1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 301 * @vsi: ptr to the VSI 302 * 303 * Push any outstanding VSI filter changes through the AdminQ. 304 */ 305 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 306 { 307 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 308 struct device *dev = ice_pf_to_dev(vsi->back); 309 struct net_device *netdev = vsi->netdev; 310 bool promisc_forced_on = false; 311 struct ice_pf *pf = vsi->back; 312 struct ice_hw *hw = &pf->hw; 313 u32 changed_flags = 0; 314 int err; 315 316 if (!vsi->netdev) 317 return -EINVAL; 318 319 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 320 usleep_range(1000, 2000); 321 322 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 323 vsi->current_netdev_flags = vsi->netdev->flags; 324 325 INIT_LIST_HEAD(&vsi->tmp_sync_list); 326 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 327 328 if (ice_vsi_fltr_changed(vsi)) { 329 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 330 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 331 332 /* grab the netdev's addr_list_lock */ 333 netif_addr_lock_bh(netdev); 334 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 335 ice_add_mac_to_unsync_list); 336 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 337 ice_add_mac_to_unsync_list); 338 /* our temp lists are populated. release lock */ 339 netif_addr_unlock_bh(netdev); 340 } 341 342 /* Remove MAC addresses in the unsync list */ 343 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 344 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 345 if (err) { 346 netdev_err(netdev, "Failed to delete MAC filters\n"); 347 /* if we failed because of alloc failures, just bail */ 348 if (err == -ENOMEM) 349 goto out; 350 } 351 352 /* Add MAC addresses in the sync list */ 353 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 354 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 355 /* If filter is added successfully or already exists, do not go into 356 * 'if' condition and report it as error. Instead continue processing 357 * rest of the function. 358 */ 359 if (err && err != -EEXIST) { 360 netdev_err(netdev, "Failed to add MAC filters\n"); 361 /* If there is no more space for new umac filters, VSI 362 * should go into promiscuous mode. There should be some 363 * space reserved for promiscuous filters. 364 */ 365 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 366 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 367 vsi->state)) { 368 promisc_forced_on = true; 369 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 370 vsi->vsi_num); 371 } else { 372 goto out; 373 } 374 } 375 err = 0; 376 /* check for changes in promiscuous modes */ 377 if (changed_flags & IFF_ALLMULTI) { 378 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 379 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 380 if (err) { 381 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 382 goto out_promisc; 383 } 384 } else { 385 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 386 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 387 if (err) { 388 vsi->current_netdev_flags |= IFF_ALLMULTI; 389 goto out_promisc; 390 } 391 } 392 } 393 394 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 395 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 396 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 397 if (vsi->current_netdev_flags & IFF_PROMISC) { 398 /* Apply Rx filter rule to get traffic from wire */ 399 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 400 err = ice_set_dflt_vsi(pf->first_sw, vsi); 401 if (err && err != -EEXIST) { 402 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 403 err, vsi->vsi_num); 404 vsi->current_netdev_flags &= 405 ~IFF_PROMISC; 406 goto out_promisc; 407 } 408 err = 0; 409 vlan_ops->dis_rx_filtering(vsi); 410 } 411 } else { 412 /* Clear Rx filter to remove traffic from wire */ 413 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 414 err = ice_clear_dflt_vsi(pf->first_sw); 415 if (err) { 416 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags |= 419 IFF_PROMISC; 420 goto out_promisc; 421 } 422 if (vsi->current_netdev_flags & 423 NETIF_F_HW_VLAN_CTAG_FILTER) 424 vlan_ops->ena_rx_filtering(vsi); 425 } 426 } 427 } 428 goto exit; 429 430 out_promisc: 431 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 432 goto exit; 433 out: 434 /* if something went wrong then set the changed flag so we try again */ 435 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 436 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 437 exit: 438 clear_bit(ICE_CFG_BUSY, vsi->state); 439 return err; 440 } 441 442 /** 443 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 444 * @pf: board private structure 445 */ 446 static void ice_sync_fltr_subtask(struct ice_pf *pf) 447 { 448 int v; 449 450 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 451 return; 452 453 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 454 455 ice_for_each_vsi(pf, v) 456 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 457 ice_vsi_sync_fltr(pf->vsi[v])) { 458 /* come back and try again later */ 459 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 460 break; 461 } 462 } 463 464 /** 465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 466 * @pf: the PF 467 * @locked: is the rtnl_lock already held 468 */ 469 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 470 { 471 int node; 472 int v; 473 474 ice_for_each_vsi(pf, v) 475 if (pf->vsi[v]) 476 ice_dis_vsi(pf->vsi[v], locked); 477 478 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 479 pf->pf_agg_node[node].num_vsis = 0; 480 481 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 482 pf->vf_agg_node[node].num_vsis = 0; 483 } 484 485 /** 486 * ice_clear_sw_switch_recipes - clear switch recipes 487 * @pf: board private structure 488 * 489 * Mark switch recipes as not created in sw structures. There are cases where 490 * rules (especially advanced rules) need to be restored, either re-read from 491 * hardware or added again. For example after the reset. 'recp_created' flag 492 * prevents from doing that and need to be cleared upfront. 493 */ 494 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 495 { 496 struct ice_sw_recipe *recp; 497 u8 i; 498 499 recp = pf->hw.switch_info->recp_list; 500 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 501 recp[i].recp_created = false; 502 } 503 504 /** 505 * ice_prepare_for_reset - prep for reset 506 * @pf: board private structure 507 * @reset_type: reset type requested 508 * 509 * Inform or close all dependent features in prep for reset. 510 */ 511 static void 512 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 513 { 514 struct ice_hw *hw = &pf->hw; 515 struct ice_vsi *vsi; 516 struct ice_vf *vf; 517 unsigned int bkt; 518 519 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 520 521 /* already prepared for reset */ 522 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 523 return; 524 525 ice_unplug_aux_dev(pf); 526 527 /* Notify VFs of impending reset */ 528 if (ice_check_sq_alive(hw, &hw->mailboxq)) 529 ice_vc_notify_reset(pf); 530 531 /* Disable VFs until reset is completed */ 532 mutex_lock(&pf->vfs.table_lock); 533 ice_for_each_vf(pf, bkt, vf) 534 ice_set_vf_state_qs_dis(vf); 535 mutex_unlock(&pf->vfs.table_lock); 536 537 if (ice_is_eswitch_mode_switchdev(pf)) { 538 if (reset_type != ICE_RESET_PFR) 539 ice_clear_sw_switch_recipes(pf); 540 } 541 542 /* release ADQ specific HW and SW resources */ 543 vsi = ice_get_main_vsi(pf); 544 if (!vsi) 545 goto skip; 546 547 /* to be on safe side, reset orig_rss_size so that normal flow 548 * of deciding rss_size can take precedence 549 */ 550 vsi->orig_rss_size = 0; 551 552 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 553 if (reset_type == ICE_RESET_PFR) { 554 vsi->old_ena_tc = vsi->all_enatc; 555 vsi->old_numtc = vsi->all_numtc; 556 } else { 557 ice_remove_q_channels(vsi, true); 558 559 /* for other reset type, do not support channel rebuild 560 * hence reset needed info 561 */ 562 vsi->old_ena_tc = 0; 563 vsi->all_enatc = 0; 564 vsi->old_numtc = 0; 565 vsi->all_numtc = 0; 566 vsi->req_txq = 0; 567 vsi->req_rxq = 0; 568 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 569 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 570 } 571 } 572 skip: 573 574 /* clear SW filtering DB */ 575 ice_clear_hw_tbls(hw); 576 /* disable the VSIs and their queues that are not already DOWN */ 577 ice_pf_dis_all_vsi(pf, false); 578 579 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 580 ice_ptp_prepare_for_reset(pf); 581 582 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 583 ice_gnss_exit(pf); 584 585 if (hw->port_info) 586 ice_sched_clear_port(hw->port_info); 587 588 ice_shutdown_all_ctrlq(hw); 589 590 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 591 } 592 593 /** 594 * ice_do_reset - Initiate one of many types of resets 595 * @pf: board private structure 596 * @reset_type: reset type requested before this function was called. 597 */ 598 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 599 { 600 struct device *dev = ice_pf_to_dev(pf); 601 struct ice_hw *hw = &pf->hw; 602 603 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 604 605 ice_prepare_for_reset(pf, reset_type); 606 607 /* trigger the reset */ 608 if (ice_reset(hw, reset_type)) { 609 dev_err(dev, "reset %d failed\n", reset_type); 610 set_bit(ICE_RESET_FAILED, pf->state); 611 clear_bit(ICE_RESET_OICR_RECV, pf->state); 612 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 613 clear_bit(ICE_PFR_REQ, pf->state); 614 clear_bit(ICE_CORER_REQ, pf->state); 615 clear_bit(ICE_GLOBR_REQ, pf->state); 616 wake_up(&pf->reset_wait_queue); 617 return; 618 } 619 620 /* PFR is a bit of a special case because it doesn't result in an OICR 621 * interrupt. So for PFR, rebuild after the reset and clear the reset- 622 * associated state bits. 623 */ 624 if (reset_type == ICE_RESET_PFR) { 625 pf->pfr_count++; 626 ice_rebuild(pf, reset_type); 627 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 clear_bit(ICE_PFR_REQ, pf->state); 629 wake_up(&pf->reset_wait_queue); 630 ice_reset_all_vfs(pf); 631 } 632 } 633 634 /** 635 * ice_reset_subtask - Set up for resetting the device and driver 636 * @pf: board private structure 637 */ 638 static void ice_reset_subtask(struct ice_pf *pf) 639 { 640 enum ice_reset_req reset_type = ICE_RESET_INVAL; 641 642 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 643 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 644 * of reset is pending and sets bits in pf->state indicating the reset 645 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 646 * prepare for pending reset if not already (for PF software-initiated 647 * global resets the software should already be prepared for it as 648 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 649 * by firmware or software on other PFs, that bit is not set so prepare 650 * for the reset now), poll for reset done, rebuild and return. 651 */ 652 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 653 /* Perform the largest reset requested */ 654 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 655 reset_type = ICE_RESET_CORER; 656 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 657 reset_type = ICE_RESET_GLOBR; 658 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 659 reset_type = ICE_RESET_EMPR; 660 /* return if no valid reset type requested */ 661 if (reset_type == ICE_RESET_INVAL) 662 return; 663 ice_prepare_for_reset(pf, reset_type); 664 665 /* make sure we are ready to rebuild */ 666 if (ice_check_reset(&pf->hw)) { 667 set_bit(ICE_RESET_FAILED, pf->state); 668 } else { 669 /* done with reset. start rebuild */ 670 pf->hw.reset_ongoing = false; 671 ice_rebuild(pf, reset_type); 672 /* clear bit to resume normal operations, but 673 * ICE_NEEDS_RESTART bit is set in case rebuild failed 674 */ 675 clear_bit(ICE_RESET_OICR_RECV, pf->state); 676 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 677 clear_bit(ICE_PFR_REQ, pf->state); 678 clear_bit(ICE_CORER_REQ, pf->state); 679 clear_bit(ICE_GLOBR_REQ, pf->state); 680 wake_up(&pf->reset_wait_queue); 681 ice_reset_all_vfs(pf); 682 } 683 684 return; 685 } 686 687 /* No pending resets to finish processing. Check for new resets */ 688 if (test_bit(ICE_PFR_REQ, pf->state)) 689 reset_type = ICE_RESET_PFR; 690 if (test_bit(ICE_CORER_REQ, pf->state)) 691 reset_type = ICE_RESET_CORER; 692 if (test_bit(ICE_GLOBR_REQ, pf->state)) 693 reset_type = ICE_RESET_GLOBR; 694 /* If no valid reset type requested just return */ 695 if (reset_type == ICE_RESET_INVAL) 696 return; 697 698 /* reset if not already down or busy */ 699 if (!test_bit(ICE_DOWN, pf->state) && 700 !test_bit(ICE_CFG_BUSY, pf->state)) { 701 ice_do_reset(pf, reset_type); 702 } 703 } 704 705 /** 706 * ice_print_topo_conflict - print topology conflict message 707 * @vsi: the VSI whose topology status is being checked 708 */ 709 static void ice_print_topo_conflict(struct ice_vsi *vsi) 710 { 711 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 712 case ICE_AQ_LINK_TOPO_CONFLICT: 713 case ICE_AQ_LINK_MEDIA_CONFLICT: 714 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 715 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 716 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 717 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 718 break; 719 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 720 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 721 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 722 else 723 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 724 break; 725 default: 726 break; 727 } 728 } 729 730 /** 731 * ice_print_link_msg - print link up or down message 732 * @vsi: the VSI whose link status is being queried 733 * @isup: boolean for if the link is now up or down 734 */ 735 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 736 { 737 struct ice_aqc_get_phy_caps_data *caps; 738 const char *an_advertised; 739 const char *fec_req; 740 const char *speed; 741 const char *fec; 742 const char *fc; 743 const char *an; 744 int status; 745 746 if (!vsi) 747 return; 748 749 if (vsi->current_isup == isup) 750 return; 751 752 vsi->current_isup = isup; 753 754 if (!isup) { 755 netdev_info(vsi->netdev, "NIC Link is Down\n"); 756 return; 757 } 758 759 switch (vsi->port_info->phy.link_info.link_speed) { 760 case ICE_AQ_LINK_SPEED_100GB: 761 speed = "100 G"; 762 break; 763 case ICE_AQ_LINK_SPEED_50GB: 764 speed = "50 G"; 765 break; 766 case ICE_AQ_LINK_SPEED_40GB: 767 speed = "40 G"; 768 break; 769 case ICE_AQ_LINK_SPEED_25GB: 770 speed = "25 G"; 771 break; 772 case ICE_AQ_LINK_SPEED_20GB: 773 speed = "20 G"; 774 break; 775 case ICE_AQ_LINK_SPEED_10GB: 776 speed = "10 G"; 777 break; 778 case ICE_AQ_LINK_SPEED_5GB: 779 speed = "5 G"; 780 break; 781 case ICE_AQ_LINK_SPEED_2500MB: 782 speed = "2.5 G"; 783 break; 784 case ICE_AQ_LINK_SPEED_1000MB: 785 speed = "1 G"; 786 break; 787 case ICE_AQ_LINK_SPEED_100MB: 788 speed = "100 M"; 789 break; 790 default: 791 speed = "Unknown "; 792 break; 793 } 794 795 switch (vsi->port_info->fc.current_mode) { 796 case ICE_FC_FULL: 797 fc = "Rx/Tx"; 798 break; 799 case ICE_FC_TX_PAUSE: 800 fc = "Tx"; 801 break; 802 case ICE_FC_RX_PAUSE: 803 fc = "Rx"; 804 break; 805 case ICE_FC_NONE: 806 fc = "None"; 807 break; 808 default: 809 fc = "Unknown"; 810 break; 811 } 812 813 /* Get FEC mode based on negotiated link info */ 814 switch (vsi->port_info->phy.link_info.fec_info) { 815 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 816 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 817 fec = "RS-FEC"; 818 break; 819 case ICE_AQ_LINK_25G_KR_FEC_EN: 820 fec = "FC-FEC/BASE-R"; 821 break; 822 default: 823 fec = "NONE"; 824 break; 825 } 826 827 /* check if autoneg completed, might be false due to not supported */ 828 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 829 an = "True"; 830 else 831 an = "False"; 832 833 /* Get FEC mode requested based on PHY caps last SW configuration */ 834 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 835 if (!caps) { 836 fec_req = "Unknown"; 837 an_advertised = "Unknown"; 838 goto done; 839 } 840 841 status = ice_aq_get_phy_caps(vsi->port_info, false, 842 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 843 if (status) 844 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 845 846 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 847 848 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 849 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 850 fec_req = "RS-FEC"; 851 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 852 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 853 fec_req = "FC-FEC/BASE-R"; 854 else 855 fec_req = "NONE"; 856 857 kfree(caps); 858 859 done: 860 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 861 speed, fec_req, fec, an_advertised, an, fc); 862 ice_print_topo_conflict(vsi); 863 } 864 865 /** 866 * ice_vsi_link_event - update the VSI's netdev 867 * @vsi: the VSI on which the link event occurred 868 * @link_up: whether or not the VSI needs to be set up or down 869 */ 870 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 871 { 872 if (!vsi) 873 return; 874 875 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 876 return; 877 878 if (vsi->type == ICE_VSI_PF) { 879 if (link_up == netif_carrier_ok(vsi->netdev)) 880 return; 881 882 if (link_up) { 883 netif_carrier_on(vsi->netdev); 884 netif_tx_wake_all_queues(vsi->netdev); 885 } else { 886 netif_carrier_off(vsi->netdev); 887 netif_tx_stop_all_queues(vsi->netdev); 888 } 889 } 890 } 891 892 /** 893 * ice_set_dflt_mib - send a default config MIB to the FW 894 * @pf: private PF struct 895 * 896 * This function sends a default configuration MIB to the FW. 897 * 898 * If this function errors out at any point, the driver is still able to 899 * function. The main impact is that LFC may not operate as expected. 900 * Therefore an error state in this function should be treated with a DBG 901 * message and continue on with driver rebuild/reenable. 902 */ 903 static void ice_set_dflt_mib(struct ice_pf *pf) 904 { 905 struct device *dev = ice_pf_to_dev(pf); 906 u8 mib_type, *buf, *lldpmib = NULL; 907 u16 len, typelen, offset = 0; 908 struct ice_lldp_org_tlv *tlv; 909 struct ice_hw *hw = &pf->hw; 910 u32 ouisubtype; 911 912 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 913 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 914 if (!lldpmib) { 915 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 916 __func__); 917 return; 918 } 919 920 /* Add ETS CFG TLV */ 921 tlv = (struct ice_lldp_org_tlv *)lldpmib; 922 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 923 ICE_IEEE_ETS_TLV_LEN); 924 tlv->typelen = htons(typelen); 925 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 926 ICE_IEEE_SUBTYPE_ETS_CFG); 927 tlv->ouisubtype = htonl(ouisubtype); 928 929 buf = tlv->tlvinfo; 930 buf[0] = 0; 931 932 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 933 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 934 * Octets 13 - 20 are TSA values - leave as zeros 935 */ 936 buf[5] = 0x64; 937 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 938 offset += len + 2; 939 tlv = (struct ice_lldp_org_tlv *) 940 ((char *)tlv + sizeof(tlv->typelen) + len); 941 942 /* Add ETS REC TLV */ 943 buf = tlv->tlvinfo; 944 tlv->typelen = htons(typelen); 945 946 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 947 ICE_IEEE_SUBTYPE_ETS_REC); 948 tlv->ouisubtype = htonl(ouisubtype); 949 950 /* First octet of buf is reserved 951 * Octets 1 - 4 map UP to TC - all UPs map to zero 952 * Octets 5 - 12 are BW values - set TC 0 to 100%. 953 * Octets 13 - 20 are TSA value - leave as zeros 954 */ 955 buf[5] = 0x64; 956 offset += len + 2; 957 tlv = (struct ice_lldp_org_tlv *) 958 ((char *)tlv + sizeof(tlv->typelen) + len); 959 960 /* Add PFC CFG TLV */ 961 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 962 ICE_IEEE_PFC_TLV_LEN); 963 tlv->typelen = htons(typelen); 964 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_PFC_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 /* Octet 1 left as all zeros - PFC disabled */ 970 buf[0] = 0x08; 971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 972 offset += len + 2; 973 974 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 975 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 976 977 kfree(lldpmib); 978 } 979 980 /** 981 * ice_check_phy_fw_load - check if PHY FW load failed 982 * @pf: pointer to PF struct 983 * @link_cfg_err: bitmap from the link info structure 984 * 985 * check if external PHY FW load failed and print an error message if it did 986 */ 987 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 988 { 989 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 990 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 991 return; 992 } 993 994 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 995 return; 996 997 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 998 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 999 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1000 } 1001 } 1002 1003 /** 1004 * ice_check_module_power 1005 * @pf: pointer to PF struct 1006 * @link_cfg_err: bitmap from the link info structure 1007 * 1008 * check module power level returned by a previous call to aq_get_link_info 1009 * and print error messages if module power level is not supported 1010 */ 1011 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1012 { 1013 /* if module power level is supported, clear the flag */ 1014 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1015 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1016 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1017 return; 1018 } 1019 1020 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1021 * above block didn't clear this bit, there's nothing to do 1022 */ 1023 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1024 return; 1025 1026 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1027 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1028 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1029 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1030 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1031 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1032 } 1033 } 1034 1035 /** 1036 * ice_check_link_cfg_err - check if link configuration failed 1037 * @pf: pointer to the PF struct 1038 * @link_cfg_err: bitmap from the link info structure 1039 * 1040 * print if any link configuration failure happens due to the value in the 1041 * link_cfg_err parameter in the link info structure 1042 */ 1043 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1044 { 1045 ice_check_module_power(pf, link_cfg_err); 1046 ice_check_phy_fw_load(pf, link_cfg_err); 1047 } 1048 1049 /** 1050 * ice_link_event - process the link event 1051 * @pf: PF that the link event is associated with 1052 * @pi: port_info for the port that the link event is associated with 1053 * @link_up: true if the physical link is up and false if it is down 1054 * @link_speed: current link speed received from the link event 1055 * 1056 * Returns 0 on success and negative on failure 1057 */ 1058 static int 1059 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1060 u16 link_speed) 1061 { 1062 struct device *dev = ice_pf_to_dev(pf); 1063 struct ice_phy_info *phy_info; 1064 struct ice_vsi *vsi; 1065 u16 old_link_speed; 1066 bool old_link; 1067 int status; 1068 1069 phy_info = &pi->phy; 1070 phy_info->link_info_old = phy_info->link_info; 1071 1072 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1073 old_link_speed = phy_info->link_info_old.link_speed; 1074 1075 /* update the link info structures and re-enable link events, 1076 * don't bail on failure due to other book keeping needed 1077 */ 1078 status = ice_update_link_info(pi); 1079 if (status) 1080 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1081 pi->lport, status, 1082 ice_aq_str(pi->hw->adminq.sq_last_status)); 1083 1084 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1085 1086 /* Check if the link state is up after updating link info, and treat 1087 * this event as an UP event since the link is actually UP now. 1088 */ 1089 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1090 link_up = true; 1091 1092 vsi = ice_get_main_vsi(pf); 1093 if (!vsi || !vsi->port_info) 1094 return -EINVAL; 1095 1096 /* turn off PHY if media was removed */ 1097 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1098 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1099 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1100 ice_set_link(vsi, false); 1101 } 1102 1103 /* if the old link up/down and speed is the same as the new */ 1104 if (link_up == old_link && link_speed == old_link_speed) 1105 return 0; 1106 1107 if (!ice_is_e810(&pf->hw)) 1108 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1109 1110 if (ice_is_dcb_active(pf)) { 1111 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1112 ice_dcb_rebuild(pf); 1113 } else { 1114 if (link_up) 1115 ice_set_dflt_mib(pf); 1116 } 1117 ice_vsi_link_event(vsi, link_up); 1118 ice_print_link_msg(vsi, link_up); 1119 1120 ice_vc_notify_link_state(pf); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1127 * @pf: board private structure 1128 */ 1129 static void ice_watchdog_subtask(struct ice_pf *pf) 1130 { 1131 int i; 1132 1133 /* if interface is down do nothing */ 1134 if (test_bit(ICE_DOWN, pf->state) || 1135 test_bit(ICE_CFG_BUSY, pf->state)) 1136 return; 1137 1138 /* make sure we don't do these things too often */ 1139 if (time_before(jiffies, 1140 pf->serv_tmr_prev + pf->serv_tmr_period)) 1141 return; 1142 1143 pf->serv_tmr_prev = jiffies; 1144 1145 /* Update the stats for active netdevs so the network stack 1146 * can look at updated numbers whenever it cares to 1147 */ 1148 ice_update_pf_stats(pf); 1149 ice_for_each_vsi(pf, i) 1150 if (pf->vsi[i] && pf->vsi[i]->netdev) 1151 ice_update_vsi_stats(pf->vsi[i]); 1152 } 1153 1154 /** 1155 * ice_init_link_events - enable/initialize link events 1156 * @pi: pointer to the port_info instance 1157 * 1158 * Returns -EIO on failure, 0 on success 1159 */ 1160 static int ice_init_link_events(struct ice_port_info *pi) 1161 { 1162 u16 mask; 1163 1164 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1165 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1166 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1167 1168 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1169 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1170 pi->lport); 1171 return -EIO; 1172 } 1173 1174 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1175 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1176 pi->lport); 1177 return -EIO; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * ice_handle_link_event - handle link event via ARQ 1185 * @pf: PF that the link event is associated with 1186 * @event: event structure containing link status info 1187 */ 1188 static int 1189 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1190 { 1191 struct ice_aqc_get_link_status_data *link_data; 1192 struct ice_port_info *port_info; 1193 int status; 1194 1195 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1196 port_info = pf->hw.port_info; 1197 if (!port_info) 1198 return -EINVAL; 1199 1200 status = ice_link_event(pf, port_info, 1201 !!(link_data->link_info & ICE_AQ_LINK_UP), 1202 le16_to_cpu(link_data->link_speed)); 1203 if (status) 1204 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1205 status); 1206 1207 return status; 1208 } 1209 1210 enum ice_aq_task_state { 1211 ICE_AQ_TASK_WAITING = 0, 1212 ICE_AQ_TASK_COMPLETE, 1213 ICE_AQ_TASK_CANCELED, 1214 }; 1215 1216 struct ice_aq_task { 1217 struct hlist_node entry; 1218 1219 u16 opcode; 1220 struct ice_rq_event_info *event; 1221 enum ice_aq_task_state state; 1222 }; 1223 1224 /** 1225 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1226 * @pf: pointer to the PF private structure 1227 * @opcode: the opcode to wait for 1228 * @timeout: how long to wait, in jiffies 1229 * @event: storage for the event info 1230 * 1231 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1232 * current thread will be put to sleep until the specified event occurs or 1233 * until the given timeout is reached. 1234 * 1235 * To obtain only the descriptor contents, pass an event without an allocated 1236 * msg_buf. If the complete data buffer is desired, allocate the 1237 * event->msg_buf with enough space ahead of time. 1238 * 1239 * Returns: zero on success, or a negative error code on failure. 1240 */ 1241 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1242 struct ice_rq_event_info *event) 1243 { 1244 struct device *dev = ice_pf_to_dev(pf); 1245 struct ice_aq_task *task; 1246 unsigned long start; 1247 long ret; 1248 int err; 1249 1250 task = kzalloc(sizeof(*task), GFP_KERNEL); 1251 if (!task) 1252 return -ENOMEM; 1253 1254 INIT_HLIST_NODE(&task->entry); 1255 task->opcode = opcode; 1256 task->event = event; 1257 task->state = ICE_AQ_TASK_WAITING; 1258 1259 spin_lock_bh(&pf->aq_wait_lock); 1260 hlist_add_head(&task->entry, &pf->aq_wait_list); 1261 spin_unlock_bh(&pf->aq_wait_lock); 1262 1263 start = jiffies; 1264 1265 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1266 timeout); 1267 switch (task->state) { 1268 case ICE_AQ_TASK_WAITING: 1269 err = ret < 0 ? ret : -ETIMEDOUT; 1270 break; 1271 case ICE_AQ_TASK_CANCELED: 1272 err = ret < 0 ? ret : -ECANCELED; 1273 break; 1274 case ICE_AQ_TASK_COMPLETE: 1275 err = ret < 0 ? ret : 0; 1276 break; 1277 default: 1278 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1279 err = -EINVAL; 1280 break; 1281 } 1282 1283 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1284 jiffies_to_msecs(jiffies - start), 1285 jiffies_to_msecs(timeout), 1286 opcode); 1287 1288 spin_lock_bh(&pf->aq_wait_lock); 1289 hlist_del(&task->entry); 1290 spin_unlock_bh(&pf->aq_wait_lock); 1291 kfree(task); 1292 1293 return err; 1294 } 1295 1296 /** 1297 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1298 * @pf: pointer to the PF private structure 1299 * @opcode: the opcode of the event 1300 * @event: the event to check 1301 * 1302 * Loops over the current list of pending threads waiting for an AdminQ event. 1303 * For each matching task, copy the contents of the event into the task 1304 * structure and wake up the thread. 1305 * 1306 * If multiple threads wait for the same opcode, they will all be woken up. 1307 * 1308 * Note that event->msg_buf will only be duplicated if the event has a buffer 1309 * with enough space already allocated. Otherwise, only the descriptor and 1310 * message length will be copied. 