlq_pending) and process new messages if any. 1519 */ 1520 if (ice_ctrlq_pending(hw, &hw->adminq)) 1521 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1522 1523 ice_flush(hw); 1524 } 1525 1526 /** 1527 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1528 * @pf: board private structure 1529 */ 1530 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1531 { 1532 struct ice_hw *hw = &pf->hw; 1533 1534 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1535 return; 1536 1537 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1538 return; 1539 1540 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1541 1542 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1543 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1544 1545 ice_flush(hw); 1546 } 1547 1548 /** 1549 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 /* Nothing to do here if sideband queue is not supported */ 1557 if (!ice_is_sbq_supported(hw)) { 1558 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1559 return; 1560 } 1561 1562 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1563 return; 1564 1565 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1566 return; 1567 1568 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1569 1570 if (ice_ctrlq_pending(hw, &hw->sbq)) 1571 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1572 1573 ice_flush(hw); 1574 } 1575 1576 /** 1577 * ice_service_task_schedule - schedule the service task to wake up 1578 * @pf: board private structure 1579 * 1580 * If not already scheduled, this puts the task into the work queue. 1581 */ 1582 void ice_service_task_schedule(struct ice_pf *pf) 1583 { 1584 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1585 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1586 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1587 queue_work(ice_wq, &pf->serv_task); 1588 } 1589 1590 /** 1591 * ice_service_task_complete - finish up the service task 1592 * @pf: board private structure 1593 */ 1594 static void ice_service_task_complete(struct ice_pf *pf) 1595 { 1596 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1597 1598 /* force memory (pf->state) to sync before next service task */ 1599 smp_mb__before_atomic(); 1600 clear_bit(ICE_SERVICE_SCHED, pf->state); 1601 } 1602 1603 /** 1604 * ice_service_task_stop - stop service task and cancel works 1605 * @pf: board private structure 1606 * 1607 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1608 * 1 otherwise. 1609 */ 1610 static int ice_service_task_stop(struct ice_pf *pf) 1611 { 1612 int ret; 1613 1614 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1615 1616 if (pf->serv_tmr.function) 1617 del_timer_sync(&pf->serv_tmr); 1618 if (pf->serv_task.func) 1619 cancel_work_sync(&pf->serv_task); 1620 1621 clear_bit(ICE_SERVICE_SCHED, pf->state); 1622 return ret; 1623 } 1624 1625 /** 1626 * ice_service_task_restart - restart service task and schedule works 1627 * @pf: board private structure 1628 * 1629 * This function is needed for suspend and resume works (e.g WoL scenario) 1630 */ 1631 static void ice_service_task_restart(struct ice_pf *pf) 1632 { 1633 clear_bit(ICE_SERVICE_DIS, pf->state); 1634 ice_service_task_schedule(pf); 1635 } 1636 1637 /** 1638 * ice_service_timer - timer callback to schedule service task 1639 * @t: pointer to timer_list 1640 */ 1641 static void ice_service_timer(struct timer_list *t) 1642 { 1643 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1644 1645 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1646 ice_service_task_schedule(pf); 1647 } 1648 1649 /** 1650 * ice_handle_mdd_event - handle malicious driver detect event 1651 * @pf: pointer to the PF structure 1652 * 1653 * Called from service task. OICR interrupt handler indicates MDD event. 1654 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1655 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1656 * disable the queue, the PF can be configured to reset the VF using ethtool 1657 * private flag mdd-auto-reset-vf. 1658 */ 1659 static void ice_handle_mdd_event(struct ice_pf *pf) 1660 { 1661 struct device *dev = ice_pf_to_dev(pf); 1662 struct ice_hw *hw = &pf->hw; 1663 unsigned int i; 1664 u32 reg; 1665 1666 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1667 /* Since the VF MDD event logging is rate limited, check if 1668 * there are pending MDD events. 1669 */ 1670 ice_print_vfs_mdd_events(pf); 1671 return; 1672 } 1673 1674 /* find what triggered an MDD event */ 1675 reg = rd32(hw, GL_MDET_TX_PQM); 1676 if (reg & GL_MDET_TX_PQM_VALID_M) { 1677 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1678 GL_MDET_TX_PQM_PF_NUM_S; 1679 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1680 GL_MDET_TX_PQM_VF_NUM_S; 1681 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1682 GL_MDET_TX_PQM_MAL_TYPE_S; 1683 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1684 GL_MDET_TX_PQM_QNUM_S); 1685 1686 if (netif_msg_tx_err(pf)) 1687 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1688 event, queue, pf_num, vf_num); 1689 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1690 } 1691 1692 reg = rd32(hw, GL_MDET_TX_TCLAN); 1693 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1694 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1695 GL_MDET_TX_TCLAN_PF_NUM_S; 1696 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1697 GL_MDET_TX_TCLAN_VF_NUM_S; 1698 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1699 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1700 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1701 GL_MDET_TX_TCLAN_QNUM_S); 1702 1703 if (netif_msg_tx_err(pf)) 1704 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1705 event, queue, pf_num, vf_num); 1706 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1707 } 1708 1709 reg = rd32(hw, GL_MDET_RX); 1710 if (reg & GL_MDET_RX_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1712 GL_MDET_RX_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1714 GL_MDET_RX_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1716 GL_MDET_RX_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1718 GL_MDET_RX_QNUM_S); 1719 1720 if (netif_msg_rx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_RX, 0xffffffff); 1724 } 1725 1726 /* check to see if this PF caused an MDD event */ 1727 reg = rd32(hw, PF_MDET_TX_PQM); 1728 if (reg & PF_MDET_TX_PQM_VALID_M) { 1729 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1730 if (netif_msg_tx_err(pf)) 1731 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1732 } 1733 1734 reg = rd32(hw, PF_MDET_TX_TCLAN); 1735 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1736 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1739 } 1740 1741 reg = rd32(hw, PF_MDET_RX); 1742 if (reg & PF_MDET_RX_VALID_M) { 1743 wr32(hw, PF_MDET_RX, 0xFFFF); 1744 if (netif_msg_rx_err(pf)) 1745 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1746 } 1747 1748 /* Check to see if one of the VFs caused an MDD event, and then 1749 * increment counters and set print pending 1750 */ 1751 ice_for_each_vf(pf, i) { 1752 struct ice_vf *vf = &pf->vf[i]; 1753 1754 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1755 if (reg & VP_MDET_TX_PQM_VALID_M) { 1756 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1757 vf->mdd_tx_events.count++; 1758 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1759 if (netif_msg_tx_err(pf)) 1760 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1761 i); 1762 } 1763 1764 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1765 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1766 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1767 vf->mdd_tx_events.count++; 1768 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1771 i); 1772 } 1773 1774 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1775 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1776 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1777 vf->mdd_tx_events.count++; 1778 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1781 i); 1782 } 1783 1784 reg = rd32(hw, VP_MDET_RX(i)); 1785 if (reg & VP_MDET_RX_VALID_M) { 1786 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1787 vf->mdd_rx_events.count++; 1788 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1789 if (netif_msg_rx_err(pf)) 1790 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1791 i); 1792 1793 /* Since the queue is disabled on VF Rx MDD events, the 1794 * PF can be configured to reset the VF through ethtool 1795 * private flag mdd-auto-reset-vf. 1796 */ 1797 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1798 /* VF MDD event counters will be cleared by 1799 * reset, so print the event prior to reset. 1800 */ 1801 ice_print_vf_rx_mdd_event(vf); 1802 ice_reset_vf(&pf->vf[i], false); 1803 } 1804 } 1805 } 1806 1807 ice_print_vfs_mdd_events(pf); 1808 } 1809 1810 /** 1811 * ice_force_phys_link_state - Force the physical link state 1812 * @vsi: VSI to force the physical link state to up/down 1813 * @link_up: true/false indicates to set the physical link to up/down 1814 * 1815 * Force the physical link state by getting the current PHY capabilities from 1816 * hardware and setting the PHY config based on the determined capabilities. If 1817 * link changes a link event will be triggered because both the Enable Automatic 1818 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1819 * 1820 * Returns 0 on success, negative on failure 1821 */ 1822 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1823 { 1824 struct ice_aqc_get_phy_caps_data *pcaps; 1825 struct ice_aqc_set_phy_cfg_data *cfg; 1826 struct ice_port_info *pi; 1827 struct device *dev; 1828 int retcode; 1829 1830 if (!vsi || !vsi->port_info || !vsi->back) 1831 return -EINVAL; 1832 if (vsi->type != ICE_VSI_PF) 1833 return 0; 1834 1835 dev = ice_pf_to_dev(vsi->back); 1836 1837 pi = vsi->port_info; 1838 1839 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1840 if (!pcaps) 1841 return -ENOMEM; 1842 1843 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1844 NULL); 1845 if (retcode) { 1846 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1847 vsi->vsi_num, retcode); 1848 retcode = -EIO; 1849 goto out; 1850 } 1851 1852 /* No change in link */ 1853 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1854 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1855 goto out; 1856 1857 /* Use the current user PHY configuration. The current user PHY 1858 * configuration is initialized during probe from PHY capabilities 1859 * software mode, and updated on set PHY configuration. 1860 */ 1861 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1862 if (!cfg) { 1863 retcode = -ENOMEM; 1864 goto out; 1865 } 1866 1867 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1868 if (link_up) 1869 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1870 else 1871 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1872 1873 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1874 if (retcode) { 1875 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1876 vsi->vsi_num, retcode); 1877 retcode = -EIO; 1878 } 1879 1880 kfree(cfg); 1881 out: 1882 kfree(pcaps); 1883 return retcode; 1884 } 1885 1886 /** 1887 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1888 * @pi: port info structure 1889 * 1890 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1891 */ 1892 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1893 { 1894 struct ice_aqc_get_phy_caps_data *pcaps; 1895 struct ice_pf *pf = pi->hw->back; 1896 int err; 1897 1898 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1899 if (!pcaps) 1900 return -ENOMEM; 1901 1902 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1903 pcaps, NULL); 1904 1905 if (err) { 1906 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1907 goto out; 1908 } 1909 1910 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1911 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1912 1913 out: 1914 kfree(pcaps); 1915 return err; 1916 } 1917 1918 /** 1919 * ice_init_link_dflt_override - Initialize link default override 1920 * @pi: port info structure 1921 * 1922 * Initialize link default override and PHY total port shutdown during probe 1923 */ 1924 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1925 { 1926 struct ice_link_default_override_tlv *ldo; 1927 struct ice_pf *pf = pi->hw->back; 1928 1929 ldo = &pf->link_dflt_override; 1930 if (ice_get_link_default_override(ldo, pi)) 1931 return; 1932 1933 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1934 return; 1935 1936 /* Enable Total Port Shutdown (override/replace link-down-on-close 1937 * ethtool private flag) for ports with Port Disable bit set. 1938 */ 1939 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1940 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1941 } 1942 1943 /** 1944 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1945 * @pi: port info structure 1946 * 1947 * If default override is enabled, initialize the user PHY cfg speed and FEC 1948 * settings using the default override mask from the NVM. 1949 * 1950 * The PHY should only be configured with the default override settings the 1951 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1952 * is used to indicate that the user PHY cfg default override is initialized 1953 * and the PHY has not been configured with the default override settings. The 1954 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1955 * configured. 1956 * 1957 * This function should be called only if the FW doesn't support default 1958 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1959 */ 1960 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1961 { 1962 struct ice_link_default_override_tlv *ldo; 1963 struct ice_aqc_set_phy_cfg_data *cfg; 1964 struct ice_phy_info *phy = &pi->phy; 1965 struct ice_pf *pf = pi->hw->back; 1966 1967 ldo = &pf->link_dflt_override; 1968 1969 /* If link default override is enabled, use to mask NVM PHY capabilities 1970 * for speed and FEC default configuration. 1971 */ 1972 cfg = &phy->curr_user_phy_cfg; 1973 1974 if (ldo->phy_type_low || ldo->phy_type_high) { 1975 cfg->phy_type_low = pf->nvm_phy_type_lo & 1976 cpu_to_le64(ldo->phy_type_low); 1977 cfg->phy_type_high = pf->nvm_phy_type_hi & 1978 cpu_to_le64(ldo->phy_type_high); 1979 } 1980 cfg->link_fec_opt = ldo->fec_options; 1981 phy->curr_user_fec_req = ICE_FEC_AUTO; 1982 1983 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1984 } 1985 1986 /** 1987 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1988 * @pi: port info structure 1989 * 1990 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1991 * mode to default. The PHY defaults are from get PHY capabilities topology 1992 * with media so call when media is first available. An error is returned if 1993 * called when media is not available. The PHY initialization completed state is 1994 * set here. 1995 * 1996 * These configurations are used when setting PHY 1997 * configuration. The user PHY configuration is updated on set PHY 1998 * configuration. Returns 0 on success, negative on failure 1999 */ 2000 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2001 { 2002 struct ice_aqc_get_phy_caps_data *pcaps; 2003 struct ice_phy_info *phy = &pi->phy; 2004 struct ice_pf *pf = pi->hw->back; 2005 int err; 2006 2007 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2008 return -EIO; 2009 2010 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2011 if (!pcaps) 2012 return -ENOMEM; 2013 2014 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2015 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2016 pcaps, NULL); 2017 else 2018 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2019 pcaps, NULL); 2020 if (err) { 2021 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2022 goto err_out; 2023 } 2024 2025 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2026 2027 /* check if lenient mode is supported and enabled */ 2028 if (ice_fw_supports_link_override(pi->hw) && 2029 !(pcaps->module_compliance_enforcement & 2030 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2031 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2032 2033 /* if the FW supports default PHY configuration mode, then the driver 2034 * does not have to apply link override settings. If not, 2035 * initialize user PHY configuration with link override values 2036 */ 2037 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2038 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2039 ice_init_phy_cfg_dflt_override(pi); 2040 goto out; 2041 } 2042 } 2043 2044 /* if link default override is not enabled, set user flow control and 2045 * FEC settings based on what get_phy_caps returned 2046 */ 2047 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2048 pcaps->link_fec_options); 2049 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2050 2051 out: 2052 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2053 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2054 err_out: 2055 kfree(pcaps); 2056 return err; 2057 } 2058 2059 /** 2060 * ice_configure_phy - configure PHY 2061 * @vsi: VSI of PHY 2062 * 2063 * Set the PHY configuration. If the current PHY configuration is the same as 2064 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2065 * configure the based get PHY capabilities for topology with media. 2066 */ 2067 static int ice_configure_phy(struct ice_vsi *vsi) 2068 { 2069 struct device *dev = ice_pf_to_dev(vsi->back); 2070 struct ice_port_info *pi = vsi->port_info; 2071 struct ice_aqc_get_phy_caps_data *pcaps; 2072 struct ice_aqc_set_phy_cfg_data *cfg; 2073 struct ice_phy_info *phy = &pi->phy; 2074 struct ice_pf *pf = vsi->back; 2075 int err; 2076 2077 /* Ensure we have media as we cannot configure a medialess port */ 2078 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2079 return -EPERM; 2080 2081 ice_print_topo_conflict(vsi); 2082 2083 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2084 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2085 return -EPERM; 2086 2087 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2088 return ice_force_phys_link_state(vsi, true); 2089 2090 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2091 if (!pcaps) 2092 return -ENOMEM; 2093 2094 /* Get current PHY config */ 2095 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2096 NULL); 2097 if (err) { 2098 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2099 vsi->vsi_num, err); 2100 goto done; 2101 } 2102 2103 /* If PHY enable link is configured and configuration has not changed, 2104 * there's nothing to do 2105 */ 2106 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2107 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2108 goto done; 2109 2110 /* Use PHY topology as baseline for configuration */ 2111 memset(pcaps, 0, sizeof(*pcaps)); 2112 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2113 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2114 pcaps, NULL); 2115 else 2116 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2117 pcaps, NULL); 2118 if (err) { 2119 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2120 vsi->vsi_num, err); 2121 goto done; 2122 } 2123 2124 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2125 if (!cfg) { 2126 err = -ENOMEM; 2127 goto done; 2128 } 2129 2130 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2131 2132 /* Speed - If default override pending, use curr_user_phy_cfg set in 2133 * ice_init_phy_user_cfg_ldo. 2134 */ 2135 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2136 vsi->back->state)) { 2137 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2138 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2139 } else { 2140 u64 phy_low = 0, phy_high = 0; 2141 2142 ice_update_phy_type(&phy_low, &phy_high, 2143 pi->phy.curr_user_speed_req); 2144 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2145 cfg->phy_type_high = pcaps->phy_type_high & 2146 cpu_to_le64(phy_high); 2147 } 2148 2149 /* Can't provide what was requested; use PHY capabilities */ 2150 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2151 cfg->phy_type_low = pcaps->phy_type_low; 2152 cfg->phy_type_high = pcaps->phy_type_high; 2153 } 2154 2155 /* FEC */ 2156 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2157 2158 /* Can't provide what was requested; use PHY capabilities */ 2159 if (cfg->link_fec_opt != 2160 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2161 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2162 cfg->link_fec_opt = pcaps->link_fec_options; 2163 } 2164 2165 /* Flow Control - always supported; no need to check against 2166 * capabilities 2167 */ 2168 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2169 2170 /* Enable link and link update */ 2171 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2172 2173 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2174 if (err) 2175 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2176 vsi->vsi_num, err); 2177 2178 kfree(cfg); 2179 done: 2180 kfree(pcaps); 2181 return err; 2182 } 2183 2184 /** 2185 * ice_check_media_subtask - Check for media 2186 * @pf: pointer to PF struct 2187 * 2188 * If media is available, then initialize PHY user configuration if it is not 2189 * been, and configure the PHY if the interface is up. 2190 */ 2191 static void ice_check_media_subtask(struct ice_pf *pf) 2192 { 2193 struct ice_port_info *pi; 2194 struct ice_vsi *vsi; 2195 int err; 2196 2197 /* No need to check for media if it's already present */ 2198 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2199 return; 2200 2201 vsi = ice_get_main_vsi(pf); 2202 if (!vsi) 2203 return; 2204 2205 /* Refresh link info and check if media is present */ 2206 pi = vsi->port_info; 2207 err = ice_update_link_info(pi); 2208 if (err) 2209 return; 2210 2211 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2212 2213 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2214 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2215 ice_init_phy_user_cfg(pi); 2216 2217 /* PHY settings are reset on media insertion, reconfigure 2218 * PHY to preserve settings. 2219 */ 2220 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2221 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2222 return; 2223 2224 err = ice_configure_phy(vsi); 2225 if (!err) 2226 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2227 2228 /* A Link Status Event will be generated; the event handler 2229 * will complete bringing the interface up 2230 */ 2231 } 2232 } 2233 2234 /** 2235 * ice_service_task - manage and run subtasks 2236 * @work: pointer to work_struct contained by the PF struct 2237 */ 2238 static void ice_service_task(struct work_struct *work) 2239 { 2240 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2241 unsigned long start_time = jiffies; 2242 2243 /* subtasks */ 2244 2245 /* process reset requests first */ 2246 ice_reset_subtask(pf); 2247 2248 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2249 if (ice_is_reset_in_progress(pf->state) || 2250 test_bit(ICE_SUSPENDED, pf->state) || 2251 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2252 ice_service_task_complete(pf); 2253 return; 2254 } 2255 2256 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2257 ice_plug_aux_dev(pf); 2258 2259 ice_clean_adminq_subtask(pf); 2260 ice_check_media_subtask(pf); 2261 ice_check_for_hang_subtask(pf); 2262 ice_sync_fltr_subtask(pf); 2263 ice_handle_mdd_event(pf); 2264 ice_watchdog_subtask(pf); 2265 2266 if (ice_is_safe_mode(pf)) { 2267 ice_service_task_complete(pf); 2268 return; 2269 } 2270 2271 ice_process_vflr_event(pf); 2272 ice_clean_mailboxq_subtask(pf); 2273 ice_clean_sbq_subtask(pf); 2274 ice_sync_arfs_fltrs(pf); 2275 ice_flush_fdir_ctx(pf); 2276 2277 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2278 ice_service_task_complete(pf); 2279 2280 /* If the tasks have taken longer than one service timer period 2281 * or there is more work to be done, reset the service timer to 2282 * schedule the service task now. 2283 */ 2284 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2285 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2286 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2287 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2288 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2289 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2290 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2291 mod_timer(&pf->serv_tmr, jiffies); 2292 } 2293 2294 /** 2295 * ice_set_ctrlq_len - helper function to set controlq length 2296 * @hw: pointer to the HW instance 2297 */ 2298 static void ice_set_ctrlq_len(struct ice_hw *hw) 2299 { 2300 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2301 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2302 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2303 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2304 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2305 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2306 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2307 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2308 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2309 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2310 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2311 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2312 } 2313 2314 /** 2315 * ice_schedule_reset - schedule a reset 2316 * @pf: board private structure 2317 * @reset: reset being requested 2318 */ 2319 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2320 { 2321 struct device *dev = ice_pf_to_dev(pf); 2322 2323 /* bail out if earlier reset has failed */ 2324 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2325 dev_dbg(dev, "earlier reset has failed\n"); 2326 return -EIO; 2327 } 2328 /* bail if reset/recovery already in progress */ 2329 if (ice_is_reset_in_progress(pf->state)) { 2330 dev_dbg(dev, "Reset already in progress\n"); 2331 return -EBUSY; 2332 } 2333 2334 ice_unplug_aux_dev(pf); 2335 2336 switch (reset) { 2337 case ICE_RESET_PFR: 2338 set_bit(ICE_PFR_REQ, pf->state); 2339 break; 2340 case ICE_RESET_CORER: 2341 set_bit(ICE_CORER_REQ, pf->state); 2342 break; 2343 case ICE_RESET_GLOBR: 2344 set_bit(ICE_GLOBR_REQ, pf->state); 2345 break; 2346 default: 2347 return -EINVAL; 2348 } 2349 2350 ice_service_task_schedule(pf); 2351 return 0; 2352 } 2353 2354 /** 2355 * ice_irq_affinity_notify - Callback for affinity changes 2356 * @notify: context as to what irq was changed 2357 * @mask: the new affinity mask 2358 * 2359 * This is a callback function used by the irq_set_affinity_notifier function 2360 * so that we may register to receive changes to the irq affinity masks. 