1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 
25 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
26 static const char ice_driver_string[] = DRV_SUMMARY;
27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
28 
29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
30 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
31 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
37 
38 static int debug = -1;
39 module_param(debug, int, 0644);
40 #ifndef CONFIG_DYNAMIC_DEBUG
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
42 #else
43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
44 #endif /* !CONFIG_DYNAMIC_DEBUG */
45 
46 static DEFINE_IDA(ice_aux_ida);
47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
48 EXPORT_SYMBOL(ice_xdp_locking_key);
49 
50 static struct workqueue_struct *ice_wq;
51 static const struct net_device_ops ice_netdev_safe_mode_ops;
52 static const struct net_device_ops ice_netdev_ops;
53 
54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
55 
56 static void ice_vsi_release_all(struct ice_pf *pf);
57 
58 static int ice_rebuild_channels(struct ice_pf *pf);
59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
60 
61 static int
62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
63 		     void *cb_priv, enum tc_setup_type type, void *type_data,
64 		     void *data,
65 		     void (*cleanup)(struct flow_block_cb *block_cb));
66 
67 bool netif_is_ice(struct net_device *dev)
68 {
69 	return dev && (dev->netdev_ops == &ice_netdev_ops);
70 }
71 
72 /**
73  * ice_get_tx_pending - returns number of Tx descriptors not processed
74  * @ring: the ring of descriptors
75  */
76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
77 {
78 	u16 head, tail;
79 
80 	head = ring->next_to_clean;
81 	tail = ring->next_to_use;
82 
83 	if (head != tail)
84 		return (head < tail) ?
85 			tail - head : (tail + ring->count - head);
86 	return 0;
87 }
88 
89 /**
90  * ice_check_for_hang_subtask - check for and recover hung queues
91  * @pf: pointer to PF struct
92  */
93 static void ice_check_for_hang_subtask(struct ice_pf *pf)
94 {
95 	struct ice_vsi *vsi = NULL;
96 	struct ice_hw *hw;
97 	unsigned int i;
98 	int packets;
99 	u32 v;
100 
101 	ice_for_each_vsi(pf, v)
102 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
103 			vsi = pf->vsi[v];
104 			break;
105 		}
106 
107 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
108 		return;
109 
110 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
111 		return;
112 
113 	hw = &vsi->back->hw;
114 
115 	ice_for_each_txq(vsi, i) {
116 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
117 
118 		if (!tx_ring)
119 			continue;
120 		if (ice_ring_ch_enabled(tx_ring))
121 			continue;
122 
123 		if (tx_ring->desc) {
124 			/* If packet counter has not changed the queue is
125 			 * likely stalled, so force an interrupt for this
126 			 * queue.
127 			 *
128 			 * prev_pkt would be negative if there was no
129 			 * pending work.
130 			 */
131 			packets = tx_ring->stats.pkts & INT_MAX;
132 			if (tx_ring->tx_stats.prev_pkt == packets) {
133 				/* Trigger sw interrupt to revive the queue */
134 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
135 				continue;
136 			}
137 
138 			/* Memory barrier between read of packet count and call
139 			 * to ice_get_tx_pending()
140 			 */
141 			smp_rmb();
142 			tx_ring->tx_stats.prev_pkt =
143 			    ice_get_tx_pending(tx_ring) ? packets : -1;
144 		}
145 	}
146 }
147 
148 /**
149  * ice_init_mac_fltr - Set initial MAC filters
150  * @pf: board private structure
151  *
152  * Set initial set of MAC filters for PF VSI; configure filters for permanent
153  * address and broadcast address. If an error is encountered, netdevice will be
154  * unregistered.
155  */
156 static int ice_init_mac_fltr(struct ice_pf *pf)
157 {
158 	struct ice_vsi *vsi;
159 	u8 *perm_addr;
160 
161 	vsi = ice_get_main_vsi(pf);
162 	if (!vsi)
163 		return -EINVAL;
164 
165 	perm_addr = vsi->port_info->mac.perm_addr;
166 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
167 }
168 
169 /**
170  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
171  * @netdev: the net device on which the sync is happening
172  * @addr: MAC address to sync
173  *
174  * This is a callback function which is called by the in kernel device sync
175  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
176  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
177  * MAC filters from the hardware.
178  */
179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
180 {
181 	struct ice_netdev_priv *np = netdev_priv(netdev);
182 	struct ice_vsi *vsi = np->vsi;
183 
184 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
185 				     ICE_FWD_TO_VSI))
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
191 /**
192  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
193  * @netdev: the net device on which the unsync is happening
194  * @addr: MAC address to unsync
195  *
196  * This is a callback function which is called by the in kernel device unsync
197  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
198  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
199  * delete the MAC filters from the hardware.
200  */
201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
202 {
203 	struct ice_netdev_priv *np = netdev_priv(netdev);
204 	struct ice_vsi *vsi = np->vsi;
205 
206 	/* Under some circumstances, we might receive a request to delete our
207 	 * own device address from our uc list. Because we store the device
208 	 * address in the VSI's MAC filter list, we need to ignore such
209 	 * requests and not delete our device address from this list.
210 	 */
211 	if (ether_addr_equal(addr, netdev->dev_addr))
212 		return 0;
213 
214 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
215 				     ICE_FWD_TO_VSI))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 /**
222  * ice_vsi_fltr_changed - check if filter state changed
223  * @vsi: VSI to be checked
224  *
225  * returns true if filter state has changed, false otherwise.
226  */
227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
228 {
229 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
230 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
231 	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
232 }
233 
234 /**
235  * ice_set_promisc - Enable promiscuous mode for a given PF
236  * @vsi: the VSI being configured
237  * @promisc_m: mask of promiscuous config bits
238  *
239  */
240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
241 {
242 	int status;
243 
244 	if (vsi->type != ICE_VSI_PF)
245 		return 0;
246 
247 	if (vsi->num_vlan > 1)
248 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m);
249 	else
250 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0);
251 	return status;
252 }
253 
254 /**
255  * ice_clear_promisc - Disable promiscuous mode for a given PF
256  * @vsi: the VSI being configured
257  * @promisc_m: mask of promiscuous config bits
258  *
259  */
260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
261 {
262 	int status;
263 
264 	if (vsi->type != ICE_VSI_PF)
265 		return 0;
266 
267 	if (vsi->num_vlan > 1)
268 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m);
269 	else
270 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0);
271 	return status;
272 }
273 
274 /**
275  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
276  * @vsi: ptr to the VSI
277  *
278  * Push any outstanding VSI filter changes through the AdminQ.
279  */
280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
281 {
282 	struct device *dev = ice_pf_to_dev(vsi->back);
283 	struct net_device *netdev = vsi->netdev;
284 	bool promisc_forced_on = false;
285 	struct ice_pf *pf = vsi->back;
286 	struct ice_hw *hw = &pf->hw;
287 	u32 changed_flags = 0;
288 	u8 promisc_m;
289 	int err;
290 
291 	if (!vsi->netdev)
292 		return -EINVAL;
293 
294 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
295 		usleep_range(1000, 2000);
296 
297 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
298 	vsi->current_netdev_flags = vsi->netdev->flags;
299 
300 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
301 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
302 
303 	if (ice_vsi_fltr_changed(vsi)) {
304 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
305 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
306 		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
307 
308 		/* grab the netdev's addr_list_lock */
309 		netif_addr_lock_bh(netdev);
310 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
311 			      ice_add_mac_to_unsync_list);
312 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
313 			      ice_add_mac_to_unsync_list);
314 		/* our temp lists are populated. release lock */
315 		netif_addr_unlock_bh(netdev);
316 	}
317 
318 	/* Remove MAC addresses in the unsync list */
319 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
320 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
321 	if (err) {
322 		netdev_err(netdev, "Failed to delete MAC filters\n");
323 		/* if we failed because of alloc failures, just bail */
324 		if (err == -ENOMEM)
325 			goto out;
326 	}
327 
328 	/* Add MAC addresses in the sync list */
329 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
330 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
331 	/* If filter is added successfully or already exists, do not go into
332 	 * 'if' condition and report it as error. Instead continue processing
333 	 * rest of the function.
334 	 */
335 	if (err && err != -EEXIST) {
336 		netdev_err(netdev, "Failed to add MAC filters\n");
337 		/* If there is no more space for new umac filters, VSI
338 		 * should go into promiscuous mode. There should be some
339 		 * space reserved for promiscuous filters.
340 		 */
341 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
342 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
343 				      vsi->state)) {
344 			promisc_forced_on = true;
345 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
346 				    vsi->vsi_num);
347 		} else {
348 			goto out;
349 		}
350 	}
351 	err = 0;
352 	/* check for changes in promiscuous modes */
353 	if (changed_flags & IFF_ALLMULTI) {
354 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
355 			if (vsi->num_vlan > 1)
356 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
357 			else
358 				promisc_m = ICE_MCAST_PROMISC_BITS;
359 
360 			err = ice_set_promisc(vsi, promisc_m);
361 			if (err) {
362 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
363 					   vsi->vsi_num);
364 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
365 				goto out_promisc;
366 			}
367 		} else {
368 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
369 			if (vsi->num_vlan > 1)
370 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
371 			else
372 				promisc_m = ICE_MCAST_PROMISC_BITS;
373 
374 			err = ice_clear_promisc(vsi, promisc_m);
375 			if (err) {
376 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
377 					   vsi->vsi_num);
378 				vsi->current_netdev_flags |= IFF_ALLMULTI;
379 				goto out_promisc;
380 			}
381 		}
382 	}
383 
384 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
385 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
386 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
387 		if (vsi->current_netdev_flags & IFF_PROMISC) {
388 			/* Apply Rx filter rule to get traffic from wire */
389 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
390 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
391 				if (err && err != -EEXIST) {
392 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
393 						   err, vsi->vsi_num);
394 					vsi->current_netdev_flags &=
395 						~IFF_PROMISC;
396 					goto out_promisc;
397 				}
398 				err = 0;
399 				ice_cfg_vlan_pruning(vsi, false);
400 			}
401 		} else {
402 			/* Clear Rx filter to remove traffic from wire */
403 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
404 				err = ice_clear_dflt_vsi(pf->first_sw);
405 				if (err) {
406 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
407 						   err, vsi->vsi_num);
408 					vsi->current_netdev_flags |=
409 						IFF_PROMISC;
410 					goto out_promisc;
411 				}
412 				if (vsi->num_vlan > 1)
413 					ice_cfg_vlan_pruning(vsi, true);
414 			}
415 		}
416 	}
417 	goto exit;
418 
419 out_promisc:
420 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
421 	goto exit;
422 out:
423 	/* if something went wrong then set the changed flag so we try again */
424 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
425 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
426 exit:
427 	clear_bit(ICE_CFG_BUSY, vsi->state);
428 	return err;
429 }
430 
431 /**
432  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
433  * @pf: board private structure
434  */
435 static void ice_sync_fltr_subtask(struct ice_pf *pf)
436 {
437 	int v;
438 
439 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
440 		return;
441 
442 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
443 
444 	ice_for_each_vsi(pf, v)
445 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
446 		    ice_vsi_sync_fltr(pf->vsi[v])) {
447 			/* come back and try again later */
448 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
449 			break;
450 		}
451 }
452 
453 /**
454  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
455  * @pf: the PF
456  * @locked: is the rtnl_lock already held
457  */
458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
459 {
460 	int node;
461 	int v;
462 
463 	ice_for_each_vsi(pf, v)
464 		if (pf->vsi[v])
465 			ice_dis_vsi(pf->vsi[v], locked);
466 
467 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
468 		pf->pf_agg_node[node].num_vsis = 0;
469 
470 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
471 		pf->vf_agg_node[node].num_vsis = 0;
472 }
473 
474 /**
475  * ice_clear_sw_switch_recipes - clear switch recipes
476  * @pf: board private structure
477  *
478  * Mark switch recipes as not created in sw structures. There are cases where
479  * rules (especially advanced rules) need to be restored, either re-read from
480  * hardware or added again. For example after the reset. 'recp_created' flag
481  * prevents from doing that and need to be cleared upfront.
482  */
483 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
484 {
485 	struct ice_sw_recipe *recp;
486 	u8 i;
487 
488 	recp = pf->hw.switch_info->recp_list;
489 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
490 		recp[i].recp_created = false;
491 }
492 
493 /**
494  * ice_prepare_for_reset - prep for reset
495  * @pf: board private structure
496  * @reset_type: reset type requested
497  *
498  * Inform or close all dependent features in prep for reset.
499  */
500 static void
501 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
502 {
503 	struct ice_hw *hw = &pf->hw;
504 	struct ice_vsi *vsi;
505 	unsigned int i;
506 
507 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
508 
509 	/* already prepared for reset */
510 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
511 		return;
512 
513 	ice_unplug_aux_dev(pf);
514 
515 	/* Notify VFs of impending reset */
516 	if (ice_check_sq_alive(hw, &hw->mailboxq))
517 		ice_vc_notify_reset(pf);
518 
519 	/* Disable VFs until reset is completed */
520 	ice_for_each_vf(pf, i)
521 		ice_set_vf_state_qs_dis(&pf->vf[i]);
522 
523 	if (ice_is_eswitch_mode_switchdev(pf)) {
524 		if (reset_type != ICE_RESET_PFR)
525 			ice_clear_sw_switch_recipes(pf);
526 	}
527 
528 	/* release ADQ specific HW and SW resources */
529 	vsi = ice_get_main_vsi(pf);
530 	if (!vsi)
531 		goto skip;
532 
533 	/* to be on safe side, reset orig_rss_size so that normal flow
534 	 * of deciding rss_size can take precedence
535 	 */
536 	vsi->orig_rss_size = 0;
537 
538 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
539 		if (reset_type == ICE_RESET_PFR) {
540 			vsi->old_ena_tc = vsi->all_enatc;
541 			vsi->old_numtc = vsi->all_numtc;
542 		} else {
543 			ice_remove_q_channels(vsi, true);
544 
545 			/* for other reset type, do not support channel rebuild
546 			 * hence reset needed info
547 			 */
548 			vsi->old_ena_tc = 0;
549 			vsi->all_enatc = 0;
550 			vsi->old_numtc = 0;
551 			vsi->all_numtc = 0;
552 			vsi->req_txq = 0;
553 			vsi->req_rxq = 0;
554 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
555 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
556 		}
557 	}
558 skip:
559 
560 	/* clear SW filtering DB */
561 	ice_clear_hw_tbls(hw);
562 	/* disable the VSIs and their queues that are not already DOWN */
563 	ice_pf_dis_all_vsi(pf, false);
564 
565 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
566 		ice_ptp_prepare_for_reset(pf);
567 
568 	if (hw->port_info)
569 		ice_sched_clear_port(hw->port_info);
570 
571 	ice_shutdown_all_ctrlq(hw);
572 
573 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
574 }
575 
576 /**
577  * ice_do_reset - Initiate one of many types of resets
578  * @pf: board private structure
579  * @reset_type: reset type requested before this function was called.
580  */
581 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
582 {
583 	struct device *dev = ice_pf_to_dev(pf);
584 	struct ice_hw *hw = &pf->hw;
585 
586 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
587 
588 	ice_prepare_for_reset(pf, reset_type);
589 
590 	/* trigger the reset */
591 	if (ice_reset(hw, reset_type)) {
592 		dev_err(dev, "reset %d failed\n", reset_type);
593 		set_bit(ICE_RESET_FAILED, pf->state);
594 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
595 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
596 		clear_bit(ICE_PFR_REQ, pf->state);
597 		clear_bit(ICE_CORER_REQ, pf->state);
598 		clear_bit(ICE_GLOBR_REQ, pf->state);
599 		wake_up(&pf->reset_wait_queue);
600 		return;
601 	}
602 
603 	/* PFR is a bit of a special case because it doesn't result in an OICR
604 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
605 	 * associated state bits.
606 	 */
607 	if (reset_type == ICE_RESET_PFR) {
608 		pf->pfr_count++;
609 		ice_rebuild(pf, reset_type);
610 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
611 		clear_bit(ICE_PFR_REQ, pf->state);
612 		wake_up(&pf->reset_wait_queue);
613 		ice_reset_all_vfs(pf, true);
614 	}
615 }
616 
617 /**
618  * ice_reset_subtask - Set up for resetting the device and driver
619  * @pf: board private structure
620  */
621 static void ice_reset_subtask(struct ice_pf *pf)
622 {
623 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
624 
625 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
626 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
627 	 * of reset is pending and sets bits in pf->state indicating the reset
628 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
629 	 * prepare for pending reset if not already (for PF software-initiated
630 	 * global resets the software should already be prepared for it as
631 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
632 	 * by firmware or software on other PFs, that bit is not set so prepare
633 	 * for the reset now), poll for reset done, rebuild and return.
634 	 */
635 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
636 		/* Perform the largest reset requested */
637 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
638 			reset_type = ICE_RESET_CORER;
639 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
640 			reset_type = ICE_RESET_GLOBR;
641 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
642 			reset_type = ICE_RESET_EMPR;
643 		/* return if no valid reset type requested */
644 		if (reset_type == ICE_RESET_INVAL)
645 			return;
646 		ice_prepare_for_reset(pf, reset_type);
647 
648 		/* make sure we are ready to rebuild */
649 		if (ice_check_reset(&pf->hw)) {
650 			set_bit(ICE_RESET_FAILED, pf->state);
651 		} else {
652 			/* done with reset. start rebuild */
653 			pf->hw.reset_ongoing = false;
654 			ice_rebuild(pf, reset_type);
655 			/* clear bit to resume normal operations, but
656 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
657 			 */
658 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
659 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 			clear_bit(ICE_PFR_REQ, pf->state);
661 			clear_bit(ICE_CORER_REQ, pf->state);
662 			clear_bit(ICE_GLOBR_REQ, pf->state);
663 			wake_up(&pf->reset_wait_queue);
664 			ice_reset_all_vfs(pf, true);
665 		}
666 
667 		return;
668 	}
669 
670 	/* No pending resets to finish processing. Check for new resets */
671 	if (test_bit(ICE_PFR_REQ, pf->state))
672 		reset_type = ICE_RESET_PFR;
673 	if (test_bit(ICE_CORER_REQ, pf->state))
674 		reset_type = ICE_RESET_CORER;
675 	if (test_bit(ICE_GLOBR_REQ, pf->state))
676 		reset_type = ICE_RESET_GLOBR;
677 	/* If no valid reset type requested just return */
678 	if (reset_type == ICE_RESET_INVAL)
679 		return;
680 
681 	/* reset if not already down or busy */
682 	if (!test_bit(ICE_DOWN, pf->state) &&
683 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
684 		ice_do_reset(pf, reset_type);
685 	}
686 }
687 
688 /**
689  * ice_print_topo_conflict - print topology conflict message
690  * @vsi: the VSI whose topology status is being checked
691  */
692 static void ice_print_topo_conflict(struct ice_vsi *vsi)
693 {
694 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
695 	case ICE_AQ_LINK_TOPO_CONFLICT:
696 	case ICE_AQ_LINK_MEDIA_CONFLICT:
697 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
698 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
699 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
700 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
701 		break;
702 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
703 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
704 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
705 		else
706 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
707 		break;
708 	default:
709 		break;
710 	}
711 }
712 
713 /**
714  * ice_print_link_msg - print link up or down message
715  * @vsi: the VSI whose link status is being queried
716  * @isup: boolean for if the link is now up or down
717  */
718 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
719 {
720 	struct ice_aqc_get_phy_caps_data *caps;
721 	const char *an_advertised;
722 	const char *fec_req;
723 	const char *speed;
724 	const char *fec;
725 	const char *fc;
726 	const char *an;
727 	int status;
728 
729 	if (!vsi)
730 		return;
731 
732 	if (vsi->current_isup == isup)
733 		return;
734 
735 	vsi->current_isup = isup;
736 
737 	if (!isup) {
738 		netdev_info(vsi->netdev, "NIC Link is Down\n");
739 		return;
740 	}
741 
742 	switch (vsi->port_info->phy.link_info.link_speed) {
743 	case ICE_AQ_LINK_SPEED_100GB:
744 		speed = "100 G";
745 		break;
746 	case ICE_AQ_LINK_SPEED_50GB:
747 		speed = "50 G";
748 		break;
749 	case ICE_AQ_LINK_SPEED_40GB:
750 		speed = "40 G";
751 		break;
752 	case ICE_AQ_LINK_SPEED_25GB:
753 		speed = "25 G";
754 		break;
755 	case ICE_AQ_LINK_SPEED_20GB:
756 		speed = "20 G";
757 		break;
758 	case ICE_AQ_LINK_SPEED_10GB:
759 		speed = "10 G";
760 		break;
761 	case ICE_AQ_LINK_SPEED_5GB:
762 		speed = "5 G";
763 		break;
764 	case ICE_AQ_LINK_SPEED_2500MB:
765 		speed = "2.5 G";
766 		break;
767 	case ICE_AQ_LINK_SPEED_1000MB:
768 		speed = "1 G";
769 		break;
770 	case ICE_AQ_LINK_SPEED_100MB:
771 		speed = "100 M";
772 		break;
773 	default:
774 		speed = "Unknown ";
775 		break;
776 	}
777 
778 	switch (vsi->port_info->fc.current_mode) {
779 	case ICE_FC_FULL:
780 		fc = "Rx/Tx";
781 		break;
782 	case ICE_FC_TX_PAUSE:
783 		fc = "Tx";
784 		break;
785 	case ICE_FC_RX_PAUSE:
786 		fc = "Rx";
787 		break;
788 	case ICE_FC_NONE:
789 		fc = "None";
790 		break;
791 	default:
792 		fc = "Unknown";
793 		break;
794 	}
795 
796 	/* Get FEC mode based on negotiated link info */
797 	switch (vsi->port_info->phy.link_info.fec_info) {
798 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
799 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
800 		fec = "RS-FEC";
801 		break;
802 	case ICE_AQ_LINK_25G_KR_FEC_EN:
803 		fec = "FC-FEC/BASE-R";
804 		break;
805 	default:
806 		fec = "NONE";
807 		break;
808 	}
809 
810 	/* check if autoneg completed, might be false due to not supported */
811 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
812 		an = "True";
813 	else
814 		an = "False";
815 
816 	/* Get FEC mode requested based on PHY caps last SW configuration */
817 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
818 	if (!caps) {
819 		fec_req = "Unknown";
820 		an_advertised = "Unknown";
821 		goto done;
822 	}
823 
824 	status = ice_aq_get_phy_caps(vsi->port_info, false,
825 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
826 	if (status)
827 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
828 
829 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
830 
831 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
832 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
833 		fec_req = "RS-FEC";
834 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
835 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
836 		fec_req = "FC-FEC/BASE-R";
837 	else
838 		fec_req = "NONE";
839 
840 	kfree(caps);
841 
842 done:
843 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
844 		    speed, fec_req, fec, an_advertised, an, fc);
845 	ice_print_topo_conflict(vsi);
846 }
847 
848 /**
849  * ice_vsi_link_event - update the VSI's netdev
850  * @vsi: the VSI on which the link event occurred
851  * @link_up: whether or not the VSI needs to be set up or down
852  */
853 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
854 {
855 	if (!vsi)
856 		return;
857 
858 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
859 		return;
860 
861 	if (vsi->type == ICE_VSI_PF) {
862 		if (link_up == netif_carrier_ok(vsi->netdev))
863 			return;
864 
865 		if (link_up) {
866 			netif_carrier_on(vsi->netdev);
867 			netif_tx_wake_all_queues(vsi->netdev);
868 		} else {
869 			netif_carrier_off(vsi->netdev);
870 			netif_tx_stop_all_queues(vsi->netdev);
871 		}
872 	}
873 }
874 
875 /**
876  * ice_set_dflt_mib - send a default config MIB to the FW
877  * @pf: private PF struct
878  *
879  * This function sends a default configuration MIB to the FW.
880  *
881  * If this function errors out at any point, the driver is still able to
882  * function.  The main impact is that LFC may not operate as expected.
883  * Therefore an error state in this function should be treated with a DBG
884  * message and continue on with driver rebuild/reenable.
885  */
886 static void ice_set_dflt_mib(struct ice_pf *pf)
887 {
888 	struct device *dev = ice_pf_to_dev(pf);
889 	u8 mib_type, *buf, *lldpmib = NULL;
890 	u16 len, typelen, offset = 0;
891 	struct ice_lldp_org_tlv *tlv;
892 	struct ice_hw *hw = &pf->hw;
893 	u32 ouisubtype;
894 
895 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
896 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
897 	if (!lldpmib) {
898 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
899 			__func__);
900 		return;
901 	}
902 
903 	/* Add ETS CFG TLV */
904 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
905 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
906 		   ICE_IEEE_ETS_TLV_LEN);
907 	tlv->typelen = htons(typelen);
908 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
909 		      ICE_IEEE_SUBTYPE_ETS_CFG);
910 	tlv->ouisubtype = htonl(ouisubtype);
911 
912 	buf = tlv->tlvinfo;
913 	buf[0] = 0;
914 
915 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
916 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
917 	 * Octets 13 - 20 are TSA values - leave as zeros
918 	 */
919 	buf[5] = 0x64;
920 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
921 	offset += len + 2;
922 	tlv = (struct ice_lldp_org_tlv *)
923 		((char *)tlv + sizeof(tlv->typelen) + len);
924 
925 	/* Add ETS REC TLV */
926 	buf = tlv->tlvinfo;
927 	tlv->typelen = htons(typelen);
928 
929 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
930 		      ICE_IEEE_SUBTYPE_ETS_REC);
931 	tlv->ouisubtype = htonl(ouisubtype);
932 
933 	/* First octet of buf is reserved
934 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
935 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
936 	 * Octets 13 - 20 are TSA value - leave as zeros
937 	 */
938 	buf[5] = 0x64;
939 	offset += len + 2;
940 	tlv = (struct ice_lldp_org_tlv *)
941 		((char *)tlv + sizeof(tlv->typelen) + len);
942 
943 	/* Add PFC CFG TLV */
944 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
945 		   ICE_IEEE_PFC_TLV_LEN);
946 	tlv->typelen = htons(typelen);
947 
948 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
949 		      ICE_IEEE_SUBTYPE_PFC_CFG);
950 	tlv->ouisubtype = htonl(ouisubtype);
951 
952 	/* Octet 1 left as all zeros - PFC disabled */
953 	buf[0] = 0x08;
954 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
955 	offset += len + 2;
956 
957 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
958 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
959 
960 	kfree(lldpmib);
961 }
962 
963 /**
964  * ice_check_phy_fw_load - check if PHY FW load failed
965  * @pf: pointer to PF struct
966  * @link_cfg_err: bitmap from the link info structure
967  *
968  * check if external PHY FW load failed and print an error message if it did
969  */
970 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
971 {
972 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
973 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
974 		return;
975 	}
976 
977 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
978 		return;
979 
980 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
981 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
982 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
983 	}
984 }
985 
986 /**
987  * ice_check_module_power
988  * @pf: pointer to PF struct
989  * @link_cfg_err: bitmap from the link info structure
990  *
991  * check module power level returned by a previous call to aq_get_link_info
992  * and print error messages if module power level is not supported
993  */
994 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
995 {
996 	/* if module power level is supported, clear the flag */
997 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
998 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
999 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1000 		return;
1001 	}
1002 
1003 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1004 	 * above block didn't clear this bit, there's nothing to do
1005 	 */
1006 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1007 		return;
1008 
1009 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1010 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1011 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1012 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1013 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1014 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1015 	}
1016 }
1017 
1018 /**
1019  * ice_check_link_cfg_err - check if link configuration failed
1020  * @pf: pointer to the PF struct
1021  * @link_cfg_err: bitmap from the link info structure
1022  *
1023  * print if any link configuration failure happens due to the value in the
1024  * link_cfg_err parameter in the link info structure
1025  */
1026 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1027 {
1028 	ice_check_module_power(pf, link_cfg_err);
1029 	ice_check_phy_fw_load(pf, link_cfg_err);
1030 }
1031 
1032 /**
1033  * ice_link_event - process the link event
1034  * @pf: PF that the link event is associated with
1035  * @pi: port_info for the port that the link event is associated with
1036  * @link_up: true if the physical link is up and false if it is down
1037  * @link_speed: current link speed received from the link event
1038  *
1039  * Returns 0 on success and negative on failure
1040  */
1041 static int
1042 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1043 	       u16 link_speed)
1044 {
1045 	struct device *dev = ice_pf_to_dev(pf);
1046 	struct ice_phy_info *phy_info;
1047 	struct ice_vsi *vsi;
1048 	u16 old_link_speed;
1049 	bool old_link;
1050 	int status;
1051 
1052 	phy_info = &pi->phy;
1053 	phy_info->link_info_old = phy_info->link_info;
1054 
1055 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1056 	old_link_speed = phy_info->link_info_old.link_speed;
1057 
1058 	/* update the link info structures and re-enable link events,
1059 	 * don't bail on failure due to other book keeping needed
1060 	 */
1061 	status = ice_update_link_info(pi);
1062 	if (status)
1063 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1064 			pi->lport, status,
1065 			ice_aq_str(pi->hw->adminq.sq_last_status));
1066 
1067 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1068 
1069 	/* Check if the link state is up after updating link info, and treat
1070 	 * this event as an UP event since the link is actually UP now.
1071 	 */
1072 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1073 		link_up = true;
1074 
1075 	vsi = ice_get_main_vsi(pf);
1076 	if (!vsi || !vsi->port_info)
1077 		return -EINVAL;
1078 
1079 	/* turn off PHY if media was removed */
1080 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1081 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1082 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1083 		ice_set_link(vsi, false);
1084 	}
1085 
1086 	/* if the old link up/down and speed is the same as the new */
1087 	if (link_up == old_link && link_speed == old_link_speed)
1088 		return 0;
1089 
1090 	if (!ice_is_e810(&pf->hw))
1091 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1092 
1093 	if (ice_is_dcb_active(pf)) {
1094 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1095 			ice_dcb_rebuild(pf);
1096 	} else {
1097 		if (link_up)
1098 			ice_set_dflt_mib(pf);
1099 	}
1100 	ice_vsi_link_event(vsi, link_up);
1101 	ice_print_link_msg(vsi, link_up);
1102 
1103 	ice_vc_notify_link_state(pf);
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1110  * @pf: board private structure
1111  */
1112 static void ice_watchdog_subtask(struct ice_pf *pf)
1113 {
1114 	int i;
1115 
1116 	/* if interface is down do nothing */
1117 	if (test_bit(ICE_DOWN, pf->state) ||
1118 	    test_bit(ICE_CFG_BUSY, pf->state))
1119 		return;
1120 
1121 	/* make sure we don't do these things too often */
1122 	if (time_before(jiffies,
1123 			pf->serv_tmr_prev + pf->serv_tmr_period))
1124 		return;
1125 
1126 	pf->serv_tmr_prev = jiffies;
1127 
1128 	/* Update the stats for active netdevs so the network stack
1129 	 * can look at updated numbers whenever it cares to
1130 	 */
1131 	ice_update_pf_stats(pf);
1132 	ice_for_each_vsi(pf, i)
1133 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1134 			ice_update_vsi_stats(pf->vsi[i]);
1135 }
1136 
1137 /**
1138  * ice_init_link_events - enable/initialize link events
1139  * @pi: pointer to the port_info instance
1140  *
1141  * Returns -EIO on failure, 0 on success
1142  */
1143 static int ice_init_link_events(struct ice_port_info *pi)
1144 {
1145 	u16 mask;
1146 
1147 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1148 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1149 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1150 
1151 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1152 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1153 			pi->lport);
1154 		return -EIO;
1155 	}
1156 
1157 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1158 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1159 			pi->lport);
1160 		return -EIO;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 /**
1167  * ice_handle_link_event - handle link event via ARQ
1168  * @pf: PF that the link event is associated with
1169  * @event: event structure containing link status info
1170  */
1171 static int
1172 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1173 {
1174 	struct ice_aqc_get_link_status_data *link_data;
1175 	struct ice_port_info *port_info;
1176 	int status;
1177 
1178 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1179 	port_info = pf->hw.port_info;
1180 	if (!port_info)
1181 		return -EINVAL;
1182 
1183 	status = ice_link_event(pf, port_info,
1184 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1185 				le16_to_cpu(link_data->link_speed));
1186 	if (status)
1187 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1188 			status);
1189 
1190 	return status;
1191 }
1192 
1193 enum ice_aq_task_state {
1194 	ICE_AQ_TASK_WAITING = 0,
1195 	ICE_AQ_TASK_COMPLETE,
1196 	ICE_AQ_TASK_CANCELED,
1197 };
1198 
1199 struct ice_aq_task {
1200 	struct hlist_node entry;
1201 
1202 	u16 opcode;
1203 	struct ice_rq_event_info *event;
1204 	enum ice_aq_task_state state;
1205 };
1206 
1207 /**
1208  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1209  * @pf: pointer to the PF private structure
1210  * @opcode: the opcode to wait for
1211  * @timeout: how long to wait, in jiffies
1212  * @event: storage for the event info
1213  *
1214  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1215  * current thread will be put to sleep until the specified event occurs or
1216  * until the given timeout is reached.
