1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 static int 62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 63 void *cb_priv, enum tc_setup_type type, void *type_data, 64 void *data, 65 void (*cleanup)(struct flow_block_cb *block_cb)); 66 67 bool netif_is_ice(struct net_device *dev) 68 { 69 return dev && (dev->netdev_ops == &ice_netdev_ops); 70 } 71 72 /** 73 * ice_get_tx_pending - returns number of Tx descriptors not processed 74 * @ring: the ring of descriptors 75 */ 76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 77 { 78 u16 head, tail; 79 80 head = ring->next_to_clean; 81 tail = ring->next_to_use; 82 83 if (head != tail) 84 return (head < tail) ? 85 tail - head : (tail + ring->count - head); 86 return 0; 87 } 88 89 /** 90 * ice_check_for_hang_subtask - check for and recover hung queues 91 * @pf: pointer to PF struct 92 */ 93 static void ice_check_for_hang_subtask(struct ice_pf *pf) 94 { 95 struct ice_vsi *vsi = NULL; 96 struct ice_hw *hw; 97 unsigned int i; 98 int packets; 99 u32 v; 100 101 ice_for_each_vsi(pf, v) 102 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 103 vsi = pf->vsi[v]; 104 break; 105 } 106 107 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 108 return; 109 110 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 111 return; 112 113 hw = &vsi->back->hw; 114 115 ice_for_each_txq(vsi, i) { 116 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 117 118 if (!tx_ring) 119 continue; 120 if (ice_ring_ch_enabled(tx_ring)) 121 continue; 122 123 if (tx_ring->desc) { 124 /* If packet counter has not changed the queue is 125 * likely stalled, so force an interrupt for this 126 * queue. 127 * 128 * prev_pkt would be negative if there was no 129 * pending work. 130 */ 131 packets = tx_ring->stats.pkts & INT_MAX; 132 if (tx_ring->tx_stats.prev_pkt == packets) { 133 /* Trigger sw interrupt to revive the queue */ 134 ice_trigger_sw_intr(hw, tx_ring->q_vector); 135 continue; 136 } 137 138 /* Memory barrier between read of packet count and call 139 * to ice_get_tx_pending() 140 */ 141 smp_rmb(); 142 tx_ring->tx_stats.prev_pkt = 143 ice_get_tx_pending(tx_ring) ? packets : -1; 144 } 145 } 146 } 147 148 /** 149 * ice_init_mac_fltr - Set initial MAC filters 150 * @pf: board private structure 151 * 152 * Set initial set of MAC filters for PF VSI; configure filters for permanent 153 * address and broadcast address. If an error is encountered, netdevice will be 154 * unregistered. 155 */ 156 static int ice_init_mac_fltr(struct ice_pf *pf) 157 { 158 struct ice_vsi *vsi; 159 u8 *perm_addr; 160 161 vsi = ice_get_main_vsi(pf); 162 if (!vsi) 163 return -EINVAL; 164 165 perm_addr = vsi->port_info->mac.perm_addr; 166 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 167 } 168 169 /** 170 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 171 * @netdev: the net device on which the sync is happening 172 * @addr: MAC address to sync 173 * 174 * This is a callback function which is called by the in kernel device sync 175 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 176 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 177 * MAC filters from the hardware. 178 */ 179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 180 { 181 struct ice_netdev_priv *np = netdev_priv(netdev); 182 struct ice_vsi *vsi = np->vsi; 183 184 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 185 ICE_FWD_TO_VSI)) 186 return -EINVAL; 187 188 return 0; 189 } 190 191 /** 192 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 193 * @netdev: the net device on which the unsync is happening 194 * @addr: MAC address to unsync 195 * 196 * This is a callback function which is called by the in kernel device unsync 197 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 198 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 199 * delete the MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 /* Under some circumstances, we might receive a request to delete our 207 * own device address from our uc list. Because we store the device 208 * address in the VSI's MAC filter list, we need to ignore such 209 * requests and not delete our device address from this list. 210 */ 211 if (ether_addr_equal(addr, netdev->dev_addr)) 212 return 0; 213 214 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 215 ICE_FWD_TO_VSI)) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 /** 222 * ice_vsi_fltr_changed - check if filter state changed 223 * @vsi: VSI to be checked 224 * 225 * returns true if filter state has changed, false otherwise. 226 */ 227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 228 { 229 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 230 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 232 } 233 234 /** 235 * ice_set_promisc - Enable promiscuous mode for a given PF 236 * @vsi: the VSI being configured 237 * @promisc_m: mask of promiscuous config bits 238 * 239 */ 240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 241 { 242 int status; 243 244 if (vsi->type != ICE_VSI_PF) 245 return 0; 246 247 if (vsi->num_vlan > 1) 248 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 249 else 250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 251 return status; 252 } 253 254 /** 255 * ice_clear_promisc - Disable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (vsi->num_vlan > 1) 268 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 269 else 270 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 271 return status; 272 } 273 274 /** 275 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 276 * @vsi: ptr to the VSI 277 * 278 * Push any outstanding VSI filter changes through the AdminQ. 279 */ 280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 281 { 282 struct device *dev = ice_pf_to_dev(vsi->back); 283 struct net_device *netdev = vsi->netdev; 284 bool promisc_forced_on = false; 285 struct ice_pf *pf = vsi->back; 286 struct ice_hw *hw = &pf->hw; 287 u32 changed_flags = 0; 288 u8 promisc_m; 289 int err; 290 291 if (!vsi->netdev) 292 return -EINVAL; 293 294 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 295 usleep_range(1000, 2000); 296 297 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 298 vsi->current_netdev_flags = vsi->netdev->flags; 299 300 INIT_LIST_HEAD(&vsi->tmp_sync_list); 301 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 302 303 if (ice_vsi_fltr_changed(vsi)) { 304 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 305 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 306 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 307 308 /* grab the netdev's addr_list_lock */ 309 netif_addr_lock_bh(netdev); 310 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 311 ice_add_mac_to_unsync_list); 312 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 /* our temp lists are populated. release lock */ 315 netif_addr_unlock_bh(netdev); 316 } 317 318 /* Remove MAC addresses in the unsync list */ 319 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 320 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 321 if (err) { 322 netdev_err(netdev, "Failed to delete MAC filters\n"); 323 /* if we failed because of alloc failures, just bail */ 324 if (err == -ENOMEM) 325 goto out; 326 } 327 328 /* Add MAC addresses in the sync list */ 329 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 330 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 331 /* If filter is added successfully or already exists, do not go into 332 * 'if' condition and report it as error. Instead continue processing 333 * rest of the function. 334 */ 335 if (err && err != -EEXIST) { 336 netdev_err(netdev, "Failed to add MAC filters\n"); 337 /* If there is no more space for new umac filters, VSI 338 * should go into promiscuous mode. There should be some 339 * space reserved for promiscuous filters. 340 */ 341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 342 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 343 vsi->state)) { 344 promisc_forced_on = true; 345 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 346 vsi->vsi_num); 347 } else { 348 goto out; 349 } 350 } 351 err = 0; 352 /* check for changes in promiscuous modes */ 353 if (changed_flags & IFF_ALLMULTI) { 354 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 355 if (vsi->num_vlan > 1) 356 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 357 else 358 promisc_m = ICE_MCAST_PROMISC_BITS; 359 360 err = ice_set_promisc(vsi, promisc_m); 361 if (err) { 362 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 363 vsi->vsi_num); 364 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 365 goto out_promisc; 366 } 367 } else { 368 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 369 if (vsi->num_vlan > 1) 370 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 371 else 372 promisc_m = ICE_MCAST_PROMISC_BITS; 373 374 err = ice_clear_promisc(vsi, promisc_m); 375 if (err) { 376 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 377 vsi->vsi_num); 378 vsi->current_netdev_flags |= IFF_ALLMULTI; 379 goto out_promisc; 380 } 381 } 382 } 383 384 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 385 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 386 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 387 if (vsi->current_netdev_flags & IFF_PROMISC) { 388 /* Apply Rx filter rule to get traffic from wire */ 389 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 390 err = ice_set_dflt_vsi(pf->first_sw, vsi); 391 if (err && err != -EEXIST) { 392 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 393 err, vsi->vsi_num); 394 vsi->current_netdev_flags &= 395 ~IFF_PROMISC; 396 goto out_promisc; 397 } 398 err = 0; 399 ice_cfg_vlan_pruning(vsi, false); 400 } 401 } else { 402 /* Clear Rx filter to remove traffic from wire */ 403 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 404 err = ice_clear_dflt_vsi(pf->first_sw); 405 if (err) { 406 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 407 err, vsi->vsi_num); 408 vsi->current_netdev_flags |= 409 IFF_PROMISC; 410 goto out_promisc; 411 } 412 if (vsi->num_vlan > 1) 413 ice_cfg_vlan_pruning(vsi, true); 414 } 415 } 416 } 417 goto exit; 418 419 out_promisc: 420 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 421 goto exit; 422 out: 423 /* if something went wrong then set the changed flag so we try again */ 424 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 425 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 426 exit: 427 clear_bit(ICE_CFG_BUSY, vsi->state); 428 return err; 429 } 430 431 /** 432 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 433 * @pf: board private structure 434 */ 435 static void ice_sync_fltr_subtask(struct ice_pf *pf) 436 { 437 int v; 438 439 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 440 return; 441 442 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 446 ice_vsi_sync_fltr(pf->vsi[v])) { 447 /* come back and try again later */ 448 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 449 break; 450 } 451 } 452 453 /** 454 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 455 * @pf: the PF 456 * @locked: is the rtnl_lock already held 457 */ 458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 { 460 int node; 461 int v; 462 463 ice_for_each_vsi(pf, v) 464 if (pf->vsi[v]) 465 ice_dis_vsi(pf->vsi[v], locked); 466 467 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 468 pf->pf_agg_node[node].num_vsis = 0; 469 470 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 471 pf->vf_agg_node[node].num_vsis = 0; 472 } 473 474 /** 475 * ice_clear_sw_switch_recipes - clear switch recipes 476 * @pf: board private structure 477 * 478 * Mark switch recipes as not created in sw structures. There are cases where 479 * rules (especially advanced rules) need to be restored, either re-read from 480 * hardware or added again. For example after the reset. 'recp_created' flag 481 * prevents from doing that and need to be cleared upfront. 482 */ 483 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 484 { 485 struct ice_sw_recipe *recp; 486 u8 i; 487 488 recp = pf->hw.switch_info->recp_list; 489 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 490 recp[i].recp_created = false; 491 } 492 493 /** 494 * ice_prepare_for_reset - prep for reset 495 * @pf: board private structure 496 * @reset_type: reset type requested 497 * 498 * Inform or close all dependent features in prep for reset. 499 */ 500 static void 501 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 502 { 503 struct ice_hw *hw = &pf->hw; 504 struct ice_vsi *vsi; 505 unsigned int i; 506 507 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 508 509 /* already prepared for reset */ 510 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 511 return; 512 513 ice_unplug_aux_dev(pf); 514 515 /* Notify VFs of impending reset */ 516 if (ice_check_sq_alive(hw, &hw->mailboxq)) 517 ice_vc_notify_reset(pf); 518 519 /* Disable VFs until reset is completed */ 520 ice_for_each_vf(pf, i) 521 ice_set_vf_state_qs_dis(&pf->vf[i]); 522 523 if (ice_is_eswitch_mode_switchdev(pf)) { 524 if (reset_type != ICE_RESET_PFR) 525 ice_clear_sw_switch_recipes(pf); 526 } 527 528 /* release ADQ specific HW and SW resources */ 529 vsi = ice_get_main_vsi(pf); 530 if (!vsi) 531 goto skip; 532 533 /* to be on safe side, reset orig_rss_size so that normal flow 534 * of deciding rss_size can take precedence 535 */ 536 vsi->orig_rss_size = 0; 537 538 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 539 if (reset_type == ICE_RESET_PFR) { 540 vsi->old_ena_tc = vsi->all_enatc; 541 vsi->old_numtc = vsi->all_numtc; 542 } else { 543 ice_remove_q_channels(vsi, true); 544 545 /* for other reset type, do not support channel rebuild 546 * hence reset needed info 547 */ 548 vsi->old_ena_tc = 0; 549 vsi->all_enatc = 0; 550 vsi->old_numtc = 0; 551 vsi->all_numtc = 0; 552 vsi->req_txq = 0; 553 vsi->req_rxq = 0; 554 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 555 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 556 } 557 } 558 skip: 559 560 /* clear SW filtering DB */ 561 ice_clear_hw_tbls(hw); 562 /* disable the VSIs and their queues that are not already DOWN */ 563 ice_pf_dis_all_vsi(pf, false); 564 565 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 566 ice_ptp_prepare_for_reset(pf); 567 568 if (hw->port_info) 569 ice_sched_clear_port(hw->port_info); 570 571 ice_shutdown_all_ctrlq(hw); 572 573 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 574 } 575 576 /** 577 * ice_do_reset - Initiate one of many types of resets 578 * @pf: board private structure 579 * @reset_type: reset type requested before this function was called. 580 */ 581 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 582 { 583 struct device *dev = ice_pf_to_dev(pf); 584 struct ice_hw *hw = &pf->hw; 585 586 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 587 588 ice_prepare_for_reset(pf, reset_type); 589 590 /* trigger the reset */ 591 if (ice_reset(hw, reset_type)) { 592 dev_err(dev, "reset %d failed\n", reset_type); 593 set_bit(ICE_RESET_FAILED, pf->state); 594 clear_bit(ICE_RESET_OICR_RECV, pf->state); 595 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 596 clear_bit(ICE_PFR_REQ, pf->state); 597 clear_bit(ICE_CORER_REQ, pf->state); 598 clear_bit(ICE_GLOBR_REQ, pf->state); 599 wake_up(&pf->reset_wait_queue); 600 return; 601 } 602 603 /* PFR is a bit of a special case because it doesn't result in an OICR 604 * interrupt. So for PFR, rebuild after the reset and clear the reset- 605 * associated state bits. 606 */ 607 if (reset_type == ICE_RESET_PFR) { 608 pf->pfr_count++; 609 ice_rebuild(pf, reset_type); 610 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 611 clear_bit(ICE_PFR_REQ, pf->state); 612 wake_up(&pf->reset_wait_queue); 613 ice_reset_all_vfs(pf, true); 614 } 615 } 616 617 /** 618 * ice_reset_subtask - Set up for resetting the device and driver 619 * @pf: board private structure 620 */ 621 static void ice_reset_subtask(struct ice_pf *pf) 622 { 623 enum ice_reset_req reset_type = ICE_RESET_INVAL; 624 625 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 626 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 627 * of reset is pending and sets bits in pf->state indicating the reset 628 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 629 * prepare for pending reset if not already (for PF software-initiated 630 * global resets the software should already be prepared for it as 631 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 632 * by firmware or software on other PFs, that bit is not set so prepare 633 * for the reset now), poll for reset done, rebuild and return. 634 */ 635 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 636 /* Perform the largest reset requested */ 637 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 638 reset_type = ICE_RESET_CORER; 639 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 640 reset_type = ICE_RESET_GLOBR; 641 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 642 reset_type = ICE_RESET_EMPR; 643 /* return if no valid reset type requested */ 644 if (reset_type == ICE_RESET_INVAL) 645 return; 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* make sure we are ready to rebuild */ 649 if (ice_check_reset(&pf->hw)) { 650 set_bit(ICE_RESET_FAILED, pf->state); 651 } else { 652 /* done with reset. start rebuild */ 653 pf->hw.reset_ongoing = false; 654 ice_rebuild(pf, reset_type); 655 /* clear bit to resume normal operations, but 656 * ICE_NEEDS_RESTART bit is set in case rebuild failed 657 */ 658 clear_bit(ICE_RESET_OICR_RECV, pf->state); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 clear_bit(ICE_CORER_REQ, pf->state); 662 clear_bit(ICE_GLOBR_REQ, pf->state); 663 wake_up(&pf->reset_wait_queue); 664 ice_reset_all_vfs(pf, true); 665 } 666 667 return; 668 } 669 670 /* No pending resets to finish processing. Check for new resets */ 671 if (test_bit(ICE_PFR_REQ, pf->state)) 672 reset_type = ICE_RESET_PFR; 673 if (test_bit(ICE_CORER_REQ, pf->state)) 674 reset_type = ICE_RESET_CORER; 675 if (test_bit(ICE_GLOBR_REQ, pf->state)) 676 reset_type = ICE_RESET_GLOBR; 677 /* If no valid reset type requested just return */ 678 if (reset_type == ICE_RESET_INVAL) 679 return; 680 681 /* reset if not already down or busy */ 682 if (!test_bit(ICE_DOWN, pf->state) && 683 !test_bit(ICE_CFG_BUSY, pf->state)) { 684 ice_do_reset(pf, reset_type); 685 } 686 } 687 688 /** 689 * ice_print_topo_conflict - print topology conflict message 690 * @vsi: the VSI whose topology status is being checked 691 */ 692 static void ice_print_topo_conflict(struct ice_vsi *vsi) 693 { 694 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 695 case ICE_AQ_LINK_TOPO_CONFLICT: 696 case ICE_AQ_LINK_MEDIA_CONFLICT: 697 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 698 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 699 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 700 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 701 break; 702 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 703 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 704 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 705 else 706 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 707 break; 708 default: 709 break; 710 } 711 } 712 713 /** 714 * ice_print_link_msg - print link up or down message 715 * @vsi: the VSI whose link status is being queried 716 * @isup: boolean for if the link is now up or down 717 */ 718 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 719 { 720 struct ice_aqc_get_phy_caps_data *caps; 721 const char *an_advertised; 722 const char *fec_req; 723 const char *speed; 724 const char *fec; 725 const char *fc; 726 const char *an; 727 int status; 728 729 if (!vsi) 730 return; 731 732 if (vsi->current_isup == isup) 733 return; 734 735 vsi->current_isup = isup; 736 737 if (!isup) { 738 netdev_info(vsi->netdev, "NIC Link is Down\n"); 739 return; 740 } 741 742 switch (vsi->port_info->phy.link_info.link_speed) { 743 case ICE_AQ_LINK_SPEED_100GB: 744 speed = "100 G"; 745 break; 746 case ICE_AQ_LINK_SPEED_50GB: 747 speed = "50 G"; 748 break; 749 case ICE_AQ_LINK_SPEED_40GB: 750 speed = "40 G"; 751 break; 752 case ICE_AQ_LINK_SPEED_25GB: 753 speed = "25 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_20GB: 756 speed = "20 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_10GB: 759 speed = "10 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_5GB: 762 speed = "5 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_2500MB: 765 speed = "2.5 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_1000MB: 768 speed = "1 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_100MB: 771 speed = "100 M"; 772 break; 773 default: 774 speed = "Unknown "; 775 break; 776 } 777 778 switch (vsi->port_info->fc.current_mode) { 779 case ICE_FC_FULL: 780 fc = "Rx/Tx"; 781 break; 782 case ICE_FC_TX_PAUSE: 783 fc = "Tx"; 784 break; 785 case ICE_FC_RX_PAUSE: 786 fc = "Rx"; 787 break; 788 case ICE_FC_NONE: 789 fc = "None"; 790 break; 791 default: 792 fc = "Unknown"; 793 break; 794 } 795 796 /* Get FEC mode based on negotiated link info */ 797 switch (vsi->port_info->phy.link_info.fec_info) { 798 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 799 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 800 fec = "RS-FEC"; 801 break; 802 case ICE_AQ_LINK_25G_KR_FEC_EN: 803 fec = "FC-FEC/BASE-R"; 804 break; 805 default: 806 fec = "NONE"; 807 break; 808 } 809 810 /* check if autoneg completed, might be false due to not supported */ 811 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 812 an = "True"; 813 else 814 an = "False"; 815 816 /* Get FEC mode requested based on PHY caps last SW configuration */ 817 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 818 if (!caps) { 819 fec_req = "Unknown"; 820 an_advertised = "Unknown"; 821 goto done; 822 } 823 824 status = ice_aq_get_phy_caps(vsi->port_info, false, 825 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 826 if (status) 827 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 828 829 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 830 831 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 832 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 833 fec_req = "RS-FEC"; 834 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 835 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 836 fec_req = "FC-FEC/BASE-R"; 837 else 838 fec_req = "NONE"; 839 840 kfree(caps); 841 842 done: 843 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 844 speed, fec_req, fec, an_advertised, an, fc); 845 ice_print_topo_conflict(vsi); 846 } 847 848 /** 849 * ice_vsi_link_event - update the VSI's netdev 850 * @vsi: the VSI on which the link event occurred 851 * @link_up: whether or not the VSI needs to be set up or down 852 */ 853 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 854 { 855 if (!vsi) 856 return; 857 858 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 859 return; 860 861 if (vsi->type == ICE_VSI_PF) { 862 if (link_up == netif_carrier_ok(vsi->netdev)) 863 return; 864 865 if (link_up) { 866 netif_carrier_on(vsi->netdev); 867 netif_tx_wake_all_queues(vsi->netdev); 868 } else { 869 netif_carrier_off(vsi->netdev); 870 netif_tx_stop_all_queues(vsi->netdev); 871 } 872 } 873 } 874 875 /** 876 * ice_set_dflt_mib - send a default config MIB to the FW 877 * @pf: private PF struct 878 * 879 * This function sends a default configuration MIB to the FW. 880 * 881 * If this function errors out at any point, the driver is still able to 882 * function. The main impact is that LFC may not operate as expected. 883 * Therefore an error state in this function should be treated with a DBG 884 * message and continue on with driver rebuild/reenable. 885 */ 886 static void ice_set_dflt_mib(struct ice_pf *pf) 887 { 888 struct device *dev = ice_pf_to_dev(pf); 889 u8 mib_type, *buf, *lldpmib = NULL; 890 u16 len, typelen, offset = 0; 891 struct ice_lldp_org_tlv *tlv; 892 struct ice_hw *hw = &pf->hw; 893 u32 ouisubtype; 894 895 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 896 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 897 if (!lldpmib) { 898 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 899 __func__); 900 return; 901 } 902 903 /* Add ETS CFG TLV */ 904 tlv = (struct ice_lldp_org_tlv *)lldpmib; 905 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 906 ICE_IEEE_ETS_TLV_LEN); 907 tlv->typelen = htons(typelen); 908 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 909 ICE_IEEE_SUBTYPE_ETS_CFG); 910 tlv->ouisubtype = htonl(ouisubtype); 911 912 buf = tlv->tlvinfo; 913 buf[0] = 0; 914 915 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 916 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 917 * Octets 13 - 20 are TSA values - leave as zeros 918 */ 919 buf[5] = 0x64; 920 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 921 offset += len + 2; 922 tlv = (struct ice_lldp_org_tlv *) 923 ((char *)tlv + sizeof(tlv->typelen) + len); 924 925 /* Add ETS REC TLV */ 926 buf = tlv->tlvinfo; 927 tlv->typelen = htons(typelen); 928 929 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 930 ICE_IEEE_SUBTYPE_ETS_REC); 931 tlv->ouisubtype = htonl(ouisubtype); 932 933 /* First octet of buf is reserved 934 * Octets 1 - 4 map UP to TC - all UPs map to zero 935 * Octets 5 - 12 are BW values - set TC 0 to 100%. 