2361 */ 2362 static void 2363 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2364 const cpumask_t *mask) 2365 { 2366 struct ice_q_vector *q_vector = 2367 container_of(notify, struct ice_q_vector, affinity_notify); 2368 2369 cpumask_copy(&q_vector->affinity_mask, mask); 2370 } 2371 2372 /** 2373 * ice_irq_affinity_release - Callback for affinity notifier release 2374 * @ref: internal core kernel usage 2375 * 2376 * This is a callback function used by the irq_set_affinity_notifier function 2377 * to inform the current notification subscriber that they will no longer 2378 * receive notifications. 2379 */ 2380 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2381 2382 /** 2383 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2384 * @vsi: the VSI being configured 2385 */ 2386 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2387 { 2388 struct ice_hw *hw = &vsi->back->hw; 2389 int i; 2390 2391 ice_for_each_q_vector(vsi, i) 2392 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2393 2394 ice_flush(hw); 2395 return 0; 2396 } 2397 2398 /** 2399 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2400 * @vsi: the VSI being configured 2401 * @basename: name for the vector 2402 */ 2403 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2404 { 2405 int q_vectors = vsi->num_q_vectors; 2406 struct ice_pf *pf = vsi->back; 2407 int base = vsi->base_vector; 2408 struct device *dev; 2409 int rx_int_idx = 0; 2410 int tx_int_idx = 0; 2411 int vector, err; 2412 int irq_num; 2413 2414 dev = ice_pf_to_dev(pf); 2415 for (vector = 0; vector < q_vectors; vector++) { 2416 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2417 2418 irq_num = pf->msix_entries[base + vector].vector; 2419 2420 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2421 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2422 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2423 tx_int_idx++; 2424 } else if (q_vector->rx.rx_ring) { 2425 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2426 "%s-%s-%d", basename, "rx", rx_int_idx++); 2427 } else if (q_vector->tx.tx_ring) { 2428 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2429 "%s-%s-%d", basename, "tx", tx_int_idx++); 2430 } else { 2431 /* skip this unused q_vector */ 2432 continue; 2433 } 2434 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2435 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2436 IRQF_SHARED, q_vector->name, 2437 q_vector); 2438 else 2439 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2440 0, q_vector->name, q_vector); 2441 if (err) { 2442 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2443 err); 2444 goto free_q_irqs; 2445 } 2446 2447 /* register for affinity change notifications */ 2448 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2449 struct irq_affinity_notify *affinity_notify; 2450 2451 affinity_notify = &q_vector->affinity_notify; 2452 affinity_notify->notify = ice_irq_affinity_notify; 2453 affinity_notify->release = ice_irq_affinity_release; 2454 irq_set_affinity_notifier(irq_num, affinity_notify); 2455 } 2456 2457 /* assign the mask for this irq */ 2458 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2459 } 2460 2461 vsi->irqs_ready = true; 2462 return 0; 2463 2464 free_q_irqs: 2465 while (vector) { 2466 vector--; 2467 irq_num = pf->msix_entries[base + vector].vector; 2468 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2469 irq_set_affinity_notifier(irq_num, NULL); 2470 irq_set_affinity_hint(irq_num, NULL); 2471 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2472 } 2473 return err; 2474 } 2475 2476 /** 2477 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2478 * @vsi: VSI to setup Tx rings used by XDP 2479 * 2480 * Return 0 on success and negative value on error 2481 */ 2482 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2483 { 2484 struct device *dev = ice_pf_to_dev(vsi->back); 2485 struct ice_tx_desc *tx_desc; 2486 int i, j; 2487 2488 ice_for_each_xdp_txq(vsi, i) { 2489 u16 xdp_q_idx = vsi->alloc_txq + i; 2490 struct ice_tx_ring *xdp_ring; 2491 2492 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2493 2494 if (!xdp_ring) 2495 goto free_xdp_rings; 2496 2497 xdp_ring->q_index = xdp_q_idx; 2498 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2499 xdp_ring->vsi = vsi; 2500 xdp_ring->netdev = NULL; 2501 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2502 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2503 xdp_ring->dev = dev; 2504 xdp_ring->count = vsi->num_tx_desc; 2505 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2506 if (ice_setup_tx_ring(xdp_ring)) 2507 goto free_xdp_rings; 2508 ice_set_ring_xdp(xdp_ring); 2509 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2510 spin_lock_init(&xdp_ring->tx_lock); 2511 for (j = 0; j < xdp_ring->count; j++) { 2512 tx_desc = ICE_TX_DESC(xdp_ring, j); 2513 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2514 } 2515 } 2516 2517 ice_for_each_rxq(vsi, i) { 2518 if (static_key_enabled(&ice_xdp_locking_key)) 2519 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2520 else 2521 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2522 } 2523 2524 return 0; 2525 2526 free_xdp_rings: 2527 for (; i >= 0; i--) 2528 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2529 ice_free_tx_ring(vsi->xdp_rings[i]); 2530 return -ENOMEM; 2531 } 2532 2533 /** 2534 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2535 * @vsi: VSI to set the bpf prog on 2536 * @prog: the bpf prog pointer 2537 */ 2538 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2539 { 2540 struct bpf_prog *old_prog; 2541 int i; 2542 2543 old_prog = xchg(&vsi->xdp_prog, prog); 2544 if (old_prog) 2545 bpf_prog_put(old_prog); 2546 2547 ice_for_each_rxq(vsi, i) 2548 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2549 } 2550 2551 /** 2552 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2553 * @vsi: VSI to bring up Tx rings used by XDP 2554 * @prog: bpf program that will be assigned to VSI 2555 * 2556 * Return 0 on success and negative value on error 2557 */ 2558 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2559 { 2560 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2561 int xdp_rings_rem = vsi->num_xdp_txq; 2562 struct ice_pf *pf = vsi->back; 2563 struct ice_qs_cfg xdp_qs_cfg = { 2564 .qs_mutex = &pf->avail_q_mutex, 2565 .pf_map = pf->avail_txqs, 2566 .pf_map_size = pf->max_pf_txqs, 2567 .q_count = vsi->num_xdp_txq, 2568 .scatter_count = ICE_MAX_SCATTER_TXQS, 2569 .vsi_map = vsi->txq_map, 2570 .vsi_map_offset = vsi->alloc_txq, 2571 .mapping_mode = ICE_VSI_MAP_CONTIG 2572 }; 2573 struct device *dev; 2574 int i, v_idx; 2575 int status; 2576 2577 dev = ice_pf_to_dev(pf); 2578 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2579 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2580 if (!vsi->xdp_rings) 2581 return -ENOMEM; 2582 2583 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2584 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2585 goto err_map_xdp; 2586 2587 if (static_key_enabled(&ice_xdp_locking_key)) 2588 netdev_warn(vsi->netdev, 2589 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2590 2591 if (ice_xdp_alloc_setup_rings(vsi)) 2592 goto clear_xdp_rings; 2593 2594 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2595 ice_for_each_q_vector(vsi, v_idx) { 2596 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2597 int xdp_rings_per_v, q_id, q_base; 2598 2599 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2600 vsi->num_q_vectors - v_idx); 2601 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2602 2603 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2604 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2605 2606 xdp_ring->q_vector = q_vector; 2607 xdp_ring->next = q_vector->tx.tx_ring; 2608 q_vector->tx.tx_ring = xdp_ring; 2609 } 2610 xdp_rings_rem -= xdp_rings_per_v; 2611 } 2612 2613 /* omit the scheduler update if in reset path; XDP queues will be 2614 * taken into account at the end of ice_vsi_rebuild, where 2615 * ice_cfg_vsi_lan is being called 2616 */ 2617 if (ice_is_reset_in_progress(pf->state)) 2618 return 0; 2619 2620 /* tell the Tx scheduler that right now we have 2621 * additional queues 2622 */ 2623 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2624 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2625 2626 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2627 max_txqs); 2628 if (status) { 2629 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2630 status); 2631 goto clear_xdp_rings; 2632 } 2633 2634 /* assign the prog only when it's not already present on VSI; 2635 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2636 * VSI rebuild that happens under ethtool -L can expose us to 2637 * the bpf_prog refcount issues as we would be swapping same 2638 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2639 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2640 * this is not harmful as dev_xdp_install bumps the refcount 2641 * before calling the op exposed by the driver; 2642 */ 2643 if (!ice_is_xdp_ena_vsi(vsi)) 2644 ice_vsi_assign_bpf_prog(vsi, prog); 2645 2646 return 0; 2647 clear_xdp_rings: 2648 ice_for_each_xdp_txq(vsi, i) 2649 if (vsi->xdp_rings[i]) { 2650 kfree_rcu(vsi->xdp_rings[i], rcu); 2651 vsi->xdp_rings[i] = NULL; 2652 } 2653 2654 err_map_xdp: 2655 mutex_lock(&pf->avail_q_mutex); 2656 ice_for_each_xdp_txq(vsi, i) { 2657 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2658 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2659 } 2660 mutex_unlock(&pf->avail_q_mutex); 2661 2662 devm_kfree(dev, vsi->xdp_rings); 2663 return -ENOMEM; 2664 } 2665 2666 /** 2667 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2668 * @vsi: VSI to remove XDP rings 2669 * 2670 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2671 * resources 2672 */ 2673 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2674 { 2675 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2676 struct ice_pf *pf = vsi->back; 2677 int i, v_idx; 2678 2679 /* q_vectors are freed in reset path so there's no point in detaching 2680 * rings; in case of rebuild being triggered not from reset bits 2681 * in pf->state won't be set, so additionally check first q_vector 2682 * against NULL 2683 */ 2684 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2685 goto free_qmap; 2686 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 struct ice_tx_ring *ring; 2690 2691 ice_for_each_tx_ring(ring, q_vector->tx) 2692 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2693 break; 2694 2695 /* restore the value of last node prior to XDP setup */ 2696 q_vector->tx.tx_ring = ring; 2697 } 2698 2699 free_qmap: 2700 mutex_lock(&pf->avail_q_mutex); 2701 ice_for_each_xdp_txq(vsi, i) { 2702 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2703 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2704 } 2705 mutex_unlock(&pf->avail_q_mutex); 2706 2707 ice_for_each_xdp_txq(vsi, i) 2708 if (vsi->xdp_rings[i]) { 2709 if (vsi->xdp_rings[i]->desc) 2710 ice_free_tx_ring(vsi->xdp_rings[i]); 2711 kfree_rcu(vsi->xdp_rings[i], rcu); 2712 vsi->xdp_rings[i] = NULL; 2713 } 2714 2715 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2716 vsi->xdp_rings = NULL; 2717 2718 if (static_key_enabled(&ice_xdp_locking_key)) 2719 static_branch_dec(&ice_xdp_locking_key); 2720 2721 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2722 return 0; 2723 2724 ice_vsi_assign_bpf_prog(vsi, NULL); 2725 2726 /* notify Tx scheduler that we destroyed XDP queues and bring 2727 * back the old number of child nodes 2728 */ 2729 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2730 max_txqs[i] = vsi->num_txq; 2731 2732 /* change number of XDP Tx queues to 0 */ 2733 vsi->num_xdp_txq = 0; 2734 2735 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 } 2738 2739 /** 2740 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2741 * @vsi: VSI to schedule napi on 2742 */ 2743 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2744 { 2745 int i; 2746 2747 ice_for_each_rxq(vsi, i) { 2748 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2749 2750 if (rx_ring->xsk_pool) 2751 napi_schedule(&rx_ring->q_vector->napi); 2752 } 2753 } 2754 2755 /** 2756 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2757 * @vsi: VSI to determine the count of XDP Tx qs 2758 * 2759 * returns 0 if Tx qs count is higher than at least half of CPU count, 2760 * -ENOMEM otherwise 2761 */ 2762 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2763 { 2764 u16 avail = ice_get_avail_txq_count(vsi->back); 2765 u16 cpus = num_possible_cpus(); 2766 2767 if (avail < cpus / 2) 2768 return -ENOMEM; 2769 2770 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2771 2772 if (vsi->num_xdp_txq < cpus) 2773 static_branch_inc(&ice_xdp_locking_key); 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2780 * @vsi: VSI to setup XDP for 2781 * @prog: XDP program 2782 * @extack: netlink extended ack 2783 */ 2784 static int 2785 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2786 struct netlink_ext_ack *extack) 2787 { 2788 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2789 bool if_running = netif_running(vsi->netdev); 2790 int ret = 0, xdp_ring_err = 0; 2791 2792 if (frame_size > vsi->rx_buf_len) { 2793 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2794 return -EOPNOTSUPP; 2795 } 2796 2797 /* need to stop netdev while setting up the program for Rx rings */ 2798 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2799 ret = ice_down(vsi); 2800 if (ret) { 2801 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2802 return ret; 2803 } 2804 } 2805 2806 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2807 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2808 if (xdp_ring_err) { 2809 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2810 } else { 2811 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2812 if (xdp_ring_err) 2813 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2814 } 2815 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2816 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2817 if (xdp_ring_err) 2818 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2819 } else { 2820 /* safe to call even when prog == vsi->xdp_prog as 2821 * dev_xdp_install in net/core/dev.c incremented prog's 2822 * refcount so corresponding bpf_prog_put won't cause 2823 * underflow 2824 */ 2825 ice_vsi_assign_bpf_prog(vsi, prog); 2826 } 2827 2828 if (if_running) 2829 ret = ice_up(vsi); 2830 2831 if (!ret && prog) 2832 ice_vsi_rx_napi_schedule(vsi); 2833 2834 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2835 } 2836 2837 /** 2838 * ice_xdp_safe_mode - XDP handler for safe mode 2839 * @dev: netdevice 2840 * @xdp: XDP command 2841 */ 2842 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2843 struct netdev_bpf *xdp) 2844 { 2845 NL_SET_ERR_MSG_MOD(xdp->extack, 2846 "Please provide working DDP firmware package in order to use XDP\n" 2847 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2848 return -EOPNOTSUPP; 2849 } 2850 2851 /** 2852 * ice_xdp - implements XDP handler 2853 * @dev: netdevice 2854 * @xdp: XDP command 2855 */ 2856 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2857 { 2858 struct ice_netdev_priv *np = netdev_priv(dev); 2859 struct ice_vsi *vsi = np->vsi; 2860 2861 if (vsi->type != ICE_VSI_PF) { 2862 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2863 return -EINVAL; 2864 } 2865 2866 switch (xdp->command) { 2867 case XDP_SETUP_PROG: 2868 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2869 case XDP_SETUP_XSK_POOL: 2870 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2871 xdp->xsk.queue_id); 2872 default: 2873 return -EINVAL; 2874 } 2875 } 2876 2877 /** 2878 * ice_ena_misc_vector - enable the non-queue interrupts 2879 * @pf: board private structure 2880 */ 2881 static void ice_ena_misc_vector(struct ice_pf *pf) 2882 { 2883 struct ice_hw *hw = &pf->hw; 2884 u32 val; 2885 2886 /* Disable anti-spoof detection interrupt to prevent spurious event 2887 * interrupts during a function reset. Anti-spoof functionally is 2888 * still supported. 2889 */ 2890 val = rd32(hw, GL_MDCK_TX_TDPU); 2891 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2892 wr32(hw, GL_MDCK_TX_TDPU, val); 2893 2894 /* clear things first */ 2895 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2896 rd32(hw, PFINT_OICR); /* read to clear */ 2897 2898 val = (PFINT_OICR_ECC_ERR_M | 2899 PFINT_OICR_MAL_DETECT_M | 2900 PFINT_OICR_GRST_M | 2901 PFINT_OICR_PCI_EXCEPTION_M | 2902 PFINT_OICR_VFLR_M | 2903 PFINT_OICR_HMC_ERR_M | 2904 PFINT_OICR_PE_PUSH_M | 2905 PFINT_OICR_PE_CRITERR_M); 2906 2907 wr32(hw, PFINT_OICR_ENA, val); 2908 2909 /* SW_ITR_IDX = 0, but don't change INTENA */ 2910 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2911 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2912 } 2913 2914 /** 2915 * ice_misc_intr - misc interrupt handler 2916 * @irq: interrupt number 2917 * @data: pointer to a q_vector 2918 */ 2919 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2920 { 2921 struct ice_pf *pf = (struct ice_pf *)data; 2922 struct ice_hw *hw = &pf->hw; 2923 irqreturn_t ret = IRQ_NONE; 2924 struct device *dev; 2925 u32 oicr, ena_mask; 2926 2927 dev = ice_pf_to_dev(pf); 2928 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2929 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2930 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2931 2932 oicr = rd32(hw, PFINT_OICR); 2933 ena_mask = rd32(hw, PFINT_OICR_ENA); 2934 2935 if (oicr & PFINT_OICR_SWINT_M) { 2936 ena_mask &= ~PFINT_OICR_SWINT_M; 2937 pf->sw_int_count++; 2938 } 2939 2940 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2941 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2942 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2943 } 2944 if (oicr & PFINT_OICR_VFLR_M) { 2945 /* disable any further VFLR event notifications */ 2946 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2947 u32 reg = rd32(hw, PFINT_OICR_ENA); 2948 2949 reg &= ~PFINT_OICR_VFLR_M; 2950 wr32(hw, PFINT_OICR_ENA, reg); 2951 } else { 2952 ena_mask &= ~PFINT_OICR_VFLR_M; 2953 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2954 } 2955 } 2956 2957 if (oicr & PFINT_OICR_GRST_M) { 2958 u32 reset; 2959 2960 /* we have a reset warning */ 2961 ena_mask &= ~PFINT_OICR_GRST_M; 2962 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2963 GLGEN_RSTAT_RESET_TYPE_S; 2964 2965 if (reset == ICE_RESET_CORER) 2966 pf->corer_count++; 2967 else if (reset == ICE_RESET_GLOBR) 2968 pf->globr_count++; 2969 else if (reset == ICE_RESET_EMPR) 2970 pf->empr_count++; 2971 else 2972 dev_dbg(dev, "Invalid reset type %d\n", reset); 2973 2974 /* If a reset cycle isn't already in progress, we set a bit in 2975 * pf->state so that the service task can start a reset/rebuild. 2976 */ 2977 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2978 if (reset == ICE_RESET_CORER) 2979 set_bit(ICE_CORER_RECV, pf->state); 2980 else if (reset == ICE_RESET_GLOBR) 2981 set_bit(ICE_GLOBR_RECV, pf->state); 2982 else 2983 set_bit(ICE_EMPR_RECV, pf->state); 2984 2985 /* There are couple of different bits at play here. 2986 * hw->reset_ongoing indicates whether the hardware is 2987 * in reset. This is set to true when a reset interrupt 2988 * is received and set back to false after the driver 2989 * has determined that the hardware is out of reset. 2990 * 2991 * ICE_RESET_OICR_RECV in pf->state indicates 2992 * that a post reset rebuild is required before the 2993 * driver is operational again. This is set above. 2994 * 2995 * As this is the start of the reset/rebuild cycle, set 2996 * both to indicate that. 2997 */ 2998 hw->reset_ongoing = true; 2999 } 3000 } 3001 3002 if (oicr & PFINT_OICR_TSYN_TX_M) { 3003 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3004 ice_ptp_process_ts(pf); 3005 } 3006 3007 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3008 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3009 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3010 3011 /* Save EVENTs from GTSYN register */ 3012 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3013 GLTSYN_STAT_EVENT1_M | 3014 GLTSYN_STAT_EVENT2_M); 3015 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3016 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3017 } 3018 3019 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3020 if (oicr & ICE_AUX_CRIT_ERR) { 3021 struct iidc_event *event; 3022 3023 ena_mask &= ~ICE_AUX_CRIT_ERR; 3024 event = kzalloc(sizeof(*event), GFP_KERNEL); 3025 if (event) { 3026 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3027 /* report the entire OICR value to AUX driver */ 3028 event->reg = oicr; 3029 ice_send_event_to_aux(pf, event); 3030 kfree(event); 3031 } 3032 } 3033 3034 /* Report any remaining unexpected interrupts */ 3035 oicr &= ena_mask; 3036 if (oicr) { 3037 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3038 /* If a critical error is pending there is no choice but to 3039 * reset the device. 3040 */ 3041 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3042 PFINT_OICR_ECC_ERR_M)) { 3043 set_bit(ICE_PFR_REQ, pf->state); 3044 ice_service_task_schedule(pf); 3045 } 3046 } 3047 ret = IRQ_HANDLED; 3048 3049 ice_service_task_schedule(pf); 3050 ice_irq_dynamic_ena(hw, NULL, NULL); 3051 3052 return ret; 3053 } 3054 3055 /** 3056 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3057 * @hw: pointer to HW structure 3058 */ 3059 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3060 { 3061 /* disable Admin queue Interrupt causes */ 3062 wr32(hw, PFINT_FW_CTL, 3063 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3064 3065 /* disable Mailbox queue Interrupt causes */ 3066 wr32(hw, PFINT_MBX_CTL, 3067 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3068 3069 wr32(hw, PFINT_SB_CTL, 3070 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3071 3072 /* disable Control queue Interrupt causes */ 3073 wr32(hw, PFINT_OICR_CTL, 3074 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3075 3076 ice_flush(hw); 3077 } 3078 3079 /** 3080 * ice_free_irq_msix_misc - Unroll misc vector setup 3081 * @pf: board private structure 3082 */ 3083 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3084 { 3085 struct ice_hw *hw = &pf->hw; 3086 3087 ice_dis_ctrlq_interrupts(hw); 3088 3089 /* disable OICR interrupt */ 3090 wr32(hw, PFINT_OICR_ENA, 0); 3091 ice_flush(hw); 3092 3093 if (pf->msix_entries) { 3094 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3095 devm_free_irq(ice_pf_to_dev(pf), 3096 pf->msix_entries[pf->oicr_idx].vector, pf); 3097 } 3098 3099 pf->num_avail_sw_msix += 1; 3100 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3101 } 3102 3103 /** 3104 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3105 * @hw: pointer to HW structure 3106 * @reg_idx: HW vector index to associate the control queue interrupts with 3107 */ 3108 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3109 { 3110 u32 val; 3111 3112 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3113 PFINT_OICR_CTL_CAUSE_ENA_M); 3114 wr32(hw, PFINT_OICR_CTL, val); 3115 3116 /* enable Admin queue Interrupt causes */ 3117 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3118 PFINT_FW_CTL_CAUSE_ENA_M); 3119 wr32(hw, PFINT_FW_CTL, val); 3120 3121 /* enable Mailbox queue Interrupt causes */ 3122 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3123 PFINT_MBX_CTL_CAUSE_ENA_M); 3124 wr32(hw, PFINT_MBX_CTL, val); 3125 3126 /* This enables Sideband queue Interrupt causes */ 3127 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3128 PFINT_SB_CTL_CAUSE_ENA_M); 3129 wr32(hw, PFINT_SB_CTL, val); 3130 3131 ice_flush(hw); 3132 } 3133 3134 /** 3135 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3136 * @pf: board private structure 3137 * 3138 * This sets up the handler for MSIX 0, which is used to manage the 3139 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3140 * when in MSI or Legacy interrupt mode. 3141 */ 3142 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3143 { 3144 struct device *dev = ice_pf_to_dev(pf); 3145 struct ice_hw *hw = &pf->hw; 3146 int oicr_idx, err = 0; 3147 3148 if (!pf->int_name[0]) 3149 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3150 dev_driver_string(dev), dev_name(dev)); 3151 3152 /* Do not request IRQ but do enable OICR interrupt since settings are 3153 * lost during reset. Note that this function is called only during 3154 * rebuild path and not while reset is in progress. 