1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 #include "ice_dcb_lib.h" 11 12 #define DRV_VERSION "0.7.4-k" 13 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 14 const char ice_drv_ver[] = DRV_VERSION; 15 static const char ice_driver_string[] = DRV_SUMMARY; 16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 17 18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 19 MODULE_DESCRIPTION(DRV_SUMMARY); 20 MODULE_LICENSE("GPL v2"); 21 MODULE_VERSION(DRV_VERSION); 22 23 static int debug = -1; 24 module_param(debug, int, 0644); 25 #ifndef CONFIG_DYNAMIC_DEBUG 26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 27 #else 28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 29 #endif /* !CONFIG_DYNAMIC_DEBUG */ 30 31 static struct workqueue_struct *ice_wq; 32 static const struct net_device_ops ice_netdev_ops; 33 34 static void ice_rebuild(struct ice_pf *pf); 35 36 static void ice_vsi_release_all(struct ice_pf *pf); 37 static void ice_update_vsi_stats(struct ice_vsi *vsi); 38 static void ice_update_pf_stats(struct ice_pf *pf); 39 40 /** 41 * ice_get_tx_pending - returns number of Tx descriptors not processed 42 * @ring: the ring of descriptors 43 */ 44 static u32 ice_get_tx_pending(struct ice_ring *ring) 45 { 46 u32 head, tail; 47 48 head = ring->next_to_clean; 49 tail = readl(ring->tail); 50 51 if (head != tail) 52 return (head < tail) ? 53 tail - head : (tail + ring->count - head); 54 return 0; 55 } 56 57 /** 58 * ice_check_for_hang_subtask - check for and recover hung queues 59 * @pf: pointer to PF struct 60 */ 61 static void ice_check_for_hang_subtask(struct ice_pf *pf) 62 { 63 struct ice_vsi *vsi = NULL; 64 unsigned int i; 65 u32 v, v_idx; 66 int packets; 67 68 ice_for_each_vsi(pf, v) 69 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 70 vsi = pf->vsi[v]; 71 break; 72 } 73 74 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 75 return; 76 77 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 78 return; 79 80 for (i = 0; i < vsi->num_txq; i++) { 81 struct ice_ring *tx_ring = vsi->tx_rings[i]; 82 83 if (tx_ring && tx_ring->desc) { 84 int itr = ICE_ITR_NONE; 85 86 /* If packet counter has not changed the queue is 87 * likely stalled, so force an interrupt for this 88 * queue. 89 * 90 * prev_pkt would be negative if there was no 91 * pending work. 92 */ 93 packets = tx_ring->stats.pkts & INT_MAX; 94 if (tx_ring->tx_stats.prev_pkt == packets) { 95 /* Trigger sw interrupt to revive the queue */ 96 v_idx = tx_ring->q_vector->v_idx; 97 wr32(&vsi->back->hw, 98 GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 99 (itr << GLINT_DYN_CTL_ITR_INDX_S) | 100 GLINT_DYN_CTL_SWINT_TRIG_M | 101 GLINT_DYN_CTL_INTENA_MSK_M); 102 continue; 103 } 104 105 /* Memory barrier between read of packet count and call 106 * to ice_get_tx_pending() 107 */ 108 smp_rmb(); 109 tx_ring->tx_stats.prev_pkt = 110 ice_get_tx_pending(tx_ring) ? packets : -1; 111 } 112 } 113 } 114 115 /** 116 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 117 * @netdev: the net device on which the sync is happening 118 * @addr: MAC address to sync 119 * 120 * This is a callback function which is called by the in kernel device sync 121 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 122 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 123 * MAC filters from the hardware. 124 */ 125 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 126 { 127 struct ice_netdev_priv *np = netdev_priv(netdev); 128 struct ice_vsi *vsi = np->vsi; 129 130 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 131 return -EINVAL; 132 133 return 0; 134 } 135 136 /** 137 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 138 * @netdev: the net device on which the unsync is happening 139 * @addr: MAC address to unsync 140 * 141 * This is a callback function which is called by the in kernel device unsync 142 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 143 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 144 * delete the MAC filters from the hardware. 145 */ 146 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 147 { 148 struct ice_netdev_priv *np = netdev_priv(netdev); 149 struct ice_vsi *vsi = np->vsi; 150 151 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 152 return -EINVAL; 153 154 return 0; 155 } 156 157 /** 158 * ice_vsi_fltr_changed - check if filter state changed 159 * @vsi: VSI to be checked 160 * 161 * returns true if filter state has changed, false otherwise. 162 */ 163 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 164 { 165 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 166 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 167 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 168 } 169 170 /** 171 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 172 * @vsi: the VSI being configured 173 * @promisc_m: mask of promiscuous config bits 174 * @set_promisc: enable or disable promisc flag request 175 * 176 */ 177 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 178 { 179 struct ice_hw *hw = &vsi->back->hw; 180 enum ice_status status = 0; 181 182 if (vsi->type != ICE_VSI_PF) 183 return 0; 184 185 if (vsi->vlan_ena) { 186 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 187 set_promisc); 188 } else { 189 if (set_promisc) 190 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 191 0); 192 else 193 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 194 0); 195 } 196 197 if (status) 198 return -EIO; 199 200 return 0; 201 } 202 203 /** 204 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 205 * @vsi: ptr to the VSI 206 * 207 * Push any outstanding VSI filter changes through the AdminQ. 208 */ 209 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 210 { 211 struct device *dev = &vsi->back->pdev->dev; 212 struct net_device *netdev = vsi->netdev; 213 bool promisc_forced_on = false; 214 struct ice_pf *pf = vsi->back; 215 struct ice_hw *hw = &pf->hw; 216 enum ice_status status = 0; 217 u32 changed_flags = 0; 218 u8 promisc_m; 219 int err = 0; 220 221 if (!vsi->netdev) 222 return -EINVAL; 223 224 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 225 usleep_range(1000, 2000); 226 227 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 228 vsi->current_netdev_flags = vsi->netdev->flags; 229 230 INIT_LIST_HEAD(&vsi->tmp_sync_list); 231 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 232 233 if (ice_vsi_fltr_changed(vsi)) { 234 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 235 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 236 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 237 238 /* grab the netdev's addr_list_lock */ 239 netif_addr_lock_bh(netdev); 240 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 241 ice_add_mac_to_unsync_list); 242 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 243 ice_add_mac_to_unsync_list); 244 /* our temp lists are populated. release lock */ 245 netif_addr_unlock_bh(netdev); 246 } 247 248 /* Remove MAC addresses in the unsync list */ 249 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 250 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 251 if (status) { 252 netdev_err(netdev, "Failed to delete MAC filters\n"); 253 /* if we failed because of alloc failures, just bail */ 254 if (status == ICE_ERR_NO_MEMORY) { 255 err = -ENOMEM; 256 goto out; 257 } 258 } 259 260 /* Add MAC addresses in the sync list */ 261 status = ice_add_mac(hw, &vsi->tmp_sync_list); 262 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 263 /* If filter is added successfully or already exists, do not go into 264 * 'if' condition and report it as error. Instead continue processing 265 * rest of the function. 266 */ 267 if (status && status != ICE_ERR_ALREADY_EXISTS) { 268 netdev_err(netdev, "Failed to add MAC filters\n"); 269 /* If there is no more space for new umac filters, VSI 270 * should go into promiscuous mode. There should be some 271 * space reserved for promiscuous filters. 272 */ 273 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 274 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 275 vsi->state)) { 276 promisc_forced_on = true; 277 netdev_warn(netdev, 278 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 279 vsi->vsi_num); 280 } else { 281 err = -EIO; 282 goto out; 283 } 284 } 285 /* check for changes in promiscuous modes */ 286 if (changed_flags & IFF_ALLMULTI) { 287 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 288 if (vsi->vlan_ena) 289 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 290 else 291 promisc_m = ICE_MCAST_PROMISC_BITS; 292 293 err = ice_cfg_promisc(vsi, promisc_m, true); 294 if (err) { 295 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 296 vsi->vsi_num); 297 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 298 goto out_promisc; 299 } 300 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 301 if (vsi->vlan_ena) 302 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 303 else 304 promisc_m = ICE_MCAST_PROMISC_BITS; 305 306 err = ice_cfg_promisc(vsi, promisc_m, false); 307 if (err) { 308 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 309 vsi->vsi_num); 310 vsi->current_netdev_flags |= IFF_ALLMULTI; 311 goto out_promisc; 312 } 313 } 314 } 315 316 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 317 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 318 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 319 if (vsi->current_netdev_flags & IFF_PROMISC) { 320 /* Apply Tx filter rule to get traffic from VMs */ 321 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 322 ICE_FLTR_TX); 323 if (status) { 324 netdev_err(netdev, "Error setting default VSI %i tx rule\n", 325 vsi->vsi_num); 326 vsi->current_netdev_flags &= ~IFF_PROMISC; 327 err = -EIO; 328 goto out_promisc; 329 } 330 /* Apply Rx filter rule to get traffic from wire */ 331 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 332 ICE_FLTR_RX); 333 if (status) { 334 netdev_err(netdev, "Error setting default VSI %i rx rule\n", 335 vsi->vsi_num); 336 vsi->current_netdev_flags &= ~IFF_PROMISC; 337 err = -EIO; 338 goto out_promisc; 339 } 340 } else { 341 /* Clear Tx filter rule to stop traffic from VMs */ 342 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 343 ICE_FLTR_TX); 344 if (status) { 345 netdev_err(netdev, "Error clearing default VSI %i tx rule\n", 346 vsi->vsi_num); 347 vsi->current_netdev_flags |= IFF_PROMISC; 348 err = -EIO; 349 goto out_promisc; 350 } 351 /* Clear Rx filter to remove traffic from wire */ 352 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 353 ICE_FLTR_RX); 354 if (status) { 355 netdev_err(netdev, "Error clearing default VSI %i rx rule\n", 356 vsi->vsi_num); 357 vsi->current_netdev_flags |= IFF_PROMISC; 358 err = -EIO; 359 goto out_promisc; 360 } 361 } 362 } 363 goto exit; 364 365 out_promisc: 366 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 367 goto exit; 368 out: 369 /* if something went wrong then set the changed flag so we try again */ 370 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 371 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 372 exit: 373 clear_bit(__ICE_CFG_BUSY, vsi->state); 374 return err; 375 } 376 377 /** 378 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 379 * @pf: board private structure 380 */ 381 static void ice_sync_fltr_subtask(struct ice_pf *pf) 382 { 383 int v; 384 385 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 386 return; 387 388 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 389 390 ice_for_each_vsi(pf, v) 391 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 392 ice_vsi_sync_fltr(pf->vsi[v])) { 393 /* come back and try again later */ 394 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 395 break; 396 } 397 } 398 399 /** 400 * ice_dis_vsi - pause a VSI 401 * @vsi: the VSI being paused 402 * @locked: is the rtnl_lock already held 403 */ 404 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 405 { 406 if (test_bit(__ICE_DOWN, vsi->state)) 407 return; 408 409 set_bit(__ICE_NEEDS_RESTART, vsi->state); 410 411 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 412 if (netif_running(vsi->netdev)) { 413 if (!locked) { 414 rtnl_lock(); 415 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 416 rtnl_unlock(); 417 } else { 418 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 419 } 420 } else { 421 ice_vsi_close(vsi); 422 } 423 } 424 } 425 426 /** 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 428 * @pf: the PF 429 * @locked: is the rtnl_lock already held 430 */ 431 #ifdef CONFIG_DCB 432 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 433 #else 434 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 435 #endif /* CONFIG_DCB */ 436 { 437 int v; 438 439 ice_for_each_vsi(pf, v) 440 if (pf->vsi[v]) 441 ice_dis_vsi(pf->vsi[v], locked); 442 } 443 444 /** 445 * ice_prepare_for_reset - prep for the core to reset 446 * @pf: board private structure 447 * 448 * Inform or close all dependent features in prep for reset. 449 */ 450 static void 451 ice_prepare_for_reset(struct ice_pf *pf) 452 { 453 struct ice_hw *hw = &pf->hw; 454 455 /* already prepared for reset */ 456 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 457 return; 458 459 /* Notify VFs of impending reset */ 460 if (ice_check_sq_alive(hw, &hw->mailboxq)) 461 ice_vc_notify_reset(pf); 462 463 /* disable the VSIs and their queues that are not already DOWN */ 464 ice_pf_dis_all_vsi(pf, false); 465 466 if (hw->port_info) 467 ice_sched_clear_port(hw->port_info); 468 469 ice_shutdown_all_ctrlq(hw); 470 471 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 472 } 473 474 /** 475 * ice_do_reset - Initiate one of many types of resets 476 * @pf: board private structure 477 * @reset_type: reset type requested 478 * before this function was called. 479 */ 480 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 481 { 482 struct device *dev = &pf->pdev->dev; 483 struct ice_hw *hw = &pf->hw; 484 485 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 486 WARN_ON(in_interrupt()); 487 488 ice_prepare_for_reset(pf); 489 490 /* trigger the reset */ 491 if (ice_reset(hw, reset_type)) { 492 dev_err(dev, "reset %d failed\n", reset_type); 493 set_bit(__ICE_RESET_FAILED, pf->state); 494 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 495 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 496 clear_bit(__ICE_PFR_REQ, pf->state); 497 clear_bit(__ICE_CORER_REQ, pf->state); 498 clear_bit(__ICE_GLOBR_REQ, pf->state); 499 return; 500 } 501 502 /* PFR is a bit of a special case because it doesn't result in an OICR 503 * interrupt. So for PFR, rebuild after the reset and clear the reset- 504 * associated state bits. 505 */ 506 if (reset_type == ICE_RESET_PFR) { 507 pf->pfr_count++; 508 ice_rebuild(pf); 509 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 510 clear_bit(__ICE_PFR_REQ, pf->state); 511 ice_reset_all_vfs(pf, true); 512 } 513 } 514 515 /** 516 * ice_reset_subtask - Set up for resetting the device and driver 517 * @pf: board private structure 518 */ 519 static void ice_reset_subtask(struct ice_pf *pf) 520 { 521 enum ice_reset_req reset_type = ICE_RESET_INVAL; 522 523 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 524 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 525 * of reset is pending and sets bits in pf->state indicating the reset 526 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 527 * prepare for pending reset if not already (for PF software-initiated 528 * global resets the software should already be prepared for it as 529 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 530 * by firmware or software on other PFs, that bit is not set so prepare 531 * for the reset now), poll for reset done, rebuild and return. 