936 * Octets 13 - 20 are TSA value - leave as zeros 937 */ 938 buf[5] = 0x64; 939 offset += len + 2; 940 tlv = (struct ice_lldp_org_tlv *) 941 ((char *)tlv + sizeof(tlv->typelen) + len); 942 943 /* Add PFC CFG TLV */ 944 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 945 ICE_IEEE_PFC_TLV_LEN); 946 tlv->typelen = htons(typelen); 947 948 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 949 ICE_IEEE_SUBTYPE_PFC_CFG); 950 tlv->ouisubtype = htonl(ouisubtype); 951 952 /* Octet 1 left as all zeros - PFC disabled */ 953 buf[0] = 0x08; 954 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 955 offset += len + 2; 956 957 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 958 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 959 960 kfree(lldpmib); 961 } 962 963 /** 964 * ice_check_phy_fw_load - check if PHY FW load failed 965 * @pf: pointer to PF struct 966 * @link_cfg_err: bitmap from the link info structure 967 * 968 * check if external PHY FW load failed and print an error message if it did 969 */ 970 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 971 { 972 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 973 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 974 return; 975 } 976 977 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 978 return; 979 980 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 981 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 982 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 983 } 984 } 985 986 /** 987 * ice_check_module_power 988 * @pf: pointer to PF struct 989 * @link_cfg_err: bitmap from the link info structure 990 * 991 * check module power level returned by a previous call to aq_get_link_info 992 * and print error messages if module power level is not supported 993 */ 994 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 995 { 996 /* if module power level is supported, clear the flag */ 997 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 998 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 999 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1000 return; 1001 } 1002 1003 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1004 * above block didn't clear this bit, there's nothing to do 1005 */ 1006 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1007 return; 1008 1009 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1010 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1011 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1012 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1013 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1014 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1015 } 1016 } 1017 1018 /** 1019 * ice_check_link_cfg_err - check if link configuration failed 1020 * @pf: pointer to the PF struct 1021 * @link_cfg_err: bitmap from the link info structure 1022 * 1023 * print if any link configuration failure happens due to the value in the 1024 * link_cfg_err parameter in the link info structure 1025 */ 1026 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1027 { 1028 ice_check_module_power(pf, link_cfg_err); 1029 ice_check_phy_fw_load(pf, link_cfg_err); 1030 } 1031 1032 /** 1033 * ice_link_event - process the link event 1034 * @pf: PF that the link event is associated with 1035 * @pi: port_info for the port that the link event is associated with 1036 * @link_up: true if the physical link is up and false if it is down 1037 * @link_speed: current link speed received from the link event 1038 * 1039 * Returns 0 on success and negative on failure 1040 */ 1041 static int 1042 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1043 u16 link_speed) 1044 { 1045 struct device *dev = ice_pf_to_dev(pf); 1046 struct ice_phy_info *phy_info; 1047 struct ice_vsi *vsi; 1048 u16 old_link_speed; 1049 bool old_link; 1050 int status; 1051 1052 phy_info = &pi->phy; 1053 phy_info->link_info_old = phy_info->link_info; 1054 1055 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1056 old_link_speed = phy_info->link_info_old.link_speed; 1057 1058 /* update the link info structures and re-enable link events, 1059 * don't bail on failure due to other book keeping needed 1060 */ 1061 status = ice_update_link_info(pi); 1062 if (status) 1063 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1064 pi->lport, status, 1065 ice_aq_str(pi->hw->adminq.sq_last_status)); 1066 1067 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1068 1069 /* Check if the link state is up after updating link info, and treat 1070 * this event as an UP event since the link is actually UP now. 1071 */ 1072 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1073 link_up = true; 1074 1075 vsi = ice_get_main_vsi(pf); 1076 if (!vsi || !vsi->port_info) 1077 return -EINVAL; 1078 1079 /* turn off PHY if media was removed */ 1080 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1081 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1082 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1083 ice_set_link(vsi, false); 1084 } 1085 1086 /* if the old link up/down and speed is the same as the new */ 1087 if (link_up == old_link && link_speed == old_link_speed) 1088 return 0; 1089 1090 if (!ice_is_e810(&pf->hw)) 1091 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1092 1093 if (ice_is_dcb_active(pf)) { 1094 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1095 ice_dcb_rebuild(pf); 1096 } else { 1097 if (link_up) 1098 ice_set_dflt_mib(pf); 1099 } 1100 ice_vsi_link_event(vsi, link_up); 1101 ice_print_link_msg(vsi, link_up); 1102 1103 ice_vc_notify_link_state(pf); 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1110 * @pf: board private structure 1111 */ 1112 static void ice_watchdog_subtask(struct ice_pf *pf) 1113 { 1114 int i; 1115 1116 /* if interface is down do nothing */ 1117 if (test_bit(ICE_DOWN, pf->state) || 1118 test_bit(ICE_CFG_BUSY, pf->state)) 1119 return; 1120 1121 /* make sure we don't do these things too often */ 1122 if (time_before(jiffies, 1123 pf->serv_tmr_prev + pf->serv_tmr_period)) 1124 return; 1125 1126 pf->serv_tmr_prev = jiffies; 1127 1128 /* Update the stats for active netdevs so the network stack 1129 * can look at updated numbers whenever it cares to 1130 */ 1131 ice_update_pf_stats(pf); 1132 ice_for_each_vsi(pf, i) 1133 if (pf->vsi[i] && pf->vsi[i]->netdev) 1134 ice_update_vsi_stats(pf->vsi[i]); 1135 } 1136 1137 /** 1138 * ice_init_link_events - enable/initialize link events 1139 * @pi: pointer to the port_info instance 1140 * 1141 * Returns -EIO on failure, 0 on success 1142 */ 1143 static int ice_init_link_events(struct ice_port_info *pi) 1144 { 1145 u16 mask; 1146 1147 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1148 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1149 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1150 1151 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1152 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1153 pi->lport); 1154 return -EIO; 1155 } 1156 1157 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1158 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1159 pi->lport); 1160 return -EIO; 1161 } 1162 1163 return 0; 1164 } 1165 1166 /** 1167 * ice_handle_link_event - handle link event via ARQ 1168 * @pf: PF that the link event is associated with 1169 * @event: event structure containing link status info 1170 */ 1171 static int 1172 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1173 { 1174 struct ice_aqc_get_link_status_data *link_data; 1175 struct ice_port_info *port_info; 1176 int status; 1177 1178 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1179 port_info = pf->hw.port_info; 1180 if (!port_info) 1181 return -EINVAL; 1182 1183 status = ice_link_event(pf, port_info, 1184 !!(link_data->link_info & ICE_AQ_LINK_UP), 1185 le16_to_cpu(link_data->link_speed)); 1186 if (status) 1187 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1188 status); 1189 1190 return status; 1191 } 1192 1193 enum ice_aq_task_state { 1194 ICE_AQ_TASK_WAITING = 0, 1195 ICE_AQ_TASK_COMPLETE, 1196 ICE_AQ_TASK_CANCELED, 1197 }; 1198 1199 struct ice_aq_task { 1200 struct hlist_node entry; 1201 1202 u16 opcode; 1203 struct ice_rq_event_info *event; 1204 enum ice_aq_task_state state; 1205 }; 1206 1207 /** 1208 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1209 * @pf: pointer to the PF private structure 1210 * @opcode: the opcode to wait for 1211 * @timeout: how long to wait, in jiffies 1212 * @event: storage for the event info 1213 * 1214 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1215 * current thread will be put to sleep until the specified event occurs or 1216 * until the given timeout is reached. 1217 * 1218 * To obtain only the descriptor contents, pass an event without an allocated 1219 * msg_buf. If the complete data buffer is desired, allocate the 1220 * event->msg_buf with enough space ahead of time. 1221 * 1222 * Returns: zero on success, or a negative error code on failure. 1223 */ 1224 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1225 struct ice_rq_event_info *event) 1226 { 1227 struct device *dev = ice_pf_to_dev(pf); 1228 struct ice_aq_task *task; 1229 unsigned long start; 1230 long ret; 1231 int err; 1232 1233 task = kzalloc(sizeof(*task), GFP_KERNEL); 1234 if (!task) 1235 return -ENOMEM; 1236 1237 INIT_HLIST_NODE(&task->entry); 1238 task->opcode = opcode; 1239 task->event = event; 1240 task->state = ICE_AQ_TASK_WAITING; 1241 1242 spin_lock_bh(&pf->aq_wait_lock); 1243 hlist_add_head(&task->entry, &pf->aq_wait_list); 1244 spin_unlock_bh(&pf->aq_wait_lock); 1245 1246 start = jiffies; 1247 1248 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1249 timeout); 1250 switch (task->state) { 1251 case ICE_AQ_TASK_WAITING: 1252 err = ret < 0 ? ret : -ETIMEDOUT; 1253 break; 1254 case ICE_AQ_TASK_CANCELED: 1255 err = ret < 0 ? ret : -ECANCELED; 1256 break; 1257 case ICE_AQ_TASK_COMPLETE: 1258 err = ret < 0 ? ret : 0; 1259 break; 1260 default: 1261 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1262 err = -EINVAL; 1263 break; 1264 } 1265 1266 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1267 jiffies_to_msecs(jiffies - start), 1268 jiffies_to_msecs(timeout), 1269 opcode); 1270 1271 spin_lock_bh(&pf->aq_wait_lock); 1272 hlist_del(&task->entry); 1273 spin_unlock_bh(&pf->aq_wait_lock); 1274 kfree(task); 1275 1276 return err; 1277 } 1278 1279 /** 1280 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1281 * @pf: pointer to the PF private structure 1282 * @opcode: the opcode of the event 1283 * @event: the event to check 1284 * 1285 * Loops over the current list of pending threads waiting for an AdminQ event. 1286 * For each matching task, copy the contents of the event into the task 1287 * structure and wake up the thread. 1288 * 1289 * If multiple threads wait for the same opcode, they will all be woken up. 1290 * 1291 * Note that event->msg_buf will only be duplicated if the event has a buffer 1292 * with enough space already allocated. Otherwise, only the descriptor and 1293 * message length will be copied. 1294 * 1295 * Returns: true if an event was found, false otherwise 1296 */ 1297 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1298 struct ice_rq_event_info *event) 1299 { 1300 struct ice_aq_task *task; 1301 bool found = false; 1302 1303 spin_lock_bh(&pf->aq_wait_lock); 1304 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1305 if (task->state || task->opcode != opcode) 1306 continue; 1307 1308 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1309 task->event->msg_len = event->msg_len; 1310 1311 /* Only copy the data buffer if a destination was set */ 1312 if (task->event->msg_buf && 1313 task->event->buf_len > event->buf_len) { 1314 memcpy(task->event->msg_buf, event->msg_buf, 1315 event->buf_len); 1316 task->event->buf_len = event->buf_len; 1317 } 1318 1319 task->state = ICE_AQ_TASK_COMPLETE; 1320 found = true; 1321 } 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 1324 if (found) 1325 wake_up(&pf->aq_wait_queue); 1326 } 1327 1328 /** 1329 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1330 * @pf: the PF private structure 1331 * 1332 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1333 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1334 */ 1335 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1336 { 1337 struct ice_aq_task *task; 1338 1339 spin_lock_bh(&pf->aq_wait_lock); 1340 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1341 task->state = ICE_AQ_TASK_CANCELED; 1342 spin_unlock_bh(&pf->aq_wait_lock); 1343 1344 wake_up(&pf->aq_wait_queue); 1345 } 1346 1347 /** 1348 * __ice_clean_ctrlq - helper function to clean controlq rings 1349 * @pf: ptr to struct ice_pf 1350 * @q_type: specific Control queue type 1351 */ 1352 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1353 { 1354 struct device *dev = ice_pf_to_dev(pf); 1355 struct ice_rq_event_info event; 1356 struct ice_hw *hw = &pf->hw; 1357 struct ice_ctl_q_info *cq; 1358 u16 pending, i = 0; 1359 const char *qtype; 1360 u32 oldval, val; 1361 1362 /* Do not clean control queue if/when PF reset fails */ 1363 if (test_bit(ICE_RESET_FAILED, pf->state)) 1364 return 0; 1365 1366 switch (q_type) { 1367 case ICE_CTL_Q_ADMIN: 1368 cq = &hw->adminq; 1369 qtype = "Admin"; 1370 break; 1371 case ICE_CTL_Q_SB: 1372 cq = &hw->sbq; 1373 qtype = "Sideband"; 1374 break; 1375 case ICE_CTL_Q_MAILBOX: 1376 cq = &hw->mailboxq; 1377 qtype = "Mailbox"; 1378 /* we are going to try to detect a malicious VF, so set the 1379 * state to begin detection 1380 */ 1381 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1382 break; 1383 default: 1384 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1385 return 0; 1386 } 1387 1388 /* check for error indications - PF_xx_AxQLEN register layout for 1389 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1390 */ 1391 val = rd32(hw, cq->rq.len); 1392 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1393 PF_FW_ARQLEN_ARQCRIT_M)) { 1394 oldval = val; 1395 if (val & PF_FW_ARQLEN_ARQVFE_M) 1396 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1397 qtype); 1398 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1399 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1400 qtype); 1401 } 1402 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1403 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1404 qtype); 1405 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1406 PF_FW_ARQLEN_ARQCRIT_M); 1407 if (oldval != val) 1408 wr32(hw, cq->rq.len, val); 1409 } 1410 1411 val = rd32(hw, cq->sq.len); 1412 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1413 PF_FW_ATQLEN_ATQCRIT_M)) { 1414 oldval = val; 1415 if (val & PF_FW_ATQLEN_ATQVFE_M) 1416 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1417 qtype); 1418 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1419 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1420 qtype); 1421 } 1422 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1423 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1424 qtype); 1425 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1426 PF_FW_ATQLEN_ATQCRIT_M); 1427 if (oldval != val) 1428 wr32(hw, cq->sq.len, val); 1429 } 1430 1431 event.buf_len = cq->rq_buf_size; 1432 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1433 if (!event.msg_buf) 1434 return 0; 1435 1436 do { 1437 u16 opcode; 1438 int ret; 1439 1440 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1441 if (ret == -EALREADY) 1442 break; 1443 if (ret) { 1444 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1445 ret); 1446 break; 1447 } 1448 1449 opcode = le16_to_cpu(event.desc.opcode); 1450 1451 /* Notify any thread that might be waiting for this event */ 1452 ice_aq_check_events(pf, opcode, &event); 1453 1454 switch (opcode) { 1455 case ice_aqc_opc_get_link_status: 1456 if (ice_handle_link_event(pf, &event)) 1457 dev_err(dev, "Could not handle link event\n"); 1458 break; 1459 case ice_aqc_opc_event_lan_overflow: 1460 ice_vf_lan_overflow_event(pf, &event); 1461 break; 1462 case ice_mbx_opc_send_msg_to_pf: 1463 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1464 ice_vc_process_vf_msg(pf, &event); 1465 break; 1466 case ice_aqc_opc_fw_logging: 1467 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1468 break; 1469 case ice_aqc_opc_lldp_set_mib_change: 1470 ice_dcb_process_lldp_set_mib_change(pf, &event); 1471 break; 1472 default: 1473 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1474 qtype, opcode); 1475 break; 1476 } 1477 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1478 1479 kfree(event.msg_buf); 1480 1481 return pending && (i == ICE_DFLT_IRQ_WORK); 1482 } 1483 1484 /** 1485 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1486 * @hw: pointer to hardware info 1487 * @cq: control queue information 1488 * 1489 * returns true if there are pending messages in a queue, false if there aren't 1490 */ 1491 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1492 { 1493 u16 ntu; 1494 1495 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1496 return cq->rq.next_to_clean != ntu; 1497 } 1498 1499 /** 1500 * ice_clean_adminq_subtask - clean the AdminQ rings 1501 * @pf: board private structure 1502 */ 1503 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1504 { 1505 struct ice_hw *hw = &pf->hw; 1506 1507 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1508 return; 1509 1510 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1511 return; 1512 1513 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1514 1515 /* There might be a situation where new messages arrive to a control 1516 * queue between processing the last message and clearing the 1517 * EVENT_PENDING bit. So before exiting, check queue head again (using 1518 * ice_ctrlq_pending) and process new messages if any. 1519 */ 1520 if (ice_ctrlq_pending(hw, &hw->adminq)) 1521 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1522 1523 ice_flush(hw); 1524 } 1525 1526 /** 1527 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1528 * @pf: board private structure 1529 */ 1530 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1531 { 1532 struct ice_hw *hw = &pf->hw; 1533 1534 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1535 return; 1536 1537 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1538 return; 1539 1540 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1541 1542 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1543 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1544 1545 ice_flush(hw); 1546 } 1547 1548 /** 1549 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 /* Nothing to do here if sideband queue is not supported */ 1557 if (!ice_is_sbq_supported(hw)) { 1558 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1559 return; 1560 } 1561 1562 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1563 return; 1564 1565 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1566 return; 1567 1568 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1569 1570 if (ice_ctrlq_pending(hw, &hw->sbq)) 1571 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1572 1573 ice_flush(hw); 1574 } 1575 1576 /** 1577 * ice_service_task_schedule - schedule the service task to wake up 1578 * @pf: board private structure 1579 * 1580 * If not already scheduled, this puts the task into the work queue. 1581 */ 1582 void ice_service_task_schedule(struct ice_pf *pf) 1583 { 1584 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1585 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1586 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1587 queue_work(ice_wq, &pf->serv_task); 1588 } 1589 1590 /** 1591 * ice_service_task_complete - finish up the service task 1592 * @pf: board private structure 1593 */ 1594 static void ice_service_task_complete(struct ice_pf *pf) 1595 { 1596 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1597 1598 /* force memory (pf->state) to sync before next service task */ 1599 smp_mb__before_atomic(); 1600 clear_bit(ICE_SERVICE_SCHED, pf->state); 1601 } 1602 1603 /** 1604 * ice_service_task_stop - stop service task and cancel works 1605 * @pf: board private structure 1606 * 1607 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1608 * 1 otherwise. 1609 */ 1610 static int ice_service_task_stop(struct ice_pf *pf) 1611 { 1612 int ret; 1613 1614 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1615 1616 if (pf->serv_tmr.function) 1617 del_timer_sync(&pf->serv_tmr); 1618 if (pf->serv_task.func) 1619 cancel_work_sync(&pf->serv_task); 1620 1621 clear_bit(ICE_SERVICE_SCHED, pf->state); 1622 return ret; 1623 } 1624 1625 /** 1626 * ice_service_task_restart - restart service task and schedule works 1627 * @pf: board private structure 1628 * 1629 * This function is needed for suspend and resume works (e.g WoL scenario) 1630 */ 1631 static void ice_service_task_restart(struct ice_pf *pf) 1632 { 1633 clear_bit(ICE_SERVICE_DIS, pf->state); 1634 ice_service_task_schedule(pf); 1635 } 1636 1637 /** 1638 * ice_service_timer - timer callback to schedule service task 1639 * @t: pointer to timer_list 1640 */ 1641 static void ice_service_timer(struct timer_list *t) 1642 { 1643 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1644 1645 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1646 ice_service_task_schedule(pf); 1647 } 1648 1649 /** 1650 * ice_handle_mdd_event - handle malicious driver detect event 1651 * @pf: pointer to the PF structure 1652 * 1653 * Called from service task. OICR interrupt handler indicates MDD event. 1654 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1655 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1656 * disable the queue, the PF can be configured to reset the VF using ethtool 1657 * private flag mdd-auto-reset-vf. 1658 */ 1659 static void ice_handle_mdd_event(struct ice_pf *pf) 1660 { 1661 struct device *dev = ice_pf_to_dev(pf); 1662 struct ice_hw *hw = &pf->hw; 1663 unsigned int i; 1664 u32 reg; 1665 1666 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1667 /* Since the VF MDD event logging is rate limited, check if 1668 * there are pending MDD events. 1669 */ 1670 ice_print_vfs_mdd_events(pf); 1671 return; 1672 } 1673 1674 /* find what triggered an MDD event */ 1675 reg = rd32(hw, GL_MDET_TX_PQM); 1676 if (reg & GL_MDET_TX_PQM_VALID_M) { 1677 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1678 GL_MDET_TX_PQM_PF_NUM_S; 1679 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1680 GL_MDET_TX_PQM_VF_NUM_S; 1681 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1682 GL_MDET_TX_PQM_MAL_TYPE_S; 1683 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1684 GL_MDET_TX_PQM_QNUM_S); 1685 1686 if (netif_msg_tx_err(pf)) 1687 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1688 event, queue, pf_num, vf_num); 1689 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1690 } 1691 1692 reg = rd32(hw, GL_MDET_TX_TCLAN); 1693 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1694 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1695 GL_MDET_TX_TCLAN_PF_NUM_S; 1696 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1697 GL_MDET_TX_TCLAN_VF_NUM_S; 1698 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1699 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1700 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1701 GL_MDET_TX_TCLAN_QNUM_S); 1702 1703 if (netif_msg_tx_err(pf)) 1704 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1705 event, queue, pf_num, vf_num); 1706 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1707 } 1708 1709 reg = rd32(hw, GL_MDET_RX); 1710 if (reg & GL_MDET_RX_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1712 GL_MDET_RX_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1714 GL_MDET_RX_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1716 GL_MDET_RX_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1718 GL_MDET_RX_QNUM_S); 1719 1720 if (netif_msg_rx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_RX, 0xffffffff); 1724 } 1725 1726 /* check to see if this PF caused an MDD event */ 1727 reg = rd32(hw, PF_MDET_TX_PQM); 1728 if (reg & PF_MDET_TX_PQM_VALID_M) { 1729 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1730 if (netif_msg_tx_err(pf)) 1731 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1732 } 1733 1734 reg = rd32(hw, PF_MDET_TX_TCLAN); 1735 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1736 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1739 } 1740 1741 reg = rd32(hw, PF_MDET_RX); 1742 if (reg & PF_MDET_RX_VALID_M) { 1743 wr32(hw, PF_MDET_RX, 0xFFFF); 1744 if (netif_msg_rx_err(pf)) 1745 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1746 } 1747 1748 /* Check to see if one of the VFs caused an MDD event, and then 1749 * increment counters and set print pending 1750 */ 1751 ice_for_each_vf(pf, i) { 1752 struct ice_vf *vf = &pf->vf[i]; 1753 1754 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1755 if (reg & VP_MDET_TX_PQM_VALID_M) { 1756 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1757 vf->mdd_tx_events.count++; 1758 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1759 if (netif_msg_tx_err(pf)) 1760 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1761 i); 1762 } 1763 1764 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1765 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1766 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1767 vf->mdd_tx_events.count++; 1768 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1771 i); 1772 } 1773 1774 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1775 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1776 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1777 vf->mdd_tx_events.count++; 1778 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1781 i); 1782 } 1783 1784 reg = rd32(hw, VP_MDET_RX(i)); 1785 if (reg & VP_MDET_RX_VALID_M) { 1786 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1787 vf->mdd_rx_events.count++; 1788 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1789 if (netif_msg_rx_err(pf)) 1790 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1791 i); 1792 1793 /* Since the queue is disabled on VF Rx MDD events, the 1794 * PF can be configured to reset the VF through ethtool 1795 * private flag mdd-auto-reset-vf. 1796 */ 1797 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1798 /* VF MDD event counters will be cleared by 1799 * reset, so print the event prior to reset. 1800 */ 1801 ice_print_vf_rx_mdd_event(vf); 1802 ice_reset_vf(&pf->vf[i], false); 1803 } 1804 } 1805 } 1806 1807 ice_print_vfs_mdd_events(pf); 1808 } 1809 1810 /** 1811 * ice_force_phys_link_state - Force the physical link state 1812 * @vsi: VSI to force the physical link state to up/down 1813 * @link_up: true/false indicates to set the physical link to up/down 1814 * 1815 * Force the physical link state by getting the current PHY capabilities from 1816 * hardware and setting the PHY config based on the determined capabilities. If 1817 * link changes a link event will be triggered because both the Enable Automatic 1818 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1819 * 1820 * Returns 0 on success, negative on failure 1821 */ 1822 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1823 { 1824 struct ice_aqc_get_phy_caps_data *pcaps; 1825 struct ice_aqc_set_phy_cfg_data *cfg; 1826 struct ice_port_info *pi; 1827 struct device *dev; 1828 int retcode; 1829 1830 if (!vsi || !vsi->port_info || !vsi->back) 1831 return -EINVAL; 1832 if (vsi->type != ICE_VSI_PF) 1833 return 0; 1834 1835 dev = ice_pf_to_dev(vsi->back); 1836 1837 pi = vsi->port_info; 1838 1839 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1840 if (!pcaps) 1841 return -ENOMEM; 1842 1843 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1844 NULL); 1845 if (retcode) { 1846 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1847 vsi->vsi_num, retcode); 1848 retcode = -EIO; 1849 goto out; 1850 } 1851 1852 /* No change in link */ 1853 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1854 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1855 goto out; 1856 1857 /* Use the current user PHY configuration. The current user PHY 1858 * configuration is initialized during probe from PHY capabilities 1859 * software mode, and updated on set PHY configuration. 1860 */ 1861 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1862 if (!cfg) { 1863 retcode = -ENOMEM; 1864 goto out; 1865 } 1866 1867 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1868 if (link_up) 1869 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1870 else 1871 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1872 1873 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1874 if (retcode) { 1875 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1876 vsi->vsi_num, retcode); 1877 retcode = -EIO; 1878 } 1879 1880 kfree(cfg); 1881 out: 1882 kfree(pcaps); 1883 return retcode; 1884 } 1885 1886 /** 1887 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1888 * @pi: port info structure 1889 * 1890 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1891 */ 1892 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1893 { 1894 struct ice_aqc_get_phy_caps_data *pcaps; 1895 struct ice_pf *pf = pi->hw->back; 1896 int err; 1897 1898 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1899 if (!pcaps) 1900 return -ENOMEM; 1901 1902 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1903 pcaps, NULL); 1904 1905 if (err) { 1906 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1907 goto out; 1908 } 1909 1910 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1911 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1912 1913 out: 1914 kfree(pcaps); 1915 return err; 1916 } 1917 1918 /** 1919 * ice_init_link_dflt_override - Initialize link default override 1920 * @pi: port info structure 1921 * 1922 * Initialize link default override and PHY total port shutdown during probe 1923 */ 1924 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1925 { 1926 struct ice_link_default_override_tlv *ldo; 1927 struct ice_pf *pf = pi->hw->back; 1928 1929 ldo = &pf->link_dflt_override; 1930 if (ice_get_link_default_override(ldo, pi)) 1931 return; 1932 1933 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1934 return; 1935 1936 /* Enable Total Port Shutdown (override/replace link-down-on-close 1937 * ethtool private flag) for ports with Port Disable bit set. 1938 */ 1939 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1940 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1941 } 1942 1943 /** 1944 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1945 * @pi: port info structure 1946 * 1947 * If default override is enabled, initialize the user PHY cfg speed and FEC 1948 * settings using the default override mask from the NVM. 1949 * 1950 * The PHY should only be configured with the default override settings the 1951 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1952 * is used to indicate that the user PHY cfg default override is initialized 1953 * and the PHY has not been configured with the default override settings. The 1954 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1955 * configured. 1956 * 1957 * This function should be called only if the FW doesn't support default 1958 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1959 */ 1960 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1961 { 1962 struct ice_link_default_override_tlv *ldo; 1963 struct ice_aqc_set_phy_cfg_data *cfg; 1964 struct ice_phy_info *phy = &pi->phy; 1965 struct ice_pf *pf = pi->hw->back; 1966 1967 ldo = &pf->link_dflt_override; 1968 1969 /* If link default override is enabled, use to mask NVM PHY capabilities 1970 * for speed and FEC default configuration. 