1311 * 1312 * Returns: true if an event was found, false otherwise 1313 */ 1314 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1315 struct ice_rq_event_info *event) 1316 { 1317 struct ice_aq_task *task; 1318 bool found = false; 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1322 if (task->state || task->opcode != opcode) 1323 continue; 1324 1325 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1326 task->event->msg_len = event->msg_len; 1327 1328 /* Only copy the data buffer if a destination was set */ 1329 if (task->event->msg_buf && 1330 task->event->buf_len > event->buf_len) { 1331 memcpy(task->event->msg_buf, event->msg_buf, 1332 event->buf_len); 1333 task->event->buf_len = event->buf_len; 1334 } 1335 1336 task->state = ICE_AQ_TASK_COMPLETE; 1337 found = true; 1338 } 1339 spin_unlock_bh(&pf->aq_wait_lock); 1340 1341 if (found) 1342 wake_up(&pf->aq_wait_queue); 1343 } 1344 1345 /** 1346 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1347 * @pf: the PF private structure 1348 * 1349 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1350 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1351 */ 1352 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1353 { 1354 struct ice_aq_task *task; 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1358 task->state = ICE_AQ_TASK_CANCELED; 1359 spin_unlock_bh(&pf->aq_wait_lock); 1360 1361 wake_up(&pf->aq_wait_queue); 1362 } 1363 1364 /** 1365 * __ice_clean_ctrlq - helper function to clean controlq rings 1366 * @pf: ptr to struct ice_pf 1367 * @q_type: specific Control queue type 1368 */ 1369 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1370 { 1371 struct device *dev = ice_pf_to_dev(pf); 1372 struct ice_rq_event_info event; 1373 struct ice_hw *hw = &pf->hw; 1374 struct ice_ctl_q_info *cq; 1375 u16 pending, i = 0; 1376 const char *qtype; 1377 u32 oldval, val; 1378 1379 /* Do not clean control queue if/when PF reset fails */ 1380 if (test_bit(ICE_RESET_FAILED, pf->state)) 1381 return 0; 1382 1383 switch (q_type) { 1384 case ICE_CTL_Q_ADMIN: 1385 cq = &hw->adminq; 1386 qtype = "Admin"; 1387 break; 1388 case ICE_CTL_Q_SB: 1389 cq = &hw->sbq; 1390 qtype = "Sideband"; 1391 break; 1392 case ICE_CTL_Q_MAILBOX: 1393 cq = &hw->mailboxq; 1394 qtype = "Mailbox"; 1395 /* we are going to try to detect a malicious VF, so set the 1396 * state to begin detection 1397 */ 1398 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1399 break; 1400 default: 1401 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1402 return 0; 1403 } 1404 1405 /* check for error indications - PF_xx_AxQLEN register layout for 1406 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1407 */ 1408 val = rd32(hw, cq->rq.len); 1409 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1410 PF_FW_ARQLEN_ARQCRIT_M)) { 1411 oldval = val; 1412 if (val & PF_FW_ARQLEN_ARQVFE_M) 1413 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1414 qtype); 1415 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1416 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1417 qtype); 1418 } 1419 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1420 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1421 qtype); 1422 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1423 PF_FW_ARQLEN_ARQCRIT_M); 1424 if (oldval != val) 1425 wr32(hw, cq->rq.len, val); 1426 } 1427 1428 val = rd32(hw, cq->sq.len); 1429 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1430 PF_FW_ATQLEN_ATQCRIT_M)) { 1431 oldval = val; 1432 if (val & PF_FW_ATQLEN_ATQVFE_M) 1433 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1434 qtype); 1435 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1436 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1437 qtype); 1438 } 1439 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1440 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1441 qtype); 1442 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1443 PF_FW_ATQLEN_ATQCRIT_M); 1444 if (oldval != val) 1445 wr32(hw, cq->sq.len, val); 1446 } 1447 1448 event.buf_len = cq->rq_buf_size; 1449 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1450 if (!event.msg_buf) 1451 return 0; 1452 1453 do { 1454 u16 opcode; 1455 int ret; 1456 1457 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1458 if (ret == -EALREADY) 1459 break; 1460 if (ret) { 1461 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1462 ret); 1463 break; 1464 } 1465 1466 opcode = le16_to_cpu(event.desc.opcode); 1467 1468 /* Notify any thread that might be waiting for this event */ 1469 ice_aq_check_events(pf, opcode, &event); 1470 1471 switch (opcode) { 1472 case ice_aqc_opc_get_link_status: 1473 if (ice_handle_link_event(pf, &event)) 1474 dev_err(dev, "Could not handle link event\n"); 1475 break; 1476 case ice_aqc_opc_event_lan_overflow: 1477 ice_vf_lan_overflow_event(pf, &event); 1478 break; 1479 case ice_mbx_opc_send_msg_to_pf: 1480 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1481 ice_vc_process_vf_msg(pf, &event); 1482 break; 1483 case ice_aqc_opc_fw_logging: 1484 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1485 break; 1486 case ice_aqc_opc_lldp_set_mib_change: 1487 ice_dcb_process_lldp_set_mib_change(pf, &event); 1488 break; 1489 default: 1490 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1491 qtype, opcode); 1492 break; 1493 } 1494 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1495 1496 kfree(event.msg_buf); 1497 1498 return pending && (i == ICE_DFLT_IRQ_WORK); 1499 } 1500 1501 /** 1502 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1503 * @hw: pointer to hardware info 1504 * @cq: control queue information 1505 * 1506 * returns true if there are pending messages in a queue, false if there aren't 1507 */ 1508 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1509 { 1510 u16 ntu; 1511 1512 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1513 return cq->rq.next_to_clean != ntu; 1514 } 1515 1516 /** 1517 * ice_clean_adminq_subtask - clean the AdminQ rings 1518 * @pf: board private structure 1519 */ 1520 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1521 { 1522 struct ice_hw *hw = &pf->hw; 1523 1524 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1525 return; 1526 1527 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1528 return; 1529 1530 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1531 1532 /* There might be a situation where new messages arrive to a control 1533 * queue between processing the last message and clearing the 1534 * EVENT_PENDING bit. So before exiting, check queue head again (using 1535 * ice_ctrlq_pending) and process new messages if any. 1536 */ 1537 if (ice_ctrlq_pending(hw, &hw->adminq)) 1538 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1539 1540 ice_flush(hw); 1541 } 1542 1543 /** 1544 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1545 * @pf: board private structure 1546 */ 1547 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1548 { 1549 struct ice_hw *hw = &pf->hw; 1550 1551 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1552 return; 1553 1554 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1555 return; 1556 1557 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1558 1559 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1560 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1561 1562 ice_flush(hw); 1563 } 1564 1565 /** 1566 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1567 * @pf: board private structure 1568 */ 1569 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1570 { 1571 struct ice_hw *hw = &pf->hw; 1572 1573 /* Nothing to do here if sideband queue is not supported */ 1574 if (!ice_is_sbq_supported(hw)) { 1575 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1576 return; 1577 } 1578 1579 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1580 return; 1581 1582 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1583 return; 1584 1585 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1586 1587 if (ice_ctrlq_pending(hw, &hw->sbq)) 1588 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1589 1590 ice_flush(hw); 1591 } 1592 1593 /** 1594 * ice_service_task_schedule - schedule the service task to wake up 1595 * @pf: board private structure 1596 * 1597 * If not already scheduled, this puts the task into the work queue. 1598 */ 1599 void ice_service_task_schedule(struct ice_pf *pf) 1600 { 1601 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1602 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1603 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1604 queue_work(ice_wq, &pf->serv_task); 1605 } 1606 1607 /** 1608 * ice_service_task_complete - finish up the service task 1609 * @pf: board private structure 1610 */ 1611 static void ice_service_task_complete(struct ice_pf *pf) 1612 { 1613 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1614 1615 /* force memory (pf->state) to sync before next service task */ 1616 smp_mb__before_atomic(); 1617 clear_bit(ICE_SERVICE_SCHED, pf->state); 1618 } 1619 1620 /** 1621 * ice_service_task_stop - stop service task and cancel works 1622 * @pf: board private structure 1623 * 1624 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1625 * 1 otherwise. 1626 */ 1627 static int ice_service_task_stop(struct ice_pf *pf) 1628 { 1629 int ret; 1630 1631 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1632 1633 if (pf->serv_tmr.function) 1634 del_timer_sync(&pf->serv_tmr); 1635 if (pf->serv_task.func) 1636 cancel_work_sync(&pf->serv_task); 1637 1638 clear_bit(ICE_SERVICE_SCHED, pf->state); 1639 return ret; 1640 } 1641 1642 /** 1643 * ice_service_task_restart - restart service task and schedule works 1644 * @pf: board private structure 1645 * 1646 * This function is needed for suspend and resume works (e.g WoL scenario) 1647 */ 1648 static void ice_service_task_restart(struct ice_pf *pf) 1649 { 1650 clear_bit(ICE_SERVICE_DIS, pf->state); 1651 ice_service_task_schedule(pf); 1652 } 1653 1654 /** 1655 * ice_service_timer - timer callback to schedule service task 1656 * @t: pointer to timer_list 1657 */ 1658 static void ice_service_timer(struct timer_list *t) 1659 { 1660 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1661 1662 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1663 ice_service_task_schedule(pf); 1664 } 1665 1666 /** 1667 * ice_handle_mdd_event - handle malicious driver detect event 1668 * @pf: pointer to the PF structure 1669 * 1670 * Called from service task. OICR interrupt handler indicates MDD event. 1671 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1672 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1673 * disable the queue, the PF can be configured to reset the VF using ethtool 1674 * private flag mdd-auto-reset-vf. 1675 */ 1676 static void ice_handle_mdd_event(struct ice_pf *pf) 1677 { 1678 struct device *dev = ice_pf_to_dev(pf); 1679 struct ice_hw *hw = &pf->hw; 1680 struct ice_vf *vf; 1681 unsigned int bkt; 1682 u32 reg; 1683 1684 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1685 /* Since the VF MDD event logging is rate limited, check if 1686 * there are pending MDD events. 1687 */ 1688 ice_print_vfs_mdd_events(pf); 1689 return; 1690 } 1691 1692 /* find what triggered an MDD event */ 1693 reg = rd32(hw, GL_MDET_TX_PQM); 1694 if (reg & GL_MDET_TX_PQM_VALID_M) { 1695 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1696 GL_MDET_TX_PQM_PF_NUM_S; 1697 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1698 GL_MDET_TX_PQM_VF_NUM_S; 1699 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1700 GL_MDET_TX_PQM_MAL_TYPE_S; 1701 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1702 GL_MDET_TX_PQM_QNUM_S); 1703 1704 if (netif_msg_tx_err(pf)) 1705 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1706 event, queue, pf_num, vf_num); 1707 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1708 } 1709 1710 reg = rd32(hw, GL_MDET_TX_TCLAN); 1711 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1712 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1713 GL_MDET_TX_TCLAN_PF_NUM_S; 1714 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1715 GL_MDET_TX_TCLAN_VF_NUM_S; 1716 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1717 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1718 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1719 GL_MDET_TX_TCLAN_QNUM_S); 1720 1721 if (netif_msg_tx_err(pf)) 1722 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1723 event, queue, pf_num, vf_num); 1724 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1725 } 1726 1727 reg = rd32(hw, GL_MDET_RX); 1728 if (reg & GL_MDET_RX_VALID_M) { 1729 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1730 GL_MDET_RX_PF_NUM_S; 1731 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1732 GL_MDET_RX_VF_NUM_S; 1733 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1734 GL_MDET_RX_MAL_TYPE_S; 1735 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1736 GL_MDET_RX_QNUM_S); 1737 1738 if (netif_msg_rx_err(pf)) 1739 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1740 event, queue, pf_num, vf_num); 1741 wr32(hw, GL_MDET_RX, 0xffffffff); 1742 } 1743 1744 /* check to see if this PF caused an MDD event */ 1745 reg = rd32(hw, PF_MDET_TX_PQM); 1746 if (reg & PF_MDET_TX_PQM_VALID_M) { 1747 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1748 if (netif_msg_tx_err(pf)) 1749 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1750 } 1751 1752 reg = rd32(hw, PF_MDET_TX_TCLAN); 1753 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1754 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1757 } 1758 1759 reg = rd32(hw, PF_MDET_RX); 1760 if (reg & PF_MDET_RX_VALID_M) { 1761 wr32(hw, PF_MDET_RX, 0xFFFF); 1762 if (netif_msg_rx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1764 } 1765 1766 /* Check to see if one of the VFs caused an MDD event, and then 1767 * increment counters and set print pending 1768 */ 1769 mutex_lock(&pf->vfs.table_lock); 1770 ice_for_each_vf(pf, bkt, vf) { 1771 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1772 if (reg & VP_MDET_TX_PQM_VALID_M) { 1773 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1774 vf->mdd_tx_events.count++; 1775 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1776 if (netif_msg_tx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1778 vf->vf_id); 1779 } 1780 1781 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1782 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1783 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1784 vf->mdd_tx_events.count++; 1785 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1786 if (netif_msg_tx_err(pf)) 1787 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1788 vf->vf_id); 1789 } 1790 1791 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1792 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1793 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1794 vf->mdd_tx_events.count++; 1795 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1796 if (netif_msg_tx_err(pf)) 1797 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1798 vf->vf_id); 1799 } 1800 1801 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1802 if (reg & VP_MDET_RX_VALID_M) { 1803 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1804 vf->mdd_rx_events.count++; 1805 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1806 if (netif_msg_rx_err(pf)) 1807 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1808 vf->vf_id); 1809 1810 /* Since the queue is disabled on VF Rx MDD events, the 1811 * PF can be configured to reset the VF through ethtool 1812 * private flag mdd-auto-reset-vf. 1813 */ 1814 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1815 /* VF MDD event counters will be cleared by 1816 * reset, so print the event prior to reset. 1817 */ 1818 ice_print_vf_rx_mdd_event(vf); 1819 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1820 } 1821 } 1822 } 1823 mutex_unlock(&pf->vfs.table_lock); 1824 1825 ice_print_vfs_mdd_events(pf); 1826 } 1827 1828 /** 1829 * ice_force_phys_link_state - Force the physical link state 1830 * @vsi: VSI to force the physical link state to up/down 1831 * @link_up: true/false indicates to set the physical link to up/down 1832 * 1833 * Force the physical link state by getting the current PHY capabilities from 1834 * hardware and setting the PHY config based on the determined capabilities. If 1835 * link changes a link event will be triggered because both the Enable Automatic 1836 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1837 * 1838 * Returns 0 on success, negative on failure 1839 */ 1840 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1841 { 1842 struct ice_aqc_get_phy_caps_data *pcaps; 1843 struct ice_aqc_set_phy_cfg_data *cfg; 1844 struct ice_port_info *pi; 1845 struct device *dev; 1846 int retcode; 1847 1848 if (!vsi || !vsi->port_info || !vsi->back) 1849 return -EINVAL; 1850 if (vsi->type != ICE_VSI_PF) 1851 return 0; 1852 1853 dev = ice_pf_to_dev(vsi->back); 1854 1855 pi = vsi->port_info; 1856 1857 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1858 if (!pcaps) 1859 return -ENOMEM; 1860 1861 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1862 NULL); 1863 if (retcode) { 1864 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1865 vsi->vsi_num, retcode); 1866 retcode = -EIO; 1867 goto out; 1868 } 1869 1870 /* No change in link */ 1871 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1872 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1873 goto out; 1874 1875 /* Use the current user PHY configuration. The current user PHY 1876 * configuration is initialized during probe from PHY capabilities 1877 * software mode, and updated on set PHY configuration. 1878 */ 1879 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1880 if (!cfg) { 1881 retcode = -ENOMEM; 1882 goto out; 1883 } 1884 1885 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1886 if (link_up) 1887 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1888 else 1889 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1890 1891 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1892 if (retcode) { 1893 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1894 vsi->vsi_num, retcode); 1895 retcode = -EIO; 1896 } 1897 1898 kfree(cfg); 1899 out: 1900 kfree(pcaps); 1901 return retcode; 1902 } 1903 1904 /** 1905 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1906 * @pi: port info structure 1907 * 1908 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1909 */ 1910 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1911 { 1912 struct ice_aqc_get_phy_caps_data *pcaps; 1913 struct ice_pf *pf = pi->hw->back; 1914 int err; 1915 1916 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1917 if (!pcaps) 1918 return -ENOMEM; 1919 1920 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1921 pcaps, NULL); 1922 1923 if (err) { 1924 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1925 goto out; 1926 } 1927 1928 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1929 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1930 1931 out: 1932 kfree(pcaps); 1933 return err; 1934 } 1935 1936 /** 1937 * ice_init_link_dflt_override - Initialize link default override 1938 * @pi: port info structure 1939 * 1940 * Initialize link default override and PHY total port shutdown during probe 1941 */ 1942 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1943 { 1944 struct ice_link_default_override_tlv *ldo; 1945 struct ice_pf *pf = pi->hw->back; 1946 1947 ldo = &pf->link_dflt_override; 1948 if (ice_get_link_default_override(ldo, pi)) 1949 return; 1950 1951 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1952 return; 1953 1954 /* Enable Total Port Shutdown (override/replace link-down-on-close 1955 * ethtool private flag) for ports with Port Disable bit set. 1956 */ 1957 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1958 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1959 } 1960 1961 /** 1962 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1963 * @pi: port info structure 1964 * 1965 * If default override is enabled, initialize the user PHY cfg speed and FEC 1966 * settings using the default override mask from the NVM. 1967 * 1968 * The PHY should only be configured with the default override settings the 1969 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1970 * is used to indicate that the user PHY cfg default override is initialized 1971 * and the PHY has not been configured with the default override settings. The 1972 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1973 * configured. 1974 * 1975 * This function should be called only if the FW doesn't support default 1976 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1977 */ 1978 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1979 { 1980 struct ice_link_default_override_tlv *ldo; 1981 struct ice_aqc_set_phy_cfg_data *cfg; 1982 struct ice_phy_info *phy = &pi->phy; 1983 struct ice_pf *pf = pi->hw->back; 1984 1985 ldo = &pf->link_dflt_override; 1986 1987 /* If link default override is enabled, use to mask NVM PHY capabilities 1988 * for speed and FEC default configuration. 1989 */ 1990 cfg = &phy->curr_user_phy_cfg; 1991 1992 if (ldo->phy_type_low || ldo->phy_type_high) { 1993 cfg->phy_type_low = pf->nvm_phy_type_lo & 1994 cpu_to_le64(ldo->phy_type_low); 1995 cfg->phy_type_high = pf->nvm_phy_type_hi & 1996 cpu_to_le64(ldo->phy_type_high); 1997 } 1998 cfg->link_fec_opt = ldo->fec_options; 1999 phy->curr_user_fec_req = ICE_FEC_AUTO; 2000 2001 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2002 } 2003 2004 /** 2005 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2006 * @pi: port info structure 2007 * 2008 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2009 * mode to default. The PHY defaults are from get PHY capabilities topology 2010 * with media so call when media is first available. An error is returned if 2011 * called when media is not available. The PHY initialization completed state is 2012 * set here. 2013 * 2014 * These configurations are used when setting PHY 2015 * configuration. The user PHY configuration is updated on set PHY 2016 * configuration. Returns 0 on success, negative on failure 2017 */ 2018 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2019 { 2020 struct ice_aqc_get_phy_caps_data *pcaps; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2026 return -EIO; 2027 2028 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2029 if (!pcaps) 2030 return -ENOMEM; 2031 2032 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2033 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2034 pcaps, NULL); 2035 else 2036 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2037 pcaps, NULL); 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto err_out; 2041 } 2042 2043 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2044 2045 /* check if lenient mode is supported and enabled */ 2046 if (ice_fw_supports_link_override(pi->hw) && 2047 !(pcaps->module_compliance_enforcement & 2048 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2049 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2050 2051 /* if the FW supports default PHY configuration mode, then the driver 2052 * does not have to apply link override settings. If not, 2053 * initialize user PHY configuration with link override values 2054 */ 2055 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2056 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2057 ice_init_phy_cfg_dflt_override(pi); 2058 goto out; 2059 } 2060 } 2061 2062 /* if link default override is not enabled, set user flow control and 2063 * FEC settings based on what get_phy_caps returned 2064 */ 2065 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2066 pcaps->link_fec_options); 2067 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2068 2069 out: 2070 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2071 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2072 err_out: 2073 kfree(pcaps); 2074 return err; 2075 } 2076 2077 /** 2078 * ice_configure_phy - configure PHY 2079 * @vsi: VSI of PHY 2080 * 2081 * Set the PHY configuration. If the current PHY configuration is the same as 2082 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2083 * configure the based get PHY capabilities for topology with media. 2084 */ 2085 static int ice_configure_phy(struct ice_vsi *vsi) 2086 { 2087 struct device *dev = ice_pf_to_dev(vsi->back); 2088 struct ice_port_info *pi = vsi->port_info; 2089 struct ice_aqc_get_phy_caps_data *pcaps; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = vsi->back; 2093 int err; 2094 2095 /* Ensure we have media as we cannot configure a medialess port */ 2096 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2097 return -EPERM; 2098 2099 ice_print_topo_conflict(vsi); 2100 2101 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2102 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2103 return -EPERM; 2104 2105 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2106 return ice_force_phys_link_state(vsi, true); 2107 2108 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2109 if (!pcaps) 2110 return -ENOMEM; 2111 2112 /* Get current PHY config */ 2113 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2114 NULL); 2115 if (err) { 2116 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2117 vsi->vsi_num, err); 2118 goto done; 2119 } 2120 2121 /* If PHY enable link is configured and configuration has not changed, 2122 * there's nothing to do 2123 */ 2124 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2125 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2126 goto done; 2127 2128 /* Use PHY topology as baseline for configuration */ 2129 memset(pcaps, 0, sizeof(*pcaps)); 2130 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2132 pcaps, NULL); 2133 else 2134 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2135 pcaps, NULL); 2136 if (err) { 2137 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2138 vsi->vsi_num, err); 2139 goto done; 2140 } 2141 2142 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2143 if (!cfg) { 2144 err = -ENOMEM; 2145 goto done; 2146 } 2147 2148 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2149 2150 /* Speed - If default override pending, use curr_user_phy_cfg set in 2151 * ice_init_phy_user_cfg_ldo. 2152 */ 2153 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2154 vsi->back->state)) { 2155 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2156 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2157 } else { 2158 u64 phy_low = 0, phy_high = 0; 2159 2160 ice_update_phy_type(&phy_low, &phy_high, 2161 pi->phy.curr_user_speed_req); 2162 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2163 cfg->phy_type_high = pcaps->phy_type_high & 2164 cpu_to_le64(phy_high); 2165 } 2166 2167 /* Can't provide what was requested; use PHY capabilities */ 2168 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2169 cfg->phy_type_low = pcaps->phy_type_low; 2170 cfg->phy_type_high = pcaps->phy_type_high; 2171 } 2172 2173 /* FEC */ 2174 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2175 2176 /* Can't provide what was requested; use PHY capabilities */ 2177 if (cfg->link_fec_opt != 2178 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2179 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2180 cfg->link_fec_opt = pcaps->link_fec_options; 2181 } 2182 2183 /* Flow Control - always supported; no need to check against 2184 * capabilities 2185 */ 2186 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2187 2188 /* Enable link and link update */ 2189 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2190 2191 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2192 if (err) 2193 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2194 vsi->vsi_num, err); 2195 2196 kfree(cfg); 2197 done: 2198 kfree(pcaps); 2199 return err; 2200 } 2201 2202 /** 2203 * ice_check_media_subtask - Check for media 2204 * @pf: pointer to PF struct 2205 * 2206 * If media is available, then initialize PHY user configuration if it is not 2207 * been, and configure the PHY if the interface is up. 2208 */ 2209 static void ice_check_media_subtask(struct ice_pf *pf) 2210 { 2211 struct ice_port_info *pi; 2212 struct ice_vsi *vsi; 2213 int err; 2214 2215 /* No need to check for media if it's already present */ 2216 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2217 return; 2218 2219 vsi = ice_get_main_vsi(pf); 2220 if (!vsi) 2221 return; 2222 2223 /* Refresh link info and check if media is present */ 2224 pi = vsi->port_info; 2225 err = ice_update_link_info(pi); 2226 if (err) 2227 return; 2228 2229 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2230 2231 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2232 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2233 ice_init_phy_user_cfg(pi); 2234 2235 /* PHY settings are reset on media insertion, reconfigure 2236 * PHY to preserve settings. 2237 */ 2238 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2239 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2240 return; 2241 2242 err = ice_configure_phy(vsi); 2243 if (!err) 2244 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2245 2246 /* A Link Status Event will be generated; the event handler 2247 * will complete bringing the interface up 2248 */ 2249 } 2250 } 2251 2252 /** 2253 * ice_service_task - manage and run subtasks 2254 * @work: pointer to work_struct contained by the PF struct 2255 */ 2256 static void ice_service_task(struct work_struct *work) 2257 { 2258 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2259 unsigned long start_time = jiffies; 2260 2261 /* subtasks */ 2262 2263 /* process reset requests first */ 2264 ice_reset_subtask(pf); 2265 2266 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2267 if (ice_is_reset_in_progress(pf->state) || 2268 test_bit(ICE_SUSPENDED, pf->state) || 2269 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2270 ice_service_task_complete(pf); 2271 return; 2272 } 2273 2274 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2275 struct iidc_event *event; 2276 2277 event = kzalloc(sizeof(*event), GFP_KERNEL); 2278 if (event) { 2279 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2280 /* report the entire OICR value to AUX driver */ 2281 swap(event->reg, pf->oicr_err_reg); 2282 ice_send_event_to_aux(pf, event); 2283 kfree(event); 2284 } 2285 } 2286 2287 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2288 /* Plug aux device per request */ 2289 ice_plug_aux_dev(pf); 2290 2291 /* Mark plugging as done but check whether unplug was 2292 * requested during ice_plug_aux_dev() call 2293 * (e.g. from ice_clear_rdma_cap()) and if so then 2294 * plug aux device. 2295 */ 2296 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2297 ice_unplug_aux_dev(pf); 2298 } 2299 2300 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2301 struct iidc_event *event; 2302 2303 event = kzalloc(sizeof(*event), GFP_KERNEL); 2304 if (event) { 2305 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2306 ice_send_event_to_aux(pf, event); 2307 kfree(event); 2308 } 2309 } 2310 2311 ice_clean_adminq_subtask(pf); 2312 ice_check_media_subtask(pf); 2313 ice_check_for_hang_subtask(pf); 2314 ice_sync_fltr_subtask(pf); 2315 ice_handle_mdd_event(pf); 2316 ice_watchdog_subtask(pf); 2317 2318 if (ice_is_safe_mode(pf)) { 2319 ice_service_task_complete(pf); 2320 return; 2321 } 2322 2323 ice_process_vflr_event(pf); 2324 ice_clean_mailboxq_subtask(pf); 2325 ice_clean_sbq_subtask(pf); 2326 ice_sync_arfs_fltrs(pf); 2327 ice_flush_fdir_ctx(pf); 2328 2329 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2330 ice_service_task_complete(pf); 2331 2332 /* If the tasks have taken longer than one service timer period 2333 * or there is more work to be done, reset the service timer to 2334 * schedule the service task now. 2335 */ 2336 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2337 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2338 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2339 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2340 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2341 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2342 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2343 mod_timer(&pf->serv_tmr, jiffies); 2344 } 2345 2346 /** 2347 * ice_set_ctrlq_len - helper function to set controlq length 2348 * @hw: pointer to the HW instance 2349 */ 2350 static void ice_set_ctrlq_len(struct ice_hw *hw) 2351 { 2352 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2353 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2354 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2355 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2356 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2357 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2358 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2359 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2360 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2361 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2362 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2363 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2364 } 2365 2366 /** 2367 * ice_schedule_reset - schedule a reset 2368 * @pf: board private structure 2369 * @reset: reset being requested 2370 */ 2371 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2372 { 2373 struct device *dev = ice_pf_to_dev(pf); 2374 2375 /* bail out if earlier reset has failed */ 2376 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2377 dev_dbg(dev, "earlier reset has failed\n"); 2378 return -EIO; 2379 } 2380 /* bail if reset/recovery already in progress */ 2381 if (ice_is_reset_in_progress(pf->state)) { 2382 dev_dbg(dev, "Reset already in progress\n"); 2383 return -EBUSY; 2384 } 2385 2386 ice_unplug_aux_dev(pf); 2387 2388 switch (reset) { 2389 case ICE_RESET_PFR: 2390 set_bit(ICE_PFR_REQ, pf->state); 2391 break; 2392 case ICE_RESET_CORER: 2393 set_bit(ICE_CORER_REQ, pf->state); 2394 break; 2395 case ICE_RESET_GLOBR: 2396 set_bit(ICE_GLOBR_REQ, pf->state); 2397 break; 2398 default: 2399 return -EINVAL; 2400 } 2401 2402 ice_service_task_schedule(pf); 2403 return 0; 2404 } 2405 2406 /** 2407 * ice_irq_affinity_notify - Callback for affinity changes 2408 * @notify: context as to what irq was changed 2409 * @mask: the new affinity mask 2410 * 2411 * This is a callback function used by the irq_set_affinity_notifier function 2412 * so that we may register to receive changes to the irq affinity masks. 