532 */ 533 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 534 /* Perform the largest reset requested */ 535 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 536 reset_type = ICE_RESET_CORER; 537 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 538 reset_type = ICE_RESET_GLOBR; 539 /* return if no valid reset type requested */ 540 if (reset_type == ICE_RESET_INVAL) 541 return; 542 ice_prepare_for_reset(pf); 543 544 /* make sure we are ready to rebuild */ 545 if (ice_check_reset(&pf->hw)) { 546 set_bit(__ICE_RESET_FAILED, pf->state); 547 } else { 548 /* done with reset. start rebuild */ 549 pf->hw.reset_ongoing = false; 550 ice_rebuild(pf); 551 /* clear bit to resume normal operations, but 552 * ICE_NEEDS_RESTART bit is set in case rebuild failed 553 */ 554 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 555 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 556 clear_bit(__ICE_PFR_REQ, pf->state); 557 clear_bit(__ICE_CORER_REQ, pf->state); 558 clear_bit(__ICE_GLOBR_REQ, pf->state); 559 ice_reset_all_vfs(pf, true); 560 } 561 562 return; 563 } 564 565 /* No pending resets to finish processing. Check for new resets */ 566 if (test_bit(__ICE_PFR_REQ, pf->state)) 567 reset_type = ICE_RESET_PFR; 568 if (test_bit(__ICE_CORER_REQ, pf->state)) 569 reset_type = ICE_RESET_CORER; 570 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 571 reset_type = ICE_RESET_GLOBR; 572 /* If no valid reset type requested just return */ 573 if (reset_type == ICE_RESET_INVAL) 574 return; 575 576 /* reset if not already down or busy */ 577 if (!test_bit(__ICE_DOWN, pf->state) && 578 !test_bit(__ICE_CFG_BUSY, pf->state)) { 579 ice_do_reset(pf, reset_type); 580 } 581 } 582 583 /** 584 * ice_print_link_msg - print link up or down message 585 * @vsi: the VSI whose link status is being queried 586 * @isup: boolean for if the link is now up or down 587 */ 588 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 589 { 590 const char *speed; 591 const char *fc; 592 593 if (vsi->current_isup == isup) 594 return; 595 596 vsi->current_isup = isup; 597 598 if (!isup) { 599 netdev_info(vsi->netdev, "NIC Link is Down\n"); 600 return; 601 } 602 603 switch (vsi->port_info->phy.link_info.link_speed) { 604 case ICE_AQ_LINK_SPEED_40GB: 605 speed = "40 G"; 606 break; 607 case ICE_AQ_LINK_SPEED_25GB: 608 speed = "25 G"; 609 break; 610 case ICE_AQ_LINK_SPEED_20GB: 611 speed = "20 G"; 612 break; 613 case ICE_AQ_LINK_SPEED_10GB: 614 speed = "10 G"; 615 break; 616 case ICE_AQ_LINK_SPEED_5GB: 617 speed = "5 G"; 618 break; 619 case ICE_AQ_LINK_SPEED_2500MB: 620 speed = "2.5 G"; 621 break; 622 case ICE_AQ_LINK_SPEED_1000MB: 623 speed = "1 G"; 624 break; 625 case ICE_AQ_LINK_SPEED_100MB: 626 speed = "100 M"; 627 break; 628 default: 629 speed = "Unknown"; 630 break; 631 } 632 633 switch (vsi->port_info->fc.current_mode) { 634 case ICE_FC_FULL: 635 fc = "RX/TX"; 636 break; 637 case ICE_FC_TX_PAUSE: 638 fc = "TX"; 639 break; 640 case ICE_FC_RX_PAUSE: 641 fc = "RX"; 642 break; 643 case ICE_FC_NONE: 644 fc = "None"; 645 break; 646 default: 647 fc = "Unknown"; 648 break; 649 } 650 651 netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n", 652 speed, fc); 653 } 654 655 /** 656 * ice_vsi_link_event - update the VSI's netdev 657 * @vsi: the VSI on which the link event occurred 658 * @link_up: whether or not the VSI needs to be set up or down 659 */ 660 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 661 { 662 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 663 return; 664 665 if (vsi->type == ICE_VSI_PF) { 666 if (!vsi->netdev) { 667 dev_dbg(&vsi->back->pdev->dev, 668 "vsi->netdev is not initialized!\n"); 669 return; 670 } 671 if (link_up) { 672 netif_carrier_on(vsi->netdev); 673 netif_tx_wake_all_queues(vsi->netdev); 674 } else { 675 netif_carrier_off(vsi->netdev); 676 netif_tx_stop_all_queues(vsi->netdev); 677 } 678 } 679 } 680 681 /** 682 * ice_link_event - process the link event 683 * @pf: pf that the link event is associated with 684 * @pi: port_info for the port that the link event is associated with 685 * 686 * Returns -EIO if ice_get_link_status() fails 687 * Returns 0 on success 688 */ 689 static int 690 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi) 691 { 692 u8 new_link_speed, old_link_speed; 693 struct ice_phy_info *phy_info; 694 bool new_link_same_as_old; 695 bool new_link, old_link; 696 u8 lport; 697 u16 v; 698 699 phy_info = &pi->phy; 700 phy_info->link_info_old = phy_info->link_info; 701 /* Force ice_get_link_status() to update link info */ 702 phy_info->get_link_info = true; 703 704 old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 705 old_link_speed = phy_info->link_info_old.link_speed; 706 707 lport = pi->lport; 708 if (ice_get_link_status(pi, &new_link)) { 709 dev_dbg(&pf->pdev->dev, 710 "Could not get link status for port %d\n", lport); 711 return -EIO; 712 } 713 714 new_link_speed = phy_info->link_info.link_speed; 715 716 new_link_same_as_old = (new_link == old_link && 717 new_link_speed == old_link_speed); 718 719 ice_for_each_vsi(pf, v) { 720 struct ice_vsi *vsi = pf->vsi[v]; 721 722 if (!vsi || !vsi->port_info) 723 continue; 724 725 if (new_link_same_as_old && 726 (test_bit(__ICE_DOWN, vsi->state) || 727 new_link == netif_carrier_ok(vsi->netdev))) 728 continue; 729 730 if (vsi->port_info->lport == lport) { 731 ice_print_link_msg(vsi, new_link); 732 ice_vsi_link_event(vsi, new_link); 733 } 734 } 735 736 if (!new_link_same_as_old && pf->num_alloc_vfs) 737 ice_vc_notify_link_state(pf); 738 739 return 0; 740 } 741 742 /** 743 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 744 * @pf: board private structure 745 */ 746 static void ice_watchdog_subtask(struct ice_pf *pf) 747 { 748 int i; 749 750 /* if interface is down do nothing */ 751 if (test_bit(__ICE_DOWN, pf->state) || 752 test_bit(__ICE_CFG_BUSY, pf->state)) 753 return; 754 755 /* make sure we don't do these things too often */ 756 if (time_before(jiffies, 757 pf->serv_tmr_prev + pf->serv_tmr_period)) 758 return; 759 760 pf->serv_tmr_prev = jiffies; 761 762 /* Update the stats for active netdevs so the network stack 763 * can look at updated numbers whenever it cares to 764 */ 765 ice_update_pf_stats(pf); 766 ice_for_each_vsi(pf, i) 767 if (pf->vsi[i] && pf->vsi[i]->netdev) 768 ice_update_vsi_stats(pf->vsi[i]); 769 } 770 771 /** 772 * ice_init_link_events - enable/initialize link events 773 * @pi: pointer to the port_info instance 774 * 775 * Returns -EIO on failure, 0 on success 776 */ 777 static int ice_init_link_events(struct ice_port_info *pi) 778 { 779 u16 mask; 780 781 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 782 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 783 784 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 785 dev_dbg(ice_hw_to_dev(pi->hw), 786 "Failed to set link event mask for port %d\n", 787 pi->lport); 788 return -EIO; 789 } 790 791 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 792 dev_dbg(ice_hw_to_dev(pi->hw), 793 "Failed to enable link events for port %d\n", 794 pi->lport); 795 return -EIO; 796 } 797 798 return 0; 799 } 800 801 /** 802 * ice_handle_link_event - handle link event via ARQ 803 * @pf: pf that the link event is associated with 804 * 805 * Return -EINVAL if port_info is null 806 * Return status on success 807 */ 808 static int ice_handle_link_event(struct ice_pf *pf) 809 { 810 struct ice_port_info *port_info; 811 int status; 812 813 port_info = pf->hw.port_info; 814 if (!port_info) 815 return -EINVAL; 816 817 status = ice_link_event(pf, port_info); 818 if (status) 819 dev_dbg(&pf->pdev->dev, 820 "Could not process link event, error %d\n", status); 821 822 return status; 823 } 824 825 /** 826 * __ice_clean_ctrlq - helper function to clean controlq rings 827 * @pf: ptr to struct ice_pf 828 * @q_type: specific Control queue type 829 */ 830 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 831 { 832 struct ice_rq_event_info event; 833 struct ice_hw *hw = &pf->hw; 834 struct ice_ctl_q_info *cq; 835 u16 pending, i = 0; 836 const char *qtype; 837 u32 oldval, val; 838 839 /* Do not clean control queue if/when PF reset fails */ 840 if (test_bit(__ICE_RESET_FAILED, pf->state)) 841 return 0; 842 843 switch (q_type) { 844 case ICE_CTL_Q_ADMIN: 845 cq = &hw->adminq; 846 qtype = "Admin"; 847 break; 848 case ICE_CTL_Q_MAILBOX: 849 cq = &hw->mailboxq; 850 qtype = "Mailbox"; 851 break; 852 default: 853 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 854 q_type); 855 return 0; 856 } 857 858 /* check for error indications - PF_xx_AxQLEN register layout for 859 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 860 */ 861 val = rd32(hw, cq->rq.len); 862 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 863 PF_FW_ARQLEN_ARQCRIT_M)) { 864 oldval = val; 865 if (val & PF_FW_ARQLEN_ARQVFE_M) 866 dev_dbg(&pf->pdev->dev, 867 "%s Receive Queue VF Error detected\n", qtype); 868 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 869 dev_dbg(&pf->pdev->dev, 870 "%s Receive Queue Overflow Error detected\n", 871 qtype); 872 } 873 if (val & PF_FW_ARQLEN_ARQCRIT_M) 874 dev_dbg(&pf->pdev->dev, 875 "%s Receive Queue Critical Error detected\n", 876 qtype); 877 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 878 PF_FW_ARQLEN_ARQCRIT_M); 879 if (oldval != val) 880 wr32(hw, cq->rq.len, val); 881 } 882 883 val = rd32(hw, cq->sq.len); 884 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 885 PF_FW_ATQLEN_ATQCRIT_M)) { 886 oldval = val; 887 if (val & PF_FW_ATQLEN_ATQVFE_M) 888 dev_dbg(&pf->pdev->dev, 889 "%s Send Queue VF Error detected\n", qtype); 890 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 891 dev_dbg(&pf->pdev->dev, 892 "%s Send Queue Overflow Error detected\n", 893 qtype); 894 } 895 if (val & PF_FW_ATQLEN_ATQCRIT_M) 896 dev_dbg(&pf->pdev->dev, 897 "%s Send Queue Critical Error detected\n", 898 qtype); 899 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 900 PF_FW_ATQLEN_ATQCRIT_M); 901 if (oldval != val) 902 wr32(hw, cq->sq.len, val); 903 } 904 905 event.buf_len = cq->rq_buf_size; 906 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 907 GFP_KERNEL); 908 if (!event.msg_buf) 909 return 0; 910 911 do { 912 enum ice_status ret; 913 u16 opcode; 914 915 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 916 if (ret == ICE_ERR_AQ_NO_WORK) 917 break; 918 if (ret) { 919 dev_err(&pf->pdev->dev, 920 "%s Receive Queue event error %d\n", qtype, 921 ret); 922 break; 923 } 924 925 opcode = le16_to_cpu(event.desc.opcode); 926 927 switch (opcode) { 928 case ice_aqc_opc_get_link_status: 929 if (ice_handle_link_event(pf)) 930 dev_err(&pf->pdev->dev, 931 "Could not handle link event\n"); 932 break; 933 case ice_mbx_opc_send_msg_to_pf: 934 ice_vc_process_vf_msg(pf, &event); 935 break; 936 case ice_aqc_opc_fw_logging: 937 ice_output_fw_log(hw, &event.desc, event.msg_buf); 938 break; 939 case ice_aqc_opc_lldp_set_mib_change: 940 ice_dcb_process_lldp_set_mib_change(pf, &event); 941 break; 942 default: 943 dev_dbg(&pf->pdev->dev, 944 "%s Receive Queue unknown event 0x%04x ignored\n", 945 qtype, opcode); 946 break; 947 } 948 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 949 950 devm_kfree(&pf->pdev->dev, event.msg_buf); 951 952 return pending && (i == ICE_DFLT_IRQ_WORK); 953 } 954 955 /** 956 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 957 * @hw: pointer to hardware info 958 * @cq: control queue information 959 * 960 * returns true if there are pending messages in a queue, false if there aren't 961 */ 962 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 963 { 964 u16 ntu; 965 966 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 967 return cq->rq.next_to_clean != ntu; 968 } 969 970 /** 971 * ice_clean_adminq_subtask - clean the AdminQ rings 972 * @pf: board private structure 973 */ 974 static void ice_clean_adminq_subtask(struct ice_pf *pf) 975 { 976 struct ice_hw *hw = &pf->hw; 977 978 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 979 return; 980 981 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 982 return; 983 984 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 985 986 /* There might be a situation where new messages arrive to a control 987 * queue between processing the last message and clearing the 988 * EVENT_PENDING bit. So before exiting, check queue head again (using 989 * ice_ctrlq_pending) and process new messages if any. 990 */ 991 if (ice_ctrlq_pending(hw, &hw->adminq)) 992 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 993 994 ice_flush(hw); 995 } 996 997 /** 998 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 999 * @pf: board private structure 1000 */ 1001 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1002 { 1003 struct ice_hw *hw = &pf->hw; 1004 1005 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1006 return; 1007 1008 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1009 return; 1010 1011 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1012 1013 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1014 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1015 1016 ice_flush(hw); 1017 } 1018 1019 /** 1020 * ice_service_task_schedule - schedule the service task to wake up 1021 * @pf: board private structure 1022 * 1023 * If not already scheduled, this puts the task into the work queue. 1024 */ 1025 static void ice_service_task_schedule(struct ice_pf *pf) 1026 { 1027 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1028 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1029 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1030 queue_work(ice_wq, &pf->serv_task); 1031 } 1032 1033 /** 1034 * ice_service_task_complete - finish up the service task 1035 * @pf: board private structure 1036 */ 1037 static void ice_service_task_complete(struct ice_pf *pf) 1038 { 1039 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1040 1041 /* force memory (pf->state) to sync before next service task */ 1042 smp_mb__before_atomic(); 1043 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1044 } 1045 1046 /** 1047 * ice_service_task_stop - stop service task and cancel works 1048 * @pf: board private structure 1049 */ 1050 static void ice_service_task_stop(struct ice_pf *pf) 1051 { 1052 set_bit(__ICE_SERVICE_DIS, pf->state); 1053 1054 if (pf->serv_tmr.function) 1055 del_timer_sync(&pf->serv_tmr); 1056 if (pf->serv_task.func) 1057 cancel_work_sync(&pf->serv_task); 1058 1059 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1060 } 1061 1062 /** 1063 * ice_service_task_restart - restart service task and schedule works 1064 * @pf: board private structure 1065 * 1066 * This function is needed for suspend and resume works (e.g WoL scenario) 1067 */ 1068 static void ice_service_task_restart(struct ice_pf *pf) 1069 { 1070 clear_bit(__ICE_SERVICE_DIS, pf->state); 1071 ice_service_task_schedule(pf); 1072 } 1073 1074 /** 1075 * ice_service_timer - timer callback to schedule service task 1076 * @t: pointer to timer_list 1077 */ 1078 static void ice_service_timer(struct timer_list *t) 1079 { 1080 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1081 1082 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1083 ice_service_task_schedule(pf); 1084 } 1085 1086 /** 1087 * ice_handle_mdd_event - handle malicious driver detect event 1088 * @pf: pointer to the PF structure 1089 * 1090 * Called from service task. OICR interrupt handler indicates MDD event 1091 */ 1092 static void ice_handle_mdd_event(struct ice_pf *pf) 1093 { 1094 struct ice_hw *hw = &pf->hw; 1095 bool mdd_detected = false; 1096 u32 reg; 1097 int i; 1098 1099 if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1100 return; 1101 1102 /* find what triggered the MDD event */ 1103 reg = rd32(hw, GL_MDET_TX_PQM); 1104 if (reg & GL_MDET_TX_PQM_VALID_M) { 1105 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1106 GL_MDET_TX_PQM_PF_NUM_S; 1107 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1108 GL_MDET_TX_PQM_VF_NUM_S; 1109 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1110 GL_MDET_TX_PQM_MAL_TYPE_S; 1111 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1112 GL_MDET_TX_PQM_QNUM_S); 1113 1114 if (netif_msg_tx_err(pf)) 1115 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1116 event, queue, pf_num, vf_num); 1117 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1118 mdd_detected = true; 1119 } 1120 1121 reg = rd32(hw, GL_MDET_TX_TCLAN); 1122 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1123 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1124 GL_MDET_TX_TCLAN_PF_NUM_S; 1125 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1126 GL_MDET_TX_TCLAN_VF_NUM_S; 1127 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1128 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1129 