1217  *
1218  * To obtain only the descriptor contents, pass an event without an allocated
1219  * msg_buf. If the complete data buffer is desired, allocate the
1220  * event->msg_buf with enough space ahead of time.
1221  *
1222  * Returns: zero on success, or a negative error code on failure.
1223  */
1224 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1225 			  struct ice_rq_event_info *event)
1226 {
1227 	struct device *dev = ice_pf_to_dev(pf);
1228 	struct ice_aq_task *task;
1229 	unsigned long start;
1230 	long ret;
1231 	int err;
1232 
1233 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1234 	if (!task)
1235 		return -ENOMEM;
1236 
1237 	INIT_HLIST_NODE(&task->entry);
1238 	task->opcode = opcode;
1239 	task->event = event;
1240 	task->state = ICE_AQ_TASK_WAITING;
1241 
1242 	spin_lock_bh(&pf->aq_wait_lock);
1243 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1244 	spin_unlock_bh(&pf->aq_wait_lock);
1245 
1246 	start = jiffies;
1247 
1248 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1249 					       timeout);
1250 	switch (task->state) {
1251 	case ICE_AQ_TASK_WAITING:
1252 		err = ret < 0 ? ret : -ETIMEDOUT;
1253 		break;
1254 	case ICE_AQ_TASK_CANCELED:
1255 		err = ret < 0 ? ret : -ECANCELED;
1256 		break;
1257 	case ICE_AQ_TASK_COMPLETE:
1258 		err = ret < 0 ? ret : 0;
1259 		break;
1260 	default:
1261 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1262 		err = -EINVAL;
1263 		break;
1264 	}
1265 
1266 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1267 		jiffies_to_msecs(jiffies - start),
1268 		jiffies_to_msecs(timeout),
1269 		opcode);
1270 
1271 	spin_lock_bh(&pf->aq_wait_lock);
1272 	hlist_del(&task->entry);
1273 	spin_unlock_bh(&pf->aq_wait_lock);
1274 	kfree(task);
1275 
1276 	return err;
1277 }
1278 
1279 /**
1280  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1281  * @pf: pointer to the PF private structure
1282  * @opcode: the opcode of the event
1283  * @event: the event to check
1284  *
1285  * Loops over the current list of pending threads waiting for an AdminQ event.
1286  * For each matching task, copy the contents of the event into the task
1287  * structure and wake up the thread.
1288  *
1289  * If multiple threads wait for the same opcode, they will all be woken up.
1290  *
1291  * Note that event->msg_buf will only be duplicated if the event has a buffer
1292  * with enough space already allocated. Otherwise, only the descriptor and
1293  * message length will be copied.
1294  *
1295  * Returns: true if an event was found, false otherwise
1296  */
1297 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1298 				struct ice_rq_event_info *event)
1299 {
1300 	struct ice_aq_task *task;
1301 	bool found = false;
1302 
1303 	spin_lock_bh(&pf->aq_wait_lock);
1304 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1305 		if (task->state || task->opcode != opcode)
1306 			continue;
1307 
1308 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1309 		task->event->msg_len = event->msg_len;
1310 
1311 		/* Only copy the data buffer if a destination was set */
1312 		if (task->event->msg_buf &&
1313 		    task->event->buf_len > event->buf_len) {
1314 			memcpy(task->event->msg_buf, event->msg_buf,
1315 			       event->buf_len);
1316 			task->event->buf_len = event->buf_len;
1317 		}
1318 
1319 		task->state = ICE_AQ_TASK_COMPLETE;
1320 		found = true;
1321 	}
1322 	spin_unlock_bh(&pf->aq_wait_lock);
1323 
1324 	if (found)
1325 		wake_up(&pf->aq_wait_queue);
1326 }
1327 
1328 /**
1329  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1330  * @pf: the PF private structure
1331  *
1332  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1333  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1334  */
1335 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1336 {
1337 	struct ice_aq_task *task;
1338 
1339 	spin_lock_bh(&pf->aq_wait_lock);
1340 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1341 		task->state = ICE_AQ_TASK_CANCELED;
1342 	spin_unlock_bh(&pf->aq_wait_lock);
1343 
1344 	wake_up(&pf->aq_wait_queue);
1345 }
1346 
1347 /**
1348  * __ice_clean_ctrlq - helper function to clean controlq rings
1349  * @pf: ptr to struct ice_pf
1350  * @q_type: specific Control queue type
1351  */
1352 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1353 {
1354 	struct device *dev = ice_pf_to_dev(pf);
1355 	struct ice_rq_event_info event;
1356 	struct ice_hw *hw = &pf->hw;
1357 	struct ice_ctl_q_info *cq;
1358 	u16 pending, i = 0;
1359 	const char *qtype;
1360 	u32 oldval, val;
1361 
1362 	/* Do not clean control queue if/when PF reset fails */
1363 	if (test_bit(ICE_RESET_FAILED, pf->state))
1364 		return 0;
1365 
1366 	switch (q_type) {
1367 	case ICE_CTL_Q_ADMIN:
1368 		cq = &hw->adminq;
1369 		qtype = "Admin";
1370 		break;
1371 	case ICE_CTL_Q_SB:
1372 		cq = &hw->sbq;
1373 		qtype = "Sideband";
1374 		break;
1375 	case ICE_CTL_Q_MAILBOX:
1376 		cq = &hw->mailboxq;
1377 		qtype = "Mailbox";
1378 		/* we are going to try to detect a malicious VF, so set the
1379 		 * state to begin detection
1380 		 */
1381 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1382 		break;
1383 	default:
1384 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1385 		return 0;
1386 	}
1387 
1388 	/* check for error indications - PF_xx_AxQLEN register layout for
1389 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1390 	 */
1391 	val = rd32(hw, cq->rq.len);
1392 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1393 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1394 		oldval = val;
1395 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1396 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1397 				qtype);
1398 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1399 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1400 				qtype);
1401 		}
1402 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1403 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1404 				qtype);
1405 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1406 			 PF_FW_ARQLEN_ARQCRIT_M);
1407 		if (oldval != val)
1408 			wr32(hw, cq->rq.len, val);
1409 	}
1410 
1411 	val = rd32(hw, cq->sq.len);
1412 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1413 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1414 		oldval = val;
1415 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1416 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1417 				qtype);
1418 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1419 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1420 				qtype);
1421 		}
1422 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1423 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1424 				qtype);
1425 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1426 			 PF_FW_ATQLEN_ATQCRIT_M);
1427 		if (oldval != val)
1428 			wr32(hw, cq->sq.len, val);
1429 	}
1430 
1431 	event.buf_len = cq->rq_buf_size;
1432 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1433 	if (!event.msg_buf)
1434 		return 0;
1435 
1436 	do {
1437 		u16 opcode;
1438 		int ret;
1439 
1440 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1441 		if (ret == -EALREADY)
1442 			break;
1443 		if (ret) {
1444 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1445 				ret);
1446 			break;
1447 		}
1448 
1449 		opcode = le16_to_cpu(event.desc.opcode);
1450 
1451 		/* Notify any thread that might be waiting for this event */
1452 		ice_aq_check_events(pf, opcode, &event);
1453 
1454 		switch (opcode) {
1455 		case ice_aqc_opc_get_link_status:
1456 			if (ice_handle_link_event(pf, &event))
1457 				dev_err(dev, "Could not handle link event\n");
1458 			break;
1459 		case ice_aqc_opc_event_lan_overflow:
1460 			ice_vf_lan_overflow_event(pf, &event);
1461 			break;
1462 		case ice_mbx_opc_send_msg_to_pf:
1463 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1464 				ice_vc_process_vf_msg(pf, &event);
1465 			break;
1466 		case ice_aqc_opc_fw_logging:
1467 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1468 			break;
1469 		case ice_aqc_opc_lldp_set_mib_change:
1470 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1471 			break;
1472 		default:
1473 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1474 				qtype, opcode);
1475 			break;
1476 		}
1477 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1478 
1479 	kfree(event.msg_buf);
1480 
1481 	return pending && (i == ICE_DFLT_IRQ_WORK);
1482 }
1483 
1484 /**
1485  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1486  * @hw: pointer to hardware info
1487  * @cq: control queue information
1488  *
1489  * returns true if there are pending messages in a queue, false if there aren't
1490  */
1491 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1492 {
1493 	u16 ntu;
1494 
1495 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1496 	return cq->rq.next_to_clean != ntu;
1497 }
1498 
1499 /**
1500  * ice_clean_adminq_subtask - clean the AdminQ rings
1501  * @pf: board private structure
1502  */
1503 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1504 {
1505 	struct ice_hw *hw = &pf->hw;
1506 
1507 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1508 		return;
1509 
1510 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1511 		return;
1512 
1513 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1514 
1515 	/* There might be a situation where new messages arrive to a control
1516 	 * queue between processing the last message and clearing the
1517 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1518 	 * ice_ctrlq_pending) and process new messages if any.
1519 	 */
1520 	if (ice_ctrlq_pending(hw, &hw->adminq))
1521 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1522 
1523 	ice_flush(hw);
1524 }
1525 
1526 /**
1527  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1528  * @pf: board private structure
1529  */
1530 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1531 {
1532 	struct ice_hw *hw = &pf->hw;
1533 
1534 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1535 		return;
1536 
1537 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1538 		return;
1539 
1540 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1541 
1542 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1543 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1544 
1545 	ice_flush(hw);
1546 }
1547 
1548 /**
1549  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1550  * @pf: board private structure
1551  */
1552 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1553 {
1554 	struct ice_hw *hw = &pf->hw;
1555 
1556 	/* Nothing to do here if sideband queue is not supported */
1557 	if (!ice_is_sbq_supported(hw)) {
1558 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1559 		return;
1560 	}
1561 
1562 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1563 		return;
1564 
1565 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1566 		return;
1567 
1568 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1569 
1570 	if (ice_ctrlq_pending(hw, &hw->sbq))
1571 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1572 
1573 	ice_flush(hw);
1574 }
1575 
1576 /**
1577  * ice_service_task_schedule - schedule the service task to wake up
1578  * @pf: board private structure
1579  *
1580  * If not already scheduled, this puts the task into the work queue.
1581  */
1582 void ice_service_task_schedule(struct ice_pf *pf)
1583 {
1584 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1585 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1586 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1587 		queue_work(ice_wq, &pf->serv_task);
1588 }
1589 
1590 /**
1591  * ice_service_task_complete - finish up the service task
1592  * @pf: board private structure
1593  */
1594 static void ice_service_task_complete(struct ice_pf *pf)
1595 {
1596 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1597 
1598 	/* force memory (pf->state) to sync before next service task */
1599 	smp_mb__before_atomic();
1600 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1601 }
1602 
1603 /**
1604  * ice_service_task_stop - stop service task and cancel works
1605  * @pf: board private structure
1606  *
1607  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1608  * 1 otherwise.
1609  */
1610 static int ice_service_task_stop(struct ice_pf *pf)
1611 {
1612 	int ret;
1613 
1614 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1615 
1616 	if (pf->serv_tmr.function)
1617 		del_timer_sync(&pf->serv_tmr);
1618 	if (pf->serv_task.func)
1619 		cancel_work_sync(&pf->serv_task);
1620 
1621 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1622 	return ret;
1623 }
1624 
1625 /**
1626  * ice_service_task_restart - restart service task and schedule works
1627  * @pf: board private structure
1628  *
1629  * This function is needed for suspend and resume works (e.g WoL scenario)
1630  */
1631 static void ice_service_task_restart(struct ice_pf *pf)
1632 {
1633 	clear_bit(ICE_SERVICE_DIS, pf->state);
1634 	ice_service_task_schedule(pf);
1635 }
1636 
1637 /**
1638  * ice_service_timer - timer callback to schedule service task
1639  * @t: pointer to timer_list
1640  */
1641 static void ice_service_timer(struct timer_list *t)
1642 {
1643 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1644 
1645 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1646 	ice_service_task_schedule(pf);
1647 }
1648 
1649 /**
1650  * ice_handle_mdd_event - handle malicious driver detect event
1651  * @pf: pointer to the PF structure
1652  *
1653  * Called from service task. OICR interrupt handler indicates MDD event.
1654  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1655  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1656  * disable the queue, the PF can be configured to reset the VF using ethtool
1657  * private flag mdd-auto-reset-vf.
1658  */
1659 static void ice_handle_mdd_event(struct ice_pf *pf)
1660 {
1661 	struct device *dev = ice_pf_to_dev(pf);
1662 	struct ice_hw *hw = &pf->hw;
1663 	unsigned int i;
1664 	u32 reg;
1665 
1666 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1667 		/* Since the VF MDD event logging is rate limited, check if
1668 		 * there are pending MDD events.
1669 		 */
1670 		ice_print_vfs_mdd_events(pf);
1671 		return;
1672 	}
1673 
1674 	/* find what triggered an MDD event */
1675 	reg = rd32(hw, GL_MDET_TX_PQM);
1676 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1677 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1678 				GL_MDET_TX_PQM_PF_NUM_S;
1679 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1680 				GL_MDET_TX_PQM_VF_NUM_S;
1681 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1682 				GL_MDET_TX_PQM_MAL_TYPE_S;
1683 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1684 				GL_MDET_TX_PQM_QNUM_S);
1685 
1686 		if (netif_msg_tx_err(pf))
1687 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1688 				 event, queue, pf_num, vf_num);
1689 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1690 	}
1691 
1692 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1693 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1694 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1695 				GL_MDET_TX_TCLAN_PF_NUM_S;
1696 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1697 				GL_MDET_TX_TCLAN_VF_NUM_S;
1698 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1699 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1700 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1701 				GL_MDET_TX_TCLAN_QNUM_S);
1702 
1703 		if (netif_msg_tx_err(pf))
1704 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1705 				 event, queue, pf_num, vf_num);
1706 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1707 	}
1708 
1709 	reg = rd32(hw, GL_MDET_RX);
1710 	if (reg & GL_MDET_RX_VALID_M) {
1711 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1712 				GL_MDET_RX_PF_NUM_S;
1713 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1714 				GL_MDET_RX_VF_NUM_S;
1715 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1716 				GL_MDET_RX_MAL_TYPE_S;
1717 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1718 				GL_MDET_RX_QNUM_S);
1719 
1720 		if (netif_msg_rx_err(pf))
1721 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1722 				 event, queue, pf_num, vf_num);
1723 		wr32(hw, GL_MDET_RX, 0xffffffff);
1724 	}
1725 
1726 	/* check to see if this PF caused an MDD event */
1727 	reg = rd32(hw, PF_MDET_TX_PQM);
1728 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1729 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1730 		if (netif_msg_tx_err(pf))
1731 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1732 	}
1733 
1734 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1735 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1736 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1737 		if (netif_msg_tx_err(pf))
1738 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1739 	}
1740 
1741 	reg = rd32(hw, PF_MDET_RX);
1742 	if (reg & PF_MDET_RX_VALID_M) {
1743 		wr32(hw, PF_MDET_RX, 0xFFFF);
1744 		if (netif_msg_rx_err(pf))
1745 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1746 	}
1747 
1748 	/* Check to see if one of the VFs caused an MDD event, and then
1749 	 * increment counters and set print pending
1750 	 */
1751 	ice_for_each_vf(pf, i) {
1752 		struct ice_vf *vf = &pf->vf[i];
1753 
1754 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1755 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1756 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1757 			vf->mdd_tx_events.count++;
1758 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1759 			if (netif_msg_tx_err(pf))
1760 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1761 					 i);
1762 		}
1763 
1764 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1765 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1766 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1767 			vf->mdd_tx_events.count++;
1768 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1769 			if (netif_msg_tx_err(pf))
1770 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1771 					 i);
1772 		}
1773 
1774 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1775 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1776 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1777 			vf->mdd_tx_events.count++;
1778 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1779 			if (netif_msg_tx_err(pf))
1780 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1781 					 i);
1782 		}
1783 
1784 		reg = rd32(hw, VP_MDET_RX(i));
1785 		if (reg & VP_MDET_RX_VALID_M) {
1786 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1787 			vf->mdd_rx_events.count++;
1788 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1789 			if (netif_msg_rx_err(pf))
1790 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1791 					 i);
1792 
1793 			/* Since the queue is disabled on VF Rx MDD events, the
1794 			 * PF can be configured to reset the VF through ethtool
1795 			 * private flag mdd-auto-reset-vf.
1796 			 */
1797 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1798 				/* VF MDD event counters will be cleared by
1799 				 * reset, so print the event prior to reset.
1800 				 */
1801 				ice_print_vf_rx_mdd_event(vf);
1802 				mutex_lock(&pf->vf[i].cfg_lock);
1803 				ice_reset_vf(&pf->vf[i], false);
1804 				mutex_unlock(&pf->vf[i].cfg_lock);
1805 			}
1806 		}
1807 	}
1808 
1809 	ice_print_vfs_mdd_events(pf);
1810 }
1811 
1812 /**
1813  * ice_force_phys_link_state - Force the physical link state
1814  * @vsi: VSI to force the physical link state to up/down
1815  * @link_up: true/false indicates to set the physical link to up/down
1816  *
1817  * Force the physical link state by getting the current PHY capabilities from
1818  * hardware and setting the PHY config based on the determined capabilities. If
1819  * link changes a link event will be triggered because both the Enable Automatic
1820  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1821  *
1822  * Returns 0 on success, negative on failure
1823  */
1824 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1825 {
1826 	struct ice_aqc_get_phy_caps_data *pcaps;
1827 	struct ice_aqc_set_phy_cfg_data *cfg;
1828 	struct ice_port_info *pi;
1829 	struct device *dev;
1830 	int retcode;
1831 
1832 	if (!vsi || !vsi->port_info || !vsi->back)
1833 		return -EINVAL;
1834 	if (vsi->type != ICE_VSI_PF)
1835 		return 0;
1836 
1837 	dev = ice_pf_to_dev(vsi->back);
1838 
1839 	pi = vsi->port_info;
1840 
1841 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1842 	if (!pcaps)
1843 		return -ENOMEM;
1844 
1845 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1846 				      NULL);
1847 	if (retcode) {
1848 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1849 			vsi->vsi_num, retcode);
1850 		retcode = -EIO;
1851 		goto out;
1852 	}
1853 
1854 	/* No change in link */
1855 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1856 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1857 		goto out;
1858 
1859 	/* Use the current user PHY configuration. The current user PHY
1860 	 * configuration is initialized during probe from PHY capabilities
1861 	 * software mode, and updated on set PHY configuration.
1862 	 */
1863 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1864 	if (!cfg) {
1865 		retcode = -ENOMEM;
1866 		goto out;
1867 	}
1868 
1869 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1870 	if (link_up)
1871 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1872 	else
1873 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1874 
1875 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1876 	if (retcode) {
1877 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1878 			vsi->vsi_num, retcode);
1879 		retcode = -EIO;
1880 	}
1881 
1882 	kfree(cfg);
1883 out:
1884 	kfree(pcaps);
1885 	return retcode;
1886 }
1887 
1888 /**
1889  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1890  * @pi: port info structure
1891  *
1892  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1893  */
1894 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1895 {
1896 	struct ice_aqc_get_phy_caps_data *pcaps;
1897 	struct ice_pf *pf = pi->hw->back;
1898 	int err;
1899 
1900 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1901 	if (!pcaps)
1902 		return -ENOMEM;
1903 
1904 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1905 				  pcaps, NULL);
1906 
1907 	if (err) {
1908 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1909 		goto out;
1910 	}
1911 
1912 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1913 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1914 
1915 out:
1916 	kfree(pcaps);
1917 	return err;
1918 }
1919 
1920 /**
1921  * ice_init_link_dflt_override - Initialize link default override
1922  * @pi: port info structure
1923  *
1924  * Initialize link default override and PHY total port shutdown during probe
1925  */
1926 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1927 {
1928 	struct ice_link_default_override_tlv *ldo;
1929 	struct ice_pf *pf = pi->hw->back;
1930 
1931 	ldo = &pf->link_dflt_override;
1932 	if (ice_get_link_default_override(ldo, pi))
1933 		return;
1934 
1935 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1936 		return;
1937 
1938 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1939 	 * ethtool private flag) for ports with Port Disable bit set.
1940 	 */
1941 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1942 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1943 }
1944 
1945 /**
1946  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1947  * @pi: port info structure
1948  *
1949  * If default override is enabled, initialize the user PHY cfg speed and FEC
1950  * settings using the default override mask from the NVM.
1951  *
1952  * The PHY should only be configured with the default override settings the
1953  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1954  * is used to indicate that the user PHY cfg default override is initialized
1955  * and the PHY has not been configured with the default override settings. The
1956  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1957  * configured.
1958  *
1959  * This function should be called only if the FW doesn't support default
1960  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1961  */
1962 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1963 {
1964 	struct ice_link_default_override_tlv *ldo;
1965 	struct ice_aqc_set_phy_cfg_data *cfg;
1966 	struct ice_phy_info *phy = &pi->phy;
1967 	struct ice_pf *pf = pi->hw->back;
1968 
1969 	ldo = &pf->link_dflt_override;
1970 
1971 	/* If link default override is enabled, use to mask NVM PHY capabilities
1972 	 * for speed and FEC default configuration.
1973 	 */
1974 	cfg = &phy->curr_user_phy_cfg;
1975 
1976 	if (ldo->phy_type_low || ldo->phy_type_high) {
1977 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1978 				    cpu_to_le64(ldo->phy_type_low);
1979 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1980 				     cpu_to_le64(ldo->phy_type_high);
1981 	}
1982 	cfg->link_fec_opt = ldo->fec_options;
1983 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1984 
1985 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1986 }
1987 
1988 /**
1989  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1990  * @pi: port info structure
1991  *
1992  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1993  * mode to default. The PHY defaults are from get PHY capabilities topology
1994  * with media so call when media is first available. An error is returned if
1995  * called when media is not available. The PHY initialization completed state is
1996  * set here.
1997  *
1998  * These configurations are used when setting PHY
1999  * configuration. The user PHY configuration is updated on set PHY
2000  * configuration. Returns 0 on success, negative on failure
2001  */
2002 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2003 {
2004 	struct ice_aqc_get_phy_caps_data *pcaps;
2005 	struct ice_phy_info *phy = &pi->phy;
2006 	struct ice_pf *pf = pi->hw->back;
2007 	int err;
2008 
2009 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2010 		return -EIO;
2011 
2012 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2013 	if (!pcaps)
2014 		return -ENOMEM;
2015 
2016 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2017 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2018 					  pcaps, NULL);
2019 	else
2020 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2021 					  pcaps, NULL);
2022 	if (err) {
2023 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2024 		goto err_out;
2025 	}
2026 
2027 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2028 
2029 	/* check if lenient mode is supported and enabled */
2030 	if (ice_fw_supports_link_override(pi->hw) &&
2031 	    !(pcaps->module_compliance_enforcement &
2032 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2033 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2034 
2035 		/* if the FW supports default PHY configuration mode, then the driver
2036 		 * does not have to apply link override settings. If not,
2037 		 * initialize user PHY configuration with link override values
2038 		 */
2039 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2040 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2041 			ice_init_phy_cfg_dflt_override(pi);
2042 			goto out;
2043 		}
2044 	}
2045 
2046 	/* if link default override is not enabled, set user flow control and
2047 	 * FEC settings based on what get_phy_caps returned
2048 	 */
2049 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2050 						      pcaps->link_fec_options);
2051 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2052 
2053 out:
2054 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2055 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2056 err_out:
2057 	kfree(pcaps);
2058 	return err;
2059 }
2060 
2061 /**
2062  * ice_configure_phy - configure PHY
2063  * @vsi: VSI of PHY
2064  *
2065  * Set the PHY configuration. If the current PHY configuration is the same as
2066  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2067  * configure the based get PHY capabilities for topology with media.
2068  */
2069 static int ice_configure_phy(struct ice_vsi *vsi)
2070 {
2071 	struct device *dev = ice_pf_to_dev(vsi->back);
2072 	struct ice_port_info *pi = vsi->port_info;
2073 	struct ice_aqc_get_phy_caps_data *pcaps;
2074 	struct ice_aqc_set_phy_cfg_data *cfg;
2075 	struct ice_phy_info *phy = &pi->phy;
2076 	struct ice_pf *pf = vsi->back;
2077 	int err;
2078 
2079 	/* Ensure we have media as we cannot configure a medialess port */
2080 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2081 		return -EPERM;
2082 
2083 	ice_print_topo_conflict(vsi);
2084 
2085 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2086 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2087 		return -EPERM;
2088 
2089 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2090 		return ice_force_phys_link_state(vsi, true);
2091 
2092 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2093 	if (!pcaps)
2094 		return -ENOMEM;
2095 
2096 	/* Get current PHY config */
2097 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2098 				  NULL);
2099 	if (err) {
2100 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2101 			vsi->vsi_num, err);
2102 		goto done;
2103 	}
2104 
2105 	/* If PHY enable link is configured and configuration has not changed,
2106 	 * there's nothing to do
2107 	 */
2108 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2109 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2110 		goto done;
2111 
2112 	/* Use PHY topology as baseline for configuration */
2113 	memset(pcaps, 0, sizeof(*pcaps));
2114 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2115 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2116 					  pcaps, NULL);
2117 	else
2118 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2119 					  pcaps, NULL);
2120 	if (err) {
2121 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2122 			vsi->vsi_num, err);
2123 		goto done;
2124 	}
2125 
2126 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2127 	if (!cfg) {
2128 		err = -ENOMEM;
2129 		goto done;
2130 	}
2131 
2132 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2133 
2134 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2135 	 * ice_init_phy_user_cfg_ldo.
2136 	 */
2137 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2138 			       vsi->back->state)) {
2139 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2140 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2141 	} else {
2142 		u64 phy_low = 0, phy_high = 0;
2143 
2144 		ice_update_phy_type(&phy_low, &phy_high,
2145 				    pi->phy.curr_user_speed_req);
2146 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2147 		cfg->phy_type_high = pcaps->phy_type_high &
2148 				     cpu_to_le64(phy_high);
2149 	}
2150 
2151 	/* Can't provide what was requested; use PHY capabilities */
2152 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2153 		cfg->phy_type_low = pcaps->phy_type_low;
2154 		cfg->phy_type_high = pcaps->phy_type_high;
2155 	}
2156 
2157 	/* FEC */
2158 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2159 
2160 	/* Can't provide what was requested; use PHY capabilities */
2161 	if (cfg->link_fec_opt !=
2162 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2163 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2164 		cfg->link_fec_opt = pcaps->link_fec_options;
2165 	}
2166 
2167 	/* Flow Control - always supported; no need to check against
2168 	 * capabilities
2169 	 */
2170 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2171 
2172 	/* Enable link and link update */
2173 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2174 
2175 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2176 	if (err)
2177 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2178 			vsi->vsi_num, err);
2179 
2180 	kfree(cfg);
2181 done:
2182 	kfree(pcaps);
2183 	return err;
2184 }
2185 
2186 /**
2187  * ice_check_media_subtask - Check for media
2188  * @pf: pointer to PF struct
2189  *
2190  * If media is available, then initialize PHY user configuration if it is not
2191  * been, and configure the PHY if the interface is up.
2192  */
2193 static void ice_check_media_subtask(struct ice_pf *pf)
2194 {
2195 	struct ice_port_info *pi;
2196 	struct ice_vsi *vsi;
2197 	int err;
2198 
2199 	/* No need to check for media if it's already present */
2200 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2201 		return;
2202 
2203 	vsi = ice_get_main_vsi(pf);
2204 	if (!vsi)
2205 		return;
2206 
2207 	/* Refresh link info and check if media is present */
2208 	pi = vsi->port_info;
2209 	err = ice_update_link_info(pi);
2210 	if (err)
2211 		return;
2212 
2213 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2214 
2215 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2216 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2217 			ice_init_phy_user_cfg(pi);
2218 
2219 		/* PHY settings are reset on media insertion, reconfigure
2220 		 * PHY to preserve settings.
2221 		 */
2222 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2223 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2224 			return;
2225 
2226 		err = ice_configure_phy(vsi);
2227 		if (!err)
2228 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2229 
2230 		/* A Link Status Event will be generated; the event handler
2231 		 * will complete bringing the interface up
2232 		 */
2233 	}
2234 }
2235 
2236 /**
2237  * ice_service_task - manage and run subtasks
2238  * @work: pointer to work_struct contained by the PF struct
2239  */
2240 static void ice_service_task(struct work_struct *work)
2241 {
2242 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2243 	unsigned long start_time = jiffies;
2244 
2245 	/* subtasks */
2246 
2247 	/* process reset requests first */
2248 	ice_reset_subtask(pf);
2249 
2250 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2251 	if (ice_is_reset_in_progress(pf->state) ||
2252 	    test_bit(ICE_SUSPENDED, pf->state) ||
2253 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2254 		ice_service_task_complete(pf);
2255 		return;
2256 	}
2257 
2258 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2259 		ice_plug_aux_dev(pf);
2260 
2261 	ice_clean_adminq_subtask(pf);
2262 	ice_check_media_subtask(pf);
2263 	ice_check_for_hang_subtask(pf);
2264 	ice_sync_fltr_subtask(pf);
2265 	ice_handle_mdd_event(pf);
2266 	ice_watchdog_subtask(pf);
2267 
2268 	if (ice_is_safe_mode(pf)) {
2269 		ice_service_task_complete(pf);
2270 		return;
2271 	}
2272 
2273 	ice_process_vflr_event(pf);
2274 	ice_clean_mailboxq_subtask(pf);
2275 	ice_clean_sbq_subtask(pf);
2276 	ice_sync_arfs_fltrs(pf);
2277 	ice_flush_fdir_ctx(pf);
2278 
2279 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2280 	ice_service_task_complete(pf);
2281 
2282 	/* If the tasks have taken longer than one service timer period
2283 	 * or there is more work to be done, reset the service timer to
2284 	 * schedule the service task now.