1971 */ 1972 cfg = &phy->curr_user_phy_cfg; 1973 1974 if (ldo->phy_type_low || ldo->phy_type_high) { 1975 cfg->phy_type_low = pf->nvm_phy_type_lo & 1976 cpu_to_le64(ldo->phy_type_low); 1977 cfg->phy_type_high = pf->nvm_phy_type_hi & 1978 cpu_to_le64(ldo->phy_type_high); 1979 } 1980 cfg->link_fec_opt = ldo->fec_options; 1981 phy->curr_user_fec_req = ICE_FEC_AUTO; 1982 1983 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1984 } 1985 1986 /** 1987 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1988 * @pi: port info structure 1989 * 1990 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1991 * mode to default. The PHY defaults are from get PHY capabilities topology 1992 * with media so call when media is first available. An error is returned if 1993 * called when media is not available. The PHY initialization completed state is 1994 * set here. 1995 * 1996 * These configurations are used when setting PHY 1997 * configuration. The user PHY configuration is updated on set PHY 1998 * configuration. Returns 0 on success, negative on failure 1999 */ 2000 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2001 { 2002 struct ice_aqc_get_phy_caps_data *pcaps; 2003 struct ice_phy_info *phy = &pi->phy; 2004 struct ice_pf *pf = pi->hw->back; 2005 int err; 2006 2007 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2008 return -EIO; 2009 2010 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2011 if (!pcaps) 2012 return -ENOMEM; 2013 2014 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2015 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2016 pcaps, NULL); 2017 else 2018 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2019 pcaps, NULL); 2020 if (err) { 2021 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2022 goto err_out; 2023 } 2024 2025 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2026 2027 /* check if lenient mode is supported and enabled */ 2028 if (ice_fw_supports_link_override(pi->hw) && 2029 !(pcaps->module_compliance_enforcement & 2030 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2031 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2032 2033 /* if the FW supports default PHY configuration mode, then the driver 2034 * does not have to apply link override settings. If not, 2035 * initialize user PHY configuration with link override values 2036 */ 2037 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2038 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2039 ice_init_phy_cfg_dflt_override(pi); 2040 goto out; 2041 } 2042 } 2043 2044 /* if link default override is not enabled, set user flow control and 2045 * FEC settings based on what get_phy_caps returned 2046 */ 2047 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2048 pcaps->link_fec_options); 2049 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2050 2051 out: 2052 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2053 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2054 err_out: 2055 kfree(pcaps); 2056 return err; 2057 } 2058 2059 /** 2060 * ice_configure_phy - configure PHY 2061 * @vsi: VSI of PHY 2062 * 2063 * Set the PHY configuration. If the current PHY configuration is the same as 2064 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2065 * configure the based get PHY capabilities for topology with media. 2066 */ 2067 static int ice_configure_phy(struct ice_vsi *vsi) 2068 { 2069 struct device *dev = ice_pf_to_dev(vsi->back); 2070 struct ice_port_info *pi = vsi->port_info; 2071 struct ice_aqc_get_phy_caps_data *pcaps; 2072 struct ice_aqc_set_phy_cfg_data *cfg; 2073 struct ice_phy_info *phy = &pi->phy; 2074 struct ice_pf *pf = vsi->back; 2075 int err; 2076 2077 /* Ensure we have media as we cannot configure a medialess port */ 2078 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2079 return -EPERM; 2080 2081 ice_print_topo_conflict(vsi); 2082 2083 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2084 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2085 return -EPERM; 2086 2087 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2088 return ice_force_phys_link_state(vsi, true); 2089 2090 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2091 if (!pcaps) 2092 return -ENOMEM; 2093 2094 /* Get current PHY config */ 2095 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2096 NULL); 2097 if (err) { 2098 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2099 vsi->vsi_num, err); 2100 goto done; 2101 } 2102 2103 /* If PHY enable link is configured and configuration has not changed, 2104 * there's nothing to do 2105 */ 2106 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2107 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2108 goto done; 2109 2110 /* Use PHY topology as baseline for configuration */ 2111 memset(pcaps, 0, sizeof(*pcaps)); 2112 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2113 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2114 pcaps, NULL); 2115 else 2116 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2117 pcaps, NULL); 2118 if (err) { 2119 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2120 vsi->vsi_num, err); 2121 goto done; 2122 } 2123 2124 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2125 if (!cfg) { 2126 err = -ENOMEM; 2127 goto done; 2128 } 2129 2130 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2131 2132 /* Speed - If default override pending, use curr_user_phy_cfg set in 2133 * ice_init_phy_user_cfg_ldo. 2134 */ 2135 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2136 vsi->back->state)) { 2137 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2138 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2139 } else { 2140 u64 phy_low = 0, phy_high = 0; 2141 2142 ice_update_phy_type(&phy_low, &phy_high, 2143 pi->phy.curr_user_speed_req); 2144 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2145 cfg->phy_type_high = pcaps->phy_type_high & 2146 cpu_to_le64(phy_high); 2147 } 2148 2149 /* Can't provide what was requested; use PHY capabilities */ 2150 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2151 cfg->phy_type_low = pcaps->phy_type_low; 2152 cfg->phy_type_high = pcaps->phy_type_high; 2153 } 2154 2155 /* FEC */ 2156 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2157 2158 /* Can't provide what was requested; use PHY capabilities */ 2159 if (cfg->link_fec_opt != 2160 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2161 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2162 cfg->link_fec_opt = pcaps->link_fec_options; 2163 } 2164 2165 /* Flow Control - always supported; no need to check against 2166 * capabilities 2167 */ 2168 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2169 2170 /* Enable link and link update */ 2171 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2172 2173 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2174 if (err) 2175 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2176 vsi->vsi_num, err); 2177 2178 kfree(cfg); 2179 done: 2180 kfree(pcaps); 2181 return err; 2182 } 2183 2184 /** 2185 * ice_check_media_subtask - Check for media 2186 * @pf: pointer to PF struct 2187 * 2188 * If media is available, then initialize PHY user configuration if it is not 2189 * been, and configure the PHY if the interface is up. 2190 */ 2191 static void ice_check_media_subtask(struct ice_pf *pf) 2192 { 2193 struct ice_port_info *pi; 2194 struct ice_vsi *vsi; 2195 int err; 2196 2197 /* No need to check for media if it's already present */ 2198 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2199 return; 2200 2201 vsi = ice_get_main_vsi(pf); 2202 if (!vsi) 2203 return; 2204 2205 /* Refresh link info and check if media is present */ 2206 pi = vsi->port_info; 2207 err = ice_update_link_info(pi); 2208 if (err) 2209 return; 2210 2211 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2212 2213 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2214 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2215 ice_init_phy_user_cfg(pi); 2216 2217 /* PHY settings are reset on media insertion, reconfigure 2218 * PHY to preserve settings. 2219 */ 2220 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2221 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2222 return; 2223 2224 err = ice_configure_phy(vsi); 2225 if (!err) 2226 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2227 2228 /* A Link Status Event will be generated; the event handler 2229 * will complete bringing the interface up 2230 */ 2231 } 2232 } 2233 2234 /** 2235 * ice_service_task - manage and run subtasks 2236 * @work: pointer to work_struct contained by the PF struct 2237 */ 2238 static void ice_service_task(struct work_struct *work) 2239 { 2240 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2241 unsigned long start_time = jiffies; 2242 2243 /* subtasks */ 2244 2245 /* process reset requests first */ 2246 ice_reset_subtask(pf); 2247 2248 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2249 if (ice_is_reset_in_progress(pf->state) || 2250 test_bit(ICE_SUSPENDED, pf->state) || 2251 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2252 ice_service_task_complete(pf); 2253 return; 2254 } 2255 2256 ice_clean_adminq_subtask(pf); 2257 ice_check_media_subtask(pf); 2258 ice_check_for_hang_subtask(pf); 2259 ice_sync_fltr_subtask(pf); 2260 ice_handle_mdd_event(pf); 2261 ice_watchdog_subtask(pf); 2262 2263 if (ice_is_safe_mode(pf)) { 2264 ice_service_task_complete(pf); 2265 return; 2266 } 2267 2268 ice_process_vflr_event(pf); 2269 ice_clean_mailboxq_subtask(pf); 2270 ice_clean_sbq_subtask(pf); 2271 ice_sync_arfs_fltrs(pf); 2272 ice_flush_fdir_ctx(pf); 2273 2274 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2275 ice_service_task_complete(pf); 2276 2277 /* If the tasks have taken longer than one service timer period 2278 * or there is more work to be done, reset the service timer to 2279 * schedule the service task now. 2280 */ 2281 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2282 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2283 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2284 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2285 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2286 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2287 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2288 mod_timer(&pf->serv_tmr, jiffies); 2289 } 2290 2291 /** 2292 * ice_set_ctrlq_len - helper function to set controlq length 2293 * @hw: pointer to the HW instance 2294 */ 2295 static void ice_set_ctrlq_len(struct ice_hw *hw) 2296 { 2297 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2298 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2299 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2300 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2301 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2302 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2303 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2304 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2305 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2306 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2307 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2308 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2309 } 2310 2311 /** 2312 * ice_schedule_reset - schedule a reset 2313 * @pf: board private structure 2314 * @reset: reset being requested 2315 */ 2316 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2317 { 2318 struct device *dev = ice_pf_to_dev(pf); 2319 2320 /* bail out if earlier reset has failed */ 2321 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2322 dev_dbg(dev, "earlier reset has failed\n"); 2323 return -EIO; 2324 } 2325 /* bail if reset/recovery already in progress */ 2326 if (ice_is_reset_in_progress(pf->state)) { 2327 dev_dbg(dev, "Reset already in progress\n"); 2328 return -EBUSY; 2329 } 2330 2331 ice_unplug_aux_dev(pf); 2332 2333 switch (reset) { 2334 case ICE_RESET_PFR: 2335 set_bit(ICE_PFR_REQ, pf->state); 2336 break; 2337 case ICE_RESET_CORER: 2338 set_bit(ICE_CORER_REQ, pf->state); 2339 break; 2340 case ICE_RESET_GLOBR: 2341 set_bit(ICE_GLOBR_REQ, pf->state); 2342 break; 2343 default: 2344 return -EINVAL; 2345 } 2346 2347 ice_service_task_schedule(pf); 2348 return 0; 2349 } 2350 2351 /** 2352 * ice_irq_affinity_notify - Callback for affinity changes 2353 * @notify: context as to what irq was changed 2354 * @mask: the new affinity mask 2355 * 2356 * This is a callback function used by the irq_set_affinity_notifier function 2357 * so that we may register to receive changes to the irq affinity masks. 2358 */ 2359 static void 2360 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2361 const cpumask_t *mask) 2362 { 2363 struct ice_q_vector *q_vector = 2364 container_of(notify, struct ice_q_vector, affinity_notify); 2365 2366 cpumask_copy(&q_vector->affinity_mask, mask); 2367 } 2368 2369 /** 2370 * ice_irq_affinity_release - Callback for affinity notifier release 2371 * @ref: internal core kernel usage 2372 * 2373 * This is a callback function used by the irq_set_affinity_notifier function 2374 * to inform the current notification subscriber that they will no longer 2375 * receive notifications. 2376 */ 2377 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2378 2379 /** 2380 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2381 * @vsi: the VSI being configured 2382 */ 2383 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2384 { 2385 struct ice_hw *hw = &vsi->back->hw; 2386 int i; 2387 2388 ice_for_each_q_vector(vsi, i) 2389 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2390 2391 ice_flush(hw); 2392 return 0; 2393 } 2394 2395 /** 2396 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2397 * @vsi: the VSI being configured 2398 * @basename: name for the vector 2399 */ 2400 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2401 { 2402 int q_vectors = vsi->num_q_vectors; 2403 struct ice_pf *pf = vsi->back; 2404 int base = vsi->base_vector; 2405 struct device *dev; 2406 int rx_int_idx = 0; 2407 int tx_int_idx = 0; 2408 int vector, err; 2409 int irq_num; 2410 2411 dev = ice_pf_to_dev(pf); 2412 for (vector = 0; vector < q_vectors; vector++) { 2413 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2414 2415 irq_num = pf->msix_entries[base + vector].vector; 2416 2417 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2418 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2419 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2420 tx_int_idx++; 2421 } else if (q_vector->rx.rx_ring) { 2422 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2423 "%s-%s-%d", basename, "rx", rx_int_idx++); 2424 } else if (q_vector->tx.tx_ring) { 2425 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2426 "%s-%s-%d", basename, "tx", tx_int_idx++); 2427 } else { 2428 /* skip this unused q_vector */ 2429 continue; 2430 } 2431 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2432 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2433 IRQF_SHARED, q_vector->name, 2434 q_vector); 2435 else 2436 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2437 0, q_vector->name, q_vector); 2438 if (err) { 2439 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2440 err); 2441 goto free_q_irqs; 2442 } 2443 2444 /* register for affinity change notifications */ 2445 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2446 struct irq_affinity_notify *affinity_notify; 2447 2448 affinity_notify = &q_vector->affinity_notify; 2449 affinity_notify->notify = ice_irq_affinity_notify; 2450 affinity_notify->release = ice_irq_affinity_release; 2451 irq_set_affinity_notifier(irq_num, affinity_notify); 2452 } 2453 2454 /* assign the mask for this irq */ 2455 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2456 } 2457 2458 vsi->irqs_ready = true; 2459 return 0; 2460 2461 free_q_irqs: 2462 while (vector) { 2463 vector--; 2464 irq_num = pf->msix_entries[base + vector].vector; 2465 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2466 irq_set_affinity_notifier(irq_num, NULL); 2467 irq_set_affinity_hint(irq_num, NULL); 2468 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2469 } 2470 return err; 2471 } 2472 2473 /** 2474 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2475 * @vsi: VSI to setup Tx rings used by XDP 2476 * 2477 * Return 0 on success and negative value on error 2478 */ 2479 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2480 { 2481 struct device *dev = ice_pf_to_dev(vsi->back); 2482 struct ice_tx_desc *tx_desc; 2483 int i, j; 2484 2485 ice_for_each_xdp_txq(vsi, i) { 2486 u16 xdp_q_idx = vsi->alloc_txq + i; 2487 struct ice_tx_ring *xdp_ring; 2488 2489 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2490 2491 if (!xdp_ring) 2492 goto free_xdp_rings; 2493 2494 xdp_ring->q_index = xdp_q_idx; 2495 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2496 xdp_ring->vsi = vsi; 2497 xdp_ring->netdev = NULL; 2498 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2499 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2500 xdp_ring->dev = dev; 2501 xdp_ring->count = vsi->num_tx_desc; 2502 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2503 if (ice_setup_tx_ring(xdp_ring)) 2504 goto free_xdp_rings; 2505 ice_set_ring_xdp(xdp_ring); 2506 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2507 spin_lock_init(&xdp_ring->tx_lock); 2508 for (j = 0; j < xdp_ring->count; j++) { 2509 tx_desc = ICE_TX_DESC(xdp_ring, j); 2510 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2511 } 2512 } 2513 2514 ice_for_each_rxq(vsi, i) { 2515 if (static_key_enabled(&ice_xdp_locking_key)) 2516 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2517 else 2518 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2519 } 2520 2521 return 0; 2522 2523 free_xdp_rings: 2524 for (; i >= 0; i--) 2525 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2526 ice_free_tx_ring(vsi->xdp_rings[i]); 2527 return -ENOMEM; 2528 } 2529 2530 /** 2531 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2532 * @vsi: VSI to set the bpf prog on 2533 * @prog: the bpf prog pointer 2534 */ 2535 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2536 { 2537 struct bpf_prog *old_prog; 2538 int i; 2539 2540 old_prog = xchg(&vsi->xdp_prog, prog); 2541 if (old_prog) 2542 bpf_prog_put(old_prog); 2543 2544 ice_for_each_rxq(vsi, i) 2545 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2546 } 2547 2548 /** 2549 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2550 * @vsi: VSI to bring up Tx rings used by XDP 2551 * @prog: bpf program that will be assigned to VSI 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2556 { 2557 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2558 int xdp_rings_rem = vsi->num_xdp_txq; 2559 struct ice_pf *pf = vsi->back; 2560 struct ice_qs_cfg xdp_qs_cfg = { 2561 .qs_mutex = &pf->avail_q_mutex, 2562 .pf_map = pf->avail_txqs, 2563 .pf_map_size = pf->max_pf_txqs, 2564 .q_count = vsi->num_xdp_txq, 2565 .scatter_count = ICE_MAX_SCATTER_TXQS, 2566 .vsi_map = vsi->txq_map, 2567 .vsi_map_offset = vsi->alloc_txq, 2568 .mapping_mode = ICE_VSI_MAP_CONTIG 2569 }; 2570 struct device *dev; 2571 int i, v_idx; 2572 int status; 2573 2574 dev = ice_pf_to_dev(pf); 2575 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2576 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2577 if (!vsi->xdp_rings) 2578 return -ENOMEM; 2579 2580 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2581 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2582 goto err_map_xdp; 2583 2584 if (static_key_enabled(&ice_xdp_locking_key)) 2585 netdev_warn(vsi->netdev, 2586 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2587 2588 if (ice_xdp_alloc_setup_rings(vsi)) 2589 goto clear_xdp_rings; 2590 2591 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2592 ice_for_each_q_vector(vsi, v_idx) { 2593 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2594 int xdp_rings_per_v, q_id, q_base; 2595 2596 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2597 vsi->num_q_vectors - v_idx); 2598 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2599 2600 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2601 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2602 2603 xdp_ring->q_vector = q_vector; 2604 xdp_ring->next = q_vector->tx.tx_ring; 2605 q_vector->tx.tx_ring = xdp_ring; 2606 } 2607 xdp_rings_rem -= xdp_rings_per_v; 2608 } 2609 2610 /* omit the scheduler update if in reset path; XDP queues will be 2611 * taken into account at the end of ice_vsi_rebuild, where 2612 * ice_cfg_vsi_lan is being called 2613 */ 2614 if (ice_is_reset_in_progress(pf->state)) 2615 return 0; 2616 2617 /* tell the Tx scheduler that right now we have 2618 * additional queues 2619 */ 2620 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2621 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2622 2623 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2624 max_txqs); 2625 if (status) { 2626 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2627 status); 2628 goto clear_xdp_rings; 2629 } 2630 2631 /* assign the prog only when it's not already present on VSI; 2632 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2633 * VSI rebuild that happens under ethtool -L can expose us to 2634 * the bpf_prog refcount issues as we would be swapping same 2635 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2636 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2637 * this is not harmful as dev_xdp_install bumps the refcount 2638 * before calling the op exposed by the driver; 2639 */ 2640 if (!ice_is_xdp_ena_vsi(vsi)) 2641 ice_vsi_assign_bpf_prog(vsi, prog); 2642 2643 return 0; 2644 clear_xdp_rings: 2645 ice_for_each_xdp_txq(vsi, i) 2646 if (vsi->xdp_rings[i]) { 2647 kfree_rcu(vsi->xdp_rings[i], rcu); 2648 vsi->xdp_rings[i] = NULL; 2649 } 2650 2651 err_map_xdp: 2652 mutex_lock(&pf->avail_q_mutex); 2653 ice_for_each_xdp_txq(vsi, i) { 2654 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2655 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2656 } 2657 mutex_unlock(&pf->avail_q_mutex); 2658 2659 devm_kfree(dev, vsi->xdp_rings); 2660 return -ENOMEM; 2661 } 2662 2663 /** 2664 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2665 * @vsi: VSI to remove XDP rings 2666 * 2667 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2668 * resources 2669 */ 2670 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2671 { 2672 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2673 struct ice_pf *pf = vsi->back; 2674 int i, v_idx; 2675 2676 /* q_vectors are freed in reset path so there's no point in detaching 2677 * rings; in case of rebuild being triggered not from reset bits 2678 * in pf->state won't be set, so additionally check first q_vector 2679 * against NULL 2680 */ 2681 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2682 goto free_qmap; 2683 2684 ice_for_each_q_vector(vsi, v_idx) { 2685 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2686 struct ice_tx_ring *ring; 2687 2688 ice_for_each_tx_ring(ring, q_vector->tx) 2689 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2690 break; 2691 2692 /* restore the value of last node prior to XDP setup */ 2693 q_vector->tx.tx_ring = ring; 2694 } 2695 2696 free_qmap: 2697 mutex_lock(&pf->avail_q_mutex); 2698 ice_for_each_xdp_txq(vsi, i) { 2699 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2700 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2701 } 2702 mutex_unlock(&pf->avail_q_mutex); 2703 2704 ice_for_each_xdp_txq(vsi, i) 2705 if (vsi->xdp_rings[i]) { 2706 if (vsi->xdp_rings[i]->desc) 2707 ice_free_tx_ring(vsi->xdp_rings[i]); 2708 kfree_rcu(vsi->xdp_rings[i], rcu); 2709 vsi->xdp_rings[i] = NULL; 2710 } 2711 2712 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2713 vsi->xdp_rings = NULL; 2714 2715 if (static_key_enabled(&ice_xdp_locking_key)) 2716 static_branch_dec(&ice_xdp_locking_key); 2717 2718 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2719 return 0; 2720 2721 ice_vsi_assign_bpf_prog(vsi, NULL); 2722 2723 /* notify Tx scheduler that we destroyed XDP queues and bring 2724 * back the old number of child nodes 2725 */ 2726 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2727 max_txqs[i] = vsi->num_txq; 2728 2729 /* change number of XDP Tx queues to 0 */ 2730 vsi->num_xdp_txq = 0; 2731 2732 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2733 max_txqs); 2734 } 2735 2736 /** 2737 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2738 * @vsi: VSI to schedule napi on 2739 */ 2740 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2741 { 2742 int i; 2743 2744 ice_for_each_rxq(vsi, i) { 2745 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2746 2747 if (rx_ring->xsk_pool) 2748 napi_schedule(&rx_ring->q_vector->napi); 2749 } 2750 } 2751 2752 /** 2753 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2754 * @vsi: VSI to determine the count of XDP Tx qs 2755 * 2756 * returns 0 if Tx qs count is higher than at least half of CPU count, 2757 * -ENOMEM otherwise 2758 */ 2759 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2760 { 2761 u16 avail = ice_get_avail_txq_count(vsi->back); 2762 u16 cpus = num_possible_cpus(); 2763 2764 if (avail < cpus / 2) 2765 return -ENOMEM; 2766 2767 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2768 2769 if (vsi->num_xdp_txq < cpus) 2770 static_branch_inc(&ice_xdp_locking_key); 2771 2772 return 0; 2773 } 2774 2775 /** 2776 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2777 * @vsi: VSI to setup XDP for 2778 * @prog: XDP program 2779 * @extack: netlink extended ack 2780 */ 2781 static int 2782 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2783 struct netlink_ext_ack *extack) 2784 { 2785 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2786 bool if_running = netif_running(vsi->netdev); 2787 int ret = 0, xdp_ring_err = 0; 2788 2789 if (frame_size > vsi->rx_buf_len) { 2790 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2791 return -EOPNOTSUPP; 2792 } 2793 2794 /* need to stop netdev while setting up the program for Rx rings */ 2795 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2796 ret = ice_down(vsi); 2797 if (ret) { 2798 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2799 return ret; 2800 } 2801 } 2802 2803 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2804 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2805 if (xdp_ring_err) { 2806 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2807 } else { 2808 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2809 if (xdp_ring_err) 2810 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2811 } 2812 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2813 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2814 if (xdp_ring_err) 2815 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2816 } else { 2817 /* safe to call even when prog == vsi->xdp_prog as 2818 * dev_xdp_install in net/core/dev.c incremented prog's 2819 * refcount so corresponding bpf_prog_put won't cause 2820 * underflow 2821 */ 2822 ice_vsi_assign_bpf_prog(vsi, prog); 2823 } 2824 2825 if (if_running) 2826 ret = ice_up(vsi); 2827 2828 if (!ret && prog) 2829 ice_vsi_rx_napi_schedule(vsi); 2830 2831 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2832 } 2833 2834 /** 2835 * ice_xdp_safe_mode - XDP handler for safe mode 2836 * @dev: netdevice 2837 * @xdp: XDP command 2838 */ 2839 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2840 struct netdev_bpf *xdp) 2841 { 2842 NL_SET_ERR_MSG_MOD(xdp->extack, 2843 "Please provide working DDP firmware package in order to use XDP\n" 2844 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2845 return -EOPNOTSUPP; 2846 } 2847 2848 /** 2849 * ice_xdp - implements XDP handler 2850 * @dev: netdevice 2851 * @xdp: XDP command 2852 */ 2853 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2854 { 2855 struct ice_netdev_priv *np = netdev_priv(dev); 2856 struct ice_vsi *vsi = np->vsi; 2857 2858 if (vsi->type != ICE_VSI_PF) { 2859 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2860 return -EINVAL; 2861 } 2862 2863 switch (xdp->command) { 2864 case XDP_SETUP_PROG: 2865 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2866 case XDP_SETUP_XSK_POOL: 2867 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2868 xdp->xsk.queue_id); 2869 default: 2870 return -EINVAL; 2871 } 2872 } 2873 2874 /** 2875 * ice_ena_misc_vector - enable the non-queue interrupts 2876 * @pf: board private structure 2877 */ 2878 static void ice_ena_misc_vector(struct ice_pf *pf) 2879 { 2880 struct ice_hw *hw = &pf->hw; 2881 u32 val; 2882 2883 /* Disable anti-spoof detection interrupt to prevent spurious event 2884 * interrupts during a function reset. Anti-spoof functionally is 2885 * still supported. 