1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 ice_unplug_aux_dev(pf); 2403 2404 switch (reset) { 2405 case ICE_RESET_PFR: 2406 set_bit(ICE_PFR_REQ, pf->state); 2407 break; 2408 case ICE_RESET_CORER: 2409 set_bit(ICE_CORER_REQ, pf->state); 2410 break; 2411 case ICE_RESET_GLOBR: 2412 set_bit(ICE_GLOBR_REQ, pf->state); 2413 break; 2414 default: 2415 return -EINVAL; 2416 } 2417 2418 ice_service_task_schedule(pf); 2419 return 0; 2420 } 2421 2422 /** 2423 * ice_irq_affinity_notify - Callback for affinity changes 2424 * @notify: context as to what irq was changed 2425 * @mask: the new affinity mask 2426 * 2427 * This is a callback function used by the irq_set_affinity_notifier function 2428 * so that we may register to receive changes to the irq affinity masks. 2429 */ 2430 static void 2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2432 const cpumask_t *mask) 2433 { 2434 struct ice_q_vector *q_vector = 2435 container_of(notify, struct ice_q_vector, affinity_notify); 2436 2437 cpumask_copy(&q_vector->affinity_mask, mask); 2438 } 2439 2440 /** 2441 * ice_irq_affinity_release - Callback for affinity notifier release 2442 * @ref: internal core kernel usage 2443 * 2444 * This is a callback function used by the irq_set_affinity_notifier function 2445 * to inform the current notification subscriber that they will no longer 2446 * receive notifications. 2447 */ 2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2449 2450 /** 2451 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2452 * @vsi: the VSI being configured 2453 */ 2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2455 { 2456 struct ice_hw *hw = &vsi->back->hw; 2457 int i; 2458 2459 ice_for_each_q_vector(vsi, i) 2460 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2461 2462 ice_flush(hw); 2463 return 0; 2464 } 2465 2466 /** 2467 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2468 * @vsi: the VSI being configured 2469 * @basename: name for the vector 2470 */ 2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2472 { 2473 int q_vectors = vsi->num_q_vectors; 2474 struct ice_pf *pf = vsi->back; 2475 int base = vsi->base_vector; 2476 struct device *dev; 2477 int rx_int_idx = 0; 2478 int tx_int_idx = 0; 2479 int vector, err; 2480 int irq_num; 2481 2482 dev = ice_pf_to_dev(pf); 2483 for (vector = 0; vector < q_vectors; vector++) { 2484 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2485 2486 irq_num = pf->msix_entries[base + vector].vector; 2487 2488 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2489 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2490 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2491 tx_int_idx++; 2492 } else if (q_vector->rx.rx_ring) { 2493 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2494 "%s-%s-%d", basename, "rx", rx_int_idx++); 2495 } else if (q_vector->tx.tx_ring) { 2496 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2497 "%s-%s-%d", basename, "tx", tx_int_idx++); 2498 } else { 2499 /* skip this unused q_vector */ 2500 continue; 2501 } 2502 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2503 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2504 IRQF_SHARED, q_vector->name, 2505 q_vector); 2506 else 2507 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2508 0, q_vector->name, q_vector); 2509 if (err) { 2510 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2511 err); 2512 goto free_q_irqs; 2513 } 2514 2515 /* register for affinity change notifications */ 2516 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2517 struct irq_affinity_notify *affinity_notify; 2518 2519 affinity_notify = &q_vector->affinity_notify; 2520 affinity_notify->notify = ice_irq_affinity_notify; 2521 affinity_notify->release = ice_irq_affinity_release; 2522 irq_set_affinity_notifier(irq_num, affinity_notify); 2523 } 2524 2525 /* assign the mask for this irq */ 2526 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2527 } 2528 2529 err = ice_set_cpu_rx_rmap(vsi); 2530 if (err) { 2531 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2532 vsi->vsi_num, ERR_PTR(err)); 2533 goto free_q_irqs; 2534 } 2535 2536 vsi->irqs_ready = true; 2537 return 0; 2538 2539 free_q_irqs: 2540 while (vector) { 2541 vector--; 2542 irq_num = pf->msix_entries[base + vector].vector; 2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2544 irq_set_affinity_notifier(irq_num, NULL); 2545 irq_set_affinity_hint(irq_num, NULL); 2546 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2547 } 2548 return err; 2549 } 2550 2551 /** 2552 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2553 * @vsi: VSI to setup Tx rings used by XDP 2554 * 2555 * Return 0 on success and negative value on error 2556 */ 2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2558 { 2559 struct device *dev = ice_pf_to_dev(vsi->back); 2560 struct ice_tx_desc *tx_desc; 2561 int i, j; 2562 2563 ice_for_each_xdp_txq(vsi, i) { 2564 u16 xdp_q_idx = vsi->alloc_txq + i; 2565 struct ice_tx_ring *xdp_ring; 2566 2567 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2568 2569 if (!xdp_ring) 2570 goto free_xdp_rings; 2571 2572 xdp_ring->q_index = xdp_q_idx; 2573 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2574 xdp_ring->vsi = vsi; 2575 xdp_ring->netdev = NULL; 2576 xdp_ring->dev = dev; 2577 xdp_ring->count = vsi->num_tx_desc; 2578 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2579 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2580 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2581 if (ice_setup_tx_ring(xdp_ring)) 2582 goto free_xdp_rings; 2583 ice_set_ring_xdp(xdp_ring); 2584 spin_lock_init(&xdp_ring->tx_lock); 2585 for (j = 0; j < xdp_ring->count; j++) { 2586 tx_desc = ICE_TX_DESC(xdp_ring, j); 2587 tx_desc->cmd_type_offset_bsz = 0; 2588 } 2589 } 2590 2591 return 0; 2592 2593 free_xdp_rings: 2594 for (; i >= 0; i--) 2595 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2596 ice_free_tx_ring(vsi->xdp_rings[i]); 2597 return -ENOMEM; 2598 } 2599 2600 /** 2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2602 * @vsi: VSI to set the bpf prog on 2603 * @prog: the bpf prog pointer 2604 */ 2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2606 { 2607 struct bpf_prog *old_prog; 2608 int i; 2609 2610 old_prog = xchg(&vsi->xdp_prog, prog); 2611 if (old_prog) 2612 bpf_prog_put(old_prog); 2613 2614 ice_for_each_rxq(vsi, i) 2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2616 } 2617 2618 /** 2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2620 * @vsi: VSI to bring up Tx rings used by XDP 2621 * @prog: bpf program that will be assigned to VSI 2622 * 2623 * Return 0 on success and negative value on error 2624 */ 2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2628 int xdp_rings_rem = vsi->num_xdp_txq; 2629 struct ice_pf *pf = vsi->back; 2630 struct ice_qs_cfg xdp_qs_cfg = { 2631 .qs_mutex = &pf->avail_q_mutex, 2632 .pf_map = pf->avail_txqs, 2633 .pf_map_size = pf->max_pf_txqs, 2634 .q_count = vsi->num_xdp_txq, 2635 .scatter_count = ICE_MAX_SCATTER_TXQS, 2636 .vsi_map = vsi->txq_map, 2637 .vsi_map_offset = vsi->alloc_txq, 2638 .mapping_mode = ICE_VSI_MAP_CONTIG 2639 }; 2640 struct device *dev; 2641 int i, v_idx; 2642 int status; 2643 2644 dev = ice_pf_to_dev(pf); 2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2646 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2647 if (!vsi->xdp_rings) 2648 return -ENOMEM; 2649 2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2651 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2652 goto err_map_xdp; 2653 2654 if (static_key_enabled(&ice_xdp_locking_key)) 2655 netdev_warn(vsi->netdev, 2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2657 2658 if (ice_xdp_alloc_setup_rings(vsi)) 2659 goto clear_xdp_rings; 2660 2661 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2662 ice_for_each_q_vector(vsi, v_idx) { 2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2664 int xdp_rings_per_v, q_id, q_base; 2665 2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2667 vsi->num_q_vectors - v_idx); 2668 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2669 2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2672 2673 xdp_ring->q_vector = q_vector; 2674 xdp_ring->next = q_vector->tx.tx_ring; 2675 q_vector->tx.tx_ring = xdp_ring; 2676 } 2677 xdp_rings_rem -= xdp_rings_per_v; 2678 } 2679 2680 ice_for_each_rxq(vsi, i) { 2681 if (static_key_enabled(&ice_xdp_locking_key)) { 2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2683 } else { 2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2685 struct ice_tx_ring *ring; 2686 2687 ice_for_each_tx_ring(ring, q_vector->tx) { 2688 if (ice_ring_is_xdp(ring)) { 2689 vsi->rx_rings[i]->xdp_ring = ring; 2690 break; 2691 } 2692 } 2693 } 2694 ice_tx_xsk_pool(vsi, i); 2695 } 2696 2697 /* omit the scheduler update if in reset path; XDP queues will be 2698 * taken into account at the end of ice_vsi_rebuild, where 2699 * ice_cfg_vsi_lan is being called 2700 */ 2701 if (ice_is_reset_in_progress(pf->state)) 2702 return 0; 2703 2704 /* tell the Tx scheduler that right now we have 2705 * additional queues 2706 */ 2707 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2709 2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2711 max_txqs); 2712 if (status) { 2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2714 status); 2715 goto clear_xdp_rings; 2716 } 2717 2718 /* assign the prog only when it's not already present on VSI; 2719 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2720 * VSI rebuild that happens under ethtool -L can expose us to 2721 * the bpf_prog refcount issues as we would be swapping same 2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2724 * this is not harmful as dev_xdp_install bumps the refcount 2725 * before calling the op exposed by the driver; 2726 */ 2727 if (!ice_is_xdp_ena_vsi(vsi)) 2728 ice_vsi_assign_bpf_prog(vsi, prog); 2729 2730 return 0; 2731 clear_xdp_rings: 2732 ice_for_each_xdp_txq(vsi, i) 2733 if (vsi->xdp_rings[i]) { 2734 kfree_rcu(vsi->xdp_rings[i], rcu); 2735 vsi->xdp_rings[i] = NULL; 2736 } 2737 2738 err_map_xdp: 2739 mutex_lock(&pf->avail_q_mutex); 2740 ice_for_each_xdp_txq(vsi, i) { 2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2743 } 2744 mutex_unlock(&pf->avail_q_mutex); 2745 2746 devm_kfree(dev, vsi->xdp_rings); 2747 return -ENOMEM; 2748 } 2749 2750 /** 2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2752 * @vsi: VSI to remove XDP rings 2753 * 2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2755 * resources 2756 */ 2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2758 { 2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2760 struct ice_pf *pf = vsi->back; 2761 int i, v_idx; 2762 2763 /* q_vectors are freed in reset path so there's no point in detaching 2764 * rings; in case of rebuild being triggered not from reset bits 2765 * in pf->state won't be set, so additionally check first q_vector 2766 * against NULL 2767 */ 2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2769 goto free_qmap; 2770 2771 ice_for_each_q_vector(vsi, v_idx) { 2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2773 struct ice_tx_ring *ring; 2774 2775 ice_for_each_tx_ring(ring, q_vector->tx) 2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2777 break; 2778 2779 /* restore the value of last node prior to XDP setup */ 2780 q_vector->tx.tx_ring = ring; 2781 } 2782 2783 free_qmap: 2784 mutex_lock(&pf->avail_q_mutex); 2785 ice_for_each_xdp_txq(vsi, i) { 2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2788 } 2789 mutex_unlock(&pf->avail_q_mutex); 2790 2791 ice_for_each_xdp_txq(vsi, i) 2792 if (vsi->xdp_rings[i]) { 2793 if (vsi->xdp_rings[i]->desc) { 2794 synchronize_rcu(); 2795 ice_free_tx_ring(vsi->xdp_rings[i]); 2796 } 2797 kfree_rcu(vsi->xdp_rings[i], rcu); 2798 vsi->xdp_rings[i] = NULL; 2799 } 2800 2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2802 vsi->xdp_rings = NULL; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 static_branch_dec(&ice_xdp_locking_key); 2806 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 return 0; 2809 2810 ice_vsi_assign_bpf_prog(vsi, NULL); 2811 2812 /* notify Tx scheduler that we destroyed XDP queues and bring 2813 * back the old number of child nodes 2814 */ 2815 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2816 max_txqs[i] = vsi->num_txq; 2817 2818 /* change number of XDP Tx queues to 0 */ 2819 vsi->num_xdp_txq = 0; 2820 2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2822 max_txqs); 2823 } 2824 2825 /** 2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2827 * @vsi: VSI to schedule napi on 2828 */ 2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2830 { 2831 int i; 2832 2833 ice_for_each_rxq(vsi, i) { 2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2835 2836 if (rx_ring->xsk_pool) 2837 napi_schedule(&rx_ring->q_vector->napi); 2838 } 2839 } 2840 2841 /** 2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2843 * @vsi: VSI to determine the count of XDP Tx qs 2844 * 2845 * returns 0 if Tx qs count is higher than at least half of CPU count, 2846 * -ENOMEM otherwise 2847 */ 2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2849 { 2850 u16 avail = ice_get_avail_txq_count(vsi->back); 2851 u16 cpus = num_possible_cpus(); 2852 2853 if (avail < cpus / 2) 2854 return -ENOMEM; 2855 2856 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2857 2858 if (vsi->num_xdp_txq < cpus) 2859 static_branch_inc(&ice_xdp_locking_key); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2866 * @vsi: VSI to setup XDP for 2867 * @prog: XDP program 2868 * @extack: netlink extended ack 2869 */ 2870 static int 2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2872 struct netlink_ext_ack *extack) 2873 { 2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2875 bool if_running = netif_running(vsi->netdev); 2876 int ret = 0, xdp_ring_err = 0; 2877 2878 if (frame_size > vsi->rx_buf_len) { 2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2880 return -EOPNOTSUPP; 2881 } 2882 2883 /* need to stop netdev while setting up the program for Rx rings */ 2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2885 ret = ice_down(vsi); 2886 if (ret) { 2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2888 return ret; 2889 } 2890 } 2891 2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2894 if (xdp_ring_err) { 2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2896 } else { 2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2898 if (xdp_ring_err) 2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2900 } 2901 /* reallocate Rx queues that are used for zero-copy */ 2902 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2903 if (xdp_ring_err) 2904 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2905 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2906 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2907 if (xdp_ring_err) 2908 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2909 /* reallocate Rx queues that were used for zero-copy */ 2910 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2911 if (xdp_ring_err) 2912 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2913 } else { 2914 /* safe to call even when prog == vsi->xdp_prog as 2915 * dev_xdp_install in net/core/dev.c incremented prog's 2916 * refcount so corresponding bpf_prog_put won't cause 2917 * underflow 2918 */ 2919 ice_vsi_assign_bpf_prog(vsi, prog); 2920 } 2921 2922 if (if_running) 2923 ret = ice_up(vsi); 2924 2925 if (!ret && prog) 2926 ice_vsi_rx_napi_schedule(vsi); 2927 2928 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2929 } 2930 2931 /** 2932 * ice_xdp_safe_mode - XDP handler for safe mode 2933 * @dev: netdevice 2934 * @xdp: XDP command 2935 */ 2936 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2937 struct netdev_bpf *xdp) 2938 { 2939 NL_SET_ERR_MSG_MOD(xdp->extack, 2940 "Please provide working DDP firmware package in order to use XDP\n" 2941 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2942 return -EOPNOTSUPP; 2943 } 2944 2945 /** 2946 * ice_xdp - implements XDP handler 2947 * @dev: netdevice 2948 * @xdp: XDP command 2949 */ 2950 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2951 { 2952 struct ice_netdev_priv *np = netdev_priv(dev); 2953 struct ice_vsi *vsi = np->vsi; 2954 2955 if (vsi->type != ICE_VSI_PF) { 2956 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2957 return -EINVAL; 2958 } 2959 2960 switch (xdp->command) { 2961 case XDP_SETUP_PROG: 2962 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2963 case XDP_SETUP_XSK_POOL: 2964 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2965 xdp->xsk.queue_id); 2966 default: 2967 return -EINVAL; 2968 } 2969 } 2970 2971 /** 2972 * ice_ena_misc_vector - enable the non-queue interrupts 2973 * @pf: board private structure 2974 */ 2975 static void ice_ena_misc_vector(struct ice_pf *pf) 2976 { 2977 struct ice_hw *hw = &pf->hw; 2978 u32 val; 2979 2980 /* Disable anti-spoof detection interrupt to prevent spurious event 2981 * interrupts during a function reset. Anti-spoof functionally is 2982 * still supported. 2983 */ 2984 val = rd32(hw, GL_MDCK_TX_TDPU); 2985 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2986 wr32(hw, GL_MDCK_TX_TDPU, val); 2987 2988 /* clear things first */ 2989 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2990 rd32(hw, PFINT_OICR); /* read to clear */ 2991 2992 val = (PFINT_OICR_ECC_ERR_M | 2993 PFINT_OICR_MAL_DETECT_M | 2994 PFINT_OICR_GRST_M | 2995 PFINT_OICR_PCI_EXCEPTION_M | 2996 PFINT_OICR_VFLR_M | 2997 PFINT_OICR_HMC_ERR_M | 2998 PFINT_OICR_PE_PUSH_M | 2999 PFINT_OICR_PE_CRITERR_M); 3000 3001 wr32(hw, PFINT_OICR_ENA, val); 3002 3003 /* SW_ITR_IDX = 0, but don't change INTENA */ 3004 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3005 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3006 } 3007 3008 /** 3009 * ice_misc_intr - misc interrupt handler 3010 * @irq: interrupt number 3011 * @data: pointer to a q_vector 3012 */ 3013 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3014 { 3015 struct ice_pf *pf = (struct ice_pf *)data; 3016 struct ice_hw *hw = &pf->hw; 3017 irqreturn_t ret = IRQ_NONE; 3018 struct device *dev; 3019 u32 oicr, ena_mask; 3020 3021 dev = ice_pf_to_dev(pf); 3022 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3023 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3024 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3025 3026 oicr = rd32(hw, PFINT_OICR); 3027 ena_mask = rd32(hw, PFINT_OICR_ENA); 3028 3029 if (oicr & PFINT_OICR_SWINT_M) { 3030 ena_mask &= ~PFINT_OICR_SWINT_M; 3031 pf->sw_int_count++; 3032 } 3033 3034 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3035 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3036 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3037 } 3038 if (oicr & PFINT_OICR_VFLR_M) { 3039 /* disable any further VFLR event notifications */ 3040 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3041 u32 reg = rd32(hw, PFINT_OICR_ENA); 3042 3043 reg &= ~PFINT_OICR_VFLR_M; 3044 wr32(hw, PFINT_OICR_ENA, reg); 3045 } else { 3046 ena_mask &= ~PFINT_OICR_VFLR_M; 3047 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3048 } 3049 } 3050 3051 if (oicr & PFINT_OICR_GRST_M) { 3052 u32 reset; 3053 3054 /* we have a reset warning */ 3055 ena_mask &= ~PFINT_OICR_GRST_M; 3056 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3057 GLGEN_RSTAT_RESET_TYPE_S; 3058 3059 if (reset == ICE_RESET_CORER) 3060 pf->corer_count++; 3061 else if (reset == ICE_RESET_GLOBR) 3062 pf->globr_count++; 3063 else if (reset == ICE_RESET_EMPR) 3064 pf->empr_count++; 3065 else 3066 dev_dbg(dev, "Invalid reset type %d\n", reset); 3067 3068 /* If a reset cycle isn't already in progress, we set a bit in 3069 * pf->state so that the service task can start a reset/rebuild. 3070 */ 3071 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3072 if (reset == ICE_RESET_CORER) 3073 set_bit(ICE_CORER_RECV, pf->state); 3074 else if (reset == ICE_RESET_GLOBR) 3075 set_bit(ICE_GLOBR_RECV, pf->state); 3076 else 3077 set_bit(ICE_EMPR_RECV, pf->state); 3078 3079 /* There are couple of different bits at play here. 3080 * hw->reset_ongoing indicates whether the hardware is 3081 * in reset. This is set to true when a reset interrupt 3082 * is received and set back to false after the driver 3083 * has determined that the hardware is out of reset. 3084 * 3085 * ICE_RESET_OICR_RECV in pf->state indicates 3086 * that a post reset rebuild is required before the 3087 * driver is operational again. This is set above. 3088 * 3089 * As this is the start of the reset/rebuild cycle, set 3090 * both to indicate that. 3091 */ 3092 hw->reset_ongoing = true; 3093 } 3094 } 3095 3096 if (oicr & PFINT_OICR_TSYN_TX_M) { 3097 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3098 ice_ptp_process_ts(pf); 3099 } 3100 3101 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3102 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3103 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3104 3105 /* Save EVENTs from GTSYN register */ 3106 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3107 GLTSYN_STAT_EVENT1_M | 3108 GLTSYN_STAT_EVENT2_M); 3109 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3110 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3111 } 3112 3113 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3114 if (oicr & ICE_AUX_CRIT_ERR) { 3115 pf->oicr_err_reg |= oicr; 3116 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3117 ena_mask &= ~ICE_AUX_CRIT_ERR; 3118 } 3119 3120 /* Report any remaining unexpected interrupts */ 3121 oicr &= ena_mask; 3122 if (oicr) { 3123 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3124 /* If a critical error is pending there is no choice but to 3125 * reset the device. 3126 */ 3127 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3128 PFINT_OICR_ECC_ERR_M)) { 3129 set_bit(ICE_PFR_REQ, pf->state); 3130 ice_service_task_schedule(pf); 3131 } 3132 } 3133 ret = IRQ_HANDLED; 3134 3135 ice_service_task_schedule(pf); 3136 ice_irq_dynamic_ena(hw, NULL, NULL); 3137 3138 return ret; 3139 } 3140 3141 /** 3142 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3143 * @hw: pointer to HW structure 3144 */ 3145 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3146 { 3147 /* disable Admin queue Interrupt causes */ 3148 wr32(hw, PFINT_FW_CTL, 3149 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3150 3151 /* disable Mailbox queue Interrupt causes */ 3152 wr32(hw, PFINT_MBX_CTL, 3153 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3154 3155 wr32(hw, PFINT_SB_CTL, 3156 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3157 3158 /* disable Control queue Interrupt causes */ 3159 wr32(hw, PFINT_OICR_CTL, 3160 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3161 3162 ice_flush(hw); 3163 } 3164 3165 /** 3166 * ice_free_irq_msix_misc - Unroll misc vector setup 3167 * @pf: board private structure 3168 */ 3169 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3170 { 3171 struct ice_hw *hw = &pf->hw; 3172 3173 ice_dis_ctrlq_interrupts(hw); 3174 3175 /* disable OICR interrupt */ 3176 wr32(hw, PFINT_OICR_ENA, 0); 3177 ice_flush(hw); 3178 3179 if (pf->msix_entries) { 3180 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3181 devm_free_irq(ice_pf_to_dev(pf), 3182 pf->msix_entries[pf->oicr_idx].vector, pf); 3183 } 3184 3185 pf->num_avail_sw_msix += 1; 3186 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3187 } 3188 3189 /** 3190 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3191 * @hw: pointer to HW structure 3192 * @reg_idx: HW vector index to associate the control queue interrupts with 3193 */ 3194 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3195 { 3196 u32 val; 3197 3198 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3199 PFINT_OICR_CTL_CAUSE_ENA_M); 3200 wr32(hw, PFINT_OICR_CTL, val); 3201 3202 /* enable Admin queue Interrupt causes */ 3203 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3204 PFINT_FW_CTL_CAUSE_ENA_M); 3205 wr32(hw, PFINT_FW_CTL, val); 3206 3207 /* enable Mailbox queue Interrupt causes */ 3208 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3209 PFINT_MBX_CTL_CAUSE_ENA_M); 3210 wr32(hw, PFINT_MBX_CTL, val); 3211 3212 /* This enables Sideband queue Interrupt causes */ 3213 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3214 PFINT_SB_CTL_CAUSE_ENA_M); 3215 wr32(hw, PFINT_SB_CTL, val); 3216 3217 ice_flush(hw); 3218 } 3219 3220 /** 3221 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3222 * @pf: board private structure 3223 * 3224 * This sets up the handler for MSIX 0, which is used to manage the 3225 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3226 * when in MSI or Legacy interrupt mode. 3227 */ 3228 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3229 { 3230 struct device *dev = ice_pf_to_dev(pf); 3231 struct ice_hw *hw = &pf->hw; 3232 int oicr_idx, err = 0; 3233 3234 if (!pf->int_name[0]) 3235 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3236 dev_driver_string(dev), dev_name(dev)); 3237 3238 /* Do not request IRQ but do enable OICR interrupt since settings are 3239 * lost during reset. Note that this function is called only during 3240 * rebuild path and not while reset is in progress. 