3155 */ 3156 if (ice_is_reset_in_progress(pf->state)) 3157 goto skip_req_irq; 3158 3159 /* reserve one vector in irq_tracker for misc interrupts */ 3160 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3161 if (oicr_idx < 0) 3162 return oicr_idx; 3163 3164 pf->num_avail_sw_msix -= 1; 3165 pf->oicr_idx = (u16)oicr_idx; 3166 3167 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3168 ice_misc_intr, 0, pf->int_name, pf); 3169 if (err) { 3170 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3171 pf->int_name, err); 3172 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3173 pf->num_avail_sw_msix += 1; 3174 return err; 3175 } 3176 3177 skip_req_irq: 3178 ice_ena_misc_vector(pf); 3179 3180 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3181 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3182 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3183 3184 ice_flush(hw); 3185 ice_irq_dynamic_ena(hw, NULL, NULL); 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * ice_napi_add - register NAPI handler for the VSI 3192 * @vsi: VSI for which NAPI handler is to be registered 3193 * 3194 * This function is only called in the driver's load path. Registering the NAPI 3195 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3196 * reset/rebuild, etc.) 3197 */ 3198 static void ice_napi_add(struct ice_vsi *vsi) 3199 { 3200 int v_idx; 3201 3202 if (!vsi->netdev) 3203 return; 3204 3205 ice_for_each_q_vector(vsi, v_idx) 3206 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3207 ice_napi_poll, NAPI_POLL_WEIGHT); 3208 } 3209 3210 /** 3211 * ice_set_ops - set netdev and ethtools ops for the given netdev 3212 * @netdev: netdev instance 3213 */ 3214 static void ice_set_ops(struct net_device *netdev) 3215 { 3216 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3217 3218 if (ice_is_safe_mode(pf)) { 3219 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3220 ice_set_ethtool_safe_mode_ops(netdev); 3221 return; 3222 } 3223 3224 netdev->netdev_ops = &ice_netdev_ops; 3225 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3226 ice_set_ethtool_ops(netdev); 3227 } 3228 3229 /** 3230 * ice_set_netdev_features - set features for the given netdev 3231 * @netdev: netdev instance 3232 */ 3233 static void ice_set_netdev_features(struct net_device *netdev) 3234 { 3235 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3236 netdev_features_t csumo_features; 3237 netdev_features_t vlano_features; 3238 netdev_features_t dflt_features; 3239 netdev_features_t tso_features; 3240 3241 if (ice_is_safe_mode(pf)) { 3242 /* safe mode */ 3243 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3244 netdev->hw_features = netdev->features; 3245 return; 3246 } 3247 3248 dflt_features = NETIF_F_SG | 3249 NETIF_F_HIGHDMA | 3250 NETIF_F_NTUPLE | 3251 NETIF_F_RXHASH; 3252 3253 csumo_features = NETIF_F_RXCSUM | 3254 NETIF_F_IP_CSUM | 3255 NETIF_F_SCTP_CRC | 3256 NETIF_F_IPV6_CSUM; 3257 3258 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3259 NETIF_F_HW_VLAN_CTAG_TX | 3260 NETIF_F_HW_VLAN_CTAG_RX; 3261 3262 tso_features = NETIF_F_TSO | 3263 NETIF_F_TSO_ECN | 3264 NETIF_F_TSO6 | 3265 NETIF_F_GSO_GRE | 3266 NETIF_F_GSO_UDP_TUNNEL | 3267 NETIF_F_GSO_GRE_CSUM | 3268 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3269 NETIF_F_GSO_PARTIAL | 3270 NETIF_F_GSO_IPXIP4 | 3271 NETIF_F_GSO_IPXIP6 | 3272 NETIF_F_GSO_UDP_L4; 3273 3274 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3275 NETIF_F_GSO_GRE_CSUM; 3276 /* set features that user can change */ 3277 netdev->hw_features = dflt_features | csumo_features | 3278 vlano_features | tso_features; 3279 3280 /* add support for HW_CSUM on packets with MPLS header */ 3281 netdev->mpls_features = NETIF_F_HW_CSUM; 3282 3283 /* enable features */ 3284 netdev->features |= netdev->hw_features; 3285 3286 netdev->hw_features |= NETIF_F_HW_TC; 3287 3288 /* encap and VLAN devices inherit default, csumo and tso features */ 3289 netdev->hw_enc_features |= dflt_features | csumo_features | 3290 tso_features; 3291 netdev->vlan_features |= dflt_features | csumo_features | 3292 tso_features; 3293 } 3294 3295 /** 3296 * ice_cfg_netdev - Allocate, configure and register a netdev 3297 * @vsi: the VSI associated with the new netdev 3298 * 3299 * Returns 0 on success, negative value on failure 3300 */ 3301 static int ice_cfg_netdev(struct ice_vsi *vsi) 3302 { 3303 struct ice_netdev_priv *np; 3304 struct net_device *netdev; 3305 u8 mac_addr[ETH_ALEN]; 3306 3307 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3308 vsi->alloc_rxq); 3309 if (!netdev) 3310 return -ENOMEM; 3311 3312 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3313 vsi->netdev = netdev; 3314 np = netdev_priv(netdev); 3315 np->vsi = vsi; 3316 3317 ice_set_netdev_features(netdev); 3318 3319 ice_set_ops(netdev); 3320 3321 if (vsi->type == ICE_VSI_PF) { 3322 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3323 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3324 eth_hw_addr_set(netdev, mac_addr); 3325 ether_addr_copy(netdev->perm_addr, mac_addr); 3326 } 3327 3328 netdev->priv_flags |= IFF_UNICAST_FLT; 3329 3330 /* Setup netdev TC information */ 3331 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3332 3333 /* setup watchdog timeout value to be 5 second */ 3334 netdev->watchdog_timeo = 5 * HZ; 3335 3336 netdev->min_mtu = ETH_MIN_MTU; 3337 netdev->max_mtu = ICE_MAX_MTU; 3338 3339 return 0; 3340 } 3341 3342 /** 3343 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3344 * @lut: Lookup table 3345 * @rss_table_size: Lookup table size 3346 * @rss_size: Range of queue number for hashing 3347 */ 3348 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3349 { 3350 u16 i; 3351 3352 for (i = 0; i < rss_table_size; i++) 3353 lut[i] = i % rss_size; 3354 } 3355 3356 /** 3357 * ice_pf_vsi_setup - Set up a PF VSI 3358 * @pf: board private structure 3359 * @pi: pointer to the port_info instance 3360 * 3361 * Returns pointer to the successfully allocated VSI software struct 3362 * on success, otherwise returns NULL on failure. 3363 */ 3364 static struct ice_vsi * 3365 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3366 { 3367 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3368 } 3369 3370 static struct ice_vsi * 3371 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3372 struct ice_channel *ch) 3373 { 3374 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3375 } 3376 3377 /** 3378 * ice_ctrl_vsi_setup - Set up a control VSI 3379 * @pf: board private structure 3380 * @pi: pointer to the port_info instance 3381 * 3382 * Returns pointer to the successfully allocated VSI software struct 3383 * on success, otherwise returns NULL on failure. 3384 */ 3385 static struct ice_vsi * 3386 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3387 { 3388 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3389 } 3390 3391 /** 3392 * ice_lb_vsi_setup - Set up a loopback VSI 3393 * @pf: board private structure 3394 * @pi: pointer to the port_info instance 3395 * 3396 * Returns pointer to the successfully allocated VSI software struct 3397 * on success, otherwise returns NULL on failure. 3398 */ 3399 struct ice_vsi * 3400 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3401 { 3402 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3403 } 3404 3405 /** 3406 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3407 * @netdev: network interface to be adjusted 3408 * @proto: unused protocol 3409 * @vid: VLAN ID to be added 3410 * 3411 * net_device_ops implementation for adding VLAN IDs 3412 */ 3413 static int 3414 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3415 u16 vid) 3416 { 3417 struct ice_netdev_priv *np = netdev_priv(netdev); 3418 struct ice_vsi *vsi = np->vsi; 3419 int ret; 3420 3421 /* VLAN 0 is added by default during load/reset */ 3422 if (!vid) 3423 return 0; 3424 3425 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3426 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3427 ret = ice_cfg_vlan_pruning(vsi, true); 3428 if (ret) 3429 return ret; 3430 } 3431 3432 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3433 * packets aren't pruned by the device's internal switch on Rx 3434 */ 3435 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3436 if (!ret) 3437 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3438 3439 return ret; 3440 } 3441 3442 /** 3443 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3444 * @netdev: network interface to be adjusted 3445 * @proto: unused protocol 3446 * @vid: VLAN ID to be removed 3447 * 3448 * net_device_ops implementation for removing VLAN IDs 3449 */ 3450 static int 3451 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3452 u16 vid) 3453 { 3454 struct ice_netdev_priv *np = netdev_priv(netdev); 3455 struct ice_vsi *vsi = np->vsi; 3456 int ret; 3457 3458 /* don't allow removal of VLAN 0 */ 3459 if (!vid) 3460 return 0; 3461 3462 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3463 * information 3464 */ 3465 ret = ice_vsi_kill_vlan(vsi, vid); 3466 if (ret) 3467 return ret; 3468 3469 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3470 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3471 ret = ice_cfg_vlan_pruning(vsi, false); 3472 3473 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3474 return ret; 3475 } 3476 3477 /** 3478 * ice_rep_indr_tc_block_unbind 3479 * @cb_priv: indirection block private data 3480 */ 3481 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3482 { 3483 struct ice_indr_block_priv *indr_priv = cb_priv; 3484 3485 list_del(&indr_priv->list); 3486 kfree(indr_priv); 3487 } 3488 3489 /** 3490 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3491 * @vsi: VSI struct which has the netdev 3492 */ 3493 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3494 { 3495 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3496 3497 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3498 ice_rep_indr_tc_block_unbind); 3499 } 3500 3501 /** 3502 * ice_tc_indir_block_remove - clean indirect TC block notifications 3503 * @pf: PF structure 3504 */ 3505 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3506 { 3507 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3508 3509 if (!pf_vsi) 3510 return; 3511 3512 ice_tc_indir_block_unregister(pf_vsi); 3513 } 3514 3515 /** 3516 * ice_tc_indir_block_register - Register TC indirect block notifications 3517 * @vsi: VSI struct which has the netdev 3518 * 3519 * Returns 0 on success, negative value on failure 3520 */ 3521 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3522 { 3523 struct ice_netdev_priv *np; 3524 3525 if (!vsi || !vsi->netdev) 3526 return -EINVAL; 3527 3528 np = netdev_priv(vsi->netdev); 3529 3530 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3531 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3532 } 3533 3534 /** 3535 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3536 * @pf: board private structure 3537 * 3538 * Returns 0 on success, negative value on failure 3539 */ 3540 static int ice_setup_pf_sw(struct ice_pf *pf) 3541 { 3542 struct device *dev = ice_pf_to_dev(pf); 3543 struct ice_vsi *vsi; 3544 int status; 3545 3546 if (ice_is_reset_in_progress(pf->state)) 3547 return -EBUSY; 3548 3549 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3550 if (!vsi) 3551 return -ENOMEM; 3552 3553 /* init channel list */ 3554 INIT_LIST_HEAD(&vsi->ch_list); 3555 3556 status = ice_cfg_netdev(vsi); 3557 if (status) 3558 goto unroll_vsi_setup; 3559 /* netdev has to be configured before setting frame size */ 3560 ice_vsi_cfg_frame_size(vsi); 3561 3562 /* init indirect block notifications */ 3563 status = ice_tc_indir_block_register(vsi); 3564 if (status) { 3565 dev_err(dev, "Failed to register netdev notifier\n"); 3566 goto unroll_cfg_netdev; 3567 } 3568 3569 /* Setup DCB netlink interface */ 3570 ice_dcbnl_setup(vsi); 3571 3572 /* registering the NAPI handler requires both the queues and 3573 * netdev to be created, which are done in ice_pf_vsi_setup() 3574 * and ice_cfg_netdev() respectively 3575 */ 3576 ice_napi_add(vsi); 3577 3578 status = ice_set_cpu_rx_rmap(vsi); 3579 if (status) { 3580 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3581 vsi->vsi_num, status); 3582 goto unroll_napi_add; 3583 } 3584 status = ice_init_mac_fltr(pf); 3585 if (status) 3586 goto free_cpu_rx_map; 3587 3588 return 0; 3589 3590 free_cpu_rx_map: 3591 ice_free_cpu_rx_rmap(vsi); 3592 unroll_napi_add: 3593 ice_tc_indir_block_unregister(vsi); 3594 unroll_cfg_netdev: 3595 if (vsi) { 3596 ice_napi_del(vsi); 3597 if (vsi->netdev) { 3598 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3599 free_netdev(vsi->netdev); 3600 vsi->netdev = NULL; 3601 } 3602 } 3603 3604 unroll_vsi_setup: 3605 ice_vsi_release(vsi); 3606 return status; 3607 } 3608 3609 /** 3610 * ice_get_avail_q_count - Get count of queues in use 3611 * @pf_qmap: bitmap to get queue use count from 3612 * @lock: pointer to a mutex that protects access to pf_qmap 3613 * @size: size of the bitmap 3614 */ 3615 static u16 3616 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3617 { 3618 unsigned long bit; 3619 u16 count = 0; 3620 3621 mutex_lock(lock); 3622 for_each_clear_bit(bit, pf_qmap, size) 3623 count++; 3624 mutex_unlock(lock); 3625 3626 return count; 3627 } 3628 3629 /** 3630 * ice_get_avail_txq_count - Get count of Tx queues in use 3631 * @pf: pointer to an ice_pf instance 3632 */ 3633 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3634 { 3635 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3636 pf->max_pf_txqs); 3637 } 3638 3639 /** 3640 * ice_get_avail_rxq_count - Get count of Rx queues in use 3641 * @pf: pointer to an ice_pf instance 3642 */ 3643 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3644 { 3645 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3646 pf->max_pf_rxqs); 3647 } 3648 3649 /** 3650 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3651 * @pf: board private structure to initialize 3652 */ 3653 static void ice_deinit_pf(struct ice_pf *pf) 3654 { 3655 ice_service_task_stop(pf); 3656 mutex_destroy(&pf->sw_mutex); 3657 mutex_destroy(&pf->tc_mutex); 3658 mutex_destroy(&pf->avail_q_mutex); 3659 3660 if (pf->avail_txqs) { 3661 bitmap_free(pf->avail_txqs); 3662 pf->avail_txqs = NULL; 3663 } 3664 3665 if (pf->avail_rxqs) { 3666 bitmap_free(pf->avail_rxqs); 3667 pf->avail_rxqs = NULL; 3668 } 3669 3670 if (pf->ptp.clock) 3671 ptp_clock_unregister(pf->ptp.clock); 3672 } 3673 3674 /** 3675 * ice_set_pf_caps - set PFs capability flags 3676 * @pf: pointer to the PF instance 3677 */ 3678 static void ice_set_pf_caps(struct ice_pf *pf) 3679 { 3680 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3681 3682 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3683 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3684 if (func_caps->common_cap.rdma) { 3685 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3686 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3687 } 3688 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3689 if (func_caps->common_cap.dcb) 3690 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3691 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3692 if (func_caps->common_cap.sr_iov_1_1) { 3693 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3694 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3695 ICE_MAX_VF_COUNT); 3696 } 3697 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3698 if (func_caps->common_cap.rss_table_size) 3699 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3700 3701 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3702 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3703 u16 unused; 3704 3705 /* ctrl_vsi_idx will be set to a valid value when flow director 3706 * is setup by ice_init_fdir 3707 */ 3708 pf->ctrl_vsi_idx = ICE_NO_VSI; 3709 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3710 /* force guaranteed filter pool for PF */ 3711 ice_alloc_fd_guar_item(&pf->hw, &unused, 3712 func_caps->fd_fltr_guar); 3713 /* force shared filter pool for PF */ 3714 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3715 func_caps->fd_fltr_best_effort); 3716 } 3717 3718 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3719 if (func_caps->common_cap.ieee_1588) 3720 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3721 3722 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3723 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3724 } 3725 3726 /** 3727 * ice_init_pf - Initialize general software structures (struct ice_pf) 3728 * @pf: board private structure to initialize 3729 */ 3730 static int ice_init_pf(struct ice_pf *pf) 3731 { 3732 ice_set_pf_caps(pf); 3733 3734 mutex_init(&pf->sw_mutex); 3735 mutex_init(&pf->tc_mutex); 3736 3737 INIT_HLIST_HEAD(&pf->aq_wait_list); 3738 spin_lock_init(&pf->aq_wait_lock); 3739 init_waitqueue_head(&pf->aq_wait_queue); 3740 3741 init_waitqueue_head(&pf->reset_wait_queue); 3742 3743 /* setup service timer and periodic service task */ 3744 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3745 pf->serv_tmr_period = HZ; 3746 INIT_WORK(&pf->serv_task, ice_service_task); 3747 clear_bit(ICE_SERVICE_SCHED, pf->state); 3748 3749 mutex_init(&pf->avail_q_mutex); 3750 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3751 if (!pf->avail_txqs) 3752 return -ENOMEM; 3753 3754 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3755 if (!pf->avail_rxqs) { 3756 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3757 pf->avail_txqs = NULL; 3758 return -ENOMEM; 3759 } 3760 3761 return 0; 3762 } 3763 3764 /** 3765 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3766 * @pf: board private structure 3767 * 3768 * compute the number of MSIX vectors required (v_budget) and request from 3769 * the OS. Return the number of vectors reserved or negative on failure 3770 */ 3771 static int ice_ena_msix_range(struct ice_pf *pf) 3772 { 3773 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3774 struct device *dev = ice_pf_to_dev(pf); 3775 int needed, err, i; 3776 3777 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3778 num_cpus = num_online_cpus(); 3779 3780 /* reserve for LAN miscellaneous handler */ 3781 needed = ICE_MIN_LAN_OICR_MSIX; 3782 if (v_left < needed) 3783 goto no_hw_vecs_left_err; 3784 v_budget += needed; 3785 v_left -= needed; 3786 3787 /* reserve for flow director */ 3788 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3789 needed = ICE_FDIR_MSIX; 3790 if (v_left < needed) 3791 goto no_hw_vecs_left_err; 3792 v_budget += needed; 3793 v_left -= needed; 3794 } 3795 3796 /* reserve for switchdev */ 3797 needed = ICE_ESWITCH_MSIX; 3798 if (v_left < needed) 3799 goto no_hw_vecs_left_err; 3800 v_budget += needed; 3801 v_left -= needed; 3802 3803 /* total used for non-traffic vectors */ 3804 v_other = v_budget; 3805 3806 /* reserve vectors for LAN traffic */ 3807 needed = num_cpus; 3808 if (v_left < needed) 3809 goto no_hw_vecs_left_err; 3810 pf->num_lan_msix = needed; 3811 v_budget += needed; 3812 v_left -= needed; 3813 3814 /* reserve vectors for RDMA auxiliary driver */ 3815 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3816 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3817 if (v_left < needed) 3818 goto no_hw_vecs_left_err; 3819 pf->num_rdma_msix = needed; 3820 v_budget += needed; 3821 v_left -= needed; 3822 } 3823 3824 pf->msix_entries = devm_kcalloc(dev, v_budget, 3825 sizeof(*pf->msix_entries), GFP_KERNEL); 3826 if (!pf->msix_entries) { 3827 err = -ENOMEM; 3828 goto exit_err; 3829 } 3830 3831 for (i = 0; i < v_budget; i++) 3832 pf->msix_entries[i].entry = i; 3833 3834 /* actually reserve the vectors */ 3835 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3836 ICE_MIN_MSIX, v_budget); 3837 if (v_actual < 0) { 3838 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3839 err = v_actual; 3840 goto msix_err; 3841 } 3842 3843 if (v_actual < v_budget) { 3844 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3845 v_budget, v_actual); 3846 3847 if (v_actual < ICE_MIN_MSIX) { 3848 /* error if we can't get minimum vectors */ 3849 pci_disable_msix(pf->pdev); 3850 err = -ERANGE; 3851 goto msix_err; 3852 } else { 3853 int v_remain = v_actual - v_other; 3854 int v_rdma = 0, v_min_rdma = 0; 3855 3856 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3857 /* Need at least 1 interrupt in addition to 3858 * AEQ MSIX 3859 */ 3860 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3861 v_min_rdma = ICE_MIN_RDMA_MSIX; 3862 } 3863 3864 if (v_actual == ICE_MIN_MSIX || 3865 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3866 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3867 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3868 3869 pf->num_rdma_msix = 0; 3870 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3871 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3872 (v_remain - v_rdma < v_rdma)) { 3873 /* Support minimum RDMA and give remaining 3874 * vectors to LAN MSIX 3875 */ 3876 pf->num_rdma_msix = v_min_rdma; 3877 pf->num_lan_msix = v_remain - v_min_rdma; 3878 } else { 3879 /* Split remaining MSIX with RDMA after 3880 * accounting for AEQ MSIX 3881 */ 3882 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3883 ICE_RDMA_NUM_AEQ_MSIX; 3884 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3885 } 3886 3887 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3888 pf->num_lan_msix); 3889 3890 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3891 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3892 pf->num_rdma_msix); 3893 } 3894 } 3895 3896 return v_actual; 3897 3898 msix_err: 3899 devm_kfree(dev, pf->msix_entries); 3900 goto exit_err; 3901 3902 no_hw_vecs_left_err: 3903 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3904 needed, v_left); 3905 err = -ERANGE; 3906 exit_err: 3907 pf->num_rdma_msix = 0; 3908 pf->num_lan_msix = 0; 3909 return err; 3910 } 3911 3912 /** 3913 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3914 * @pf: board private structure 3915 */ 3916 static void ice_dis_msix(struct ice_pf *pf) 3917 { 3918 pci_disable_msix(pf->pdev); 3919 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3920 pf->msix_entries = NULL; 3921 } 3922 3923 /** 3924 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3925 * @pf: board private structure 3926 */ 3927 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3928 { 3929 ice_dis_msix(pf); 3930 3931 if (pf->irq_tracker) { 3932 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3933 pf->irq_tracker = NULL; 3934 } 3935 } 3936 3937 /** 3938 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3939 * @pf: board private structure to initialize 3940 */ 3941 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3942 { 3943 int vectors; 3944 3945 vectors = ice_ena_msix_range(pf); 3946 3947 if (vectors < 0) 3948 return vectors; 3949 3950 /* set up vector assignment tracking */ 3951 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3952 struct_size(pf->irq_tracker, list, vectors), 3953 GFP_KERNEL); 3954 if (!pf->irq_tracker) { 3955 ice_dis_msix(pf); 3956 return -ENOMEM; 3957 } 3958 3959 /* populate SW interrupts pool with number of OS granted IRQs. */ 3960 pf->num_avail_sw_msix = (u16)vectors; 3961 pf->irq_tracker->num_entries = (u16)vectors; 3962 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3963 3964 return 0; 3965 } 3966 3967 /** 3968 * ice_is_wol_supported - check if WoL is supported 3969 * @hw: pointer to hardware info 3970 * 3971 * Check if WoL is supported based on the HW configuration. 3972 * Returns true if NVM supports and enables WoL for this port, false otherwise 3973 */ 3974 bool ice_is_wol_supported(struct ice_hw *hw) 3975 { 3976 u16 wol_ctrl; 3977 3978 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3979 * word) indicates WoL is not supported on the corresponding PF ID. 3980 */ 3981 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3982 return false; 3983 3984 return !(BIT(hw->port_info->lport) & wol_ctrl); 3985 } 3986 3987 /** 3988 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3989 * @vsi: VSI being changed 3990 * @new_rx: new number of Rx queues 3991 * @new_tx: new number of Tx queues 3992 * 3993 * Only change the number of queues if new_tx, or new_rx is non-0. 3994 * 3995 * Returns 0 on success. 3996 */ 3997 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3998 { 3999 struct ice_pf *pf = vsi->back; 4000 int err = 0, timeout = 50; 4001 4002 if (!new_rx && !new_tx) 4003 return -EINVAL; 4004 4005 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4006 timeout--; 4007 if (!timeout) 4008 return -EBUSY; 4009 usleep_range(1000, 2000); 4010 } 4011 4012 if (new_tx) 4013 vsi->req_txq = (u16)new_tx; 4014 if (new_rx) 4015 vsi->req_rxq = (u16)new_rx; 4016 4017 /* set for the next time the netdev is started */ 4018 if (!netif_running(vsi->netdev)) { 4019 ice_vsi_rebuild(vsi, false); 4020 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4021 goto done; 4022 } 4023 4024 ice_vsi_close(vsi); 4025 ice_vsi_rebuild(vsi, false); 4026 ice_pf_dcb_recfg(pf); 4027 ice_vsi_open(vsi); 4028 done: 4029 clear_bit(ICE_CFG_BUSY, pf->state); 4030 return err; 4031 } 4032 4033 /** 4034 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4035 * @pf: PF to configure 4036 * 4037 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4038 * VSI can still Tx/Rx VLAN tagged packets. 4039 */ 4040 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4041 { 4042 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4043 struct ice_vsi_ctx *ctxt; 4044 struct ice_hw *hw; 4045 int status; 4046 4047 if (!vsi) 4048 return; 4049 4050 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4051 if (!ctxt) 4052 return; 4053 4054 hw = &pf->hw; 4055 ctxt->info = vsi->info; 4056 4057 ctxt->info.valid_sections = 4058 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4059 ICE_AQ_VSI_PROP_SECURITY_VALID | 4060 ICE_AQ_VSI_PROP_SW_VALID); 4061 4062 /* disable VLAN anti-spoof */ 4063 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4064 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4065 4066 /* disable VLAN pruning and keep all other settings */ 4067 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4068 4069 /* allow all VLANs on Tx and don't strip on Rx */ 4070 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 4071 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 4072 4073 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4074 if (status) { 4075 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4076 status, ice_aq_str(hw->adminq.sq_last_status)); 4077 } else { 4078 vsi->info.sec_flags = ctxt->info.sec_flags; 4079 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4080 vsi->info.vlan_flags = ctxt->info.vlan_flags; 4081 } 4082 4083 kfree(ctxt); 4084 } 4085 4086 /** 4087 * ice_log_pkg_init - log result of DDP package load 4088 * @hw: pointer to hardware info 4089 * @state: state of package load 4090 */ 4091 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4092 { 4093 struct ice_pf *pf = hw->back; 4094 struct device *dev; 4095 4096 dev = ice_pf_to_dev(pf); 4097 4098 switch (state) { 4099 case ICE_DDP_PKG_SUCCESS: 4100 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4101 hw->active_pkg_name, 4102 hw->active_pkg_ver.major, 4103 hw->active_pkg_ver.minor, 4104 hw->active_pkg_ver.update, 4105 hw->active_pkg_ver.draft); 4106 break; 4107 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4108 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4109 hw->active_pkg_name, 4110 hw->active_pkg_ver.major, 4111 hw->active_pkg_ver.minor, 4112 hw->active_pkg_ver.update, 4113 hw->active_pkg_ver.draft); 4114 break; 4115 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4116 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4117 hw->active_pkg_name, 4118 hw->active_pkg_ver.major, 4119 hw->active_pkg_ver.minor, 4120 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4121 break; 4122 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4123 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4124 hw->active_pkg_name, 4125 hw->active_pkg_ver.major, 4126 hw->active_pkg_ver.minor, 4127 hw->active_pkg_ver.update, 4128 hw->active_pkg_ver.draft, 4129 hw->pkg_name, 4130 hw->pkg_ver.major, 4131 hw->pkg_ver.minor, 4132 hw->pkg_ver.update, 4133 hw->pkg_ver.draft); 4134 break; 4135 case ICE_DDP_PKG_FW_MISMATCH: 4136 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4137 break; 4138 case ICE_DDP_PKG_INVALID_FILE: 4139 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4140 break; 4141 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4142 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4143 break; 4144 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4145 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4146 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4147 break; 4148 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4149 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4150 break; 4151 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4152 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4153 break; 4154 case ICE_DDP_PKG_LOAD_ERROR: 4155 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4156 /* poll for reset to complete */ 4157 if (ice_check_reset(hw)) 4158 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4159 break; 4160 case ICE_DDP_PKG_ERR: 4161 default: 4162 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4163 break; 4164 } 4165 } 4166 4167 /** 4168 * ice_load_pkg - load/reload the DDP Package file 4169 * @firmware: firmware structure when firmware requested or NULL for reload 4170 * @pf: pointer to the PF instance 4171 * 4172 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4173 * initialize HW tables. 