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1130 GL_MDET_TX_TCLAN_QNUM_S); 1131 1132 if (netif_msg_rx_err(pf)) 1133 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1134 event, queue, pf_num, vf_num); 1135 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1136 mdd_detected = true; 1137 } 1138 1139 reg = rd32(hw, GL_MDET_RX); 1140 if (reg & GL_MDET_RX_VALID_M) { 1141 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1142 GL_MDET_RX_PF_NUM_S; 1143 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1144 GL_MDET_RX_VF_NUM_S; 1145 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1146 GL_MDET_RX_MAL_TYPE_S; 1147 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1148 GL_MDET_RX_QNUM_S); 1149 1150 if (netif_msg_rx_err(pf)) 1151 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1152 event, queue, pf_num, vf_num); 1153 wr32(hw, GL_MDET_RX, 0xffffffff); 1154 mdd_detected = true; 1155 } 1156 1157 if (mdd_detected) { 1158 bool pf_mdd_detected = false; 1159 1160 reg = rd32(hw, PF_MDET_TX_PQM); 1161 if (reg & PF_MDET_TX_PQM_VALID_M) { 1162 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1163 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1164 pf_mdd_detected = true; 1165 } 1166 1167 reg = rd32(hw, PF_MDET_TX_TCLAN); 1168 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1169 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1170 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1171 pf_mdd_detected = true; 1172 } 1173 1174 reg = rd32(hw, PF_MDET_RX); 1175 if (reg & PF_MDET_RX_VALID_M) { 1176 wr32(hw, PF_MDET_RX, 0xFFFF); 1177 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 1178 pf_mdd_detected = true; 1179 } 1180 /* Queue belongs to the PF initiate a reset */ 1181 if (pf_mdd_detected) { 1182 set_bit(__ICE_NEEDS_RESTART, pf->state); 1183 ice_service_task_schedule(pf); 1184 } 1185 } 1186 1187 /* see if one of the VFs needs to be reset */ 1188 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 1189 struct ice_vf *vf = &pf->vf[i]; 1190 1191 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1192 if (reg & VP_MDET_TX_PQM_VALID_M) { 1193 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1194 vf->num_mdd_events++; 1195 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1196 i); 1197 } 1198 1199 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1200 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1201 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1202 vf->num_mdd_events++; 1203 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1204 i); 1205 } 1206 1207 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1208 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1209 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1210 vf->num_mdd_events++; 1211 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1212 i); 1213 } 1214 1215 reg = rd32(hw, VP_MDET_RX(i)); 1216 if (reg & VP_MDET_RX_VALID_M) { 1217 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1218 vf->num_mdd_events++; 1219 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1220 i); 1221 } 1222 1223 if (vf->num_mdd_events > ICE_DFLT_NUM_MDD_EVENTS_ALLOWED) { 1224 dev_info(&pf->pdev->dev, 1225 "Too many MDD events on VF %d, disabled\n", i); 1226 dev_info(&pf->pdev->dev, 1227 "Use PF Control I/F to re-enable the VF\n"); 1228 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 1229 } 1230 } 1231 1232 /* re-enable MDD interrupt cause */ 1233 clear_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1234 reg = rd32(hw, PFINT_OICR_ENA); 1235 reg |= PFINT_OICR_MAL_DETECT_M; 1236 wr32(hw, PFINT_OICR_ENA, reg); 1237 ice_flush(hw); 1238 } 1239 1240 /** 1241 * ice_service_task - manage and run subtasks 1242 * @work: pointer to work_struct contained by the PF struct 1243 */ 1244 static void ice_service_task(struct work_struct *work) 1245 { 1246 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1247 unsigned long start_time = jiffies; 1248 1249 /* subtasks */ 1250 1251 /* process reset requests first */ 1252 ice_reset_subtask(pf); 1253 1254 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1255 if (ice_is_reset_in_progress(pf->state) || 1256 test_bit(__ICE_SUSPENDED, pf->state) || 1257 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1258 ice_service_task_complete(pf); 1259 return; 1260 } 1261 1262 ice_check_for_hang_subtask(pf); 1263 ice_sync_fltr_subtask(pf); 1264 ice_handle_mdd_event(pf); 1265 ice_process_vflr_event(pf); 1266 ice_watchdog_subtask(pf); 1267 ice_clean_adminq_subtask(pf); 1268 ice_clean_mailboxq_subtask(pf); 1269 1270 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1271 ice_service_task_complete(pf); 1272 1273 /* If the tasks have taken longer than one service timer period 1274 * or there is more work to be done, reset the service timer to 1275 * schedule the service task now. 1276 */ 1277 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1278 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1279 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1280 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1281 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1282 mod_timer(&pf->serv_tmr, jiffies); 1283 } 1284 1285 /** 1286 * ice_set_ctrlq_len - helper function to set controlq length 1287 * @hw: pointer to the HW instance 1288 */ 1289 static void ice_set_ctrlq_len(struct ice_hw *hw) 1290 { 1291 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1292 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1293 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1294 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1295 hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN; 1296 hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN; 1297 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1298 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1299 } 1300 1301 /** 1302 * ice_irq_affinity_notify - Callback for affinity changes 1303 * @notify: context as to what irq was changed 1304 * @mask: the new affinity mask 1305 * 1306 * This is a callback function used by the irq_set_affinity_notifier function 1307 * so that we may register to receive changes to the irq affinity masks. 1308 */ 1309 static void 1310 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1311 const cpumask_t *mask) 1312 { 1313 struct ice_q_vector *q_vector = 1314 container_of(notify, struct ice_q_vector, affinity_notify); 1315 1316 cpumask_copy(&q_vector->affinity_mask, mask); 1317 } 1318 1319 /** 1320 * ice_irq_affinity_release - Callback for affinity notifier release 1321 * @ref: internal core kernel usage 1322 * 1323 * This is a callback function used by the irq_set_affinity_notifier function 1324 * to inform the current notification subscriber that they will no longer 1325 * receive notifications. 1326 */ 1327 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1328 1329 /** 1330 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1331 * @vsi: the VSI being configured 1332 */ 1333 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1334 { 1335 struct ice_pf *pf = vsi->back; 1336 struct ice_hw *hw = &pf->hw; 1337 1338 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1339 int i; 1340 1341 for (i = 0; i < vsi->num_q_vectors; i++) 1342 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1343 } 1344 1345 ice_flush(hw); 1346 return 0; 1347 } 1348 1349 /** 1350 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1351 * @vsi: the VSI being configured 1352 * @basename: name for the vector 1353 */ 1354 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1355 { 1356 int q_vectors = vsi->num_q_vectors; 1357 struct ice_pf *pf = vsi->back; 1358 int base = vsi->sw_base_vector; 1359 int rx_int_idx = 0; 1360 int tx_int_idx = 0; 1361 int vector, err; 1362 int irq_num; 1363 1364 for (vector = 0; vector < q_vectors; vector++) { 1365 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1366 1367 irq_num = pf->msix_entries[base + vector].vector; 1368 1369 if (q_vector->tx.ring && q_vector->rx.ring) { 1370 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1371 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1372 tx_int_idx++; 1373 } else if (q_vector->rx.ring) { 1374 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1375 "%s-%s-%d", basename, "rx", rx_int_idx++); 1376 } else if (q_vector->tx.ring) { 1377 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1378 "%s-%s-%d", basename, "tx", tx_int_idx++); 1379 } else { 1380 /* skip this unused q_vector */ 1381 continue; 1382 } 1383 err = devm_request_irq(&pf->pdev->dev, irq_num, 1384 vsi->irq_handler, 0, 1385 q_vector->name, q_vector); 1386 if (err) { 1387 netdev_err(vsi->netdev, 1388 "MSIX request_irq failed, error: %d\n", err); 1389 goto free_q_irqs; 1390 } 1391 1392 /* register for affinity change notifications */ 1393 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1394 q_vector->affinity_notify.release = ice_irq_affinity_release; 1395 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1396 1397 /* assign the mask for this irq */ 1398 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1399 } 1400 1401 vsi->irqs_ready = true; 1402 return 0; 1403 1404 free_q_irqs: 1405 while (vector) { 1406 vector--; 1407 irq_num = pf->msix_entries[base + vector].vector, 1408 irq_set_affinity_notifier(irq_num, NULL); 1409 irq_set_affinity_hint(irq_num, NULL); 1410 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1411 } 1412 return err; 1413 } 1414 1415 /** 1416 * ice_ena_misc_vector - enable the non-queue interrupts 1417 * @pf: board private structure 1418 */ 1419 static void ice_ena_misc_vector(struct ice_pf *pf) 1420 { 1421 struct ice_hw *hw = &pf->hw; 1422 u32 val; 1423 1424 /* clear things first */ 1425 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1426 rd32(hw, PFINT_OICR); /* read to clear */ 1427 1428 val = (PFINT_OICR_ECC_ERR_M | 1429 PFINT_OICR_MAL_DETECT_M | 1430 PFINT_OICR_GRST_M | 1431 PFINT_OICR_PCI_EXCEPTION_M | 1432 PFINT_OICR_VFLR_M | 1433 PFINT_OICR_HMC_ERR_M | 1434 PFINT_OICR_PE_CRITERR_M); 1435 1436 wr32(hw, PFINT_OICR_ENA, val); 1437 1438 /* SW_ITR_IDX = 0, but don't change INTENA */ 1439 wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx), 1440 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1441 } 1442 1443 /** 1444 * ice_misc_intr - misc interrupt handler 1445 * @irq: interrupt number 1446 * @data: pointer to a q_vector 1447 */ 1448 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1449 { 1450 struct ice_pf *pf = (struct ice_pf *)data; 1451 struct ice_hw *hw = &pf->hw; 1452 irqreturn_t ret = IRQ_NONE; 1453 u32 oicr, ena_mask; 1454 1455 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1456 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1457 1458 oicr = rd32(hw, PFINT_OICR); 1459 ena_mask = rd32(hw, PFINT_OICR_ENA); 1460 1461 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1462 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1463 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1464 } 1465 if (oicr & PFINT_OICR_VFLR_M) { 1466 ena_mask &= ~PFINT_OICR_VFLR_M; 1467 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1468 } 1469 1470 if (oicr & PFINT_OICR_GRST_M) { 1471 u32 reset; 1472 1473 /* we have a reset warning */ 1474 ena_mask &= ~PFINT_OICR_GRST_M; 1475 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1476 GLGEN_RSTAT_RESET_TYPE_S; 1477 1478 if (reset == ICE_RESET_CORER) 1479 pf->corer_count++; 1480 else if (reset == ICE_RESET_GLOBR) 1481 pf->globr_count++; 1482 else if (reset == ICE_RESET_EMPR) 1483 pf->empr_count++; 1484 else 1485 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1486 reset); 1487 1488 /* If a reset cycle isn't already in progress, we set a bit in 1489 * pf->state so that the service task can start a reset/rebuild. 1490 * We also make note of which reset happened so that peer 1491 * devices/drivers can be informed. 1492 */ 1493 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1494 if (reset == ICE_RESET_CORER) 1495 set_bit(__ICE_CORER_RECV, pf->state); 1496 else if (reset == ICE_RESET_GLOBR) 1497 set_bit(__ICE_GLOBR_RECV, pf->state); 1498 else 1499 set_bit(__ICE_EMPR_RECV, pf->state); 1500 1501 /* There are couple of different bits at play here. 1502 * hw->reset_ongoing indicates whether the hardware is 1503 * in reset. This is set to true when a reset interrupt 1504 * is received and set back to false after the driver 1505 * has determined that the hardware is out of reset. 1506 * 1507 * __ICE_RESET_OICR_RECV in pf->state indicates 1508 * that a post reset rebuild is required before the 1509 * driver is operational again. This is set above. 1510 * 1511 * As this is the start of the reset/rebuild cycle, set 1512 * both to indicate that. 1513 */ 1514 hw->reset_ongoing = true; 1515 } 1516 } 1517 1518 if (oicr & PFINT_OICR_HMC_ERR_M) { 1519 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1520 dev_dbg(&pf->pdev->dev, 1521 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1522 rd32(hw, PFHMC_ERRORINFO), 1523 rd32(hw, PFHMC_ERRORDATA)); 1524 } 1525 1526 /* Report and mask off any remaining unexpected interrupts */ 1527 oicr &= ena_mask; 1528 if (oicr) { 1529 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1530 oicr); 1531 /* If a critical error is pending there is no choice but to 1532 * reset the device. 1533 */ 1534 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1535 PFINT_OICR_PCI_EXCEPTION_M | 1536 PFINT_OICR_ECC_ERR_M)) { 1537 set_bit(__ICE_PFR_REQ, pf->state); 1538 ice_service_task_schedule(pf); 1539 } 1540 ena_mask &= ~oicr; 1541 } 1542 ret = IRQ_HANDLED; 1543 1544 /* re-enable interrupt causes that are not handled during this pass */ 1545 wr32(hw, PFINT_OICR_ENA, ena_mask); 1546 if (!test_bit(__ICE_DOWN, pf->state)) { 1547 ice_service_task_schedule(pf); 1548 ice_irq_dynamic_ena(hw, NULL, NULL); 1549 } 1550 1551 return ret; 1552 } 1553 1554 /** 1555 * ice_dis_ctrlq_interrupts - disable control queue interrupts 1556 * @hw: pointer to HW structure 1557 */ 1558 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 1559 { 1560 /* disable Admin queue Interrupt causes */ 1561 wr32(hw, PFINT_FW_CTL, 1562 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 1563 1564 /* disable Mailbox queue Interrupt causes */ 1565 wr32(hw, PFINT_MBX_CTL, 1566 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 1567 1568 /* disable Control queue Interrupt causes */ 1569 wr32(hw, PFINT_OICR_CTL, 1570 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 1571 1572 ice_flush(hw); 1573 } 1574 1575 /** 1576 * ice_free_irq_msix_misc - Unroll misc vector setup 1577 * @pf: board private structure 1578 */ 1579 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1580 { 1581 struct ice_hw *hw = &pf->hw; 1582 1583 ice_dis_ctrlq_interrupts(hw); 1584 1585 /* disable OICR interrupt */ 1586 wr32(hw, PFINT_OICR_ENA, 0); 1587 ice_flush(hw); 1588 1589 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 1590 synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector); 1591 devm_free_irq(&pf->pdev->dev, 1592 pf->msix_entries[pf->sw_oicr_idx].vector, pf); 1593 } 1594 1595 pf->num_avail_sw_msix += 1; 1596 ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID); 1597 pf->num_avail_hw_msix += 1; 1598 ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID); 1599 } 1600 1601 /** 1602 * ice_ena_ctrlq_interrupts - enable control queue interrupts 1603 * @hw: pointer to HW structure 1604 * @v_idx: HW vector index to associate the control queue interrupts with 1605 */ 1606 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 v_idx) 1607 { 1608 u32 val; 1609 1610 val = ((v_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1611 PFINT_OICR_CTL_CAUSE_ENA_M); 1612 wr32(hw, PFINT_OICR_CTL, val); 1613 1614 /* enable Admin queue Interrupt causes */ 1615 val = ((v_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1616 PFINT_FW_CTL_CAUSE_ENA_M); 1617 wr32(hw, PFINT_FW_CTL, val); 1618 1619 /* enable Mailbox queue Interrupt causes */ 1620 val = ((v_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1621 PFINT_MBX_CTL_CAUSE_ENA_M); 1622 wr32(hw, PFINT_MBX_CTL, val); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1629 * @pf: board private structure 1630 * 1631 * This sets up the handler for MSIX 0, which is used to manage the 1632 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1633 * when in MSI or Legacy interrupt mode. 1634 */ 1635 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1636 { 1637 struct ice_hw *hw = &pf->hw; 1638 int oicr_idx, err = 0; 1639 1640 if (!pf->int_name[0]) 1641 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1642 dev_driver_string(&pf->pdev->dev), 1643 dev_name(&pf->pdev->dev)); 1644 1645 /* Do not request IRQ but do enable OICR interrupt since settings are 1646 * lost during reset. Note that this function is called only during 1647 * rebuild path and not while reset is in progress. 