3241 */ 3242 if (ice_is_reset_in_progress(pf->state)) 3243 goto skip_req_irq; 3244 3245 /* reserve one vector in irq_tracker for misc interrupts */ 3246 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3247 if (oicr_idx < 0) 3248 return oicr_idx; 3249 3250 pf->num_avail_sw_msix -= 1; 3251 pf->oicr_idx = (u16)oicr_idx; 3252 3253 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3254 ice_misc_intr, 0, pf->int_name, pf); 3255 if (err) { 3256 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3257 pf->int_name, err); 3258 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3259 pf->num_avail_sw_msix += 1; 3260 return err; 3261 } 3262 3263 skip_req_irq: 3264 ice_ena_misc_vector(pf); 3265 3266 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3267 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3268 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3269 3270 ice_flush(hw); 3271 ice_irq_dynamic_ena(hw, NULL, NULL); 3272 3273 return 0; 3274 } 3275 3276 /** 3277 * ice_napi_add - register NAPI handler for the VSI 3278 * @vsi: VSI for which NAPI handler is to be registered 3279 * 3280 * This function is only called in the driver's load path. Registering the NAPI 3281 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3282 * reset/rebuild, etc.) 3283 */ 3284 static void ice_napi_add(struct ice_vsi *vsi) 3285 { 3286 int v_idx; 3287 3288 if (!vsi->netdev) 3289 return; 3290 3291 ice_for_each_q_vector(vsi, v_idx) 3292 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3293 ice_napi_poll, NAPI_POLL_WEIGHT); 3294 } 3295 3296 /** 3297 * ice_set_ops - set netdev and ethtools ops for the given netdev 3298 * @netdev: netdev instance 3299 */ 3300 static void ice_set_ops(struct net_device *netdev) 3301 { 3302 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3303 3304 if (ice_is_safe_mode(pf)) { 3305 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3306 ice_set_ethtool_safe_mode_ops(netdev); 3307 return; 3308 } 3309 3310 netdev->netdev_ops = &ice_netdev_ops; 3311 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3312 ice_set_ethtool_ops(netdev); 3313 } 3314 3315 /** 3316 * ice_set_netdev_features - set features for the given netdev 3317 * @netdev: netdev instance 3318 */ 3319 static void ice_set_netdev_features(struct net_device *netdev) 3320 { 3321 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3322 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3323 netdev_features_t csumo_features; 3324 netdev_features_t vlano_features; 3325 netdev_features_t dflt_features; 3326 netdev_features_t tso_features; 3327 3328 if (ice_is_safe_mode(pf)) { 3329 /* safe mode */ 3330 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3331 netdev->hw_features = netdev->features; 3332 return; 3333 } 3334 3335 dflt_features = NETIF_F_SG | 3336 NETIF_F_HIGHDMA | 3337 NETIF_F_NTUPLE | 3338 NETIF_F_RXHASH; 3339 3340 csumo_features = NETIF_F_RXCSUM | 3341 NETIF_F_IP_CSUM | 3342 NETIF_F_SCTP_CRC | 3343 NETIF_F_IPV6_CSUM; 3344 3345 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3346 NETIF_F_HW_VLAN_CTAG_TX | 3347 NETIF_F_HW_VLAN_CTAG_RX; 3348 3349 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3350 if (is_dvm_ena) 3351 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3352 3353 tso_features = NETIF_F_TSO | 3354 NETIF_F_TSO_ECN | 3355 NETIF_F_TSO6 | 3356 NETIF_F_GSO_GRE | 3357 NETIF_F_GSO_UDP_TUNNEL | 3358 NETIF_F_GSO_GRE_CSUM | 3359 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3360 NETIF_F_GSO_PARTIAL | 3361 NETIF_F_GSO_IPXIP4 | 3362 NETIF_F_GSO_IPXIP6 | 3363 NETIF_F_GSO_UDP_L4; 3364 3365 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3366 NETIF_F_GSO_GRE_CSUM; 3367 /* set features that user can change */ 3368 netdev->hw_features = dflt_features | csumo_features | 3369 vlano_features | tso_features; 3370 3371 /* add support for HW_CSUM on packets with MPLS header */ 3372 netdev->mpls_features = NETIF_F_HW_CSUM | 3373 NETIF_F_TSO | 3374 NETIF_F_TSO6; 3375 3376 /* enable features */ 3377 netdev->features |= netdev->hw_features; 3378 3379 netdev->hw_features |= NETIF_F_HW_TC; 3380 netdev->hw_features |= NETIF_F_LOOPBACK; 3381 3382 /* encap and VLAN devices inherit default, csumo and tso features */ 3383 netdev->hw_enc_features |= dflt_features | csumo_features | 3384 tso_features; 3385 netdev->vlan_features |= dflt_features | csumo_features | 3386 tso_features; 3387 3388 /* advertise support but don't enable by default since only one type of 3389 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3390 * type turns on the other has to be turned off. This is enforced by the 3391 * ice_fix_features() ndo callback. 3392 */ 3393 if (is_dvm_ena) 3394 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3395 NETIF_F_HW_VLAN_STAG_TX; 3396 3397 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3398 * be changed at runtime 3399 */ 3400 netdev->hw_features |= NETIF_F_RXFCS; 3401 } 3402 3403 /** 3404 * ice_cfg_netdev - Allocate, configure and register a netdev 3405 * @vsi: the VSI associated with the new netdev 3406 * 3407 * Returns 0 on success, negative value on failure 3408 */ 3409 static int ice_cfg_netdev(struct ice_vsi *vsi) 3410 { 3411 struct ice_netdev_priv *np; 3412 struct net_device *netdev; 3413 u8 mac_addr[ETH_ALEN]; 3414 3415 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3416 vsi->alloc_rxq); 3417 if (!netdev) 3418 return -ENOMEM; 3419 3420 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3421 vsi->netdev = netdev; 3422 np = netdev_priv(netdev); 3423 np->vsi = vsi; 3424 3425 ice_set_netdev_features(netdev); 3426 3427 ice_set_ops(netdev); 3428 3429 if (vsi->type == ICE_VSI_PF) { 3430 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3431 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3432 eth_hw_addr_set(netdev, mac_addr); 3433 ether_addr_copy(netdev->perm_addr, mac_addr); 3434 } 3435 3436 netdev->priv_flags |= IFF_UNICAST_FLT; 3437 3438 /* Setup netdev TC information */ 3439 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3440 3441 /* setup watchdog timeout value to be 5 second */ 3442 netdev->watchdog_timeo = 5 * HZ; 3443 3444 netdev->min_mtu = ETH_MIN_MTU; 3445 netdev->max_mtu = ICE_MAX_MTU; 3446 3447 return 0; 3448 } 3449 3450 /** 3451 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3452 * @lut: Lookup table 3453 * @rss_table_size: Lookup table size 3454 * @rss_size: Range of queue number for hashing 3455 */ 3456 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3457 { 3458 u16 i; 3459 3460 for (i = 0; i < rss_table_size; i++) 3461 lut[i] = i % rss_size; 3462 } 3463 3464 /** 3465 * ice_pf_vsi_setup - Set up a PF VSI 3466 * @pf: board private structure 3467 * @pi: pointer to the port_info instance 3468 * 3469 * Returns pointer to the successfully allocated VSI software struct 3470 * on success, otherwise returns NULL on failure. 3471 */ 3472 static struct ice_vsi * 3473 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3474 { 3475 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3476 } 3477 3478 static struct ice_vsi * 3479 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3480 struct ice_channel *ch) 3481 { 3482 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3483 } 3484 3485 /** 3486 * ice_ctrl_vsi_setup - Set up a control VSI 3487 * @pf: board private structure 3488 * @pi: pointer to the port_info instance 3489 * 3490 * Returns pointer to the successfully allocated VSI software struct 3491 * on success, otherwise returns NULL on failure. 3492 */ 3493 static struct ice_vsi * 3494 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3495 { 3496 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3497 } 3498 3499 /** 3500 * ice_lb_vsi_setup - Set up a loopback VSI 3501 * @pf: board private structure 3502 * @pi: pointer to the port_info instance 3503 * 3504 * Returns pointer to the successfully allocated VSI software struct 3505 * on success, otherwise returns NULL on failure. 3506 */ 3507 struct ice_vsi * 3508 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3509 { 3510 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3511 } 3512 3513 /** 3514 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3515 * @netdev: network interface to be adjusted 3516 * @proto: VLAN TPID 3517 * @vid: VLAN ID to be added 3518 * 3519 * net_device_ops implementation for adding VLAN IDs 3520 */ 3521 static int 3522 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3523 { 3524 struct ice_netdev_priv *np = netdev_priv(netdev); 3525 struct ice_vsi_vlan_ops *vlan_ops; 3526 struct ice_vsi *vsi = np->vsi; 3527 struct ice_vlan vlan; 3528 int ret; 3529 3530 /* VLAN 0 is added by default during load/reset */ 3531 if (!vid) 3532 return 0; 3533 3534 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3535 usleep_range(1000, 2000); 3536 3537 /* Add multicast promisc rule for the VLAN ID to be added if 3538 * all-multicast is currently enabled. 3539 */ 3540 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3541 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3542 ICE_MCAST_VLAN_PROMISC_BITS, 3543 vid); 3544 if (ret) 3545 goto finish; 3546 } 3547 3548 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3549 3550 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3551 * packets aren't pruned by the device's internal switch on Rx 3552 */ 3553 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3554 ret = vlan_ops->add_vlan(vsi, &vlan); 3555 if (ret) 3556 goto finish; 3557 3558 /* If all-multicast is currently enabled and this VLAN ID is only one 3559 * besides VLAN-0 we have to update look-up type of multicast promisc 3560 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3561 */ 3562 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3563 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3564 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3565 ICE_MCAST_PROMISC_BITS, 0); 3566 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3567 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3568 } 3569 3570 finish: 3571 clear_bit(ICE_CFG_BUSY, vsi->state); 3572 3573 return ret; 3574 } 3575 3576 /** 3577 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3578 * @netdev: network interface to be adjusted 3579 * @proto: VLAN TPID 3580 * @vid: VLAN ID to be removed 3581 * 3582 * net_device_ops implementation for removing VLAN IDs 3583 */ 3584 static int 3585 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3586 { 3587 struct ice_netdev_priv *np = netdev_priv(netdev); 3588 struct ice_vsi_vlan_ops *vlan_ops; 3589 struct ice_vsi *vsi = np->vsi; 3590 struct ice_vlan vlan; 3591 int ret; 3592 3593 /* don't allow removal of VLAN 0 */ 3594 if (!vid) 3595 return 0; 3596 3597 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3598 usleep_range(1000, 2000); 3599 3600 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3601 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3602 if (ret) { 3603 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3604 vsi->vsi_num); 3605 vsi->current_netdev_flags |= IFF_ALLMULTI; 3606 } 3607 3608 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3609 3610 /* Make sure VLAN delete is successful before updating VLAN 3611 * information 3612 */ 3613 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3614 ret = vlan_ops->del_vlan(vsi, &vlan); 3615 if (ret) 3616 goto finish; 3617 3618 /* Remove multicast promisc rule for the removed VLAN ID if 3619 * all-multicast is enabled. 3620 */ 3621 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3622 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3623 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3624 3625 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3626 /* Update look-up type of multicast promisc rule for VLAN 0 3627 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3628 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3629 */ 3630 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3631 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3632 ICE_MCAST_VLAN_PROMISC_BITS, 3633 0); 3634 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3635 ICE_MCAST_PROMISC_BITS, 0); 3636 } 3637 } 3638 3639 finish: 3640 clear_bit(ICE_CFG_BUSY, vsi->state); 3641 3642 return ret; 3643 } 3644 3645 /** 3646 * ice_rep_indr_tc_block_unbind 3647 * @cb_priv: indirection block private data 3648 */ 3649 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3650 { 3651 struct ice_indr_block_priv *indr_priv = cb_priv; 3652 3653 list_del(&indr_priv->list); 3654 kfree(indr_priv); 3655 } 3656 3657 /** 3658 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3659 * @vsi: VSI struct which has the netdev 3660 */ 3661 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3662 { 3663 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3664 3665 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3666 ice_rep_indr_tc_block_unbind); 3667 } 3668 3669 /** 3670 * ice_tc_indir_block_remove - clean indirect TC block notifications 3671 * @pf: PF structure 3672 */ 3673 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3674 { 3675 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3676 3677 if (!pf_vsi) 3678 return; 3679 3680 ice_tc_indir_block_unregister(pf_vsi); 3681 } 3682 3683 /** 3684 * ice_tc_indir_block_register - Register TC indirect block notifications 3685 * @vsi: VSI struct which has the netdev 3686 * 3687 * Returns 0 on success, negative value on failure 3688 */ 3689 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3690 { 3691 struct ice_netdev_priv *np; 3692 3693 if (!vsi || !vsi->netdev) 3694 return -EINVAL; 3695 3696 np = netdev_priv(vsi->netdev); 3697 3698 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3699 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3700 } 3701 3702 /** 3703 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3704 * @pf: board private structure 3705 * 3706 * Returns 0 on success, negative value on failure 3707 */ 3708 static int ice_setup_pf_sw(struct ice_pf *pf) 3709 { 3710 struct device *dev = ice_pf_to_dev(pf); 3711 bool dvm = ice_is_dvm_ena(&pf->hw); 3712 struct ice_vsi *vsi; 3713 int status; 3714 3715 if (ice_is_reset_in_progress(pf->state)) 3716 return -EBUSY; 3717 3718 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3719 if (status) 3720 return -EIO; 3721 3722 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3723 if (!vsi) 3724 return -ENOMEM; 3725 3726 /* init channel list */ 3727 INIT_LIST_HEAD(&vsi->ch_list); 3728 3729 status = ice_cfg_netdev(vsi); 3730 if (status) 3731 goto unroll_vsi_setup; 3732 /* netdev has to be configured before setting frame size */ 3733 ice_vsi_cfg_frame_size(vsi); 3734 3735 /* init indirect block notifications */ 3736 status = ice_tc_indir_block_register(vsi); 3737 if (status) { 3738 dev_err(dev, "Failed to register netdev notifier\n"); 3739 goto unroll_cfg_netdev; 3740 } 3741 3742 /* Setup DCB netlink interface */ 3743 ice_dcbnl_setup(vsi); 3744 3745 /* registering the NAPI handler requires both the queues and 3746 * netdev to be created, which are done in ice_pf_vsi_setup() 3747 * and ice_cfg_netdev() respectively 3748 */ 3749 ice_napi_add(vsi); 3750 3751 status = ice_init_mac_fltr(pf); 3752 if (status) 3753 goto unroll_napi_add; 3754 3755 return 0; 3756 3757 unroll_napi_add: 3758 ice_tc_indir_block_unregister(vsi); 3759 unroll_cfg_netdev: 3760 if (vsi) { 3761 ice_napi_del(vsi); 3762 if (vsi->netdev) { 3763 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3764 free_netdev(vsi->netdev); 3765 vsi->netdev = NULL; 3766 } 3767 } 3768 3769 unroll_vsi_setup: 3770 ice_vsi_release(vsi); 3771 return status; 3772 } 3773 3774 /** 3775 * ice_get_avail_q_count - Get count of queues in use 3776 * @pf_qmap: bitmap to get queue use count from 3777 * @lock: pointer to a mutex that protects access to pf_qmap 3778 * @size: size of the bitmap 3779 */ 3780 static u16 3781 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3782 { 3783 unsigned long bit; 3784 u16 count = 0; 3785 3786 mutex_lock(lock); 3787 for_each_clear_bit(bit, pf_qmap, size) 3788 count++; 3789 mutex_unlock(lock); 3790 3791 return count; 3792 } 3793 3794 /** 3795 * ice_get_avail_txq_count - Get count of Tx queues in use 3796 * @pf: pointer to an ice_pf instance 3797 */ 3798 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3799 { 3800 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3801 pf->max_pf_txqs); 3802 } 3803 3804 /** 3805 * ice_get_avail_rxq_count - Get count of Rx queues in use 3806 * @pf: pointer to an ice_pf instance 3807 */ 3808 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3809 { 3810 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3811 pf->max_pf_rxqs); 3812 } 3813 3814 /** 3815 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3816 * @pf: board private structure to initialize 3817 */ 3818 static void ice_deinit_pf(struct ice_pf *pf) 3819 { 3820 ice_service_task_stop(pf); 3821 mutex_destroy(&pf->adev_mutex); 3822 mutex_destroy(&pf->sw_mutex); 3823 mutex_destroy(&pf->tc_mutex); 3824 mutex_destroy(&pf->avail_q_mutex); 3825 mutex_destroy(&pf->vfs.table_lock); 3826 3827 if (pf->avail_txqs) { 3828 bitmap_free(pf->avail_txqs); 3829 pf->avail_txqs = NULL; 3830 } 3831 3832 if (pf->avail_rxqs) { 3833 bitmap_free(pf->avail_rxqs); 3834 pf->avail_rxqs = NULL; 3835 } 3836 3837 if (pf->ptp.clock) 3838 ptp_clock_unregister(pf->ptp.clock); 3839 } 3840 3841 /** 3842 * ice_set_pf_caps - set PFs capability flags 3843 * @pf: pointer to the PF instance 3844 */ 3845 static void ice_set_pf_caps(struct ice_pf *pf) 3846 { 3847 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3848 3849 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3850 if (func_caps->common_cap.rdma) 3851 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3852 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3853 if (func_caps->common_cap.dcb) 3854 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3855 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3856 if (func_caps->common_cap.sr_iov_1_1) { 3857 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3858 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3859 ICE_MAX_SRIOV_VFS); 3860 } 3861 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3862 if (func_caps->common_cap.rss_table_size) 3863 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3864 3865 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3866 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3867 u16 unused; 3868 3869 /* ctrl_vsi_idx will be set to a valid value when flow director 3870 * is setup by ice_init_fdir 3871 */ 3872 pf->ctrl_vsi_idx = ICE_NO_VSI; 3873 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3874 /* force guaranteed filter pool for PF */ 3875 ice_alloc_fd_guar_item(&pf->hw, &unused, 3876 func_caps->fd_fltr_guar); 3877 /* force shared filter pool for PF */ 3878 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3879 func_caps->fd_fltr_best_effort); 3880 } 3881 3882 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3883 if (func_caps->common_cap.ieee_1588) 3884 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3885 3886 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3887 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3888 } 3889 3890 /** 3891 * ice_init_pf - Initialize general software structures (struct ice_pf) 3892 * @pf: board private structure to initialize 3893 */ 3894 static int ice_init_pf(struct ice_pf *pf) 3895 { 3896 ice_set_pf_caps(pf); 3897 3898 mutex_init(&pf->sw_mutex); 3899 mutex_init(&pf->tc_mutex); 3900 mutex_init(&pf->adev_mutex); 3901 3902 INIT_HLIST_HEAD(&pf->aq_wait_list); 3903 spin_lock_init(&pf->aq_wait_lock); 3904 init_waitqueue_head(&pf->aq_wait_queue); 3905 3906 init_waitqueue_head(&pf->reset_wait_queue); 3907 3908 /* setup service timer and periodic service task */ 3909 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3910 pf->serv_tmr_period = HZ; 3911 INIT_WORK(&pf->serv_task, ice_service_task); 3912 clear_bit(ICE_SERVICE_SCHED, pf->state); 3913 3914 mutex_init(&pf->avail_q_mutex); 3915 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3916 if (!pf->avail_txqs) 3917 return -ENOMEM; 3918 3919 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3920 if (!pf->avail_rxqs) { 3921 bitmap_free(pf->avail_txqs); 3922 pf->avail_txqs = NULL; 3923 return -ENOMEM; 3924 } 3925 3926 mutex_init(&pf->vfs.table_lock); 3927 hash_init(pf->vfs.table); 3928 3929 return 0; 3930 } 3931 3932 /** 3933 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3934 * @pf: board private structure 3935 * @v_remain: number of remaining MSI-X vectors to be distributed 3936 * 3937 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3938 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3939 * remaining vectors. 3940 */ 3941 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3942 { 3943 int v_rdma; 3944 3945 if (!ice_is_rdma_ena(pf)) { 3946 pf->num_lan_msix = v_remain; 3947 return; 3948 } 3949 3950 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3951 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3952 3953 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3954 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3955 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3956 3957 pf->num_rdma_msix = 0; 3958 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3959 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3960 (v_remain - v_rdma < v_rdma)) { 3961 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3962 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3963 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3964 } else { 3965 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3966 */ 3967 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3968 ICE_RDMA_NUM_AEQ_MSIX; 3969 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3970 } 3971 } 3972 3973 /** 3974 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3975 * @pf: board private structure 3976 * 3977 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3978 * device usage if there are not enough vectors. Return the number of vectors 3979 * reserved or negative on failure. 