2285 	 */
2286 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2287 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2288 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2289 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2290 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2291 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2292 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2293 		mod_timer(&pf->serv_tmr, jiffies);
2294 }
2295 
2296 /**
2297  * ice_set_ctrlq_len - helper function to set controlq length
2298  * @hw: pointer to the HW instance
2299  */
2300 static void ice_set_ctrlq_len(struct ice_hw *hw)
2301 {
2302 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2303 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2304 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2305 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2306 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2307 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2308 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2309 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2310 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2311 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2312 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2313 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2314 }
2315 
2316 /**
2317  * ice_schedule_reset - schedule a reset
2318  * @pf: board private structure
2319  * @reset: reset being requested
2320  */
2321 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2322 {
2323 	struct device *dev = ice_pf_to_dev(pf);
2324 
2325 	/* bail out if earlier reset has failed */
2326 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2327 		dev_dbg(dev, "earlier reset has failed\n");
2328 		return -EIO;
2329 	}
2330 	/* bail if reset/recovery already in progress */
2331 	if (ice_is_reset_in_progress(pf->state)) {
2332 		dev_dbg(dev, "Reset already in progress\n");
2333 		return -EBUSY;
2334 	}
2335 
2336 	ice_unplug_aux_dev(pf);
2337 
2338 	switch (reset) {
2339 	case ICE_RESET_PFR:
2340 		set_bit(ICE_PFR_REQ, pf->state);
2341 		break;
2342 	case ICE_RESET_CORER:
2343 		set_bit(ICE_CORER_REQ, pf->state);
2344 		break;
2345 	case ICE_RESET_GLOBR:
2346 		set_bit(ICE_GLOBR_REQ, pf->state);
2347 		break;
2348 	default:
2349 		return -EINVAL;
2350 	}
2351 
2352 	ice_service_task_schedule(pf);
2353 	return 0;
2354 }
2355 
2356 /**
2357  * ice_irq_affinity_notify - Callback for affinity changes
2358  * @notify: context as to what irq was changed
2359  * @mask: the new affinity mask
2360  *
2361  * This is a callback function used by the irq_set_affinity_notifier function
2362  * so that we may register to receive changes to the irq affinity masks.
2363  */
2364 static void
2365 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2366 			const cpumask_t *mask)
2367 {
2368 	struct ice_q_vector *q_vector =
2369 		container_of(notify, struct ice_q_vector, affinity_notify);
2370 
2371 	cpumask_copy(&q_vector->affinity_mask, mask);
2372 }
2373 
2374 /**
2375  * ice_irq_affinity_release - Callback for affinity notifier release
2376  * @ref: internal core kernel usage
2377  *
2378  * This is a callback function used by the irq_set_affinity_notifier function
2379  * to inform the current notification subscriber that they will no longer
2380  * receive notifications.
2381  */
2382 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2383 
2384 /**
2385  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2386  * @vsi: the VSI being configured
2387  */
2388 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2389 {
2390 	struct ice_hw *hw = &vsi->back->hw;
2391 	int i;
2392 
2393 	ice_for_each_q_vector(vsi, i)
2394 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2395 
2396 	ice_flush(hw);
2397 	return 0;
2398 }
2399 
2400 /**
2401  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2402  * @vsi: the VSI being configured
2403  * @basename: name for the vector
2404  */
2405 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2406 {
2407 	int q_vectors = vsi->num_q_vectors;
2408 	struct ice_pf *pf = vsi->back;
2409 	int base = vsi->base_vector;
2410 	struct device *dev;
2411 	int rx_int_idx = 0;
2412 	int tx_int_idx = 0;
2413 	int vector, err;
2414 	int irq_num;
2415 
2416 	dev = ice_pf_to_dev(pf);
2417 	for (vector = 0; vector < q_vectors; vector++) {
2418 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2419 
2420 		irq_num = pf->msix_entries[base + vector].vector;
2421 
2422 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2423 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2424 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2425 			tx_int_idx++;
2426 		} else if (q_vector->rx.rx_ring) {
2427 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2428 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2429 		} else if (q_vector->tx.tx_ring) {
2430 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2431 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2432 		} else {
2433 			/* skip this unused q_vector */
2434 			continue;
2435 		}
2436 		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2437 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2438 					       IRQF_SHARED, q_vector->name,
2439 					       q_vector);
2440 		else
2441 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2442 					       0, q_vector->name, q_vector);
2443 		if (err) {
2444 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2445 				   err);
2446 			goto free_q_irqs;
2447 		}
2448 
2449 		/* register for affinity change notifications */
2450 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2451 			struct irq_affinity_notify *affinity_notify;
2452 
2453 			affinity_notify = &q_vector->affinity_notify;
2454 			affinity_notify->notify = ice_irq_affinity_notify;
2455 			affinity_notify->release = ice_irq_affinity_release;
2456 			irq_set_affinity_notifier(irq_num, affinity_notify);
2457 		}
2458 
2459 		/* assign the mask for this irq */
2460 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2461 	}
2462 
2463 	vsi->irqs_ready = true;
2464 	return 0;
2465 
2466 free_q_irqs:
2467 	while (vector) {
2468 		vector--;
2469 		irq_num = pf->msix_entries[base + vector].vector;
2470 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2471 			irq_set_affinity_notifier(irq_num, NULL);
2472 		irq_set_affinity_hint(irq_num, NULL);
2473 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2474 	}
2475 	return err;
2476 }
2477 
2478 /**
2479  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2480  * @vsi: VSI to setup Tx rings used by XDP
2481  *
2482  * Return 0 on success and negative value on error
2483  */
2484 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2485 {
2486 	struct device *dev = ice_pf_to_dev(vsi->back);
2487 	struct ice_tx_desc *tx_desc;
2488 	int i, j;
2489 
2490 	ice_for_each_xdp_txq(vsi, i) {
2491 		u16 xdp_q_idx = vsi->alloc_txq + i;
2492 		struct ice_tx_ring *xdp_ring;
2493 
2494 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2495 
2496 		if (!xdp_ring)
2497 			goto free_xdp_rings;
2498 
2499 		xdp_ring->q_index = xdp_q_idx;
2500 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2501 		xdp_ring->vsi = vsi;
2502 		xdp_ring->netdev = NULL;
2503 		xdp_ring->next_dd = ICE_TX_THRESH - 1;
2504 		xdp_ring->next_rs = ICE_TX_THRESH - 1;
2505 		xdp_ring->dev = dev;
2506 		xdp_ring->count = vsi->num_tx_desc;
2507 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2508 		if (ice_setup_tx_ring(xdp_ring))
2509 			goto free_xdp_rings;
2510 		ice_set_ring_xdp(xdp_ring);
2511 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2512 		spin_lock_init(&xdp_ring->tx_lock);
2513 		for (j = 0; j < xdp_ring->count; j++) {
2514 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2515 			tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE);
2516 		}
2517 	}
2518 
2519 	ice_for_each_rxq(vsi, i) {
2520 		if (static_key_enabled(&ice_xdp_locking_key))
2521 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2522 		else
2523 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2524 	}
2525 
2526 	return 0;
2527 
2528 free_xdp_rings:
2529 	for (; i >= 0; i--)
2530 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2531 			ice_free_tx_ring(vsi->xdp_rings[i]);
2532 	return -ENOMEM;
2533 }
2534 
2535 /**
2536  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2537  * @vsi: VSI to set the bpf prog on
2538  * @prog: the bpf prog pointer
2539  */
2540 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2541 {
2542 	struct bpf_prog *old_prog;
2543 	int i;
2544 
2545 	old_prog = xchg(&vsi->xdp_prog, prog);
2546 	if (old_prog)
2547 		bpf_prog_put(old_prog);
2548 
2549 	ice_for_each_rxq(vsi, i)
2550 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2551 }
2552 
2553 /**
2554  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2555  * @vsi: VSI to bring up Tx rings used by XDP
2556  * @prog: bpf program that will be assigned to VSI
2557  *
2558  * Return 0 on success and negative value on error
2559  */
2560 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2561 {
2562 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2563 	int xdp_rings_rem = vsi->num_xdp_txq;
2564 	struct ice_pf *pf = vsi->back;
2565 	struct ice_qs_cfg xdp_qs_cfg = {
2566 		.qs_mutex = &pf->avail_q_mutex,
2567 		.pf_map = pf->avail_txqs,
2568 		.pf_map_size = pf->max_pf_txqs,
2569 		.q_count = vsi->num_xdp_txq,
2570 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2571 		.vsi_map = vsi->txq_map,
2572 		.vsi_map_offset = vsi->alloc_txq,
2573 		.mapping_mode = ICE_VSI_MAP_CONTIG
2574 	};
2575 	struct device *dev;
2576 	int i, v_idx;
2577 	int status;
2578 
2579 	dev = ice_pf_to_dev(pf);
2580 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2581 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2582 	if (!vsi->xdp_rings)
2583 		return -ENOMEM;
2584 
2585 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2586 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2587 		goto err_map_xdp;
2588 
2589 	if (static_key_enabled(&ice_xdp_locking_key))
2590 		netdev_warn(vsi->netdev,
2591 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2592 
2593 	if (ice_xdp_alloc_setup_rings(vsi))
2594 		goto clear_xdp_rings;
2595 
2596 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2597 	ice_for_each_q_vector(vsi, v_idx) {
2598 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2599 		int xdp_rings_per_v, q_id, q_base;
2600 
2601 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2602 					       vsi->num_q_vectors - v_idx);
2603 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2604 
2605 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2606 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2607 
2608 			xdp_ring->q_vector = q_vector;
2609 			xdp_ring->next = q_vector->tx.tx_ring;
2610 			q_vector->tx.tx_ring = xdp_ring;
2611 		}
2612 		xdp_rings_rem -= xdp_rings_per_v;
2613 	}
2614 
2615 	/* omit the scheduler update if in reset path; XDP queues will be
2616 	 * taken into account at the end of ice_vsi_rebuild, where
2617 	 * ice_cfg_vsi_lan is being called
2618 	 */
2619 	if (ice_is_reset_in_progress(pf->state))
2620 		return 0;
2621 
2622 	/* tell the Tx scheduler that right now we have
2623 	 * additional queues
2624 	 */
2625 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2626 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2627 
2628 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2629 				 max_txqs);
2630 	if (status) {
2631 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2632 			status);
2633 		goto clear_xdp_rings;
2634 	}
2635 
2636 	/* assign the prog only when it's not already present on VSI;
2637 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2638 	 * VSI rebuild that happens under ethtool -L can expose us to
2639 	 * the bpf_prog refcount issues as we would be swapping same
2640 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2641 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2642 	 * this is not harmful as dev_xdp_install bumps the refcount
2643 	 * before calling the op exposed by the driver;
2644 	 */
2645 	if (!ice_is_xdp_ena_vsi(vsi))
2646 		ice_vsi_assign_bpf_prog(vsi, prog);
2647 
2648 	return 0;
2649 clear_xdp_rings:
2650 	ice_for_each_xdp_txq(vsi, i)
2651 		if (vsi->xdp_rings[i]) {
2652 			kfree_rcu(vsi->xdp_rings[i], rcu);
2653 			vsi->xdp_rings[i] = NULL;
2654 		}
2655 
2656 err_map_xdp:
2657 	mutex_lock(&pf->avail_q_mutex);
2658 	ice_for_each_xdp_txq(vsi, i) {
2659 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2660 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2661 	}
2662 	mutex_unlock(&pf->avail_q_mutex);
2663 
2664 	devm_kfree(dev, vsi->xdp_rings);
2665 	return -ENOMEM;
2666 }
2667 
2668 /**
2669  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2670  * @vsi: VSI to remove XDP rings
2671  *
2672  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2673  * resources
2674  */
2675 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2676 {
2677 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2678 	struct ice_pf *pf = vsi->back;
2679 	int i, v_idx;
2680 
2681 	/* q_vectors are freed in reset path so there's no point in detaching
2682 	 * rings; in case of rebuild being triggered not from reset bits
2683 	 * in pf->state won't be set, so additionally check first q_vector
2684 	 * against NULL
2685 	 */
2686 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2687 		goto free_qmap;
2688 
2689 	ice_for_each_q_vector(vsi, v_idx) {
2690 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2691 		struct ice_tx_ring *ring;
2692 
2693 		ice_for_each_tx_ring(ring, q_vector->tx)
2694 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2695 				break;
2696 
2697 		/* restore the value of last node prior to XDP setup */
2698 		q_vector->tx.tx_ring = ring;
2699 	}
2700 
2701 free_qmap:
2702 	mutex_lock(&pf->avail_q_mutex);
2703 	ice_for_each_xdp_txq(vsi, i) {
2704 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2705 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2706 	}
2707 	mutex_unlock(&pf->avail_q_mutex);
2708 
2709 	ice_for_each_xdp_txq(vsi, i)
2710 		if (vsi->xdp_rings[i]) {
2711 			if (vsi->xdp_rings[i]->desc)
2712 				ice_free_tx_ring(vsi->xdp_rings[i]);
2713 			kfree_rcu(vsi->xdp_rings[i], rcu);
2714 			vsi->xdp_rings[i] = NULL;
2715 		}
2716 
2717 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2718 	vsi->xdp_rings = NULL;
2719 
2720 	if (static_key_enabled(&ice_xdp_locking_key))
2721 		static_branch_dec(&ice_xdp_locking_key);
2722 
2723 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2724 		return 0;
2725 
2726 	ice_vsi_assign_bpf_prog(vsi, NULL);
2727 
2728 	/* notify Tx scheduler that we destroyed XDP queues and bring
2729 	 * back the old number of child nodes
2730 	 */
2731 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2732 		max_txqs[i] = vsi->num_txq;
2733 
2734 	/* change number of XDP Tx queues to 0 */
2735 	vsi->num_xdp_txq = 0;
2736 
2737 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2738 			       max_txqs);
2739 }
2740 
2741 /**
2742  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2743  * @vsi: VSI to schedule napi on
2744  */
2745 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2746 {
2747 	int i;
2748 
2749 	ice_for_each_rxq(vsi, i) {
2750 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2751 
2752 		if (rx_ring->xsk_pool)
2753 			napi_schedule(&rx_ring->q_vector->napi);
2754 	}
2755 }
2756 
2757 /**
2758  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2759  * @vsi: VSI to determine the count of XDP Tx qs
2760  *
2761  * returns 0 if Tx qs count is higher than at least half of CPU count,
2762  * -ENOMEM otherwise
2763  */
2764 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2765 {
2766 	u16 avail = ice_get_avail_txq_count(vsi->back);
2767 	u16 cpus = num_possible_cpus();
2768 
2769 	if (avail < cpus / 2)
2770 		return -ENOMEM;
2771 
2772 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2773 
2774 	if (vsi->num_xdp_txq < cpus)
2775 		static_branch_inc(&ice_xdp_locking_key);
2776 
2777 	return 0;
2778 }
2779 
2780 /**
2781  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2782  * @vsi: VSI to setup XDP for
2783  * @prog: XDP program
2784  * @extack: netlink extended ack
2785  */
2786 static int
2787 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2788 		   struct netlink_ext_ack *extack)
2789 {
2790 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2791 	bool if_running = netif_running(vsi->netdev);
2792 	int ret = 0, xdp_ring_err = 0;
2793 
2794 	if (frame_size > vsi->rx_buf_len) {
2795 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2796 		return -EOPNOTSUPP;
2797 	}
2798 
2799 	/* need to stop netdev while setting up the program for Rx rings */
2800 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2801 		ret = ice_down(vsi);
2802 		if (ret) {
2803 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2804 			return ret;
2805 		}
2806 	}
2807 
2808 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2809 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2810 		if (xdp_ring_err) {
2811 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2812 		} else {
2813 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2814 			if (xdp_ring_err)
2815 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2816 		}
2817 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2818 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2819 		if (xdp_ring_err)
2820 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2821 	} else {
2822 		/* safe to call even when prog == vsi->xdp_prog as
2823 		 * dev_xdp_install in net/core/dev.c incremented prog's
2824 		 * refcount so corresponding bpf_prog_put won't cause
2825 		 * underflow
2826 		 */
2827 		ice_vsi_assign_bpf_prog(vsi, prog);
2828 	}
2829 
2830 	if (if_running)
2831 		ret = ice_up(vsi);
2832 
2833 	if (!ret && prog)
2834 		ice_vsi_rx_napi_schedule(vsi);
2835 
2836 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2837 }
2838 
2839 /**
2840  * ice_xdp_safe_mode - XDP handler for safe mode
2841  * @dev: netdevice
2842  * @xdp: XDP command
2843  */
2844 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2845 			     struct netdev_bpf *xdp)
2846 {
2847 	NL_SET_ERR_MSG_MOD(xdp->extack,
2848 			   "Please provide working DDP firmware package in order to use XDP\n"
2849 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2850 	return -EOPNOTSUPP;
2851 }
2852 
2853 /**
2854  * ice_xdp - implements XDP handler
2855  * @dev: netdevice
2856  * @xdp: XDP command
2857  */
2858 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2859 {
2860 	struct ice_netdev_priv *np = netdev_priv(dev);
2861 	struct ice_vsi *vsi = np->vsi;
2862 
2863 	if (vsi->type != ICE_VSI_PF) {
2864 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2865 		return -EINVAL;
2866 	}
2867 
2868 	switch (xdp->command) {
2869 	case XDP_SETUP_PROG:
2870 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2871 	case XDP_SETUP_XSK_POOL:
2872 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2873 					  xdp->xsk.queue_id);
2874 	default:
2875 		return -EINVAL;
2876 	}
2877 }
2878 
2879 /**
2880  * ice_ena_misc_vector - enable the non-queue interrupts
2881  * @pf: board private structure
2882  */
2883 static void ice_ena_misc_vector(struct ice_pf *pf)
2884 {
2885 	struct ice_hw *hw = &pf->hw;
2886 	u32 val;
2887 
2888 	/* Disable anti-spoof detection interrupt to prevent spurious event
2889 	 * interrupts during a function reset. Anti-spoof functionally is
2890 	 * still supported.
2891 	 */
2892 	val = rd32(hw, GL_MDCK_TX_TDPU);
2893 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2894 	wr32(hw, GL_MDCK_TX_TDPU, val);
2895 
2896 	/* clear things first */
2897 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2898 	rd32(hw, PFINT_OICR);		/* read to clear */
2899 
2900 	val = (PFINT_OICR_ECC_ERR_M |
2901 	       PFINT_OICR_MAL_DETECT_M |
2902 	       PFINT_OICR_GRST_M |
2903 	       PFINT_OICR_PCI_EXCEPTION_M |
2904 	       PFINT_OICR_VFLR_M |
2905 	       PFINT_OICR_HMC_ERR_M |
2906 	       PFINT_OICR_PE_PUSH_M |
2907 	       PFINT_OICR_PE_CRITERR_M);
2908 
2909 	wr32(hw, PFINT_OICR_ENA, val);
2910 
2911 	/* SW_ITR_IDX = 0, but don't change INTENA */
2912 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2913 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2914 }
2915 
2916 /**
2917  * ice_misc_intr - misc interrupt handler
2918  * @irq: interrupt number
2919  * @data: pointer to a q_vector
2920  */
2921 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2922 {
2923 	struct ice_pf *pf = (struct ice_pf *)data;
2924 	struct ice_hw *hw = &pf->hw;
2925 	irqreturn_t ret = IRQ_NONE;
2926 	struct device *dev;
2927 	u32 oicr, ena_mask;
2928 
2929 	dev = ice_pf_to_dev(pf);
2930 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2931 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2932 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2933 
2934 	oicr = rd32(hw, PFINT_OICR);
2935 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2936 
2937 	if (oicr & PFINT_OICR_SWINT_M) {
2938 		ena_mask &= ~PFINT_OICR_SWINT_M;
2939 		pf->sw_int_count++;
2940 	}
2941 
2942 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2943 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2944 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2945 	}
2946 	if (oicr & PFINT_OICR_VFLR_M) {
2947 		/* disable any further VFLR event notifications */
2948 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2949 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2950 
2951 			reg &= ~PFINT_OICR_VFLR_M;
2952 			wr32(hw, PFINT_OICR_ENA, reg);
2953 		} else {
2954 			ena_mask &= ~PFINT_OICR_VFLR_M;
2955 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2956 		}
2957 	}
2958 
2959 	if (oicr & PFINT_OICR_GRST_M) {
2960 		u32 reset;
2961 
2962 		/* we have a reset warning */
2963 		ena_mask &= ~PFINT_OICR_GRST_M;
2964 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2965 			GLGEN_RSTAT_RESET_TYPE_S;
2966 
2967 		if (reset == ICE_RESET_CORER)
2968 			pf->corer_count++;
2969 		else if (reset == ICE_RESET_GLOBR)
2970 			pf->globr_count++;
2971 		else if (reset == ICE_RESET_EMPR)
2972 			pf->empr_count++;
2973 		else
2974 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2975 
2976 		/* If a reset cycle isn't already in progress, we set a bit in
2977 		 * pf->state so that the service task can start a reset/rebuild.
2978 		 */
2979 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2980 			if (reset == ICE_RESET_CORER)
2981 				set_bit(ICE_CORER_RECV, pf->state);
2982 			else if (reset == ICE_RESET_GLOBR)
2983 				set_bit(ICE_GLOBR_RECV, pf->state);
2984 			else
2985 				set_bit(ICE_EMPR_RECV, pf->state);
2986 
2987 			/* There are couple of different bits at play here.
2988 			 * hw->reset_ongoing indicates whether the hardware is
2989 			 * in reset. This is set to true when a reset interrupt
2990 			 * is received and set back to false after the driver
2991 			 * has determined that the hardware is out of reset.
2992 			 *
2993 			 * ICE_RESET_OICR_RECV in pf->state indicates
2994 			 * that a post reset rebuild is required before the
2995 			 * driver is operational again. This is set above.
2996 			 *
2997 			 * As this is the start of the reset/rebuild cycle, set
2998 			 * both to indicate that.
2999 			 */
3000 			hw->reset_ongoing = true;
3001 		}
3002 	}
3003 
3004 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3005 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3006 		ice_ptp_process_ts(pf);
3007 	}
3008 
3009 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3010 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3011 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3012 
3013 		/* Save EVENTs from GTSYN register */
3014 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3015 						     GLTSYN_STAT_EVENT1_M |
3016 						     GLTSYN_STAT_EVENT2_M);
3017 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3018 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3019 	}
3020 
3021 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3022 	if (oicr & ICE_AUX_CRIT_ERR) {
3023 		struct iidc_event *event;
3024 
3025 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3026 		event = kzalloc(sizeof(*event), GFP_KERNEL);
3027 		if (event) {
3028 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
3029 			/* report the entire OICR value to AUX driver */
3030 			event->reg = oicr;
3031 			ice_send_event_to_aux(pf, event);
3032 			kfree(event);
3033 		}
3034 	}
3035 
3036 	/* Report any remaining unexpected interrupts */
3037 	oicr &= ena_mask;
3038 	if (oicr) {
3039 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3040 		/* If a critical error is pending there is no choice but to
3041 		 * reset the device.
3042 		 */
3043 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3044 			    PFINT_OICR_ECC_ERR_M)) {
3045 			set_bit(ICE_PFR_REQ, pf->state);
3046 			ice_service_task_schedule(pf);
3047 		}
3048 	}
3049 	ret = IRQ_HANDLED;
3050 
3051 	ice_service_task_schedule(pf);
3052 	ice_irq_dynamic_ena(hw, NULL, NULL);
3053 
3054 	return ret;
3055 }
3056 
3057 /**
3058  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3059  * @hw: pointer to HW structure
3060  */
3061 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3062 {
3063 	/* disable Admin queue Interrupt causes */
3064 	wr32(hw, PFINT_FW_CTL,
3065 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3066 
3067 	/* disable Mailbox queue Interrupt causes */
3068 	wr32(hw, PFINT_MBX_CTL,
3069 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3070 
3071 	wr32(hw, PFINT_SB_CTL,
3072 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3073 
3074 	/* disable Control queue Interrupt causes */
3075 	wr32(hw, PFINT_OICR_CTL,
3076 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3077 
3078 	ice_flush(hw);
3079 }
3080 
3081 /**
3082  * ice_free_irq_msix_misc - Unroll misc vector setup
3083  * @pf: board private structure
3084  */
3085 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3086 {
3087 	struct ice_hw *hw = &pf->hw;
3088 
3089 	ice_dis_ctrlq_interrupts(hw);
3090 
3091 	/* disable OICR interrupt */
3092 	wr32(hw, PFINT_OICR_ENA, 0);
3093 	ice_flush(hw);
3094 
3095 	if (pf->msix_entries) {
3096 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3097 		devm_free_irq(ice_pf_to_dev(pf),
3098 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3099 	}
3100 
3101 	pf->num_avail_sw_msix += 1;
3102 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3103 }
3104 
3105 /**
3106  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3107  * @hw: pointer to HW structure
3108  * @reg_idx: HW vector index to associate the control queue interrupts with
3109  */
3110 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3111 {
3112 	u32 val;
3113 
3114 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3115 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3116 	wr32(hw, PFINT_OICR_CTL, val);
3117 
3118 	/* enable Admin queue Interrupt causes */
3119 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3120 	       PFINT_FW_CTL_CAUSE_ENA_M);
3121 	wr32(hw, PFINT_FW_CTL, val);
3122 
3123 	/* enable Mailbox queue Interrupt causes */
3124 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3125 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3126 	wr32(hw, PFINT_MBX_CTL, val);
3127 
3128 	/* This enables Sideband queue Interrupt causes */
3129 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3130 	       PFINT_SB_CTL_CAUSE_ENA_M);
3131 	wr32(hw, PFINT_SB_CTL, val);
3132 
3133 	ice_flush(hw);
3134 }
3135 
3136 /**
3137  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3138  * @pf: board private structure
3139  *
3140  * This sets up the handler for MSIX 0, which is used to manage the
3141  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3142  * when in MSI or Legacy interrupt mode.
3143  */
3144 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3145 {
3146 	struct device *dev = ice_pf_to_dev(pf);
3147 	struct ice_hw *hw = &pf->hw;
3148 	int oicr_idx, err = 0;
3149 
3150 	if (!pf->int_name[0])
3151 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3152 			 dev_driver_string(dev), dev_name(dev));
3153 
3154 	/* Do not request IRQ but do enable OICR interrupt since settings are
3155 	 * lost during reset. Note that this function is called only during
3156 	 * rebuild path and not while reset is in progress.
3157 	 */
3158 	if (ice_is_reset_in_progress(pf->state))
3159 		goto skip_req_irq;
3160 
3161 	/* reserve one vector in irq_tracker for misc interrupts */
3162 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3163 	if (oicr_idx < 0)
3164 		return oicr_idx;
3165 
3166 	pf->num_avail_sw_msix -= 1;
3167 	pf->oicr_idx = (u16)oicr_idx;
3168 
3169 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3170 			       ice_misc_intr, 0, pf->int_name, pf);
3171 	if (err) {
3172 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3173 			pf->int_name, err);
3174 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3175 		pf->num_avail_sw_msix += 1;
3176 		return err;
3177 	}
3178 
3179 skip_req_irq:
3180 	ice_ena_misc_vector(pf);
3181 
3182 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3183 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3184 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3185 
3186 	ice_flush(hw);
3187 	ice_irq_dynamic_ena(hw, NULL, NULL);
3188 
3189 	return 0;
3190 }
3191 
3192 /**
3193  * ice_napi_add - register NAPI handler for the VSI
3194  * @vsi: VSI for which NAPI handler is to be registered
3195  *
3196  * This function is only called in the driver's load path. Registering the NAPI
3197  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3198  * reset/rebuild, etc.)
3199  */
3200 static void ice_napi_add(struct ice_vsi *vsi)
3201 {
3202 	int v_idx;
3203 
3204 	if (!vsi->netdev)
3205 		return;
3206 
3207 	ice_for_each_q_vector(vsi, v_idx)
3208 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3209 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3210 }
3211 
3212 /**
3213  * ice_set_ops - set netdev and ethtools ops for the given netdev
3214  * @netdev: netdev instance
3215  */
3216 static void ice_set_ops(struct net_device *netdev)
3217 {
3218 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3219 
3220 	if (ice_is_safe_mode(pf)) {
3221 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3222 		ice_set_ethtool_safe_mode_ops(netdev);
3223 		return;
3224 	}
3225 
3226 	netdev->netdev_ops = &ice_netdev_ops;
3227 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3228 	ice_set_ethtool_ops(netdev);
3229 }
3230 
3231 /**
3232  * ice_set_netdev_features - set features for the given netdev
3233  * @netdev: netdev instance
3234  */
3235 static void ice_set_netdev_features(struct net_device *netdev)
3236 {
3237 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3238 	netdev_features_t csumo_features;
3239 	netdev_features_t vlano_features;
3240 	netdev_features_t dflt_features;
3241 	netdev_features_t tso_features;
3242 
3243 	if (ice_is_safe_mode(pf)) {
3244 		/* safe mode */
3245 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3246 		netdev->hw_features = netdev->features;
3247 		return;
3248 	}
3249 
3250 	dflt_features = NETIF_F_SG	|
3251 			NETIF_F_HIGHDMA	|
3252 			NETIF_F_NTUPLE	|
3253 			NETIF_F_RXHASH;
3254 
3255 	csumo_features = NETIF_F_RXCSUM	  |
3256 			 NETIF_F_IP_CSUM  |
3257 			 NETIF_F_SCTP_CRC |
3258 			 NETIF_F_IPV6_CSUM;
3259 
3260 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3261 			 NETIF_F_HW_VLAN_CTAG_TX     |
3262 			 NETIF_F_HW_VLAN_CTAG_RX;
3263 
3264 	tso_features = NETIF_F_TSO			|
3265 		       NETIF_F_TSO_ECN			|
3266 		       NETIF_F_TSO6			|
3267 		       NETIF_F_GSO_GRE			|
3268 		       NETIF_F_GSO_UDP_TUNNEL		|
3269 		       NETIF_F_GSO_GRE_CSUM		|
3270 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3271 		       NETIF_F_GSO_PARTIAL		|
3272 		       NETIF_F_GSO_IPXIP4		|
3273 		       NETIF_F_GSO_IPXIP6		|
3274 		       NETIF_F_GSO_UDP_L4;
3275 
3276 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3277 					NETIF_F_GSO_GRE_CSUM;
3278 	/* set features that user can change */
3279 	netdev->hw_features = dflt_features | csumo_features |
3280 			      vlano_features | tso_features;
3281 
3282 	/* add support for HW_CSUM on packets with MPLS header */
3283 	netdev->mpls_features =  NETIF_F_HW_CSUM;
3284 
3285 	/* enable features */
3286 	netdev->features |= netdev->hw_features;
3287 
3288 	netdev->hw_features |= NETIF_F_HW_TC;
3289 
3290 	/* encap and VLAN devices inherit default, csumo and tso features */
3291 	netdev->hw_enc_features |= dflt_features | csumo_features |
3292 				   tso_features;
3293 	netdev->vlan_features |= dflt_features | csumo_features |
3294 				 tso_features;
3295 }
3296 
3297 /**
3298  * ice_cfg_netdev - Allocate, configure and register a netdev
3299  * @vsi: the VSI associated with the new netdev
3300  *
3301  * Returns 0 on success, negative value on failure
3302  */
3303 static int ice_cfg_netdev(struct ice_vsi *vsi)
3304 {
3305 	struct ice_netdev_priv *np;
3306 	struct net_device *netdev;
3307 	u8 mac_addr[ETH_ALEN];
3308 
3309 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3310 				    vsi->alloc_rxq);
3311 	if (!netdev)
3312 		return -ENOMEM;
3313 
3314 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3315 	vsi->netdev = netdev;
3316 	np = netdev_priv(netdev);
3317 	np->vsi = vsi;
3318 
3319 	ice_set_netdev_features(netdev);
3320 
3321 	ice_set_ops(netdev);
3322 
3323 	if (vsi->type == ICE_VSI_PF) {
3324 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3325 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3326 		eth_hw_addr_set(netdev, mac_addr);
3327 		ether_addr_copy(netdev->perm_addr, mac_addr);
3328 	}
3329 
3330 	netdev->priv_flags |= IFF_UNICAST_FLT;
3331 
3332 	/* Setup netdev TC information */
3333 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3334 
3335 	/* setup watchdog timeout value to be 5 second */
3336 	netdev->watchdog_timeo = 5 * HZ;
3337 
3338 	netdev->min_mtu = ETH_MIN_MTU;
3339 	netdev->max_mtu = ICE_MAX_MTU;
3340 
3341 	return 0;
3342 }
3343 
3344 /**
3345  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3346  * @lut: Lookup table
3347  * @rss_table_size: Lookup table size
3348  * @rss_size: Range of queue number for hashing
3349  */
3350 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3351 {
3352 	u16 i;
3353 
3354 	for (i = 0; i < rss_table_size; i++)
3355 		lut[i] = i % rss_size;
3356 }
3357 
3358 /**
3359  * ice_pf_vsi_setup - Set up a PF VSI
3360  * @pf: board private structure
3361  * @pi: pointer to the port_info instance
3362  *
3363  * Returns pointer to the successfully allocated VSI software struct
3364  * on success, otherwise returns NULL on failure.