2886 */ 2887 val = rd32(hw, GL_MDCK_TX_TDPU); 2888 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2889 wr32(hw, GL_MDCK_TX_TDPU, val); 2890 2891 /* clear things first */ 2892 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2893 rd32(hw, PFINT_OICR); /* read to clear */ 2894 2895 val = (PFINT_OICR_ECC_ERR_M | 2896 PFINT_OICR_MAL_DETECT_M | 2897 PFINT_OICR_GRST_M | 2898 PFINT_OICR_PCI_EXCEPTION_M | 2899 PFINT_OICR_VFLR_M | 2900 PFINT_OICR_HMC_ERR_M | 2901 PFINT_OICR_PE_PUSH_M | 2902 PFINT_OICR_PE_CRITERR_M); 2903 2904 wr32(hw, PFINT_OICR_ENA, val); 2905 2906 /* SW_ITR_IDX = 0, but don't change INTENA */ 2907 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2908 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2909 } 2910 2911 /** 2912 * ice_misc_intr - misc interrupt handler 2913 * @irq: interrupt number 2914 * @data: pointer to a q_vector 2915 */ 2916 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2917 { 2918 struct ice_pf *pf = (struct ice_pf *)data; 2919 struct ice_hw *hw = &pf->hw; 2920 irqreturn_t ret = IRQ_NONE; 2921 struct device *dev; 2922 u32 oicr, ena_mask; 2923 2924 dev = ice_pf_to_dev(pf); 2925 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2926 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2927 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2928 2929 oicr = rd32(hw, PFINT_OICR); 2930 ena_mask = rd32(hw, PFINT_OICR_ENA); 2931 2932 if (oicr & PFINT_OICR_SWINT_M) { 2933 ena_mask &= ~PFINT_OICR_SWINT_M; 2934 pf->sw_int_count++; 2935 } 2936 2937 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2938 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2939 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2940 } 2941 if (oicr & PFINT_OICR_VFLR_M) { 2942 /* disable any further VFLR event notifications */ 2943 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2944 u32 reg = rd32(hw, PFINT_OICR_ENA); 2945 2946 reg &= ~PFINT_OICR_VFLR_M; 2947 wr32(hw, PFINT_OICR_ENA, reg); 2948 } else { 2949 ena_mask &= ~PFINT_OICR_VFLR_M; 2950 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2951 } 2952 } 2953 2954 if (oicr & PFINT_OICR_GRST_M) { 2955 u32 reset; 2956 2957 /* we have a reset warning */ 2958 ena_mask &= ~PFINT_OICR_GRST_M; 2959 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2960 GLGEN_RSTAT_RESET_TYPE_S; 2961 2962 if (reset == ICE_RESET_CORER) 2963 pf->corer_count++; 2964 else if (reset == ICE_RESET_GLOBR) 2965 pf->globr_count++; 2966 else if (reset == ICE_RESET_EMPR) 2967 pf->empr_count++; 2968 else 2969 dev_dbg(dev, "Invalid reset type %d\n", reset); 2970 2971 /* If a reset cycle isn't already in progress, we set a bit in 2972 * pf->state so that the service task can start a reset/rebuild. 2973 */ 2974 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2975 if (reset == ICE_RESET_CORER) 2976 set_bit(ICE_CORER_RECV, pf->state); 2977 else if (reset == ICE_RESET_GLOBR) 2978 set_bit(ICE_GLOBR_RECV, pf->state); 2979 else 2980 set_bit(ICE_EMPR_RECV, pf->state); 2981 2982 /* There are couple of different bits at play here. 2983 * hw->reset_ongoing indicates whether the hardware is 2984 * in reset. This is set to true when a reset interrupt 2985 * is received and set back to false after the driver 2986 * has determined that the hardware is out of reset. 2987 * 2988 * ICE_RESET_OICR_RECV in pf->state indicates 2989 * that a post reset rebuild is required before the 2990 * driver is operational again. This is set above. 2991 * 2992 * As this is the start of the reset/rebuild cycle, set 2993 * both to indicate that. 2994 */ 2995 hw->reset_ongoing = true; 2996 } 2997 } 2998 2999 if (oicr & PFINT_OICR_TSYN_TX_M) { 3000 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3001 ice_ptp_process_ts(pf); 3002 } 3003 3004 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3005 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3006 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3007 3008 /* Save EVENTs from GTSYN register */ 3009 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3010 GLTSYN_STAT_EVENT1_M | 3011 GLTSYN_STAT_EVENT2_M); 3012 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3013 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3014 } 3015 3016 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3017 if (oicr & ICE_AUX_CRIT_ERR) { 3018 struct iidc_event *event; 3019 3020 ena_mask &= ~ICE_AUX_CRIT_ERR; 3021 event = kzalloc(sizeof(*event), GFP_KERNEL); 3022 if (event) { 3023 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3024 /* report the entire OICR value to AUX driver */ 3025 event->reg = oicr; 3026 ice_send_event_to_aux(pf, event); 3027 kfree(event); 3028 } 3029 } 3030 3031 /* Report any remaining unexpected interrupts */ 3032 oicr &= ena_mask; 3033 if (oicr) { 3034 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3035 /* If a critical error is pending there is no choice but to 3036 * reset the device. 3037 */ 3038 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3039 PFINT_OICR_ECC_ERR_M)) { 3040 set_bit(ICE_PFR_REQ, pf->state); 3041 ice_service_task_schedule(pf); 3042 } 3043 } 3044 ret = IRQ_HANDLED; 3045 3046 ice_service_task_schedule(pf); 3047 ice_irq_dynamic_ena(hw, NULL, NULL); 3048 3049 return ret; 3050 } 3051 3052 /** 3053 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3054 * @hw: pointer to HW structure 3055 */ 3056 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3057 { 3058 /* disable Admin queue Interrupt causes */ 3059 wr32(hw, PFINT_FW_CTL, 3060 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3061 3062 /* disable Mailbox queue Interrupt causes */ 3063 wr32(hw, PFINT_MBX_CTL, 3064 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3065 3066 wr32(hw, PFINT_SB_CTL, 3067 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3068 3069 /* disable Control queue Interrupt causes */ 3070 wr32(hw, PFINT_OICR_CTL, 3071 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3072 3073 ice_flush(hw); 3074 } 3075 3076 /** 3077 * ice_free_irq_msix_misc - Unroll misc vector setup 3078 * @pf: board private structure 3079 */ 3080 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3081 { 3082 struct ice_hw *hw = &pf->hw; 3083 3084 ice_dis_ctrlq_interrupts(hw); 3085 3086 /* disable OICR interrupt */ 3087 wr32(hw, PFINT_OICR_ENA, 0); 3088 ice_flush(hw); 3089 3090 if (pf->msix_entries) { 3091 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3092 devm_free_irq(ice_pf_to_dev(pf), 3093 pf->msix_entries[pf->oicr_idx].vector, pf); 3094 } 3095 3096 pf->num_avail_sw_msix += 1; 3097 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3098 } 3099 3100 /** 3101 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3102 * @hw: pointer to HW structure 3103 * @reg_idx: HW vector index to associate the control queue interrupts with 3104 */ 3105 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3106 { 3107 u32 val; 3108 3109 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3110 PFINT_OICR_CTL_CAUSE_ENA_M); 3111 wr32(hw, PFINT_OICR_CTL, val); 3112 3113 /* enable Admin queue Interrupt causes */ 3114 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3115 PFINT_FW_CTL_CAUSE_ENA_M); 3116 wr32(hw, PFINT_FW_CTL, val); 3117 3118 /* enable Mailbox queue Interrupt causes */ 3119 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3120 PFINT_MBX_CTL_CAUSE_ENA_M); 3121 wr32(hw, PFINT_MBX_CTL, val); 3122 3123 /* This enables Sideband queue Interrupt causes */ 3124 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3125 PFINT_SB_CTL_CAUSE_ENA_M); 3126 wr32(hw, PFINT_SB_CTL, val); 3127 3128 ice_flush(hw); 3129 } 3130 3131 /** 3132 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3133 * @pf: board private structure 3134 * 3135 * This sets up the handler for MSIX 0, which is used to manage the 3136 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3137 * when in MSI or Legacy interrupt mode. 3138 */ 3139 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3140 { 3141 struct device *dev = ice_pf_to_dev(pf); 3142 struct ice_hw *hw = &pf->hw; 3143 int oicr_idx, err = 0; 3144 3145 if (!pf->int_name[0]) 3146 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3147 dev_driver_string(dev), dev_name(dev)); 3148 3149 /* Do not request IRQ but do enable OICR interrupt since settings are 3150 * lost during reset. Note that this function is called only during 3151 * rebuild path and not while reset is in progress. 3152 */ 3153 if (ice_is_reset_in_progress(pf->state)) 3154 goto skip_req_irq; 3155 3156 /* reserve one vector in irq_tracker for misc interrupts */ 3157 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3158 if (oicr_idx < 0) 3159 return oicr_idx; 3160 3161 pf->num_avail_sw_msix -= 1; 3162 pf->oicr_idx = (u16)oicr_idx; 3163 3164 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3165 ice_misc_intr, 0, pf->int_name, pf); 3166 if (err) { 3167 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3168 pf->int_name, err); 3169 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3170 pf->num_avail_sw_msix += 1; 3171 return err; 3172 } 3173 3174 skip_req_irq: 3175 ice_ena_misc_vector(pf); 3176 3177 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3178 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3179 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3180 3181 ice_flush(hw); 3182 ice_irq_dynamic_ena(hw, NULL, NULL); 3183 3184 return 0; 3185 } 3186 3187 /** 3188 * ice_napi_add - register NAPI handler for the VSI 3189 * @vsi: VSI for which NAPI handler is to be registered 3190 * 3191 * This function is only called in the driver's load path. Registering the NAPI 3192 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3193 * reset/rebuild, etc.) 3194 */ 3195 static void ice_napi_add(struct ice_vsi *vsi) 3196 { 3197 int v_idx; 3198 3199 if (!vsi->netdev) 3200 return; 3201 3202 ice_for_each_q_vector(vsi, v_idx) 3203 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3204 ice_napi_poll, NAPI_POLL_WEIGHT); 3205 } 3206 3207 /** 3208 * ice_set_ops - set netdev and ethtools ops for the given netdev 3209 * @netdev: netdev instance 3210 */ 3211 static void ice_set_ops(struct net_device *netdev) 3212 { 3213 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3214 3215 if (ice_is_safe_mode(pf)) { 3216 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3217 ice_set_ethtool_safe_mode_ops(netdev); 3218 return; 3219 } 3220 3221 netdev->netdev_ops = &ice_netdev_ops; 3222 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3223 ice_set_ethtool_ops(netdev); 3224 } 3225 3226 /** 3227 * ice_set_netdev_features - set features for the given netdev 3228 * @netdev: netdev instance 3229 */ 3230 static void ice_set_netdev_features(struct net_device *netdev) 3231 { 3232 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3233 netdev_features_t csumo_features; 3234 netdev_features_t vlano_features; 3235 netdev_features_t dflt_features; 3236 netdev_features_t tso_features; 3237 3238 if (ice_is_safe_mode(pf)) { 3239 /* safe mode */ 3240 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3241 netdev->hw_features = netdev->features; 3242 return; 3243 } 3244 3245 dflt_features = NETIF_F_SG | 3246 NETIF_F_HIGHDMA | 3247 NETIF_F_NTUPLE | 3248 NETIF_F_RXHASH; 3249 3250 csumo_features = NETIF_F_RXCSUM | 3251 NETIF_F_IP_CSUM | 3252 NETIF_F_SCTP_CRC | 3253 NETIF_F_IPV6_CSUM; 3254 3255 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3256 NETIF_F_HW_VLAN_CTAG_TX | 3257 NETIF_F_HW_VLAN_CTAG_RX; 3258 3259 tso_features = NETIF_F_TSO | 3260 NETIF_F_TSO_ECN | 3261 NETIF_F_TSO6 | 3262 NETIF_F_GSO_GRE | 3263 NETIF_F_GSO_UDP_TUNNEL | 3264 NETIF_F_GSO_GRE_CSUM | 3265 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3266 NETIF_F_GSO_PARTIAL | 3267 NETIF_F_GSO_IPXIP4 | 3268 NETIF_F_GSO_IPXIP6 | 3269 NETIF_F_GSO_UDP_L4; 3270 3271 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3272 NETIF_F_GSO_GRE_CSUM; 3273 /* set features that user can change */ 3274 netdev->hw_features = dflt_features | csumo_features | 3275 vlano_features | tso_features; 3276 3277 /* add support for HW_CSUM on packets with MPLS header */ 3278 netdev->mpls_features = NETIF_F_HW_CSUM; 3279 3280 /* enable features */ 3281 netdev->features |= netdev->hw_features; 3282 3283 netdev->hw_features |= NETIF_F_HW_TC; 3284 3285 /* encap and VLAN devices inherit default, csumo and tso features */ 3286 netdev->hw_enc_features |= dflt_features | csumo_features | 3287 tso_features; 3288 netdev->vlan_features |= dflt_features | csumo_features | 3289 tso_features; 3290 } 3291 3292 /** 3293 * ice_cfg_netdev - Allocate, configure and register a netdev 3294 * @vsi: the VSI associated with the new netdev 3295 * 3296 * Returns 0 on success, negative value on failure 3297 */ 3298 static int ice_cfg_netdev(struct ice_vsi *vsi) 3299 { 3300 struct ice_netdev_priv *np; 3301 struct net_device *netdev; 3302 u8 mac_addr[ETH_ALEN]; 3303 3304 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3305 vsi->alloc_rxq); 3306 if (!netdev) 3307 return -ENOMEM; 3308 3309 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3310 vsi->netdev = netdev; 3311 np = netdev_priv(netdev); 3312 np->vsi = vsi; 3313 3314 ice_set_netdev_features(netdev); 3315 3316 ice_set_ops(netdev); 3317 3318 if (vsi->type == ICE_VSI_PF) { 3319 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3320 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3321 eth_hw_addr_set(netdev, mac_addr); 3322 ether_addr_copy(netdev->perm_addr, mac_addr); 3323 } 3324 3325 netdev->priv_flags |= IFF_UNICAST_FLT; 3326 3327 /* Setup netdev TC information */ 3328 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3329 3330 /* setup watchdog timeout value to be 5 second */ 3331 netdev->watchdog_timeo = 5 * HZ; 3332 3333 netdev->min_mtu = ETH_MIN_MTU; 3334 netdev->max_mtu = ICE_MAX_MTU; 3335 3336 return 0; 3337 } 3338 3339 /** 3340 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3341 * @lut: Lookup table 3342 * @rss_table_size: Lookup table size 3343 * @rss_size: Range of queue number for hashing 3344 */ 3345 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3346 { 3347 u16 i; 3348 3349 for (i = 0; i < rss_table_size; i++) 3350 lut[i] = i % rss_size; 3351 } 3352 3353 /** 3354 * ice_pf_vsi_setup - Set up a PF VSI 3355 * @pf: board private structure 3356 * @pi: pointer to the port_info instance 3357 * 3358 * Returns pointer to the successfully allocated VSI software struct 3359 * on success, otherwise returns NULL on failure. 3360 */ 3361 static struct ice_vsi * 3362 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3363 { 3364 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3365 } 3366 3367 static struct ice_vsi * 3368 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3369 struct ice_channel *ch) 3370 { 3371 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3372 } 3373 3374 /** 3375 * ice_ctrl_vsi_setup - Set up a control VSI 3376 * @pf: board private structure 3377 * @pi: pointer to the port_info instance 3378 * 3379 * Returns pointer to the successfully allocated VSI software struct 3380 * on success, otherwise returns NULL on failure. 3381 */ 3382 static struct ice_vsi * 3383 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3384 { 3385 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3386 } 3387 3388 /** 3389 * ice_lb_vsi_setup - Set up a loopback VSI 3390 * @pf: board private structure 3391 * @pi: pointer to the port_info instance 3392 * 3393 * Returns pointer to the successfully allocated VSI software struct 3394 * on success, otherwise returns NULL on failure. 3395 */ 3396 struct ice_vsi * 3397 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3398 { 3399 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3400 } 3401 3402 /** 3403 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3404 * @netdev: network interface to be adjusted 3405 * @proto: unused protocol 3406 * @vid: VLAN ID to be added 3407 * 3408 * net_device_ops implementation for adding VLAN IDs 3409 */ 3410 static int 3411 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3412 u16 vid) 3413 { 3414 struct ice_netdev_priv *np = netdev_priv(netdev); 3415 struct ice_vsi *vsi = np->vsi; 3416 int ret; 3417 3418 /* VLAN 0 is added by default during load/reset */ 3419 if (!vid) 3420 return 0; 3421 3422 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3423 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3424 ret = ice_cfg_vlan_pruning(vsi, true); 3425 if (ret) 3426 return ret; 3427 } 3428 3429 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3430 * packets aren't pruned by the device's internal switch on Rx 3431 */ 3432 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3433 if (!ret) 3434 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3435 3436 return ret; 3437 } 3438 3439 /** 3440 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3441 * @netdev: network interface to be adjusted 3442 * @proto: unused protocol 3443 * @vid: VLAN ID to be removed 3444 * 3445 * net_device_ops implementation for removing VLAN IDs 3446 */ 3447 static int 3448 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3449 u16 vid) 3450 { 3451 struct ice_netdev_priv *np = netdev_priv(netdev); 3452 struct ice_vsi *vsi = np->vsi; 3453 int ret; 3454 3455 /* don't allow removal of VLAN 0 */ 3456 if (!vid) 3457 return 0; 3458 3459 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3460 * information 3461 */ 3462 ret = ice_vsi_kill_vlan(vsi, vid); 3463 if (ret) 3464 return ret; 3465 3466 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3467 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3468 ret = ice_cfg_vlan_pruning(vsi, false); 3469 3470 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3471 return ret; 3472 } 3473 3474 /** 3475 * ice_rep_indr_tc_block_unbind 3476 * @cb_priv: indirection block private data 3477 */ 3478 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3479 { 3480 struct ice_indr_block_priv *indr_priv = cb_priv; 3481 3482 list_del(&indr_priv->list); 3483 kfree(indr_priv); 3484 } 3485 3486 /** 3487 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3488 * @vsi: VSI struct which has the netdev 3489 */ 3490 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3491 { 3492 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3493 3494 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3495 ice_rep_indr_tc_block_unbind); 3496 } 3497 3498 /** 3499 * ice_tc_indir_block_remove - clean indirect TC block notifications 3500 * @pf: PF structure 3501 */ 3502 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3503 { 3504 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3505 3506 if (!pf_vsi) 3507 return; 3508 3509 ice_tc_indir_block_unregister(pf_vsi); 3510 } 3511 3512 /** 3513 * ice_tc_indir_block_register - Register TC indirect block notifications 3514 * @vsi: VSI struct which has the netdev 3515 * 3516 * Returns 0 on success, negative value on failure 3517 */ 3518 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3519 { 3520 struct ice_netdev_priv *np; 3521 3522 if (!vsi || !vsi->netdev) 3523 return -EINVAL; 3524 3525 np = netdev_priv(vsi->netdev); 3526 3527 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3528 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3529 } 3530 3531 /** 3532 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3533 * @pf: board private structure 3534 * 3535 * Returns 0 on success, negative value on failure 3536 */ 3537 static int ice_setup_pf_sw(struct ice_pf *pf) 3538 { 3539 struct device *dev = ice_pf_to_dev(pf); 3540 struct ice_vsi *vsi; 3541 int status; 3542 3543 if (ice_is_reset_in_progress(pf->state)) 3544 return -EBUSY; 3545 3546 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3547 if (!vsi) 3548 return -ENOMEM; 3549 3550 /* init channel list */ 3551 INIT_LIST_HEAD(&vsi->ch_list); 3552 3553 status = ice_cfg_netdev(vsi); 3554 if (status) 3555 goto unroll_vsi_setup; 3556 /* netdev has to be configured before setting frame size */ 3557 ice_vsi_cfg_frame_size(vsi); 3558 3559 /* init indirect block notifications */ 3560 status = ice_tc_indir_block_register(vsi); 3561 if (status) { 3562 dev_err(dev, "Failed to register netdev notifier\n"); 3563 goto unroll_cfg_netdev; 3564 } 3565 3566 /* Setup DCB netlink interface */ 3567 ice_dcbnl_setup(vsi); 3568 3569 /* registering the NAPI handler requires both the queues and 3570 * netdev to be created, which are done in ice_pf_vsi_setup() 3571 * and ice_cfg_netdev() respectively 3572 */ 3573 ice_napi_add(vsi); 3574 3575 status = ice_set_cpu_rx_rmap(vsi); 3576 if (status) { 3577 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3578 vsi->vsi_num, status); 3579 goto unroll_napi_add; 3580 } 3581 status = ice_init_mac_fltr(pf); 3582 if (status) 3583 goto free_cpu_rx_map; 3584 3585 return 0; 3586 3587 free_cpu_rx_map: 3588 ice_free_cpu_rx_rmap(vsi); 3589 unroll_napi_add: 3590 ice_tc_indir_block_unregister(vsi); 3591 unroll_cfg_netdev: 3592 if (vsi) { 3593 ice_napi_del(vsi); 3594 if (vsi->netdev) { 3595 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3596 free_netdev(vsi->netdev); 3597 vsi->netdev = NULL; 3598 } 3599 } 3600 3601 unroll_vsi_setup: 3602 ice_vsi_release(vsi); 3603 return status; 3604 } 3605 3606 /** 3607 * ice_get_avail_q_count - Get count of queues in use 3608 * @pf_qmap: bitmap to get queue use count from 3609 * @lock: pointer to a mutex that protects access to pf_qmap 3610 * @size: size of the bitmap 3611 */ 3612 static u16 3613 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3614 { 3615 unsigned long bit; 3616 u16 count = 0; 3617 3618 mutex_lock(lock); 3619 for_each_clear_bit(bit, pf_qmap, size) 3620 count++; 3621 mutex_unlock(lock); 3622 3623 return count; 3624 } 3625 3626 /** 3627 * ice_get_avail_txq_count - Get count of Tx queues in use 3628 * @pf: pointer to an ice_pf instance 3629 */ 3630 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3631 { 3632 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3633 pf->max_pf_txqs); 3634 } 3635 3636 /** 3637 * ice_get_avail_rxq_count - Get count of Rx queues in use 3638 * @pf: pointer to an ice_pf instance 3639 */ 3640 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3641 { 3642 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3643 pf->max_pf_rxqs); 3644 } 3645 3646 /** 3647 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3648 * @pf: board private structure to initialize 3649 */ 3650 static void ice_deinit_pf(struct ice_pf *pf) 3651 { 3652 ice_service_task_stop(pf); 3653 mutex_destroy(&pf->sw_mutex); 3654 mutex_destroy(&pf->tc_mutex); 3655 mutex_destroy(&pf->avail_q_mutex); 3656 3657 if (pf->avail_txqs) { 3658 bitmap_free(pf->avail_txqs); 3659 pf->avail_txqs = NULL; 3660 } 3661 3662 if (pf->avail_rxqs) { 3663 bitmap_free(pf->avail_rxqs); 3664 pf->avail_rxqs = NULL; 3665 } 3666 3667 if (pf->ptp.clock) 3668 ptp_clock_unregister(pf->ptp.clock); 3669 } 3670 3671 /** 3672 * ice_set_pf_caps - set PFs capability flags 3673 * @pf: pointer to the PF instance 3674 */ 3675 static void ice_set_pf_caps(struct ice_pf *pf) 3676 { 3677 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3678 3679 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3680 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3681 if (func_caps->common_cap.rdma) { 3682 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3683 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3684 } 3685 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3686 if (func_caps->common_cap.dcb) 3687 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3688 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3689 if (func_caps->common_cap.sr_iov_1_1) { 3690 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3691 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3692 ICE_MAX_VF_COUNT); 3693 } 3694 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3695 if (func_caps->common_cap.rss_table_size) 3696 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3697 3698 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3699 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3700 u16 unused; 3701 3702 /* ctrl_vsi_idx will be set to a valid value when flow director 3703 * is setup by ice_init_fdir 3704 */ 3705 pf->ctrl_vsi_idx = ICE_NO_VSI; 3706 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3707 /* force guaranteed filter pool for PF */ 3708 ice_alloc_fd_guar_item(&pf->hw, &unused, 3709 func_caps->fd_fltr_guar); 3710 /* force shared filter pool for PF */ 3711 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3712 func_caps->fd_fltr_best_effort); 3713 } 3714 3715 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3716 if (func_caps->common_cap.ieee_1588) 3717 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3718 3719 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3720 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3721 } 3722 3723 /** 3724 * ice_init_pf - Initialize general software structures (struct ice_pf) 3725 * @pf: board private structure to initialize 3726 */ 3727 static int ice_init_pf(struct ice_pf *pf) 3728 { 3729 ice_set_pf_caps(pf); 3730 3731 mutex_init(&pf->sw_mutex); 3732 mutex_init(&pf->tc_mutex); 3733 3734 INIT_HLIST_HEAD(&pf->aq_wait_list); 3735 spin_lock_init(&pf->aq_wait_lock); 3736 init_waitqueue_head(&pf->aq_wait_queue); 3737 3738 init_waitqueue_head(&pf->reset_wait_queue); 3739 3740 /* setup service timer and periodic service task */ 3741 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3742 pf->serv_tmr_period = HZ; 3743 INIT_WORK(&pf->serv_task, ice_service_task); 3744 clear_bit(ICE_SERVICE_SCHED, pf->state); 3745 3746 mutex_init(&pf->avail_q_mutex); 3747 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3748 if (!pf->avail_txqs) 3749 return -ENOMEM; 3750 3751 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3752 if (!pf->avail_rxqs) { 3753 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3754 pf->avail_txqs = NULL; 3755 return -ENOMEM; 3756 } 3757 3758 return 0; 3759 } 3760 3761 /** 3762 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3763 * @pf: board private structure 3764 * 3765 * compute the number of MSIX vectors required (v_budget) and request from 3766 * the OS. Return the number of vectors reserved or negative on failure 3767 */ 3768 static int ice_ena_msix_range(struct ice_pf *pf) 3769 { 3770 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3771 struct device *dev = ice_pf_to_dev(pf); 3772 int needed, err, i; 3773 3774 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3775 num_cpus = num_online_cpus(); 3776 3777 /* reserve for LAN miscellaneous handler */ 3778 needed = ICE_MIN_LAN_OICR_MSIX; 3779 if (v_left < needed) 3780 goto no_hw_vecs_left_err; 3781 v_budget += needed; 3782 v_left -= needed; 3783 3784 /* reserve for flow director */ 3785 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3786 needed = ICE_FDIR_MSIX; 3787 if (v_left < needed) 3788 goto no_hw_vecs_left_err; 3789 v_budget += needed; 3790 v_left -= needed; 3791 } 3792 3793 /* reserve for switchdev */ 3794 needed = ICE_ESWITCH_MSIX; 3795 if (v_left < needed) 3796 goto no_hw_vecs_left_err; 3797 v_budget += needed; 3798 v_left -= needed; 3799 3800 /* total used for non-traffic vectors */ 3801 v_other = v_budget; 3802 3803 /* reserve vectors for LAN traffic */ 3804 needed = num_cpus; 3805 if (v_left < needed) 3806 goto no_hw_vecs_left_err; 3807 pf->num_lan_msix = needed; 3808 v_budget += needed; 3809 v_left -= needed; 3810 3811 /* reserve vectors for RDMA auxiliary driver */ 3812 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3813 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3814 if (v_left < needed) 3815 goto no_hw_vecs_left_err; 3816 pf->num_rdma_msix = needed; 3817 v_budget += needed; 3818 v_left -= needed; 3819 } 3820 3821 pf->msix_entries = devm_kcalloc(dev, v_budget, 3822 sizeof(*pf->msix_entries), GFP_KERNEL); 3823 if (!pf->msix_entries) { 3824 err = -ENOMEM; 3825 goto exit_err; 3826 } 3827 3828 for (i = 0; i < v_budget; i++) 3829 pf->msix_entries[i].entry = i; 3830 3831 /* actually reserve the vectors */ 3832 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3833 ICE_MIN_MSIX, v_budget); 3834 if (v_actual < 0) { 3835 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3836 err = v_actual; 3837 goto msix_err; 3838 } 3839 3840 if (v_actual < v_budget) { 3841 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3842 v_budget, v_actual); 3843 3844 if (v_actual < ICE_MIN_MSIX) { 3845 /* error if we can't get minimum vectors */ 3846 pci_disable_msix(pf->pdev); 3847 err = -ERANGE; 3848 goto msix_err; 3849 } else { 3850 int v_remain = v_actual - v_other; 3851 int v_rdma = 0, v_min_rdma = 0; 3852 3853 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3854 /* Need at least 1 interrupt in addition to 3855 * AEQ MSIX 3856 */ 3857 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3858 v_min_rdma = ICE_MIN_RDMA_MSIX; 3859 } 3860 3861 if (v_actual == ICE_MIN_MSIX || 3862 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3863 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3864 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3865 3866 pf->num_rdma_msix = 0; 3867 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3868 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3869 (v_remain - v_rdma < v_rdma)) { 3870 /* Support minimum RDMA and give remaining 3871 * vectors to LAN MSIX 3872 */ 3873 pf->num_rdma_msix = v_min_rdma; 3874 pf->num_lan_msix = v_remain - v_min_rdma; 3875 } else { 3876 /* Split remaining MSIX with RDMA after 3877 * accounting for AEQ MSIX 3878 */ 3879 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3880 ICE_RDMA_NUM_AEQ_MSIX; 3881 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3882 } 3883 3884 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3885 pf->num_lan_msix); 3886 3887 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3888 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3889 pf->num_rdma_msix); 3890 } 3891 } 3892 3893 return v_actual; 3894 3895 msix_err: 3896 devm_kfree(dev, pf->msix_entries); 3897 goto exit_err; 3898 3899 no_hw_vecs_left_err: 3900 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3901 needed, v_left); 3902 err = -ERANGE; 3903 exit_err: 3904 pf->num_rdma_msix = 0; 3905 pf->num_lan_msix = 0; 3906 return err; 3907 } 3908 3909 /** 3910 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3911 * @pf: board private structure 3912 */ 3913 static void ice_dis_msix(struct ice_pf *pf) 3914 { 3915 pci_disable_msix(pf->pdev); 3916 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3917 pf->msix_entries = NULL; 3918 } 3919 3920 /** 3921 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3922 * @pf: board private structure 3923 */ 3924 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3925 { 3926 ice_dis_msix(pf); 3927 3928 if (pf->irq_tracker) { 3929 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3930 pf->irq_tracker = NULL; 3931 } 3932 } 3933 3934 /** 3935 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3936 * @pf: board private structure to initialize 3937 */ 3938 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3939 { 3940 int vectors; 3941 3942 vectors = ice_ena_msix_range(pf); 3943 3944 if (vectors < 0) 3945 return vectors; 3946 3947 /* set up vector assignment tracking */ 3948 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3949 struct_size(pf->irq_tracker, list, vectors), 3950 GFP_KERNEL); 3951 if (!pf->irq_tracker) { 3952 ice_dis_msix(pf); 3953 return -ENOMEM; 3954 } 3955 3956 /* populate SW interrupts pool with number of OS granted IRQs. */ 3957 pf->num_avail_sw_msix = (u16)vectors; 3958 pf->irq_tracker->num_entries = (u16)vectors; 3959 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3960 3961 return 0; 3962 } 3963 3964 /** 3965 * ice_is_wol_supported - check if WoL is supported 3966 * @hw: pointer to hardware info 3967 * 3968 * Check if WoL is supported based on the HW configuration. 