3980 */ 3981 static int ice_ena_msix_range(struct ice_pf *pf) 3982 { 3983 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3984 struct device *dev = ice_pf_to_dev(pf); 3985 int err, i; 3986 3987 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3988 num_cpus = num_online_cpus(); 3989 3990 /* LAN miscellaneous handler */ 3991 v_other = ICE_MIN_LAN_OICR_MSIX; 3992 3993 /* Flow Director */ 3994 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3995 v_other += ICE_FDIR_MSIX; 3996 3997 /* switchdev */ 3998 v_other += ICE_ESWITCH_MSIX; 3999 4000 v_wanted = v_other; 4001 4002 /* LAN traffic */ 4003 pf->num_lan_msix = num_cpus; 4004 v_wanted += pf->num_lan_msix; 4005 4006 /* RDMA auxiliary driver */ 4007 if (ice_is_rdma_ena(pf)) { 4008 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4009 v_wanted += pf->num_rdma_msix; 4010 } 4011 4012 if (v_wanted > hw_num_msix) { 4013 int v_remain; 4014 4015 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4016 v_wanted, hw_num_msix); 4017 4018 if (hw_num_msix < ICE_MIN_MSIX) { 4019 err = -ERANGE; 4020 goto exit_err; 4021 } 4022 4023 v_remain = hw_num_msix - v_other; 4024 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4025 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4026 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4027 } 4028 4029 ice_reduce_msix_usage(pf, v_remain); 4030 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4031 4032 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4033 pf->num_lan_msix); 4034 if (ice_is_rdma_ena(pf)) 4035 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4036 pf->num_rdma_msix); 4037 } 4038 4039 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4040 sizeof(*pf->msix_entries), GFP_KERNEL); 4041 if (!pf->msix_entries) { 4042 err = -ENOMEM; 4043 goto exit_err; 4044 } 4045 4046 for (i = 0; i < v_wanted; i++) 4047 pf->msix_entries[i].entry = i; 4048 4049 /* actually reserve the vectors */ 4050 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4051 ICE_MIN_MSIX, v_wanted); 4052 if (v_actual < 0) { 4053 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4054 err = v_actual; 4055 goto msix_err; 4056 } 4057 4058 if (v_actual < v_wanted) { 4059 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4060 v_wanted, v_actual); 4061 4062 if (v_actual < ICE_MIN_MSIX) { 4063 /* error if we can't get minimum vectors */ 4064 pci_disable_msix(pf->pdev); 4065 err = -ERANGE; 4066 goto msix_err; 4067 } else { 4068 int v_remain = v_actual - v_other; 4069 4070 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4071 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4072 4073 ice_reduce_msix_usage(pf, v_remain); 4074 4075 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4076 pf->num_lan_msix); 4077 4078 if (ice_is_rdma_ena(pf)) 4079 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4080 pf->num_rdma_msix); 4081 } 4082 } 4083 4084 return v_actual; 4085 4086 msix_err: 4087 devm_kfree(dev, pf->msix_entries); 4088 4089 exit_err: 4090 pf->num_rdma_msix = 0; 4091 pf->num_lan_msix = 0; 4092 return err; 4093 } 4094 4095 /** 4096 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4097 * @pf: board private structure 4098 */ 4099 static void ice_dis_msix(struct ice_pf *pf) 4100 { 4101 pci_disable_msix(pf->pdev); 4102 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4103 pf->msix_entries = NULL; 4104 } 4105 4106 /** 4107 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4108 * @pf: board private structure 4109 */ 4110 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4111 { 4112 ice_dis_msix(pf); 4113 4114 if (pf->irq_tracker) { 4115 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4116 pf->irq_tracker = NULL; 4117 } 4118 } 4119 4120 /** 4121 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4122 * @pf: board private structure to initialize 4123 */ 4124 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4125 { 4126 int vectors; 4127 4128 vectors = ice_ena_msix_range(pf); 4129 4130 if (vectors < 0) 4131 return vectors; 4132 4133 /* set up vector assignment tracking */ 4134 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4135 struct_size(pf->irq_tracker, list, vectors), 4136 GFP_KERNEL); 4137 if (!pf->irq_tracker) { 4138 ice_dis_msix(pf); 4139 return -ENOMEM; 4140 } 4141 4142 /* populate SW interrupts pool with number of OS granted IRQs. */ 4143 pf->num_avail_sw_msix = (u16)vectors; 4144 pf->irq_tracker->num_entries = (u16)vectors; 4145 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4146 4147 return 0; 4148 } 4149 4150 /** 4151 * ice_is_wol_supported - check if WoL is supported 4152 * @hw: pointer to hardware info 4153 * 4154 * Check if WoL is supported based on the HW configuration. 4155 * Returns true if NVM supports and enables WoL for this port, false otherwise 4156 */ 4157 bool ice_is_wol_supported(struct ice_hw *hw) 4158 { 4159 u16 wol_ctrl; 4160 4161 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4162 * word) indicates WoL is not supported on the corresponding PF ID. 4163 */ 4164 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4165 return false; 4166 4167 return !(BIT(hw->port_info->lport) & wol_ctrl); 4168 } 4169 4170 /** 4171 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4172 * @vsi: VSI being changed 4173 * @new_rx: new number of Rx queues 4174 * @new_tx: new number of Tx queues 4175 * 4176 * Only change the number of queues if new_tx, or new_rx is non-0. 4177 * 4178 * Returns 0 on success. 4179 */ 4180 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4181 { 4182 struct ice_pf *pf = vsi->back; 4183 int err = 0, timeout = 50; 4184 4185 if (!new_rx && !new_tx) 4186 return -EINVAL; 4187 4188 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4189 timeout--; 4190 if (!timeout) 4191 return -EBUSY; 4192 usleep_range(1000, 2000); 4193 } 4194 4195 if (new_tx) 4196 vsi->req_txq = (u16)new_tx; 4197 if (new_rx) 4198 vsi->req_rxq = (u16)new_rx; 4199 4200 /* set for the next time the netdev is started */ 4201 if (!netif_running(vsi->netdev)) { 4202 ice_vsi_rebuild(vsi, false); 4203 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4204 goto done; 4205 } 4206 4207 ice_vsi_close(vsi); 4208 ice_vsi_rebuild(vsi, false); 4209 ice_pf_dcb_recfg(pf); 4210 ice_vsi_open(vsi); 4211 done: 4212 clear_bit(ICE_CFG_BUSY, pf->state); 4213 return err; 4214 } 4215 4216 /** 4217 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4218 * @pf: PF to configure 4219 * 4220 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4221 * VSI can still Tx/Rx VLAN tagged packets. 4222 */ 4223 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4224 { 4225 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4226 struct ice_vsi_ctx *ctxt; 4227 struct ice_hw *hw; 4228 int status; 4229 4230 if (!vsi) 4231 return; 4232 4233 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4234 if (!ctxt) 4235 return; 4236 4237 hw = &pf->hw; 4238 ctxt->info = vsi->info; 4239 4240 ctxt->info.valid_sections = 4241 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4242 ICE_AQ_VSI_PROP_SECURITY_VALID | 4243 ICE_AQ_VSI_PROP_SW_VALID); 4244 4245 /* disable VLAN anti-spoof */ 4246 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4247 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4248 4249 /* disable VLAN pruning and keep all other settings */ 4250 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4251 4252 /* allow all VLANs on Tx and don't strip on Rx */ 4253 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4254 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4255 4256 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4257 if (status) { 4258 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4259 status, ice_aq_str(hw->adminq.sq_last_status)); 4260 } else { 4261 vsi->info.sec_flags = ctxt->info.sec_flags; 4262 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4263 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4264 } 4265 4266 kfree(ctxt); 4267 } 4268 4269 /** 4270 * ice_log_pkg_init - log result of DDP package load 4271 * @hw: pointer to hardware info 4272 * @state: state of package load 4273 */ 4274 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4275 { 4276 struct ice_pf *pf = hw->back; 4277 struct device *dev; 4278 4279 dev = ice_pf_to_dev(pf); 4280 4281 switch (state) { 4282 case ICE_DDP_PKG_SUCCESS: 4283 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4284 hw->active_pkg_name, 4285 hw->active_pkg_ver.major, 4286 hw->active_pkg_ver.minor, 4287 hw->active_pkg_ver.update, 4288 hw->active_pkg_ver.draft); 4289 break; 4290 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4291 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4292 hw->active_pkg_name, 4293 hw->active_pkg_ver.major, 4294 hw->active_pkg_ver.minor, 4295 hw->active_pkg_ver.update, 4296 hw->active_pkg_ver.draft); 4297 break; 4298 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4299 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4300 hw->active_pkg_name, 4301 hw->active_pkg_ver.major, 4302 hw->active_pkg_ver.minor, 4303 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4304 break; 4305 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4306 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4307 hw->active_pkg_name, 4308 hw->active_pkg_ver.major, 4309 hw->active_pkg_ver.minor, 4310 hw->active_pkg_ver.update, 4311 hw->active_pkg_ver.draft, 4312 hw->pkg_name, 4313 hw->pkg_ver.major, 4314 hw->pkg_ver.minor, 4315 hw->pkg_ver.update, 4316 hw->pkg_ver.draft); 4317 break; 4318 case ICE_DDP_PKG_FW_MISMATCH: 4319 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4320 break; 4321 case ICE_DDP_PKG_INVALID_FILE: 4322 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4323 break; 4324 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4325 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4326 break; 4327 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4328 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4329 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4330 break; 4331 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4332 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4333 break; 4334 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4335 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4336 break; 4337 case ICE_DDP_PKG_LOAD_ERROR: 4338 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4339 /* poll for reset to complete */ 4340 if (ice_check_reset(hw)) 4341 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4342 break; 4343 case ICE_DDP_PKG_ERR: 4344 default: 4345 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4346 break; 4347 } 4348 } 4349 4350 /** 4351 * ice_load_pkg - load/reload the DDP Package file 4352 * @firmware: firmware structure when firmware requested or NULL for reload 4353 * @pf: pointer to the PF instance 4354 * 4355 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4356 * initialize HW tables. 4357 */ 4358 static void 4359 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4360 { 4361 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4362 struct device *dev = ice_pf_to_dev(pf); 4363 struct ice_hw *hw = &pf->hw; 4364 4365 /* Load DDP Package */ 4366 if (firmware && !hw->pkg_copy) { 4367 state = ice_copy_and_init_pkg(hw, firmware->data, 4368 firmware->size); 4369 ice_log_pkg_init(hw, state); 4370 } else if (!firmware && hw->pkg_copy) { 4371 /* Reload package during rebuild after CORER/GLOBR reset */ 4372 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4373 ice_log_pkg_init(hw, state); 4374 } else { 4375 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4376 } 4377 4378 if (!ice_is_init_pkg_successful(state)) { 4379 /* Safe Mode */ 4380 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4381 return; 4382 } 4383 4384 /* Successful download package is the precondition for advanced 4385 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4386 */ 4387 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4388 } 4389 4390 /** 4391 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4392 * @pf: pointer to the PF structure 4393 * 4394 * There is no error returned here because the driver should be able to handle 4395 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4396 * specifically with Tx. 4397 */ 4398 static void ice_verify_cacheline_size(struct ice_pf *pf) 4399 { 4400 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4401 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4402 ICE_CACHE_LINE_BYTES); 4403 } 4404 4405 /** 4406 * ice_send_version - update firmware with driver version 4407 * @pf: PF struct 4408 * 4409 * Returns 0 on success, else error code 4410 */ 4411 static int ice_send_version(struct ice_pf *pf) 4412 { 4413 struct ice_driver_ver dv; 4414 4415 dv.major_ver = 0xff; 4416 dv.minor_ver = 0xff; 4417 dv.build_ver = 0xff; 4418 dv.subbuild_ver = 0; 4419 strscpy((char *)dv.driver_string, UTS_RELEASE, 4420 sizeof(dv.driver_string)); 4421 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4422 } 4423 4424 /** 4425 * ice_init_fdir - Initialize flow director VSI and configuration 4426 * @pf: pointer to the PF instance 4427 * 4428 * returns 0 on success, negative on error 4429 */ 4430 static int ice_init_fdir(struct ice_pf *pf) 4431 { 4432 struct device *dev = ice_pf_to_dev(pf); 4433 struct ice_vsi *ctrl_vsi; 4434 int err; 4435 4436 /* Side Band Flow Director needs to have a control VSI. 4437 * Allocate it and store it in the PF. 4438 */ 4439 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4440 if (!ctrl_vsi) { 4441 dev_dbg(dev, "could not create control VSI\n"); 4442 return -ENOMEM; 4443 } 4444 4445 err = ice_vsi_open_ctrl(ctrl_vsi); 4446 if (err) { 4447 dev_dbg(dev, "could not open control VSI\n"); 4448 goto err_vsi_open; 4449 } 4450 4451 mutex_init(&pf->hw.fdir_fltr_lock); 4452 4453 err = ice_fdir_create_dflt_rules(pf); 4454 if (err) 4455 goto err_fdir_rule; 4456 4457 return 0; 4458 4459 err_fdir_rule: 4460 ice_fdir_release_flows(&pf->hw); 4461 ice_vsi_close(ctrl_vsi); 4462 err_vsi_open: 4463 ice_vsi_release(ctrl_vsi); 4464 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4465 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4466 pf->ctrl_vsi_idx = ICE_NO_VSI; 4467 } 4468 return err; 4469 } 4470 4471 /** 4472 * ice_get_opt_fw_name - return optional firmware file name or NULL 4473 * @pf: pointer to the PF instance 4474 */ 4475 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4476 { 4477 /* Optional firmware name same as default with additional dash 4478 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4479 */ 4480 struct pci_dev *pdev = pf->pdev; 4481 char *opt_fw_filename; 4482 u64 dsn; 4483 4484 /* Determine the name of the optional file using the DSN (two 4485 * dwords following the start of the DSN Capability). 4486 */ 4487 dsn = pci_get_dsn(pdev); 4488 if (!dsn) 4489 return NULL; 4490 4491 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4492 if (!opt_fw_filename) 4493 return NULL; 4494 4495 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4496 ICE_DDP_PKG_PATH, dsn); 4497 4498 return opt_fw_filename; 4499 } 4500 4501 /** 4502 * ice_request_fw - Device initialization routine 4503 * @pf: pointer to the PF instance 4504 */ 4505 static void ice_request_fw(struct ice_pf *pf) 4506 { 4507 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4508 const struct firmware *firmware = NULL; 4509 struct device *dev = ice_pf_to_dev(pf); 4510 int err = 0; 4511 4512 /* optional device-specific DDP (if present) overrides the default DDP 4513 * package file. kernel logs a debug message if the file doesn't exist, 4514 * and warning messages for other errors. 4515 */ 4516 if (opt_fw_filename) { 4517 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4518 if (err) { 4519 kfree(opt_fw_filename); 4520 goto dflt_pkg_load; 4521 } 4522 4523 /* request for firmware was successful. Download to device */ 4524 ice_load_pkg(firmware, pf); 4525 kfree(opt_fw_filename); 4526 release_firmware(firmware); 4527 return; 4528 } 4529 4530 dflt_pkg_load: 4531 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4532 if (err) { 4533 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4534 return; 4535 } 4536 4537 /* request for firmware was successful. Download to device */ 4538 ice_load_pkg(firmware, pf); 4539 release_firmware(firmware); 4540 } 4541 4542 /** 4543 * ice_print_wake_reason - show the wake up cause in the log 4544 * @pf: pointer to the PF struct 4545 */ 4546 static void ice_print_wake_reason(struct ice_pf *pf) 4547 { 4548 u32 wus = pf->wakeup_reason; 4549 const char *wake_str; 4550 4551 /* if no wake event, nothing to print */ 4552 if (!wus) 4553 return; 4554 4555 if (wus & PFPM_WUS_LNKC_M) 4556 wake_str = "Link\n"; 4557 else if (wus & PFPM_WUS_MAG_M) 4558 wake_str = "Magic Packet\n"; 4559 else if (wus & PFPM_WUS_MNG_M) 4560 wake_str = "Management\n"; 4561 else if (wus & PFPM_WUS_FW_RST_WK_M) 4562 wake_str = "Firmware Reset\n"; 4563 else 4564 wake_str = "Unknown\n"; 4565 4566 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4567 } 4568 4569 /** 4570 * ice_register_netdev - register netdev and devlink port 4571 * @pf: pointer to the PF struct 4572 */ 4573 static int ice_register_netdev(struct ice_pf *pf) 4574 { 4575 struct ice_vsi *vsi; 4576 int err = 0; 4577 4578 vsi = ice_get_main_vsi(pf); 4579 if (!vsi || !vsi->netdev) 4580 return -EIO; 4581 4582 err = register_netdev(vsi->netdev); 4583 if (err) 4584 goto err_register_netdev; 4585 4586 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4587 netif_carrier_off(vsi->netdev); 4588 netif_tx_stop_all_queues(vsi->netdev); 4589 err = ice_devlink_create_pf_port(pf); 4590 if (err) 4591 goto err_devlink_create; 4592 4593 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4594 4595 return 0; 4596 err_devlink_create: 4597 unregister_netdev(vsi->netdev); 4598 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4599 err_register_netdev: 4600 free_netdev(vsi->netdev); 4601 vsi->netdev = NULL; 4602 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4603 return err; 4604 } 4605 4606 /** 4607 * ice_probe - Device initialization routine 4608 * @pdev: PCI device information struct 4609 * @ent: entry in ice_pci_tbl 4610 * 4611 * Returns 0 on success, negative on failure 4612 */ 4613 static int 4614 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4615 { 4616 struct device *dev = &pdev->dev; 4617 struct ice_pf *pf; 4618 struct ice_hw *hw; 4619 int i, err; 4620 4621 if (pdev->is_virtfn) { 4622 dev_err(dev, "can't probe a virtual function\n"); 4623 return -EINVAL; 4624 } 4625 4626 /* this driver uses devres, see 4627 * Documentation/driver-api/driver-model/devres.rst 4628 */ 4629 err = pcim_enable_device(pdev); 4630 if (err) 4631 return err; 4632 4633 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4634 if (err) { 4635 dev_err(dev, "BAR0 I/O map error %d\n", err); 4636 return err; 4637 } 4638 4639 pf = ice_allocate_pf(dev); 4640 if (!pf) 4641 return -ENOMEM; 4642 4643 /* initialize Auxiliary index to invalid value */ 4644 pf->aux_idx = -1; 4645 4646 /* set up for high or low DMA */ 4647 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4648 if (err) { 4649 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4650 return err; 4651 } 4652 4653 pci_enable_pcie_error_reporting(pdev); 4654 pci_set_master(pdev); 4655 4656 pf->pdev = pdev; 4657 pci_set_drvdata(pdev, pf); 4658 set_bit(ICE_DOWN, pf->state); 4659 /* Disable service task until DOWN bit is cleared */ 4660 set_bit(ICE_SERVICE_DIS, pf->state); 4661 4662 hw = &pf->hw; 4663 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4664 pci_save_state(pdev); 4665 4666 hw->back = pf; 4667 hw->vendor_id = pdev->vendor; 4668 hw->device_id = pdev->device; 4669 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4670 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4671 hw->subsystem_device_id = pdev->subsystem_device; 4672 hw->bus.device = PCI_SLOT(pdev->devfn); 4673 hw->bus.func = PCI_FUNC(pdev->devfn); 4674 ice_set_ctrlq_len(hw); 4675 4676 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4677 4678 #ifndef CONFIG_DYNAMIC_DEBUG 4679 if (debug < -1) 4680 hw->debug_mask = debug; 4681 #endif 4682 4683 err = ice_init_hw(hw); 4684 if (err) { 4685 dev_err(dev, "ice_init_hw failed: %d\n", err); 4686 err = -EIO; 4687 goto err_exit_unroll; 4688 } 4689 4690 ice_init_feature_support(pf); 4691 4692 ice_request_fw(pf); 4693 4694 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4695 * set in pf->state, which will cause ice_is_safe_mode to return 4696 * true 4697 */ 4698 if (ice_is_safe_mode(pf)) { 4699 /* we already got function/device capabilities but these don't 4700 * reflect what the driver needs to do in safe mode. Instead of 4701 * adding conditional logic everywhere to ignore these 4702 * device/function capabilities, override them. 4703 */ 4704 ice_set_safe_mode_caps(hw); 4705 } 4706 4707 err = ice_init_pf(pf); 4708 if (err) { 4709 dev_err(dev, "ice_init_pf failed: %d\n", err); 4710 goto err_init_pf_unroll; 4711 } 4712 4713 ice_devlink_init_regions(pf); 4714 4715 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4716 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4717 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4718 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4719 i = 0; 4720 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4721 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4722 pf->hw.tnl.valid_count[TNL_VXLAN]; 4723 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4724 UDP_TUNNEL_TYPE_VXLAN; 4725 i++; 4726 } 4727 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4728 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4729 pf->hw.tnl.valid_count[TNL_GENEVE]; 4730 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4731 UDP_TUNNEL_TYPE_GENEVE; 4732 i++; 4733 } 4734 4735 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4736 if (!pf->num_alloc_vsi) { 4737 err = -EIO; 4738 goto err_init_pf_unroll; 4739 } 4740 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4741 dev_warn(&pf->pdev->dev, 4742 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4743 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4744 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4745 } 4746 4747 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4748 GFP_KERNEL); 4749 if (!pf->vsi) { 4750 err = -ENOMEM; 4751 goto err_init_pf_unroll; 4752 } 4753 4754 err = ice_init_interrupt_scheme(pf); 4755 if (err) { 4756 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4757 err = -EIO; 4758 goto err_init_vsi_unroll; 4759 } 4760 4761 /* In case of MSIX we are going to setup the misc vector right here 4762 * to handle admin queue events etc. In case of legacy and MSI 4763 * the misc functionality and queue processing is combined in 4764 * the same vector and that gets setup at open. 4765 */ 4766 err = ice_req_irq_msix_misc(pf); 4767 if (err) { 4768 dev_err(dev, "setup of misc vector failed: %d\n", err); 4769 goto err_init_interrupt_unroll; 4770 } 4771 4772 /* create switch struct for the switch element created by FW on boot */ 4773 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4774 if (!pf->first_sw) { 4775 err = -ENOMEM; 4776 goto err_msix_misc_unroll; 4777 } 4778 4779 if (hw->evb_veb) 4780 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4781 else 4782 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4783 4784 pf->first_sw->pf = pf; 4785 4786 /* record the sw_id available for later use */ 4787 pf->first_sw->sw_id = hw->port_info->sw_id; 4788 4789 err = ice_setup_pf_sw(pf); 4790 if (err) { 4791 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4792 goto err_alloc_sw_unroll; 4793 } 4794 4795 clear_bit(ICE_SERVICE_DIS, pf->state); 4796 4797 /* tell the firmware we are up */ 4798 err = ice_send_version(pf); 4799 if (err) { 4800 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4801 UTS_RELEASE, err); 4802 goto err_send_version_unroll; 4803 } 4804 4805 /* since everything is good, start the service timer */ 4806 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4807 4808 err = ice_init_link_events(pf->hw.port_info); 4809 if (err) { 4810 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4811 goto err_send_version_unroll; 4812 } 4813 4814 /* not a fatal error if this fails */ 4815 err = ice_init_nvm_phy_type(pf->hw.port_info); 4816 if (err) 4817 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4818 4819 /* not a fatal error if this fails */ 4820 err = ice_update_link_info(pf->hw.port_info); 4821 if (err) 4822 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4823 4824 ice_init_link_dflt_override(pf->hw.port_info); 4825 4826 ice_check_link_cfg_err(pf, 4827 pf->hw.port_info->phy.link_info.link_cfg_err); 4828 4829 /* if media available, initialize PHY settings */ 4830 if (pf->hw.port_info->phy.link_info.link_info & 4831 ICE_AQ_MEDIA_AVAILABLE) { 4832 /* not a fatal error if this fails */ 4833 err = ice_init_phy_user_cfg(pf->hw.port_info); 4834 if (err) 4835 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4836 4837 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4838 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4839 4840 if (vsi) 4841 ice_configure_phy(vsi); 4842 } 4843 } else { 4844 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4845 } 4846 4847 ice_verify_cacheline_size(pf); 4848 4849 /* Save wakeup reason register for later use */ 4850 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4851 4852 /* check for a power management event */ 4853 ice_print_wake_reason(pf); 4854 4855 /* clear wake status, all bits */ 4856 wr32(hw, PFPM_WUS, U32_MAX); 4857 4858 /* Disable WoL at init, wait for user to enable */ 4859 device_set_wakeup_enable(dev, false); 4860 4861 if (ice_is_safe_mode(pf)) { 4862 ice_set_safe_mode_vlan_cfg(pf); 4863 goto probe_done; 4864 } 4865 4866 /* initialize DDP driven features */ 4867 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4868 ice_ptp_init(pf); 4869 4870 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4871 ice_gnss_init(pf); 4872 4873 /* Note: Flow director init failure is non-fatal to load */ 4874 if (ice_init_fdir(pf)) 4875 dev_err(dev, "could not initialize flow director\n"); 4876 4877 /* Note: DCB init failure is non-fatal to load */ 4878 if (ice_init_pf_dcb(pf, false)) { 4879 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4880 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4881 } else { 4882 ice_cfg_lldp_mib_change(&pf->hw, true); 4883 } 4884 4885 if (ice_init_lag(pf)) 4886 dev_warn(dev, "Failed to init link aggregation support\n"); 4887 4888 /* print PCI link speed and width */ 4889 pcie_print_link_status(pf->pdev); 4890 4891 probe_done: 4892 err = ice_register_netdev(pf); 4893 if (err) 4894 goto err_netdev_reg; 4895 4896 err = ice_devlink_register_params(pf); 4897 if (err) 4898 goto err_netdev_reg; 4899 4900 /* ready to go, so clear down state bit */ 4901 clear_bit(ICE_DOWN, pf->state); 4902 if (ice_is_rdma_ena(pf)) { 4903 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4904 if (pf->aux_idx < 0) { 4905 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4906 err = -ENOMEM; 4907 goto err_devlink_reg_param; 4908 } 4909 4910 err = ice_init_rdma(pf); 4911 if (err) { 4912 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4913 err = -EIO; 4914 goto err_init_aux_unroll; 4915 } 4916 } else { 4917 dev_warn(dev, "RDMA is not supported on this device\n"); 4918 } 4919 4920 ice_devlink_register(pf); 4921 return 0; 4922 4923 err_init_aux_unroll: 4924 pf->adev = NULL; 4925 ida_free(&ice_aux_ida, pf->aux_idx); 4926 err_devlink_reg_param: 4927 ice_devlink_unregister_params(pf); 4928 err_netdev_reg: 4929 err_send_version_unroll: 4930 ice_vsi_release_all(pf); 4931 err_alloc_sw_unroll: 4932 set_bit(ICE_SERVICE_DIS, pf->state); 4933 set_bit(ICE_DOWN, pf->state); 4934 devm_kfree(dev, pf->first_sw); 4935 err_msix_misc_unroll: 4936 ice_free_irq_msix_misc(pf); 4937 err_init_interrupt_unroll: 4938 ice_clear_interrupt_scheme(pf); 4939 err_init_vsi_unroll: 4940 devm_kfree(dev, pf->vsi); 4941 err_init_pf_unroll: 4942 ice_deinit_pf(pf); 4943 ice_devlink_destroy_regions(pf); 4944 ice_deinit_hw(hw); 4945 err_exit_unroll: 4946 pci_disable_pcie_error_reporting(pdev); 4947 pci_disable_device(pdev); 4948 return err; 4949 } 4950 4951 /** 4952 * ice_set_wake - enable or disable Wake on LAN 4953 * @pf: pointer to the PF struct 4954 * 4955 * Simple helper for WoL control 4956 */ 4957 static void ice_set_wake(struct ice_pf *pf) 4958 { 4959 struct ice_hw *hw = &pf->hw; 4960 bool wol = pf->wol_ena; 4961 4962 /* clear wake state, otherwise new wake events won't fire */ 4963 wr32(hw, PFPM_WUS, U32_MAX); 4964 4965 /* enable / disable APM wake up, no RMW needed */ 4966 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4967 4968 /* set magic packet filter enabled */ 4969 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4970 } 4971 4972 /** 4973 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4974 * @pf: pointer to the PF struct 4975 * 4976 * Issue firmware command to enable multicast magic wake, making 4977 * sure that any locally administered address (LAA) is used for 4978 * wake, and that PF reset doesn't undo the LAA. 4979 */ 4980 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4981 { 4982 struct device *dev = ice_pf_to_dev(pf); 4983 struct ice_hw *hw = &pf->hw; 4984 u8 mac_addr[ETH_ALEN]; 4985 struct ice_vsi *vsi; 4986 int status; 4987 u8 flags; 4988 4989 if (!pf->wol_ena) 4990 return; 4991 4992 vsi = ice_get_main_vsi(pf); 4993 if (!vsi) 4994 return; 4995 4996 /* Get current MAC address in case it's an LAA */ 4997 if (vsi->netdev) 4998 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4999 else 5000 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5001 5002 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5003 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5004 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5005 5006 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5007 if (status) 5008 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5009 status, ice_aq_str(hw->adminq.sq_last_status)); 5010 } 5011 5012 /** 5013 * ice_remove - Device removal routine 5014 * @pdev: PCI device information struct 5015 */ 5016 static void ice_remove(struct pci_dev *pdev) 5017 { 5018 struct ice_pf *pf = pci_get_drvdata(pdev); 5019 int i; 5020 5021 ice_devlink_unregister(pf); 5022 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5023 if (!ice_is_reset_in_progress(pf->state)) 5024 break; 5025 msleep(100); 5026 } 5027 5028 ice_tc_indir_block_remove(pf); 5029 5030 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5031 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5032 ice_free_vfs(pf); 5033 } 5034 5035 ice_service_task_stop(pf); 5036 5037 ice_aq_cancel_waiting_tasks(pf); 5038 ice_unplug_aux_dev(pf); 5039 if (pf->aux_idx >= 0) 5040 ida_free(&ice_aux_ida, pf->aux_idx); 5041 ice_devlink_unregister_params(pf); 5042 set_bit(ICE_DOWN, pf->state); 5043 5044 ice_deinit_lag(pf); 5045 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5046 ice_ptp_release(pf); 5047 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5048 ice_gnss_exit(pf); 5049 if (!ice_is_safe_mode(pf)) 5050 ice_remove_arfs(pf); 5051 ice_setup_mc_magic_wake(pf); 5052 ice_vsi_release_all(pf); 5053 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5054 ice_set_wake(pf); 5055 ice_free_irq_msix_misc(pf); 5056 ice_for_each_vsi(pf, i) { 5057 if (!pf->vsi[i]) 5058 continue; 5059 ice_vsi_free_q_vectors(pf->vsi[i]); 5060 } 5061 ice_deinit_pf(pf); 5062 ice_devlink_destroy_regions(pf); 5063 ice_deinit_hw(&pf->hw); 5064 5065 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5066 * do it via ice_schedule_reset() since there is no need to rebuild 5067 * and the service task is already stopped. 5068 */ 5069 ice_reset(&pf->hw, ICE_RESET_PFR); 5070 pci_wait_for_pending_transaction(pdev); 5071 ice_clear_interrupt_scheme(pf); 5072 pci_disable_pcie_error_reporting(pdev); 5073 pci_disable_device(pdev); 5074 } 5075 5076 /** 5077 * ice_shutdown - PCI callback for shutting down device 5078 * @pdev: PCI device information struct 5079 */ 5080 static void ice_shutdown(struct pci_dev *pdev) 5081 { 5082 struct ice_pf *pf = pci_get_drvdata(pdev); 5083 5084 ice_remove(pdev); 5085 5086 if (system_state == SYSTEM_POWER_OFF) { 5087 pci_wake_from_d3(pdev, pf->wol_ena); 5088 pci_set_power_state(pdev, PCI_D3hot); 5089 } 5090 } 5091 5092 #ifdef CONFIG_PM 5093 /** 5094 * ice_prepare_for_shutdown - prep for PCI shutdown 5095 * @pf: board private structure 5096 * 5097 * Inform or close all dependent features in prep for PCI device shutdown 5098 */ 5099 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5100 { 5101 struct ice_hw *hw = &pf->hw; 5102 u32 v; 5103 5104 /* Notify VFs of impending reset */ 5105 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5106 ice_vc_notify_reset(pf); 5107 5108 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5109 5110 /* disable the VSIs and their queues that are not already DOWN */ 5111 ice_pf_dis_all_vsi(pf, false); 5112 5113 ice_for_each_vsi(pf, v) 5114 if (pf->vsi[v]) 5115 pf->vsi[v]->vsi_num = 0; 5116 5117 ice_shutdown_all_ctrlq(hw); 5118 } 5119 5120 /** 5121 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5122 * @pf: board private structure to reinitialize 5123 * 5124 * This routine reinitialize interrupt scheme that was cleared during 5125 * power management suspend callback. 5126 * 5127 * This should be called during resume routine to re-allocate the q_vectors 5128 * and reacquire interrupts. 5129 */ 5130 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5131 { 5132 struct device *dev = ice_pf_to_dev(pf); 5133 int ret, v; 5134 5135 /* Since we clear MSIX flag during suspend, we need to 5136 * set it back during resume... 5137 */ 5138 5139 ret = ice_init_interrupt_scheme(pf); 5140 if (ret) { 5141 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5142 return ret; 5143 } 5144 5145 /* Remap vectors and rings, after successful re-init interrupts */ 5146 ice_for_each_vsi(pf, v) { 5147 if (!pf->vsi[v]) 5148 continue; 5149 5150 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5151 if (ret) 5152 goto err_reinit; 5153 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5154 } 5155 5156 ret = ice_req_irq_msix_misc(pf); 5157 if (ret) { 5158 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5159 ret); 5160 goto err_reinit; 5161 } 5162 5163 return 0; 5164 5165 err_reinit: 5166 while (v--) 5167 if (pf->vsi[v]) 5168 ice_vsi_free_q_vectors(pf->vsi[v]); 5169 5170 return ret; 5171 } 5172 5173 /** 5174 * ice_suspend 5175 * @dev: generic device information structure 5176 * 5177 * Power Management callback to quiesce the device and prepare 5178 * for D3 transition. 5179 */ 5180 static int __maybe_unused ice_suspend(struct device *dev) 5181 { 5182 struct pci_dev *pdev = to_pci_dev(dev); 5183 struct ice_pf *pf; 5184 int disabled, v; 5185 5186 pf = pci_get_drvdata(pdev); 5187 5188 if (!ice_pf_state_is_nominal(pf)) { 5189 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5190 return -EBUSY; 5191 } 5192 5193 /* Stop watchdog tasks until resume completion. 5194 * Even though it is most likely that the service task is 5195 * disabled if the device is suspended or down, the service task's 5196 * state is controlled by a different state bit, and we should 5197 * store and honor whatever state that bit is in at this point. 5198 */ 5199 disabled = ice_service_task_stop(pf); 5200 5201 ice_unplug_aux_dev(pf); 5202 5203 /* Already suspended?, then there is nothing to do */ 5204 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5205 if (!disabled) 5206 ice_service_task_restart(pf); 5207 return 0; 5208 } 5209 5210 if (test_bit(ICE_DOWN, pf->state) || 5211 ice_is_reset_in_progress(pf->state)) { 5212 dev_err(dev, "can't suspend device in reset or already down\n"); 5213 if (!disabled) 5214 ice_service_task_restart(pf); 5215 return 0; 5216 } 5217 5218 ice_setup_mc_magic_wake(pf); 5219 5220 ice_prepare_for_shutdown(pf); 5221 5222 ice_set_wake(pf); 5223 5224 /* Free vectors, clear the interrupt scheme and release IRQs 5225 * for proper hibernation, especially with large number of CPUs. 5226 * Otherwise hibernation might fail when mapping all the vectors back 5227 * to CPU0. 5228 */ 5229 ice_free_irq_msix_misc(pf); 5230 ice_for_each_vsi(pf, v) { 5231 if (!pf->vsi[v]) 5232 continue; 5233 ice_vsi_free_q_vectors(pf->vsi[v]); 5234 } 5235 ice_clear_interrupt_scheme(pf); 5236 5237 pci_save_state(pdev); 5238 pci_wake_from_d3(pdev, pf->wol_ena); 5239 pci_set_power_state(pdev, PCI_D3hot); 5240 return 0; 5241 } 5242 5243 /** 5244 * ice_resume - PM callback for waking up from D3 5245 * @dev: generic device information structure 5246 */ 5247 static int __maybe_unused ice_resume(struct device *dev) 5248 { 5249 struct pci_dev *pdev = to_pci_dev(dev); 5250 enum ice_reset_req reset_type; 5251 struct ice_pf *pf; 5252 struct ice_hw *hw; 5253 int ret; 5254 5255 pci_set_power_state(pdev, PCI_D0); 5256 pci_restore_state(pdev); 5257 pci_save_state(pdev); 5258 5259 if (!pci_device_is_present(pdev)) 5260 return -ENODEV; 5261 5262 ret = pci_enable_device_mem(pdev); 5263 if (ret) { 5264 dev_err(dev, "Cannot enable device after suspend\n"); 5265 return ret; 5266 } 5267 5268 pf = pci_get_drvdata(pdev); 5269 hw = &pf->hw; 5270 5271 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5272 ice_print_wake_reason(pf); 5273 5274 /* We cleared the interrupt scheme when we suspended, so we need to 5275 * restore it now to resume device functionality. 5276 */ 5277 ret = ice_reinit_interrupt_scheme(pf); 5278 if (ret) 5279 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5280 5281 clear_bit(ICE_DOWN, pf->state); 5282 /* Now perform PF reset and rebuild */ 5283 reset_type = ICE_RESET_PFR; 5284 /* re-enable service task for reset, but allow reset to schedule it */ 5285 clear_bit(ICE_SERVICE_DIS, pf->state); 5286 5287 if (ice_schedule_reset(pf, reset_type)) 5288 dev_err(dev, "Reset during resume failed.\n"); 5289 5290 clear_bit(ICE_SUSPENDED, pf->state); 5291 ice_service_task_restart(pf); 5292 5293 /* Restart the service task */ 5294 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5295 5296 return 0; 5297 } 5298 #endif /* CONFIG_PM */ 5299 5300 /** 5301 * ice_pci_err_detected - warning that PCI error has been detected 5302 * @pdev: PCI device information struct 5303 * @err: the type of PCI error 5304 * 5305 * Called to warn that something happened on the PCI bus and the error handling 5306 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5307 */ 5308 static pci_ers_result_t 5309 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5310 { 5311 struct ice_pf *pf = pci_get_drvdata(pdev); 5312 5313 if (!pf) { 5314 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5315 __func__, err); 5316 return PCI_ERS_RESULT_DISCONNECT; 5317 } 5318 5319 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5320 ice_service_task_stop(pf); 5321 5322 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5323 set_bit(ICE_PFR_REQ, pf->state); 5324 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5325 } 5326 } 5327 5328 return PCI_ERS_RESULT_NEED_RESET; 5329 } 5330 5331 /** 5332 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5333 * @pdev: PCI device information struct 5334 * 5335 * Called to determine if the driver can recover from the PCI slot reset by 5336 * using a register read to determine if the device is recoverable. 5337 */ 5338 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5339 { 5340 struct ice_pf *pf = pci_get_drvdata(pdev); 5341 pci_ers_result_t result; 5342 int err; 5343 u32 reg; 5344 5345 err = pci_enable_device_mem(pdev); 5346 if (err) { 5347 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5348 err); 5349 result = PCI_ERS_RESULT_DISCONNECT; 5350 } else { 5351 pci_set_master(pdev); 5352 pci_restore_state(pdev); 5353 pci_save_state(pdev); 5354 pci_wake_from_d3(pdev, false); 5355 5356 /* Check for life */ 5357 reg = rd32(&pf->hw, GLGEN_RTRIG); 5358 if (!reg) 5359 result = PCI_ERS_RESULT_RECOVERED; 5360 else 5361 result = PCI_ERS_RESULT_DISCONNECT; 5362 } 5363 5364 return result; 5365 } 5366 5367 /** 5368 * ice_pci_err_resume - restart operations after PCI error recovery 5369 * @pdev: PCI device information struct 5370 * 5371 * Called to allow the driver to bring things back up after PCI error and/or 5372 * reset recovery have finished 5373 */ 5374 static void ice_pci_err_resume(struct pci_dev *pdev) 5375 { 5376 struct ice_pf *pf = pci_get_drvdata(pdev); 5377 5378 if (!pf) { 5379 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5380 __func__); 5381 return; 5382 } 5383 5384 if (test_bit(ICE_SUSPENDED, pf->state)) { 5385 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5386 __func__); 5387 return; 5388 } 5389 5390 ice_restore_all_vfs_msi_state(pdev); 5391 5392 ice_do_reset(pf, ICE_RESET_PFR); 5393 ice_service_task_restart(pf); 5394 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5395 } 5396 5397 /** 5398 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5399 * @pdev: PCI device information struct 5400 */ 5401 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5402 { 5403 struct ice_pf *pf = pci_get_drvdata(pdev); 5404 5405 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5406 ice_service_task_stop(pf); 5407 5408 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5409 set_bit(ICE_PFR_REQ, pf->state); 5410 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5411 } 5412 } 5413 } 5414 5415 /** 5416 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5417 * @pdev: PCI device information struct 5418 */ 5419 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5420 { 5421 ice_pci_err_resume(pdev); 5422 } 5423 5424 /* ice_pci_tbl - PCI Device ID Table 5425 * 5426 * Wildcard entries (PCI_ANY_ID) should come last 5427 * Last entry must be all 0s 5428 * 5429 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5430 * Class, Class Mask, private data (not used) } 5431 */ 5432 static const struct pci_device_id ice_pci_tbl[] = { 5433 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5434 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5435 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5436 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5437 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5438 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5439 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5440 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5441 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5442 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5443 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5444 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5445 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5446 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5447 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5448 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5449 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5450 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5451 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5452 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5453 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5454 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5455 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5456 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5457 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5458 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5459 /* required last entry */ 5460 { 0, } 5461 }; 5462 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5463 5464 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5465 5466 static const struct pci_error_handlers ice_pci_err_handler = { 5467 .error_detected = ice_pci_err_detected, 5468 .slot_reset = ice_pci_err_slot_reset, 5469 .reset_prepare = ice_pci_err_reset_prepare, 5470 .reset_done = ice_pci_err_reset_done, 5471 .resume = ice_pci_err_resume 5472 }; 5473 5474 static struct pci_driver ice_driver = { 5475 .name = KBUILD_MODNAME, 5476 .id_table = ice_pci_tbl, 5477 .probe = ice_probe, 5478 .remove = ice_remove, 5479 #ifdef CONFIG_PM 5480 .driver.pm = &ice_pm_ops, 5481 #endif /* CONFIG_PM */ 5482 .shutdown = ice_shutdown, 5483 .sriov_configure = ice_sriov_configure, 5484 .err_handler = &ice_pci_err_handler 5485 }; 5486 5487 /** 5488 * ice_module_init - Driver registration routine 5489 * 5490 * ice_module_init is the first routine called when the driver is 5491 * loaded. All it does is register with the PCI subsystem. 5492 */ 5493 static int __init ice_module_init(void) 5494 { 5495 int status; 5496 5497 pr_info("%s\n", ice_driver_string); 5498 pr_info("%s\n", ice_copyright); 5499 5500 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5501 if (!ice_wq) { 5502 pr_err("Failed to create workqueue\n"); 5503 return -ENOMEM; 5504 } 5505 5506 status = pci_register_driver(&ice_driver); 5507 if (status) { 5508 pr_err("failed to register PCI driver, err %d\n", status); 5509 destroy_workqueue(ice_wq); 5510 } 5511 5512 return status; 5513 } 5514 module_init(ice_module_init); 5515 5516 /** 5517 * ice_module_exit - Driver exit cleanup routine 5518 * 5519 * ice_module_exit is called just before the driver is removed 5520 * from memory. 5521 */ 5522 static void __exit ice_module_exit(void) 5523 { 5524 pci_unregister_driver(&ice_driver); 5525 destroy_workqueue(ice_wq); 5526 pr_info("module unloaded\n"); 5527 } 5528 module_exit(ice_module_exit); 5529 5530 /** 5531 * ice_set_mac_address - NDO callback to set MAC address 5532 * @netdev: network interface device structure 5533 * @pi: pointer to an address structure 5534 * 5535 * Returns 0 on success, negative on failure 5536 */ 5537 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5538 { 5539 struct ice_netdev_priv *np = netdev_priv(netdev); 5540 struct ice_vsi *vsi = np->vsi; 5541 struct ice_pf *pf = vsi->back; 5542 struct ice_hw *hw = &pf->hw; 5543 struct sockaddr *addr = pi; 5544 u8 old_mac[ETH_ALEN]; 5545 u8 flags = 0; 5546 u8 *mac; 5547 int err; 5548 5549 mac = (u8 *)addr->sa_data; 5550 5551 if (!is_valid_ether_addr(mac)) 5552 return -EADDRNOTAVAIL; 5553 5554 if (ether_addr_equal(netdev->dev_addr, mac)) { 5555 netdev_dbg(netdev, "already using mac %pM\n", mac); 5556 return 0; 5557 } 5558 5559 if (test_bit(ICE_DOWN, pf->state) || 5560 ice_is_reset_in_progress(pf->state)) { 5561 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5562 mac); 5563 return -EBUSY; 5564 } 5565 5566 if (ice_chnl_dmac_fltr_cnt(pf)) { 5567 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5568 mac); 5569 return -EAGAIN; 5570 } 5571 5572 netif_addr_lock_bh(netdev); 5573 ether_addr_copy(old_mac, netdev->dev_addr); 5574 /* change the netdev's MAC address */ 5575 eth_hw_addr_set(netdev, mac); 5576 netif_addr_unlock_bh(netdev); 5577 5578 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5579 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5580 if (err && err != -ENOENT) { 5581 err = -EADDRNOTAVAIL; 5582 goto err_update_filters; 5583 } 5584 5585 /* Add filter for new MAC. If filter exists, return success */ 5586 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5587 if (err == -EEXIST) { 5588 /* Although this MAC filter is already present in hardware it's 5589 * possible in some cases (e.g. bonding) that dev_addr was 5590 * modified outside of the driver and needs to be restored back 5591 * to this value. 5592 */ 5593 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5594 5595 return 0; 5596 } else if (err) { 5597 /* error if the new filter addition failed */ 5598 err = -EADDRNOTAVAIL; 5599 } 5600 5601 err_update_filters: 5602 if (err) { 5603 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5604 mac); 5605 netif_addr_lock_bh(netdev); 5606 eth_hw_addr_set(netdev, old_mac); 5607 netif_addr_unlock_bh(netdev); 5608 return err; 5609 } 5610 5611 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5612 netdev->dev_addr); 5613 5614 /* write new MAC address to the firmware */ 5615 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5616 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5617 if (err) { 5618 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5619 mac, err); 5620 } 5621 return 0; 5622 } 5623 5624 /** 5625 * ice_set_rx_mode - NDO callback to set the netdev filters 5626 * @netdev: network interface device structure 5627 */ 5628 static void ice_set_rx_mode(struct net_device *netdev) 5629 { 5630 struct ice_netdev_priv *np = netdev_priv(netdev); 5631 struct ice_vsi *vsi = np->vsi; 5632 5633 if (!vsi) 5634 return; 5635 5636 /* Set the flags to synchronize filters 5637 * ndo_set_rx_mode may be triggered even without a change in netdev 5638 * flags 5639 */ 5640 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5641 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5642 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5643 5644 /* schedule our worker thread which will take care of 5645 * applying the new filter changes 5646 */ 5647 ice_service_task_schedule(vsi->back); 5648 } 5649 5650 /** 5651 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5652 * @netdev: network interface device structure 5653 * @queue_index: Queue ID 5654 * @maxrate: maximum bandwidth in Mbps 5655 */ 5656 static int 5657 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5658 { 5659 struct ice_netdev_priv *np = netdev_priv(netdev); 5660 struct ice_vsi *vsi = np->vsi; 5661 u16 q_handle; 5662 int status; 5663 u8 tc; 5664 5665 /* Validate maxrate requested is within permitted range */ 5666 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5667 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5668 maxrate, queue_index); 5669 return -EINVAL; 5670 } 5671 5672 q_handle = vsi->tx_rings[queue_index]->q_handle; 5673 tc = ice_dcb_get_tc(vsi, queue_index); 5674 5675 /* Set BW back to default, when user set maxrate to 0 */ 5676 if (!maxrate) 5677 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5678 q_handle, ICE_MAX_BW); 5679 else 5680 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5681 q_handle, ICE_MAX_BW, maxrate * 1000); 5682 if (status) 5683 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5684 status); 5685 5686 return status; 5687 } 5688 5689 /** 5690 * ice_fdb_add - add an entry to the hardware database 5691 * @ndm: the input from the stack 5692 * @tb: pointer to array of nladdr (unused) 5693 * @dev: the net device pointer 5694 * @addr: the MAC address entry being added 5695 * @vid: VLAN ID 5696 * @flags: instructions from stack about fdb operation 5697 * @extack: netlink extended ack 5698 */ 5699 static int 5700 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5701 struct net_device *dev, const unsigned char *addr, u16 vid, 5702 u16 flags, struct netlink_ext_ack __always_unused *extack) 5703 { 5704 int err; 5705 5706 if (vid) { 5707 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5708 return -EINVAL; 5709 } 5710 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5711 netdev_err(dev, "FDB only supports static addresses\n"); 5712 return -EINVAL; 5713 } 5714 5715 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5716 err = dev_uc_add_excl(dev, addr); 5717 else if (is_multicast_ether_addr(addr)) 5718 err = dev_mc_add_excl(dev, addr); 5719 else 5720 err = -EINVAL; 5721 5722 /* Only return duplicate errors if NLM_F_EXCL is set */ 5723 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5724 err = 0; 5725 5726 return err; 5727 } 5728 5729 /** 5730 * ice_fdb_del - delete an entry from the hardware database 5731 * @ndm: the input from the stack 5732 * @tb: pointer to array of nladdr (unused) 5733 * @dev: the net device pointer 5734 * @addr: the MAC address entry being added 5735 * @vid: VLAN ID 5736 * @extack: netlink extended ack 5737 */ 5738 static int 5739 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5740 struct net_device *dev, const unsigned char *addr, 5741 __always_unused u16 vid, struct netlink_ext_ack *extack) 5742 { 5743 int err; 5744 5745 if (ndm->ndm_state & NUD_PERMANENT) { 5746 netdev_err(dev, "FDB only supports static addresses\n"); 5747 return -EINVAL; 5748 } 5749 5750 if (is_unicast_ether_addr(addr)) 5751 err = dev_uc_del(dev, addr); 5752 else if (is_multicast_ether_addr(addr)) 5753 err = dev_mc_del(dev, addr); 5754 else 5755 err = -EINVAL; 5756 5757 return err; 5758 } 5759 5760 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5761 NETIF_F_HW_VLAN_CTAG_TX | \ 5762 NETIF_F_HW_VLAN_STAG_RX | \ 5763 NETIF_F_HW_VLAN_STAG_TX) 5764 5765 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5766 NETIF_F_HW_VLAN_STAG_RX) 5767 5768 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5769 NETIF_F_HW_VLAN_STAG_FILTER) 5770 5771 /** 5772 * ice_fix_features - fix the netdev features flags based on device limitations 5773 * @netdev: ptr to the netdev that flags are being fixed on 5774 * @features: features that need to be checked and possibly fixed 5775 * 5776 * Make sure any fixups are made to features in this callback. This enables the 5777 * driver to not have to check unsupported configurations throughout the driver 5778 * because that's the responsiblity of this callback. 