3365  */
3366 static struct ice_vsi *
3367 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3368 {
3369 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL);
3370 }
3371 
3372 static struct ice_vsi *
3373 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3374 		   struct ice_channel *ch)
3375 {
3376 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch);
3377 }
3378 
3379 /**
3380  * ice_ctrl_vsi_setup - Set up a control VSI
3381  * @pf: board private structure
3382  * @pi: pointer to the port_info instance
3383  *
3384  * Returns pointer to the successfully allocated VSI software struct
3385  * on success, otherwise returns NULL on failure.
3386  */
3387 static struct ice_vsi *
3388 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3389 {
3390 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL);
3391 }
3392 
3393 /**
3394  * ice_lb_vsi_setup - Set up a loopback VSI
3395  * @pf: board private structure
3396  * @pi: pointer to the port_info instance
3397  *
3398  * Returns pointer to the successfully allocated VSI software struct
3399  * on success, otherwise returns NULL on failure.
3400  */
3401 struct ice_vsi *
3402 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3403 {
3404 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL);
3405 }
3406 
3407 /**
3408  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3409  * @netdev: network interface to be adjusted
3410  * @proto: unused protocol
3411  * @vid: VLAN ID to be added
3412  *
3413  * net_device_ops implementation for adding VLAN IDs
3414  */
3415 static int
3416 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3417 		    u16 vid)
3418 {
3419 	struct ice_netdev_priv *np = netdev_priv(netdev);
3420 	struct ice_vsi *vsi = np->vsi;
3421 	int ret;
3422 
3423 	/* VLAN 0 is added by default during load/reset */
3424 	if (!vid)
3425 		return 0;
3426 
3427 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3428 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3429 		ret = ice_cfg_vlan_pruning(vsi, true);
3430 		if (ret)
3431 			return ret;
3432 	}
3433 
3434 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3435 	 * packets aren't pruned by the device's internal switch on Rx
3436 	 */
3437 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3438 	if (!ret)
3439 		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3440 
3441 	return ret;
3442 }
3443 
3444 /**
3445  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3446  * @netdev: network interface to be adjusted
3447  * @proto: unused protocol
3448  * @vid: VLAN ID to be removed
3449  *
3450  * net_device_ops implementation for removing VLAN IDs
3451  */
3452 static int
3453 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3454 		     u16 vid)
3455 {
3456 	struct ice_netdev_priv *np = netdev_priv(netdev);
3457 	struct ice_vsi *vsi = np->vsi;
3458 	int ret;
3459 
3460 	/* don't allow removal of VLAN 0 */
3461 	if (!vid)
3462 		return 0;
3463 
3464 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3465 	 * information
3466 	 */
3467 	ret = ice_vsi_kill_vlan(vsi, vid);
3468 	if (ret)
3469 		return ret;
3470 
3471 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3472 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3473 		ret = ice_cfg_vlan_pruning(vsi, false);
3474 
3475 	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3476 	return ret;
3477 }
3478 
3479 /**
3480  * ice_rep_indr_tc_block_unbind
3481  * @cb_priv: indirection block private data
3482  */
3483 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3484 {
3485 	struct ice_indr_block_priv *indr_priv = cb_priv;
3486 
3487 	list_del(&indr_priv->list);
3488 	kfree(indr_priv);
3489 }
3490 
3491 /**
3492  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3493  * @vsi: VSI struct which has the netdev
3494  */
3495 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3496 {
3497 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3498 
3499 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3500 				 ice_rep_indr_tc_block_unbind);
3501 }
3502 
3503 /**
3504  * ice_tc_indir_block_remove - clean indirect TC block notifications
3505  * @pf: PF structure
3506  */
3507 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3508 {
3509 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3510 
3511 	if (!pf_vsi)
3512 		return;
3513 
3514 	ice_tc_indir_block_unregister(pf_vsi);
3515 }
3516 
3517 /**
3518  * ice_tc_indir_block_register - Register TC indirect block notifications
3519  * @vsi: VSI struct which has the netdev
3520  *
3521  * Returns 0 on success, negative value on failure
3522  */
3523 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3524 {
3525 	struct ice_netdev_priv *np;
3526 
3527 	if (!vsi || !vsi->netdev)
3528 		return -EINVAL;
3529 
3530 	np = netdev_priv(vsi->netdev);
3531 
3532 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3533 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3534 }
3535 
3536 /**
3537  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3538  * @pf: board private structure
3539  *
3540  * Returns 0 on success, negative value on failure
3541  */
3542 static int ice_setup_pf_sw(struct ice_pf *pf)
3543 {
3544 	struct device *dev = ice_pf_to_dev(pf);
3545 	struct ice_vsi *vsi;
3546 	int status;
3547 
3548 	if (ice_is_reset_in_progress(pf->state))
3549 		return -EBUSY;
3550 
3551 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3552 	if (!vsi)
3553 		return -ENOMEM;
3554 
3555 	/* init channel list */
3556 	INIT_LIST_HEAD(&vsi->ch_list);
3557 
3558 	status = ice_cfg_netdev(vsi);
3559 	if (status)
3560 		goto unroll_vsi_setup;
3561 	/* netdev has to be configured before setting frame size */
3562 	ice_vsi_cfg_frame_size(vsi);
3563 
3564 	/* init indirect block notifications */
3565 	status = ice_tc_indir_block_register(vsi);
3566 	if (status) {
3567 		dev_err(dev, "Failed to register netdev notifier\n");
3568 		goto unroll_cfg_netdev;
3569 	}
3570 
3571 	/* Setup DCB netlink interface */
3572 	ice_dcbnl_setup(vsi);
3573 
3574 	/* registering the NAPI handler requires both the queues and
3575 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3576 	 * and ice_cfg_netdev() respectively
3577 	 */
3578 	ice_napi_add(vsi);
3579 
3580 	status = ice_set_cpu_rx_rmap(vsi);
3581 	if (status) {
3582 		dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n",
3583 			vsi->vsi_num, status);
3584 		goto unroll_napi_add;
3585 	}
3586 	status = ice_init_mac_fltr(pf);
3587 	if (status)
3588 		goto free_cpu_rx_map;
3589 
3590 	return 0;
3591 
3592 free_cpu_rx_map:
3593 	ice_free_cpu_rx_rmap(vsi);
3594 unroll_napi_add:
3595 	ice_tc_indir_block_unregister(vsi);
3596 unroll_cfg_netdev:
3597 	if (vsi) {
3598 		ice_napi_del(vsi);
3599 		if (vsi->netdev) {
3600 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3601 			free_netdev(vsi->netdev);
3602 			vsi->netdev = NULL;
3603 		}
3604 	}
3605 
3606 unroll_vsi_setup:
3607 	ice_vsi_release(vsi);
3608 	return status;
3609 }
3610 
3611 /**
3612  * ice_get_avail_q_count - Get count of queues in use
3613  * @pf_qmap: bitmap to get queue use count from
3614  * @lock: pointer to a mutex that protects access to pf_qmap
3615  * @size: size of the bitmap
3616  */
3617 static u16
3618 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3619 {
3620 	unsigned long bit;
3621 	u16 count = 0;
3622 
3623 	mutex_lock(lock);
3624 	for_each_clear_bit(bit, pf_qmap, size)
3625 		count++;
3626 	mutex_unlock(lock);
3627 
3628 	return count;
3629 }
3630 
3631 /**
3632  * ice_get_avail_txq_count - Get count of Tx queues in use
3633  * @pf: pointer to an ice_pf instance
3634  */
3635 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3636 {
3637 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3638 				     pf->max_pf_txqs);
3639 }
3640 
3641 /**
3642  * ice_get_avail_rxq_count - Get count of Rx queues in use
3643  * @pf: pointer to an ice_pf instance
3644  */
3645 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3646 {
3647 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3648 				     pf->max_pf_rxqs);
3649 }
3650 
3651 /**
3652  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3653  * @pf: board private structure to initialize
3654  */
3655 static void ice_deinit_pf(struct ice_pf *pf)
3656 {
3657 	ice_service_task_stop(pf);
3658 	mutex_destroy(&pf->sw_mutex);
3659 	mutex_destroy(&pf->tc_mutex);
3660 	mutex_destroy(&pf->avail_q_mutex);
3661 
3662 	if (pf->avail_txqs) {
3663 		bitmap_free(pf->avail_txqs);
3664 		pf->avail_txqs = NULL;
3665 	}
3666 
3667 	if (pf->avail_rxqs) {
3668 		bitmap_free(pf->avail_rxqs);
3669 		pf->avail_rxqs = NULL;
3670 	}
3671 
3672 	if (pf->ptp.clock)
3673 		ptp_clock_unregister(pf->ptp.clock);
3674 }
3675 
3676 /**
3677  * ice_set_pf_caps - set PFs capability flags
3678  * @pf: pointer to the PF instance
3679  */
3680 static void ice_set_pf_caps(struct ice_pf *pf)
3681 {
3682 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3683 
3684 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3685 	clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3686 	if (func_caps->common_cap.rdma) {
3687 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3688 		set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3689 	}
3690 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3691 	if (func_caps->common_cap.dcb)
3692 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3693 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3694 	if (func_caps->common_cap.sr_iov_1_1) {
3695 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3696 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3697 					      ICE_MAX_VF_COUNT);
3698 	}
3699 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3700 	if (func_caps->common_cap.rss_table_size)
3701 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3702 
3703 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3704 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3705 		u16 unused;
3706 
3707 		/* ctrl_vsi_idx will be set to a valid value when flow director
3708 		 * is setup by ice_init_fdir
3709 		 */
3710 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3711 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3712 		/* force guaranteed filter pool for PF */
3713 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3714 				       func_caps->fd_fltr_guar);
3715 		/* force shared filter pool for PF */
3716 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3717 				       func_caps->fd_fltr_best_effort);
3718 	}
3719 
3720 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3721 	if (func_caps->common_cap.ieee_1588)
3722 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3723 
3724 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3725 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3726 }
3727 
3728 /**
3729  * ice_init_pf - Initialize general software structures (struct ice_pf)
3730  * @pf: board private structure to initialize
3731  */
3732 static int ice_init_pf(struct ice_pf *pf)
3733 {
3734 	ice_set_pf_caps(pf);
3735 
3736 	mutex_init(&pf->sw_mutex);
3737 	mutex_init(&pf->tc_mutex);
3738 
3739 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3740 	spin_lock_init(&pf->aq_wait_lock);
3741 	init_waitqueue_head(&pf->aq_wait_queue);
3742 
3743 	init_waitqueue_head(&pf->reset_wait_queue);
3744 
3745 	/* setup service timer and periodic service task */
3746 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3747 	pf->serv_tmr_period = HZ;
3748 	INIT_WORK(&pf->serv_task, ice_service_task);
3749 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3750 
3751 	mutex_init(&pf->avail_q_mutex);
3752 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3753 	if (!pf->avail_txqs)
3754 		return -ENOMEM;
3755 
3756 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3757 	if (!pf->avail_rxqs) {
3758 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3759 		pf->avail_txqs = NULL;
3760 		return -ENOMEM;
3761 	}
3762 
3763 	return 0;
3764 }
3765 
3766 /**
3767  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3768  * @pf: board private structure
3769  *
3770  * compute the number of MSIX vectors required (v_budget) and request from
3771  * the OS. Return the number of vectors reserved or negative on failure
3772  */
3773 static int ice_ena_msix_range(struct ice_pf *pf)
3774 {
3775 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3776 	struct device *dev = ice_pf_to_dev(pf);
3777 	int needed, err, i;
3778 
3779 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3780 	num_cpus = num_online_cpus();
3781 
3782 	/* reserve for LAN miscellaneous handler */
3783 	needed = ICE_MIN_LAN_OICR_MSIX;
3784 	if (v_left < needed)
3785 		goto no_hw_vecs_left_err;
3786 	v_budget += needed;
3787 	v_left -= needed;
3788 
3789 	/* reserve for flow director */
3790 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3791 		needed = ICE_FDIR_MSIX;
3792 		if (v_left < needed)
3793 			goto no_hw_vecs_left_err;
3794 		v_budget += needed;
3795 		v_left -= needed;
3796 	}
3797 
3798 	/* reserve for switchdev */
3799 	needed = ICE_ESWITCH_MSIX;
3800 	if (v_left < needed)
3801 		goto no_hw_vecs_left_err;
3802 	v_budget += needed;
3803 	v_left -= needed;
3804 
3805 	/* total used for non-traffic vectors */
3806 	v_other = v_budget;
3807 
3808 	/* reserve vectors for LAN traffic */
3809 	needed = num_cpus;
3810 	if (v_left < needed)
3811 		goto no_hw_vecs_left_err;
3812 	pf->num_lan_msix = needed;
3813 	v_budget += needed;
3814 	v_left -= needed;
3815 
3816 	/* reserve vectors for RDMA auxiliary driver */
3817 	if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3818 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3819 		if (v_left < needed)
3820 			goto no_hw_vecs_left_err;
3821 		pf->num_rdma_msix = needed;
3822 		v_budget += needed;
3823 		v_left -= needed;
3824 	}
3825 
3826 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3827 					sizeof(*pf->msix_entries), GFP_KERNEL);
3828 	if (!pf->msix_entries) {
3829 		err = -ENOMEM;
3830 		goto exit_err;
3831 	}
3832 
3833 	for (i = 0; i < v_budget; i++)
3834 		pf->msix_entries[i].entry = i;
3835 
3836 	/* actually reserve the vectors */
3837 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3838 					 ICE_MIN_MSIX, v_budget);
3839 	if (v_actual < 0) {
3840 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3841 		err = v_actual;
3842 		goto msix_err;
3843 	}
3844 
3845 	if (v_actual < v_budget) {
3846 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3847 			 v_budget, v_actual);
3848 
3849 		if (v_actual < ICE_MIN_MSIX) {
3850 			/* error if we can't get minimum vectors */
3851 			pci_disable_msix(pf->pdev);
3852 			err = -ERANGE;
3853 			goto msix_err;
3854 		} else {
3855 			int v_remain = v_actual - v_other;
3856 			int v_rdma = 0, v_min_rdma = 0;
3857 
3858 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3859 				/* Need at least 1 interrupt in addition to
3860 				 * AEQ MSIX
3861 				 */
3862 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3863 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3864 			}
3865 
3866 			if (v_actual == ICE_MIN_MSIX ||
3867 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3868 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3869 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3870 
3871 				pf->num_rdma_msix = 0;
3872 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3873 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3874 				   (v_remain - v_rdma < v_rdma)) {
3875 				/* Support minimum RDMA and give remaining
3876 				 * vectors to LAN MSIX
3877 				 */
3878 				pf->num_rdma_msix = v_min_rdma;
3879 				pf->num_lan_msix = v_remain - v_min_rdma;
3880 			} else {
3881 				/* Split remaining MSIX with RDMA after
3882 				 * accounting for AEQ MSIX
3883 				 */
3884 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3885 						    ICE_RDMA_NUM_AEQ_MSIX;
3886 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3887 			}
3888 
3889 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3890 				   pf->num_lan_msix);
3891 
3892 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3893 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3894 					   pf->num_rdma_msix);
3895 		}
3896 	}
3897 
3898 	return v_actual;
3899 
3900 msix_err:
3901 	devm_kfree(dev, pf->msix_entries);
3902 	goto exit_err;
3903 
3904 no_hw_vecs_left_err:
3905 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3906 		needed, v_left);
3907 	err = -ERANGE;
3908 exit_err:
3909 	pf->num_rdma_msix = 0;
3910 	pf->num_lan_msix = 0;
3911 	return err;
3912 }
3913 
3914 /**
3915  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3916  * @pf: board private structure
3917  */
3918 static void ice_dis_msix(struct ice_pf *pf)
3919 {
3920 	pci_disable_msix(pf->pdev);
3921 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3922 	pf->msix_entries = NULL;
3923 }
3924 
3925 /**
3926  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3927  * @pf: board private structure
3928  */
3929 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3930 {
3931 	ice_dis_msix(pf);
3932 
3933 	if (pf->irq_tracker) {
3934 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3935 		pf->irq_tracker = NULL;
3936 	}
3937 }
3938 
3939 /**
3940  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3941  * @pf: board private structure to initialize
3942  */
3943 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3944 {
3945 	int vectors;
3946 
3947 	vectors = ice_ena_msix_range(pf);
3948 
3949 	if (vectors < 0)
3950 		return vectors;
3951 
3952 	/* set up vector assignment tracking */
3953 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3954 				       struct_size(pf->irq_tracker, list, vectors),
3955 				       GFP_KERNEL);
3956 	if (!pf->irq_tracker) {
3957 		ice_dis_msix(pf);
3958 		return -ENOMEM;
3959 	}
3960 
3961 	/* populate SW interrupts pool with number of OS granted IRQs. */
3962 	pf->num_avail_sw_msix = (u16)vectors;
3963 	pf->irq_tracker->num_entries = (u16)vectors;
3964 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3965 
3966 	return 0;
3967 }
3968 
3969 /**
3970  * ice_is_wol_supported - check if WoL is supported
3971  * @hw: pointer to hardware info
3972  *
3973  * Check if WoL is supported based on the HW configuration.
3974  * Returns true if NVM supports and enables WoL for this port, false otherwise
3975  */
3976 bool ice_is_wol_supported(struct ice_hw *hw)
3977 {
3978 	u16 wol_ctrl;
3979 
3980 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3981 	 * word) indicates WoL is not supported on the corresponding PF ID.
3982 	 */
3983 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3984 		return false;
3985 
3986 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3987 }
3988 
3989 /**
3990  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3991  * @vsi: VSI being changed
3992  * @new_rx: new number of Rx queues
3993  * @new_tx: new number of Tx queues
3994  *
3995  * Only change the number of queues if new_tx, or new_rx is non-0.
3996  *
3997  * Returns 0 on success.
3998  */
3999 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4000 {
4001 	struct ice_pf *pf = vsi->back;
4002 	int err = 0, timeout = 50;
4003 
4004 	if (!new_rx && !new_tx)
4005 		return -EINVAL;
4006 
4007 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4008 		timeout--;
4009 		if (!timeout)
4010 			return -EBUSY;
4011 		usleep_range(1000, 2000);
4012 	}
4013 
4014 	if (new_tx)
4015 		vsi->req_txq = (u16)new_tx;
4016 	if (new_rx)
4017 		vsi->req_rxq = (u16)new_rx;
4018 
4019 	/* set for the next time the netdev is started */
4020 	if (!netif_running(vsi->netdev)) {
4021 		ice_vsi_rebuild(vsi, false);
4022 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4023 		goto done;
4024 	}
4025 
4026 	ice_vsi_close(vsi);
4027 	ice_vsi_rebuild(vsi, false);
4028 	ice_pf_dcb_recfg(pf);
4029 	ice_vsi_open(vsi);
4030 done:
4031 	clear_bit(ICE_CFG_BUSY, pf->state);
4032 	return err;
4033 }
4034 
4035 /**
4036  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4037  * @pf: PF to configure
4038  *
4039  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4040  * VSI can still Tx/Rx VLAN tagged packets.
4041  */
4042 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4043 {
4044 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4045 	struct ice_vsi_ctx *ctxt;
4046 	struct ice_hw *hw;
4047 	int status;
4048 
4049 	if (!vsi)
4050 		return;
4051 
4052 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4053 	if (!ctxt)
4054 		return;
4055 
4056 	hw = &pf->hw;
4057 	ctxt->info = vsi->info;
4058 
4059 	ctxt->info.valid_sections =
4060 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4061 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4062 			    ICE_AQ_VSI_PROP_SW_VALID);
4063 
4064 	/* disable VLAN anti-spoof */
4065 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4066 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4067 
4068 	/* disable VLAN pruning and keep all other settings */
4069 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4070 
4071 	/* allow all VLANs on Tx and don't strip on Rx */
4072 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
4073 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
4074 
4075 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4076 	if (status) {
4077 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4078 			status, ice_aq_str(hw->adminq.sq_last_status));
4079 	} else {
4080 		vsi->info.sec_flags = ctxt->info.sec_flags;
4081 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4082 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
4083 	}
4084 
4085 	kfree(ctxt);
4086 }
4087 
4088 /**
4089  * ice_log_pkg_init - log result of DDP package load
4090  * @hw: pointer to hardware info
4091  * @state: state of package load
4092  */
4093 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4094 {
4095 	struct ice_pf *pf = hw->back;
4096 	struct device *dev;
4097 
4098 	dev = ice_pf_to_dev(pf);
4099 
4100 	switch (state) {
4101 	case ICE_DDP_PKG_SUCCESS:
4102 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4103 			 hw->active_pkg_name,
4104 			 hw->active_pkg_ver.major,
4105 			 hw->active_pkg_ver.minor,
4106 			 hw->active_pkg_ver.update,
4107 			 hw->active_pkg_ver.draft);
4108 		break;
4109 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4110 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4111 			 hw->active_pkg_name,
4112 			 hw->active_pkg_ver.major,
4113 			 hw->active_pkg_ver.minor,
4114 			 hw->active_pkg_ver.update,
4115 			 hw->active_pkg_ver.draft);
4116 		break;
4117 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4118 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4119 			hw->active_pkg_name,
4120 			hw->active_pkg_ver.major,
4121 			hw->active_pkg_ver.minor,
4122 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4123 		break;
4124 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4125 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4126 			 hw->active_pkg_name,
4127 			 hw->active_pkg_ver.major,
4128 			 hw->active_pkg_ver.minor,
4129 			 hw->active_pkg_ver.update,
4130 			 hw->active_pkg_ver.draft,
4131 			 hw->pkg_name,
4132 			 hw->pkg_ver.major,
4133 			 hw->pkg_ver.minor,
4134 			 hw->pkg_ver.update,
4135 			 hw->pkg_ver.draft);
4136 		break;
4137 	case ICE_DDP_PKG_FW_MISMATCH:
4138 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4139 		break;
4140 	case ICE_DDP_PKG_INVALID_FILE:
4141 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4142 		break;
4143 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4144 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4145 		break;
4146 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4147 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4148 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4149 		break;
4150 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4151 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4152 		break;
4153 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4154 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4155 		break;
4156 	case ICE_DDP_PKG_LOAD_ERROR:
4157 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4158 		/* poll for reset to complete */
4159 		if (ice_check_reset(hw))
4160 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4161 		break;
4162 	case ICE_DDP_PKG_ERR:
4163 	default:
4164 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4165 		break;
4166 	}
4167 }
4168 
4169 /**
4170  * ice_load_pkg - load/reload the DDP Package file
4171  * @firmware: firmware structure when firmware requested or NULL for reload
4172  * @pf: pointer to the PF instance
4173  *
4174  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4175  * initialize HW tables.
4176  */
4177 static void
4178 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4179 {
4180 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4181 	struct device *dev = ice_pf_to_dev(pf);
4182 	struct ice_hw *hw = &pf->hw;
4183 
4184 	/* Load DDP Package */
4185 	if (firmware && !hw->pkg_copy) {
4186 		state = ice_copy_and_init_pkg(hw, firmware->data,
4187 					      firmware->size);
4188 		ice_log_pkg_init(hw, state);
4189 	} else if (!firmware && hw->pkg_copy) {
4190 		/* Reload package during rebuild after CORER/GLOBR reset */
4191 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4192 		ice_log_pkg_init(hw, state);
4193 	} else {
4194 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4195 	}
4196 
4197 	if (!ice_is_init_pkg_successful(state)) {
4198 		/* Safe Mode */
4199 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4200 		return;
4201 	}
4202 
4203 	/* Successful download package is the precondition for advanced
4204 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4205 	 */
4206 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4207 }
4208 
4209 /**
4210  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4211  * @pf: pointer to the PF structure
4212  *
4213  * There is no error returned here because the driver should be able to handle
4214  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4215  * specifically with Tx.
4216  */
4217 static void ice_verify_cacheline_size(struct ice_pf *pf)
4218 {
4219 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4220 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4221 			 ICE_CACHE_LINE_BYTES);
4222 }
4223 
4224 /**
4225  * ice_send_version - update firmware with driver version
4226  * @pf: PF struct
4227  *
4228  * Returns 0 on success, else error code
4229  */
4230 static int ice_send_version(struct ice_pf *pf)
4231 {
4232 	struct ice_driver_ver dv;
4233 
4234 	dv.major_ver = 0xff;
4235 	dv.minor_ver = 0xff;
4236 	dv.build_ver = 0xff;
4237 	dv.subbuild_ver = 0;
4238 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4239 		sizeof(dv.driver_string));
4240 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4241 }
4242 
4243 /**
4244  * ice_init_fdir - Initialize flow director VSI and configuration
4245  * @pf: pointer to the PF instance
4246  *
4247  * returns 0 on success, negative on error
4248  */
4249 static int ice_init_fdir(struct ice_pf *pf)
4250 {
4251 	struct device *dev = ice_pf_to_dev(pf);
4252 	struct ice_vsi *ctrl_vsi;
4253 	int err;
4254 
4255 	/* Side Band Flow Director needs to have a control VSI.
4256 	 * Allocate it and store it in the PF.
4257 	 */
4258 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4259 	if (!ctrl_vsi) {
4260 		dev_dbg(dev, "could not create control VSI\n");
4261 		return -ENOMEM;
4262 	}
4263 
4264 	err = ice_vsi_open_ctrl(ctrl_vsi);
4265 	if (err) {
4266 		dev_dbg(dev, "could not open control VSI\n");
4267 		goto err_vsi_open;
4268 	}
4269 
4270 	mutex_init(&pf->hw.fdir_fltr_lock);
4271 
4272 	err = ice_fdir_create_dflt_rules(pf);
4273 	if (err)
4274 		goto err_fdir_rule;
4275 
4276 	return 0;
4277 
4278 err_fdir_rule:
4279 	ice_fdir_release_flows(&pf->hw);
4280 	ice_vsi_close(ctrl_vsi);
4281 err_vsi_open:
4282 	ice_vsi_release(ctrl_vsi);
4283 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4284 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4285 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4286 	}
4287 	return err;
4288 }
4289 
4290 /**
4291  * ice_get_opt_fw_name - return optional firmware file name or NULL
4292  * @pf: pointer to the PF instance
4293  */
4294 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4295 {
4296 	/* Optional firmware name same as default with additional dash
4297 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4298 	 */
4299 	struct pci_dev *pdev = pf->pdev;
4300 	char *opt_fw_filename;
4301 	u64 dsn;
4302 
4303 	/* Determine the name of the optional file using the DSN (two
4304 	 * dwords following the start of the DSN Capability).
4305 	 */
4306 	dsn = pci_get_dsn(pdev);
4307 	if (!dsn)
4308 		return NULL;
4309 
4310 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4311 	if (!opt_fw_filename)
4312 		return NULL;
4313 
4314 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4315 		 ICE_DDP_PKG_PATH, dsn);
4316 
4317 	return opt_fw_filename;
4318 }
4319 
4320 /**
4321  * ice_request_fw - Device initialization routine
4322  * @pf: pointer to the PF instance
4323  */
4324 static void ice_request_fw(struct ice_pf *pf)
4325 {
4326 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4327 	const struct firmware *firmware = NULL;
4328 	struct device *dev = ice_pf_to_dev(pf);
4329 	int err = 0;
4330 
4331 	/* optional device-specific DDP (if present) overrides the default DDP
4332 	 * package file. kernel logs a debug message if the file doesn't exist,
4333 	 * and warning messages for other errors.
4334 	 */
4335 	if (opt_fw_filename) {
4336 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4337 		if (err) {
4338 			kfree(opt_fw_filename);
4339 			goto dflt_pkg_load;
4340 		}
4341 
4342 		/* request for firmware was successful. Download to device */
4343 		ice_load_pkg(firmware, pf);
4344 		kfree(opt_fw_filename);
4345 		release_firmware(firmware);
4346 		return;
4347 	}
4348 
4349 dflt_pkg_load:
4350 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4351 	if (err) {
4352 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4353 		return;
4354 	}
4355 
4356 	/* request for firmware was successful. Download to device */
4357 	ice_load_pkg(firmware, pf);
4358 	release_firmware(firmware);
4359 }
4360 
4361 /**
4362  * ice_print_wake_reason - show the wake up cause in the log
4363  * @pf: pointer to the PF struct
4364  */
4365 static void ice_print_wake_reason(struct ice_pf *pf)
4366 {
4367 	u32 wus = pf->wakeup_reason;
4368 	const char *wake_str;
4369 
4370 	/* if no wake event, nothing to print */
4371 	if (!wus)
4372 		return;
4373 
4374 	if (wus & PFPM_WUS_LNKC_M)
4375 		wake_str = "Link\n";
4376 	else if (wus & PFPM_WUS_MAG_M)
4377 		wake_str = "Magic Packet\n";
4378 	else if (wus & PFPM_WUS_MNG_M)
4379 		wake_str = "Management\n";
4380 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4381 		wake_str = "Firmware Reset\n";
4382 	else
4383 		wake_str = "Unknown\n";
4384 
4385 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4386 }
4387 
4388 /**
4389  * ice_register_netdev - register netdev and devlink port
4390  * @pf: pointer to the PF struct
4391  */
4392 static int ice_register_netdev(struct ice_pf *pf)
4393 {
4394 	struct ice_vsi *vsi;
4395 	int err = 0;
4396 
4397 	vsi = ice_get_main_vsi(pf);
4398 	if (!vsi || !vsi->netdev)
4399 		return -EIO;
4400 
4401 	err = register_netdev(vsi->netdev);
4402 	if (err)
4403 		goto err_register_netdev;
4404 
4405 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4406 	netif_carrier_off(vsi->netdev);
4407 	netif_tx_stop_all_queues(vsi->netdev);
4408 	err = ice_devlink_create_pf_port(pf);
4409 	if (err)
4410 		goto err_devlink_create;
4411 
4412 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4413 
4414 	return 0;
4415 err_devlink_create:
4416 	unregister_netdev(vsi->netdev);
4417 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4418 err_register_netdev:
4419 	free_netdev(vsi->netdev);
4420 	vsi->netdev = NULL;
4421 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4422 	return err;
4423 }
4424 
4425 /**
4426  * ice_probe - Device initialization routine
4427  * @pdev: PCI device information struct
4428  * @ent: entry in ice_pci_tbl
4429  *
4430  * Returns 0 on success, negative on failure
4431  */
4432 static int
4433 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4434 {
4435 	struct device *dev = &pdev->dev;
4436 	struct ice_pf *pf;
4437 	struct ice_hw *hw;
4438 	int i, err;
4439 
4440 	if (pdev->is_virtfn) {
4441 		dev_err(dev, "can't probe a virtual function\n");
4442 		return -EINVAL;
4443 	}
4444 
4445 	/* this driver uses devres, see
4446 	 * Documentation/driver-api/driver-model/devres.rst
4447 	 */
4448 	err = pcim_enable_device(pdev);
4449 	if (err)
4450 		return err;
4451 
4452 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4453 	if (err) {
4454 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4455 		return err;
4456 	}
4457 
4458 	pf = ice_allocate_pf(dev);
4459 	if (!pf)
4460 		return -ENOMEM;
4461 
4462 	/* initialize Auxiliary index to invalid value */
4463 	pf->aux_idx = -1;
4464 
4465 	/* set up for high or low DMA */
4466 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4467 	if (err)
4468 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4469 	if (err) {
4470 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4471 		return err;
4472 	}
4473 
4474 	pci_enable_pcie_error_reporting(pdev);
4475 	pci_set_master(pdev);
4476 
4477 	pf->pdev = pdev;
4478 	pci_set_drvdata(pdev, pf);
4479 	set_bit(ICE_DOWN, pf->state);
4480 	/* Disable service task until DOWN bit is cleared */
4481 	set_bit(ICE_SERVICE_DIS, pf->state);
4482 
4483 	hw = &pf->hw;
4484 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4485 	pci_save_state(pdev);
4486 
4487 	hw->back = pf;
4488 	hw->vendor_id = pdev->vendor;
4489 	hw->device_id = pdev->device;
4490 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4491 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4492 	hw->subsystem_device_id = pdev->subsystem_device;
4493 	hw->bus.device = PCI_SLOT(pdev->devfn);
4494 	hw->bus.func = PCI_FUNC(pdev->devfn);
4495 	ice_set_ctrlq_len(hw);
4496 
4497 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4498 
4499 #ifndef CONFIG_DYNAMIC_DEBUG
4500 	if (debug < -1)
4501 		hw->debug_mask = debug;
4502 #endif
4503 
4504 	err = ice_init_hw(hw);
4505 	if (err) {
4506 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4507 		err = -EIO;
4508 		goto err_exit_unroll;
4509 	}
4510 
4511 	ice_init_feature_support(pf);
4512 
4513 	ice_request_fw(pf);
4514 
4515 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4516 	 * set in pf->state, which will cause ice_is_safe_mode to return
4517 	 * true
4518 	 */
4519 	if (ice_is_safe_mode(pf)) {
4520 		/* we already got function/device capabilities but these don't
4521 		 * reflect what the driver needs to do in safe mode. Instead of
4522 		 * adding conditional logic everywhere to ignore these
4523 		 * device/function capabilities, override them.