4174 */ 4175 static void 4176 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4177 { 4178 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4179 struct device *dev = ice_pf_to_dev(pf); 4180 struct ice_hw *hw = &pf->hw; 4181 4182 /* Load DDP Package */ 4183 if (firmware && !hw->pkg_copy) { 4184 state = ice_copy_and_init_pkg(hw, firmware->data, 4185 firmware->size); 4186 ice_log_pkg_init(hw, state); 4187 } else if (!firmware && hw->pkg_copy) { 4188 /* Reload package during rebuild after CORER/GLOBR reset */ 4189 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4190 ice_log_pkg_init(hw, state); 4191 } else { 4192 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4193 } 4194 4195 if (!ice_is_init_pkg_successful(state)) { 4196 /* Safe Mode */ 4197 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4198 return; 4199 } 4200 4201 /* Successful download package is the precondition for advanced 4202 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4203 */ 4204 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4205 } 4206 4207 /** 4208 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4209 * @pf: pointer to the PF structure 4210 * 4211 * There is no error returned here because the driver should be able to handle 4212 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4213 * specifically with Tx. 4214 */ 4215 static void ice_verify_cacheline_size(struct ice_pf *pf) 4216 { 4217 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4218 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4219 ICE_CACHE_LINE_BYTES); 4220 } 4221 4222 /** 4223 * ice_send_version - update firmware with driver version 4224 * @pf: PF struct 4225 * 4226 * Returns 0 on success, else error code 4227 */ 4228 static int ice_send_version(struct ice_pf *pf) 4229 { 4230 struct ice_driver_ver dv; 4231 4232 dv.major_ver = 0xff; 4233 dv.minor_ver = 0xff; 4234 dv.build_ver = 0xff; 4235 dv.subbuild_ver = 0; 4236 strscpy((char *)dv.driver_string, UTS_RELEASE, 4237 sizeof(dv.driver_string)); 4238 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4239 } 4240 4241 /** 4242 * ice_init_fdir - Initialize flow director VSI and configuration 4243 * @pf: pointer to the PF instance 4244 * 4245 * returns 0 on success, negative on error 4246 */ 4247 static int ice_init_fdir(struct ice_pf *pf) 4248 { 4249 struct device *dev = ice_pf_to_dev(pf); 4250 struct ice_vsi *ctrl_vsi; 4251 int err; 4252 4253 /* Side Band Flow Director needs to have a control VSI. 4254 * Allocate it and store it in the PF. 4255 */ 4256 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4257 if (!ctrl_vsi) { 4258 dev_dbg(dev, "could not create control VSI\n"); 4259 return -ENOMEM; 4260 } 4261 4262 err = ice_vsi_open_ctrl(ctrl_vsi); 4263 if (err) { 4264 dev_dbg(dev, "could not open control VSI\n"); 4265 goto err_vsi_open; 4266 } 4267 4268 mutex_init(&pf->hw.fdir_fltr_lock); 4269 4270 err = ice_fdir_create_dflt_rules(pf); 4271 if (err) 4272 goto err_fdir_rule; 4273 4274 return 0; 4275 4276 err_fdir_rule: 4277 ice_fdir_release_flows(&pf->hw); 4278 ice_vsi_close(ctrl_vsi); 4279 err_vsi_open: 4280 ice_vsi_release(ctrl_vsi); 4281 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4282 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4283 pf->ctrl_vsi_idx = ICE_NO_VSI; 4284 } 4285 return err; 4286 } 4287 4288 /** 4289 * ice_get_opt_fw_name - return optional firmware file name or NULL 4290 * @pf: pointer to the PF instance 4291 */ 4292 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4293 { 4294 /* Optional firmware name same as default with additional dash 4295 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4296 */ 4297 struct pci_dev *pdev = pf->pdev; 4298 char *opt_fw_filename; 4299 u64 dsn; 4300 4301 /* Determine the name of the optional file using the DSN (two 4302 * dwords following the start of the DSN Capability). 4303 */ 4304 dsn = pci_get_dsn(pdev); 4305 if (!dsn) 4306 return NULL; 4307 4308 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4309 if (!opt_fw_filename) 4310 return NULL; 4311 4312 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4313 ICE_DDP_PKG_PATH, dsn); 4314 4315 return opt_fw_filename; 4316 } 4317 4318 /** 4319 * ice_request_fw - Device initialization routine 4320 * @pf: pointer to the PF instance 4321 */ 4322 static void ice_request_fw(struct ice_pf *pf) 4323 { 4324 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4325 const struct firmware *firmware = NULL; 4326 struct device *dev = ice_pf_to_dev(pf); 4327 int err = 0; 4328 4329 /* optional device-specific DDP (if present) overrides the default DDP 4330 * package file. kernel logs a debug message if the file doesn't exist, 4331 * and warning messages for other errors. 4332 */ 4333 if (opt_fw_filename) { 4334 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4335 if (err) { 4336 kfree(opt_fw_filename); 4337 goto dflt_pkg_load; 4338 } 4339 4340 /* request for firmware was successful. Download to device */ 4341 ice_load_pkg(firmware, pf); 4342 kfree(opt_fw_filename); 4343 release_firmware(firmware); 4344 return; 4345 } 4346 4347 dflt_pkg_load: 4348 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4349 if (err) { 4350 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4351 return; 4352 } 4353 4354 /* request for firmware was successful. Download to device */ 4355 ice_load_pkg(firmware, pf); 4356 release_firmware(firmware); 4357 } 4358 4359 /** 4360 * ice_print_wake_reason - show the wake up cause in the log 4361 * @pf: pointer to the PF struct 4362 */ 4363 static void ice_print_wake_reason(struct ice_pf *pf) 4364 { 4365 u32 wus = pf->wakeup_reason; 4366 const char *wake_str; 4367 4368 /* if no wake event, nothing to print */ 4369 if (!wus) 4370 return; 4371 4372 if (wus & PFPM_WUS_LNKC_M) 4373 wake_str = "Link\n"; 4374 else if (wus & PFPM_WUS_MAG_M) 4375 wake_str = "Magic Packet\n"; 4376 else if (wus & PFPM_WUS_MNG_M) 4377 wake_str = "Management\n"; 4378 else if (wus & PFPM_WUS_FW_RST_WK_M) 4379 wake_str = "Firmware Reset\n"; 4380 else 4381 wake_str = "Unknown\n"; 4382 4383 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4384 } 4385 4386 /** 4387 * ice_register_netdev - register netdev and devlink port 4388 * @pf: pointer to the PF struct 4389 */ 4390 static int ice_register_netdev(struct ice_pf *pf) 4391 { 4392 struct ice_vsi *vsi; 4393 int err = 0; 4394 4395 vsi = ice_get_main_vsi(pf); 4396 if (!vsi || !vsi->netdev) 4397 return -EIO; 4398 4399 err = register_netdev(vsi->netdev); 4400 if (err) 4401 goto err_register_netdev; 4402 4403 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4404 netif_carrier_off(vsi->netdev); 4405 netif_tx_stop_all_queues(vsi->netdev); 4406 err = ice_devlink_create_pf_port(pf); 4407 if (err) 4408 goto err_devlink_create; 4409 4410 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4411 4412 return 0; 4413 err_devlink_create: 4414 unregister_netdev(vsi->netdev); 4415 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4416 err_register_netdev: 4417 free_netdev(vsi->netdev); 4418 vsi->netdev = NULL; 4419 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4420 return err; 4421 } 4422 4423 /** 4424 * ice_probe - Device initialization routine 4425 * @pdev: PCI device information struct 4426 * @ent: entry in ice_pci_tbl 4427 * 4428 * Returns 0 on success, negative on failure 4429 */ 4430 static int 4431 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4432 { 4433 struct device *dev = &pdev->dev; 4434 struct ice_pf *pf; 4435 struct ice_hw *hw; 4436 int i, err; 4437 4438 if (pdev->is_virtfn) { 4439 dev_err(dev, "can't probe a virtual function\n"); 4440 return -EINVAL; 4441 } 4442 4443 /* this driver uses devres, see 4444 * Documentation/driver-api/driver-model/devres.rst 4445 */ 4446 err = pcim_enable_device(pdev); 4447 if (err) 4448 return err; 4449 4450 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4451 if (err) { 4452 dev_err(dev, "BAR0 I/O map error %d\n", err); 4453 return err; 4454 } 4455 4456 pf = ice_allocate_pf(dev); 4457 if (!pf) 4458 return -ENOMEM; 4459 4460 /* initialize Auxiliary index to invalid value */ 4461 pf->aux_idx = -1; 4462 4463 /* set up for high or low DMA */ 4464 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4465 if (err) 4466 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4467 if (err) { 4468 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4469 return err; 4470 } 4471 4472 pci_enable_pcie_error_reporting(pdev); 4473 pci_set_master(pdev); 4474 4475 pf->pdev = pdev; 4476 pci_set_drvdata(pdev, pf); 4477 set_bit(ICE_DOWN, pf->state); 4478 /* Disable service task until DOWN bit is cleared */ 4479 set_bit(ICE_SERVICE_DIS, pf->state); 4480 4481 hw = &pf->hw; 4482 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4483 pci_save_state(pdev); 4484 4485 hw->back = pf; 4486 hw->vendor_id = pdev->vendor; 4487 hw->device_id = pdev->device; 4488 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4489 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4490 hw->subsystem_device_id = pdev->subsystem_device; 4491 hw->bus.device = PCI_SLOT(pdev->devfn); 4492 hw->bus.func = PCI_FUNC(pdev->devfn); 4493 ice_set_ctrlq_len(hw); 4494 4495 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4496 4497 #ifndef CONFIG_DYNAMIC_DEBUG 4498 if (debug < -1) 4499 hw->debug_mask = debug; 4500 #endif 4501 4502 err = ice_init_hw(hw); 4503 if (err) { 4504 dev_err(dev, "ice_init_hw failed: %d\n", err); 4505 err = -EIO; 4506 goto err_exit_unroll; 4507 } 4508 4509 ice_init_feature_support(pf); 4510 4511 ice_request_fw(pf); 4512 4513 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4514 * set in pf->state, which will cause ice_is_safe_mode to return 4515 * true 4516 */ 4517 if (ice_is_safe_mode(pf)) { 4518 /* we already got function/device capabilities but these don't 4519 * reflect what the driver needs to do in safe mode. Instead of 4520 * adding conditional logic everywhere to ignore these 4521 * device/function capabilities, override them. 4522 */ 4523 ice_set_safe_mode_caps(hw); 4524 } 4525 4526 err = ice_init_pf(pf); 4527 if (err) { 4528 dev_err(dev, "ice_init_pf failed: %d\n", err); 4529 goto err_init_pf_unroll; 4530 } 4531 4532 ice_devlink_init_regions(pf); 4533 4534 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4535 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4536 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4537 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4538 i = 0; 4539 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4540 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4541 pf->hw.tnl.valid_count[TNL_VXLAN]; 4542 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4543 UDP_TUNNEL_TYPE_VXLAN; 4544 i++; 4545 } 4546 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4547 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4548 pf->hw.tnl.valid_count[TNL_GENEVE]; 4549 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4550 UDP_TUNNEL_TYPE_GENEVE; 4551 i++; 4552 } 4553 4554 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4555 if (!pf->num_alloc_vsi) { 4556 err = -EIO; 4557 goto err_init_pf_unroll; 4558 } 4559 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4560 dev_warn(&pf->pdev->dev, 4561 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4562 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4563 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4564 } 4565 4566 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4567 GFP_KERNEL); 4568 if (!pf->vsi) { 4569 err = -ENOMEM; 4570 goto err_init_pf_unroll; 4571 } 4572 4573 err = ice_init_interrupt_scheme(pf); 4574 if (err) { 4575 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4576 err = -EIO; 4577 goto err_init_vsi_unroll; 4578 } 4579 4580 /* In case of MSIX we are going to setup the misc vector right here 4581 * to handle admin queue events etc. In case of legacy and MSI 4582 * the misc functionality and queue processing is combined in 4583 * the same vector and that gets setup at open. 4584 */ 4585 err = ice_req_irq_msix_misc(pf); 4586 if (err) { 4587 dev_err(dev, "setup of misc vector failed: %d\n", err); 4588 goto err_init_interrupt_unroll; 4589 } 4590 4591 /* create switch struct for the switch element created by FW on boot */ 4592 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4593 if (!pf->first_sw) { 4594 err = -ENOMEM; 4595 goto err_msix_misc_unroll; 4596 } 4597 4598 if (hw->evb_veb) 4599 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4600 else 4601 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4602 4603 pf->first_sw->pf = pf; 4604 4605 /* record the sw_id available for later use */ 4606 pf->first_sw->sw_id = hw->port_info->sw_id; 4607 4608 err = ice_setup_pf_sw(pf); 4609 if (err) { 4610 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4611 goto err_alloc_sw_unroll; 4612 } 4613 4614 clear_bit(ICE_SERVICE_DIS, pf->state); 4615 4616 /* tell the firmware we are up */ 4617 err = ice_send_version(pf); 4618 if (err) { 4619 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4620 UTS_RELEASE, err); 4621 goto err_send_version_unroll; 4622 } 4623 4624 /* since everything is good, start the service timer */ 4625 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4626 4627 err = ice_init_link_events(pf->hw.port_info); 4628 if (err) { 4629 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4630 goto err_send_version_unroll; 4631 } 4632 4633 /* not a fatal error if this fails */ 4634 err = ice_init_nvm_phy_type(pf->hw.port_info); 4635 if (err) 4636 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4637 4638 /* not a fatal error if this fails */ 4639 err = ice_update_link_info(pf->hw.port_info); 4640 if (err) 4641 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4642 4643 ice_init_link_dflt_override(pf->hw.port_info); 4644 4645 ice_check_link_cfg_err(pf, 4646 pf->hw.port_info->phy.link_info.link_cfg_err); 4647 4648 /* if media available, initialize PHY settings */ 4649 if (pf->hw.port_info->phy.link_info.link_info & 4650 ICE_AQ_MEDIA_AVAILABLE) { 4651 /* not a fatal error if this fails */ 4652 err = ice_init_phy_user_cfg(pf->hw.port_info); 4653 if (err) 4654 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4655 4656 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4657 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4658 4659 if (vsi) 4660 ice_configure_phy(vsi); 4661 } 4662 } else { 4663 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4664 } 4665 4666 ice_verify_cacheline_size(pf); 4667 4668 /* Save wakeup reason register for later use */ 4669 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4670 4671 /* check for a power management event */ 4672 ice_print_wake_reason(pf); 4673 4674 /* clear wake status, all bits */ 4675 wr32(hw, PFPM_WUS, U32_MAX); 4676 4677 /* Disable WoL at init, wait for user to enable */ 4678 device_set_wakeup_enable(dev, false); 4679 4680 if (ice_is_safe_mode(pf)) { 4681 ice_set_safe_mode_vlan_cfg(pf); 4682 goto probe_done; 4683 } 4684 4685 /* initialize DDP driven features */ 4686 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4687 ice_ptp_init(pf); 4688 4689 /* Note: Flow director init failure is non-fatal to load */ 4690 if (ice_init_fdir(pf)) 4691 dev_err(dev, "could not initialize flow director\n"); 4692 4693 /* Note: DCB init failure is non-fatal to load */ 4694 if (ice_init_pf_dcb(pf, false)) { 4695 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4696 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4697 } else { 4698 ice_cfg_lldp_mib_change(&pf->hw, true); 4699 } 4700 4701 if (ice_init_lag(pf)) 4702 dev_warn(dev, "Failed to init link aggregation support\n"); 4703 4704 /* print PCI link speed and width */ 4705 pcie_print_link_status(pf->pdev); 4706 4707 probe_done: 4708 err = ice_register_netdev(pf); 4709 if (err) 4710 goto err_netdev_reg; 4711 4712 err = ice_devlink_register_params(pf); 4713 if (err) 4714 goto err_netdev_reg; 4715 4716 /* ready to go, so clear down state bit */ 4717 clear_bit(ICE_DOWN, pf->state); 4718 if (ice_is_aux_ena(pf)) { 4719 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4720 if (pf->aux_idx < 0) { 4721 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4722 err = -ENOMEM; 4723 goto err_devlink_reg_param; 4724 } 4725 4726 err = ice_init_rdma(pf); 4727 if (err) { 4728 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4729 err = -EIO; 4730 goto err_init_aux_unroll; 4731 } 4732 } else { 4733 dev_warn(dev, "RDMA is not supported on this device\n"); 4734 } 4735 4736 ice_devlink_register(pf); 4737 return 0; 4738 4739 err_init_aux_unroll: 4740 pf->adev = NULL; 4741 ida_free(&ice_aux_ida, pf->aux_idx); 4742 err_devlink_reg_param: 4743 ice_devlink_unregister_params(pf); 4744 err_netdev_reg: 4745 err_send_version_unroll: 4746 ice_vsi_release_all(pf); 4747 err_alloc_sw_unroll: 4748 set_bit(ICE_SERVICE_DIS, pf->state); 4749 set_bit(ICE_DOWN, pf->state); 4750 devm_kfree(dev, pf->first_sw); 4751 err_msix_misc_unroll: 4752 ice_free_irq_msix_misc(pf); 4753 err_init_interrupt_unroll: 4754 ice_clear_interrupt_scheme(pf); 4755 err_init_vsi_unroll: 4756 devm_kfree(dev, pf->vsi); 4757 err_init_pf_unroll: 4758 ice_deinit_pf(pf); 4759 ice_devlink_destroy_regions(pf); 4760 ice_deinit_hw(hw); 4761 err_exit_unroll: 4762 pci_disable_pcie_error_reporting(pdev); 4763 pci_disable_device(pdev); 4764 return err; 4765 } 4766 4767 /** 4768 * ice_set_wake - enable or disable Wake on LAN 4769 * @pf: pointer to the PF struct 4770 * 4771 * Simple helper for WoL control 4772 */ 4773 static void ice_set_wake(struct ice_pf *pf) 4774 { 4775 struct ice_hw *hw = &pf->hw; 4776 bool wol = pf->wol_ena; 4777 4778 /* clear wake state, otherwise new wake events won't fire */ 4779 wr32(hw, PFPM_WUS, U32_MAX); 4780 4781 /* enable / disable APM wake up, no RMW needed */ 4782 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4783 4784 /* set magic packet filter enabled */ 4785 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4786 } 4787 4788 /** 4789 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4790 * @pf: pointer to the PF struct 4791 * 4792 * Issue firmware command to enable multicast magic wake, making 4793 * sure that any locally administered address (LAA) is used for 4794 * wake, and that PF reset doesn't undo the LAA. 4795 */ 4796 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4797 { 4798 struct device *dev = ice_pf_to_dev(pf); 4799 struct ice_hw *hw = &pf->hw; 4800 u8 mac_addr[ETH_ALEN]; 4801 struct ice_vsi *vsi; 4802 int status; 4803 u8 flags; 4804 4805 if (!pf->wol_ena) 4806 return; 4807 4808 vsi = ice_get_main_vsi(pf); 4809 if (!vsi) 4810 return; 4811 4812 /* Get current MAC address in case it's an LAA */ 4813 if (vsi->netdev) 4814 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4815 else 4816 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4817 4818 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4819 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4820 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4821 4822 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4823 if (status) 4824 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4825 status, ice_aq_str(hw->adminq.sq_last_status)); 4826 } 4827 4828 /** 4829 * ice_remove - Device removal routine 4830 * @pdev: PCI device information struct 4831 */ 4832 static void ice_remove(struct pci_dev *pdev) 4833 { 4834 struct ice_pf *pf = pci_get_drvdata(pdev); 4835 int i; 4836 4837 ice_devlink_unregister(pf); 4838 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4839 if (!ice_is_reset_in_progress(pf->state)) 4840 break; 4841 msleep(100); 4842 } 4843 4844 ice_tc_indir_block_remove(pf); 4845 4846 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4847 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4848 ice_free_vfs(pf); 4849 } 4850 4851 ice_service_task_stop(pf); 4852 4853 ice_aq_cancel_waiting_tasks(pf); 4854 ice_unplug_aux_dev(pf); 4855 if (pf->aux_idx >= 0) 4856 ida_free(&ice_aux_ida, pf->aux_idx); 4857 ice_devlink_unregister_params(pf); 4858 set_bit(ICE_DOWN, pf->state); 4859 4860 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4861 ice_deinit_lag(pf); 4862 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4863 ice_ptp_release(pf); 4864 if (!ice_is_safe_mode(pf)) 4865 ice_remove_arfs(pf); 4866 ice_setup_mc_magic_wake(pf); 4867 ice_vsi_release_all(pf); 4868 ice_set_wake(pf); 4869 ice_free_irq_msix_misc(pf); 4870 ice_for_each_vsi(pf, i) { 4871 if (!pf->vsi[i]) 4872 continue; 4873 ice_vsi_free_q_vectors(pf->vsi[i]); 4874 } 4875 ice_deinit_pf(pf); 4876 ice_devlink_destroy_regions(pf); 4877 ice_deinit_hw(&pf->hw); 4878 4879 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4880 * do it via ice_schedule_reset() since there is no need to rebuild 4881 * and the service task is already stopped. 4882 */ 4883 ice_reset(&pf->hw, ICE_RESET_PFR); 4884 pci_wait_for_pending_transaction(pdev); 4885 ice_clear_interrupt_scheme(pf); 4886 pci_disable_pcie_error_reporting(pdev); 4887 pci_disable_device(pdev); 4888 } 4889 4890 /** 4891 * ice_shutdown - PCI callback for shutting down device 4892 * @pdev: PCI device information struct 4893 */ 4894 static void ice_shutdown(struct pci_dev *pdev) 4895 { 4896 struct ice_pf *pf = pci_get_drvdata(pdev); 4897 4898 ice_remove(pdev); 4899 4900 if (system_state == SYSTEM_POWER_OFF) { 4901 pci_wake_from_d3(pdev, pf->wol_ena); 4902 pci_set_power_state(pdev, PCI_D3hot); 4903 } 4904 } 4905 4906 #ifdef CONFIG_PM 4907 /** 4908 * ice_prepare_for_shutdown - prep for PCI shutdown 4909 * @pf: board private structure 4910 * 4911 * Inform or close all dependent features in prep for PCI device shutdown 4912 */ 4913 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4914 { 4915 struct ice_hw *hw = &pf->hw; 4916 u32 v; 4917 4918 /* Notify VFs of impending reset */ 4919 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4920 ice_vc_notify_reset(pf); 4921 4922 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4923 4924 /* disable the VSIs and their queues that are not already DOWN */ 4925 ice_pf_dis_all_vsi(pf, false); 4926 4927 ice_for_each_vsi(pf, v) 4928 if (pf->vsi[v]) 4929 pf->vsi[v]->vsi_num = 0; 4930 4931 ice_shutdown_all_ctrlq(hw); 4932 } 4933 4934 /** 4935 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4936 * @pf: board private structure to reinitialize 4937 * 4938 * This routine reinitialize interrupt scheme that was cleared during 4939 * power management suspend callback. 4940 * 4941 * This should be called during resume routine to re-allocate the q_vectors 4942 * and reacquire interrupts. 4943 */ 4944 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4945 { 4946 struct device *dev = ice_pf_to_dev(pf); 4947 int ret, v; 4948 4949 /* Since we clear MSIX flag during suspend, we need to 4950 * set it back during resume... 4951 */ 4952 4953 ret = ice_init_interrupt_scheme(pf); 4954 if (ret) { 4955 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4956 return ret; 4957 } 4958 4959 /* Remap vectors and rings, after successful re-init interrupts */ 4960 ice_for_each_vsi(pf, v) { 4961 if (!pf->vsi[v]) 4962 continue; 4963 4964 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4965 if (ret) 4966 goto err_reinit; 4967 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4968 } 4969 4970 ret = ice_req_irq_msix_misc(pf); 4971 if (ret) { 4972 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4973 ret); 4974 goto err_reinit; 4975 } 4976 4977 return 0; 4978 4979 err_reinit: 4980 while (v--) 4981 if (pf->vsi[v]) 4982 ice_vsi_free_q_vectors(pf->vsi[v]); 4983 4984 return ret; 4985 } 4986 4987 /** 4988 * ice_suspend 4989 * @dev: generic device information structure 4990 * 4991 * Power Management callback to quiesce the device and prepare 4992 * for D3 transition. 4993 */ 4994 static int __maybe_unused ice_suspend(struct device *dev) 4995 { 4996 struct pci_dev *pdev = to_pci_dev(dev); 4997 struct ice_pf *pf; 4998 int disabled, v; 4999 5000 pf = pci_get_drvdata(pdev); 5001 5002 if (!ice_pf_state_is_nominal(pf)) { 5003 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5004 return -EBUSY; 5005 } 5006 5007 /* Stop watchdog tasks until resume completion. 5008 * Even though it is most likely that the service task is 5009 * disabled if the device is suspended or down, the service task's 5010 * state is controlled by a different state bit, and we should 5011 * store and honor whatever state that bit is in at this point. 5012 */ 5013 disabled = ice_service_task_stop(pf); 5014 5015 ice_unplug_aux_dev(pf); 5016 5017 /* Already suspended?, then there is nothing to do */ 5018 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5019 if (!disabled) 5020 ice_service_task_restart(pf); 5021 return 0; 5022 } 5023 5024 if (test_bit(ICE_DOWN, pf->state) || 5025 ice_is_reset_in_progress(pf->state)) { 5026 dev_err(dev, "can't suspend device in reset or already down\n"); 5027 if (!disabled) 5028 ice_service_task_restart(pf); 5029 return 0; 5030 } 5031 5032 ice_setup_mc_magic_wake(pf); 5033 5034 ice_prepare_for_shutdown(pf); 5035 5036 ice_set_wake(pf); 5037 5038 /* Free vectors, clear the interrupt scheme and release IRQs 5039 * for proper hibernation, especially with large number of CPUs. 5040 * Otherwise hibernation might fail when mapping all the vectors back 5041 * to CPU0. 