5779 * 5780 * Single VLAN Mode (SVM) Supported Features: 5781 * NETIF_F_HW_VLAN_CTAG_FILTER 5782 * NETIF_F_HW_VLAN_CTAG_RX 5783 * NETIF_F_HW_VLAN_CTAG_TX 5784 * 5785 * Double VLAN Mode (DVM) Supported Features: 5786 * NETIF_F_HW_VLAN_CTAG_FILTER 5787 * NETIF_F_HW_VLAN_CTAG_RX 5788 * NETIF_F_HW_VLAN_CTAG_TX 5789 * 5790 * NETIF_F_HW_VLAN_STAG_FILTER 5791 * NETIF_HW_VLAN_STAG_RX 5792 * NETIF_HW_VLAN_STAG_TX 5793 * 5794 * Features that need fixing: 5795 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5796 * These are mutually exlusive as the VSI context cannot support multiple 5797 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5798 * is not done, then default to clearing the requested STAG offload 5799 * settings. 5800 * 5801 * All supported filtering has to be enabled or disabled together. For 5802 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5803 * together. If this is not done, then default to VLAN filtering disabled. 5804 * These are mutually exclusive as there is currently no way to 5805 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5806 * prune rules. 5807 */ 5808 static netdev_features_t 5809 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5810 { 5811 struct ice_netdev_priv *np = netdev_priv(netdev); 5812 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5813 bool cur_ctag, cur_stag, req_ctag, req_stag; 5814 5815 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5816 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5817 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5818 5819 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5820 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5821 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5822 5823 if (req_vlan_fltr != cur_vlan_fltr) { 5824 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5825 if (req_ctag && req_stag) { 5826 features |= NETIF_VLAN_FILTERING_FEATURES; 5827 } else if (!req_ctag && !req_stag) { 5828 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5829 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5830 (!cur_stag && req_stag && !cur_ctag)) { 5831 features |= NETIF_VLAN_FILTERING_FEATURES; 5832 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5833 } else if ((cur_ctag && !req_ctag && cur_stag) || 5834 (cur_stag && !req_stag && cur_ctag)) { 5835 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5836 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5837 } 5838 } else { 5839 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5840 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5841 5842 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5843 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5844 } 5845 } 5846 5847 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5848 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5849 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5850 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5851 NETIF_F_HW_VLAN_STAG_TX); 5852 } 5853 5854 if (!(netdev->features & NETIF_F_RXFCS) && 5855 (features & NETIF_F_RXFCS) && 5856 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5857 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5858 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5859 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5860 } 5861 5862 return features; 5863 } 5864 5865 /** 5866 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5867 * @vsi: PF's VSI 5868 * @features: features used to determine VLAN offload settings 5869 * 5870 * First, determine the vlan_ethertype based on the VLAN offload bits in 5871 * features. Then determine if stripping and insertion should be enabled or 5872 * disabled. Finally enable or disable VLAN stripping and insertion. 5873 */ 5874 static int 5875 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5876 { 5877 bool enable_stripping = true, enable_insertion = true; 5878 struct ice_vsi_vlan_ops *vlan_ops; 5879 int strip_err = 0, insert_err = 0; 5880 u16 vlan_ethertype = 0; 5881 5882 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5883 5884 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5885 vlan_ethertype = ETH_P_8021AD; 5886 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5887 vlan_ethertype = ETH_P_8021Q; 5888 5889 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5890 enable_stripping = false; 5891 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5892 enable_insertion = false; 5893 5894 if (enable_stripping) 5895 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5896 else 5897 strip_err = vlan_ops->dis_stripping(vsi); 5898 5899 if (enable_insertion) 5900 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5901 else 5902 insert_err = vlan_ops->dis_insertion(vsi); 5903 5904 if (strip_err || insert_err) 5905 return -EIO; 5906 5907 return 0; 5908 } 5909 5910 /** 5911 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5912 * @vsi: PF's VSI 5913 * @features: features used to determine VLAN filtering settings 5914 * 5915 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5916 * features. 5917 */ 5918 static int 5919 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5920 { 5921 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5922 int err = 0; 5923 5924 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5925 * if either bit is set 5926 */ 5927 if (features & 5928 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5929 err = vlan_ops->ena_rx_filtering(vsi); 5930 else 5931 err = vlan_ops->dis_rx_filtering(vsi); 5932 5933 return err; 5934 } 5935 5936 /** 5937 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5938 * @netdev: ptr to the netdev being adjusted 5939 * @features: the feature set that the stack is suggesting 5940 * 5941 * Only update VLAN settings if the requested_vlan_features are different than 5942 * the current_vlan_features. 5943 */ 5944 static int 5945 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5946 { 5947 netdev_features_t current_vlan_features, requested_vlan_features; 5948 struct ice_netdev_priv *np = netdev_priv(netdev); 5949 struct ice_vsi *vsi = np->vsi; 5950 int err; 5951 5952 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5953 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5954 if (current_vlan_features ^ requested_vlan_features) { 5955 if ((features & NETIF_F_RXFCS) && 5956 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5957 dev_err(ice_pf_to_dev(vsi->back), 5958 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5959 return -EIO; 5960 } 5961 5962 err = ice_set_vlan_offload_features(vsi, features); 5963 if (err) 5964 return err; 5965 } 5966 5967 current_vlan_features = netdev->features & 5968 NETIF_VLAN_FILTERING_FEATURES; 5969 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5970 if (current_vlan_features ^ requested_vlan_features) { 5971 err = ice_set_vlan_filtering_features(vsi, features); 5972 if (err) 5973 return err; 5974 } 5975 5976 return 0; 5977 } 5978 5979 /** 5980 * ice_set_loopback - turn on/off loopback mode on underlying PF 5981 * @vsi: ptr to VSI 5982 * @ena: flag to indicate the on/off setting 5983 */ 5984 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5985 { 5986 bool if_running = netif_running(vsi->netdev); 5987 int ret; 5988 5989 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5990 ret = ice_down(vsi); 5991 if (ret) { 5992 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5993 return ret; 5994 } 5995 } 5996 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5997 if (ret) 5998 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5999 if (if_running) 6000 ret = ice_up(vsi); 6001 6002 return ret; 6003 } 6004 6005 /** 6006 * ice_set_features - set the netdev feature flags 6007 * @netdev: ptr to the netdev being adjusted 6008 * @features: the feature set that the stack is suggesting 6009 */ 6010 static int 6011 ice_set_features(struct net_device *netdev, netdev_features_t features) 6012 { 6013 netdev_features_t changed = netdev->features ^ features; 6014 struct ice_netdev_priv *np = netdev_priv(netdev); 6015 struct ice_vsi *vsi = np->vsi; 6016 struct ice_pf *pf = vsi->back; 6017 int ret = 0; 6018 6019 /* Don't set any netdev advanced features with device in Safe Mode */ 6020 if (ice_is_safe_mode(pf)) { 6021 dev_err(ice_pf_to_dev(pf), 6022 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6023 return ret; 6024 } 6025 6026 /* Do not change setting during reset */ 6027 if (ice_is_reset_in_progress(pf->state)) { 6028 dev_err(ice_pf_to_dev(pf), 6029 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6030 return -EBUSY; 6031 } 6032 6033 /* Multiple features can be changed in one call so keep features in 6034 * separate if/else statements to guarantee each feature is checked 6035 */ 6036 if (changed & NETIF_F_RXHASH) 6037 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6038 6039 ret = ice_set_vlan_features(netdev, features); 6040 if (ret) 6041 return ret; 6042 6043 /* Turn on receive of FCS aka CRC, and after setting this 6044 * flag the packet data will have the 4 byte CRC appended 6045 */ 6046 if (changed & NETIF_F_RXFCS) { 6047 if ((features & NETIF_F_RXFCS) && 6048 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6049 dev_err(ice_pf_to_dev(vsi->back), 6050 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6051 return -EIO; 6052 } 6053 6054 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6055 ret = ice_down_up(vsi); 6056 if (ret) 6057 return ret; 6058 } 6059 6060 if (changed & NETIF_F_NTUPLE) { 6061 bool ena = !!(features & NETIF_F_NTUPLE); 6062 6063 ice_vsi_manage_fdir(vsi, ena); 6064 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6065 } 6066 6067 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6068 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6069 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6070 return -EACCES; 6071 } 6072 6073 if (changed & NETIF_F_HW_TC) { 6074 bool ena = !!(features & NETIF_F_HW_TC); 6075 6076 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6077 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6078 } 6079 6080 if (changed & NETIF_F_LOOPBACK) 6081 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6082 6083 return ret; 6084 } 6085 6086 /** 6087 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6088 * @vsi: VSI to setup VLAN properties for 6089 */ 6090 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6091 { 6092 int err; 6093 6094 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6095 if (err) 6096 return err; 6097 6098 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6099 if (err) 6100 return err; 6101 6102 return ice_vsi_add_vlan_zero(vsi); 6103 } 6104 6105 /** 6106 * ice_vsi_cfg - Setup the VSI 6107 * @vsi: the VSI being configured 6108 * 6109 * Return 0 on success and negative value on error 6110 */ 6111 int ice_vsi_cfg(struct ice_vsi *vsi) 6112 { 6113 int err; 6114 6115 if (vsi->netdev) { 6116 ice_set_rx_mode(vsi->netdev); 6117 6118 if (vsi->type != ICE_VSI_LB) { 6119 err = ice_vsi_vlan_setup(vsi); 6120 6121 if (err) 6122 return err; 6123 } 6124 } 6125 ice_vsi_cfg_dcb_rings(vsi); 6126 6127 err = ice_vsi_cfg_lan_txqs(vsi); 6128 if (!err && ice_is_xdp_ena_vsi(vsi)) 6129 err = ice_vsi_cfg_xdp_txqs(vsi); 6130 if (!err) 6131 err = ice_vsi_cfg_rxqs(vsi); 6132 6133 return err; 6134 } 6135 6136 /* THEORY OF MODERATION: 6137 * The ice driver hardware works differently than the hardware that DIMLIB was 6138 * originally made for. ice hardware doesn't have packet count limits that 6139 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6140 * which is hard-coded to a limit of 250,000 ints/second. 6141 * If not using dynamic moderation, the INTRL value can be modified 6142 * by ethtool rx-usecs-high. 6143 */ 6144 struct ice_dim { 6145 /* the throttle rate for interrupts, basically worst case delay before 6146 * an initial interrupt fires, value is stored in microseconds. 6147 */ 6148 u16 itr; 6149 }; 6150 6151 /* Make a different profile for Rx that doesn't allow quite so aggressive 6152 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6153 * second. 6154 */ 6155 static const struct ice_dim rx_profile[] = { 6156 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6157 {8}, /* 125,000 ints/s */ 6158 {16}, /* 62,500 ints/s */ 6159 {62}, /* 16,129 ints/s */ 6160 {126} /* 7,936 ints/s */ 6161 }; 6162 6163 /* The transmit profile, which has the same sorts of values 6164 * as the previous struct 6165 */ 6166 static const struct ice_dim tx_profile[] = { 6167 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6168 {8}, /* 125,000 ints/s */ 6169 {40}, /* 16,125 ints/s */ 6170 {128}, /* 7,812 ints/s */ 6171 {256} /* 3,906 ints/s */ 6172 }; 6173 6174 static void ice_tx_dim_work(struct work_struct *work) 6175 { 6176 struct ice_ring_container *rc; 6177 struct dim *dim; 6178 u16 itr; 6179 6180 dim = container_of(work, struct dim, work); 6181 rc = (struct ice_ring_container *)dim->priv; 6182 6183 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6184 6185 /* look up the values in our local table */ 6186 itr = tx_profile[dim->profile_ix].itr; 6187 6188 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6189 ice_write_itr(rc, itr); 6190 6191 dim->state = DIM_START_MEASURE; 6192 } 6193 6194 static void ice_rx_dim_work(struct work_struct *work) 6195 { 6196 struct ice_ring_container *rc; 6197 struct dim *dim; 6198 u16 itr; 6199 6200 dim = container_of(work, struct dim, work); 6201 rc = (struct ice_ring_container *)dim->priv; 6202 6203 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6204 6205 /* look up the values in our local table */ 6206 itr = rx_profile[dim->profile_ix].itr; 6207 6208 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6209 ice_write_itr(rc, itr); 6210 6211 dim->state = DIM_START_MEASURE; 6212 } 6213 6214 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6215 6216 /** 6217 * ice_init_moderation - set up interrupt moderation 6218 * @q_vector: the vector containing rings to be configured 6219 * 6220 * Set up interrupt moderation registers, with the intent to do the right thing 6221 * when called from reset or from probe, and whether or not dynamic moderation 6222 * is enabled or not. Take special care to write all the registers in both 6223 * dynamic moderation mode or not in order to make sure hardware is in a known 6224 * state. 6225 */ 6226 static void ice_init_moderation(struct ice_q_vector *q_vector) 6227 { 6228 struct ice_ring_container *rc; 6229 bool tx_dynamic, rx_dynamic; 6230 6231 rc = &q_vector->tx; 6232 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6233 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6234 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6235 rc->dim.priv = rc; 6236 tx_dynamic = ITR_IS_DYNAMIC(rc); 6237 6238 /* set the initial TX ITR to match the above */ 6239 ice_write_itr(rc, tx_dynamic ? 6240 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6241 6242 rc = &q_vector->rx; 6243 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6244 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6245 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6246 rc->dim.priv = rc; 6247 rx_dynamic = ITR_IS_DYNAMIC(rc); 6248 6249 /* set the initial RX ITR to match the above */ 6250 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6251 rc->itr_setting); 6252 6253 ice_set_q_vector_intrl(q_vector); 6254 } 6255 6256 /** 6257 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6258 * @vsi: the VSI being configured 6259 */ 6260 static void ice_napi_enable_all(struct ice_vsi *vsi) 6261 { 6262 int q_idx; 6263 6264 if (!vsi->netdev) 6265 return; 6266 6267 ice_for_each_q_vector(vsi, q_idx) { 6268 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6269 6270 ice_init_moderation(q_vector); 6271 6272 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6273 napi_enable(&q_vector->napi); 6274 } 6275 } 6276 6277 /** 6278 * ice_up_complete - Finish the last steps of bringing up a connection 6279 * @vsi: The VSI being configured 6280 * 6281 * Return 0 on success and negative value on error 6282 */ 6283 static int ice_up_complete(struct ice_vsi *vsi) 6284 { 6285 struct ice_pf *pf = vsi->back; 6286 int err; 6287 6288 ice_vsi_cfg_msix(vsi); 6289 6290 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6291 * Tx queue group list was configured and the context bits were 6292 * programmed using ice_vsi_cfg_txqs 6293 */ 6294 err = ice_vsi_start_all_rx_rings(vsi); 6295 if (err) 6296 return err; 6297 6298 clear_bit(ICE_VSI_DOWN, vsi->state); 6299 ice_napi_enable_all(vsi); 6300 ice_vsi_ena_irq(vsi); 6301 6302 if (vsi->port_info && 6303 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6304 vsi->netdev) { 6305 ice_print_link_msg(vsi, true); 6306 netif_tx_start_all_queues(vsi->netdev); 6307 netif_carrier_on(vsi->netdev); 6308 if (!ice_is_e810(&pf->hw)) 6309 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6310 } 6311 6312 /* Perform an initial read of the statistics registers now to 6313 * set the baseline so counters are ready when interface is up 6314 */ 6315 ice_update_eth_stats(vsi); 6316 ice_service_task_schedule(pf); 6317 6318 return 0; 6319 } 6320 6321 /** 6322 * ice_up - Bring the connection back up after being down 6323 * @vsi: VSI being configured 6324 */ 6325 int ice_up(struct ice_vsi *vsi) 6326 { 6327 int err; 6328 6329 err = ice_vsi_cfg(vsi); 6330 if (!err) 6331 err = ice_up_complete(vsi); 6332 6333 return err; 6334 } 6335 6336 /** 6337 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6338 * @syncp: pointer to u64_stats_sync 6339 * @stats: stats that pkts and bytes count will be taken from 6340 * @pkts: packets stats counter 6341 * @bytes: bytes stats counter 6342 * 6343 * This function fetches stats from the ring considering the atomic operations 6344 * that needs to be performed to read u64 values in 32 bit machine. 6345 */ 6346 void 6347 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6348 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6349 { 6350 unsigned int start; 6351 6352 do { 6353 start = u64_stats_fetch_begin_irq(syncp); 6354 *pkts = stats.pkts; 6355 *bytes = stats.bytes; 6356 } while (u64_stats_fetch_retry_irq(syncp, start)); 6357 } 6358 6359 /** 6360 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6361 * @vsi: the VSI to be updated 6362 * @vsi_stats: the stats struct to be updated 6363 * @rings: rings to work on 6364 * @count: number of rings 6365 */ 6366 static void 6367 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6368 struct rtnl_link_stats64 *vsi_stats, 6369 struct ice_tx_ring **rings, u16 count) 6370 { 6371 u16 i; 6372 6373 for (i = 0; i < count; i++) { 6374 struct ice_tx_ring *ring; 6375 u64 pkts = 0, bytes = 0; 6376 6377 ring = READ_ONCE(rings[i]); 6378 if (!ring) 6379 continue; 6380 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6381 vsi_stats->tx_packets += pkts; 6382 vsi_stats->tx_bytes += bytes; 6383 vsi->tx_restart += ring->tx_stats.restart_q; 6384 vsi->tx_busy += ring->tx_stats.tx_busy; 6385 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6386 } 6387 } 6388 6389 /** 6390 * ice_update_vsi_ring_stats - Update VSI stats counters 6391 * @vsi: the VSI to be updated 6392 */ 6393 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6394 { 6395 struct rtnl_link_stats64 *vsi_stats; 6396 u64 pkts, bytes; 6397 int i; 6398 6399 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6400 if (!vsi_stats) 6401 return; 6402 6403 /* reset non-netdev (extended) stats */ 6404 vsi->tx_restart = 0; 6405 vsi->tx_busy = 0; 6406 vsi->tx_linearize = 0; 6407 vsi->rx_buf_failed = 0; 6408 vsi->rx_page_failed = 0; 6409 6410 rcu_read_lock(); 6411 6412 /* update Tx rings counters */ 6413 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6414 vsi->num_txq); 6415 6416 /* update Rx rings counters */ 6417 ice_for_each_rxq(vsi, i) { 6418 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6419 6420 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6421 vsi_stats->rx_packets += pkts; 6422 vsi_stats->rx_bytes += bytes; 6423 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6424 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6425 } 6426 6427 /* update XDP Tx rings counters */ 6428 if (ice_is_xdp_ena_vsi(vsi)) 6429 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6430 vsi->num_xdp_txq); 6431 6432 rcu_read_unlock(); 6433 6434 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6435 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6436 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6437 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6438 6439 kfree(vsi_stats); 6440 } 6441 6442 /** 6443 * ice_update_vsi_stats - Update VSI stats counters 6444 * @vsi: the VSI to be updated 6445 */ 6446 void ice_update_vsi_stats(struct ice_vsi *vsi) 6447 { 6448 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6449 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6450 struct ice_pf *pf = vsi->back; 6451 6452 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6453 test_bit(ICE_CFG_BUSY, pf->state)) 6454 return; 6455 6456 /* get stats as recorded by Tx/Rx rings */ 6457 ice_update_vsi_ring_stats(vsi); 6458 6459 /* get VSI stats as recorded by the hardware */ 6460 ice_update_eth_stats(vsi); 6461 6462 cur_ns->tx_errors = cur_es->tx_errors; 6463 cur_ns->rx_dropped = cur_es->rx_discards; 6464 cur_ns->tx_dropped = cur_es->tx_discards; 6465 cur_ns->multicast = cur_es->rx_multicast; 6466 6467 /* update some more netdev stats if this is main VSI */ 6468 if (vsi->type == ICE_VSI_PF) { 6469 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6470 cur_ns->rx_errors = pf->stats.crc_errors + 6471 pf->stats.illegal_bytes + 6472 pf->stats.rx_len_errors + 6473 pf->stats.rx_undersize + 6474 pf->hw_csum_rx_error + 6475 pf->stats.rx_jabber + 6476 pf->stats.rx_fragments + 6477 pf->stats.rx_oversize; 6478 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6479 /* record drops from the port level */ 6480 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6481 } 6482 } 6483 6484 /** 6485 * ice_update_pf_stats - Update PF port stats counters 6486 * @pf: PF whose stats needs to be updated 6487 */ 6488 void ice_update_pf_stats(struct ice_pf *pf) 6489 { 6490 struct ice_hw_port_stats *prev_ps, *cur_ps; 6491 struct ice_hw *hw = &pf->hw; 6492 u16 fd_ctr_base; 6493 u8 port; 6494 6495 port = hw->port_info->lport; 6496 prev_ps = &pf->stats_prev; 6497 cur_ps = &pf->stats; 6498 6499 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6500 &prev_ps->eth.rx_bytes, 6501 &cur_ps->eth.rx_bytes); 6502 6503 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6504 &prev_ps->eth.rx_unicast, 6505 &cur_ps->eth.rx_unicast); 6506 6507 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6508 &prev_ps->eth.rx_multicast, 6509 &cur_ps->eth.rx_multicast); 6510 6511 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6512 &prev_ps->eth.rx_broadcast, 6513 &cur_ps->eth.rx_broadcast); 6514 6515 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6516 &prev_ps->eth.rx_discards, 6517 &cur_ps->eth.rx_discards); 6518 6519 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6520 &prev_ps->eth.tx_bytes, 