1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 		struct ice_ring_stats *ring_stats;
134 
135 		if (!tx_ring)
136 			continue;
137 		if (ice_ring_ch_enabled(tx_ring))
138 			continue;
139 
140 		ring_stats = tx_ring->ring_stats;
141 		if (!ring_stats)
142 			continue;
143 
144 		if (tx_ring->desc) {
145 			/* If packet counter has not changed the queue is
146 			 * likely stalled, so force an interrupt for this
147 			 * queue.
148 			 *
149 			 * prev_pkt would be negative if there was no
150 			 * pending work.
151 			 */
152 			packets = ring_stats->stats.pkts & INT_MAX;
153 			if (ring_stats->tx_stats.prev_pkt == packets) {
154 				/* Trigger sw interrupt to revive the queue */
155 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
156 				continue;
157 			}
158 
159 			/* Memory barrier between read of packet count and call
160 			 * to ice_get_tx_pending()
161 			 */
162 			smp_rmb();
163 			ring_stats->tx_stats.prev_pkt =
164 			    ice_get_tx_pending(tx_ring) ? packets : -1;
165 		}
166 	}
167 }
168 
169 /**
170  * ice_init_mac_fltr - Set initial MAC filters
171  * @pf: board private structure
172  *
173  * Set initial set of MAC filters for PF VSI; configure filters for permanent
174  * address and broadcast address. If an error is encountered, netdevice will be
175  * unregistered.
176  */
177 static int ice_init_mac_fltr(struct ice_pf *pf)
178 {
179 	struct ice_vsi *vsi;
180 	u8 *perm_addr;
181 
182 	vsi = ice_get_main_vsi(pf);
183 	if (!vsi)
184 		return -EINVAL;
185 
186 	perm_addr = vsi->port_info->mac.perm_addr;
187 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
188 }
189 
190 /**
191  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
192  * @netdev: the net device on which the sync is happening
193  * @addr: MAC address to sync
194  *
195  * This is a callback function which is called by the in kernel device sync
196  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
197  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
198  * MAC filters from the hardware.
199  */
200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
201 {
202 	struct ice_netdev_priv *np = netdev_priv(netdev);
203 	struct ice_vsi *vsi = np->vsi;
204 
205 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
206 				     ICE_FWD_TO_VSI))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 /**
213  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
214  * @netdev: the net device on which the unsync is happening
215  * @addr: MAC address to unsync
216  *
217  * This is a callback function which is called by the in kernel device unsync
218  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
219  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
220  * delete the MAC filters from the hardware.
221  */
222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
223 {
224 	struct ice_netdev_priv *np = netdev_priv(netdev);
225 	struct ice_vsi *vsi = np->vsi;
226 
227 	/* Under some circumstances, we might receive a request to delete our
228 	 * own device address from our uc list. Because we store the device
229 	 * address in the VSI's MAC filter list, we need to ignore such
230 	 * requests and not delete our device address from this list.
231 	 */
232 	if (ether_addr_equal(addr, netdev->dev_addr))
233 		return 0;
234 
235 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
236 				     ICE_FWD_TO_VSI))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 /**
243  * ice_vsi_fltr_changed - check if filter state changed
244  * @vsi: VSI to be checked
245  *
246  * returns true if filter state has changed, false otherwise.
247  */
248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
249 {
250 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
251 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
252 }
253 
254 /**
255  * ice_set_promisc - Enable promiscuous mode for a given PF
256  * @vsi: the VSI being configured
257  * @promisc_m: mask of promiscuous config bits
258  *
259  */
260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
261 {
262 	int status;
263 
264 	if (vsi->type != ICE_VSI_PF)
265 		return 0;
266 
267 	if (ice_vsi_has_non_zero_vlans(vsi)) {
268 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
269 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
270 						       promisc_m);
271 	} else {
272 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
273 						  promisc_m, 0);
274 	}
275 	if (status && status != -EEXIST)
276 		return status;
277 
278 	return 0;
279 }
280 
281 /**
282  * ice_clear_promisc - Disable promiscuous mode for a given PF
283  * @vsi: the VSI being configured
284  * @promisc_m: mask of promiscuous config bits
285  *
286  */
287 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
288 {
289 	int status;
290 
291 	if (vsi->type != ICE_VSI_PF)
292 		return 0;
293 
294 	if (ice_vsi_has_non_zero_vlans(vsi)) {
295 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
296 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
297 							 promisc_m);
298 	} else {
299 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
300 						    promisc_m, 0);
301 	}
302 
303 	return status;
304 }
305 
306 /**
307  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
308  * @vsi: ptr to the VSI
309  *
310  * Push any outstanding VSI filter changes through the AdminQ.
311  */
312 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
313 {
314 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
315 	struct device *dev = ice_pf_to_dev(vsi->back);
316 	struct net_device *netdev = vsi->netdev;
317 	bool promisc_forced_on = false;
318 	struct ice_pf *pf = vsi->back;
319 	struct ice_hw *hw = &pf->hw;
320 	u32 changed_flags = 0;
321 	int err;
322 
323 	if (!vsi->netdev)
324 		return -EINVAL;
325 
326 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
327 		usleep_range(1000, 2000);
328 
329 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
330 	vsi->current_netdev_flags = vsi->netdev->flags;
331 
332 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
333 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
334 
335 	if (ice_vsi_fltr_changed(vsi)) {
336 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
337 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
338 
339 		/* grab the netdev's addr_list_lock */
340 		netif_addr_lock_bh(netdev);
341 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
342 			      ice_add_mac_to_unsync_list);
343 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
344 			      ice_add_mac_to_unsync_list);
345 		/* our temp lists are populated. release lock */
346 		netif_addr_unlock_bh(netdev);
347 	}
348 
349 	/* Remove MAC addresses in the unsync list */
350 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
351 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
352 	if (err) {
353 		netdev_err(netdev, "Failed to delete MAC filters\n");
354 		/* if we failed because of alloc failures, just bail */
355 		if (err == -ENOMEM)
356 			goto out;
357 	}
358 
359 	/* Add MAC addresses in the sync list */
360 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
361 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
362 	/* If filter is added successfully or already exists, do not go into
363 	 * 'if' condition and report it as error. Instead continue processing
364 	 * rest of the function.
365 	 */
366 	if (err && err != -EEXIST) {
367 		netdev_err(netdev, "Failed to add MAC filters\n");
368 		/* If there is no more space for new umac filters, VSI
369 		 * should go into promiscuous mode. There should be some
370 		 * space reserved for promiscuous filters.
371 		 */
372 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
373 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
374 				      vsi->state)) {
375 			promisc_forced_on = true;
376 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
377 				    vsi->vsi_num);
378 		} else {
379 			goto out;
380 		}
381 	}
382 	err = 0;
383 	/* check for changes in promiscuous modes */
384 	if (changed_flags & IFF_ALLMULTI) {
385 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
386 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
387 			if (err) {
388 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
389 				goto out_promisc;
390 			}
391 		} else {
392 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
393 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags |= IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		}
399 	}
400 
401 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
402 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
403 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
404 		if (vsi->current_netdev_flags & IFF_PROMISC) {
405 			/* Apply Rx filter rule to get traffic from wire */
406 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
407 				err = ice_set_dflt_vsi(vsi);
408 				if (err && err != -EEXIST) {
409 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
410 						   err, vsi->vsi_num);
411 					vsi->current_netdev_flags &=
412 						~IFF_PROMISC;
413 					goto out_promisc;
414 				}
415 				err = 0;
416 				vlan_ops->dis_rx_filtering(vsi);
417 			}
418 		} else {
419 			/* Clear Rx filter to remove traffic from wire */
420 			if (ice_is_vsi_dflt_vsi(vsi)) {
421 				err = ice_clear_dflt_vsi(vsi);
422 				if (err) {
423 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
424 						   err, vsi->vsi_num);
425 					vsi->current_netdev_flags |=
426 						IFF_PROMISC;
427 					goto out_promisc;
428 				}
429 				if (vsi->netdev->features &
430 				    NETIF_F_HW_VLAN_CTAG_FILTER)
431 					vlan_ops->ena_rx_filtering(vsi);
432 			}
433 		}
434 	}
435 	goto exit;
436 
437 out_promisc:
438 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
439 	goto exit;
440 out:
441 	/* if something went wrong then set the changed flag so we try again */
442 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
443 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
444 exit:
445 	clear_bit(ICE_CFG_BUSY, vsi->state);
446 	return err;
447 }
448 
449 /**
450  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
451  * @pf: board private structure
452  */
453 static void ice_sync_fltr_subtask(struct ice_pf *pf)
454 {
455 	int v;
456 
457 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
458 		return;
459 
460 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
461 
462 	ice_for_each_vsi(pf, v)
463 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
464 		    ice_vsi_sync_fltr(pf->vsi[v])) {
465 			/* come back and try again later */
466 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
467 			break;
468 		}
469 }
470 
471 /**
472  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
473  * @pf: the PF
474  * @locked: is the rtnl_lock already held
475  */
476 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
477 {
478 	int node;
479 	int v;
480 
481 	ice_for_each_vsi(pf, v)
482 		if (pf->vsi[v])
483 			ice_dis_vsi(pf->vsi[v], locked);
484 
485 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
486 		pf->pf_agg_node[node].num_vsis = 0;
487 
488 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
489 		pf->vf_agg_node[node].num_vsis = 0;
490 }
491 
492 /**
493  * ice_clear_sw_switch_recipes - clear switch recipes
494  * @pf: board private structure
495  *
496  * Mark switch recipes as not created in sw structures. There are cases where
497  * rules (especially advanced rules) need to be restored, either re-read from
498  * hardware or added again. For example after the reset. 'recp_created' flag
499  * prevents from doing that and need to be cleared upfront.
500  */
501 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
502 {
503 	struct ice_sw_recipe *recp;
504 	u8 i;
505 
506 	recp = pf->hw.switch_info->recp_list;
507 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
508 		recp[i].recp_created = false;
509 }
510 
511 /**
512  * ice_prepare_for_reset - prep for reset
513  * @pf: board private structure
514  * @reset_type: reset type requested
515  *
516  * Inform or close all dependent features in prep for reset.
517  */
518 static void
519 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
520 {
521 	struct ice_hw *hw = &pf->hw;
522 	struct ice_vsi *vsi;
523 	struct ice_vf *vf;
524 	unsigned int bkt;
525 
526 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
527 
528 	/* already prepared for reset */
529 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
530 		return;
531 
532 	ice_unplug_aux_dev(pf);
533 
534 	/* Notify VFs of impending reset */
535 	if (ice_check_sq_alive(hw, &hw->mailboxq))
536 		ice_vc_notify_reset(pf);
537 
538 	/* Disable VFs until reset is completed */
539 	mutex_lock(&pf->vfs.table_lock);
540 	ice_for_each_vf(pf, bkt, vf)
541 		ice_set_vf_state_qs_dis(vf);
542 	mutex_unlock(&pf->vfs.table_lock);
543 
544 	if (ice_is_eswitch_mode_switchdev(pf)) {
545 		if (reset_type != ICE_RESET_PFR)
546 			ice_clear_sw_switch_recipes(pf);
547 	}
548 
549 	/* release ADQ specific HW and SW resources */
550 	vsi = ice_get_main_vsi(pf);
551 	if (!vsi)
552 		goto skip;
553 
554 	/* to be on safe side, reset orig_rss_size so that normal flow
555 	 * of deciding rss_size can take precedence
556 	 */
557 	vsi->orig_rss_size = 0;
558 
559 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
560 		if (reset_type == ICE_RESET_PFR) {
561 			vsi->old_ena_tc = vsi->all_enatc;
562 			vsi->old_numtc = vsi->all_numtc;
563 		} else {
564 			ice_remove_q_channels(vsi, true);
565 
566 			/* for other reset type, do not support channel rebuild
567 			 * hence reset needed info
568 			 */
569 			vsi->old_ena_tc = 0;
570 			vsi->all_enatc = 0;
571 			vsi->old_numtc = 0;
572 			vsi->all_numtc = 0;
573 			vsi->req_txq = 0;
574 			vsi->req_rxq = 0;
575 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
576 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
577 		}
578 	}
579 skip:
580 
581 	/* clear SW filtering DB */
582 	ice_clear_hw_tbls(hw);
583 	/* disable the VSIs and their queues that are not already DOWN */
584 	ice_pf_dis_all_vsi(pf, false);
585 
586 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
587 		ice_ptp_prepare_for_reset(pf);
588 
589 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
590 		ice_gnss_exit(pf);
591 
592 	if (hw->port_info)
593 		ice_sched_clear_port(hw->port_info);
594 
595 	ice_shutdown_all_ctrlq(hw);
596 
597 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
598 }
599 
600 /**
601  * ice_do_reset - Initiate one of many types of resets
602  * @pf: board private structure
603  * @reset_type: reset type requested before this function was called.
604  */
605 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
606 {
607 	struct device *dev = ice_pf_to_dev(pf);
608 	struct ice_hw *hw = &pf->hw;
609 
610 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
611 
612 	ice_prepare_for_reset(pf, reset_type);
613 
614 	/* trigger the reset */
615 	if (ice_reset(hw, reset_type)) {
616 		dev_err(dev, "reset %d failed\n", reset_type);
617 		set_bit(ICE_RESET_FAILED, pf->state);
618 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
619 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
620 		clear_bit(ICE_PFR_REQ, pf->state);
621 		clear_bit(ICE_CORER_REQ, pf->state);
622 		clear_bit(ICE_GLOBR_REQ, pf->state);
623 		wake_up(&pf->reset_wait_queue);
624 		return;
625 	}
626 
627 	/* PFR is a bit of a special case because it doesn't result in an OICR
628 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
629 	 * associated state bits.
630 	 */
631 	if (reset_type == ICE_RESET_PFR) {
632 		pf->pfr_count++;
633 		ice_rebuild(pf, reset_type);
634 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
635 		clear_bit(ICE_PFR_REQ, pf->state);
636 		wake_up(&pf->reset_wait_queue);
637 		ice_reset_all_vfs(pf);
638 	}
639 }
640 
641 /**
642  * ice_reset_subtask - Set up for resetting the device and driver
643  * @pf: board private structure
644  */
645 static void ice_reset_subtask(struct ice_pf *pf)
646 {
647 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
648 
649 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
650 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
651 	 * of reset is pending and sets bits in pf->state indicating the reset
652 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
653 	 * prepare for pending reset if not already (for PF software-initiated
654 	 * global resets the software should already be prepared for it as
655 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
656 	 * by firmware or software on other PFs, that bit is not set so prepare
657 	 * for the reset now), poll for reset done, rebuild and return.
658 	 */
659 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
660 		/* Perform the largest reset requested */
661 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
662 			reset_type = ICE_RESET_CORER;
663 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
664 			reset_type = ICE_RESET_GLOBR;
665 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
666 			reset_type = ICE_RESET_EMPR;
667 		/* return if no valid reset type requested */
668 		if (reset_type == ICE_RESET_INVAL)
669 			return;
670 		ice_prepare_for_reset(pf, reset_type);
671 
672 		/* make sure we are ready to rebuild */
673 		if (ice_check_reset(&pf->hw)) {
674 			set_bit(ICE_RESET_FAILED, pf->state);
675 		} else {
676 			/* done with reset. start rebuild */
677 			pf->hw.reset_ongoing = false;
678 			ice_rebuild(pf, reset_type);
679 			/* clear bit to resume normal operations, but
680 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
681 			 */
682 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
683 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
684 			clear_bit(ICE_PFR_REQ, pf->state);
685 			clear_bit(ICE_CORER_REQ, pf->state);
686 			clear_bit(ICE_GLOBR_REQ, pf->state);
687 			wake_up(&pf->reset_wait_queue);
688 			ice_reset_all_vfs(pf);
689 		}
690 
691 		return;
692 	}
693 
694 	/* No pending resets to finish processing. Check for new resets */
695 	if (test_bit(ICE_PFR_REQ, pf->state))
696 		reset_type = ICE_RESET_PFR;
697 	if (test_bit(ICE_CORER_REQ, pf->state))
698 		reset_type = ICE_RESET_CORER;
699 	if (test_bit(ICE_GLOBR_REQ, pf->state))
700 		reset_type = ICE_RESET_GLOBR;
701 	/* If no valid reset type requested just return */
702 	if (reset_type == ICE_RESET_INVAL)
703 		return;
704 
705 	/* reset if not already down or busy */
706 	if (!test_bit(ICE_DOWN, pf->state) &&
707 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
708 		ice_do_reset(pf, reset_type);
709 	}
710 }
711 
712 /**
713  * ice_print_topo_conflict - print topology conflict message
714  * @vsi: the VSI whose topology status is being checked
715  */
716 static void ice_print_topo_conflict(struct ice_vsi *vsi)
717 {
718 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
719 	case ICE_AQ_LINK_TOPO_CONFLICT:
720 	case ICE_AQ_LINK_MEDIA_CONFLICT:
721 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
722 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
723 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
724 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
725 		break;
726 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
727 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
728 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
729 		else
730 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
731 		break;
732 	default:
733 		break;
734 	}
735 }
736 
737 /**
738  * ice_print_link_msg - print link up or down message
739  * @vsi: the VSI whose link status is being queried
740  * @isup: boolean for if the link is now up or down
741  */
742 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
743 {
744 	struct ice_aqc_get_phy_caps_data *caps;
745 	const char *an_advertised;
746 	const char *fec_req;
747 	const char *speed;
748 	const char *fec;
749 	const char *fc;
750 	const char *an;
751 	int status;
752 
753 	if (!vsi)
754 		return;
755 
756 	if (vsi->current_isup == isup)
757 		return;
758 
759 	vsi->current_isup = isup;
760 
761 	if (!isup) {
762 		netdev_info(vsi->netdev, "NIC Link is Down\n");
763 		return;
764 	}
765 
766 	switch (vsi->port_info->phy.link_info.link_speed) {
767 	case ICE_AQ_LINK_SPEED_100GB:
768 		speed = "100 G";
769 		break;
770 	case ICE_AQ_LINK_SPEED_50GB:
771 		speed = "50 G";
772 		break;
773 	case ICE_AQ_LINK_SPEED_40GB:
774 		speed = "40 G";
775 		break;
776 	case ICE_AQ_LINK_SPEED_25GB:
777 		speed = "25 G";
778 		break;
779 	case ICE_AQ_LINK_SPEED_20GB:
780 		speed = "20 G";
781 		break;
782 	case ICE_AQ_LINK_SPEED_10GB:
783 		speed = "10 G";
784 		break;
785 	case ICE_AQ_LINK_SPEED_5GB:
786 		speed = "5 G";
787 		break;
788 	case ICE_AQ_LINK_SPEED_2500MB:
789 		speed = "2.5 G";
790 		break;
791 	case ICE_AQ_LINK_SPEED_1000MB:
792 		speed = "1 G";
793 		break;
794 	case ICE_AQ_LINK_SPEED_100MB:
795 		speed = "100 M";
796 		break;
797 	default:
798 		speed = "Unknown ";
799 		break;
800 	}
801 
802 	switch (vsi->port_info->fc.current_mode) {
803 	case ICE_FC_FULL:
804 		fc = "Rx/Tx";
805 		break;
806 	case ICE_FC_TX_PAUSE:
807 		fc = "Tx";
808 		break;
809 	case ICE_FC_RX_PAUSE:
810 		fc = "Rx";
811 		break;
812 	case ICE_FC_NONE:
813 		fc = "None";
814 		break;
815 	default:
816 		fc = "Unknown";
817 		break;
818 	}
819 
820 	/* Get FEC mode based on negotiated link info */
821 	switch (vsi->port_info->phy.link_info.fec_info) {
822 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
823 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
824 		fec = "RS-FEC";
825 		break;
826 	case ICE_AQ_LINK_25G_KR_FEC_EN:
827 		fec = "FC-FEC/BASE-R";
828 		break;
829 	default:
830 		fec = "NONE";
831 		break;
832 	}
833 
834 	/* check if autoneg completed, might be false due to not supported */
835 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
836 		an = "True";
837 	else
838 		an = "False";
839 
840 	/* Get FEC mode requested based on PHY caps last SW configuration */
841 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
842 	if (!caps) {
843 		fec_req = "Unknown";
844 		an_advertised = "Unknown";
845 		goto done;
846 	}
847 
848 	status = ice_aq_get_phy_caps(vsi->port_info, false,
849 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
850 	if (status)
851 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
852 
853 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
854 
855 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
856 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
857 		fec_req = "RS-FEC";
858 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
859 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
860 		fec_req = "FC-FEC/BASE-R";
861 	else
862 		fec_req = "NONE";
863 
864 	kfree(caps);
865 
866 done:
867 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
868 		    speed, fec_req, fec, an_advertised, an, fc);
869 	ice_print_topo_conflict(vsi);
870 }
871 
872 /**
873  * ice_vsi_link_event - update the VSI's netdev
874  * @vsi: the VSI on which the link event occurred
875  * @link_up: whether or not the VSI needs to be set up or down
876  */
877 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
878 {
879 	if (!vsi)
880 		return;
881 
882 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
883 		return;
884 
885 	if (vsi->type == ICE_VSI_PF) {
886 		if (link_up == netif_carrier_ok(vsi->netdev))
887 			return;
888 
889 		if (link_up) {
890 			netif_carrier_on(vsi->netdev);
891 			netif_tx_wake_all_queues(vsi->netdev);
892 		} else {
893 			netif_carrier_off(vsi->netdev);
894 			netif_tx_stop_all_queues(vsi->netdev);
895 		}
896 	}
897 }
898 
899 /**
900  * ice_set_dflt_mib - send a default config MIB to the FW
901  * @pf: private PF struct
902  *
903  * This function sends a default configuration MIB to the FW.
904  *
905  * If this function errors out at any point, the driver is still able to
906  * function.  The main impact is that LFC may not operate as expected.
907  * Therefore an error state in this function should be treated with a DBG
908  * message and continue on with driver rebuild/reenable.
909  */
910 static void ice_set_dflt_mib(struct ice_pf *pf)
911 {
912 	struct device *dev = ice_pf_to_dev(pf);
913 	u8 mib_type, *buf, *lldpmib = NULL;
914 	u16 len, typelen, offset = 0;
915 	struct ice_lldp_org_tlv *tlv;
916 	struct ice_hw *hw = &pf->hw;
917 	u32 ouisubtype;
918 
919 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
920 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
921 	if (!lldpmib) {
922 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
923 			__func__);
924 		return;
925 	}
926 
927 	/* Add ETS CFG TLV */
928 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
929 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
930 		   ICE_IEEE_ETS_TLV_LEN);
931 	tlv->typelen = htons(typelen);
932 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
933 		      ICE_IEEE_SUBTYPE_ETS_CFG);
934 	tlv->ouisubtype = htonl(ouisubtype);
935 
936 	buf = tlv->tlvinfo;
937 	buf[0] = 0;
938 
939 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
940 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
941 	 * Octets 13 - 20 are TSA values - leave as zeros
942 	 */
943 	buf[5] = 0x64;
944 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
945 	offset += len + 2;
946 	tlv = (struct ice_lldp_org_tlv *)
947 		((char *)tlv + sizeof(tlv->typelen) + len);
948 
949 	/* Add ETS REC TLV */
950 	buf = tlv->tlvinfo;
951 	tlv->typelen = htons(typelen);
952 
953 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
954 		      ICE_IEEE_SUBTYPE_ETS_REC);
955 	tlv->ouisubtype = htonl(ouisubtype);
956 
957 	/* First octet of buf is reserved
958 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
959 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
960 	 * Octets 13 - 20 are TSA value - leave as zeros
961 	 */
962 	buf[5] = 0x64;
963 	offset += len + 2;
964 	tlv = (struct ice_lldp_org_tlv *)
965 		((char *)tlv + sizeof(tlv->typelen) + len);
966 
967 	/* Add PFC CFG TLV */
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_PFC_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 
972 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
973 		      ICE_IEEE_SUBTYPE_PFC_CFG);
974 	tlv->ouisubtype = htonl(ouisubtype);
975 
976 	/* Octet 1 left as all zeros - PFC disabled */
977 	buf[0] = 0x08;
978 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
979 	offset += len + 2;
980 
981 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
982 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
983 
984 	kfree(lldpmib);
985 }
986 
987 /**
988  * ice_check_phy_fw_load - check if PHY FW load failed
989  * @pf: pointer to PF struct
990  * @link_cfg_err: bitmap from the link info structure
991  *
992  * check if external PHY FW load failed and print an error message if it did
993  */
994 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
995 {
996 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
997 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
998 		return;
999 	}
1000 
1001 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1002 		return;
1003 
1004 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1005 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1006 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 	}
1008 }
1009 
1010 /**
1011  * ice_check_module_power
1012  * @pf: pointer to PF struct
1013  * @link_cfg_err: bitmap from the link info structure
1014  *
1015  * check module power level returned by a previous call to aq_get_link_info
1016  * and print error messages if module power level is not supported
1017  */
1018 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1019 {
1020 	/* if module power level is supported, clear the flag */
1021 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1022 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1023 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1024 		return;
1025 	}
1026 
1027 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1028 	 * above block didn't clear this bit, there's nothing to do
1029 	 */
1030 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1031 		return;
1032 
1033 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1034 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1035 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1036 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1037 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1038 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1039 	}
1040 }
1041 
1042 /**
1043  * ice_check_link_cfg_err - check if link configuration failed
1044  * @pf: pointer to the PF struct
1045  * @link_cfg_err: bitmap from the link info structure
1046  *
1047  * print if any link configuration failure happens due to the value in the
1048  * link_cfg_err parameter in the link info structure
1049  */
1050 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1051 {
1052 	ice_check_module_power(pf, link_cfg_err);
1053 	ice_check_phy_fw_load(pf, link_cfg_err);
1054 }
1055 
1056 /**
1057  * ice_link_event - process the link event
1058  * @pf: PF that the link event is associated with
1059  * @pi: port_info for the port that the link event is associated with
1060  * @link_up: true if the physical link is up and false if it is down
1061  * @link_speed: current link speed received from the link event
1062  *
1063  * Returns 0 on success and negative on failure
1064  */
1065 static int
1066 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1067 	       u16 link_speed)
1068 {
1069 	struct device *dev = ice_pf_to_dev(pf);
1070 	struct ice_phy_info *phy_info;
1071 	struct ice_vsi *vsi;
1072 	u16 old_link_speed;
1073 	bool old_link;
1074 	int status;
1075 
1076 	phy_info = &pi->phy;
1077 	phy_info->link_info_old = phy_info->link_info;
1078 
1079 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1080 	old_link_speed = phy_info->link_info_old.link_speed;
1081 
1082 	/* update the link info structures and re-enable link events,
1083 	 * don't bail on failure due to other book keeping needed
1084 	 */
1085 	status = ice_update_link_info(pi);
1086 	if (status)
1087 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1088 			pi->lport, status,
1089 			ice_aq_str(pi->hw->adminq.sq_last_status));
1090 
1091 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1092 
1093 	/* Check if the link state is up after updating link info, and treat
1094 	 * this event as an UP event since the link is actually UP now.
1095 	 */
1096 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1097 		link_up = true;
1098 
1099 	vsi = ice_get_main_vsi(pf);
1100 	if (!vsi || !vsi->port_info)
1101 		return -EINVAL;
1102 
1103 	/* turn off PHY if media was removed */
1104 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1105 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1106 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1107 		ice_set_link(vsi, false);
1108 	}
1109 
1110 	/* if the old link up/down and speed is the same as the new */
1111 	if (link_up == old_link && link_speed == old_link_speed)
1112 		return 0;
1113 
1114 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1115 
1116 	if (ice_is_dcb_active(pf)) {
1117 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1118 			ice_dcb_rebuild(pf);
1119 	} else {
1120 		if (link_up)
1121 			ice_set_dflt_mib(pf);
1122 	}
1123 	ice_vsi_link_event(vsi, link_up);
1124 	ice_print_link_msg(vsi, link_up);
1125 
1126 	ice_vc_notify_link_state(pf);
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1133  * @pf: board private structure
1134  */
1135 static void ice_watchdog_subtask(struct ice_pf *pf)
1136 {
1137 	int i;
1138 
1139 	/* if interface is down do nothing */
1140 	if (test_bit(ICE_DOWN, pf->state) ||
1141 	    test_bit(ICE_CFG_BUSY, pf->state))
1142 		return;
1143 
1144 	/* make sure we don't do these things too often */
1145 	if (time_before(jiffies,
1146 			pf->serv_tmr_prev + pf->serv_tmr_period))
1147 		return;
1148 
1149 	pf->serv_tmr_prev = jiffies;
1150 
1151 	/* Update the stats for active netdevs so the network stack
1152 	 * can look at updated numbers whenever it cares to
1153 	 */
1154 	ice_update_pf_stats(pf);
1155 	ice_for_each_vsi(pf, i)
1156 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1157 			ice_update_vsi_stats(pf->vsi[i]);
1158 }
1159 
1160 /**
1161  * ice_init_link_events - enable/initialize link events
1162  * @pi: pointer to the port_info instance
1163  *
1164  * Returns -EIO on failure, 0 on success
1165  */
1166 static int ice_init_link_events(struct ice_port_info *pi)
1167 {
1168 	u16 mask;
1169 
1170 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1171 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1172 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1173 
1174 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1175 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1176 			pi->lport);
1177 		return -EIO;
1178 	}
1179 
1180 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1181 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1182 			pi->lport);
1183 		return -EIO;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * ice_handle_link_event - handle link event via ARQ
1191  * @pf: PF that the link event is associated with
1192  * @event: event structure containing link status info
1193  */
1194 static int
1195 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1196 {
1197 	struct ice_aqc_get_link_status_data *link_data;
1198 	struct ice_port_info *port_info;
1199 	int status;
1200 
1201 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1202 	port_info = pf->hw.port_info;
1203 	if (!port_info)
1204 		return -EINVAL;
1205 
1206 	status = ice_link_event(pf, port_info,
1207 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1208 				le16_to_cpu(link_data->link_speed));
1209 	if (status)
1210 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1211 			status);
1212 
1213 	return status;
1214 }
1215 
1216 enum ice_aq_task_state {
1217 	ICE_AQ_TASK_WAITING = 0,
1218 	ICE_AQ_TASK_COMPLETE,
1219 	ICE_AQ_TASK_CANCELED,
1220 };
1221 
1222 struct ice_aq_task {
1223 	struct hlist_node entry;
1224 
1225 	u16 opcode;
1226 	struct ice_rq_event_info *event;
1227 	enum ice_aq_task_state state;
1228 };
1229 
1230 /**
1231  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1232  * @pf: pointer to the PF private structure
1233  * @opcode: the opcode to wait for
1234  * @timeout: how long to wait, in jiffies
1235  * @event: storage for the event info
1236  *
1237  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1238  * current thread will be put to sleep until the specified event occurs or
1239  * until the given timeout is reached.
1240  *
1241  * To obtain only the descriptor contents, pass an event without an allocated
1242  * msg_buf. If the complete data buffer is desired, allocate the
1243  * event->msg_buf with enough space ahead of time.
1244  *
1245  * Returns: zero on success, or a negative error code on failure.
1246  */
1247 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1248 			  struct ice_rq_event_info *event)
1249 {
1250 	struct device *dev = ice_pf_to_dev(pf);
1251 	struct ice_aq_task *task;
1252 	unsigned long start;
1253 	long ret;
1254 	int err;
1255 
1256 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1257 	if (!task)
1258 		return -ENOMEM;
1259 
1260 	INIT_HLIST_NODE(&task->entry);
1261 	task->opcode = opcode;
1262 	task->event = event;
1263 	task->state = ICE_AQ_TASK_WAITING;
1264 
1265 	spin_lock_bh(&pf->aq_wait_lock);
1266 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1267 	spin_unlock_bh(&pf->aq_wait_lock);
1268 
1269 	start = jiffies;
1270 
1271 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1272 					       timeout);
1273 	switch (task->state) {
1274 	case ICE_AQ_TASK_WAITING:
1275 		err = ret < 0 ? ret : -ETIMEDOUT;
1276 		break;
1277 	case ICE_AQ_TASK_CANCELED:
1278 		err = ret < 0 ? ret : -ECANCELED;
1279 		break;
1280 	case ICE_AQ_TASK_COMPLETE:
1281 		err = ret < 0 ? ret : 0;
1282 		break;
1283 	default:
1284 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1285 		err = -EINVAL;
1286 		break;
1287 	}
1288 
1289 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1290 		jiffies_to_msecs(jiffies - start),
1291 		jiffies_to_msecs(timeout),
1292 		opcode);
1293 
1294 	spin_lock_bh(&pf->aq_wait_lock);
1295 	hlist_del(&task->entry);
1296 	spin_unlock_bh(&pf->aq_wait_lock);
1297 	kfree(task);
1298 
1299 	return err;
1300 }
1301 
1302 /**
1303  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1304  * @pf: pointer to the PF private structure
1305  * @opcode: the opcode of the event
1306  * @event: the event to check
1307  *
1308  * Loops over the current list of pending threads waiting for an AdminQ event.