5042 */ 5043 ice_free_irq_msix_misc(pf); 5044 ice_for_each_vsi(pf, v) { 5045 if (!pf->vsi[v]) 5046 continue; 5047 ice_vsi_free_q_vectors(pf->vsi[v]); 5048 } 5049 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5050 ice_clear_interrupt_scheme(pf); 5051 5052 pci_save_state(pdev); 5053 pci_wake_from_d3(pdev, pf->wol_ena); 5054 pci_set_power_state(pdev, PCI_D3hot); 5055 return 0; 5056 } 5057 5058 /** 5059 * ice_resume - PM callback for waking up from D3 5060 * @dev: generic device information structure 5061 */ 5062 static int __maybe_unused ice_resume(struct device *dev) 5063 { 5064 struct pci_dev *pdev = to_pci_dev(dev); 5065 enum ice_reset_req reset_type; 5066 struct ice_pf *pf; 5067 struct ice_hw *hw; 5068 int ret; 5069 5070 pci_set_power_state(pdev, PCI_D0); 5071 pci_restore_state(pdev); 5072 pci_save_state(pdev); 5073 5074 if (!pci_device_is_present(pdev)) 5075 return -ENODEV; 5076 5077 ret = pci_enable_device_mem(pdev); 5078 if (ret) { 5079 dev_err(dev, "Cannot enable device after suspend\n"); 5080 return ret; 5081 } 5082 5083 pf = pci_get_drvdata(pdev); 5084 hw = &pf->hw; 5085 5086 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5087 ice_print_wake_reason(pf); 5088 5089 /* We cleared the interrupt scheme when we suspended, so we need to 5090 * restore it now to resume device functionality. 5091 */ 5092 ret = ice_reinit_interrupt_scheme(pf); 5093 if (ret) 5094 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5095 5096 clear_bit(ICE_DOWN, pf->state); 5097 /* Now perform PF reset and rebuild */ 5098 reset_type = ICE_RESET_PFR; 5099 /* re-enable service task for reset, but allow reset to schedule it */ 5100 clear_bit(ICE_SERVICE_DIS, pf->state); 5101 5102 if (ice_schedule_reset(pf, reset_type)) 5103 dev_err(dev, "Reset during resume failed.\n"); 5104 5105 clear_bit(ICE_SUSPENDED, pf->state); 5106 ice_service_task_restart(pf); 5107 5108 /* Restart the service task */ 5109 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5110 5111 return 0; 5112 } 5113 #endif /* CONFIG_PM */ 5114 5115 /** 5116 * ice_pci_err_detected - warning that PCI error has been detected 5117 * @pdev: PCI device information struct 5118 * @err: the type of PCI error 5119 * 5120 * Called to warn that something happened on the PCI bus and the error handling 5121 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5122 */ 5123 static pci_ers_result_t 5124 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5125 { 5126 struct ice_pf *pf = pci_get_drvdata(pdev); 5127 5128 if (!pf) { 5129 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5130 __func__, err); 5131 return PCI_ERS_RESULT_DISCONNECT; 5132 } 5133 5134 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5135 ice_service_task_stop(pf); 5136 5137 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5138 set_bit(ICE_PFR_REQ, pf->state); 5139 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5140 } 5141 } 5142 5143 return PCI_ERS_RESULT_NEED_RESET; 5144 } 5145 5146 /** 5147 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5148 * @pdev: PCI device information struct 5149 * 5150 * Called to determine if the driver can recover from the PCI slot reset by 5151 * using a register read to determine if the device is recoverable. 5152 */ 5153 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5154 { 5155 struct ice_pf *pf = pci_get_drvdata(pdev); 5156 pci_ers_result_t result; 5157 int err; 5158 u32 reg; 5159 5160 err = pci_enable_device_mem(pdev); 5161 if (err) { 5162 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5163 err); 5164 result = PCI_ERS_RESULT_DISCONNECT; 5165 } else { 5166 pci_set_master(pdev); 5167 pci_restore_state(pdev); 5168 pci_save_state(pdev); 5169 pci_wake_from_d3(pdev, false); 5170 5171 /* Check for life */ 5172 reg = rd32(&pf->hw, GLGEN_RTRIG); 5173 if (!reg) 5174 result = PCI_ERS_RESULT_RECOVERED; 5175 else 5176 result = PCI_ERS_RESULT_DISCONNECT; 5177 } 5178 5179 err = pci_aer_clear_nonfatal_status(pdev); 5180 if (err) 5181 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5182 err); 5183 /* non-fatal, continue */ 5184 5185 return result; 5186 } 5187 5188 /** 5189 * ice_pci_err_resume - restart operations after PCI error recovery 5190 * @pdev: PCI device information struct 5191 * 5192 * Called to allow the driver to bring things back up after PCI error and/or 5193 * reset recovery have finished 5194 */ 5195 static void ice_pci_err_resume(struct pci_dev *pdev) 5196 { 5197 struct ice_pf *pf = pci_get_drvdata(pdev); 5198 5199 if (!pf) { 5200 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5201 __func__); 5202 return; 5203 } 5204 5205 if (test_bit(ICE_SUSPENDED, pf->state)) { 5206 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5207 __func__); 5208 return; 5209 } 5210 5211 ice_restore_all_vfs_msi_state(pdev); 5212 5213 ice_do_reset(pf, ICE_RESET_PFR); 5214 ice_service_task_restart(pf); 5215 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5216 } 5217 5218 /** 5219 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5220 * @pdev: PCI device information struct 5221 */ 5222 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5223 { 5224 struct ice_pf *pf = pci_get_drvdata(pdev); 5225 5226 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5227 ice_service_task_stop(pf); 5228 5229 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5230 set_bit(ICE_PFR_REQ, pf->state); 5231 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5232 } 5233 } 5234 } 5235 5236 /** 5237 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5238 * @pdev: PCI device information struct 5239 */ 5240 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5241 { 5242 ice_pci_err_resume(pdev); 5243 } 5244 5245 /* ice_pci_tbl - PCI Device ID Table 5246 * 5247 * Wildcard entries (PCI_ANY_ID) should come last 5248 * Last entry must be all 0s 5249 * 5250 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5251 * Class, Class Mask, private data (not used) } 5252 */ 5253 static const struct pci_device_id ice_pci_tbl[] = { 5254 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5255 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5256 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5257 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5258 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5259 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5260 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5261 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5262 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5263 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5264 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5265 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5266 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5267 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5268 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5269 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5276 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5277 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5278 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5279 /* required last entry */ 5280 { 0, } 5281 }; 5282 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5283 5284 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5285 5286 static const struct pci_error_handlers ice_pci_err_handler = { 5287 .error_detected = ice_pci_err_detected, 5288 .slot_reset = ice_pci_err_slot_reset, 5289 .reset_prepare = ice_pci_err_reset_prepare, 5290 .reset_done = ice_pci_err_reset_done, 5291 .resume = ice_pci_err_resume 5292 }; 5293 5294 static struct pci_driver ice_driver = { 5295 .name = KBUILD_MODNAME, 5296 .id_table = ice_pci_tbl, 5297 .probe = ice_probe, 5298 .remove = ice_remove, 5299 #ifdef CONFIG_PM 5300 .driver.pm = &ice_pm_ops, 5301 #endif /* CONFIG_PM */ 5302 .shutdown = ice_shutdown, 5303 .sriov_configure = ice_sriov_configure, 5304 .err_handler = &ice_pci_err_handler 5305 }; 5306 5307 /** 5308 * ice_module_init - Driver registration routine 5309 * 5310 * ice_module_init is the first routine called when the driver is 5311 * loaded. All it does is register with the PCI subsystem. 5312 */ 5313 static int __init ice_module_init(void) 5314 { 5315 int status; 5316 5317 pr_info("%s\n", ice_driver_string); 5318 pr_info("%s\n", ice_copyright); 5319 5320 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5321 if (!ice_wq) { 5322 pr_err("Failed to create workqueue\n"); 5323 return -ENOMEM; 5324 } 5325 5326 status = pci_register_driver(&ice_driver); 5327 if (status) { 5328 pr_err("failed to register PCI driver, err %d\n", status); 5329 destroy_workqueue(ice_wq); 5330 } 5331 5332 return status; 5333 } 5334 module_init(ice_module_init); 5335 5336 /** 5337 * ice_module_exit - Driver exit cleanup routine 5338 * 5339 * ice_module_exit is called just before the driver is removed 5340 * from memory. 5341 */ 5342 static void __exit ice_module_exit(void) 5343 { 5344 pci_unregister_driver(&ice_driver); 5345 destroy_workqueue(ice_wq); 5346 pr_info("module unloaded\n"); 5347 } 5348 module_exit(ice_module_exit); 5349 5350 /** 5351 * ice_set_mac_address - NDO callback to set MAC address 5352 * @netdev: network interface device structure 5353 * @pi: pointer to an address structure 5354 * 5355 * Returns 0 on success, negative on failure 5356 */ 5357 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5358 { 5359 struct ice_netdev_priv *np = netdev_priv(netdev); 5360 struct ice_vsi *vsi = np->vsi; 5361 struct ice_pf *pf = vsi->back; 5362 struct ice_hw *hw = &pf->hw; 5363 struct sockaddr *addr = pi; 5364 u8 old_mac[ETH_ALEN]; 5365 u8 flags = 0; 5366 u8 *mac; 5367 int err; 5368 5369 mac = (u8 *)addr->sa_data; 5370 5371 if (!is_valid_ether_addr(mac)) 5372 return -EADDRNOTAVAIL; 5373 5374 if (ether_addr_equal(netdev->dev_addr, mac)) { 5375 netdev_dbg(netdev, "already using mac %pM\n", mac); 5376 return 0; 5377 } 5378 5379 if (test_bit(ICE_DOWN, pf->state) || 5380 ice_is_reset_in_progress(pf->state)) { 5381 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5382 mac); 5383 return -EBUSY; 5384 } 5385 5386 if (ice_chnl_dmac_fltr_cnt(pf)) { 5387 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5388 mac); 5389 return -EAGAIN; 5390 } 5391 5392 netif_addr_lock_bh(netdev); 5393 ether_addr_copy(old_mac, netdev->dev_addr); 5394 /* change the netdev's MAC address */ 5395 eth_hw_addr_set(netdev, mac); 5396 netif_addr_unlock_bh(netdev); 5397 5398 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5399 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5400 if (err && err != -ENOENT) { 5401 err = -EADDRNOTAVAIL; 5402 goto err_update_filters; 5403 } 5404 5405 /* Add filter for new MAC. If filter exists, return success */ 5406 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5407 if (err == -EEXIST) 5408 /* Although this MAC filter is already present in hardware it's 5409 * possible in some cases (e.g. bonding) that dev_addr was 5410 * modified outside of the driver and needs to be restored back 5411 * to this value. 5412 */ 5413 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5414 else if (err) 5415 /* error if the new filter addition failed */ 5416 err = -EADDRNOTAVAIL; 5417 5418 err_update_filters: 5419 if (err) { 5420 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5421 mac); 5422 netif_addr_lock_bh(netdev); 5423 eth_hw_addr_set(netdev, old_mac); 5424 netif_addr_unlock_bh(netdev); 5425 return err; 5426 } 5427 5428 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5429 netdev->dev_addr); 5430 5431 /* write new MAC address to the firmware */ 5432 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5433 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5434 if (err) { 5435 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5436 mac, err); 5437 } 5438 return 0; 5439 } 5440 5441 /** 5442 * ice_set_rx_mode - NDO callback to set the netdev filters 5443 * @netdev: network interface device structure 5444 */ 5445 static void ice_set_rx_mode(struct net_device *netdev) 5446 { 5447 struct ice_netdev_priv *np = netdev_priv(netdev); 5448 struct ice_vsi *vsi = np->vsi; 5449 5450 if (!vsi) 5451 return; 5452 5453 /* Set the flags to synchronize filters 5454 * ndo_set_rx_mode may be triggered even without a change in netdev 5455 * flags 5456 */ 5457 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5458 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5459 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5460 5461 /* schedule our worker thread which will take care of 5462 * applying the new filter changes 5463 */ 5464 ice_service_task_schedule(vsi->back); 5465 } 5466 5467 /** 5468 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5469 * @netdev: network interface device structure 5470 * @queue_index: Queue ID 5471 * @maxrate: maximum bandwidth in Mbps 5472 */ 5473 static int 5474 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5475 { 5476 struct ice_netdev_priv *np = netdev_priv(netdev); 5477 struct ice_vsi *vsi = np->vsi; 5478 u16 q_handle; 5479 int status; 5480 u8 tc; 5481 5482 /* Validate maxrate requested is within permitted range */ 5483 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5484 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5485 maxrate, queue_index); 5486 return -EINVAL; 5487 } 5488 5489 q_handle = vsi->tx_rings[queue_index]->q_handle; 5490 tc = ice_dcb_get_tc(vsi, queue_index); 5491 5492 /* Set BW back to default, when user set maxrate to 0 */ 5493 if (!maxrate) 5494 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5495 q_handle, ICE_MAX_BW); 5496 else 5497 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5498 q_handle, ICE_MAX_BW, maxrate * 1000); 5499 if (status) 5500 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5501 status); 5502 5503 return status; 5504 } 5505 5506 /** 5507 * ice_fdb_add - add an entry to the hardware database 5508 * @ndm: the input from the stack 5509 * @tb: pointer to array of nladdr (unused) 5510 * @dev: the net device pointer 5511 * @addr: the MAC address entry being added 5512 * @vid: VLAN ID 5513 * @flags: instructions from stack about fdb operation 5514 * @extack: netlink extended ack 5515 */ 5516 static int 5517 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5518 struct net_device *dev, const unsigned char *addr, u16 vid, 5519 u16 flags, struct netlink_ext_ack __always_unused *extack) 5520 { 5521 int err; 5522 5523 if (vid) { 5524 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5525 return -EINVAL; 5526 } 5527 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5528 netdev_err(dev, "FDB only supports static addresses\n"); 5529 return -EINVAL; 5530 } 5531 5532 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5533 err = dev_uc_add_excl(dev, addr); 5534 else if (is_multicast_ether_addr(addr)) 5535 err = dev_mc_add_excl(dev, addr); 5536 else 5537 err = -EINVAL; 5538 5539 /* Only return duplicate errors if NLM_F_EXCL is set */ 5540 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5541 err = 0; 5542 5543 return err; 5544 } 5545 5546 /** 5547 * ice_fdb_del - delete an entry from the hardware database 5548 * @ndm: the input from the stack 5549 * @tb: pointer to array of nladdr (unused) 5550 * @dev: the net device pointer 5551 * @addr: the MAC address entry being added 5552 * @vid: VLAN ID 5553 */ 5554 static int 5555 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5556 struct net_device *dev, const unsigned char *addr, 5557 __always_unused u16 vid) 5558 { 5559 int err; 5560 5561 if (ndm->ndm_state & NUD_PERMANENT) { 5562 netdev_err(dev, "FDB only supports static addresses\n"); 5563 return -EINVAL; 5564 } 5565 5566 if (is_unicast_ether_addr(addr)) 5567 err = dev_uc_del(dev, addr); 5568 else if (is_multicast_ether_addr(addr)) 5569 err = dev_mc_del(dev, addr); 5570 else 5571 err = -EINVAL; 5572 5573 return err; 5574 } 5575 5576 /** 5577 * ice_set_features - set the netdev feature flags 5578 * @netdev: ptr to the netdev being adjusted 5579 * @features: the feature set that the stack is suggesting 5580 */ 5581 static int 5582 ice_set_features(struct net_device *netdev, netdev_features_t features) 5583 { 5584 struct ice_netdev_priv *np = netdev_priv(netdev); 5585 struct ice_vsi *vsi = np->vsi; 5586 struct ice_pf *pf = vsi->back; 5587 int ret = 0; 5588 5589 /* Don't set any netdev advanced features with device in Safe Mode */ 5590 if (ice_is_safe_mode(vsi->back)) { 5591 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5592 return ret; 5593 } 5594 5595 /* Do not change setting during reset */ 5596 if (ice_is_reset_in_progress(pf->state)) { 5597 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5598 return -EBUSY; 5599 } 5600 5601 /* Multiple features can be changed in one call so keep features in 5602 * separate if/else statements to guarantee each feature is checked 5603 */ 5604 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5605 ice_vsi_manage_rss_lut(vsi, true); 5606 else if (!(features & NETIF_F_RXHASH) && 5607 netdev->features & NETIF_F_RXHASH) 5608 ice_vsi_manage_rss_lut(vsi, false); 5609 5610 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5611 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5612 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5613 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5614 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5615 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5616 5617 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5618 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5619 ret = ice_vsi_manage_vlan_insertion(vsi); 5620 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5621 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5622 ret = ice_vsi_manage_vlan_insertion(vsi); 5623 5624 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5625 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5626 ret = ice_cfg_vlan_pruning(vsi, true); 5627 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5628 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5629 ret = ice_cfg_vlan_pruning(vsi, false); 5630 5631 if ((features & NETIF_F_NTUPLE) && 5632 !(netdev->features & NETIF_F_NTUPLE)) { 5633 ice_vsi_manage_fdir(vsi, true); 5634 ice_init_arfs(vsi); 5635 } else if (!(features & NETIF_F_NTUPLE) && 5636 (netdev->features & NETIF_F_NTUPLE)) { 5637 ice_vsi_manage_fdir(vsi, false); 5638 ice_clear_arfs(vsi); 5639 } 5640 5641 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5642 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5643 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5644 return -EACCES; 5645 } 5646 5647 if ((features & NETIF_F_HW_TC) && 5648 !(netdev->features & NETIF_F_HW_TC)) 5649 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5650 else 5651 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5652 5653 return ret; 5654 } 5655 5656 /** 5657 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5658 * @vsi: VSI to setup VLAN properties for 5659 */ 5660 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5661 { 5662 int ret = 0; 5663 5664 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5665 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5666 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5667 ret = ice_vsi_manage_vlan_insertion(vsi); 5668 5669 return ret; 5670 } 5671 5672 /** 5673 * ice_vsi_cfg - Setup the VSI 5674 * @vsi: the VSI being configured 5675 * 5676 * Return 0 on success and negative value on error 5677 */ 5678 int ice_vsi_cfg(struct ice_vsi *vsi) 5679 { 5680 int err; 5681 5682 if (vsi->netdev) { 5683 ice_set_rx_mode(vsi->netdev); 5684 5685 err = ice_vsi_vlan_setup(vsi); 5686 5687 if (err) 5688 return err; 5689 } 5690 ice_vsi_cfg_dcb_rings(vsi); 5691 5692 err = ice_vsi_cfg_lan_txqs(vsi); 5693 if (!err && ice_is_xdp_ena_vsi(vsi)) 5694 err = ice_vsi_cfg_xdp_txqs(vsi); 5695 if (!err) 5696 err = ice_vsi_cfg_rxqs(vsi); 5697 5698 return err; 5699 } 5700 5701 /* THEORY OF MODERATION: 5702 * The ice driver hardware works differently than the hardware that DIMLIB was 5703 * originally made for. ice hardware doesn't have packet count limits that 5704 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5705 * which is hard-coded to a limit of 250,000 ints/second. 5706 * If not using dynamic moderation, the INTRL value can be modified 5707 * by ethtool rx-usecs-high. 5708 */ 5709 struct ice_dim { 5710 /* the throttle rate for interrupts, basically worst case delay before 5711 * an initial interrupt fires, value is stored in microseconds. 5712 */ 5713 u16 itr; 5714 }; 5715 5716 /* Make a different profile for Rx that doesn't allow quite so aggressive 5717 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5718 * second. 5719 */ 5720 static const struct ice_dim rx_profile[] = { 5721 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5722 {8}, /* 125,000 ints/s */ 5723 {16}, /* 62,500 ints/s */ 5724 {62}, /* 16,129 ints/s */ 5725 {126} /* 7,936 ints/s */ 5726 }; 5727 5728 /* The transmit profile, which has the same sorts of values 5729 * as the previous struct 5730 */ 5731 static const struct ice_dim tx_profile[] = { 5732 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5733 {8}, /* 125,000 ints/s */ 5734 {40}, /* 16,125 ints/s */ 5735 {128}, /* 7,812 ints/s */ 5736 {256} /* 3,906 ints/s */ 5737 }; 5738 5739 static void ice_tx_dim_work(struct work_struct *work) 5740 { 5741 struct ice_ring_container *rc; 5742 struct dim *dim; 5743 u16 itr; 5744 5745 dim = container_of(work, struct dim, work); 5746 rc = (struct ice_ring_container *)dim->priv; 5747 5748 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5749 5750 /* look up the values in our local table */ 5751 itr = tx_profile[dim->profile_ix].itr; 5752 5753 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5754 ice_write_itr(rc, itr); 5755 5756 dim->state = DIM_START_MEASURE; 5757 } 5758 5759 static void ice_rx_dim_work(struct work_struct *work) 5760 { 5761 struct ice_ring_container *rc; 5762 struct dim *dim; 5763 u16 itr; 5764 5765 dim = container_of(work, struct dim, work); 5766 rc = (struct ice_ring_container *)dim->priv; 5767 5768 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5769 5770 /* look up the values in our local table */ 5771 itr = rx_profile[dim->profile_ix].itr; 5772 5773 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5774 ice_write_itr(rc, itr); 5775 5776 dim->state = DIM_START_MEASURE; 5777 } 5778 5779 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5780 5781 /** 5782 * ice_init_moderation - set up interrupt moderation 5783 * @q_vector: the vector containing rings to be configured 5784 * 5785 * Set up interrupt moderation registers, with the intent to do the right thing 5786 * when called from reset or from probe, and whether or not dynamic moderation 5787 * is enabled or not. Take special care to write all the registers in both 5788 * dynamic moderation mode or not in order to make sure hardware is in a known 5789 * state. 5790 */ 5791 static void ice_init_moderation(struct ice_q_vector *q_vector) 5792 { 5793 struct ice_ring_container *rc; 5794 bool tx_dynamic, rx_dynamic; 5795 5796 rc = &q_vector->tx; 5797 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5798 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5799 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5800 rc->dim.priv = rc; 5801 tx_dynamic = ITR_IS_DYNAMIC(rc); 5802 5803 /* set the initial TX ITR to match the above */ 5804 ice_write_itr(rc, tx_dynamic ? 5805 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5806 5807 rc = &q_vector->rx; 5808 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5809 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5810 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5811 rc->dim.priv = rc; 5812 rx_dynamic = ITR_IS_DYNAMIC(rc); 5813 5814 /* set the initial RX ITR to match the above */ 5815 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5816 rc->itr_setting); 5817 5818 ice_set_q_vector_intrl(q_vector); 5819 } 5820 5821 /** 5822 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5823 * @vsi: the VSI being configured 5824 */ 5825 static void ice_napi_enable_all(struct ice_vsi *vsi) 5826 { 5827 int q_idx; 5828 5829 if (!vsi->netdev) 5830 return; 5831 5832 ice_for_each_q_vector(vsi, q_idx) { 5833 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5834 5835 ice_init_moderation(q_vector); 5836 5837 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5838 napi_enable(&q_vector->napi); 5839 } 5840 } 5841 5842 /** 5843 * ice_up_complete - Finish the last steps of bringing up a connection 5844 * @vsi: The VSI being configured 5845 * 5846 * Return 0 on success and negative value on error 5847 */ 5848 static int ice_up_complete(struct ice_vsi *vsi) 5849 { 5850 struct ice_pf *pf = vsi->back; 5851 int err; 5852 5853 ice_vsi_cfg_msix(vsi); 5854 5855 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5856 * Tx queue group list was configured and the context bits were 5857 * programmed using ice_vsi_cfg_txqs 5858 */ 5859 err = ice_vsi_start_all_rx_rings(vsi); 5860 if (err) 5861 return err; 5862 5863 clear_bit(ICE_VSI_DOWN, vsi->state); 5864 ice_napi_enable_all(vsi); 5865 ice_vsi_ena_irq(vsi); 5866 5867 if (vsi->port_info && 5868 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5869 vsi->netdev) { 5870 ice_print_link_msg(vsi, true); 5871 netif_tx_start_all_queues(vsi->netdev); 5872 netif_carrier_on(vsi->netdev); 5873 if (!ice_is_e810(&pf->hw)) 5874 ice_ptp_link_change(pf, pf->hw.pf_id, true); 5875 } 5876 5877 /* clear this now, and the first stats read will be used as baseline */ 5878 vsi->stat_offsets_loaded = false; 5879 5880 ice_service_task_schedule(pf); 5881 5882 return 0; 5883 } 5884 5885 /** 5886 * ice_up - Bring the connection back up after being down 5887 * @vsi: VSI being configured 5888 */ 5889 int ice_up(struct ice_vsi *vsi) 5890 { 5891 int err; 5892 5893 err = ice_vsi_cfg(vsi); 5894 if (!err) 5895 err = ice_up_complete(vsi); 5896 5897 return err; 5898 } 5899 5900 /** 5901 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5902 * @syncp: pointer to u64_stats_sync 5903 * @stats: stats that pkts and bytes count will be taken from 5904 * @pkts: packets stats counter 5905 * @bytes: bytes stats counter 5906 * 5907 * This function fetches stats from the ring considering the atomic operations 5908 * that needs to be performed to read u64 values in 32 bit machine. 