6521 &cur_ps->eth.tx_bytes); 6522 6523 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6524 &prev_ps->eth.tx_unicast, 6525 &cur_ps->eth.tx_unicast); 6526 6527 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6528 &prev_ps->eth.tx_multicast, 6529 &cur_ps->eth.tx_multicast); 6530 6531 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6532 &prev_ps->eth.tx_broadcast, 6533 &cur_ps->eth.tx_broadcast); 6534 6535 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6536 &prev_ps->tx_dropped_link_down, 6537 &cur_ps->tx_dropped_link_down); 6538 6539 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6540 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6541 6542 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6543 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6544 6545 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6546 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6547 6548 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6549 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6550 6551 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6552 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6553 6554 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6555 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6556 6557 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6558 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6559 6560 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6561 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6562 6563 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6564 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6565 6566 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6567 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6568 6569 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6570 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6571 6572 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6573 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6574 6575 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6576 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6577 6578 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6579 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6580 6581 fd_ctr_base = hw->fd_ctr_base; 6582 6583 ice_stat_update40(hw, 6584 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6585 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6586 &cur_ps->fd_sb_match); 6587 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6588 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6589 6590 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6591 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6592 6593 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6594 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6595 6596 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6597 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6598 6599 ice_update_dcb_stats(pf); 6600 6601 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6602 &prev_ps->crc_errors, &cur_ps->crc_errors); 6603 6604 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6605 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6606 6607 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6608 &prev_ps->mac_local_faults, 6609 &cur_ps->mac_local_faults); 6610 6611 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6612 &prev_ps->mac_remote_faults, 6613 &cur_ps->mac_remote_faults); 6614 6615 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6616 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6617 6618 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6619 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6620 6621 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6622 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6623 6624 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6625 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6626 6627 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6628 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6629 6630 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6631 6632 pf->stat_prev_loaded = true; 6633 } 6634 6635 /** 6636 * ice_get_stats64 - get statistics for network device structure 6637 * @netdev: network interface device structure 6638 * @stats: main device statistics structure 6639 */ 6640 static 6641 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6642 { 6643 struct ice_netdev_priv *np = netdev_priv(netdev); 6644 struct rtnl_link_stats64 *vsi_stats; 6645 struct ice_vsi *vsi = np->vsi; 6646 6647 vsi_stats = &vsi->net_stats; 6648 6649 if (!vsi->num_txq || !vsi->num_rxq) 6650 return; 6651 6652 /* netdev packet/byte stats come from ring counter. These are obtained 6653 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6654 * But, only call the update routine and read the registers if VSI is 6655 * not down. 6656 */ 6657 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6658 ice_update_vsi_ring_stats(vsi); 6659 stats->tx_packets = vsi_stats->tx_packets; 6660 stats->tx_bytes = vsi_stats->tx_bytes; 6661 stats->rx_packets = vsi_stats->rx_packets; 6662 stats->rx_bytes = vsi_stats->rx_bytes; 6663 6664 /* The rest of the stats can be read from the hardware but instead we 6665 * just return values that the watchdog task has already obtained from 6666 * the hardware. 6667 */ 6668 stats->multicast = vsi_stats->multicast; 6669 stats->tx_errors = vsi_stats->tx_errors; 6670 stats->tx_dropped = vsi_stats->tx_dropped; 6671 stats->rx_errors = vsi_stats->rx_errors; 6672 stats->rx_dropped = vsi_stats->rx_dropped; 6673 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6674 stats->rx_length_errors = vsi_stats->rx_length_errors; 6675 } 6676 6677 /** 6678 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6679 * @vsi: VSI having NAPI disabled 6680 */ 6681 static void ice_napi_disable_all(struct ice_vsi *vsi) 6682 { 6683 int q_idx; 6684 6685 if (!vsi->netdev) 6686 return; 6687 6688 ice_for_each_q_vector(vsi, q_idx) { 6689 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6690 6691 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6692 napi_disable(&q_vector->napi); 6693 6694 cancel_work_sync(&q_vector->tx.dim.work); 6695 cancel_work_sync(&q_vector->rx.dim.work); 6696 } 6697 } 6698 6699 /** 6700 * ice_down - Shutdown the connection 6701 * @vsi: The VSI being stopped 6702 * 6703 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6704 */ 6705 int ice_down(struct ice_vsi *vsi) 6706 { 6707 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6708 6709 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6710 6711 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6712 vlan_err = ice_vsi_del_vlan_zero(vsi); 6713 if (!ice_is_e810(&vsi->back->hw)) 6714 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6715 netif_carrier_off(vsi->netdev); 6716 netif_tx_disable(vsi->netdev); 6717 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6718 ice_eswitch_stop_all_tx_queues(vsi->back); 6719 } 6720 6721 ice_vsi_dis_irq(vsi); 6722 6723 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6724 if (tx_err) 6725 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6726 vsi->vsi_num, tx_err); 6727 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6728 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6729 if (tx_err) 6730 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6731 vsi->vsi_num, tx_err); 6732 } 6733 6734 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6735 if (rx_err) 6736 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6737 vsi->vsi_num, rx_err); 6738 6739 ice_napi_disable_all(vsi); 6740 6741 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6742 link_err = ice_force_phys_link_state(vsi, false); 6743 if (link_err) 6744 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6745 vsi->vsi_num, link_err); 6746 } 6747 6748 ice_for_each_txq(vsi, i) 6749 ice_clean_tx_ring(vsi->tx_rings[i]); 6750 6751 ice_for_each_rxq(vsi, i) 6752 ice_clean_rx_ring(vsi->rx_rings[i]); 6753 6754 if (tx_err || rx_err || link_err || vlan_err) { 6755 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6756 vsi->vsi_num, vsi->vsw->sw_id); 6757 return -EIO; 6758 } 6759 6760 return 0; 6761 } 6762 6763 /** 6764 * ice_down_up - shutdown the VSI connection and bring it up 6765 * @vsi: the VSI to be reconnected 6766 */ 6767 int ice_down_up(struct ice_vsi *vsi) 6768 { 6769 int ret; 6770 6771 /* if DOWN already set, nothing to do */ 6772 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6773 return 0; 6774 6775 ret = ice_down(vsi); 6776 if (ret) 6777 return ret; 6778 6779 ret = ice_up(vsi); 6780 if (ret) { 6781 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6782 return ret; 6783 } 6784 6785 return 0; 6786 } 6787 6788 /** 6789 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6790 * @vsi: VSI having resources allocated 6791 * 6792 * Return 0 on success, negative on failure 6793 */ 6794 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6795 { 6796 int i, err = 0; 6797 6798 if (!vsi->num_txq) { 6799 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6800 vsi->vsi_num); 6801 return -EINVAL; 6802 } 6803 6804 ice_for_each_txq(vsi, i) { 6805 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6806 6807 if (!ring) 6808 return -EINVAL; 6809 6810 if (vsi->netdev) 6811 ring->netdev = vsi->netdev; 6812 err = ice_setup_tx_ring(ring); 6813 if (err) 6814 break; 6815 } 6816 6817 return err; 6818 } 6819 6820 /** 6821 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6822 * @vsi: VSI having resources allocated 6823 * 6824 * Return 0 on success, negative on failure 6825 */ 6826 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6827 { 6828 int i, err = 0; 6829 6830 if (!vsi->num_rxq) { 6831 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6832 vsi->vsi_num); 6833 return -EINVAL; 6834 } 6835 6836 ice_for_each_rxq(vsi, i) { 6837 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6838 6839 if (!ring) 6840 return -EINVAL; 6841 6842 if (vsi->netdev) 6843 ring->netdev = vsi->netdev; 6844 err = ice_setup_rx_ring(ring); 6845 if (err) 6846 break; 6847 } 6848 6849 return err; 6850 } 6851 6852 /** 6853 * ice_vsi_open_ctrl - open control VSI for use 6854 * @vsi: the VSI to open 6855 * 6856 * Initialization of the Control VSI 6857 * 6858 * Returns 0 on success, negative value on error 6859 */ 6860 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6861 { 6862 char int_name[ICE_INT_NAME_STR_LEN]; 6863 struct ice_pf *pf = vsi->back; 6864 struct device *dev; 6865 int err; 6866 6867 dev = ice_pf_to_dev(pf); 6868 /* allocate descriptors */ 6869 err = ice_vsi_setup_tx_rings(vsi); 6870 if (err) 6871 goto err_setup_tx; 6872 6873 err = ice_vsi_setup_rx_rings(vsi); 6874 if (err) 6875 goto err_setup_rx; 6876 6877 err = ice_vsi_cfg(vsi); 6878 if (err) 6879 goto err_setup_rx; 6880 6881 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6882 dev_driver_string(dev), dev_name(dev)); 6883 err = ice_vsi_req_irq_msix(vsi, int_name); 6884 if (err) 6885 goto err_setup_rx; 6886 6887 ice_vsi_cfg_msix(vsi); 6888 6889 err = ice_vsi_start_all_rx_rings(vsi); 6890 if (err) 6891 goto err_up_complete; 6892 6893 clear_bit(ICE_VSI_DOWN, vsi->state); 6894 ice_vsi_ena_irq(vsi); 6895 6896 return 0; 6897 6898 err_up_complete: 6899 ice_down(vsi); 6900 err_setup_rx: 6901 ice_vsi_free_rx_rings(vsi); 6902 err_setup_tx: 6903 ice_vsi_free_tx_rings(vsi); 6904 6905 return err; 6906 } 6907 6908 /** 6909 * ice_vsi_open - Called when a network interface is made active 6910 * @vsi: the VSI to open 6911 * 6912 * Initialization of the VSI 6913 * 6914 * Returns 0 on success, negative value on error 6915 */ 6916 int ice_vsi_open(struct ice_vsi *vsi) 6917 { 6918 char int_name[ICE_INT_NAME_STR_LEN]; 6919 struct ice_pf *pf = vsi->back; 6920 int err; 6921 6922 /* allocate descriptors */ 6923 err = ice_vsi_setup_tx_rings(vsi); 6924 if (err) 6925 goto err_setup_tx; 6926 6927 err = ice_vsi_setup_rx_rings(vsi); 6928 if (err) 6929 goto err_setup_rx; 6930 6931 err = ice_vsi_cfg(vsi); 6932 if (err) 6933 goto err_setup_rx; 6934 6935 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6936 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6937 err = ice_vsi_req_irq_msix(vsi, int_name); 6938 if (err) 6939 goto err_setup_rx; 6940 6941 if (vsi->type == ICE_VSI_PF) { 6942 /* Notify the stack of the actual queue counts. */ 6943 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6944 if (err) 6945 goto err_set_qs; 6946 6947 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6948 if (err) 6949 goto err_set_qs; 6950 } 6951 6952 err = ice_up_complete(vsi); 6953 if (err) 6954 goto err_up_complete; 6955 6956 return 0; 6957 6958 err_up_complete: 6959 ice_down(vsi); 6960 err_set_qs: 6961 ice_vsi_free_irq(vsi); 6962 err_setup_rx: 6963 ice_vsi_free_rx_rings(vsi); 6964 err_setup_tx: 6965 ice_vsi_free_tx_rings(vsi); 6966 6967 return err; 6968 } 6969 6970 /** 6971 * ice_vsi_release_all - Delete all VSIs 6972 * @pf: PF from which all VSIs are being removed 6973 */ 6974 static void ice_vsi_release_all(struct ice_pf *pf) 6975 { 6976 int err, i; 6977 6978 if (!pf->vsi) 6979 return; 6980 6981 ice_for_each_vsi(pf, i) { 6982 if (!pf->vsi[i]) 6983 continue; 6984 6985 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6986 continue; 6987 6988 err = ice_vsi_release(pf->vsi[i]); 6989 if (err) 6990 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6991 i, err, pf->vsi[i]->vsi_num); 6992 } 6993 } 6994 6995 /** 6996 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6997 * @pf: pointer to the PF instance 6998 * @type: VSI type to rebuild 6999 * 7000 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7001 */ 7002 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7003 { 7004 struct device *dev = ice_pf_to_dev(pf); 7005 int i, err; 7006 7007 ice_for_each_vsi(pf, i) { 7008 struct ice_vsi *vsi = pf->vsi[i]; 7009 7010 if (!vsi || vsi->type != type) 7011 continue; 7012 7013 /* rebuild the VSI */ 7014 err = ice_vsi_rebuild(vsi, true); 7015 if (err) { 7016 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7017 err, vsi->idx, ice_vsi_type_str(type)); 7018 return err; 7019 } 7020 7021 /* replay filters for the VSI */ 7022 err = ice_replay_vsi(&pf->hw, vsi->idx); 7023 if (err) { 7024 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7025 err, vsi->idx, ice_vsi_type_str(type)); 7026 return err; 7027 } 7028 7029 /* Re-map HW VSI number, using VSI handle that has been 7030 * previously validated in ice_replay_vsi() call above 7031 */ 7032 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7033 7034 /* enable the VSI */ 7035 err = ice_ena_vsi(vsi, false); 7036 if (err) { 7037 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7038 err, vsi->idx, ice_vsi_type_str(type)); 7039 return err; 7040 } 7041 7042 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7043 ice_vsi_type_str(type)); 7044 } 7045 7046 return 0; 7047 } 7048 7049 /** 7050 * ice_update_pf_netdev_link - Update PF netdev link status 7051 * @pf: pointer to the PF instance 7052 */ 7053 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7054 { 7055 bool link_up; 7056 int i; 7057 7058 ice_for_each_vsi(pf, i) { 7059 struct ice_vsi *vsi = pf->vsi[i]; 7060 7061 if (!vsi || vsi->type != ICE_VSI_PF) 7062 return; 7063 7064 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7065 if (link_up) { 7066 netif_carrier_on(pf->vsi[i]->netdev); 7067 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7068 } else { 7069 netif_carrier_off(pf->vsi[i]->netdev); 7070 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7071 } 7072 } 7073 } 7074 7075 /** 7076 * ice_rebuild - rebuild after reset 7077 * @pf: PF to rebuild 7078 * @reset_type: type of reset 7079 * 7080 * Do not rebuild VF VSI in this flow because that is already handled via 7081 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7082 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7083 * to reset/rebuild all the VF VSI twice. 7084 */ 7085 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7086 { 7087 struct device *dev = ice_pf_to_dev(pf); 7088 struct ice_hw *hw = &pf->hw; 7089 bool dvm; 7090 int err; 7091 7092 if (test_bit(ICE_DOWN, pf->state)) 7093 goto clear_recovery; 7094 7095 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7096 7097 #define ICE_EMP_RESET_SLEEP_MS 5000 7098 if (reset_type == ICE_RESET_EMPR) { 7099 /* If an EMP reset has occurred, any previously pending flash 7100 * update will have completed. We no longer know whether or 7101 * not the NVM update EMP reset is restricted. 7102 */ 7103 pf->fw_emp_reset_disabled = false; 7104 7105 msleep(ICE_EMP_RESET_SLEEP_MS); 7106 } 7107 7108 err = ice_init_all_ctrlq(hw); 7109 if (err) { 7110 dev_err(dev, "control queues init failed %d\n", err); 7111 goto err_init_ctrlq; 7112 } 7113 7114 /* if DDP was previously loaded successfully */ 7115 if (!ice_is_safe_mode(pf)) { 7116 /* reload the SW DB of filter tables */ 7117 if (reset_type == ICE_RESET_PFR) 7118 ice_fill_blk_tbls(hw); 7119 else 7120 /* Reload DDP Package after CORER/GLOBR reset */ 7121 ice_load_pkg(NULL, pf); 7122 } 7123 7124 err = ice_clear_pf_cfg(hw); 7125 if (err) { 7126 dev_err(dev, "clear PF configuration failed %d\n", err); 7127 goto err_init_ctrlq; 7128 } 7129 7130 ice_clear_pxe_mode(hw); 7131 7132 err = ice_init_nvm(hw); 7133 if (err) { 7134 dev_err(dev, "ice_init_nvm failed %d\n", err); 7135 goto err_init_ctrlq; 7136 } 7137 7138 err = ice_get_caps(hw); 7139 if (err) { 7140 dev_err(dev, "ice_get_caps failed %d\n", err); 7141 goto err_init_ctrlq; 7142 } 7143 7144 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7145 if (err) { 7146 dev_err(dev, "set_mac_cfg failed %d\n", err); 7147 goto err_init_ctrlq; 7148 } 7149 7150 dvm = ice_is_dvm_ena(hw); 7151 7152 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7153 if (err) 7154 goto err_init_ctrlq; 7155 7156 err = ice_sched_init_port(hw->port_info); 7157 if (err) 7158 goto err_sched_init_port; 7159 7160 /* start misc vector */ 7161 err = ice_req_irq_msix_misc(pf); 7162 if (err) { 7163 dev_err(dev, "misc vector setup failed: %d\n", err); 7164 goto err_sched_init_port; 7165 } 7166 7167 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7168 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7169 if (!rd32(hw, PFQF_FD_SIZE)) { 7170 u16 unused, guar, b_effort; 7171 7172 guar = hw->func_caps.fd_fltr_guar; 7173 b_effort = hw->func_caps.fd_fltr_best_effort; 7174 7175 /* force guaranteed filter pool for PF */ 7176 ice_alloc_fd_guar_item(hw, &unused, guar); 7177 /* force shared filter pool for PF */ 7178 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7179 } 7180 } 7181 7182 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7183 ice_dcb_rebuild(pf); 7184 7185 /* If the PF previously had enabled PTP, PTP init needs to happen before 7186 * the VSI rebuild. If not, this causes the PTP link status events to 7187 * fail. 7188 */ 7189 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7190 ice_ptp_reset(pf); 7191 7192 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7193 ice_gnss_init(pf); 7194 7195 /* rebuild PF VSI */ 7196 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7197 if (err) { 7198 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7199 goto err_vsi_rebuild; 7200 } 7201 7202 /* configure PTP timestamping after VSI rebuild */ 7203 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7204 ice_ptp_cfg_timestamp(pf, false); 7205 7206 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7207 if (err) { 7208 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7209 goto err_vsi_rebuild; 7210 } 7211 7212 if (reset_type == ICE_RESET_PFR) { 7213 err = ice_rebuild_channels(pf); 7214 if (err) { 7215 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7216 err); 7217 goto err_vsi_rebuild; 7218 } 7219 } 7220 7221 /* If Flow Director is active */ 7222 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7223 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7224 if (err) { 7225 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7226 goto err_vsi_rebuild; 7227 } 7228 7229 /* replay HW Flow Director recipes */ 7230 if (hw->fdir_prof) 7231 ice_fdir_replay_flows(hw); 7232 7233 /* replay Flow Director filters */ 7234 ice_fdir_replay_fltrs(pf); 7235 7236 ice_rebuild_arfs(pf); 7237 } 7238 7239 ice_update_pf_netdev_link(pf); 7240 7241 /* tell the firmware we are up */ 7242 err = ice_send_version(pf); 7243 if (err) { 7244 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7245 err); 7246 goto err_vsi_rebuild; 7247 } 7248 7249 ice_replay_post(hw); 7250 7251 /* if we get here, reset flow is successful */ 7252 clear_bit(ICE_RESET_FAILED, pf->state); 7253 7254 ice_plug_aux_dev(pf); 7255 return; 7256 7257 err_vsi_rebuild: 7258 err_sched_init_port: 7259 ice_sched_cleanup_all(hw); 7260 err_init_ctrlq: 7261 ice_shutdown_all_ctrlq(hw); 7262 set_bit(ICE_RESET_FAILED, pf->state); 7263 clear_recovery: 7264 /* set this bit in PF state to control service task scheduling */ 7265 set_bit(ICE_NEEDS_RESTART, pf->state); 7266 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7267 } 7268 7269 /** 7270 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7271 * @vsi: Pointer to VSI structure 7272 */ 7273 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7274 { 7275 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7276 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7277 else 7278 return ICE_RXBUF_3072; 7279 } 7280 7281 /** 7282 * ice_change_mtu - NDO callback to change the MTU 7283 * @netdev: network interface device structure 7284 * @new_mtu: new value for maximum frame size 7285 * 7286 * Returns 0 on success, negative on failure 7287 */ 7288 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7289 { 7290 struct ice_netdev_priv *np = netdev_priv(netdev); 7291 struct ice_vsi *vsi = np->vsi; 7292 struct ice_pf *pf = vsi->back; 7293 u8 count = 0; 7294 int err = 0; 7295 7296 if (new_mtu == (int)netdev->mtu) { 7297 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7298 return 0; 7299 } 7300 7301 if (ice_is_xdp_ena_vsi(vsi)) { 7302 int frame_size = ice_max_xdp_frame_size(vsi); 7303 7304 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7305 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7306 frame_size - ICE_ETH_PKT_HDR_PAD); 7307 return -EINVAL; 7308 } 7309 } 7310 7311 /* if a reset is in progress, wait for some time for it to complete */ 7312 do { 7313 if (ice_is_reset_in_progress(pf->state)) { 7314 count++; 7315 usleep_range(1000, 2000); 7316 } else { 7317 break; 7318 } 7319 7320 } while (count < 100); 7321 7322 if (count == 100) { 7323 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7324 return -EBUSY; 7325 } 7326 7327 netdev->mtu = (unsigned int)new_mtu; 7328 7329 /* if VSI is up, bring it down and then back up */ 7330 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7331 err = ice_down(vsi); 7332 if (err) { 7333 netdev_err(netdev, "change MTU if_down err %d\n", err); 7334 return err; 7335 } 7336 7337 err = ice_up(vsi); 7338 if (err) { 7339 netdev_err(netdev, "change MTU if_up err %d\n", err); 7340 return err; 7341 } 7342 } 7343 7344 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7345 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7346 7347 return err; 7348 } 7349 7350 /** 7351 * ice_eth_ioctl - Access the hwtstamp interface 7352 * @netdev: network interface device structure 7353 * @ifr: interface request data 7354 * @cmd: ioctl command 7355 */ 7356 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7357 { 7358 struct ice_netdev_priv *np = netdev_priv(netdev); 7359 struct ice_pf *pf = np->vsi->back; 7360 7361 switch (cmd) { 7362 case SIOCGHWTSTAMP: 7363 return ice_ptp_get_ts_config(pf, ifr); 7364 case SIOCSHWTSTAMP: 7365 return ice_ptp_set_ts_config(pf, ifr); 7366 default: 7367 return -EOPNOTSUPP; 7368 } 7369 } 7370 7371 /** 7372 * ice_aq_str - convert AQ err code to a string 7373 * @aq_err: the AQ error code to convert 7374 */ 7375 const char *ice_aq_str(enum ice_aq_err aq_err) 7376 { 7377 switch (aq_err) { 7378 case ICE_AQ_RC_OK: 7379 return "OK"; 7380 case ICE_AQ_RC_EPERM: 7381 return "ICE_AQ_RC_EPERM"; 7382 case ICE_AQ_RC_ENOENT: 7383 return "ICE_AQ_RC_ENOENT"; 7384 case ICE_AQ_RC_ENOMEM: 7385 return "ICE_AQ_RC_ENOMEM"; 7386 case ICE_AQ_RC_EBUSY: 7387 return "ICE_AQ_RC_EBUSY"; 7388 case ICE_AQ_RC_EEXIST: 7389 return "ICE_AQ_RC_EEXIST"; 7390 case ICE_AQ_RC_EINVAL: 7391 return "ICE_AQ_RC_EINVAL"; 7392 case ICE_AQ_RC_ENOSPC: 7393 return "ICE_AQ_RC_ENOSPC"; 7394 case ICE_AQ_RC_ENOSYS: 7395 return "ICE_AQ_RC_ENOSYS"; 7396 case ICE_AQ_RC_EMODE: 7397 return "ICE_AQ_RC_EMODE"; 7398 case ICE_AQ_RC_ENOSEC: 7399 return "ICE_AQ_RC_ENOSEC"; 7400 case ICE_AQ_RC_EBADSIG: 