4524 		 */
4525 		ice_set_safe_mode_caps(hw);
4526 	}
4527 
4528 	err = ice_init_pf(pf);
4529 	if (err) {
4530 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4531 		goto err_init_pf_unroll;
4532 	}
4533 
4534 	ice_devlink_init_regions(pf);
4535 
4536 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4537 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4538 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4539 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4540 	i = 0;
4541 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4542 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4543 			pf->hw.tnl.valid_count[TNL_VXLAN];
4544 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4545 			UDP_TUNNEL_TYPE_VXLAN;
4546 		i++;
4547 	}
4548 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4549 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4550 			pf->hw.tnl.valid_count[TNL_GENEVE];
4551 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4552 			UDP_TUNNEL_TYPE_GENEVE;
4553 		i++;
4554 	}
4555 
4556 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4557 	if (!pf->num_alloc_vsi) {
4558 		err = -EIO;
4559 		goto err_init_pf_unroll;
4560 	}
4561 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4562 		dev_warn(&pf->pdev->dev,
4563 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4564 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4565 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4566 	}
4567 
4568 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4569 			       GFP_KERNEL);
4570 	if (!pf->vsi) {
4571 		err = -ENOMEM;
4572 		goto err_init_pf_unroll;
4573 	}
4574 
4575 	err = ice_init_interrupt_scheme(pf);
4576 	if (err) {
4577 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4578 		err = -EIO;
4579 		goto err_init_vsi_unroll;
4580 	}
4581 
4582 	/* In case of MSIX we are going to setup the misc vector right here
4583 	 * to handle admin queue events etc. In case of legacy and MSI
4584 	 * the misc functionality and queue processing is combined in
4585 	 * the same vector and that gets setup at open.
4586 	 */
4587 	err = ice_req_irq_msix_misc(pf);
4588 	if (err) {
4589 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4590 		goto err_init_interrupt_unroll;
4591 	}
4592 
4593 	/* create switch struct for the switch element created by FW on boot */
4594 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4595 	if (!pf->first_sw) {
4596 		err = -ENOMEM;
4597 		goto err_msix_misc_unroll;
4598 	}
4599 
4600 	if (hw->evb_veb)
4601 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4602 	else
4603 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4604 
4605 	pf->first_sw->pf = pf;
4606 
4607 	/* record the sw_id available for later use */
4608 	pf->first_sw->sw_id = hw->port_info->sw_id;
4609 
4610 	err = ice_setup_pf_sw(pf);
4611 	if (err) {
4612 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4613 		goto err_alloc_sw_unroll;
4614 	}
4615 
4616 	clear_bit(ICE_SERVICE_DIS, pf->state);
4617 
4618 	/* tell the firmware we are up */
4619 	err = ice_send_version(pf);
4620 	if (err) {
4621 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4622 			UTS_RELEASE, err);
4623 		goto err_send_version_unroll;
4624 	}
4625 
4626 	/* since everything is good, start the service timer */
4627 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4628 
4629 	err = ice_init_link_events(pf->hw.port_info);
4630 	if (err) {
4631 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4632 		goto err_send_version_unroll;
4633 	}
4634 
4635 	/* not a fatal error if this fails */
4636 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4637 	if (err)
4638 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4639 
4640 	/* not a fatal error if this fails */
4641 	err = ice_update_link_info(pf->hw.port_info);
4642 	if (err)
4643 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4644 
4645 	ice_init_link_dflt_override(pf->hw.port_info);
4646 
4647 	ice_check_link_cfg_err(pf,
4648 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4649 
4650 	/* if media available, initialize PHY settings */
4651 	if (pf->hw.port_info->phy.link_info.link_info &
4652 	    ICE_AQ_MEDIA_AVAILABLE) {
4653 		/* not a fatal error if this fails */
4654 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4655 		if (err)
4656 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4657 
4658 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4659 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4660 
4661 			if (vsi)
4662 				ice_configure_phy(vsi);
4663 		}
4664 	} else {
4665 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4666 	}
4667 
4668 	ice_verify_cacheline_size(pf);
4669 
4670 	/* Save wakeup reason register for later use */
4671 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4672 
4673 	/* check for a power management event */
4674 	ice_print_wake_reason(pf);
4675 
4676 	/* clear wake status, all bits */
4677 	wr32(hw, PFPM_WUS, U32_MAX);
4678 
4679 	/* Disable WoL at init, wait for user to enable */
4680 	device_set_wakeup_enable(dev, false);
4681 
4682 	if (ice_is_safe_mode(pf)) {
4683 		ice_set_safe_mode_vlan_cfg(pf);
4684 		goto probe_done;
4685 	}
4686 
4687 	/* initialize DDP driven features */
4688 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4689 		ice_ptp_init(pf);
4690 
4691 	/* Note: Flow director init failure is non-fatal to load */
4692 	if (ice_init_fdir(pf))
4693 		dev_err(dev, "could not initialize flow director\n");
4694 
4695 	/* Note: DCB init failure is non-fatal to load */
4696 	if (ice_init_pf_dcb(pf, false)) {
4697 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4698 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4699 	} else {
4700 		ice_cfg_lldp_mib_change(&pf->hw, true);
4701 	}
4702 
4703 	if (ice_init_lag(pf))
4704 		dev_warn(dev, "Failed to init link aggregation support\n");
4705 
4706 	/* print PCI link speed and width */
4707 	pcie_print_link_status(pf->pdev);
4708 
4709 probe_done:
4710 	err = ice_register_netdev(pf);
4711 	if (err)
4712 		goto err_netdev_reg;
4713 
4714 	err = ice_devlink_register_params(pf);
4715 	if (err)
4716 		goto err_netdev_reg;
4717 
4718 	/* ready to go, so clear down state bit */
4719 	clear_bit(ICE_DOWN, pf->state);
4720 	if (ice_is_aux_ena(pf)) {
4721 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4722 		if (pf->aux_idx < 0) {
4723 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4724 			err = -ENOMEM;
4725 			goto err_devlink_reg_param;
4726 		}
4727 
4728 		err = ice_init_rdma(pf);
4729 		if (err) {
4730 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4731 			err = -EIO;
4732 			goto err_init_aux_unroll;
4733 		}
4734 	} else {
4735 		dev_warn(dev, "RDMA is not supported on this device\n");
4736 	}
4737 
4738 	ice_devlink_register(pf);
4739 	return 0;
4740 
4741 err_init_aux_unroll:
4742 	pf->adev = NULL;
4743 	ida_free(&ice_aux_ida, pf->aux_idx);
4744 err_devlink_reg_param:
4745 	ice_devlink_unregister_params(pf);
4746 err_netdev_reg:
4747 err_send_version_unroll:
4748 	ice_vsi_release_all(pf);
4749 err_alloc_sw_unroll:
4750 	set_bit(ICE_SERVICE_DIS, pf->state);
4751 	set_bit(ICE_DOWN, pf->state);
4752 	devm_kfree(dev, pf->first_sw);
4753 err_msix_misc_unroll:
4754 	ice_free_irq_msix_misc(pf);
4755 err_init_interrupt_unroll:
4756 	ice_clear_interrupt_scheme(pf);
4757 err_init_vsi_unroll:
4758 	devm_kfree(dev, pf->vsi);
4759 err_init_pf_unroll:
4760 	ice_deinit_pf(pf);
4761 	ice_devlink_destroy_regions(pf);
4762 	ice_deinit_hw(hw);
4763 err_exit_unroll:
4764 	pci_disable_pcie_error_reporting(pdev);
4765 	pci_disable_device(pdev);
4766 	return err;
4767 }
4768 
4769 /**
4770  * ice_set_wake - enable or disable Wake on LAN
4771  * @pf: pointer to the PF struct
4772  *
4773  * Simple helper for WoL control
4774  */
4775 static void ice_set_wake(struct ice_pf *pf)
4776 {
4777 	struct ice_hw *hw = &pf->hw;
4778 	bool wol = pf->wol_ena;
4779 
4780 	/* clear wake state, otherwise new wake events won't fire */
4781 	wr32(hw, PFPM_WUS, U32_MAX);
4782 
4783 	/* enable / disable APM wake up, no RMW needed */
4784 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4785 
4786 	/* set magic packet filter enabled */
4787 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4788 }
4789 
4790 /**
4791  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4792  * @pf: pointer to the PF struct
4793  *
4794  * Issue firmware command to enable multicast magic wake, making
4795  * sure that any locally administered address (LAA) is used for
4796  * wake, and that PF reset doesn't undo the LAA.
4797  */
4798 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4799 {
4800 	struct device *dev = ice_pf_to_dev(pf);
4801 	struct ice_hw *hw = &pf->hw;
4802 	u8 mac_addr[ETH_ALEN];
4803 	struct ice_vsi *vsi;
4804 	int status;
4805 	u8 flags;
4806 
4807 	if (!pf->wol_ena)
4808 		return;
4809 
4810 	vsi = ice_get_main_vsi(pf);
4811 	if (!vsi)
4812 		return;
4813 
4814 	/* Get current MAC address in case it's an LAA */
4815 	if (vsi->netdev)
4816 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4817 	else
4818 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4819 
4820 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4821 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4822 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4823 
4824 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4825 	if (status)
4826 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4827 			status, ice_aq_str(hw->adminq.sq_last_status));
4828 }
4829 
4830 /**
4831  * ice_remove - Device removal routine
4832  * @pdev: PCI device information struct
4833  */
4834 static void ice_remove(struct pci_dev *pdev)
4835 {
4836 	struct ice_pf *pf = pci_get_drvdata(pdev);
4837 	int i;
4838 
4839 	ice_devlink_unregister(pf);
4840 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4841 		if (!ice_is_reset_in_progress(pf->state))
4842 			break;
4843 		msleep(100);
4844 	}
4845 
4846 	ice_tc_indir_block_remove(pf);
4847 
4848 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4849 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4850 		ice_free_vfs(pf);
4851 	}
4852 
4853 	ice_service_task_stop(pf);
4854 
4855 	ice_aq_cancel_waiting_tasks(pf);
4856 	ice_unplug_aux_dev(pf);
4857 	if (pf->aux_idx >= 0)
4858 		ida_free(&ice_aux_ida, pf->aux_idx);
4859 	ice_devlink_unregister_params(pf);
4860 	set_bit(ICE_DOWN, pf->state);
4861 
4862 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4863 	ice_deinit_lag(pf);
4864 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4865 		ice_ptp_release(pf);
4866 	if (!ice_is_safe_mode(pf))
4867 		ice_remove_arfs(pf);
4868 	ice_setup_mc_magic_wake(pf);
4869 	ice_vsi_release_all(pf);
4870 	ice_set_wake(pf);
4871 	ice_free_irq_msix_misc(pf);
4872 	ice_for_each_vsi(pf, i) {
4873 		if (!pf->vsi[i])
4874 			continue;
4875 		ice_vsi_free_q_vectors(pf->vsi[i]);
4876 	}
4877 	ice_deinit_pf(pf);
4878 	ice_devlink_destroy_regions(pf);
4879 	ice_deinit_hw(&pf->hw);
4880 
4881 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4882 	 * do it via ice_schedule_reset() since there is no need to rebuild
4883 	 * and the service task is already stopped.
4884 	 */
4885 	ice_reset(&pf->hw, ICE_RESET_PFR);
4886 	pci_wait_for_pending_transaction(pdev);
4887 	ice_clear_interrupt_scheme(pf);
4888 	pci_disable_pcie_error_reporting(pdev);
4889 	pci_disable_device(pdev);
4890 }
4891 
4892 /**
4893  * ice_shutdown - PCI callback for shutting down device
4894  * @pdev: PCI device information struct
4895  */
4896 static void ice_shutdown(struct pci_dev *pdev)
4897 {
4898 	struct ice_pf *pf = pci_get_drvdata(pdev);
4899 
4900 	ice_remove(pdev);
4901 
4902 	if (system_state == SYSTEM_POWER_OFF) {
4903 		pci_wake_from_d3(pdev, pf->wol_ena);
4904 		pci_set_power_state(pdev, PCI_D3hot);
4905 	}
4906 }
4907 
4908 #ifdef CONFIG_PM
4909 /**
4910  * ice_prepare_for_shutdown - prep for PCI shutdown
4911  * @pf: board private structure
4912  *
4913  * Inform or close all dependent features in prep for PCI device shutdown
4914  */
4915 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4916 {
4917 	struct ice_hw *hw = &pf->hw;
4918 	u32 v;
4919 
4920 	/* Notify VFs of impending reset */
4921 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4922 		ice_vc_notify_reset(pf);
4923 
4924 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4925 
4926 	/* disable the VSIs and their queues that are not already DOWN */
4927 	ice_pf_dis_all_vsi(pf, false);
4928 
4929 	ice_for_each_vsi(pf, v)
4930 		if (pf->vsi[v])
4931 			pf->vsi[v]->vsi_num = 0;
4932 
4933 	ice_shutdown_all_ctrlq(hw);
4934 }
4935 
4936 /**
4937  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4938  * @pf: board private structure to reinitialize
4939  *
4940  * This routine reinitialize interrupt scheme that was cleared during
4941  * power management suspend callback.
4942  *
4943  * This should be called during resume routine to re-allocate the q_vectors
4944  * and reacquire interrupts.
4945  */
4946 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4947 {
4948 	struct device *dev = ice_pf_to_dev(pf);
4949 	int ret, v;
4950 
4951 	/* Since we clear MSIX flag during suspend, we need to
4952 	 * set it back during resume...
4953 	 */
4954 
4955 	ret = ice_init_interrupt_scheme(pf);
4956 	if (ret) {
4957 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4958 		return ret;
4959 	}
4960 
4961 	/* Remap vectors and rings, after successful re-init interrupts */
4962 	ice_for_each_vsi(pf, v) {
4963 		if (!pf->vsi[v])
4964 			continue;
4965 
4966 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4967 		if (ret)
4968 			goto err_reinit;
4969 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4970 	}
4971 
4972 	ret = ice_req_irq_msix_misc(pf);
4973 	if (ret) {
4974 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4975 			ret);
4976 		goto err_reinit;
4977 	}
4978 
4979 	return 0;
4980 
4981 err_reinit:
4982 	while (v--)
4983 		if (pf->vsi[v])
4984 			ice_vsi_free_q_vectors(pf->vsi[v]);
4985 
4986 	return ret;
4987 }
4988 
4989 /**
4990  * ice_suspend
4991  * @dev: generic device information structure
4992  *
4993  * Power Management callback to quiesce the device and prepare
4994  * for D3 transition.
4995  */
4996 static int __maybe_unused ice_suspend(struct device *dev)
4997 {
4998 	struct pci_dev *pdev = to_pci_dev(dev);
4999 	struct ice_pf *pf;
5000 	int disabled, v;
5001 
5002 	pf = pci_get_drvdata(pdev);
5003 
5004 	if (!ice_pf_state_is_nominal(pf)) {
5005 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5006 		return -EBUSY;
5007 	}
5008 
5009 	/* Stop watchdog tasks until resume completion.
5010 	 * Even though it is most likely that the service task is
5011 	 * disabled if the device is suspended or down, the service task's
5012 	 * state is controlled by a different state bit, and we should
5013 	 * store and honor whatever state that bit is in at this point.
5014 	 */
5015 	disabled = ice_service_task_stop(pf);
5016 
5017 	ice_unplug_aux_dev(pf);
5018 
5019 	/* Already suspended?, then there is nothing to do */
5020 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5021 		if (!disabled)
5022 			ice_service_task_restart(pf);
5023 		return 0;
5024 	}
5025 
5026 	if (test_bit(ICE_DOWN, pf->state) ||
5027 	    ice_is_reset_in_progress(pf->state)) {
5028 		dev_err(dev, "can't suspend device in reset or already down\n");
5029 		if (!disabled)
5030 			ice_service_task_restart(pf);
5031 		return 0;
5032 	}
5033 
5034 	ice_setup_mc_magic_wake(pf);
5035 
5036 	ice_prepare_for_shutdown(pf);
5037 
5038 	ice_set_wake(pf);
5039 
5040 	/* Free vectors, clear the interrupt scheme and release IRQs
5041 	 * for proper hibernation, especially with large number of CPUs.
5042 	 * Otherwise hibernation might fail when mapping all the vectors back
5043 	 * to CPU0.
5044 	 */
5045 	ice_free_irq_msix_misc(pf);
5046 	ice_for_each_vsi(pf, v) {
5047 		if (!pf->vsi[v])
5048 			continue;
5049 		ice_vsi_free_q_vectors(pf->vsi[v]);
5050 	}
5051 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
5052 	ice_clear_interrupt_scheme(pf);
5053 
5054 	pci_save_state(pdev);
5055 	pci_wake_from_d3(pdev, pf->wol_ena);
5056 	pci_set_power_state(pdev, PCI_D3hot);
5057 	return 0;
5058 }
5059 
5060 /**
5061  * ice_resume - PM callback for waking up from D3
5062  * @dev: generic device information structure
5063  */
5064 static int __maybe_unused ice_resume(struct device *dev)
5065 {
5066 	struct pci_dev *pdev = to_pci_dev(dev);
5067 	enum ice_reset_req reset_type;
5068 	struct ice_pf *pf;
5069 	struct ice_hw *hw;
5070 	int ret;
5071 
5072 	pci_set_power_state(pdev, PCI_D0);
5073 	pci_restore_state(pdev);
5074 	pci_save_state(pdev);
5075 
5076 	if (!pci_device_is_present(pdev))
5077 		return -ENODEV;
5078 
5079 	ret = pci_enable_device_mem(pdev);
5080 	if (ret) {
5081 		dev_err(dev, "Cannot enable device after suspend\n");
5082 		return ret;
5083 	}
5084 
5085 	pf = pci_get_drvdata(pdev);
5086 	hw = &pf->hw;
5087 
5088 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5089 	ice_print_wake_reason(pf);
5090 
5091 	/* We cleared the interrupt scheme when we suspended, so we need to
5092 	 * restore it now to resume device functionality.
5093 	 */
5094 	ret = ice_reinit_interrupt_scheme(pf);
5095 	if (ret)
5096 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5097 
5098 	clear_bit(ICE_DOWN, pf->state);
5099 	/* Now perform PF reset and rebuild */
5100 	reset_type = ICE_RESET_PFR;
5101 	/* re-enable service task for reset, but allow reset to schedule it */
5102 	clear_bit(ICE_SERVICE_DIS, pf->state);
5103 
5104 	if (ice_schedule_reset(pf, reset_type))
5105 		dev_err(dev, "Reset during resume failed.\n");
5106 
5107 	clear_bit(ICE_SUSPENDED, pf->state);
5108 	ice_service_task_restart(pf);
5109 
5110 	/* Restart the service task */
5111 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5112 
5113 	return 0;
5114 }
5115 #endif /* CONFIG_PM */
5116 
5117 /**
5118  * ice_pci_err_detected - warning that PCI error has been detected
5119  * @pdev: PCI device information struct
5120  * @err: the type of PCI error
5121  *
5122  * Called to warn that something happened on the PCI bus and the error handling
5123  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5124  */
5125 static pci_ers_result_t
5126 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5127 {
5128 	struct ice_pf *pf = pci_get_drvdata(pdev);
5129 
5130 	if (!pf) {
5131 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5132 			__func__, err);
5133 		return PCI_ERS_RESULT_DISCONNECT;
5134 	}
5135 
5136 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5137 		ice_service_task_stop(pf);
5138 
5139 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5140 			set_bit(ICE_PFR_REQ, pf->state);
5141 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5142 		}
5143 	}
5144 
5145 	return PCI_ERS_RESULT_NEED_RESET;
5146 }
5147 
5148 /**
5149  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5150  * @pdev: PCI device information struct
5151  *
5152  * Called to determine if the driver can recover from the PCI slot reset by
5153  * using a register read to determine if the device is recoverable.
5154  */
5155 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5156 {
5157 	struct ice_pf *pf = pci_get_drvdata(pdev);
5158 	pci_ers_result_t result;
5159 	int err;
5160 	u32 reg;
5161 
5162 	err = pci_enable_device_mem(pdev);
5163 	if (err) {
5164 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5165 			err);
5166 		result = PCI_ERS_RESULT_DISCONNECT;
5167 	} else {
5168 		pci_set_master(pdev);
5169 		pci_restore_state(pdev);
5170 		pci_save_state(pdev);
5171 		pci_wake_from_d3(pdev, false);
5172 
5173 		/* Check for life */
5174 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5175 		if (!reg)
5176 			result = PCI_ERS_RESULT_RECOVERED;
5177 		else
5178 			result = PCI_ERS_RESULT_DISCONNECT;
5179 	}
5180 
5181 	err = pci_aer_clear_nonfatal_status(pdev);
5182 	if (err)
5183 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5184 			err);
5185 		/* non-fatal, continue */
5186 
5187 	return result;
5188 }
5189 
5190 /**
5191  * ice_pci_err_resume - restart operations after PCI error recovery
5192  * @pdev: PCI device information struct
5193  *
5194  * Called to allow the driver to bring things back up after PCI error and/or
5195  * reset recovery have finished
5196  */
5197 static void ice_pci_err_resume(struct pci_dev *pdev)
5198 {
5199 	struct ice_pf *pf = pci_get_drvdata(pdev);
5200 
5201 	if (!pf) {
5202 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5203 			__func__);
5204 		return;
5205 	}
5206 
5207 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5208 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5209 			__func__);
5210 		return;
5211 	}
5212 
5213 	ice_restore_all_vfs_msi_state(pdev);
5214 
5215 	ice_do_reset(pf, ICE_RESET_PFR);
5216 	ice_service_task_restart(pf);
5217 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5218 }
5219 
5220 /**
5221  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5222  * @pdev: PCI device information struct
5223  */
5224 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5225 {
5226 	struct ice_pf *pf = pci_get_drvdata(pdev);
5227 
5228 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5229 		ice_service_task_stop(pf);
5230 
5231 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5232 			set_bit(ICE_PFR_REQ, pf->state);
5233 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5234 		}
5235 	}
5236 }
5237 
5238 /**
5239  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5240  * @pdev: PCI device information struct
5241  */
5242 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5243 {
5244 	ice_pci_err_resume(pdev);
5245 }
5246 
5247 /* ice_pci_tbl - PCI Device ID Table
5248  *
5249  * Wildcard entries (PCI_ANY_ID) should come last
5250  * Last entry must be all 0s
5251  *
5252  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5253  *   Class, Class Mask, private data (not used) }
5254  */
5255 static const struct pci_device_id ice_pci_tbl[] = {
5256 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5257 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5258 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5259 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5260 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5261 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5262 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5263 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5264 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5265 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5266 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5267 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5268 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5269 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5270 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5271 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5272 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5273 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5274 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5275 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5276 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5277 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5278 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5279 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5280 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5281 	/* required last entry */
5282 	{ 0, }
5283 };
5284 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5285 
5286 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5287 
5288 static const struct pci_error_handlers ice_pci_err_handler = {
5289 	.error_detected = ice_pci_err_detected,
5290 	.slot_reset = ice_pci_err_slot_reset,
5291 	.reset_prepare = ice_pci_err_reset_prepare,
5292 	.reset_done = ice_pci_err_reset_done,
5293 	.resume = ice_pci_err_resume
5294 };
5295 
5296 static struct pci_driver ice_driver = {
5297 	.name = KBUILD_MODNAME,
5298 	.id_table = ice_pci_tbl,
5299 	.probe = ice_probe,
5300 	.remove = ice_remove,
5301 #ifdef CONFIG_PM
5302 	.driver.pm = &ice_pm_ops,
5303 #endif /* CONFIG_PM */
5304 	.shutdown = ice_shutdown,
5305 	.sriov_configure = ice_sriov_configure,
5306 	.err_handler = &ice_pci_err_handler
5307 };
5308 
5309 /**
5310  * ice_module_init - Driver registration routine
5311  *
5312  * ice_module_init is the first routine called when the driver is
5313  * loaded. All it does is register with the PCI subsystem.
5314  */
5315 static int __init ice_module_init(void)
5316 {
5317 	int status;
5318 
5319 	pr_info("%s\n", ice_driver_string);
5320 	pr_info("%s\n", ice_copyright);
5321 
5322 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5323 	if (!ice_wq) {
5324 		pr_err("Failed to create workqueue\n");
5325 		return -ENOMEM;
5326 	}
5327 
5328 	status = pci_register_driver(&ice_driver);
5329 	if (status) {
5330 		pr_err("failed to register PCI driver, err %d\n", status);
5331 		destroy_workqueue(ice_wq);
5332 	}
5333 
5334 	return status;
5335 }
5336 module_init(ice_module_init);
5337 
5338 /**
5339  * ice_module_exit - Driver exit cleanup routine
5340  *
5341  * ice_module_exit is called just before the driver is removed
5342  * from memory.
5343  */
5344 static void __exit ice_module_exit(void)
5345 {
5346 	pci_unregister_driver(&ice_driver);
5347 	destroy_workqueue(ice_wq);
5348 	pr_info("module unloaded\n");
5349 }
5350 module_exit(ice_module_exit);
5351 
5352 /**
5353  * ice_set_mac_address - NDO callback to set MAC address
5354  * @netdev: network interface device structure
5355  * @pi: pointer to an address structure
5356  *
5357  * Returns 0 on success, negative on failure
5358  */
5359 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5360 {
5361 	struct ice_netdev_priv *np = netdev_priv(netdev);
5362 	struct ice_vsi *vsi = np->vsi;
5363 	struct ice_pf *pf = vsi->back;
5364 	struct ice_hw *hw = &pf->hw;
5365 	struct sockaddr *addr = pi;
5366 	u8 old_mac[ETH_ALEN];
5367 	u8 flags = 0;
5368 	u8 *mac;
5369 	int err;
5370 
5371 	mac = (u8 *)addr->sa_data;
5372 
5373 	if (!is_valid_ether_addr(mac))
5374 		return -EADDRNOTAVAIL;
5375 
5376 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5377 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5378 		return 0;
5379 	}
5380 
5381 	if (test_bit(ICE_DOWN, pf->state) ||
5382 	    ice_is_reset_in_progress(pf->state)) {
5383 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5384 			   mac);
5385 		return -EBUSY;
5386 	}
5387 
5388 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5389 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5390 			   mac);
5391 		return -EAGAIN;
5392 	}
5393 
5394 	netif_addr_lock_bh(netdev);
5395 	ether_addr_copy(old_mac, netdev->dev_addr);
5396 	/* change the netdev's MAC address */
5397 	eth_hw_addr_set(netdev, mac);
5398 	netif_addr_unlock_bh(netdev);
5399 
5400 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5401 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5402 	if (err && err != -ENOENT) {
5403 		err = -EADDRNOTAVAIL;
5404 		goto err_update_filters;
5405 	}
5406 
5407 	/* Add filter for new MAC. If filter exists, return success */
5408 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5409 	if (err == -EEXIST)
5410 		/* Although this MAC filter is already present in hardware it's
5411 		 * possible in some cases (e.g. bonding) that dev_addr was
5412 		 * modified outside of the driver and needs to be restored back
5413 		 * to this value.