3969 * Returns true if NVM supports and enables WoL for this port, false otherwise 3970 */ 3971 bool ice_is_wol_supported(struct ice_hw *hw) 3972 { 3973 u16 wol_ctrl; 3974 3975 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3976 * word) indicates WoL is not supported on the corresponding PF ID. 3977 */ 3978 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3979 return false; 3980 3981 return !(BIT(hw->port_info->lport) & wol_ctrl); 3982 } 3983 3984 /** 3985 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3986 * @vsi: VSI being changed 3987 * @new_rx: new number of Rx queues 3988 * @new_tx: new number of Tx queues 3989 * 3990 * Only change the number of queues if new_tx, or new_rx is non-0. 3991 * 3992 * Returns 0 on success. 3993 */ 3994 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3995 { 3996 struct ice_pf *pf = vsi->back; 3997 int err = 0, timeout = 50; 3998 3999 if (!new_rx && !new_tx) 4000 return -EINVAL; 4001 4002 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4003 timeout--; 4004 if (!timeout) 4005 return -EBUSY; 4006 usleep_range(1000, 2000); 4007 } 4008 4009 if (new_tx) 4010 vsi->req_txq = (u16)new_tx; 4011 if (new_rx) 4012 vsi->req_rxq = (u16)new_rx; 4013 4014 /* set for the next time the netdev is started */ 4015 if (!netif_running(vsi->netdev)) { 4016 ice_vsi_rebuild(vsi, false); 4017 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4018 goto done; 4019 } 4020 4021 ice_vsi_close(vsi); 4022 ice_vsi_rebuild(vsi, false); 4023 ice_pf_dcb_recfg(pf); 4024 ice_vsi_open(vsi); 4025 done: 4026 clear_bit(ICE_CFG_BUSY, pf->state); 4027 return err; 4028 } 4029 4030 /** 4031 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4032 * @pf: PF to configure 4033 * 4034 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4035 * VSI can still Tx/Rx VLAN tagged packets. 4036 */ 4037 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4038 { 4039 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4040 struct ice_vsi_ctx *ctxt; 4041 struct ice_hw *hw; 4042 int status; 4043 4044 if (!vsi) 4045 return; 4046 4047 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4048 if (!ctxt) 4049 return; 4050 4051 hw = &pf->hw; 4052 ctxt->info = vsi->info; 4053 4054 ctxt->info.valid_sections = 4055 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4056 ICE_AQ_VSI_PROP_SECURITY_VALID | 4057 ICE_AQ_VSI_PROP_SW_VALID); 4058 4059 /* disable VLAN anti-spoof */ 4060 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4061 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4062 4063 /* disable VLAN pruning and keep all other settings */ 4064 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4065 4066 /* allow all VLANs on Tx and don't strip on Rx */ 4067 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 4068 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 4069 4070 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4071 if (status) { 4072 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4073 status, ice_aq_str(hw->adminq.sq_last_status)); 4074 } else { 4075 vsi->info.sec_flags = ctxt->info.sec_flags; 4076 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4077 vsi->info.vlan_flags = ctxt->info.vlan_flags; 4078 } 4079 4080 kfree(ctxt); 4081 } 4082 4083 /** 4084 * ice_log_pkg_init - log result of DDP package load 4085 * @hw: pointer to hardware info 4086 * @state: state of package load 4087 */ 4088 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4089 { 4090 struct ice_pf *pf = hw->back; 4091 struct device *dev; 4092 4093 dev = ice_pf_to_dev(pf); 4094 4095 switch (state) { 4096 case ICE_DDP_PKG_SUCCESS: 4097 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4098 hw->active_pkg_name, 4099 hw->active_pkg_ver.major, 4100 hw->active_pkg_ver.minor, 4101 hw->active_pkg_ver.update, 4102 hw->active_pkg_ver.draft); 4103 break; 4104 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4105 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4106 hw->active_pkg_name, 4107 hw->active_pkg_ver.major, 4108 hw->active_pkg_ver.minor, 4109 hw->active_pkg_ver.update, 4110 hw->active_pkg_ver.draft); 4111 break; 4112 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4113 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4114 hw->active_pkg_name, 4115 hw->active_pkg_ver.major, 4116 hw->active_pkg_ver.minor, 4117 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4118 break; 4119 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4120 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4121 hw->active_pkg_name, 4122 hw->active_pkg_ver.major, 4123 hw->active_pkg_ver.minor, 4124 hw->active_pkg_ver.update, 4125 hw->active_pkg_ver.draft, 4126 hw->pkg_name, 4127 hw->pkg_ver.major, 4128 hw->pkg_ver.minor, 4129 hw->pkg_ver.update, 4130 hw->pkg_ver.draft); 4131 break; 4132 case ICE_DDP_PKG_FW_MISMATCH: 4133 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4134 break; 4135 case ICE_DDP_PKG_INVALID_FILE: 4136 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4137 break; 4138 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4139 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4140 break; 4141 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4142 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4143 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4144 break; 4145 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4146 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4147 break; 4148 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4149 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4150 break; 4151 case ICE_DDP_PKG_LOAD_ERROR: 4152 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4153 /* poll for reset to complete */ 4154 if (ice_check_reset(hw)) 4155 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4156 break; 4157 case ICE_DDP_PKG_ERR: 4158 default: 4159 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4160 break; 4161 } 4162 } 4163 4164 /** 4165 * ice_load_pkg - load/reload the DDP Package file 4166 * @firmware: firmware structure when firmware requested or NULL for reload 4167 * @pf: pointer to the PF instance 4168 * 4169 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4170 * initialize HW tables. 4171 */ 4172 static void 4173 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4174 { 4175 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4176 struct device *dev = ice_pf_to_dev(pf); 4177 struct ice_hw *hw = &pf->hw; 4178 4179 /* Load DDP Package */ 4180 if (firmware && !hw->pkg_copy) { 4181 state = ice_copy_and_init_pkg(hw, firmware->data, 4182 firmware->size); 4183 ice_log_pkg_init(hw, state); 4184 } else if (!firmware && hw->pkg_copy) { 4185 /* Reload package during rebuild after CORER/GLOBR reset */ 4186 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4187 ice_log_pkg_init(hw, state); 4188 } else { 4189 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4190 } 4191 4192 if (!ice_is_init_pkg_successful(state)) { 4193 /* Safe Mode */ 4194 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4195 return; 4196 } 4197 4198 /* Successful download package is the precondition for advanced 4199 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4200 */ 4201 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4202 } 4203 4204 /** 4205 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4206 * @pf: pointer to the PF structure 4207 * 4208 * There is no error returned here because the driver should be able to handle 4209 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4210 * specifically with Tx. 4211 */ 4212 static void ice_verify_cacheline_size(struct ice_pf *pf) 4213 { 4214 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4215 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4216 ICE_CACHE_LINE_BYTES); 4217 } 4218 4219 /** 4220 * ice_send_version - update firmware with driver version 4221 * @pf: PF struct 4222 * 4223 * Returns 0 on success, else error code 4224 */ 4225 static int ice_send_version(struct ice_pf *pf) 4226 { 4227 struct ice_driver_ver dv; 4228 4229 dv.major_ver = 0xff; 4230 dv.minor_ver = 0xff; 4231 dv.build_ver = 0xff; 4232 dv.subbuild_ver = 0; 4233 strscpy((char *)dv.driver_string, UTS_RELEASE, 4234 sizeof(dv.driver_string)); 4235 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4236 } 4237 4238 /** 4239 * ice_init_fdir - Initialize flow director VSI and configuration 4240 * @pf: pointer to the PF instance 4241 * 4242 * returns 0 on success, negative on error 4243 */ 4244 static int ice_init_fdir(struct ice_pf *pf) 4245 { 4246 struct device *dev = ice_pf_to_dev(pf); 4247 struct ice_vsi *ctrl_vsi; 4248 int err; 4249 4250 /* Side Band Flow Director needs to have a control VSI. 4251 * Allocate it and store it in the PF. 4252 */ 4253 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4254 if (!ctrl_vsi) { 4255 dev_dbg(dev, "could not create control VSI\n"); 4256 return -ENOMEM; 4257 } 4258 4259 err = ice_vsi_open_ctrl(ctrl_vsi); 4260 if (err) { 4261 dev_dbg(dev, "could not open control VSI\n"); 4262 goto err_vsi_open; 4263 } 4264 4265 mutex_init(&pf->hw.fdir_fltr_lock); 4266 4267 err = ice_fdir_create_dflt_rules(pf); 4268 if (err) 4269 goto err_fdir_rule; 4270 4271 return 0; 4272 4273 err_fdir_rule: 4274 ice_fdir_release_flows(&pf->hw); 4275 ice_vsi_close(ctrl_vsi); 4276 err_vsi_open: 4277 ice_vsi_release(ctrl_vsi); 4278 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4279 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4280 pf->ctrl_vsi_idx = ICE_NO_VSI; 4281 } 4282 return err; 4283 } 4284 4285 /** 4286 * ice_get_opt_fw_name - return optional firmware file name or NULL 4287 * @pf: pointer to the PF instance 4288 */ 4289 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4290 { 4291 /* Optional firmware name same as default with additional dash 4292 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4293 */ 4294 struct pci_dev *pdev = pf->pdev; 4295 char *opt_fw_filename; 4296 u64 dsn; 4297 4298 /* Determine the name of the optional file using the DSN (two 4299 * dwords following the start of the DSN Capability). 4300 */ 4301 dsn = pci_get_dsn(pdev); 4302 if (!dsn) 4303 return NULL; 4304 4305 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4306 if (!opt_fw_filename) 4307 return NULL; 4308 4309 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4310 ICE_DDP_PKG_PATH, dsn); 4311 4312 return opt_fw_filename; 4313 } 4314 4315 /** 4316 * ice_request_fw - Device initialization routine 4317 * @pf: pointer to the PF instance 4318 */ 4319 static void ice_request_fw(struct ice_pf *pf) 4320 { 4321 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4322 const struct firmware *firmware = NULL; 4323 struct device *dev = ice_pf_to_dev(pf); 4324 int err = 0; 4325 4326 /* optional device-specific DDP (if present) overrides the default DDP 4327 * package file. kernel logs a debug message if the file doesn't exist, 4328 * and warning messages for other errors. 4329 */ 4330 if (opt_fw_filename) { 4331 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4332 if (err) { 4333 kfree(opt_fw_filename); 4334 goto dflt_pkg_load; 4335 } 4336 4337 /* request for firmware was successful. Download to device */ 4338 ice_load_pkg(firmware, pf); 4339 kfree(opt_fw_filename); 4340 release_firmware(firmware); 4341 return; 4342 } 4343 4344 dflt_pkg_load: 4345 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4346 if (err) { 4347 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4348 return; 4349 } 4350 4351 /* request for firmware was successful. Download to device */ 4352 ice_load_pkg(firmware, pf); 4353 release_firmware(firmware); 4354 } 4355 4356 /** 4357 * ice_print_wake_reason - show the wake up cause in the log 4358 * @pf: pointer to the PF struct 4359 */ 4360 static void ice_print_wake_reason(struct ice_pf *pf) 4361 { 4362 u32 wus = pf->wakeup_reason; 4363 const char *wake_str; 4364 4365 /* if no wake event, nothing to print */ 4366 if (!wus) 4367 return; 4368 4369 if (wus & PFPM_WUS_LNKC_M) 4370 wake_str = "Link\n"; 4371 else if (wus & PFPM_WUS_MAG_M) 4372 wake_str = "Magic Packet\n"; 4373 else if (wus & PFPM_WUS_MNG_M) 4374 wake_str = "Management\n"; 4375 else if (wus & PFPM_WUS_FW_RST_WK_M) 4376 wake_str = "Firmware Reset\n"; 4377 else 4378 wake_str = "Unknown\n"; 4379 4380 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4381 } 4382 4383 /** 4384 * ice_register_netdev - register netdev and devlink port 4385 * @pf: pointer to the PF struct 4386 */ 4387 static int ice_register_netdev(struct ice_pf *pf) 4388 { 4389 struct ice_vsi *vsi; 4390 int err = 0; 4391 4392 vsi = ice_get_main_vsi(pf); 4393 if (!vsi || !vsi->netdev) 4394 return -EIO; 4395 4396 err = register_netdev(vsi->netdev); 4397 if (err) 4398 goto err_register_netdev; 4399 4400 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4401 netif_carrier_off(vsi->netdev); 4402 netif_tx_stop_all_queues(vsi->netdev); 4403 err = ice_devlink_create_pf_port(pf); 4404 if (err) 4405 goto err_devlink_create; 4406 4407 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4408 4409 return 0; 4410 err_devlink_create: 4411 unregister_netdev(vsi->netdev); 4412 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4413 err_register_netdev: 4414 free_netdev(vsi->netdev); 4415 vsi->netdev = NULL; 4416 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4417 return err; 4418 } 4419 4420 /** 4421 * ice_probe - Device initialization routine 4422 * @pdev: PCI device information struct 4423 * @ent: entry in ice_pci_tbl 4424 * 4425 * Returns 0 on success, negative on failure 4426 */ 4427 static int 4428 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4429 { 4430 struct device *dev = &pdev->dev; 4431 struct ice_pf *pf; 4432 struct ice_hw *hw; 4433 int i, err; 4434 4435 if (pdev->is_virtfn) { 4436 dev_err(dev, "can't probe a virtual function\n"); 4437 return -EINVAL; 4438 } 4439 4440 /* this driver uses devres, see 4441 * Documentation/driver-api/driver-model/devres.rst 4442 */ 4443 err = pcim_enable_device(pdev); 4444 if (err) 4445 return err; 4446 4447 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4448 if (err) { 4449 dev_err(dev, "BAR0 I/O map error %d\n", err); 4450 return err; 4451 } 4452 4453 pf = ice_allocate_pf(dev); 4454 if (!pf) 4455 return -ENOMEM; 4456 4457 /* initialize Auxiliary index to invalid value */ 4458 pf->aux_idx = -1; 4459 4460 /* set up for high or low DMA */ 4461 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4462 if (err) 4463 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4464 if (err) { 4465 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4466 return err; 4467 } 4468 4469 pci_enable_pcie_error_reporting(pdev); 4470 pci_set_master(pdev); 4471 4472 pf->pdev = pdev; 4473 pci_set_drvdata(pdev, pf); 4474 set_bit(ICE_DOWN, pf->state); 4475 /* Disable service task until DOWN bit is cleared */ 4476 set_bit(ICE_SERVICE_DIS, pf->state); 4477 4478 hw = &pf->hw; 4479 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4480 pci_save_state(pdev); 4481 4482 hw->back = pf; 4483 hw->vendor_id = pdev->vendor; 4484 hw->device_id = pdev->device; 4485 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4486 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4487 hw->subsystem_device_id = pdev->subsystem_device; 4488 hw->bus.device = PCI_SLOT(pdev->devfn); 4489 hw->bus.func = PCI_FUNC(pdev->devfn); 4490 ice_set_ctrlq_len(hw); 4491 4492 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4493 4494 #ifndef CONFIG_DYNAMIC_DEBUG 4495 if (debug < -1) 4496 hw->debug_mask = debug; 4497 #endif 4498 4499 err = ice_init_hw(hw); 4500 if (err) { 4501 dev_err(dev, "ice_init_hw failed: %d\n", err); 4502 err = -EIO; 4503 goto err_exit_unroll; 4504 } 4505 4506 ice_init_feature_support(pf); 4507 4508 ice_request_fw(pf); 4509 4510 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4511 * set in pf->state, which will cause ice_is_safe_mode to return 4512 * true 4513 */ 4514 if (ice_is_safe_mode(pf)) { 4515 /* we already got function/device capabilities but these don't 4516 * reflect what the driver needs to do in safe mode. Instead of 4517 * adding conditional logic everywhere to ignore these 4518 * device/function capabilities, override them. 4519 */ 4520 ice_set_safe_mode_caps(hw); 4521 } 4522 4523 err = ice_init_pf(pf); 4524 if (err) { 4525 dev_err(dev, "ice_init_pf failed: %d\n", err); 4526 goto err_init_pf_unroll; 4527 } 4528 4529 ice_devlink_init_regions(pf); 4530 4531 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4532 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4533 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4534 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4535 i = 0; 4536 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4537 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4538 pf->hw.tnl.valid_count[TNL_VXLAN]; 4539 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4540 UDP_TUNNEL_TYPE_VXLAN; 4541 i++; 4542 } 4543 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4544 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4545 pf->hw.tnl.valid_count[TNL_GENEVE]; 4546 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4547 UDP_TUNNEL_TYPE_GENEVE; 4548 i++; 4549 } 4550 4551 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4552 if (!pf->num_alloc_vsi) { 4553 err = -EIO; 4554 goto err_init_pf_unroll; 4555 } 4556 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4557 dev_warn(&pf->pdev->dev, 4558 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4559 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4560 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4561 } 4562 4563 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4564 GFP_KERNEL); 4565 if (!pf->vsi) { 4566 err = -ENOMEM; 4567 goto err_init_pf_unroll; 4568 } 4569 4570 err = ice_init_interrupt_scheme(pf); 4571 if (err) { 4572 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4573 err = -EIO; 4574 goto err_init_vsi_unroll; 4575 } 4576 4577 /* In case of MSIX we are going to setup the misc vector right here 4578 * to handle admin queue events etc. In case of legacy and MSI 4579 * the misc functionality and queue processing is combined in 4580 * the same vector and that gets setup at open. 4581 */ 4582 err = ice_req_irq_msix_misc(pf); 4583 if (err) { 4584 dev_err(dev, "setup of misc vector failed: %d\n", err); 4585 goto err_init_interrupt_unroll; 4586 } 4587 4588 /* create switch struct for the switch element created by FW on boot */ 4589 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4590 if (!pf->first_sw) { 4591 err = -ENOMEM; 4592 goto err_msix_misc_unroll; 4593 } 4594 4595 if (hw->evb_veb) 4596 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4597 else 4598 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4599 4600 pf->first_sw->pf = pf; 4601 4602 /* record the sw_id available for later use */ 4603 pf->first_sw->sw_id = hw->port_info->sw_id; 4604 4605 err = ice_setup_pf_sw(pf); 4606 if (err) { 4607 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4608 goto err_alloc_sw_unroll; 4609 } 4610 4611 clear_bit(ICE_SERVICE_DIS, pf->state); 4612 4613 /* tell the firmware we are up */ 4614 err = ice_send_version(pf); 4615 if (err) { 4616 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4617 UTS_RELEASE, err); 4618 goto err_send_version_unroll; 4619 } 4620 4621 /* since everything is good, start the service timer */ 4622 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4623 4624 err = ice_init_link_events(pf->hw.port_info); 4625 if (err) { 4626 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4627 goto err_send_version_unroll; 4628 } 4629 4630 /* not a fatal error if this fails */ 4631 err = ice_init_nvm_phy_type(pf->hw.port_info); 4632 if (err) 4633 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4634 4635 /* not a fatal error if this fails */ 4636 err = ice_update_link_info(pf->hw.port_info); 4637 if (err) 4638 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4639 4640 ice_init_link_dflt_override(pf->hw.port_info); 4641 4642 ice_check_link_cfg_err(pf, 4643 pf->hw.port_info->phy.link_info.link_cfg_err); 4644 4645 /* if media available, initialize PHY settings */ 4646 if (pf->hw.port_info->phy.link_info.link_info & 4647 ICE_AQ_MEDIA_AVAILABLE) { 4648 /* not a fatal error if this fails */ 4649 err = ice_init_phy_user_cfg(pf->hw.port_info); 4650 if (err) 4651 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4652 4653 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4654 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4655 4656 if (vsi) 4657 ice_configure_phy(vsi); 4658 } 4659 } else { 4660 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4661 } 4662 4663 ice_verify_cacheline_size(pf); 4664 4665 /* Save wakeup reason register for later use */ 4666 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4667 4668 /* check for a power management event */ 4669 ice_print_wake_reason(pf); 4670 4671 /* clear wake status, all bits */ 4672 wr32(hw, PFPM_WUS, U32_MAX); 4673 4674 /* Disable WoL at init, wait for user to enable */ 4675 device_set_wakeup_enable(dev, false); 4676 4677 if (ice_is_safe_mode(pf)) { 4678 ice_set_safe_mode_vlan_cfg(pf); 4679 goto probe_done; 4680 } 4681 4682 /* initialize DDP driven features */ 4683 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4684 ice_ptp_init(pf); 4685 4686 /* Note: Flow director init failure is non-fatal to load */ 4687 if (ice_init_fdir(pf)) 4688 dev_err(dev, "could not initialize flow director\n"); 4689 4690 /* Note: DCB init failure is non-fatal to load */ 4691 if (ice_init_pf_dcb(pf, false)) { 4692 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4693 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4694 } else { 4695 ice_cfg_lldp_mib_change(&pf->hw, true); 4696 } 4697 4698 if (ice_init_lag(pf)) 4699 dev_warn(dev, "Failed to init link aggregation support\n"); 4700 4701 /* print PCI link speed and width */ 4702 pcie_print_link_status(pf->pdev); 4703 4704 probe_done: 4705 err = ice_register_netdev(pf); 4706 if (err) 4707 goto err_netdev_reg; 4708 4709 err = ice_devlink_register_params(pf); 4710 if (err) 4711 goto err_netdev_reg; 4712 4713 /* ready to go, so clear down state bit */ 4714 clear_bit(ICE_DOWN, pf->state); 4715 if (ice_is_aux_ena(pf)) { 4716 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4717 if (pf->aux_idx < 0) { 4718 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4719 err = -ENOMEM; 4720 goto err_devlink_reg_param; 4721 } 4722 4723 err = ice_init_rdma(pf); 4724 if (err) { 4725 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4726 err = -EIO; 4727 goto err_init_aux_unroll; 4728 } 4729 } else { 4730 dev_warn(dev, "RDMA is not supported on this device\n"); 4731 } 4732 4733 ice_devlink_register(pf); 4734 return 0; 4735 4736 err_init_aux_unroll: 4737 pf->adev = NULL; 4738 ida_free(&ice_aux_ida, pf->aux_idx); 4739 err_devlink_reg_param: 4740 ice_devlink_unregister_params(pf); 4741 err_netdev_reg: 4742 err_send_version_unroll: 4743 ice_vsi_release_all(pf); 4744 err_alloc_sw_unroll: 4745 set_bit(ICE_SERVICE_DIS, pf->state); 4746 set_bit(ICE_DOWN, pf->state); 4747 devm_kfree(dev, pf->first_sw); 4748 err_msix_misc_unroll: 4749 ice_free_irq_msix_misc(pf); 4750 err_init_interrupt_unroll: 4751 ice_clear_interrupt_scheme(pf); 4752 err_init_vsi_unroll: 4753 devm_kfree(dev, pf->vsi); 4754 err_init_pf_unroll: 4755 ice_deinit_pf(pf); 4756 ice_devlink_destroy_regions(pf); 4757 ice_deinit_hw(hw); 4758 err_exit_unroll: 4759 pci_disable_pcie_error_reporting(pdev); 4760 pci_disable_device(pdev); 4761 return err; 4762 } 4763 4764 /** 4765 * ice_set_wake - enable or disable Wake on LAN 4766 * @pf: pointer to the PF struct 4767 * 4768 * Simple helper for WoL control 4769 */ 4770 static void ice_set_wake(struct ice_pf *pf) 4771 { 4772 struct ice_hw *hw = &pf->hw; 4773 bool wol = pf->wol_ena; 4774 4775 /* clear wake state, otherwise new wake events won't fire */ 4776 wr32(hw, PFPM_WUS, U32_MAX); 4777 4778 /* enable / disable APM wake up, no RMW needed */ 4779 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4780 4781 /* set magic packet filter enabled */ 4782 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4783 } 4784 4785 /** 4786 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4787 * @pf: pointer to the PF struct 4788 * 4789 * Issue firmware command to enable multicast magic wake, making 4790 * sure that any locally administered address (LAA) is used for 4791 * wake, and that PF reset doesn't undo the LAA. 4792 */ 4793 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4794 { 4795 struct device *dev = ice_pf_to_dev(pf); 4796 struct ice_hw *hw = &pf->hw; 4797 u8 mac_addr[ETH_ALEN]; 4798 struct ice_vsi *vsi; 4799 int status; 4800 u8 flags; 4801 4802 if (!pf->wol_ena) 4803 return; 4804 4805 vsi = ice_get_main_vsi(pf); 4806 if (!vsi) 4807 return; 4808 4809 /* Get current MAC address in case it's an LAA */ 4810 if (vsi->netdev) 4811 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4812 else 4813 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4814 4815 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4816 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4817 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4818 4819 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4820 if (status) 4821 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4822 status, ice_aq_str(hw->adminq.sq_last_status)); 4823 } 4824 4825 /** 4826 * ice_remove - Device removal routine 4827 * @pdev: PCI device information struct 4828 */ 4829 static void ice_remove(struct pci_dev *pdev) 4830 { 4831 struct ice_pf *pf = pci_get_drvdata(pdev); 4832 int i; 4833 4834 ice_devlink_unregister(pf); 4835 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4836 if (!ice_is_reset_in_progress(pf->state)) 4837 break; 4838 msleep(100); 4839 } 4840 4841 ice_tc_indir_block_remove(pf); 4842 4843 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4844 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4845 ice_free_vfs(pf); 4846 } 4847 4848 ice_service_task_stop(pf); 4849 4850 ice_aq_cancel_waiting_tasks(pf); 4851 ice_unplug_aux_dev(pf); 4852 if (pf->aux_idx >= 0) 4853 ida_free(&ice_aux_ida, pf->aux_idx); 4854 ice_devlink_unregister_params(pf); 4855 set_bit(ICE_DOWN, pf->state); 4856 4857 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4858 ice_deinit_lag(pf); 4859 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4860 ice_ptp_release(pf); 4861 if (!ice_is_safe_mode(pf)) 4862 ice_remove_arfs(pf); 4863 ice_setup_mc_magic_wake(pf); 4864 ice_vsi_release_all(pf); 4865 ice_set_wake(pf); 4866 ice_free_irq_msix_misc(pf); 4867 ice_for_each_vsi(pf, i) { 4868 if (!pf->vsi[i]) 4869 continue; 4870 ice_vsi_free_q_vectors(pf->vsi[i]); 4871 } 4872 ice_deinit_pf(pf); 4873 ice_devlink_destroy_regions(pf); 4874 ice_deinit_hw(&pf->hw); 4875 4876 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4877 * do it via ice_schedule_reset() since there is no need to rebuild 4878 * and the service task is already stopped. 