5909 */ 5910 static void 5911 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5912 u64 *pkts, u64 *bytes) 5913 { 5914 unsigned int start; 5915 5916 do { 5917 start = u64_stats_fetch_begin_irq(syncp); 5918 *pkts = stats.pkts; 5919 *bytes = stats.bytes; 5920 } while (u64_stats_fetch_retry_irq(syncp, start)); 5921 } 5922 5923 /** 5924 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5925 * @vsi: the VSI to be updated 5926 * @vsi_stats: the stats struct to be updated 5927 * @rings: rings to work on 5928 * @count: number of rings 5929 */ 5930 static void 5931 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 5932 struct rtnl_link_stats64 *vsi_stats, 5933 struct ice_tx_ring **rings, u16 count) 5934 { 5935 u16 i; 5936 5937 for (i = 0; i < count; i++) { 5938 struct ice_tx_ring *ring; 5939 u64 pkts = 0, bytes = 0; 5940 5941 ring = READ_ONCE(rings[i]); 5942 if (ring) 5943 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5944 vsi_stats->tx_packets += pkts; 5945 vsi_stats->tx_bytes += bytes; 5946 vsi->tx_restart += ring->tx_stats.restart_q; 5947 vsi->tx_busy += ring->tx_stats.tx_busy; 5948 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5949 } 5950 } 5951 5952 /** 5953 * ice_update_vsi_ring_stats - Update VSI stats counters 5954 * @vsi: the VSI to be updated 5955 */ 5956 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5957 { 5958 struct rtnl_link_stats64 *vsi_stats; 5959 u64 pkts, bytes; 5960 int i; 5961 5962 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 5963 if (!vsi_stats) 5964 return; 5965 5966 /* reset non-netdev (extended) stats */ 5967 vsi->tx_restart = 0; 5968 vsi->tx_busy = 0; 5969 vsi->tx_linearize = 0; 5970 vsi->rx_buf_failed = 0; 5971 vsi->rx_page_failed = 0; 5972 5973 rcu_read_lock(); 5974 5975 /* update Tx rings counters */ 5976 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 5977 vsi->num_txq); 5978 5979 /* update Rx rings counters */ 5980 ice_for_each_rxq(vsi, i) { 5981 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5982 5983 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5984 vsi_stats->rx_packets += pkts; 5985 vsi_stats->rx_bytes += bytes; 5986 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5987 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5988 } 5989 5990 /* update XDP Tx rings counters */ 5991 if (ice_is_xdp_ena_vsi(vsi)) 5992 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 5993 vsi->num_xdp_txq); 5994 5995 rcu_read_unlock(); 5996 5997 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 5998 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 5999 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6000 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6001 6002 kfree(vsi_stats); 6003 } 6004 6005 /** 6006 * ice_update_vsi_stats - Update VSI stats counters 6007 * @vsi: the VSI to be updated 6008 */ 6009 void ice_update_vsi_stats(struct ice_vsi *vsi) 6010 { 6011 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6012 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6013 struct ice_pf *pf = vsi->back; 6014 6015 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6016 test_bit(ICE_CFG_BUSY, pf->state)) 6017 return; 6018 6019 /* get stats as recorded by Tx/Rx rings */ 6020 ice_update_vsi_ring_stats(vsi); 6021 6022 /* get VSI stats as recorded by the hardware */ 6023 ice_update_eth_stats(vsi); 6024 6025 cur_ns->tx_errors = cur_es->tx_errors; 6026 cur_ns->rx_dropped = cur_es->rx_discards; 6027 cur_ns->tx_dropped = cur_es->tx_discards; 6028 cur_ns->multicast = cur_es->rx_multicast; 6029 6030 /* update some more netdev stats if this is main VSI */ 6031 if (vsi->type == ICE_VSI_PF) { 6032 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6033 cur_ns->rx_errors = pf->stats.crc_errors + 6034 pf->stats.illegal_bytes + 6035 pf->stats.rx_len_errors + 6036 pf->stats.rx_undersize + 6037 pf->hw_csum_rx_error + 6038 pf->stats.rx_jabber + 6039 pf->stats.rx_fragments + 6040 pf->stats.rx_oversize; 6041 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6042 /* record drops from the port level */ 6043 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6044 } 6045 } 6046 6047 /** 6048 * ice_update_pf_stats - Update PF port stats counters 6049 * @pf: PF whose stats needs to be updated 6050 */ 6051 void ice_update_pf_stats(struct ice_pf *pf) 6052 { 6053 struct ice_hw_port_stats *prev_ps, *cur_ps; 6054 struct ice_hw *hw = &pf->hw; 6055 u16 fd_ctr_base; 6056 u8 port; 6057 6058 port = hw->port_info->lport; 6059 prev_ps = &pf->stats_prev; 6060 cur_ps = &pf->stats; 6061 6062 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6063 &prev_ps->eth.rx_bytes, 6064 &cur_ps->eth.rx_bytes); 6065 6066 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6067 &prev_ps->eth.rx_unicast, 6068 &cur_ps->eth.rx_unicast); 6069 6070 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6071 &prev_ps->eth.rx_multicast, 6072 &cur_ps->eth.rx_multicast); 6073 6074 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6075 &prev_ps->eth.rx_broadcast, 6076 &cur_ps->eth.rx_broadcast); 6077 6078 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6079 &prev_ps->eth.rx_discards, 6080 &cur_ps->eth.rx_discards); 6081 6082 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6083 &prev_ps->eth.tx_bytes, 6084 &cur_ps->eth.tx_bytes); 6085 6086 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6087 &prev_ps->eth.tx_unicast, 6088 &cur_ps->eth.tx_unicast); 6089 6090 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6091 &prev_ps->eth.tx_multicast, 6092 &cur_ps->eth.tx_multicast); 6093 6094 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6095 &prev_ps->eth.tx_broadcast, 6096 &cur_ps->eth.tx_broadcast); 6097 6098 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6099 &prev_ps->tx_dropped_link_down, 6100 &cur_ps->tx_dropped_link_down); 6101 6102 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6103 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6104 6105 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6106 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6107 6108 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6109 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6110 6111 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6112 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6113 6114 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6115 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6116 6117 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6118 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6119 6120 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6121 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6122 6123 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6124 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6125 6126 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6127 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6128 6129 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6130 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6131 6132 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6133 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6134 6135 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6136 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6137 6138 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6139 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6140 6141 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6142 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6143 6144 fd_ctr_base = hw->fd_ctr_base; 6145 6146 ice_stat_update40(hw, 6147 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6148 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6149 &cur_ps->fd_sb_match); 6150 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6151 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6152 6153 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6154 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6155 6156 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6157 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6158 6159 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6160 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6161 6162 ice_update_dcb_stats(pf); 6163 6164 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6165 &prev_ps->crc_errors, &cur_ps->crc_errors); 6166 6167 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6168 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6169 6170 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6171 &prev_ps->mac_local_faults, 6172 &cur_ps->mac_local_faults); 6173 6174 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6175 &prev_ps->mac_remote_faults, 6176 &cur_ps->mac_remote_faults); 6177 6178 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6179 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6180 6181 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6182 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6183 6184 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6185 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6186 6187 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6188 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6189 6190 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6191 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6192 6193 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6194 6195 pf->stat_prev_loaded = true; 6196 } 6197 6198 /** 6199 * ice_get_stats64 - get statistics for network device structure 6200 * @netdev: network interface device structure 6201 * @stats: main device statistics structure 6202 */ 6203 static 6204 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6205 { 6206 struct ice_netdev_priv *np = netdev_priv(netdev); 6207 struct rtnl_link_stats64 *vsi_stats; 6208 struct ice_vsi *vsi = np->vsi; 6209 6210 vsi_stats = &vsi->net_stats; 6211 6212 if (!vsi->num_txq || !vsi->num_rxq) 6213 return; 6214 6215 /* netdev packet/byte stats come from ring counter. These are obtained 6216 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6217 * But, only call the update routine and read the registers if VSI is 6218 * not down. 6219 */ 6220 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6221 ice_update_vsi_ring_stats(vsi); 6222 stats->tx_packets = vsi_stats->tx_packets; 6223 stats->tx_bytes = vsi_stats->tx_bytes; 6224 stats->rx_packets = vsi_stats->rx_packets; 6225 stats->rx_bytes = vsi_stats->rx_bytes; 6226 6227 /* The rest of the stats can be read from the hardware but instead we 6228 * just return values that the watchdog task has already obtained from 6229 * the hardware. 6230 */ 6231 stats->multicast = vsi_stats->multicast; 6232 stats->tx_errors = vsi_stats->tx_errors; 6233 stats->tx_dropped = vsi_stats->tx_dropped; 6234 stats->rx_errors = vsi_stats->rx_errors; 6235 stats->rx_dropped = vsi_stats->rx_dropped; 6236 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6237 stats->rx_length_errors = vsi_stats->rx_length_errors; 6238 } 6239 6240 /** 6241 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6242 * @vsi: VSI having NAPI disabled 6243 */ 6244 static void ice_napi_disable_all(struct ice_vsi *vsi) 6245 { 6246 int q_idx; 6247 6248 if (!vsi->netdev) 6249 return; 6250 6251 ice_for_each_q_vector(vsi, q_idx) { 6252 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6253 6254 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6255 napi_disable(&q_vector->napi); 6256 6257 cancel_work_sync(&q_vector->tx.dim.work); 6258 cancel_work_sync(&q_vector->rx.dim.work); 6259 } 6260 } 6261 6262 /** 6263 * ice_down - Shutdown the connection 6264 * @vsi: The VSI being stopped 6265 * 6266 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6267 */ 6268 int ice_down(struct ice_vsi *vsi) 6269 { 6270 int i, tx_err, rx_err, link_err = 0; 6271 6272 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6273 6274 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6275 if (!ice_is_e810(&vsi->back->hw)) 6276 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6277 netif_carrier_off(vsi->netdev); 6278 netif_tx_disable(vsi->netdev); 6279 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6280 ice_eswitch_stop_all_tx_queues(vsi->back); 6281 } 6282 6283 ice_vsi_dis_irq(vsi); 6284 6285 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6286 if (tx_err) 6287 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6288 vsi->vsi_num, tx_err); 6289 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6290 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6291 if (tx_err) 6292 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6293 vsi->vsi_num, tx_err); 6294 } 6295 6296 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6297 if (rx_err) 6298 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6299 vsi->vsi_num, rx_err); 6300 6301 ice_napi_disable_all(vsi); 6302 6303 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6304 link_err = ice_force_phys_link_state(vsi, false); 6305 if (link_err) 6306 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6307 vsi->vsi_num, link_err); 6308 } 6309 6310 ice_for_each_txq(vsi, i) 6311 ice_clean_tx_ring(vsi->tx_rings[i]); 6312 6313 ice_for_each_rxq(vsi, i) 6314 ice_clean_rx_ring(vsi->rx_rings[i]); 6315 6316 if (tx_err || rx_err || link_err) { 6317 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6318 vsi->vsi_num, vsi->vsw->sw_id); 6319 return -EIO; 6320 } 6321 6322 return 0; 6323 } 6324 6325 /** 6326 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6327 * @vsi: VSI having resources allocated 6328 * 6329 * Return 0 on success, negative on failure 6330 */ 6331 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6332 { 6333 int i, err = 0; 6334 6335 if (!vsi->num_txq) { 6336 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6337 vsi->vsi_num); 6338 return -EINVAL; 6339 } 6340 6341 ice_for_each_txq(vsi, i) { 6342 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6343 6344 if (!ring) 6345 return -EINVAL; 6346 6347 if (vsi->netdev) 6348 ring->netdev = vsi->netdev; 6349 err = ice_setup_tx_ring(ring); 6350 if (err) 6351 break; 6352 } 6353 6354 return err; 6355 } 6356 6357 /** 6358 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6359 * @vsi: VSI having resources allocated 6360 * 6361 * Return 0 on success, negative on failure 6362 */ 6363 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6364 { 6365 int i, err = 0; 6366 6367 if (!vsi->num_rxq) { 6368 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6369 vsi->vsi_num); 6370 return -EINVAL; 6371 } 6372 6373 ice_for_each_rxq(vsi, i) { 6374 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6375 6376 if (!ring) 6377 return -EINVAL; 6378 6379 if (vsi->netdev) 6380 ring->netdev = vsi->netdev; 6381 err = ice_setup_rx_ring(ring); 6382 if (err) 6383 break; 6384 } 6385 6386 return err; 6387 } 6388 6389 /** 6390 * ice_vsi_open_ctrl - open control VSI for use 6391 * @vsi: the VSI to open 6392 * 6393 * Initialization of the Control VSI 6394 * 6395 * Returns 0 on success, negative value on error 6396 */ 6397 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6398 { 6399 char int_name[ICE_INT_NAME_STR_LEN]; 6400 struct ice_pf *pf = vsi->back; 6401 struct device *dev; 6402 int err; 6403 6404 dev = ice_pf_to_dev(pf); 6405 /* allocate descriptors */ 6406 err = ice_vsi_setup_tx_rings(vsi); 6407 if (err) 6408 goto err_setup_tx; 6409 6410 err = ice_vsi_setup_rx_rings(vsi); 6411 if (err) 6412 goto err_setup_rx; 6413 6414 err = ice_vsi_cfg(vsi); 6415 if (err) 6416 goto err_setup_rx; 6417 6418 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6419 dev_driver_string(dev), dev_name(dev)); 6420 err = ice_vsi_req_irq_msix(vsi, int_name); 6421 if (err) 6422 goto err_setup_rx; 6423 6424 ice_vsi_cfg_msix(vsi); 6425 6426 err = ice_vsi_start_all_rx_rings(vsi); 6427 if (err) 6428 goto err_up_complete; 6429 6430 clear_bit(ICE_VSI_DOWN, vsi->state); 6431 ice_vsi_ena_irq(vsi); 6432 6433 return 0; 6434 6435 err_up_complete: 6436 ice_down(vsi); 6437 err_setup_rx: 6438 ice_vsi_free_rx_rings(vsi); 6439 err_setup_tx: 6440 ice_vsi_free_tx_rings(vsi); 6441 6442 return err; 6443 } 6444 6445 /** 6446 * ice_vsi_open - Called when a network interface is made active 6447 * @vsi: the VSI to open 6448 * 6449 * Initialization of the VSI 6450 * 6451 * Returns 0 on success, negative value on error 6452 */ 6453 int ice_vsi_open(struct ice_vsi *vsi) 6454 { 6455 char int_name[ICE_INT_NAME_STR_LEN]; 6456 struct ice_pf *pf = vsi->back; 6457 int err; 6458 6459 /* allocate descriptors */ 6460 err = ice_vsi_setup_tx_rings(vsi); 6461 if (err) 6462 goto err_setup_tx; 6463 6464 err = ice_vsi_setup_rx_rings(vsi); 6465 if (err) 6466 goto err_setup_rx; 6467 6468 err = ice_vsi_cfg(vsi); 6469 if (err) 6470 goto err_setup_rx; 6471 6472 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6473 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6474 err = ice_vsi_req_irq_msix(vsi, int_name); 6475 if (err) 6476 goto err_setup_rx; 6477 6478 if (vsi->type == ICE_VSI_PF) { 6479 /* Notify the stack of the actual queue counts. */ 6480 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6481 if (err) 6482 goto err_set_qs; 6483 6484 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6485 if (err) 6486 goto err_set_qs; 6487 } 6488 6489 err = ice_up_complete(vsi); 6490 if (err) 6491 goto err_up_complete; 6492 6493 return 0; 6494 6495 err_up_complete: 6496 ice_down(vsi); 6497 err_set_qs: 6498 ice_vsi_free_irq(vsi); 6499 err_setup_rx: 6500 ice_vsi_free_rx_rings(vsi); 6501 err_setup_tx: 6502 ice_vsi_free_tx_rings(vsi); 6503 6504 return err; 6505 } 6506 6507 /** 6508 * ice_vsi_release_all - Delete all VSIs 6509 * @pf: PF from which all VSIs are being removed 6510 */ 6511 static void ice_vsi_release_all(struct ice_pf *pf) 6512 { 6513 int err, i; 6514 6515 if (!pf->vsi) 6516 return; 6517 6518 ice_for_each_vsi(pf, i) { 6519 if (!pf->vsi[i]) 6520 continue; 6521 6522 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6523 continue; 6524 6525 err = ice_vsi_release(pf->vsi[i]); 6526 if (err) 6527 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6528 i, err, pf->vsi[i]->vsi_num); 6529 } 6530 } 6531 6532 /** 6533 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6534 * @pf: pointer to the PF instance 6535 * @type: VSI type to rebuild 6536 * 6537 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6538 */ 6539 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6540 { 6541 struct device *dev = ice_pf_to_dev(pf); 6542 int i, err; 6543 6544 ice_for_each_vsi(pf, i) { 6545 struct ice_vsi *vsi = pf->vsi[i]; 6546 6547 if (!vsi || vsi->type != type) 6548 continue; 6549 6550 /* rebuild the VSI */ 6551 err = ice_vsi_rebuild(vsi, true); 6552 if (err) { 6553 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6554 err, vsi->idx, ice_vsi_type_str(type)); 6555 return err; 6556 } 6557 6558 /* replay filters for the VSI */ 6559 err = ice_replay_vsi(&pf->hw, vsi->idx); 6560 if (err) { 6561 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6562 err, vsi->idx, ice_vsi_type_str(type)); 6563 return err; 6564 } 6565 6566 /* Re-map HW VSI number, using VSI handle that has been 6567 * previously validated in ice_replay_vsi() call above 6568 */ 6569 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6570 6571 /* enable the VSI */ 6572 err = ice_ena_vsi(vsi, false); 6573 if (err) { 6574 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6575 err, vsi->idx, ice_vsi_type_str(type)); 6576 return err; 6577 } 6578 6579 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6580 ice_vsi_type_str(type)); 6581 } 6582 6583 return 0; 6584 } 6585 6586 /** 6587 * ice_update_pf_netdev_link - Update PF netdev link status 6588 * @pf: pointer to the PF instance 6589 */ 6590 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6591 { 6592 bool link_up; 6593 int i; 6594 6595 ice_for_each_vsi(pf, i) { 6596 struct ice_vsi *vsi = pf->vsi[i]; 6597 6598 if (!vsi || vsi->type != ICE_VSI_PF) 6599 return; 6600 6601 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6602 if (link_up) { 6603 netif_carrier_on(pf->vsi[i]->netdev); 6604 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6605 } else { 6606 netif_carrier_off(pf->vsi[i]->netdev); 6607 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6608 } 6609 } 6610 } 6611 6612 /** 6613 * ice_rebuild - rebuild after reset 6614 * @pf: PF to rebuild 6615 * @reset_type: type of reset 6616 * 6617 * Do not rebuild VF VSI in this flow because that is already handled via 6618 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6619 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6620 * to reset/rebuild all the VF VSI twice. 6621 */ 6622 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6623 { 6624 struct device *dev = ice_pf_to_dev(pf); 6625 struct ice_hw *hw = &pf->hw; 6626 int err; 6627 6628 if (test_bit(ICE_DOWN, pf->state)) 6629 goto clear_recovery; 6630 6631 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6632 6633 if (reset_type == ICE_RESET_EMPR) { 6634 /* If an EMP reset has occurred, any previously pending flash 6635 * update will have completed. We no longer know whether or 6636 * not the NVM update EMP reset is restricted. 6637 */ 6638 pf->fw_emp_reset_disabled = false; 6639 } 6640 6641 err = ice_init_all_ctrlq(hw); 6642 if (err) { 6643 dev_err(dev, "control queues init failed %d\n", err); 6644 goto err_init_ctrlq; 6645 } 6646 6647 /* if DDP was previously loaded successfully */ 6648 if (!ice_is_safe_mode(pf)) { 6649 /* reload the SW DB of filter tables */ 6650 if (reset_type == ICE_RESET_PFR) 6651 ice_fill_blk_tbls(hw); 6652 else 6653 /* Reload DDP Package after CORER/GLOBR reset */ 6654 ice_load_pkg(NULL, pf); 6655 } 6656 6657 err = ice_clear_pf_cfg(hw); 6658 if (err) { 6659 dev_err(dev, "clear PF configuration failed %d\n", err); 6660 goto err_init_ctrlq; 6661 } 6662 6663 if (pf->first_sw->dflt_vsi_ena) 6664 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6665 /* clear the default VSI configuration if it exists */ 6666 pf->first_sw->dflt_vsi = NULL; 6667 pf->first_sw->dflt_vsi_ena = false; 6668 6669 ice_clear_pxe_mode(hw); 6670 6671 err = ice_init_nvm(hw); 6672 if (err) { 6673 dev_err(dev, "ice_init_nvm failed %d\n", err); 6674 goto err_init_ctrlq; 6675 } 6676 6677 err = ice_get_caps(hw); 6678 if (err) { 6679 dev_err(dev, "ice_get_caps failed %d\n", err); 6680 goto err_init_ctrlq; 6681 } 6682 6683 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6684 if (err) { 6685 dev_err(dev, "set_mac_cfg failed %d\n", err); 6686 goto err_init_ctrlq; 6687 } 6688 6689 err = ice_sched_init_port(hw->port_info); 6690 if (err) 6691 goto err_sched_init_port; 6692 6693 /* start misc vector */ 6694 err = ice_req_irq_msix_misc(pf); 6695 if (err) { 6696 dev_err(dev, "misc vector setup failed: %d\n", err); 6697 goto err_sched_init_port; 6698 } 6699 6700 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6701 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6702 if (!rd32(hw, PFQF_FD_SIZE)) { 6703 u16 unused, guar, b_effort; 6704 6705 guar = hw->func_caps.fd_fltr_guar; 6706 b_effort = hw->func_caps.fd_fltr_best_effort; 6707 6708 /* force guaranteed filter pool for PF */ 6709 ice_alloc_fd_guar_item(hw, &unused, guar); 6710 /* force shared filter pool for PF */ 6711 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6712 } 6713 } 6714 6715 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6716 ice_dcb_rebuild(pf); 6717 6718 /* If the PF previously had enabled PTP, PTP init needs to happen before 6719 * the VSI rebuild. If not, this causes the PTP link status events to 6720 * fail. 6721 */ 6722 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6723 ice_ptp_reset(pf); 6724 6725 /* rebuild PF VSI */ 6726 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6727 if (err) { 6728 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6729 goto err_vsi_rebuild; 6730 } 6731 6732 /* configure PTP timestamping after VSI rebuild */ 6733 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6734 ice_ptp_cfg_timestamp(pf, false); 6735 6736 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6737 if (err) { 6738 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6739 goto err_vsi_rebuild; 6740 } 6741 6742 if (reset_type == ICE_RESET_PFR) { 6743 err = ice_rebuild_channels(pf); 6744 if (err) { 6745 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6746 err); 6747 goto err_vsi_rebuild; 6748 } 6749 } 6750 6751 /* If Flow Director is active */ 6752 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6753 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6754 if (err) { 6755 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6756 goto err_vsi_rebuild; 6757 } 6758 6759 /* replay HW Flow Director recipes */ 6760 if (hw->fdir_prof) 6761 ice_fdir_replay_flows(hw); 6762 6763 /* replay Flow Director filters */ 6764 ice_fdir_replay_fltrs(pf); 6765 6766 ice_rebuild_arfs(pf); 6767 } 6768 6769 ice_update_pf_netdev_link(pf); 6770 6771 /* tell the firmware we are up */ 6772 err = ice_send_version(pf); 6773 if (err) { 6774 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6775 err); 6776 goto err_vsi_rebuild; 6777 } 6778 6779 ice_replay_post(hw); 6780 6781 /* if we get here, reset flow is successful */ 6782 clear_bit(ICE_RESET_FAILED, pf->state); 6783 6784 ice_plug_aux_dev(pf); 6785 return; 6786 6787 err_vsi_rebuild: 6788 err_sched_init_port: 6789 ice_sched_cleanup_all(hw); 6790 err_init_ctrlq: 6791 ice_shutdown_all_ctrlq(hw); 6792 set_bit(ICE_RESET_FAILED, pf->state); 6793 clear_recovery: 6794 /* set this bit in PF state to control service task scheduling */ 6795 set_bit(ICE_NEEDS_RESTART, pf->state); 6796 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6797 } 6798 6799 /** 6800 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6801 * @vsi: Pointer to VSI structure 6802 */ 6803 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6804 { 6805 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6806 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6807 else 6808 return ICE_RXBUF_3072; 6809 } 6810 6811 /** 6812 * ice_change_mtu - NDO callback to change the MTU 6813 * @netdev: network interface device structure 