2413 */ 2414 static void 2415 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2416 const cpumask_t *mask) 2417 { 2418 struct ice_q_vector *q_vector = 2419 container_of(notify, struct ice_q_vector, affinity_notify); 2420 2421 cpumask_copy(&q_vector->affinity_mask, mask); 2422 } 2423 2424 /** 2425 * ice_irq_affinity_release - Callback for affinity notifier release 2426 * @ref: internal core kernel usage 2427 * 2428 * This is a callback function used by the irq_set_affinity_notifier function 2429 * to inform the current notification subscriber that they will no longer 2430 * receive notifications. 2431 */ 2432 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2433 2434 /** 2435 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2436 * @vsi: the VSI being configured 2437 */ 2438 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2439 { 2440 struct ice_hw *hw = &vsi->back->hw; 2441 int i; 2442 2443 ice_for_each_q_vector(vsi, i) 2444 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2445 2446 ice_flush(hw); 2447 return 0; 2448 } 2449 2450 /** 2451 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2452 * @vsi: the VSI being configured 2453 * @basename: name for the vector 2454 */ 2455 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2456 { 2457 int q_vectors = vsi->num_q_vectors; 2458 struct ice_pf *pf = vsi->back; 2459 int base = vsi->base_vector; 2460 struct device *dev; 2461 int rx_int_idx = 0; 2462 int tx_int_idx = 0; 2463 int vector, err; 2464 int irq_num; 2465 2466 dev = ice_pf_to_dev(pf); 2467 for (vector = 0; vector < q_vectors; vector++) { 2468 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2469 2470 irq_num = pf->msix_entries[base + vector].vector; 2471 2472 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2473 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2474 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2475 tx_int_idx++; 2476 } else if (q_vector->rx.rx_ring) { 2477 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2478 "%s-%s-%d", basename, "rx", rx_int_idx++); 2479 } else if (q_vector->tx.tx_ring) { 2480 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2481 "%s-%s-%d", basename, "tx", tx_int_idx++); 2482 } else { 2483 /* skip this unused q_vector */ 2484 continue; 2485 } 2486 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2487 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2488 IRQF_SHARED, q_vector->name, 2489 q_vector); 2490 else 2491 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2492 0, q_vector->name, q_vector); 2493 if (err) { 2494 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2495 err); 2496 goto free_q_irqs; 2497 } 2498 2499 /* register for affinity change notifications */ 2500 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2501 struct irq_affinity_notify *affinity_notify; 2502 2503 affinity_notify = &q_vector->affinity_notify; 2504 affinity_notify->notify = ice_irq_affinity_notify; 2505 affinity_notify->release = ice_irq_affinity_release; 2506 irq_set_affinity_notifier(irq_num, affinity_notify); 2507 } 2508 2509 /* assign the mask for this irq */ 2510 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2511 } 2512 2513 err = ice_set_cpu_rx_rmap(vsi); 2514 if (err) { 2515 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2516 vsi->vsi_num, ERR_PTR(err)); 2517 goto free_q_irqs; 2518 } 2519 2520 vsi->irqs_ready = true; 2521 return 0; 2522 2523 free_q_irqs: 2524 while (vector) { 2525 vector--; 2526 irq_num = pf->msix_entries[base + vector].vector; 2527 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2528 irq_set_affinity_notifier(irq_num, NULL); 2529 irq_set_affinity_hint(irq_num, NULL); 2530 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2531 } 2532 return err; 2533 } 2534 2535 /** 2536 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2537 * @vsi: VSI to setup Tx rings used by XDP 2538 * 2539 * Return 0 on success and negative value on error 2540 */ 2541 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2542 { 2543 struct device *dev = ice_pf_to_dev(vsi->back); 2544 struct ice_tx_desc *tx_desc; 2545 int i, j; 2546 2547 ice_for_each_xdp_txq(vsi, i) { 2548 u16 xdp_q_idx = vsi->alloc_txq + i; 2549 struct ice_tx_ring *xdp_ring; 2550 2551 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2552 2553 if (!xdp_ring) 2554 goto free_xdp_rings; 2555 2556 xdp_ring->q_index = xdp_q_idx; 2557 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2558 xdp_ring->vsi = vsi; 2559 xdp_ring->netdev = NULL; 2560 xdp_ring->dev = dev; 2561 xdp_ring->count = vsi->num_tx_desc; 2562 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2563 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2564 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2565 if (ice_setup_tx_ring(xdp_ring)) 2566 goto free_xdp_rings; 2567 ice_set_ring_xdp(xdp_ring); 2568 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2569 spin_lock_init(&xdp_ring->tx_lock); 2570 for (j = 0; j < xdp_ring->count; j++) { 2571 tx_desc = ICE_TX_DESC(xdp_ring, j); 2572 tx_desc->cmd_type_offset_bsz = 0; 2573 } 2574 } 2575 2576 ice_for_each_rxq(vsi, i) { 2577 if (static_key_enabled(&ice_xdp_locking_key)) 2578 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2579 else 2580 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2581 } 2582 2583 return 0; 2584 2585 free_xdp_rings: 2586 for (; i >= 0; i--) 2587 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2588 ice_free_tx_ring(vsi->xdp_rings[i]); 2589 return -ENOMEM; 2590 } 2591 2592 /** 2593 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2594 * @vsi: VSI to set the bpf prog on 2595 * @prog: the bpf prog pointer 2596 */ 2597 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2598 { 2599 struct bpf_prog *old_prog; 2600 int i; 2601 2602 old_prog = xchg(&vsi->xdp_prog, prog); 2603 if (old_prog) 2604 bpf_prog_put(old_prog); 2605 2606 ice_for_each_rxq(vsi, i) 2607 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2608 } 2609 2610 /** 2611 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2612 * @vsi: VSI to bring up Tx rings used by XDP 2613 * @prog: bpf program that will be assigned to VSI 2614 * 2615 * Return 0 on success and negative value on error 2616 */ 2617 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2618 { 2619 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2620 int xdp_rings_rem = vsi->num_xdp_txq; 2621 struct ice_pf *pf = vsi->back; 2622 struct ice_qs_cfg xdp_qs_cfg = { 2623 .qs_mutex = &pf->avail_q_mutex, 2624 .pf_map = pf->avail_txqs, 2625 .pf_map_size = pf->max_pf_txqs, 2626 .q_count = vsi->num_xdp_txq, 2627 .scatter_count = ICE_MAX_SCATTER_TXQS, 2628 .vsi_map = vsi->txq_map, 2629 .vsi_map_offset = vsi->alloc_txq, 2630 .mapping_mode = ICE_VSI_MAP_CONTIG 2631 }; 2632 struct device *dev; 2633 int i, v_idx; 2634 int status; 2635 2636 dev = ice_pf_to_dev(pf); 2637 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2638 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2639 if (!vsi->xdp_rings) 2640 return -ENOMEM; 2641 2642 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2643 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2644 goto err_map_xdp; 2645 2646 if (static_key_enabled(&ice_xdp_locking_key)) 2647 netdev_warn(vsi->netdev, 2648 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2649 2650 if (ice_xdp_alloc_setup_rings(vsi)) 2651 goto clear_xdp_rings; 2652 2653 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2654 ice_for_each_q_vector(vsi, v_idx) { 2655 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2656 int xdp_rings_per_v, q_id, q_base; 2657 2658 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2659 vsi->num_q_vectors - v_idx); 2660 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2661 2662 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2663 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2664 2665 xdp_ring->q_vector = q_vector; 2666 xdp_ring->next = q_vector->tx.tx_ring; 2667 q_vector->tx.tx_ring = xdp_ring; 2668 } 2669 xdp_rings_rem -= xdp_rings_per_v; 2670 } 2671 2672 /* omit the scheduler update if in reset path; XDP queues will be 2673 * taken into account at the end of ice_vsi_rebuild, where 2674 * ice_cfg_vsi_lan is being called 2675 */ 2676 if (ice_is_reset_in_progress(pf->state)) 2677 return 0; 2678 2679 /* tell the Tx scheduler that right now we have 2680 * additional queues 2681 */ 2682 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2683 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2684 2685 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2686 max_txqs); 2687 if (status) { 2688 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2689 status); 2690 goto clear_xdp_rings; 2691 } 2692 2693 /* assign the prog only when it's not already present on VSI; 2694 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2695 * VSI rebuild that happens under ethtool -L can expose us to 2696 * the bpf_prog refcount issues as we would be swapping same 2697 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2698 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2699 * this is not harmful as dev_xdp_install bumps the refcount 2700 * before calling the op exposed by the driver; 2701 */ 2702 if (!ice_is_xdp_ena_vsi(vsi)) 2703 ice_vsi_assign_bpf_prog(vsi, prog); 2704 2705 return 0; 2706 clear_xdp_rings: 2707 ice_for_each_xdp_txq(vsi, i) 2708 if (vsi->xdp_rings[i]) { 2709 kfree_rcu(vsi->xdp_rings[i], rcu); 2710 vsi->xdp_rings[i] = NULL; 2711 } 2712 2713 err_map_xdp: 2714 mutex_lock(&pf->avail_q_mutex); 2715 ice_for_each_xdp_txq(vsi, i) { 2716 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2717 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2718 } 2719 mutex_unlock(&pf->avail_q_mutex); 2720 2721 devm_kfree(dev, vsi->xdp_rings); 2722 return -ENOMEM; 2723 } 2724 2725 /** 2726 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2727 * @vsi: VSI to remove XDP rings 2728 * 2729 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2730 * resources 2731 */ 2732 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2733 { 2734 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2735 struct ice_pf *pf = vsi->back; 2736 int i, v_idx; 2737 2738 /* q_vectors are freed in reset path so there's no point in detaching 2739 * rings; in case of rebuild being triggered not from reset bits 2740 * in pf->state won't be set, so additionally check first q_vector 2741 * against NULL 2742 */ 2743 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2744 goto free_qmap; 2745 2746 ice_for_each_q_vector(vsi, v_idx) { 2747 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2748 struct ice_tx_ring *ring; 2749 2750 ice_for_each_tx_ring(ring, q_vector->tx) 2751 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2752 break; 2753 2754 /* restore the value of last node prior to XDP setup */ 2755 q_vector->tx.tx_ring = ring; 2756 } 2757 2758 free_qmap: 2759 mutex_lock(&pf->avail_q_mutex); 2760 ice_for_each_xdp_txq(vsi, i) { 2761 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2762 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2763 } 2764 mutex_unlock(&pf->avail_q_mutex); 2765 2766 ice_for_each_xdp_txq(vsi, i) 2767 if (vsi->xdp_rings[i]) { 2768 if (vsi->xdp_rings[i]->desc) { 2769 synchronize_rcu(); 2770 ice_free_tx_ring(vsi->xdp_rings[i]); 2771 } 2772 kfree_rcu(vsi->xdp_rings[i], rcu); 2773 vsi->xdp_rings[i] = NULL; 2774 } 2775 2776 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2777 vsi->xdp_rings = NULL; 2778 2779 if (static_key_enabled(&ice_xdp_locking_key)) 2780 static_branch_dec(&ice_xdp_locking_key); 2781 2782 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2783 return 0; 2784 2785 ice_vsi_assign_bpf_prog(vsi, NULL); 2786 2787 /* notify Tx scheduler that we destroyed XDP queues and bring 2788 * back the old number of child nodes 2789 */ 2790 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2791 max_txqs[i] = vsi->num_txq; 2792 2793 /* change number of XDP Tx queues to 0 */ 2794 vsi->num_xdp_txq = 0; 2795 2796 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2797 max_txqs); 2798 } 2799 2800 /** 2801 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2802 * @vsi: VSI to schedule napi on 2803 */ 2804 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2805 { 2806 int i; 2807 2808 ice_for_each_rxq(vsi, i) { 2809 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2810 2811 if (rx_ring->xsk_pool) 2812 napi_schedule(&rx_ring->q_vector->napi); 2813 } 2814 } 2815 2816 /** 2817 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2818 * @vsi: VSI to determine the count of XDP Tx qs 2819 * 2820 * returns 0 if Tx qs count is higher than at least half of CPU count, 2821 * -ENOMEM otherwise 2822 */ 2823 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2824 { 2825 u16 avail = ice_get_avail_txq_count(vsi->back); 2826 u16 cpus = num_possible_cpus(); 2827 2828 if (avail < cpus / 2) 2829 return -ENOMEM; 2830 2831 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2832 2833 if (vsi->num_xdp_txq < cpus) 2834 static_branch_inc(&ice_xdp_locking_key); 2835 2836 return 0; 2837 } 2838 2839 /** 2840 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2841 * @vsi: VSI to setup XDP for 2842 * @prog: XDP program 2843 * @extack: netlink extended ack 2844 */ 2845 static int 2846 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2847 struct netlink_ext_ack *extack) 2848 { 2849 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2850 bool if_running = netif_running(vsi->netdev); 2851 int ret = 0, xdp_ring_err = 0; 2852 2853 if (frame_size > vsi->rx_buf_len) { 2854 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2855 return -EOPNOTSUPP; 2856 } 2857 2858 /* need to stop netdev while setting up the program for Rx rings */ 2859 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2860 ret = ice_down(vsi); 2861 if (ret) { 2862 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2863 return ret; 2864 } 2865 } 2866 2867 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2868 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2869 if (xdp_ring_err) { 2870 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2871 } else { 2872 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2873 if (xdp_ring_err) 2874 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2875 } 2876 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2877 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2878 if (xdp_ring_err) 2879 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2880 } else { 2881 /* safe to call even when prog == vsi->xdp_prog as 2882 * dev_xdp_install in net/core/dev.c incremented prog's 2883 * refcount so corresponding bpf_prog_put won't cause 2884 * underflow 2885 */ 2886 ice_vsi_assign_bpf_prog(vsi, prog); 2887 } 2888 2889 if (if_running) 2890 ret = ice_up(vsi); 2891 2892 if (!ret && prog) 2893 ice_vsi_rx_napi_schedule(vsi); 2894 2895 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2896 } 2897 2898 /** 2899 * ice_xdp_safe_mode - XDP handler for safe mode 2900 * @dev: netdevice 2901 * @xdp: XDP command 2902 */ 2903 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2904 struct netdev_bpf *xdp) 2905 { 2906 NL_SET_ERR_MSG_MOD(xdp->extack, 2907 "Please provide working DDP firmware package in order to use XDP\n" 2908 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2909 return -EOPNOTSUPP; 2910 } 2911 2912 /** 2913 * ice_xdp - implements XDP handler 2914 * @dev: netdevice 2915 * @xdp: XDP command 2916 */ 2917 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2918 { 2919 struct ice_netdev_priv *np = netdev_priv(dev); 2920 struct ice_vsi *vsi = np->vsi; 2921 2922 if (vsi->type != ICE_VSI_PF) { 2923 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2924 return -EINVAL; 2925 } 2926 2927 switch (xdp->command) { 2928 case XDP_SETUP_PROG: 2929 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2930 case XDP_SETUP_XSK_POOL: 2931 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2932 xdp->xsk.queue_id); 2933 default: 2934 return -EINVAL; 2935 } 2936 } 2937 2938 /** 2939 * ice_ena_misc_vector - enable the non-queue interrupts 2940 * @pf: board private structure 2941 */ 2942 static void ice_ena_misc_vector(struct ice_pf *pf) 2943 { 2944 struct ice_hw *hw = &pf->hw; 2945 u32 val; 2946 2947 /* Disable anti-spoof detection interrupt to prevent spurious event 2948 * interrupts during a function reset. Anti-spoof functionally is 2949 * still supported. 2950 */ 2951 val = rd32(hw, GL_MDCK_TX_TDPU); 2952 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2953 wr32(hw, GL_MDCK_TX_TDPU, val); 2954 2955 /* clear things first */ 2956 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2957 rd32(hw, PFINT_OICR); /* read to clear */ 2958 2959 val = (PFINT_OICR_ECC_ERR_M | 2960 PFINT_OICR_MAL_DETECT_M | 2961 PFINT_OICR_GRST_M | 2962 PFINT_OICR_PCI_EXCEPTION_M | 2963 PFINT_OICR_VFLR_M | 2964 PFINT_OICR_HMC_ERR_M | 2965 PFINT_OICR_PE_PUSH_M | 2966 PFINT_OICR_PE_CRITERR_M); 2967 2968 wr32(hw, PFINT_OICR_ENA, val); 2969 2970 /* SW_ITR_IDX = 0, but don't change INTENA */ 2971 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2972 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2973 } 2974 2975 /** 2976 * ice_misc_intr - misc interrupt handler 2977 * @irq: interrupt number 2978 * @data: pointer to a q_vector 2979 */ 2980 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2981 { 2982 struct ice_pf *pf = (struct ice_pf *)data; 2983 struct ice_hw *hw = &pf->hw; 2984 irqreturn_t ret = IRQ_NONE; 2985 struct device *dev; 2986 u32 oicr, ena_mask; 2987 2988 dev = ice_pf_to_dev(pf); 2989 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2990 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2991 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2992 2993 oicr = rd32(hw, PFINT_OICR); 2994 ena_mask = rd32(hw, PFINT_OICR_ENA); 2995 2996 if (oicr & PFINT_OICR_SWINT_M) { 2997 ena_mask &= ~PFINT_OICR_SWINT_M; 2998 pf->sw_int_count++; 2999 } 3000 3001 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3002 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3003 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3004 } 3005 if (oicr & PFINT_OICR_VFLR_M) { 3006 /* disable any further VFLR event notifications */ 3007 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3008 u32 reg = rd32(hw, PFINT_OICR_ENA); 3009 3010 reg &= ~PFINT_OICR_VFLR_M; 3011 wr32(hw, PFINT_OICR_ENA, reg); 3012 } else { 3013 ena_mask &= ~PFINT_OICR_VFLR_M; 3014 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3015 } 3016 } 3017 3018 if (oicr & PFINT_OICR_GRST_M) { 3019 u32 reset; 3020 3021 /* we have a reset warning */ 3022 ena_mask &= ~PFINT_OICR_GRST_M; 3023 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3024 GLGEN_RSTAT_RESET_TYPE_S; 3025 3026 if (reset == ICE_RESET_CORER) 3027 pf->corer_count++; 3028 else if (reset == ICE_RESET_GLOBR) 3029 pf->globr_count++; 3030 else if (reset == ICE_RESET_EMPR) 3031 pf->empr_count++; 3032 else 3033 dev_dbg(dev, "Invalid reset type %d\n", reset); 3034 3035 /* If a reset cycle isn't already in progress, we set a bit in 3036 * pf->state so that the service task can start a reset/rebuild. 3037 */ 3038 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3039 if (reset == ICE_RESET_CORER) 3040 set_bit(ICE_CORER_RECV, pf->state); 3041 else if (reset == ICE_RESET_GLOBR) 3042 set_bit(ICE_GLOBR_RECV, pf->state); 3043 else 3044 set_bit(ICE_EMPR_RECV, pf->state); 3045 3046 /* There are couple of different bits at play here. 3047 * hw->reset_ongoing indicates whether the hardware is 3048 * in reset. This is set to true when a reset interrupt 3049 * is received and set back to false after the driver 3050 * has determined that the hardware is out of reset. 3051 * 3052 * ICE_RESET_OICR_RECV in pf->state indicates 3053 * that a post reset rebuild is required before the 3054 * driver is operational again. This is set above. 3055 * 3056 * As this is the start of the reset/rebuild cycle, set 3057 * both to indicate that. 3058 */ 3059 hw->reset_ongoing = true; 3060 } 3061 } 3062 3063 if (oicr & PFINT_OICR_TSYN_TX_M) { 3064 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3065 ice_ptp_process_ts(pf); 3066 } 3067 3068 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3069 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3070 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3071 3072 /* Save EVENTs from GTSYN register */ 3073 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3074 GLTSYN_STAT_EVENT1_M | 3075 GLTSYN_STAT_EVENT2_M); 3076 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3077 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3078 } 3079 3080 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3081 if (oicr & ICE_AUX_CRIT_ERR) { 3082 pf->oicr_err_reg |= oicr; 3083 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3084 ena_mask &= ~ICE_AUX_CRIT_ERR; 3085 } 3086 3087 /* Report any remaining unexpected interrupts */ 3088 oicr &= ena_mask; 3089 if (oicr) { 3090 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3091 /* If a critical error is pending there is no choice but to 3092 * reset the device. 3093 */ 3094 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3095 PFINT_OICR_ECC_ERR_M)) { 3096 set_bit(ICE_PFR_REQ, pf->state); 3097 ice_service_task_schedule(pf); 3098 } 3099 } 3100 ret = IRQ_HANDLED; 3101 3102 ice_service_task_schedule(pf); 3103 ice_irq_dynamic_ena(hw, NULL, NULL); 3104 3105 return ret; 3106 } 3107 3108 /** 3109 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3110 * @hw: pointer to HW structure 3111 */ 3112 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3113 { 3114 /* disable Admin queue Interrupt causes */ 3115 wr32(hw, PFINT_FW_CTL, 3116 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3117 3118 /* disable Mailbox queue Interrupt causes */ 3119 wr32(hw, PFINT_MBX_CTL, 3120 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3121 3122 wr32(hw, PFINT_SB_CTL, 3123 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3124 3125 /* disable Control queue Interrupt causes */ 3126 wr32(hw, PFINT_OICR_CTL, 3127 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3128 3129 ice_flush(hw); 3130 } 3131 3132 /** 3133 * ice_free_irq_msix_misc - Unroll misc vector setup 3134 * @pf: board private structure 3135 */ 3136 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3137 { 3138 struct ice_hw *hw = &pf->hw; 3139 3140 ice_dis_ctrlq_interrupts(hw); 3141 3142 /* disable OICR interrupt */ 3143 wr32(hw, PFINT_OICR_ENA, 0); 3144 ice_flush(hw); 3145 3146 if (pf->msix_entries) { 3147 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3148 devm_free_irq(ice_pf_to_dev(pf), 3149 pf->msix_entries[pf->oicr_idx].vector, pf); 3150 } 3151 3152 pf->num_avail_sw_msix += 1; 3153 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3154 } 3155 3156 /** 3157 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3158 * @hw: pointer to HW structure 3159 * @reg_idx: HW vector index to associate the control queue interrupts with 3160 */ 3161 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3162 { 3163 u32 val; 3164 3165 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3166 PFINT_OICR_CTL_CAUSE_ENA_M); 3167 wr32(hw, PFINT_OICR_CTL, val); 3168 3169 /* enable Admin queue Interrupt causes */ 3170 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3171 PFINT_FW_CTL_CAUSE_ENA_M); 3172 wr32(hw, PFINT_FW_CTL, val); 3173 3174 /* enable Mailbox queue Interrupt causes */ 3175 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3176 PFINT_MBX_CTL_CAUSE_ENA_M); 3177 wr32(hw, PFINT_MBX_CTL, val); 3178 3179 /* This enables Sideband queue Interrupt causes */ 3180 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3181 PFINT_SB_CTL_CAUSE_ENA_M); 3182 wr32(hw, PFINT_SB_CTL, val); 3183 3184 ice_flush(hw); 3185 } 3186 3187 /** 3188 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3189 * @pf: board private structure 3190 * 3191 * This sets up the handler for MSIX 0, which is used to manage the 3192 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3193 * when in MSI or Legacy interrupt mode. 3194 */ 3195 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3196 { 3197 struct device *dev = ice_pf_to_dev(pf); 3198 struct ice_hw *hw = &pf->hw; 3199 int oicr_idx, err = 0; 3200 3201 if (!pf->int_name[0]) 3202 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3203 dev_driver_string(dev), dev_name(dev)); 3204 3205 /* Do not request IRQ but do enable OICR interrupt since settings are 3206 * lost during reset. Note that this function is called only during 3207 * rebuild path and not while reset is in progress. 3208 */ 3209 if (ice_is_reset_in_progress(pf->state)) 3210 goto skip_req_irq; 3211 3212 /* reserve one vector in irq_tracker for misc interrupts */ 3213 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3214 if (oicr_idx < 0) 3215 return oicr_idx; 3216 3217 pf->num_avail_sw_msix -= 1; 3218 pf->oicr_idx = (u16)oicr_idx; 3219 3220 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3221 ice_misc_intr, 0, pf->int_name, pf); 3222 if (err) { 3223 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3224 pf->int_name, err); 3225 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3226 pf->num_avail_sw_msix += 1; 3227 return err; 3228 } 3229 3230 skip_req_irq: 3231 ice_ena_misc_vector(pf); 3232 3233 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3234 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3235 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3236 3237 ice_flush(hw); 3238 ice_irq_dynamic_ena(hw, NULL, NULL); 3239 3240 return 0; 3241 } 3242 3243 /** 3244 * ice_napi_add - register NAPI handler for the VSI 3245 * @vsi: VSI for which NAPI handler is to be registered 3246 * 3247 * This function is only called in the driver's load path. Registering the NAPI 3248 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3249 * reset/rebuild, etc.) 3250 */ 3251 static void ice_napi_add(struct ice_vsi *vsi) 3252 { 3253 int v_idx; 3254 3255 if (!vsi->netdev) 3256 return; 3257 3258 ice_for_each_q_vector(vsi, v_idx) 3259 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3260 ice_napi_poll, NAPI_POLL_WEIGHT); 3261 } 3262 3263 /** 3264 * ice_set_ops - set netdev and ethtools ops for the given netdev 3265 * @netdev: netdev instance 3266 */ 3267 static void ice_set_ops(struct net_device *netdev) 3268 { 3269 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3270 3271 if (ice_is_safe_mode(pf)) { 3272 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3273 ice_set_ethtool_safe_mode_ops(netdev); 3274 return; 3275 } 3276 3277 netdev->netdev_ops = &ice_netdev_ops; 3278 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3279 ice_set_ethtool_ops(netdev); 3280 } 3281 3282 /** 3283 * ice_set_netdev_features - set features for the given netdev 3284 * @netdev: netdev instance 3285 */ 3286 static void ice_set_netdev_features(struct net_device *netdev) 3287 { 3288 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3289 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3290 netdev_features_t csumo_features; 3291 netdev_features_t vlano_features; 3292 netdev_features_t dflt_features; 3293 netdev_features_t tso_features; 3294 3295 if (ice_is_safe_mode(pf)) { 3296 /* safe mode */ 3297 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3298 netdev->hw_features = netdev->features; 3299 return; 3300 } 3301 3302 dflt_features = NETIF_F_SG | 3303 NETIF_F_HIGHDMA | 3304 NETIF_F_NTUPLE | 3305 NETIF_F_RXHASH; 3306 3307 csumo_features = NETIF_F_RXCSUM | 3308 NETIF_F_IP_CSUM | 3309 NETIF_F_SCTP_CRC | 3310 NETIF_F_IPV6_CSUM; 3311 3312 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3313 NETIF_F_HW_VLAN_CTAG_TX | 3314 NETIF_F_HW_VLAN_CTAG_RX; 3315 3316 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3317 if (is_dvm_ena) 3318 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3319 3320 tso_features = NETIF_F_TSO | 3321 NETIF_F_TSO_ECN | 3322 NETIF_F_TSO6 | 3323 NETIF_F_GSO_GRE | 3324 NETIF_F_GSO_UDP_TUNNEL | 3325 NETIF_F_GSO_GRE_CSUM | 3326 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3327 NETIF_F_GSO_PARTIAL | 3328 NETIF_F_GSO_IPXIP4 | 3329 NETIF_F_GSO_IPXIP6 | 3330 NETIF_F_GSO_UDP_L4; 3331 3332 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3333 NETIF_F_GSO_GRE_CSUM; 3334 /* set features that user can change */ 3335 netdev->hw_features = dflt_features | csumo_features | 3336 vlano_features | tso_features; 3337 3338 /* add support for HW_CSUM on packets with MPLS header */ 3339 netdev->mpls_features = NETIF_F_HW_CSUM; 3340 3341 /* enable features */ 3342 netdev->features |= netdev->hw_features; 3343 3344 netdev->hw_features |= NETIF_F_HW_TC; 3345 3346 /* encap and VLAN devices inherit default, csumo and tso features */ 3347 netdev->hw_enc_features |= dflt_features | csumo_features | 3348 tso_features; 3349 netdev->vlan_features |= dflt_features | csumo_features | 3350 tso_features; 3351 3352 /* advertise support but don't enable by default since only one type of 3353 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3354 * type turns on the other has to be turned off. This is enforced by the 3355 * ice_fix_features() ndo callback. 3356 */ 3357 if (is_dvm_ena) 3358 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3359 NETIF_F_HW_VLAN_STAG_TX; 3360 } 3361 3362 /** 3363 * ice_cfg_netdev - Allocate, configure and register a netdev 3364 * @vsi: the VSI associated with the new netdev 3365 * 3366 * Returns 0 on success, negative value on failure 3367 */ 3368 static int ice_cfg_netdev(struct ice_vsi *vsi) 3369 { 3370 struct ice_netdev_priv *np; 3371 struct net_device *netdev; 3372 u8 mac_addr[ETH_ALEN]; 3373 3374 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3375 vsi->alloc_rxq); 3376 if (!netdev) 3377 return -ENOMEM; 3378 3379 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3380 vsi->netdev = netdev; 3381 np = netdev_priv(netdev); 3382 np->vsi = vsi; 3383 3384 ice_set_netdev_features(netdev); 3385 3386 ice_set_ops(netdev); 3387 3388 if (vsi->type == ICE_VSI_PF) { 3389 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3390 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3391 eth_hw_addr_set(netdev, mac_addr); 3392 ether_addr_copy(netdev->perm_addr, mac_addr); 3393 } 3394 3395 netdev->priv_flags |= IFF_UNICAST_FLT; 3396 3397 /* Setup netdev TC information */ 3398 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3399 3400 /* setup watchdog timeout value to be 5 second */ 3401 netdev->watchdog_timeo = 5 * HZ; 3402 3403 netdev->min_mtu = ETH_MIN_MTU; 3404 netdev->max_mtu = ICE_MAX_MTU; 3405 3406 return 0; 3407 } 3408 3409 /** 3410 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3411 * @lut: Lookup table 3412 * @rss_table_size: Lookup table size 3413 * @rss_size: Range of queue number for hashing 3414 */ 3415 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3416 { 3417 u16 i; 3418 3419 for (i = 0; i < rss_table_size; i++) 3420 lut[i] = i % rss_size; 3421 } 3422 3423 /** 3424 * ice_pf_vsi_setup - Set up a PF VSI 3425 * @pf: board private structure 3426 * @pi: pointer to the port_info instance 3427 * 3428 * Returns pointer to the successfully allocated VSI software struct 3429 * on success, otherwise returns NULL on failure. 