1309  * For each matching task, copy the contents of the event into the task
1310  * structure and wake up the thread.
1311  *
1312  * If multiple threads wait for the same opcode, they will all be woken up.
1313  *
1314  * Note that event->msg_buf will only be duplicated if the event has a buffer
1315  * with enough space already allocated. Otherwise, only the descriptor and
1316  * message length will be copied.
1317  *
1318  * Returns: true if an event was found, false otherwise
1319  */
1320 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1321 				struct ice_rq_event_info *event)
1322 {
1323 	struct ice_aq_task *task;
1324 	bool found = false;
1325 
1326 	spin_lock_bh(&pf->aq_wait_lock);
1327 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1328 		if (task->state || task->opcode != opcode)
1329 			continue;
1330 
1331 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1332 		task->event->msg_len = event->msg_len;
1333 
1334 		/* Only copy the data buffer if a destination was set */
1335 		if (task->event->msg_buf &&
1336 		    task->event->buf_len > event->buf_len) {
1337 			memcpy(task->event->msg_buf, event->msg_buf,
1338 			       event->buf_len);
1339 			task->event->buf_len = event->buf_len;
1340 		}
1341 
1342 		task->state = ICE_AQ_TASK_COMPLETE;
1343 		found = true;
1344 	}
1345 	spin_unlock_bh(&pf->aq_wait_lock);
1346 
1347 	if (found)
1348 		wake_up(&pf->aq_wait_queue);
1349 }
1350 
1351 /**
1352  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1353  * @pf: the PF private structure
1354  *
1355  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1356  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1357  */
1358 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1359 {
1360 	struct ice_aq_task *task;
1361 
1362 	spin_lock_bh(&pf->aq_wait_lock);
1363 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1364 		task->state = ICE_AQ_TASK_CANCELED;
1365 	spin_unlock_bh(&pf->aq_wait_lock);
1366 
1367 	wake_up(&pf->aq_wait_queue);
1368 }
1369 
1370 /**
1371  * __ice_clean_ctrlq - helper function to clean controlq rings
1372  * @pf: ptr to struct ice_pf
1373  * @q_type: specific Control queue type
1374  */
1375 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1376 {
1377 	struct device *dev = ice_pf_to_dev(pf);
1378 	struct ice_rq_event_info event;
1379 	struct ice_hw *hw = &pf->hw;
1380 	struct ice_ctl_q_info *cq;
1381 	u16 pending, i = 0;
1382 	const char *qtype;
1383 	u32 oldval, val;
1384 
1385 	/* Do not clean control queue if/when PF reset fails */
1386 	if (test_bit(ICE_RESET_FAILED, pf->state))
1387 		return 0;
1388 
1389 	switch (q_type) {
1390 	case ICE_CTL_Q_ADMIN:
1391 		cq = &hw->adminq;
1392 		qtype = "Admin";
1393 		break;
1394 	case ICE_CTL_Q_SB:
1395 		cq = &hw->sbq;
1396 		qtype = "Sideband";
1397 		break;
1398 	case ICE_CTL_Q_MAILBOX:
1399 		cq = &hw->mailboxq;
1400 		qtype = "Mailbox";
1401 		/* we are going to try to detect a malicious VF, so set the
1402 		 * state to begin detection
1403 		 */
1404 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1405 		break;
1406 	default:
1407 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1408 		return 0;
1409 	}
1410 
1411 	/* check for error indications - PF_xx_AxQLEN register layout for
1412 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1413 	 */
1414 	val = rd32(hw, cq->rq.len);
1415 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1416 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1417 		oldval = val;
1418 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1419 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1420 				qtype);
1421 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1422 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1423 				qtype);
1424 		}
1425 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1426 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1427 				qtype);
1428 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1429 			 PF_FW_ARQLEN_ARQCRIT_M);
1430 		if (oldval != val)
1431 			wr32(hw, cq->rq.len, val);
1432 	}
1433 
1434 	val = rd32(hw, cq->sq.len);
1435 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1436 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1437 		oldval = val;
1438 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1439 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1440 				qtype);
1441 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1442 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1443 				qtype);
1444 		}
1445 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1446 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1447 				qtype);
1448 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1449 			 PF_FW_ATQLEN_ATQCRIT_M);
1450 		if (oldval != val)
1451 			wr32(hw, cq->sq.len, val);
1452 	}
1453 
1454 	event.buf_len = cq->rq_buf_size;
1455 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1456 	if (!event.msg_buf)
1457 		return 0;
1458 
1459 	do {
1460 		u16 opcode;
1461 		int ret;
1462 
1463 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1464 		if (ret == -EALREADY)
1465 			break;
1466 		if (ret) {
1467 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1468 				ret);
1469 			break;
1470 		}
1471 
1472 		opcode = le16_to_cpu(event.desc.opcode);
1473 
1474 		/* Notify any thread that might be waiting for this event */
1475 		ice_aq_check_events(pf, opcode, &event);
1476 
1477 		switch (opcode) {
1478 		case ice_aqc_opc_get_link_status:
1479 			if (ice_handle_link_event(pf, &event))
1480 				dev_err(dev, "Could not handle link event\n");
1481 			break;
1482 		case ice_aqc_opc_event_lan_overflow:
1483 			ice_vf_lan_overflow_event(pf, &event);
1484 			break;
1485 		case ice_mbx_opc_send_msg_to_pf:
1486 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1487 				ice_vc_process_vf_msg(pf, &event);
1488 			break;
1489 		case ice_aqc_opc_fw_logging:
1490 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1491 			break;
1492 		case ice_aqc_opc_lldp_set_mib_change:
1493 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1494 			break;
1495 		default:
1496 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1497 				qtype, opcode);
1498 			break;
1499 		}
1500 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1501 
1502 	kfree(event.msg_buf);
1503 
1504 	return pending && (i == ICE_DFLT_IRQ_WORK);
1505 }
1506 
1507 /**
1508  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1509  * @hw: pointer to hardware info
1510  * @cq: control queue information
1511  *
1512  * returns true if there are pending messages in a queue, false if there aren't
1513  */
1514 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1515 {
1516 	u16 ntu;
1517 
1518 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1519 	return cq->rq.next_to_clean != ntu;
1520 }
1521 
1522 /**
1523  * ice_clean_adminq_subtask - clean the AdminQ rings
1524  * @pf: board private structure
1525  */
1526 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1527 {
1528 	struct ice_hw *hw = &pf->hw;
1529 
1530 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1531 		return;
1532 
1533 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1534 		return;
1535 
1536 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1537 
1538 	/* There might be a situation where new messages arrive to a control
1539 	 * queue between processing the last message and clearing the
1540 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1541 	 * ice_ctrlq_pending) and process new messages if any.
1542 	 */
1543 	if (ice_ctrlq_pending(hw, &hw->adminq))
1544 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1545 
1546 	ice_flush(hw);
1547 }
1548 
1549 /**
1550  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1551  * @pf: board private structure
1552  */
1553 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1554 {
1555 	struct ice_hw *hw = &pf->hw;
1556 
1557 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1558 		return;
1559 
1560 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1561 		return;
1562 
1563 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1564 
1565 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1566 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1567 
1568 	ice_flush(hw);
1569 }
1570 
1571 /**
1572  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1573  * @pf: board private structure
1574  */
1575 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1576 {
1577 	struct ice_hw *hw = &pf->hw;
1578 
1579 	/* Nothing to do here if sideband queue is not supported */
1580 	if (!ice_is_sbq_supported(hw)) {
1581 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1582 		return;
1583 	}
1584 
1585 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1586 		return;
1587 
1588 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1589 		return;
1590 
1591 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 
1593 	if (ice_ctrlq_pending(hw, &hw->sbq))
1594 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1595 
1596 	ice_flush(hw);
1597 }
1598 
1599 /**
1600  * ice_service_task_schedule - schedule the service task to wake up
1601  * @pf: board private structure
1602  *
1603  * If not already scheduled, this puts the task into the work queue.
1604  */
1605 void ice_service_task_schedule(struct ice_pf *pf)
1606 {
1607 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1608 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1609 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1610 		queue_work(ice_wq, &pf->serv_task);
1611 }
1612 
1613 /**
1614  * ice_service_task_complete - finish up the service task
1615  * @pf: board private structure
1616  */
1617 static void ice_service_task_complete(struct ice_pf *pf)
1618 {
1619 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1620 
1621 	/* force memory (pf->state) to sync before next service task */
1622 	smp_mb__before_atomic();
1623 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1624 }
1625 
1626 /**
1627  * ice_service_task_stop - stop service task and cancel works
1628  * @pf: board private structure
1629  *
1630  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1631  * 1 otherwise.
1632  */
1633 static int ice_service_task_stop(struct ice_pf *pf)
1634 {
1635 	int ret;
1636 
1637 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1638 
1639 	if (pf->serv_tmr.function)
1640 		del_timer_sync(&pf->serv_tmr);
1641 	if (pf->serv_task.func)
1642 		cancel_work_sync(&pf->serv_task);
1643 
1644 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1645 	return ret;
1646 }
1647 
1648 /**
1649  * ice_service_task_restart - restart service task and schedule works
1650  * @pf: board private structure
1651  *
1652  * This function is needed for suspend and resume works (e.g WoL scenario)
1653  */
1654 static void ice_service_task_restart(struct ice_pf *pf)
1655 {
1656 	clear_bit(ICE_SERVICE_DIS, pf->state);
1657 	ice_service_task_schedule(pf);
1658 }
1659 
1660 /**
1661  * ice_service_timer - timer callback to schedule service task
1662  * @t: pointer to timer_list
1663  */
1664 static void ice_service_timer(struct timer_list *t)
1665 {
1666 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1667 
1668 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1669 	ice_service_task_schedule(pf);
1670 }
1671 
1672 /**
1673  * ice_handle_mdd_event - handle malicious driver detect event
1674  * @pf: pointer to the PF structure
1675  *
1676  * Called from service task. OICR interrupt handler indicates MDD event.
1677  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1678  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1679  * disable the queue, the PF can be configured to reset the VF using ethtool
1680  * private flag mdd-auto-reset-vf.
1681  */
1682 static void ice_handle_mdd_event(struct ice_pf *pf)
1683 {
1684 	struct device *dev = ice_pf_to_dev(pf);
1685 	struct ice_hw *hw = &pf->hw;
1686 	struct ice_vf *vf;
1687 	unsigned int bkt;
1688 	u32 reg;
1689 
1690 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1691 		/* Since the VF MDD event logging is rate limited, check if
1692 		 * there are pending MDD events.
1693 		 */
1694 		ice_print_vfs_mdd_events(pf);
1695 		return;
1696 	}
1697 
1698 	/* find what triggered an MDD event */
1699 	reg = rd32(hw, GL_MDET_TX_PQM);
1700 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1701 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1702 				GL_MDET_TX_PQM_PF_NUM_S;
1703 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1704 				GL_MDET_TX_PQM_VF_NUM_S;
1705 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1706 				GL_MDET_TX_PQM_MAL_TYPE_S;
1707 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1708 				GL_MDET_TX_PQM_QNUM_S);
1709 
1710 		if (netif_msg_tx_err(pf))
1711 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1712 				 event, queue, pf_num, vf_num);
1713 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1714 	}
1715 
1716 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1717 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1718 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1719 				GL_MDET_TX_TCLAN_PF_NUM_S;
1720 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1721 				GL_MDET_TX_TCLAN_VF_NUM_S;
1722 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1723 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1724 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1725 				GL_MDET_TX_TCLAN_QNUM_S);
1726 
1727 		if (netif_msg_tx_err(pf))
1728 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1729 				 event, queue, pf_num, vf_num);
1730 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1731 	}
1732 
1733 	reg = rd32(hw, GL_MDET_RX);
1734 	if (reg & GL_MDET_RX_VALID_M) {
1735 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1736 				GL_MDET_RX_PF_NUM_S;
1737 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1738 				GL_MDET_RX_VF_NUM_S;
1739 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1740 				GL_MDET_RX_MAL_TYPE_S;
1741 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1742 				GL_MDET_RX_QNUM_S);
1743 
1744 		if (netif_msg_rx_err(pf))
1745 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1746 				 event, queue, pf_num, vf_num);
1747 		wr32(hw, GL_MDET_RX, 0xffffffff);
1748 	}
1749 
1750 	/* check to see if this PF caused an MDD event */
1751 	reg = rd32(hw, PF_MDET_TX_PQM);
1752 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1753 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1754 		if (netif_msg_tx_err(pf))
1755 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1756 	}
1757 
1758 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1759 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1760 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1761 		if (netif_msg_tx_err(pf))
1762 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1763 	}
1764 
1765 	reg = rd32(hw, PF_MDET_RX);
1766 	if (reg & PF_MDET_RX_VALID_M) {
1767 		wr32(hw, PF_MDET_RX, 0xFFFF);
1768 		if (netif_msg_rx_err(pf))
1769 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1770 	}
1771 
1772 	/* Check to see if one of the VFs caused an MDD event, and then
1773 	 * increment counters and set print pending
1774 	 */
1775 	mutex_lock(&pf->vfs.table_lock);
1776 	ice_for_each_vf(pf, bkt, vf) {
1777 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1778 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1779 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1780 			vf->mdd_tx_events.count++;
1781 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1782 			if (netif_msg_tx_err(pf))
1783 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1784 					 vf->vf_id);
1785 		}
1786 
1787 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1788 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1789 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1790 			vf->mdd_tx_events.count++;
1791 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 			if (netif_msg_tx_err(pf))
1793 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1794 					 vf->vf_id);
1795 		}
1796 
1797 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1798 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1799 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1800 			vf->mdd_tx_events.count++;
1801 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 			if (netif_msg_tx_err(pf))
1803 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1804 					 vf->vf_id);
1805 		}
1806 
1807 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1808 		if (reg & VP_MDET_RX_VALID_M) {
1809 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1810 			vf->mdd_rx_events.count++;
1811 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 			if (netif_msg_rx_err(pf))
1813 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1814 					 vf->vf_id);
1815 
1816 			/* Since the queue is disabled on VF Rx MDD events, the
1817 			 * PF can be configured to reset the VF through ethtool
1818 			 * private flag mdd-auto-reset-vf.
1819 			 */
1820 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1821 				/* VF MDD event counters will be cleared by
1822 				 * reset, so print the event prior to reset.
1823 				 */
1824 				ice_print_vf_rx_mdd_event(vf);
1825 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1826 			}
1827 		}
1828 	}
1829 	mutex_unlock(&pf->vfs.table_lock);
1830 
1831 	ice_print_vfs_mdd_events(pf);
1832 }
1833 
1834 /**
1835  * ice_force_phys_link_state - Force the physical link state
1836  * @vsi: VSI to force the physical link state to up/down
1837  * @link_up: true/false indicates to set the physical link to up/down
1838  *
1839  * Force the physical link state by getting the current PHY capabilities from
1840  * hardware and setting the PHY config based on the determined capabilities. If
1841  * link changes a link event will be triggered because both the Enable Automatic
1842  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1843  *
1844  * Returns 0 on success, negative on failure
1845  */
1846 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1847 {
1848 	struct ice_aqc_get_phy_caps_data *pcaps;
1849 	struct ice_aqc_set_phy_cfg_data *cfg;
1850 	struct ice_port_info *pi;
1851 	struct device *dev;
1852 	int retcode;
1853 
1854 	if (!vsi || !vsi->port_info || !vsi->back)
1855 		return -EINVAL;
1856 	if (vsi->type != ICE_VSI_PF)
1857 		return 0;
1858 
1859 	dev = ice_pf_to_dev(vsi->back);
1860 
1861 	pi = vsi->port_info;
1862 
1863 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1864 	if (!pcaps)
1865 		return -ENOMEM;
1866 
1867 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1868 				      NULL);
1869 	if (retcode) {
1870 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1871 			vsi->vsi_num, retcode);
1872 		retcode = -EIO;
1873 		goto out;
1874 	}
1875 
1876 	/* No change in link */
1877 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1878 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1879 		goto out;
1880 
1881 	/* Use the current user PHY configuration. The current user PHY
1882 	 * configuration is initialized during probe from PHY capabilities
1883 	 * software mode, and updated on set PHY configuration.
1884 	 */
1885 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1886 	if (!cfg) {
1887 		retcode = -ENOMEM;
1888 		goto out;
1889 	}
1890 
1891 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1892 	if (link_up)
1893 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1894 	else
1895 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1896 
1897 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1898 	if (retcode) {
1899 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1900 			vsi->vsi_num, retcode);
1901 		retcode = -EIO;
1902 	}
1903 
1904 	kfree(cfg);
1905 out:
1906 	kfree(pcaps);
1907 	return retcode;
1908 }
1909 
1910 /**
1911  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1912  * @pi: port info structure
1913  *
1914  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1915  */
1916 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1917 {
1918 	struct ice_aqc_get_phy_caps_data *pcaps;
1919 	struct ice_pf *pf = pi->hw->back;
1920 	int err;
1921 
1922 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1923 	if (!pcaps)
1924 		return -ENOMEM;
1925 
1926 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1927 				  pcaps, NULL);
1928 
1929 	if (err) {
1930 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1931 		goto out;
1932 	}
1933 
1934 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1935 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1936 
1937 out:
1938 	kfree(pcaps);
1939 	return err;
1940 }
1941 
1942 /**
1943  * ice_init_link_dflt_override - Initialize link default override
1944  * @pi: port info structure
1945  *
1946  * Initialize link default override and PHY total port shutdown during probe
1947  */
1948 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1949 {
1950 	struct ice_link_default_override_tlv *ldo;
1951 	struct ice_pf *pf = pi->hw->back;
1952 
1953 	ldo = &pf->link_dflt_override;
1954 	if (ice_get_link_default_override(ldo, pi))
1955 		return;
1956 
1957 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1958 		return;
1959 
1960 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1961 	 * ethtool private flag) for ports with Port Disable bit set.
1962 	 */
1963 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1964 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1965 }
1966 
1967 /**
1968  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1969  * @pi: port info structure
1970  *
1971  * If default override is enabled, initialize the user PHY cfg speed and FEC
1972  * settings using the default override mask from the NVM.
1973  *
1974  * The PHY should only be configured with the default override settings the
1975  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1976  * is used to indicate that the user PHY cfg default override is initialized
1977  * and the PHY has not been configured with the default override settings. The
1978  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1979  * configured.
1980  *
1981  * This function should be called only if the FW doesn't support default
1982  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1983  */
1984 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1985 {
1986 	struct ice_link_default_override_tlv *ldo;
1987 	struct ice_aqc_set_phy_cfg_data *cfg;
1988 	struct ice_phy_info *phy = &pi->phy;
1989 	struct ice_pf *pf = pi->hw->back;
1990 
1991 	ldo = &pf->link_dflt_override;
1992 
1993 	/* If link default override is enabled, use to mask NVM PHY capabilities
1994 	 * for speed and FEC default configuration.
1995 	 */
1996 	cfg = &phy->curr_user_phy_cfg;
1997 
1998 	if (ldo->phy_type_low || ldo->phy_type_high) {
1999 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2000 				    cpu_to_le64(ldo->phy_type_low);
2001 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2002 				     cpu_to_le64(ldo->phy_type_high);
2003 	}
2004 	cfg->link_fec_opt = ldo->fec_options;
2005 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2006 
2007 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2008 }
2009 
2010 /**
2011  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2012  * @pi: port info structure
2013  *
2014  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2015  * mode to default. The PHY defaults are from get PHY capabilities topology
2016  * with media so call when media is first available. An error is returned if
2017  * called when media is not available. The PHY initialization completed state is
2018  * set here.
2019  *
2020  * These configurations are used when setting PHY
2021  * configuration. The user PHY configuration is updated on set PHY
2022  * configuration. Returns 0 on success, negative on failure
2023  */
2024 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2025 {
2026 	struct ice_aqc_get_phy_caps_data *pcaps;
2027 	struct ice_phy_info *phy = &pi->phy;
2028 	struct ice_pf *pf = pi->hw->back;
2029 	int err;
2030 
2031 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2032 		return -EIO;
2033 
2034 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2035 	if (!pcaps)
2036 		return -ENOMEM;
2037 
2038 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2039 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2040 					  pcaps, NULL);
2041 	else
2042 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2043 					  pcaps, NULL);
2044 	if (err) {
2045 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2046 		goto err_out;
2047 	}
2048 
2049 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2050 
2051 	/* check if lenient mode is supported and enabled */
2052 	if (ice_fw_supports_link_override(pi->hw) &&
2053 	    !(pcaps->module_compliance_enforcement &
2054 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2055 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2056 
2057 		/* if the FW supports default PHY configuration mode, then the driver
2058 		 * does not have to apply link override settings. If not,
2059 		 * initialize user PHY configuration with link override values
2060 		 */
2061 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2062 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2063 			ice_init_phy_cfg_dflt_override(pi);
2064 			goto out;
2065 		}
2066 	}
2067 
2068 	/* if link default override is not enabled, set user flow control and
2069 	 * FEC settings based on what get_phy_caps returned
2070 	 */
2071 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2072 						      pcaps->link_fec_options);
2073 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2074 
2075 out:
2076 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2077 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2078 err_out:
2079 	kfree(pcaps);
2080 	return err;
2081 }
2082 
2083 /**
2084  * ice_configure_phy - configure PHY
2085  * @vsi: VSI of PHY
2086  *
2087  * Set the PHY configuration. If the current PHY configuration is the same as
2088  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2089  * configure the based get PHY capabilities for topology with media.
2090  */
2091 static int ice_configure_phy(struct ice_vsi *vsi)
2092 {
2093 	struct device *dev = ice_pf_to_dev(vsi->back);
2094 	struct ice_port_info *pi = vsi->port_info;
2095 	struct ice_aqc_get_phy_caps_data *pcaps;
2096 	struct ice_aqc_set_phy_cfg_data *cfg;
2097 	struct ice_phy_info *phy = &pi->phy;
2098 	struct ice_pf *pf = vsi->back;
2099 	int err;
2100 
2101 	/* Ensure we have media as we cannot configure a medialess port */
2102 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2103 		return -EPERM;
2104 
2105 	ice_print_topo_conflict(vsi);
2106 
2107 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2108 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2109 		return -EPERM;
2110 
2111 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2112 		return ice_force_phys_link_state(vsi, true);
2113 
2114 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2115 	if (!pcaps)
2116 		return -ENOMEM;
2117 
2118 	/* Get current PHY config */
2119 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2120 				  NULL);
2121 	if (err) {
2122 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2123 			vsi->vsi_num, err);
2124 		goto done;
2125 	}
2126 
2127 	/* If PHY enable link is configured and configuration has not changed,
2128 	 * there's nothing to do
2129 	 */
2130 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2131 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2132 		goto done;
2133 
2134 	/* Use PHY topology as baseline for configuration */
2135 	memset(pcaps, 0, sizeof(*pcaps));
2136 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2137 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2138 					  pcaps, NULL);
2139 	else
2140 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2141 					  pcaps, NULL);
2142 	if (err) {
2143 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2144 			vsi->vsi_num, err);
2145 		goto done;
2146 	}
2147 
2148 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2149 	if (!cfg) {
2150 		err = -ENOMEM;
2151 		goto done;
2152 	}
2153 
2154 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2155 
2156 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2157 	 * ice_init_phy_user_cfg_ldo.
2158 	 */
2159 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2160 			       vsi->back->state)) {
2161 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2162 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2163 	} else {
2164 		u64 phy_low = 0, phy_high = 0;
2165 
2166 		ice_update_phy_type(&phy_low, &phy_high,
2167 				    pi->phy.curr_user_speed_req);
2168 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2169 		cfg->phy_type_high = pcaps->phy_type_high &
2170 				     cpu_to_le64(phy_high);
2171 	}
2172 
2173 	/* Can't provide what was requested; use PHY capabilities */
2174 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2175 		cfg->phy_type_low = pcaps->phy_type_low;
2176 		cfg->phy_type_high = pcaps->phy_type_high;
2177 	}
2178 
2179 	/* FEC */
2180 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2181 
2182 	/* Can't provide what was requested; use PHY capabilities */
2183 	if (cfg->link_fec_opt !=
2184 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2185 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2186 		cfg->link_fec_opt = pcaps->link_fec_options;
2187 	}
2188 
2189 	/* Flow Control - always supported; no need to check against
2190 	 * capabilities
2191 	 */
2192 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2193 
2194 	/* Enable link and link update */
2195 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2196 
2197 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2198 	if (err)
2199 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2200 			vsi->vsi_num, err);
2201 
2202 	kfree(cfg);
2203 done:
2204 	kfree(pcaps);
2205 	return err;
2206 }
2207 
2208 /**
2209  * ice_check_media_subtask - Check for media
2210  * @pf: pointer to PF struct
2211  *
2212  * If media is available, then initialize PHY user configuration if it is not
2213  * been, and configure the PHY if the interface is up.
2214  */
2215 static void ice_check_media_subtask(struct ice_pf *pf)
2216 {
2217 	struct ice_port_info *pi;
2218 	struct ice_vsi *vsi;
2219 	int err;
2220 
2221 	/* No need to check for media if it's already present */
2222 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2223 		return;
2224 
2225 	vsi = ice_get_main_vsi(pf);
2226 	if (!vsi)
2227 		return;
2228 
2229 	/* Refresh link info and check if media is present */
2230 	pi = vsi->port_info;
2231 	err = ice_update_link_info(pi);
2232 	if (err)
2233 		return;
2234 
2235 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2236 
2237 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2238 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2239 			ice_init_phy_user_cfg(pi);
2240 
2241 		/* PHY settings are reset on media insertion, reconfigure
2242 		 * PHY to preserve settings.
2243 		 */
2244 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2245 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2246 			return;
2247 
2248 		err = ice_configure_phy(vsi);
2249 		if (!err)
2250 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2251 
2252 		/* A Link Status Event will be generated; the event handler
2253 		 * will complete bringing the interface up
2254 		 */
2255 	}
2256 }
2257 
2258 /**
2259  * ice_service_task - manage and run subtasks
2260  * @work: pointer to work_struct contained by the PF struct
2261  */
2262 static void ice_service_task(struct work_struct *work)
2263 {
2264 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2265 	unsigned long start_time = jiffies;
2266 
2267 	/* subtasks */
2268 
2269 	/* process reset requests first */
2270 	ice_reset_subtask(pf);
2271 
2272 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2273 	if (ice_is_reset_in_progress(pf->state) ||
2274 	    test_bit(ICE_SUSPENDED, pf->state) ||
2275 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2276 		ice_service_task_complete(pf);
2277 		return;
2278 	}
2279 
2280 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2281 		struct iidc_event *event;
2282 
2283 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2284 		if (event) {
2285 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2286 			/* report the entire OICR value to AUX driver */
2287 			swap(event->reg, pf->oicr_err_reg);
2288 			ice_send_event_to_aux(pf, event);
2289 			kfree(event);
2290 		}
2291 	}
2292 
2293 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2294 		/* Plug aux device per request */
2295 		ice_plug_aux_dev(pf);
2296 
2297 		/* Mark plugging as done but check whether unplug was
2298 		 * requested during ice_plug_aux_dev() call
2299 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2300 		 * plug aux device.
2301 		 */
2302 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2303 			ice_unplug_aux_dev(pf);
2304 	}
2305 
2306 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2307 		struct iidc_event *event;
2308 
2309 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2310 		if (event) {
2311 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2312 			ice_send_event_to_aux(pf, event);
2313 			kfree(event);
2314 		}
2315 	}
2316 
2317 	ice_clean_adminq_subtask(pf);
2318 	ice_check_media_subtask(pf);
2319 	ice_check_for_hang_subtask(pf);
2320 	ice_sync_fltr_subtask(pf);
2321 	ice_handle_mdd_event(pf);
2322 	ice_watchdog_subtask(pf);
2323 
2324 	if (ice_is_safe_mode(pf)) {
2325 		ice_service_task_complete(pf);
2326 		return;
2327 	}
2328 
2329 	ice_process_vflr_event(pf);
2330 	ice_clean_mailboxq_subtask(pf);
2331 	ice_clean_sbq_subtask(pf);
2332 	ice_sync_arfs_fltrs(pf);
2333 	ice_flush_fdir_ctx(pf);
2334 
2335 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2336 	ice_service_task_complete(pf);
2337 
2338 	/* If the tasks have taken longer than one service timer period
2339 	 * or there is more work to be done, reset the service timer to
2340 	 * schedule the service task now.
2341 	 */
2342 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2343 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2344 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2345 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2346 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2347 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2348 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2349 		mod_timer(&pf->serv_tmr, jiffies);
2350 }
2351 
2352 /**
2353  * ice_set_ctrlq_len - helper function to set controlq length
2354  * @hw: pointer to the HW instance
2355  */
2356 static void ice_set_ctrlq_len(struct ice_hw *hw)
2357 {
2358 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2359 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2360 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2361 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2362 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2363 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2364 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2365 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2366 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2367 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2368 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2369 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2370 }
2371 
2372 /**
2373  * ice_schedule_reset - schedule a reset
2374  * @pf: board private structure
2375  * @reset: reset being requested
2376  */
2377 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2378 {
2379 	struct device *dev = ice_pf_to_dev(pf);
2380 
2381 	/* bail out if earlier reset has failed */
2382 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2383 		dev_dbg(dev, "earlier reset has failed\n");
2384 		return -EIO;
2385 	}
2386 	/* bail if reset/recovery already in progress */
2387 	if (ice_is_reset_in_progress(pf->state)) {
2388 		dev_dbg(dev, "Reset already in progress\n");
2389 		return -EBUSY;
2390 	}
2391 
2392 	switch (reset) {
2393 	case ICE_RESET_PFR:
2394 		set_bit(ICE_PFR_REQ, pf->state);
2395 		break;
2396 	case ICE_RESET_CORER:
2397 		set_bit(ICE_CORER_REQ, pf->state);
2398 		break;
2399 	case ICE_RESET_GLOBR:
2400 		set_bit(ICE_GLOBR_REQ, pf->state);
2401 		break;
2402 	default:
2403 		return -EINVAL;
2404 	}
2405 
2406 	ice_service_task_schedule(pf);
2407 	return 0;
2408 }
2409 
2410 /**
2411  * ice_irq_affinity_notify - Callback for affinity changes
2412  * @notify: context as to what irq was changed
2413  * @mask: the new affinity mask
2414  *
2415  * This is a callback function used by the irq_set_affinity_notifier function
2416  * so that we may register to receive changes to the irq affinity masks.
2417  */
2418 static void
2419 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2420 			const cpumask_t *mask)
2421 {
2422 	struct ice_q_vector *q_vector =
2423 		container_of(notify, struct ice_q_vector, affinity_notify);
2424 
2425 	cpumask_copy(&q_vector->affinity_mask, mask);
2426 }
2427 
2428 /**
2429  * ice_irq_affinity_release - Callback for affinity notifier release
2430  * @ref: internal core kernel usage
2431  *
2432  * This is a callback function used by the irq_set_affinity_notifier function
2433  * to inform the current notification subscriber that they will no longer
2434  * receive notifications.