7401 return "ICE_AQ_RC_EBADSIG"; 7402 case ICE_AQ_RC_ESVN: 7403 return "ICE_AQ_RC_ESVN"; 7404 case ICE_AQ_RC_EBADMAN: 7405 return "ICE_AQ_RC_EBADMAN"; 7406 case ICE_AQ_RC_EBADBUF: 7407 return "ICE_AQ_RC_EBADBUF"; 7408 } 7409 7410 return "ICE_AQ_RC_UNKNOWN"; 7411 } 7412 7413 /** 7414 * ice_set_rss_lut - Set RSS LUT 7415 * @vsi: Pointer to VSI structure 7416 * @lut: Lookup table 7417 * @lut_size: Lookup table size 7418 * 7419 * Returns 0 on success, negative on failure 7420 */ 7421 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7422 { 7423 struct ice_aq_get_set_rss_lut_params params = {}; 7424 struct ice_hw *hw = &vsi->back->hw; 7425 int status; 7426 7427 if (!lut) 7428 return -EINVAL; 7429 7430 params.vsi_handle = vsi->idx; 7431 params.lut_size = lut_size; 7432 params.lut_type = vsi->rss_lut_type; 7433 params.lut = lut; 7434 7435 status = ice_aq_set_rss_lut(hw, ¶ms); 7436 if (status) 7437 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7438 status, ice_aq_str(hw->adminq.sq_last_status)); 7439 7440 return status; 7441 } 7442 7443 /** 7444 * ice_set_rss_key - Set RSS key 7445 * @vsi: Pointer to the VSI structure 7446 * @seed: RSS hash seed 7447 * 7448 * Returns 0 on success, negative on failure 7449 */ 7450 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7451 { 7452 struct ice_hw *hw = &vsi->back->hw; 7453 int status; 7454 7455 if (!seed) 7456 return -EINVAL; 7457 7458 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7459 if (status) 7460 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7461 status, ice_aq_str(hw->adminq.sq_last_status)); 7462 7463 return status; 7464 } 7465 7466 /** 7467 * ice_get_rss_lut - Get RSS LUT 7468 * @vsi: Pointer to VSI structure 7469 * @lut: Buffer to store the lookup table entries 7470 * @lut_size: Size of buffer to store the lookup table entries 7471 * 7472 * Returns 0 on success, negative on failure 7473 */ 7474 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7475 { 7476 struct ice_aq_get_set_rss_lut_params params = {}; 7477 struct ice_hw *hw = &vsi->back->hw; 7478 int status; 7479 7480 if (!lut) 7481 return -EINVAL; 7482 7483 params.vsi_handle = vsi->idx; 7484 params.lut_size = lut_size; 7485 params.lut_type = vsi->rss_lut_type; 7486 params.lut = lut; 7487 7488 status = ice_aq_get_rss_lut(hw, ¶ms); 7489 if (status) 7490 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7491 status, ice_aq_str(hw->adminq.sq_last_status)); 7492 7493 return status; 7494 } 7495 7496 /** 7497 * ice_get_rss_key - Get RSS key 7498 * @vsi: Pointer to VSI structure 7499 * @seed: Buffer to store the key in 7500 * 7501 * Returns 0 on success, negative on failure 7502 */ 7503 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7504 { 7505 struct ice_hw *hw = &vsi->back->hw; 7506 int status; 7507 7508 if (!seed) 7509 return -EINVAL; 7510 7511 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7512 if (status) 7513 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7514 status, ice_aq_str(hw->adminq.sq_last_status)); 7515 7516 return status; 7517 } 7518 7519 /** 7520 * ice_bridge_getlink - Get the hardware bridge mode 7521 * @skb: skb buff 7522 * @pid: process ID 7523 * @seq: RTNL message seq 7524 * @dev: the netdev being configured 7525 * @filter_mask: filter mask passed in 7526 * @nlflags: netlink flags passed in 7527 * 7528 * Return the bridge mode (VEB/VEPA) 7529 */ 7530 static int 7531 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7532 struct net_device *dev, u32 filter_mask, int nlflags) 7533 { 7534 struct ice_netdev_priv *np = netdev_priv(dev); 7535 struct ice_vsi *vsi = np->vsi; 7536 struct ice_pf *pf = vsi->back; 7537 u16 bmode; 7538 7539 bmode = pf->first_sw->bridge_mode; 7540 7541 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7542 filter_mask, NULL); 7543 } 7544 7545 /** 7546 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7547 * @vsi: Pointer to VSI structure 7548 * @bmode: Hardware bridge mode (VEB/VEPA) 7549 * 7550 * Returns 0 on success, negative on failure 7551 */ 7552 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7553 { 7554 struct ice_aqc_vsi_props *vsi_props; 7555 struct ice_hw *hw = &vsi->back->hw; 7556 struct ice_vsi_ctx *ctxt; 7557 int ret; 7558 7559 vsi_props = &vsi->info; 7560 7561 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7562 if (!ctxt) 7563 return -ENOMEM; 7564 7565 ctxt->info = vsi->info; 7566 7567 if (bmode == BRIDGE_MODE_VEB) 7568 /* change from VEPA to VEB mode */ 7569 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7570 else 7571 /* change from VEB to VEPA mode */ 7572 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7573 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7574 7575 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7576 if (ret) { 7577 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7578 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7579 goto out; 7580 } 7581 /* Update sw flags for book keeping */ 7582 vsi_props->sw_flags = ctxt->info.sw_flags; 7583 7584 out: 7585 kfree(ctxt); 7586 return ret; 7587 } 7588 7589 /** 7590 * ice_bridge_setlink - Set the hardware bridge mode 7591 * @dev: the netdev being configured 7592 * @nlh: RTNL message 7593 * @flags: bridge setlink flags 7594 * @extack: netlink extended ack 7595 * 7596 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7597 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7598 * not already set for all VSIs connected to this switch. And also update the 7599 * unicast switch filter rules for the corresponding switch of the netdev. 7600 */ 7601 static int 7602 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7603 u16 __always_unused flags, 7604 struct netlink_ext_ack __always_unused *extack) 7605 { 7606 struct ice_netdev_priv *np = netdev_priv(dev); 7607 struct ice_pf *pf = np->vsi->back; 7608 struct nlattr *attr, *br_spec; 7609 struct ice_hw *hw = &pf->hw; 7610 struct ice_sw *pf_sw; 7611 int rem, v, err = 0; 7612 7613 pf_sw = pf->first_sw; 7614 /* find the attribute in the netlink message */ 7615 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7616 7617 nla_for_each_nested(attr, br_spec, rem) { 7618 __u16 mode; 7619 7620 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7621 continue; 7622 mode = nla_get_u16(attr); 7623 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7624 return -EINVAL; 7625 /* Continue if bridge mode is not being flipped */ 7626 if (mode == pf_sw->bridge_mode) 7627 continue; 7628 /* Iterates through the PF VSI list and update the loopback 7629 * mode of the VSI 7630 */ 7631 ice_for_each_vsi(pf, v) { 7632 if (!pf->vsi[v]) 7633 continue; 7634 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7635 if (err) 7636 return err; 7637 } 7638 7639 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7640 /* Update the unicast switch filter rules for the corresponding 7641 * switch of the netdev 7642 */ 7643 err = ice_update_sw_rule_bridge_mode(hw); 7644 if (err) { 7645 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7646 mode, err, 7647 ice_aq_str(hw->adminq.sq_last_status)); 7648 /* revert hw->evb_veb */ 7649 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7650 return err; 7651 } 7652 7653 pf_sw->bridge_mode = mode; 7654 } 7655 7656 return 0; 7657 } 7658 7659 /** 7660 * ice_tx_timeout - Respond to a Tx Hang 7661 * @netdev: network interface device structure 7662 * @txqueue: Tx queue 7663 */ 7664 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7665 { 7666 struct ice_netdev_priv *np = netdev_priv(netdev); 7667 struct ice_tx_ring *tx_ring = NULL; 7668 struct ice_vsi *vsi = np->vsi; 7669 struct ice_pf *pf = vsi->back; 7670 u32 i; 7671 7672 pf->tx_timeout_count++; 7673 7674 /* Check if PFC is enabled for the TC to which the queue belongs 7675 * to. If yes then Tx timeout is not caused by a hung queue, no 7676 * need to reset and rebuild 7677 */ 7678 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7679 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7680 txqueue); 7681 return; 7682 } 7683 7684 /* now that we have an index, find the tx_ring struct */ 7685 ice_for_each_txq(vsi, i) 7686 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7687 if (txqueue == vsi->tx_rings[i]->q_index) { 7688 tx_ring = vsi->tx_rings[i]; 7689 break; 7690 } 7691 7692 /* Reset recovery level if enough time has elapsed after last timeout. 7693 * Also ensure no new reset action happens before next timeout period. 7694 */ 7695 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7696 pf->tx_timeout_recovery_level = 1; 7697 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7698 netdev->watchdog_timeo))) 7699 return; 7700 7701 if (tx_ring) { 7702 struct ice_hw *hw = &pf->hw; 7703 u32 head, val = 0; 7704 7705 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7706 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7707 /* Read interrupt register */ 7708 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7709 7710 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7711 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7712 head, tx_ring->next_to_use, val); 7713 } 7714 7715 pf->tx_timeout_last_recovery = jiffies; 7716 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7717 pf->tx_timeout_recovery_level, txqueue); 7718 7719 switch (pf->tx_timeout_recovery_level) { 7720 case 1: 7721 set_bit(ICE_PFR_REQ, pf->state); 7722 break; 7723 case 2: 7724 set_bit(ICE_CORER_REQ, pf->state); 7725 break; 7726 case 3: 7727 set_bit(ICE_GLOBR_REQ, pf->state); 7728 break; 7729 default: 7730 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7731 set_bit(ICE_DOWN, pf->state); 7732 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7733 set_bit(ICE_SERVICE_DIS, pf->state); 7734 break; 7735 } 7736 7737 ice_service_task_schedule(pf); 7738 pf->tx_timeout_recovery_level++; 7739 } 7740 7741 /** 7742 * ice_setup_tc_cls_flower - flower classifier offloads 7743 * @np: net device to configure 7744 * @filter_dev: device on which filter is added 7745 * @cls_flower: offload data 7746 */ 7747 static int 7748 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7749 struct net_device *filter_dev, 7750 struct flow_cls_offload *cls_flower) 7751 { 7752 struct ice_vsi *vsi = np->vsi; 7753 7754 if (cls_flower->common.chain_index) 7755 return -EOPNOTSUPP; 7756 7757 switch (cls_flower->command) { 7758 case FLOW_CLS_REPLACE: 7759 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7760 case FLOW_CLS_DESTROY: 7761 return ice_del_cls_flower(vsi, cls_flower); 7762 default: 7763 return -EINVAL; 7764 } 7765 } 7766 7767 /** 7768 * ice_setup_tc_block_cb - callback handler registered for TC block 7769 * @type: TC SETUP type 7770 * @type_data: TC flower offload data that contains user input 7771 * @cb_priv: netdev private data 7772 */ 7773 static int 7774 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7775 { 7776 struct ice_netdev_priv *np = cb_priv; 7777 7778 switch (type) { 7779 case TC_SETUP_CLSFLOWER: 7780 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7781 type_data); 7782 default: 7783 return -EOPNOTSUPP; 7784 } 7785 } 7786 7787 /** 7788 * ice_validate_mqprio_qopt - Validate TCF input parameters 7789 * @vsi: Pointer to VSI 7790 * @mqprio_qopt: input parameters for mqprio queue configuration 7791 * 7792 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7793 * needed), and make sure user doesn't specify qcount and BW rate limit 7794 * for TCs, which are more than "num_tc" 7795 */ 7796 static int 7797 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7798 struct tc_mqprio_qopt_offload *mqprio_qopt) 7799 { 7800 u64 sum_max_rate = 0, sum_min_rate = 0; 7801 int non_power_of_2_qcount = 0; 7802 struct ice_pf *pf = vsi->back; 7803 int max_rss_q_cnt = 0; 7804 struct device *dev; 7805 int i, speed; 7806 u8 num_tc; 7807 7808 if (vsi->type != ICE_VSI_PF) 7809 return -EINVAL; 7810 7811 if (mqprio_qopt->qopt.offset[0] != 0 || 7812 mqprio_qopt->qopt.num_tc < 1 || 7813 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7814 return -EINVAL; 7815 7816 dev = ice_pf_to_dev(pf); 7817 vsi->ch_rss_size = 0; 7818 num_tc = mqprio_qopt->qopt.num_tc; 7819 7820 for (i = 0; num_tc; i++) { 7821 int qcount = mqprio_qopt->qopt.count[i]; 7822 u64 max_rate, min_rate, rem; 7823 7824 if (!qcount) 7825 return -EINVAL; 7826 7827 if (is_power_of_2(qcount)) { 7828 if (non_power_of_2_qcount && 7829 qcount > non_power_of_2_qcount) { 7830 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7831 qcount, non_power_of_2_qcount); 7832 return -EINVAL; 7833 } 7834 if (qcount > max_rss_q_cnt) 7835 max_rss_q_cnt = qcount; 7836 } else { 7837 if (non_power_of_2_qcount && 7838 qcount != non_power_of_2_qcount) { 7839 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7840 qcount, non_power_of_2_qcount); 7841 return -EINVAL; 7842 } 7843 if (qcount < max_rss_q_cnt) { 7844 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7845 qcount, max_rss_q_cnt); 7846 return -EINVAL; 7847 } 7848 max_rss_q_cnt = qcount; 7849 non_power_of_2_qcount = qcount; 7850 } 7851 7852 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7853 * converts the bandwidth rate limit into Bytes/s when 7854 * passing it down to the driver. So convert input bandwidth 7855 * from Bytes/s to Kbps 7856 */ 7857 max_rate = mqprio_qopt->max_rate[i]; 7858 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7859 sum_max_rate += max_rate; 7860 7861 /* min_rate is minimum guaranteed rate and it can't be zero */ 7862 min_rate = mqprio_qopt->min_rate[i]; 7863 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7864 sum_min_rate += min_rate; 7865 7866 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7867 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7868 min_rate, ICE_MIN_BW_LIMIT); 7869 return -EINVAL; 7870 } 7871 7872 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7873 if (rem) { 7874 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7875 i, ICE_MIN_BW_LIMIT); 7876 return -EINVAL; 7877 } 7878 7879 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7880 if (rem) { 7881 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7882 i, ICE_MIN_BW_LIMIT); 7883 return -EINVAL; 7884 } 7885 7886 /* min_rate can't be more than max_rate, except when max_rate 7887 * is zero (implies max_rate sought is max line rate). In such 7888 * a case min_rate can be more than max. 7889 */ 7890 if (max_rate && min_rate > max_rate) { 7891 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7892 min_rate, max_rate); 7893 return -EINVAL; 7894 } 7895 7896 if (i >= mqprio_qopt->qopt.num_tc - 1) 7897 break; 7898 if (mqprio_qopt->qopt.offset[i + 1] != 7899 (mqprio_qopt->qopt.offset[i] + qcount)) 7900 return -EINVAL; 7901 } 7902 if (vsi->num_rxq < 7903 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7904 return -EINVAL; 7905 if (vsi->num_txq < 7906 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7907 return -EINVAL; 7908 7909 speed = ice_get_link_speed_kbps(vsi); 7910 if (sum_max_rate && sum_max_rate > (u64)speed) { 7911 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7912 sum_max_rate, speed); 7913 return -EINVAL; 7914 } 7915 if (sum_min_rate && sum_min_rate > (u64)speed) { 7916 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7917 sum_min_rate, speed); 7918 return -EINVAL; 7919 } 7920 7921 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7922 vsi->ch_rss_size = max_rss_q_cnt; 7923 7924 return 0; 7925 } 7926 7927 /** 7928 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7929 * @pf: ptr to PF device 7930 * @vsi: ptr to VSI 7931 */ 7932 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7933 { 7934 struct device *dev = ice_pf_to_dev(pf); 7935 bool added = false; 7936 struct ice_hw *hw; 7937 int flow; 7938 7939 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7940 return -EINVAL; 7941 7942 hw = &pf->hw; 7943 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7944 struct ice_fd_hw_prof *prof; 7945 int tun, status; 7946 u64 entry_h; 7947 7948 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7949 hw->fdir_prof[flow]->cnt)) 7950 continue; 7951 7952 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7953 enum ice_flow_priority prio; 7954 u64 prof_id; 7955 7956 /* add this VSI to FDir profile for this flow */ 7957 prio = ICE_FLOW_PRIO_NORMAL; 7958 prof = hw->fdir_prof[flow]; 7959 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7960 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7961 prof->vsi_h[0], vsi->idx, 7962 prio, prof->fdir_seg[tun], 7963 &entry_h); 7964 if (status) { 7965 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7966 vsi->idx, flow); 7967 continue; 7968 } 7969 7970 prof->entry_h[prof->cnt][tun] = entry_h; 7971 } 7972 7973 /* store VSI for filter replay and delete */ 7974 prof->vsi_h[prof->cnt] = vsi->idx; 7975 prof->cnt++; 7976 7977 added = true; 7978 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7979 flow); 7980 } 7981 7982 if (!added) 7983 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7984 7985 return 0; 7986 } 7987 7988 /** 7989 * ice_add_channel - add a channel by adding VSI 7990 * @pf: ptr to PF device 7991 * @sw_id: underlying HW switching element ID 7992 * @ch: ptr to channel structure 7993 * 7994 * Add a channel (VSI) using add_vsi and queue_map 7995 */ 7996 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7997 { 7998 struct device *dev = ice_pf_to_dev(pf); 7999 struct ice_vsi *vsi; 8000 8001 if (ch->type != ICE_VSI_CHNL) { 8002 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8003 return -EINVAL; 8004 } 8005 8006 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8007 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8008 dev_err(dev, "create chnl VSI failure\n"); 8009 return -EINVAL; 8010 } 8011 8012 ice_add_vsi_to_fdir(pf, vsi); 8013 8014 ch->sw_id = sw_id; 8015 ch->vsi_num = vsi->vsi_num; 8016 ch->info.mapping_flags = vsi->info.mapping_flags; 8017 ch->ch_vsi = vsi; 8018 /* set the back pointer of channel for newly created VSI */ 8019 vsi->ch = ch; 8020 8021 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8022 sizeof(vsi->info.q_mapping)); 8023 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8024 sizeof(vsi->info.tc_mapping)); 8025 8026 return 0; 8027 } 8028 8029 /** 8030 * ice_chnl_cfg_res 8031 * @vsi: the VSI being setup 8032 * @ch: ptr to channel structure 8033 * 8034 * Configure channel specific resources such as rings, vector. 8035 */ 8036 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8037 { 8038 int i; 8039 8040 for (i = 0; i < ch->num_txq; i++) { 8041 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8042 struct ice_ring_container *rc; 8043 struct ice_tx_ring *tx_ring; 8044 struct ice_rx_ring *rx_ring; 8045 8046 tx_ring = vsi->tx_rings[ch->base_q + i]; 8047 rx_ring = vsi->rx_rings[ch->base_q + i]; 8048 if (!tx_ring || !rx_ring) 8049 continue; 8050 8051 /* setup ring being channel enabled */ 8052 tx_ring->ch = ch; 8053 rx_ring->ch = ch; 8054 8055 /* following code block sets up vector specific attributes */ 8056 tx_q_vector = tx_ring->q_vector; 8057 rx_q_vector = rx_ring->q_vector; 8058 if (!tx_q_vector && !rx_q_vector) 8059 continue; 8060 8061 if (tx_q_vector) { 8062 tx_q_vector->ch = ch; 8063 /* setup Tx and Rx ITR setting if DIM is off */ 8064 rc = &tx_q_vector->tx; 8065 if (!ITR_IS_DYNAMIC(rc)) 8066 ice_write_itr(rc, rc->itr_setting); 8067 } 8068 if (rx_q_vector) { 8069 rx_q_vector->ch = ch; 8070 /* setup Tx and Rx ITR setting if DIM is off */ 8071 rc = &rx_q_vector->rx; 8072 if (!ITR_IS_DYNAMIC(rc)) 8073 ice_write_itr(rc, rc->itr_setting); 8074 } 8075 } 8076 8077 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8078 * GLINT_ITR register would have written to perform in-context 8079 * update, hence perform flush 8080 */ 8081 if (ch->num_txq || ch->num_rxq) 8082 ice_flush(&vsi->back->hw); 8083 } 8084 8085 /** 8086 * ice_cfg_chnl_all_res - configure channel resources 8087 * @vsi: pte to main_vsi 8088 * @ch: ptr to channel structure 8089 * 8090 * This function configures channel specific resources such as flow-director 8091 * counter index, and other resources such as queues, vectors, ITR settings 8092 */ 8093 static void 8094 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8095 { 8096 /* configure channel (aka ADQ) resources such as queues, vectors, 8097 * ITR settings for channel specific vectors and anything else 8098 */ 8099 ice_chnl_cfg_res(vsi, ch); 8100 } 8101 8102 /** 8103 * ice_setup_hw_channel - setup new channel 8104 * @pf: ptr to PF device 8105 * @vsi: the VSI being setup 8106 * @ch: ptr to channel structure 8107 * @sw_id: underlying HW switching element ID 8108 * @type: type of channel to be created (VMDq2/VF) 8109 * 8110 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8111 * and configures Tx rings accordingly 8112 */ 8113 static int 8114 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8115 struct ice_channel *ch, u16 sw_id, u8 type) 8116 { 8117 struct device *dev = ice_pf_to_dev(pf); 8118 int ret; 8119 8120 ch->base_q = vsi->next_base_q; 8121 ch->type = type; 8122 8123 ret = ice_add_channel(pf, sw_id, ch); 8124 if (ret) { 8125 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8126 return ret; 8127 } 8128 8129 /* configure/setup ADQ specific resources */ 8130 ice_cfg_chnl_all_res(vsi, ch); 8131 8132 /* make sure to update the next_base_q so that subsequent channel's 8133 * (aka ADQ) VSI queue map is correct 8134 */ 8135 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8136 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8137 ch->num_rxq); 8138 8139 return 0; 8140 } 8141 8142 /** 8143 * ice_setup_channel - setup new channel using uplink element 8144 * @pf: ptr to PF device 8145 * @vsi: the VSI being setup 8146 * @ch: ptr to channel structure 8147 * 8148 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8149 * and uplink switching element 8150 */ 8151 static bool 8152 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8153 struct ice_channel *ch) 8154 { 8155 struct device *dev = ice_pf_to_dev(pf); 8156 u16 sw_id; 8157 int ret; 8158 8159 if (vsi->type != ICE_VSI_PF) { 8160 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8161 return false; 8162 } 8163 8164 sw_id = pf->first_sw->sw_id; 8165 8166 /* create channel (VSI) */ 8167 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8168 if (ret) { 8169 dev_err(dev, "failed to setup hw_channel\n"); 8170 return false; 8171 } 8172 dev_dbg(dev, "successfully created channel()\n"); 8173 8174 return ch->ch_vsi ? true : false; 8175 } 8176 8177 /** 8178 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8179 * @vsi: VSI to be configured 8180 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8181 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8182 */ 8183 static int 8184 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8185 { 8186 int err; 8187 8188 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8189 if (err) 8190 return err; 8191 8192 return ice_set_max_bw_limit(vsi, max_tx_rate); 8193 } 8194 8195 /** 8196 * ice_create_q_channel - function to create channel 8197 * @vsi: VSI to be configured 8198 * @ch: ptr to channel (it contains channel specific params) 8199 * 8200 * This function creates channel (VSI) using num_queues specified by user, 8201 * reconfigs RSS if needed. 