4879 */ 4880 ice_reset(&pf->hw, ICE_RESET_PFR); 4881 pci_wait_for_pending_transaction(pdev); 4882 ice_clear_interrupt_scheme(pf); 4883 pci_disable_pcie_error_reporting(pdev); 4884 pci_disable_device(pdev); 4885 } 4886 4887 /** 4888 * ice_shutdown - PCI callback for shutting down device 4889 * @pdev: PCI device information struct 4890 */ 4891 static void ice_shutdown(struct pci_dev *pdev) 4892 { 4893 struct ice_pf *pf = pci_get_drvdata(pdev); 4894 4895 ice_remove(pdev); 4896 4897 if (system_state == SYSTEM_POWER_OFF) { 4898 pci_wake_from_d3(pdev, pf->wol_ena); 4899 pci_set_power_state(pdev, PCI_D3hot); 4900 } 4901 } 4902 4903 #ifdef CONFIG_PM 4904 /** 4905 * ice_prepare_for_shutdown - prep for PCI shutdown 4906 * @pf: board private structure 4907 * 4908 * Inform or close all dependent features in prep for PCI device shutdown 4909 */ 4910 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4911 { 4912 struct ice_hw *hw = &pf->hw; 4913 u32 v; 4914 4915 /* Notify VFs of impending reset */ 4916 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4917 ice_vc_notify_reset(pf); 4918 4919 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4920 4921 /* disable the VSIs and their queues that are not already DOWN */ 4922 ice_pf_dis_all_vsi(pf, false); 4923 4924 ice_for_each_vsi(pf, v) 4925 if (pf->vsi[v]) 4926 pf->vsi[v]->vsi_num = 0; 4927 4928 ice_shutdown_all_ctrlq(hw); 4929 } 4930 4931 /** 4932 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4933 * @pf: board private structure to reinitialize 4934 * 4935 * This routine reinitialize interrupt scheme that was cleared during 4936 * power management suspend callback. 4937 * 4938 * This should be called during resume routine to re-allocate the q_vectors 4939 * and reacquire interrupts. 4940 */ 4941 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4942 { 4943 struct device *dev = ice_pf_to_dev(pf); 4944 int ret, v; 4945 4946 /* Since we clear MSIX flag during suspend, we need to 4947 * set it back during resume... 4948 */ 4949 4950 ret = ice_init_interrupt_scheme(pf); 4951 if (ret) { 4952 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4953 return ret; 4954 } 4955 4956 /* Remap vectors and rings, after successful re-init interrupts */ 4957 ice_for_each_vsi(pf, v) { 4958 if (!pf->vsi[v]) 4959 continue; 4960 4961 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4962 if (ret) 4963 goto err_reinit; 4964 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4965 } 4966 4967 ret = ice_req_irq_msix_misc(pf); 4968 if (ret) { 4969 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4970 ret); 4971 goto err_reinit; 4972 } 4973 4974 return 0; 4975 4976 err_reinit: 4977 while (v--) 4978 if (pf->vsi[v]) 4979 ice_vsi_free_q_vectors(pf->vsi[v]); 4980 4981 return ret; 4982 } 4983 4984 /** 4985 * ice_suspend 4986 * @dev: generic device information structure 4987 * 4988 * Power Management callback to quiesce the device and prepare 4989 * for D3 transition. 4990 */ 4991 static int __maybe_unused ice_suspend(struct device *dev) 4992 { 4993 struct pci_dev *pdev = to_pci_dev(dev); 4994 struct ice_pf *pf; 4995 int disabled, v; 4996 4997 pf = pci_get_drvdata(pdev); 4998 4999 if (!ice_pf_state_is_nominal(pf)) { 5000 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5001 return -EBUSY; 5002 } 5003 5004 /* Stop watchdog tasks until resume completion. 5005 * Even though it is most likely that the service task is 5006 * disabled if the device is suspended or down, the service task's 5007 * state is controlled by a different state bit, and we should 5008 * store and honor whatever state that bit is in at this point. 5009 */ 5010 disabled = ice_service_task_stop(pf); 5011 5012 ice_unplug_aux_dev(pf); 5013 5014 /* Already suspended?, then there is nothing to do */ 5015 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5016 if (!disabled) 5017 ice_service_task_restart(pf); 5018 return 0; 5019 } 5020 5021 if (test_bit(ICE_DOWN, pf->state) || 5022 ice_is_reset_in_progress(pf->state)) { 5023 dev_err(dev, "can't suspend device in reset or already down\n"); 5024 if (!disabled) 5025 ice_service_task_restart(pf); 5026 return 0; 5027 } 5028 5029 ice_setup_mc_magic_wake(pf); 5030 5031 ice_prepare_for_shutdown(pf); 5032 5033 ice_set_wake(pf); 5034 5035 /* Free vectors, clear the interrupt scheme and release IRQs 5036 * for proper hibernation, especially with large number of CPUs. 5037 * Otherwise hibernation might fail when mapping all the vectors back 5038 * to CPU0. 5039 */ 5040 ice_free_irq_msix_misc(pf); 5041 ice_for_each_vsi(pf, v) { 5042 if (!pf->vsi[v]) 5043 continue; 5044 ice_vsi_free_q_vectors(pf->vsi[v]); 5045 } 5046 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5047 ice_clear_interrupt_scheme(pf); 5048 5049 pci_save_state(pdev); 5050 pci_wake_from_d3(pdev, pf->wol_ena); 5051 pci_set_power_state(pdev, PCI_D3hot); 5052 return 0; 5053 } 5054 5055 /** 5056 * ice_resume - PM callback for waking up from D3 5057 * @dev: generic device information structure 5058 */ 5059 static int __maybe_unused ice_resume(struct device *dev) 5060 { 5061 struct pci_dev *pdev = to_pci_dev(dev); 5062 enum ice_reset_req reset_type; 5063 struct ice_pf *pf; 5064 struct ice_hw *hw; 5065 int ret; 5066 5067 pci_set_power_state(pdev, PCI_D0); 5068 pci_restore_state(pdev); 5069 pci_save_state(pdev); 5070 5071 if (!pci_device_is_present(pdev)) 5072 return -ENODEV; 5073 5074 ret = pci_enable_device_mem(pdev); 5075 if (ret) { 5076 dev_err(dev, "Cannot enable device after suspend\n"); 5077 return ret; 5078 } 5079 5080 pf = pci_get_drvdata(pdev); 5081 hw = &pf->hw; 5082 5083 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5084 ice_print_wake_reason(pf); 5085 5086 /* We cleared the interrupt scheme when we suspended, so we need to 5087 * restore it now to resume device functionality. 5088 */ 5089 ret = ice_reinit_interrupt_scheme(pf); 5090 if (ret) 5091 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5092 5093 clear_bit(ICE_DOWN, pf->state); 5094 /* Now perform PF reset and rebuild */ 5095 reset_type = ICE_RESET_PFR; 5096 /* re-enable service task for reset, but allow reset to schedule it */ 5097 clear_bit(ICE_SERVICE_DIS, pf->state); 5098 5099 if (ice_schedule_reset(pf, reset_type)) 5100 dev_err(dev, "Reset during resume failed.\n"); 5101 5102 clear_bit(ICE_SUSPENDED, pf->state); 5103 ice_service_task_restart(pf); 5104 5105 /* Restart the service task */ 5106 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5107 5108 return 0; 5109 } 5110 #endif /* CONFIG_PM */ 5111 5112 /** 5113 * ice_pci_err_detected - warning that PCI error has been detected 5114 * @pdev: PCI device information struct 5115 * @err: the type of PCI error 5116 * 5117 * Called to warn that something happened on the PCI bus and the error handling 5118 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5119 */ 5120 static pci_ers_result_t 5121 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5122 { 5123 struct ice_pf *pf = pci_get_drvdata(pdev); 5124 5125 if (!pf) { 5126 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5127 __func__, err); 5128 return PCI_ERS_RESULT_DISCONNECT; 5129 } 5130 5131 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5132 ice_service_task_stop(pf); 5133 5134 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5135 set_bit(ICE_PFR_REQ, pf->state); 5136 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5137 } 5138 } 5139 5140 return PCI_ERS_RESULT_NEED_RESET; 5141 } 5142 5143 /** 5144 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5145 * @pdev: PCI device information struct 5146 * 5147 * Called to determine if the driver can recover from the PCI slot reset by 5148 * using a register read to determine if the device is recoverable. 5149 */ 5150 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5151 { 5152 struct ice_pf *pf = pci_get_drvdata(pdev); 5153 pci_ers_result_t result; 5154 int err; 5155 u32 reg; 5156 5157 err = pci_enable_device_mem(pdev); 5158 if (err) { 5159 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5160 err); 5161 result = PCI_ERS_RESULT_DISCONNECT; 5162 } else { 5163 pci_set_master(pdev); 5164 pci_restore_state(pdev); 5165 pci_save_state(pdev); 5166 pci_wake_from_d3(pdev, false); 5167 5168 /* Check for life */ 5169 reg = rd32(&pf->hw, GLGEN_RTRIG); 5170 if (!reg) 5171 result = PCI_ERS_RESULT_RECOVERED; 5172 else 5173 result = PCI_ERS_RESULT_DISCONNECT; 5174 } 5175 5176 err = pci_aer_clear_nonfatal_status(pdev); 5177 if (err) 5178 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5179 err); 5180 /* non-fatal, continue */ 5181 5182 return result; 5183 } 5184 5185 /** 5186 * ice_pci_err_resume - restart operations after PCI error recovery 5187 * @pdev: PCI device information struct 5188 * 5189 * Called to allow the driver to bring things back up after PCI error and/or 5190 * reset recovery have finished 5191 */ 5192 static void ice_pci_err_resume(struct pci_dev *pdev) 5193 { 5194 struct ice_pf *pf = pci_get_drvdata(pdev); 5195 5196 if (!pf) { 5197 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5198 __func__); 5199 return; 5200 } 5201 5202 if (test_bit(ICE_SUSPENDED, pf->state)) { 5203 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5204 __func__); 5205 return; 5206 } 5207 5208 ice_restore_all_vfs_msi_state(pdev); 5209 5210 ice_do_reset(pf, ICE_RESET_PFR); 5211 ice_service_task_restart(pf); 5212 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5213 } 5214 5215 /** 5216 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5217 * @pdev: PCI device information struct 5218 */ 5219 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5220 { 5221 struct ice_pf *pf = pci_get_drvdata(pdev); 5222 5223 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5224 ice_service_task_stop(pf); 5225 5226 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5227 set_bit(ICE_PFR_REQ, pf->state); 5228 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5229 } 5230 } 5231 } 5232 5233 /** 5234 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5235 * @pdev: PCI device information struct 5236 */ 5237 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5238 { 5239 ice_pci_err_resume(pdev); 5240 } 5241 5242 /* ice_pci_tbl - PCI Device ID Table 5243 * 5244 * Wildcard entries (PCI_ANY_ID) should come last 5245 * Last entry must be all 0s 5246 * 5247 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5248 * Class, Class Mask, private data (not used) } 5249 */ 5250 static const struct pci_device_id ice_pci_tbl[] = { 5251 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5252 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5253 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5254 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5255 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5256 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5257 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5258 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5259 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5260 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5261 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5262 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5263 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5264 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5265 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5266 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5267 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5268 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5269 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5276 /* required last entry */ 5277 { 0, } 5278 }; 5279 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5280 5281 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5282 5283 static const struct pci_error_handlers ice_pci_err_handler = { 5284 .error_detected = ice_pci_err_detected, 5285 .slot_reset = ice_pci_err_slot_reset, 5286 .reset_prepare = ice_pci_err_reset_prepare, 5287 .reset_done = ice_pci_err_reset_done, 5288 .resume = ice_pci_err_resume 5289 }; 5290 5291 static struct pci_driver ice_driver = { 5292 .name = KBUILD_MODNAME, 5293 .id_table = ice_pci_tbl, 5294 .probe = ice_probe, 5295 .remove = ice_remove, 5296 #ifdef CONFIG_PM 5297 .driver.pm = &ice_pm_ops, 5298 #endif /* CONFIG_PM */ 5299 .shutdown = ice_shutdown, 5300 .sriov_configure = ice_sriov_configure, 5301 .err_handler = &ice_pci_err_handler 5302 }; 5303 5304 /** 5305 * ice_module_init - Driver registration routine 5306 * 5307 * ice_module_init is the first routine called when the driver is 5308 * loaded. All it does is register with the PCI subsystem. 5309 */ 5310 static int __init ice_module_init(void) 5311 { 5312 int status; 5313 5314 pr_info("%s\n", ice_driver_string); 5315 pr_info("%s\n", ice_copyright); 5316 5317 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5318 if (!ice_wq) { 5319 pr_err("Failed to create workqueue\n"); 5320 return -ENOMEM; 5321 } 5322 5323 status = pci_register_driver(&ice_driver); 5324 if (status) { 5325 pr_err("failed to register PCI driver, err %d\n", status); 5326 destroy_workqueue(ice_wq); 5327 } 5328 5329 return status; 5330 } 5331 module_init(ice_module_init); 5332 5333 /** 5334 * ice_module_exit - Driver exit cleanup routine 5335 * 5336 * ice_module_exit is called just before the driver is removed 5337 * from memory. 5338 */ 5339 static void __exit ice_module_exit(void) 5340 { 5341 pci_unregister_driver(&ice_driver); 5342 destroy_workqueue(ice_wq); 5343 pr_info("module unloaded\n"); 5344 } 5345 module_exit(ice_module_exit); 5346 5347 /** 5348 * ice_set_mac_address - NDO callback to set MAC address 5349 * @netdev: network interface device structure 5350 * @pi: pointer to an address structure 5351 * 5352 * Returns 0 on success, negative on failure 5353 */ 5354 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5355 { 5356 struct ice_netdev_priv *np = netdev_priv(netdev); 5357 struct ice_vsi *vsi = np->vsi; 5358 struct ice_pf *pf = vsi->back; 5359 struct ice_hw *hw = &pf->hw; 5360 struct sockaddr *addr = pi; 5361 u8 old_mac[ETH_ALEN]; 5362 u8 flags = 0; 5363 u8 *mac; 5364 int err; 5365 5366 mac = (u8 *)addr->sa_data; 5367 5368 if (!is_valid_ether_addr(mac)) 5369 return -EADDRNOTAVAIL; 5370 5371 if (ether_addr_equal(netdev->dev_addr, mac)) { 5372 netdev_dbg(netdev, "already using mac %pM\n", mac); 5373 return 0; 5374 } 5375 5376 if (test_bit(ICE_DOWN, pf->state) || 5377 ice_is_reset_in_progress(pf->state)) { 5378 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5379 mac); 5380 return -EBUSY; 5381 } 5382 5383 if (ice_chnl_dmac_fltr_cnt(pf)) { 5384 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5385 mac); 5386 return -EAGAIN; 5387 } 5388 5389 netif_addr_lock_bh(netdev); 5390 ether_addr_copy(old_mac, netdev->dev_addr); 5391 /* change the netdev's MAC address */ 5392 eth_hw_addr_set(netdev, mac); 5393 netif_addr_unlock_bh(netdev); 5394 5395 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5396 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5397 if (err && err != -ENOENT) { 5398 err = -EADDRNOTAVAIL; 5399 goto err_update_filters; 5400 } 5401 5402 /* Add filter for new MAC. If filter exists, return success */ 5403 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5404 if (err == -EEXIST) 5405 /* Although this MAC filter is already present in hardware it's 5406 * possible in some cases (e.g. bonding) that dev_addr was 5407 * modified outside of the driver and needs to be restored back 5408 * to this value. 5409 */ 5410 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5411 else if (err) 5412 /* error if the new filter addition failed */ 5413 err = -EADDRNOTAVAIL; 5414 5415 err_update_filters: 5416 if (err) { 5417 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5418 mac); 5419 netif_addr_lock_bh(netdev); 5420 eth_hw_addr_set(netdev, old_mac); 5421 netif_addr_unlock_bh(netdev); 5422 return err; 5423 } 5424 5425 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5426 netdev->dev_addr); 5427 5428 /* write new MAC address to the firmware */ 5429 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5430 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5431 if (err) { 5432 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5433 mac, err); 5434 } 5435 return 0; 5436 } 5437 5438 /** 5439 * ice_set_rx_mode - NDO callback to set the netdev filters 5440 * @netdev: network interface device structure 5441 */ 5442 static void ice_set_rx_mode(struct net_device *netdev) 5443 { 5444 struct ice_netdev_priv *np = netdev_priv(netdev); 5445 struct ice_vsi *vsi = np->vsi; 5446 5447 if (!vsi) 5448 return; 5449 5450 /* Set the flags to synchronize filters 5451 * ndo_set_rx_mode may be triggered even without a change in netdev 5452 * flags 5453 */ 5454 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5455 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5456 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5457 5458 /* schedule our worker thread which will take care of 5459 * applying the new filter changes 5460 */ 5461 ice_service_task_schedule(vsi->back); 5462 } 5463 5464 /** 5465 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5466 * @netdev: network interface device structure 5467 * @queue_index: Queue ID 5468 * @maxrate: maximum bandwidth in Mbps 5469 */ 5470 static int 5471 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5472 { 5473 struct ice_netdev_priv *np = netdev_priv(netdev); 5474 struct ice_vsi *vsi = np->vsi; 5475 u16 q_handle; 5476 int status; 5477 u8 tc; 5478 5479 /* Validate maxrate requested is within permitted range */ 5480 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5481 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5482 maxrate, queue_index); 5483 return -EINVAL; 5484 } 5485 5486 q_handle = vsi->tx_rings[queue_index]->q_handle; 5487 tc = ice_dcb_get_tc(vsi, queue_index); 5488 5489 /* Set BW back to default, when user set maxrate to 0 */ 5490 if (!maxrate) 5491 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5492 q_handle, ICE_MAX_BW); 5493 else 5494 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5495 q_handle, ICE_MAX_BW, maxrate * 1000); 5496 if (status) 5497 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5498 status); 5499 5500 return status; 5501 } 5502 5503 /** 5504 * ice_fdb_add - add an entry to the hardware database 5505 * @ndm: the input from the stack 5506 * @tb: pointer to array of nladdr (unused) 5507 * @dev: the net device pointer 5508 * @addr: the MAC address entry being added 5509 * @vid: VLAN ID 5510 * @flags: instructions from stack about fdb operation 5511 * @extack: netlink extended ack 5512 */ 5513 static int 5514 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5515 struct net_device *dev, const unsigned char *addr, u16 vid, 5516 u16 flags, struct netlink_ext_ack __always_unused *extack) 5517 { 5518 int err; 5519 5520 if (vid) { 5521 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5522 return -EINVAL; 5523 } 5524 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5525 netdev_err(dev, "FDB only supports static addresses\n"); 5526 return -EINVAL; 5527 } 5528 5529 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5530 err = dev_uc_add_excl(dev, addr); 5531 else if (is_multicast_ether_addr(addr)) 5532 err = dev_mc_add_excl(dev, addr); 5533 else 5534 err = -EINVAL; 5535 5536 /* Only return duplicate errors if NLM_F_EXCL is set */ 5537 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5538 err = 0; 5539 5540 return err; 5541 } 5542 5543 /** 5544 * ice_fdb_del - delete an entry from the hardware database 5545 * @ndm: the input from the stack 5546 * @tb: pointer to array of nladdr (unused) 5547 * @dev: the net device pointer 5548 * @addr: the MAC address entry being added 5549 * @vid: VLAN ID 5550 */ 5551 static int 5552 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5553 struct net_device *dev, const unsigned char *addr, 5554 __always_unused u16 vid) 5555 { 5556 int err; 5557 5558 if (ndm->ndm_state & NUD_PERMANENT) { 5559 netdev_err(dev, "FDB only supports static addresses\n"); 5560 return -EINVAL; 5561 } 5562 5563 if (is_unicast_ether_addr(addr)) 5564 err = dev_uc_del(dev, addr); 5565 else if (is_multicast_ether_addr(addr)) 5566 err = dev_mc_del(dev, addr); 5567 else 5568 err = -EINVAL; 5569 5570 return err; 5571 } 5572 5573 /** 5574 * ice_set_features - set the netdev feature flags 5575 * @netdev: ptr to the netdev being adjusted 5576 * @features: the feature set that the stack is suggesting 5577 */ 5578 static int 5579 ice_set_features(struct net_device *netdev, netdev_features_t features) 5580 { 5581 struct ice_netdev_priv *np = netdev_priv(netdev); 5582 struct ice_vsi *vsi = np->vsi; 5583 struct ice_pf *pf = vsi->back; 5584 int ret = 0; 5585 5586 /* Don't set any netdev advanced features with device in Safe Mode */ 5587 if (ice_is_safe_mode(vsi->back)) { 5588 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5589 return ret; 5590 } 5591 5592 /* Do not change setting during reset */ 5593 if (ice_is_reset_in_progress(pf->state)) { 5594 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5595 return -EBUSY; 5596 } 5597 5598 /* Multiple features can be changed in one call so keep features in 5599 * separate if/else statements to guarantee each feature is checked 5600 */ 5601 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5602 ice_vsi_manage_rss_lut(vsi, true); 5603 else if (!(features & NETIF_F_RXHASH) && 5604 netdev->features & NETIF_F_RXHASH) 5605 ice_vsi_manage_rss_lut(vsi, false); 5606 5607 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5608 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5609 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5610 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5611 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5612 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5613 5614 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5615 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5616 ret = ice_vsi_manage_vlan_insertion(vsi); 5617 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5618 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5619 ret = ice_vsi_manage_vlan_insertion(vsi); 5620 5621 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5622 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5623 ret = ice_cfg_vlan_pruning(vsi, true); 5624 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5625 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5626 ret = ice_cfg_vlan_pruning(vsi, false); 5627 5628 if ((features & NETIF_F_NTUPLE) && 5629 !(netdev->features & NETIF_F_NTUPLE)) { 5630 ice_vsi_manage_fdir(vsi, true); 5631 ice_init_arfs(vsi); 5632 } else if (!(features & NETIF_F_NTUPLE) && 5633 (netdev->features & NETIF_F_NTUPLE)) { 5634 ice_vsi_manage_fdir(vsi, false); 5635 ice_clear_arfs(vsi); 5636 } 5637 5638 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5639 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5640 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5641 return -EACCES; 5642 } 5643 5644 if ((features & NETIF_F_HW_TC) && 5645 !(netdev->features & NETIF_F_HW_TC)) 5646 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5647 else 5648 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5649 5650 return ret; 5651 } 5652 5653 /** 5654 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5655 * @vsi: VSI to setup VLAN properties for 5656 */ 5657 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5658 { 5659 int ret = 0; 5660 5661 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5662 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5663 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5664 ret = ice_vsi_manage_vlan_insertion(vsi); 5665 5666 return ret; 5667 } 5668 5669 /** 5670 * ice_vsi_cfg - Setup the VSI 5671 * @vsi: the VSI being configured 5672 * 5673 * Return 0 on success and negative value on error 5674 */ 5675 int ice_vsi_cfg(struct ice_vsi *vsi) 5676 { 5677 int err; 5678 5679 if (vsi->netdev) { 5680 ice_set_rx_mode(vsi->netdev); 5681 5682 err = ice_vsi_vlan_setup(vsi); 5683 5684 if (err) 5685 return err; 5686 } 5687 ice_vsi_cfg_dcb_rings(vsi); 5688 5689 err = ice_vsi_cfg_lan_txqs(vsi); 5690 if (!err && ice_is_xdp_ena_vsi(vsi)) 5691 err = ice_vsi_cfg_xdp_txqs(vsi); 5692 if (!err) 5693 err = ice_vsi_cfg_rxqs(vsi); 5694 5695 return err; 5696 } 5697 5698 /* THEORY OF MODERATION: 5699 * The ice driver hardware works differently than the hardware that DIMLIB was 5700 * originally made for. ice hardware doesn't have packet count limits that 5701 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5702 * which is hard-coded to a limit of 250,000 ints/second. 5703 * If not using dynamic moderation, the INTRL value can be modified 5704 * by ethtool rx-usecs-high. 5705 */ 5706 struct ice_dim { 5707 /* the throttle rate for interrupts, basically worst case delay before 5708 * an initial interrupt fires, value is stored in microseconds. 5709 */ 5710 u16 itr; 5711 }; 5712 5713 /* Make a different profile for Rx that doesn't allow quite so aggressive 5714 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5715 * second. 5716 */ 5717 static const struct ice_dim rx_profile[] = { 5718 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5719 {8}, /* 125,000 ints/s */ 5720 {16}, /* 62,500 ints/s */ 5721 {62}, /* 16,129 ints/s */ 5722 {126} /* 7,936 ints/s */ 5723 }; 5724 5725 /* The transmit profile, which has the same sorts of values 5726 * as the previous struct 5727 */ 5728 static const struct ice_dim tx_profile[] = { 5729 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5730 {8}, /* 125,000 ints/s */ 5731 {40}, /* 16,125 ints/s */ 5732 {128}, /* 7,812 ints/s */ 5733 {256} /* 3,906 ints/s */ 5734 }; 5735 5736 static void ice_tx_dim_work(struct work_struct *work) 5737 { 5738 struct ice_ring_container *rc; 5739 struct dim *dim; 5740 u16 itr; 5741 5742 dim = container_of(work, struct dim, work); 5743 rc = (struct ice_ring_container *)dim->priv; 5744 5745 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5746 5747 /* look up the values in our local table */ 5748 itr = tx_profile[dim->profile_ix].itr; 5749 5750 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5751 ice_write_itr(rc, itr); 5752 5753 dim->state = DIM_START_MEASURE; 5754 } 5755 5756 static void ice_rx_dim_work(struct work_struct *work) 5757 { 5758 struct ice_ring_container *rc; 5759 struct dim *dim; 5760 u16 itr; 5761 5762 dim = container_of(work, struct dim, work); 5763 rc = (struct ice_ring_container *)dim->priv; 5764 5765 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5766 5767 /* look up the values in our local table */ 5768 itr = rx_profile[dim->profile_ix].itr; 5769 5770 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5771 ice_write_itr(rc, itr); 5772 5773 dim->state = DIM_START_MEASURE; 5774 } 5775 5776 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5777 5778 /** 5779 * ice_init_moderation - set up interrupt moderation 5780 * @q_vector: the vector containing rings to be configured 5781 * 5782 * Set up interrupt moderation registers, with the intent to do the right thing 5783 * when called from reset or from probe, and whether or not dynamic moderation 5784 * is enabled or not. Take special care to write all the registers in both 5785 * dynamic moderation mode or not in order to make sure hardware is in a known 5786 * state. 5787 */ 5788 static void ice_init_moderation(struct ice_q_vector *q_vector) 5789 { 5790 struct ice_ring_container *rc; 5791 bool tx_dynamic, rx_dynamic; 5792 5793 rc = &q_vector->tx; 5794 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5795 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5796 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5797 rc->dim.priv = rc; 5798 tx_dynamic = ITR_IS_DYNAMIC(rc); 5799 5800 /* set the initial TX ITR to match the above */ 5801 ice_write_itr(rc, tx_dynamic ? 5802 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5803 5804 rc = &q_vector->rx; 5805 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5806 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5807 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5808 rc->dim.priv = rc; 5809 rx_dynamic = ITR_IS_DYNAMIC(rc); 5810 5811 /* set the initial RX ITR to match the above */ 5812 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5813 rc->itr_setting); 5814 5815 ice_set_q_vector_intrl(q_vector); 5816 } 5817 5818 /** 5819 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5820 * @vsi: the VSI being configured 5821 */ 5822 static void ice_napi_enable_all(struct ice_vsi *vsi) 5823 { 5824 int q_idx; 5825 5826 if (!vsi->netdev) 5827 return; 5828 5829 ice_for_each_q_vector(vsi, q_idx) { 5830 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5831 5832 ice_init_moderation(q_vector); 5833 5834 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5835 napi_enable(&q_vector->napi); 5836 } 5837 } 5838 5839 /** 5840 * ice_up_complete - Finish the last steps of bringing up a connection 5841 * @vsi: The VSI being configured 5842 * 5843 * Return 0 on success and negative value on error 5844 */ 5845 static int ice_up_complete(struct ice_vsi *vsi) 5846 { 5847 struct ice_pf *pf = vsi->back; 5848 int err; 5849 5850 ice_vsi_cfg_msix(vsi); 5851 5852 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5853 * Tx queue group list was configured and the context bits were 5854 * programmed using ice_vsi_cfg_txqs 5855 */ 5856 err = ice_vsi_start_all_rx_rings(vsi); 5857 if (err) 5858 return err; 5859 5860 clear_bit(ICE_VSI_DOWN, vsi->state); 5861 ice_napi_enable_all(vsi); 5862 ice_vsi_ena_irq(vsi); 5863 5864 if (vsi->port_info && 5865 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5866 vsi->netdev) { 5867 ice_print_link_msg(vsi, true); 5868 netif_tx_start_all_queues(vsi->netdev); 5869 netif_carrier_on(vsi->netdev); 5870 if (!ice_is_e810(&pf->hw)) 5871 ice_ptp_link_change(pf, pf->hw.pf_id, true); 5872 } 5873 5874 /* clear this now, and the first stats read will be used as baseline */ 5875 vsi->stat_offsets_loaded = false; 5876 5877 ice_service_task_schedule(pf); 5878 5879 return 0; 5880 } 5881 5882 /** 5883 * ice_up - Bring the connection back up after being down 5884 * @vsi: VSI being configured 5885 */ 5886 int ice_up(struct ice_vsi *vsi) 5887 { 5888 int err; 5889 5890 err = ice_vsi_cfg(vsi); 5891 if (!err) 5892 err = ice_up_complete(vsi); 5893 5894 return err; 5895 } 5896 5897 /** 5898 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5899 * @syncp: pointer to u64_stats_sync 5900 * @stats: stats that pkts and bytes count will be taken from 5901 * @pkts: packets stats counter 5902 * @bytes: bytes stats counter 5903 * 5904 * This function fetches stats from the ring considering the atomic operations 5905 * that needs to be performed to read u64 values in 32 bit machine. 