2435  */
2436 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2437 
2438 /**
2439  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2440  * @vsi: the VSI being configured
2441  */
2442 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2443 {
2444 	struct ice_hw *hw = &vsi->back->hw;
2445 	int i;
2446 
2447 	ice_for_each_q_vector(vsi, i)
2448 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2449 
2450 	ice_flush(hw);
2451 	return 0;
2452 }
2453 
2454 /**
2455  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2456  * @vsi: the VSI being configured
2457  * @basename: name for the vector
2458  */
2459 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2460 {
2461 	int q_vectors = vsi->num_q_vectors;
2462 	struct ice_pf *pf = vsi->back;
2463 	int base = vsi->base_vector;
2464 	struct device *dev;
2465 	int rx_int_idx = 0;
2466 	int tx_int_idx = 0;
2467 	int vector, err;
2468 	int irq_num;
2469 
2470 	dev = ice_pf_to_dev(pf);
2471 	for (vector = 0; vector < q_vectors; vector++) {
2472 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2473 
2474 		irq_num = pf->msix_entries[base + vector].vector;
2475 
2476 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2477 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2478 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2479 			tx_int_idx++;
2480 		} else if (q_vector->rx.rx_ring) {
2481 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2482 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2483 		} else if (q_vector->tx.tx_ring) {
2484 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2485 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2486 		} else {
2487 			/* skip this unused q_vector */
2488 			continue;
2489 		}
2490 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2491 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2492 					       IRQF_SHARED, q_vector->name,
2493 					       q_vector);
2494 		else
2495 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2496 					       0, q_vector->name, q_vector);
2497 		if (err) {
2498 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2499 				   err);
2500 			goto free_q_irqs;
2501 		}
2502 
2503 		/* register for affinity change notifications */
2504 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2505 			struct irq_affinity_notify *affinity_notify;
2506 
2507 			affinity_notify = &q_vector->affinity_notify;
2508 			affinity_notify->notify = ice_irq_affinity_notify;
2509 			affinity_notify->release = ice_irq_affinity_release;
2510 			irq_set_affinity_notifier(irq_num, affinity_notify);
2511 		}
2512 
2513 		/* assign the mask for this irq */
2514 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2515 	}
2516 
2517 	err = ice_set_cpu_rx_rmap(vsi);
2518 	if (err) {
2519 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2520 			   vsi->vsi_num, ERR_PTR(err));
2521 		goto free_q_irqs;
2522 	}
2523 
2524 	vsi->irqs_ready = true;
2525 	return 0;
2526 
2527 free_q_irqs:
2528 	while (vector) {
2529 		vector--;
2530 		irq_num = pf->msix_entries[base + vector].vector;
2531 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2532 			irq_set_affinity_notifier(irq_num, NULL);
2533 		irq_set_affinity_hint(irq_num, NULL);
2534 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2535 	}
2536 	return err;
2537 }
2538 
2539 /**
2540  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2541  * @vsi: VSI to setup Tx rings used by XDP
2542  *
2543  * Return 0 on success and negative value on error
2544  */
2545 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2546 {
2547 	struct device *dev = ice_pf_to_dev(vsi->back);
2548 	struct ice_tx_desc *tx_desc;
2549 	int i, j;
2550 
2551 	ice_for_each_xdp_txq(vsi, i) {
2552 		u16 xdp_q_idx = vsi->alloc_txq + i;
2553 		struct ice_ring_stats *ring_stats;
2554 		struct ice_tx_ring *xdp_ring;
2555 
2556 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2557 		if (!xdp_ring)
2558 			goto free_xdp_rings;
2559 
2560 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2561 		if (!ring_stats) {
2562 			ice_free_tx_ring(xdp_ring);
2563 			goto free_xdp_rings;
2564 		}
2565 
2566 		xdp_ring->ring_stats = ring_stats;
2567 		xdp_ring->q_index = xdp_q_idx;
2568 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2569 		xdp_ring->vsi = vsi;
2570 		xdp_ring->netdev = NULL;
2571 		xdp_ring->dev = dev;
2572 		xdp_ring->count = vsi->num_tx_desc;
2573 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2574 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2575 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2576 		if (ice_setup_tx_ring(xdp_ring))
2577 			goto free_xdp_rings;
2578 		ice_set_ring_xdp(xdp_ring);
2579 		spin_lock_init(&xdp_ring->tx_lock);
2580 		for (j = 0; j < xdp_ring->count; j++) {
2581 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2582 			tx_desc->cmd_type_offset_bsz = 0;
2583 		}
2584 	}
2585 
2586 	return 0;
2587 
2588 free_xdp_rings:
2589 	for (; i >= 0; i--) {
2590 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2591 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2592 			vsi->xdp_rings[i]->ring_stats = NULL;
2593 			ice_free_tx_ring(vsi->xdp_rings[i]);
2594 		}
2595 	}
2596 	return -ENOMEM;
2597 }
2598 
2599 /**
2600  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2601  * @vsi: VSI to set the bpf prog on
2602  * @prog: the bpf prog pointer
2603  */
2604 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2605 {
2606 	struct bpf_prog *old_prog;
2607 	int i;
2608 
2609 	old_prog = xchg(&vsi->xdp_prog, prog);
2610 	if (old_prog)
2611 		bpf_prog_put(old_prog);
2612 
2613 	ice_for_each_rxq(vsi, i)
2614 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2615 }
2616 
2617 /**
2618  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2619  * @vsi: VSI to bring up Tx rings used by XDP
2620  * @prog: bpf program that will be assigned to VSI
2621  *
2622  * Return 0 on success and negative value on error
2623  */
2624 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2625 {
2626 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2627 	int xdp_rings_rem = vsi->num_xdp_txq;
2628 	struct ice_pf *pf = vsi->back;
2629 	struct ice_qs_cfg xdp_qs_cfg = {
2630 		.qs_mutex = &pf->avail_q_mutex,
2631 		.pf_map = pf->avail_txqs,
2632 		.pf_map_size = pf->max_pf_txqs,
2633 		.q_count = vsi->num_xdp_txq,
2634 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2635 		.vsi_map = vsi->txq_map,
2636 		.vsi_map_offset = vsi->alloc_txq,
2637 		.mapping_mode = ICE_VSI_MAP_CONTIG
2638 	};
2639 	struct device *dev;
2640 	int i, v_idx;
2641 	int status;
2642 
2643 	dev = ice_pf_to_dev(pf);
2644 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2645 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2646 	if (!vsi->xdp_rings)
2647 		return -ENOMEM;
2648 
2649 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2650 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2651 		goto err_map_xdp;
2652 
2653 	if (static_key_enabled(&ice_xdp_locking_key))
2654 		netdev_warn(vsi->netdev,
2655 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2656 
2657 	if (ice_xdp_alloc_setup_rings(vsi))
2658 		goto clear_xdp_rings;
2659 
2660 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2661 	ice_for_each_q_vector(vsi, v_idx) {
2662 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2663 		int xdp_rings_per_v, q_id, q_base;
2664 
2665 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2666 					       vsi->num_q_vectors - v_idx);
2667 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2668 
2669 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2670 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2671 
2672 			xdp_ring->q_vector = q_vector;
2673 			xdp_ring->next = q_vector->tx.tx_ring;
2674 			q_vector->tx.tx_ring = xdp_ring;
2675 		}
2676 		xdp_rings_rem -= xdp_rings_per_v;
2677 	}
2678 
2679 	ice_for_each_rxq(vsi, i) {
2680 		if (static_key_enabled(&ice_xdp_locking_key)) {
2681 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2682 		} else {
2683 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2684 			struct ice_tx_ring *ring;
2685 
2686 			ice_for_each_tx_ring(ring, q_vector->tx) {
2687 				if (ice_ring_is_xdp(ring)) {
2688 					vsi->rx_rings[i]->xdp_ring = ring;
2689 					break;
2690 				}
2691 			}
2692 		}
2693 		ice_tx_xsk_pool(vsi, i);
2694 	}
2695 
2696 	/* omit the scheduler update if in reset path; XDP queues will be
2697 	 * taken into account at the end of ice_vsi_rebuild, where
2698 	 * ice_cfg_vsi_lan is being called
2699 	 */
2700 	if (ice_is_reset_in_progress(pf->state))
2701 		return 0;
2702 
2703 	/* tell the Tx scheduler that right now we have
2704 	 * additional queues
2705 	 */
2706 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2707 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2708 
2709 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2710 				 max_txqs);
2711 	if (status) {
2712 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2713 			status);
2714 		goto clear_xdp_rings;
2715 	}
2716 
2717 	/* assign the prog only when it's not already present on VSI;
2718 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2719 	 * VSI rebuild that happens under ethtool -L can expose us to
2720 	 * the bpf_prog refcount issues as we would be swapping same
2721 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2722 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2723 	 * this is not harmful as dev_xdp_install bumps the refcount
2724 	 * before calling the op exposed by the driver;
2725 	 */
2726 	if (!ice_is_xdp_ena_vsi(vsi))
2727 		ice_vsi_assign_bpf_prog(vsi, prog);
2728 
2729 	return 0;
2730 clear_xdp_rings:
2731 	ice_for_each_xdp_txq(vsi, i)
2732 		if (vsi->xdp_rings[i]) {
2733 			kfree_rcu(vsi->xdp_rings[i], rcu);
2734 			vsi->xdp_rings[i] = NULL;
2735 		}
2736 
2737 err_map_xdp:
2738 	mutex_lock(&pf->avail_q_mutex);
2739 	ice_for_each_xdp_txq(vsi, i) {
2740 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2741 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2742 	}
2743 	mutex_unlock(&pf->avail_q_mutex);
2744 
2745 	devm_kfree(dev, vsi->xdp_rings);
2746 	return -ENOMEM;
2747 }
2748 
2749 /**
2750  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2751  * @vsi: VSI to remove XDP rings
2752  *
2753  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2754  * resources
2755  */
2756 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2757 {
2758 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2759 	struct ice_pf *pf = vsi->back;
2760 	int i, v_idx;
2761 
2762 	/* q_vectors are freed in reset path so there's no point in detaching
2763 	 * rings; in case of rebuild being triggered not from reset bits
2764 	 * in pf->state won't be set, so additionally check first q_vector
2765 	 * against NULL
2766 	 */
2767 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2768 		goto free_qmap;
2769 
2770 	ice_for_each_q_vector(vsi, v_idx) {
2771 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2772 		struct ice_tx_ring *ring;
2773 
2774 		ice_for_each_tx_ring(ring, q_vector->tx)
2775 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2776 				break;
2777 
2778 		/* restore the value of last node prior to XDP setup */
2779 		q_vector->tx.tx_ring = ring;
2780 	}
2781 
2782 free_qmap:
2783 	mutex_lock(&pf->avail_q_mutex);
2784 	ice_for_each_xdp_txq(vsi, i) {
2785 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2786 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2787 	}
2788 	mutex_unlock(&pf->avail_q_mutex);
2789 
2790 	ice_for_each_xdp_txq(vsi, i)
2791 		if (vsi->xdp_rings[i]) {
2792 			if (vsi->xdp_rings[i]->desc) {
2793 				synchronize_rcu();
2794 				ice_free_tx_ring(vsi->xdp_rings[i]);
2795 			}
2796 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2797 			vsi->xdp_rings[i]->ring_stats = NULL;
2798 			kfree_rcu(vsi->xdp_rings[i], rcu);
2799 			vsi->xdp_rings[i] = NULL;
2800 		}
2801 
2802 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2803 	vsi->xdp_rings = NULL;
2804 
2805 	if (static_key_enabled(&ice_xdp_locking_key))
2806 		static_branch_dec(&ice_xdp_locking_key);
2807 
2808 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2809 		return 0;
2810 
2811 	ice_vsi_assign_bpf_prog(vsi, NULL);
2812 
2813 	/* notify Tx scheduler that we destroyed XDP queues and bring
2814 	 * back the old number of child nodes
2815 	 */
2816 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2817 		max_txqs[i] = vsi->num_txq;
2818 
2819 	/* change number of XDP Tx queues to 0 */
2820 	vsi->num_xdp_txq = 0;
2821 
2822 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2823 			       max_txqs);
2824 }
2825 
2826 /**
2827  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2828  * @vsi: VSI to schedule napi on
2829  */
2830 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2831 {
2832 	int i;
2833 
2834 	ice_for_each_rxq(vsi, i) {
2835 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2836 
2837 		if (rx_ring->xsk_pool)
2838 			napi_schedule(&rx_ring->q_vector->napi);
2839 	}
2840 }
2841 
2842 /**
2843  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2844  * @vsi: VSI to determine the count of XDP Tx qs
2845  *
2846  * returns 0 if Tx qs count is higher than at least half of CPU count,
2847  * -ENOMEM otherwise
2848  */
2849 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2850 {
2851 	u16 avail = ice_get_avail_txq_count(vsi->back);
2852 	u16 cpus = num_possible_cpus();
2853 
2854 	if (avail < cpus / 2)
2855 		return -ENOMEM;
2856 
2857 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2858 
2859 	if (vsi->num_xdp_txq < cpus)
2860 		static_branch_inc(&ice_xdp_locking_key);
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2867  * @vsi: VSI to setup XDP for
2868  * @prog: XDP program
2869  * @extack: netlink extended ack
2870  */
2871 static int
2872 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2873 		   struct netlink_ext_ack *extack)
2874 {
2875 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2876 	bool if_running = netif_running(vsi->netdev);
2877 	int ret = 0, xdp_ring_err = 0;
2878 
2879 	if (frame_size > vsi->rx_buf_len) {
2880 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2881 		return -EOPNOTSUPP;
2882 	}
2883 
2884 	/* need to stop netdev while setting up the program for Rx rings */
2885 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2886 		ret = ice_down(vsi);
2887 		if (ret) {
2888 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2889 			return ret;
2890 		}
2891 	}
2892 
2893 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2894 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2895 		if (xdp_ring_err) {
2896 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2897 		} else {
2898 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2899 			if (xdp_ring_err)
2900 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2901 		}
2902 		/* reallocate Rx queues that are used for zero-copy */
2903 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2904 		if (xdp_ring_err)
2905 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2906 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2907 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2908 		if (xdp_ring_err)
2909 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2910 		/* reallocate Rx queues that were used for zero-copy */
2911 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2912 		if (xdp_ring_err)
2913 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2914 	} else {
2915 		/* safe to call even when prog == vsi->xdp_prog as
2916 		 * dev_xdp_install in net/core/dev.c incremented prog's
2917 		 * refcount so corresponding bpf_prog_put won't cause
2918 		 * underflow
2919 		 */
2920 		ice_vsi_assign_bpf_prog(vsi, prog);
2921 	}
2922 
2923 	if (if_running)
2924 		ret = ice_up(vsi);
2925 
2926 	if (!ret && prog)
2927 		ice_vsi_rx_napi_schedule(vsi);
2928 
2929 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2930 }
2931 
2932 /**
2933  * ice_xdp_safe_mode - XDP handler for safe mode
2934  * @dev: netdevice
2935  * @xdp: XDP command
2936  */
2937 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2938 			     struct netdev_bpf *xdp)
2939 {
2940 	NL_SET_ERR_MSG_MOD(xdp->extack,
2941 			   "Please provide working DDP firmware package in order to use XDP\n"
2942 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2943 	return -EOPNOTSUPP;
2944 }
2945 
2946 /**
2947  * ice_xdp - implements XDP handler
2948  * @dev: netdevice
2949  * @xdp: XDP command
2950  */
2951 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2952 {
2953 	struct ice_netdev_priv *np = netdev_priv(dev);
2954 	struct ice_vsi *vsi = np->vsi;
2955 
2956 	if (vsi->type != ICE_VSI_PF) {
2957 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2958 		return -EINVAL;
2959 	}
2960 
2961 	switch (xdp->command) {
2962 	case XDP_SETUP_PROG:
2963 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2964 	case XDP_SETUP_XSK_POOL:
2965 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2966 					  xdp->xsk.queue_id);
2967 	default:
2968 		return -EINVAL;
2969 	}
2970 }
2971 
2972 /**
2973  * ice_ena_misc_vector - enable the non-queue interrupts
2974  * @pf: board private structure
2975  */
2976 static void ice_ena_misc_vector(struct ice_pf *pf)
2977 {
2978 	struct ice_hw *hw = &pf->hw;
2979 	u32 val;
2980 
2981 	/* Disable anti-spoof detection interrupt to prevent spurious event
2982 	 * interrupts during a function reset. Anti-spoof functionally is
2983 	 * still supported.
2984 	 */
2985 	val = rd32(hw, GL_MDCK_TX_TDPU);
2986 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2987 	wr32(hw, GL_MDCK_TX_TDPU, val);
2988 
2989 	/* clear things first */
2990 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2991 	rd32(hw, PFINT_OICR);		/* read to clear */
2992 
2993 	val = (PFINT_OICR_ECC_ERR_M |
2994 	       PFINT_OICR_MAL_DETECT_M |
2995 	       PFINT_OICR_GRST_M |
2996 	       PFINT_OICR_PCI_EXCEPTION_M |
2997 	       PFINT_OICR_VFLR_M |
2998 	       PFINT_OICR_HMC_ERR_M |
2999 	       PFINT_OICR_PE_PUSH_M |
3000 	       PFINT_OICR_PE_CRITERR_M);
3001 
3002 	wr32(hw, PFINT_OICR_ENA, val);
3003 
3004 	/* SW_ITR_IDX = 0, but don't change INTENA */
3005 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3006 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3007 }
3008 
3009 /**
3010  * ice_misc_intr - misc interrupt handler
3011  * @irq: interrupt number
3012  * @data: pointer to a q_vector
3013  */
3014 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3015 {
3016 	struct ice_pf *pf = (struct ice_pf *)data;
3017 	struct ice_hw *hw = &pf->hw;
3018 	irqreturn_t ret = IRQ_NONE;
3019 	struct device *dev;
3020 	u32 oicr, ena_mask;
3021 
3022 	dev = ice_pf_to_dev(pf);
3023 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3024 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3025 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3026 
3027 	oicr = rd32(hw, PFINT_OICR);
3028 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3029 
3030 	if (oicr & PFINT_OICR_SWINT_M) {
3031 		ena_mask &= ~PFINT_OICR_SWINT_M;
3032 		pf->sw_int_count++;
3033 	}
3034 
3035 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3036 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3037 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3038 	}
3039 	if (oicr & PFINT_OICR_VFLR_M) {
3040 		/* disable any further VFLR event notifications */
3041 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3042 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3043 
3044 			reg &= ~PFINT_OICR_VFLR_M;
3045 			wr32(hw, PFINT_OICR_ENA, reg);
3046 		} else {
3047 			ena_mask &= ~PFINT_OICR_VFLR_M;
3048 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3049 		}
3050 	}
3051 
3052 	if (oicr & PFINT_OICR_GRST_M) {
3053 		u32 reset;
3054 
3055 		/* we have a reset warning */
3056 		ena_mask &= ~PFINT_OICR_GRST_M;
3057 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3058 			GLGEN_RSTAT_RESET_TYPE_S;
3059 
3060 		if (reset == ICE_RESET_CORER)
3061 			pf->corer_count++;
3062 		else if (reset == ICE_RESET_GLOBR)
3063 			pf->globr_count++;
3064 		else if (reset == ICE_RESET_EMPR)
3065 			pf->empr_count++;
3066 		else
3067 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3068 
3069 		/* If a reset cycle isn't already in progress, we set a bit in
3070 		 * pf->state so that the service task can start a reset/rebuild.
3071 		 */
3072 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3073 			if (reset == ICE_RESET_CORER)
3074 				set_bit(ICE_CORER_RECV, pf->state);
3075 			else if (reset == ICE_RESET_GLOBR)
3076 				set_bit(ICE_GLOBR_RECV, pf->state);
3077 			else
3078 				set_bit(ICE_EMPR_RECV, pf->state);
3079 
3080 			/* There are couple of different bits at play here.
3081 			 * hw->reset_ongoing indicates whether the hardware is
3082 			 * in reset. This is set to true when a reset interrupt
3083 			 * is received and set back to false after the driver
3084 			 * has determined that the hardware is out of reset.
3085 			 *
3086 			 * ICE_RESET_OICR_RECV in pf->state indicates
3087 			 * that a post reset rebuild is required before the
3088 			 * driver is operational again. This is set above.
3089 			 *
3090 			 * As this is the start of the reset/rebuild cycle, set
3091 			 * both to indicate that.
3092 			 */
3093 			hw->reset_ongoing = true;
3094 		}
3095 	}
3096 
3097 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3098 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3099 		if (!hw->reset_ongoing)
3100 			ret = IRQ_WAKE_THREAD;
3101 	}
3102 
3103 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3104 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3105 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3106 
3107 		/* Save EVENTs from GTSYN register */
3108 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3109 						     GLTSYN_STAT_EVENT1_M |
3110 						     GLTSYN_STAT_EVENT2_M);
3111 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3112 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3113 	}
3114 
3115 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3116 	if (oicr & ICE_AUX_CRIT_ERR) {
3117 		pf->oicr_err_reg |= oicr;
3118 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3119 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3120 	}
3121 
3122 	/* Report any remaining unexpected interrupts */
3123 	oicr &= ena_mask;
3124 	if (oicr) {
3125 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3126 		/* If a critical error is pending there is no choice but to
3127 		 * reset the device.
3128 		 */
3129 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3130 			    PFINT_OICR_ECC_ERR_M)) {
3131 			set_bit(ICE_PFR_REQ, pf->state);
3132 			ice_service_task_schedule(pf);
3133 		}
3134 	}
3135 	if (!ret)
3136 		ret = IRQ_HANDLED;
3137 
3138 	ice_service_task_schedule(pf);
3139 	ice_irq_dynamic_ena(hw, NULL, NULL);
3140 
3141 	return ret;
3142 }
3143 
3144 /**
3145  * ice_misc_intr_thread_fn - misc interrupt thread function
3146  * @irq: interrupt number
3147  * @data: pointer to a q_vector
3148  */
3149 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3150 {
3151 	struct ice_pf *pf = data;
3152 
3153 	if (ice_is_reset_in_progress(pf->state))
3154 		return IRQ_HANDLED;
3155 
3156 	while (!ice_ptp_process_ts(pf))
3157 		usleep_range(50, 100);
3158 
3159 	return IRQ_HANDLED;
3160 }
3161 
3162 /**
3163  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3164  * @hw: pointer to HW structure
3165  */
3166 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3167 {
3168 	/* disable Admin queue Interrupt causes */
3169 	wr32(hw, PFINT_FW_CTL,
3170 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3171 
3172 	/* disable Mailbox queue Interrupt causes */
3173 	wr32(hw, PFINT_MBX_CTL,
3174 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3175 
3176 	wr32(hw, PFINT_SB_CTL,
3177 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3178 
3179 	/* disable Control queue Interrupt causes */
3180 	wr32(hw, PFINT_OICR_CTL,
3181 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3182 
3183 	ice_flush(hw);
3184 }
3185 
3186 /**
3187  * ice_free_irq_msix_misc - Unroll misc vector setup
3188  * @pf: board private structure
3189  */
3190 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3191 {
3192 	struct ice_hw *hw = &pf->hw;
3193 
3194 	ice_dis_ctrlq_interrupts(hw);
3195 
3196 	/* disable OICR interrupt */
3197 	wr32(hw, PFINT_OICR_ENA, 0);
3198 	ice_flush(hw);
3199 
3200 	if (pf->msix_entries) {
3201 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3202 		devm_free_irq(ice_pf_to_dev(pf),
3203 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3204 	}
3205 
3206 	pf->num_avail_sw_msix += 1;
3207 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3208 }
3209 
3210 /**
3211  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3212  * @hw: pointer to HW structure
3213  * @reg_idx: HW vector index to associate the control queue interrupts with
3214  */
3215 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3216 {
3217 	u32 val;
3218 
3219 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3220 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3221 	wr32(hw, PFINT_OICR_CTL, val);
3222 
3223 	/* enable Admin queue Interrupt causes */
3224 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3225 	       PFINT_FW_CTL_CAUSE_ENA_M);
3226 	wr32(hw, PFINT_FW_CTL, val);
3227 
3228 	/* enable Mailbox queue Interrupt causes */
3229 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3230 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3231 	wr32(hw, PFINT_MBX_CTL, val);
3232 
3233 	/* This enables Sideband queue Interrupt causes */
3234 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3235 	       PFINT_SB_CTL_CAUSE_ENA_M);
3236 	wr32(hw, PFINT_SB_CTL, val);
3237 
3238 	ice_flush(hw);
3239 }
3240 
3241 /**
3242  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3243  * @pf: board private structure
3244  *
3245  * This sets up the handler for MSIX 0, which is used to manage the
3246  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3247  * when in MSI or Legacy interrupt mode.
3248  */
3249 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3250 {
3251 	struct device *dev = ice_pf_to_dev(pf);
3252 	struct ice_hw *hw = &pf->hw;
3253 	int oicr_idx, err = 0;
3254 
3255 	if (!pf->int_name[0])
3256 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3257 			 dev_driver_string(dev), dev_name(dev));
3258 
3259 	/* Do not request IRQ but do enable OICR interrupt since settings are
3260 	 * lost during reset. Note that this function is called only during
3261 	 * rebuild path and not while reset is in progress.
3262 	 */
3263 	if (ice_is_reset_in_progress(pf->state))
3264 		goto skip_req_irq;
3265 
3266 	/* reserve one vector in irq_tracker for misc interrupts */
3267 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3268 	if (oicr_idx < 0)
3269 		return oicr_idx;
3270 
3271 	pf->num_avail_sw_msix -= 1;
3272 	pf->oicr_idx = (u16)oicr_idx;
3273 
3274 	err = devm_request_threaded_irq(dev,
3275 					pf->msix_entries[pf->oicr_idx].vector,
3276 					ice_misc_intr, ice_misc_intr_thread_fn,
3277 					0, pf->int_name, pf);
3278 	if (err) {
3279 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3280 			pf->int_name, err);
3281 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3282 		pf->num_avail_sw_msix += 1;
3283 		return err;
3284 	}
3285 
3286 skip_req_irq:
3287 	ice_ena_misc_vector(pf);
3288 
3289 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3290 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3291 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3292 
3293 	ice_flush(hw);
3294 	ice_irq_dynamic_ena(hw, NULL, NULL);
3295 
3296 	return 0;
3297 }
3298 
3299 /**
3300  * ice_napi_add - register NAPI handler for the VSI
3301  * @vsi: VSI for which NAPI handler is to be registered
3302  *
3303  * This function is only called in the driver's load path. Registering the NAPI
3304  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3305  * reset/rebuild, etc.)
3306  */
3307 static void ice_napi_add(struct ice_vsi *vsi)
3308 {
3309 	int v_idx;
3310 
3311 	if (!vsi->netdev)
3312 		return;
3313 
3314 	ice_for_each_q_vector(vsi, v_idx)
3315 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3316 			       ice_napi_poll);
3317 }
3318 
3319 /**
3320  * ice_set_ops - set netdev and ethtools ops for the given netdev
3321  * @netdev: netdev instance
3322  */
3323 static void ice_set_ops(struct net_device *netdev)
3324 {
3325 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3326 
3327 	if (ice_is_safe_mode(pf)) {
3328 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3329 		ice_set_ethtool_safe_mode_ops(netdev);
3330 		return;
3331 	}
3332 
3333 	netdev->netdev_ops = &ice_netdev_ops;
3334 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3335 	ice_set_ethtool_ops(netdev);
3336 }
3337 
3338 /**
3339  * ice_set_netdev_features - set features for the given netdev
3340  * @netdev: netdev instance
3341  */
3342 static void ice_set_netdev_features(struct net_device *netdev)
3343 {
3344 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3345 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3346 	netdev_features_t csumo_features;
3347 	netdev_features_t vlano_features;
3348 	netdev_features_t dflt_features;
3349 	netdev_features_t tso_features;
3350 
3351 	if (ice_is_safe_mode(pf)) {
3352 		/* safe mode */
3353 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3354 		netdev->hw_features = netdev->features;
3355 		return;
3356 	}
3357 
3358 	dflt_features = NETIF_F_SG	|
3359 			NETIF_F_HIGHDMA	|
3360 			NETIF_F_NTUPLE	|
3361 			NETIF_F_RXHASH;
3362 
3363 	csumo_features = NETIF_F_RXCSUM	  |
3364 			 NETIF_F_IP_CSUM  |
3365 			 NETIF_F_SCTP_CRC |
3366 			 NETIF_F_IPV6_CSUM;
3367 
3368 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3369 			 NETIF_F_HW_VLAN_CTAG_TX     |
3370 			 NETIF_F_HW_VLAN_CTAG_RX;
3371 
3372 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3373 	if (is_dvm_ena)
3374 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3375 
3376 	tso_features = NETIF_F_TSO			|
3377 		       NETIF_F_TSO_ECN			|
3378 		       NETIF_F_TSO6			|
3379 		       NETIF_F_GSO_GRE			|
3380 		       NETIF_F_GSO_UDP_TUNNEL		|
3381 		       NETIF_F_GSO_GRE_CSUM		|
3382 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3383 		       NETIF_F_GSO_PARTIAL		|
3384 		       NETIF_F_GSO_IPXIP4		|
3385 		       NETIF_F_GSO_IPXIP6		|
3386 		       NETIF_F_GSO_UDP_L4;
3387 
3388 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3389 					NETIF_F_GSO_GRE_CSUM;
3390 	/* set features that user can change */
3391 	netdev->hw_features = dflt_features | csumo_features |
3392 			      vlano_features | tso_features;
3393 
3394 	/* add support for HW_CSUM on packets with MPLS header */
3395 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3396 				 NETIF_F_TSO     |
3397 				 NETIF_F_TSO6;
3398 
3399 	/* enable features */
3400 	netdev->features |= netdev->hw_features;
3401 
3402 	netdev->hw_features |= NETIF_F_HW_TC;
3403 	netdev->hw_features |= NETIF_F_LOOPBACK;
3404 
3405 	/* encap and VLAN devices inherit default, csumo and tso features */
3406 	netdev->hw_enc_features |= dflt_features | csumo_features |
3407 				   tso_features;
3408 	netdev->vlan_features |= dflt_features | csumo_features |
3409 				 tso_features;
3410 
3411 	/* advertise support but don't enable by default since only one type of
3412 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3413 	 * type turns on the other has to be turned off. This is enforced by the
3414 	 * ice_fix_features() ndo callback.
3415 	 */
3416 	if (is_dvm_ena)
3417 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3418 			NETIF_F_HW_VLAN_STAG_TX;
3419 
3420 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3421 	 * be changed at runtime
3422 	 */
3423 	netdev->hw_features |= NETIF_F_RXFCS;
3424 }
3425 
3426 /**
3427  * ice_cfg_netdev - Allocate, configure and register a netdev
3428  * @vsi: the VSI associated with the new netdev
3429  *
3430  * Returns 0 on success, negative value on failure
3431  */
3432 static int ice_cfg_netdev(struct ice_vsi *vsi)
3433 {
3434 	struct ice_netdev_priv *np;
3435 	struct net_device *netdev;
3436 	u8 mac_addr[ETH_ALEN];
3437 
3438 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3439 				    vsi->alloc_rxq);
3440 	if (!netdev)
3441 		return -ENOMEM;
3442 
3443 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3444 	vsi->netdev = netdev;
3445 	np = netdev_priv(netdev);
3446 	np->vsi = vsi;
3447 
3448 	ice_set_netdev_features(netdev);
3449 
3450 	ice_set_ops(netdev);
3451 
3452 	if (vsi->type == ICE_VSI_PF) {
3453 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3454 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3455 		eth_hw_addr_set(netdev, mac_addr);
3456 		ether_addr_copy(netdev->perm_addr, mac_addr);
3457 	}
3458 
3459 	netdev->priv_flags |= IFF_UNICAST_FLT;
3460 
3461 	/* Setup netdev TC information */
3462 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3463 
3464 	/* setup watchdog timeout value to be 5 second */
3465 	netdev->watchdog_timeo = 5 * HZ;
3466 
3467 	netdev->min_mtu = ETH_MIN_MTU;
3468 	netdev->max_mtu = ICE_MAX_MTU;
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3475  * @lut: Lookup table
3476  * @rss_table_size: Lookup table size
3477  * @rss_size: Range of queue number for hashing
3478  */
3479 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3480 {
3481 	u16 i;
3482 
3483 	for (i = 0; i < rss_table_size; i++)
3484 		lut[i] = i % rss_size;
3485 }
3486 
3487 /**
3488  * ice_pf_vsi_setup - Set up a PF VSI
3489  * @pf: board private structure
3490  * @pi: pointer to the port_info instance
3491  *
3492  * Returns pointer to the successfully allocated VSI software struct
3493  * on success, otherwise returns NULL on failure.
3494  */
3495 static struct ice_vsi *
3496 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3497 {
3498 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3499 }
3500 
3501 static struct ice_vsi *
3502 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3503 		   struct ice_channel *ch)
3504 {
3505 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3506 }
3507 
3508 /**
3509  * ice_ctrl_vsi_setup - Set up a control VSI
3510  * @pf: board private structure
3511  * @pi: pointer to the port_info instance
3512  *
3513  * Returns pointer to the successfully allocated VSI software struct
3514  * on success, otherwise returns NULL on failure.
3515  */
3516 static struct ice_vsi *
3517 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3518 {
3519 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3520 }
3521 
3522 /**
3523  * ice_lb_vsi_setup - Set up a loopback VSI
3524  * @pf: board private structure
3525  * @pi: pointer to the port_info instance
3526  *
3527  * Returns pointer to the successfully allocated VSI software struct
3528  * on success, otherwise returns NULL on failure.
3529  */
3530 struct ice_vsi *
3531 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3532 {
3533 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3534 }
3535 
3536 /**
3537  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3538  * @netdev: network interface to be adjusted
3539  * @proto: VLAN TPID
3540  * @vid: VLAN ID to be added
3541  *
3542  * net_device_ops implementation for adding VLAN IDs
3543  */
3544 static int
3545 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3546 {
3547 	struct ice_netdev_priv *np = netdev_priv(netdev);
3548 	struct ice_vsi_vlan_ops *vlan_ops;
3549 	struct ice_vsi *vsi = np->vsi;
3550 	struct ice_vlan vlan;
3551 	int ret;
3552 
3553 	/* VLAN 0 is added by default during load/reset */
3554 	if (!vid)
3555 		return 0;
3556 
3557 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3558 		usleep_range(1000, 2000);
3559 
3560 	/* Add multicast promisc rule for the VLAN ID to be added if
3561 	 * all-multicast is currently enabled.