6814 * @new_mtu: new value for maximum frame size 6815 * 6816 * Returns 0 on success, negative on failure 6817 */ 6818 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6819 { 6820 struct ice_netdev_priv *np = netdev_priv(netdev); 6821 struct ice_vsi *vsi = np->vsi; 6822 struct ice_pf *pf = vsi->back; 6823 struct iidc_event *event; 6824 u8 count = 0; 6825 int err = 0; 6826 6827 if (new_mtu == (int)netdev->mtu) { 6828 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6829 return 0; 6830 } 6831 6832 if (ice_is_xdp_ena_vsi(vsi)) { 6833 int frame_size = ice_max_xdp_frame_size(vsi); 6834 6835 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6836 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6837 frame_size - ICE_ETH_PKT_HDR_PAD); 6838 return -EINVAL; 6839 } 6840 } 6841 6842 /* if a reset is in progress, wait for some time for it to complete */ 6843 do { 6844 if (ice_is_reset_in_progress(pf->state)) { 6845 count++; 6846 usleep_range(1000, 2000); 6847 } else { 6848 break; 6849 } 6850 6851 } while (count < 100); 6852 6853 if (count == 100) { 6854 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6855 return -EBUSY; 6856 } 6857 6858 event = kzalloc(sizeof(*event), GFP_KERNEL); 6859 if (!event) 6860 return -ENOMEM; 6861 6862 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6863 ice_send_event_to_aux(pf, event); 6864 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6865 6866 netdev->mtu = (unsigned int)new_mtu; 6867 6868 /* if VSI is up, bring it down and then back up */ 6869 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6870 err = ice_down(vsi); 6871 if (err) { 6872 netdev_err(netdev, "change MTU if_down err %d\n", err); 6873 goto event_after; 6874 } 6875 6876 err = ice_up(vsi); 6877 if (err) { 6878 netdev_err(netdev, "change MTU if_up err %d\n", err); 6879 goto event_after; 6880 } 6881 } 6882 6883 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6884 event_after: 6885 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6886 ice_send_event_to_aux(pf, event); 6887 kfree(event); 6888 6889 return err; 6890 } 6891 6892 /** 6893 * ice_eth_ioctl - Access the hwtstamp interface 6894 * @netdev: network interface device structure 6895 * @ifr: interface request data 6896 * @cmd: ioctl command 6897 */ 6898 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6899 { 6900 struct ice_netdev_priv *np = netdev_priv(netdev); 6901 struct ice_pf *pf = np->vsi->back; 6902 6903 switch (cmd) { 6904 case SIOCGHWTSTAMP: 6905 return ice_ptp_get_ts_config(pf, ifr); 6906 case SIOCSHWTSTAMP: 6907 return ice_ptp_set_ts_config(pf, ifr); 6908 default: 6909 return -EOPNOTSUPP; 6910 } 6911 } 6912 6913 /** 6914 * ice_aq_str - convert AQ err code to a string 6915 * @aq_err: the AQ error code to convert 6916 */ 6917 const char *ice_aq_str(enum ice_aq_err aq_err) 6918 { 6919 switch (aq_err) { 6920 case ICE_AQ_RC_OK: 6921 return "OK"; 6922 case ICE_AQ_RC_EPERM: 6923 return "ICE_AQ_RC_EPERM"; 6924 case ICE_AQ_RC_ENOENT: 6925 return "ICE_AQ_RC_ENOENT"; 6926 case ICE_AQ_RC_ENOMEM: 6927 return "ICE_AQ_RC_ENOMEM"; 6928 case ICE_AQ_RC_EBUSY: 6929 return "ICE_AQ_RC_EBUSY"; 6930 case ICE_AQ_RC_EEXIST: 6931 return "ICE_AQ_RC_EEXIST"; 6932 case ICE_AQ_RC_EINVAL: 6933 return "ICE_AQ_RC_EINVAL"; 6934 case ICE_AQ_RC_ENOSPC: 6935 return "ICE_AQ_RC_ENOSPC"; 6936 case ICE_AQ_RC_ENOSYS: 6937 return "ICE_AQ_RC_ENOSYS"; 6938 case ICE_AQ_RC_EMODE: 6939 return "ICE_AQ_RC_EMODE"; 6940 case ICE_AQ_RC_ENOSEC: 6941 return "ICE_AQ_RC_ENOSEC"; 6942 case ICE_AQ_RC_EBADSIG: 6943 return "ICE_AQ_RC_EBADSIG"; 6944 case ICE_AQ_RC_ESVN: 6945 return "ICE_AQ_RC_ESVN"; 6946 case ICE_AQ_RC_EBADMAN: 6947 return "ICE_AQ_RC_EBADMAN"; 6948 case ICE_AQ_RC_EBADBUF: 6949 return "ICE_AQ_RC_EBADBUF"; 6950 } 6951 6952 return "ICE_AQ_RC_UNKNOWN"; 6953 } 6954 6955 /** 6956 * ice_set_rss_lut - Set RSS LUT 6957 * @vsi: Pointer to VSI structure 6958 * @lut: Lookup table 6959 * @lut_size: Lookup table size 6960 * 6961 * Returns 0 on success, negative on failure 6962 */ 6963 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6964 { 6965 struct ice_aq_get_set_rss_lut_params params = {}; 6966 struct ice_hw *hw = &vsi->back->hw; 6967 int status; 6968 6969 if (!lut) 6970 return -EINVAL; 6971 6972 params.vsi_handle = vsi->idx; 6973 params.lut_size = lut_size; 6974 params.lut_type = vsi->rss_lut_type; 6975 params.lut = lut; 6976 6977 status = ice_aq_set_rss_lut(hw, ¶ms); 6978 if (status) 6979 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 6980 status, ice_aq_str(hw->adminq.sq_last_status)); 6981 6982 return status; 6983 } 6984 6985 /** 6986 * ice_set_rss_key - Set RSS key 6987 * @vsi: Pointer to the VSI structure 6988 * @seed: RSS hash seed 6989 * 6990 * Returns 0 on success, negative on failure 6991 */ 6992 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6993 { 6994 struct ice_hw *hw = &vsi->back->hw; 6995 int status; 6996 6997 if (!seed) 6998 return -EINVAL; 6999 7000 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7001 if (status) 7002 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7003 status, ice_aq_str(hw->adminq.sq_last_status)); 7004 7005 return status; 7006 } 7007 7008 /** 7009 * ice_get_rss_lut - Get RSS LUT 7010 * @vsi: Pointer to VSI structure 7011 * @lut: Buffer to store the lookup table entries 7012 * @lut_size: Size of buffer to store the lookup table entries 7013 * 7014 * Returns 0 on success, negative on failure 7015 */ 7016 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7017 { 7018 struct ice_aq_get_set_rss_lut_params params = {}; 7019 struct ice_hw *hw = &vsi->back->hw; 7020 int status; 7021 7022 if (!lut) 7023 return -EINVAL; 7024 7025 params.vsi_handle = vsi->idx; 7026 params.lut_size = lut_size; 7027 params.lut_type = vsi->rss_lut_type; 7028 params.lut = lut; 7029 7030 status = ice_aq_get_rss_lut(hw, ¶ms); 7031 if (status) 7032 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7033 status, ice_aq_str(hw->adminq.sq_last_status)); 7034 7035 return status; 7036 } 7037 7038 /** 7039 * ice_get_rss_key - Get RSS key 7040 * @vsi: Pointer to VSI structure 7041 * @seed: Buffer to store the key in 7042 * 7043 * Returns 0 on success, negative on failure 7044 */ 7045 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7046 { 7047 struct ice_hw *hw = &vsi->back->hw; 7048 int status; 7049 7050 if (!seed) 7051 return -EINVAL; 7052 7053 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7054 if (status) 7055 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7056 status, ice_aq_str(hw->adminq.sq_last_status)); 7057 7058 return status; 7059 } 7060 7061 /** 7062 * ice_bridge_getlink - Get the hardware bridge mode 7063 * @skb: skb buff 7064 * @pid: process ID 7065 * @seq: RTNL message seq 7066 * @dev: the netdev being configured 7067 * @filter_mask: filter mask passed in 7068 * @nlflags: netlink flags passed in 7069 * 7070 * Return the bridge mode (VEB/VEPA) 7071 */ 7072 static int 7073 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7074 struct net_device *dev, u32 filter_mask, int nlflags) 7075 { 7076 struct ice_netdev_priv *np = netdev_priv(dev); 7077 struct ice_vsi *vsi = np->vsi; 7078 struct ice_pf *pf = vsi->back; 7079 u16 bmode; 7080 7081 bmode = pf->first_sw->bridge_mode; 7082 7083 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7084 filter_mask, NULL); 7085 } 7086 7087 /** 7088 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7089 * @vsi: Pointer to VSI structure 7090 * @bmode: Hardware bridge mode (VEB/VEPA) 7091 * 7092 * Returns 0 on success, negative on failure 7093 */ 7094 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7095 { 7096 struct ice_aqc_vsi_props *vsi_props; 7097 struct ice_hw *hw = &vsi->back->hw; 7098 struct ice_vsi_ctx *ctxt; 7099 int ret; 7100 7101 vsi_props = &vsi->info; 7102 7103 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7104 if (!ctxt) 7105 return -ENOMEM; 7106 7107 ctxt->info = vsi->info; 7108 7109 if (bmode == BRIDGE_MODE_VEB) 7110 /* change from VEPA to VEB mode */ 7111 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7112 else 7113 /* change from VEB to VEPA mode */ 7114 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7115 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7116 7117 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7118 if (ret) { 7119 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7120 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7121 goto out; 7122 } 7123 /* Update sw flags for book keeping */ 7124 vsi_props->sw_flags = ctxt->info.sw_flags; 7125 7126 out: 7127 kfree(ctxt); 7128 return ret; 7129 } 7130 7131 /** 7132 * ice_bridge_setlink - Set the hardware bridge mode 7133 * @dev: the netdev being configured 7134 * @nlh: RTNL message 7135 * @flags: bridge setlink flags 7136 * @extack: netlink extended ack 7137 * 7138 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7139 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7140 * not already set for all VSIs connected to this switch. And also update the 7141 * unicast switch filter rules for the corresponding switch of the netdev. 7142 */ 7143 static int 7144 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7145 u16 __always_unused flags, 7146 struct netlink_ext_ack __always_unused *extack) 7147 { 7148 struct ice_netdev_priv *np = netdev_priv(dev); 7149 struct ice_pf *pf = np->vsi->back; 7150 struct nlattr *attr, *br_spec; 7151 struct ice_hw *hw = &pf->hw; 7152 struct ice_sw *pf_sw; 7153 int rem, v, err = 0; 7154 7155 pf_sw = pf->first_sw; 7156 /* find the attribute in the netlink message */ 7157 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7158 7159 nla_for_each_nested(attr, br_spec, rem) { 7160 __u16 mode; 7161 7162 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7163 continue; 7164 mode = nla_get_u16(attr); 7165 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7166 return -EINVAL; 7167 /* Continue if bridge mode is not being flipped */ 7168 if (mode == pf_sw->bridge_mode) 7169 continue; 7170 /* Iterates through the PF VSI list and update the loopback 7171 * mode of the VSI 7172 */ 7173 ice_for_each_vsi(pf, v) { 7174 if (!pf->vsi[v]) 7175 continue; 7176 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7177 if (err) 7178 return err; 7179 } 7180 7181 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7182 /* Update the unicast switch filter rules for the corresponding 7183 * switch of the netdev 7184 */ 7185 err = ice_update_sw_rule_bridge_mode(hw); 7186 if (err) { 7187 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7188 mode, err, 7189 ice_aq_str(hw->adminq.sq_last_status)); 7190 /* revert hw->evb_veb */ 7191 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7192 return err; 7193 } 7194 7195 pf_sw->bridge_mode = mode; 7196 } 7197 7198 return 0; 7199 } 7200 7201 /** 7202 * ice_tx_timeout - Respond to a Tx Hang 7203 * @netdev: network interface device structure 7204 * @txqueue: Tx queue 7205 */ 7206 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7207 { 7208 struct ice_netdev_priv *np = netdev_priv(netdev); 7209 struct ice_tx_ring *tx_ring = NULL; 7210 struct ice_vsi *vsi = np->vsi; 7211 struct ice_pf *pf = vsi->back; 7212 u32 i; 7213 7214 pf->tx_timeout_count++; 7215 7216 /* Check if PFC is enabled for the TC to which the queue belongs 7217 * to. If yes then Tx timeout is not caused by a hung queue, no 7218 * need to reset and rebuild 7219 */ 7220 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7221 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7222 txqueue); 7223 return; 7224 } 7225 7226 /* now that we have an index, find the tx_ring struct */ 7227 ice_for_each_txq(vsi, i) 7228 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7229 if (txqueue == vsi->tx_rings[i]->q_index) { 7230 tx_ring = vsi->tx_rings[i]; 7231 break; 7232 } 7233 7234 /* Reset recovery level if enough time has elapsed after last timeout. 7235 * Also ensure no new reset action happens before next timeout period. 7236 */ 7237 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7238 pf->tx_timeout_recovery_level = 1; 7239 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7240 netdev->watchdog_timeo))) 7241 return; 7242 7243 if (tx_ring) { 7244 struct ice_hw *hw = &pf->hw; 7245 u32 head, val = 0; 7246 7247 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7248 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7249 /* Read interrupt register */ 7250 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7251 7252 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7253 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7254 head, tx_ring->next_to_use, val); 7255 } 7256 7257 pf->tx_timeout_last_recovery = jiffies; 7258 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7259 pf->tx_timeout_recovery_level, txqueue); 7260 7261 switch (pf->tx_timeout_recovery_level) { 7262 case 1: 7263 set_bit(ICE_PFR_REQ, pf->state); 7264 break; 7265 case 2: 7266 set_bit(ICE_CORER_REQ, pf->state); 7267 break; 7268 case 3: 7269 set_bit(ICE_GLOBR_REQ, pf->state); 7270 break; 7271 default: 7272 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7273 set_bit(ICE_DOWN, pf->state); 7274 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7275 set_bit(ICE_SERVICE_DIS, pf->state); 7276 break; 7277 } 7278 7279 ice_service_task_schedule(pf); 7280 pf->tx_timeout_recovery_level++; 7281 } 7282 7283 /** 7284 * ice_setup_tc_cls_flower - flower classifier offloads 7285 * @np: net device to configure 7286 * @filter_dev: device on which filter is added 7287 * @cls_flower: offload data 7288 */ 7289 static int 7290 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7291 struct net_device *filter_dev, 7292 struct flow_cls_offload *cls_flower) 7293 { 7294 struct ice_vsi *vsi = np->vsi; 7295 7296 if (cls_flower->common.chain_index) 7297 return -EOPNOTSUPP; 7298 7299 switch (cls_flower->command) { 7300 case FLOW_CLS_REPLACE: 7301 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7302 case FLOW_CLS_DESTROY: 7303 return ice_del_cls_flower(vsi, cls_flower); 7304 default: 7305 return -EINVAL; 7306 } 7307 } 7308 7309 /** 7310 * ice_setup_tc_block_cb - callback handler registered for TC block 7311 * @type: TC SETUP type 7312 * @type_data: TC flower offload data that contains user input 7313 * @cb_priv: netdev private data 7314 */ 7315 static int 7316 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7317 { 7318 struct ice_netdev_priv *np = cb_priv; 7319 7320 switch (type) { 7321 case TC_SETUP_CLSFLOWER: 7322 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7323 type_data); 7324 default: 7325 return -EOPNOTSUPP; 7326 } 7327 } 7328 7329 /** 7330 * ice_validate_mqprio_qopt - Validate TCF input parameters 7331 * @vsi: Pointer to VSI 7332 * @mqprio_qopt: input parameters for mqprio queue configuration 7333 * 7334 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7335 * needed), and make sure user doesn't specify qcount and BW rate limit 7336 * for TCs, which are more than "num_tc" 7337 */ 7338 static int 7339 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7340 struct tc_mqprio_qopt_offload *mqprio_qopt) 7341 { 7342 u64 sum_max_rate = 0, sum_min_rate = 0; 7343 int non_power_of_2_qcount = 0; 7344 struct ice_pf *pf = vsi->back; 7345 int max_rss_q_cnt = 0; 7346 struct device *dev; 7347 int i, speed; 7348 u8 num_tc; 7349 7350 if (vsi->type != ICE_VSI_PF) 7351 return -EINVAL; 7352 7353 if (mqprio_qopt->qopt.offset[0] != 0 || 7354 mqprio_qopt->qopt.num_tc < 1 || 7355 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7356 return -EINVAL; 7357 7358 dev = ice_pf_to_dev(pf); 7359 vsi->ch_rss_size = 0; 7360 num_tc = mqprio_qopt->qopt.num_tc; 7361 7362 for (i = 0; num_tc; i++) { 7363 int qcount = mqprio_qopt->qopt.count[i]; 7364 u64 max_rate, min_rate, rem; 7365 7366 if (!qcount) 7367 return -EINVAL; 7368 7369 if (is_power_of_2(qcount)) { 7370 if (non_power_of_2_qcount && 7371 qcount > non_power_of_2_qcount) { 7372 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7373 qcount, non_power_of_2_qcount); 7374 return -EINVAL; 7375 } 7376 if (qcount > max_rss_q_cnt) 7377 max_rss_q_cnt = qcount; 7378 } else { 7379 if (non_power_of_2_qcount && 7380 qcount != non_power_of_2_qcount) { 7381 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7382 qcount, non_power_of_2_qcount); 7383 return -EINVAL; 7384 } 7385 if (qcount < max_rss_q_cnt) { 7386 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7387 qcount, max_rss_q_cnt); 7388 return -EINVAL; 7389 } 7390 max_rss_q_cnt = qcount; 7391 non_power_of_2_qcount = qcount; 7392 } 7393 7394 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7395 * converts the bandwidth rate limit into Bytes/s when 7396 * passing it down to the driver. So convert input bandwidth 7397 * from Bytes/s to Kbps 7398 */ 7399 max_rate = mqprio_qopt->max_rate[i]; 7400 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7401 sum_max_rate += max_rate; 7402 7403 /* min_rate is minimum guaranteed rate and it can't be zero */ 7404 min_rate = mqprio_qopt->min_rate[i]; 7405 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7406 sum_min_rate += min_rate; 7407 7408 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7409 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7410 min_rate, ICE_MIN_BW_LIMIT); 7411 return -EINVAL; 7412 } 7413 7414 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7415 if (rem) { 7416 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7417 i, ICE_MIN_BW_LIMIT); 7418 return -EINVAL; 7419 } 7420 7421 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7422 if (rem) { 7423 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7424 i, ICE_MIN_BW_LIMIT); 7425 return -EINVAL; 7426 } 7427 7428 /* min_rate can't be more than max_rate, except when max_rate 7429 * is zero (implies max_rate sought is max line rate). In such 7430 * a case min_rate can be more than max. 7431 */ 7432 if (max_rate && min_rate > max_rate) { 7433 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7434 min_rate, max_rate); 7435 return -EINVAL; 7436 } 7437 7438 if (i >= mqprio_qopt->qopt.num_tc - 1) 7439 break; 7440 if (mqprio_qopt->qopt.offset[i + 1] != 7441 (mqprio_qopt->qopt.offset[i] + qcount)) 7442 return -EINVAL; 7443 } 7444 if (vsi->num_rxq < 7445 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7446 return -EINVAL; 7447 if (vsi->num_txq < 7448 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7449 return -EINVAL; 7450 7451 speed = ice_get_link_speed_kbps(vsi); 7452 if (sum_max_rate && sum_max_rate > (u64)speed) { 7453 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7454 sum_max_rate, speed); 7455 return -EINVAL; 7456 } 7457 if (sum_min_rate && sum_min_rate > (u64)speed) { 7458 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7459 sum_min_rate, speed); 7460 return -EINVAL; 7461 } 7462 7463 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7464 vsi->ch_rss_size = max_rss_q_cnt; 7465 7466 return 0; 7467 } 7468 7469 /** 7470 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7471 * @pf: ptr to PF device 7472 * @vsi: ptr to VSI 7473 */ 7474 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7475 { 7476 struct device *dev = ice_pf_to_dev(pf); 7477 bool added = false; 7478 struct ice_hw *hw; 7479 int flow; 7480 7481 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7482 return -EINVAL; 7483 7484 hw = &pf->hw; 7485 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7486 struct ice_fd_hw_prof *prof; 7487 int tun, status; 7488 u64 entry_h; 7489 7490 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7491 hw->fdir_prof[flow]->cnt)) 7492 continue; 7493 7494 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7495 enum ice_flow_priority prio; 7496 u64 prof_id; 7497 7498 /* add this VSI to FDir profile for this flow */ 7499 prio = ICE_FLOW_PRIO_NORMAL; 7500 prof = hw->fdir_prof[flow]; 7501 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7502 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7503 prof->vsi_h[0], vsi->idx, 7504 prio, prof->fdir_seg[tun], 7505 &entry_h); 7506 if (status) { 7507 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7508 vsi->idx, flow); 7509 continue; 7510 } 7511 7512 prof->entry_h[prof->cnt][tun] = entry_h; 7513 } 7514 7515 /* store VSI for filter replay and delete */ 7516 prof->vsi_h[prof->cnt] = vsi->idx; 7517 prof->cnt++; 7518 7519 added = true; 7520 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7521 flow); 7522 } 7523 7524 if (!added) 7525 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7526 7527 return 0; 7528 } 7529 7530 /** 7531 * ice_add_channel - add a channel by adding VSI 7532 * @pf: ptr to PF device 7533 * @sw_id: underlying HW switching element ID 7534 * @ch: ptr to channel structure 7535 * 7536 * Add a channel (VSI) using add_vsi and queue_map 7537 */ 7538 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7539 { 7540 struct device *dev = ice_pf_to_dev(pf); 7541 struct ice_vsi *vsi; 7542 7543 if (ch->type != ICE_VSI_CHNL) { 7544 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7545 return -EINVAL; 7546 } 7547 7548 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7549 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7550 dev_err(dev, "create chnl VSI failure\n"); 7551 return -EINVAL; 7552 } 7553 7554 ice_add_vsi_to_fdir(pf, vsi); 7555 7556 ch->sw_id = sw_id; 7557 ch->vsi_num = vsi->vsi_num; 7558 ch->info.mapping_flags = vsi->info.mapping_flags; 7559 ch->ch_vsi = vsi; 7560 /* set the back pointer of channel for newly created VSI */ 7561 vsi->ch = ch; 7562 7563 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7564 sizeof(vsi->info.q_mapping)); 7565 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7566 sizeof(vsi->info.tc_mapping)); 7567 7568 return 0; 7569 } 7570 7571 /** 7572 * ice_chnl_cfg_res 7573 * @vsi: the VSI being setup 7574 * @ch: ptr to channel structure 7575 * 7576 * Configure channel specific resources such as rings, vector. 7577 */ 7578 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7579 { 7580 int i; 7581 7582 for (i = 0; i < ch->num_txq; i++) { 7583 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7584 struct ice_ring_container *rc; 7585 struct ice_tx_ring *tx_ring; 7586 struct ice_rx_ring *rx_ring; 7587 7588 tx_ring = vsi->tx_rings[ch->base_q + i]; 7589 rx_ring = vsi->rx_rings[ch->base_q + i]; 7590 if (!tx_ring || !rx_ring) 7591 continue; 7592 7593 /* setup ring being channel enabled */ 7594 tx_ring->ch = ch; 7595 rx_ring->ch = ch; 7596 7597 /* following code block sets up vector specific attributes */ 7598 tx_q_vector = tx_ring->q_vector; 7599 rx_q_vector = rx_ring->q_vector; 7600 if (!tx_q_vector && !rx_q_vector) 7601 continue; 7602 7603 if (tx_q_vector) { 7604 tx_q_vector->ch = ch; 7605 /* setup Tx and Rx ITR setting if DIM is off */ 7606 rc = &tx_q_vector->tx; 7607 if (!ITR_IS_DYNAMIC(rc)) 7608 ice_write_itr(rc, rc->itr_setting); 7609 } 7610 if (rx_q_vector) { 7611 rx_q_vector->ch = ch; 7612 /* setup Tx and Rx ITR setting if DIM is off */ 7613 rc = &rx_q_vector->rx; 7614 if (!ITR_IS_DYNAMIC(rc)) 7615 ice_write_itr(rc, rc->itr_setting); 7616 } 7617 } 7618 7619 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7620 * GLINT_ITR register would have written to perform in-context 7621 * update, hence perform flush 7622 */ 7623 if (ch->num_txq || ch->num_rxq) 7624 ice_flush(&vsi->back->hw); 7625 } 7626 7627 /** 7628 * ice_cfg_chnl_all_res - configure channel resources 7629 * @vsi: pte to main_vsi 7630 * @ch: ptr to channel structure 7631 * 7632 * This function configures channel specific resources such as flow-director 7633 * counter index, and other resources such as queues, vectors, ITR settings 7634 */ 7635 static void 7636 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7637 { 7638 /* configure channel (aka ADQ) resources such as queues, vectors, 7639 * ITR settings for channel specific vectors and anything else 7640 */ 7641 ice_chnl_cfg_res(vsi, ch); 7642 } 7643 7644 /** 7645 * ice_setup_hw_channel - setup new channel 7646 * @pf: ptr to PF device 7647 * @vsi: the VSI being setup 7648 * @ch: ptr to channel structure 7649 * @sw_id: underlying HW switching element ID 7650 * @type: type of channel to be created (VMDq2/VF) 7651 * 7652 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7653 * and configures Tx rings accordingly 7654 */ 7655 static int 7656 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7657 struct ice_channel *ch, u16 sw_id, u8 type) 7658 { 7659 struct device *dev = ice_pf_to_dev(pf); 7660 int ret; 7661 7662 ch->base_q = vsi->next_base_q; 7663 ch->type = type; 7664 7665 ret = ice_add_channel(pf, sw_id, ch); 7666 if (ret) { 7667 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7668 return ret; 7669 } 7670 7671 /* configure/setup ADQ specific resources */ 7672 ice_cfg_chnl_all_res(vsi, ch); 7673 7674 /* make sure to update the next_base_q so that subsequent channel's 7675 * (aka ADQ) VSI queue map is correct 7676 */ 7677 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7678 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7679 ch->num_rxq); 7680 7681 return 0; 7682 } 7683 7684 /** 7685 * ice_setup_channel - setup new channel using uplink element 7686 * @pf: ptr to PF device 7687 * @vsi: the VSI being setup 7688 * @ch: ptr to channel structure 7689 * 7690 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7691 * and uplink switching element 7692 */ 7693 static bool 7694 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7695 struct ice_channel *ch) 7696 { 7697 struct device *dev = ice_pf_to_dev(pf); 7698 u16 sw_id; 7699 int ret; 7700 7701 if (vsi->type != ICE_VSI_PF) { 7702 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7703 return false; 7704 } 7705 7706 sw_id = pf->first_sw->sw_id; 7707 7708 /* create channel (VSI) */ 7709 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7710 if (ret) { 7711 dev_err(dev, "failed to setup hw_channel\n"); 7712 return false; 7713 } 7714 dev_dbg(dev, "successfully created channel()\n"); 7715 7716 return ch->ch_vsi ? true : false; 7717 } 7718 7719 /** 7720 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7721 * @vsi: VSI to be configured 7722 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7723 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7724 */ 7725 static int 7726 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7727 { 7728 int err; 7729 7730 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7731 if (err) 7732 return err; 7733 7734 return ice_set_max_bw_limit(vsi, max_tx_rate); 7735 } 7736 7737 /** 7738 * ice_create_q_channel - function to create channel 7739 * @vsi: VSI to be configured 7740 * @ch: ptr to channel (it contains channel specific params) 7741 * 7742 * This function creates channel (VSI) using num_queues specified by user, 7743 * reconfigs RSS if needed. 