1648 */ 1649 if (ice_is_reset_in_progress(pf->state)) 1650 goto skip_req_irq; 1651 1652 /* reserve one vector in sw_irq_tracker for misc interrupts */ 1653 oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1654 if (oicr_idx < 0) 1655 return oicr_idx; 1656 1657 pf->num_avail_sw_msix -= 1; 1658 pf->sw_oicr_idx = oicr_idx; 1659 1660 /* reserve one vector in hw_irq_tracker for misc interrupts */ 1661 oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1662 if (oicr_idx < 0) { 1663 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1664 pf->num_avail_sw_msix += 1; 1665 return oicr_idx; 1666 } 1667 pf->num_avail_hw_msix -= 1; 1668 pf->hw_oicr_idx = oicr_idx; 1669 1670 err = devm_request_irq(&pf->pdev->dev, 1671 pf->msix_entries[pf->sw_oicr_idx].vector, 1672 ice_misc_intr, 0, pf->int_name, pf); 1673 if (err) { 1674 dev_err(&pf->pdev->dev, 1675 "devm_request_irq for %s failed: %d\n", 1676 pf->int_name, err); 1677 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1678 pf->num_avail_sw_msix += 1; 1679 ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1680 pf->num_avail_hw_msix += 1; 1681 return err; 1682 } 1683 1684 skip_req_irq: 1685 ice_ena_misc_vector(pf); 1686 1687 ice_ena_ctrlq_interrupts(hw, pf->hw_oicr_idx); 1688 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx), 1689 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 1690 1691 ice_flush(hw); 1692 ice_irq_dynamic_ena(hw, NULL, NULL); 1693 1694 return 0; 1695 } 1696 1697 /** 1698 * ice_napi_del - Remove NAPI handler for the VSI 1699 * @vsi: VSI for which NAPI handler is to be removed 1700 */ 1701 void ice_napi_del(struct ice_vsi *vsi) 1702 { 1703 int v_idx; 1704 1705 if (!vsi->netdev) 1706 return; 1707 1708 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1709 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 1710 } 1711 1712 /** 1713 * ice_napi_add - register NAPI handler for the VSI 1714 * @vsi: VSI for which NAPI handler is to be registered 1715 * 1716 * This function is only called in the driver's load path. Registering the NAPI 1717 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1718 * reset/rebuild, etc.) 1719 */ 1720 static void ice_napi_add(struct ice_vsi *vsi) 1721 { 1722 int v_idx; 1723 1724 if (!vsi->netdev) 1725 return; 1726 1727 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1728 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1729 ice_napi_poll, NAPI_POLL_WEIGHT); 1730 } 1731 1732 /** 1733 * ice_cfg_netdev - Allocate, configure and register a netdev 1734 * @vsi: the VSI associated with the new netdev 1735 * 1736 * Returns 0 on success, negative value on failure 1737 */ 1738 static int ice_cfg_netdev(struct ice_vsi *vsi) 1739 { 1740 netdev_features_t csumo_features; 1741 netdev_features_t vlano_features; 1742 netdev_features_t dflt_features; 1743 netdev_features_t tso_features; 1744 struct ice_netdev_priv *np; 1745 struct net_device *netdev; 1746 u8 mac_addr[ETH_ALEN]; 1747 int err; 1748 1749 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 1750 vsi->alloc_rxq); 1751 if (!netdev) 1752 return -ENOMEM; 1753 1754 vsi->netdev = netdev; 1755 np = netdev_priv(netdev); 1756 np->vsi = vsi; 1757 1758 dflt_features = NETIF_F_SG | 1759 NETIF_F_HIGHDMA | 1760 NETIF_F_RXHASH; 1761 1762 csumo_features = NETIF_F_RXCSUM | 1763 NETIF_F_IP_CSUM | 1764 NETIF_F_SCTP_CRC | 1765 NETIF_F_IPV6_CSUM; 1766 1767 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 1768 NETIF_F_HW_VLAN_CTAG_TX | 1769 NETIF_F_HW_VLAN_CTAG_RX; 1770 1771 tso_features = NETIF_F_TSO; 1772 1773 /* set features that user can change */ 1774 netdev->hw_features = dflt_features | csumo_features | 1775 vlano_features | tso_features; 1776 1777 /* enable features */ 1778 netdev->features |= netdev->hw_features; 1779 /* encap and VLAN devices inherit default, csumo and tso features */ 1780 netdev->hw_enc_features |= dflt_features | csumo_features | 1781 tso_features; 1782 netdev->vlan_features |= dflt_features | csumo_features | 1783 tso_features; 1784 1785 if (vsi->type == ICE_VSI_PF) { 1786 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); 1787 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 1788 1789 ether_addr_copy(netdev->dev_addr, mac_addr); 1790 ether_addr_copy(netdev->perm_addr, mac_addr); 1791 } 1792 1793 netdev->priv_flags |= IFF_UNICAST_FLT; 1794 1795 /* assign netdev_ops */ 1796 netdev->netdev_ops = &ice_netdev_ops; 1797 1798 /* setup watchdog timeout value to be 5 second */ 1799 netdev->watchdog_timeo = 5 * HZ; 1800 1801 ice_set_ethtool_ops(netdev); 1802 1803 netdev->min_mtu = ETH_MIN_MTU; 1804 netdev->max_mtu = ICE_MAX_MTU; 1805 1806 err = register_netdev(vsi->netdev); 1807 if (err) 1808 return err; 1809 1810 netif_carrier_off(vsi->netdev); 1811 1812 /* make sure transmit queues start off as stopped */ 1813 netif_tx_stop_all_queues(vsi->netdev); 1814 1815 return 0; 1816 } 1817 1818 /** 1819 * ice_fill_rss_lut - Fill the RSS lookup table with default values 1820 * @lut: Lookup table 1821 * @rss_table_size: Lookup table size 1822 * @rss_size: Range of queue number for hashing 1823 */ 1824 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 1825 { 1826 u16 i; 1827 1828 for (i = 0; i < rss_table_size; i++) 1829 lut[i] = i % rss_size; 1830 } 1831 1832 /** 1833 * ice_pf_vsi_setup - Set up a PF VSI 1834 * @pf: board private structure 1835 * @pi: pointer to the port_info instance 1836 * 1837 * Returns pointer to the successfully allocated VSI sw struct on success, 1838 * otherwise returns NULL on failure. 1839 */ 1840 static struct ice_vsi * 1841 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 1842 { 1843 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 1844 } 1845 1846 /** 1847 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 1848 * @netdev: network interface to be adjusted 1849 * @proto: unused protocol 1850 * @vid: VLAN ID to be added 1851 * 1852 * net_device_ops implementation for adding VLAN IDs 1853 */ 1854 static int 1855 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 1856 u16 vid) 1857 { 1858 struct ice_netdev_priv *np = netdev_priv(netdev); 1859 struct ice_vsi *vsi = np->vsi; 1860 int ret; 1861 1862 if (vid >= VLAN_N_VID) { 1863 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 1864 vid, VLAN_N_VID); 1865 return -EINVAL; 1866 } 1867 1868 if (vsi->info.pvid) 1869 return -EINVAL; 1870 1871 /* Enable VLAN pruning when VLAN 0 is added */ 1872 if (unlikely(!vid)) { 1873 ret = ice_cfg_vlan_pruning(vsi, true, false); 1874 if (ret) 1875 return ret; 1876 } 1877 1878 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 1879 * needed to continue allowing all untagged packets since VLAN prune 1880 * list is applied to all packets by the switch 1881 */ 1882 ret = ice_vsi_add_vlan(vsi, vid); 1883 if (!ret) { 1884 vsi->vlan_ena = true; 1885 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 1886 } 1887 1888 return ret; 1889 } 1890 1891 /** 1892 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 1893 * @netdev: network interface to be adjusted 1894 * @proto: unused protocol 1895 * @vid: VLAN ID to be removed 1896 * 1897 * net_device_ops implementation for removing VLAN IDs 1898 */ 1899 static int 1900 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 1901 u16 vid) 1902 { 1903 struct ice_netdev_priv *np = netdev_priv(netdev); 1904 struct ice_vsi *vsi = np->vsi; 1905 int ret; 1906 1907 if (vsi->info.pvid) 1908 return -EINVAL; 1909 1910 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 1911 * information 1912 */ 1913 ret = ice_vsi_kill_vlan(vsi, vid); 1914 if (ret) 1915 return ret; 1916 1917 /* Disable VLAN pruning when VLAN 0 is removed */ 1918 if (unlikely(!vid)) 1919 ret = ice_cfg_vlan_pruning(vsi, false, false); 1920 1921 vsi->vlan_ena = false; 1922 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 1923 return ret; 1924 } 1925 1926 /** 1927 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 1928 * @pf: board private structure 1929 * 1930 * Returns 0 on success, negative value on failure 1931 */ 1932 static int ice_setup_pf_sw(struct ice_pf *pf) 1933 { 1934 LIST_HEAD(tmp_add_list); 1935 u8 broadcast[ETH_ALEN]; 1936 struct ice_vsi *vsi; 1937 int status = 0; 1938 1939 if (ice_is_reset_in_progress(pf->state)) 1940 return -EBUSY; 1941 1942 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 1943 if (!vsi) { 1944 status = -ENOMEM; 1945 goto unroll_vsi_setup; 1946 } 1947 1948 status = ice_cfg_netdev(vsi); 1949 if (status) { 1950 status = -ENODEV; 1951 goto unroll_vsi_setup; 1952 } 1953 1954 /* registering the NAPI handler requires both the queues and 1955 * netdev to be created, which are done in ice_pf_vsi_setup() 1956 * and ice_cfg_netdev() respectively 1957 */ 1958 ice_napi_add(vsi); 1959 1960 /* To add a MAC filter, first add the MAC to a list and then 1961 * pass the list to ice_add_mac. 1962 */ 1963 1964 /* Add a unicast MAC filter so the VSI can get its packets */ 1965 status = ice_add_mac_to_list(vsi, &tmp_add_list, 1966 vsi->port_info->mac.perm_addr); 1967 if (status) 1968 goto unroll_napi_add; 1969 1970 /* VSI needs to receive broadcast traffic, so add the broadcast 1971 * MAC address to the list as well. 1972 */ 1973 eth_broadcast_addr(broadcast); 1974 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); 1975 if (status) 1976 goto free_mac_list; 1977 1978 /* program MAC filters for entries in tmp_add_list */ 1979 status = ice_add_mac(&pf->hw, &tmp_add_list); 1980 if (status) { 1981 dev_err(&pf->pdev->dev, "Could not add MAC filters\n"); 1982 status = -ENOMEM; 1983 goto free_mac_list; 1984 } 1985 1986 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1987 return status; 1988 1989 free_mac_list: 1990 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1991 1992 unroll_napi_add: 1993 if (vsi) { 1994 ice_napi_del(vsi); 1995 if (vsi->netdev) { 1996 if (vsi->netdev->reg_state == NETREG_REGISTERED) 1997 unregister_netdev(vsi->netdev); 1998 free_netdev(vsi->netdev); 1999 vsi->netdev = NULL; 2000 } 2001 } 2002 2003 unroll_vsi_setup: 2004 if (vsi) { 2005 ice_vsi_free_q_vectors(vsi); 2006 ice_vsi_delete(vsi); 2007 ice_vsi_put_qs(vsi); 2008 pf->q_left_tx += vsi->alloc_txq; 2009 pf->q_left_rx += vsi->alloc_rxq; 2010 ice_vsi_clear(vsi); 2011 } 2012 return status; 2013 } 2014 2015 /** 2016 * ice_determine_q_usage - Calculate queue distribution 2017 * @pf: board private structure 2018 * 2019 * Return -ENOMEM if we don't get enough queues for all ports 2020 */ 2021 static void ice_determine_q_usage(struct ice_pf *pf) 2022 { 2023 u16 q_left_tx, q_left_rx; 2024 2025 q_left_tx = pf->hw.func_caps.common_cap.num_txq; 2026 q_left_rx = pf->hw.func_caps.common_cap.num_rxq; 2027 2028 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus()); 2029 2030 /* only 1 Rx queue unless RSS is enabled */ 2031 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2032 pf->num_lan_rx = 1; 2033 else 2034 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus()); 2035 2036 pf->q_left_tx = q_left_tx - pf->num_lan_tx; 2037 pf->q_left_rx = q_left_rx - pf->num_lan_rx; 2038 } 2039 2040 /** 2041 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2042 * @pf: board private structure to initialize 2043 */ 2044 static void ice_deinit_pf(struct ice_pf *pf) 2045 { 2046 ice_service_task_stop(pf); 2047 mutex_destroy(&pf->sw_mutex); 2048 mutex_destroy(&pf->avail_q_mutex); 2049 } 2050 2051 /** 2052 * ice_init_pf - Initialize general software structures (struct ice_pf) 2053 * @pf: board private structure to initialize 2054 */ 2055 static void ice_init_pf(struct ice_pf *pf) 2056 { 2057 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); 2058 set_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2059 #ifdef CONFIG_PCI_IOV 2060 if (pf->hw.func_caps.common_cap.sr_iov_1_1) { 2061 struct ice_hw *hw = &pf->hw; 2062 2063 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2064 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs, 2065 ICE_MAX_VF_COUNT); 2066 } 2067 #endif /* CONFIG_PCI_IOV */ 2068 2069 mutex_init(&pf->sw_mutex); 2070 mutex_init(&pf->avail_q_mutex); 2071 2072 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */ 2073 mutex_lock(&pf->avail_q_mutex); 2074 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS); 2075 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS); 2076 mutex_unlock(&pf->avail_q_mutex); 2077 2078 if (pf->hw.func_caps.common_cap.rss_table_size) 2079 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2080 2081 /* setup service timer and periodic service task */ 2082 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2083 pf->serv_tmr_period = HZ; 2084 INIT_WORK(&pf->serv_task, ice_service_task); 2085 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2086 } 2087 2088 /** 2089 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2090 * @pf: board private structure 2091 * 2092 * compute the number of MSIX vectors required (v_budget) and request from 2093 * the OS. Return the number of vectors reserved or negative on failure 2094 */ 2095 static int ice_ena_msix_range(struct ice_pf *pf) 2096 { 2097 int v_left, v_actual, v_budget = 0; 2098 int needed, err, i; 2099 2100 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2101 2102 /* reserve one vector for miscellaneous handler */ 2103 needed = 1; 2104 v_budget += needed; 2105 v_left -= needed; 2106 2107 /* reserve vectors for LAN traffic */ 2108 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left); 2109 v_budget += pf->num_lan_msix; 2110 v_left -= pf->num_lan_msix; 2111 2112 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 2113 sizeof(*pf->msix_entries), GFP_KERNEL); 2114 2115 if (!pf->msix_entries) { 2116 err = -ENOMEM; 2117 goto exit_err; 2118 } 2119 2120 for (i = 0; i < v_budget; i++) 2121 pf->msix_entries[i].entry = i; 2122 2123 /* actually reserve the vectors */ 2124 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2125 ICE_MIN_MSIX, v_budget); 2126 2127 if (v_actual < 0) { 2128 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 2129 err = v_actual; 2130 goto msix_err; 2131 } 2132 2133 if (v_actual < v_budget) { 2134 dev_warn(&pf->pdev->dev, 2135 "not enough vectors. requested = %d, obtained = %d\n", 2136 v_budget, v_actual); 2137 if (v_actual >= (pf->num_lan_msix + 1)) { 2138 pf->num_avail_sw_msix = v_actual - 2139 (pf->num_lan_msix + 1); 2140 } else if (v_actual >= 2) { 2141 pf->num_lan_msix = 1; 2142 pf->num_avail_sw_msix = v_actual - 2; 2143 } else { 2144 pci_disable_msix(pf->pdev); 2145 err = -ERANGE; 2146 goto msix_err; 2147 } 2148 } 2149 2150 return v_actual; 2151 2152 msix_err: 2153 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2154 goto exit_err; 2155 2156 exit_err: 2157 pf->num_lan_msix = 0; 2158 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2159 return err; 2160 } 2161 2162 /** 2163 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2164 * @pf: board private structure 2165 */ 2166 static void ice_dis_msix(struct ice_pf *pf) 2167 { 2168 pci_disable_msix(pf->pdev); 2169 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2170 pf->msix_entries = NULL; 2171 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2172 } 2173 2174 /** 2175 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2176 * @pf: board private structure 2177 */ 2178 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2179 { 2180 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2181 ice_dis_msix(pf); 2182 2183 if (pf->sw_irq_tracker) { 2184 devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker); 2185 pf->sw_irq_tracker = NULL; 2186 } 2187 2188 if (pf->hw_irq_tracker) { 2189 devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker); 