3562 	 */
3563 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3564 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3565 					       ICE_MCAST_VLAN_PROMISC_BITS,
3566 					       vid);
3567 		if (ret)
3568 			goto finish;
3569 	}
3570 
3571 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3572 
3573 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3574 	 * packets aren't pruned by the device's internal switch on Rx
3575 	 */
3576 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3577 	ret = vlan_ops->add_vlan(vsi, &vlan);
3578 	if (ret)
3579 		goto finish;
3580 
3581 	/* If all-multicast is currently enabled and this VLAN ID is only one
3582 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3583 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3584 	 */
3585 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3586 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3587 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3588 					   ICE_MCAST_PROMISC_BITS, 0);
3589 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3590 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3591 	}
3592 
3593 finish:
3594 	clear_bit(ICE_CFG_BUSY, vsi->state);
3595 
3596 	return ret;
3597 }
3598 
3599 /**
3600  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3601  * @netdev: network interface to be adjusted
3602  * @proto: VLAN TPID
3603  * @vid: VLAN ID to be removed
3604  *
3605  * net_device_ops implementation for removing VLAN IDs
3606  */
3607 static int
3608 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3609 {
3610 	struct ice_netdev_priv *np = netdev_priv(netdev);
3611 	struct ice_vsi_vlan_ops *vlan_ops;
3612 	struct ice_vsi *vsi = np->vsi;
3613 	struct ice_vlan vlan;
3614 	int ret;
3615 
3616 	/* don't allow removal of VLAN 0 */
3617 	if (!vid)
3618 		return 0;
3619 
3620 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3621 		usleep_range(1000, 2000);
3622 
3623 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3624 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3625 	if (ret) {
3626 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3627 			   vsi->vsi_num);
3628 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3629 	}
3630 
3631 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3632 
3633 	/* Make sure VLAN delete is successful before updating VLAN
3634 	 * information
3635 	 */
3636 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3637 	ret = vlan_ops->del_vlan(vsi, &vlan);
3638 	if (ret)
3639 		goto finish;
3640 
3641 	/* Remove multicast promisc rule for the removed VLAN ID if
3642 	 * all-multicast is enabled.
3643 	 */
3644 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3645 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3646 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3647 
3648 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3649 		/* Update look-up type of multicast promisc rule for VLAN 0
3650 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3651 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3652 		 */
3653 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3654 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3655 						   ICE_MCAST_VLAN_PROMISC_BITS,
3656 						   0);
3657 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3658 						 ICE_MCAST_PROMISC_BITS, 0);
3659 		}
3660 	}
3661 
3662 finish:
3663 	clear_bit(ICE_CFG_BUSY, vsi->state);
3664 
3665 	return ret;
3666 }
3667 
3668 /**
3669  * ice_rep_indr_tc_block_unbind
3670  * @cb_priv: indirection block private data
3671  */
3672 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3673 {
3674 	struct ice_indr_block_priv *indr_priv = cb_priv;
3675 
3676 	list_del(&indr_priv->list);
3677 	kfree(indr_priv);
3678 }
3679 
3680 /**
3681  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3682  * @vsi: VSI struct which has the netdev
3683  */
3684 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3685 {
3686 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3687 
3688 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3689 				 ice_rep_indr_tc_block_unbind);
3690 }
3691 
3692 /**
3693  * ice_tc_indir_block_remove - clean indirect TC block notifications
3694  * @pf: PF structure
3695  */
3696 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3697 {
3698 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3699 
3700 	if (!pf_vsi)
3701 		return;
3702 
3703 	ice_tc_indir_block_unregister(pf_vsi);
3704 }
3705 
3706 /**
3707  * ice_tc_indir_block_register - Register TC indirect block notifications
3708  * @vsi: VSI struct which has the netdev
3709  *
3710  * Returns 0 on success, negative value on failure
3711  */
3712 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3713 {
3714 	struct ice_netdev_priv *np;
3715 
3716 	if (!vsi || !vsi->netdev)
3717 		return -EINVAL;
3718 
3719 	np = netdev_priv(vsi->netdev);
3720 
3721 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3722 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3723 }
3724 
3725 /**
3726  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3727  * @pf: board private structure
3728  *
3729  * Returns 0 on success, negative value on failure
3730  */
3731 static int ice_setup_pf_sw(struct ice_pf *pf)
3732 {
3733 	struct device *dev = ice_pf_to_dev(pf);
3734 	bool dvm = ice_is_dvm_ena(&pf->hw);
3735 	struct ice_vsi *vsi;
3736 	int status;
3737 
3738 	if (ice_is_reset_in_progress(pf->state))
3739 		return -EBUSY;
3740 
3741 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3742 	if (status)
3743 		return -EIO;
3744 
3745 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3746 	if (!vsi)
3747 		return -ENOMEM;
3748 
3749 	/* init channel list */
3750 	INIT_LIST_HEAD(&vsi->ch_list);
3751 
3752 	status = ice_cfg_netdev(vsi);
3753 	if (status)
3754 		goto unroll_vsi_setup;
3755 	/* netdev has to be configured before setting frame size */
3756 	ice_vsi_cfg_frame_size(vsi);
3757 
3758 	/* init indirect block notifications */
3759 	status = ice_tc_indir_block_register(vsi);
3760 	if (status) {
3761 		dev_err(dev, "Failed to register netdev notifier\n");
3762 		goto unroll_cfg_netdev;
3763 	}
3764 
3765 	/* Setup DCB netlink interface */
3766 	ice_dcbnl_setup(vsi);
3767 
3768 	/* registering the NAPI handler requires both the queues and
3769 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3770 	 * and ice_cfg_netdev() respectively
3771 	 */
3772 	ice_napi_add(vsi);
3773 
3774 	status = ice_init_mac_fltr(pf);
3775 	if (status)
3776 		goto unroll_napi_add;
3777 
3778 	return 0;
3779 
3780 unroll_napi_add:
3781 	ice_tc_indir_block_unregister(vsi);
3782 unroll_cfg_netdev:
3783 	if (vsi) {
3784 		ice_napi_del(vsi);
3785 		if (vsi->netdev) {
3786 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3787 			free_netdev(vsi->netdev);
3788 			vsi->netdev = NULL;
3789 		}
3790 	}
3791 
3792 unroll_vsi_setup:
3793 	ice_vsi_release(vsi);
3794 	return status;
3795 }
3796 
3797 /**
3798  * ice_get_avail_q_count - Get count of queues in use
3799  * @pf_qmap: bitmap to get queue use count from
3800  * @lock: pointer to a mutex that protects access to pf_qmap
3801  * @size: size of the bitmap
3802  */
3803 static u16
3804 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3805 {
3806 	unsigned long bit;
3807 	u16 count = 0;
3808 
3809 	mutex_lock(lock);
3810 	for_each_clear_bit(bit, pf_qmap, size)
3811 		count++;
3812 	mutex_unlock(lock);
3813 
3814 	return count;
3815 }
3816 
3817 /**
3818  * ice_get_avail_txq_count - Get count of Tx queues in use
3819  * @pf: pointer to an ice_pf instance
3820  */
3821 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3822 {
3823 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3824 				     pf->max_pf_txqs);
3825 }
3826 
3827 /**
3828  * ice_get_avail_rxq_count - Get count of Rx queues in use
3829  * @pf: pointer to an ice_pf instance
3830  */
3831 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3832 {
3833 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3834 				     pf->max_pf_rxqs);
3835 }
3836 
3837 /**
3838  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3839  * @pf: board private structure to initialize
3840  */
3841 static void ice_deinit_pf(struct ice_pf *pf)
3842 {
3843 	ice_service_task_stop(pf);
3844 	mutex_destroy(&pf->adev_mutex);
3845 	mutex_destroy(&pf->sw_mutex);
3846 	mutex_destroy(&pf->tc_mutex);
3847 	mutex_destroy(&pf->avail_q_mutex);
3848 	mutex_destroy(&pf->vfs.table_lock);
3849 
3850 	if (pf->avail_txqs) {
3851 		bitmap_free(pf->avail_txqs);
3852 		pf->avail_txqs = NULL;
3853 	}
3854 
3855 	if (pf->avail_rxqs) {
3856 		bitmap_free(pf->avail_rxqs);
3857 		pf->avail_rxqs = NULL;
3858 	}
3859 
3860 	if (pf->ptp.clock)
3861 		ptp_clock_unregister(pf->ptp.clock);
3862 }
3863 
3864 /**
3865  * ice_set_pf_caps - set PFs capability flags
3866  * @pf: pointer to the PF instance
3867  */
3868 static void ice_set_pf_caps(struct ice_pf *pf)
3869 {
3870 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3871 
3872 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3873 	if (func_caps->common_cap.rdma)
3874 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3875 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3876 	if (func_caps->common_cap.dcb)
3877 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3878 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3879 	if (func_caps->common_cap.sr_iov_1_1) {
3880 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3881 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3882 					      ICE_MAX_SRIOV_VFS);
3883 	}
3884 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3885 	if (func_caps->common_cap.rss_table_size)
3886 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3887 
3888 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3889 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3890 		u16 unused;
3891 
3892 		/* ctrl_vsi_idx will be set to a valid value when flow director
3893 		 * is setup by ice_init_fdir
3894 		 */
3895 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3896 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3897 		/* force guaranteed filter pool for PF */
3898 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3899 				       func_caps->fd_fltr_guar);
3900 		/* force shared filter pool for PF */
3901 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3902 				       func_caps->fd_fltr_best_effort);
3903 	}
3904 
3905 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3906 	if (func_caps->common_cap.ieee_1588)
3907 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3908 
3909 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3910 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3911 }
3912 
3913 /**
3914  * ice_init_pf - Initialize general software structures (struct ice_pf)
3915  * @pf: board private structure to initialize
3916  */
3917 static int ice_init_pf(struct ice_pf *pf)
3918 {
3919 	ice_set_pf_caps(pf);
3920 
3921 	mutex_init(&pf->sw_mutex);
3922 	mutex_init(&pf->tc_mutex);
3923 	mutex_init(&pf->adev_mutex);
3924 
3925 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3926 	spin_lock_init(&pf->aq_wait_lock);
3927 	init_waitqueue_head(&pf->aq_wait_queue);
3928 
3929 	init_waitqueue_head(&pf->reset_wait_queue);
3930 
3931 	/* setup service timer and periodic service task */
3932 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3933 	pf->serv_tmr_period = HZ;
3934 	INIT_WORK(&pf->serv_task, ice_service_task);
3935 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3936 
3937 	mutex_init(&pf->avail_q_mutex);
3938 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3939 	if (!pf->avail_txqs)
3940 		return -ENOMEM;
3941 
3942 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3943 	if (!pf->avail_rxqs) {
3944 		bitmap_free(pf->avail_txqs);
3945 		pf->avail_txqs = NULL;
3946 		return -ENOMEM;
3947 	}
3948 
3949 	mutex_init(&pf->vfs.table_lock);
3950 	hash_init(pf->vfs.table);
3951 
3952 	return 0;
3953 }
3954 
3955 /**
3956  * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3957  * @pf: board private structure
3958  * @v_remain: number of remaining MSI-X vectors to be distributed
3959  *
3960  * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3961  * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3962  * remaining vectors.
3963  */
3964 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3965 {
3966 	int v_rdma;
3967 
3968 	if (!ice_is_rdma_ena(pf)) {
3969 		pf->num_lan_msix = v_remain;
3970 		return;
3971 	}
3972 
3973 	/* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
3974 	v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3975 
3976 	if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
3977 		dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
3978 		clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3979 
3980 		pf->num_rdma_msix = 0;
3981 		pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3982 	} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3983 		   (v_remain - v_rdma < v_rdma)) {
3984 		/* Support minimum RDMA and give remaining vectors to LAN MSIX */
3985 		pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
3986 		pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
3987 	} else {
3988 		/* Split remaining MSIX with RDMA after accounting for AEQ MSIX
3989 		 */
3990 		pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3991 				    ICE_RDMA_NUM_AEQ_MSIX;
3992 		pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3993 	}
3994 }
3995 
3996 /**
3997  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3998  * @pf: board private structure
3999  *
4000  * Compute the number of MSIX vectors wanted and request from the OS. Adjust
4001  * device usage if there are not enough vectors. Return the number of vectors
4002  * reserved or negative on failure.
4003  */
4004 static int ice_ena_msix_range(struct ice_pf *pf)
4005 {
4006 	int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4007 	struct device *dev = ice_pf_to_dev(pf);
4008 	int err, i;
4009 
4010 	hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4011 	num_cpus = num_online_cpus();
4012 
4013 	/* LAN miscellaneous handler */
4014 	v_other = ICE_MIN_LAN_OICR_MSIX;
4015 
4016 	/* Flow Director */
4017 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4018 		v_other += ICE_FDIR_MSIX;
4019 
4020 	/* switchdev */
4021 	v_other += ICE_ESWITCH_MSIX;
4022 
4023 	v_wanted = v_other;
4024 
4025 	/* LAN traffic */
4026 	pf->num_lan_msix = num_cpus;
4027 	v_wanted += pf->num_lan_msix;
4028 
4029 	/* RDMA auxiliary driver */
4030 	if (ice_is_rdma_ena(pf)) {
4031 		pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4032 		v_wanted += pf->num_rdma_msix;
4033 	}
4034 
4035 	if (v_wanted > hw_num_msix) {
4036 		int v_remain;
4037 
4038 		dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4039 			 v_wanted, hw_num_msix);
4040 
4041 		if (hw_num_msix < ICE_MIN_MSIX) {
4042 			err = -ERANGE;
4043 			goto exit_err;
4044 		}
4045 
4046 		v_remain = hw_num_msix - v_other;
4047 		if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4048 			v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4049 			v_remain = ICE_MIN_LAN_TXRX_MSIX;
4050 		}
4051 
4052 		ice_reduce_msix_usage(pf, v_remain);
4053 		v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4054 
4055 		dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4056 			   pf->num_lan_msix);
4057 		if (ice_is_rdma_ena(pf))
4058 			dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4059 				   pf->num_rdma_msix);
4060 	}
4061 
4062 	pf->msix_entries = devm_kcalloc(dev, v_wanted,
4063 					sizeof(*pf->msix_entries), GFP_KERNEL);
4064 	if (!pf->msix_entries) {
4065 		err = -ENOMEM;
4066 		goto exit_err;
4067 	}
4068 
4069 	for (i = 0; i < v_wanted; i++)
4070 		pf->msix_entries[i].entry = i;
4071 
4072 	/* actually reserve the vectors */
4073 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4074 					 ICE_MIN_MSIX, v_wanted);
4075 	if (v_actual < 0) {
4076 		dev_err(dev, "unable to reserve MSI-X vectors\n");
4077 		err = v_actual;
4078 		goto msix_err;
4079 	}
4080 
4081 	if (v_actual < v_wanted) {
4082 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4083 			 v_wanted, v_actual);
4084 
4085 		if (v_actual < ICE_MIN_MSIX) {
4086 			/* error if we can't get minimum vectors */
4087 			pci_disable_msix(pf->pdev);
4088 			err = -ERANGE;
4089 			goto msix_err;
4090 		} else {
4091 			int v_remain = v_actual - v_other;
4092 
4093 			if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4094 				v_remain = ICE_MIN_LAN_TXRX_MSIX;
4095 
4096 			ice_reduce_msix_usage(pf, v_remain);
4097 
4098 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4099 				   pf->num_lan_msix);
4100 
4101 			if (ice_is_rdma_ena(pf))
4102 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4103 					   pf->num_rdma_msix);
4104 		}
4105 	}
4106 
4107 	return v_actual;
4108 
4109 msix_err:
4110 	devm_kfree(dev, pf->msix_entries);
4111 
4112 exit_err:
4113 	pf->num_rdma_msix = 0;
4114 	pf->num_lan_msix = 0;
4115 	return err;
4116 }
4117 
4118 /**
4119  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4120  * @pf: board private structure
4121  */
4122 static void ice_dis_msix(struct ice_pf *pf)
4123 {
4124 	pci_disable_msix(pf->pdev);
4125 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4126 	pf->msix_entries = NULL;
4127 }
4128 
4129 /**
4130  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4131  * @pf: board private structure
4132  */
4133 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4134 {
4135 	ice_dis_msix(pf);
4136 
4137 	if (pf->irq_tracker) {
4138 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4139 		pf->irq_tracker = NULL;
4140 	}
4141 }
4142 
4143 /**
4144  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4145  * @pf: board private structure to initialize
4146  */
4147 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4148 {
4149 	int vectors;
4150 
4151 	vectors = ice_ena_msix_range(pf);
4152 
4153 	if (vectors < 0)
4154 		return vectors;
4155 
4156 	/* set up vector assignment tracking */
4157 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4158 				       struct_size(pf->irq_tracker, list, vectors),
4159 				       GFP_KERNEL);
4160 	if (!pf->irq_tracker) {
4161 		ice_dis_msix(pf);
4162 		return -ENOMEM;
4163 	}
4164 
4165 	/* populate SW interrupts pool with number of OS granted IRQs. */
4166 	pf->num_avail_sw_msix = (u16)vectors;
4167 	pf->irq_tracker->num_entries = (u16)vectors;
4168 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4169 
4170 	return 0;
4171 }
4172 
4173 /**
4174  * ice_is_wol_supported - check if WoL is supported
4175  * @hw: pointer to hardware info
4176  *
4177  * Check if WoL is supported based on the HW configuration.
4178  * Returns true if NVM supports and enables WoL for this port, false otherwise
4179  */
4180 bool ice_is_wol_supported(struct ice_hw *hw)
4181 {
4182 	u16 wol_ctrl;
4183 
4184 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4185 	 * word) indicates WoL is not supported on the corresponding PF ID.
4186 	 */
4187 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4188 		return false;
4189 
4190 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4191 }
4192 
4193 /**
4194  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4195  * @vsi: VSI being changed
4196  * @new_rx: new number of Rx queues
4197  * @new_tx: new number of Tx queues
4198  * @locked: is adev device_lock held
4199  *
4200  * Only change the number of queues if new_tx, or new_rx is non-0.
4201  *
4202  * Returns 0 on success.
4203  */
4204 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4205 {
4206 	struct ice_pf *pf = vsi->back;
4207 	int err = 0, timeout = 50;
4208 
4209 	if (!new_rx && !new_tx)
4210 		return -EINVAL;
4211 
4212 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4213 		timeout--;
4214 		if (!timeout)
4215 			return -EBUSY;
4216 		usleep_range(1000, 2000);
4217 	}
4218 
4219 	if (new_tx)
4220 		vsi->req_txq = (u16)new_tx;
4221 	if (new_rx)
4222 		vsi->req_rxq = (u16)new_rx;
4223 
4224 	/* set for the next time the netdev is started */
4225 	if (!netif_running(vsi->netdev)) {
4226 		ice_vsi_rebuild(vsi, false);
4227 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4228 		goto done;
4229 	}
4230 
4231 	ice_vsi_close(vsi);
4232 	ice_vsi_rebuild(vsi, false);
4233 	ice_pf_dcb_recfg(pf, locked);
4234 	ice_vsi_open(vsi);
4235 done:
4236 	clear_bit(ICE_CFG_BUSY, pf->state);
4237 	return err;
4238 }
4239 
4240 /**
4241  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4242  * @pf: PF to configure
4243  *
4244  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4245  * VSI can still Tx/Rx VLAN tagged packets.
4246  */
4247 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4248 {
4249 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4250 	struct ice_vsi_ctx *ctxt;
4251 	struct ice_hw *hw;
4252 	int status;
4253 
4254 	if (!vsi)
4255 		return;
4256 
4257 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4258 	if (!ctxt)
4259 		return;
4260 
4261 	hw = &pf->hw;
4262 	ctxt->info = vsi->info;
4263 
4264 	ctxt->info.valid_sections =
4265 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4266 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4267 			    ICE_AQ_VSI_PROP_SW_VALID);
4268 
4269 	/* disable VLAN anti-spoof */
4270 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4271 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4272 
4273 	/* disable VLAN pruning and keep all other settings */
4274 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4275 
4276 	/* allow all VLANs on Tx and don't strip on Rx */
4277 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4278 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4279 
4280 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4281 	if (status) {
4282 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4283 			status, ice_aq_str(hw->adminq.sq_last_status));
4284 	} else {
4285 		vsi->info.sec_flags = ctxt->info.sec_flags;
4286 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4287 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4288 	}
4289 
4290 	kfree(ctxt);
4291 }
4292 
4293 /**
4294  * ice_log_pkg_init - log result of DDP package load
4295  * @hw: pointer to hardware info
4296  * @state: state of package load
4297  */
4298 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4299 {
4300 	struct ice_pf *pf = hw->back;
4301 	struct device *dev;
4302 
4303 	dev = ice_pf_to_dev(pf);
4304 
4305 	switch (state) {
4306 	case ICE_DDP_PKG_SUCCESS:
4307 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4308 			 hw->active_pkg_name,
4309 			 hw->active_pkg_ver.major,
4310 			 hw->active_pkg_ver.minor,
4311 			 hw->active_pkg_ver.update,
4312 			 hw->active_pkg_ver.draft);
4313 		break;
4314 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4315 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4316 			 hw->active_pkg_name,
4317 			 hw->active_pkg_ver.major,
4318 			 hw->active_pkg_ver.minor,
4319 			 hw->active_pkg_ver.update,
4320 			 hw->active_pkg_ver.draft);
4321 		break;
4322 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4323 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4324 			hw->active_pkg_name,
4325 			hw->active_pkg_ver.major,
4326 			hw->active_pkg_ver.minor,
4327 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4328 		break;
4329 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4330 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4331 			 hw->active_pkg_name,
4332 			 hw->active_pkg_ver.major,
4333 			 hw->active_pkg_ver.minor,
4334 			 hw->active_pkg_ver.update,
4335 			 hw->active_pkg_ver.draft,
4336 			 hw->pkg_name,
4337 			 hw->pkg_ver.major,
4338 			 hw->pkg_ver.minor,
4339 			 hw->pkg_ver.update,
4340 			 hw->pkg_ver.draft);
4341 		break;
4342 	case ICE_DDP_PKG_FW_MISMATCH:
4343 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4344 		break;
4345 	case ICE_DDP_PKG_INVALID_FILE:
4346 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4347 		break;
4348 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4349 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4350 		break;
4351 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4352 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4353 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4354 		break;
4355 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4356 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4357 		break;
4358 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4359 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4360 		break;
4361 	case ICE_DDP_PKG_LOAD_ERROR:
4362 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4363 		/* poll for reset to complete */
4364 		if (ice_check_reset(hw))
4365 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4366 		break;
4367 	case ICE_DDP_PKG_ERR:
4368 	default:
4369 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4370 		break;
4371 	}
4372 }
4373 
4374 /**
4375  * ice_load_pkg - load/reload the DDP Package file
4376  * @firmware: firmware structure when firmware requested or NULL for reload
4377  * @pf: pointer to the PF instance
4378  *
4379  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4380  * initialize HW tables.
4381  */
4382 static void
4383 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4384 {
4385 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4386 	struct device *dev = ice_pf_to_dev(pf);
4387 	struct ice_hw *hw = &pf->hw;
4388 
4389 	/* Load DDP Package */
4390 	if (firmware && !hw->pkg_copy) {
4391 		state = ice_copy_and_init_pkg(hw, firmware->data,
4392 					      firmware->size);
4393 		ice_log_pkg_init(hw, state);
4394 	} else if (!firmware && hw->pkg_copy) {
4395 		/* Reload package during rebuild after CORER/GLOBR reset */
4396 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4397 		ice_log_pkg_init(hw, state);
4398 	} else {
4399 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4400 	}
4401 
4402 	if (!ice_is_init_pkg_successful(state)) {
4403 		/* Safe Mode */
4404 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4405 		return;
4406 	}
4407 
4408 	/* Successful download package is the precondition for advanced
4409 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4410 	 */
4411 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4412 }
4413 
4414 /**
4415  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4416  * @pf: pointer to the PF structure
4417  *
4418  * There is no error returned here because the driver should be able to handle
4419  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4420  * specifically with Tx.
4421  */
4422 static void ice_verify_cacheline_size(struct ice_pf *pf)
4423 {
4424 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4425 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4426 			 ICE_CACHE_LINE_BYTES);
4427 }
4428 
4429 /**
4430  * ice_send_version - update firmware with driver version
4431  * @pf: PF struct
4432  *
4433  * Returns 0 on success, else error code
4434  */
4435 static int ice_send_version(struct ice_pf *pf)
4436 {
4437 	struct ice_driver_ver dv;
4438 
4439 	dv.major_ver = 0xff;
4440 	dv.minor_ver = 0xff;
4441 	dv.build_ver = 0xff;
4442 	dv.subbuild_ver = 0;
4443 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4444 		sizeof(dv.driver_string));
4445 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4446 }
4447 
4448 /**
4449  * ice_init_fdir - Initialize flow director VSI and configuration
4450  * @pf: pointer to the PF instance
4451  *
4452  * returns 0 on success, negative on error
4453  */
4454 static int ice_init_fdir(struct ice_pf *pf)
4455 {
4456 	struct device *dev = ice_pf_to_dev(pf);
4457 	struct ice_vsi *ctrl_vsi;
4458 	int err;
4459 
4460 	/* Side Band Flow Director needs to have a control VSI.
4461 	 * Allocate it and store it in the PF.
4462 	 */
4463 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4464 	if (!ctrl_vsi) {
4465 		dev_dbg(dev, "could not create control VSI\n");
4466 		return -ENOMEM;
4467 	}
4468 
4469 	err = ice_vsi_open_ctrl(ctrl_vsi);
4470 	if (err) {
4471 		dev_dbg(dev, "could not open control VSI\n");
4472 		goto err_vsi_open;
4473 	}
4474 
4475 	mutex_init(&pf->hw.fdir_fltr_lock);
4476 
4477 	err = ice_fdir_create_dflt_rules(pf);
4478 	if (err)
4479 		goto err_fdir_rule;
4480 
4481 	return 0;
4482 
4483 err_fdir_rule:
4484 	ice_fdir_release_flows(&pf->hw);
4485 	ice_vsi_close(ctrl_vsi);
4486 err_vsi_open:
4487 	ice_vsi_release(ctrl_vsi);
4488 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4489 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4490 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4491 	}
4492 	return err;
4493 }
4494 
4495 /**
4496  * ice_get_opt_fw_name - return optional firmware file name or NULL
4497  * @pf: pointer to the PF instance
4498  */
4499 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4500 {
4501 	/* Optional firmware name same as default with additional dash
4502 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4503 	 */
4504 	struct pci_dev *pdev = pf->pdev;
4505 	char *opt_fw_filename;
4506 	u64 dsn;
4507 
4508 	/* Determine the name of the optional file using the DSN (two
4509 	 * dwords following the start of the DSN Capability).
4510 	 */
4511 	dsn = pci_get_dsn(pdev);
4512 	if (!dsn)
4513 		return NULL;
4514 
4515 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4516 	if (!opt_fw_filename)
4517 		return NULL;
4518 
4519 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4520 		 ICE_DDP_PKG_PATH, dsn);
4521 
4522 	return opt_fw_filename;
4523 }
4524 
4525 /**
4526  * ice_request_fw - Device initialization routine
4527  * @pf: pointer to the PF instance
4528  */
4529 static void ice_request_fw(struct ice_pf *pf)
4530 {
4531 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4532 	const struct firmware *firmware = NULL;
4533 	struct device *dev = ice_pf_to_dev(pf);
4534 	int err = 0;
4535 
4536 	/* optional device-specific DDP (if present) overrides the default DDP
4537 	 * package file. kernel logs a debug message if the file doesn't exist,
4538 	 * and warning messages for other errors.
4539 	 */
4540 	if (opt_fw_filename) {
4541 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4542 		if (err) {
4543 			kfree(opt_fw_filename);
4544 			goto dflt_pkg_load;
4545 		}
4546 
4547 		/* request for firmware was successful. Download to device */
4548 		ice_load_pkg(firmware, pf);
4549 		kfree(opt_fw_filename);
4550 		release_firmware(firmware);
4551 		return;
4552 	}
4553 
4554 dflt_pkg_load:
4555 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4556 	if (err) {
4557 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4558 		return;
4559 	}
4560 
4561 	/* request for firmware was successful. Download to device */
4562 	ice_load_pkg(firmware, pf);
4563 	release_firmware(firmware);
4564 }
4565 
4566 /**
4567  * ice_print_wake_reason - show the wake up cause in the log
4568  * @pf: pointer to the PF struct
4569  */
4570 static void ice_print_wake_reason(struct ice_pf *pf)
4571 {
4572 	u32 wus = pf->wakeup_reason;
4573 	const char *wake_str;
4574 
4575 	/* if no wake event, nothing to print */
4576 	if (!wus)
4577 		return;
4578 
4579 	if (wus & PFPM_WUS_LNKC_M)
4580 		wake_str = "Link\n";
4581 	else if (wus & PFPM_WUS_MAG_M)
4582 		wake_str = "Magic Packet\n";
4583 	else if (wus & PFPM_WUS_MNG_M)
4584 		wake_str = "Management\n";
4585 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4586 		wake_str = "Firmware Reset\n";
4587 	else
4588 		wake_str = "Unknown\n";
4589 
4590 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4591 }
4592 
4593 /**
4594  * ice_register_netdev - register netdev
4595  * @pf: pointer to the PF struct
4596  */
4597 static int ice_register_netdev(struct ice_pf *pf)
4598 {
4599 	struct ice_vsi *vsi;
4600 	int err = 0;
4601 
4602 	vsi = ice_get_main_vsi(pf);
4603 	if (!vsi || !vsi->netdev)
4604 		return -EIO;
4605 
4606 	err = register_netdev(vsi->netdev);
4607 	if (err)
4608 		goto err_register_netdev;
4609 
4610 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4611 	netif_carrier_off(vsi->netdev);
4612 	netif_tx_stop_all_queues(vsi->netdev);
4613 
4614 	return 0;
4615 err_register_netdev:
4616 	free_netdev(vsi->netdev);
4617 	vsi->netdev = NULL;
4618 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4619 	return err;
4620 }
4621 
4622 /**
4623  * ice_probe - Device initialization routine
4624  * @pdev: PCI device information struct
4625  * @ent: entry in ice_pci_tbl
4626  *
4627  * Returns 0 on success, negative on failure
4628  */
4629 static int
4630 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4631 {
4632 	struct device *dev = &pdev->dev;
4633 	struct ice_vsi *vsi;
4634 	struct ice_pf *pf;
4635 	struct ice_hw *hw;
4636 	int i, err;
4637 
4638 	if (pdev->is_virtfn) {
4639 		dev_err(dev, "can't probe a virtual function\n");
4640 		return -EINVAL;
4641 	}
4642 
4643 	/* this driver uses devres, see
4644 	 * Documentation/driver-api/driver-model/devres.rst
4645 	 */
4646 	err = pcim_enable_device(pdev);
4647 	if (err)
4648 		return err;
4649 
4650 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4651 	if (err) {
4652 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4653 		return err;
4654 	}
4655 
4656 	pf = ice_allocate_pf(dev);
4657 	if (!pf)
4658 		return -ENOMEM;
4659 
4660 	/* initialize Auxiliary index to invalid value */
4661 	pf->aux_idx = -1;
4662 
4663 	/* set up for high or low DMA */
4664 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4665 	if (err) {
4666 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4667 		return err;
4668 	}
4669 
4670 	pci_enable_pcie_error_reporting(pdev);
4671 	pci_set_master(pdev);
4672 
4673 	pf->pdev = pdev;
4674 	pci_set_drvdata(pdev, pf);
4675 	set_bit(ICE_DOWN, pf->state);
4676 	/* Disable service task until DOWN bit is cleared */
4677 	set_bit(ICE_SERVICE_DIS, pf->state);
4678 
4679 	hw = &pf->hw;
4680 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4681 	pci_save_state(pdev);
4682 
4683 	hw->back = pf;
4684 	hw->vendor_id = pdev->vendor;
4685 	hw->device_id = pdev->device;
4686 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4687 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4688 	hw->subsystem_device_id = pdev->subsystem_device;
4689 	hw->bus.device = PCI_SLOT(pdev->devfn);
4690 	hw->bus.func = PCI_FUNC(pdev->devfn);
4691 	ice_set_ctrlq_len(hw);
4692 
4693 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4694 
4695 #ifndef CONFIG_DYNAMIC_DEBUG
4696 	if (debug < -1)
4697 		hw->debug_mask = debug;
4698 #endif
4699 
4700 	err = ice_init_hw(hw);
4701 	if (err) {
4702 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4703 		err = -EIO;
4704 		goto err_exit_unroll;
4705 	}
4706 
4707 	ice_init_feature_support(pf);
4708 
4709 	ice_request_fw(pf);
4710 
4711 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4712 	 * set in pf->state, which will cause ice_is_safe_mode to return
4713 	 * true
4714 	 */
4715 	if (ice_is_safe_mode(pf)) {
4716 		/* we already got function/device capabilities but these don't
4717 		 * reflect what the driver needs to do in safe mode. Instead of
4718 		 * adding conditional logic everywhere to ignore these
4719 		 * device/function capabilities, override them.