7744 */ 7745 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7746 { 7747 struct ice_pf *pf = vsi->back; 7748 struct device *dev; 7749 7750 if (!ch) 7751 return -EINVAL; 7752 7753 dev = ice_pf_to_dev(pf); 7754 if (!ch->num_txq || !ch->num_rxq) { 7755 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7756 return -EINVAL; 7757 } 7758 7759 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7760 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7761 vsi->cnt_q_avail, ch->num_txq); 7762 return -EINVAL; 7763 } 7764 7765 if (!ice_setup_channel(pf, vsi, ch)) { 7766 dev_info(dev, "Failed to setup channel\n"); 7767 return -EINVAL; 7768 } 7769 /* configure BW rate limit */ 7770 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7771 int ret; 7772 7773 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7774 ch->min_tx_rate); 7775 if (ret) 7776 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7777 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7778 else 7779 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7780 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7781 } 7782 7783 vsi->cnt_q_avail -= ch->num_txq; 7784 7785 return 0; 7786 } 7787 7788 /** 7789 * ice_rem_all_chnl_fltrs - removes all channel filters 7790 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7791 * 7792 * Remove all advanced switch filters only if they are channel specific 7793 * tc-flower based filter 7794 */ 7795 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7796 { 7797 struct ice_tc_flower_fltr *fltr; 7798 struct hlist_node *node; 7799 7800 /* to remove all channel filters, iterate an ordered list of filters */ 7801 hlist_for_each_entry_safe(fltr, node, 7802 &pf->tc_flower_fltr_list, 7803 tc_flower_node) { 7804 struct ice_rule_query_data rule; 7805 int status; 7806 7807 /* for now process only channel specific filters */ 7808 if (!ice_is_chnl_fltr(fltr)) 7809 continue; 7810 7811 rule.rid = fltr->rid; 7812 rule.rule_id = fltr->rule_id; 7813 rule.vsi_handle = fltr->dest_id; 7814 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7815 if (status) { 7816 if (status == -ENOENT) 7817 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7818 rule.rule_id); 7819 else 7820 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7821 status); 7822 } else if (fltr->dest_vsi) { 7823 /* update advanced switch filter count */ 7824 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7825 u32 flags = fltr->flags; 7826 7827 fltr->dest_vsi->num_chnl_fltr--; 7828 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7829 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7830 pf->num_dmac_chnl_fltrs--; 7831 } 7832 } 7833 7834 hlist_del(&fltr->tc_flower_node); 7835 kfree(fltr); 7836 } 7837 } 7838 7839 /** 7840 * ice_remove_q_channels - Remove queue channels for the TCs 7841 * @vsi: VSI to be configured 7842 * @rem_fltr: delete advanced switch filter or not 7843 * 7844 * Remove queue channels for the TCs 7845 */ 7846 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7847 { 7848 struct ice_channel *ch, *ch_tmp; 7849 struct ice_pf *pf = vsi->back; 7850 int i; 7851 7852 /* remove all tc-flower based filter if they are channel filters only */ 7853 if (rem_fltr) 7854 ice_rem_all_chnl_fltrs(pf); 7855 7856 /* remove ntuple filters since queue configuration is being changed */ 7857 if (vsi->netdev->features & NETIF_F_NTUPLE) { 7858 struct ice_hw *hw = &pf->hw; 7859 7860 mutex_lock(&hw->fdir_fltr_lock); 7861 ice_fdir_del_all_fltrs(vsi); 7862 mutex_unlock(&hw->fdir_fltr_lock); 7863 } 7864 7865 /* perform cleanup for channels if they exist */ 7866 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7867 struct ice_vsi *ch_vsi; 7868 7869 list_del(&ch->list); 7870 ch_vsi = ch->ch_vsi; 7871 if (!ch_vsi) { 7872 kfree(ch); 7873 continue; 7874 } 7875 7876 /* Reset queue contexts */ 7877 for (i = 0; i < ch->num_rxq; i++) { 7878 struct ice_tx_ring *tx_ring; 7879 struct ice_rx_ring *rx_ring; 7880 7881 tx_ring = vsi->tx_rings[ch->base_q + i]; 7882 rx_ring = vsi->rx_rings[ch->base_q + i]; 7883 if (tx_ring) { 7884 tx_ring->ch = NULL; 7885 if (tx_ring->q_vector) 7886 tx_ring->q_vector->ch = NULL; 7887 } 7888 if (rx_ring) { 7889 rx_ring->ch = NULL; 7890 if (rx_ring->q_vector) 7891 rx_ring->q_vector->ch = NULL; 7892 } 7893 } 7894 7895 /* Release FD resources for the channel VSI */ 7896 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 7897 7898 /* clear the VSI from scheduler tree */ 7899 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7900 7901 /* Delete VSI from FW */ 7902 ice_vsi_delete(ch->ch_vsi); 7903 7904 /* Delete VSI from PF and HW VSI arrays */ 7905 ice_vsi_clear(ch->ch_vsi); 7906 7907 /* free the channel */ 7908 kfree(ch); 7909 } 7910 7911 /* clear the channel VSI map which is stored in main VSI */ 7912 ice_for_each_chnl_tc(i) 7913 vsi->tc_map_vsi[i] = NULL; 7914 7915 /* reset main VSI's all TC information */ 7916 vsi->all_enatc = 0; 7917 vsi->all_numtc = 0; 7918 } 7919 7920 /** 7921 * ice_rebuild_channels - rebuild channel 7922 * @pf: ptr to PF 7923 * 7924 * Recreate channel VSIs and replay filters 7925 */ 7926 static int ice_rebuild_channels(struct ice_pf *pf) 7927 { 7928 struct device *dev = ice_pf_to_dev(pf); 7929 struct ice_vsi *main_vsi; 7930 bool rem_adv_fltr = true; 7931 struct ice_channel *ch; 7932 struct ice_vsi *vsi; 7933 int tc_idx = 1; 7934 int i, err; 7935 7936 main_vsi = ice_get_main_vsi(pf); 7937 if (!main_vsi) 7938 return 0; 7939 7940 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7941 main_vsi->old_numtc == 1) 7942 return 0; /* nothing to be done */ 7943 7944 /* reconfigure main VSI based on old value of TC and cached values 7945 * for MQPRIO opts 7946 */ 7947 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7948 if (err) { 7949 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7950 main_vsi->old_ena_tc, main_vsi->vsi_num); 7951 return err; 7952 } 7953 7954 /* rebuild ADQ VSIs */ 7955 ice_for_each_vsi(pf, i) { 7956 enum ice_vsi_type type; 7957 7958 vsi = pf->vsi[i]; 7959 if (!vsi || vsi->type != ICE_VSI_CHNL) 7960 continue; 7961 7962 type = vsi->type; 7963 7964 /* rebuild ADQ VSI */ 7965 err = ice_vsi_rebuild(vsi, true); 7966 if (err) { 7967 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7968 ice_vsi_type_str(type), vsi->idx, err); 7969 goto cleanup; 7970 } 7971 7972 /* Re-map HW VSI number, using VSI handle that has been 7973 * previously validated in ice_replay_vsi() call above 7974 */ 7975 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7976 7977 /* replay filters for the VSI */ 7978 err = ice_replay_vsi(&pf->hw, vsi->idx); 7979 if (err) { 7980 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7981 ice_vsi_type_str(type), err, vsi->idx); 7982 rem_adv_fltr = false; 7983 goto cleanup; 7984 } 7985 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7986 ice_vsi_type_str(type), vsi->idx); 7987 7988 /* store ADQ VSI at correct TC index in main VSI's 7989 * map of TC to VSI 7990 */ 7991 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7992 } 7993 7994 /* ADQ VSI(s) has been rebuilt successfully, so setup 7995 * channel for main VSI's Tx and Rx rings 7996 */ 7997 list_for_each_entry(ch, &main_vsi->ch_list, list) { 7998 struct ice_vsi *ch_vsi; 7999 8000 ch_vsi = ch->ch_vsi; 8001 if (!ch_vsi) 8002 continue; 8003 8004 /* reconfig channel resources */ 8005 ice_cfg_chnl_all_res(main_vsi, ch); 8006 8007 /* replay BW rate limit if it is non-zero */ 8008 if (!ch->max_tx_rate && !ch->min_tx_rate) 8009 continue; 8010 8011 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8012 ch->min_tx_rate); 8013 if (err) 8014 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8015 err, ch->max_tx_rate, ch->min_tx_rate, 8016 ch_vsi->vsi_num); 8017 else 8018 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8019 ch->max_tx_rate, ch->min_tx_rate, 8020 ch_vsi->vsi_num); 8021 } 8022 8023 /* reconfig RSS for main VSI */ 8024 if (main_vsi->ch_rss_size) 8025 ice_vsi_cfg_rss_lut_key(main_vsi); 8026 8027 return 0; 8028 8029 cleanup: 8030 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8031 return err; 8032 } 8033 8034 /** 8035 * ice_create_q_channels - Add queue channel for the given TCs 8036 * @vsi: VSI to be configured 8037 * 8038 * Configures queue channel mapping to the given TCs 8039 */ 8040 static int ice_create_q_channels(struct ice_vsi *vsi) 8041 { 8042 struct ice_pf *pf = vsi->back; 8043 struct ice_channel *ch; 8044 int ret = 0, i; 8045 8046 ice_for_each_chnl_tc(i) { 8047 if (!(vsi->all_enatc & BIT(i))) 8048 continue; 8049 8050 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8051 if (!ch) { 8052 ret = -ENOMEM; 8053 goto err_free; 8054 } 8055 INIT_LIST_HEAD(&ch->list); 8056 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8057 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8058 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8059 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8060 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8061 8062 /* convert to Kbits/s */ 8063 if (ch->max_tx_rate) 8064 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8065 ICE_BW_KBPS_DIVISOR); 8066 if (ch->min_tx_rate) 8067 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8068 ICE_BW_KBPS_DIVISOR); 8069 8070 ret = ice_create_q_channel(vsi, ch); 8071 if (ret) { 8072 dev_err(ice_pf_to_dev(pf), 8073 "failed creating channel TC:%d\n", i); 8074 kfree(ch); 8075 goto err_free; 8076 } 8077 list_add_tail(&ch->list, &vsi->ch_list); 8078 vsi->tc_map_vsi[i] = ch->ch_vsi; 8079 dev_dbg(ice_pf_to_dev(pf), 8080 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8081 } 8082 return 0; 8083 8084 err_free: 8085 ice_remove_q_channels(vsi, false); 8086 8087 return ret; 8088 } 8089 8090 /** 8091 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8092 * @netdev: net device to configure 8093 * @type_data: TC offload data 8094 */ 8095 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8096 { 8097 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8098 struct ice_netdev_priv *np = netdev_priv(netdev); 8099 struct ice_vsi *vsi = np->vsi; 8100 struct ice_pf *pf = vsi->back; 8101 u16 mode, ena_tc_qdisc = 0; 8102 int cur_txq, cur_rxq; 8103 u8 hw = 0, num_tcf; 8104 struct device *dev; 8105 int ret, i; 8106 8107 dev = ice_pf_to_dev(pf); 8108 num_tcf = mqprio_qopt->qopt.num_tc; 8109 hw = mqprio_qopt->qopt.hw; 8110 mode = mqprio_qopt->mode; 8111 if (!hw) { 8112 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8113 vsi->ch_rss_size = 0; 8114 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8115 goto config_tcf; 8116 } 8117 8118 /* Generate queue region map for number of TCF requested */ 8119 for (i = 0; i < num_tcf; i++) 8120 ena_tc_qdisc |= BIT(i); 8121 8122 switch (mode) { 8123 case TC_MQPRIO_MODE_CHANNEL: 8124 8125 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8126 if (ret) { 8127 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8128 ret); 8129 return ret; 8130 } 8131 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8132 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8133 /* don't assume state of hw_tc_offload during driver load 8134 * and set the flag for TC flower filter if hw_tc_offload 8135 * already ON 8136 */ 8137 if (vsi->netdev->features & NETIF_F_HW_TC) 8138 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8139 break; 8140 default: 8141 return -EINVAL; 8142 } 8143 8144 config_tcf: 8145 8146 /* Requesting same TCF configuration as already enabled */ 8147 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8148 mode != TC_MQPRIO_MODE_CHANNEL) 8149 return 0; 8150 8151 /* Pause VSI queues */ 8152 ice_dis_vsi(vsi, true); 8153 8154 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8155 ice_remove_q_channels(vsi, true); 8156 8157 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8158 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8159 num_online_cpus()); 8160 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8161 num_online_cpus()); 8162 } else { 8163 /* logic to rebuild VSI, same like ethtool -L */ 8164 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8165 8166 for (i = 0; i < num_tcf; i++) { 8167 if (!(ena_tc_qdisc & BIT(i))) 8168 continue; 8169 8170 offset = vsi->mqprio_qopt.qopt.offset[i]; 8171 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8172 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8173 } 8174 vsi->req_txq = offset + qcount_tx; 8175 vsi->req_rxq = offset + qcount_rx; 8176 8177 /* store away original rss_size info, so that it gets reused 8178 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8179 * determine, what should be the rss_sizefor main VSI 8180 */ 8181 vsi->orig_rss_size = vsi->rss_size; 8182 } 8183 8184 /* save current values of Tx and Rx queues before calling VSI rebuild 8185 * for fallback option 8186 */ 8187 cur_txq = vsi->num_txq; 8188 cur_rxq = vsi->num_rxq; 8189 8190 /* proceed with rebuild main VSI using correct number of queues */ 8191 ret = ice_vsi_rebuild(vsi, false); 8192 if (ret) { 8193 /* fallback to current number of queues */ 8194 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8195 vsi->req_txq = cur_txq; 8196 vsi->req_rxq = cur_rxq; 8197 clear_bit(ICE_RESET_FAILED, pf->state); 8198 if (ice_vsi_rebuild(vsi, false)) { 8199 dev_err(dev, "Rebuild of main VSI failed again\n"); 8200 return ret; 8201 } 8202 } 8203 8204 vsi->all_numtc = num_tcf; 8205 vsi->all_enatc = ena_tc_qdisc; 8206 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8207 if (ret) { 8208 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8209 vsi->vsi_num); 8210 goto exit; 8211 } 8212 8213 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8214 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8215 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8216 8217 /* set TC0 rate limit if specified */ 8218 if (max_tx_rate || min_tx_rate) { 8219 /* convert to Kbits/s */ 8220 if (max_tx_rate) 8221 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8222 if (min_tx_rate) 8223 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8224 8225 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8226 if (!ret) { 8227 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8228 max_tx_rate, min_tx_rate, vsi->vsi_num); 8229 } else { 8230 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8231 max_tx_rate, min_tx_rate, vsi->vsi_num); 8232 goto exit; 8233 } 8234 } 8235 ret = ice_create_q_channels(vsi); 8236 if (ret) { 8237 netdev_err(netdev, "failed configuring queue channels\n"); 8238 goto exit; 8239 } else { 8240 netdev_dbg(netdev, "successfully configured channels\n"); 8241 } 8242 } 8243 8244 if (vsi->ch_rss_size) 8245 ice_vsi_cfg_rss_lut_key(vsi); 8246 8247 exit: 8248 /* if error, reset the all_numtc and all_enatc */ 8249 if (ret) { 8250 vsi->all_numtc = 0; 8251 vsi->all_enatc = 0; 8252 } 8253 /* resume VSI */ 8254 ice_ena_vsi(vsi, true); 8255 8256 return ret; 8257 } 8258 8259 static LIST_HEAD(ice_block_cb_list); 8260 8261 static int 8262 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8263 void *type_data) 8264 { 8265 struct ice_netdev_priv *np = netdev_priv(netdev); 8266 struct ice_pf *pf = np->vsi->back; 8267 int err; 8268 8269 switch (type) { 8270 case TC_SETUP_BLOCK: 8271 return flow_block_cb_setup_simple(type_data, 8272 &ice_block_cb_list, 8273 ice_setup_tc_block_cb, 8274 np, np, true); 8275 case TC_SETUP_QDISC_MQPRIO: 8276 /* setup traffic classifier for receive side */ 8277 mutex_lock(&pf->tc_mutex); 8278 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8279 mutex_unlock(&pf->tc_mutex); 8280 return err; 8281 default: 8282 return -EOPNOTSUPP; 8283 } 8284 return -EOPNOTSUPP; 8285 } 8286 8287 static struct ice_indr_block_priv * 8288 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8289 struct net_device *netdev) 8290 { 8291 struct ice_indr_block_priv *cb_priv; 8292 8293 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8294 if (!cb_priv->netdev) 8295 return NULL; 8296 if (cb_priv->netdev == netdev) 8297 return cb_priv; 8298 } 8299 return NULL; 8300 } 8301 8302 static int 8303 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8304 void *indr_priv) 8305 { 8306 struct ice_indr_block_priv *priv = indr_priv; 8307 struct ice_netdev_priv *np = priv->np; 8308 8309 switch (type) { 8310 case TC_SETUP_CLSFLOWER: 8311 return ice_setup_tc_cls_flower(np, priv->netdev, 8312 (struct flow_cls_offload *) 8313 type_data); 8314 default: 8315 return -EOPNOTSUPP; 8316 } 8317 } 8318 8319 static int 8320 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8321 struct ice_netdev_priv *np, 8322 struct flow_block_offload *f, void *data, 8323 void (*cleanup)(struct flow_block_cb *block_cb)) 8324 { 8325 struct ice_indr_block_priv *indr_priv; 8326 struct flow_block_cb *block_cb; 8327 8328 if (!ice_is_tunnel_supported(netdev) && 8329 !(is_vlan_dev(netdev) && 8330 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8331 return -EOPNOTSUPP; 8332 8333 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8334 return -EOPNOTSUPP; 8335 8336 switch (f->command) { 8337 case FLOW_BLOCK_BIND: 8338 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8339 if (indr_priv) 8340 return -EEXIST; 8341 8342 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8343 if (!indr_priv) 8344 return -ENOMEM; 8345 8346 indr_priv->netdev = netdev; 8347 indr_priv->np = np; 8348 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8349 8350 block_cb = 8351 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8352 indr_priv, indr_priv, 8353 ice_rep_indr_tc_block_unbind, 8354 f, netdev, sch, data, np, 8355 cleanup); 8356 8357 if (IS_ERR(block_cb)) { 8358 list_del(&indr_priv->list); 8359 kfree(indr_priv); 8360 return PTR_ERR(block_cb); 8361 } 8362 flow_block_cb_add(block_cb, f); 8363 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8364 break; 8365 case FLOW_BLOCK_UNBIND: 8366 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8367 if (!indr_priv) 8368 return -ENOENT; 8369 8370 block_cb = flow_block_cb_lookup(f->block, 8371 ice_indr_setup_block_cb, 8372 indr_priv); 8373 if (!block_cb) 8374 return -ENOENT; 8375 8376 flow_indr_block_cb_remove(block_cb, f); 8377 8378 list_del(&block_cb->driver_list); 8379 break; 8380 default: 8381 return -EOPNOTSUPP; 8382 } 8383 return 0; 8384 } 8385 8386 static int 8387 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8388 void *cb_priv, enum tc_setup_type type, void *type_data, 8389 void *data, 8390 void (*cleanup)(struct flow_block_cb *block_cb)) 8391 { 8392 switch (type) { 8393 case TC_SETUP_BLOCK: 8394 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8395 data, cleanup); 8396 8397 default: 8398 return -EOPNOTSUPP; 8399 } 8400 } 8401 8402 /** 8403 * ice_open - Called when a network interface becomes active 8404 * @netdev: network interface device structure 8405 * 8406 * The open entry point is called when a network interface is made 8407 * active by the system (IFF_UP). At this point all resources needed 8408 * for transmit and receive operations are allocated, the interrupt 8409 * handler is registered with the OS, the netdev watchdog is enabled, 8410 * and the stack is notified that the interface is ready. 8411 * 8412 * Returns 0 on success, negative value on failure 8413 */ 8414 int ice_open(struct net_device *netdev) 8415 { 8416 struct ice_netdev_priv *np = netdev_priv(netdev); 8417 struct ice_pf *pf = np->vsi->back; 8418 8419 if (ice_is_reset_in_progress(pf->state)) { 8420 netdev_err(netdev, "can't open net device while reset is in progress"); 8421 return -EBUSY; 8422 } 8423 8424 return ice_open_internal(netdev); 8425 } 8426 8427 /** 8428 * ice_open_internal - Called when a network interface becomes active 8429 * @netdev: network interface device structure 8430 * 8431 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8432 * handling routine 8433 * 8434 * Returns 0 on success, negative value on failure 8435 */ 8436 int ice_open_internal(struct net_device *netdev) 8437 { 8438 struct ice_netdev_priv *np = netdev_priv(netdev); 8439 struct ice_vsi *vsi = np->vsi; 8440 struct ice_pf *pf = vsi->back; 8441 struct ice_port_info *pi; 8442 int err; 8443 8444 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8445 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8446 return -EIO; 8447 } 8448 8449 netif_carrier_off(netdev); 8450 8451 pi = vsi->port_info; 8452 err = ice_update_link_info(pi); 8453 if (err) { 8454 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8455 return err; 8456 } 8457 8458 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8459 8460 /* Set PHY if there is media, otherwise, turn off PHY */ 8461 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8462 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8463 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8464 err = ice_init_phy_user_cfg(pi); 8465 if (err) { 8466 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8467 err); 8468 return err; 8469 } 8470 } 8471 8472 err = ice_configure_phy(vsi); 8473 if (err) { 8474 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8475 err); 8476 return err; 8477 } 8478 } else { 8479 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8480 ice_set_link(vsi, false); 8481 } 8482 8483 err = ice_vsi_open(vsi); 8484 if (err) 8485 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8486 vsi->vsi_num, vsi->vsw->sw_id); 8487 8488 /* Update existing tunnels information */ 8489 udp_tunnel_get_rx_info(netdev); 8490 8491 return err; 8492 } 8493 8494 /** 8495 * ice_stop - Disables a network interface 8496 * @netdev: network interface device structure 8497 * 8498 * The stop entry point is called when an interface is de-activated by the OS, 8499 * and the netdevice enters the DOWN state. The hardware is still under the 8500 * driver's control, but the netdev interface is disabled. 8501 * 8502 * Returns success only - not allowed to fail 8503 */ 8504 int ice_stop(struct net_device *netdev) 8505 { 8506 struct ice_netdev_priv *np = netdev_priv(netdev); 8507 struct ice_vsi *vsi = np->vsi; 8508 struct ice_pf *pf = vsi->back; 8509 8510 if (ice_is_reset_in_progress(pf->state)) { 8511 netdev_err(netdev, "can't stop net device while reset is in progress"); 8512 return -EBUSY; 8513 } 8514 8515 ice_vsi_close(vsi); 8516 8517 return 0; 8518 } 8519 8520 /** 8521 * ice_features_check - Validate encapsulated packet conforms to limits 8522 * @skb: skb buffer 8523 * @netdev: This port's netdev 8524 * @features: Offload features that the stack believes apply 8525 */ 8526 static netdev_features_t 8527 ice_features_check(struct sk_buff *skb, 8528 struct net_device __always_unused *netdev, 8529 netdev_features_t features) 8530 { 8531 bool gso = skb_is_gso(skb); 8532 size_t len; 8533 8534 /* No point in doing any of this if neither checksum nor GSO are 8535 * being requested for this frame. We can rule out both by just 8536 * checking for CHECKSUM_PARTIAL 8537 */ 8538 if (skb->ip_summed != CHECKSUM_PARTIAL) 8539 return features; 8540 8541 /* We cannot support GSO if the MSS is going to be less than 8542 * 64 bytes. If it is then we need to drop support for GSO. 8543 */ 8544 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8545 features &= ~NETIF_F_GSO_MASK; 8546 8547 len = skb_network_offset(skb); 8548 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8549 goto out_rm_features; 8550 8551 len = skb_network_header_len(skb); 8552 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8553 goto out_rm_features; 8554 8555 if (skb->encapsulation) { 8556 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8557 * the case of IPIP frames, the transport header pointer is 8558 * after the inner header! So check to make sure that this 8559 * is a GRE or UDP_TUNNEL frame before doing that math. 8560 */ 8561 if (gso && (skb_shinfo(skb)->gso_type & 8562 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8563 len = skb_inner_network_header(skb) - 8564 skb_transport_header(skb); 8565 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8566 goto out_rm_features; 8567 } 8568 8569 len = skb_inner_network_header_len(skb); 8570 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8571 goto out_rm_features; 8572 } 8573 8574 return features; 8575 out_rm_features: 8576 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8577 } 8578 8579 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8580 .ndo_open = ice_open, 8581 .ndo_stop = ice_stop, 8582 .ndo_start_xmit = ice_start_xmit, 8583 .ndo_set_mac_address = ice_set_mac_address, 8584 .ndo_validate_addr = eth_validate_addr, 8585 .ndo_change_mtu = ice_change_mtu, 8586 .ndo_get_stats64 = ice_get_stats64, 8587 .ndo_tx_timeout = ice_tx_timeout, 8588 .ndo_bpf = ice_xdp_safe_mode, 8589 }; 8590 8591 static const struct net_device_ops ice_netdev_ops = { 8592 .ndo_open = ice_open, 8593 .ndo_stop = ice_stop, 8594 .ndo_start_xmit = ice_start_xmit, 8595 .ndo_select_queue = ice_select_queue, 8596 .ndo_features_check = ice_features_check, 8597 .ndo_set_rx_mode = ice_set_rx_mode, 8598 .ndo_set_mac_address = ice_set_mac_address, 8599 .ndo_validate_addr = eth_validate_addr, 8600 .ndo_change_mtu = ice_change_mtu, 8601 .ndo_get_stats64 = ice_get_stats64, 8602 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8603 .ndo_eth_ioctl = ice_eth_ioctl, 8604 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8605 .ndo_set_vf_mac = ice_set_vf_mac, 8606 .ndo_get_vf_config = ice_get_vf_cfg, 8607 .ndo_set_vf_trust = ice_set_vf_trust, 8608 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8609 .ndo_set_vf_link_state = ice_set_vf_link_state, 8610 .ndo_get_vf_stats = ice_get_vf_stats, 8611 .ndo_set_vf_rate = ice_set_vf_bw, 8612 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8613 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8614 .ndo_setup_tc = ice_setup_tc, 8615 .ndo_set_features = ice_set_features, 8616 .ndo_bridge_getlink = ice_bridge_getlink, 8617 .ndo_bridge_setlink = ice_bridge_setlink, 8618 .ndo_fdb_add = ice_fdb_add, 8619 .ndo_fdb_del = ice_fdb_del, 8620 #ifdef CONFIG_RFS_ACCEL 8621 .ndo_rx_flow_steer = ice_rx_flow_steer, 8622 #endif 8623 .ndo_tx_timeout = ice_tx_timeout, 8624 .ndo_bpf = ice_xdp, 8625 .ndo_xdp_xmit = ice_xdp_xmit, 8626 .ndo_xsk_wakeup = ice_xsk_wakeup, 8627 }; 8628