5414 		 */
5415 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5416 	else if (err)
5417 		/* error if the new filter addition failed */
5418 		err = -EADDRNOTAVAIL;
5419 
5420 err_update_filters:
5421 	if (err) {
5422 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5423 			   mac);
5424 		netif_addr_lock_bh(netdev);
5425 		eth_hw_addr_set(netdev, old_mac);
5426 		netif_addr_unlock_bh(netdev);
5427 		return err;
5428 	}
5429 
5430 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5431 		   netdev->dev_addr);
5432 
5433 	/* write new MAC address to the firmware */
5434 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5435 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5436 	if (err) {
5437 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5438 			   mac, err);
5439 	}
5440 	return 0;
5441 }
5442 
5443 /**
5444  * ice_set_rx_mode - NDO callback to set the netdev filters
5445  * @netdev: network interface device structure
5446  */
5447 static void ice_set_rx_mode(struct net_device *netdev)
5448 {
5449 	struct ice_netdev_priv *np = netdev_priv(netdev);
5450 	struct ice_vsi *vsi = np->vsi;
5451 
5452 	if (!vsi)
5453 		return;
5454 
5455 	/* Set the flags to synchronize filters
5456 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5457 	 * flags
5458 	 */
5459 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5460 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5461 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5462 
5463 	/* schedule our worker thread which will take care of
5464 	 * applying the new filter changes
5465 	 */
5466 	ice_service_task_schedule(vsi->back);
5467 }
5468 
5469 /**
5470  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5471  * @netdev: network interface device structure
5472  * @queue_index: Queue ID
5473  * @maxrate: maximum bandwidth in Mbps
5474  */
5475 static int
5476 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5477 {
5478 	struct ice_netdev_priv *np = netdev_priv(netdev);
5479 	struct ice_vsi *vsi = np->vsi;
5480 	u16 q_handle;
5481 	int status;
5482 	u8 tc;
5483 
5484 	/* Validate maxrate requested is within permitted range */
5485 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5486 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5487 			   maxrate, queue_index);
5488 		return -EINVAL;
5489 	}
5490 
5491 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5492 	tc = ice_dcb_get_tc(vsi, queue_index);
5493 
5494 	/* Set BW back to default, when user set maxrate to 0 */
5495 	if (!maxrate)
5496 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5497 					       q_handle, ICE_MAX_BW);
5498 	else
5499 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5500 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5501 	if (status)
5502 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5503 			   status);
5504 
5505 	return status;
5506 }
5507 
5508 /**
5509  * ice_fdb_add - add an entry to the hardware database
5510  * @ndm: the input from the stack
5511  * @tb: pointer to array of nladdr (unused)
5512  * @dev: the net device pointer
5513  * @addr: the MAC address entry being added
5514  * @vid: VLAN ID
5515  * @flags: instructions from stack about fdb operation
5516  * @extack: netlink extended ack
5517  */
5518 static int
5519 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5520 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5521 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5522 {
5523 	int err;
5524 
5525 	if (vid) {
5526 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5527 		return -EINVAL;
5528 	}
5529 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5530 		netdev_err(dev, "FDB only supports static addresses\n");
5531 		return -EINVAL;
5532 	}
5533 
5534 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5535 		err = dev_uc_add_excl(dev, addr);
5536 	else if (is_multicast_ether_addr(addr))
5537 		err = dev_mc_add_excl(dev, addr);
5538 	else
5539 		err = -EINVAL;
5540 
5541 	/* Only return duplicate errors if NLM_F_EXCL is set */
5542 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5543 		err = 0;
5544 
5545 	return err;
5546 }
5547 
5548 /**
5549  * ice_fdb_del - delete an entry from the hardware database
5550  * @ndm: the input from the stack
5551  * @tb: pointer to array of nladdr (unused)
5552  * @dev: the net device pointer
5553  * @addr: the MAC address entry being added
5554  * @vid: VLAN ID
5555  */
5556 static int
5557 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5558 	    struct net_device *dev, const unsigned char *addr,
5559 	    __always_unused u16 vid)
5560 {
5561 	int err;
5562 
5563 	if (ndm->ndm_state & NUD_PERMANENT) {
5564 		netdev_err(dev, "FDB only supports static addresses\n");
5565 		return -EINVAL;
5566 	}
5567 
5568 	if (is_unicast_ether_addr(addr))
5569 		err = dev_uc_del(dev, addr);
5570 	else if (is_multicast_ether_addr(addr))
5571 		err = dev_mc_del(dev, addr);
5572 	else
5573 		err = -EINVAL;
5574 
5575 	return err;
5576 }
5577 
5578 /**
5579  * ice_set_features - set the netdev feature flags
5580  * @netdev: ptr to the netdev being adjusted
5581  * @features: the feature set that the stack is suggesting
5582  */
5583 static int
5584 ice_set_features(struct net_device *netdev, netdev_features_t features)
5585 {
5586 	struct ice_netdev_priv *np = netdev_priv(netdev);
5587 	struct ice_vsi *vsi = np->vsi;
5588 	struct ice_pf *pf = vsi->back;
5589 	int ret = 0;
5590 
5591 	/* Don't set any netdev advanced features with device in Safe Mode */
5592 	if (ice_is_safe_mode(vsi->back)) {
5593 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5594 		return ret;
5595 	}
5596 
5597 	/* Do not change setting during reset */
5598 	if (ice_is_reset_in_progress(pf->state)) {
5599 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5600 		return -EBUSY;
5601 	}
5602 
5603 	/* Multiple features can be changed in one call so keep features in
5604 	 * separate if/else statements to guarantee each feature is checked
5605 	 */
5606 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5607 		ice_vsi_manage_rss_lut(vsi, true);
5608 	else if (!(features & NETIF_F_RXHASH) &&
5609 		 netdev->features & NETIF_F_RXHASH)
5610 		ice_vsi_manage_rss_lut(vsi, false);
5611 
5612 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5613 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5614 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5615 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5616 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5617 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5618 
5619 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5620 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5621 		ret = ice_vsi_manage_vlan_insertion(vsi);
5622 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5623 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5624 		ret = ice_vsi_manage_vlan_insertion(vsi);
5625 
5626 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5627 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5628 		ret = ice_cfg_vlan_pruning(vsi, true);
5629 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5630 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5631 		ret = ice_cfg_vlan_pruning(vsi, false);
5632 
5633 	if ((features & NETIF_F_NTUPLE) &&
5634 	    !(netdev->features & NETIF_F_NTUPLE)) {
5635 		ice_vsi_manage_fdir(vsi, true);
5636 		ice_init_arfs(vsi);
5637 	} else if (!(features & NETIF_F_NTUPLE) &&
5638 		 (netdev->features & NETIF_F_NTUPLE)) {
5639 		ice_vsi_manage_fdir(vsi, false);
5640 		ice_clear_arfs(vsi);
5641 	}
5642 
5643 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5644 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5645 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5646 		return -EACCES;
5647 	}
5648 
5649 	if ((features & NETIF_F_HW_TC) &&
5650 	    !(netdev->features & NETIF_F_HW_TC))
5651 		set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5652 	else
5653 		clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5654 
5655 	return ret;
5656 }
5657 
5658 /**
5659  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5660  * @vsi: VSI to setup VLAN properties for
5661  */
5662 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5663 {
5664 	int ret = 0;
5665 
5666 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5667 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5668 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5669 		ret = ice_vsi_manage_vlan_insertion(vsi);
5670 
5671 	return ret;
5672 }
5673 
5674 /**
5675  * ice_vsi_cfg - Setup the VSI
5676  * @vsi: the VSI being configured
5677  *
5678  * Return 0 on success and negative value on error
5679  */
5680 int ice_vsi_cfg(struct ice_vsi *vsi)
5681 {
5682 	int err;
5683 
5684 	if (vsi->netdev) {
5685 		ice_set_rx_mode(vsi->netdev);
5686 
5687 		err = ice_vsi_vlan_setup(vsi);
5688 
5689 		if (err)
5690 			return err;
5691 	}
5692 	ice_vsi_cfg_dcb_rings(vsi);
5693 
5694 	err = ice_vsi_cfg_lan_txqs(vsi);
5695 	if (!err && ice_is_xdp_ena_vsi(vsi))
5696 		err = ice_vsi_cfg_xdp_txqs(vsi);
5697 	if (!err)
5698 		err = ice_vsi_cfg_rxqs(vsi);
5699 
5700 	return err;
5701 }
5702 
5703 /* THEORY OF MODERATION:
5704  * The ice driver hardware works differently than the hardware that DIMLIB was
5705  * originally made for. ice hardware doesn't have packet count limits that
5706  * can trigger an interrupt, but it *does* have interrupt rate limit support,
5707  * which is hard-coded to a limit of 250,000 ints/second.
5708  * If not using dynamic moderation, the INTRL value can be modified
5709  * by ethtool rx-usecs-high.
5710  */
5711 struct ice_dim {
5712 	/* the throttle rate for interrupts, basically worst case delay before
5713 	 * an initial interrupt fires, value is stored in microseconds.
5714 	 */
5715 	u16 itr;
5716 };
5717 
5718 /* Make a different profile for Rx that doesn't allow quite so aggressive
5719  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
5720  * second.
5721  */
5722 static const struct ice_dim rx_profile[] = {
5723 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5724 	{8},    /* 125,000 ints/s */
5725 	{16},   /*  62,500 ints/s */
5726 	{62},   /*  16,129 ints/s */
5727 	{126}   /*   7,936 ints/s */
5728 };
5729 
5730 /* The transmit profile, which has the same sorts of values
5731  * as the previous struct
5732  */
5733 static const struct ice_dim tx_profile[] = {
5734 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5735 	{8},    /* 125,000 ints/s */
5736 	{40},   /*  16,125 ints/s */
5737 	{128},  /*   7,812 ints/s */
5738 	{256}   /*   3,906 ints/s */
5739 };
5740 
5741 static void ice_tx_dim_work(struct work_struct *work)
5742 {
5743 	struct ice_ring_container *rc;
5744 	struct dim *dim;
5745 	u16 itr;
5746 
5747 	dim = container_of(work, struct dim, work);
5748 	rc = (struct ice_ring_container *)dim->priv;
5749 
5750 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
5751 
5752 	/* look up the values in our local table */
5753 	itr = tx_profile[dim->profile_ix].itr;
5754 
5755 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
5756 	ice_write_itr(rc, itr);
5757 
5758 	dim->state = DIM_START_MEASURE;
5759 }
5760 
5761 static void ice_rx_dim_work(struct work_struct *work)
5762 {
5763 	struct ice_ring_container *rc;
5764 	struct dim *dim;
5765 	u16 itr;
5766 
5767 	dim = container_of(work, struct dim, work);
5768 	rc = (struct ice_ring_container *)dim->priv;
5769 
5770 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
5771 
5772 	/* look up the values in our local table */
5773 	itr = rx_profile[dim->profile_ix].itr;
5774 
5775 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
5776 	ice_write_itr(rc, itr);
5777 
5778 	dim->state = DIM_START_MEASURE;
5779 }
5780 
5781 #define ICE_DIM_DEFAULT_PROFILE_IX 1
5782 
5783 /**
5784  * ice_init_moderation - set up interrupt moderation
5785  * @q_vector: the vector containing rings to be configured
5786  *
5787  * Set up interrupt moderation registers, with the intent to do the right thing
5788  * when called from reset or from probe, and whether or not dynamic moderation
5789  * is enabled or not. Take special care to write all the registers in both
5790  * dynamic moderation mode or not in order to make sure hardware is in a known
5791  * state.
5792  */
5793 static void ice_init_moderation(struct ice_q_vector *q_vector)
5794 {
5795 	struct ice_ring_container *rc;
5796 	bool tx_dynamic, rx_dynamic;
5797 
5798 	rc = &q_vector->tx;
5799 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
5800 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5801 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5802 	rc->dim.priv = rc;
5803 	tx_dynamic = ITR_IS_DYNAMIC(rc);
5804 
5805 	/* set the initial TX ITR to match the above */
5806 	ice_write_itr(rc, tx_dynamic ?
5807 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
5808 
5809 	rc = &q_vector->rx;
5810 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
5811 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5812 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5813 	rc->dim.priv = rc;
5814 	rx_dynamic = ITR_IS_DYNAMIC(rc);
5815 
5816 	/* set the initial RX ITR to match the above */
5817 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
5818 				       rc->itr_setting);
5819 
5820 	ice_set_q_vector_intrl(q_vector);
5821 }
5822 
5823 /**
5824  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5825  * @vsi: the VSI being configured
5826  */
5827 static void ice_napi_enable_all(struct ice_vsi *vsi)
5828 {
5829 	int q_idx;
5830 
5831 	if (!vsi->netdev)
5832 		return;
5833 
5834 	ice_for_each_q_vector(vsi, q_idx) {
5835 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5836 
5837 		ice_init_moderation(q_vector);
5838 
5839 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
5840 			napi_enable(&q_vector->napi);
5841 	}
5842 }
5843 
5844 /**
5845  * ice_up_complete - Finish the last steps of bringing up a connection
5846  * @vsi: The VSI being configured
5847  *
5848  * Return 0 on success and negative value on error
5849  */
5850 static int ice_up_complete(struct ice_vsi *vsi)
5851 {
5852 	struct ice_pf *pf = vsi->back;
5853 	int err;
5854 
5855 	ice_vsi_cfg_msix(vsi);
5856 
5857 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5858 	 * Tx queue group list was configured and the context bits were
5859 	 * programmed using ice_vsi_cfg_txqs
5860 	 */
5861 	err = ice_vsi_start_all_rx_rings(vsi);
5862 	if (err)
5863 		return err;
5864 
5865 	clear_bit(ICE_VSI_DOWN, vsi->state);
5866 	ice_napi_enable_all(vsi);
5867 	ice_vsi_ena_irq(vsi);
5868 
5869 	if (vsi->port_info &&
5870 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5871 	    vsi->netdev) {
5872 		ice_print_link_msg(vsi, true);
5873 		netif_tx_start_all_queues(vsi->netdev);
5874 		netif_carrier_on(vsi->netdev);
5875 		if (!ice_is_e810(&pf->hw))
5876 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
5877 	}
5878 
5879 	/* clear this now, and the first stats read will be used as baseline */
5880 	vsi->stat_offsets_loaded = false;
5881 
5882 	ice_service_task_schedule(pf);
5883 
5884 	return 0;
5885 }
5886 
5887 /**
5888  * ice_up - Bring the connection back up after being down
5889  * @vsi: VSI being configured
5890  */
5891 int ice_up(struct ice_vsi *vsi)
5892 {
5893 	int err;
5894 
5895 	err = ice_vsi_cfg(vsi);
5896 	if (!err)
5897 		err = ice_up_complete(vsi);
5898 
5899 	return err;
5900 }
5901 
5902 /**
5903  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5904  * @syncp: pointer to u64_stats_sync
5905  * @stats: stats that pkts and bytes count will be taken from
5906  * @pkts: packets stats counter
5907  * @bytes: bytes stats counter
5908  *
5909  * This function fetches stats from the ring considering the atomic operations
5910  * that needs to be performed to read u64 values in 32 bit machine.
5911  */
5912 static void
5913 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats,
5914 			     u64 *pkts, u64 *bytes)
5915 {
5916 	unsigned int start;
5917 
5918 	do {
5919 		start = u64_stats_fetch_begin_irq(syncp);
5920 		*pkts = stats.pkts;
5921 		*bytes = stats.bytes;
5922 	} while (u64_stats_fetch_retry_irq(syncp, start));
5923 }
5924 
5925 /**
5926  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5927  * @vsi: the VSI to be updated
5928  * @vsi_stats: the stats struct to be updated
5929  * @rings: rings to work on
5930  * @count: number of rings
5931  */
5932 static void
5933 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
5934 			     struct rtnl_link_stats64 *vsi_stats,
5935 			     struct ice_tx_ring **rings, u16 count)
5936 {
5937 	u16 i;
5938 
5939 	for (i = 0; i < count; i++) {
5940 		struct ice_tx_ring *ring;
5941 		u64 pkts = 0, bytes = 0;
5942 
5943 		ring = READ_ONCE(rings[i]);
5944 		if (ring)
5945 			ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
5946 		vsi_stats->tx_packets += pkts;
5947 		vsi_stats->tx_bytes += bytes;
5948 		vsi->tx_restart += ring->tx_stats.restart_q;
5949 		vsi->tx_busy += ring->tx_stats.tx_busy;
5950 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5951 	}
5952 }
5953 
5954 /**
5955  * ice_update_vsi_ring_stats - Update VSI stats counters
5956  * @vsi: the VSI to be updated
5957  */
5958 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5959 {
5960 	struct rtnl_link_stats64 *vsi_stats;
5961 	u64 pkts, bytes;
5962 	int i;
5963 
5964 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
5965 	if (!vsi_stats)
5966 		return;
5967 
5968 	/* reset non-netdev (extended) stats */
5969 	vsi->tx_restart = 0;
5970 	vsi->tx_busy = 0;
5971 	vsi->tx_linearize = 0;
5972 	vsi->rx_buf_failed = 0;
5973 	vsi->rx_page_failed = 0;
5974 
5975 	rcu_read_lock();
5976 
5977 	/* update Tx rings counters */
5978 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
5979 				     vsi->num_txq);
5980 
5981 	/* update Rx rings counters */
5982 	ice_for_each_rxq(vsi, i) {
5983 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5984 
5985 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
5986 		vsi_stats->rx_packets += pkts;
5987 		vsi_stats->rx_bytes += bytes;
5988 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5989 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5990 	}
5991 
5992 	/* update XDP Tx rings counters */
5993 	if (ice_is_xdp_ena_vsi(vsi))
5994 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
5995 					     vsi->num_xdp_txq);
5996 
5997 	rcu_read_unlock();
5998 
5999 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6000 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6001 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6002 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6003 
6004 	kfree(vsi_stats);
6005 }
6006 
6007 /**
6008  * ice_update_vsi_stats - Update VSI stats counters
6009  * @vsi: the VSI to be updated
6010  */
6011 void ice_update_vsi_stats(struct ice_vsi *vsi)
6012 {
6013 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6014 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6015 	struct ice_pf *pf = vsi->back;
6016 
6017 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6018 	    test_bit(ICE_CFG_BUSY, pf->state))
6019 		return;
6020 
6021 	/* get stats as recorded by Tx/Rx rings */
6022 	ice_update_vsi_ring_stats(vsi);
6023 
6024 	/* get VSI stats as recorded by the hardware */
6025 	ice_update_eth_stats(vsi);
6026 
6027 	cur_ns->tx_errors = cur_es->tx_errors;
6028 	cur_ns->rx_dropped = cur_es->rx_discards;
6029 	cur_ns->tx_dropped = cur_es->tx_discards;
6030 	cur_ns->multicast = cur_es->rx_multicast;
6031 
6032 	/* update some more netdev stats if this is main VSI */
6033 	if (vsi->type == ICE_VSI_PF) {
6034 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6035 		cur_ns->rx_errors = pf->stats.crc_errors +
6036 				    pf->stats.illegal_bytes +
6037 				    pf->stats.rx_len_errors +
6038 				    pf->stats.rx_undersize +
6039 				    pf->hw_csum_rx_error +
6040 				    pf->stats.rx_jabber +
6041 				    pf->stats.rx_fragments +
6042 				    pf->stats.rx_oversize;
6043 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6044 		/* record drops from the port level */
6045 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6046 	}
6047 }
6048 
6049 /**
6050  * ice_update_pf_stats - Update PF port stats counters
6051  * @pf: PF whose stats needs to be updated
6052  */
6053 void ice_update_pf_stats(struct ice_pf *pf)
6054 {
6055 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6056 	struct ice_hw *hw = &pf->hw;
6057 	u16 fd_ctr_base;
6058 	u8 port;
6059 
6060 	port = hw->port_info->lport;
6061 	prev_ps = &pf->stats_prev;
6062 	cur_ps = &pf->stats;
6063 
6064 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6065 			  &prev_ps->eth.rx_bytes,
6066 			  &cur_ps->eth.rx_bytes);
6067 
6068 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6069 			  &prev_ps->eth.rx_unicast,
6070 			  &cur_ps->eth.rx_unicast);
6071 
6072 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6073 			  &prev_ps->eth.rx_multicast,
6074 			  &cur_ps->eth.rx_multicast);
6075 
6076 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6077 			  &prev_ps->eth.rx_broadcast,
6078 			  &cur_ps->eth.rx_broadcast);
6079 
6080 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6081 			  &prev_ps->eth.rx_discards,
6082 			  &cur_ps->eth.rx_discards);
6083 
6084 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6085 			  &prev_ps->eth.tx_bytes,
6086 			  &cur_ps->eth.tx_bytes);
6087 
6088 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6089 			  &prev_ps->eth.tx_unicast,
6090 			  &cur_ps->eth.tx_unicast);
6091 
6092 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6093 			  &prev_ps->eth.tx_multicast,
6094 			  &cur_ps->eth.tx_multicast);
6095 
6096 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6097 			  &prev_ps->eth.tx_broadcast,
6098 			  &cur_ps->eth.tx_broadcast);
6099 
6100 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6101 			  &prev_ps->tx_dropped_link_down,
6102 			  &cur_ps->tx_dropped_link_down);
6103 
6104 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6105 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6106 
6107 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6108 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6109 
6110 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6111 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6112 
6113 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6114 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6115 
6116 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6117 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6118 
6119 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6120 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6121 
6122 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6123 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6124 
6125 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6126 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6127 
6128 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6129 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6130 
6131 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6132 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6133 
6134 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6135 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6136 
6137 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6138 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6139 
6140 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6141 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6142 
6143 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6144 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6145 
6146 	fd_ctr_base = hw->fd_ctr_base;
6147 
6148 	ice_stat_update40(hw,
6149 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6150 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6151 			  &cur_ps->fd_sb_match);
6152 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6153 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6154 
6155 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6156 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6157 
6158 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6159 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6160 
6161 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6162 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6163 
6164 	ice_update_dcb_stats(pf);
6165 
6166 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6167 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6168 
6169 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6170 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6171 
6172 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6173 			  &prev_ps->mac_local_faults,
6174 			  &cur_ps->mac_local_faults);
6175 
6176 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6177 			  &prev_ps->mac_remote_faults,
6178 			  &cur_ps->mac_remote_faults);
6179 
6180 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6181 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6182 
6183 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6184 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6185 
6186 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6187 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6188 
6189 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6190 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6191 
6192 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6193 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6194 
6195 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6196 
6197 	pf->stat_prev_loaded = true;
6198 }
6199 
6200 /**
6201  * ice_get_stats64 - get statistics for network device structure
6202  * @netdev: network interface device structure
6203  * @stats: main device statistics structure
6204  */
6205 static
6206 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6207 {
6208 	struct ice_netdev_priv *np = netdev_priv(netdev);
6209 	struct rtnl_link_stats64 *vsi_stats;
6210 	struct ice_vsi *vsi = np->vsi;
6211 
6212 	vsi_stats = &vsi->net_stats;
6213 
6214 	if (!vsi->num_txq || !vsi->num_rxq)
6215 		return;
6216 
6217 	/* netdev packet/byte stats come from ring counter. These are obtained
6218 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6219 	 * But, only call the update routine and read the registers if VSI is
6220 	 * not down.
6221 	 */
6222 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6223 		ice_update_vsi_ring_stats(vsi);
6224 	stats->tx_packets = vsi_stats->tx_packets;
6225 	stats->tx_bytes = vsi_stats->tx_bytes;
6226 	stats->rx_packets = vsi_stats->rx_packets;
6227 	stats->rx_bytes = vsi_stats->rx_bytes;
6228 
6229 	/* The rest of the stats can be read from the hardware but instead we
6230 	 * just return values that the watchdog task has already obtained from
6231 	 * the hardware.
6232 	 */
6233 	stats->multicast = vsi_stats->multicast;
6234 	stats->tx_errors = vsi_stats->tx_errors;
6235 	stats->tx_dropped = vsi_stats->tx_dropped;
6236 	stats->rx_errors = vsi_stats->rx_errors;
6237 	stats->rx_dropped = vsi_stats->rx_dropped;
6238 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6239 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6240 }
6241 
6242 /**
6243  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6244  * @vsi: VSI having NAPI disabled
6245  */
6246 static void ice_napi_disable_all(struct ice_vsi *vsi)
6247 {
6248 	int q_idx;
6249 
6250 	if (!vsi->netdev)
6251 		return;
6252 
6253 	ice_for_each_q_vector(vsi, q_idx) {
6254 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6255 
6256 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6257 			napi_disable(&q_vector->napi);
6258 
6259 		cancel_work_sync(&q_vector->tx.dim.work);
6260 		cancel_work_sync(&q_vector->rx.dim.work);
6261 	}
6262 }
6263 
6264 /**
6265  * ice_down - Shutdown the connection
6266  * @vsi: The VSI being stopped
6267  *
6268  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6269  */
6270 int ice_down(struct ice_vsi *vsi)
6271 {
6272 	int i, tx_err, rx_err, link_err = 0;
6273 
6274 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6275 
6276 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6277 		if (!ice_is_e810(&vsi->back->hw))
6278 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6279 		netif_carrier_off(vsi->netdev);
6280 		netif_tx_disable(vsi->netdev);
6281 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6282 		ice_eswitch_stop_all_tx_queues(vsi->back);
6283 	}
6284 
6285 	ice_vsi_dis_irq(vsi);
6286 
6287 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6288 	if (tx_err)
6289 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6290 			   vsi->vsi_num, tx_err);
6291 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6292 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6293 		if (tx_err)
6294 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6295 				   vsi->vsi_num, tx_err);
6296 	}
6297 
6298 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6299 	if (rx_err)
6300 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6301 			   vsi->vsi_num, rx_err);
6302 
6303 	ice_napi_disable_all(vsi);
6304 
6305 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6306 		link_err = ice_force_phys_link_state(vsi, false);
6307 		if (link_err)
6308 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6309 				   vsi->vsi_num, link_err);
6310 	}
6311 
6312 	ice_for_each_txq(vsi, i)
6313 		ice_clean_tx_ring(vsi->tx_rings[i]);
6314 
6315 	ice_for_each_rxq(vsi, i)
6316 		ice_clean_rx_ring(vsi->rx_rings[i]);
6317 
6318 	if (tx_err || rx_err || link_err) {
6319 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6320 			   vsi->vsi_num, vsi->vsw->sw_id);
6321 		return -EIO;
6322 	}
6323 
6324 	return 0;
6325 }
6326 
6327 /**
6328  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6329  * @vsi: VSI having resources allocated
6330  *
6331  * Return 0 on success, negative on failure
6332  */
6333 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6334 {
6335 	int i, err = 0;
6336 
6337 	if (!vsi->num_txq) {
6338 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6339 			vsi->vsi_num);
6340 		return -EINVAL;
6341 	}
6342 
6343 	ice_for_each_txq(vsi, i) {
6344 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6345 
6346 		if (!ring)
6347 			return -EINVAL;
6348 
6349 		if (vsi->netdev)
6350 			ring->netdev = vsi->netdev;
6351 		err = ice_setup_tx_ring(ring);
6352 		if (err)
6353 			break;
6354 	}
6355 
6356 	return err;
6357 }
6358 
6359 /**
6360  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6361  * @vsi: VSI having resources allocated
6362  *
6363  * Return 0 on success, negative on failure
6364  */
6365 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6366 {
6367 	int i, err = 0;
6368 
6369 	if (!vsi->num_rxq) {
6370 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6371 			vsi->vsi_num);
6372 		return -EINVAL;
6373 	}
6374 
6375 	ice_for_each_rxq(vsi, i) {
6376 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6377 
6378 		if (!ring)
6379 			return -EINVAL;
6380 
6381 		if (vsi->netdev)
6382 			ring->netdev = vsi->netdev;
6383 		err = ice_setup_rx_ring(ring);
6384 		if (err)
6385 			break;
6386 	}
6387 
6388 	return err;
6389 }
6390 
6391 /**
6392  * ice_vsi_open_ctrl - open control VSI for use
6393  * @vsi: the VSI to open
6394  *
6395  * Initialization of the Control VSI
6396  *
6397  * Returns 0 on success, negative value on error
6398  */
6399 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6400 {
6401 	char int_name[ICE_INT_NAME_STR_LEN];
6402 	struct ice_pf *pf = vsi->back;
6403 	struct device *dev;
6404 	int err;
6405 
6406 	dev = ice_pf_to_dev(pf);
6407 	/* allocate descriptors */
6408 	err = ice_vsi_setup_tx_rings(vsi);
6409 	if (err)
6410 		goto err_setup_tx;
6411 
6412 	err = ice_vsi_setup_rx_rings(vsi);
6413 	if (err)
6414 		goto err_setup_rx;
6415 
6416 	err = ice_vsi_cfg(vsi);
6417 	if (err)
6418 		goto err_setup_rx;
6419 
6420 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6421 		 dev_driver_string(dev), dev_name(dev));
6422 	err = ice_vsi_req_irq_msix(vsi, int_name);
6423 	if (err)
6424 		goto err_setup_rx;
6425 
6426 	ice_vsi_cfg_msix(vsi);
6427 
6428 	err = ice_vsi_start_all_rx_rings(vsi);
6429 	if (err)
6430 		goto err_up_complete;
6431 
6432 	clear_bit(ICE_VSI_DOWN, vsi->state);
6433 	ice_vsi_ena_irq(vsi);
6434 
6435 	return 0;
6436 
6437 err_up_complete:
6438 	ice_down(vsi);
6439 err_setup_rx:
6440 	ice_vsi_free_rx_rings(vsi);
6441 err_setup_tx:
6442 	ice_vsi_free_tx_rings(vsi);
6443 
6444 	return err;
6445 }
6446 
6447 /**
6448  * ice_vsi_open - Called when a network interface is made active
6449  * @vsi: the VSI to open
6450  *
6451  * Initialization of the VSI
6452  *
6453  * Returns 0 on success, negative value on error
6454  */
6455 int ice_vsi_open(struct ice_vsi *vsi)
6456 {
6457 	char int_name[ICE_INT_NAME_STR_LEN];
6458 	struct ice_pf *pf = vsi->back;
6459 	int err;
6460 
6461 	/* allocate descriptors */
6462 	err = ice_vsi_setup_tx_rings(vsi);
6463 	if (err)
6464 		goto err_setup_tx;
6465 
6466 	err = ice_vsi_setup_rx_rings(vsi);
6467 	if (err)
6468 		goto err_setup_rx;
6469 
6470 	err = ice_vsi_cfg(vsi);
6471 	if (err)
6472 		goto err_setup_rx;
6473 
6474 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6475 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6476 	err = ice_vsi_req_irq_msix(vsi, int_name);
6477 	if (err)
6478 		goto err_setup_rx;
6479 
6480 	if (vsi->type == ICE_VSI_PF) {
6481 		/* Notify the stack of the actual queue counts. */
6482 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6483 		if (err)
6484 			goto err_set_qs;
6485 
6486 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6487 		if (err)
6488 			goto err_set_qs;
6489 	}
6490 
6491 	err = ice_up_complete(vsi);
6492 	if (err)
6493 		goto err_up_complete;
6494 
6495 	return 0;
6496 
6497 err_up_complete:
6498 	ice_down(vsi);
6499 err_set_qs:
6500 	ice_vsi_free_irq(vsi);
6501 err_setup_rx:
6502 	ice_vsi_free_rx_rings(vsi);
6503 err_setup_tx:
6504 	ice_vsi_free_tx_rings(vsi);
6505 
6506 	return err;
6507 }
6508 
6509 /**
6510  * ice_vsi_release_all - Delete all VSIs
6511  * @pf: PF from which all VSIs are being removed
6512  */
6513 static void ice_vsi_release_all(struct ice_pf *pf)
6514 {
6515 	int err, i;
6516 
6517 	if (!pf->vsi)
6518 		return;
6519 
6520 	ice_for_each_vsi(pf, i) {
6521 		if (!pf->vsi[i])
6522 			continue;
6523 
6524 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6525 			continue;
6526 
6527 		err = ice_vsi_release(pf->vsi[i]);
6528 		if (err)
6529 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6530 				i, err, pf->vsi[i]->vsi_num);
6531 	}
6532 }
6533 
6534 /**
6535  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6536  * @pf: pointer to the PF instance
6537  * @type: VSI type to rebuild
6538  *
6539  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6540  */
6541 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6542 {
6543 	struct device *dev = ice_pf_to_dev(pf);
6544 	int i, err;
6545 
6546 	ice_for_each_vsi(pf, i) {
6547 		struct ice_vsi *vsi = pf->vsi[i];
6548 
6549 		if (!vsi || vsi->type != type)
6550 			continue;
6551 
6552 		/* rebuild the VSI */
6553 		err = ice_vsi_rebuild(vsi, true);
6554 		if (err) {
6555 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6556 				err, vsi->idx, ice_vsi_type_str(type));
6557 			return err;
6558 		}
6559 
6560 		/* replay filters for the VSI */
6561 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6562 		if (err) {
6563 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6564 				err, vsi->idx, ice_vsi_type_str(type));
6565 			return err;
6566 		}
6567 
6568 		/* Re-map HW VSI number, using VSI handle that has been
6569 		 * previously validated in ice_replay_vsi() call above
6570 		 */
6571 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6572 
6573 		/* enable the VSI */
6574 		err = ice_ena_vsi(vsi, false);
6575 		if (err) {
6576 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6577 				err, vsi->idx, ice_vsi_type_str(type));
6578 			return err;
6579 		}
6580 
6581 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6582 			 ice_vsi_type_str(type));
6583 	}
6584 
6585 	return 0;
6586 }
6587 
6588 /**
6589  * ice_update_pf_netdev_link - Update PF netdev link status
6590  * @pf: pointer to the PF instance
6591  */
6592 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6593 {
6594 	bool link_up;
6595 	int i;
6596 
6597 	ice_for_each_vsi(pf, i) {
6598 		struct ice_vsi *vsi = pf->vsi[i];
6599 
6600 		if (!vsi || vsi->type != ICE_VSI_PF)
6601 			return;
6602 
6603 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6604 		if (link_up) {
6605 			netif_carrier_on(pf->vsi[i]->netdev);
6606 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6607 		} else {
6608 			netif_carrier_off(pf->vsi[i]->netdev);
6609 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6610 		}
6611 	}
6612 }
6613 
6614 /**
6615  * ice_rebuild - rebuild after reset
6616  * @pf: PF to rebuild
6617  * @reset_type: type of reset
6618  *
6619  * Do not rebuild VF VSI in this flow because that is already handled via
6620  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6621  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6622  * to reset/rebuild all the VF VSI twice.