4720 		 */
4721 		ice_set_safe_mode_caps(hw);
4722 	}
4723 
4724 	err = ice_init_pf(pf);
4725 	if (err) {
4726 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4727 		goto err_init_pf_unroll;
4728 	}
4729 
4730 	ice_devlink_init_regions(pf);
4731 
4732 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4733 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4734 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4735 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4736 	i = 0;
4737 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4738 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4739 			pf->hw.tnl.valid_count[TNL_VXLAN];
4740 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4741 			UDP_TUNNEL_TYPE_VXLAN;
4742 		i++;
4743 	}
4744 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4745 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4746 			pf->hw.tnl.valid_count[TNL_GENEVE];
4747 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4748 			UDP_TUNNEL_TYPE_GENEVE;
4749 		i++;
4750 	}
4751 
4752 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4753 	if (!pf->num_alloc_vsi) {
4754 		err = -EIO;
4755 		goto err_init_pf_unroll;
4756 	}
4757 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4758 		dev_warn(&pf->pdev->dev,
4759 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4760 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4761 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4762 	}
4763 
4764 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4765 			       GFP_KERNEL);
4766 	if (!pf->vsi) {
4767 		err = -ENOMEM;
4768 		goto err_init_pf_unroll;
4769 	}
4770 
4771 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4772 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4773 	if (!pf->vsi_stats) {
4774 		err = -ENOMEM;
4775 		goto err_init_vsi_unroll;
4776 	}
4777 
4778 	err = ice_init_interrupt_scheme(pf);
4779 	if (err) {
4780 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4781 		err = -EIO;
4782 		goto err_init_vsi_stats_unroll;
4783 	}
4784 
4785 	/* In case of MSIX we are going to setup the misc vector right here
4786 	 * to handle admin queue events etc. In case of legacy and MSI
4787 	 * the misc functionality and queue processing is combined in
4788 	 * the same vector and that gets setup at open.
4789 	 */
4790 	err = ice_req_irq_msix_misc(pf);
4791 	if (err) {
4792 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4793 		goto err_init_interrupt_unroll;
4794 	}
4795 
4796 	/* create switch struct for the switch element created by FW on boot */
4797 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4798 	if (!pf->first_sw) {
4799 		err = -ENOMEM;
4800 		goto err_msix_misc_unroll;
4801 	}
4802 
4803 	if (hw->evb_veb)
4804 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4805 	else
4806 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4807 
4808 	pf->first_sw->pf = pf;
4809 
4810 	/* record the sw_id available for later use */
4811 	pf->first_sw->sw_id = hw->port_info->sw_id;
4812 
4813 	err = ice_setup_pf_sw(pf);
4814 	if (err) {
4815 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4816 		goto err_alloc_sw_unroll;
4817 	}
4818 
4819 	clear_bit(ICE_SERVICE_DIS, pf->state);
4820 
4821 	/* tell the firmware we are up */
4822 	err = ice_send_version(pf);
4823 	if (err) {
4824 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4825 			UTS_RELEASE, err);
4826 		goto err_send_version_unroll;
4827 	}
4828 
4829 	/* since everything is good, start the service timer */
4830 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4831 
4832 	err = ice_init_link_events(pf->hw.port_info);
4833 	if (err) {
4834 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4835 		goto err_send_version_unroll;
4836 	}
4837 
4838 	/* not a fatal error if this fails */
4839 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4840 	if (err)
4841 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4842 
4843 	/* not a fatal error if this fails */
4844 	err = ice_update_link_info(pf->hw.port_info);
4845 	if (err)
4846 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4847 
4848 	ice_init_link_dflt_override(pf->hw.port_info);
4849 
4850 	ice_check_link_cfg_err(pf,
4851 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4852 
4853 	/* if media available, initialize PHY settings */
4854 	if (pf->hw.port_info->phy.link_info.link_info &
4855 	    ICE_AQ_MEDIA_AVAILABLE) {
4856 		/* not a fatal error if this fails */
4857 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4858 		if (err)
4859 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4860 
4861 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4862 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4863 
4864 			if (vsi)
4865 				ice_configure_phy(vsi);
4866 		}
4867 	} else {
4868 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4869 	}
4870 
4871 	ice_verify_cacheline_size(pf);
4872 
4873 	/* Save wakeup reason register for later use */
4874 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4875 
4876 	/* check for a power management event */
4877 	ice_print_wake_reason(pf);
4878 
4879 	/* clear wake status, all bits */
4880 	wr32(hw, PFPM_WUS, U32_MAX);
4881 
4882 	/* Disable WoL at init, wait for user to enable */
4883 	device_set_wakeup_enable(dev, false);
4884 
4885 	if (ice_is_safe_mode(pf)) {
4886 		ice_set_safe_mode_vlan_cfg(pf);
4887 		goto probe_done;
4888 	}
4889 
4890 	/* initialize DDP driven features */
4891 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4892 		ice_ptp_init(pf);
4893 
4894 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4895 		ice_gnss_init(pf);
4896 
4897 	/* Note: Flow director init failure is non-fatal to load */
4898 	if (ice_init_fdir(pf))
4899 		dev_err(dev, "could not initialize flow director\n");
4900 
4901 	/* Note: DCB init failure is non-fatal to load */
4902 	if (ice_init_pf_dcb(pf, false)) {
4903 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4904 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4905 	} else {
4906 		ice_cfg_lldp_mib_change(&pf->hw, true);
4907 	}
4908 
4909 	if (ice_init_lag(pf))
4910 		dev_warn(dev, "Failed to init link aggregation support\n");
4911 
4912 	/* print PCI link speed and width */
4913 	pcie_print_link_status(pf->pdev);
4914 
4915 probe_done:
4916 	err = ice_devlink_create_pf_port(pf);
4917 	if (err)
4918 		goto err_create_pf_port;
4919 
4920 	vsi = ice_get_main_vsi(pf);
4921 	if (!vsi || !vsi->netdev) {
4922 		err = -EINVAL;
4923 		goto err_netdev_reg;
4924 	}
4925 
4926 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4927 
4928 	err = ice_register_netdev(pf);
4929 	if (err)
4930 		goto err_netdev_reg;
4931 
4932 	err = ice_devlink_register_params(pf);
4933 	if (err)
4934 		goto err_netdev_reg;
4935 
4936 	/* ready to go, so clear down state bit */
4937 	clear_bit(ICE_DOWN, pf->state);
4938 	if (ice_is_rdma_ena(pf)) {
4939 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4940 		if (pf->aux_idx < 0) {
4941 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4942 			err = -ENOMEM;
4943 			goto err_devlink_reg_param;
4944 		}
4945 
4946 		err = ice_init_rdma(pf);
4947 		if (err) {
4948 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4949 			err = -EIO;
4950 			goto err_init_aux_unroll;
4951 		}
4952 	} else {
4953 		dev_warn(dev, "RDMA is not supported on this device\n");
4954 	}
4955 
4956 	ice_devlink_register(pf);
4957 	return 0;
4958 
4959 err_init_aux_unroll:
4960 	pf->adev = NULL;
4961 	ida_free(&ice_aux_ida, pf->aux_idx);
4962 err_devlink_reg_param:
4963 	ice_devlink_unregister_params(pf);
4964 err_netdev_reg:
4965 	ice_devlink_destroy_pf_port(pf);
4966 err_create_pf_port:
4967 err_send_version_unroll:
4968 	ice_vsi_release_all(pf);
4969 err_alloc_sw_unroll:
4970 	set_bit(ICE_SERVICE_DIS, pf->state);
4971 	set_bit(ICE_DOWN, pf->state);
4972 	devm_kfree(dev, pf->first_sw);
4973 err_msix_misc_unroll:
4974 	ice_free_irq_msix_misc(pf);
4975 err_init_interrupt_unroll:
4976 	ice_clear_interrupt_scheme(pf);
4977 err_init_vsi_stats_unroll:
4978 	devm_kfree(dev, pf->vsi_stats);
4979 	pf->vsi_stats = NULL;
4980 err_init_vsi_unroll:
4981 	devm_kfree(dev, pf->vsi);
4982 err_init_pf_unroll:
4983 	ice_deinit_pf(pf);
4984 	ice_devlink_destroy_regions(pf);
4985 	ice_deinit_hw(hw);
4986 err_exit_unroll:
4987 	pci_disable_pcie_error_reporting(pdev);
4988 	pci_disable_device(pdev);
4989 	return err;
4990 }
4991 
4992 /**
4993  * ice_set_wake - enable or disable Wake on LAN
4994  * @pf: pointer to the PF struct
4995  *
4996  * Simple helper for WoL control
4997  */
4998 static void ice_set_wake(struct ice_pf *pf)
4999 {
5000 	struct ice_hw *hw = &pf->hw;
5001 	bool wol = pf->wol_ena;
5002 
5003 	/* clear wake state, otherwise new wake events won't fire */
5004 	wr32(hw, PFPM_WUS, U32_MAX);
5005 
5006 	/* enable / disable APM wake up, no RMW needed */
5007 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5008 
5009 	/* set magic packet filter enabled */
5010 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5011 }
5012 
5013 /**
5014  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5015  * @pf: pointer to the PF struct
5016  *
5017  * Issue firmware command to enable multicast magic wake, making
5018  * sure that any locally administered address (LAA) is used for
5019  * wake, and that PF reset doesn't undo the LAA.
5020  */
5021 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5022 {
5023 	struct device *dev = ice_pf_to_dev(pf);
5024 	struct ice_hw *hw = &pf->hw;
5025 	u8 mac_addr[ETH_ALEN];
5026 	struct ice_vsi *vsi;
5027 	int status;
5028 	u8 flags;
5029 
5030 	if (!pf->wol_ena)
5031 		return;
5032 
5033 	vsi = ice_get_main_vsi(pf);
5034 	if (!vsi)
5035 		return;
5036 
5037 	/* Get current MAC address in case it's an LAA */
5038 	if (vsi->netdev)
5039 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5040 	else
5041 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5042 
5043 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5044 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5045 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5046 
5047 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5048 	if (status)
5049 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5050 			status, ice_aq_str(hw->adminq.sq_last_status));
5051 }
5052 
5053 /**
5054  * ice_remove - Device removal routine
5055  * @pdev: PCI device information struct
5056  */
5057 static void ice_remove(struct pci_dev *pdev)
5058 {
5059 	struct ice_pf *pf = pci_get_drvdata(pdev);
5060 	int i;
5061 
5062 	ice_devlink_unregister(pf);
5063 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5064 		if (!ice_is_reset_in_progress(pf->state))
5065 			break;
5066 		msleep(100);
5067 	}
5068 
5069 	ice_tc_indir_block_remove(pf);
5070 
5071 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5072 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5073 		ice_free_vfs(pf);
5074 	}
5075 
5076 	ice_service_task_stop(pf);
5077 
5078 	ice_aq_cancel_waiting_tasks(pf);
5079 	ice_unplug_aux_dev(pf);
5080 	if (pf->aux_idx >= 0)
5081 		ida_free(&ice_aux_ida, pf->aux_idx);
5082 	ice_devlink_unregister_params(pf);
5083 	set_bit(ICE_DOWN, pf->state);
5084 
5085 	ice_deinit_lag(pf);
5086 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5087 		ice_ptp_release(pf);
5088 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5089 		ice_gnss_exit(pf);
5090 	if (!ice_is_safe_mode(pf))
5091 		ice_remove_arfs(pf);
5092 	ice_setup_mc_magic_wake(pf);
5093 	ice_vsi_release_all(pf);
5094 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5095 	ice_devlink_destroy_pf_port(pf);
5096 	ice_set_wake(pf);
5097 	ice_free_irq_msix_misc(pf);
5098 	ice_for_each_vsi(pf, i) {
5099 		if (!pf->vsi[i])
5100 			continue;
5101 		ice_vsi_free_q_vectors(pf->vsi[i]);
5102 	}
5103 	devm_kfree(&pdev->dev, pf->vsi_stats);
5104 	pf->vsi_stats = NULL;
5105 	ice_deinit_pf(pf);
5106 	ice_devlink_destroy_regions(pf);
5107 	ice_deinit_hw(&pf->hw);
5108 
5109 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5110 	 * do it via ice_schedule_reset() since there is no need to rebuild
5111 	 * and the service task is already stopped.
5112 	 */
5113 	ice_reset(&pf->hw, ICE_RESET_PFR);
5114 	pci_wait_for_pending_transaction(pdev);
5115 	ice_clear_interrupt_scheme(pf);
5116 	pci_disable_pcie_error_reporting(pdev);
5117 	pci_disable_device(pdev);
5118 }
5119 
5120 /**
5121  * ice_shutdown - PCI callback for shutting down device
5122  * @pdev: PCI device information struct
5123  */
5124 static void ice_shutdown(struct pci_dev *pdev)
5125 {
5126 	struct ice_pf *pf = pci_get_drvdata(pdev);
5127 
5128 	ice_remove(pdev);
5129 
5130 	if (system_state == SYSTEM_POWER_OFF) {
5131 		pci_wake_from_d3(pdev, pf->wol_ena);
5132 		pci_set_power_state(pdev, PCI_D3hot);
5133 	}
5134 }
5135 
5136 #ifdef CONFIG_PM
5137 /**
5138  * ice_prepare_for_shutdown - prep for PCI shutdown
5139  * @pf: board private structure
5140  *
5141  * Inform or close all dependent features in prep for PCI device shutdown
5142  */
5143 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5144 {
5145 	struct ice_hw *hw = &pf->hw;
5146 	u32 v;
5147 
5148 	/* Notify VFs of impending reset */
5149 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5150 		ice_vc_notify_reset(pf);
5151 
5152 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5153 
5154 	/* disable the VSIs and their queues that are not already DOWN */
5155 	ice_pf_dis_all_vsi(pf, false);
5156 
5157 	ice_for_each_vsi(pf, v)
5158 		if (pf->vsi[v])
5159 			pf->vsi[v]->vsi_num = 0;
5160 
5161 	ice_shutdown_all_ctrlq(hw);
5162 }
5163 
5164 /**
5165  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5166  * @pf: board private structure to reinitialize
5167  *
5168  * This routine reinitialize interrupt scheme that was cleared during
5169  * power management suspend callback.
5170  *
5171  * This should be called during resume routine to re-allocate the q_vectors
5172  * and reacquire interrupts.
5173  */
5174 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5175 {
5176 	struct device *dev = ice_pf_to_dev(pf);
5177 	int ret, v;
5178 
5179 	/* Since we clear MSIX flag during suspend, we need to
5180 	 * set it back during resume...
5181 	 */
5182 
5183 	ret = ice_init_interrupt_scheme(pf);
5184 	if (ret) {
5185 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5186 		return ret;
5187 	}
5188 
5189 	/* Remap vectors and rings, after successful re-init interrupts */
5190 	ice_for_each_vsi(pf, v) {
5191 		if (!pf->vsi[v])
5192 			continue;
5193 
5194 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5195 		if (ret)
5196 			goto err_reinit;
5197 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5198 	}
5199 
5200 	ret = ice_req_irq_msix_misc(pf);
5201 	if (ret) {
5202 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5203 			ret);
5204 		goto err_reinit;
5205 	}
5206 
5207 	return 0;
5208 
5209 err_reinit:
5210 	while (v--)
5211 		if (pf->vsi[v])
5212 			ice_vsi_free_q_vectors(pf->vsi[v]);
5213 
5214 	return ret;
5215 }
5216 
5217 /**
5218  * ice_suspend
5219  * @dev: generic device information structure
5220  *
5221  * Power Management callback to quiesce the device and prepare
5222  * for D3 transition.
5223  */
5224 static int __maybe_unused ice_suspend(struct device *dev)
5225 {
5226 	struct pci_dev *pdev = to_pci_dev(dev);
5227 	struct ice_pf *pf;
5228 	int disabled, v;
5229 
5230 	pf = pci_get_drvdata(pdev);
5231 
5232 	if (!ice_pf_state_is_nominal(pf)) {
5233 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5234 		return -EBUSY;
5235 	}
5236 
5237 	/* Stop watchdog tasks until resume completion.
5238 	 * Even though it is most likely that the service task is
5239 	 * disabled if the device is suspended or down, the service task's
5240 	 * state is controlled by a different state bit, and we should
5241 	 * store and honor whatever state that bit is in at this point.
5242 	 */
5243 	disabled = ice_service_task_stop(pf);
5244 
5245 	ice_unplug_aux_dev(pf);
5246 
5247 	/* Already suspended?, then there is nothing to do */
5248 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5249 		if (!disabled)
5250 			ice_service_task_restart(pf);
5251 		return 0;
5252 	}
5253 
5254 	if (test_bit(ICE_DOWN, pf->state) ||
5255 	    ice_is_reset_in_progress(pf->state)) {
5256 		dev_err(dev, "can't suspend device in reset or already down\n");
5257 		if (!disabled)
5258 			ice_service_task_restart(pf);
5259 		return 0;
5260 	}
5261 
5262 	ice_setup_mc_magic_wake(pf);
5263 
5264 	ice_prepare_for_shutdown(pf);
5265 
5266 	ice_set_wake(pf);
5267 
5268 	/* Free vectors, clear the interrupt scheme and release IRQs
5269 	 * for proper hibernation, especially with large number of CPUs.
5270 	 * Otherwise hibernation might fail when mapping all the vectors back
5271 	 * to CPU0.
5272 	 */
5273 	ice_free_irq_msix_misc(pf);
5274 	ice_for_each_vsi(pf, v) {
5275 		if (!pf->vsi[v])
5276 			continue;
5277 		ice_vsi_free_q_vectors(pf->vsi[v]);
5278 	}
5279 	ice_clear_interrupt_scheme(pf);
5280 
5281 	pci_save_state(pdev);
5282 	pci_wake_from_d3(pdev, pf->wol_ena);
5283 	pci_set_power_state(pdev, PCI_D3hot);
5284 	return 0;
5285 }
5286 
5287 /**
5288  * ice_resume - PM callback for waking up from D3
5289  * @dev: generic device information structure
5290  */
5291 static int __maybe_unused ice_resume(struct device *dev)
5292 {
5293 	struct pci_dev *pdev = to_pci_dev(dev);
5294 	enum ice_reset_req reset_type;
5295 	struct ice_pf *pf;
5296 	struct ice_hw *hw;
5297 	int ret;
5298 
5299 	pci_set_power_state(pdev, PCI_D0);
5300 	pci_restore_state(pdev);
5301 	pci_save_state(pdev);
5302 
5303 	if (!pci_device_is_present(pdev))
5304 		return -ENODEV;
5305 
5306 	ret = pci_enable_device_mem(pdev);
5307 	if (ret) {
5308 		dev_err(dev, "Cannot enable device after suspend\n");
5309 		return ret;
5310 	}
5311 
5312 	pf = pci_get_drvdata(pdev);
5313 	hw = &pf->hw;
5314 
5315 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5316 	ice_print_wake_reason(pf);
5317 
5318 	/* We cleared the interrupt scheme when we suspended, so we need to
5319 	 * restore it now to resume device functionality.
5320 	 */
5321 	ret = ice_reinit_interrupt_scheme(pf);
5322 	if (ret)
5323 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5324 
5325 	clear_bit(ICE_DOWN, pf->state);
5326 	/* Now perform PF reset and rebuild */
5327 	reset_type = ICE_RESET_PFR;
5328 	/* re-enable service task for reset, but allow reset to schedule it */
5329 	clear_bit(ICE_SERVICE_DIS, pf->state);
5330 
5331 	if (ice_schedule_reset(pf, reset_type))
5332 		dev_err(dev, "Reset during resume failed.\n");
5333 
5334 	clear_bit(ICE_SUSPENDED, pf->state);
5335 	ice_service_task_restart(pf);
5336 
5337 	/* Restart the service task */
5338 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5339 
5340 	return 0;
5341 }
5342 #endif /* CONFIG_PM */
5343 
5344 /**
5345  * ice_pci_err_detected - warning that PCI error has been detected
5346  * @pdev: PCI device information struct
5347  * @err: the type of PCI error
5348  *
5349  * Called to warn that something happened on the PCI bus and the error handling
5350  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5351  */
5352 static pci_ers_result_t
5353 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5354 {
5355 	struct ice_pf *pf = pci_get_drvdata(pdev);
5356 
5357 	if (!pf) {
5358 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5359 			__func__, err);
5360 		return PCI_ERS_RESULT_DISCONNECT;
5361 	}
5362 
5363 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5364 		ice_service_task_stop(pf);
5365 
5366 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5367 			set_bit(ICE_PFR_REQ, pf->state);
5368 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5369 		}
5370 	}
5371 
5372 	return PCI_ERS_RESULT_NEED_RESET;
5373 }
5374 
5375 /**
5376  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5377  * @pdev: PCI device information struct
5378  *
5379  * Called to determine if the driver can recover from the PCI slot reset by
5380  * using a register read to determine if the device is recoverable.
5381  */
5382 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5383 {
5384 	struct ice_pf *pf = pci_get_drvdata(pdev);
5385 	pci_ers_result_t result;
5386 	int err;
5387 	u32 reg;
5388 
5389 	err = pci_enable_device_mem(pdev);
5390 	if (err) {
5391 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5392 			err);
5393 		result = PCI_ERS_RESULT_DISCONNECT;
5394 	} else {
5395 		pci_set_master(pdev);
5396 		pci_restore_state(pdev);
5397 		pci_save_state(pdev);
5398 		pci_wake_from_d3(pdev, false);
5399 
5400 		/* Check for life */
5401 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5402 		if (!reg)
5403 			result = PCI_ERS_RESULT_RECOVERED;
5404 		else
5405 			result = PCI_ERS_RESULT_DISCONNECT;
5406 	}
5407 
5408 	return result;
5409 }
5410 
5411 /**
5412  * ice_pci_err_resume - restart operations after PCI error recovery
5413  * @pdev: PCI device information struct
5414  *
5415  * Called to allow the driver to bring things back up after PCI error and/or
5416  * reset recovery have finished
5417  */
5418 static void ice_pci_err_resume(struct pci_dev *pdev)
5419 {
5420 	struct ice_pf *pf = pci_get_drvdata(pdev);
5421 
5422 	if (!pf) {
5423 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5424 			__func__);
5425 		return;
5426 	}
5427 
5428 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5429 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5430 			__func__);
5431 		return;
5432 	}
5433 
5434 	ice_restore_all_vfs_msi_state(pdev);
5435 
5436 	ice_do_reset(pf, ICE_RESET_PFR);
5437 	ice_service_task_restart(pf);
5438 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5439 }
5440 
5441 /**
5442  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5443  * @pdev: PCI device information struct
5444  */
5445 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5446 {
5447 	struct ice_pf *pf = pci_get_drvdata(pdev);
5448 
5449 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5450 		ice_service_task_stop(pf);
5451 
5452 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5453 			set_bit(ICE_PFR_REQ, pf->state);
5454 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5455 		}
5456 	}
5457 }
5458 
5459 /**
5460  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5461  * @pdev: PCI device information struct
5462  */
5463 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5464 {
5465 	ice_pci_err_resume(pdev);
5466 }
5467 
5468 /* ice_pci_tbl - PCI Device ID Table
5469  *
5470  * Wildcard entries (PCI_ANY_ID) should come last
5471  * Last entry must be all 0s
5472  *
5473  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5474  *   Class, Class Mask, private data (not used) }
5475  */
5476 static const struct pci_device_id ice_pci_tbl[] = {
5477 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5478 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5479 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5480 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5481 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5482 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5483 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5484 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5485 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5486 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5487 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5488 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5489 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5490 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5491 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5492 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5493 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5494 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5495 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5496 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5497 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5498 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5499 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5500 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5501 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5502 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5503 	/* required last entry */
5504 	{ 0, }
5505 };
5506 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5507 
5508 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5509 
5510 static const struct pci_error_handlers ice_pci_err_handler = {
5511 	.error_detected = ice_pci_err_detected,
5512 	.slot_reset = ice_pci_err_slot_reset,
5513 	.reset_prepare = ice_pci_err_reset_prepare,
5514 	.reset_done = ice_pci_err_reset_done,
5515 	.resume = ice_pci_err_resume
5516 };
5517 
5518 static struct pci_driver ice_driver = {
5519 	.name = KBUILD_MODNAME,
5520 	.id_table = ice_pci_tbl,
5521 	.probe = ice_probe,
5522 	.remove = ice_remove,
5523 #ifdef CONFIG_PM
5524 	.driver.pm = &ice_pm_ops,
5525 #endif /* CONFIG_PM */
5526 	.shutdown = ice_shutdown,
5527 	.sriov_configure = ice_sriov_configure,
5528 	.err_handler = &ice_pci_err_handler
5529 };
5530 
5531 /**
5532  * ice_module_init - Driver registration routine
5533  *
5534  * ice_module_init is the first routine called when the driver is
5535  * loaded. All it does is register with the PCI subsystem.
5536  */
5537 static int __init ice_module_init(void)
5538 {
5539 	int status;
5540 
5541 	pr_info("%s\n", ice_driver_string);
5542 	pr_info("%s\n", ice_copyright);
5543 
5544 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5545 	if (!ice_wq) {
5546 		pr_err("Failed to create workqueue\n");
5547 		return -ENOMEM;
5548 	}
5549 
5550 	status = pci_register_driver(&ice_driver);
5551 	if (status) {
5552 		pr_err("failed to register PCI driver, err %d\n", status);
5553 		destroy_workqueue(ice_wq);
5554 	}
5555 
5556 	return status;
5557 }
5558 module_init(ice_module_init);
5559 
5560 /**
5561  * ice_module_exit - Driver exit cleanup routine
5562  *
5563  * ice_module_exit is called just before the driver is removed
5564  * from memory.
5565  */
5566 static void __exit ice_module_exit(void)
5567 {
5568 	pci_unregister_driver(&ice_driver);
5569 	destroy_workqueue(ice_wq);
5570 	pr_info("module unloaded\n");
5571 }
5572 module_exit(ice_module_exit);
5573 
5574 /**
5575  * ice_set_mac_address - NDO callback to set MAC address
5576  * @netdev: network interface device structure
5577  * @pi: pointer to an address structure
5578  *
5579  * Returns 0 on success, negative on failure
5580  */
5581 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5582 {
5583 	struct ice_netdev_priv *np = netdev_priv(netdev);
5584 	struct ice_vsi *vsi = np->vsi;
5585 	struct ice_pf *pf = vsi->back;
5586 	struct ice_hw *hw = &pf->hw;
5587 	struct sockaddr *addr = pi;
5588 	u8 old_mac[ETH_ALEN];
5589 	u8 flags = 0;
5590 	u8 *mac;
5591 	int err;
5592 
5593 	mac = (u8 *)addr->sa_data;
5594 
5595 	if (!is_valid_ether_addr(mac))
5596 		return -EADDRNOTAVAIL;
5597 
5598 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5599 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5600 		return 0;
5601 	}
5602 
5603 	if (test_bit(ICE_DOWN, pf->state) ||
5604 	    ice_is_reset_in_progress(pf->state)) {
5605 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5606 			   mac);
5607 		return -EBUSY;
5608 	}
5609 
5610 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5611 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5612 			   mac);
5613 		return -EAGAIN;
5614 	}
5615 
5616 	netif_addr_lock_bh(netdev);
5617 	ether_addr_copy(old_mac, netdev->dev_addr);
5618 	/* change the netdev's MAC address */
5619 	eth_hw_addr_set(netdev, mac);
5620 	netif_addr_unlock_bh(netdev);
5621 
5622 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5623 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5624 	if (err && err != -ENOENT) {
5625 		err = -EADDRNOTAVAIL;
5626 		goto err_update_filters;
5627 	}
5628 
5629 	/* Add filter for new MAC. If filter exists, return success */
5630 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5631 	if (err == -EEXIST) {
5632 		/* Although this MAC filter is already present in hardware it's
5633 		 * possible in some cases (e.g. bonding) that dev_addr was
5634 		 * modified outside of the driver and needs to be restored back
5635 		 * to this value.
5636 		 */
5637 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5638 
5639 		return 0;
5640 	} else if (err) {
5641 		/* error if the new filter addition failed */
5642 		err = -EADDRNOTAVAIL;
5643 	}
5644 
5645 err_update_filters:
5646 	if (err) {
5647 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5648 			   mac);
5649 		netif_addr_lock_bh(netdev);
5650 		eth_hw_addr_set(netdev, old_mac);
5651 		netif_addr_unlock_bh(netdev);
5652 		return err;
5653 	}
5654 
5655 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5656 		   netdev->dev_addr);
5657 
5658 	/* write new MAC address to the firmware */
5659 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5660 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5661 	if (err) {
5662 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5663 			   mac, err);
5664 	}
5665 	return 0;
5666 }
5667 
5668 /**
5669  * ice_set_rx_mode - NDO callback to set the netdev filters
5670  * @netdev: network interface device structure
5671  */
5672 static void ice_set_rx_mode(struct net_device *netdev)
5673 {
5674 	struct ice_netdev_priv *np = netdev_priv(netdev);
5675 	struct ice_vsi *vsi = np->vsi;
5676 
5677 	if (!vsi)
5678 		return;
5679 
5680 	/* Set the flags to synchronize filters
5681 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5682 	 * flags
5683 	 */
5684 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5685 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5686 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5687 
5688 	/* schedule our worker thread which will take care of
5689 	 * applying the new filter changes
5690 	 */
5691 	ice_service_task_schedule(vsi->back);
5692 }
5693 
5694 /**
5695  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5696  * @netdev: network interface device structure
5697  * @queue_index: Queue ID
5698  * @maxrate: maximum bandwidth in Mbps
5699  */
5700 static int
5701 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5702 {
5703 	struct ice_netdev_priv *np = netdev_priv(netdev);
5704 	struct ice_vsi *vsi = np->vsi;
5705 	u16 q_handle;
5706 	int status;
5707 	u8 tc;
5708 
5709 	/* Validate maxrate requested is within permitted range */
5710 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5711 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5712 			   maxrate, queue_index);
5713 		return -EINVAL;
5714 	}
5715 
5716 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5717 	tc = ice_dcb_get_tc(vsi, queue_index);
5718 
5719 	/* Set BW back to default, when user set maxrate to 0 */
5720 	if (!maxrate)
5721 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5722 					       q_handle, ICE_MAX_BW);
5723 	else
5724 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5725 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5726 	if (status)
5727 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5728 			   status);
5729 
5730 	return status;
5731 }
5732 
5733 /**
5734  * ice_fdb_add - add an entry to the hardware database
5735  * @ndm: the input from the stack
5736  * @tb: pointer to array of nladdr (unused)
5737  * @dev: the net device pointer
5738  * @addr: the MAC address entry being added
5739  * @vid: VLAN ID
5740  * @flags: instructions from stack about fdb operation
5741  * @extack: netlink extended ack
5742  */
5743 static int
5744 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5745 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5746 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5747 {
5748 	int err;
5749 
5750 	if (vid) {
5751 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5752 		return -EINVAL;
5753 	}
5754 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5755 		netdev_err(dev, "FDB only supports static addresses\n");
5756 		return -EINVAL;
5757 	}
5758 
5759 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5760 		err = dev_uc_add_excl(dev, addr);
5761 	else if (is_multicast_ether_addr(addr))
5762 		err = dev_mc_add_excl(dev, addr);
5763 	else
5764 		err = -EINVAL;
5765 
5766 	/* Only return duplicate errors if NLM_F_EXCL is set */
5767 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5768 		err = 0;
5769 
5770 	return err;
5771 }
5772 
5773 /**
5774  * ice_fdb_del - delete an entry from the hardware database
5775  * @ndm: the input from the stack
5776  * @tb: pointer to array of nladdr (unused)
5777  * @dev: the net device pointer
5778  * @addr: the MAC address entry being added
5779  * @vid: VLAN ID
5780  * @extack: netlink extended ack
5781  */
5782 static int
5783 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5784 	    struct net_device *dev, const unsigned char *addr,
5785 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5786 {
5787 	int err;
5788 
5789 	if (ndm->ndm_state & NUD_PERMANENT) {
5790 		netdev_err(dev, "FDB only supports static addresses\n");
5791 		return -EINVAL;
5792 	}
5793 
5794 	if (is_unicast_ether_addr(addr))
5795 		err = dev_uc_del(dev, addr);
5796 	else if (is_multicast_ether_addr(addr))
5797 		err = dev_mc_del(dev, addr);
5798 	else
5799 		err = -EINVAL;
5800 
5801 	return err;
5802 }
5803 
5804 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5805 					 NETIF_F_HW_VLAN_CTAG_TX | \
5806 					 NETIF_F_HW_VLAN_STAG_RX | \
5807 					 NETIF_F_HW_VLAN_STAG_TX)
5808 
5809 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5810 					 NETIF_F_HW_VLAN_STAG_RX)
5811 
5812 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5813 					 NETIF_F_HW_VLAN_STAG_FILTER)
5814 
5815 /**
5816  * ice_fix_features - fix the netdev features flags based on device limitations
5817  * @netdev: ptr to the netdev that flags are being fixed on
5818  * @features: features that need to be checked and possibly fixed
5819  *
5820  * Make sure any fixups are made to features in this callback. This enables the
5821  * driver to not have to check unsupported configurations throughout the driver
5822  * because that's the responsiblity of this callback.