3430 */ 3431 static struct ice_vsi * 3432 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3433 { 3434 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3435 } 3436 3437 static struct ice_vsi * 3438 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3439 struct ice_channel *ch) 3440 { 3441 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3442 } 3443 3444 /** 3445 * ice_ctrl_vsi_setup - Set up a control VSI 3446 * @pf: board private structure 3447 * @pi: pointer to the port_info instance 3448 * 3449 * Returns pointer to the successfully allocated VSI software struct 3450 * on success, otherwise returns NULL on failure. 3451 */ 3452 static struct ice_vsi * 3453 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3454 { 3455 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3456 } 3457 3458 /** 3459 * ice_lb_vsi_setup - Set up a loopback VSI 3460 * @pf: board private structure 3461 * @pi: pointer to the port_info instance 3462 * 3463 * Returns pointer to the successfully allocated VSI software struct 3464 * on success, otherwise returns NULL on failure. 3465 */ 3466 struct ice_vsi * 3467 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3468 { 3469 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3470 } 3471 3472 /** 3473 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3474 * @netdev: network interface to be adjusted 3475 * @proto: VLAN TPID 3476 * @vid: VLAN ID to be added 3477 * 3478 * net_device_ops implementation for adding VLAN IDs 3479 */ 3480 static int 3481 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3482 { 3483 struct ice_netdev_priv *np = netdev_priv(netdev); 3484 struct ice_vsi_vlan_ops *vlan_ops; 3485 struct ice_vsi *vsi = np->vsi; 3486 struct ice_vlan vlan; 3487 int ret; 3488 3489 /* VLAN 0 is added by default during load/reset */ 3490 if (!vid) 3491 return 0; 3492 3493 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3494 usleep_range(1000, 2000); 3495 3496 /* Add multicast promisc rule for the VLAN ID to be added if 3497 * all-multicast is currently enabled. 3498 */ 3499 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3500 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3501 ICE_MCAST_VLAN_PROMISC_BITS, 3502 vid); 3503 if (ret) 3504 goto finish; 3505 } 3506 3507 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3508 3509 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3510 * packets aren't pruned by the device's internal switch on Rx 3511 */ 3512 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3513 ret = vlan_ops->add_vlan(vsi, &vlan); 3514 if (ret) 3515 goto finish; 3516 3517 /* If all-multicast is currently enabled and this VLAN ID is only one 3518 * besides VLAN-0 we have to update look-up type of multicast promisc 3519 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3520 */ 3521 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3522 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3523 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3524 ICE_MCAST_PROMISC_BITS, 0); 3525 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3526 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3527 } 3528 3529 finish: 3530 clear_bit(ICE_CFG_BUSY, vsi->state); 3531 3532 return ret; 3533 } 3534 3535 /** 3536 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3537 * @netdev: network interface to be adjusted 3538 * @proto: VLAN TPID 3539 * @vid: VLAN ID to be removed 3540 * 3541 * net_device_ops implementation for removing VLAN IDs 3542 */ 3543 static int 3544 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3545 { 3546 struct ice_netdev_priv *np = netdev_priv(netdev); 3547 struct ice_vsi_vlan_ops *vlan_ops; 3548 struct ice_vsi *vsi = np->vsi; 3549 struct ice_vlan vlan; 3550 int ret; 3551 3552 /* don't allow removal of VLAN 0 */ 3553 if (!vid) 3554 return 0; 3555 3556 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3557 usleep_range(1000, 2000); 3558 3559 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3560 3561 /* Make sure VLAN delete is successful before updating VLAN 3562 * information 3563 */ 3564 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3565 ret = vlan_ops->del_vlan(vsi, &vlan); 3566 if (ret) 3567 goto finish; 3568 3569 /* Remove multicast promisc rule for the removed VLAN ID if 3570 * all-multicast is enabled. 3571 */ 3572 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3573 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3574 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3575 3576 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3577 /* Update look-up type of multicast promisc rule for VLAN 0 3578 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3579 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3580 */ 3581 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3582 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3583 ICE_MCAST_VLAN_PROMISC_BITS, 3584 0); 3585 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3586 ICE_MCAST_PROMISC_BITS, 0); 3587 } 3588 } 3589 3590 finish: 3591 clear_bit(ICE_CFG_BUSY, vsi->state); 3592 3593 return ret; 3594 } 3595 3596 /** 3597 * ice_rep_indr_tc_block_unbind 3598 * @cb_priv: indirection block private data 3599 */ 3600 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3601 { 3602 struct ice_indr_block_priv *indr_priv = cb_priv; 3603 3604 list_del(&indr_priv->list); 3605 kfree(indr_priv); 3606 } 3607 3608 /** 3609 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3610 * @vsi: VSI struct which has the netdev 3611 */ 3612 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3613 { 3614 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3615 3616 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3617 ice_rep_indr_tc_block_unbind); 3618 } 3619 3620 /** 3621 * ice_tc_indir_block_remove - clean indirect TC block notifications 3622 * @pf: PF structure 3623 */ 3624 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3625 { 3626 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3627 3628 if (!pf_vsi) 3629 return; 3630 3631 ice_tc_indir_block_unregister(pf_vsi); 3632 } 3633 3634 /** 3635 * ice_tc_indir_block_register - Register TC indirect block notifications 3636 * @vsi: VSI struct which has the netdev 3637 * 3638 * Returns 0 on success, negative value on failure 3639 */ 3640 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3641 { 3642 struct ice_netdev_priv *np; 3643 3644 if (!vsi || !vsi->netdev) 3645 return -EINVAL; 3646 3647 np = netdev_priv(vsi->netdev); 3648 3649 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3650 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3651 } 3652 3653 /** 3654 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3655 * @pf: board private structure 3656 * 3657 * Returns 0 on success, negative value on failure 3658 */ 3659 static int ice_setup_pf_sw(struct ice_pf *pf) 3660 { 3661 struct device *dev = ice_pf_to_dev(pf); 3662 bool dvm = ice_is_dvm_ena(&pf->hw); 3663 struct ice_vsi *vsi; 3664 int status; 3665 3666 if (ice_is_reset_in_progress(pf->state)) 3667 return -EBUSY; 3668 3669 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3670 if (status) 3671 return -EIO; 3672 3673 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3674 if (!vsi) 3675 return -ENOMEM; 3676 3677 /* init channel list */ 3678 INIT_LIST_HEAD(&vsi->ch_list); 3679 3680 status = ice_cfg_netdev(vsi); 3681 if (status) 3682 goto unroll_vsi_setup; 3683 /* netdev has to be configured before setting frame size */ 3684 ice_vsi_cfg_frame_size(vsi); 3685 3686 /* init indirect block notifications */ 3687 status = ice_tc_indir_block_register(vsi); 3688 if (status) { 3689 dev_err(dev, "Failed to register netdev notifier\n"); 3690 goto unroll_cfg_netdev; 3691 } 3692 3693 /* Setup DCB netlink interface */ 3694 ice_dcbnl_setup(vsi); 3695 3696 /* registering the NAPI handler requires both the queues and 3697 * netdev to be created, which are done in ice_pf_vsi_setup() 3698 * and ice_cfg_netdev() respectively 3699 */ 3700 ice_napi_add(vsi); 3701 3702 status = ice_init_mac_fltr(pf); 3703 if (status) 3704 goto unroll_napi_add; 3705 3706 return 0; 3707 3708 unroll_napi_add: 3709 ice_tc_indir_block_unregister(vsi); 3710 unroll_cfg_netdev: 3711 if (vsi) { 3712 ice_napi_del(vsi); 3713 if (vsi->netdev) { 3714 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3715 free_netdev(vsi->netdev); 3716 vsi->netdev = NULL; 3717 } 3718 } 3719 3720 unroll_vsi_setup: 3721 ice_vsi_release(vsi); 3722 return status; 3723 } 3724 3725 /** 3726 * ice_get_avail_q_count - Get count of queues in use 3727 * @pf_qmap: bitmap to get queue use count from 3728 * @lock: pointer to a mutex that protects access to pf_qmap 3729 * @size: size of the bitmap 3730 */ 3731 static u16 3732 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3733 { 3734 unsigned long bit; 3735 u16 count = 0; 3736 3737 mutex_lock(lock); 3738 for_each_clear_bit(bit, pf_qmap, size) 3739 count++; 3740 mutex_unlock(lock); 3741 3742 return count; 3743 } 3744 3745 /** 3746 * ice_get_avail_txq_count - Get count of Tx queues in use 3747 * @pf: pointer to an ice_pf instance 3748 */ 3749 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3750 { 3751 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3752 pf->max_pf_txqs); 3753 } 3754 3755 /** 3756 * ice_get_avail_rxq_count - Get count of Rx queues in use 3757 * @pf: pointer to an ice_pf instance 3758 */ 3759 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3760 { 3761 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3762 pf->max_pf_rxqs); 3763 } 3764 3765 /** 3766 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3767 * @pf: board private structure to initialize 3768 */ 3769 static void ice_deinit_pf(struct ice_pf *pf) 3770 { 3771 ice_service_task_stop(pf); 3772 mutex_destroy(&pf->sw_mutex); 3773 mutex_destroy(&pf->tc_mutex); 3774 mutex_destroy(&pf->avail_q_mutex); 3775 mutex_destroy(&pf->vfs.table_lock); 3776 3777 if (pf->avail_txqs) { 3778 bitmap_free(pf->avail_txqs); 3779 pf->avail_txqs = NULL; 3780 } 3781 3782 if (pf->avail_rxqs) { 3783 bitmap_free(pf->avail_rxqs); 3784 pf->avail_rxqs = NULL; 3785 } 3786 3787 if (pf->ptp.clock) 3788 ptp_clock_unregister(pf->ptp.clock); 3789 } 3790 3791 /** 3792 * ice_set_pf_caps - set PFs capability flags 3793 * @pf: pointer to the PF instance 3794 */ 3795 static void ice_set_pf_caps(struct ice_pf *pf) 3796 { 3797 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3798 3799 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3800 if (func_caps->common_cap.rdma) 3801 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3802 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3803 if (func_caps->common_cap.dcb) 3804 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3805 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3806 if (func_caps->common_cap.sr_iov_1_1) { 3807 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3808 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3809 ICE_MAX_SRIOV_VFS); 3810 } 3811 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3812 if (func_caps->common_cap.rss_table_size) 3813 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3814 3815 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3816 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3817 u16 unused; 3818 3819 /* ctrl_vsi_idx will be set to a valid value when flow director 3820 * is setup by ice_init_fdir 3821 */ 3822 pf->ctrl_vsi_idx = ICE_NO_VSI; 3823 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3824 /* force guaranteed filter pool for PF */ 3825 ice_alloc_fd_guar_item(&pf->hw, &unused, 3826 func_caps->fd_fltr_guar); 3827 /* force shared filter pool for PF */ 3828 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3829 func_caps->fd_fltr_best_effort); 3830 } 3831 3832 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3833 if (func_caps->common_cap.ieee_1588) 3834 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3835 3836 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3837 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3838 } 3839 3840 /** 3841 * ice_init_pf - Initialize general software structures (struct ice_pf) 3842 * @pf: board private structure to initialize 3843 */ 3844 static int ice_init_pf(struct ice_pf *pf) 3845 { 3846 ice_set_pf_caps(pf); 3847 3848 mutex_init(&pf->sw_mutex); 3849 mutex_init(&pf->tc_mutex); 3850 3851 INIT_HLIST_HEAD(&pf->aq_wait_list); 3852 spin_lock_init(&pf->aq_wait_lock); 3853 init_waitqueue_head(&pf->aq_wait_queue); 3854 3855 init_waitqueue_head(&pf->reset_wait_queue); 3856 3857 /* setup service timer and periodic service task */ 3858 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3859 pf->serv_tmr_period = HZ; 3860 INIT_WORK(&pf->serv_task, ice_service_task); 3861 clear_bit(ICE_SERVICE_SCHED, pf->state); 3862 3863 mutex_init(&pf->avail_q_mutex); 3864 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3865 if (!pf->avail_txqs) 3866 return -ENOMEM; 3867 3868 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3869 if (!pf->avail_rxqs) { 3870 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3871 pf->avail_txqs = NULL; 3872 return -ENOMEM; 3873 } 3874 3875 mutex_init(&pf->vfs.table_lock); 3876 hash_init(pf->vfs.table); 3877 3878 return 0; 3879 } 3880 3881 /** 3882 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3883 * @pf: board private structure 3884 * 3885 * compute the number of MSIX vectors required (v_budget) and request from 3886 * the OS. Return the number of vectors reserved or negative on failure 3887 */ 3888 static int ice_ena_msix_range(struct ice_pf *pf) 3889 { 3890 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3891 struct device *dev = ice_pf_to_dev(pf); 3892 int needed, err, i; 3893 3894 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3895 num_cpus = num_online_cpus(); 3896 3897 /* reserve for LAN miscellaneous handler */ 3898 needed = ICE_MIN_LAN_OICR_MSIX; 3899 if (v_left < needed) 3900 goto no_hw_vecs_left_err; 3901 v_budget += needed; 3902 v_left -= needed; 3903 3904 /* reserve for flow director */ 3905 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3906 needed = ICE_FDIR_MSIX; 3907 if (v_left < needed) 3908 goto no_hw_vecs_left_err; 3909 v_budget += needed; 3910 v_left -= needed; 3911 } 3912 3913 /* reserve for switchdev */ 3914 needed = ICE_ESWITCH_MSIX; 3915 if (v_left < needed) 3916 goto no_hw_vecs_left_err; 3917 v_budget += needed; 3918 v_left -= needed; 3919 3920 /* total used for non-traffic vectors */ 3921 v_other = v_budget; 3922 3923 /* reserve vectors for LAN traffic */ 3924 needed = num_cpus; 3925 if (v_left < needed) 3926 goto no_hw_vecs_left_err; 3927 pf->num_lan_msix = needed; 3928 v_budget += needed; 3929 v_left -= needed; 3930 3931 /* reserve vectors for RDMA auxiliary driver */ 3932 if (ice_is_rdma_ena(pf)) { 3933 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3934 if (v_left < needed) 3935 goto no_hw_vecs_left_err; 3936 pf->num_rdma_msix = needed; 3937 v_budget += needed; 3938 v_left -= needed; 3939 } 3940 3941 pf->msix_entries = devm_kcalloc(dev, v_budget, 3942 sizeof(*pf->msix_entries), GFP_KERNEL); 3943 if (!pf->msix_entries) { 3944 err = -ENOMEM; 3945 goto exit_err; 3946 } 3947 3948 for (i = 0; i < v_budget; i++) 3949 pf->msix_entries[i].entry = i; 3950 3951 /* actually reserve the vectors */ 3952 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3953 ICE_MIN_MSIX, v_budget); 3954 if (v_actual < 0) { 3955 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3956 err = v_actual; 3957 goto msix_err; 3958 } 3959 3960 if (v_actual < v_budget) { 3961 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3962 v_budget, v_actual); 3963 3964 if (v_actual < ICE_MIN_MSIX) { 3965 /* error if we can't get minimum vectors */ 3966 pci_disable_msix(pf->pdev); 3967 err = -ERANGE; 3968 goto msix_err; 3969 } else { 3970 int v_remain = v_actual - v_other; 3971 int v_rdma = 0, v_min_rdma = 0; 3972 3973 if (ice_is_rdma_ena(pf)) { 3974 /* Need at least 1 interrupt in addition to 3975 * AEQ MSIX 3976 */ 3977 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3978 v_min_rdma = ICE_MIN_RDMA_MSIX; 3979 } 3980 3981 if (v_actual == ICE_MIN_MSIX || 3982 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3983 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3984 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3985 3986 pf->num_rdma_msix = 0; 3987 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3988 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3989 (v_remain - v_rdma < v_rdma)) { 3990 /* Support minimum RDMA and give remaining 3991 * vectors to LAN MSIX 3992 */ 3993 pf->num_rdma_msix = v_min_rdma; 3994 pf->num_lan_msix = v_remain - v_min_rdma; 3995 } else { 3996 /* Split remaining MSIX with RDMA after 3997 * accounting for AEQ MSIX 3998 */ 3999 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4000 ICE_RDMA_NUM_AEQ_MSIX; 4001 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4002 } 4003 4004 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4005 pf->num_lan_msix); 4006 4007 if (ice_is_rdma_ena(pf)) 4008 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4009 pf->num_rdma_msix); 4010 } 4011 } 4012 4013 return v_actual; 4014 4015 msix_err: 4016 devm_kfree(dev, pf->msix_entries); 4017 goto exit_err; 4018 4019 no_hw_vecs_left_err: 4020 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4021 needed, v_left); 4022 err = -ERANGE; 4023 exit_err: 4024 pf->num_rdma_msix = 0; 4025 pf->num_lan_msix = 0; 4026 return err; 4027 } 4028 4029 /** 4030 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4031 * @pf: board private structure 4032 */ 4033 static void ice_dis_msix(struct ice_pf *pf) 4034 { 4035 pci_disable_msix(pf->pdev); 4036 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4037 pf->msix_entries = NULL; 4038 } 4039 4040 /** 4041 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4042 * @pf: board private structure 4043 */ 4044 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4045 { 4046 ice_dis_msix(pf); 4047 4048 if (pf->irq_tracker) { 4049 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4050 pf->irq_tracker = NULL; 4051 } 4052 } 4053 4054 /** 4055 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4056 * @pf: board private structure to initialize 4057 */ 4058 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4059 { 4060 int vectors; 4061 4062 vectors = ice_ena_msix_range(pf); 4063 4064 if (vectors < 0) 4065 return vectors; 4066 4067 /* set up vector assignment tracking */ 4068 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4069 struct_size(pf->irq_tracker, list, vectors), 4070 GFP_KERNEL); 4071 if (!pf->irq_tracker) { 4072 ice_dis_msix(pf); 4073 return -ENOMEM; 4074 } 4075 4076 /* populate SW interrupts pool with number of OS granted IRQs. */ 4077 pf->num_avail_sw_msix = (u16)vectors; 4078 pf->irq_tracker->num_entries = (u16)vectors; 4079 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * ice_is_wol_supported - check if WoL is supported 4086 * @hw: pointer to hardware info 4087 * 4088 * Check if WoL is supported based on the HW configuration. 4089 * Returns true if NVM supports and enables WoL for this port, false otherwise 4090 */ 4091 bool ice_is_wol_supported(struct ice_hw *hw) 4092 { 4093 u16 wol_ctrl; 4094 4095 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4096 * word) indicates WoL is not supported on the corresponding PF ID. 4097 */ 4098 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4099 return false; 4100 4101 return !(BIT(hw->port_info->lport) & wol_ctrl); 4102 } 4103 4104 /** 4105 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4106 * @vsi: VSI being changed 4107 * @new_rx: new number of Rx queues 4108 * @new_tx: new number of Tx queues 4109 * 4110 * Only change the number of queues if new_tx, or new_rx is non-0. 4111 * 4112 * Returns 0 on success. 4113 */ 4114 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4115 { 4116 struct ice_pf *pf = vsi->back; 4117 int err = 0, timeout = 50; 4118 4119 if (!new_rx && !new_tx) 4120 return -EINVAL; 4121 4122 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4123 timeout--; 4124 if (!timeout) 4125 return -EBUSY; 4126 usleep_range(1000, 2000); 4127 } 4128 4129 if (new_tx) 4130 vsi->req_txq = (u16)new_tx; 4131 if (new_rx) 4132 vsi->req_rxq = (u16)new_rx; 4133 4134 /* set for the next time the netdev is started */ 4135 if (!netif_running(vsi->netdev)) { 4136 ice_vsi_rebuild(vsi, false); 4137 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4138 goto done; 4139 } 4140 4141 ice_vsi_close(vsi); 4142 ice_vsi_rebuild(vsi, false); 4143 ice_pf_dcb_recfg(pf); 4144 ice_vsi_open(vsi); 4145 done: 4146 clear_bit(ICE_CFG_BUSY, pf->state); 4147 return err; 4148 } 4149 4150 /** 4151 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4152 * @pf: PF to configure 4153 * 4154 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4155 * VSI can still Tx/Rx VLAN tagged packets. 4156 */ 4157 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4158 { 4159 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4160 struct ice_vsi_ctx *ctxt; 4161 struct ice_hw *hw; 4162 int status; 4163 4164 if (!vsi) 4165 return; 4166 4167 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4168 if (!ctxt) 4169 return; 4170 4171 hw = &pf->hw; 4172 ctxt->info = vsi->info; 4173 4174 ctxt->info.valid_sections = 4175 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4176 ICE_AQ_VSI_PROP_SECURITY_VALID | 4177 ICE_AQ_VSI_PROP_SW_VALID); 4178 4179 /* disable VLAN anti-spoof */ 4180 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4181 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4182 4183 /* disable VLAN pruning and keep all other settings */ 4184 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4185 4186 /* allow all VLANs on Tx and don't strip on Rx */ 4187 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4188 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4189 4190 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4191 if (status) { 4192 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4193 status, ice_aq_str(hw->adminq.sq_last_status)); 4194 } else { 4195 vsi->info.sec_flags = ctxt->info.sec_flags; 4196 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4197 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4198 } 4199 4200 kfree(ctxt); 4201 } 4202 4203 /** 4204 * ice_log_pkg_init - log result of DDP package load 4205 * @hw: pointer to hardware info 4206 * @state: state of package load 4207 */ 4208 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4209 { 4210 struct ice_pf *pf = hw->back; 4211 struct device *dev; 4212 4213 dev = ice_pf_to_dev(pf); 4214 4215 switch (state) { 4216 case ICE_DDP_PKG_SUCCESS: 4217 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4218 hw->active_pkg_name, 4219 hw->active_pkg_ver.major, 4220 hw->active_pkg_ver.minor, 4221 hw->active_pkg_ver.update, 4222 hw->active_pkg_ver.draft); 4223 break; 4224 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4225 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4226 hw->active_pkg_name, 4227 hw->active_pkg_ver.major, 4228 hw->active_pkg_ver.minor, 4229 hw->active_pkg_ver.update, 4230 hw->active_pkg_ver.draft); 4231 break; 4232 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4233 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4234 hw->active_pkg_name, 4235 hw->active_pkg_ver.major, 4236 hw->active_pkg_ver.minor, 4237 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4238 break; 4239 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4240 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4241 hw->active_pkg_name, 4242 hw->active_pkg_ver.major, 4243 hw->active_pkg_ver.minor, 4244 hw->active_pkg_ver.update, 4245 hw->active_pkg_ver.draft, 4246 hw->pkg_name, 4247 hw->pkg_ver.major, 4248 hw->pkg_ver.minor, 4249 hw->pkg_ver.update, 4250 hw->pkg_ver.draft); 4251 break; 4252 case ICE_DDP_PKG_FW_MISMATCH: 4253 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4254 break; 4255 case ICE_DDP_PKG_INVALID_FILE: 4256 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4257 break; 4258 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4259 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4260 break; 4261 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4262 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4263 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4264 break; 4265 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4266 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4267 break; 4268 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4269 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4270 break; 4271 case ICE_DDP_PKG_LOAD_ERROR: 4272 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4273 /* poll for reset to complete */ 4274 if (ice_check_reset(hw)) 4275 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4276 break; 4277 case ICE_DDP_PKG_ERR: 4278 default: 4279 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4280 break; 4281 } 4282 } 4283 4284 /** 4285 * ice_load_pkg - load/reload the DDP Package file 4286 * @firmware: firmware structure when firmware requested or NULL for reload 4287 * @pf: pointer to the PF instance 4288 * 4289 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4290 * initialize HW tables. 4291 */ 4292 static void 4293 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4294 { 4295 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4296 struct device *dev = ice_pf_to_dev(pf); 4297 struct ice_hw *hw = &pf->hw; 4298 4299 /* Load DDP Package */ 4300 if (firmware && !hw->pkg_copy) { 4301 state = ice_copy_and_init_pkg(hw, firmware->data, 4302 firmware->size); 4303 ice_log_pkg_init(hw, state); 4304 } else if (!firmware && hw->pkg_copy) { 4305 /* Reload package during rebuild after CORER/GLOBR reset */ 4306 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4307 ice_log_pkg_init(hw, state); 4308 } else { 4309 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4310 } 4311 4312 if (!ice_is_init_pkg_successful(state)) { 4313 /* Safe Mode */ 4314 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4315 return; 4316 } 4317 4318 /* Successful download package is the precondition for advanced 4319 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4320 */ 4321 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4322 } 4323 4324 /** 4325 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4326 * @pf: pointer to the PF structure 4327 * 4328 * There is no error returned here because the driver should be able to handle 4329 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4330 * specifically with Tx. 4331 */ 4332 static void ice_verify_cacheline_size(struct ice_pf *pf) 4333 { 4334 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4335 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4336 ICE_CACHE_LINE_BYTES); 4337 } 4338 4339 /** 4340 * ice_send_version - update firmware with driver version 4341 * @pf: PF struct 4342 * 4343 * Returns 0 on success, else error code 4344 */ 4345 static int ice_send_version(struct ice_pf *pf) 4346 { 4347 struct ice_driver_ver dv; 4348 4349 dv.major_ver = 0xff; 4350 dv.minor_ver = 0xff; 4351 dv.build_ver = 0xff; 4352 dv.subbuild_ver = 0; 4353 strscpy((char *)dv.driver_string, UTS_RELEASE, 4354 sizeof(dv.driver_string)); 4355 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4356 } 4357 4358 /** 4359 * ice_init_fdir - Initialize flow director VSI and configuration 4360 * @pf: pointer to the PF instance 4361 * 4362 * returns 0 on success, negative on error 4363 */ 4364 static int ice_init_fdir(struct ice_pf *pf) 4365 { 4366 struct device *dev = ice_pf_to_dev(pf); 4367 struct ice_vsi *ctrl_vsi; 4368 int err; 4369 4370 /* Side Band Flow Director needs to have a control VSI. 4371 * Allocate it and store it in the PF. 4372 */ 4373 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4374 if (!ctrl_vsi) { 4375 dev_dbg(dev, "could not create control VSI\n"); 4376 return -ENOMEM; 4377 } 4378 4379 err = ice_vsi_open_ctrl(ctrl_vsi); 4380 if (err) { 4381 dev_dbg(dev, "could not open control VSI\n"); 4382 goto err_vsi_open; 4383 } 4384 4385 mutex_init(&pf->hw.fdir_fltr_lock); 4386 4387 err = ice_fdir_create_dflt_rules(pf); 4388 if (err) 4389 goto err_fdir_rule; 4390 4391 return 0; 4392 4393 err_fdir_rule: 4394 ice_fdir_release_flows(&pf->hw); 4395 ice_vsi_close(ctrl_vsi); 4396 err_vsi_open: 4397 ice_vsi_release(ctrl_vsi); 4398 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4399 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4400 pf->ctrl_vsi_idx = ICE_NO_VSI; 4401 } 4402 return err; 4403 } 4404 4405 /** 4406 * ice_get_opt_fw_name - return optional firmware file name or NULL 4407 * @pf: pointer to the PF instance 4408 */ 4409 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4410 { 4411 /* Optional firmware name same as default with additional dash 4412 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4413 */ 4414 struct pci_dev *pdev = pf->pdev; 4415 char *opt_fw_filename; 4416 u64 dsn; 4417 4418 /* Determine the name of the optional file using the DSN (two 4419 * dwords following the start of the DSN Capability). 4420 */ 4421 dsn = pci_get_dsn(pdev); 4422 if (!dsn) 4423 return NULL; 4424 4425 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4426 if (!opt_fw_filename) 4427 return NULL; 4428 4429 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4430 ICE_DDP_PKG_PATH, dsn); 4431 4432 return opt_fw_filename; 4433 } 4434 4435 /** 4436 * ice_request_fw - Device initialization routine 4437 * @pf: pointer to the PF instance 4438 */ 4439 static void ice_request_fw(struct ice_pf *pf) 4440 { 4441 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4442 const struct firmware *firmware = NULL; 4443 struct device *dev = ice_pf_to_dev(pf); 4444 int err = 0; 4445 4446 /* optional device-specific DDP (if present) overrides the default DDP 4447 * package file. kernel logs a debug message if the file doesn't exist, 4448 * and warning messages for other errors. 