6623  */
6624 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6625 {
6626 	struct device *dev = ice_pf_to_dev(pf);
6627 	struct ice_hw *hw = &pf->hw;
6628 	int err;
6629 
6630 	if (test_bit(ICE_DOWN, pf->state))
6631 		goto clear_recovery;
6632 
6633 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6634 
6635 	if (reset_type == ICE_RESET_EMPR) {
6636 		/* If an EMP reset has occurred, any previously pending flash
6637 		 * update will have completed. We no longer know whether or
6638 		 * not the NVM update EMP reset is restricted.
6639 		 */
6640 		pf->fw_emp_reset_disabled = false;
6641 	}
6642 
6643 	err = ice_init_all_ctrlq(hw);
6644 	if (err) {
6645 		dev_err(dev, "control queues init failed %d\n", err);
6646 		goto err_init_ctrlq;
6647 	}
6648 
6649 	/* if DDP was previously loaded successfully */
6650 	if (!ice_is_safe_mode(pf)) {
6651 		/* reload the SW DB of filter tables */
6652 		if (reset_type == ICE_RESET_PFR)
6653 			ice_fill_blk_tbls(hw);
6654 		else
6655 			/* Reload DDP Package after CORER/GLOBR reset */
6656 			ice_load_pkg(NULL, pf);
6657 	}
6658 
6659 	err = ice_clear_pf_cfg(hw);
6660 	if (err) {
6661 		dev_err(dev, "clear PF configuration failed %d\n", err);
6662 		goto err_init_ctrlq;
6663 	}
6664 
6665 	if (pf->first_sw->dflt_vsi_ena)
6666 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6667 	/* clear the default VSI configuration if it exists */
6668 	pf->first_sw->dflt_vsi = NULL;
6669 	pf->first_sw->dflt_vsi_ena = false;
6670 
6671 	ice_clear_pxe_mode(hw);
6672 
6673 	err = ice_init_nvm(hw);
6674 	if (err) {
6675 		dev_err(dev, "ice_init_nvm failed %d\n", err);
6676 		goto err_init_ctrlq;
6677 	}
6678 
6679 	err = ice_get_caps(hw);
6680 	if (err) {
6681 		dev_err(dev, "ice_get_caps failed %d\n", err);
6682 		goto err_init_ctrlq;
6683 	}
6684 
6685 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6686 	if (err) {
6687 		dev_err(dev, "set_mac_cfg failed %d\n", err);
6688 		goto err_init_ctrlq;
6689 	}
6690 
6691 	err = ice_sched_init_port(hw->port_info);
6692 	if (err)
6693 		goto err_sched_init_port;
6694 
6695 	/* start misc vector */
6696 	err = ice_req_irq_msix_misc(pf);
6697 	if (err) {
6698 		dev_err(dev, "misc vector setup failed: %d\n", err);
6699 		goto err_sched_init_port;
6700 	}
6701 
6702 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6703 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6704 		if (!rd32(hw, PFQF_FD_SIZE)) {
6705 			u16 unused, guar, b_effort;
6706 
6707 			guar = hw->func_caps.fd_fltr_guar;
6708 			b_effort = hw->func_caps.fd_fltr_best_effort;
6709 
6710 			/* force guaranteed filter pool for PF */
6711 			ice_alloc_fd_guar_item(hw, &unused, guar);
6712 			/* force shared filter pool for PF */
6713 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6714 		}
6715 	}
6716 
6717 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6718 		ice_dcb_rebuild(pf);
6719 
6720 	/* If the PF previously had enabled PTP, PTP init needs to happen before
6721 	 * the VSI rebuild. If not, this causes the PTP link status events to
6722 	 * fail.
6723 	 */
6724 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6725 		ice_ptp_reset(pf);
6726 
6727 	/* rebuild PF VSI */
6728 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6729 	if (err) {
6730 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6731 		goto err_vsi_rebuild;
6732 	}
6733 
6734 	/* configure PTP timestamping after VSI rebuild */
6735 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6736 		ice_ptp_cfg_timestamp(pf, false);
6737 
6738 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
6739 	if (err) {
6740 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
6741 		goto err_vsi_rebuild;
6742 	}
6743 
6744 	if (reset_type == ICE_RESET_PFR) {
6745 		err = ice_rebuild_channels(pf);
6746 		if (err) {
6747 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
6748 				err);
6749 			goto err_vsi_rebuild;
6750 		}
6751 	}
6752 
6753 	/* If Flow Director is active */
6754 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6755 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6756 		if (err) {
6757 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6758 			goto err_vsi_rebuild;
6759 		}
6760 
6761 		/* replay HW Flow Director recipes */
6762 		if (hw->fdir_prof)
6763 			ice_fdir_replay_flows(hw);
6764 
6765 		/* replay Flow Director filters */
6766 		ice_fdir_replay_fltrs(pf);
6767 
6768 		ice_rebuild_arfs(pf);
6769 	}
6770 
6771 	ice_update_pf_netdev_link(pf);
6772 
6773 	/* tell the firmware we are up */
6774 	err = ice_send_version(pf);
6775 	if (err) {
6776 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
6777 			err);
6778 		goto err_vsi_rebuild;
6779 	}
6780 
6781 	ice_replay_post(hw);
6782 
6783 	/* if we get here, reset flow is successful */
6784 	clear_bit(ICE_RESET_FAILED, pf->state);
6785 
6786 	ice_plug_aux_dev(pf);
6787 	return;
6788 
6789 err_vsi_rebuild:
6790 err_sched_init_port:
6791 	ice_sched_cleanup_all(hw);
6792 err_init_ctrlq:
6793 	ice_shutdown_all_ctrlq(hw);
6794 	set_bit(ICE_RESET_FAILED, pf->state);
6795 clear_recovery:
6796 	/* set this bit in PF state to control service task scheduling */
6797 	set_bit(ICE_NEEDS_RESTART, pf->state);
6798 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6799 }
6800 
6801 /**
6802  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6803  * @vsi: Pointer to VSI structure
6804  */
6805 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6806 {
6807 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6808 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6809 	else
6810 		return ICE_RXBUF_3072;
6811 }
6812 
6813 /**
6814  * ice_change_mtu - NDO callback to change the MTU
6815  * @netdev: network interface device structure
6816  * @new_mtu: new value for maximum frame size
6817  *
6818  * Returns 0 on success, negative on failure
6819  */
6820 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6821 {
6822 	struct ice_netdev_priv *np = netdev_priv(netdev);
6823 	struct ice_vsi *vsi = np->vsi;
6824 	struct ice_pf *pf = vsi->back;
6825 	struct iidc_event *event;
6826 	u8 count = 0;
6827 	int err = 0;
6828 
6829 	if (new_mtu == (int)netdev->mtu) {
6830 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6831 		return 0;
6832 	}
6833 
6834 	if (ice_is_xdp_ena_vsi(vsi)) {
6835 		int frame_size = ice_max_xdp_frame_size(vsi);
6836 
6837 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6838 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6839 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6840 			return -EINVAL;
6841 		}
6842 	}
6843 
6844 	/* if a reset is in progress, wait for some time for it to complete */
6845 	do {
6846 		if (ice_is_reset_in_progress(pf->state)) {
6847 			count++;
6848 			usleep_range(1000, 2000);
6849 		} else {
6850 			break;
6851 		}
6852 
6853 	} while (count < 100);
6854 
6855 	if (count == 100) {
6856 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6857 		return -EBUSY;
6858 	}
6859 
6860 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6861 	if (!event)
6862 		return -ENOMEM;
6863 
6864 	set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6865 	ice_send_event_to_aux(pf, event);
6866 	clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6867 
6868 	netdev->mtu = (unsigned int)new_mtu;
6869 
6870 	/* if VSI is up, bring it down and then back up */
6871 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6872 		err = ice_down(vsi);
6873 		if (err) {
6874 			netdev_err(netdev, "change MTU if_down err %d\n", err);
6875 			goto event_after;
6876 		}
6877 
6878 		err = ice_up(vsi);
6879 		if (err) {
6880 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6881 			goto event_after;
6882 		}
6883 	}
6884 
6885 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6886 event_after:
6887 	set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6888 	ice_send_event_to_aux(pf, event);
6889 	kfree(event);
6890 
6891 	return err;
6892 }
6893 
6894 /**
6895  * ice_eth_ioctl - Access the hwtstamp interface
6896  * @netdev: network interface device structure
6897  * @ifr: interface request data
6898  * @cmd: ioctl command
6899  */
6900 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6901 {
6902 	struct ice_netdev_priv *np = netdev_priv(netdev);
6903 	struct ice_pf *pf = np->vsi->back;
6904 
6905 	switch (cmd) {
6906 	case SIOCGHWTSTAMP:
6907 		return ice_ptp_get_ts_config(pf, ifr);
6908 	case SIOCSHWTSTAMP:
6909 		return ice_ptp_set_ts_config(pf, ifr);
6910 	default:
6911 		return -EOPNOTSUPP;
6912 	}
6913 }
6914 
6915 /**
6916  * ice_aq_str - convert AQ err code to a string
6917  * @aq_err: the AQ error code to convert
6918  */
6919 const char *ice_aq_str(enum ice_aq_err aq_err)
6920 {
6921 	switch (aq_err) {
6922 	case ICE_AQ_RC_OK:
6923 		return "OK";
6924 	case ICE_AQ_RC_EPERM:
6925 		return "ICE_AQ_RC_EPERM";
6926 	case ICE_AQ_RC_ENOENT:
6927 		return "ICE_AQ_RC_ENOENT";
6928 	case ICE_AQ_RC_ENOMEM:
6929 		return "ICE_AQ_RC_ENOMEM";
6930 	case ICE_AQ_RC_EBUSY:
6931 		return "ICE_AQ_RC_EBUSY";
6932 	case ICE_AQ_RC_EEXIST:
6933 		return "ICE_AQ_RC_EEXIST";
6934 	case ICE_AQ_RC_EINVAL:
6935 		return "ICE_AQ_RC_EINVAL";
6936 	case ICE_AQ_RC_ENOSPC:
6937 		return "ICE_AQ_RC_ENOSPC";
6938 	case ICE_AQ_RC_ENOSYS:
6939 		return "ICE_AQ_RC_ENOSYS";
6940 	case ICE_AQ_RC_EMODE:
6941 		return "ICE_AQ_RC_EMODE";
6942 	case ICE_AQ_RC_ENOSEC:
6943 		return "ICE_AQ_RC_ENOSEC";
6944 	case ICE_AQ_RC_EBADSIG:
6945 		return "ICE_AQ_RC_EBADSIG";
6946 	case ICE_AQ_RC_ESVN:
6947 		return "ICE_AQ_RC_ESVN";
6948 	case ICE_AQ_RC_EBADMAN:
6949 		return "ICE_AQ_RC_EBADMAN";
6950 	case ICE_AQ_RC_EBADBUF:
6951 		return "ICE_AQ_RC_EBADBUF";
6952 	}
6953 
6954 	return "ICE_AQ_RC_UNKNOWN";
6955 }
6956 
6957 /**
6958  * ice_set_rss_lut - Set RSS LUT
6959  * @vsi: Pointer to VSI structure
6960  * @lut: Lookup table
6961  * @lut_size: Lookup table size
6962  *
6963  * Returns 0 on success, negative on failure
6964  */
6965 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6966 {
6967 	struct ice_aq_get_set_rss_lut_params params = {};
6968 	struct ice_hw *hw = &vsi->back->hw;
6969 	int status;
6970 
6971 	if (!lut)
6972 		return -EINVAL;
6973 
6974 	params.vsi_handle = vsi->idx;
6975 	params.lut_size = lut_size;
6976 	params.lut_type = vsi->rss_lut_type;
6977 	params.lut = lut;
6978 
6979 	status = ice_aq_set_rss_lut(hw, &params);
6980 	if (status)
6981 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
6982 			status, ice_aq_str(hw->adminq.sq_last_status));
6983 
6984 	return status;
6985 }
6986 
6987 /**
6988  * ice_set_rss_key - Set RSS key
6989  * @vsi: Pointer to the VSI structure
6990  * @seed: RSS hash seed
6991  *
6992  * Returns 0 on success, negative on failure
6993  */
6994 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6995 {
6996 	struct ice_hw *hw = &vsi->back->hw;
6997 	int status;
6998 
6999 	if (!seed)
7000 		return -EINVAL;
7001 
7002 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7003 	if (status)
7004 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7005 			status, ice_aq_str(hw->adminq.sq_last_status));
7006 
7007 	return status;
7008 }
7009 
7010 /**
7011  * ice_get_rss_lut - Get RSS LUT
7012  * @vsi: Pointer to VSI structure
7013  * @lut: Buffer to store the lookup table entries
7014  * @lut_size: Size of buffer to store the lookup table entries
7015  *
7016  * Returns 0 on success, negative on failure
7017  */
7018 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7019 {
7020 	struct ice_aq_get_set_rss_lut_params params = {};
7021 	struct ice_hw *hw = &vsi->back->hw;
7022 	int status;
7023 
7024 	if (!lut)
7025 		return -EINVAL;
7026 
7027 	params.vsi_handle = vsi->idx;
7028 	params.lut_size = lut_size;
7029 	params.lut_type = vsi->rss_lut_type;
7030 	params.lut = lut;
7031 
7032 	status = ice_aq_get_rss_lut(hw, &params);
7033 	if (status)
7034 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7035 			status, ice_aq_str(hw->adminq.sq_last_status));
7036 
7037 	return status;
7038 }
7039 
7040 /**
7041  * ice_get_rss_key - Get RSS key
7042  * @vsi: Pointer to VSI structure
7043  * @seed: Buffer to store the key in
7044  *
7045  * Returns 0 on success, negative on failure
7046  */
7047 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7048 {
7049 	struct ice_hw *hw = &vsi->back->hw;
7050 	int status;
7051 
7052 	if (!seed)
7053 		return -EINVAL;
7054 
7055 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7056 	if (status)
7057 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7058 			status, ice_aq_str(hw->adminq.sq_last_status));
7059 
7060 	return status;
7061 }
7062 
7063 /**
7064  * ice_bridge_getlink - Get the hardware bridge mode
7065  * @skb: skb buff
7066  * @pid: process ID
7067  * @seq: RTNL message seq
7068  * @dev: the netdev being configured
7069  * @filter_mask: filter mask passed in
7070  * @nlflags: netlink flags passed in
7071  *
7072  * Return the bridge mode (VEB/VEPA)
7073  */
7074 static int
7075 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7076 		   struct net_device *dev, u32 filter_mask, int nlflags)
7077 {
7078 	struct ice_netdev_priv *np = netdev_priv(dev);
7079 	struct ice_vsi *vsi = np->vsi;
7080 	struct ice_pf *pf = vsi->back;
7081 	u16 bmode;
7082 
7083 	bmode = pf->first_sw->bridge_mode;
7084 
7085 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7086 				       filter_mask, NULL);
7087 }
7088 
7089 /**
7090  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7091  * @vsi: Pointer to VSI structure
7092  * @bmode: Hardware bridge mode (VEB/VEPA)
7093  *
7094  * Returns 0 on success, negative on failure
7095  */
7096 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7097 {
7098 	struct ice_aqc_vsi_props *vsi_props;
7099 	struct ice_hw *hw = &vsi->back->hw;
7100 	struct ice_vsi_ctx *ctxt;
7101 	int ret;
7102 
7103 	vsi_props = &vsi->info;
7104 
7105 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7106 	if (!ctxt)
7107 		return -ENOMEM;
7108 
7109 	ctxt->info = vsi->info;
7110 
7111 	if (bmode == BRIDGE_MODE_VEB)
7112 		/* change from VEPA to VEB mode */
7113 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7114 	else
7115 		/* change from VEB to VEPA mode */
7116 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7117 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7118 
7119 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7120 	if (ret) {
7121 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7122 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7123 		goto out;
7124 	}
7125 	/* Update sw flags for book keeping */
7126 	vsi_props->sw_flags = ctxt->info.sw_flags;
7127 
7128 out:
7129 	kfree(ctxt);
7130 	return ret;
7131 }
7132 
7133 /**
7134  * ice_bridge_setlink - Set the hardware bridge mode
7135  * @dev: the netdev being configured
7136  * @nlh: RTNL message
7137  * @flags: bridge setlink flags
7138  * @extack: netlink extended ack
7139  *
7140  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7141  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7142  * not already set for all VSIs connected to this switch. And also update the
7143  * unicast switch filter rules for the corresponding switch of the netdev.
7144  */
7145 static int
7146 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7147 		   u16 __always_unused flags,
7148 		   struct netlink_ext_ack __always_unused *extack)
7149 {
7150 	struct ice_netdev_priv *np = netdev_priv(dev);
7151 	struct ice_pf *pf = np->vsi->back;
7152 	struct nlattr *attr, *br_spec;
7153 	struct ice_hw *hw = &pf->hw;
7154 	struct ice_sw *pf_sw;
7155 	int rem, v, err = 0;
7156 
7157 	pf_sw = pf->first_sw;
7158 	/* find the attribute in the netlink message */
7159 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7160 
7161 	nla_for_each_nested(attr, br_spec, rem) {
7162 		__u16 mode;
7163 
7164 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7165 			continue;
7166 		mode = nla_get_u16(attr);
7167 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7168 			return -EINVAL;
7169 		/* Continue  if bridge mode is not being flipped */
7170 		if (mode == pf_sw->bridge_mode)
7171 			continue;
7172 		/* Iterates through the PF VSI list and update the loopback
7173 		 * mode of the VSI
7174 		 */
7175 		ice_for_each_vsi(pf, v) {
7176 			if (!pf->vsi[v])
7177 				continue;
7178 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7179 			if (err)
7180 				return err;
7181 		}
7182 
7183 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7184 		/* Update the unicast switch filter rules for the corresponding
7185 		 * switch of the netdev
7186 		 */
7187 		err = ice_update_sw_rule_bridge_mode(hw);
7188 		if (err) {
7189 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7190 				   mode, err,
7191 				   ice_aq_str(hw->adminq.sq_last_status));
7192 			/* revert hw->evb_veb */
7193 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7194 			return err;
7195 		}
7196 
7197 		pf_sw->bridge_mode = mode;
7198 	}
7199 
7200 	return 0;
7201 }
7202 
7203 /**
7204  * ice_tx_timeout - Respond to a Tx Hang
7205  * @netdev: network interface device structure
7206  * @txqueue: Tx queue
7207  */
7208 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7209 {
7210 	struct ice_netdev_priv *np = netdev_priv(netdev);
7211 	struct ice_tx_ring *tx_ring = NULL;
7212 	struct ice_vsi *vsi = np->vsi;
7213 	struct ice_pf *pf = vsi->back;
7214 	u32 i;
7215 
7216 	pf->tx_timeout_count++;
7217 
7218 	/* Check if PFC is enabled for the TC to which the queue belongs
7219 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7220 	 * need to reset and rebuild
7221 	 */
7222 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7223 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7224 			 txqueue);
7225 		return;
7226 	}
7227 
7228 	/* now that we have an index, find the tx_ring struct */
7229 	ice_for_each_txq(vsi, i)
7230 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7231 			if (txqueue == vsi->tx_rings[i]->q_index) {
7232 				tx_ring = vsi->tx_rings[i];
7233 				break;
7234 			}
7235 
7236 	/* Reset recovery level if enough time has elapsed after last timeout.
7237 	 * Also ensure no new reset action happens before next timeout period.
7238 	 */
7239 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7240 		pf->tx_timeout_recovery_level = 1;
7241 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7242 				       netdev->watchdog_timeo)))
7243 		return;
7244 
7245 	if (tx_ring) {
7246 		struct ice_hw *hw = &pf->hw;
7247 		u32 head, val = 0;
7248 
7249 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7250 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7251 		/* Read interrupt register */
7252 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7253 
7254 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7255 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7256 			    head, tx_ring->next_to_use, val);
7257 	}
7258 
7259 	pf->tx_timeout_last_recovery = jiffies;
7260 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7261 		    pf->tx_timeout_recovery_level, txqueue);
7262 
7263 	switch (pf->tx_timeout_recovery_level) {
7264 	case 1:
7265 		set_bit(ICE_PFR_REQ, pf->state);
7266 		break;
7267 	case 2:
7268 		set_bit(ICE_CORER_REQ, pf->state);
7269 		break;
7270 	case 3:
7271 		set_bit(ICE_GLOBR_REQ, pf->state);
7272 		break;
7273 	default:
7274 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7275 		set_bit(ICE_DOWN, pf->state);
7276 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7277 		set_bit(ICE_SERVICE_DIS, pf->state);
7278 		break;
7279 	}
7280 
7281 	ice_service_task_schedule(pf);
7282 	pf->tx_timeout_recovery_level++;
7283 }
7284 
7285 /**
7286  * ice_setup_tc_cls_flower - flower classifier offloads
7287  * @np: net device to configure
7288  * @filter_dev: device on which filter is added
7289  * @cls_flower: offload data
7290  */
7291 static int
7292 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7293 			struct net_device *filter_dev,
7294 			struct flow_cls_offload *cls_flower)
7295 {
7296 	struct ice_vsi *vsi = np->vsi;
7297 
7298 	if (cls_flower->common.chain_index)
7299 		return -EOPNOTSUPP;
7300 
7301 	switch (cls_flower->command) {
7302 	case FLOW_CLS_REPLACE:
7303 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7304 	case FLOW_CLS_DESTROY:
7305 		return ice_del_cls_flower(vsi, cls_flower);
7306 	default:
7307 		return -EINVAL;
7308 	}
7309 }
7310 
7311 /**
7312  * ice_setup_tc_block_cb - callback handler registered for TC block
7313  * @type: TC SETUP type
7314  * @type_data: TC flower offload data that contains user input
7315  * @cb_priv: netdev private data
7316  */
7317 static int
7318 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7319 {
7320 	struct ice_netdev_priv *np = cb_priv;
7321 
7322 	switch (type) {
7323 	case TC_SETUP_CLSFLOWER:
7324 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7325 					       type_data);
7326 	default:
7327 		return -EOPNOTSUPP;
7328 	}
7329 }
7330 
7331 /**
7332  * ice_validate_mqprio_qopt - Validate TCF input parameters
7333  * @vsi: Pointer to VSI
7334  * @mqprio_qopt: input parameters for mqprio queue configuration
7335  *
7336  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7337  * needed), and make sure user doesn't specify qcount and BW rate limit
7338  * for TCs, which are more than "num_tc"
7339  */
7340 static int
7341 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7342 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7343 {
7344 	u64 sum_max_rate = 0, sum_min_rate = 0;
7345 	int non_power_of_2_qcount = 0;
7346 	struct ice_pf *pf = vsi->back;
7347 	int max_rss_q_cnt = 0;
7348 	struct device *dev;
7349 	int i, speed;
7350 	u8 num_tc;
7351 
7352 	if (vsi->type != ICE_VSI_PF)
7353 		return -EINVAL;
7354 
7355 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7356 	    mqprio_qopt->qopt.num_tc < 1 ||
7357 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7358 		return -EINVAL;
7359 
7360 	dev = ice_pf_to_dev(pf);
7361 	vsi->ch_rss_size = 0;
7362 	num_tc = mqprio_qopt->qopt.num_tc;
7363 
7364 	for (i = 0; num_tc; i++) {
7365 		int qcount = mqprio_qopt->qopt.count[i];
7366 		u64 max_rate, min_rate, rem;
7367 
7368 		if (!qcount)
7369 			return -EINVAL;
7370 
7371 		if (is_power_of_2(qcount)) {
7372 			if (non_power_of_2_qcount &&
7373 			    qcount > non_power_of_2_qcount) {
7374 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7375 					qcount, non_power_of_2_qcount);
7376 				return -EINVAL;
7377 			}
7378 			if (qcount > max_rss_q_cnt)
7379 				max_rss_q_cnt = qcount;
7380 		} else {
7381 			if (non_power_of_2_qcount &&
7382 			    qcount != non_power_of_2_qcount) {
7383 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7384 					qcount, non_power_of_2_qcount);
7385 				return -EINVAL;
7386 			}
7387 			if (qcount < max_rss_q_cnt) {
7388 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7389 					qcount, max_rss_q_cnt);
7390 				return -EINVAL;
7391 			}
7392 			max_rss_q_cnt = qcount;
7393 			non_power_of_2_qcount = qcount;
7394 		}
7395 
7396 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7397 		 * converts the bandwidth rate limit into Bytes/s when
7398 		 * passing it down to the driver. So convert input bandwidth
7399 		 * from Bytes/s to Kbps
7400 		 */
7401 		max_rate = mqprio_qopt->max_rate[i];
7402 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7403 		sum_max_rate += max_rate;
7404 
7405 		/* min_rate is minimum guaranteed rate and it can't be zero */
7406 		min_rate = mqprio_qopt->min_rate[i];
7407 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7408 		sum_min_rate += min_rate;
7409 
7410 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7411 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7412 				min_rate, ICE_MIN_BW_LIMIT);
7413 			return -EINVAL;
7414 		}
7415 
7416 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7417 		if (rem) {
7418 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7419 				i, ICE_MIN_BW_LIMIT);
7420 			return -EINVAL;
7421 		}
7422 
7423 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7424 		if (rem) {
7425 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7426 				i, ICE_MIN_BW_LIMIT);
7427 			return -EINVAL;
7428 		}
7429 
7430 		/* min_rate can't be more than max_rate, except when max_rate
7431 		 * is zero (implies max_rate sought is max line rate). In such
7432 		 * a case min_rate can be more than max.
7433 		 */
7434 		if (max_rate && min_rate > max_rate) {
7435 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7436 				min_rate, max_rate);
7437 			return -EINVAL;
7438 		}
7439 
7440 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7441 			break;
7442 		if (mqprio_qopt->qopt.offset[i + 1] !=
7443 		    (mqprio_qopt->qopt.offset[i] + qcount))
7444 			return -EINVAL;
7445 	}
7446 	if (vsi->num_rxq <
7447 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7448 		return -EINVAL;
7449 	if (vsi->num_txq <
7450 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7451 		return -EINVAL;
7452 
7453 	speed = ice_get_link_speed_kbps(vsi);
7454 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7455 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7456 			sum_max_rate, speed);
7457 		return -EINVAL;
7458 	}
7459 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7460 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7461 			sum_min_rate, speed);
7462 		return -EINVAL;
7463 	}
7464 
7465 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7466 	vsi->ch_rss_size = max_rss_q_cnt;
7467 
7468 	return 0;
7469 }
7470 
7471 /**
7472  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7473  * @pf: ptr to PF device
7474  * @vsi: ptr to VSI
7475  */
7476 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7477 {
7478 	struct device *dev = ice_pf_to_dev(pf);
7479 	bool added = false;
7480 	struct ice_hw *hw;
7481 	int flow;
7482 
7483 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7484 		return -EINVAL;
7485 
7486 	hw = &pf->hw;
7487 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7488 		struct ice_fd_hw_prof *prof;
7489 		int tun, status;
7490 		u64 entry_h;
7491 
7492 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7493 		      hw->fdir_prof[flow]->cnt))
7494 			continue;
7495 
7496 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7497 			enum ice_flow_priority prio;
7498 			u64 prof_id;
7499 
7500 			/* add this VSI to FDir profile for this flow */
7501 			prio = ICE_FLOW_PRIO_NORMAL;
7502 			prof = hw->fdir_prof[flow];
7503 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7504 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7505 						    prof->vsi_h[0], vsi->idx,
7506 						    prio, prof->fdir_seg[tun],
7507 						    &entry_h);
7508 			if (status) {
7509 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7510 					vsi->idx, flow);
7511 				continue;
7512 			}
7513 
7514 			prof->entry_h[prof->cnt][tun] = entry_h;
7515 		}
7516 
7517 		/* store VSI for filter replay and delete */
7518 		prof->vsi_h[prof->cnt] = vsi->idx;
7519 		prof->cnt++;
7520 
7521 		added = true;
7522 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7523 			flow);
7524 	}
7525 
7526 	if (!added)
7527 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7528 
7529 	return 0;
7530 }
7531 
7532 /**
7533  * ice_add_channel - add a channel by adding VSI
7534  * @pf: ptr to PF device
7535  * @sw_id: underlying HW switching element ID
7536  * @ch: ptr to channel structure
7537  *
7538  * Add a channel (VSI) using add_vsi and queue_map
7539  */
7540 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7541 {
7542 	struct device *dev = ice_pf_to_dev(pf);
7543 	struct ice_vsi *vsi;
7544 
7545 	if (ch->type != ICE_VSI_CHNL) {
7546 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7547 		return -EINVAL;
7548 	}
7549 
7550 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7551 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7552 		dev_err(dev, "create chnl VSI failure\n");
7553 		return -EINVAL;
7554 	}
7555 
7556 	ice_add_vsi_to_fdir(pf, vsi);
7557 
7558 	ch->sw_id = sw_id;
7559 	ch->vsi_num = vsi->vsi_num;
7560 	ch->info.mapping_flags = vsi->info.mapping_flags;
7561 	ch->ch_vsi = vsi;
7562 	/* set the back pointer of channel for newly created VSI */
7563 	vsi->ch = ch;
7564 
7565 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7566 	       sizeof(vsi->info.q_mapping));
7567 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7568 	       sizeof(vsi->info.tc_mapping));
7569 
7570 	return 0;
7571 }
7572 
7573 /**
7574  * ice_chnl_cfg_res
7575  * @vsi: the VSI being setup
7576  * @ch: ptr to channel structure
7577  *
7578  * Configure channel specific resources such as rings, vector.