5823  *
5824  * Single VLAN Mode (SVM) Supported Features:
5825  *	NETIF_F_HW_VLAN_CTAG_FILTER
5826  *	NETIF_F_HW_VLAN_CTAG_RX
5827  *	NETIF_F_HW_VLAN_CTAG_TX
5828  *
5829  * Double VLAN Mode (DVM) Supported Features:
5830  *	NETIF_F_HW_VLAN_CTAG_FILTER
5831  *	NETIF_F_HW_VLAN_CTAG_RX
5832  *	NETIF_F_HW_VLAN_CTAG_TX
5833  *
5834  *	NETIF_F_HW_VLAN_STAG_FILTER
5835  *	NETIF_HW_VLAN_STAG_RX
5836  *	NETIF_HW_VLAN_STAG_TX
5837  *
5838  * Features that need fixing:
5839  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5840  *	These are mutually exlusive as the VSI context cannot support multiple
5841  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5842  *	is not done, then default to clearing the requested STAG offload
5843  *	settings.
5844  *
5845  *	All supported filtering has to be enabled or disabled together. For
5846  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5847  *	together. If this is not done, then default to VLAN filtering disabled.
5848  *	These are mutually exclusive as there is currently no way to
5849  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5850  *	prune rules.
5851  */
5852 static netdev_features_t
5853 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5854 {
5855 	struct ice_netdev_priv *np = netdev_priv(netdev);
5856 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5857 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5858 
5859 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5860 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5861 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5862 
5863 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5864 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5865 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5866 
5867 	if (req_vlan_fltr != cur_vlan_fltr) {
5868 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5869 			if (req_ctag && req_stag) {
5870 				features |= NETIF_VLAN_FILTERING_FEATURES;
5871 			} else if (!req_ctag && !req_stag) {
5872 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5873 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5874 				   (!cur_stag && req_stag && !cur_ctag)) {
5875 				features |= NETIF_VLAN_FILTERING_FEATURES;
5876 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5877 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5878 				   (cur_stag && !req_stag && cur_ctag)) {
5879 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5880 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5881 			}
5882 		} else {
5883 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5884 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5885 
5886 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5887 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5888 		}
5889 	}
5890 
5891 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5892 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5893 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5894 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5895 			      NETIF_F_HW_VLAN_STAG_TX);
5896 	}
5897 
5898 	if (!(netdev->features & NETIF_F_RXFCS) &&
5899 	    (features & NETIF_F_RXFCS) &&
5900 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5901 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
5902 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5903 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5904 	}
5905 
5906 	return features;
5907 }
5908 
5909 /**
5910  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5911  * @vsi: PF's VSI
5912  * @features: features used to determine VLAN offload settings
5913  *
5914  * First, determine the vlan_ethertype based on the VLAN offload bits in
5915  * features. Then determine if stripping and insertion should be enabled or
5916  * disabled. Finally enable or disable VLAN stripping and insertion.
5917  */
5918 static int
5919 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5920 {
5921 	bool enable_stripping = true, enable_insertion = true;
5922 	struct ice_vsi_vlan_ops *vlan_ops;
5923 	int strip_err = 0, insert_err = 0;
5924 	u16 vlan_ethertype = 0;
5925 
5926 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5927 
5928 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5929 		vlan_ethertype = ETH_P_8021AD;
5930 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5931 		vlan_ethertype = ETH_P_8021Q;
5932 
5933 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5934 		enable_stripping = false;
5935 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5936 		enable_insertion = false;
5937 
5938 	if (enable_stripping)
5939 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5940 	else
5941 		strip_err = vlan_ops->dis_stripping(vsi);
5942 
5943 	if (enable_insertion)
5944 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5945 	else
5946 		insert_err = vlan_ops->dis_insertion(vsi);
5947 
5948 	if (strip_err || insert_err)
5949 		return -EIO;
5950 
5951 	return 0;
5952 }
5953 
5954 /**
5955  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5956  * @vsi: PF's VSI
5957  * @features: features used to determine VLAN filtering settings
5958  *
5959  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5960  * features.
5961  */
5962 static int
5963 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5964 {
5965 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5966 	int err = 0;
5967 
5968 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5969 	 * if either bit is set
5970 	 */
5971 	if (features &
5972 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5973 		err = vlan_ops->ena_rx_filtering(vsi);
5974 	else
5975 		err = vlan_ops->dis_rx_filtering(vsi);
5976 
5977 	return err;
5978 }
5979 
5980 /**
5981  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5982  * @netdev: ptr to the netdev being adjusted
5983  * @features: the feature set that the stack is suggesting
5984  *
5985  * Only update VLAN settings if the requested_vlan_features are different than
5986  * the current_vlan_features.
5987  */
5988 static int
5989 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5990 {
5991 	netdev_features_t current_vlan_features, requested_vlan_features;
5992 	struct ice_netdev_priv *np = netdev_priv(netdev);
5993 	struct ice_vsi *vsi = np->vsi;
5994 	int err;
5995 
5996 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5997 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5998 	if (current_vlan_features ^ requested_vlan_features) {
5999 		if ((features & NETIF_F_RXFCS) &&
6000 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6001 			dev_err(ice_pf_to_dev(vsi->back),
6002 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6003 			return -EIO;
6004 		}
6005 
6006 		err = ice_set_vlan_offload_features(vsi, features);
6007 		if (err)
6008 			return err;
6009 	}
6010 
6011 	current_vlan_features = netdev->features &
6012 		NETIF_VLAN_FILTERING_FEATURES;
6013 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6014 	if (current_vlan_features ^ requested_vlan_features) {
6015 		err = ice_set_vlan_filtering_features(vsi, features);
6016 		if (err)
6017 			return err;
6018 	}
6019 
6020 	return 0;
6021 }
6022 
6023 /**
6024  * ice_set_loopback - turn on/off loopback mode on underlying PF
6025  * @vsi: ptr to VSI
6026  * @ena: flag to indicate the on/off setting
6027  */
6028 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6029 {
6030 	bool if_running = netif_running(vsi->netdev);
6031 	int ret;
6032 
6033 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6034 		ret = ice_down(vsi);
6035 		if (ret) {
6036 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6037 			return ret;
6038 		}
6039 	}
6040 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6041 	if (ret)
6042 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6043 	if (if_running)
6044 		ret = ice_up(vsi);
6045 
6046 	return ret;
6047 }
6048 
6049 /**
6050  * ice_set_features - set the netdev feature flags
6051  * @netdev: ptr to the netdev being adjusted
6052  * @features: the feature set that the stack is suggesting
6053  */
6054 static int
6055 ice_set_features(struct net_device *netdev, netdev_features_t features)
6056 {
6057 	netdev_features_t changed = netdev->features ^ features;
6058 	struct ice_netdev_priv *np = netdev_priv(netdev);
6059 	struct ice_vsi *vsi = np->vsi;
6060 	struct ice_pf *pf = vsi->back;
6061 	int ret = 0;
6062 
6063 	/* Don't set any netdev advanced features with device in Safe Mode */
6064 	if (ice_is_safe_mode(pf)) {
6065 		dev_err(ice_pf_to_dev(pf),
6066 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6067 		return ret;
6068 	}
6069 
6070 	/* Do not change setting during reset */
6071 	if (ice_is_reset_in_progress(pf->state)) {
6072 		dev_err(ice_pf_to_dev(pf),
6073 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6074 		return -EBUSY;
6075 	}
6076 
6077 	/* Multiple features can be changed in one call so keep features in
6078 	 * separate if/else statements to guarantee each feature is checked
6079 	 */
6080 	if (changed & NETIF_F_RXHASH)
6081 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6082 
6083 	ret = ice_set_vlan_features(netdev, features);
6084 	if (ret)
6085 		return ret;
6086 
6087 	/* Turn on receive of FCS aka CRC, and after setting this
6088 	 * flag the packet data will have the 4 byte CRC appended
6089 	 */
6090 	if (changed & NETIF_F_RXFCS) {
6091 		if ((features & NETIF_F_RXFCS) &&
6092 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6093 			dev_err(ice_pf_to_dev(vsi->back),
6094 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6095 			return -EIO;
6096 		}
6097 
6098 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6099 		ret = ice_down_up(vsi);
6100 		if (ret)
6101 			return ret;
6102 	}
6103 
6104 	if (changed & NETIF_F_NTUPLE) {
6105 		bool ena = !!(features & NETIF_F_NTUPLE);
6106 
6107 		ice_vsi_manage_fdir(vsi, ena);
6108 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6109 	}
6110 
6111 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6112 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6113 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6114 		return -EACCES;
6115 	}
6116 
6117 	if (changed & NETIF_F_HW_TC) {
6118 		bool ena = !!(features & NETIF_F_HW_TC);
6119 
6120 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6121 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6122 	}
6123 
6124 	if (changed & NETIF_F_LOOPBACK)
6125 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6126 
6127 	return ret;
6128 }
6129 
6130 /**
6131  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6132  * @vsi: VSI to setup VLAN properties for
6133  */
6134 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6135 {
6136 	int err;
6137 
6138 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6139 	if (err)
6140 		return err;
6141 
6142 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6143 	if (err)
6144 		return err;
6145 
6146 	return ice_vsi_add_vlan_zero(vsi);
6147 }
6148 
6149 /**
6150  * ice_vsi_cfg - Setup the VSI
6151  * @vsi: the VSI being configured
6152  *
6153  * Return 0 on success and negative value on error
6154  */
6155 int ice_vsi_cfg(struct ice_vsi *vsi)
6156 {
6157 	int err;
6158 
6159 	if (vsi->netdev) {
6160 		ice_set_rx_mode(vsi->netdev);
6161 
6162 		if (vsi->type != ICE_VSI_LB) {
6163 			err = ice_vsi_vlan_setup(vsi);
6164 
6165 			if (err)
6166 				return err;
6167 		}
6168 	}
6169 	ice_vsi_cfg_dcb_rings(vsi);
6170 
6171 	err = ice_vsi_cfg_lan_txqs(vsi);
6172 	if (!err && ice_is_xdp_ena_vsi(vsi))
6173 		err = ice_vsi_cfg_xdp_txqs(vsi);
6174 	if (!err)
6175 		err = ice_vsi_cfg_rxqs(vsi);
6176 
6177 	return err;
6178 }
6179 
6180 /* THEORY OF MODERATION:
6181  * The ice driver hardware works differently than the hardware that DIMLIB was
6182  * originally made for. ice hardware doesn't have packet count limits that
6183  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6184  * which is hard-coded to a limit of 250,000 ints/second.
6185  * If not using dynamic moderation, the INTRL value can be modified
6186  * by ethtool rx-usecs-high.
6187  */
6188 struct ice_dim {
6189 	/* the throttle rate for interrupts, basically worst case delay before
6190 	 * an initial interrupt fires, value is stored in microseconds.
6191 	 */
6192 	u16 itr;
6193 };
6194 
6195 /* Make a different profile for Rx that doesn't allow quite so aggressive
6196  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6197  * second.
6198  */
6199 static const struct ice_dim rx_profile[] = {
6200 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6201 	{8},    /* 125,000 ints/s */
6202 	{16},   /*  62,500 ints/s */
6203 	{62},   /*  16,129 ints/s */
6204 	{126}   /*   7,936 ints/s */
6205 };
6206 
6207 /* The transmit profile, which has the same sorts of values
6208  * as the previous struct
6209  */
6210 static const struct ice_dim tx_profile[] = {
6211 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6212 	{8},    /* 125,000 ints/s */
6213 	{40},   /*  16,125 ints/s */
6214 	{128},  /*   7,812 ints/s */
6215 	{256}   /*   3,906 ints/s */
6216 };
6217 
6218 static void ice_tx_dim_work(struct work_struct *work)
6219 {
6220 	struct ice_ring_container *rc;
6221 	struct dim *dim;
6222 	u16 itr;
6223 
6224 	dim = container_of(work, struct dim, work);
6225 	rc = (struct ice_ring_container *)dim->priv;
6226 
6227 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6228 
6229 	/* look up the values in our local table */
6230 	itr = tx_profile[dim->profile_ix].itr;
6231 
6232 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6233 	ice_write_itr(rc, itr);
6234 
6235 	dim->state = DIM_START_MEASURE;
6236 }
6237 
6238 static void ice_rx_dim_work(struct work_struct *work)
6239 {
6240 	struct ice_ring_container *rc;
6241 	struct dim *dim;
6242 	u16 itr;
6243 
6244 	dim = container_of(work, struct dim, work);
6245 	rc = (struct ice_ring_container *)dim->priv;
6246 
6247 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6248 
6249 	/* look up the values in our local table */
6250 	itr = rx_profile[dim->profile_ix].itr;
6251 
6252 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6253 	ice_write_itr(rc, itr);
6254 
6255 	dim->state = DIM_START_MEASURE;
6256 }
6257 
6258 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6259 
6260 /**
6261  * ice_init_moderation - set up interrupt moderation
6262  * @q_vector: the vector containing rings to be configured
6263  *
6264  * Set up interrupt moderation registers, with the intent to do the right thing
6265  * when called from reset or from probe, and whether or not dynamic moderation
6266  * is enabled or not. Take special care to write all the registers in both
6267  * dynamic moderation mode or not in order to make sure hardware is in a known
6268  * state.
6269  */
6270 static void ice_init_moderation(struct ice_q_vector *q_vector)
6271 {
6272 	struct ice_ring_container *rc;
6273 	bool tx_dynamic, rx_dynamic;
6274 
6275 	rc = &q_vector->tx;
6276 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6277 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6278 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6279 	rc->dim.priv = rc;
6280 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6281 
6282 	/* set the initial TX ITR to match the above */
6283 	ice_write_itr(rc, tx_dynamic ?
6284 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6285 
6286 	rc = &q_vector->rx;
6287 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6288 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6289 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6290 	rc->dim.priv = rc;
6291 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6292 
6293 	/* set the initial RX ITR to match the above */
6294 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6295 				       rc->itr_setting);
6296 
6297 	ice_set_q_vector_intrl(q_vector);
6298 }
6299 
6300 /**
6301  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6302  * @vsi: the VSI being configured
6303  */
6304 static void ice_napi_enable_all(struct ice_vsi *vsi)
6305 {
6306 	int q_idx;
6307 
6308 	if (!vsi->netdev)
6309 		return;
6310 
6311 	ice_for_each_q_vector(vsi, q_idx) {
6312 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6313 
6314 		ice_init_moderation(q_vector);
6315 
6316 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6317 			napi_enable(&q_vector->napi);
6318 	}
6319 }
6320 
6321 /**
6322  * ice_up_complete - Finish the last steps of bringing up a connection
6323  * @vsi: The VSI being configured
6324  *
6325  * Return 0 on success and negative value on error
6326  */
6327 static int ice_up_complete(struct ice_vsi *vsi)
6328 {
6329 	struct ice_pf *pf = vsi->back;
6330 	int err;
6331 
6332 	ice_vsi_cfg_msix(vsi);
6333 
6334 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6335 	 * Tx queue group list was configured and the context bits were
6336 	 * programmed using ice_vsi_cfg_txqs
6337 	 */
6338 	err = ice_vsi_start_all_rx_rings(vsi);
6339 	if (err)
6340 		return err;
6341 
6342 	clear_bit(ICE_VSI_DOWN, vsi->state);
6343 	ice_napi_enable_all(vsi);
6344 	ice_vsi_ena_irq(vsi);
6345 
6346 	if (vsi->port_info &&
6347 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6348 	    vsi->netdev) {
6349 		ice_print_link_msg(vsi, true);
6350 		netif_tx_start_all_queues(vsi->netdev);
6351 		netif_carrier_on(vsi->netdev);
6352 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6353 	}
6354 
6355 	/* Perform an initial read of the statistics registers now to
6356 	 * set the baseline so counters are ready when interface is up
6357 	 */
6358 	ice_update_eth_stats(vsi);
6359 	ice_service_task_schedule(pf);
6360 
6361 	return 0;
6362 }
6363 
6364 /**
6365  * ice_up - Bring the connection back up after being down
6366  * @vsi: VSI being configured
6367  */
6368 int ice_up(struct ice_vsi *vsi)
6369 {
6370 	int err;
6371 
6372 	err = ice_vsi_cfg(vsi);
6373 	if (!err)
6374 		err = ice_up_complete(vsi);
6375 
6376 	return err;
6377 }
6378 
6379 /**
6380  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6381  * @syncp: pointer to u64_stats_sync
6382  * @stats: stats that pkts and bytes count will be taken from
6383  * @pkts: packets stats counter
6384  * @bytes: bytes stats counter
6385  *
6386  * This function fetches stats from the ring considering the atomic operations
6387  * that needs to be performed to read u64 values in 32 bit machine.
6388  */
6389 void
6390 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6391 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6392 {
6393 	unsigned int start;
6394 
6395 	do {
6396 		start = u64_stats_fetch_begin(syncp);
6397 		*pkts = stats.pkts;
6398 		*bytes = stats.bytes;
6399 	} while (u64_stats_fetch_retry(syncp, start));
6400 }
6401 
6402 /**
6403  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6404  * @vsi: the VSI to be updated
6405  * @vsi_stats: the stats struct to be updated
6406  * @rings: rings to work on
6407  * @count: number of rings
6408  */
6409 static void
6410 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6411 			     struct rtnl_link_stats64 *vsi_stats,
6412 			     struct ice_tx_ring **rings, u16 count)
6413 {
6414 	u16 i;
6415 
6416 	for (i = 0; i < count; i++) {
6417 		struct ice_tx_ring *ring;
6418 		u64 pkts = 0, bytes = 0;
6419 
6420 		ring = READ_ONCE(rings[i]);
6421 		if (!ring || !ring->ring_stats)
6422 			continue;
6423 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6424 					     ring->ring_stats->stats, &pkts,
6425 					     &bytes);
6426 		vsi_stats->tx_packets += pkts;
6427 		vsi_stats->tx_bytes += bytes;
6428 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6429 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6430 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6431 	}
6432 }
6433 
6434 /**
6435  * ice_update_vsi_ring_stats - Update VSI stats counters
6436  * @vsi: the VSI to be updated
6437  */
6438 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6439 {
6440 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6441 	struct rtnl_link_stats64 *vsi_stats;
6442 	u64 pkts, bytes;
6443 	int i;
6444 
6445 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6446 	if (!vsi_stats)
6447 		return;
6448 
6449 	/* reset non-netdev (extended) stats */
6450 	vsi->tx_restart = 0;
6451 	vsi->tx_busy = 0;
6452 	vsi->tx_linearize = 0;
6453 	vsi->rx_buf_failed = 0;
6454 	vsi->rx_page_failed = 0;
6455 
6456 	rcu_read_lock();
6457 
6458 	/* update Tx rings counters */
6459 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6460 				     vsi->num_txq);
6461 
6462 	/* update Rx rings counters */
6463 	ice_for_each_rxq(vsi, i) {
6464 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6465 		struct ice_ring_stats *ring_stats;
6466 
6467 		ring_stats = ring->ring_stats;
6468 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6469 					     ring_stats->stats, &pkts,
6470 					     &bytes);
6471 		vsi_stats->rx_packets += pkts;
6472 		vsi_stats->rx_bytes += bytes;
6473 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6474 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6475 	}
6476 
6477 	/* update XDP Tx rings counters */
6478 	if (ice_is_xdp_ena_vsi(vsi))
6479 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6480 					     vsi->num_xdp_txq);
6481 
6482 	rcu_read_unlock();
6483 
6484 	net_stats = &vsi->net_stats;
6485 	stats_prev = &vsi->net_stats_prev;
6486 
6487 	/* clear prev counters after reset */
6488 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6489 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6490 		stats_prev->tx_packets = 0;
6491 		stats_prev->tx_bytes = 0;
6492 		stats_prev->rx_packets = 0;
6493 		stats_prev->rx_bytes = 0;
6494 	}
6495 
6496 	/* update netdev counters */
6497 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6498 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6499 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6500 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6501 
6502 	stats_prev->tx_packets = vsi_stats->tx_packets;
6503 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6504 	stats_prev->rx_packets = vsi_stats->rx_packets;
6505 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6506 
6507 	kfree(vsi_stats);
6508 }
6509 
6510 /**
6511  * ice_update_vsi_stats - Update VSI stats counters
6512  * @vsi: the VSI to be updated
6513  */
6514 void ice_update_vsi_stats(struct ice_vsi *vsi)
6515 {
6516 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6517 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6518 	struct ice_pf *pf = vsi->back;
6519 
6520 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6521 	    test_bit(ICE_CFG_BUSY, pf->state))
6522 		return;
6523 
6524 	/* get stats as recorded by Tx/Rx rings */
6525 	ice_update_vsi_ring_stats(vsi);
6526 
6527 	/* get VSI stats as recorded by the hardware */
6528 	ice_update_eth_stats(vsi);
6529 
6530 	cur_ns->tx_errors = cur_es->tx_errors;
6531 	cur_ns->rx_dropped = cur_es->rx_discards;
6532 	cur_ns->tx_dropped = cur_es->tx_discards;
6533 	cur_ns->multicast = cur_es->rx_multicast;
6534 
6535 	/* update some more netdev stats if this is main VSI */
6536 	if (vsi->type == ICE_VSI_PF) {
6537 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6538 		cur_ns->rx_errors = pf->stats.crc_errors +
6539 				    pf->stats.illegal_bytes +
6540 				    pf->stats.rx_len_errors +
6541 				    pf->stats.rx_undersize +
6542 				    pf->hw_csum_rx_error +
6543 				    pf->stats.rx_jabber +
6544 				    pf->stats.rx_fragments +
6545 				    pf->stats.rx_oversize;
6546 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6547 		/* record drops from the port level */
6548 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6549 	}
6550 }
6551 
6552 /**
6553  * ice_update_pf_stats - Update PF port stats counters
6554  * @pf: PF whose stats needs to be updated
6555  */
6556 void ice_update_pf_stats(struct ice_pf *pf)
6557 {
6558 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6559 	struct ice_hw *hw = &pf->hw;
6560 	u16 fd_ctr_base;
6561 	u8 port;
6562 
6563 	port = hw->port_info->lport;
6564 	prev_ps = &pf->stats_prev;
6565 	cur_ps = &pf->stats;
6566 
6567 	if (ice_is_reset_in_progress(pf->state))
6568 		pf->stat_prev_loaded = false;
6569 
6570 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6571 			  &prev_ps->eth.rx_bytes,
6572 			  &cur_ps->eth.rx_bytes);
6573 
6574 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6575 			  &prev_ps->eth.rx_unicast,
6576 			  &cur_ps->eth.rx_unicast);
6577 
6578 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6579 			  &prev_ps->eth.rx_multicast,
6580 			  &cur_ps->eth.rx_multicast);
6581 
6582 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6583 			  &prev_ps->eth.rx_broadcast,
6584 			  &cur_ps->eth.rx_broadcast);
6585 
6586 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6587 			  &prev_ps->eth.rx_discards,
6588 			  &cur_ps->eth.rx_discards);
6589 
6590 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6591 			  &prev_ps->eth.tx_bytes,
6592 			  &cur_ps->eth.tx_bytes);
6593 
6594 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6595 			  &prev_ps->eth.tx_unicast,
6596 			  &cur_ps->eth.tx_unicast);
6597 
6598 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6599 			  &prev_ps->eth.tx_multicast,
6600 			  &cur_ps->eth.tx_multicast);
6601 
6602 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6603 			  &prev_ps->eth.tx_broadcast,
6604 			  &cur_ps->eth.tx_broadcast);
6605 
6606 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6607 			  &prev_ps->tx_dropped_link_down,
6608 			  &cur_ps->tx_dropped_link_down);
6609 
6610 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6611 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6612 
6613 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6614 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6615 
6616 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6617 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6618 
6619 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6620 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6621 
6622 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6623 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6624 
6625 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6626 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6627 
6628 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6629 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6630 
6631 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6632 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6633 
6634 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6635 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6636 
6637 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6638 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6639 
6640 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6641 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6642 
6643 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6644 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6645 
6646 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6647 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6648 
6649 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6650 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6651 
6652 	fd_ctr_base = hw->fd_ctr_base;
6653 
6654 	ice_stat_update40(hw,
6655 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6656 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6657 			  &cur_ps->fd_sb_match);
6658 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6659 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6660 
6661 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6662 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6663 
6664 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6665 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6666 
6667 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6668 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6669 
6670 	ice_update_dcb_stats(pf);
6671 
6672 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6673 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6674 
6675 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6676 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6677 
6678 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6679 			  &prev_ps->mac_local_faults,
6680 			  &cur_ps->mac_local_faults);
6681 
6682 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6683 			  &prev_ps->mac_remote_faults,
6684 			  &cur_ps->mac_remote_faults);
6685 
6686 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6687 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6688 
6689 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6690 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6691 
6692 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6693 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6694 
6695 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6696 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6697 
6698 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6699 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6700 
6701 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6702 
6703 	pf->stat_prev_loaded = true;
6704 }
6705 
6706 /**
6707  * ice_get_stats64 - get statistics for network device structure
6708  * @netdev: network interface device structure
6709  * @stats: main device statistics structure
6710  */
6711 static
6712 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6713 {
6714 	struct ice_netdev_priv *np = netdev_priv(netdev);
6715 	struct rtnl_link_stats64 *vsi_stats;
6716 	struct ice_vsi *vsi = np->vsi;
6717 
6718 	vsi_stats = &vsi->net_stats;
6719 
6720 	if (!vsi->num_txq || !vsi->num_rxq)
6721 		return;
6722 
6723 	/* netdev packet/byte stats come from ring counter. These are obtained
6724 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6725 	 * But, only call the update routine and read the registers if VSI is
6726 	 * not down.
6727 	 */
6728 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6729 		ice_update_vsi_ring_stats(vsi);
6730 	stats->tx_packets = vsi_stats->tx_packets;
6731 	stats->tx_bytes = vsi_stats->tx_bytes;
6732 	stats->rx_packets = vsi_stats->rx_packets;
6733 	stats->rx_bytes = vsi_stats->rx_bytes;
6734 
6735 	/* The rest of the stats can be read from the hardware but instead we
6736 	 * just return values that the watchdog task has already obtained from
6737 	 * the hardware.
6738 	 */
6739 	stats->multicast = vsi_stats->multicast;
6740 	stats->tx_errors = vsi_stats->tx_errors;
6741 	stats->tx_dropped = vsi_stats->tx_dropped;
6742 	stats->rx_errors = vsi_stats->rx_errors;
6743 	stats->rx_dropped = vsi_stats->rx_dropped;
6744 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6745 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6746 }
6747 
6748 /**
6749  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6750  * @vsi: VSI having NAPI disabled
6751  */
6752 static void ice_napi_disable_all(struct ice_vsi *vsi)
6753 {
6754 	int q_idx;
6755 
6756 	if (!vsi->netdev)
6757 		return;
6758 
6759 	ice_for_each_q_vector(vsi, q_idx) {
6760 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6761 
6762 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6763 			napi_disable(&q_vector->napi);
6764 
6765 		cancel_work_sync(&q_vector->tx.dim.work);
6766 		cancel_work_sync(&q_vector->rx.dim.work);
6767 	}
6768 }
6769 
6770 /**
6771  * ice_down - Shutdown the connection
6772  * @vsi: The VSI being stopped
6773  *
6774  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6775  */
6776 int ice_down(struct ice_vsi *vsi)
6777 {
6778 	int i, tx_err, rx_err, vlan_err = 0;
6779 
6780 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6781 
6782 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6783 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6784 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6785 		netif_carrier_off(vsi->netdev);
6786 		netif_tx_disable(vsi->netdev);
6787 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6788 		ice_eswitch_stop_all_tx_queues(vsi->back);
6789 	}
6790 
6791 	ice_vsi_dis_irq(vsi);
6792 
6793 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6794 	if (tx_err)
6795 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6796 			   vsi->vsi_num, tx_err);
6797 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6798 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6799 		if (tx_err)
6800 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6801 				   vsi->vsi_num, tx_err);
6802 	}
6803 
6804 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6805 	if (rx_err)
6806 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6807 			   vsi->vsi_num, rx_err);
6808 
6809 	ice_napi_disable_all(vsi);
6810 
6811 	ice_for_each_txq(vsi, i)
6812 		ice_clean_tx_ring(vsi->tx_rings[i]);
6813 
6814 	ice_for_each_rxq(vsi, i)
6815 		ice_clean_rx_ring(vsi->rx_rings[i]);
6816 
6817 	if (tx_err || rx_err || vlan_err) {
6818 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6819 			   vsi->vsi_num, vsi->vsw->sw_id);
6820 		return -EIO;
6821 	}
6822 
6823 	return 0;
6824 }
6825 
6826 /**
6827  * ice_down_up - shutdown the VSI connection and bring it up
6828  * @vsi: the VSI to be reconnected
6829  */
6830 int ice_down_up(struct ice_vsi *vsi)
6831 {
6832 	int ret;
6833 
6834 	/* if DOWN already set, nothing to do */
6835 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6836 		return 0;
6837 
6838 	ret = ice_down(vsi);
6839 	if (ret)
6840 		return ret;
6841 
6842 	ret = ice_up(vsi);
6843 	if (ret) {
6844 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6845 		return ret;
6846 	}
6847 
6848 	return 0;
6849 }
6850 
6851 /**
6852  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6853  * @vsi: VSI having resources allocated
6854  *
6855  * Return 0 on success, negative on failure
6856  */
6857 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6858 {
6859 	int i, err = 0;
6860 
6861 	if (!vsi->num_txq) {
6862 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6863 			vsi->vsi_num);
6864 		return -EINVAL;
6865 	}
6866 
6867 	ice_for_each_txq(vsi, i) {
6868 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6869 
6870 		if (!ring)
6871 			return -EINVAL;
6872 
6873 		if (vsi->netdev)
6874 			ring->netdev = vsi->netdev;
6875 		err = ice_setup_tx_ring(ring);
6876 		if (err)
6877 			break;
6878 	}
6879 
6880 	return err;
6881 }
6882 
6883 /**
6884  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6885  * @vsi: VSI having resources allocated
6886  *
6887  * Return 0 on success, negative on failure
6888  */
6889 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6890 {
6891 	int i, err = 0;
6892 
6893 	if (!vsi->num_rxq) {
6894 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6895 			vsi->vsi_num);
6896 		return -EINVAL;
6897 	}
6898 
6899 	ice_for_each_rxq(vsi, i) {
6900 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6901 
6902 		if (!ring)
6903 			return -EINVAL;
6904 
6905 		if (vsi->netdev)
6906 			ring->netdev = vsi->netdev;
6907 		err = ice_setup_rx_ring(ring);
6908 		if (err)
6909 			break;
6910 	}
6911 
6912 	return err;
6913 }
6914 
6915 /**
6916  * ice_vsi_open_ctrl - open control VSI for use
6917  * @vsi: the VSI to open
6918  *
6919  * Initialization of the Control VSI
6920  *
6921  * Returns 0 on success, negative value on error
6922  */
6923 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6924 {
6925 	char int_name[ICE_INT_NAME_STR_LEN];
6926 	struct ice_pf *pf = vsi->back;
6927 	struct device *dev;
6928 	int err;
6929 
6930 	dev = ice_pf_to_dev(pf);
6931 	/* allocate descriptors */
6932 	err = ice_vsi_setup_tx_rings(vsi);
6933 	if (err)
6934 		goto err_setup_tx;
6935 
6936 	err = ice_vsi_setup_rx_rings(vsi);
6937 	if (err)
6938 		goto err_setup_rx;
6939 
6940 	err = ice_vsi_cfg(vsi);
6941 	if (err)
6942 		goto err_setup_rx;
6943 
6944 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6945 		 dev_driver_string(dev), dev_name(dev));
6946 	err = ice_vsi_req_irq_msix(vsi, int_name);
6947 	if (err)
6948 		goto err_setup_rx;
6949 
6950 	ice_vsi_cfg_msix(vsi);
6951 
6952 	err = ice_vsi_start_all_rx_rings(vsi);
6953 	if (err)
6954 		goto err_up_complete;
6955 
6956 	clear_bit(ICE_VSI_DOWN, vsi->state);
6957 	ice_vsi_ena_irq(vsi);
6958 
6959 	return 0;
6960 
6961 err_up_complete:
6962 	ice_down(vsi);
6963 err_setup_rx:
6964 	ice_vsi_free_rx_rings(vsi);
6965 err_setup_tx:
6966 	ice_vsi_free_tx_rings(vsi);
6967 
6968 	return err;
6969 }
6970 
6971 /**
6972  * ice_vsi_open - Called when a network interface is made active
6973  * @vsi: the VSI to open
6974  *
6975  * Initialization of the VSI
6976  *
6977  * Returns 0 on success, negative value on error
6978  */
6979 int ice_vsi_open(struct ice_vsi *vsi)
6980 {
6981 	char int_name[ICE_INT_NAME_STR_LEN];
6982 	struct ice_pf *pf = vsi->back;
6983 	int err;
6984 
6985 	/* allocate descriptors */
6986 	err = ice_vsi_setup_tx_rings(vsi);
6987 	if (err)
6988 		goto err_setup_tx;
6989 
6990 	err = ice_vsi_setup_rx_rings(vsi);
6991 	if (err)
6992 		goto err_setup_rx;
6993 
6994 	err = ice_vsi_cfg(vsi);
6995 	if (err)
6996 		goto err_setup_rx;
6997 
6998 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6999 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7000 	err = ice_vsi_req_irq_msix(vsi, int_name);
7001 	if (err)
7002 		goto err_setup_rx;
7003 
7004 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7005 
7006 	if (vsi->type == ICE_VSI_PF) {
7007 		/* Notify the stack of the actual queue counts. */
7008 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7009 		if (err)
7010 			goto err_set_qs;
7011 
7012 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7013 		if (err)
7014 			goto err_set_qs;
7015 	}
7016 
7017 	err = ice_up_complete(vsi);
7018 	if (err)
7019 		goto err_up_complete;
7020 
7021 	return 0;
7022 
7023 err_up_complete:
7024 	ice_down(vsi);
7025 err_set_qs:
7026 	ice_vsi_free_irq(vsi);
7027 err_setup_rx:
7028 	ice_vsi_free_rx_rings(vsi);
7029 err_setup_tx:
7030 	ice_vsi_free_tx_rings(vsi);
7031 
7032 	return err;
7033 }
7034 
7035 /**
7036  * ice_vsi_release_all - Delete all VSIs
7037  * @pf: PF from which all VSIs are being removed
7038  */
7039 static void ice_vsi_release_all(struct ice_pf *pf)
7040 {
7041 	int err, i;
7042 
7043 	if (!pf->vsi)
7044 		return;
7045 
7046 	ice_for_each_vsi(pf, i) {
7047 		if (!pf->vsi[i])
7048 			continue;
7049 
7050 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7051 			continue;
7052 
7053 		err = ice_vsi_release(pf->vsi[i]);
7054 		if (err)
7055 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7056 				i, err, pf->vsi[i]->vsi_num);
7057 	}
7058 }
7059 
7060 /**
7061  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7062  * @pf: pointer to the PF instance
7063  * @type: VSI type to rebuild
7064  *
7065  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7066  */
7067 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7068 {
7069 	struct device *dev = ice_pf_to_dev(pf);
7070 	int i, err;
7071 
7072 	ice_for_each_vsi(pf, i) {
7073 		struct ice_vsi *vsi = pf->vsi[i];
7074 
7075 		if (!vsi || vsi->type != type)
7076 			continue;
7077 
7078 		/* rebuild the VSI */
7079 		err = ice_vsi_rebuild(vsi, true);
7080 		if (err) {
7081 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7082 				err, vsi->idx, ice_vsi_type_str(type));
7083 			return err;
7084 		}
7085 
7086 		/* replay filters for the VSI */
7087 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7088 		if (err) {
7089 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7090 				err, vsi->idx, ice_vsi_type_str(type));
7091 			return err;
7092 		}
7093 
7094 		/* Re-map HW VSI number, using VSI handle that has been
7095 		 * previously validated in ice_replay_vsi() call above
7096 		 */
7097 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7098 
7099 		/* enable the VSI */
7100 		err = ice_ena_vsi(vsi, false);
7101 		if (err) {
7102 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7103 				err, vsi->idx, ice_vsi_type_str(type));
7104 			return err;
7105 		}
7106 
7107 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7108 			 ice_vsi_type_str(type));
7109 	}
7110 
7111 	return 0;
7112 }
7113 
7114 /**
7115  * ice_update_pf_netdev_link - Update PF netdev link status
7116  * @pf: pointer to the PF instance
7117  */
7118 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7119 {
7120 	bool link_up;
7121 	int i;
7122 
7123 	ice_for_each_vsi(pf, i) {
7124 		struct ice_vsi *vsi = pf->vsi[i];
7125 
7126 		if (!vsi || vsi->type != ICE_VSI_PF)
7127 			return;
7128 
7129 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7130 		if (link_up) {
7131 			netif_carrier_on(pf->vsi[i]->netdev);
7132 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7133 		} else {
7134 			netif_carrier_off(pf->vsi[i]->netdev);
7135 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7136 		}
7137 	}
7138 }
7139 
7140 /**
7141  * ice_rebuild - rebuild after reset
7142  * @pf: PF to rebuild
7143  * @reset_type: type of reset
7144  *
7145  * Do not rebuild VF VSI in this flow because that is already handled via
7146  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7147  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7148  * to reset/rebuild all the VF VSI twice.