5906 */ 5907 static void 5908 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5909 u64 *pkts, u64 *bytes) 5910 { 5911 unsigned int start; 5912 5913 do { 5914 start = u64_stats_fetch_begin_irq(syncp); 5915 *pkts = stats.pkts; 5916 *bytes = stats.bytes; 5917 } while (u64_stats_fetch_retry_irq(syncp, start)); 5918 } 5919 5920 /** 5921 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5922 * @vsi: the VSI to be updated 5923 * @vsi_stats: the stats struct to be updated 5924 * @rings: rings to work on 5925 * @count: number of rings 5926 */ 5927 static void 5928 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 5929 struct rtnl_link_stats64 *vsi_stats, 5930 struct ice_tx_ring **rings, u16 count) 5931 { 5932 u16 i; 5933 5934 for (i = 0; i < count; i++) { 5935 struct ice_tx_ring *ring; 5936 u64 pkts = 0, bytes = 0; 5937 5938 ring = READ_ONCE(rings[i]); 5939 if (ring) 5940 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5941 vsi_stats->tx_packets += pkts; 5942 vsi_stats->tx_bytes += bytes; 5943 vsi->tx_restart += ring->tx_stats.restart_q; 5944 vsi->tx_busy += ring->tx_stats.tx_busy; 5945 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5946 } 5947 } 5948 5949 /** 5950 * ice_update_vsi_ring_stats - Update VSI stats counters 5951 * @vsi: the VSI to be updated 5952 */ 5953 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5954 { 5955 struct rtnl_link_stats64 *vsi_stats; 5956 u64 pkts, bytes; 5957 int i; 5958 5959 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 5960 if (!vsi_stats) 5961 return; 5962 5963 /* reset non-netdev (extended) stats */ 5964 vsi->tx_restart = 0; 5965 vsi->tx_busy = 0; 5966 vsi->tx_linearize = 0; 5967 vsi->rx_buf_failed = 0; 5968 vsi->rx_page_failed = 0; 5969 5970 rcu_read_lock(); 5971 5972 /* update Tx rings counters */ 5973 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 5974 vsi->num_txq); 5975 5976 /* update Rx rings counters */ 5977 ice_for_each_rxq(vsi, i) { 5978 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5979 5980 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5981 vsi_stats->rx_packets += pkts; 5982 vsi_stats->rx_bytes += bytes; 5983 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5984 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5985 } 5986 5987 /* update XDP Tx rings counters */ 5988 if (ice_is_xdp_ena_vsi(vsi)) 5989 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 5990 vsi->num_xdp_txq); 5991 5992 rcu_read_unlock(); 5993 5994 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 5995 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 5996 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 5997 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 5998 5999 kfree(vsi_stats); 6000 } 6001 6002 /** 6003 * ice_update_vsi_stats - Update VSI stats counters 6004 * @vsi: the VSI to be updated 6005 */ 6006 void ice_update_vsi_stats(struct ice_vsi *vsi) 6007 { 6008 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6009 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6010 struct ice_pf *pf = vsi->back; 6011 6012 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6013 test_bit(ICE_CFG_BUSY, pf->state)) 6014 return; 6015 6016 /* get stats as recorded by Tx/Rx rings */ 6017 ice_update_vsi_ring_stats(vsi); 6018 6019 /* get VSI stats as recorded by the hardware */ 6020 ice_update_eth_stats(vsi); 6021 6022 cur_ns->tx_errors = cur_es->tx_errors; 6023 cur_ns->rx_dropped = cur_es->rx_discards; 6024 cur_ns->tx_dropped = cur_es->tx_discards; 6025 cur_ns->multicast = cur_es->rx_multicast; 6026 6027 /* update some more netdev stats if this is main VSI */ 6028 if (vsi->type == ICE_VSI_PF) { 6029 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6030 cur_ns->rx_errors = pf->stats.crc_errors + 6031 pf->stats.illegal_bytes + 6032 pf->stats.rx_len_errors + 6033 pf->stats.rx_undersize + 6034 pf->hw_csum_rx_error + 6035 pf->stats.rx_jabber + 6036 pf->stats.rx_fragments + 6037 pf->stats.rx_oversize; 6038 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6039 /* record drops from the port level */ 6040 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6041 } 6042 } 6043 6044 /** 6045 * ice_update_pf_stats - Update PF port stats counters 6046 * @pf: PF whose stats needs to be updated 6047 */ 6048 void ice_update_pf_stats(struct ice_pf *pf) 6049 { 6050 struct ice_hw_port_stats *prev_ps, *cur_ps; 6051 struct ice_hw *hw = &pf->hw; 6052 u16 fd_ctr_base; 6053 u8 port; 6054 6055 port = hw->port_info->lport; 6056 prev_ps = &pf->stats_prev; 6057 cur_ps = &pf->stats; 6058 6059 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6060 &prev_ps->eth.rx_bytes, 6061 &cur_ps->eth.rx_bytes); 6062 6063 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6064 &prev_ps->eth.rx_unicast, 6065 &cur_ps->eth.rx_unicast); 6066 6067 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6068 &prev_ps->eth.rx_multicast, 6069 &cur_ps->eth.rx_multicast); 6070 6071 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6072 &prev_ps->eth.rx_broadcast, 6073 &cur_ps->eth.rx_broadcast); 6074 6075 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6076 &prev_ps->eth.rx_discards, 6077 &cur_ps->eth.rx_discards); 6078 6079 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6080 &prev_ps->eth.tx_bytes, 6081 &cur_ps->eth.tx_bytes); 6082 6083 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6084 &prev_ps->eth.tx_unicast, 6085 &cur_ps->eth.tx_unicast); 6086 6087 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6088 &prev_ps->eth.tx_multicast, 6089 &cur_ps->eth.tx_multicast); 6090 6091 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6092 &prev_ps->eth.tx_broadcast, 6093 &cur_ps->eth.tx_broadcast); 6094 6095 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6096 &prev_ps->tx_dropped_link_down, 6097 &cur_ps->tx_dropped_link_down); 6098 6099 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6100 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6101 6102 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6103 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6104 6105 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6106 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6107 6108 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6109 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6110 6111 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6112 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6113 6114 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6115 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6116 6117 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6118 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6119 6120 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6121 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6122 6123 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6124 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6125 6126 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6127 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6128 6129 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6130 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6131 6132 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6133 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6134 6135 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6136 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6137 6138 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6139 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6140 6141 fd_ctr_base = hw->fd_ctr_base; 6142 6143 ice_stat_update40(hw, 6144 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6145 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6146 &cur_ps->fd_sb_match); 6147 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6148 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6149 6150 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6151 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6152 6153 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6154 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6155 6156 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6157 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6158 6159 ice_update_dcb_stats(pf); 6160 6161 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6162 &prev_ps->crc_errors, &cur_ps->crc_errors); 6163 6164 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6165 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6166 6167 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6168 &prev_ps->mac_local_faults, 6169 &cur_ps->mac_local_faults); 6170 6171 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6172 &prev_ps->mac_remote_faults, 6173 &cur_ps->mac_remote_faults); 6174 6175 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6176 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6177 6178 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6179 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6180 6181 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6182 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6183 6184 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6185 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6186 6187 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6188 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6189 6190 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6191 6192 pf->stat_prev_loaded = true; 6193 } 6194 6195 /** 6196 * ice_get_stats64 - get statistics for network device structure 6197 * @netdev: network interface device structure 6198 * @stats: main device statistics structure 6199 */ 6200 static 6201 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6202 { 6203 struct ice_netdev_priv *np = netdev_priv(netdev); 6204 struct rtnl_link_stats64 *vsi_stats; 6205 struct ice_vsi *vsi = np->vsi; 6206 6207 vsi_stats = &vsi->net_stats; 6208 6209 if (!vsi->num_txq || !vsi->num_rxq) 6210 return; 6211 6212 /* netdev packet/byte stats come from ring counter. These are obtained 6213 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6214 * But, only call the update routine and read the registers if VSI is 6215 * not down. 6216 */ 6217 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6218 ice_update_vsi_ring_stats(vsi); 6219 stats->tx_packets = vsi_stats->tx_packets; 6220 stats->tx_bytes = vsi_stats->tx_bytes; 6221 stats->rx_packets = vsi_stats->rx_packets; 6222 stats->rx_bytes = vsi_stats->rx_bytes; 6223 6224 /* The rest of the stats can be read from the hardware but instead we 6225 * just return values that the watchdog task has already obtained from 6226 * the hardware. 6227 */ 6228 stats->multicast = vsi_stats->multicast; 6229 stats->tx_errors = vsi_stats->tx_errors; 6230 stats->tx_dropped = vsi_stats->tx_dropped; 6231 stats->rx_errors = vsi_stats->rx_errors; 6232 stats->rx_dropped = vsi_stats->rx_dropped; 6233 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6234 stats->rx_length_errors = vsi_stats->rx_length_errors; 6235 } 6236 6237 /** 6238 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6239 * @vsi: VSI having NAPI disabled 6240 */ 6241 static void ice_napi_disable_all(struct ice_vsi *vsi) 6242 { 6243 int q_idx; 6244 6245 if (!vsi->netdev) 6246 return; 6247 6248 ice_for_each_q_vector(vsi, q_idx) { 6249 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6250 6251 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6252 napi_disable(&q_vector->napi); 6253 6254 cancel_work_sync(&q_vector->tx.dim.work); 6255 cancel_work_sync(&q_vector->rx.dim.work); 6256 } 6257 } 6258 6259 /** 6260 * ice_down - Shutdown the connection 6261 * @vsi: The VSI being stopped 6262 * 6263 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6264 */ 6265 int ice_down(struct ice_vsi *vsi) 6266 { 6267 int i, tx_err, rx_err, link_err = 0; 6268 6269 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6270 6271 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6272 if (!ice_is_e810(&vsi->back->hw)) 6273 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6274 netif_carrier_off(vsi->netdev); 6275 netif_tx_disable(vsi->netdev); 6276 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6277 ice_eswitch_stop_all_tx_queues(vsi->back); 6278 } 6279 6280 ice_vsi_dis_irq(vsi); 6281 6282 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6283 if (tx_err) 6284 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6285 vsi->vsi_num, tx_err); 6286 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6287 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6288 if (tx_err) 6289 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6290 vsi->vsi_num, tx_err); 6291 } 6292 6293 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6294 if (rx_err) 6295 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6296 vsi->vsi_num, rx_err); 6297 6298 ice_napi_disable_all(vsi); 6299 6300 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6301 link_err = ice_force_phys_link_state(vsi, false); 6302 if (link_err) 6303 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6304 vsi->vsi_num, link_err); 6305 } 6306 6307 ice_for_each_txq(vsi, i) 6308 ice_clean_tx_ring(vsi->tx_rings[i]); 6309 6310 ice_for_each_rxq(vsi, i) 6311 ice_clean_rx_ring(vsi->rx_rings[i]); 6312 6313 if (tx_err || rx_err || link_err) { 6314 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6315 vsi->vsi_num, vsi->vsw->sw_id); 6316 return -EIO; 6317 } 6318 6319 return 0; 6320 } 6321 6322 /** 6323 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6324 * @vsi: VSI having resources allocated 6325 * 6326 * Return 0 on success, negative on failure 6327 */ 6328 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6329 { 6330 int i, err = 0; 6331 6332 if (!vsi->num_txq) { 6333 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6334 vsi->vsi_num); 6335 return -EINVAL; 6336 } 6337 6338 ice_for_each_txq(vsi, i) { 6339 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6340 6341 if (!ring) 6342 return -EINVAL; 6343 6344 if (vsi->netdev) 6345 ring->netdev = vsi->netdev; 6346 err = ice_setup_tx_ring(ring); 6347 if (err) 6348 break; 6349 } 6350 6351 return err; 6352 } 6353 6354 /** 6355 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6356 * @vsi: VSI having resources allocated 6357 * 6358 * Return 0 on success, negative on failure 6359 */ 6360 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6361 { 6362 int i, err = 0; 6363 6364 if (!vsi->num_rxq) { 6365 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6366 vsi->vsi_num); 6367 return -EINVAL; 6368 } 6369 6370 ice_for_each_rxq(vsi, i) { 6371 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6372 6373 if (!ring) 6374 return -EINVAL; 6375 6376 if (vsi->netdev) 6377 ring->netdev = vsi->netdev; 6378 err = ice_setup_rx_ring(ring); 6379 if (err) 6380 break; 6381 } 6382 6383 return err; 6384 } 6385 6386 /** 6387 * ice_vsi_open_ctrl - open control VSI for use 6388 * @vsi: the VSI to open 6389 * 6390 * Initialization of the Control VSI 6391 * 6392 * Returns 0 on success, negative value on error 6393 */ 6394 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6395 { 6396 char int_name[ICE_INT_NAME_STR_LEN]; 6397 struct ice_pf *pf = vsi->back; 6398 struct device *dev; 6399 int err; 6400 6401 dev = ice_pf_to_dev(pf); 6402 /* allocate descriptors */ 6403 err = ice_vsi_setup_tx_rings(vsi); 6404 if (err) 6405 goto err_setup_tx; 6406 6407 err = ice_vsi_setup_rx_rings(vsi); 6408 if (err) 6409 goto err_setup_rx; 6410 6411 err = ice_vsi_cfg(vsi); 6412 if (err) 6413 goto err_setup_rx; 6414 6415 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6416 dev_driver_string(dev), dev_name(dev)); 6417 err = ice_vsi_req_irq_msix(vsi, int_name); 6418 if (err) 6419 goto err_setup_rx; 6420 6421 ice_vsi_cfg_msix(vsi); 6422 6423 err = ice_vsi_start_all_rx_rings(vsi); 6424 if (err) 6425 goto err_up_complete; 6426 6427 clear_bit(ICE_VSI_DOWN, vsi->state); 6428 ice_vsi_ena_irq(vsi); 6429 6430 return 0; 6431 6432 err_up_complete: 6433 ice_down(vsi); 6434 err_setup_rx: 6435 ice_vsi_free_rx_rings(vsi); 6436 err_setup_tx: 6437 ice_vsi_free_tx_rings(vsi); 6438 6439 return err; 6440 } 6441 6442 /** 6443 * ice_vsi_open - Called when a network interface is made active 6444 * @vsi: the VSI to open 6445 * 6446 * Initialization of the VSI 6447 * 6448 * Returns 0 on success, negative value on error 6449 */ 6450 int ice_vsi_open(struct ice_vsi *vsi) 6451 { 6452 char int_name[ICE_INT_NAME_STR_LEN]; 6453 struct ice_pf *pf = vsi->back; 6454 int err; 6455 6456 /* allocate descriptors */ 6457 err = ice_vsi_setup_tx_rings(vsi); 6458 if (err) 6459 goto err_setup_tx; 6460 6461 err = ice_vsi_setup_rx_rings(vsi); 6462 if (err) 6463 goto err_setup_rx; 6464 6465 err = ice_vsi_cfg(vsi); 6466 if (err) 6467 goto err_setup_rx; 6468 6469 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6470 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6471 err = ice_vsi_req_irq_msix(vsi, int_name); 6472 if (err) 6473 goto err_setup_rx; 6474 6475 if (vsi->type == ICE_VSI_PF) { 6476 /* Notify the stack of the actual queue counts. */ 6477 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6478 if (err) 6479 goto err_set_qs; 6480 6481 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6482 if (err) 6483 goto err_set_qs; 6484 } 6485 6486 err = ice_up_complete(vsi); 6487 if (err) 6488 goto err_up_complete; 6489 6490 return 0; 6491 6492 err_up_complete: 6493 ice_down(vsi); 6494 err_set_qs: 6495 ice_vsi_free_irq(vsi); 6496 err_setup_rx: 6497 ice_vsi_free_rx_rings(vsi); 6498 err_setup_tx: 6499 ice_vsi_free_tx_rings(vsi); 6500 6501 return err; 6502 } 6503 6504 /** 6505 * ice_vsi_release_all - Delete all VSIs 6506 * @pf: PF from which all VSIs are being removed 6507 */ 6508 static void ice_vsi_release_all(struct ice_pf *pf) 6509 { 6510 int err, i; 6511 6512 if (!pf->vsi) 6513 return; 6514 6515 ice_for_each_vsi(pf, i) { 6516 if (!pf->vsi[i]) 6517 continue; 6518 6519 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6520 continue; 6521 6522 err = ice_vsi_release(pf->vsi[i]); 6523 if (err) 6524 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6525 i, err, pf->vsi[i]->vsi_num); 6526 } 6527 } 6528 6529 /** 6530 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6531 * @pf: pointer to the PF instance 6532 * @type: VSI type to rebuild 6533 * 6534 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6535 */ 6536 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6537 { 6538 struct device *dev = ice_pf_to_dev(pf); 6539 int i, err; 6540 6541 ice_for_each_vsi(pf, i) { 6542 struct ice_vsi *vsi = pf->vsi[i]; 6543 6544 if (!vsi || vsi->type != type) 6545 continue; 6546 6547 /* rebuild the VSI */ 6548 err = ice_vsi_rebuild(vsi, true); 6549 if (err) { 6550 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6551 err, vsi->idx, ice_vsi_type_str(type)); 6552 return err; 6553 } 6554 6555 /* replay filters for the VSI */ 6556 err = ice_replay_vsi(&pf->hw, vsi->idx); 6557 if (err) { 6558 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6559 err, vsi->idx, ice_vsi_type_str(type)); 6560 return err; 6561 } 6562 6563 /* Re-map HW VSI number, using VSI handle that has been 6564 * previously validated in ice_replay_vsi() call above 6565 */ 6566 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6567 6568 /* enable the VSI */ 6569 err = ice_ena_vsi(vsi, false); 6570 if (err) { 6571 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6572 err, vsi->idx, ice_vsi_type_str(type)); 6573 return err; 6574 } 6575 6576 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6577 ice_vsi_type_str(type)); 6578 } 6579 6580 return 0; 6581 } 6582 6583 /** 6584 * ice_update_pf_netdev_link - Update PF netdev link status 6585 * @pf: pointer to the PF instance 6586 */ 6587 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6588 { 6589 bool link_up; 6590 int i; 6591 6592 ice_for_each_vsi(pf, i) { 6593 struct ice_vsi *vsi = pf->vsi[i]; 6594 6595 if (!vsi || vsi->type != ICE_VSI_PF) 6596 return; 6597 6598 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6599 if (link_up) { 6600 netif_carrier_on(pf->vsi[i]->netdev); 6601 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6602 } else { 6603 netif_carrier_off(pf->vsi[i]->netdev); 6604 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6605 } 6606 } 6607 } 6608 6609 /** 6610 * ice_rebuild - rebuild after reset 6611 * @pf: PF to rebuild 6612 * @reset_type: type of reset 6613 * 6614 * Do not rebuild VF VSI in this flow because that is already handled via 6615 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6616 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6617 * to reset/rebuild all the VF VSI twice. 6618 */ 6619 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6620 { 6621 struct device *dev = ice_pf_to_dev(pf); 6622 struct ice_hw *hw = &pf->hw; 6623 int err; 6624 6625 if (test_bit(ICE_DOWN, pf->state)) 6626 goto clear_recovery; 6627 6628 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6629 6630 if (reset_type == ICE_RESET_EMPR) { 6631 /* If an EMP reset has occurred, any previously pending flash 6632 * update will have completed. We no longer know whether or 6633 * not the NVM update EMP reset is restricted. 6634 */ 6635 pf->fw_emp_reset_disabled = false; 6636 } 6637 6638 err = ice_init_all_ctrlq(hw); 6639 if (err) { 6640 dev_err(dev, "control queues init failed %d\n", err); 6641 goto err_init_ctrlq; 6642 } 6643 6644 /* if DDP was previously loaded successfully */ 6645 if (!ice_is_safe_mode(pf)) { 6646 /* reload the SW DB of filter tables */ 6647 if (reset_type == ICE_RESET_PFR) 6648 ice_fill_blk_tbls(hw); 6649 else 6650 /* Reload DDP Package after CORER/GLOBR reset */ 6651 ice_load_pkg(NULL, pf); 6652 } 6653 6654 err = ice_clear_pf_cfg(hw); 6655 if (err) { 6656 dev_err(dev, "clear PF configuration failed %d\n", err); 6657 goto err_init_ctrlq; 6658 } 6659 6660 if (pf->first_sw->dflt_vsi_ena) 6661 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6662 /* clear the default VSI configuration if it exists */ 6663 pf->first_sw->dflt_vsi = NULL; 6664 pf->first_sw->dflt_vsi_ena = false; 6665 6666 ice_clear_pxe_mode(hw); 6667 6668 err = ice_init_nvm(hw); 6669 if (err) { 6670 dev_err(dev, "ice_init_nvm failed %d\n", err); 6671 goto err_init_ctrlq; 6672 } 6673 6674 err = ice_get_caps(hw); 6675 if (err) { 6676 dev_err(dev, "ice_get_caps failed %d\n", err); 6677 goto err_init_ctrlq; 6678 } 6679 6680 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6681 if (err) { 6682 dev_err(dev, "set_mac_cfg failed %d\n", err); 6683 goto err_init_ctrlq; 6684 } 6685 6686 err = ice_sched_init_port(hw->port_info); 6687 if (err) 6688 goto err_sched_init_port; 6689 6690 /* start misc vector */ 6691 err = ice_req_irq_msix_misc(pf); 6692 if (err) { 6693 dev_err(dev, "misc vector setup failed: %d\n", err); 6694 goto err_sched_init_port; 6695 } 6696 6697 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6698 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6699 if (!rd32(hw, PFQF_FD_SIZE)) { 6700 u16 unused, guar, b_effort; 6701 6702 guar = hw->func_caps.fd_fltr_guar; 6703 b_effort = hw->func_caps.fd_fltr_best_effort; 6704 6705 /* force guaranteed filter pool for PF */ 6706 ice_alloc_fd_guar_item(hw, &unused, guar); 6707 /* force shared filter pool for PF */ 6708 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6709 } 6710 } 6711 6712 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6713 ice_dcb_rebuild(pf); 6714 6715 /* If the PF previously had enabled PTP, PTP init needs to happen before 6716 * the VSI rebuild. If not, this causes the PTP link status events to 6717 * fail. 6718 */ 6719 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6720 ice_ptp_reset(pf); 6721 6722 /* rebuild PF VSI */ 6723 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6724 if (err) { 6725 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6726 goto err_vsi_rebuild; 6727 } 6728 6729 /* configure PTP timestamping after VSI rebuild */ 6730 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6731 ice_ptp_cfg_timestamp(pf, false); 6732 6733 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6734 if (err) { 6735 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6736 goto err_vsi_rebuild; 6737 } 6738 6739 if (reset_type == ICE_RESET_PFR) { 6740 err = ice_rebuild_channels(pf); 6741 if (err) { 6742 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6743 err); 6744 goto err_vsi_rebuild; 6745 } 6746 } 6747 6748 /* If Flow Director is active */ 6749 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6750 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6751 if (err) { 6752 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6753 goto err_vsi_rebuild; 6754 } 6755 6756 /* replay HW Flow Director recipes */ 6757 if (hw->fdir_prof) 6758 ice_fdir_replay_flows(hw); 6759 6760 /* replay Flow Director filters */ 6761 ice_fdir_replay_fltrs(pf); 6762 6763 ice_rebuild_arfs(pf); 6764 } 6765 6766 ice_update_pf_netdev_link(pf); 6767 6768 /* tell the firmware we are up */ 6769 err = ice_send_version(pf); 6770 if (err) { 6771 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6772 err); 6773 goto err_vsi_rebuild; 6774 } 6775 6776 ice_replay_post(hw); 6777 6778 /* if we get here, reset flow is successful */ 6779 clear_bit(ICE_RESET_FAILED, pf->state); 6780 6781 ice_plug_aux_dev(pf); 6782 return; 6783 6784 err_vsi_rebuild: 6785 err_sched_init_port: 6786 ice_sched_cleanup_all(hw); 6787 err_init_ctrlq: 6788 ice_shutdown_all_ctrlq(hw); 6789 set_bit(ICE_RESET_FAILED, pf->state); 6790 clear_recovery: 6791 /* set this bit in PF state to control service task scheduling */ 6792 set_bit(ICE_NEEDS_RESTART, pf->state); 6793 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6794 } 6795 6796 /** 6797 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6798 * @vsi: Pointer to VSI structure 6799 */ 6800 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6801 { 6802 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6803 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6804 else 6805 return ICE_RXBUF_3072; 6806 } 6807 6808 /** 6809 * ice_change_mtu - NDO callback to change the MTU 6810 * @netdev: network interface device structure 6811 * @new_mtu: new value for maximum frame size 6812 * 6813 * Returns 0 on success, negative on failure 6814 */ 6815 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6816 { 6817 struct ice_netdev_priv *np = netdev_priv(netdev); 6818 struct ice_vsi *vsi = np->vsi; 6819 struct ice_pf *pf = vsi->back; 6820 struct iidc_event *event; 6821 u8 count = 0; 6822 int err = 0; 6823 6824 if (new_mtu == (int)netdev->mtu) { 6825 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6826 return 0; 6827 } 6828 6829 if (ice_is_xdp_ena_vsi(vsi)) { 6830 int frame_size = ice_max_xdp_frame_size(vsi); 6831 6832 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6833 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6834 frame_size - ICE_ETH_PKT_HDR_PAD); 6835 return -EINVAL; 6836 } 6837 } 6838 6839 /* if a reset is in progress, wait for some time for it to complete */ 6840 do { 6841 if (ice_is_reset_in_progress(pf->state)) { 6842 count++; 6843 usleep_range(1000, 2000); 6844 } else { 6845 break; 6846 } 6847 6848 } while (count < 100); 6849 6850 if (count == 100) { 6851 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6852 return -EBUSY; 6853 } 6854 6855 event = kzalloc(sizeof(*event), GFP_KERNEL); 6856 if (!event) 6857 return -ENOMEM; 6858 6859 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6860 ice_send_event_to_aux(pf, event); 6861 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6862 6863 netdev->mtu = (unsigned int)new_mtu; 6864 6865 /* if VSI is up, bring it down and then back up */ 6866 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6867 err = ice_down(vsi); 6868 if (err) { 6869 netdev_err(netdev, "change MTU