4449 */ 4450 if (opt_fw_filename) { 4451 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4452 if (err) { 4453 kfree(opt_fw_filename); 4454 goto dflt_pkg_load; 4455 } 4456 4457 /* request for firmware was successful. Download to device */ 4458 ice_load_pkg(firmware, pf); 4459 kfree(opt_fw_filename); 4460 release_firmware(firmware); 4461 return; 4462 } 4463 4464 dflt_pkg_load: 4465 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4466 if (err) { 4467 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4468 return; 4469 } 4470 4471 /* request for firmware was successful. Download to device */ 4472 ice_load_pkg(firmware, pf); 4473 release_firmware(firmware); 4474 } 4475 4476 /** 4477 * ice_print_wake_reason - show the wake up cause in the log 4478 * @pf: pointer to the PF struct 4479 */ 4480 static void ice_print_wake_reason(struct ice_pf *pf) 4481 { 4482 u32 wus = pf->wakeup_reason; 4483 const char *wake_str; 4484 4485 /* if no wake event, nothing to print */ 4486 if (!wus) 4487 return; 4488 4489 if (wus & PFPM_WUS_LNKC_M) 4490 wake_str = "Link\n"; 4491 else if (wus & PFPM_WUS_MAG_M) 4492 wake_str = "Magic Packet\n"; 4493 else if (wus & PFPM_WUS_MNG_M) 4494 wake_str = "Management\n"; 4495 else if (wus & PFPM_WUS_FW_RST_WK_M) 4496 wake_str = "Firmware Reset\n"; 4497 else 4498 wake_str = "Unknown\n"; 4499 4500 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4501 } 4502 4503 /** 4504 * ice_register_netdev - register netdev and devlink port 4505 * @pf: pointer to the PF struct 4506 */ 4507 static int ice_register_netdev(struct ice_pf *pf) 4508 { 4509 struct ice_vsi *vsi; 4510 int err = 0; 4511 4512 vsi = ice_get_main_vsi(pf); 4513 if (!vsi || !vsi->netdev) 4514 return -EIO; 4515 4516 err = register_netdev(vsi->netdev); 4517 if (err) 4518 goto err_register_netdev; 4519 4520 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4521 netif_carrier_off(vsi->netdev); 4522 netif_tx_stop_all_queues(vsi->netdev); 4523 err = ice_devlink_create_pf_port(pf); 4524 if (err) 4525 goto err_devlink_create; 4526 4527 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4528 4529 return 0; 4530 err_devlink_create: 4531 unregister_netdev(vsi->netdev); 4532 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4533 err_register_netdev: 4534 free_netdev(vsi->netdev); 4535 vsi->netdev = NULL; 4536 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4537 return err; 4538 } 4539 4540 /** 4541 * ice_probe - Device initialization routine 4542 * @pdev: PCI device information struct 4543 * @ent: entry in ice_pci_tbl 4544 * 4545 * Returns 0 on success, negative on failure 4546 */ 4547 static int 4548 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4549 { 4550 struct device *dev = &pdev->dev; 4551 struct ice_pf *pf; 4552 struct ice_hw *hw; 4553 int i, err; 4554 4555 if (pdev->is_virtfn) { 4556 dev_err(dev, "can't probe a virtual function\n"); 4557 return -EINVAL; 4558 } 4559 4560 /* this driver uses devres, see 4561 * Documentation/driver-api/driver-model/devres.rst 4562 */ 4563 err = pcim_enable_device(pdev); 4564 if (err) 4565 return err; 4566 4567 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4568 if (err) { 4569 dev_err(dev, "BAR0 I/O map error %d\n", err); 4570 return err; 4571 } 4572 4573 pf = ice_allocate_pf(dev); 4574 if (!pf) 4575 return -ENOMEM; 4576 4577 /* initialize Auxiliary index to invalid value */ 4578 pf->aux_idx = -1; 4579 4580 /* set up for high or low DMA */ 4581 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4582 if (err) { 4583 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4584 return err; 4585 } 4586 4587 pci_enable_pcie_error_reporting(pdev); 4588 pci_set_master(pdev); 4589 4590 pf->pdev = pdev; 4591 pci_set_drvdata(pdev, pf); 4592 set_bit(ICE_DOWN, pf->state); 4593 /* Disable service task until DOWN bit is cleared */ 4594 set_bit(ICE_SERVICE_DIS, pf->state); 4595 4596 hw = &pf->hw; 4597 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4598 pci_save_state(pdev); 4599 4600 hw->back = pf; 4601 hw->vendor_id = pdev->vendor; 4602 hw->device_id = pdev->device; 4603 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4604 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4605 hw->subsystem_device_id = pdev->subsystem_device; 4606 hw->bus.device = PCI_SLOT(pdev->devfn); 4607 hw->bus.func = PCI_FUNC(pdev->devfn); 4608 ice_set_ctrlq_len(hw); 4609 4610 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4611 4612 #ifndef CONFIG_DYNAMIC_DEBUG 4613 if (debug < -1) 4614 hw->debug_mask = debug; 4615 #endif 4616 4617 err = ice_init_hw(hw); 4618 if (err) { 4619 dev_err(dev, "ice_init_hw failed: %d\n", err); 4620 err = -EIO; 4621 goto err_exit_unroll; 4622 } 4623 4624 ice_init_feature_support(pf); 4625 4626 ice_request_fw(pf); 4627 4628 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4629 * set in pf->state, which will cause ice_is_safe_mode to return 4630 * true 4631 */ 4632 if (ice_is_safe_mode(pf)) { 4633 /* we already got function/device capabilities but these don't 4634 * reflect what the driver needs to do in safe mode. Instead of 4635 * adding conditional logic everywhere to ignore these 4636 * device/function capabilities, override them. 4637 */ 4638 ice_set_safe_mode_caps(hw); 4639 } 4640 4641 err = ice_init_pf(pf); 4642 if (err) { 4643 dev_err(dev, "ice_init_pf failed: %d\n", err); 4644 goto err_init_pf_unroll; 4645 } 4646 4647 ice_devlink_init_regions(pf); 4648 4649 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4650 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4651 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4652 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4653 i = 0; 4654 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4655 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4656 pf->hw.tnl.valid_count[TNL_VXLAN]; 4657 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4658 UDP_TUNNEL_TYPE_VXLAN; 4659 i++; 4660 } 4661 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4662 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4663 pf->hw.tnl.valid_count[TNL_GENEVE]; 4664 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4665 UDP_TUNNEL_TYPE_GENEVE; 4666 i++; 4667 } 4668 4669 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4670 if (!pf->num_alloc_vsi) { 4671 err = -EIO; 4672 goto err_init_pf_unroll; 4673 } 4674 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4675 dev_warn(&pf->pdev->dev, 4676 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4677 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4678 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4679 } 4680 4681 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4682 GFP_KERNEL); 4683 if (!pf->vsi) { 4684 err = -ENOMEM; 4685 goto err_init_pf_unroll; 4686 } 4687 4688 err = ice_init_interrupt_scheme(pf); 4689 if (err) { 4690 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4691 err = -EIO; 4692 goto err_init_vsi_unroll; 4693 } 4694 4695 /* In case of MSIX we are going to setup the misc vector right here 4696 * to handle admin queue events etc. In case of legacy and MSI 4697 * the misc functionality and queue processing is combined in 4698 * the same vector and that gets setup at open. 4699 */ 4700 err = ice_req_irq_msix_misc(pf); 4701 if (err) { 4702 dev_err(dev, "setup of misc vector failed: %d\n", err); 4703 goto err_init_interrupt_unroll; 4704 } 4705 4706 /* create switch struct for the switch element created by FW on boot */ 4707 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4708 if (!pf->first_sw) { 4709 err = -ENOMEM; 4710 goto err_msix_misc_unroll; 4711 } 4712 4713 if (hw->evb_veb) 4714 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4715 else 4716 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4717 4718 pf->first_sw->pf = pf; 4719 4720 /* record the sw_id available for later use */ 4721 pf->first_sw->sw_id = hw->port_info->sw_id; 4722 4723 err = ice_setup_pf_sw(pf); 4724 if (err) { 4725 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4726 goto err_alloc_sw_unroll; 4727 } 4728 4729 clear_bit(ICE_SERVICE_DIS, pf->state); 4730 4731 /* tell the firmware we are up */ 4732 err = ice_send_version(pf); 4733 if (err) { 4734 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4735 UTS_RELEASE, err); 4736 goto err_send_version_unroll; 4737 } 4738 4739 /* since everything is good, start the service timer */ 4740 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4741 4742 err = ice_init_link_events(pf->hw.port_info); 4743 if (err) { 4744 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4745 goto err_send_version_unroll; 4746 } 4747 4748 /* not a fatal error if this fails */ 4749 err = ice_init_nvm_phy_type(pf->hw.port_info); 4750 if (err) 4751 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4752 4753 /* not a fatal error if this fails */ 4754 err = ice_update_link_info(pf->hw.port_info); 4755 if (err) 4756 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4757 4758 ice_init_link_dflt_override(pf->hw.port_info); 4759 4760 ice_check_link_cfg_err(pf, 4761 pf->hw.port_info->phy.link_info.link_cfg_err); 4762 4763 /* if media available, initialize PHY settings */ 4764 if (pf->hw.port_info->phy.link_info.link_info & 4765 ICE_AQ_MEDIA_AVAILABLE) { 4766 /* not a fatal error if this fails */ 4767 err = ice_init_phy_user_cfg(pf->hw.port_info); 4768 if (err) 4769 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4770 4771 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4772 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4773 4774 if (vsi) 4775 ice_configure_phy(vsi); 4776 } 4777 } else { 4778 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4779 } 4780 4781 ice_verify_cacheline_size(pf); 4782 4783 /* Save wakeup reason register for later use */ 4784 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4785 4786 /* check for a power management event */ 4787 ice_print_wake_reason(pf); 4788 4789 /* clear wake status, all bits */ 4790 wr32(hw, PFPM_WUS, U32_MAX); 4791 4792 /* Disable WoL at init, wait for user to enable */ 4793 device_set_wakeup_enable(dev, false); 4794 4795 if (ice_is_safe_mode(pf)) { 4796 ice_set_safe_mode_vlan_cfg(pf); 4797 goto probe_done; 4798 } 4799 4800 /* initialize DDP driven features */ 4801 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4802 ice_ptp_init(pf); 4803 4804 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4805 ice_gnss_init(pf); 4806 4807 /* Note: Flow director init failure is non-fatal to load */ 4808 if (ice_init_fdir(pf)) 4809 dev_err(dev, "could not initialize flow director\n"); 4810 4811 /* Note: DCB init failure is non-fatal to load */ 4812 if (ice_init_pf_dcb(pf, false)) { 4813 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4814 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4815 } else { 4816 ice_cfg_lldp_mib_change(&pf->hw, true); 4817 } 4818 4819 if (ice_init_lag(pf)) 4820 dev_warn(dev, "Failed to init link aggregation support\n"); 4821 4822 /* print PCI link speed and width */ 4823 pcie_print_link_status(pf->pdev); 4824 4825 probe_done: 4826 err = ice_register_netdev(pf); 4827 if (err) 4828 goto err_netdev_reg; 4829 4830 err = ice_devlink_register_params(pf); 4831 if (err) 4832 goto err_netdev_reg; 4833 4834 /* ready to go, so clear down state bit */ 4835 clear_bit(ICE_DOWN, pf->state); 4836 if (ice_is_rdma_ena(pf)) { 4837 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4838 if (pf->aux_idx < 0) { 4839 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4840 err = -ENOMEM; 4841 goto err_devlink_reg_param; 4842 } 4843 4844 err = ice_init_rdma(pf); 4845 if (err) { 4846 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4847 err = -EIO; 4848 goto err_init_aux_unroll; 4849 } 4850 } else { 4851 dev_warn(dev, "RDMA is not supported on this device\n"); 4852 } 4853 4854 ice_devlink_register(pf); 4855 return 0; 4856 4857 err_init_aux_unroll: 4858 pf->adev = NULL; 4859 ida_free(&ice_aux_ida, pf->aux_idx); 4860 err_devlink_reg_param: 4861 ice_devlink_unregister_params(pf); 4862 err_netdev_reg: 4863 err_send_version_unroll: 4864 ice_vsi_release_all(pf); 4865 err_alloc_sw_unroll: 4866 set_bit(ICE_SERVICE_DIS, pf->state); 4867 set_bit(ICE_DOWN, pf->state); 4868 devm_kfree(dev, pf->first_sw); 4869 err_msix_misc_unroll: 4870 ice_free_irq_msix_misc(pf); 4871 err_init_interrupt_unroll: 4872 ice_clear_interrupt_scheme(pf); 4873 err_init_vsi_unroll: 4874 devm_kfree(dev, pf->vsi); 4875 err_init_pf_unroll: 4876 ice_deinit_pf(pf); 4877 ice_devlink_destroy_regions(pf); 4878 ice_deinit_hw(hw); 4879 err_exit_unroll: 4880 pci_disable_pcie_error_reporting(pdev); 4881 pci_disable_device(pdev); 4882 return err; 4883 } 4884 4885 /** 4886 * ice_set_wake - enable or disable Wake on LAN 4887 * @pf: pointer to the PF struct 4888 * 4889 * Simple helper for WoL control 4890 */ 4891 static void ice_set_wake(struct ice_pf *pf) 4892 { 4893 struct ice_hw *hw = &pf->hw; 4894 bool wol = pf->wol_ena; 4895 4896 /* clear wake state, otherwise new wake events won't fire */ 4897 wr32(hw, PFPM_WUS, U32_MAX); 4898 4899 /* enable / disable APM wake up, no RMW needed */ 4900 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4901 4902 /* set magic packet filter enabled */ 4903 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4904 } 4905 4906 /** 4907 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4908 * @pf: pointer to the PF struct 4909 * 4910 * Issue firmware command to enable multicast magic wake, making 4911 * sure that any locally administered address (LAA) is used for 4912 * wake, and that PF reset doesn't undo the LAA. 4913 */ 4914 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4915 { 4916 struct device *dev = ice_pf_to_dev(pf); 4917 struct ice_hw *hw = &pf->hw; 4918 u8 mac_addr[ETH_ALEN]; 4919 struct ice_vsi *vsi; 4920 int status; 4921 u8 flags; 4922 4923 if (!pf->wol_ena) 4924 return; 4925 4926 vsi = ice_get_main_vsi(pf); 4927 if (!vsi) 4928 return; 4929 4930 /* Get current MAC address in case it's an LAA */ 4931 if (vsi->netdev) 4932 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4933 else 4934 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4935 4936 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4937 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4938 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4939 4940 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4941 if (status) 4942 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4943 status, ice_aq_str(hw->adminq.sq_last_status)); 4944 } 4945 4946 /** 4947 * ice_remove - Device removal routine 4948 * @pdev: PCI device information struct 4949 */ 4950 static void ice_remove(struct pci_dev *pdev) 4951 { 4952 struct ice_pf *pf = pci_get_drvdata(pdev); 4953 int i; 4954 4955 ice_devlink_unregister(pf); 4956 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4957 if (!ice_is_reset_in_progress(pf->state)) 4958 break; 4959 msleep(100); 4960 } 4961 4962 ice_tc_indir_block_remove(pf); 4963 4964 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4965 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4966 ice_free_vfs(pf); 4967 } 4968 4969 ice_service_task_stop(pf); 4970 4971 ice_aq_cancel_waiting_tasks(pf); 4972 ice_unplug_aux_dev(pf); 4973 if (pf->aux_idx >= 0) 4974 ida_free(&ice_aux_ida, pf->aux_idx); 4975 ice_devlink_unregister_params(pf); 4976 set_bit(ICE_DOWN, pf->state); 4977 4978 ice_deinit_lag(pf); 4979 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4980 ice_ptp_release(pf); 4981 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4982 ice_gnss_exit(pf); 4983 if (!ice_is_safe_mode(pf)) 4984 ice_remove_arfs(pf); 4985 ice_setup_mc_magic_wake(pf); 4986 ice_vsi_release_all(pf); 4987 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4988 ice_set_wake(pf); 4989 ice_free_irq_msix_misc(pf); 4990 ice_for_each_vsi(pf, i) { 4991 if (!pf->vsi[i]) 4992 continue; 4993 ice_vsi_free_q_vectors(pf->vsi[i]); 4994 } 4995 ice_deinit_pf(pf); 4996 ice_devlink_destroy_regions(pf); 4997 ice_deinit_hw(&pf->hw); 4998 4999 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5000 * do it via ice_schedule_reset() since there is no need to rebuild 5001 * and the service task is already stopped. 5002 */ 5003 ice_reset(&pf->hw, ICE_RESET_PFR); 5004 pci_wait_for_pending_transaction(pdev); 5005 ice_clear_interrupt_scheme(pf); 5006 pci_disable_pcie_error_reporting(pdev); 5007 pci_disable_device(pdev); 5008 } 5009 5010 /** 5011 * ice_shutdown - PCI callback for shutting down device 5012 * @pdev: PCI device information struct 5013 */ 5014 static void ice_shutdown(struct pci_dev *pdev) 5015 { 5016 struct ice_pf *pf = pci_get_drvdata(pdev); 5017 5018 ice_remove(pdev); 5019 5020 if (system_state == SYSTEM_POWER_OFF) { 5021 pci_wake_from_d3(pdev, pf->wol_ena); 5022 pci_set_power_state(pdev, PCI_D3hot); 5023 } 5024 } 5025 5026 #ifdef CONFIG_PM 5027 /** 5028 * ice_prepare_for_shutdown - prep for PCI shutdown 5029 * @pf: board private structure 5030 * 5031 * Inform or close all dependent features in prep for PCI device shutdown 5032 */ 5033 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5034 { 5035 struct ice_hw *hw = &pf->hw; 5036 u32 v; 5037 5038 /* Notify VFs of impending reset */ 5039 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5040 ice_vc_notify_reset(pf); 5041 5042 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5043 5044 /* disable the VSIs and their queues that are not already DOWN */ 5045 ice_pf_dis_all_vsi(pf, false); 5046 5047 ice_for_each_vsi(pf, v) 5048 if (pf->vsi[v]) 5049 pf->vsi[v]->vsi_num = 0; 5050 5051 ice_shutdown_all_ctrlq(hw); 5052 } 5053 5054 /** 5055 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5056 * @pf: board private structure to reinitialize 5057 * 5058 * This routine reinitialize interrupt scheme that was cleared during 5059 * power management suspend callback. 5060 * 5061 * This should be called during resume routine to re-allocate the q_vectors 5062 * and reacquire interrupts. 5063 */ 5064 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5065 { 5066 struct device *dev = ice_pf_to_dev(pf); 5067 int ret, v; 5068 5069 /* Since we clear MSIX flag during suspend, we need to 5070 * set it back during resume... 5071 */ 5072 5073 ret = ice_init_interrupt_scheme(pf); 5074 if (ret) { 5075 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5076 return ret; 5077 } 5078 5079 /* Remap vectors and rings, after successful re-init interrupts */ 5080 ice_for_each_vsi(pf, v) { 5081 if (!pf->vsi[v]) 5082 continue; 5083 5084 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5085 if (ret) 5086 goto err_reinit; 5087 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5088 } 5089 5090 ret = ice_req_irq_msix_misc(pf); 5091 if (ret) { 5092 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5093 ret); 5094 goto err_reinit; 5095 } 5096 5097 return 0; 5098 5099 err_reinit: 5100 while (v--) 5101 if (pf->vsi[v]) 5102 ice_vsi_free_q_vectors(pf->vsi[v]); 5103 5104 return ret; 5105 } 5106 5107 /** 5108 * ice_suspend 5109 * @dev: generic device information structure 5110 * 5111 * Power Management callback to quiesce the device and prepare 5112 * for D3 transition. 5113 */ 5114 static int __maybe_unused ice_suspend(struct device *dev) 5115 { 5116 struct pci_dev *pdev = to_pci_dev(dev); 5117 struct ice_pf *pf; 5118 int disabled, v; 5119 5120 pf = pci_get_drvdata(pdev); 5121 5122 if (!ice_pf_state_is_nominal(pf)) { 5123 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5124 return -EBUSY; 5125 } 5126 5127 /* Stop watchdog tasks until resume completion. 5128 * Even though it is most likely that the service task is 5129 * disabled if the device is suspended or down, the service task's 5130 * state is controlled by a different state bit, and we should 5131 * store and honor whatever state that bit is in at this point. 5132 */ 5133 disabled = ice_service_task_stop(pf); 5134 5135 ice_unplug_aux_dev(pf); 5136 5137 /* Already suspended?, then there is nothing to do */ 5138 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5139 if (!disabled) 5140 ice_service_task_restart(pf); 5141 return 0; 5142 } 5143 5144 if (test_bit(ICE_DOWN, pf->state) || 5145 ice_is_reset_in_progress(pf->state)) { 5146 dev_err(dev, "can't suspend device in reset or already down\n"); 5147 if (!disabled) 5148 ice_service_task_restart(pf); 5149 return 0; 5150 } 5151 5152 ice_setup_mc_magic_wake(pf); 5153 5154 ice_prepare_for_shutdown(pf); 5155 5156 ice_set_wake(pf); 5157 5158 /* Free vectors, clear the interrupt scheme and release IRQs 5159 * for proper hibernation, especially with large number of CPUs. 5160 * Otherwise hibernation might fail when mapping all the vectors back 5161 * to CPU0. 5162 */ 5163 ice_free_irq_msix_misc(pf); 5164 ice_for_each_vsi(pf, v) { 5165 if (!pf->vsi[v]) 5166 continue; 5167 ice_vsi_free_q_vectors(pf->vsi[v]); 5168 } 5169 ice_clear_interrupt_scheme(pf); 5170 5171 pci_save_state(pdev); 5172 pci_wake_from_d3(pdev, pf->wol_ena); 5173 pci_set_power_state(pdev, PCI_D3hot); 5174 return 0; 5175 } 5176 5177 /** 5178 * ice_resume - PM callback for waking up from D3 5179 * @dev: generic device information structure 5180 */ 5181 static int __maybe_unused ice_resume(struct device *dev) 5182 { 5183 struct pci_dev *pdev = to_pci_dev(dev); 5184 enum ice_reset_req reset_type; 5185 struct ice_pf *pf; 5186 struct ice_hw *hw; 5187 int ret; 5188 5189 pci_set_power_state(pdev, PCI_D0); 5190 pci_restore_state(pdev); 5191 pci_save_state(pdev); 5192 5193 if (!pci_device_is_present(pdev)) 5194 return -ENODEV; 5195 5196 ret = pci_enable_device_mem(pdev); 5197 if (ret) { 5198 dev_err(dev, "Cannot enable device after suspend\n"); 5199 return ret; 5200 } 5201 5202 pf = pci_get_drvdata(pdev); 5203 hw = &pf->hw; 5204 5205 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5206 ice_print_wake_reason(pf); 5207 5208 /* We cleared the interrupt scheme when we suspended, so we need to 5209 * restore it now to resume device functionality. 5210 */ 5211 ret = ice_reinit_interrupt_scheme(pf); 5212 if (ret) 5213 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5214 5215 clear_bit(ICE_DOWN, pf->state); 5216 /* Now perform PF reset and rebuild */ 5217 reset_type = ICE_RESET_PFR; 5218 /* re-enable service task for reset, but allow reset to schedule it */ 5219 clear_bit(ICE_SERVICE_DIS, pf->state); 5220 5221 if (ice_schedule_reset(pf, reset_type)) 5222 dev_err(dev, "Reset during resume failed.\n"); 5223 5224 clear_bit(ICE_SUSPENDED, pf->state); 5225 ice_service_task_restart(pf); 5226 5227 /* Restart the service task */ 5228 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5229 5230 return 0; 5231 } 5232 #endif /* CONFIG_PM */ 5233 5234 /** 5235 * ice_pci_err_detected - warning that PCI error has been detected 5236 * @pdev: PCI device information struct 5237 * @err: the type of PCI error 5238 * 5239 * Called to warn that something happened on the PCI bus and the error handling 5240 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5241 */ 5242 static pci_ers_result_t 5243 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5244 { 5245 struct ice_pf *pf = pci_get_drvdata(pdev); 5246 5247 if (!pf) { 5248 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5249 __func__, err); 5250 return PCI_ERS_RESULT_DISCONNECT; 5251 } 5252 5253 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5254 ice_service_task_stop(pf); 5255 5256 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5257 set_bit(ICE_PFR_REQ, pf->state); 5258 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5259 } 5260 } 5261 5262 return PCI_ERS_RESULT_NEED_RESET; 5263 } 5264 5265 /** 5266 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5267 * @pdev: PCI device information struct 5268 * 5269 * Called to determine if the driver can recover from the PCI slot reset by 5270 * using a register read to determine if the device is recoverable. 5271 */ 5272 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5273 { 5274 struct ice_pf *pf = pci_get_drvdata(pdev); 5275 pci_ers_result_t result; 5276 int err; 5277 u32 reg; 5278 5279 err = pci_enable_device_mem(pdev); 5280 if (err) { 5281 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5282 err); 5283 result = PCI_ERS_RESULT_DISCONNECT; 5284 } else { 5285 pci_set_master(pdev); 5286 pci_restore_state(pdev); 5287 pci_save_state(pdev); 5288 pci_wake_from_d3(pdev, false); 5289 5290 /* Check for life */ 5291 reg = rd32(&pf->hw, GLGEN_RTRIG); 5292 if (!reg) 5293 result = PCI_ERS_RESULT_RECOVERED; 5294 else 5295 result = PCI_ERS_RESULT_DISCONNECT; 5296 } 5297 5298 err = pci_aer_clear_nonfatal_status(pdev); 5299 if (err) 5300 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5301 err); 5302 /* non-fatal, continue */ 5303 5304 return result; 5305 } 5306 5307 /** 5308 * ice_pci_err_resume - restart operations after PCI error recovery 5309 * @pdev: PCI device information struct 5310 * 5311 * Called to allow the driver to bring things back up after PCI error and/or 5312 * reset recovery have finished 5313 */ 5314 static void ice_pci_err_resume(struct pci_dev *pdev) 5315 { 5316 struct ice_pf *pf = pci_get_drvdata(pdev); 5317 5318 if (!pf) { 5319 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5320 __func__); 5321 return; 5322 } 5323 5324 if (test_bit(ICE_SUSPENDED, pf->state)) { 5325 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5326 __func__); 5327 return; 5328 } 5329 5330 ice_restore_all_vfs_msi_state(pdev); 5331 5332 ice_do_reset(pf, ICE_RESET_PFR); 5333 ice_service_task_restart(pf); 5334 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5335 } 5336 5337 /** 5338 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5339 * @pdev: PCI device information struct 5340 */ 5341 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5342 { 5343 struct ice_pf *pf = pci_get_drvdata(pdev); 5344 5345 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5346 ice_service_task_stop(pf); 5347 5348 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5349 set_bit(ICE_PFR_REQ, pf->state); 5350 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5351 } 5352 } 5353 } 5354 5355 /** 5356 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5357 * @pdev: PCI device information struct 5358 */ 5359 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5360 { 5361 ice_pci_err_resume(pdev); 5362 } 5363 5364 /* ice_pci_tbl - PCI Device ID Table 5365 * 5366 * Wildcard entries (PCI_ANY_ID) should come last 5367 * Last entry must be all 0s 5368 * 5369 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5370 * Class, Class Mask, private data (not used) } 5371 */ 5372 static const struct pci_device_id ice_pci_tbl[] = { 5373 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5374 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5375 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5376 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5377 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5378 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5379 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5380 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5381 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5382 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5383 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5384 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5385 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5386 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5387 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5388 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5389 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5390 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5398 /* required last entry */ 5399 { 0, } 5400 }; 5401 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5402 5403 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5404 5405 static const struct pci_error_handlers ice_pci_err_handler = { 5406 .error_detected = ice_pci_err_detected, 5407 .slot_reset = ice_pci_err_slot_reset, 5408 .reset_prepare = ice_pci_err_reset_prepare, 5409 .reset_done = ice_pci_err_reset_done, 5410 .resume = ice_pci_err_resume 5411 }; 5412 5413 static struct pci_driver ice_driver = { 5414 .name = KBUILD_MODNAME, 5415 .id_table = ice_pci_tbl, 5416 .probe = ice_probe, 5417 .remove = ice_remove, 5418 #ifdef CONFIG_PM 5419 .driver.pm = &ice_pm_ops, 5420 #endif /* CONFIG_PM */ 5421 .shutdown = ice_shutdown, 5422 .sriov_configure = ice_sriov_configure, 5423 .err_handler = &ice_pci_err_handler 5424 }; 5425 5426 /** 5427 * ice_module_init - Driver registration routine 5428 * 5429 * ice_module_init is the first routine called when the driver is 5430 * loaded. All it does is register with the PCI subsystem. 5431 */ 5432 static int __init ice_module_init(void) 5433 { 5434 int status; 5435 5436 pr_info("%s\n", ice_driver_string); 5437 pr_info("%s\n", ice_copyright); 5438 5439 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5440 if (!ice_wq) { 5441 pr_err("Failed to create workqueue\n"); 5442 return -ENOMEM; 5443 } 5444 5445 status = pci_register_driver(&ice_driver); 5446 if (status) { 5447 pr_err("failed to register PCI driver, err %d\n", status); 5448 destroy_workqueue(ice_wq); 5449 } 5450 5451 return status; 5452 } 5453 module_init(ice_module_init); 5454 5455 /** 5456 * ice_module_exit - Driver exit cleanup routine 5457 * 5458 * ice_module_exit is called just before the driver is removed 5459 * from memory. 5460 */ 5461 static void __exit ice_module_exit(void) 5462 { 5463 pci_unregister_driver(&ice_driver); 5464 destroy_workqueue(ice_wq); 5465 pr_info("module unloaded\n"); 5466 } 5467 module_exit(ice_module_exit); 5468 5469 /** 5470 * ice_set_mac_address - NDO callback to set MAC address 5471 * @netdev: network interface device structure 5472 * @pi: pointer to an address structure 5473 * 5474 * Returns 0 on success, negative on failure 5475 */ 5476 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5477 { 5478 struct ice_netdev_priv *np = netdev_priv(netdev); 5479 struct ice_vsi *vsi = np->vsi; 5480 struct ice_pf *pf = vsi->back; 5481 struct ice_hw *hw = &pf->hw; 5482 struct sockaddr *addr = pi; 5483 u8 old_mac[ETH_ALEN]; 5484 u8 flags = 0; 5485 u8 *mac; 5486 int err; 5487 5488 mac = (u8 *)addr->sa_data; 5489 5490 if (!is_valid_ether_addr(mac)) 5491 return -EADDRNOTAVAIL; 5492 5493 if (ether_addr_equal(netdev->dev_addr, mac)) { 5494 netdev_dbg(netdev, "already using mac %pM\n", mac); 5495 return 0; 5496 } 5497 5498 if (test_bit(ICE_DOWN, pf->state) || 5499 ice_is_reset_in_progress(pf->state)) { 5500 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5501 mac); 5502 return -EBUSY; 5503 } 5504 5505 if (ice_chnl_dmac_fltr_cnt(pf)) { 5506 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5507 mac); 5508 return -EAGAIN; 5509 } 5510 5511 netif_addr_lock_bh(netdev); 5512 ether_addr_copy(old_mac, netdev->dev_addr); 5513 /* change the netdev's MAC address */ 5514 eth_hw_addr_set(netdev, mac); 5515 netif_addr_unlock_bh(netdev); 5516 5517 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5518 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5519 if (err && err != -ENOENT) { 5520 err = -EADDRNOTAVAIL; 5521 goto err_update_filters; 5522 } 5523 5524 /* Add filter for new MAC. If filter exists, return success */ 5525 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5526 if (err == -EEXIST) { 5527 /* Although this MAC filter is already present in hardware it's 5528 * possible in some cases (e.g. bonding) that dev_addr was 5529 * modified outside of the driver and needs to be restored back 5530 * to this value. 5531 */ 5532 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5533 5534 return 0; 5535 } else if (err) { 5536 /* error if the new filter addition failed */ 5537 err = -EADDRNOTAVAIL; 5538 } 5539 5540 err_update_filters: 5541 if (err) { 5542 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5543 mac); 5544 netif_addr_lock_bh(netdev); 5545 eth_hw_addr_set(netdev, old_mac); 5546 netif_addr_unlock_bh(netdev); 5547 return err; 5548 } 5549 5550 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5551 netdev->dev_addr); 5552 5553 /* write new MAC address to the firmware */ 5554 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5555 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5556 if (err) { 5557 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5558 mac, err); 5559 } 5560 return 0; 5561 } 5562 5563 /** 5564 * ice_set_rx_mode - NDO callback to set the netdev filters 5565 * @netdev: network interface device structure 5566 */ 5567 static void ice_set_rx_mode(struct net_device *netdev) 5568 { 5569 struct ice_netdev_priv *np = netdev_priv(netdev); 5570 struct ice_vsi *vsi = np->vsi; 5571 5572 if (!vsi) 5573 return; 5574 5575 /* Set the flags to synchronize filters 5576 * ndo_set_rx_mode may be triggered even without a change in netdev 5577 * flags 5578 */ 5579 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5580 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5581 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5582 5583 /* schedule our worker thread which will take care of 5584 * applying the new filter changes 5585 */ 5586 ice_service_task_schedule(vsi->back); 5587 } 5588 5589 /** 5590 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5591 * @netdev: network interface device structure 5592 * @queue_index: Queue ID 5593 * @maxrate: maximum bandwidth in Mbps 5594 */ 5595 static int 5596 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5597 { 5598 struct ice_netdev_priv *np = netdev_priv(netdev); 5599 struct ice_vsi *vsi = np->vsi; 5600 u16 q_handle; 5601 int status; 5602 u8 tc; 5603 5604 /* Validate maxrate requested is within permitted range */ 5605 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5606 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5607 maxrate, queue_index); 5608 return -EINVAL; 5609 } 5610 5611 q_handle = vsi->tx_rings[queue_index]->q_handle; 5612 tc = ice_dcb_get_tc(vsi, queue_index); 5613 5614 /* Set BW back to default, when user set maxrate to 0 */ 5615 if (!maxrate) 5616 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5617 q_handle, ICE_MAX_BW); 5618 else 5619 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5620 q_handle, ICE_MAX_BW, maxrate * 1000); 5621 if (status) 5622 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5623 status); 5624 5625 return status; 5626 } 5627 5628 /** 5629 * ice_fdb_add - add an entry to the hardware database 5630 * @ndm: the input from the stack 5631 * @tb: pointer to array of nladdr (unused) 5632 * @dev: the net device pointer 5633 * @addr: the MAC address entry being added 5634 * @vid: VLAN ID 5635 * @flags: instructions from stack about fdb operation 5636 * @extack: netlink extended ack 5637 */ 5638 static int 5639 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5640 struct net_device *dev, const unsigned char *addr, u16 vid, 5641 u16 flags, struct netlink_ext_ack __always_unused *extack) 5642 { 5643 int err; 5644 5645 if (vid) { 5646 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5647 return -EINVAL; 5648 } 5649 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5650 netdev_err(dev, "FDB only supports static addresses\n"); 5651 return -EINVAL; 5652 } 5653 5654 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5655 err = dev_uc_add_excl(dev, addr); 5656 else if (is_multicast_ether_addr(addr)) 5657 err = dev_mc_add_excl(dev, addr); 5658 else 5659 err = -EINVAL; 5660 5661 /* Only return duplicate errors if NLM_F_EXCL is set */ 5662 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5663 err = 0; 5664 5665 return err; 5666 } 5667 5668 /** 5669 * ice_fdb_del - delete an entry from the hardware database 5670 * @ndm: the input from the stack 5671 * @tb: pointer to array of nladdr (unused) 5672 * @dev: the net device pointer 5673 * @addr: the MAC address entry being added 5674 * @vid: VLAN ID 5675 */ 5676 static int 5677 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5678 struct net_device *dev, const unsigned char *addr, 5679 __always_unused u16 vid) 5680 { 5681 int err; 5682 5683 if (ndm->ndm_state & NUD_PERMANENT) { 5684 netdev_err(dev, "FDB only supports static addresses\n"); 5685 return -EINVAL; 5686 } 5687 5688 if (is_unicast_ether_addr(addr)) 5689 err = dev_uc_del(dev, addr); 5690 else if (is_multicast_ether_addr(addr)) 5691 err = dev_mc_del(dev, addr); 5692 else 5693 err = -EINVAL; 5694 5695 return err; 5696 } 5697 5698 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5699 NETIF_F_HW_VLAN_CTAG_TX | \ 5700 NETIF_F_HW_VLAN_STAG_RX | \ 5701 NETIF_F_HW_VLAN_STAG_TX) 5702 5703 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5704 NETIF_F_HW_VLAN_STAG_FILTER) 5705 5706 /** 5707 * ice_fix_features - fix the netdev features flags based on device limitations 5708 * @netdev: ptr to the netdev that flags are being fixed on 5709 * @features: features that need to be checked and possibly fixed 5710 * 5711 * Make sure any fixups are made to features in this callback. This enables the 5712 * driver to not have to check unsupported configurations throughout the driver 5713 * because that's the responsiblity of this callback. 