7149  */
7150 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7151 {
7152 	struct device *dev = ice_pf_to_dev(pf);
7153 	struct ice_hw *hw = &pf->hw;
7154 	bool dvm;
7155 	int err;
7156 
7157 	if (test_bit(ICE_DOWN, pf->state))
7158 		goto clear_recovery;
7159 
7160 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7161 
7162 #define ICE_EMP_RESET_SLEEP_MS 5000
7163 	if (reset_type == ICE_RESET_EMPR) {
7164 		/* If an EMP reset has occurred, any previously pending flash
7165 		 * update will have completed. We no longer know whether or
7166 		 * not the NVM update EMP reset is restricted.
7167 		 */
7168 		pf->fw_emp_reset_disabled = false;
7169 
7170 		msleep(ICE_EMP_RESET_SLEEP_MS);
7171 	}
7172 
7173 	err = ice_init_all_ctrlq(hw);
7174 	if (err) {
7175 		dev_err(dev, "control queues init failed %d\n", err);
7176 		goto err_init_ctrlq;
7177 	}
7178 
7179 	/* if DDP was previously loaded successfully */
7180 	if (!ice_is_safe_mode(pf)) {
7181 		/* reload the SW DB of filter tables */
7182 		if (reset_type == ICE_RESET_PFR)
7183 			ice_fill_blk_tbls(hw);
7184 		else
7185 			/* Reload DDP Package after CORER/GLOBR reset */
7186 			ice_load_pkg(NULL, pf);
7187 	}
7188 
7189 	err = ice_clear_pf_cfg(hw);
7190 	if (err) {
7191 		dev_err(dev, "clear PF configuration failed %d\n", err);
7192 		goto err_init_ctrlq;
7193 	}
7194 
7195 	ice_clear_pxe_mode(hw);
7196 
7197 	err = ice_init_nvm(hw);
7198 	if (err) {
7199 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7200 		goto err_init_ctrlq;
7201 	}
7202 
7203 	err = ice_get_caps(hw);
7204 	if (err) {
7205 		dev_err(dev, "ice_get_caps failed %d\n", err);
7206 		goto err_init_ctrlq;
7207 	}
7208 
7209 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7210 	if (err) {
7211 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7212 		goto err_init_ctrlq;
7213 	}
7214 
7215 	dvm = ice_is_dvm_ena(hw);
7216 
7217 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7218 	if (err)
7219 		goto err_init_ctrlq;
7220 
7221 	err = ice_sched_init_port(hw->port_info);
7222 	if (err)
7223 		goto err_sched_init_port;
7224 
7225 	/* start misc vector */
7226 	err = ice_req_irq_msix_misc(pf);
7227 	if (err) {
7228 		dev_err(dev, "misc vector setup failed: %d\n", err);
7229 		goto err_sched_init_port;
7230 	}
7231 
7232 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7233 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7234 		if (!rd32(hw, PFQF_FD_SIZE)) {
7235 			u16 unused, guar, b_effort;
7236 
7237 			guar = hw->func_caps.fd_fltr_guar;
7238 			b_effort = hw->func_caps.fd_fltr_best_effort;
7239 
7240 			/* force guaranteed filter pool for PF */
7241 			ice_alloc_fd_guar_item(hw, &unused, guar);
7242 			/* force shared filter pool for PF */
7243 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7244 		}
7245 	}
7246 
7247 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7248 		ice_dcb_rebuild(pf);
7249 
7250 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7251 	 * the VSI rebuild. If not, this causes the PTP link status events to
7252 	 * fail.
7253 	 */
7254 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7255 		ice_ptp_reset(pf);
7256 
7257 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7258 		ice_gnss_init(pf);
7259 
7260 	/* rebuild PF VSI */
7261 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7262 	if (err) {
7263 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7264 		goto err_vsi_rebuild;
7265 	}
7266 
7267 	/* configure PTP timestamping after VSI rebuild */
7268 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7269 		ice_ptp_cfg_timestamp(pf, false);
7270 
7271 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7272 	if (err) {
7273 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7274 		goto err_vsi_rebuild;
7275 	}
7276 
7277 	if (reset_type == ICE_RESET_PFR) {
7278 		err = ice_rebuild_channels(pf);
7279 		if (err) {
7280 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7281 				err);
7282 			goto err_vsi_rebuild;
7283 		}
7284 	}
7285 
7286 	/* If Flow Director is active */
7287 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7288 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7289 		if (err) {
7290 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7291 			goto err_vsi_rebuild;
7292 		}
7293 
7294 		/* replay HW Flow Director recipes */
7295 		if (hw->fdir_prof)
7296 			ice_fdir_replay_flows(hw);
7297 
7298 		/* replay Flow Director filters */
7299 		ice_fdir_replay_fltrs(pf);
7300 
7301 		ice_rebuild_arfs(pf);
7302 	}
7303 
7304 	ice_update_pf_netdev_link(pf);
7305 
7306 	/* tell the firmware we are up */
7307 	err = ice_send_version(pf);
7308 	if (err) {
7309 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7310 			err);
7311 		goto err_vsi_rebuild;
7312 	}
7313 
7314 	ice_replay_post(hw);
7315 
7316 	/* if we get here, reset flow is successful */
7317 	clear_bit(ICE_RESET_FAILED, pf->state);
7318 
7319 	ice_plug_aux_dev(pf);
7320 	return;
7321 
7322 err_vsi_rebuild:
7323 err_sched_init_port:
7324 	ice_sched_cleanup_all(hw);
7325 err_init_ctrlq:
7326 	ice_shutdown_all_ctrlq(hw);
7327 	set_bit(ICE_RESET_FAILED, pf->state);
7328 clear_recovery:
7329 	/* set this bit in PF state to control service task scheduling */
7330 	set_bit(ICE_NEEDS_RESTART, pf->state);
7331 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7332 }
7333 
7334 /**
7335  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7336  * @vsi: Pointer to VSI structure
7337  */
7338 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7339 {
7340 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7341 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7342 	else
7343 		return ICE_RXBUF_3072;
7344 }
7345 
7346 /**
7347  * ice_change_mtu - NDO callback to change the MTU
7348  * @netdev: network interface device structure
7349  * @new_mtu: new value for maximum frame size
7350  *
7351  * Returns 0 on success, negative on failure
7352  */
7353 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7354 {
7355 	struct ice_netdev_priv *np = netdev_priv(netdev);
7356 	struct ice_vsi *vsi = np->vsi;
7357 	struct ice_pf *pf = vsi->back;
7358 	u8 count = 0;
7359 	int err = 0;
7360 
7361 	if (new_mtu == (int)netdev->mtu) {
7362 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7363 		return 0;
7364 	}
7365 
7366 	if (ice_is_xdp_ena_vsi(vsi)) {
7367 		int frame_size = ice_max_xdp_frame_size(vsi);
7368 
7369 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7370 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7371 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7372 			return -EINVAL;
7373 		}
7374 	}
7375 
7376 	/* if a reset is in progress, wait for some time for it to complete */
7377 	do {
7378 		if (ice_is_reset_in_progress(pf->state)) {
7379 			count++;
7380 			usleep_range(1000, 2000);
7381 		} else {
7382 			break;
7383 		}
7384 
7385 	} while (count < 100);
7386 
7387 	if (count == 100) {
7388 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7389 		return -EBUSY;
7390 	}
7391 
7392 	netdev->mtu = (unsigned int)new_mtu;
7393 
7394 	/* if VSI is up, bring it down and then back up */
7395 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7396 		err = ice_down(vsi);
7397 		if (err) {
7398 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7399 			return err;
7400 		}
7401 
7402 		err = ice_up(vsi);
7403 		if (err) {
7404 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7405 			return err;
7406 		}
7407 	}
7408 
7409 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7410 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7411 
7412 	return err;
7413 }
7414 
7415 /**
7416  * ice_eth_ioctl - Access the hwtstamp interface
7417  * @netdev: network interface device structure
7418  * @ifr: interface request data
7419  * @cmd: ioctl command
7420  */
7421 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7422 {
7423 	struct ice_netdev_priv *np = netdev_priv(netdev);
7424 	struct ice_pf *pf = np->vsi->back;
7425 
7426 	switch (cmd) {
7427 	case SIOCGHWTSTAMP:
7428 		return ice_ptp_get_ts_config(pf, ifr);
7429 	case SIOCSHWTSTAMP:
7430 		return ice_ptp_set_ts_config(pf, ifr);
7431 	default:
7432 		return -EOPNOTSUPP;
7433 	}
7434 }
7435 
7436 /**
7437  * ice_aq_str - convert AQ err code to a string
7438  * @aq_err: the AQ error code to convert
7439  */
7440 const char *ice_aq_str(enum ice_aq_err aq_err)
7441 {
7442 	switch (aq_err) {
7443 	case ICE_AQ_RC_OK:
7444 		return "OK";
7445 	case ICE_AQ_RC_EPERM:
7446 		return "ICE_AQ_RC_EPERM";
7447 	case ICE_AQ_RC_ENOENT:
7448 		return "ICE_AQ_RC_ENOENT";
7449 	case ICE_AQ_RC_ENOMEM:
7450 		return "ICE_AQ_RC_ENOMEM";
7451 	case ICE_AQ_RC_EBUSY:
7452 		return "ICE_AQ_RC_EBUSY";
7453 	case ICE_AQ_RC_EEXIST:
7454 		return "ICE_AQ_RC_EEXIST";
7455 	case ICE_AQ_RC_EINVAL:
7456 		return "ICE_AQ_RC_EINVAL";
7457 	case ICE_AQ_RC_ENOSPC:
7458 		return "ICE_AQ_RC_ENOSPC";
7459 	case ICE_AQ_RC_ENOSYS:
7460 		return "ICE_AQ_RC_ENOSYS";
7461 	case ICE_AQ_RC_EMODE:
7462 		return "ICE_AQ_RC_EMODE";
7463 	case ICE_AQ_RC_ENOSEC:
7464 		return "ICE_AQ_RC_ENOSEC";
7465 	case ICE_AQ_RC_EBADSIG:
7466 		return "ICE_AQ_RC_EBADSIG";
7467 	case ICE_AQ_RC_ESVN:
7468 		return "ICE_AQ_RC_ESVN";
7469 	case ICE_AQ_RC_EBADMAN:
7470 		return "ICE_AQ_RC_EBADMAN";
7471 	case ICE_AQ_RC_EBADBUF:
7472 		return "ICE_AQ_RC_EBADBUF";
7473 	}
7474 
7475 	return "ICE_AQ_RC_UNKNOWN";
7476 }
7477 
7478 /**
7479  * ice_set_rss_lut - Set RSS LUT
7480  * @vsi: Pointer to VSI structure
7481  * @lut: Lookup table
7482  * @lut_size: Lookup table size
7483  *
7484  * Returns 0 on success, negative on failure
7485  */
7486 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7487 {
7488 	struct ice_aq_get_set_rss_lut_params params = {};
7489 	struct ice_hw *hw = &vsi->back->hw;
7490 	int status;
7491 
7492 	if (!lut)
7493 		return -EINVAL;
7494 
7495 	params.vsi_handle = vsi->idx;
7496 	params.lut_size = lut_size;
7497 	params.lut_type = vsi->rss_lut_type;
7498 	params.lut = lut;
7499 
7500 	status = ice_aq_set_rss_lut(hw, &params);
7501 	if (status)
7502 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7503 			status, ice_aq_str(hw->adminq.sq_last_status));
7504 
7505 	return status;
7506 }
7507 
7508 /**
7509  * ice_set_rss_key - Set RSS key
7510  * @vsi: Pointer to the VSI structure
7511  * @seed: RSS hash seed
7512  *
7513  * Returns 0 on success, negative on failure
7514  */
7515 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7516 {
7517 	struct ice_hw *hw = &vsi->back->hw;
7518 	int status;
7519 
7520 	if (!seed)
7521 		return -EINVAL;
7522 
7523 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7524 	if (status)
7525 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7526 			status, ice_aq_str(hw->adminq.sq_last_status));
7527 
7528 	return status;
7529 }
7530 
7531 /**
7532  * ice_get_rss_lut - Get RSS LUT
7533  * @vsi: Pointer to VSI structure
7534  * @lut: Buffer to store the lookup table entries
7535  * @lut_size: Size of buffer to store the lookup table entries
7536  *
7537  * Returns 0 on success, negative on failure
7538  */
7539 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7540 {
7541 	struct ice_aq_get_set_rss_lut_params params = {};
7542 	struct ice_hw *hw = &vsi->back->hw;
7543 	int status;
7544 
7545 	if (!lut)
7546 		return -EINVAL;
7547 
7548 	params.vsi_handle = vsi->idx;
7549 	params.lut_size = lut_size;
7550 	params.lut_type = vsi->rss_lut_type;
7551 	params.lut = lut;
7552 
7553 	status = ice_aq_get_rss_lut(hw, &params);
7554 	if (status)
7555 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7556 			status, ice_aq_str(hw->adminq.sq_last_status));
7557 
7558 	return status;
7559 }
7560 
7561 /**
7562  * ice_get_rss_key - Get RSS key
7563  * @vsi: Pointer to VSI structure
7564  * @seed: Buffer to store the key in
7565  *
7566  * Returns 0 on success, negative on failure
7567  */
7568 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7569 {
7570 	struct ice_hw *hw = &vsi->back->hw;
7571 	int status;
7572 
7573 	if (!seed)
7574 		return -EINVAL;
7575 
7576 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7577 	if (status)
7578 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7579 			status, ice_aq_str(hw->adminq.sq_last_status));
7580 
7581 	return status;
7582 }
7583 
7584 /**
7585  * ice_bridge_getlink - Get the hardware bridge mode
7586  * @skb: skb buff
7587  * @pid: process ID
7588  * @seq: RTNL message seq
7589  * @dev: the netdev being configured
7590  * @filter_mask: filter mask passed in
7591  * @nlflags: netlink flags passed in
7592  *
7593  * Return the bridge mode (VEB/VEPA)
7594  */
7595 static int
7596 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7597 		   struct net_device *dev, u32 filter_mask, int nlflags)
7598 {
7599 	struct ice_netdev_priv *np = netdev_priv(dev);
7600 	struct ice_vsi *vsi = np->vsi;
7601 	struct ice_pf *pf = vsi->back;
7602 	u16 bmode;
7603 
7604 	bmode = pf->first_sw->bridge_mode;
7605 
7606 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7607 				       filter_mask, NULL);
7608 }
7609 
7610 /**
7611  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7612  * @vsi: Pointer to VSI structure
7613  * @bmode: Hardware bridge mode (VEB/VEPA)
7614  *
7615  * Returns 0 on success, negative on failure
7616  */
7617 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7618 {
7619 	struct ice_aqc_vsi_props *vsi_props;
7620 	struct ice_hw *hw = &vsi->back->hw;
7621 	struct ice_vsi_ctx *ctxt;
7622 	int ret;
7623 
7624 	vsi_props = &vsi->info;
7625 
7626 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7627 	if (!ctxt)
7628 		return -ENOMEM;
7629 
7630 	ctxt->info = vsi->info;
7631 
7632 	if (bmode == BRIDGE_MODE_VEB)
7633 		/* change from VEPA to VEB mode */
7634 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7635 	else
7636 		/* change from VEB to VEPA mode */
7637 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7638 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7639 
7640 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7641 	if (ret) {
7642 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7643 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7644 		goto out;
7645 	}
7646 	/* Update sw flags for book keeping */
7647 	vsi_props->sw_flags = ctxt->info.sw_flags;
7648 
7649 out:
7650 	kfree(ctxt);
7651 	return ret;
7652 }
7653 
7654 /**
7655  * ice_bridge_setlink - Set the hardware bridge mode
7656  * @dev: the netdev being configured
7657  * @nlh: RTNL message
7658  * @flags: bridge setlink flags
7659  * @extack: netlink extended ack
7660  *
7661  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7662  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7663  * not already set for all VSIs connected to this switch. And also update the
7664  * unicast switch filter rules for the corresponding switch of the netdev.
7665  */
7666 static int
7667 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7668 		   u16 __always_unused flags,
7669 		   struct netlink_ext_ack __always_unused *extack)
7670 {
7671 	struct ice_netdev_priv *np = netdev_priv(dev);
7672 	struct ice_pf *pf = np->vsi->back;
7673 	struct nlattr *attr, *br_spec;
7674 	struct ice_hw *hw = &pf->hw;
7675 	struct ice_sw *pf_sw;
7676 	int rem, v, err = 0;
7677 
7678 	pf_sw = pf->first_sw;
7679 	/* find the attribute in the netlink message */
7680 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7681 
7682 	nla_for_each_nested(attr, br_spec, rem) {
7683 		__u16 mode;
7684 
7685 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7686 			continue;
7687 		mode = nla_get_u16(attr);
7688 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7689 			return -EINVAL;
7690 		/* Continue  if bridge mode is not being flipped */
7691 		if (mode == pf_sw->bridge_mode)
7692 			continue;
7693 		/* Iterates through the PF VSI list and update the loopback
7694 		 * mode of the VSI
7695 		 */
7696 		ice_for_each_vsi(pf, v) {
7697 			if (!pf->vsi[v])
7698 				continue;
7699 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7700 			if (err)
7701 				return err;
7702 		}
7703 
7704 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7705 		/* Update the unicast switch filter rules for the corresponding
7706 		 * switch of the netdev
7707 		 */
7708 		err = ice_update_sw_rule_bridge_mode(hw);
7709 		if (err) {
7710 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7711 				   mode, err,
7712 				   ice_aq_str(hw->adminq.sq_last_status));
7713 			/* revert hw->evb_veb */
7714 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7715 			return err;
7716 		}
7717 
7718 		pf_sw->bridge_mode = mode;
7719 	}
7720 
7721 	return 0;
7722 }
7723 
7724 /**
7725  * ice_tx_timeout - Respond to a Tx Hang
7726  * @netdev: network interface device structure
7727  * @txqueue: Tx queue
7728  */
7729 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7730 {
7731 	struct ice_netdev_priv *np = netdev_priv(netdev);
7732 	struct ice_tx_ring *tx_ring = NULL;
7733 	struct ice_vsi *vsi = np->vsi;
7734 	struct ice_pf *pf = vsi->back;
7735 	u32 i;
7736 
7737 	pf->tx_timeout_count++;
7738 
7739 	/* Check if PFC is enabled for the TC to which the queue belongs
7740 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7741 	 * need to reset and rebuild
7742 	 */
7743 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7744 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7745 			 txqueue);
7746 		return;
7747 	}
7748 
7749 	/* now that we have an index, find the tx_ring struct */
7750 	ice_for_each_txq(vsi, i)
7751 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7752 			if (txqueue == vsi->tx_rings[i]->q_index) {
7753 				tx_ring = vsi->tx_rings[i];
7754 				break;
7755 			}
7756 
7757 	/* Reset recovery level if enough time has elapsed after last timeout.
7758 	 * Also ensure no new reset action happens before next timeout period.
7759 	 */
7760 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7761 		pf->tx_timeout_recovery_level = 1;
7762 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7763 				       netdev->watchdog_timeo)))
7764 		return;
7765 
7766 	if (tx_ring) {
7767 		struct ice_hw *hw = &pf->hw;
7768 		u32 head, val = 0;
7769 
7770 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7771 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7772 		/* Read interrupt register */
7773 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7774 
7775 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7776 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7777 			    head, tx_ring->next_to_use, val);
7778 	}
7779 
7780 	pf->tx_timeout_last_recovery = jiffies;
7781 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7782 		    pf->tx_timeout_recovery_level, txqueue);
7783 
7784 	switch (pf->tx_timeout_recovery_level) {
7785 	case 1:
7786 		set_bit(ICE_PFR_REQ, pf->state);
7787 		break;
7788 	case 2:
7789 		set_bit(ICE_CORER_REQ, pf->state);
7790 		break;
7791 	case 3:
7792 		set_bit(ICE_GLOBR_REQ, pf->state);
7793 		break;
7794 	default:
7795 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7796 		set_bit(ICE_DOWN, pf->state);
7797 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7798 		set_bit(ICE_SERVICE_DIS, pf->state);
7799 		break;
7800 	}
7801 
7802 	ice_service_task_schedule(pf);
7803 	pf->tx_timeout_recovery_level++;
7804 }
7805 
7806 /**
7807  * ice_setup_tc_cls_flower - flower classifier offloads
7808  * @np: net device to configure
7809  * @filter_dev: device on which filter is added
7810  * @cls_flower: offload data
7811  */
7812 static int
7813 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7814 			struct net_device *filter_dev,
7815 			struct flow_cls_offload *cls_flower)
7816 {
7817 	struct ice_vsi *vsi = np->vsi;
7818 
7819 	if (cls_flower->common.chain_index)
7820 		return -EOPNOTSUPP;
7821 
7822 	switch (cls_flower->command) {
7823 	case FLOW_CLS_REPLACE:
7824 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7825 	case FLOW_CLS_DESTROY:
7826 		return ice_del_cls_flower(vsi, cls_flower);
7827 	default:
7828 		return -EINVAL;
7829 	}
7830 }
7831 
7832 /**
7833  * ice_setup_tc_block_cb - callback handler registered for TC block
7834  * @type: TC SETUP type
7835  * @type_data: TC flower offload data that contains user input
7836  * @cb_priv: netdev private data
7837  */
7838 static int
7839 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7840 {
7841 	struct ice_netdev_priv *np = cb_priv;
7842 
7843 	switch (type) {
7844 	case TC_SETUP_CLSFLOWER:
7845 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7846 					       type_data);
7847 	default:
7848 		return -EOPNOTSUPP;
7849 	}
7850 }
7851 
7852 /**
7853  * ice_validate_mqprio_qopt - Validate TCF input parameters
7854  * @vsi: Pointer to VSI
7855  * @mqprio_qopt: input parameters for mqprio queue configuration
7856  *
7857  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7858  * needed), and make sure user doesn't specify qcount and BW rate limit
7859  * for TCs, which are more than "num_tc"
7860  */
7861 static int
7862 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7863 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7864 {
7865 	u64 sum_max_rate = 0, sum_min_rate = 0;
7866 	int non_power_of_2_qcount = 0;
7867 	struct ice_pf *pf = vsi->back;
7868 	int max_rss_q_cnt = 0;
7869 	struct device *dev;
7870 	int i, speed;
7871 	u8 num_tc;
7872 
7873 	if (vsi->type != ICE_VSI_PF)
7874 		return -EINVAL;
7875 
7876 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7877 	    mqprio_qopt->qopt.num_tc < 1 ||
7878 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7879 		return -EINVAL;
7880 
7881 	dev = ice_pf_to_dev(pf);
7882 	vsi->ch_rss_size = 0;
7883 	num_tc = mqprio_qopt->qopt.num_tc;
7884 
7885 	for (i = 0; num_tc; i++) {
7886 		int qcount = mqprio_qopt->qopt.count[i];
7887 		u64 max_rate, min_rate, rem;
7888 
7889 		if (!qcount)
7890 			return -EINVAL;
7891 
7892 		if (is_power_of_2(qcount)) {
7893 			if (non_power_of_2_qcount &&
7894 			    qcount > non_power_of_2_qcount) {
7895 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7896 					qcount, non_power_of_2_qcount);
7897 				return -EINVAL;
7898 			}
7899 			if (qcount > max_rss_q_cnt)
7900 				max_rss_q_cnt = qcount;
7901 		} else {
7902 			if (non_power_of_2_qcount &&
7903 			    qcount != non_power_of_2_qcount) {
7904 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7905 					qcount, non_power_of_2_qcount);
7906 				return -EINVAL;
7907 			}
7908 			if (qcount < max_rss_q_cnt) {
7909 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7910 					qcount, max_rss_q_cnt);
7911 				return -EINVAL;
7912 			}
7913 			max_rss_q_cnt = qcount;
7914 			non_power_of_2_qcount = qcount;
7915 		}
7916 
7917 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7918 		 * converts the bandwidth rate limit into Bytes/s when
7919 		 * passing it down to the driver. So convert input bandwidth
7920 		 * from Bytes/s to Kbps
7921 		 */
7922 		max_rate = mqprio_qopt->max_rate[i];
7923 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7924 		sum_max_rate += max_rate;
7925 
7926 		/* min_rate is minimum guaranteed rate and it can't be zero */
7927 		min_rate = mqprio_qopt->min_rate[i];
7928 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7929 		sum_min_rate += min_rate;
7930 
7931 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7932 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7933 				min_rate, ICE_MIN_BW_LIMIT);
7934 			return -EINVAL;
7935 		}
7936 
7937 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7938 		if (rem) {
7939 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7940 				i, ICE_MIN_BW_LIMIT);
7941 			return -EINVAL;
7942 		}
7943 
7944 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7945 		if (rem) {
7946 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7947 				i, ICE_MIN_BW_LIMIT);
7948 			return -EINVAL;
7949 		}
7950 
7951 		/* min_rate can't be more than max_rate, except when max_rate
7952 		 * is zero (implies max_rate sought is max line rate). In such
7953 		 * a case min_rate can be more than max.
7954 		 */
7955 		if (max_rate && min_rate > max_rate) {
7956 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7957 				min_rate, max_rate);
7958 			return -EINVAL;
7959 		}
7960 
7961 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7962 			break;
7963 		if (mqprio_qopt->qopt.offset[i + 1] !=
7964 		    (mqprio_qopt->qopt.offset[i] + qcount))
7965 			return -EINVAL;
7966 	}
7967 	if (vsi->num_rxq <
7968 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7969 		return -EINVAL;
7970 	if (vsi->num_txq <
7971 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7972 		return -EINVAL;
7973 
7974 	speed = ice_get_link_speed_kbps(vsi);
7975 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7976 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7977 			sum_max_rate, speed);
7978 		return -EINVAL;
7979 	}
7980 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7981 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7982 			sum_min_rate, speed);
7983 		return -EINVAL;
7984 	}
7985 
7986 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7987 	vsi->ch_rss_size = max_rss_q_cnt;
7988 
7989 	return 0;
7990 }
7991 
7992 /**
7993  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7994  * @pf: ptr to PF device
7995  * @vsi: ptr to VSI
7996  */
7997 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7998 {
7999 	struct device *dev = ice_pf_to_dev(pf);
8000 	bool added = false;
8001 	struct ice_hw *hw;
8002 	int flow;
8003 
8004 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8005 		return -EINVAL;
8006 
8007 	hw = &pf->hw;
8008 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8009 		struct ice_fd_hw_prof *prof;
8010 		int tun, status;
8011 		u64 entry_h;
8012 
8013 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8014 		      hw->fdir_prof[flow]->cnt))
8015 			continue;
8016 
8017 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8018 			enum ice_flow_priority prio;
8019 			u64 prof_id;
8020 
8021 			/* add this VSI to FDir profile for this flow */
8022 			prio = ICE_FLOW_PRIO_NORMAL;
8023 			prof = hw->fdir_prof[flow];
8024 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8025 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8026 						    prof->vsi_h[0], vsi->idx,
8027 						    prio, prof->fdir_seg[tun],
8028 						    &entry_h);
8029 			if (status) {
8030 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8031 					vsi->idx, flow);
8032 				continue;
8033 			}
8034 
8035 			prof->entry_h[prof->cnt][tun] = entry_h;
8036 		}
8037 
8038 		/* store VSI for filter replay and delete */
8039 		prof->vsi_h[prof->cnt] = vsi->idx;
8040 		prof->cnt++;
8041 
8042 		added = true;
8043 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8044 			flow);
8045 	}
8046 
8047 	if (!added)
8048 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8049 
8050 	return 0;
8051 }
8052 
8053 /**
8054  * ice_add_channel - add a channel by adding VSI
8055  * @pf: ptr to PF device
8056  * @sw_id: underlying HW switching element ID
8057  * @ch: ptr to channel structure
8058  *
8059  * Add a channel (VSI) using add_vsi and queue_map
8060  */
8061 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8062 {
8063 	struct device *dev = ice_pf_to_dev(pf);
8064 	struct ice_vsi *vsi;
8065 
8066 	if (ch->type != ICE_VSI_CHNL) {
8067 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8068 		return -EINVAL;
8069 	}
8070 
8071 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8072 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8073 		dev_err(dev, "create chnl VSI failure\n");
8074 		return -EINVAL;
8075 	}
8076 
8077 	ice_add_vsi_to_fdir(pf, vsi);
8078 
8079 	ch->sw_id = sw_id;
8080 	ch->vsi_num = vsi->vsi_num;
8081 	ch->info.mapping_flags = vsi->info.mapping_flags;
8082 	ch->ch_vsi = vsi;
8083 	/* set the back pointer of channel for newly created VSI */
8084 	vsi->ch = ch;
8085 
8086 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8087 	       sizeof(vsi->info.q_mapping));
8088 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8089 	       sizeof(vsi->info.tc_mapping));
8090 
8091 	return 0;
8092 }
8093 
8094 /**
8095  * ice_chnl_cfg_res
8096  * @vsi: the VSI being setup
8097  * @ch: ptr to channel structure
8098  *
8099  * Configure channel specific resources such as rings, vector.