2190 pf->hw_irq_tracker = NULL; 2191 } 2192 } 2193 2194 /** 2195 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2196 * @pf: board private structure to initialize 2197 */ 2198 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2199 { 2200 int vectors = 0, hw_vectors = 0; 2201 2202 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2203 vectors = ice_ena_msix_range(pf); 2204 else 2205 return -ENODEV; 2206 2207 if (vectors < 0) 2208 return vectors; 2209 2210 /* set up vector assignment tracking */ 2211 pf->sw_irq_tracker = 2212 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->sw_irq_tracker) + 2213 (sizeof(u16) * vectors), GFP_KERNEL); 2214 if (!pf->sw_irq_tracker) { 2215 ice_dis_msix(pf); 2216 return -ENOMEM; 2217 } 2218 2219 /* populate SW interrupts pool with number of OS granted IRQs. */ 2220 pf->num_avail_sw_msix = vectors; 2221 pf->sw_irq_tracker->num_entries = vectors; 2222 2223 /* set up HW vector assignment tracking */ 2224 hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 2225 pf->hw_irq_tracker = 2226 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->hw_irq_tracker) + 2227 (sizeof(u16) * hw_vectors), GFP_KERNEL); 2228 if (!pf->hw_irq_tracker) { 2229 ice_clear_interrupt_scheme(pf); 2230 return -ENOMEM; 2231 } 2232 2233 /* populate HW interrupts pool with number of HW supported irqs. */ 2234 pf->num_avail_hw_msix = hw_vectors; 2235 pf->hw_irq_tracker->num_entries = hw_vectors; 2236 2237 return 0; 2238 } 2239 2240 /** 2241 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 2242 * @pf: pointer to the PF structure 2243 * 2244 * There is no error returned here because the driver should be able to handle 2245 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2246 * specifically with Tx. 2247 */ 2248 static void ice_verify_cacheline_size(struct ice_pf *pf) 2249 { 2250 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2251 dev_warn(&pf->pdev->dev, 2252 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2253 ICE_CACHE_LINE_BYTES); 2254 } 2255 2256 /** 2257 * ice_probe - Device initialization routine 2258 * @pdev: PCI device information struct 2259 * @ent: entry in ice_pci_tbl 2260 * 2261 * Returns 0 on success, negative on failure 2262 */ 2263 static int 2264 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 2265 { 2266 struct device *dev = &pdev->dev; 2267 struct ice_pf *pf; 2268 struct ice_hw *hw; 2269 int err; 2270 2271 /* this driver uses devres, see Documentation/driver-model/devres.txt */ 2272 err = pcim_enable_device(pdev); 2273 if (err) 2274 return err; 2275 2276 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2277 if (err) { 2278 dev_err(dev, "BAR0 I/O map error %d\n", err); 2279 return err; 2280 } 2281 2282 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 2283 if (!pf) 2284 return -ENOMEM; 2285 2286 /* set up for high or low dma */ 2287 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 2288 if (err) 2289 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2290 if (err) { 2291 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 2292 return err; 2293 } 2294 2295 pci_enable_pcie_error_reporting(pdev); 2296 pci_set_master(pdev); 2297 2298 pf->pdev = pdev; 2299 pci_set_drvdata(pdev, pf); 2300 set_bit(__ICE_DOWN, pf->state); 2301 /* Disable service task until DOWN bit is cleared */ 2302 set_bit(__ICE_SERVICE_DIS, pf->state); 2303 2304 hw = &pf->hw; 2305 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2306 hw->back = pf; 2307 hw->vendor_id = pdev->vendor; 2308 hw->device_id = pdev->device; 2309 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2310 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2311 hw->subsystem_device_id = pdev->subsystem_device; 2312 hw->bus.device = PCI_SLOT(pdev->devfn); 2313 hw->bus.func = PCI_FUNC(pdev->devfn); 2314 ice_set_ctrlq_len(hw); 2315 2316 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2317 2318 #ifndef CONFIG_DYNAMIC_DEBUG 2319 if (debug < -1) 2320 hw->debug_mask = debug; 2321 #endif 2322 2323 err = ice_init_hw(hw); 2324 if (err) { 2325 dev_err(dev, "ice_init_hw failed: %d\n", err); 2326 err = -EIO; 2327 goto err_exit_unroll; 2328 } 2329 2330 dev_info(dev, "firmware %d.%d.%05d api %d.%d\n", 2331 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, 2332 hw->api_maj_ver, hw->api_min_ver); 2333 2334 ice_init_pf(pf); 2335 2336 err = ice_init_pf_dcb(pf); 2337 if (err) { 2338 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2339 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 2340 2341 /* do not fail overall init if DCB init fails */ 2342 err = 0; 2343 } 2344 2345 ice_determine_q_usage(pf); 2346 2347 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 2348 if (!pf->num_alloc_vsi) { 2349 err = -EIO; 2350 goto err_init_pf_unroll; 2351 } 2352 2353 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 2354 GFP_KERNEL); 2355 if (!pf->vsi) { 2356 err = -ENOMEM; 2357 goto err_init_pf_unroll; 2358 } 2359 2360 err = ice_init_interrupt_scheme(pf); 2361 if (err) { 2362 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 2363 err = -EIO; 2364 goto err_init_interrupt_unroll; 2365 } 2366 2367 /* Driver is mostly up */ 2368 clear_bit(__ICE_DOWN, pf->state); 2369 2370 /* In case of MSIX we are going to setup the misc vector right here 2371 * to handle admin queue events etc. In case of legacy and MSI 2372 * the misc functionality and queue processing is combined in 2373 * the same vector and that gets setup at open. 2374 */ 2375 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2376 err = ice_req_irq_msix_misc(pf); 2377 if (err) { 2378 dev_err(dev, "setup of misc vector failed: %d\n", err); 2379 goto err_init_interrupt_unroll; 2380 } 2381 } 2382 2383 /* create switch struct for the switch element created by FW on boot */ 2384 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 2385 if (!pf->first_sw) { 2386 err = -ENOMEM; 2387 goto err_msix_misc_unroll; 2388 } 2389 2390 if (hw->evb_veb) 2391 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2392 else 2393 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2394 2395 pf->first_sw->pf = pf; 2396 2397 /* record the sw_id available for later use */ 2398 pf->first_sw->sw_id = hw->port_info->sw_id; 2399 2400 err = ice_setup_pf_sw(pf); 2401 if (err) { 2402 dev_err(dev, "probe failed due to setup pf switch:%d\n", err); 2403 goto err_alloc_sw_unroll; 2404 } 2405 2406 clear_bit(__ICE_SERVICE_DIS, pf->state); 2407 2408 /* since everything is good, start the service timer */ 2409 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2410 2411 err = ice_init_link_events(pf->hw.port_info); 2412 if (err) { 2413 dev_err(dev, "ice_init_link_events failed: %d\n", err); 2414 goto err_alloc_sw_unroll; 2415 } 2416 2417 ice_verify_cacheline_size(pf); 2418 2419 return 0; 2420 2421 err_alloc_sw_unroll: 2422 set_bit(__ICE_SERVICE_DIS, pf->state); 2423 set_bit(__ICE_DOWN, pf->state); 2424 devm_kfree(&pf->pdev->dev, pf->first_sw); 2425 err_msix_misc_unroll: 2426 ice_free_irq_msix_misc(pf); 2427 err_init_interrupt_unroll: 2428 ice_clear_interrupt_scheme(pf); 2429 devm_kfree(dev, pf->vsi); 2430 err_init_pf_unroll: 2431 ice_deinit_pf(pf); 2432 ice_deinit_hw(hw); 2433 err_exit_unroll: 2434 pci_disable_pcie_error_reporting(pdev); 2435 return err; 2436 } 2437 2438 /** 2439 * ice_remove - Device removal routine 2440 * @pdev: PCI device information struct 2441 */ 2442 static void ice_remove(struct pci_dev *pdev) 2443 { 2444 struct ice_pf *pf = pci_get_drvdata(pdev); 2445 int i; 2446 2447 if (!pf) 2448 return; 2449 2450 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 2451 if (!ice_is_reset_in_progress(pf->state)) 2452 break; 2453 msleep(100); 2454 } 2455 2456 set_bit(__ICE_DOWN, pf->state); 2457 ice_service_task_stop(pf); 2458 2459 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2460 ice_free_vfs(pf); 2461 ice_vsi_release_all(pf); 2462 ice_free_irq_msix_misc(pf); 2463 ice_for_each_vsi(pf, i) { 2464 if (!pf->vsi[i]) 2465 continue; 2466 ice_vsi_free_q_vectors(pf->vsi[i]); 2467 } 2468 ice_clear_interrupt_scheme(pf); 2469 ice_deinit_pf(pf); 2470 ice_deinit_hw(&pf->hw); 2471 pci_disable_pcie_error_reporting(pdev); 2472 } 2473 2474 /** 2475 * ice_pci_err_detected - warning that PCI error has been detected 2476 * @pdev: PCI device information struct 2477 * @err: the type of PCI error 2478 * 2479 * Called to warn that something happened on the PCI bus and the error handling 2480 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 2481 */ 2482 static pci_ers_result_t 2483 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 2484 { 2485 struct ice_pf *pf = pci_get_drvdata(pdev); 2486 2487 if (!pf) { 2488 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 2489 __func__, err); 2490 return PCI_ERS_RESULT_DISCONNECT; 2491 } 2492 2493 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2494 ice_service_task_stop(pf); 2495 2496 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2497 set_bit(__ICE_PFR_REQ, pf->state); 2498 ice_prepare_for_reset(pf); 2499 } 2500 } 2501 2502 return PCI_ERS_RESULT_NEED_RESET; 2503 } 2504 2505 /** 2506 * ice_pci_err_slot_reset - a PCI slot reset has just happened 2507 * @pdev: PCI device information struct 2508 * 2509 * Called to determine if the driver can recover from the PCI slot reset by 2510 * using a register read to determine if the device is recoverable. 2511 */ 2512 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 2513 { 2514 struct ice_pf *pf = pci_get_drvdata(pdev); 2515 pci_ers_result_t result; 2516 int err; 2517 u32 reg; 2518 2519 err = pci_enable_device_mem(pdev); 2520 if (err) { 2521 dev_err(&pdev->dev, 2522 "Cannot re-enable PCI device after reset, error %d\n", 2523 err); 2524 result = PCI_ERS_RESULT_DISCONNECT; 2525 } else { 2526 pci_set_master(pdev); 2527 pci_restore_state(pdev); 2528 pci_save_state(pdev); 2529 pci_wake_from_d3(pdev, false); 2530 2531 /* Check for life */ 2532 reg = rd32(&pf->hw, GLGEN_RTRIG); 2533 if (!reg) 2534 result = PCI_ERS_RESULT_RECOVERED; 2535 else 2536 result = PCI_ERS_RESULT_DISCONNECT; 2537 } 2538 2539 err = pci_cleanup_aer_uncorrect_error_status(pdev); 2540 if (err) 2541 dev_dbg(&pdev->dev, 2542 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 2543 err); 2544 /* non-fatal, continue */ 2545 2546 return result; 2547 } 2548 2549 /** 2550 * ice_pci_err_resume - restart operations after PCI error recovery 2551 * @pdev: PCI device information struct 2552 * 2553 * Called to allow the driver to bring things back up after PCI error and/or 2554 * reset recovery have finished 2555 */ 2556 static void ice_pci_err_resume(struct pci_dev *pdev) 2557 { 2558 struct ice_pf *pf = pci_get_drvdata(pdev); 2559 2560 if (!pf) { 2561 dev_err(&pdev->dev, 2562 "%s failed, device is unrecoverable\n", __func__); 2563 return; 2564 } 2565 2566 if (test_bit(__ICE_SUSPENDED, pf->state)) { 2567 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 2568 __func__); 2569 return; 2570 } 2571 2572 ice_do_reset(pf, ICE_RESET_PFR); 2573 ice_service_task_restart(pf); 2574 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2575 } 2576 2577 /** 2578 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 2579 * @pdev: PCI device information struct 2580 */ 2581 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 2582 { 2583 struct ice_pf *pf = pci_get_drvdata(pdev); 2584 2585 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2586 ice_service_task_stop(pf); 2587 2588 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2589 set_bit(__ICE_PFR_REQ, pf->state); 2590 ice_prepare_for_reset(pf); 2591 } 2592 } 2593 } 2594 2595 /** 2596 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 2597 * @pdev: PCI device information struct 2598 */ 2599 static void ice_pci_err_reset_done(struct pci_dev *pdev) 2600 { 2601 ice_pci_err_resume(pdev); 2602 } 2603 2604 /* ice_pci_tbl - PCI Device ID Table 2605 * 2606 * Wildcard entries (PCI_ANY_ID) should come last 2607 * Last entry must be all 0s 2608 * 2609 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 2610 * Class, Class Mask, private data (not used) } 2611 */ 2612 static const struct pci_device_id ice_pci_tbl[] = { 2613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 2614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 2615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 2616 /* required last entry */ 2617 { 0, } 2618 }; 2619 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 2620 2621 static const struct pci_error_handlers ice_pci_err_handler = { 2622 .error_detected = ice_pci_err_detected, 2623 .slot_reset = ice_pci_err_slot_reset, 2624 .reset_prepare = ice_pci_err_reset_prepare, 2625 .reset_done = ice_pci_err_reset_done, 2626 .resume = ice_pci_err_resume 2627 }; 2628 2629 static struct pci_driver ice_driver = { 2630 .name = KBUILD_MODNAME, 2631 .id_table = ice_pci_tbl, 2632 .probe = ice_probe, 2633 .remove = ice_remove, 2634 .sriov_configure = ice_sriov_configure, 2635 .err_handler = &ice_pci_err_handler 2636 }; 2637 2638 /** 2639 * ice_module_init - Driver registration routine 2640 * 2641 * ice_module_init is the first routine called when the driver is 2642 * loaded. All it does is register with the PCI subsystem. 2643 */ 2644 static int __init ice_module_init(void) 2645 { 2646 int status; 2647 2648 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 2649 pr_info("%s\n", ice_copyright); 2650 2651 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 2652 if (!ice_wq) { 2653 pr_err("Failed to create workqueue\n"); 2654 return -ENOMEM; 2655 } 2656 2657 status = pci_register_driver(&ice_driver); 2658 if (status) { 2659 pr_err("failed to register pci driver, err %d\n", status); 2660 destroy_workqueue(ice_wq); 2661 } 2662 2663 return status; 2664 } 2665 module_init(ice_module_init); 2666 2667 /** 2668 * ice_module_exit - Driver exit cleanup routine 2669 * 2670 * ice_module_exit is called just before the driver is removed 2671 * from memory. 2672 */ 2673 static void __exit ice_module_exit(void) 2674 { 2675 pci_unregister_driver(&ice_driver); 2676 destroy_workqueue(ice_wq); 2677 pr_info("module unloaded\n"); 2678 } 2679 module_exit(ice_module_exit); 2680 2681 /** 2682 * ice_set_mac_address - NDO callback to set MAC address 2683 * @netdev: network interface device structure 2684 * @pi: pointer to an address structure 2685 * 2686 * Returns 0 on success, negative on failure 2687 */ 2688 static int ice_set_mac_address(struct net_device *netdev, void *pi) 2689 { 2690 struct ice_netdev_priv *np = netdev_priv(netdev); 2691 struct ice_vsi *vsi = np->vsi; 2692 struct ice_pf *pf = vsi->back; 2693 struct ice_hw *hw = &pf->hw; 2694 struct sockaddr *addr = pi; 2695 enum ice_status status; 2696 LIST_HEAD(a_mac_list); 2697 LIST_HEAD(r_mac_list); 2698 u8 flags = 0; 2699 int err; 2700 u8 *mac; 2701 2702 mac = (u8 *)addr->sa_data; 2703 2704 if (!is_valid_ether_addr(mac)) 2705 return -EADDRNOTAVAIL; 2706 2707 if (ether_addr_equal(netdev->dev_addr, mac)) { 2708 netdev_warn(netdev, "already using mac %pM\n", mac); 2709 return 0; 2710 } 2711 2712 if (test_bit(__ICE_DOWN, pf->state) || 2713 ice_is_reset_in_progress(pf->state)) { 2714 netdev_err(netdev, "can't set mac %pM. device not ready\n", 2715 mac); 2716 return -EBUSY; 2717 } 2718 2719 /* When we change the MAC address we also have to change the MAC address 2720 * based filter rules that were created previously for the old MAC 2721 * address. So first, we remove the old filter rule using ice_remove_mac 2722 * and then create a new filter rule using ice_add_mac. Note that for 2723 * both these operations, we first need to form a "list" of MAC 2724 * addresses (even though in this case, we have only 1 MAC address to be 2725 * added/removed) and this done using ice_add_mac_to_list. Depending on 2726 * the ensuing operation this "list" of MAC addresses is either to be 2727 * added or removed from the filter. 