8202 */ 8203 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8204 { 8205 struct ice_pf *pf = vsi->back; 8206 struct device *dev; 8207 8208 if (!ch) 8209 return -EINVAL; 8210 8211 dev = ice_pf_to_dev(pf); 8212 if (!ch->num_txq || !ch->num_rxq) { 8213 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8214 return -EINVAL; 8215 } 8216 8217 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8218 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8219 vsi->cnt_q_avail, ch->num_txq); 8220 return -EINVAL; 8221 } 8222 8223 if (!ice_setup_channel(pf, vsi, ch)) { 8224 dev_info(dev, "Failed to setup channel\n"); 8225 return -EINVAL; 8226 } 8227 /* configure BW rate limit */ 8228 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8229 int ret; 8230 8231 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8232 ch->min_tx_rate); 8233 if (ret) 8234 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8235 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8236 else 8237 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8238 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8239 } 8240 8241 vsi->cnt_q_avail -= ch->num_txq; 8242 8243 return 0; 8244 } 8245 8246 /** 8247 * ice_rem_all_chnl_fltrs - removes all channel filters 8248 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8249 * 8250 * Remove all advanced switch filters only if they are channel specific 8251 * tc-flower based filter 8252 */ 8253 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8254 { 8255 struct ice_tc_flower_fltr *fltr; 8256 struct hlist_node *node; 8257 8258 /* to remove all channel filters, iterate an ordered list of filters */ 8259 hlist_for_each_entry_safe(fltr, node, 8260 &pf->tc_flower_fltr_list, 8261 tc_flower_node) { 8262 struct ice_rule_query_data rule; 8263 int status; 8264 8265 /* for now process only channel specific filters */ 8266 if (!ice_is_chnl_fltr(fltr)) 8267 continue; 8268 8269 rule.rid = fltr->rid; 8270 rule.rule_id = fltr->rule_id; 8271 rule.vsi_handle = fltr->dest_id; 8272 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8273 if (status) { 8274 if (status == -ENOENT) 8275 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8276 rule.rule_id); 8277 else 8278 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8279 status); 8280 } else if (fltr->dest_vsi) { 8281 /* update advanced switch filter count */ 8282 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8283 u32 flags = fltr->flags; 8284 8285 fltr->dest_vsi->num_chnl_fltr--; 8286 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8287 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8288 pf->num_dmac_chnl_fltrs--; 8289 } 8290 } 8291 8292 hlist_del(&fltr->tc_flower_node); 8293 kfree(fltr); 8294 } 8295 } 8296 8297 /** 8298 * ice_remove_q_channels - Remove queue channels for the TCs 8299 * @vsi: VSI to be configured 8300 * @rem_fltr: delete advanced switch filter or not 8301 * 8302 * Remove queue channels for the TCs 8303 */ 8304 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8305 { 8306 struct ice_channel *ch, *ch_tmp; 8307 struct ice_pf *pf = vsi->back; 8308 int i; 8309 8310 /* remove all tc-flower based filter if they are channel filters only */ 8311 if (rem_fltr) 8312 ice_rem_all_chnl_fltrs(pf); 8313 8314 /* remove ntuple filters since queue configuration is being changed */ 8315 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8316 struct ice_hw *hw = &pf->hw; 8317 8318 mutex_lock(&hw->fdir_fltr_lock); 8319 ice_fdir_del_all_fltrs(vsi); 8320 mutex_unlock(&hw->fdir_fltr_lock); 8321 } 8322 8323 /* perform cleanup for channels if they exist */ 8324 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8325 struct ice_vsi *ch_vsi; 8326 8327 list_del(&ch->list); 8328 ch_vsi = ch->ch_vsi; 8329 if (!ch_vsi) { 8330 kfree(ch); 8331 continue; 8332 } 8333 8334 /* Reset queue contexts */ 8335 for (i = 0; i < ch->num_rxq; i++) { 8336 struct ice_tx_ring *tx_ring; 8337 struct ice_rx_ring *rx_ring; 8338 8339 tx_ring = vsi->tx_rings[ch->base_q + i]; 8340 rx_ring = vsi->rx_rings[ch->base_q + i]; 8341 if (tx_ring) { 8342 tx_ring->ch = NULL; 8343 if (tx_ring->q_vector) 8344 tx_ring->q_vector->ch = NULL; 8345 } 8346 if (rx_ring) { 8347 rx_ring->ch = NULL; 8348 if (rx_ring->q_vector) 8349 rx_ring->q_vector->ch = NULL; 8350 } 8351 } 8352 8353 /* Release FD resources for the channel VSI */ 8354 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8355 8356 /* clear the VSI from scheduler tree */ 8357 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8358 8359 /* Delete VSI from FW */ 8360 ice_vsi_delete(ch->ch_vsi); 8361 8362 /* Delete VSI from PF and HW VSI arrays */ 8363 ice_vsi_clear(ch->ch_vsi); 8364 8365 /* free the channel */ 8366 kfree(ch); 8367 } 8368 8369 /* clear the channel VSI map which is stored in main VSI */ 8370 ice_for_each_chnl_tc(i) 8371 vsi->tc_map_vsi[i] = NULL; 8372 8373 /* reset main VSI's all TC information */ 8374 vsi->all_enatc = 0; 8375 vsi->all_numtc = 0; 8376 } 8377 8378 /** 8379 * ice_rebuild_channels - rebuild channel 8380 * @pf: ptr to PF 8381 * 8382 * Recreate channel VSIs and replay filters 8383 */ 8384 static int ice_rebuild_channels(struct ice_pf *pf) 8385 { 8386 struct device *dev = ice_pf_to_dev(pf); 8387 struct ice_vsi *main_vsi; 8388 bool rem_adv_fltr = true; 8389 struct ice_channel *ch; 8390 struct ice_vsi *vsi; 8391 int tc_idx = 1; 8392 int i, err; 8393 8394 main_vsi = ice_get_main_vsi(pf); 8395 if (!main_vsi) 8396 return 0; 8397 8398 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8399 main_vsi->old_numtc == 1) 8400 return 0; /* nothing to be done */ 8401 8402 /* reconfigure main VSI based on old value of TC and cached values 8403 * for MQPRIO opts 8404 */ 8405 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8406 if (err) { 8407 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8408 main_vsi->old_ena_tc, main_vsi->vsi_num); 8409 return err; 8410 } 8411 8412 /* rebuild ADQ VSIs */ 8413 ice_for_each_vsi(pf, i) { 8414 enum ice_vsi_type type; 8415 8416 vsi = pf->vsi[i]; 8417 if (!vsi || vsi->type != ICE_VSI_CHNL) 8418 continue; 8419 8420 type = vsi->type; 8421 8422 /* rebuild ADQ VSI */ 8423 err = ice_vsi_rebuild(vsi, true); 8424 if (err) { 8425 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8426 ice_vsi_type_str(type), vsi->idx, err); 8427 goto cleanup; 8428 } 8429 8430 /* Re-map HW VSI number, using VSI handle that has been 8431 * previously validated in ice_replay_vsi() call above 8432 */ 8433 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8434 8435 /* replay filters for the VSI */ 8436 err = ice_replay_vsi(&pf->hw, vsi->idx); 8437 if (err) { 8438 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8439 ice_vsi_type_str(type), err, vsi->idx); 8440 rem_adv_fltr = false; 8441 goto cleanup; 8442 } 8443 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8444 ice_vsi_type_str(type), vsi->idx); 8445 8446 /* store ADQ VSI at correct TC index in main VSI's 8447 * map of TC to VSI 8448 */ 8449 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8450 } 8451 8452 /* ADQ VSI(s) has been rebuilt successfully, so setup 8453 * channel for main VSI's Tx and Rx rings 8454 */ 8455 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8456 struct ice_vsi *ch_vsi; 8457 8458 ch_vsi = ch->ch_vsi; 8459 if (!ch_vsi) 8460 continue; 8461 8462 /* reconfig channel resources */ 8463 ice_cfg_chnl_all_res(main_vsi, ch); 8464 8465 /* replay BW rate limit if it is non-zero */ 8466 if (!ch->max_tx_rate && !ch->min_tx_rate) 8467 continue; 8468 8469 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8470 ch->min_tx_rate); 8471 if (err) 8472 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8473 err, ch->max_tx_rate, ch->min_tx_rate, 8474 ch_vsi->vsi_num); 8475 else 8476 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8477 ch->max_tx_rate, ch->min_tx_rate, 8478 ch_vsi->vsi_num); 8479 } 8480 8481 /* reconfig RSS for main VSI */ 8482 if (main_vsi->ch_rss_size) 8483 ice_vsi_cfg_rss_lut_key(main_vsi); 8484 8485 return 0; 8486 8487 cleanup: 8488 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8489 return err; 8490 } 8491 8492 /** 8493 * ice_create_q_channels - Add queue channel for the given TCs 8494 * @vsi: VSI to be configured 8495 * 8496 * Configures queue channel mapping to the given TCs 8497 */ 8498 static int ice_create_q_channels(struct ice_vsi *vsi) 8499 { 8500 struct ice_pf *pf = vsi->back; 8501 struct ice_channel *ch; 8502 int ret = 0, i; 8503 8504 ice_for_each_chnl_tc(i) { 8505 if (!(vsi->all_enatc & BIT(i))) 8506 continue; 8507 8508 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8509 if (!ch) { 8510 ret = -ENOMEM; 8511 goto err_free; 8512 } 8513 INIT_LIST_HEAD(&ch->list); 8514 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8515 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8516 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8517 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8518 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8519 8520 /* convert to Kbits/s */ 8521 if (ch->max_tx_rate) 8522 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8523 ICE_BW_KBPS_DIVISOR); 8524 if (ch->min_tx_rate) 8525 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8526 ICE_BW_KBPS_DIVISOR); 8527 8528 ret = ice_create_q_channel(vsi, ch); 8529 if (ret) { 8530 dev_err(ice_pf_to_dev(pf), 8531 "failed creating channel TC:%d\n", i); 8532 kfree(ch); 8533 goto err_free; 8534 } 8535 list_add_tail(&ch->list, &vsi->ch_list); 8536 vsi->tc_map_vsi[i] = ch->ch_vsi; 8537 dev_dbg(ice_pf_to_dev(pf), 8538 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8539 } 8540 return 0; 8541 8542 err_free: 8543 ice_remove_q_channels(vsi, false); 8544 8545 return ret; 8546 } 8547 8548 /** 8549 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8550 * @netdev: net device to configure 8551 * @type_data: TC offload data 8552 */ 8553 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8554 { 8555 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8556 struct ice_netdev_priv *np = netdev_priv(netdev); 8557 struct ice_vsi *vsi = np->vsi; 8558 struct ice_pf *pf = vsi->back; 8559 u16 mode, ena_tc_qdisc = 0; 8560 int cur_txq, cur_rxq; 8561 u8 hw = 0, num_tcf; 8562 struct device *dev; 8563 int ret, i; 8564 8565 dev = ice_pf_to_dev(pf); 8566 num_tcf = mqprio_qopt->qopt.num_tc; 8567 hw = mqprio_qopt->qopt.hw; 8568 mode = mqprio_qopt->mode; 8569 if (!hw) { 8570 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8571 vsi->ch_rss_size = 0; 8572 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8573 goto config_tcf; 8574 } 8575 8576 /* Generate queue region map for number of TCF requested */ 8577 for (i = 0; i < num_tcf; i++) 8578 ena_tc_qdisc |= BIT(i); 8579 8580 switch (mode) { 8581 case TC_MQPRIO_MODE_CHANNEL: 8582 8583 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8584 if (ret) { 8585 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8586 ret); 8587 return ret; 8588 } 8589 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8590 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8591 /* don't assume state of hw_tc_offload during driver load 8592 * and set the flag for TC flower filter if hw_tc_offload 8593 * already ON 8594 */ 8595 if (vsi->netdev->features & NETIF_F_HW_TC) 8596 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8597 break; 8598 default: 8599 return -EINVAL; 8600 } 8601 8602 config_tcf: 8603 8604 /* Requesting same TCF configuration as already enabled */ 8605 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8606 mode != TC_MQPRIO_MODE_CHANNEL) 8607 return 0; 8608 8609 /* Pause VSI queues */ 8610 ice_dis_vsi(vsi, true); 8611 8612 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8613 ice_remove_q_channels(vsi, true); 8614 8615 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8616 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8617 num_online_cpus()); 8618 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8619 num_online_cpus()); 8620 } else { 8621 /* logic to rebuild VSI, same like ethtool -L */ 8622 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8623 8624 for (i = 0; i < num_tcf; i++) { 8625 if (!(ena_tc_qdisc & BIT(i))) 8626 continue; 8627 8628 offset = vsi->mqprio_qopt.qopt.offset[i]; 8629 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8630 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8631 } 8632 vsi->req_txq = offset + qcount_tx; 8633 vsi->req_rxq = offset + qcount_rx; 8634 8635 /* store away original rss_size info, so that it gets reused 8636 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8637 * determine, what should be the rss_sizefor main VSI 8638 */ 8639 vsi->orig_rss_size = vsi->rss_size; 8640 } 8641 8642 /* save current values of Tx and Rx queues before calling VSI rebuild 8643 * for fallback option 8644 */ 8645 cur_txq = vsi->num_txq; 8646 cur_rxq = vsi->num_rxq; 8647 8648 /* proceed with rebuild main VSI using correct number of queues */ 8649 ret = ice_vsi_rebuild(vsi, false); 8650 if (ret) { 8651 /* fallback to current number of queues */ 8652 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8653 vsi->req_txq = cur_txq; 8654 vsi->req_rxq = cur_rxq; 8655 clear_bit(ICE_RESET_FAILED, pf->state); 8656 if (ice_vsi_rebuild(vsi, false)) { 8657 dev_err(dev, "Rebuild of main VSI failed again\n"); 8658 return ret; 8659 } 8660 } 8661 8662 vsi->all_numtc = num_tcf; 8663 vsi->all_enatc = ena_tc_qdisc; 8664 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8665 if (ret) { 8666 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8667 vsi->vsi_num); 8668 goto exit; 8669 } 8670 8671 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8672 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8673 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8674 8675 /* set TC0 rate limit if specified */ 8676 if (max_tx_rate || min_tx_rate) { 8677 /* convert to Kbits/s */ 8678 if (max_tx_rate) 8679 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8680 if (min_tx_rate) 8681 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8682 8683 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8684 if (!ret) { 8685 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8686 max_tx_rate, min_tx_rate, vsi->vsi_num); 8687 } else { 8688 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8689 max_tx_rate, min_tx_rate, vsi->vsi_num); 8690 goto exit; 8691 } 8692 } 8693 ret = ice_create_q_channels(vsi); 8694 if (ret) { 8695 netdev_err(netdev, "failed configuring queue channels\n"); 8696 goto exit; 8697 } else { 8698 netdev_dbg(netdev, "successfully configured channels\n"); 8699 } 8700 } 8701 8702 if (vsi->ch_rss_size) 8703 ice_vsi_cfg_rss_lut_key(vsi); 8704 8705 exit: 8706 /* if error, reset the all_numtc and all_enatc */ 8707 if (ret) { 8708 vsi->all_numtc = 0; 8709 vsi->all_enatc = 0; 8710 } 8711 /* resume VSI */ 8712 ice_ena_vsi(vsi, true); 8713 8714 return ret; 8715 } 8716 8717 static LIST_HEAD(ice_block_cb_list); 8718 8719 static int 8720 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8721 void *type_data) 8722 { 8723 struct ice_netdev_priv *np = netdev_priv(netdev); 8724 struct ice_pf *pf = np->vsi->back; 8725 int err; 8726 8727 switch (type) { 8728 case TC_SETUP_BLOCK: 8729 return flow_block_cb_setup_simple(type_data, 8730 &ice_block_cb_list, 8731 ice_setup_tc_block_cb, 8732 np, np, true); 8733 case TC_SETUP_QDISC_MQPRIO: 8734 /* setup traffic classifier for receive side */ 8735 mutex_lock(&pf->tc_mutex); 8736 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8737 mutex_unlock(&pf->tc_mutex); 8738 return err; 8739 default: 8740 return -EOPNOTSUPP; 8741 } 8742 return -EOPNOTSUPP; 8743 } 8744 8745 static struct ice_indr_block_priv * 8746 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8747 struct net_device *netdev) 8748 { 8749 struct ice_indr_block_priv *cb_priv; 8750 8751 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8752 if (!cb_priv->netdev) 8753 return NULL; 8754 if (cb_priv->netdev == netdev) 8755 return cb_priv; 8756 } 8757 return NULL; 8758 } 8759 8760 static int 8761 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8762 void *indr_priv) 8763 { 8764 struct ice_indr_block_priv *priv = indr_priv; 8765 struct ice_netdev_priv *np = priv->np; 8766 8767 switch (type) { 8768 case TC_SETUP_CLSFLOWER: 8769 return ice_setup_tc_cls_flower(np, priv->netdev, 8770 (struct flow_cls_offload *) 8771 type_data); 8772 default: 8773 return -EOPNOTSUPP; 8774 } 8775 } 8776 8777 static int 8778 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8779 struct ice_netdev_priv *np, 8780 struct flow_block_offload *f, void *data, 8781 void (*cleanup)(struct flow_block_cb *block_cb)) 8782 { 8783 struct ice_indr_block_priv *indr_priv; 8784 struct flow_block_cb *block_cb; 8785 8786 if (!ice_is_tunnel_supported(netdev) && 8787 !(is_vlan_dev(netdev) && 8788 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8789 return -EOPNOTSUPP; 8790 8791 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8792 return -EOPNOTSUPP; 8793 8794 switch (f->command) { 8795 case FLOW_BLOCK_BIND: 8796 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8797 if (indr_priv) 8798 return -EEXIST; 8799 8800 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8801 if (!indr_priv) 8802 return -ENOMEM; 8803 8804 indr_priv->netdev = netdev; 8805 indr_priv->np = np; 8806 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8807 8808 block_cb = 8809 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8810 indr_priv, indr_priv, 8811 ice_rep_indr_tc_block_unbind, 8812 f, netdev, sch, data, np, 8813 cleanup); 8814 8815 if (IS_ERR(block_cb)) { 8816 list_del(&indr_priv->list); 8817 kfree(indr_priv); 8818 return PTR_ERR(block_cb); 8819 } 8820 flow_block_cb_add(block_cb, f); 8821 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8822 break; 8823 case FLOW_BLOCK_UNBIND: 8824 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8825 if (!indr_priv) 8826 return -ENOENT; 8827 8828 block_cb = flow_block_cb_lookup(f->block, 8829 ice_indr_setup_block_cb, 8830 indr_priv); 8831 if (!block_cb) 8832 return -ENOENT; 8833 8834 flow_indr_block_cb_remove(block_cb, f); 8835 8836 list_del(&block_cb->driver_list); 8837 break; 8838 default: 8839 return -EOPNOTSUPP; 8840 } 8841 return 0; 8842 } 8843 8844 static int 8845 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8846 void *cb_priv, enum tc_setup_type type, void *type_data, 8847 void *data, 8848 void (*cleanup)(struct flow_block_cb *block_cb)) 8849 { 8850 switch (type) { 8851 case TC_SETUP_BLOCK: 8852 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8853 data, cleanup); 8854 8855 default: 8856 return -EOPNOTSUPP; 8857 } 8858 } 8859 8860 /** 8861 * ice_open - Called when a network interface becomes active 8862 * @netdev: network interface device structure 8863 * 8864 * The open entry point is called when a network interface is made 8865 * active by the system (IFF_UP). At this point all resources needed 8866 * for transmit and receive operations are allocated, the interrupt 8867 * handler is registered with the OS, the netdev watchdog is enabled, 8868 * and the stack is notified that the interface is ready. 8869 * 8870 * Returns 0 on success, negative value on failure 8871 */ 8872 int ice_open(struct net_device *netdev) 8873 { 8874 struct ice_netdev_priv *np = netdev_priv(netdev); 8875 struct ice_pf *pf = np->vsi->back; 8876 8877 if (ice_is_reset_in_progress(pf->state)) { 8878 netdev_err(netdev, "can't open net device while reset is in progress"); 8879 return -EBUSY; 8880 } 8881 8882 return ice_open_internal(netdev); 8883 } 8884 8885 /** 8886 * ice_open_internal - Called when a network interface becomes active 8887 * @netdev: network interface device structure 8888 * 8889 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8890 * handling routine 8891 * 8892 * Returns 0 on success, negative value on failure 8893 */ 8894 int ice_open_internal(struct net_device *netdev) 8895 { 8896 struct ice_netdev_priv *np = netdev_priv(netdev); 8897 struct ice_vsi *vsi = np->vsi; 8898 struct ice_pf *pf = vsi->back; 8899 struct ice_port_info *pi; 8900 int err; 8901 8902 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8903 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8904 return -EIO; 8905 } 8906 8907 netif_carrier_off(netdev); 8908 8909 pi = vsi->port_info; 8910 err = ice_update_link_info(pi); 8911 if (err) { 8912 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8913 return err; 8914 } 8915 8916 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8917 8918 /* Set PHY if there is media, otherwise, turn off PHY */ 8919 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8920 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8921 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8922 err = ice_init_phy_user_cfg(pi); 8923 if (err) { 8924 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8925 err); 8926 return err; 8927 } 8928 } 8929 8930 err = ice_configure_phy(vsi); 8931 if (err) { 8932 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8933 err); 8934 return err; 8935 } 8936 } else { 8937 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8938 ice_set_link(vsi, false); 8939 } 8940 8941 err = ice_vsi_open(vsi); 8942 if (err) 8943 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8944 vsi->vsi_num, vsi->vsw->sw_id); 8945 8946 /* Update existing tunnels information */ 8947 udp_tunnel_get_rx_info(netdev); 8948 8949 return err; 8950 } 8951 8952 /** 8953 * ice_stop - Disables a network interface 8954 * @netdev: network interface device structure 8955 * 8956 * The stop entry point is called when an interface is de-activated by the OS, 8957 * and the netdevice enters the DOWN state. The hardware is still under the 8958 * driver's control, but the netdev interface is disabled. 8959 * 8960 * Returns success only - not allowed to fail 8961 */ 8962 int ice_stop(struct net_device *netdev) 8963 { 8964 struct ice_netdev_priv *np = netdev_priv(netdev); 8965 struct ice_vsi *vsi = np->vsi; 8966 struct ice_pf *pf = vsi->back; 8967 8968 if (ice_is_reset_in_progress(pf->state)) { 8969 netdev_err(netdev, "can't stop net device while reset is in progress"); 8970 return -EBUSY; 8971 } 8972 8973 ice_vsi_close(vsi); 8974 8975 return 0; 8976 } 8977 8978 /** 8979 * ice_features_check - Validate encapsulated packet conforms to limits 8980 * @skb: skb buffer 8981 * @netdev: This port's netdev 8982 * @features: Offload features that the stack believes apply 8983 */ 8984 static netdev_features_t 8985 ice_features_check(struct sk_buff *skb, 8986 struct net_device __always_unused *netdev, 8987 netdev_features_t features) 8988 { 8989 bool gso = skb_is_gso(skb); 8990 size_t len; 8991 8992 /* No point in doing any of this if neither checksum nor GSO are 8993 * being requested for this frame. We can rule out both by just 8994 * checking for CHECKSUM_PARTIAL 8995 */ 8996 if (skb->ip_summed != CHECKSUM_PARTIAL) 8997 return features; 8998 8999 /* We cannot support GSO if the MSS is going to be less than 9000 * 64 bytes. If it is then we need to drop support for GSO. 9001 */ 9002 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9003 features &= ~NETIF_F_GSO_MASK; 9004 9005 len = skb_network_offset(skb); 9006 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9007 goto out_rm_features; 9008 9009 len = skb_network_header_len(skb); 9010 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9011 goto out_rm_features; 9012 9013 if (skb->encapsulation) { 9014 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9015 * the case of IPIP frames, the transport header pointer is 9016 * after the inner header! So check to make sure that this 9017 * is a GRE or UDP_TUNNEL frame before doing that math. 9018 */ 9019 if (gso && (skb_shinfo(skb)->gso_type & 9020 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9021 len = skb_inner_network_header(skb) - 9022 skb_transport_header(skb); 9023 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9024 goto out_rm_features; 9025 } 9026 9027 len = skb_inner_network_header_len(skb); 9028 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9029 goto out_rm_features; 9030 } 9031 9032 return features; 9033 out_rm_features: 9034 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9035 } 9036 9037 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9038 .ndo_open = ice_open, 9039 .ndo_stop = ice_stop, 9040 .ndo_start_xmit = ice_start_xmit, 9041 .ndo_set_mac_address = ice_set_mac_address, 9042 .ndo_validate_addr = eth_validate_addr, 9043 .ndo_change_mtu = ice_change_mtu, 9044 .ndo_get_stats64 = ice_get_stats64, 9045 .ndo_tx_timeout = ice_tx_timeout, 9046 .ndo_bpf = ice_xdp_safe_mode, 9047 }; 9048 9049 static const struct net_device_ops ice_netdev_ops = { 9050 .ndo_open = ice_open, 9051 .ndo_stop = ice_stop, 9052 .ndo_start_xmit = ice_start_xmit, 9053 .ndo_select_queue = ice_select_queue, 9054 .ndo_features_check = ice_features_check, 9055 .ndo_fix_features = ice_fix_features, 9056 .ndo_set_rx_mode = ice_set_rx_mode, 9057 .ndo_set_mac_address = ice_set_mac_address, 9058 .ndo_validate_addr = eth_validate_addr, 9059 .ndo_change_mtu = ice_change_mtu, 9060 .ndo_get_stats64 = ice_get_stats64, 9061 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9062 .ndo_eth_ioctl = ice_eth_ioctl, 9063 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9064 .ndo_set_vf_mac = ice_set_vf_mac, 9065 .ndo_get_vf_config = ice_get_vf_cfg, 9066 .ndo_set_vf_trust = ice_set_vf_trust, 9067 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9068 .ndo_set_vf_link_state = ice_set_vf_link_state, 9069 .ndo_get_vf_stats = ice_get_vf_stats, 9070 .ndo_set_vf_rate = ice_set_vf_bw, 9071 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9072 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9073 .ndo_setup_tc = ice_setup_tc, 9074 .ndo_set_features = ice_set_features, 9075 .ndo_bridge_getlink = ice_bridge_getlink, 9076 .ndo_bridge_setlink = ice_bridge_setlink, 9077 .ndo_fdb_add = ice_fdb_add, 9078 .ndo_fdb_del = ice_fdb_del, 9079 #ifdef CONFIG_RFS_ACCEL 9080 .ndo_rx_flow_steer = ice_rx_flow_steer, 9081 #endif 9082 .ndo_tx_timeout = ice_tx_timeout, 9083 .ndo_bpf = ice_xdp, 9084 .ndo_xdp_xmit = ice_xdp_xmit, 9085 .ndo_xsk_wakeup = ice_xsk_wakeup, 9086 .ndo_get_devlink_port = ice_get_devlink_port, 9087 }; 9088