7579  */
7580 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7581 {
7582 	int i;
7583 
7584 	for (i = 0; i < ch->num_txq; i++) {
7585 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7586 		struct ice_ring_container *rc;
7587 		struct ice_tx_ring *tx_ring;
7588 		struct ice_rx_ring *rx_ring;
7589 
7590 		tx_ring = vsi->tx_rings[ch->base_q + i];
7591 		rx_ring = vsi->rx_rings[ch->base_q + i];
7592 		if (!tx_ring || !rx_ring)
7593 			continue;
7594 
7595 		/* setup ring being channel enabled */
7596 		tx_ring->ch = ch;
7597 		rx_ring->ch = ch;
7598 
7599 		/* following code block sets up vector specific attributes */
7600 		tx_q_vector = tx_ring->q_vector;
7601 		rx_q_vector = rx_ring->q_vector;
7602 		if (!tx_q_vector && !rx_q_vector)
7603 			continue;
7604 
7605 		if (tx_q_vector) {
7606 			tx_q_vector->ch = ch;
7607 			/* setup Tx and Rx ITR setting if DIM is off */
7608 			rc = &tx_q_vector->tx;
7609 			if (!ITR_IS_DYNAMIC(rc))
7610 				ice_write_itr(rc, rc->itr_setting);
7611 		}
7612 		if (rx_q_vector) {
7613 			rx_q_vector->ch = ch;
7614 			/* setup Tx and Rx ITR setting if DIM is off */
7615 			rc = &rx_q_vector->rx;
7616 			if (!ITR_IS_DYNAMIC(rc))
7617 				ice_write_itr(rc, rc->itr_setting);
7618 		}
7619 	}
7620 
7621 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7622 	 * GLINT_ITR register would have written to perform in-context
7623 	 * update, hence perform flush
7624 	 */
7625 	if (ch->num_txq || ch->num_rxq)
7626 		ice_flush(&vsi->back->hw);
7627 }
7628 
7629 /**
7630  * ice_cfg_chnl_all_res - configure channel resources
7631  * @vsi: pte to main_vsi
7632  * @ch: ptr to channel structure
7633  *
7634  * This function configures channel specific resources such as flow-director
7635  * counter index, and other resources such as queues, vectors, ITR settings
7636  */
7637 static void
7638 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7639 {
7640 	/* configure channel (aka ADQ) resources such as queues, vectors,
7641 	 * ITR settings for channel specific vectors and anything else
7642 	 */
7643 	ice_chnl_cfg_res(vsi, ch);
7644 }
7645 
7646 /**
7647  * ice_setup_hw_channel - setup new channel
7648  * @pf: ptr to PF device
7649  * @vsi: the VSI being setup
7650  * @ch: ptr to channel structure
7651  * @sw_id: underlying HW switching element ID
7652  * @type: type of channel to be created (VMDq2/VF)
7653  *
7654  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7655  * and configures Tx rings accordingly
7656  */
7657 static int
7658 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7659 		     struct ice_channel *ch, u16 sw_id, u8 type)
7660 {
7661 	struct device *dev = ice_pf_to_dev(pf);
7662 	int ret;
7663 
7664 	ch->base_q = vsi->next_base_q;
7665 	ch->type = type;
7666 
7667 	ret = ice_add_channel(pf, sw_id, ch);
7668 	if (ret) {
7669 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
7670 		return ret;
7671 	}
7672 
7673 	/* configure/setup ADQ specific resources */
7674 	ice_cfg_chnl_all_res(vsi, ch);
7675 
7676 	/* make sure to update the next_base_q so that subsequent channel's
7677 	 * (aka ADQ) VSI queue map is correct
7678 	 */
7679 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
7680 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
7681 		ch->num_rxq);
7682 
7683 	return 0;
7684 }
7685 
7686 /**
7687  * ice_setup_channel - setup new channel using uplink element
7688  * @pf: ptr to PF device
7689  * @vsi: the VSI being setup
7690  * @ch: ptr to channel structure
7691  *
7692  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7693  * and uplink switching element
7694  */
7695 static bool
7696 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7697 		  struct ice_channel *ch)
7698 {
7699 	struct device *dev = ice_pf_to_dev(pf);
7700 	u16 sw_id;
7701 	int ret;
7702 
7703 	if (vsi->type != ICE_VSI_PF) {
7704 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
7705 		return false;
7706 	}
7707 
7708 	sw_id = pf->first_sw->sw_id;
7709 
7710 	/* create channel (VSI) */
7711 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
7712 	if (ret) {
7713 		dev_err(dev, "failed to setup hw_channel\n");
7714 		return false;
7715 	}
7716 	dev_dbg(dev, "successfully created channel()\n");
7717 
7718 	return ch->ch_vsi ? true : false;
7719 }
7720 
7721 /**
7722  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
7723  * @vsi: VSI to be configured
7724  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
7725  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
7726  */
7727 static int
7728 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
7729 {
7730 	int err;
7731 
7732 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
7733 	if (err)
7734 		return err;
7735 
7736 	return ice_set_max_bw_limit(vsi, max_tx_rate);
7737 }
7738 
7739 /**
7740  * ice_create_q_channel - function to create channel
7741  * @vsi: VSI to be configured
7742  * @ch: ptr to channel (it contains channel specific params)
7743  *
7744  * This function creates channel (VSI) using num_queues specified by user,
7745  * reconfigs RSS if needed.
7746  */
7747 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
7748 {
7749 	struct ice_pf *pf = vsi->back;
7750 	struct device *dev;
7751 
7752 	if (!ch)
7753 		return -EINVAL;
7754 
7755 	dev = ice_pf_to_dev(pf);
7756 	if (!ch->num_txq || !ch->num_rxq) {
7757 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
7758 		return -EINVAL;
7759 	}
7760 
7761 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
7762 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
7763 			vsi->cnt_q_avail, ch->num_txq);
7764 		return -EINVAL;
7765 	}
7766 
7767 	if (!ice_setup_channel(pf, vsi, ch)) {
7768 		dev_info(dev, "Failed to setup channel\n");
7769 		return -EINVAL;
7770 	}
7771 	/* configure BW rate limit */
7772 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
7773 		int ret;
7774 
7775 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
7776 				       ch->min_tx_rate);
7777 		if (ret)
7778 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
7779 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7780 		else
7781 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
7782 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7783 	}
7784 
7785 	vsi->cnt_q_avail -= ch->num_txq;
7786 
7787 	return 0;
7788 }
7789 
7790 /**
7791  * ice_rem_all_chnl_fltrs - removes all channel filters
7792  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
7793  *
7794  * Remove all advanced switch filters only if they are channel specific
7795  * tc-flower based filter
7796  */
7797 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
7798 {
7799 	struct ice_tc_flower_fltr *fltr;
7800 	struct hlist_node *node;
7801 
7802 	/* to remove all channel filters, iterate an ordered list of filters */
7803 	hlist_for_each_entry_safe(fltr, node,
7804 				  &pf->tc_flower_fltr_list,
7805 				  tc_flower_node) {
7806 		struct ice_rule_query_data rule;
7807 		int status;
7808 
7809 		/* for now process only channel specific filters */
7810 		if (!ice_is_chnl_fltr(fltr))
7811 			continue;
7812 
7813 		rule.rid = fltr->rid;
7814 		rule.rule_id = fltr->rule_id;
7815 		rule.vsi_handle = fltr->dest_id;
7816 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
7817 		if (status) {
7818 			if (status == -ENOENT)
7819 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
7820 					rule.rule_id);
7821 			else
7822 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
7823 					status);
7824 		} else if (fltr->dest_vsi) {
7825 			/* update advanced switch filter count */
7826 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
7827 				u32 flags = fltr->flags;
7828 
7829 				fltr->dest_vsi->num_chnl_fltr--;
7830 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
7831 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
7832 					pf->num_dmac_chnl_fltrs--;
7833 			}
7834 		}
7835 
7836 		hlist_del(&fltr->tc_flower_node);
7837 		kfree(fltr);
7838 	}
7839 }
7840 
7841 /**
7842  * ice_remove_q_channels - Remove queue channels for the TCs
7843  * @vsi: VSI to be configured
7844  * @rem_fltr: delete advanced switch filter or not
7845  *
7846  * Remove queue channels for the TCs
7847  */
7848 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
7849 {
7850 	struct ice_channel *ch, *ch_tmp;
7851 	struct ice_pf *pf = vsi->back;
7852 	int i;
7853 
7854 	/* remove all tc-flower based filter if they are channel filters only */
7855 	if (rem_fltr)
7856 		ice_rem_all_chnl_fltrs(pf);
7857 
7858 	/* remove ntuple filters since queue configuration is being changed */
7859 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
7860 		struct ice_hw *hw = &pf->hw;
7861 
7862 		mutex_lock(&hw->fdir_fltr_lock);
7863 		ice_fdir_del_all_fltrs(vsi);
7864 		mutex_unlock(&hw->fdir_fltr_lock);
7865 	}
7866 
7867 	/* perform cleanup for channels if they exist */
7868 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
7869 		struct ice_vsi *ch_vsi;
7870 
7871 		list_del(&ch->list);
7872 		ch_vsi = ch->ch_vsi;
7873 		if (!ch_vsi) {
7874 			kfree(ch);
7875 			continue;
7876 		}
7877 
7878 		/* Reset queue contexts */
7879 		for (i = 0; i < ch->num_rxq; i++) {
7880 			struct ice_tx_ring *tx_ring;
7881 			struct ice_rx_ring *rx_ring;
7882 
7883 			tx_ring = vsi->tx_rings[ch->base_q + i];
7884 			rx_ring = vsi->rx_rings[ch->base_q + i];
7885 			if (tx_ring) {
7886 				tx_ring->ch = NULL;
7887 				if (tx_ring->q_vector)
7888 					tx_ring->q_vector->ch = NULL;
7889 			}
7890 			if (rx_ring) {
7891 				rx_ring->ch = NULL;
7892 				if (rx_ring->q_vector)
7893 					rx_ring->q_vector->ch = NULL;
7894 			}
7895 		}
7896 
7897 		/* Release FD resources for the channel VSI */
7898 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
7899 
7900 		/* clear the VSI from scheduler tree */
7901 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
7902 
7903 		/* Delete VSI from FW */
7904 		ice_vsi_delete(ch->ch_vsi);
7905 
7906 		/* Delete VSI from PF and HW VSI arrays */
7907 		ice_vsi_clear(ch->ch_vsi);
7908 
7909 		/* free the channel */
7910 		kfree(ch);
7911 	}
7912 
7913 	/* clear the channel VSI map which is stored in main VSI */
7914 	ice_for_each_chnl_tc(i)
7915 		vsi->tc_map_vsi[i] = NULL;
7916 
7917 	/* reset main VSI's all TC information */
7918 	vsi->all_enatc = 0;
7919 	vsi->all_numtc = 0;
7920 }
7921 
7922 /**
7923  * ice_rebuild_channels - rebuild channel
7924  * @pf: ptr to PF
7925  *
7926  * Recreate channel VSIs and replay filters
7927  */
7928 static int ice_rebuild_channels(struct ice_pf *pf)
7929 {
7930 	struct device *dev = ice_pf_to_dev(pf);
7931 	struct ice_vsi *main_vsi;
7932 	bool rem_adv_fltr = true;
7933 	struct ice_channel *ch;
7934 	struct ice_vsi *vsi;
7935 	int tc_idx = 1;
7936 	int i, err;
7937 
7938 	main_vsi = ice_get_main_vsi(pf);
7939 	if (!main_vsi)
7940 		return 0;
7941 
7942 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
7943 	    main_vsi->old_numtc == 1)
7944 		return 0; /* nothing to be done */
7945 
7946 	/* reconfigure main VSI based on old value of TC and cached values
7947 	 * for MQPRIO opts
7948 	 */
7949 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
7950 	if (err) {
7951 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
7952 			main_vsi->old_ena_tc, main_vsi->vsi_num);
7953 		return err;
7954 	}
7955 
7956 	/* rebuild ADQ VSIs */
7957 	ice_for_each_vsi(pf, i) {
7958 		enum ice_vsi_type type;
7959 
7960 		vsi = pf->vsi[i];
7961 		if (!vsi || vsi->type != ICE_VSI_CHNL)
7962 			continue;
7963 
7964 		type = vsi->type;
7965 
7966 		/* rebuild ADQ VSI */
7967 		err = ice_vsi_rebuild(vsi, true);
7968 		if (err) {
7969 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
7970 				ice_vsi_type_str(type), vsi->idx, err);
7971 			goto cleanup;
7972 		}
7973 
7974 		/* Re-map HW VSI number, using VSI handle that has been
7975 		 * previously validated in ice_replay_vsi() call above
7976 		 */
7977 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7978 
7979 		/* replay filters for the VSI */
7980 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7981 		if (err) {
7982 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
7983 				ice_vsi_type_str(type), err, vsi->idx);
7984 			rem_adv_fltr = false;
7985 			goto cleanup;
7986 		}
7987 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
7988 			 ice_vsi_type_str(type), vsi->idx);
7989 
7990 		/* store ADQ VSI at correct TC index in main VSI's
7991 		 * map of TC to VSI
7992 		 */
7993 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
7994 	}
7995 
7996 	/* ADQ VSI(s) has been rebuilt successfully, so setup
7997 	 * channel for main VSI's Tx and Rx rings
7998 	 */
7999 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8000 		struct ice_vsi *ch_vsi;
8001 
8002 		ch_vsi = ch->ch_vsi;
8003 		if (!ch_vsi)
8004 			continue;
8005 
8006 		/* reconfig channel resources */
8007 		ice_cfg_chnl_all_res(main_vsi, ch);
8008 
8009 		/* replay BW rate limit if it is non-zero */
8010 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8011 			continue;
8012 
8013 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8014 				       ch->min_tx_rate);
8015 		if (err)
8016 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8017 				err, ch->max_tx_rate, ch->min_tx_rate,
8018 				ch_vsi->vsi_num);
8019 		else
8020 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8021 				ch->max_tx_rate, ch->min_tx_rate,
8022 				ch_vsi->vsi_num);
8023 	}
8024 
8025 	/* reconfig RSS for main VSI */
8026 	if (main_vsi->ch_rss_size)
8027 		ice_vsi_cfg_rss_lut_key(main_vsi);
8028 
8029 	return 0;
8030 
8031 cleanup:
8032 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8033 	return err;
8034 }
8035 
8036 /**
8037  * ice_create_q_channels - Add queue channel for the given TCs
8038  * @vsi: VSI to be configured
8039  *
8040  * Configures queue channel mapping to the given TCs
8041  */
8042 static int ice_create_q_channels(struct ice_vsi *vsi)
8043 {
8044 	struct ice_pf *pf = vsi->back;
8045 	struct ice_channel *ch;
8046 	int ret = 0, i;
8047 
8048 	ice_for_each_chnl_tc(i) {
8049 		if (!(vsi->all_enatc & BIT(i)))
8050 			continue;
8051 
8052 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8053 		if (!ch) {
8054 			ret = -ENOMEM;
8055 			goto err_free;
8056 		}
8057 		INIT_LIST_HEAD(&ch->list);
8058 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8059 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8060 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8061 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8062 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8063 
8064 		/* convert to Kbits/s */
8065 		if (ch->max_tx_rate)
8066 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8067 						  ICE_BW_KBPS_DIVISOR);
8068 		if (ch->min_tx_rate)
8069 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8070 						  ICE_BW_KBPS_DIVISOR);
8071 
8072 		ret = ice_create_q_channel(vsi, ch);
8073 		if (ret) {
8074 			dev_err(ice_pf_to_dev(pf),
8075 				"failed creating channel TC:%d\n", i);
8076 			kfree(ch);
8077 			goto err_free;
8078 		}
8079 		list_add_tail(&ch->list, &vsi->ch_list);
8080 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8081 		dev_dbg(ice_pf_to_dev(pf),
8082 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8083 	}
8084 	return 0;
8085 
8086 err_free:
8087 	ice_remove_q_channels(vsi, false);
8088 
8089 	return ret;
8090 }
8091 
8092 /**
8093  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8094  * @netdev: net device to configure
8095  * @type_data: TC offload data
8096  */
8097 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8098 {
8099 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8100 	struct ice_netdev_priv *np = netdev_priv(netdev);
8101 	struct ice_vsi *vsi = np->vsi;
8102 	struct ice_pf *pf = vsi->back;
8103 	u16 mode, ena_tc_qdisc = 0;
8104 	int cur_txq, cur_rxq;
8105 	u8 hw = 0, num_tcf;
8106 	struct device *dev;
8107 	int ret, i;
8108 
8109 	dev = ice_pf_to_dev(pf);
8110 	num_tcf = mqprio_qopt->qopt.num_tc;
8111 	hw = mqprio_qopt->qopt.hw;
8112 	mode = mqprio_qopt->mode;
8113 	if (!hw) {
8114 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8115 		vsi->ch_rss_size = 0;
8116 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8117 		goto config_tcf;
8118 	}
8119 
8120 	/* Generate queue region map for number of TCF requested */
8121 	for (i = 0; i < num_tcf; i++)
8122 		ena_tc_qdisc |= BIT(i);
8123 
8124 	switch (mode) {
8125 	case TC_MQPRIO_MODE_CHANNEL:
8126 
8127 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8128 		if (ret) {
8129 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8130 				   ret);
8131 			return ret;
8132 		}
8133 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8134 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8135 		/* don't assume state of hw_tc_offload during driver load
8136 		 * and set the flag for TC flower filter if hw_tc_offload
8137 		 * already ON
8138 		 */
8139 		if (vsi->netdev->features & NETIF_F_HW_TC)
8140 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8141 		break;
8142 	default:
8143 		return -EINVAL;
8144 	}
8145 
8146 config_tcf:
8147 
8148 	/* Requesting same TCF configuration as already enabled */
8149 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8150 	    mode != TC_MQPRIO_MODE_CHANNEL)
8151 		return 0;
8152 
8153 	/* Pause VSI queues */
8154 	ice_dis_vsi(vsi, true);
8155 
8156 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8157 		ice_remove_q_channels(vsi, true);
8158 
8159 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8160 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8161 				     num_online_cpus());
8162 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8163 				     num_online_cpus());
8164 	} else {
8165 		/* logic to rebuild VSI, same like ethtool -L */
8166 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8167 
8168 		for (i = 0; i < num_tcf; i++) {
8169 			if (!(ena_tc_qdisc & BIT(i)))
8170 				continue;
8171 
8172 			offset = vsi->mqprio_qopt.qopt.offset[i];
8173 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8174 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8175 		}
8176 		vsi->req_txq = offset + qcount_tx;
8177 		vsi->req_rxq = offset + qcount_rx;
8178 
8179 		/* store away original rss_size info, so that it gets reused
8180 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8181 		 * determine, what should be the rss_sizefor main VSI
8182 		 */
8183 		vsi->orig_rss_size = vsi->rss_size;
8184 	}
8185 
8186 	/* save current values of Tx and Rx queues before calling VSI rebuild
8187 	 * for fallback option
8188 	 */
8189 	cur_txq = vsi->num_txq;
8190 	cur_rxq = vsi->num_rxq;
8191 
8192 	/* proceed with rebuild main VSI using correct number of queues */
8193 	ret = ice_vsi_rebuild(vsi, false);
8194 	if (ret) {
8195 		/* fallback to current number of queues */
8196 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8197 		vsi->req_txq = cur_txq;
8198 		vsi->req_rxq = cur_rxq;
8199 		clear_bit(ICE_RESET_FAILED, pf->state);
8200 		if (ice_vsi_rebuild(vsi, false)) {
8201 			dev_err(dev, "Rebuild of main VSI failed again\n");
8202 			return ret;
8203 		}
8204 	}
8205 
8206 	vsi->all_numtc = num_tcf;
8207 	vsi->all_enatc = ena_tc_qdisc;
8208 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8209 	if (ret) {
8210 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8211 			   vsi->vsi_num);
8212 		goto exit;
8213 	}
8214 
8215 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8216 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8217 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8218 
8219 		/* set TC0 rate limit if specified */
8220 		if (max_tx_rate || min_tx_rate) {
8221 			/* convert to Kbits/s */
8222 			if (max_tx_rate)
8223 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8224 			if (min_tx_rate)
8225 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8226 
8227 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8228 			if (!ret) {
8229 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8230 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8231 			} else {
8232 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8233 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8234 				goto exit;
8235 			}
8236 		}
8237 		ret = ice_create_q_channels(vsi);
8238 		if (ret) {
8239 			netdev_err(netdev, "failed configuring queue channels\n");
8240 			goto exit;
8241 		} else {
8242 			netdev_dbg(netdev, "successfully configured channels\n");
8243 		}
8244 	}
8245 
8246 	if (vsi->ch_rss_size)
8247 		ice_vsi_cfg_rss_lut_key(vsi);
8248 
8249 exit:
8250 	/* if error, reset the all_numtc and all_enatc */
8251 	if (ret) {
8252 		vsi->all_numtc = 0;
8253 		vsi->all_enatc = 0;
8254 	}
8255 	/* resume VSI */
8256 	ice_ena_vsi(vsi, true);
8257 
8258 	return ret;
8259 }
8260 
8261 static LIST_HEAD(ice_block_cb_list);
8262 
8263 static int
8264 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8265 	     void *type_data)
8266 {
8267 	struct ice_netdev_priv *np = netdev_priv(netdev);
8268 	struct ice_pf *pf = np->vsi->back;
8269 	int err;
8270 
8271 	switch (type) {
8272 	case TC_SETUP_BLOCK:
8273 		return flow_block_cb_setup_simple(type_data,
8274 						  &ice_block_cb_list,
8275 						  ice_setup_tc_block_cb,
8276 						  np, np, true);
8277 	case TC_SETUP_QDISC_MQPRIO:
8278 		/* setup traffic classifier for receive side */
8279 		mutex_lock(&pf->tc_mutex);
8280 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8281 		mutex_unlock(&pf->tc_mutex);
8282 		return err;
8283 	default:
8284 		return -EOPNOTSUPP;
8285 	}
8286 	return -EOPNOTSUPP;
8287 }
8288 
8289 static struct ice_indr_block_priv *
8290 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8291 			   struct net_device *netdev)
8292 {
8293 	struct ice_indr_block_priv *cb_priv;
8294 
8295 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8296 		if (!cb_priv->netdev)
8297 			return NULL;
8298 		if (cb_priv->netdev == netdev)
8299 			return cb_priv;
8300 	}
8301 	return NULL;
8302 }
8303 
8304 static int
8305 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8306 			void *indr_priv)
8307 {
8308 	struct ice_indr_block_priv *priv = indr_priv;
8309 	struct ice_netdev_priv *np = priv->np;
8310 
8311 	switch (type) {
8312 	case TC_SETUP_CLSFLOWER:
8313 		return ice_setup_tc_cls_flower(np, priv->netdev,
8314 					       (struct flow_cls_offload *)
8315 					       type_data);
8316 	default:
8317 		return -EOPNOTSUPP;
8318 	}
8319 }
8320 
8321 static int
8322 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8323 			struct ice_netdev_priv *np,
8324 			struct flow_block_offload *f, void *data,
8325 			void (*cleanup)(struct flow_block_cb *block_cb))
8326 {
8327 	struct ice_indr_block_priv *indr_priv;
8328 	struct flow_block_cb *block_cb;
8329 
8330 	if (!ice_is_tunnel_supported(netdev) &&
8331 	    !(is_vlan_dev(netdev) &&
8332 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8333 		return -EOPNOTSUPP;
8334 
8335 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8336 		return -EOPNOTSUPP;
8337 
8338 	switch (f->command) {
8339 	case FLOW_BLOCK_BIND:
8340 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8341 		if (indr_priv)
8342 			return -EEXIST;
8343 
8344 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8345 		if (!indr_priv)
8346 			return -ENOMEM;
8347 
8348 		indr_priv->netdev = netdev;
8349 		indr_priv->np = np;
8350 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8351 
8352 		block_cb =
8353 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8354 						 indr_priv, indr_priv,
8355 						 ice_rep_indr_tc_block_unbind,
8356 						 f, netdev, sch, data, np,
8357 						 cleanup);
8358 
8359 		if (IS_ERR(block_cb)) {
8360 			list_del(&indr_priv->list);
8361 			kfree(indr_priv);
8362 			return PTR_ERR(block_cb);
8363 		}
8364 		flow_block_cb_add(block_cb, f);
8365 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8366 		break;
8367 	case FLOW_BLOCK_UNBIND:
8368 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8369 		if (!indr_priv)
8370 			return -ENOENT;
8371 
8372 		block_cb = flow_block_cb_lookup(f->block,
8373 						ice_indr_setup_block_cb,
8374 						indr_priv);
8375 		if (!block_cb)
8376 			return -ENOENT;
8377 
8378 		flow_indr_block_cb_remove(block_cb, f);
8379 
8380 		list_del(&block_cb->driver_list);
8381 		break;
8382 	default:
8383 		return -EOPNOTSUPP;
8384 	}
8385 	return 0;
8386 }
8387 
8388 static int
8389 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8390 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8391 		     void *data,
8392 		     void (*cleanup)(struct flow_block_cb *block_cb))
8393 {
8394 	switch (type) {
8395 	case TC_SETUP_BLOCK:
8396 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8397 					       data, cleanup);
8398 
8399 	default:
8400 		return -EOPNOTSUPP;
8401 	}
8402 }
8403 
8404 /**
8405  * ice_open - Called when a network interface becomes active
8406  * @netdev: network interface device structure
8407  *
8408  * The open entry point is called when a network interface is made
8409  * active by the system (IFF_UP). At this point all resources needed
8410  * for transmit and receive operations are allocated, the interrupt
8411  * handler is registered with the OS, the netdev watchdog is enabled,
8412  * and the stack is notified that the interface is ready.
8413  *
8414  * Returns 0 on success, negative value on failure
8415  */
8416 int ice_open(struct net_device *netdev)
8417 {
8418 	struct ice_netdev_priv *np = netdev_priv(netdev);
8419 	struct ice_pf *pf = np->vsi->back;
8420 
8421 	if (ice_is_reset_in_progress(pf->state)) {
8422 		netdev_err(netdev, "can't open net device while reset is in progress");
8423 		return -EBUSY;
8424 	}
8425 
8426 	return ice_open_internal(netdev);
8427 }
8428 
8429 /**
8430  * ice_open_internal - Called when a network interface becomes active
8431  * @netdev: network interface device structure
8432  *
8433  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8434  * handling routine
8435  *
8436  * Returns 0 on success, negative value on failure
8437  */
8438 int ice_open_internal(struct net_device *netdev)
8439 {
8440 	struct ice_netdev_priv *np = netdev_priv(netdev);
8441 	struct ice_vsi *vsi = np->vsi;
8442 	struct ice_pf *pf = vsi->back;
8443 	struct ice_port_info *pi;
8444 	int err;
8445 
8446 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8447 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8448 		return -EIO;
8449 	}
8450 
8451 	netif_carrier_off(netdev);
8452 
8453 	pi = vsi->port_info;
8454 	err = ice_update_link_info(pi);
8455 	if (err) {
8456 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8457 		return err;
8458 	}
8459 
8460 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8461 
8462 	/* Set PHY if there is media, otherwise, turn off PHY */
8463 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8464 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8465 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8466 			err = ice_init_phy_user_cfg(pi);
8467 			if (err) {
8468 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8469 					   err);
8470 				return err;
8471 			}
8472 		}
8473 
8474 		err = ice_configure_phy(vsi);
8475 		if (err) {
8476 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8477 				   err);
8478 			return err;
8479 		}
8480 	} else {
8481 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8482 		ice_set_link(vsi, false);
8483 	}
8484 
8485 	err = ice_vsi_open(vsi);
8486 	if (err)
8487 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8488 			   vsi->vsi_num, vsi->vsw->sw_id);
8489 
8490 	/* Update existing tunnels information */
8491 	udp_tunnel_get_rx_info(netdev);
8492 
8493 	return err;
8494 }
8495 
8496 /**
8497  * ice_stop - Disables a network interface
8498  * @netdev: network interface device structure
8499  *
8500  * The stop entry point is called when an interface is de-activated by the OS,
8501  * and the netdevice enters the DOWN state. The hardware is still under the
8502  * driver's control, but the netdev interface is disabled.
8503  *
8504  * Returns success only - not allowed to fail
8505  */
8506 int ice_stop(struct net_device *netdev)
8507 {
8508 	struct ice_netdev_priv *np = netdev_priv(netdev);
8509 	struct ice_vsi *vsi = np->vsi;
8510 	struct ice_pf *pf = vsi->back;
8511 
8512 	if (ice_is_reset_in_progress(pf->state)) {
8513 		netdev_err(netdev, "can't stop net device while reset is in progress");
8514 		return -EBUSY;
8515 	}
8516 
8517 	ice_vsi_close(vsi);
8518 
8519 	return 0;
8520 }
8521 
8522 /**
8523  * ice_features_check - Validate encapsulated packet conforms to limits
8524  * @skb: skb buffer
8525  * @netdev: This port's netdev
8526  * @features: Offload features that the stack believes apply
8527  */
8528 static netdev_features_t
8529 ice_features_check(struct sk_buff *skb,
8530 		   struct net_device __always_unused *netdev,
8531 		   netdev_features_t features)
8532 {
8533 	bool gso = skb_is_gso(skb);
8534 	size_t len;
8535 
8536 	/* No point in doing any of this if neither checksum nor GSO are
8537 	 * being requested for this frame. We can rule out both by just
8538 	 * checking for CHECKSUM_PARTIAL
8539 	 */
8540 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8541 		return features;
8542 
8543 	/* We cannot support GSO if the MSS is going to be less than
8544 	 * 64 bytes. If it is then we need to drop support for GSO.
8545 	 */
8546 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8547 		features &= ~NETIF_F_GSO_MASK;
8548 
8549 	len = skb_network_offset(skb);
8550 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8551 		goto out_rm_features;
8552 
8553 	len = skb_network_header_len(skb);
8554 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8555 		goto out_rm_features;
8556 
8557 	if (skb->encapsulation) {
8558 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8559 		 * the case of IPIP frames, the transport header pointer is
8560 		 * after the inner header! So check to make sure that this
8561 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8562 		 */
8563 		if (gso && (skb_shinfo(skb)->gso_type &
8564 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8565 			len = skb_inner_network_header(skb) -
8566 			      skb_transport_header(skb);
8567 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8568 				goto out_rm_features;
8569 		}
8570 
8571 		len = skb_inner_network_header_len(skb);
8572 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8573 			goto out_rm_features;
8574 	}
8575 
8576 	return features;
8577 out_rm_features:
8578 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8579 }
8580 
8581 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8582 	.ndo_open = ice_open,
8583 	.ndo_stop = ice_stop,
8584 	.ndo_start_xmit = ice_start_xmit,
8585 	.ndo_set_mac_address = ice_set_mac_address,
8586 	.ndo_validate_addr = eth_validate_addr,
8587 	.ndo_change_mtu = ice_change_mtu,
8588 	.ndo_get_stats64 = ice_get_stats64,
8589 	.ndo_tx_timeout = ice_tx_timeout,
8590 	.ndo_bpf = ice_xdp_safe_mode,
8591 };
8592 
8593 static const struct net_device_ops ice_netdev_ops = {
8594 	.ndo_open = ice_open,
8595 	.ndo_stop = ice_stop,
8596 	.ndo_start_xmit = ice_start_xmit,
8597 	.ndo_select_queue = ice_select_queue,
8598 	.ndo_features_check = ice_features_check,
8599 	.ndo_set_rx_mode = ice_set_rx_mode,
8600 	.ndo_set_mac_address = ice_set_mac_address,
8601 	.ndo_validate_addr = eth_validate_addr,
8602 	.ndo_change_mtu = ice_change_mtu,
8603 	.ndo_get_stats64 = ice_get_stats64,
8604 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8605 	.ndo_eth_ioctl = ice_eth_ioctl,
8606 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8607 	.ndo_set_vf_mac = ice_set_vf_mac,
8608 	.ndo_get_vf_config = ice_get_vf_cfg,
8609 	.ndo_set_vf_trust = ice_set_vf_trust,
8610 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8611 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8612 	.ndo_get_vf_stats = ice_get_vf_stats,
8613 	.ndo_set_vf_rate = ice_set_vf_bw,
8614 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8615 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8616 	.ndo_setup_tc = ice_setup_tc,
8617 	.ndo_set_features = ice_set_features,
8618 	.ndo_bridge_getlink = ice_bridge_getlink,
8619 	.ndo_bridge_setlink = ice_bridge_setlink,
8620 	.ndo_fdb_add = ice_fdb_add,
8621 	.ndo_fdb_del = ice_fdb_del,
8622 #ifdef CONFIG_RFS_ACCEL
8623 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8624 #endif
8625 	.ndo_tx_timeout = ice_tx_timeout,
8626 	.ndo_bpf = ice_xdp,
8627 	.ndo_xdp_xmit = ice_xdp_xmit,
8628 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8629 };
8630