2728 */ 2729 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr); 2730 if (err) { 2731 err = -EADDRNOTAVAIL; 2732 goto free_lists; 2733 } 2734 2735 status = ice_remove_mac(hw, &r_mac_list); 2736 if (status) { 2737 err = -EADDRNOTAVAIL; 2738 goto free_lists; 2739 } 2740 2741 err = ice_add_mac_to_list(vsi, &a_mac_list, mac); 2742 if (err) { 2743 err = -EADDRNOTAVAIL; 2744 goto free_lists; 2745 } 2746 2747 status = ice_add_mac(hw, &a_mac_list); 2748 if (status) { 2749 err = -EADDRNOTAVAIL; 2750 goto free_lists; 2751 } 2752 2753 free_lists: 2754 /* free list entries */ 2755 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list); 2756 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list); 2757 2758 if (err) { 2759 netdev_err(netdev, "can't set mac %pM. filter update failed\n", 2760 mac); 2761 return err; 2762 } 2763 2764 /* change the netdev's MAC address */ 2765 memcpy(netdev->dev_addr, mac, netdev->addr_len); 2766 netdev_dbg(vsi->netdev, "updated mac address to %pM\n", 2767 netdev->dev_addr); 2768 2769 /* write new MAC address to the firmware */ 2770 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 2771 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 2772 if (status) { 2773 netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n", 2774 mac); 2775 } 2776 return 0; 2777 } 2778 2779 /** 2780 * ice_set_rx_mode - NDO callback to set the netdev filters 2781 * @netdev: network interface device structure 2782 */ 2783 static void ice_set_rx_mode(struct net_device *netdev) 2784 { 2785 struct ice_netdev_priv *np = netdev_priv(netdev); 2786 struct ice_vsi *vsi = np->vsi; 2787 2788 if (!vsi) 2789 return; 2790 2791 /* Set the flags to synchronize filters 2792 * ndo_set_rx_mode may be triggered even without a change in netdev 2793 * flags 2794 */ 2795 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 2796 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 2797 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 2798 2799 /* schedule our worker thread which will take care of 2800 * applying the new filter changes 2801 */ 2802 ice_service_task_schedule(vsi->back); 2803 } 2804 2805 /** 2806 * ice_fdb_add - add an entry to the hardware database 2807 * @ndm: the input from the stack 2808 * @tb: pointer to array of nladdr (unused) 2809 * @dev: the net device pointer 2810 * @addr: the MAC address entry being added 2811 * @vid: VLAN ID 2812 * @flags: instructions from stack about fdb operation 2813 * @extack: netlink extended ack 2814 */ 2815 static int 2816 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 2817 struct net_device *dev, const unsigned char *addr, u16 vid, 2818 u16 flags, struct netlink_ext_ack __always_unused *extack) 2819 { 2820 int err; 2821 2822 if (vid) { 2823 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 2824 return -EINVAL; 2825 } 2826 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 2827 netdev_err(dev, "FDB only supports static addresses\n"); 2828 return -EINVAL; 2829 } 2830 2831 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 2832 err = dev_uc_add_excl(dev, addr); 2833 else if (is_multicast_ether_addr(addr)) 2834 err = dev_mc_add_excl(dev, addr); 2835 else 2836 err = -EINVAL; 2837 2838 /* Only return duplicate errors if NLM_F_EXCL is set */ 2839 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 2840 err = 0; 2841 2842 return err; 2843 } 2844 2845 /** 2846 * ice_fdb_del - delete an entry from the hardware database 2847 * @ndm: the input from the stack 2848 * @tb: pointer to array of nladdr (unused) 2849 * @dev: the net device pointer 2850 * @addr: the MAC address entry being added 2851 * @vid: VLAN ID 2852 */ 2853 static int 2854 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 2855 struct net_device *dev, const unsigned char *addr, 2856 __always_unused u16 vid) 2857 { 2858 int err; 2859 2860 if (ndm->ndm_state & NUD_PERMANENT) { 2861 netdev_err(dev, "FDB only supports static addresses\n"); 2862 return -EINVAL; 2863 } 2864 2865 if (is_unicast_ether_addr(addr)) 2866 err = dev_uc_del(dev, addr); 2867 else if (is_multicast_ether_addr(addr)) 2868 err = dev_mc_del(dev, addr); 2869 else 2870 err = -EINVAL; 2871 2872 return err; 2873 } 2874 2875 /** 2876 * ice_set_features - set the netdev feature flags 2877 * @netdev: ptr to the netdev being adjusted 2878 * @features: the feature set that the stack is suggesting 2879 */ 2880 static int 2881 ice_set_features(struct net_device *netdev, netdev_features_t features) 2882 { 2883 struct ice_netdev_priv *np = netdev_priv(netdev); 2884 struct ice_vsi *vsi = np->vsi; 2885 int ret = 0; 2886 2887 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 2888 ret = ice_vsi_manage_rss_lut(vsi, true); 2889 else if (!(features & NETIF_F_RXHASH) && 2890 netdev->features & NETIF_F_RXHASH) 2891 ret = ice_vsi_manage_rss_lut(vsi, false); 2892 2893 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 2894 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2895 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2896 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 2897 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2898 ret = ice_vsi_manage_vlan_stripping(vsi, false); 2899 else if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 2900 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2901 ret = ice_vsi_manage_vlan_insertion(vsi); 2902 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 2903 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2904 ret = ice_vsi_manage_vlan_insertion(vsi); 2905 2906 return ret; 2907 } 2908 2909 /** 2910 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 2911 * @vsi: VSI to setup VLAN properties for 2912 */ 2913 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 2914 { 2915 int ret = 0; 2916 2917 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2918 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2919 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 2920 ret = ice_vsi_manage_vlan_insertion(vsi); 2921 2922 return ret; 2923 } 2924 2925 /** 2926 * ice_vsi_cfg - Setup the VSI 2927 * @vsi: the VSI being configured 2928 * 2929 * Return 0 on success and negative value on error 2930 */ 2931 static int ice_vsi_cfg(struct ice_vsi *vsi) 2932 { 2933 int err; 2934 2935 if (vsi->netdev) { 2936 ice_set_rx_mode(vsi->netdev); 2937 2938 err = ice_vsi_vlan_setup(vsi); 2939 2940 if (err) 2941 return err; 2942 } 2943 ice_vsi_cfg_dcb_rings(vsi); 2944 2945 err = ice_vsi_cfg_lan_txqs(vsi); 2946 if (!err) 2947 err = ice_vsi_cfg_rxqs(vsi); 2948 2949 return err; 2950 } 2951 2952 /** 2953 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 2954 * @vsi: the VSI being configured 2955 */ 2956 static void ice_napi_enable_all(struct ice_vsi *vsi) 2957 { 2958 int q_idx; 2959 2960 if (!vsi->netdev) 2961 return; 2962 2963 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 2964 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 2965 2966 if (q_vector->rx.ring || q_vector->tx.ring) 2967 napi_enable(&q_vector->napi); 2968 } 2969 } 2970 2971 /** 2972 * ice_up_complete - Finish the last steps of bringing up a connection 2973 * @vsi: The VSI being configured 2974 * 2975 * Return 0 on success and negative value on error 2976 */ 2977 static int ice_up_complete(struct ice_vsi *vsi) 2978 { 2979 struct ice_pf *pf = vsi->back; 2980 int err; 2981 2982 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2983 ice_vsi_cfg_msix(vsi); 2984 else 2985 return -ENOTSUPP; 2986 2987 /* Enable only Rx rings, Tx rings were enabled by the FW when the 2988 * Tx queue group list was configured and the context bits were 2989 * programmed using ice_vsi_cfg_txqs 2990 */ 2991 err = ice_vsi_start_rx_rings(vsi); 2992 if (err) 2993 return err; 2994 2995 clear_bit(__ICE_DOWN, vsi->state); 2996 ice_napi_enable_all(vsi); 2997 ice_vsi_ena_irq(vsi); 2998 2999 if (vsi->port_info && 3000 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 3001 vsi->netdev) { 3002 ice_print_link_msg(vsi, true); 3003 netif_tx_start_all_queues(vsi->netdev); 3004 netif_carrier_on(vsi->netdev); 3005 } 3006 3007 ice_service_task_schedule(pf); 3008 3009 return 0; 3010 } 3011 3012 /** 3013 * ice_up - Bring the connection back up after being down 3014 * @vsi: VSI being configured 3015 */ 3016 int ice_up(struct ice_vsi *vsi) 3017 { 3018 int err; 3019 3020 err = ice_vsi_cfg(vsi); 3021 if (!err) 3022 err = ice_up_complete(vsi); 3023 3024 return err; 3025 } 3026 3027 /** 3028 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 3029 * @ring: Tx or Rx ring to read stats from 3030 * @pkts: packets stats counter 3031 * @bytes: bytes stats counter 3032 * 3033 * This function fetches stats from the ring considering the atomic operations 3034 * that needs to be performed to read u64 values in 32 bit machine. 3035 */ 3036 static void 3037 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 3038 { 3039 unsigned int start; 3040 *pkts = 0; 3041 *bytes = 0; 3042 3043 if (!ring) 3044 return; 3045 do { 3046 start = u64_stats_fetch_begin_irq(&ring->syncp); 3047 *pkts = ring->stats.pkts; 3048 *bytes = ring->stats.bytes; 3049 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3050 } 3051 3052 /** 3053 * ice_update_vsi_ring_stats - Update VSI stats counters 3054 * @vsi: the VSI to be updated 3055 */ 3056 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 3057 { 3058 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 3059 struct ice_ring *ring; 3060 u64 pkts, bytes; 3061 int i; 3062 3063 /* reset netdev stats */ 3064 vsi_stats->tx_packets = 0; 3065 vsi_stats->tx_bytes = 0; 3066 vsi_stats->rx_packets = 0; 3067 vsi_stats->rx_bytes = 0; 3068 3069 /* reset non-netdev (extended) stats */ 3070 vsi->tx_restart = 0; 3071 vsi->tx_busy = 0; 3072 vsi->tx_linearize = 0; 3073 vsi->rx_buf_failed = 0; 3074 vsi->rx_page_failed = 0; 3075 3076 rcu_read_lock(); 3077 3078 /* update Tx rings counters */ 3079 ice_for_each_txq(vsi, i) { 3080 ring = READ_ONCE(vsi->tx_rings[i]); 3081 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3082 vsi_stats->tx_packets += pkts; 3083 vsi_stats->tx_bytes += bytes; 3084 vsi->tx_restart += ring->tx_stats.restart_q; 3085 vsi->tx_busy += ring->tx_stats.tx_busy; 3086 vsi->tx_linearize += ring->tx_stats.tx_linearize; 3087 } 3088 3089 /* update Rx rings counters */ 3090 ice_for_each_rxq(vsi, i) { 3091 ring = READ_ONCE(vsi->rx_rings[i]); 3092 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3093 vsi_stats->rx_packets += pkts; 3094 vsi_stats->rx_bytes += bytes; 3095 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 3096 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 3097 } 3098 3099 rcu_read_unlock(); 3100 } 3101 3102 /** 3103 * ice_update_vsi_stats - Update VSI stats counters 3104 * @vsi: the VSI to be updated 3105 */ 3106 static void ice_update_vsi_stats(struct ice_vsi *vsi) 3107 { 3108 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 3109 struct ice_eth_stats *cur_es = &vsi->eth_stats; 3110 struct ice_pf *pf = vsi->back; 3111 3112 if (test_bit(__ICE_DOWN, vsi->state) || 3113 test_bit(__ICE_CFG_BUSY, pf->state)) 3114 return; 3115 3116 /* get stats as recorded by Tx/Rx rings */ 3117 ice_update_vsi_ring_stats(vsi); 3118 3119 /* get VSI stats as recorded by the hardware */ 3120 ice_update_eth_stats(vsi); 3121 3122 cur_ns->tx_errors = cur_es->tx_errors; 3123 cur_ns->rx_dropped = cur_es->rx_discards; 3124 cur_ns->tx_dropped = cur_es->tx_discards; 3125 cur_ns->multicast = cur_es->rx_multicast; 3126 3127 /* update some more netdev stats if this is main VSI */ 3128 if (vsi->type == ICE_VSI_PF) { 3129 cur_ns->rx_crc_errors = pf->stats.crc_errors; 3130 cur_ns->rx_errors = pf->stats.crc_errors + 3131 pf->stats.illegal_bytes; 3132 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 3133 } 3134 } 3135 3136 /** 3137 * ice_update_pf_stats - Update PF port stats counters 3138 * @pf: PF whose stats needs to be updated 3139 */ 3140 static void ice_update_pf_stats(struct ice_pf *pf) 3141 { 3142 struct ice_hw_port_stats *prev_ps, *cur_ps; 3143 struct ice_hw *hw = &pf->hw; 3144 u8 pf_id; 3145 3146 prev_ps = &pf->stats_prev; 3147 cur_ps = &pf->stats; 3148 pf_id = hw->pf_id; 3149 3150 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id), 3151 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, 3152 &cur_ps->eth.rx_bytes); 3153 3154 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id), 3155 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, 3156 &cur_ps->eth.rx_unicast); 3157 3158 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id), 3159 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, 3160 &cur_ps->eth.rx_multicast); 3161 3162 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id), 3163 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, 3164 &cur_ps->eth.rx_broadcast); 3165 3166 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id), 3167 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, 3168 &cur_ps->eth.tx_bytes); 3169 3170 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id), 3171 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, 3172 &cur_ps->eth.tx_unicast); 3173 3174 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id), 3175 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, 3176 &cur_ps->eth.tx_multicast); 3177 3178 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id), 3179 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, 3180 &cur_ps->eth.tx_broadcast); 3181 3182 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded, 3183 &prev_ps->tx_dropped_link_down, 3184 &cur_ps->tx_dropped_link_down); 3185 3186 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id), 3187 pf->stat_prev_loaded, &prev_ps->rx_size_64, 3188 &cur_ps->rx_size_64); 3189 3190 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id), 3191 pf->stat_prev_loaded, &prev_ps->rx_size_127, 3192 &cur_ps->rx_size_127); 3193 3194 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id), 3195 pf->stat_prev_loaded, &prev_ps->rx_size_255, 3196 &cur_ps->rx_size_255); 3197 3198 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id), 3199 pf->stat_prev_loaded, &prev_ps->rx_size_511, 3200 &cur_ps->rx_size_511); 3201 3202 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id), 3203 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded, 3204 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 3205 3206 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id), 3207 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded, 3208 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 3209 3210 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id), 3211 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded, 3212 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 3213 3214 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id), 3215 pf->stat_prev_loaded, &prev_ps->tx_size_64, 3216 &cur_ps->tx_size_64); 3217 3218 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id), 3219 pf->stat_prev_loaded, &prev_ps->tx_size_127, 3220 &cur_ps->tx_size_127); 3221 3222 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id), 3223 pf->stat_prev_loaded, &prev_ps->tx_size_255, 3224 &cur_ps->tx_size_255); 3225 3226 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id), 3227 pf->stat_prev_loaded, &prev_ps->tx_size_511, 3228 &cur_ps->tx_size_511); 3229 3230 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id), 3231 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded, 3232 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 3233 3234 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id), 3235 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded, 3236 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 3237 3238 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id), 3239 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded, 3240 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 3241 3242 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded, 3243 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 3244 3245 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded, 3246 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 3247 3248 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded, 3249 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 3250 3251 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded, 3252 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 3253 3254 ice_update_dcb_stats(pf); 3255 3256 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded, 3257 &prev_ps->crc_errors, &cur_ps->crc_errors); 3258 3259 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded, 3260 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 3261 3262 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded, 3263 &prev_ps->mac_local_faults, 3264 &cur_ps->mac_local_faults); 3265 3266 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded, 3267 &prev_ps->mac_remote_faults, 3268 &cur_ps->mac_remote_faults); 3269 3270 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded, 3271 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 3272 3273 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded, 3274 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 3275 3276 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded, 3277 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 3278 3279 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded, 3280 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 3281 3282 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded, 3283 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 3284 3285 pf->stat_prev_loaded = true; 3286 } 3287 3288 /** 3289 * ice_get_stats64 - get statistics for network device structure 3290 * @netdev: network interface device structure 3291 * @stats: main device statistics structure 3292 */ 3293 static 3294 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3295 { 3296 struct ice_netdev_priv *np = netdev_priv(netdev); 3297 struct rtnl_link_stats64 *vsi_stats; 3298 struct ice_vsi *vsi = np->vsi; 3299 3300 vsi_stats = &vsi->net_stats; 3301 3302 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq) 3303 return; 3304 /* netdev packet/byte stats come from ring counter. These are obtained 3305 * by summing up ring counters (done by ice_update_vsi_ring_stats). 