8100  */
8101 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8102 {
8103 	int i;
8104 
8105 	for (i = 0; i < ch->num_txq; i++) {
8106 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8107 		struct ice_ring_container *rc;
8108 		struct ice_tx_ring *tx_ring;
8109 		struct ice_rx_ring *rx_ring;
8110 
8111 		tx_ring = vsi->tx_rings[ch->base_q + i];
8112 		rx_ring = vsi->rx_rings[ch->base_q + i];
8113 		if (!tx_ring || !rx_ring)
8114 			continue;
8115 
8116 		/* setup ring being channel enabled */
8117 		tx_ring->ch = ch;
8118 		rx_ring->ch = ch;
8119 
8120 		/* following code block sets up vector specific attributes */
8121 		tx_q_vector = tx_ring->q_vector;
8122 		rx_q_vector = rx_ring->q_vector;
8123 		if (!tx_q_vector && !rx_q_vector)
8124 			continue;
8125 
8126 		if (tx_q_vector) {
8127 			tx_q_vector->ch = ch;
8128 			/* setup Tx and Rx ITR setting if DIM is off */
8129 			rc = &tx_q_vector->tx;
8130 			if (!ITR_IS_DYNAMIC(rc))
8131 				ice_write_itr(rc, rc->itr_setting);
8132 		}
8133 		if (rx_q_vector) {
8134 			rx_q_vector->ch = ch;
8135 			/* setup Tx and Rx ITR setting if DIM is off */
8136 			rc = &rx_q_vector->rx;
8137 			if (!ITR_IS_DYNAMIC(rc))
8138 				ice_write_itr(rc, rc->itr_setting);
8139 		}
8140 	}
8141 
8142 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8143 	 * GLINT_ITR register would have written to perform in-context
8144 	 * update, hence perform flush
8145 	 */
8146 	if (ch->num_txq || ch->num_rxq)
8147 		ice_flush(&vsi->back->hw);
8148 }
8149 
8150 /**
8151  * ice_cfg_chnl_all_res - configure channel resources
8152  * @vsi: pte to main_vsi
8153  * @ch: ptr to channel structure
8154  *
8155  * This function configures channel specific resources such as flow-director
8156  * counter index, and other resources such as queues, vectors, ITR settings
8157  */
8158 static void
8159 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8160 {
8161 	/* configure channel (aka ADQ) resources such as queues, vectors,
8162 	 * ITR settings for channel specific vectors and anything else
8163 	 */
8164 	ice_chnl_cfg_res(vsi, ch);
8165 }
8166 
8167 /**
8168  * ice_setup_hw_channel - setup new channel
8169  * @pf: ptr to PF device
8170  * @vsi: the VSI being setup
8171  * @ch: ptr to channel structure
8172  * @sw_id: underlying HW switching element ID
8173  * @type: type of channel to be created (VMDq2/VF)
8174  *
8175  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8176  * and configures Tx rings accordingly
8177  */
8178 static int
8179 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8180 		     struct ice_channel *ch, u16 sw_id, u8 type)
8181 {
8182 	struct device *dev = ice_pf_to_dev(pf);
8183 	int ret;
8184 
8185 	ch->base_q = vsi->next_base_q;
8186 	ch->type = type;
8187 
8188 	ret = ice_add_channel(pf, sw_id, ch);
8189 	if (ret) {
8190 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8191 		return ret;
8192 	}
8193 
8194 	/* configure/setup ADQ specific resources */
8195 	ice_cfg_chnl_all_res(vsi, ch);
8196 
8197 	/* make sure to update the next_base_q so that subsequent channel's
8198 	 * (aka ADQ) VSI queue map is correct
8199 	 */
8200 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8201 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8202 		ch->num_rxq);
8203 
8204 	return 0;
8205 }
8206 
8207 /**
8208  * ice_setup_channel - setup new channel using uplink element
8209  * @pf: ptr to PF device
8210  * @vsi: the VSI being setup
8211  * @ch: ptr to channel structure
8212  *
8213  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8214  * and uplink switching element
8215  */
8216 static bool
8217 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8218 		  struct ice_channel *ch)
8219 {
8220 	struct device *dev = ice_pf_to_dev(pf);
8221 	u16 sw_id;
8222 	int ret;
8223 
8224 	if (vsi->type != ICE_VSI_PF) {
8225 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8226 		return false;
8227 	}
8228 
8229 	sw_id = pf->first_sw->sw_id;
8230 
8231 	/* create channel (VSI) */
8232 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8233 	if (ret) {
8234 		dev_err(dev, "failed to setup hw_channel\n");
8235 		return false;
8236 	}
8237 	dev_dbg(dev, "successfully created channel()\n");
8238 
8239 	return ch->ch_vsi ? true : false;
8240 }
8241 
8242 /**
8243  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8244  * @vsi: VSI to be configured
8245  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8246  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8247  */
8248 static int
8249 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8250 {
8251 	int err;
8252 
8253 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8254 	if (err)
8255 		return err;
8256 
8257 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8258 }
8259 
8260 /**
8261  * ice_create_q_channel - function to create channel
8262  * @vsi: VSI to be configured
8263  * @ch: ptr to channel (it contains channel specific params)
8264  *
8265  * This function creates channel (VSI) using num_queues specified by user,
8266  * reconfigs RSS if needed.
8267  */
8268 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8269 {
8270 	struct ice_pf *pf = vsi->back;
8271 	struct device *dev;
8272 
8273 	if (!ch)
8274 		return -EINVAL;
8275 
8276 	dev = ice_pf_to_dev(pf);
8277 	if (!ch->num_txq || !ch->num_rxq) {
8278 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8279 		return -EINVAL;
8280 	}
8281 
8282 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8283 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8284 			vsi->cnt_q_avail, ch->num_txq);
8285 		return -EINVAL;
8286 	}
8287 
8288 	if (!ice_setup_channel(pf, vsi, ch)) {
8289 		dev_info(dev, "Failed to setup channel\n");
8290 		return -EINVAL;
8291 	}
8292 	/* configure BW rate limit */
8293 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8294 		int ret;
8295 
8296 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8297 				       ch->min_tx_rate);
8298 		if (ret)
8299 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8300 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8301 		else
8302 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8303 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8304 	}
8305 
8306 	vsi->cnt_q_avail -= ch->num_txq;
8307 
8308 	return 0;
8309 }
8310 
8311 /**
8312  * ice_rem_all_chnl_fltrs - removes all channel filters
8313  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8314  *
8315  * Remove all advanced switch filters only if they are channel specific
8316  * tc-flower based filter
8317  */
8318 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8319 {
8320 	struct ice_tc_flower_fltr *fltr;
8321 	struct hlist_node *node;
8322 
8323 	/* to remove all channel filters, iterate an ordered list of filters */
8324 	hlist_for_each_entry_safe(fltr, node,
8325 				  &pf->tc_flower_fltr_list,
8326 				  tc_flower_node) {
8327 		struct ice_rule_query_data rule;
8328 		int status;
8329 
8330 		/* for now process only channel specific filters */
8331 		if (!ice_is_chnl_fltr(fltr))
8332 			continue;
8333 
8334 		rule.rid = fltr->rid;
8335 		rule.rule_id = fltr->rule_id;
8336 		rule.vsi_handle = fltr->dest_vsi_handle;
8337 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8338 		if (status) {
8339 			if (status == -ENOENT)
8340 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8341 					rule.rule_id);
8342 			else
8343 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8344 					status);
8345 		} else if (fltr->dest_vsi) {
8346 			/* update advanced switch filter count */
8347 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8348 				u32 flags = fltr->flags;
8349 
8350 				fltr->dest_vsi->num_chnl_fltr--;
8351 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8352 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8353 					pf->num_dmac_chnl_fltrs--;
8354 			}
8355 		}
8356 
8357 		hlist_del(&fltr->tc_flower_node);
8358 		kfree(fltr);
8359 	}
8360 }
8361 
8362 /**
8363  * ice_remove_q_channels - Remove queue channels for the TCs
8364  * @vsi: VSI to be configured
8365  * @rem_fltr: delete advanced switch filter or not
8366  *
8367  * Remove queue channels for the TCs
8368  */
8369 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8370 {
8371 	struct ice_channel *ch, *ch_tmp;
8372 	struct ice_pf *pf = vsi->back;
8373 	int i;
8374 
8375 	/* remove all tc-flower based filter if they are channel filters only */
8376 	if (rem_fltr)
8377 		ice_rem_all_chnl_fltrs(pf);
8378 
8379 	/* remove ntuple filters since queue configuration is being changed */
8380 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8381 		struct ice_hw *hw = &pf->hw;
8382 
8383 		mutex_lock(&hw->fdir_fltr_lock);
8384 		ice_fdir_del_all_fltrs(vsi);
8385 		mutex_unlock(&hw->fdir_fltr_lock);
8386 	}
8387 
8388 	/* perform cleanup for channels if they exist */
8389 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8390 		struct ice_vsi *ch_vsi;
8391 
8392 		list_del(&ch->list);
8393 		ch_vsi = ch->ch_vsi;
8394 		if (!ch_vsi) {
8395 			kfree(ch);
8396 			continue;
8397 		}
8398 
8399 		/* Reset queue contexts */
8400 		for (i = 0; i < ch->num_rxq; i++) {
8401 			struct ice_tx_ring *tx_ring;
8402 			struct ice_rx_ring *rx_ring;
8403 
8404 			tx_ring = vsi->tx_rings[ch->base_q + i];
8405 			rx_ring = vsi->rx_rings[ch->base_q + i];
8406 			if (tx_ring) {
8407 				tx_ring->ch = NULL;
8408 				if (tx_ring->q_vector)
8409 					tx_ring->q_vector->ch = NULL;
8410 			}
8411 			if (rx_ring) {
8412 				rx_ring->ch = NULL;
8413 				if (rx_ring->q_vector)
8414 					rx_ring->q_vector->ch = NULL;
8415 			}
8416 		}
8417 
8418 		/* Release FD resources for the channel VSI */
8419 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8420 
8421 		/* clear the VSI from scheduler tree */
8422 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8423 
8424 		/* Delete VSI from FW */
8425 		ice_vsi_delete(ch->ch_vsi);
8426 
8427 		/* Delete VSI from PF and HW VSI arrays */
8428 		ice_vsi_clear(ch->ch_vsi);
8429 
8430 		/* free the channel */
8431 		kfree(ch);
8432 	}
8433 
8434 	/* clear the channel VSI map which is stored in main VSI */
8435 	ice_for_each_chnl_tc(i)
8436 		vsi->tc_map_vsi[i] = NULL;
8437 
8438 	/* reset main VSI's all TC information */
8439 	vsi->all_enatc = 0;
8440 	vsi->all_numtc = 0;
8441 }
8442 
8443 /**
8444  * ice_rebuild_channels - rebuild channel
8445  * @pf: ptr to PF
8446  *
8447  * Recreate channel VSIs and replay filters
8448  */
8449 static int ice_rebuild_channels(struct ice_pf *pf)
8450 {
8451 	struct device *dev = ice_pf_to_dev(pf);
8452 	struct ice_vsi *main_vsi;
8453 	bool rem_adv_fltr = true;
8454 	struct ice_channel *ch;
8455 	struct ice_vsi *vsi;
8456 	int tc_idx = 1;
8457 	int i, err;
8458 
8459 	main_vsi = ice_get_main_vsi(pf);
8460 	if (!main_vsi)
8461 		return 0;
8462 
8463 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8464 	    main_vsi->old_numtc == 1)
8465 		return 0; /* nothing to be done */
8466 
8467 	/* reconfigure main VSI based on old value of TC and cached values
8468 	 * for MQPRIO opts
8469 	 */
8470 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8471 	if (err) {
8472 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8473 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8474 		return err;
8475 	}
8476 
8477 	/* rebuild ADQ VSIs */
8478 	ice_for_each_vsi(pf, i) {
8479 		enum ice_vsi_type type;
8480 
8481 		vsi = pf->vsi[i];
8482 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8483 			continue;
8484 
8485 		type = vsi->type;
8486 
8487 		/* rebuild ADQ VSI */
8488 		err = ice_vsi_rebuild(vsi, true);
8489 		if (err) {
8490 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8491 				ice_vsi_type_str(type), vsi->idx, err);
8492 			goto cleanup;
8493 		}
8494 
8495 		/* Re-map HW VSI number, using VSI handle that has been
8496 		 * previously validated in ice_replay_vsi() call above
8497 		 */
8498 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8499 
8500 		/* replay filters for the VSI */
8501 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8502 		if (err) {
8503 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8504 				ice_vsi_type_str(type), err, vsi->idx);
8505 			rem_adv_fltr = false;
8506 			goto cleanup;
8507 		}
8508 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8509 			 ice_vsi_type_str(type), vsi->idx);
8510 
8511 		/* store ADQ VSI at correct TC index in main VSI's
8512 		 * map of TC to VSI
8513 		 */
8514 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8515 	}
8516 
8517 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8518 	 * channel for main VSI's Tx and Rx rings
8519 	 */
8520 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8521 		struct ice_vsi *ch_vsi;
8522 
8523 		ch_vsi = ch->ch_vsi;
8524 		if (!ch_vsi)
8525 			continue;
8526 
8527 		/* reconfig channel resources */
8528 		ice_cfg_chnl_all_res(main_vsi, ch);
8529 
8530 		/* replay BW rate limit if it is non-zero */
8531 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8532 			continue;
8533 
8534 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8535 				       ch->min_tx_rate);
8536 		if (err)
8537 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8538 				err, ch->max_tx_rate, ch->min_tx_rate,
8539 				ch_vsi->vsi_num);
8540 		else
8541 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8542 				ch->max_tx_rate, ch->min_tx_rate,
8543 				ch_vsi->vsi_num);
8544 	}
8545 
8546 	/* reconfig RSS for main VSI */
8547 	if (main_vsi->ch_rss_size)
8548 		ice_vsi_cfg_rss_lut_key(main_vsi);
8549 
8550 	return 0;
8551 
8552 cleanup:
8553 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8554 	return err;
8555 }
8556 
8557 /**
8558  * ice_create_q_channels - Add queue channel for the given TCs
8559  * @vsi: VSI to be configured
8560  *
8561  * Configures queue channel mapping to the given TCs
8562  */
8563 static int ice_create_q_channels(struct ice_vsi *vsi)
8564 {
8565 	struct ice_pf *pf = vsi->back;
8566 	struct ice_channel *ch;
8567 	int ret = 0, i;
8568 
8569 	ice_for_each_chnl_tc(i) {
8570 		if (!(vsi->all_enatc & BIT(i)))
8571 			continue;
8572 
8573 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8574 		if (!ch) {
8575 			ret = -ENOMEM;
8576 			goto err_free;
8577 		}
8578 		INIT_LIST_HEAD(&ch->list);
8579 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8580 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8581 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8582 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8583 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8584 
8585 		/* convert to Kbits/s */
8586 		if (ch->max_tx_rate)
8587 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8588 						  ICE_BW_KBPS_DIVISOR);
8589 		if (ch->min_tx_rate)
8590 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8591 						  ICE_BW_KBPS_DIVISOR);
8592 
8593 		ret = ice_create_q_channel(vsi, ch);
8594 		if (ret) {
8595 			dev_err(ice_pf_to_dev(pf),
8596 				"failed creating channel TC:%d\n", i);
8597 			kfree(ch);
8598 			goto err_free;
8599 		}
8600 		list_add_tail(&ch->list, &vsi->ch_list);
8601 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8602 		dev_dbg(ice_pf_to_dev(pf),
8603 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8604 	}
8605 	return 0;
8606 
8607 err_free:
8608 	ice_remove_q_channels(vsi, false);
8609 
8610 	return ret;
8611 }
8612 
8613 /**
8614  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8615  * @netdev: net device to configure
8616  * @type_data: TC offload data
8617  */
8618 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8619 {
8620 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8621 	struct ice_netdev_priv *np = netdev_priv(netdev);
8622 	struct ice_vsi *vsi = np->vsi;
8623 	struct ice_pf *pf = vsi->back;
8624 	u16 mode, ena_tc_qdisc = 0;
8625 	int cur_txq, cur_rxq;
8626 	u8 hw = 0, num_tcf;
8627 	struct device *dev;
8628 	int ret, i;
8629 
8630 	dev = ice_pf_to_dev(pf);
8631 	num_tcf = mqprio_qopt->qopt.num_tc;
8632 	hw = mqprio_qopt->qopt.hw;
8633 	mode = mqprio_qopt->mode;
8634 	if (!hw) {
8635 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8636 		vsi->ch_rss_size = 0;
8637 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8638 		goto config_tcf;
8639 	}
8640 
8641 	/* Generate queue region map for number of TCF requested */
8642 	for (i = 0; i < num_tcf; i++)
8643 		ena_tc_qdisc |= BIT(i);
8644 
8645 	switch (mode) {
8646 	case TC_MQPRIO_MODE_CHANNEL:
8647 
8648 		if (pf->hw.port_info->is_custom_tx_enabled) {
8649 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8650 			return -EBUSY;
8651 		}
8652 		ice_tear_down_devlink_rate_tree(pf);
8653 
8654 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8655 		if (ret) {
8656 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8657 				   ret);
8658 			return ret;
8659 		}
8660 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8661 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8662 		/* don't assume state of hw_tc_offload during driver load
8663 		 * and set the flag for TC flower filter if hw_tc_offload
8664 		 * already ON
8665 		 */
8666 		if (vsi->netdev->features & NETIF_F_HW_TC)
8667 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8668 		break;
8669 	default:
8670 		return -EINVAL;
8671 	}
8672 
8673 config_tcf:
8674 
8675 	/* Requesting same TCF configuration as already enabled */
8676 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8677 	    mode != TC_MQPRIO_MODE_CHANNEL)
8678 		return 0;
8679 
8680 	/* Pause VSI queues */
8681 	ice_dis_vsi(vsi, true);
8682 
8683 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8684 		ice_remove_q_channels(vsi, true);
8685 
8686 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8687 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8688 				     num_online_cpus());
8689 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8690 				     num_online_cpus());
8691 	} else {
8692 		/* logic to rebuild VSI, same like ethtool -L */
8693 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8694 
8695 		for (i = 0; i < num_tcf; i++) {
8696 			if (!(ena_tc_qdisc & BIT(i)))
8697 				continue;
8698 
8699 			offset = vsi->mqprio_qopt.qopt.offset[i];
8700 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8701 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8702 		}
8703 		vsi->req_txq = offset + qcount_tx;
8704 		vsi->req_rxq = offset + qcount_rx;
8705 
8706 		/* store away original rss_size info, so that it gets reused
8707 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8708 		 * determine, what should be the rss_sizefor main VSI
8709 		 */
8710 		vsi->orig_rss_size = vsi->rss_size;
8711 	}
8712 
8713 	/* save current values of Tx and Rx queues before calling VSI rebuild
8714 	 * for fallback option
8715 	 */
8716 	cur_txq = vsi->num_txq;
8717 	cur_rxq = vsi->num_rxq;
8718 
8719 	/* proceed with rebuild main VSI using correct number of queues */
8720 	ret = ice_vsi_rebuild(vsi, false);
8721 	if (ret) {
8722 		/* fallback to current number of queues */
8723 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8724 		vsi->req_txq = cur_txq;
8725 		vsi->req_rxq = cur_rxq;
8726 		clear_bit(ICE_RESET_FAILED, pf->state);
8727 		if (ice_vsi_rebuild(vsi, false)) {
8728 			dev_err(dev, "Rebuild of main VSI failed again\n");
8729 			return ret;
8730 		}
8731 	}
8732 
8733 	vsi->all_numtc = num_tcf;
8734 	vsi->all_enatc = ena_tc_qdisc;
8735 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8736 	if (ret) {
8737 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8738 			   vsi->vsi_num);
8739 		goto exit;
8740 	}
8741 
8742 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8743 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8744 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8745 
8746 		/* set TC0 rate limit if specified */
8747 		if (max_tx_rate || min_tx_rate) {
8748 			/* convert to Kbits/s */
8749 			if (max_tx_rate)
8750 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8751 			if (min_tx_rate)
8752 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8753 
8754 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8755 			if (!ret) {
8756 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8757 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8758 			} else {
8759 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8760 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8761 				goto exit;
8762 			}
8763 		}
8764 		ret = ice_create_q_channels(vsi);
8765 		if (ret) {
8766 			netdev_err(netdev, "failed configuring queue channels\n");
8767 			goto exit;
8768 		} else {
8769 			netdev_dbg(netdev, "successfully configured channels\n");
8770 		}
8771 	}
8772 
8773 	if (vsi->ch_rss_size)
8774 		ice_vsi_cfg_rss_lut_key(vsi);
8775 
8776 exit:
8777 	/* if error, reset the all_numtc and all_enatc */
8778 	if (ret) {
8779 		vsi->all_numtc = 0;
8780 		vsi->all_enatc = 0;
8781 	}
8782 	/* resume VSI */
8783 	ice_ena_vsi(vsi, true);
8784 
8785 	return ret;
8786 }
8787 
8788 static LIST_HEAD(ice_block_cb_list);
8789 
8790 static int
8791 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8792 	     void *type_data)
8793 {
8794 	struct ice_netdev_priv *np = netdev_priv(netdev);
8795 	struct ice_pf *pf = np->vsi->back;
8796 	int err;
8797 
8798 	switch (type) {
8799 	case TC_SETUP_BLOCK:
8800 		return flow_block_cb_setup_simple(type_data,
8801 						  &ice_block_cb_list,
8802 						  ice_setup_tc_block_cb,
8803 						  np, np, true);
8804 	case TC_SETUP_QDISC_MQPRIO:
8805 		/* setup traffic classifier for receive side */
8806 		mutex_lock(&pf->tc_mutex);
8807 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8808 		mutex_unlock(&pf->tc_mutex);
8809 		return err;
8810 	default:
8811 		return -EOPNOTSUPP;
8812 	}
8813 	return -EOPNOTSUPP;
8814 }
8815 
8816 static struct ice_indr_block_priv *
8817 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8818 			   struct net_device *netdev)
8819 {
8820 	struct ice_indr_block_priv *cb_priv;
8821 
8822 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8823 		if (!cb_priv->netdev)
8824 			return NULL;
8825 		if (cb_priv->netdev == netdev)
8826 			return cb_priv;
8827 	}
8828 	return NULL;
8829 }
8830 
8831 static int
8832 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8833 			void *indr_priv)
8834 {
8835 	struct ice_indr_block_priv *priv = indr_priv;
8836 	struct ice_netdev_priv *np = priv->np;
8837 
8838 	switch (type) {
8839 	case TC_SETUP_CLSFLOWER:
8840 		return ice_setup_tc_cls_flower(np, priv->netdev,
8841 					       (struct flow_cls_offload *)
8842 					       type_data);
8843 	default:
8844 		return -EOPNOTSUPP;
8845 	}
8846 }
8847 
8848 static int
8849 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8850 			struct ice_netdev_priv *np,
8851 			struct flow_block_offload *f, void *data,
8852 			void (*cleanup)(struct flow_block_cb *block_cb))
8853 {
8854 	struct ice_indr_block_priv *indr_priv;
8855 	struct flow_block_cb *block_cb;
8856 
8857 	if (!ice_is_tunnel_supported(netdev) &&
8858 	    !(is_vlan_dev(netdev) &&
8859 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8860 		return -EOPNOTSUPP;
8861 
8862 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8863 		return -EOPNOTSUPP;
8864 
8865 	switch (f->command) {
8866 	case FLOW_BLOCK_BIND:
8867 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8868 		if (indr_priv)
8869 			return -EEXIST;
8870 
8871 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8872 		if (!indr_priv)
8873 			return -ENOMEM;
8874 
8875 		indr_priv->netdev = netdev;
8876 		indr_priv->np = np;
8877 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8878 
8879 		block_cb =
8880 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8881 						 indr_priv, indr_priv,
8882 						 ice_rep_indr_tc_block_unbind,
8883 						 f, netdev, sch, data, np,
8884 						 cleanup);
8885 
8886 		if (IS_ERR(block_cb)) {
8887 			list_del(&indr_priv->list);
8888 			kfree(indr_priv);
8889 			return PTR_ERR(block_cb);
8890 		}
8891 		flow_block_cb_add(block_cb, f);
8892 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8893 		break;
8894 	case FLOW_BLOCK_UNBIND:
8895 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8896 		if (!indr_priv)
8897 			return -ENOENT;
8898 
8899 		block_cb = flow_block_cb_lookup(f->block,
8900 						ice_indr_setup_block_cb,
8901 						indr_priv);
8902 		if (!block_cb)
8903 			return -ENOENT;
8904 
8905 		flow_indr_block_cb_remove(block_cb, f);
8906 
8907 		list_del(&block_cb->driver_list);
8908 		break;
8909 	default:
8910 		return -EOPNOTSUPP;
8911 	}
8912 	return 0;
8913 }
8914 
8915 static int
8916 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8917 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8918 		     void *data,
8919 		     void (*cleanup)(struct flow_block_cb *block_cb))
8920 {
8921 	switch (type) {
8922 	case TC_SETUP_BLOCK:
8923 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8924 					       data, cleanup);
8925 
8926 	default:
8927 		return -EOPNOTSUPP;
8928 	}
8929 }
8930 
8931 /**
8932  * ice_open - Called when a network interface becomes active
8933  * @netdev: network interface device structure
8934  *
8935  * The open entry point is called when a network interface is made
8936  * active by the system (IFF_UP). At this point all resources needed
8937  * for transmit and receive operations are allocated, the interrupt
8938  * handler is registered with the OS, the netdev watchdog is enabled,
8939  * and the stack is notified that the interface is ready.
8940  *
8941  * Returns 0 on success, negative value on failure
8942  */
8943 int ice_open(struct net_device *netdev)
8944 {
8945 	struct ice_netdev_priv *np = netdev_priv(netdev);
8946 	struct ice_pf *pf = np->vsi->back;
8947 
8948 	if (ice_is_reset_in_progress(pf->state)) {
8949 		netdev_err(netdev, "can't open net device while reset is in progress");
8950 		return -EBUSY;
8951 	}
8952 
8953 	return ice_open_internal(netdev);
8954 }
8955 
8956 /**
8957  * ice_open_internal - Called when a network interface becomes active
8958  * @netdev: network interface device structure
8959  *
8960  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8961  * handling routine
8962  *
8963  * Returns 0 on success, negative value on failure
8964  */
8965 int ice_open_internal(struct net_device *netdev)
8966 {
8967 	struct ice_netdev_priv *np = netdev_priv(netdev);
8968 	struct ice_vsi *vsi = np->vsi;
8969 	struct ice_pf *pf = vsi->back;
8970 	struct ice_port_info *pi;
8971 	int err;
8972 
8973 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8974 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8975 		return -EIO;
8976 	}
8977 
8978 	netif_carrier_off(netdev);
8979 
8980 	pi = vsi->port_info;
8981 	err = ice_update_link_info(pi);
8982 	if (err) {
8983 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8984 		return err;
8985 	}
8986 
8987 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8988 
8989 	/* Set PHY if there is media, otherwise, turn off PHY */
8990 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8991 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8992 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8993 			err = ice_init_phy_user_cfg(pi);
8994 			if (err) {
8995 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8996 					   err);
8997 				return err;
8998 			}
8999 		}
9000 
9001 		err = ice_configure_phy(vsi);
9002 		if (err) {
9003 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9004 				   err);
9005 			return err;
9006 		}
9007 	} else {
9008 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9009 		ice_set_link(vsi, false);
9010 	}
9011 
9012 	err = ice_vsi_open(vsi);
9013 	if (err)
9014 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9015 			   vsi->vsi_num, vsi->vsw->sw_id);
9016 
9017 	/* Update existing tunnels information */
9018 	udp_tunnel_get_rx_info(netdev);
9019 
9020 	return err;
9021 }
9022 
9023 /**
9024  * ice_stop - Disables a network interface
9025  * @netdev: network interface device structure
9026  *
9027  * The stop entry point is called when an interface is de-activated by the OS,
9028  * and the netdevice enters the DOWN state. The hardware is still under the
9029  * driver's control, but the netdev interface is disabled.
9030  *
9031  * Returns success only - not allowed to fail
9032  */
9033 int ice_stop(struct net_device *netdev)
9034 {
9035 	struct ice_netdev_priv *np = netdev_priv(netdev);
9036 	struct ice_vsi *vsi = np->vsi;
9037 	struct ice_pf *pf = vsi->back;
9038 
9039 	if (ice_is_reset_in_progress(pf->state)) {
9040 		netdev_err(netdev, "can't stop net device while reset is in progress");
9041 		return -EBUSY;
9042 	}
9043 
9044 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9045 		int link_err = ice_force_phys_link_state(vsi, false);
9046 
9047 		if (link_err) {
9048 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9049 				   vsi->vsi_num, link_err);
9050 			return -EIO;
9051 		}
9052 	}
9053 
9054 	ice_vsi_close(vsi);
9055 
9056 	return 0;
9057 }
9058 
9059 /**
9060  * ice_features_check - Validate encapsulated packet conforms to limits
9061  * @skb: skb buffer
9062  * @netdev: This port's netdev
9063  * @features: Offload features that the stack believes apply
9064  */
9065 static netdev_features_t
9066 ice_features_check(struct sk_buff *skb,
9067 		   struct net_device __always_unused *netdev,
9068 		   netdev_features_t features)
9069 {
9070 	bool gso = skb_is_gso(skb);
9071 	size_t len;
9072 
9073 	/* No point in doing any of this if neither checksum nor GSO are
9074 	 * being requested for this frame. We can rule out both by just
9075 	 * checking for CHECKSUM_PARTIAL
9076 	 */
9077 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9078 		return features;
9079 
9080 	/* We cannot support GSO if the MSS is going to be less than
9081 	 * 64 bytes. If it is then we need to drop support for GSO.
9082 	 */
9083 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9084 		features &= ~NETIF_F_GSO_MASK;
9085 
9086 	len = skb_network_offset(skb);
9087 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9088 		goto out_rm_features;
9089 
9090 	len = skb_network_header_len(skb);
9091 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9092 		goto out_rm_features;
9093 
9094 	if (skb->encapsulation) {
9095 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9096 		 * the case of IPIP frames, the transport header pointer is
9097 		 * after the inner header! So check to make sure that this
9098 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9099 		 */
9100 		if (gso && (skb_shinfo(skb)->gso_type &
9101 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9102 			len = skb_inner_network_header(skb) -
9103 			      skb_transport_header(skb);
9104 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9105 				goto out_rm_features;
9106 		}
9107 
9108 		len = skb_inner_network_header_len(skb);
9109 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9110 			goto out_rm_features;
9111 	}
9112 
9113 	return features;
9114 out_rm_features:
9115 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9116 }
9117 
9118 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9119 	.ndo_open = ice_open,
9120 	.ndo_stop = ice_stop,
9121 	.ndo_start_xmit = ice_start_xmit,
9122 	.ndo_set_mac_address = ice_set_mac_address,
9123 	.ndo_validate_addr = eth_validate_addr,
9124 	.ndo_change_mtu = ice_change_mtu,
9125 	.ndo_get_stats64 = ice_get_stats64,
9126 	.ndo_tx_timeout = ice_tx_timeout,
9127 	.ndo_bpf = ice_xdp_safe_mode,
9128 };
9129 
9130 static const struct net_device_ops ice_netdev_ops = {
9131 	.ndo_open = ice_open,
9132 	.ndo_stop = ice_stop,
9133 	.ndo_start_xmit = ice_start_xmit,
9134 	.ndo_select_queue = ice_select_queue,
9135 	.ndo_features_check = ice_features_check,
9136 	.ndo_fix_features = ice_fix_features,
9137 	.ndo_set_rx_mode = ice_set_rx_mode,
9138 	.ndo_set_mac_address = ice_set_mac_address,
9139 	.ndo_validate_addr = eth_validate_addr,
9140 	.ndo_change_mtu = ice_change_mtu,
9141 	.ndo_get_stats64 = ice_get_stats64,
9142 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9143 	.ndo_eth_ioctl = ice_eth_ioctl,
9144 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9145 	.ndo_set_vf_mac = ice_set_vf_mac,
9146 	.ndo_get_vf_config = ice_get_vf_cfg,
9147 	.ndo_set_vf_trust = ice_set_vf_trust,
9148 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9149 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9150 	.ndo_get_vf_stats = ice_get_vf_stats,
9151 	.ndo_set_vf_rate = ice_set_vf_bw,
9152 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9153 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9154 	.ndo_setup_tc = ice_setup_tc,
9155 	.ndo_set_features = ice_set_features,
9156 	.ndo_bridge_getlink = ice_bridge_getlink,
9157 	.ndo_bridge_setlink = ice_bridge_setlink,
9158 	.ndo_fdb_add = ice_fdb_add,
9159 	.ndo_fdb_del = ice_fdb_del,
9160 #ifdef CONFIG_RFS_ACCEL
9161 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9162 #endif
9163 	.ndo_tx_timeout = ice_tx_timeout,
9164 	.ndo_bpf = ice_xdp,
9165 	.ndo_xdp_xmit = ice_xdp_xmit,
9166 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9167 };
9168