5714 * 5715 * Single VLAN Mode (SVM) Supported Features: 5716 * NETIF_F_HW_VLAN_CTAG_FILTER 5717 * NETIF_F_HW_VLAN_CTAG_RX 5718 * NETIF_F_HW_VLAN_CTAG_TX 5719 * 5720 * Double VLAN Mode (DVM) Supported Features: 5721 * NETIF_F_HW_VLAN_CTAG_FILTER 5722 * NETIF_F_HW_VLAN_CTAG_RX 5723 * NETIF_F_HW_VLAN_CTAG_TX 5724 * 5725 * NETIF_F_HW_VLAN_STAG_FILTER 5726 * NETIF_HW_VLAN_STAG_RX 5727 * NETIF_HW_VLAN_STAG_TX 5728 * 5729 * Features that need fixing: 5730 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5731 * These are mutually exlusive as the VSI context cannot support multiple 5732 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5733 * is not done, then default to clearing the requested STAG offload 5734 * settings. 5735 * 5736 * All supported filtering has to be enabled or disabled together. For 5737 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5738 * together. If this is not done, then default to VLAN filtering disabled. 5739 * These are mutually exclusive as there is currently no way to 5740 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5741 * prune rules. 5742 */ 5743 static netdev_features_t 5744 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5745 { 5746 struct ice_netdev_priv *np = netdev_priv(netdev); 5747 netdev_features_t supported_vlan_filtering; 5748 netdev_features_t requested_vlan_filtering; 5749 struct ice_vsi *vsi = np->vsi; 5750 5751 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5752 5753 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5754 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5755 if (ice_is_dvm_ena(&vsi->back->hw)) 5756 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5757 5758 if (requested_vlan_filtering && 5759 requested_vlan_filtering != supported_vlan_filtering) { 5760 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5761 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5762 features |= supported_vlan_filtering; 5763 } else { 5764 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5765 features &= ~supported_vlan_filtering; 5766 } 5767 } 5768 5769 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5770 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5771 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5772 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5773 NETIF_F_HW_VLAN_STAG_TX); 5774 } 5775 5776 return features; 5777 } 5778 5779 /** 5780 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5781 * @vsi: PF's VSI 5782 * @features: features used to determine VLAN offload settings 5783 * 5784 * First, determine the vlan_ethertype based on the VLAN offload bits in 5785 * features. Then determine if stripping and insertion should be enabled or 5786 * disabled. Finally enable or disable VLAN stripping and insertion. 5787 */ 5788 static int 5789 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5790 { 5791 bool enable_stripping = true, enable_insertion = true; 5792 struct ice_vsi_vlan_ops *vlan_ops; 5793 int strip_err = 0, insert_err = 0; 5794 u16 vlan_ethertype = 0; 5795 5796 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5797 5798 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5799 vlan_ethertype = ETH_P_8021AD; 5800 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5801 vlan_ethertype = ETH_P_8021Q; 5802 5803 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5804 enable_stripping = false; 5805 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5806 enable_insertion = false; 5807 5808 if (enable_stripping) 5809 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5810 else 5811 strip_err = vlan_ops->dis_stripping(vsi); 5812 5813 if (enable_insertion) 5814 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5815 else 5816 insert_err = vlan_ops->dis_insertion(vsi); 5817 5818 if (strip_err || insert_err) 5819 return -EIO; 5820 5821 return 0; 5822 } 5823 5824 /** 5825 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5826 * @vsi: PF's VSI 5827 * @features: features used to determine VLAN filtering settings 5828 * 5829 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5830 * features. 5831 */ 5832 static int 5833 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5834 { 5835 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5836 int err = 0; 5837 5838 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5839 * if either bit is set 5840 */ 5841 if (features & 5842 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5843 err = vlan_ops->ena_rx_filtering(vsi); 5844 else 5845 err = vlan_ops->dis_rx_filtering(vsi); 5846 5847 return err; 5848 } 5849 5850 /** 5851 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5852 * @netdev: ptr to the netdev being adjusted 5853 * @features: the feature set that the stack is suggesting 5854 * 5855 * Only update VLAN settings if the requested_vlan_features are different than 5856 * the current_vlan_features. 5857 */ 5858 static int 5859 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5860 { 5861 netdev_features_t current_vlan_features, requested_vlan_features; 5862 struct ice_netdev_priv *np = netdev_priv(netdev); 5863 struct ice_vsi *vsi = np->vsi; 5864 int err; 5865 5866 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5867 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5868 if (current_vlan_features ^ requested_vlan_features) { 5869 err = ice_set_vlan_offload_features(vsi, features); 5870 if (err) 5871 return err; 5872 } 5873 5874 current_vlan_features = netdev->features & 5875 NETIF_VLAN_FILTERING_FEATURES; 5876 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5877 if (current_vlan_features ^ requested_vlan_features) { 5878 err = ice_set_vlan_filtering_features(vsi, features); 5879 if (err) 5880 return err; 5881 } 5882 5883 return 0; 5884 } 5885 5886 /** 5887 * ice_set_features - set the netdev feature flags 5888 * @netdev: ptr to the netdev being adjusted 5889 * @features: the feature set that the stack is suggesting 5890 */ 5891 static int 5892 ice_set_features(struct net_device *netdev, netdev_features_t features) 5893 { 5894 struct ice_netdev_priv *np = netdev_priv(netdev); 5895 struct ice_vsi *vsi = np->vsi; 5896 struct ice_pf *pf = vsi->back; 5897 int ret = 0; 5898 5899 /* Don't set any netdev advanced features with device in Safe Mode */ 5900 if (ice_is_safe_mode(vsi->back)) { 5901 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5902 return ret; 5903 } 5904 5905 /* Do not change setting during reset */ 5906 if (ice_is_reset_in_progress(pf->state)) { 5907 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5908 return -EBUSY; 5909 } 5910 5911 /* Multiple features can be changed in one call so keep features in 5912 * separate if/else statements to guarantee each feature is checked 5913 */ 5914 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5915 ice_vsi_manage_rss_lut(vsi, true); 5916 else if (!(features & NETIF_F_RXHASH) && 5917 netdev->features & NETIF_F_RXHASH) 5918 ice_vsi_manage_rss_lut(vsi, false); 5919 5920 ret = ice_set_vlan_features(netdev, features); 5921 if (ret) 5922 return ret; 5923 5924 if ((features & NETIF_F_NTUPLE) && 5925 !(netdev->features & NETIF_F_NTUPLE)) { 5926 ice_vsi_manage_fdir(vsi, true); 5927 ice_init_arfs(vsi); 5928 } else if (!(features & NETIF_F_NTUPLE) && 5929 (netdev->features & NETIF_F_NTUPLE)) { 5930 ice_vsi_manage_fdir(vsi, false); 5931 ice_clear_arfs(vsi); 5932 } 5933 5934 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5935 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5936 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5937 return -EACCES; 5938 } 5939 5940 if ((features & NETIF_F_HW_TC) && 5941 !(netdev->features & NETIF_F_HW_TC)) 5942 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5943 else 5944 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5945 5946 return 0; 5947 } 5948 5949 /** 5950 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5951 * @vsi: VSI to setup VLAN properties for 5952 */ 5953 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5954 { 5955 int err; 5956 5957 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5958 if (err) 5959 return err; 5960 5961 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5962 if (err) 5963 return err; 5964 5965 return ice_vsi_add_vlan_zero(vsi); 5966 } 5967 5968 /** 5969 * ice_vsi_cfg - Setup the VSI 5970 * @vsi: the VSI being configured 5971 * 5972 * Return 0 on success and negative value on error 5973 */ 5974 int ice_vsi_cfg(struct ice_vsi *vsi) 5975 { 5976 int err; 5977 5978 if (vsi->netdev) { 5979 ice_set_rx_mode(vsi->netdev); 5980 5981 err = ice_vsi_vlan_setup(vsi); 5982 5983 if (err) 5984 return err; 5985 } 5986 ice_vsi_cfg_dcb_rings(vsi); 5987 5988 err = ice_vsi_cfg_lan_txqs(vsi); 5989 if (!err && ice_is_xdp_ena_vsi(vsi)) 5990 err = ice_vsi_cfg_xdp_txqs(vsi); 5991 if (!err) 5992 err = ice_vsi_cfg_rxqs(vsi); 5993 5994 return err; 5995 } 5996 5997 /* THEORY OF MODERATION: 5998 * The ice driver hardware works differently than the hardware that DIMLIB was 5999 * originally made for. ice hardware doesn't have packet count limits that 6000 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6001 * which is hard-coded to a limit of 250,000 ints/second. 6002 * If not using dynamic moderation, the INTRL value can be modified 6003 * by ethtool rx-usecs-high. 6004 */ 6005 struct ice_dim { 6006 /* the throttle rate for interrupts, basically worst case delay before 6007 * an initial interrupt fires, value is stored in microseconds. 6008 */ 6009 u16 itr; 6010 }; 6011 6012 /* Make a different profile for Rx that doesn't allow quite so aggressive 6013 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6014 * second. 6015 */ 6016 static const struct ice_dim rx_profile[] = { 6017 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6018 {8}, /* 125,000 ints/s */ 6019 {16}, /* 62,500 ints/s */ 6020 {62}, /* 16,129 ints/s */ 6021 {126} /* 7,936 ints/s */ 6022 }; 6023 6024 /* The transmit profile, which has the same sorts of values 6025 * as the previous struct 6026 */ 6027 static const struct ice_dim tx_profile[] = { 6028 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6029 {8}, /* 125,000 ints/s */ 6030 {40}, /* 16,125 ints/s */ 6031 {128}, /* 7,812 ints/s */ 6032 {256} /* 3,906 ints/s */ 6033 }; 6034 6035 static void ice_tx_dim_work(struct work_struct *work) 6036 { 6037 struct ice_ring_container *rc; 6038 struct dim *dim; 6039 u16 itr; 6040 6041 dim = container_of(work, struct dim, work); 6042 rc = (struct ice_ring_container *)dim->priv; 6043 6044 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6045 6046 /* look up the values in our local table */ 6047 itr = tx_profile[dim->profile_ix].itr; 6048 6049 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6050 ice_write_itr(rc, itr); 6051 6052 dim->state = DIM_START_MEASURE; 6053 } 6054 6055 static void ice_rx_dim_work(struct work_struct *work) 6056 { 6057 struct ice_ring_container *rc; 6058 struct dim *dim; 6059 u16 itr; 6060 6061 dim = container_of(work, struct dim, work); 6062 rc = (struct ice_ring_container *)dim->priv; 6063 6064 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6065 6066 /* look up the values in our local table */ 6067 itr = rx_profile[dim->profile_ix].itr; 6068 6069 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6070 ice_write_itr(rc, itr); 6071 6072 dim->state = DIM_START_MEASURE; 6073 } 6074 6075 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6076 6077 /** 6078 * ice_init_moderation - set up interrupt moderation 6079 * @q_vector: the vector containing rings to be configured 6080 * 6081 * Set up interrupt moderation registers, with the intent to do the right thing 6082 * when called from reset or from probe, and whether or not dynamic moderation 6083 * is enabled or not. Take special care to write all the registers in both 6084 * dynamic moderation mode or not in order to make sure hardware is in a known 6085 * state. 6086 */ 6087 static void ice_init_moderation(struct ice_q_vector *q_vector) 6088 { 6089 struct ice_ring_container *rc; 6090 bool tx_dynamic, rx_dynamic; 6091 6092 rc = &q_vector->tx; 6093 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6094 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6095 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6096 rc->dim.priv = rc; 6097 tx_dynamic = ITR_IS_DYNAMIC(rc); 6098 6099 /* set the initial TX ITR to match the above */ 6100 ice_write_itr(rc, tx_dynamic ? 6101 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6102 6103 rc = &q_vector->rx; 6104 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6105 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6106 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6107 rc->dim.priv = rc; 6108 rx_dynamic = ITR_IS_DYNAMIC(rc); 6109 6110 /* set the initial RX ITR to match the above */ 6111 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6112 rc->itr_setting); 6113 6114 ice_set_q_vector_intrl(q_vector); 6115 } 6116 6117 /** 6118 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6119 * @vsi: the VSI being configured 6120 */ 6121 static void ice_napi_enable_all(struct ice_vsi *vsi) 6122 { 6123 int q_idx; 6124 6125 if (!vsi->netdev) 6126 return; 6127 6128 ice_for_each_q_vector(vsi, q_idx) { 6129 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6130 6131 ice_init_moderation(q_vector); 6132 6133 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6134 napi_enable(&q_vector->napi); 6135 } 6136 } 6137 6138 /** 6139 * ice_up_complete - Finish the last steps of bringing up a connection 6140 * @vsi: The VSI being configured 6141 * 6142 * Return 0 on success and negative value on error 6143 */ 6144 static int ice_up_complete(struct ice_vsi *vsi) 6145 { 6146 struct ice_pf *pf = vsi->back; 6147 int err; 6148 6149 ice_vsi_cfg_msix(vsi); 6150 6151 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6152 * Tx queue group list was configured and the context bits were 6153 * programmed using ice_vsi_cfg_txqs 6154 */ 6155 err = ice_vsi_start_all_rx_rings(vsi); 6156 if (err) 6157 return err; 6158 6159 clear_bit(ICE_VSI_DOWN, vsi->state); 6160 ice_napi_enable_all(vsi); 6161 ice_vsi_ena_irq(vsi); 6162 6163 if (vsi->port_info && 6164 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6165 vsi->netdev) { 6166 ice_print_link_msg(vsi, true); 6167 netif_tx_start_all_queues(vsi->netdev); 6168 netif_carrier_on(vsi->netdev); 6169 if (!ice_is_e810(&pf->hw)) 6170 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6171 } 6172 6173 /* clear this now, and the first stats read will be used as baseline */ 6174 vsi->stat_offsets_loaded = false; 6175 6176 ice_service_task_schedule(pf); 6177 6178 return 0; 6179 } 6180 6181 /** 6182 * ice_up - Bring the connection back up after being down 6183 * @vsi: VSI being configured 6184 */ 6185 int ice_up(struct ice_vsi *vsi) 6186 { 6187 int err; 6188 6189 err = ice_vsi_cfg(vsi); 6190 if (!err) 6191 err = ice_up_complete(vsi); 6192 6193 return err; 6194 } 6195 6196 /** 6197 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6198 * @syncp: pointer to u64_stats_sync 6199 * @stats: stats that pkts and bytes count will be taken from 6200 * @pkts: packets stats counter 6201 * @bytes: bytes stats counter 6202 * 6203 * This function fetches stats from the ring considering the atomic operations 6204 * that needs to be performed to read u64 values in 32 bit machine. 6205 */ 6206 void 6207 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6208 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6209 { 6210 unsigned int start; 6211 6212 do { 6213 start = u64_stats_fetch_begin_irq(syncp); 6214 *pkts = stats.pkts; 6215 *bytes = stats.bytes; 6216 } while (u64_stats_fetch_retry_irq(syncp, start)); 6217 } 6218 6219 /** 6220 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6221 * @vsi: the VSI to be updated 6222 * @vsi_stats: the stats struct to be updated 6223 * @rings: rings to work on 6224 * @count: number of rings 6225 */ 6226 static void 6227 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6228 struct rtnl_link_stats64 *vsi_stats, 6229 struct ice_tx_ring **rings, u16 count) 6230 { 6231 u16 i; 6232 6233 for (i = 0; i < count; i++) { 6234 struct ice_tx_ring *ring; 6235 u64 pkts = 0, bytes = 0; 6236 6237 ring = READ_ONCE(rings[i]); 6238 if (!ring) 6239 continue; 6240 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6241 vsi_stats->tx_packets += pkts; 6242 vsi_stats->tx_bytes += bytes; 6243 vsi->tx_restart += ring->tx_stats.restart_q; 6244 vsi->tx_busy += ring->tx_stats.tx_busy; 6245 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6246 } 6247 } 6248 6249 /** 6250 * ice_update_vsi_ring_stats - Update VSI stats counters 6251 * @vsi: the VSI to be updated 6252 */ 6253 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6254 { 6255 struct rtnl_link_stats64 *vsi_stats; 6256 u64 pkts, bytes; 6257 int i; 6258 6259 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6260 if (!vsi_stats) 6261 return; 6262 6263 /* reset non-netdev (extended) stats */ 6264 vsi->tx_restart = 0; 6265 vsi->tx_busy = 0; 6266 vsi->tx_linearize = 0; 6267 vsi->rx_buf_failed = 0; 6268 vsi->rx_page_failed = 0; 6269 6270 rcu_read_lock(); 6271 6272 /* update Tx rings counters */ 6273 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6274 vsi->num_txq); 6275 6276 /* update Rx rings counters */ 6277 ice_for_each_rxq(vsi, i) { 6278 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6279 6280 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6281 vsi_stats->rx_packets += pkts; 6282 vsi_stats->rx_bytes += bytes; 6283 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6284 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6285 } 6286 6287 /* update XDP Tx rings counters */ 6288 if (ice_is_xdp_ena_vsi(vsi)) 6289 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6290 vsi->num_xdp_txq); 6291 6292 rcu_read_unlock(); 6293 6294 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6295 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6296 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6297 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6298 6299 kfree(vsi_stats); 6300 } 6301 6302 /** 6303 * ice_update_vsi_stats - Update VSI stats counters 6304 * @vsi: the VSI to be updated 6305 */ 6306 void ice_update_vsi_stats(struct ice_vsi *vsi) 6307 { 6308 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6309 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6310 struct ice_pf *pf = vsi->back; 6311 6312 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6313 test_bit(ICE_CFG_BUSY, pf->state)) 6314 return; 6315 6316 /* get stats as recorded by Tx/Rx rings */ 6317 ice_update_vsi_ring_stats(vsi); 6318 6319 /* get VSI stats as recorded by the hardware */ 6320 ice_update_eth_stats(vsi); 6321 6322 cur_ns->tx_errors = cur_es->tx_errors; 6323 cur_ns->rx_dropped = cur_es->rx_discards; 6324 cur_ns->tx_dropped = cur_es->tx_discards; 6325 cur_ns->multicast = cur_es->rx_multicast; 6326 6327 /* update some more netdev stats if this is main VSI */ 6328 if (vsi->type == ICE_VSI_PF) { 6329 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6330 cur_ns->rx_errors = pf->stats.crc_errors + 6331 pf->stats.illegal_bytes + 6332 pf->stats.rx_len_errors + 6333 pf->stats.rx_undersize + 6334 pf->hw_csum_rx_error + 6335 pf->stats.rx_jabber + 6336 pf->stats.rx_fragments + 6337 pf->stats.rx_oversize; 6338 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6339 /* record drops from the port level */ 6340 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6341 } 6342 } 6343 6344 /** 6345 * ice_update_pf_stats - Update PF port stats counters 6346 * @pf: PF whose stats needs to be updated 6347 */ 6348 void ice_update_pf_stats(struct ice_pf *pf) 6349 { 6350 struct ice_hw_port_stats *prev_ps, *cur_ps; 6351 struct ice_hw *hw = &pf->hw; 6352 u16 fd_ctr_base; 6353 u8 port; 6354 6355 port = hw->port_info->lport; 6356 prev_ps = &pf->stats_prev; 6357 cur_ps = &pf->stats; 6358 6359 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6360 &prev_ps->eth.rx_bytes, 6361 &cur_ps->eth.rx_bytes); 6362 6363 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6364 &prev_ps->eth.rx_unicast, 6365 &cur_ps->eth.rx_unicast); 6366 6367 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6368 &prev_ps->eth.rx_multicast, 6369 &cur_ps->eth.rx_multicast); 6370 6371 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6372 &prev_ps->eth.rx_broadcast, 6373 &cur_ps->eth.rx_broadcast); 6374 6375 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6376 &prev_ps->eth.rx_discards, 6377 &cur_ps->eth.rx_discards); 6378 6379 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6380 &prev_ps->eth.tx_bytes, 6381 &cur_ps->eth.tx_bytes); 6382 6383 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6384 &prev_ps->eth.tx_unicast, 6385 &cur_ps->eth.tx_unicast); 6386 6387 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6388 &prev_ps->eth.tx_multicast, 6389 &cur_ps->eth.tx_multicast); 6390 6391 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6392 &prev_ps->eth.tx_broadcast, 6393 &cur_ps->eth.tx_broadcast); 6394 6395 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6396 &prev_ps->tx_dropped_link_down, 6397 &cur_ps->tx_dropped_link_down); 6398 6399 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6400 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6401 6402 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6403 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6404 6405 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6406 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6407 6408 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6409 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6410 6411 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6412 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6413 6414 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6415 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6416 6417 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6418 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6419 6420 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6421 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6422 6423 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6424 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6425 6426 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6427 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6428 6429 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6430 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6431 6432 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6433 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6434 6435 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6436 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6437 6438 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6439 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6440 6441 fd_ctr_base = hw->fd_ctr_base; 6442 6443 ice_stat_update40(hw, 6444 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6445 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6446 &cur_ps->fd_sb_match); 6447 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6448 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6449 6450 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6451 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6452 6453 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6454 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6455 6456 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6457 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6458 6459 ice_update_dcb_stats(pf); 6460 6461 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6462 &prev_ps->crc_errors, &cur_ps->crc_errors); 6463 6464 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6465 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6466 6467 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6468 &prev_ps->mac_local_faults, 6469 &cur_ps->mac_local_faults); 6470 6471 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6472 &prev_ps->mac_remote_faults, 6473 &cur_ps->mac_remote_faults); 6474 6475 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6476 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6477 6478 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6479 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6480 6481 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6482 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6483 6484 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6485 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6486 6487 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6488 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6489 6490 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6491 6492 pf->stat_prev_loaded = true; 6493 } 6494 6495 /** 6496 * ice_get_stats64 - get statistics for network device structure 6497 * @netdev: network interface device structure 6498 * @stats: main device statistics structure 6499 */ 6500 static 6501 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6502 { 6503 struct ice_netdev_priv *np = netdev_priv(netdev); 6504 struct rtnl_link_stats64 *vsi_stats; 6505 struct ice_vsi *vsi = np->vsi; 6506 6507 vsi_stats = &vsi->net_stats; 6508 6509 if (!vsi->num_txq || !vsi->num_rxq) 6510 return; 6511 6512 /* netdev packet/byte stats come from ring counter. These are obtained 6513 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6514 * But, only call the update routine and read the registers if VSI is 6515 * not down. 6516 */ 6517 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6518 ice_update_vsi_ring_stats(vsi); 6519 stats->tx_packets = vsi_stats->tx_packets; 6520 stats->tx_bytes = vsi_stats->tx_bytes; 6521 stats->rx_packets = vsi_stats->rx_packets; 6522 stats->rx_bytes = vsi_stats->rx_bytes; 6523 6524 /* The rest of the stats can be read from the hardware but instead we 6525 * just return values that the watchdog task has already obtained from 6526 * the hardware. 