3306 */ 3307 ice_update_vsi_ring_stats(vsi); 3308 stats->tx_packets = vsi_stats->tx_packets; 3309 stats->tx_bytes = vsi_stats->tx_bytes; 3310 stats->rx_packets = vsi_stats->rx_packets; 3311 stats->rx_bytes = vsi_stats->rx_bytes; 3312 3313 /* The rest of the stats can be read from the hardware but instead we 3314 * just return values that the watchdog task has already obtained from 3315 * the hardware. 3316 */ 3317 stats->multicast = vsi_stats->multicast; 3318 stats->tx_errors = vsi_stats->tx_errors; 3319 stats->tx_dropped = vsi_stats->tx_dropped; 3320 stats->rx_errors = vsi_stats->rx_errors; 3321 stats->rx_dropped = vsi_stats->rx_dropped; 3322 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 3323 stats->rx_length_errors = vsi_stats->rx_length_errors; 3324 } 3325 3326 /** 3327 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 3328 * @vsi: VSI having NAPI disabled 3329 */ 3330 static void ice_napi_disable_all(struct ice_vsi *vsi) 3331 { 3332 int q_idx; 3333 3334 if (!vsi->netdev) 3335 return; 3336 3337 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 3338 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3339 3340 if (q_vector->rx.ring || q_vector->tx.ring) 3341 napi_disable(&q_vector->napi); 3342 } 3343 } 3344 3345 /** 3346 * ice_force_phys_link_state - Force the physical link state 3347 * @vsi: VSI to force the physical link state to up/down 3348 * @link_up: true/false indicates to set the physical link to up/down 3349 * 3350 * Force the physical link state by getting the current PHY capabilities from 3351 * hardware and setting the PHY config based on the determined capabilities. If 3352 * link changes a link event will be triggered because both the Enable Automatic 3353 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 3354 * 3355 * Returns 0 on success, negative on failure 3356 */ 3357 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 3358 { 3359 struct ice_aqc_get_phy_caps_data *pcaps; 3360 struct ice_aqc_set_phy_cfg_data *cfg; 3361 struct ice_port_info *pi; 3362 struct device *dev; 3363 int retcode; 3364 3365 if (!vsi || !vsi->port_info || !vsi->back) 3366 return -EINVAL; 3367 if (vsi->type != ICE_VSI_PF) 3368 return 0; 3369 3370 dev = &vsi->back->pdev->dev; 3371 3372 pi = vsi->port_info; 3373 3374 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL); 3375 if (!pcaps) 3376 return -ENOMEM; 3377 3378 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 3379 NULL); 3380 if (retcode) { 3381 dev_err(dev, 3382 "Failed to get phy capabilities, VSI %d error %d\n", 3383 vsi->vsi_num, retcode); 3384 retcode = -EIO; 3385 goto out; 3386 } 3387 3388 /* No change in link */ 3389 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 3390 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 3391 goto out; 3392 3393 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL); 3394 if (!cfg) { 3395 retcode = -ENOMEM; 3396 goto out; 3397 } 3398 3399 cfg->phy_type_low = pcaps->phy_type_low; 3400 cfg->phy_type_high = pcaps->phy_type_high; 3401 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3402 cfg->low_power_ctrl = pcaps->low_power_ctrl; 3403 cfg->eee_cap = pcaps->eee_cap; 3404 cfg->eeer_value = pcaps->eeer_value; 3405 cfg->link_fec_opt = pcaps->link_fec_options; 3406 if (link_up) 3407 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 3408 else 3409 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 3410 3411 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 3412 if (retcode) { 3413 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 3414 vsi->vsi_num, retcode); 3415 retcode = -EIO; 3416 } 3417 3418 devm_kfree(dev, cfg); 3419 out: 3420 devm_kfree(dev, pcaps); 3421 return retcode; 3422 } 3423 3424 /** 3425 * ice_down - Shutdown the connection 3426 * @vsi: The VSI being stopped 3427 */ 3428 int ice_down(struct ice_vsi *vsi) 3429 { 3430 int i, tx_err, rx_err, link_err = 0; 3431 3432 /* Caller of this function is expected to set the 3433 * vsi->state __ICE_DOWN bit 3434 */ 3435 if (vsi->netdev) { 3436 netif_carrier_off(vsi->netdev); 3437 netif_tx_disable(vsi->netdev); 3438 } 3439 3440 ice_vsi_dis_irq(vsi); 3441 3442 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 3443 if (tx_err) 3444 netdev_err(vsi->netdev, 3445 "Failed stop Tx rings, VSI %d error %d\n", 3446 vsi->vsi_num, tx_err); 3447 3448 rx_err = ice_vsi_stop_rx_rings(vsi); 3449 if (rx_err) 3450 netdev_err(vsi->netdev, 3451 "Failed stop Rx rings, VSI %d error %d\n", 3452 vsi->vsi_num, rx_err); 3453 3454 ice_napi_disable_all(vsi); 3455 3456 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 3457 link_err = ice_force_phys_link_state(vsi, false); 3458 if (link_err) 3459 netdev_err(vsi->netdev, 3460 "Failed to set physical link down, VSI %d error %d\n", 3461 vsi->vsi_num, link_err); 3462 } 3463 3464 ice_for_each_txq(vsi, i) 3465 ice_clean_tx_ring(vsi->tx_rings[i]); 3466 3467 ice_for_each_rxq(vsi, i) 3468 ice_clean_rx_ring(vsi->rx_rings[i]); 3469 3470 if (tx_err || rx_err || link_err) { 3471 netdev_err(vsi->netdev, 3472 "Failed to close VSI 0x%04X on switch 0x%04X\n", 3473 vsi->vsi_num, vsi->vsw->sw_id); 3474 return -EIO; 3475 } 3476 3477 return 0; 3478 } 3479 3480 /** 3481 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 3482 * @vsi: VSI having resources allocated 3483 * 3484 * Return 0 on success, negative on failure 3485 */ 3486 static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 3487 { 3488 int i, err = 0; 3489 3490 if (!vsi->num_txq) { 3491 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 3492 vsi->vsi_num); 3493 return -EINVAL; 3494 } 3495 3496 ice_for_each_txq(vsi, i) { 3497 vsi->tx_rings[i]->netdev = vsi->netdev; 3498 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3499 if (err) 3500 break; 3501 } 3502 3503 return err; 3504 } 3505 3506 /** 3507 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3508 * @vsi: VSI having resources allocated 3509 * 3510 * Return 0 on success, negative on failure 3511 */ 3512 static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3513 { 3514 int i, err = 0; 3515 3516 if (!vsi->num_rxq) { 3517 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3518 vsi->vsi_num); 3519 return -EINVAL; 3520 } 3521 3522 ice_for_each_rxq(vsi, i) { 3523 vsi->rx_rings[i]->netdev = vsi->netdev; 3524 err = ice_setup_rx_ring(vsi->rx_rings[i]); 3525 if (err) 3526 break; 3527 } 3528 3529 return err; 3530 } 3531 3532 /** 3533 * ice_vsi_req_irq - Request IRQ from the OS 3534 * @vsi: The VSI IRQ is being requested for 3535 * @basename: name for the vector 3536 * 3537 * Return 0 on success and a negative value on error 3538 */ 3539 static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename) 3540 { 3541 struct ice_pf *pf = vsi->back; 3542 int err = -EINVAL; 3543 3544 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3545 err = ice_vsi_req_irq_msix(vsi, basename); 3546 3547 return err; 3548 } 3549 3550 /** 3551 * ice_vsi_open - Called when a network interface is made active 3552 * @vsi: the VSI to open 3553 * 3554 * Initialization of the VSI 3555 * 3556 * Returns 0 on success, negative value on error 3557 */ 3558 static int ice_vsi_open(struct ice_vsi *vsi) 3559 { 3560 char int_name[ICE_INT_NAME_STR_LEN]; 3561 struct ice_pf *pf = vsi->back; 3562 int err; 3563 3564 /* allocate descriptors */ 3565 err = ice_vsi_setup_tx_rings(vsi); 3566 if (err) 3567 goto err_setup_tx; 3568 3569 err = ice_vsi_setup_rx_rings(vsi); 3570 if (err) 3571 goto err_setup_rx; 3572 3573 err = ice_vsi_cfg(vsi); 3574 if (err) 3575 goto err_setup_rx; 3576 3577 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 3578 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 3579 err = ice_vsi_req_irq(vsi, int_name); 3580 if (err) 3581 goto err_setup_rx; 3582 3583 /* Notify the stack of the actual queue counts. */ 3584 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 3585 if (err) 3586 goto err_set_qs; 3587 3588 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 3589 if (err) 3590 goto err_set_qs; 3591 3592 err = ice_up_complete(vsi); 3593 if (err) 3594 goto err_up_complete; 3595 3596 return 0; 3597 3598 err_up_complete: 3599 ice_down(vsi); 3600 err_set_qs: 3601 ice_vsi_free_irq(vsi); 3602 err_setup_rx: 3603 ice_vsi_free_rx_rings(vsi); 3604 err_setup_tx: 3605 ice_vsi_free_tx_rings(vsi); 3606 3607 return err; 3608 } 3609 3610 /** 3611 * ice_vsi_release_all - Delete all VSIs 3612 * @pf: PF from which all VSIs are being removed 3613 */ 3614 static void ice_vsi_release_all(struct ice_pf *pf) 3615 { 3616 int err, i; 3617 3618 if (!pf->vsi) 3619 return; 3620 3621 ice_for_each_vsi(pf, i) { 3622 if (!pf->vsi[i]) 3623 continue; 3624 3625 err = ice_vsi_release(pf->vsi[i]); 3626 if (err) 3627 dev_dbg(&pf->pdev->dev, 3628 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 3629 i, err, pf->vsi[i]->vsi_num); 3630 } 3631 } 3632 3633 /** 3634 * ice_ena_vsi - resume a VSI 3635 * @vsi: the VSI being resume 3636 * @locked: is the rtnl_lock already held 3637 */ 3638 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 3639 { 3640 int err = 0; 3641 3642 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 3643 return err; 3644 3645 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 3646 3647 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3648 struct net_device *netd = vsi->netdev; 3649 3650 if (netif_running(vsi->netdev)) { 3651 if (locked) { 3652 err = netd->netdev_ops->ndo_open(netd); 3653 } else { 3654 rtnl_lock(); 3655 err = netd->netdev_ops->ndo_open(netd); 3656 rtnl_unlock(); 3657 } 3658 } else { 3659 err = ice_vsi_open(vsi); 3660 } 3661 } 3662 3663 return err; 3664 } 3665 3666 /** 3667 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 3668 * @pf: the PF 3669 * @locked: is the rtnl_lock already held 3670 */ 3671 #ifdef CONFIG_DCB 3672 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3673 #else 3674 static int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3675 #endif /* CONFIG_DCB */ 3676 { 3677 int v; 3678 3679 ice_for_each_vsi(pf, v) 3680 if (pf->vsi[v]) 3681 if (ice_ena_vsi(pf->vsi[v], locked)) 3682 return -EIO; 3683 3684 return 0; 3685 } 3686 3687 /** 3688 * ice_vsi_rebuild_all - rebuild all VSIs in pf 3689 * @pf: the PF 3690 */ 3691 static int ice_vsi_rebuild_all(struct ice_pf *pf) 3692 { 3693 int i; 3694 3695 /* loop through pf->vsi array and reinit the VSI if found */ 3696 ice_for_each_vsi(pf, i) { 3697 int err; 3698 3699 if (!pf->vsi[i]) 3700 continue; 3701 3702 err = ice_vsi_rebuild(pf->vsi[i]); 3703 if (err) { 3704 dev_err(&pf->pdev->dev, 3705 "VSI at index %d rebuild failed\n", 3706 pf->vsi[i]->idx); 3707 return err; 3708 } 3709 3710 dev_info(&pf->pdev->dev, 3711 "VSI at index %d rebuilt. vsi_num = 0x%x\n", 3712 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3713 } 3714 3715 return 0; 3716 } 3717 3718 /** 3719 * ice_vsi_replay_all - replay all VSIs configuration in the PF 3720 * @pf: the PF 3721 */ 3722 static int ice_vsi_replay_all(struct ice_pf *pf) 3723 { 3724 struct ice_hw *hw = &pf->hw; 3725 enum ice_status ret; 3726 int i; 3727 3728 /* loop through pf->vsi array and replay the VSI if found */ 3729 ice_for_each_vsi(pf, i) { 3730 if (!pf->vsi[i]) 3731 continue; 3732 3733 ret = ice_replay_vsi(hw, pf->vsi[i]->idx); 3734 if (ret) { 3735 dev_err(&pf->pdev->dev, 3736 "VSI at index %d replay failed %d\n", 3737 pf->vsi[i]->idx, ret); 3738 return -EIO; 3739 } 3740 3741 /* Re-map HW VSI number, using VSI handle that has been 3742 * previously validated in ice_replay_vsi() call above 3743 */ 3744 pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx); 3745 3746 dev_info(&pf->pdev->dev, 3747 "VSI at index %d filter replayed successfully - vsi_num %i\n", 3748 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3749 } 3750 3751 /* Clean up replay filter after successful re-configuration */ 3752 ice_replay_post(hw); 3753 return 0; 3754 } 3755 3756 /** 3757 * ice_rebuild - rebuild after reset 3758 * @pf: pf to rebuild 3759 */ 3760 static void ice_rebuild(struct ice_pf *pf) 3761 { 3762 struct device *dev = &pf->pdev->dev; 3763 struct ice_hw *hw = &pf->hw; 3764 enum ice_status ret; 3765 int err, i; 3766 3767 if (test_bit(__ICE_DOWN, pf->state)) 3768 goto clear_recovery; 3769 3770 dev_dbg(dev, "rebuilding pf\n"); 3771 3772 ret = ice_init_all_ctrlq(hw); 3773 if (ret) { 3774 dev_err(dev, "control queues init failed %d\n", ret); 3775 goto err_init_ctrlq; 3776 } 3777 3778 ret = ice_clear_pf_cfg(hw); 3779 if (ret) { 3780 dev_err(dev, "clear PF configuration failed %d\n", ret); 3781 goto err_init_ctrlq; 3782 } 3783 3784 ice_clear_pxe_mode(hw); 3785 3786 ret = ice_get_caps(hw); 3787 if (ret) { 3788 dev_err(dev, "ice_get_caps failed %d\n", ret); 3789 goto err_init_ctrlq; 3790 } 3791 3792 err = ice_sched_init_port(hw->port_info); 3793 if (err) 3794 goto err_sched_init_port; 3795 3796 ice_dcb_rebuild(pf); 3797 3798 /* reset search_hint of irq_trackers to 0 since interrupts are 3799 * reclaimed and could be allocated from beginning during VSI rebuild 3800 */ 3801 pf->sw_irq_tracker->search_hint = 0; 3802 pf->hw_irq_tracker->search_hint = 0; 3803 3804 err = ice_vsi_rebuild_all(pf); 3805 if (err) { 3806 dev_err(dev, "ice_vsi_rebuild_all failed\n"); 3807 goto err_vsi_rebuild; 3808 } 3809 3810 err = ice_update_link_info(hw->port_info); 3811 if (err) 3812 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 3813 3814 /* Replay all VSIs Configuration, including filters after reset */ 3815 if (ice_vsi_replay_all(pf)) { 3816 dev_err(&pf->pdev->dev, 3817 "error replaying VSI configurations with switch filter rules\n"); 3818 goto err_vsi_rebuild; 3819 } 3820 3821 /* start misc vector */ 3822 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 3823 err = ice_req_irq_msix_misc(pf); 3824 if (err) { 3825 dev_err(dev, "misc vector setup failed: %d\n", err); 3826 goto err_vsi_rebuild; 3827 } 3828 } 3829 3830 /* restart the VSIs that were rebuilt and running before the reset */ 3831 err = ice_pf_ena_all_vsi(pf, false); 3832 if (err) { 3833 dev_err(&pf->pdev->dev, "error enabling VSIs\n"); 3834 /* no need to disable VSIs in tear down path in ice_rebuild() 3835 * since its already taken care in ice_vsi_open() 3836 */ 3837 goto err_vsi_rebuild; 3838 } 3839 3840 ice_for_each_vsi(pf, i) { 3841 bool link_up; 3842 3843 if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF) 3844 continue; 3845 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 3846 if (link_up) { 3847 netif_carrier_on(pf->vsi[i]->netdev); 3848 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 3849 } else { 3850 netif_carrier_off(pf->vsi[i]->netdev); 3851 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 3852 } 3853 } 3854 3855 /* if we get here, reset flow is successful */ 3856 clear_bit(__ICE_RESET_FAILED, pf->state); 3857 return; 3858 3859 err_vsi_rebuild: 3860 ice_vsi_release_all(pf); 3861 err_sched_init_port: 3862 ice_sched_cleanup_all(hw); 3863 err_init_ctrlq: 3864 ice_shutdown_all_ctrlq(hw); 3865 set_bit(__ICE_RESET_FAILED, pf->state); 3866 clear_recovery: 3867 /* set this bit in PF state to control service task scheduling */ 3868 set_bit(__ICE_NEEDS_RESTART, pf->state); 3869 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 3870 } 3871 3872 /** 3873 * ice_change_mtu - NDO callback to change the MTU 3874 * @netdev: network interface device structure 3875 * @new_mtu: new value for maximum frame size 3876 * 3877 * Returns 0 on success, negative on failure 3878 */ 3879 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 3880 { 3881 struct ice_netdev_priv *np = netdev_priv(netdev); 3882 struct ice_vsi *vsi = np->vsi; 3883 struct ice_pf *pf = vsi->back; 3884 u8 count = 0; 3885 3886 if (new_mtu == netdev->mtu) { 3887 netdev_warn(netdev, "mtu is already %u\n", netdev->mtu); 3888 return 0; 3889 } 3890 3891 if (new_mtu < netdev->min_mtu) { 3892 netdev_err(netdev, "new mtu invalid. min_mtu is %d\n", 3893 netdev->min_mtu); 3894 return -EINVAL; 3895 } else if (new_mtu > netdev->max_mtu) { 3896 netdev_err(netdev, "new mtu invalid. max_mtu is %d\n", 3897 netdev->min_mtu); 3898 return -EINVAL; 3899 } 3900 /* if a reset is in progress, wait for some time for it to complete */ 3901 do { 3902 if (ice_is_reset_in_progress(pf->state)) { 3903 count++; 3904 usleep_range(1000, 2000); 3905 } else { 3906 break; 3907 } 3908 3909 } while (count < 100); 3910 3911 if (count == 100) { 3912 netdev_err(netdev, "can't change mtu. Device is busy\n"); 3913 return -EBUSY; 3914 } 3915 3916 netdev->mtu = new_mtu; 3917 3918 /* if VSI is up, bring it down and then back up */ 3919 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 3920 int err; 3921 3922 err = ice_down(vsi); 3923 if (err) { 3924 netdev_err(netdev, "change mtu if_up err %d\n", err); 3925 return err; 3926 } 3927 3928 err = ice_up(vsi); 3929 if (err) { 3930 netdev_err(netdev, "change mtu if_up err %d\n", err); 3931 return err; 3932 } 3933 } 3934 3935 netdev_dbg(netdev, "changed mtu to %d\n", new_mtu); 3936 return 0; 3937 } 3938 3939 /** 3940 * ice_set_rss - Set RSS keys and lut 3941 * @vsi: Pointer to VSI structure 3942 * @seed: RSS hash seed 3943 * @lut: Lookup table 3944 * @lut_size: Lookup table size 3945 * 3946 * Returns 0 on success, negative on failure 3947 */ 3948 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3949 { 3950 struct ice_pf *pf = vsi->back; 3951 struct ice_hw *hw = &pf->hw; 3952 enum ice_status status; 3953 3954 if (seed) { 3955 struct ice_aqc_get_set_rss_keys *buf = 3956 (struct ice_aqc_get_set_rss_keys *)seed; 3957 3958 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 3959 3960 if (status) { 3961 dev_err(&pf->pdev->dev, 3962 "Cannot set RSS key, err %d aq_err %d\n", 3963 status, hw->adminq.rq_last_status); 3964 return -EIO; 3965 } 3966 } 3967 3968 if (lut) { 3969 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3970 lut, lut_size); 3971 if (status) { 3972 dev_err(&pf->pdev->dev, 3973 "Cannot set RSS lut, err %d aq_err %d\n", 3974 status, hw->adminq.rq_last_status); 3975 return -EIO; 3976 } 3977 } 3978 3979 return 0; 3980 } 3981 3982 /** 3983 * ice_get_rss - Get RSS keys and lut 3984 * @vsi: Pointer to VSI structure 3985 * @seed: Buffer to store the keys 3986 * @lut: Buffer to store the lookup table entries 3987 * @lut_size: Size of buffer to store the lookup table entries 3988 * 3989 * Returns 0 on success, negative on failure 3990 */ 3991 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3992 { 3993 struct ice_pf *pf = vsi->back; 3994 struct ice_hw *hw = &pf->hw; 3995 enum ice_status status; 3996 3997 if (seed) { 3998 struct ice_aqc_get_set_rss_keys *buf = 3999 (struct ice_aqc_get_set_rss_keys *)seed; 4000 4001 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4002 if (status) { 4003 dev_err(&pf->pdev->dev, 4004 "Cannot get RSS key, err %d aq_err %d\n", 4005 status, hw->adminq.rq_last_status); 4006 return -EIO; 4007 } 4008 } 4009 4010 if (lut) { 4011 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4012 lut, lut_size); 4013 if (status) { 4014 dev_err(&pf->pdev->dev, 4015 "Cannot get RSS lut, err %d aq_err %d\n", 4016 status, hw->adminq.rq_last_status); 4017 return -EIO; 4018 } 4019 } 4020 4021 return 0; 4022 } 4023 4024 /** 4025 * ice_bridge_getlink - Get the hardware bridge mode 4026 * @skb: skb buff 4027 * @pid: process ID 4028 * @seq: RTNL message seq 4029 * @dev: the netdev being configured 4030 * @filter_mask: filter mask passed in 4031 * @nlflags: netlink flags passed in 4032 * 4033 * Return the bridge mode (VEB/VEPA) 4034 */ 4035 static int 4036 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4037 struct net_device *dev, u32 filter_mask, int nlflags) 4038 { 4039 struct ice_netdev_priv *np = netdev_priv(dev); 4040 struct ice_vsi *vsi = np->vsi; 4041 struct ice_pf *pf = vsi->back; 4042 u16 bmode; 4043 4044 bmode = pf->first_sw->bridge_mode; 4045 4046 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4047 filter_mask, NULL); 4048 } 4049 4050 /** 4051 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4052 * @vsi: Pointer to VSI structure 4053 * @bmode: Hardware bridge mode (VEB/VEPA) 4054 * 4055 * Returns 0 on success, negative on failure 4056 */ 4057 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4058 { 4059 struct device *dev = &vsi->back->pdev->dev; 4060 struct ice_aqc_vsi_props *vsi_props; 4061 struct ice_hw *hw = &vsi->back->hw; 4062 struct ice_vsi_ctx *ctxt; 4063 enum ice_status status; 4064 int ret = 0; 4065 4066 vsi_props = &vsi->info; 4067 4068 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 4069 if (!ctxt) 4070 return -ENOMEM; 4071 4072 ctxt->info = vsi->info; 4073 4074 if (bmode == BRIDGE_MODE_VEB) 4075 /* change from VEPA to VEB mode */ 4076 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4077 else 4078 /* change from VEB to VEPA mode */ 4079 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4080 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4081 4082 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4083 if (status) { 4084 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4085 bmode, status, hw->adminq.sq_last_status); 4086 ret = -EIO; 4087 goto out; 4088 } 4089 /* Update sw flags for book keeping */ 4090 vsi_props->sw_flags = ctxt->info.sw_flags; 4091 4092 out: 4093 devm_kfree(dev, ctxt); 4094 return ret; 4095 } 4096 4097 /** 4098 * ice_bridge_setlink - Set the hardware bridge mode 4099 * @dev: the netdev being configured 4100 * @nlh: RTNL message 4101 * @flags: bridge setlink flags 4102 * @extack: netlink extended ack 4103 * 4104 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4105 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4106 * not already set for all VSIs connected to this switch. And also update the 4107 * unicast switch filter rules for the corresponding switch of the netdev. 4108 */ 4109 static int 4110 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 4111 u16 __always_unused flags, 4112 struct netlink_ext_ack __always_unused *extack) 4113 { 4114 struct ice_netdev_priv *np = netdev_priv(dev); 4115 struct ice_pf *pf = np->vsi->back; 4116 struct nlattr *attr, *br_spec; 4117 struct ice_hw *hw = &pf->hw; 4118 enum ice_status status; 4119 struct ice_sw *pf_sw; 4120 int rem, v, err = 0; 4121 4122 pf_sw = pf->first_sw; 4123 /* find the attribute in the netlink message */ 4124 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 4125 4126 nla_for_each_nested(attr, br_spec, rem) { 4127 __u16 mode; 4128 4129 if (nla_type(attr) != IFLA_BRIDGE_MODE) 4130 continue; 4131 mode = nla_get_u16(attr); 4132 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 4133 return -EINVAL; 4134 /* Continue if bridge mode is not being flipped */ 4135 if (mode == pf_sw->bridge_mode) 4136 continue; 4137 /* Iterates through the PF VSI list and update the loopback 4138 * mode of the VSI 4139 */ 4140 ice_for_each_vsi(pf, v) { 4141 if (!pf->vsi[v]) 4142 continue; 4143 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 4144 if (err) 4145 return err; 4146 } 4147 4148 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 4149 /* Update the unicast switch filter rules for the corresponding 4150 * switch of the netdev 4151 */ 4152 status = ice_update_sw_rule_bridge_mode(hw); 4153 if (status) { 4154 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 4155 mode, status, hw->adminq.sq_last_status); 4156 /* revert hw->evb_veb */ 4157 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 4158 return -EIO; 4159 } 4160 4161 pf_sw->bridge_mode = mode; 4162 } 4163 4164 return 0; 4165 } 4166 4167 /** 4168 * ice_tx_timeout - Respond to a Tx Hang 4169 * @netdev: network interface device structure 4170 */ 4171 static void ice_tx_timeout(struct net_device *netdev) 4172 { 4173 struct ice_netdev_priv *np = netdev_priv(netdev); 4174 struct ice_ring *tx_ring = NULL; 4175 struct ice_vsi *vsi = np->vsi; 4176 struct ice_pf *pf = vsi->back; 4177 int hung_queue = -1; 4178 u32 i; 4179 4180 pf->tx_timeout_count++; 4181 4182 /* find the stopped queue the same way dev_watchdog() does */ 4183 for (i = 0; i < netdev->num_tx_queues; i++) { 4184 unsigned long trans_start; 4185 struct netdev_queue *q; 4186 4187 q = netdev_get_tx_queue(netdev, i); 4188 trans_start = q->trans_start; 4189 if (netif_xmit_stopped(q) && 4190 time_after(jiffies, 4191 trans_start + netdev->watchdog_timeo)) { 4192 hung_queue = i; 4193 break; 4194 } 4195 } 4196 4197 if (i == netdev->num_tx_queues) 4198 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 4199 else 4200 /* now that we have an index, find the tx_ring struct */ 4201 for (i = 0; i < vsi->num_txq; i++) 4202 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 4203 if (hung_queue == vsi->tx_rings[i]->q_index) { 4204 tx_ring = vsi->tx_rings[i]; 4205 break; 4206 } 4207 4208 /* Reset recovery level if enough time has elapsed after last timeout. 4209 * Also ensure no new reset action happens before next timeout period. 4210 */ 4211 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 4212 pf->tx_timeout_recovery_level = 1; 4213 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 4214 netdev->watchdog_timeo))) 4215 return; 4216 4217 if (tx_ring) { 4218 struct ice_hw *hw = &pf->hw; 4219 u32 head, val = 0; 4220 4221 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 4222 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 4223 /* Read interrupt register */ 4224 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 4225 val = rd32(hw, 4226 GLINT_DYN_CTL(tx_ring->q_vector->v_idx + 4227 tx_ring->vsi->hw_base_vector)); 4228 4229 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 4230 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 4231 head, tx_ring->next_to_use, val); 4232 } 4233 4234 pf->tx_timeout_last_recovery = jiffies; 4235 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 4236 pf->tx_timeout_recovery_level, hung_queue); 4237 4238 switch (pf->tx_timeout_recovery_level) { 4239 case 1: 4240 set_bit(__ICE_PFR_REQ, pf->state); 4241 break; 4242 case 2: 4243 set_bit(__ICE_CORER_REQ, pf->state); 4244 break; 4245 case 3: 4246 set_bit(__ICE_GLOBR_REQ, pf->state); 4247 break; 4248 default: 4249 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 4250 set_bit(__ICE_DOWN, pf->state); 4251 set_bit(__ICE_NEEDS_RESTART, vsi->state); 4252 set_bit(__ICE_SERVICE_DIS, pf->state); 4253 break; 4254 } 4255 4256 ice_service_task_schedule(pf); 4257 pf->tx_timeout_recovery_level++; 4258 } 4259 4260 /** 4261 * ice_open - Called when a network interface becomes active 4262 * @netdev: network interface device structure 4263 * 4264 * The open entry point is called when a network interface is made 4265 * active by the system (IFF_UP). At this point all resources needed 4266 * for transmit and receive operations are allocated, the interrupt 4267 * handler is registered with the OS, the netdev watchdog is enabled, 4268 * and the stack is notified that the interface is ready. 4269 * 4270 * Returns 0 on success, negative value on failure 4271 */ 4272 static int ice_open(struct net_device *netdev) 4273 { 4274 struct ice_netdev_priv *np = netdev_priv(netdev); 4275 struct ice_vsi *vsi = np->vsi; 4276 int err; 4277 4278 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 4279 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 4280 return -EIO; 4281 } 4282 4283 netif_carrier_off(netdev); 4284 4285 err = ice_force_phys_link_state(vsi, true); 4286 if (err) { 4287 netdev_err(netdev, 4288 "Failed to set physical link up, error %d\n", err); 4289 return err; 4290 } 4291 4292 err = ice_vsi_open(vsi); 4293 if (err) 4294 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 4295 vsi->vsi_num, vsi->vsw->sw_id); 4296 return err; 4297 } 4298 4299 /** 4300 * ice_stop - Disables a network interface 4301 * @netdev: network interface device structure 4302 * 4303 * The stop entry point is called when an interface is de-activated by the OS, 4304 * and the netdevice enters the DOWN state. The hardware is still under the 4305 * driver's control, but the netdev interface is disabled. 4306 * 4307 * Returns success only - not allowed to fail 4308 */ 4309 static int ice_stop(struct net_device *netdev) 4310 { 4311 struct ice_netdev_priv *np = netdev_priv(netdev); 4312 struct ice_vsi *vsi = np->vsi; 4313 4314 ice_vsi_close(vsi); 4315 4316 return 0; 4317 } 4318 4319 /** 4320 * ice_features_check - Validate encapsulated packet conforms to limits 4321 * @skb: skb buffer 4322 * @netdev: This port's netdev 4323 * @features: Offload features that the stack believes apply 4324 */ 4325 static netdev_features_t 4326 ice_features_check(struct sk_buff *skb, 4327 struct net_device __always_unused *netdev, 4328 netdev_features_t features) 4329 { 4330 size_t len; 4331 4332 /* No point in doing any of this if neither checksum nor GSO are 4333 * being requested for this frame. We can rule out both by just 4334 * checking for CHECKSUM_PARTIAL 4335 */ 4336 if (skb->ip_summed != CHECKSUM_PARTIAL) 4337 return features; 4338 4339 /* We cannot support GSO if the MSS is going to be less than 4340 * 64 bytes. If it is then we need to drop support for GSO. 4341 */ 4342 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4343 features &= ~NETIF_F_GSO_MASK; 4344 4345 len = skb_network_header(skb) - skb->data; 4346 if (len & ~(ICE_TXD_MACLEN_MAX)) 4347 goto out_rm_features; 4348 4349 len = skb_transport_header(skb) - skb_network_header(skb); 4350 if (len & ~(ICE_TXD_IPLEN_MAX)) 4351 goto out_rm_features; 4352 4353 if (skb->encapsulation) { 4354 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4355 if (len & ~(ICE_TXD_L4LEN_MAX)) 4356 goto out_rm_features; 4357 4358 len = skb_inner_transport_header(skb) - 4359 skb_inner_network_header(skb); 4360 if (len & ~(ICE_TXD_IPLEN_MAX)) 4361 goto out_rm_features; 4362 } 4363 4364 return features; 4365 out_rm_features: 4366 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4367 } 4368 4369 static const struct net_device_ops ice_netdev_ops = { 4370 .ndo_open = ice_open, 4371 .ndo_stop = ice_stop, 4372 .ndo_start_xmit = ice_start_xmit, 4373 .ndo_features_check = ice_features_check, 4374 .ndo_set_rx_mode = ice_set_rx_mode, 4375 .ndo_set_mac_address = ice_set_mac_address, 4376 .ndo_validate_addr = eth_validate_addr, 4377 .ndo_change_mtu = ice_change_mtu, 4378 .ndo_get_stats64 = ice_get_stats64, 4379 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 4380 .ndo_set_vf_mac = ice_set_vf_mac, 4381 .ndo_get_vf_config = ice_get_vf_cfg, 4382 .ndo_set_vf_trust = ice_set_vf_trust, 4383 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 4384 .ndo_set_vf_link_state = ice_set_vf_link_state, 4385 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 4386 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 4387 .ndo_set_features = ice_set_features, 4388 .ndo_bridge_getlink = ice_bridge_getlink, 4389 .ndo_bridge_setlink = ice_bridge_setlink, 4390 .ndo_fdb_add = ice_fdb_add, 4391 .ndo_fdb_del = ice_fdb_del, 4392 .ndo_tx_timeout = ice_tx_timeout, 4393 }; 4394