6527 */ 6528 stats->multicast = vsi_stats->multicast; 6529 stats->tx_errors = vsi_stats->tx_errors; 6530 stats->tx_dropped = vsi_stats->tx_dropped; 6531 stats->rx_errors = vsi_stats->rx_errors; 6532 stats->rx_dropped = vsi_stats->rx_dropped; 6533 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6534 stats->rx_length_errors = vsi_stats->rx_length_errors; 6535 } 6536 6537 /** 6538 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6539 * @vsi: VSI having NAPI disabled 6540 */ 6541 static void ice_napi_disable_all(struct ice_vsi *vsi) 6542 { 6543 int q_idx; 6544 6545 if (!vsi->netdev) 6546 return; 6547 6548 ice_for_each_q_vector(vsi, q_idx) { 6549 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6550 6551 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6552 napi_disable(&q_vector->napi); 6553 6554 cancel_work_sync(&q_vector->tx.dim.work); 6555 cancel_work_sync(&q_vector->rx.dim.work); 6556 } 6557 } 6558 6559 /** 6560 * ice_down - Shutdown the connection 6561 * @vsi: The VSI being stopped 6562 * 6563 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6564 */ 6565 int ice_down(struct ice_vsi *vsi) 6566 { 6567 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6568 6569 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6570 6571 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6572 vlan_err = ice_vsi_del_vlan_zero(vsi); 6573 if (!ice_is_e810(&vsi->back->hw)) 6574 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6575 netif_carrier_off(vsi->netdev); 6576 netif_tx_disable(vsi->netdev); 6577 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6578 ice_eswitch_stop_all_tx_queues(vsi->back); 6579 } 6580 6581 ice_vsi_dis_irq(vsi); 6582 6583 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6584 if (tx_err) 6585 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6586 vsi->vsi_num, tx_err); 6587 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6588 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6589 if (tx_err) 6590 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6591 vsi->vsi_num, tx_err); 6592 } 6593 6594 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6595 if (rx_err) 6596 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6597 vsi->vsi_num, rx_err); 6598 6599 ice_napi_disable_all(vsi); 6600 6601 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6602 link_err = ice_force_phys_link_state(vsi, false); 6603 if (link_err) 6604 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6605 vsi->vsi_num, link_err); 6606 } 6607 6608 ice_for_each_txq(vsi, i) 6609 ice_clean_tx_ring(vsi->tx_rings[i]); 6610 6611 ice_for_each_rxq(vsi, i) 6612 ice_clean_rx_ring(vsi->rx_rings[i]); 6613 6614 if (tx_err || rx_err || link_err || vlan_err) { 6615 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6616 vsi->vsi_num, vsi->vsw->sw_id); 6617 return -EIO; 6618 } 6619 6620 return 0; 6621 } 6622 6623 /** 6624 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6625 * @vsi: VSI having resources allocated 6626 * 6627 * Return 0 on success, negative on failure 6628 */ 6629 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6630 { 6631 int i, err = 0; 6632 6633 if (!vsi->num_txq) { 6634 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6635 vsi->vsi_num); 6636 return -EINVAL; 6637 } 6638 6639 ice_for_each_txq(vsi, i) { 6640 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6641 6642 if (!ring) 6643 return -EINVAL; 6644 6645 if (vsi->netdev) 6646 ring->netdev = vsi->netdev; 6647 err = ice_setup_tx_ring(ring); 6648 if (err) 6649 break; 6650 } 6651 6652 return err; 6653 } 6654 6655 /** 6656 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6657 * @vsi: VSI having resources allocated 6658 * 6659 * Return 0 on success, negative on failure 6660 */ 6661 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6662 { 6663 int i, err = 0; 6664 6665 if (!vsi->num_rxq) { 6666 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6667 vsi->vsi_num); 6668 return -EINVAL; 6669 } 6670 6671 ice_for_each_rxq(vsi, i) { 6672 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6673 6674 if (!ring) 6675 return -EINVAL; 6676 6677 if (vsi->netdev) 6678 ring->netdev = vsi->netdev; 6679 err = ice_setup_rx_ring(ring); 6680 if (err) 6681 break; 6682 } 6683 6684 return err; 6685 } 6686 6687 /** 6688 * ice_vsi_open_ctrl - open control VSI for use 6689 * @vsi: the VSI to open 6690 * 6691 * Initialization of the Control VSI 6692 * 6693 * Returns 0 on success, negative value on error 6694 */ 6695 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6696 { 6697 char int_name[ICE_INT_NAME_STR_LEN]; 6698 struct ice_pf *pf = vsi->back; 6699 struct device *dev; 6700 int err; 6701 6702 dev = ice_pf_to_dev(pf); 6703 /* allocate descriptors */ 6704 err = ice_vsi_setup_tx_rings(vsi); 6705 if (err) 6706 goto err_setup_tx; 6707 6708 err = ice_vsi_setup_rx_rings(vsi); 6709 if (err) 6710 goto err_setup_rx; 6711 6712 err = ice_vsi_cfg(vsi); 6713 if (err) 6714 goto err_setup_rx; 6715 6716 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6717 dev_driver_string(dev), dev_name(dev)); 6718 err = ice_vsi_req_irq_msix(vsi, int_name); 6719 if (err) 6720 goto err_setup_rx; 6721 6722 ice_vsi_cfg_msix(vsi); 6723 6724 err = ice_vsi_start_all_rx_rings(vsi); 6725 if (err) 6726 goto err_up_complete; 6727 6728 clear_bit(ICE_VSI_DOWN, vsi->state); 6729 ice_vsi_ena_irq(vsi); 6730 6731 return 0; 6732 6733 err_up_complete: 6734 ice_down(vsi); 6735 err_setup_rx: 6736 ice_vsi_free_rx_rings(vsi); 6737 err_setup_tx: 6738 ice_vsi_free_tx_rings(vsi); 6739 6740 return err; 6741 } 6742 6743 /** 6744 * ice_vsi_open - Called when a network interface is made active 6745 * @vsi: the VSI to open 6746 * 6747 * Initialization of the VSI 6748 * 6749 * Returns 0 on success, negative value on error 6750 */ 6751 int ice_vsi_open(struct ice_vsi *vsi) 6752 { 6753 char int_name[ICE_INT_NAME_STR_LEN]; 6754 struct ice_pf *pf = vsi->back; 6755 int err; 6756 6757 /* allocate descriptors */ 6758 err = ice_vsi_setup_tx_rings(vsi); 6759 if (err) 6760 goto err_setup_tx; 6761 6762 err = ice_vsi_setup_rx_rings(vsi); 6763 if (err) 6764 goto err_setup_rx; 6765 6766 err = ice_vsi_cfg(vsi); 6767 if (err) 6768 goto err_setup_rx; 6769 6770 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6771 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6772 err = ice_vsi_req_irq_msix(vsi, int_name); 6773 if (err) 6774 goto err_setup_rx; 6775 6776 if (vsi->type == ICE_VSI_PF) { 6777 /* Notify the stack of the actual queue counts. */ 6778 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6779 if (err) 6780 goto err_set_qs; 6781 6782 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6783 if (err) 6784 goto err_set_qs; 6785 } 6786 6787 err = ice_up_complete(vsi); 6788 if (err) 6789 goto err_up_complete; 6790 6791 return 0; 6792 6793 err_up_complete: 6794 ice_down(vsi); 6795 err_set_qs: 6796 ice_vsi_free_irq(vsi); 6797 err_setup_rx: 6798 ice_vsi_free_rx_rings(vsi); 6799 err_setup_tx: 6800 ice_vsi_free_tx_rings(vsi); 6801 6802 return err; 6803 } 6804 6805 /** 6806 * ice_vsi_release_all - Delete all VSIs 6807 * @pf: PF from which all VSIs are being removed 6808 */ 6809 static void ice_vsi_release_all(struct ice_pf *pf) 6810 { 6811 int err, i; 6812 6813 if (!pf->vsi) 6814 return; 6815 6816 ice_for_each_vsi(pf, i) { 6817 if (!pf->vsi[i]) 6818 continue; 6819 6820 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6821 continue; 6822 6823 err = ice_vsi_release(pf->vsi[i]); 6824 if (err) 6825 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6826 i, err, pf->vsi[i]->vsi_num); 6827 } 6828 } 6829 6830 /** 6831 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6832 * @pf: pointer to the PF instance 6833 * @type: VSI type to rebuild 6834 * 6835 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6836 */ 6837 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6838 { 6839 struct device *dev = ice_pf_to_dev(pf); 6840 int i, err; 6841 6842 ice_for_each_vsi(pf, i) { 6843 struct ice_vsi *vsi = pf->vsi[i]; 6844 6845 if (!vsi || vsi->type != type) 6846 continue; 6847 6848 /* rebuild the VSI */ 6849 err = ice_vsi_rebuild(vsi, true); 6850 if (err) { 6851 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6852 err, vsi->idx, ice_vsi_type_str(type)); 6853 return err; 6854 } 6855 6856 /* replay filters for the VSI */ 6857 err = ice_replay_vsi(&pf->hw, vsi->idx); 6858 if (err) { 6859 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6860 err, vsi->idx, ice_vsi_type_str(type)); 6861 return err; 6862 } 6863 6864 /* Re-map HW VSI number, using VSI handle that has been 6865 * previously validated in ice_replay_vsi() call above 6866 */ 6867 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6868 6869 /* enable the VSI */ 6870 err = ice_ena_vsi(vsi, false); 6871 if (err) { 6872 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6873 err, vsi->idx, ice_vsi_type_str(type)); 6874 return err; 6875 } 6876 6877 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6878 ice_vsi_type_str(type)); 6879 } 6880 6881 return 0; 6882 } 6883 6884 /** 6885 * ice_update_pf_netdev_link - Update PF netdev link status 6886 * @pf: pointer to the PF instance 6887 */ 6888 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6889 { 6890 bool link_up; 6891 int i; 6892 6893 ice_for_each_vsi(pf, i) { 6894 struct ice_vsi *vsi = pf->vsi[i]; 6895 6896 if (!vsi || vsi->type != ICE_VSI_PF) 6897 return; 6898 6899 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6900 if (link_up) { 6901 netif_carrier_on(pf->vsi[i]->netdev); 6902 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6903 } else { 6904 netif_carrier_off(pf->vsi[i]->netdev); 6905 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6906 } 6907 } 6908 } 6909 6910 /** 6911 * ice_rebuild - rebuild after reset 6912 * @pf: PF to rebuild 6913 * @reset_type: type of reset 6914 * 6915 * Do not rebuild VF VSI in this flow because that is already handled via 6916 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6917 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6918 * to reset/rebuild all the VF VSI twice. 6919 */ 6920 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6921 { 6922 struct device *dev = ice_pf_to_dev(pf); 6923 struct ice_hw *hw = &pf->hw; 6924 bool dvm; 6925 int err; 6926 6927 if (test_bit(ICE_DOWN, pf->state)) 6928 goto clear_recovery; 6929 6930 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6931 6932 #define ICE_EMP_RESET_SLEEP_MS 5000 6933 if (reset_type == ICE_RESET_EMPR) { 6934 /* If an EMP reset has occurred, any previously pending flash 6935 * update will have completed. We no longer know whether or 6936 * not the NVM update EMP reset is restricted. 6937 */ 6938 pf->fw_emp_reset_disabled = false; 6939 6940 msleep(ICE_EMP_RESET_SLEEP_MS); 6941 } 6942 6943 err = ice_init_all_ctrlq(hw); 6944 if (err) { 6945 dev_err(dev, "control queues init failed %d\n", err); 6946 goto err_init_ctrlq; 6947 } 6948 6949 /* if DDP was previously loaded successfully */ 6950 if (!ice_is_safe_mode(pf)) { 6951 /* reload the SW DB of filter tables */ 6952 if (reset_type == ICE_RESET_PFR) 6953 ice_fill_blk_tbls(hw); 6954 else 6955 /* Reload DDP Package after CORER/GLOBR reset */ 6956 ice_load_pkg(NULL, pf); 6957 } 6958 6959 err = ice_clear_pf_cfg(hw); 6960 if (err) { 6961 dev_err(dev, "clear PF configuration failed %d\n", err); 6962 goto err_init_ctrlq; 6963 } 6964 6965 if (pf->first_sw->dflt_vsi_ena) 6966 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6967 /* clear the default VSI configuration if it exists */ 6968 pf->first_sw->dflt_vsi = NULL; 6969 pf->first_sw->dflt_vsi_ena = false; 6970 6971 ice_clear_pxe_mode(hw); 6972 6973 err = ice_init_nvm(hw); 6974 if (err) { 6975 dev_err(dev, "ice_init_nvm failed %d\n", err); 6976 goto err_init_ctrlq; 6977 } 6978 6979 err = ice_get_caps(hw); 6980 if (err) { 6981 dev_err(dev, "ice_get_caps failed %d\n", err); 6982 goto err_init_ctrlq; 6983 } 6984 6985 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6986 if (err) { 6987 dev_err(dev, "set_mac_cfg failed %d\n", err); 6988 goto err_init_ctrlq; 6989 } 6990 6991 dvm = ice_is_dvm_ena(hw); 6992 6993 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6994 if (err) 6995 goto err_init_ctrlq; 6996 6997 err = ice_sched_init_port(hw->port_info); 6998 if (err) 6999 goto err_sched_init_port; 7000 7001 /* start misc vector */ 7002 err = ice_req_irq_msix_misc(pf); 7003 if (err) { 7004 dev_err(dev, "misc vector setup failed: %d\n", err); 7005 goto err_sched_init_port; 7006 } 7007 7008 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7009 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7010 if (!rd32(hw, PFQF_FD_SIZE)) { 7011 u16 unused, guar, b_effort; 7012 7013 guar = hw->func_caps.fd_fltr_guar; 7014 b_effort = hw->func_caps.fd_fltr_best_effort; 7015 7016 /* force guaranteed filter pool for PF */ 7017 ice_alloc_fd_guar_item(hw, &unused, guar); 7018 /* force shared filter pool for PF */ 7019 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7020 } 7021 } 7022 7023 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7024 ice_dcb_rebuild(pf); 7025 7026 /* If the PF previously had enabled PTP, PTP init needs to happen before 7027 * the VSI rebuild. If not, this causes the PTP link status events to 7028 * fail. 7029 */ 7030 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7031 ice_ptp_reset(pf); 7032 7033 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7034 ice_gnss_init(pf); 7035 7036 /* rebuild PF VSI */ 7037 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7038 if (err) { 7039 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7040 goto err_vsi_rebuild; 7041 } 7042 7043 /* configure PTP timestamping after VSI rebuild */ 7044 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7045 ice_ptp_cfg_timestamp(pf, false); 7046 7047 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7048 if (err) { 7049 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7050 goto err_vsi_rebuild; 7051 } 7052 7053 if (reset_type == ICE_RESET_PFR) { 7054 err = ice_rebuild_channels(pf); 7055 if (err) { 7056 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7057 err); 7058 goto err_vsi_rebuild; 7059 } 7060 } 7061 7062 /* If Flow Director is active */ 7063 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7064 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7065 if (err) { 7066 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7067 goto err_vsi_rebuild; 7068 } 7069 7070 /* replay HW Flow Director recipes */ 7071 if (hw->fdir_prof) 7072 ice_fdir_replay_flows(hw); 7073 7074 /* replay Flow Director filters */ 7075 ice_fdir_replay_fltrs(pf); 7076 7077 ice_rebuild_arfs(pf); 7078 } 7079 7080 ice_update_pf_netdev_link(pf); 7081 7082 /* tell the firmware we are up */ 7083 err = ice_send_version(pf); 7084 if (err) { 7085 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7086 err); 7087 goto err_vsi_rebuild; 7088 } 7089 7090 ice_replay_post(hw); 7091 7092 /* if we get here, reset flow is successful */ 7093 clear_bit(ICE_RESET_FAILED, pf->state); 7094 7095 ice_plug_aux_dev(pf); 7096 return; 7097 7098 err_vsi_rebuild: 7099 err_sched_init_port: 7100 ice_sched_cleanup_all(hw); 7101 err_init_ctrlq: 7102 ice_shutdown_all_ctrlq(hw); 7103 set_bit(ICE_RESET_FAILED, pf->state); 7104 clear_recovery: 7105 /* set this bit in PF state to control service task scheduling */ 7106 set_bit(ICE_NEEDS_RESTART, pf->state); 7107 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7108 } 7109 7110 /** 7111 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7112 * @vsi: Pointer to VSI structure 7113 */ 7114 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7115 { 7116 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7117 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7118 else 7119 return ICE_RXBUF_3072; 7120 } 7121 7122 /** 7123 * ice_change_mtu - NDO callback to change the MTU 7124 * @netdev: network interface device structure 7125 * @new_mtu: new value for maximum frame size 7126 * 7127 * Returns 0 on success, negative on failure 7128 */ 7129 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7130 { 7131 struct ice_netdev_priv *np = netdev_priv(netdev); 7132 struct ice_vsi *vsi = np->vsi; 7133 struct ice_pf *pf = vsi->back; 7134 u8 count = 0; 7135 int err = 0; 7136 7137 if (new_mtu == (int)netdev->mtu) { 7138 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7139 return 0; 7140 } 7141 7142 if (ice_is_xdp_ena_vsi(vsi)) { 7143 int frame_size = ice_max_xdp_frame_size(vsi); 7144 7145 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7146 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7147 frame_size - ICE_ETH_PKT_HDR_PAD); 7148 return -EINVAL; 7149 } 7150 } 7151 7152 /* if a reset is in progress, wait for some time for it to complete */ 7153 do { 7154 if (ice_is_reset_in_progress(pf->state)) { 7155 count++; 7156 usleep_range(1000, 2000); 7157 } else { 7158 break; 7159 } 7160 7161 } while (count < 100); 7162 7163 if (count == 100) { 7164 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7165 return -EBUSY; 7166 } 7167 7168 netdev->mtu = (unsigned int)new_mtu; 7169 7170 /* if VSI is up, bring it down and then back up */ 7171 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7172 err = ice_down(vsi); 7173 if (err) { 7174 netdev_err(netdev, "change MTU if_down err %d\n", err); 7175 return err; 7176 } 7177 7178 err = ice_up(vsi); 7179 if (err) { 7180 netdev_err(netdev, "change MTU if_up err %d\n", err); 7181 return err; 7182 } 7183 } 7184 7185 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7186 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7187 7188 return err; 7189 } 7190 7191 /** 7192 * ice_eth_ioctl - Access the hwtstamp interface 7193 * @netdev: network interface device structure 7194 * @ifr: interface request data 7195 * @cmd: ioctl command 7196 */ 7197 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7198 { 7199 struct ice_netdev_priv *np = netdev_priv(netdev); 7200 struct ice_pf *pf = np->vsi->back; 7201 7202 switch (cmd) { 7203 case SIOCGHWTSTAMP: 7204 return ice_ptp_get_ts_config(pf, ifr); 7205 case SIOCSHWTSTAMP: 7206 return ice_ptp_set_ts_config(pf, ifr); 7207 default: 7208 return -EOPNOTSUPP; 7209 } 7210 } 7211 7212 /** 7213 * ice_aq_str - convert AQ err code to a string 7214 * @aq_err: the AQ error code to convert 7215 */ 7216 const char *ice_aq_str(enum ice_aq_err aq_err) 7217 { 7218 switch (aq_err) { 7219 case ICE_AQ_RC_OK: 7220 return "OK"; 7221 case ICE_AQ_RC_EPERM: 7222 return "ICE_AQ_RC_EPERM"; 7223 case ICE_AQ_RC_ENOENT: 7224 return "ICE_AQ_RC_ENOENT"; 7225 case ICE_AQ_RC_ENOMEM: 7226 return "ICE_AQ_RC_ENOMEM"; 7227 case ICE_AQ_RC_EBUSY: 7228 return "ICE_AQ_RC_EBUSY"; 7229 case ICE_AQ_RC_EEXIST: 7230 return "ICE_AQ_RC_EEXIST"; 7231 case ICE_AQ_RC_EINVAL: 7232 return "ICE_AQ_RC_EINVAL"; 7233 case ICE_AQ_RC_ENOSPC: 7234 return "ICE_AQ_RC_ENOSPC"; 7235 case ICE_AQ_RC_ENOSYS: 7236 return "ICE_AQ_RC_ENOSYS"; 7237 case ICE_AQ_RC_EMODE: 7238 return "ICE_AQ_RC_EMODE"; 7239 case ICE_AQ_RC_ENOSEC: 7240 return "ICE_AQ_RC_ENOSEC"; 7241 case ICE_AQ_RC_EBADSIG: 7242 return "ICE_AQ_RC_EBADSIG"; 7243 case ICE_AQ_RC_ESVN: 7244 return "ICE_AQ_RC_ESVN"; 7245 case ICE_AQ_RC_EBADMAN: 7246 return "ICE_AQ_RC_EBADMAN"; 7247 case ICE_AQ_RC_EBADBUF: 7248 return "ICE_AQ_RC_EBADBUF"; 7249 } 7250 7251 return "ICE_AQ_RC_UNKNOWN"; 7252 } 7253 7254 /** 7255 * ice_set_rss_lut - Set RSS LUT 7256 * @vsi: Pointer to VSI structure 7257 * @lut: Lookup table 7258 * @lut_size: Lookup table size 7259 * 7260 * Returns 0 on success, negative on failure 7261 */ 7262 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7263 { 7264 struct ice_aq_get_set_rss_lut_params params = {}; 7265 struct ice_hw *hw = &vsi->back->hw; 7266 int status; 7267 7268 if (!lut) 7269 return -EINVAL; 7270 7271 params.vsi_handle = vsi->idx; 7272 params.lut_size = lut_size; 7273 params.lut_type = vsi->rss_lut_type; 7274 params.lut = lut; 7275 7276 status = ice_aq_set_rss_lut(hw, ¶ms); 7277 if (status) 7278 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7279 status, ice_aq_str(hw->adminq.sq_last_status)); 7280 7281 return status; 7282 } 7283 7284 /** 7285 * ice_set_rss_key - Set RSS key 7286 * @vsi: Pointer to the VSI structure 7287 * @seed: RSS hash seed 7288 * 7289 * Returns 0 on success, negative on failure 7290 */ 7291 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7292 { 7293 struct ice_hw *hw = &vsi->back->hw; 7294 int status; 7295 7296 if (!seed) 7297 return -EINVAL; 7298 7299 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7300 if (status) 7301 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7302 status, ice_aq_str(hw->adminq.sq_last_status)); 7303 7304 return status; 7305 } 7306 7307 /** 7308 * ice_get_rss_lut - Get RSS LUT 7309 * @vsi: Pointer to VSI structure 7310 * @lut: Buffer to store the lookup table entries 7311 * @lut_size: Size of buffer to store the lookup table entries 7312 * 7313 * Returns 0 on success, negative on failure 7314 */ 7315 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7316 { 7317 struct ice_aq_get_set_rss_lut_params params = {}; 7318 struct ice_hw *hw = &vsi->back->hw; 7319 int status; 7320 7321 if (!lut) 7322 return -EINVAL; 7323 7324 params.vsi_handle = vsi->idx; 7325 params.lut_size = lut_size; 7326 params.lut_type = vsi->rss_lut_type; 7327 params.lut = lut; 7328 7329 status = ice_aq_get_rss_lut(hw, ¶ms); 7330 if (status) 7331 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7332 status, ice_aq_str(hw->adminq.sq_last_status)); 7333 7334 return status; 7335 } 7336 7337 /** 7338 * ice_get_rss_key - Get RSS key 7339 * @vsi: Pointer to VSI structure 7340 * @seed: Buffer to store the key in 7341 * 7342 * Returns 0 on success, negative on failure 7343 */ 7344 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7345 { 7346 struct ice_hw *hw = &vsi->back->hw; 7347 int status; 7348 7349 if (!seed) 7350 return -EINVAL; 7351 7352 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7353 if (status) 7354 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7355 status, ice_aq_str(hw->adminq.sq_last_status)); 7356 7357 return status; 7358 } 7359 7360 /** 7361 * ice_bridge_getlink - Get the hardware bridge mode 7362 * @skb: skb buff 7363 * @pid: process ID 7364 * @seq: RTNL message seq 7365 * @dev: the netdev being configured 7366 * @filter_mask: filter mask passed in 7367 * @nlflags: netlink flags passed in 7368 * 7369 * Return the bridge mode (VEB/VEPA) 7370 */ 7371 static int 7372 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7373 struct net_device *dev, u32 filter_mask, int nlflags) 7374 { 7375 struct ice_netdev_priv *np = netdev_priv(dev); 7376 struct ice_vsi *vsi = np->vsi; 7377 struct ice_pf *pf = vsi->back; 7378 u16 bmode; 7379 7380 bmode = pf->first_sw->bridge_mode; 7381 7382 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7383 filter_mask, NULL); 7384 } 7385 7386 /** 7387 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7388 * @vsi: Pointer to VSI structure 7389 * @bmode: Hardware bridge mode (VEB/VEPA) 7390 * 7391 * Returns 0 on success, negative on failure 7392 */ 7393 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7394 { 7395 struct ice_aqc_vsi_props *vsi_props; 7396 struct ice_hw *hw = &vsi->back->hw; 7397 struct ice_vsi_ctx *ctxt; 7398 int ret; 7399 7400 vsi_props = &vsi->info; 7401 7402 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7403 if (!ctxt) 7404 return -ENOMEM; 7405 7406 ctxt->info = vsi->info; 7407 7408 if (bmode == BRIDGE_MODE_VEB) 7409 /* change from VEPA to VEB mode */ 7410 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7411 else 7412 /* change from VEB to VEPA mode */ 7413 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7414 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7415 7416 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7417 if (ret) { 7418 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7419 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7420 goto out; 7421 } 7422 /* Update sw flags for book keeping */ 7423 vsi_props->sw_flags = ctxt->info.sw_flags; 7424 7425 out: 7426 kfree(ctxt); 7427 return ret; 7428 } 7429 7430 /** 7431 * ice_bridge_setlink - Set the hardware bridge mode 7432 * @dev: the netdev being configured 7433 * @nlh: RTNL message 7434 * @flags: bridge setlink flags 7435 * @extack: netlink extended ack 7436 * 7437 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7438 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7439 * not already set for all VSIs connected to this switch. And also update the 7440 * unicast switch filter rules for the corresponding switch of the netdev. 7441 */ 7442 static int 7443 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7444 u16 __always_unused flags, 7445 struct netlink_ext_ack __always_unused *extack) 7446 { 7447 struct ice_netdev_priv *np = netdev_priv(dev); 7448 struct ice_pf *pf = np->vsi->back; 7449 struct nlattr *attr, *br_spec; 7450 struct ice_hw *hw = &pf->hw; 7451 struct ice_sw *pf_sw; 7452 int rem, v, err = 0; 7453 7454 pf_sw = pf->first_sw; 7455 /* find the attribute in the netlink message */ 7456 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7457 7458 nla_for_each_nested(attr, br_spec, rem) { 7459 __u16 mode; 7460 7461 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7462 continue; 7463 mode = nla_get_u16(attr); 7464 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7465 return -EINVAL; 7466 /* Continue if bridge mode is not being flipped */ 7467 if (mode == pf_sw->bridge_mode) 7468 continue; 7469 /* Iterates through the PF VSI list and update the loopback 7470 * mode of the VSI 7471 */ 7472 ice_for_each_vsi(pf, v) { 7473 if (!pf->vsi[v]) 7474 continue; 7475 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7476 if (err) 7477 return err; 7478 } 7479 7480 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7481 /* Update the unicast switch filter rules for the corresponding 7482 * switch of the netdev 7483 */ 7484 err = ice_update_sw_rule_bridge_mode(hw); 7485 if (err) { 7486 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7487 mode, err, 7488 ice_aq_str(hw->adminq.sq_last_status)); 7489 /* revert hw->evb_veb */ 7490 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7491 return err; 7492 } 7493 7494 pf_sw->bridge_mode = mode; 7495 } 7496 7497 return 0; 7498 } 7499 7500 /** 7501 * ice_tx_timeout - Respond to a Tx Hang 7502 * @netdev: network interface device structure 7503 * @txqueue: Tx queue 7504 */ 7505 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7506 { 7507 struct ice_netdev_priv *np = netdev_priv(netdev); 7508 struct ice_tx_ring *tx_ring = NULL; 7509 struct ice_vsi *vsi = np->vsi; 7510 struct ice_pf *pf = vsi->back; 7511 u32 i; 7512 7513 pf->tx_timeout_count++; 7514 7515 /* Check if PFC is enabled for the TC to which the queue belongs 7516 * to. If yes then Tx timeout is not caused by a hung queue, no 7517 * need to reset and rebuild 7518 */ 7519 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7520 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7521 txqueue); 7522 return; 7523 } 7524 7525 /* now that we have an index, find the tx_ring struct */ 7526 ice_for_each_txq(vsi, i) 7527 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7528 if (txqueue == vsi->tx_rings[i]->q_index) { 7529 tx_ring = vsi->tx_rings[i]; 7530 break; 7531 } 7532 7533 /* Reset recovery level if enough time has elapsed after last timeout. 7534 * Also ensure no new reset action happens before next timeout period. 7535 */ 7536 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7537 pf->tx_timeout_recovery_level = 1; 7538 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7539 netdev->watchdog_timeo))) 7540 return; 7541 7542 if (tx_ring) { 7543 struct ice_hw *hw = &pf->hw; 7544 u32 head, val = 0; 7545 7546 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7547 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7548 /* Read interrupt register */ 7549 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7550 7551 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7552 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7553 head, tx_ring->next_to_use, val); 7554 } 7555 7556 pf->tx_timeout_last_recovery = jiffies; 7557 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7558 pf->tx_timeout_recovery_level, txqueue); 7559 7560 switch (pf->tx_timeout_recovery_level) { 7561 case 1: 7562 set_bit(ICE_PFR_REQ, pf->state); 7563 break; 7564 case 2: 7565 set_bit(ICE_CORER_REQ, pf->state); 7566 break; 7567 case 3: 7568 set_bit(ICE_GLOBR_REQ, pf->state); 7569 break; 7570 default: 7571 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7572 set_bit(ICE_DOWN, pf->state); 7573 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7574 set_bit(ICE_SERVICE_DIS, pf->state); 7575 break; 7576 } 7577 7578 ice_service_task_schedule(pf); 7579 pf->tx_timeout_recovery_level++; 7580 } 7581 7582 /** 7583 * ice_setup_tc_cls_flower - flower classifier offloads 7584 * @np: net device to configure 7585 * @filter_dev: device on which filter is added 7586 * @cls_flower: offload data 7587 */ 7588 static int 7589 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7590 struct net_device *filter_dev, 7591 struct flow_cls_offload *cls_flower) 7592 { 7593 struct ice_vsi *vsi = np->vsi; 7594 7595 if (cls_flower->common.chain_index) 7596 return -EOPNOTSUPP; 7597 7598 switch (cls_flower->command) { 7599 case FLOW_CLS_REPLACE: 7600 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7601 case FLOW_CLS_DESTROY: 7602 return ice_del_cls_flower(vsi, cls_flower); 7603 default: 7604 return -EINVAL; 7605 } 7606 } 7607 7608 /** 7609 * ice_setup_tc_block_cb - callback handler registered for TC block 7610 * @type: TC SETUP type 7611 * @type_data: TC flower offload data that contains user input 7612 * @cb_priv: netdev private data 7613 */ 7614 static int 7615 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7616 { 7617 struct ice_netdev_priv *np = cb_priv; 7618 7619 switch (type) { 7620 case TC_SETUP_CLSFLOWER: 7621 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7622 type_data); 7623 default: 7624 return -EOPNOTSUPP; 7625 } 7626 } 7627 7628 /** 7629 * ice_validate_mqprio_qopt - Validate TCF input parameters 7630 * @vsi: Pointer to VSI 7631 * @mqprio_qopt: input parameters for mqprio queue configuration 7632 * 7633 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7634 * needed), and make sure user doesn't specify qcount and BW rate limit 7635 * for TCs, which are more than "num_tc" 7636 */ 7637 static int 7638 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7639 struct tc_mqprio_qopt_offload *mqprio_qopt) 7640 { 7641 u64 sum_max_rate = 0, sum_min_rate = 0; 7642 int non_power_of_2_qcount = 0; 7643 struct ice_pf *pf = vsi->back; 7644 int max_rss_q_cnt = 0; 7645 struct device *dev; 7646 int i, speed; 7647 u8 num_tc; 7648 7649 if (vsi->type != ICE_VSI_PF) 7650 return -EINVAL; 7651 7652 if (mqprio_qopt->qopt.offset[0] != 0 || 7653 mqprio_qopt->qopt.num_tc < 1 || 7654 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7655 return -EINVAL; 7656 7657 dev = ice_pf_to_dev(pf); 7658 vsi->ch_rss_size = 0; 7659 num_tc = mqprio_qopt->qopt.num_tc; 7660 7661 for (i = 0; num_tc; i++) { 7662 int qcount = mqprio_qopt->qopt.count[i]; 7663 u64 max_rate, min_rate, rem; 7664 7665 if (!qcount) 7666 return -EINVAL; 7667 7668 if (is_power_of_2(qcount)) { 7669 if (non_power_of_2_qcount && 7670 qcount > non_power_of_2_qcount) { 7671 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7672 qcount, non_power_of_2_qcount); 7673 return -EINVAL; 7674 } 7675 if (qcount > max_rss_q_cnt) 7676 max_rss_q_cnt = qcount; 7677 } else { 7678 if (non_power_of_2_qcount && 7679 qcount != non_power_of_2_qcount) { 7680 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7681 qcount, non_power_of_2_qcount); 7682 return -EINVAL; 7683 } 7684 if (qcount < max_rss_q_cnt) { 7685 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7686 qcount, max_rss_q_cnt); 7687 return -EINVAL; 7688 } 7689 max_rss_q_cnt = qcount; 7690 non_power_of_2_qcount = qcount; 7691 } 7692 7693 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7694 * converts the bandwidth rate limit into Bytes/s when 7695 * passing it down to the driver. So convert input bandwidth 7696 * from Bytes/s to Kbps 7697 */ 7698 max_rate = mqprio_qopt->max_rate[i]; 7699 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7700 sum_max_rate += max_rate; 7701 7702 /* min_rate is minimum guaranteed rate and it can't be zero */ 7703 min_rate = mqprio_qopt->min_rate[i]; 7704 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7705 sum_min_rate += min_rate; 7706 7707 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7708 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7709 min_rate, ICE_MIN_BW_LIMIT); 7710 return -EINVAL; 7711 } 7712 7713 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7714 if (rem) { 7715 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7716 i, ICE_MIN_BW_LIMIT); 7717 return -EINVAL; 7718 } 7719 7720 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7721 if (rem) { 7722 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7723 i, ICE_MIN_BW_LIMIT); 7724 return -EINVAL; 7725 } 7726 7727 /* min_rate can't be more than max_rate, except when max_rate 7728 * is zero (implies max_rate sought is max line rate). In such 7729 * a case min_rate can be more than max. 7730 */ 7731 if (max_rate && min_rate > max_rate) { 7732 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7733 min_rate, max_rate); 7734 return -EINVAL; 7735 } 7736 7737 if (i >= mqprio_qopt->qopt.num_tc - 1) 7738 break; 7739 if (mqprio_qopt->qopt.offset[i + 1] != 7740 (mqprio_qopt->qopt.offset[i] + qcount)) 7741 return -EINVAL; 7742 } 7743 if (vsi->num_rxq < 7744 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7745 return -EINVAL; 7746 if (vsi->num_txq < 7747 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7748 return -EINVAL; 7749 7750 speed = ice_get_link_speed_kbps(vsi); 7751 if (sum_max_rate && sum_max_rate > (u64)speed) { 7752 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7753 sum_max_rate, speed); 7754 return -EINVAL; 7755 } 7756 if (sum_min_rate && sum_min_rate > (u64)speed) { 7757 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7758 sum_min_rate, speed); 7759 return -EINVAL; 7760 } 7761 7762 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7763 vsi->ch_rss_size = max_rss_q_cnt; 7764 7765 return 0; 7766 } 7767 7768 /** 7769 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7770 * @pf: ptr to PF device 7771 * @vsi: ptr to VSI 7772 */ 7773 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7774 { 7775 struct device *dev = ice_pf_to_dev(pf); 7776 bool added = false; 7777 struct ice_hw *hw; 7778 int flow; 7779 7780 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7781 return -EINVAL; 7782 7783 hw = &pf->hw; 7784 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7785 struct ice_fd_hw_prof *prof; 7786 int tun, status; 7787 u64 entry_h; 7788 7789 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7790 hw->fdir_prof[flow]->cnt)) 7791 continue; 7792 7793 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7794 enum ice_flow_priority prio; 7795 u64 prof_id; 7796 7797 /* add this VSI to FDir profile for this flow */ 7798 prio = ICE_FLOW_PRIO_NORMAL; 7799 prof = hw->fdir_prof[flow]; 7800 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7801 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7802 prof->vsi_h[0], vsi->idx, 7803 prio, prof->fdir_seg[tun], 7804 &entry_h); 7805 if (status) { 7806 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7807 vsi->idx, flow); 7808 continue; 7809 } 7810 7811 prof->entry_h[prof->cnt][tun] = entry_h; 7812 } 7813 7814 /* store VSI for filter replay and delete */ 7815 prof->vsi_h[prof->cnt] = vsi->idx; 7816 prof->cnt++; 7817 7818 added = true; 7819 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7820 flow); 7821 } 7822 7823 if (!added) 7824 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7825 7826 return 0; 7827 } 7828 7829 /** 7830 * ice_add_channel - add a channel by adding VSI 7831 * @pf: ptr to PF device 7832 * @sw_id: underlying HW switching element ID 7833 * @ch: ptr to channel structure 7834 * 7835 * Add a channel (VSI) using add_vsi and queue_map 7836 */ 7837 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7838 { 7839 struct device *dev = ice_pf_to_dev(pf); 7840 struct ice_vsi *vsi; 7841 7842 if (ch->type != ICE_VSI_CHNL) { 7843 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7844 return -EINVAL; 7845 } 7846 7847 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7848 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7849 dev_err(dev, "create chnl VSI failure\n"); 7850 return -EINVAL; 7851 } 7852 7853 ice_add_vsi_to_fdir(pf, vsi); 7854 7855 ch->sw_id = sw_id; 7856 ch->vsi_num = vsi->vsi_num; 7857 ch->info.mapping_flags = vsi->info.mapping_flags; 7858 ch->ch_vsi = vsi; 7859 /* set the back pointer of channel for newly created VSI */ 7860 vsi->ch = ch; 7861 7862 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7863 sizeof(vsi->info.q_mapping)); 7864 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7865 sizeof(vsi->info.tc_mapping)); 7866 7867 return 0; 7868 } 7869 7870 /** 7871 * ice_chnl_cfg_res 7872 * @vsi: the VSI being setup 7873 * @ch: ptr to channel structure 7874 * 7875 * Configure channel specific resources such as rings, vector. 7876 */ 7877 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7878 { 7879 int i; 7880 7881 for (i = 0; i < ch->num_txq; i++) { 7882 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7883 struct ice_ring_container *rc; 7884 struct ice_tx_ring *tx_ring; 7885 struct ice_rx_ring *rx_ring; 7886 7887 tx_ring = vsi->tx_rings[ch->base_q + i]; 7888 rx_ring = vsi->rx_rings[ch->base_q + i]; 7889 if (!tx_ring || !rx_ring) 7890 continue; 7891 7892 /* setup ring being channel enabled */ 7893 tx_ring->ch = ch; 7894 rx_ring->ch = ch; 7895 7896 /* following code block sets up vector specific attributes */ 7897 tx_q_vector = tx_ring->q_vector; 7898 rx_q_vector = rx_ring->q_vector; 7899 if (!tx_q_vector && !rx_q_vector) 7900 continue; 7901 7902 if (tx_q_vector) { 7903 tx_q_vector->ch = ch; 7904 /* setup Tx and Rx ITR setting if DIM is off */ 7905 rc = &tx_q_vector->tx; 7906 if (!ITR_IS_DYNAMIC(rc)) 7907 ice_write_itr(rc, rc->itr_setting); 7908 } 7909 if (rx_q_vector) { 7910 rx_q_vector->ch = ch; 7911 /* setup Tx and Rx ITR setting if DIM is off */ 7912 rc = &rx_q_vector->rx; 7913 if (!ITR_IS_DYNAMIC(rc)) 7914 ice_write_itr(rc, rc->itr_setting); 7915 } 7916 } 7917 7918 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7919 * GLINT_ITR register would have written to perform in-context 7920 * update, hence perform flush 7921 */ 7922 if (ch->num_txq || ch->num_rxq) 7923 ice_flush(&vsi->back->hw); 7924 } 7925 7926 /** 7927 * ice_cfg_chnl_all_res - configure channel resources 7928 * @vsi: pte to main_vsi 7929 * @ch: ptr to channel structure 7930 * 7931 * This function configures channel specific resources such as flow-director 7932 * counter index, and other resources such as queues, vectors, ITR settings 7933 */ 7934 static void 7935 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7936 { 7937 /* configure channel (aka ADQ) resources such as queues, vectors, 7938 * ITR settings for channel specific vectors and anything else 7939 */ 7940 ice_chnl_cfg_res(vsi, ch); 7941 } 7942 7943 /** 7944 * ice_setup_hw_channel - setup new channel 7945 * @pf: ptr to PF device 7946 * @vsi: the VSI being setup 7947 * @ch: ptr to channel structure 7948 * @sw_id: underlying HW switching element ID 7949 * @type: type of channel to be created (VMDq2/VF) 7950 * 7951 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7952 * and configures Tx rings accordingly 7953 */ 7954 static int 7955 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7956 struct ice_channel *ch, u16 sw_id, u8 type) 7957 { 7958 struct device *dev = ice_pf_to_dev(pf); 7959 int ret; 7960 7961 ch->base_q = vsi->next_base_q; 7962 ch->type = type; 7963 7964 ret = ice_add_channel(pf, sw_id, ch); 7965 if (ret) { 7966 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7967 return ret; 7968 } 7969 7970 /* configure/setup ADQ specific resources */ 7971 ice_cfg_chnl_all_res(vsi, ch); 7972 7973 /* make sure to update the next_base_q so that subsequent channel's 7974 * (aka ADQ) VSI queue map is correct 7975 */ 7976 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7977 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7978 ch->num_rxq); 7979 7980 return 0; 7981 } 7982 7983 /** 7984 * ice_setup_channel - setup new channel using uplink element 7985 * @pf: ptr to PF device 7986 * @vsi: the VSI being setup 7987 * @ch: ptr to channel structure 7988 * 7989 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7990 * and uplink switching element 7991 */ 7992 static bool 7993 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7994 struct ice_channel *ch) 7995 { 7996 struct device *dev = ice_pf_to_dev(pf); 7997 u16 sw_id; 7998 int ret; 7999 8000 if (vsi->type != ICE_VSI_PF) { 8001 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8002 return false; 8003 } 8004 8005 sw_id = pf->first_sw->sw_id; 8006 8007 /* create channel (VSI) */ 8008 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8009 if (ret) { 8010 dev_err(dev, "failed to setup hw_channel\n"); 8011 return false; 8012 } 8013 dev_dbg(dev, "successfully created channel()\n"); 8014 8015 return ch->ch_vsi ? true : false; 8016 } 8017 8018 /** 8019 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8020 * @vsi: VSI to be configured 8021 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8022 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8023 */ 8024 static int 8025 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8026 { 8027 int err; 8028 8029 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8030 if (err) 8031 return err; 8032 8033 return ice_set_max_bw_limit(vsi, max_tx_rate); 8034 } 8035 8036 /** 8037 * ice_create_q_channel - function to create channel 8038 * @vsi: VSI to be configured 8039 * @ch: ptr to channel (it contains channel specific params) 8040 * 8041 * This function creates channel (VSI) using num_queues specified by user, 8042 * reconfigs RSS if needed. 8043 */ 8044 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8045 { 8046 struct ice_pf *pf = vsi->back; 8047 struct device *dev; 8048 8049 if (!ch) 8050 return -EINVAL; 8051 8052 dev = ice_pf_to_dev(pf); 8053 if (!ch->num_txq || !ch->num_rxq) { 8054 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8055 return -EINVAL; 8056 } 8057 8058 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8059 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8060 vsi->cnt_q_avail, ch->num_txq); 8061 return -EINVAL; 8062 } 8063 8064 if (!ice_setup_channel(pf, vsi, ch)) { 8065 dev_info(dev, "Failed to setup channel\n"); 8066 return -EINVAL; 8067 } 8068 /* configure BW rate limit */ 8069 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8070 int ret; 8071 8072 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8073 ch->min_tx_rate); 8074 if (ret) 8075 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8076 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8077 else 8078 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8079 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8080 } 8081 8082 vsi->cnt_q_avail -= ch->num_txq; 8083 8084 return 0; 8085 } 8086 8087 /** 8088 * ice_rem_all_chnl_fltrs - removes all channel filters 8089 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8090 * 8091 * Remove all advanced switch filters only if they are channel specific 8092 * tc-flower based filter 8093 */ 8094 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8095 { 8096 struct ice_tc_flower_fltr *fltr; 8097 struct hlist_node *node; 8098 8099 /* to remove all channel filters, iterate an ordered list of filters */ 8100 hlist_for_each_entry_safe(fltr, node, 8101 &pf->tc_flower_fltr_list, 8102 tc_flower_node) { 8103 struct ice_rule_query_data rule; 8104 int status; 8105 8106 /* for now process only channel specific filters */ 8107 if (!ice_is_chnl_fltr(fltr)) 8108 continue; 8109 8110 rule.rid = fltr->rid; 8111 rule.rule_id = fltr->rule_id; 8112 rule.vsi_handle = fltr->dest_id; 8113 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8114 if (status) { 8115 if (status == -ENOENT) 8116 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8117 rule.rule_id); 8118 else 8119 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8120 status); 8121 } else if (fltr->dest_vsi) { 8122 /* update advanced switch filter count */ 8123 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8124 u32 flags = fltr->flags; 8125 8126 fltr->dest_vsi->num_chnl_fltr--; 8127 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8128 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8129 pf->num_dmac_chnl_fltrs--; 8130 } 8131 } 8132 8133 hlist_del(&fltr->tc_flower_node); 8134 kfree(fltr); 8135 } 8136 } 8137 8138 /** 8139 * ice_remove_q_channels - Remove queue channels for the TCs 8140 * @vsi: VSI to be configured 8141 * @rem_fltr: delete advanced switch filter or not 8142 * 8143 * Remove queue channels for the TCs 8144 */ 8145 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8146 { 8147 struct ice_channel *ch, *ch_tmp; 8148 struct ice_pf *pf = vsi->back; 8149 int i; 8150 8151 /* remove all tc-flower based filter if they are channel filters only */ 8152 if (rem_fltr) 8153 ice_rem_all_chnl_fltrs(pf); 8154 8155 /* remove ntuple filters since queue configuration is being changed */ 8156 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8157 struct ice_hw *hw = &pf->hw; 8158 8159 mutex_lock(&hw->fdir_fltr_lock); 8160 ice_fdir_del_all_fltrs(vsi); 8161 mutex_unlock(&hw->fdir_fltr_lock); 8162 } 8163 8164 /* perform cleanup for channels if they exist */ 8165 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8166 struct ice_vsi *ch_vsi; 8167 8168 list_del(&ch->list); 8169 ch_vsi = ch->ch_vsi; 8170 if (!ch_vsi) { 8171 kfree(ch); 8172 continue; 8173 } 8174 8175 /* Reset queue contexts */ 8176 for (i = 0; i < ch->num_rxq; i++) { 8177 struct ice_tx_ring *tx_ring; 8178 struct ice_rx_ring *rx_ring; 8179 8180 tx_ring = vsi->tx_rings[ch->base_q + i]; 8181 rx_ring = vsi->rx_rings[ch->base_q + i]; 8182 if (tx_ring) { 8183 tx_ring->ch = NULL; 8184 if (tx_ring->q_vector) 8185 tx_ring->q_vector->ch = NULL; 8186 } 8187 if (rx_ring) { 8188 rx_ring->ch = NULL; 8189 if (rx_ring->q_vector) 8190 rx_ring->q_vector->ch = NULL; 8191 } 8192 } 8193 8194 /* Release FD resources for the channel VSI */ 8195 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8196 8197 /* clear the VSI from scheduler tree */ 8198 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8199 8200 /* Delete VSI from FW */ 8201 ice_vsi_delete(ch->ch_vsi); 8202 8203 /* Delete VSI from PF and HW VSI arrays */ 8204 ice_vsi_clear(ch->ch_vsi); 8205 8206 /* free the channel */ 8207 kfree(ch); 8208 } 8209 8210 /* clear the channel VSI map which is stored in main VSI */ 8211 ice_for_each_chnl_tc(i) 8212 vsi->tc_map_vsi[i] = NULL; 8213 8214 /* reset main VSI's all TC information */ 8215 vsi->all_enatc = 0; 8216 vsi->all_numtc = 0; 8217 } 8218 8219 /** 8220 * ice_rebuild_channels - rebuild channel 8221 * @pf: ptr to PF 8222 * 8223 * Recreate channel VSIs and replay filters 8224 */ 8225 static int ice_rebuild_channels(struct ice_pf *pf) 8226 { 8227 struct device *dev = ice_pf_to_dev(pf); 8228 struct ice_vsi *main_vsi; 8229 bool rem_adv_fltr = true; 8230 struct ice_channel *ch; 8231 struct ice_vsi *vsi; 8232 int tc_idx = 1; 8233 int i, err; 8234 8235 main_vsi = ice_get_main_vsi(pf); 8236 if (!main_vsi) 8237 return 0; 8238 8239 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8240 main_vsi->old_numtc == 1) 8241 return 0; /* nothing to be done */ 8242 8243 /* reconfigure main VSI based on old value of TC and cached values 8244 * for MQPRIO opts 8245 */ 8246 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8247 if (err) { 8248 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8249 main_vsi->old_ena_tc, main_vsi->vsi_num); 8250 return err; 8251 } 8252 8253 /* rebuild ADQ VSIs */ 8254 ice_for_each_vsi(pf, i) { 8255 enum ice_vsi_type type; 8256 8257 vsi = pf->vsi[i]; 8258 if (!vsi || vsi->type != ICE_VSI_CHNL) 8259 continue; 8260 8261 type = vsi->type; 8262 8263 /* rebuild ADQ VSI */ 8264 err = ice_vsi_rebuild(vsi, true); 8265 if (err) { 8266 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8267 ice_vsi_type_str(type), vsi->idx, err); 8268 goto cleanup; 8269 } 8270 8271 /* Re-map HW VSI number, using VSI handle that has been 8272 * previously validated in ice_replay_vsi() call above 8273 */ 8274 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8275 8276 /* replay filters for the VSI */ 8277 err = ice_replay_vsi(&pf->hw, vsi->idx); 8278 if (err) { 8279 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8280 ice_vsi_type_str(type), err, vsi->idx); 8281 rem_adv_fltr = false; 8282 goto cleanup; 8283 } 8284 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8285 ice_vsi_type_str(type), vsi->idx); 8286 8287 /* store ADQ VSI at correct TC index in main VSI's 8288 * map of TC to VSI 8289 */ 8290 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8291 } 8292 8293 /* ADQ VSI(s) has been rebuilt successfully, so setup 8294 * channel for main VSI's Tx and Rx rings 8295 */ 8296 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8297 struct ice_vsi *ch_vsi; 8298 8299 ch_vsi = ch->ch_vsi; 8300 if (!ch_vsi) 8301 continue; 8302 8303 /* reconfig channel resources */ 8304 ice_cfg_chnl_all_res(main_vsi, ch); 8305 8306 /* replay BW rate limit if it is non-zero */ 8307 if (!ch->max_tx_rate && !ch->min_tx_rate) 8308 continue; 8309 8310 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8311 ch->min_tx_rate); 8312 if (err) 8313 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8314 err, ch->max_tx_rate, ch->min_tx_rate, 8315 ch_vsi->vsi_num); 8316 else 8317 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8318 ch->max_tx_rate, ch->min_tx_rate, 8319 ch_vsi->vsi_num); 8320 } 8321 8322 /* reconfig RSS for main VSI */ 8323 if (main_vsi->ch_rss_size) 8324 ice_vsi_cfg_rss_lut_key(main_vsi); 8325 8326 return 0; 8327 8328 cleanup: 8329 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8330 return err; 8331 } 8332 8333 /** 8334 * ice_create_q_channels - Add queue channel for the given TCs 8335 * @vsi: VSI to be configured 8336 * 8337 * Configures queue channel mapping to the given TCs 8338 */ 8339 static int ice_create_q_channels(struct ice_vsi *vsi) 8340 { 8341 struct ice_pf *pf = vsi->back; 8342 struct ice_channel *ch; 8343 int ret = 0, i; 8344 8345 ice_for_each_chnl_tc(i) { 8346 if (!(vsi->all_enatc & BIT(i))) 8347 continue; 8348 8349 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8350 if (!ch) { 8351 ret = -ENOMEM; 8352 goto err_free; 8353 } 8354 INIT_LIST_HEAD(&ch->list); 8355 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8356 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8357 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8358 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8359 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8360 8361 /* convert to Kbits/s */ 8362 if (ch->max_tx_rate) 8363 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8364 ICE_BW_KBPS_DIVISOR); 8365 if (ch->min_tx_rate) 8366 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8367 ICE_BW_KBPS_DIVISOR); 8368 8369 ret = ice_create_q_channel(vsi, ch); 8370 if (ret) { 8371 dev_err(ice_pf_to_dev(pf), 8372 "failed creating channel TC:%d\n", i); 8373 kfree(ch); 8374 goto err_free; 8375 } 8376 list_add_tail(&ch->list, &vsi->ch_list); 8377 vsi->tc_map_vsi[i] = ch->ch_vsi; 8378 dev_dbg(ice_pf_to_dev(pf), 8379 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8380 } 8381 return 0; 8382 8383 err_free: 8384 ice_remove_q_channels(vsi, false); 8385 8386 return ret; 8387 } 8388 8389 /** 8390 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8391 * @netdev: net device to configure 8392 * @type_data: TC offload data 8393 */ 8394 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8395 { 8396 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8397 struct ice_netdev_priv *np = netdev_priv(netdev); 8398 struct ice_vsi *vsi = np->vsi; 8399 struct ice_pf *pf = vsi->back; 8400 u16 mode, ena_tc_qdisc = 0; 8401 int cur_txq, cur_rxq; 8402 u8 hw = 0, num_tcf; 8403 struct device *dev; 8404 int ret, i; 8405 8406 dev = ice_pf_to_dev(pf); 8407 num_tcf = mqprio_qopt->qopt.num_tc; 8408 hw = mqprio_qopt->qopt.hw; 8409 mode = mqprio_qopt->mode; 8410 if (!hw) { 8411 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8412 vsi->ch_rss_size = 0; 8413 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8414 goto config_tcf; 8415 } 8416 8417 /* Generate queue region map for number of TCF requested */ 8418 for (i = 0; i < num_tcf; i++) 8419 ena_tc_qdisc |= BIT(i); 8420 8421 switch (mode) { 8422 case TC_MQPRIO_MODE_CHANNEL: 8423 8424 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8425 if (ret) { 8426 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8427 ret); 8428 return ret; 8429 } 8430 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8431 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8432 /* don't assume state of hw_tc_offload during driver load 8433 * and set the flag for TC flower filter if hw_tc_offload 8434 * already ON 8435 */ 8436 if (vsi->netdev->features & NETIF_F_HW_TC) 8437 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8438 break; 8439 default: 8440 return -EINVAL; 8441 } 8442 8443 config_tcf: 8444 8445 /* Requesting same TCF configuration as already enabled */ 8446 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8447 mode != TC_MQPRIO_MODE_CHANNEL) 8448 return 0; 8449 8450 /* Pause VSI queues */ 8451 ice_dis_vsi(vsi, true); 8452 8453 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8454 ice_remove_q_channels(vsi, true); 8455 8456 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8457 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8458 num_online_cpus()); 8459 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8460 num_online_cpus()); 8461 } else { 8462 /* logic to rebuild VSI, same like ethtool -L */ 8463 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8464 8465 for (i = 0; i < num_tcf; i++) { 8466 if (!(ena_tc_qdisc & BIT(i))) 8467 continue; 8468 8469 offset = vsi->mqprio_qopt.qopt.offset[i]; 8470 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8471 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8472 } 8473 vsi->req_txq = offset + qcount_tx; 8474 vsi->req_rxq = offset + qcount_rx; 8475 8476 /* store away original rss_size info, so that it gets reused 8477 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8478 * determine, what should be the rss_sizefor main VSI 8479 */ 8480 vsi->orig_rss_size = vsi->rss_size; 8481 } 8482 8483 /* save current values of Tx and Rx queues before calling VSI rebuild 8484 * for fallback option 8485 */ 8486 cur_txq = vsi->num_txq; 8487 cur_rxq = vsi->num_rxq; 8488 8489 /* proceed with rebuild main VSI using correct number of queues */ 8490 ret = ice_vsi_rebuild(vsi, false); 8491 if (ret) { 8492 /* fallback to current number of queues */ 8493 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8494 vsi->req_txq = cur_txq; 8495 vsi->req_rxq = cur_rxq; 8496 clear_bit(ICE_RESET_FAILED, pf->state); 8497 if (ice_vsi_rebuild(vsi, false)) { 8498 dev_err(dev, "Rebuild of main VSI failed again\n"); 8499 return ret; 8500 } 8501 } 8502 8503 vsi->all_numtc = num_tcf; 8504 vsi->all_enatc = ena_tc_qdisc; 8505 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8506 if (ret) { 8507 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8508 vsi->vsi_num); 8509 goto exit; 8510 } 8511 8512 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8513 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8514 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8515 8516 /* set TC0 rate limit if specified */ 8517 if (max_tx_rate || min_tx_rate) { 8518 /* convert to Kbits/s */ 8519 if (max_tx_rate) 8520 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8521 if (min_tx_rate) 8522 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8523 8524 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8525 if (!ret) { 8526 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8527 max_tx_rate, min_tx_rate, vsi->vsi_num); 8528 } else { 8529 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8530 max_tx_rate, min_tx_rate, vsi->vsi_num); 8531 goto exit; 8532 } 8533 } 8534 ret = ice_create_q_channels(vsi); 8535 if (ret) { 8536 netdev_err(netdev, "failed configuring queue channels\n"); 8537 goto exit; 8538 } else { 8539 netdev_dbg(netdev, "successfully configured channels\n"); 8540 } 8541 } 8542 8543 if (vsi->ch_rss_size) 8544 ice_vsi_cfg_rss_lut_key(vsi); 8545 8546 exit: 8547 /* if error, reset the all_numtc and all_enatc */ 8548 if (ret) { 8549 vsi->all_numtc = 0; 8550 vsi->all_enatc = 0; 8551 } 8552 /* resume VSI */ 8553 ice_ena_vsi(vsi, true); 8554 8555 return ret; 8556 } 8557 8558 static LIST_HEAD(ice_block_cb_list); 8559 8560 static int 8561 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8562 void *type_data) 8563 { 8564 struct ice_netdev_priv *np = netdev_priv(netdev); 8565 struct ice_pf *pf = np->vsi->back; 8566 int err; 8567 8568 switch (type) { 8569 case TC_SETUP_BLOCK: 8570 return flow_block_cb_setup_simple(type_data, 8571 &ice_block_cb_list, 8572 ice_setup_tc_block_cb, 8573 np, np, true); 8574 case TC_SETUP_QDISC_MQPRIO: 8575 /* setup traffic classifier for receive side */ 8576 mutex_lock(&pf->tc_mutex); 8577 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8578 mutex_unlock(&pf->tc_mutex); 8579 return err; 8580 default: 8581 return -EOPNOTSUPP; 8582 } 8583 return -EOPNOTSUPP; 8584 } 8585 8586 static struct ice_indr_block_priv * 8587 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8588 struct net_device *netdev) 8589 { 8590 struct ice_indr_block_priv *cb_priv; 8591 8592 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8593 if (!cb_priv->netdev) 8594 return NULL; 8595 if (cb_priv->netdev == netdev) 8596 return cb_priv; 8597 } 8598 return NULL; 8599 } 8600 8601 static int 8602 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8603 void *indr_priv) 8604 { 8605 struct ice_indr_block_priv *priv = indr_priv; 8606 struct ice_netdev_priv *np = priv->np; 8607 8608 switch (type) { 8609 case TC_SETUP_CLSFLOWER: 8610 return ice_setup_tc_cls_flower(np, priv->netdev, 8611 (struct flow_cls_offload *) 8612 type_data); 8613 default: 8614 return -EOPNOTSUPP; 8615 } 8616 } 8617 8618 static int 8619 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8620 struct ice_netdev_priv *np, 8621 struct flow_block_offload *f, void *data, 8622 void (*cleanup)(struct flow_block_cb *block_cb)) 8623 { 8624 struct ice_indr_block_priv *indr_priv; 8625 struct flow_block_cb *block_cb; 8626 8627 if (!ice_is_tunnel_supported(netdev) && 8628 !(is_vlan_dev(netdev) && 8629 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8630 return -EOPNOTSUPP; 8631 8632 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8633 return -EOPNOTSUPP; 8634 8635 switch (f->command) { 8636 case FLOW_BLOCK_BIND: 8637 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8638 if (indr_priv) 8639 return -EEXIST; 8640 8641 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8642 if (!indr_priv) 8643 return -ENOMEM; 8644 8645 indr_priv->netdev = netdev; 8646 indr_priv->np = np; 8647 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8648 8649 block_cb = 8650 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8651 indr_priv, indr_priv, 8652 ice_rep_indr_tc_block_unbind, 8653 f, netdev, sch, data, np, 8654 cleanup); 8655 8656 if (IS_ERR(block_cb)) { 8657 list_del(&indr_priv->list); 8658 kfree(indr_priv); 8659 return PTR_ERR(block_cb); 8660 } 8661 flow_block_cb_add(block_cb, f); 8662 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8663 break; 8664 case FLOW_BLOCK_UNBIND: 8665 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8666 if (!indr_priv) 8667 return -ENOENT; 8668 8669 block_cb = flow_block_cb_lookup(f->block, 8670 ice_indr_setup_block_cb, 8671 indr_priv); 8672 if (!block_cb) 8673 return -ENOENT; 8674 8675 flow_indr_block_cb_remove(block_cb, f); 8676 8677 list_del(&block_cb->driver_list); 8678 break; 8679 default: 8680 return -EOPNOTSUPP; 8681 } 8682 return 0; 8683 } 8684 8685 static int 8686 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8687 void *cb_priv, enum tc_setup_type type, void *type_data, 8688 void *data, 8689 void (*cleanup)(struct flow_block_cb *block_cb)) 8690 { 8691 switch (type) { 8692 case TC_SETUP_BLOCK: 8693 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8694 data, cleanup); 8695 8696 default: 8697 return -EOPNOTSUPP; 8698 } 8699 } 8700 8701 /** 8702 * ice_open - Called when a network interface becomes active 8703 * @netdev: network interface device structure 8704 * 8705 * The open entry point is called when a network interface is made 8706 * active by the system (IFF_UP). At this point all resources needed 8707 * for transmit and receive operations are allocated, the interrupt 8708 * handler is registered with the OS, the netdev watchdog is enabled, 8709 * and the stack is notified that the interface is ready. 8710 * 8711 * Returns 0 on success, negative value on failure 8712 */ 8713 int ice_open(struct net_device *netdev) 8714 { 8715 struct ice_netdev_priv *np = netdev_priv(netdev); 8716 struct ice_pf *pf = np->vsi->back; 8717 8718 if (ice_is_reset_in_progress(pf->state)) { 8719 netdev_err(netdev, "can't open net device while reset is in progress"); 8720 return -EBUSY; 8721 } 8722 8723 return ice_open_internal(netdev); 8724 } 8725 8726 /** 8727 * ice_open_internal - Called when a network interface becomes active 8728 * @netdev: network interface device structure 8729 * 8730 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8731 * handling routine 8732 * 8733 * Returns 0 on success, negative value on failure 8734 */ 8735 int ice_open_internal(struct net_device *netdev) 8736 { 8737 struct ice_netdev_priv *np = netdev_priv(netdev); 8738 struct ice_vsi *vsi = np->vsi; 8739 struct ice_pf *pf = vsi->back; 8740 struct ice_port_info *pi; 8741 int err; 8742 8743 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8744 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8745 return -EIO; 8746 } 8747 8748 netif_carrier_off(netdev); 8749 8750 pi = vsi->port_info; 8751 err = ice_update_link_info(pi); 8752 if (err) { 8753 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8754 return err; 8755 } 8756 8757 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8758 8759 /* Set PHY if there is media, otherwise, turn off PHY */ 8760 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8761 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8762 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8763 err = ice_init_phy_user_cfg(pi); 8764 if (err) { 8765 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8766 err); 8767 return err; 8768 } 8769 } 8770 8771 err = ice_configure_phy(vsi); 8772 if (err) { 8773 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8774 err); 8775 return err; 8776 } 8777 } else { 8778 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8779 ice_set_link(vsi, false); 8780 } 8781 8782 err = ice_vsi_open(vsi); 8783 if (err) 8784 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8785 vsi->vsi_num, vsi->vsw->sw_id); 8786 8787 /* Update existing tunnels information */ 8788 udp_tunnel_get_rx_info(netdev); 8789 8790 return err; 8791 } 8792 8793 /** 8794 * ice_stop - Disables a network interface 8795 * @netdev: network interface device structure 8796 * 8797 * The stop entry point is called when an interface is de-activated by the OS, 8798 * and the netdevice enters the DOWN state. The hardware is still under the 8799 * driver's control, but the netdev interface is disabled. 8800 * 8801 * Returns success only - not allowed to fail 8802 */ 8803 int ice_stop(struct net_device *netdev) 8804 { 8805 struct ice_netdev_priv *np = netdev_priv(netdev); 8806 struct ice_vsi *vsi = np->vsi; 8807 struct ice_pf *pf = vsi->back; 8808 8809 if (ice_is_reset_in_progress(pf->state)) { 8810 netdev_err(netdev, "can't stop net device while reset is in progress"); 8811 return -EBUSY; 8812 } 8813 8814 ice_vsi_close(vsi); 8815 8816 return 0; 8817 } 8818 8819 /** 8820 * ice_features_check - Validate encapsulated packet conforms to limits 8821 * @skb: skb buffer 8822 * @netdev: This port's netdev 8823 * @features: Offload features that the stack believes apply 8824 */ 8825 static netdev_features_t 8826 ice_features_check(struct sk_buff *skb, 8827 struct net_device __always_unused *netdev, 8828 netdev_features_t features) 8829 { 8830 bool gso = skb_is_gso(skb); 8831 size_t len; 8832 8833 /* No point in doing any of this if neither checksum nor GSO are 8834 * being requested for this frame. We can rule out both by just 8835 * checking for CHECKSUM_PARTIAL 8836 */ 8837 if (skb->ip_summed != CHECKSUM_PARTIAL) 8838 return features; 8839 8840 /* We cannot support GSO if the MSS is going to be less than 8841 * 64 bytes. If it is then we need to drop support for GSO. 8842 */ 8843 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8844 features &= ~NETIF_F_GSO_MASK; 8845 8846 len = skb_network_offset(skb); 8847 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8848 goto out_rm_features; 8849 8850 len = skb_network_header_len(skb); 8851 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8852 goto out_rm_features; 8853 8854 if (skb->encapsulation) { 8855 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8856 * the case of IPIP frames, the transport header pointer is 8857 * after the inner header! So check to make sure that this 8858 * is a GRE or UDP_TUNNEL frame before doing that math. 8859 */ 8860 if (gso && (skb_shinfo(skb)->gso_type & 8861 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8862 len = skb_inner_network_header(skb) - 8863 skb_transport_header(skb); 8864 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8865 goto out_rm_features; 8866 } 8867 8868 len = skb_inner_network_header_len(skb); 8869 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8870 goto out_rm_features; 8871 } 8872 8873 return features; 8874 out_rm_features: 8875 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8876 } 8877 8878 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8879 .ndo_open = ice_open, 8880 .ndo_stop = ice_stop, 8881 .ndo_start_xmit = ice_start_xmit, 8882 .ndo_set_mac_address = ice_set_mac_address, 8883 .ndo_validate_addr = eth_validate_addr, 8884 .ndo_change_mtu = ice_change_mtu, 8885 .ndo_get_stats64 = ice_get_stats64, 8886 .ndo_tx_timeout = ice_tx_timeout, 8887 .ndo_bpf = ice_xdp_safe_mode, 8888 }; 8889 8890 static const struct net_device_ops ice_netdev_ops = { 8891 .ndo_open = ice_open, 8892 .ndo_stop = ice_stop, 8893 .ndo_start_xmit = ice_start_xmit, 8894 .ndo_select_queue = ice_select_queue, 8895 .ndo_features_check = ice_features_check, 8896 .ndo_fix_features = ice_fix_features, 8897 .ndo_set_rx_mode = ice_set_rx_mode, 8898 .ndo_set_mac_address = ice_set_mac_address, 8899 .ndo_validate_addr = eth_validate_addr, 8900 .ndo_change_mtu = ice_change_mtu, 8901 .ndo_get_stats64 = ice_get_stats64, 8902 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8903 .ndo_eth_ioctl = ice_eth_ioctl, 8904 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8905 .ndo_set_vf_mac = ice_set_vf_mac, 8906 .ndo_get_vf_config = ice_get_vf_cfg, 8907 .ndo_set_vf_trust = ice_set_vf_trust, 8908 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8909 .ndo_set_vf_link_state = ice_set_vf_link_state, 8910 .ndo_get_vf_stats = ice_get_vf_stats, 8911 .ndo_set_vf_rate = ice_set_vf_bw, 8912 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8913 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8914 .ndo_setup_tc = ice_setup_tc, 8915 .ndo_set_features = ice_set_features, 8916 .ndo_bridge_getlink = ice_bridge_getlink, 8917 .ndo_bridge_setlink = ice_bridge_setlink, 8918 .ndo_fdb_add = ice_fdb_add, 8919 .ndo_fdb_del = ice_fdb_del, 8920 #ifdef CONFIG_RFS_ACCEL 8921 .ndo_rx_flow_steer = ice_rx_flow_steer, 8922 #endif 8923 .ndo_tx_timeout = ice_tx_timeout, 8924 .ndo_bpf = ice_xdp, 8925 .ndo_xdp_xmit = ice_xdp_xmit, 8926 .ndo_xsk_wakeup = ice_xsk_wakeup, 8927 }; 8928