if_down err %d\n", err); 6870 goto event_after; 6871 } 6872 6873 err = ice_up(vsi); 6874 if (err) { 6875 netdev_err(netdev, "change MTU if_up err %d\n", err); 6876 goto event_after; 6877 } 6878 } 6879 6880 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6881 event_after: 6882 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6883 ice_send_event_to_aux(pf, event); 6884 kfree(event); 6885 6886 return err; 6887 } 6888 6889 /** 6890 * ice_eth_ioctl - Access the hwtstamp interface 6891 * @netdev: network interface device structure 6892 * @ifr: interface request data 6893 * @cmd: ioctl command 6894 */ 6895 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6896 { 6897 struct ice_netdev_priv *np = netdev_priv(netdev); 6898 struct ice_pf *pf = np->vsi->back; 6899 6900 switch (cmd) { 6901 case SIOCGHWTSTAMP: 6902 return ice_ptp_get_ts_config(pf, ifr); 6903 case SIOCSHWTSTAMP: 6904 return ice_ptp_set_ts_config(pf, ifr); 6905 default: 6906 return -EOPNOTSUPP; 6907 } 6908 } 6909 6910 /** 6911 * ice_aq_str - convert AQ err code to a string 6912 * @aq_err: the AQ error code to convert 6913 */ 6914 const char *ice_aq_str(enum ice_aq_err aq_err) 6915 { 6916 switch (aq_err) { 6917 case ICE_AQ_RC_OK: 6918 return "OK"; 6919 case ICE_AQ_RC_EPERM: 6920 return "ICE_AQ_RC_EPERM"; 6921 case ICE_AQ_RC_ENOENT: 6922 return "ICE_AQ_RC_ENOENT"; 6923 case ICE_AQ_RC_ENOMEM: 6924 return "ICE_AQ_RC_ENOMEM"; 6925 case ICE_AQ_RC_EBUSY: 6926 return "ICE_AQ_RC_EBUSY"; 6927 case ICE_AQ_RC_EEXIST: 6928 return "ICE_AQ_RC_EEXIST"; 6929 case ICE_AQ_RC_EINVAL: 6930 return "ICE_AQ_RC_EINVAL"; 6931 case ICE_AQ_RC_ENOSPC: 6932 return "ICE_AQ_RC_ENOSPC"; 6933 case ICE_AQ_RC_ENOSYS: 6934 return "ICE_AQ_RC_ENOSYS"; 6935 case ICE_AQ_RC_EMODE: 6936 return "ICE_AQ_RC_EMODE"; 6937 case ICE_AQ_RC_ENOSEC: 6938 return "ICE_AQ_RC_ENOSEC"; 6939 case ICE_AQ_RC_EBADSIG: 6940 return "ICE_AQ_RC_EBADSIG"; 6941 case ICE_AQ_RC_ESVN: 6942 return "ICE_AQ_RC_ESVN"; 6943 case ICE_AQ_RC_EBADMAN: 6944 return "ICE_AQ_RC_EBADMAN"; 6945 case ICE_AQ_RC_EBADBUF: 6946 return "ICE_AQ_RC_EBADBUF"; 6947 } 6948 6949 return "ICE_AQ_RC_UNKNOWN"; 6950 } 6951 6952 /** 6953 * ice_set_rss_lut - Set RSS LUT 6954 * @vsi: Pointer to VSI structure 6955 * @lut: Lookup table 6956 * @lut_size: Lookup table size 6957 * 6958 * Returns 0 on success, negative on failure 6959 */ 6960 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6961 { 6962 struct ice_aq_get_set_rss_lut_params params = {}; 6963 struct ice_hw *hw = &vsi->back->hw; 6964 int status; 6965 6966 if (!lut) 6967 return -EINVAL; 6968 6969 params.vsi_handle = vsi->idx; 6970 params.lut_size = lut_size; 6971 params.lut_type = vsi->rss_lut_type; 6972 params.lut = lut; 6973 6974 status = ice_aq_set_rss_lut(hw, ¶ms); 6975 if (status) 6976 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 6977 status, ice_aq_str(hw->adminq.sq_last_status)); 6978 6979 return status; 6980 } 6981 6982 /** 6983 * ice_set_rss_key - Set RSS key 6984 * @vsi: Pointer to the VSI structure 6985 * @seed: RSS hash seed 6986 * 6987 * Returns 0 on success, negative on failure 6988 */ 6989 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6990 { 6991 struct ice_hw *hw = &vsi->back->hw; 6992 int status; 6993 6994 if (!seed) 6995 return -EINVAL; 6996 6997 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6998 if (status) 6999 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7000 status, ice_aq_str(hw->adminq.sq_last_status)); 7001 7002 return status; 7003 } 7004 7005 /** 7006 * ice_get_rss_lut - Get RSS LUT 7007 * @vsi: Pointer to VSI structure 7008 * @lut: Buffer to store the lookup table entries 7009 * @lut_size: Size of buffer to store the lookup table entries 7010 * 7011 * Returns 0 on success, negative on failure 7012 */ 7013 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7014 { 7015 struct ice_aq_get_set_rss_lut_params params = {}; 7016 struct ice_hw *hw = &vsi->back->hw; 7017 int status; 7018 7019 if (!lut) 7020 return -EINVAL; 7021 7022 params.vsi_handle = vsi->idx; 7023 params.lut_size = lut_size; 7024 params.lut_type = vsi->rss_lut_type; 7025 params.lut = lut; 7026 7027 status = ice_aq_get_rss_lut(hw, ¶ms); 7028 if (status) 7029 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7030 status, ice_aq_str(hw->adminq.sq_last_status)); 7031 7032 return status; 7033 } 7034 7035 /** 7036 * ice_get_rss_key - Get RSS key 7037 * @vsi: Pointer to VSI structure 7038 * @seed: Buffer to store the key in 7039 * 7040 * Returns 0 on success, negative on failure 7041 */ 7042 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7043 { 7044 struct ice_hw *hw = &vsi->back->hw; 7045 int status; 7046 7047 if (!seed) 7048 return -EINVAL; 7049 7050 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7051 if (status) 7052 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7053 status, ice_aq_str(hw->adminq.sq_last_status)); 7054 7055 return status; 7056 } 7057 7058 /** 7059 * ice_bridge_getlink - Get the hardware bridge mode 7060 * @skb: skb buff 7061 * @pid: process ID 7062 * @seq: RTNL message seq 7063 * @dev: the netdev being configured 7064 * @filter_mask: filter mask passed in 7065 * @nlflags: netlink flags passed in 7066 * 7067 * Return the bridge mode (VEB/VEPA) 7068 */ 7069 static int 7070 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7071 struct net_device *dev, u32 filter_mask, int nlflags) 7072 { 7073 struct ice_netdev_priv *np = netdev_priv(dev); 7074 struct ice_vsi *vsi = np->vsi; 7075 struct ice_pf *pf = vsi->back; 7076 u16 bmode; 7077 7078 bmode = pf->first_sw->bridge_mode; 7079 7080 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7081 filter_mask, NULL); 7082 } 7083 7084 /** 7085 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7086 * @vsi: Pointer to VSI structure 7087 * @bmode: Hardware bridge mode (VEB/VEPA) 7088 * 7089 * Returns 0 on success, negative on failure 7090 */ 7091 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7092 { 7093 struct ice_aqc_vsi_props *vsi_props; 7094 struct ice_hw *hw = &vsi->back->hw; 7095 struct ice_vsi_ctx *ctxt; 7096 int ret; 7097 7098 vsi_props = &vsi->info; 7099 7100 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7101 if (!ctxt) 7102 return -ENOMEM; 7103 7104 ctxt->info = vsi->info; 7105 7106 if (bmode == BRIDGE_MODE_VEB) 7107 /* change from VEPA to VEB mode */ 7108 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7109 else 7110 /* change from VEB to VEPA mode */ 7111 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7112 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7113 7114 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7115 if (ret) { 7116 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7117 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7118 goto out; 7119 } 7120 /* Update sw flags for book keeping */ 7121 vsi_props->sw_flags = ctxt->info.sw_flags; 7122 7123 out: 7124 kfree(ctxt); 7125 return ret; 7126 } 7127 7128 /** 7129 * ice_bridge_setlink - Set the hardware bridge mode 7130 * @dev: the netdev being configured 7131 * @nlh: RTNL message 7132 * @flags: bridge setlink flags 7133 * @extack: netlink extended ack 7134 * 7135 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7136 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7137 * not already set for all VSIs connected to this switch. And also update the 7138 * unicast switch filter rules for the corresponding switch of the netdev. 7139 */ 7140 static int 7141 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7142 u16 __always_unused flags, 7143 struct netlink_ext_ack __always_unused *extack) 7144 { 7145 struct ice_netdev_priv *np = netdev_priv(dev); 7146 struct ice_pf *pf = np->vsi->back; 7147 struct nlattr *attr, *br_spec; 7148 struct ice_hw *hw = &pf->hw; 7149 struct ice_sw *pf_sw; 7150 int rem, v, err = 0; 7151 7152 pf_sw = pf->first_sw; 7153 /* find the attribute in the netlink message */ 7154 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7155 7156 nla_for_each_nested(attr, br_spec, rem) { 7157 __u16 mode; 7158 7159 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7160 continue; 7161 mode = nla_get_u16(attr); 7162 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7163 return -EINVAL; 7164 /* Continue if bridge mode is not being flipped */ 7165 if (mode == pf_sw->bridge_mode) 7166 continue; 7167 /* Iterates through the PF VSI list and update the loopback 7168 * mode of the VSI 7169 */ 7170 ice_for_each_vsi(pf, v) { 7171 if (!pf->vsi[v]) 7172 continue; 7173 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7174 if (err) 7175 return err; 7176 } 7177 7178 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7179 /* Update the unicast switch filter rules for the corresponding 7180 * switch of the netdev 7181 */ 7182 err = ice_update_sw_rule_bridge_mode(hw); 7183 if (err) { 7184 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7185 mode, err, 7186 ice_aq_str(hw->adminq.sq_last_status)); 7187 /* revert hw->evb_veb */ 7188 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7189 return err; 7190 } 7191 7192 pf_sw->bridge_mode = mode; 7193 } 7194 7195 return 0; 7196 } 7197 7198 /** 7199 * ice_tx_timeout - Respond to a Tx Hang 7200 * @netdev: network interface device structure 7201 * @txqueue: Tx queue 7202 */ 7203 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7204 { 7205 struct ice_netdev_priv *np = netdev_priv(netdev); 7206 struct ice_tx_ring *tx_ring = NULL; 7207 struct ice_vsi *vsi = np->vsi; 7208 struct ice_pf *pf = vsi->back; 7209 u32 i; 7210 7211 pf->tx_timeout_count++; 7212 7213 /* Check if PFC is enabled for the TC to which the queue belongs 7214 * to. If yes then Tx timeout is not caused by a hung queue, no 7215 * need to reset and rebuild 7216 */ 7217 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7218 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7219 txqueue); 7220 return; 7221 } 7222 7223 /* now that we have an index, find the tx_ring struct */ 7224 ice_for_each_txq(vsi, i) 7225 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7226 if (txqueue == vsi->tx_rings[i]->q_index) { 7227 tx_ring = vsi->tx_rings[i]; 7228 break; 7229 } 7230 7231 /* Reset recovery level if enough time has elapsed after last timeout. 7232 * Also ensure no new reset action happens before next timeout period. 7233 */ 7234 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7235 pf->tx_timeout_recovery_level = 1; 7236 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7237 netdev->watchdog_timeo))) 7238 return; 7239 7240 if (tx_ring) { 7241 struct ice_hw *hw = &pf->hw; 7242 u32 head, val = 0; 7243 7244 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7245 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7246 /* Read interrupt register */ 7247 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7248 7249 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7250 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7251 head, tx_ring->next_to_use, val); 7252 } 7253 7254 pf->tx_timeout_last_recovery = jiffies; 7255 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7256 pf->tx_timeout_recovery_level, txqueue); 7257 7258 switch (pf->tx_timeout_recovery_level) { 7259 case 1: 7260 set_bit(ICE_PFR_REQ, pf->state); 7261 break; 7262 case 2: 7263 set_bit(ICE_CORER_REQ, pf->state); 7264 break; 7265 case 3: 7266 set_bit(ICE_GLOBR_REQ, pf->state); 7267 break; 7268 default: 7269 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7270 set_bit(ICE_DOWN, pf->state); 7271 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7272 set_bit(ICE_SERVICE_DIS, pf->state); 7273 break; 7274 } 7275 7276 ice_service_task_schedule(pf); 7277 pf->tx_timeout_recovery_level++; 7278 } 7279 7280 /** 7281 * ice_setup_tc_cls_flower - flower classifier offloads 7282 * @np: net device to configure 7283 * @filter_dev: device on which filter is added 7284 * @cls_flower: offload data 7285 */ 7286 static int 7287 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7288 struct net_device *filter_dev, 7289 struct flow_cls_offload *cls_flower) 7290 { 7291 struct ice_vsi *vsi = np->vsi; 7292 7293 if (cls_flower->common.chain_index) 7294 return -EOPNOTSUPP; 7295 7296 switch (cls_flower->command) { 7297 case FLOW_CLS_REPLACE: 7298 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7299 case FLOW_CLS_DESTROY: 7300 return ice_del_cls_flower(vsi, cls_flower); 7301 default: 7302 return -EINVAL; 7303 } 7304 } 7305 7306 /** 7307 * ice_setup_tc_block_cb - callback handler registered for TC block 7308 * @type: TC SETUP type 7309 * @type_data: TC flower offload data that contains user input 7310 * @cb_priv: netdev private data 7311 */ 7312 static int 7313 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7314 { 7315 struct ice_netdev_priv *np = cb_priv; 7316 7317 switch (type) { 7318 case TC_SETUP_CLSFLOWER: 7319 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7320 type_data); 7321 default: 7322 return -EOPNOTSUPP; 7323 } 7324 } 7325 7326 /** 7327 * ice_validate_mqprio_qopt - Validate TCF input parameters 7328 * @vsi: Pointer to VSI 7329 * @mqprio_qopt: input parameters for mqprio queue configuration 7330 * 7331 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7332 * needed), and make sure user doesn't specify qcount and BW rate limit 7333 * for TCs, which are more than "num_tc" 7334 */ 7335 static int 7336 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7337 struct tc_mqprio_qopt_offload *mqprio_qopt) 7338 { 7339 u64 sum_max_rate = 0, sum_min_rate = 0; 7340 int non_power_of_2_qcount = 0; 7341 struct ice_pf *pf = vsi->back; 7342 int max_rss_q_cnt = 0; 7343 struct device *dev; 7344 int i, speed; 7345 u8 num_tc; 7346 7347 if (vsi->type != ICE_VSI_PF) 7348 return -EINVAL; 7349 7350 if (mqprio_qopt->qopt.offset[0] != 0 || 7351 mqprio_qopt->qopt.num_tc < 1 || 7352 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7353 return -EINVAL; 7354 7355 dev = ice_pf_to_dev(pf); 7356 vsi->ch_rss_size = 0; 7357 num_tc = mqprio_qopt->qopt.num_tc; 7358 7359 for (i = 0; num_tc; i++) { 7360 int qcount = mqprio_qopt->qopt.count[i]; 7361 u64 max_rate, min_rate, rem; 7362 7363 if (!qcount) 7364 return -EINVAL; 7365 7366 if (is_power_of_2(qcount)) { 7367 if (non_power_of_2_qcount && 7368 qcount > non_power_of_2_qcount) { 7369 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7370 qcount, non_power_of_2_qcount); 7371 return -EINVAL; 7372 } 7373 if (qcount > max_rss_q_cnt) 7374 max_rss_q_cnt = qcount; 7375 } else { 7376 if (non_power_of_2_qcount && 7377 qcount != non_power_of_2_qcount) { 7378 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7379 qcount, non_power_of_2_qcount); 7380 return -EINVAL; 7381 } 7382 if (qcount < max_rss_q_cnt) { 7383 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7384 qcount, max_rss_q_cnt); 7385 return -EINVAL; 7386 } 7387 max_rss_q_cnt = qcount; 7388 non_power_of_2_qcount = qcount; 7389 } 7390 7391 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7392 * converts the bandwidth rate limit into Bytes/s when 7393 * passing it down to the driver. So convert input bandwidth 7394 * from Bytes/s to Kbps 7395 */ 7396 max_rate = mqprio_qopt->max_rate[i]; 7397 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7398 sum_max_rate += max_rate; 7399 7400 /* min_rate is minimum guaranteed rate and it can't be zero */ 7401 min_rate = mqprio_qopt->min_rate[i]; 7402 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7403 sum_min_rate += min_rate; 7404 7405 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7406 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7407 min_rate, ICE_MIN_BW_LIMIT); 7408 return -EINVAL; 7409 } 7410 7411 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7412 if (rem) { 7413 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7414 i, ICE_MIN_BW_LIMIT); 7415 return -EINVAL; 7416 } 7417 7418 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7419 if (rem) { 7420 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7421 i, ICE_MIN_BW_LIMIT); 7422 return -EINVAL; 7423 } 7424 7425 /* min_rate can't be more than max_rate, except when max_rate 7426 * is zero (implies max_rate sought is max line rate). In such 7427 * a case min_rate can be more than max. 7428 */ 7429 if (max_rate && min_rate > max_rate) { 7430 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7431 min_rate, max_rate); 7432 return -EINVAL; 7433 } 7434 7435 if (i >= mqprio_qopt->qopt.num_tc - 1) 7436 break; 7437 if (mqprio_qopt->qopt.offset[i + 1] != 7438 (mqprio_qopt->qopt.offset[i] + qcount)) 7439 return -EINVAL; 7440 } 7441 if (vsi->num_rxq < 7442 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7443 return -EINVAL; 7444 if (vsi->num_txq < 7445 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7446 return -EINVAL; 7447 7448 speed = ice_get_link_speed_kbps(vsi); 7449 if (sum_max_rate && sum_max_rate > (u64)speed) { 7450 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7451 sum_max_rate, speed); 7452 return -EINVAL; 7453 } 7454 if (sum_min_rate && sum_min_rate > (u64)speed) { 7455 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7456 sum_min_rate, speed); 7457 return -EINVAL; 7458 } 7459 7460 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7461 vsi->ch_rss_size = max_rss_q_cnt; 7462 7463 return 0; 7464 } 7465 7466 /** 7467 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7468 * @pf: ptr to PF device 7469 * @vsi: ptr to VSI 7470 */ 7471 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7472 { 7473 struct device *dev = ice_pf_to_dev(pf); 7474 bool added = false; 7475 struct ice_hw *hw; 7476 int flow; 7477 7478 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7479 return -EINVAL; 7480 7481 hw = &pf->hw; 7482 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7483 struct ice_fd_hw_prof *prof; 7484 int tun, status; 7485 u64 entry_h; 7486 7487 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7488 hw->fdir_prof[flow]->cnt)) 7489 continue; 7490 7491 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7492 enum ice_flow_priority prio; 7493 u64 prof_id; 7494 7495 /* add this VSI to FDir profile for this flow */ 7496 prio = ICE_FLOW_PRIO_NORMAL; 7497 prof = hw->fdir_prof[flow]; 7498 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7499 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7500 prof->vsi_h[0], vsi->idx, 7501 prio, prof->fdir_seg[tun], 7502 &entry_h); 7503 if (status) { 7504 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7505 vsi->idx, flow); 7506 continue; 7507 } 7508 7509 prof->entry_h[prof->cnt][tun] = entry_h; 7510 } 7511 7512 /* store VSI for filter replay and delete */ 7513 prof->vsi_h[prof->cnt] = vsi->idx; 7514 prof->cnt++; 7515 7516 added = true; 7517 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7518 flow); 7519 } 7520 7521 if (!added) 7522 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7523 7524 return 0; 7525 } 7526 7527 /** 7528 * ice_add_channel - add a channel by adding VSI 7529 * @pf: ptr to PF device 7530 * @sw_id: underlying HW switching element ID 7531 * @ch: ptr to channel structure 7532 * 7533 * Add a channel (VSI) using add_vsi and queue_map 7534 */ 7535 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7536 { 7537 struct device *dev = ice_pf_to_dev(pf); 7538 struct ice_vsi *vsi; 7539 7540 if (ch->type != ICE_VSI_CHNL) { 7541 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7542 return -EINVAL; 7543 } 7544 7545 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7546 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7547 dev_err(dev, "create chnl VSI failure\n"); 7548 return -EINVAL; 7549 } 7550 7551 ice_add_vsi_to_fdir(pf, vsi); 7552 7553 ch->sw_id = sw_id; 7554 ch->vsi_num = vsi->vsi_num; 7555 ch->info.mapping_flags = vsi->info.mapping_flags; 7556 ch->ch_vsi = vsi; 7557 /* set the back pointer of channel for newly created VSI */ 7558 vsi->ch = ch; 7559 7560 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7561 sizeof(vsi->info.q_mapping)); 7562 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7563 sizeof(vsi->info.tc_mapping)); 7564 7565 return 0; 7566 } 7567 7568 /** 7569 * ice_chnl_cfg_res 7570 * @vsi: the VSI being setup 7571 * @ch: ptr to channel structure 7572 * 7573 * Configure channel specific resources such as rings, vector. 7574 */ 7575 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7576 { 7577 int i; 7578 7579 for (i = 0; i < ch->num_txq; i++) { 7580 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7581 struct ice_ring_container *rc; 7582 struct ice_tx_ring *tx_ring; 7583 struct ice_rx_ring *rx_ring; 7584 7585 tx_ring = vsi->tx_rings[ch->base_q + i]; 7586 rx_ring = vsi->rx_rings[ch->base_q + i]; 7587 if (!tx_ring || !rx_ring) 7588 continue; 7589 7590 /* setup ring being channel enabled */ 7591 tx_ring->ch = ch; 7592 rx_ring->ch = ch; 7593 7594 /* following code block sets up vector specific attributes */ 7595 tx_q_vector = tx_ring->q_vector; 7596 rx_q_vector = rx_ring->q_vector; 7597 if (!tx_q_vector && !rx_q_vector) 7598 continue; 7599 7600 if (tx_q_vector) { 7601 tx_q_vector->ch = ch; 7602 /* setup Tx and Rx ITR setting if DIM is off */ 7603 rc = &tx_q_vector->tx; 7604 if (!ITR_IS_DYNAMIC(rc)) 7605 ice_write_itr(rc, rc->itr_setting); 7606 } 7607 if (rx_q_vector) { 7608 rx_q_vector->ch = ch; 7609 /* setup Tx and Rx ITR setting if DIM is off */ 7610 rc = &rx_q_vector->rx; 7611 if (!ITR_IS_DYNAMIC(rc)) 7612 ice_write_itr(rc, rc->itr_setting); 7613 } 7614 } 7615 7616 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7617 * GLINT_ITR register would have written to perform in-context 7618 * update, hence perform flush 7619 */ 7620 if (ch->num_txq || ch->num_rxq) 7621 ice_flush(&vsi->back->hw); 7622 } 7623 7624 /** 7625 * ice_cfg_chnl_all_res - configure channel resources 7626 * @vsi: pte to main_vsi 7627 * @ch: ptr to channel structure 7628 * 7629 * This function configures channel specific resources such as flow-director 7630 * counter index, and other resources such as queues, vectors, ITR settings 7631 */ 7632 static void 7633 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7634 { 7635 /* configure channel (aka ADQ) resources such as queues, vectors, 7636 * ITR settings for channel specific vectors and anything else 7637 */ 7638 ice_chnl_cfg_res(vsi, ch); 7639 } 7640 7641 /** 7642 * ice_setup_hw_channel - setup new channel 7643 * @pf: ptr to PF device 7644 * @vsi: the VSI being setup 7645 * @ch: ptr to channel structure 7646 * @sw_id: underlying HW switching element ID 7647 * @type: type of channel to be created (VMDq2/VF) 7648 * 7649 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7650 * and configures Tx rings accordingly 7651 */ 7652 static int 7653 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7654 struct ice_channel *ch, u16 sw_id, u8 type) 7655 { 7656 struct device *dev = ice_pf_to_dev(pf); 7657 int ret; 7658 7659 ch->base_q = vsi->next_base_q; 7660 ch->type = type; 7661 7662 ret = ice_add_channel(pf, sw_id, ch); 7663 if (ret) { 7664 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7665 return ret; 7666 } 7667 7668 /* configure/setup ADQ specific resources */ 7669 ice_cfg_chnl_all_res(vsi, ch); 7670 7671 /* make sure to update the next_base_q so that subsequent channel's 7672 * (aka ADQ) VSI queue map is correct 7673 */ 7674 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7675 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7676 ch->num_rxq); 7677 7678 return 0; 7679 } 7680 7681 /** 7682 * ice_setup_channel - setup new channel using uplink element 7683 * @pf: ptr to PF device 7684 * @vsi: the VSI being setup 7685 * @ch: ptr to channel structure 7686 * 7687 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7688 * and uplink switching element 7689 */ 7690 static bool 7691 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7692 struct ice_channel *ch) 7693 { 7694 struct device *dev = ice_pf_to_dev(pf); 7695 u16 sw_id; 7696 int ret; 7697 7698 if (vsi->type != ICE_VSI_PF) { 7699 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7700 return false; 7701 } 7702 7703 sw_id = pf->first_sw->sw_id; 7704 7705 /* create channel (VSI) */ 7706 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7707 if (ret) { 7708 dev_err(dev, "failed to setup hw_channel\n"); 7709 return false; 7710 } 7711 dev_dbg(dev, "successfully created channel()\n"); 7712 7713 return ch->ch_vsi ? true : false; 7714 } 7715 7716 /** 7717 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7718 * @vsi: VSI to be configured 7719 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7720 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7721 */ 7722 static int 7723 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7724 { 7725 int err; 7726 7727 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7728 if (err) 7729 return err; 7730 7731 return ice_set_max_bw_limit(vsi, max_tx_rate); 7732 } 7733 7734 /** 7735 * ice_create_q_channel - function to create channel 7736 * @vsi: VSI to be configured 7737 * @ch: ptr to channel (it contains channel specific params) 7738 * 7739 * This function creates channel (VSI) using num_queues specified by user, 7740 * reconfigs RSS if needed. 7741 */ 7742 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7743 { 7744 struct ice_pf *pf = vsi->back; 7745 struct device *dev; 7746 7747 if (!ch) 7748 return -EINVAL; 7749 7750 dev = ice_pf_to_dev(pf); 7751 if (!ch->num_txq || !ch->num_rxq) { 7752 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7753 return -EINVAL; 7754 } 7755 7756 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7757 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7758 vsi->cnt_q_avail, ch->num_txq); 7759 return -EINVAL; 7760 } 7761 7762 if (!ice_setup_channel(pf, vsi, ch)) { 7763 dev_info(dev, "Failed to setup channel\n"); 7764 return -EINVAL; 7765 } 7766 /* configure BW rate limit */ 7767 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7768 int ret; 7769 7770 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7771 ch->min_tx_rate); 7772 if (ret) 7773 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7774 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7775 else 7776 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7777 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7778 } 7779 7780 vsi->cnt_q_avail -= ch->num_txq; 7781 7782 return 0; 7783 } 7784 7785 /** 7786 * ice_rem_all_chnl_fltrs - removes all channel filters 7787 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7788 * 7789 * Remove all advanced switch filters only if they are channel specific 7790 * tc-flower based filter 7791 */ 7792 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7793 { 7794 struct ice_tc_flower_fltr *fltr; 7795 struct hlist_node *node; 7796 7797 /* to remove all channel filters, iterate an ordered list of filters */ 7798 hlist_for_each_entry_safe(fltr, node, 7799 &pf->tc_flower_fltr_list, 7800 tc_flower_node) { 7801 struct ice_rule_query_data rule; 7802 int status; 7803 7804 /* for now process only channel specific filters */ 7805 if (!ice_is_chnl_fltr(fltr)) 7806 continue; 7807 7808 rule.rid = fltr->rid; 7809 rule.rule_id = fltr->rule_id; 7810 rule.vsi_handle = fltr->dest_id; 7811 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7812 if (status) { 7813 if (status == -ENOENT) 7814 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7815 rule.rule_id); 7816 else 7817 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7818 status); 7819 } else if (fltr->dest_vsi) { 7820 /* update advanced switch filter count */ 7821 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7822 u32 flags = fltr->flags; 7823 7824 fltr->dest_vsi->num_chnl_fltr--; 7825 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7826 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7827 pf->num_dmac_chnl_fltrs--; 7828 } 7829 } 7830 7831 hlist_del(&fltr->tc_flower_node); 7832 kfree(fltr); 7833 } 7834 } 7835 7836 /** 7837 * ice_remove_q_channels - Remove queue channels for the TCs 7838 * @vsi: VSI to be configured 7839 * @rem_fltr: delete advanced switch filter or not 7840 * 7841 * Remove queue channels for the TCs 7842 */ 7843 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7844 { 7845 struct ice_channel *ch, *ch_tmp; 7846 struct ice_pf *pf = vsi->back; 7847 int i; 7848 7849 /* remove all tc-flower based filter if they are channel filters only */ 7850 if (rem_fltr) 7851 ice_rem_all_chnl_fltrs(pf); 7852 7853 /* remove ntuple filters since queue configuration is being changed */ 7854 if (vsi->netdev->features & NETIF_F_NTUPLE) { 7855 struct ice_hw *hw = &pf->hw; 7856 7857 mutex_lock(&hw->fdir_fltr_lock); 7858 ice_fdir_del_all_fltrs(vsi); 7859 mutex_unlock(&hw->fdir_fltr_lock); 7860 } 7861 7862 /* perform cleanup for channels if they exist */ 7863 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7864 struct ice_vsi *ch_vsi; 7865 7866 list_del(&ch->list); 7867 ch_vsi = ch->ch_vsi; 7868 if (!ch_vsi) { 7869 kfree(ch); 7870 continue; 7871 } 7872 7873 /* Reset queue contexts */ 7874 for (i = 0; i < ch->num_rxq; i++) { 7875 struct ice_tx_ring *tx_ring; 7876 struct ice_rx_ring *rx_ring; 7877 7878 tx_ring = vsi->tx_rings[ch->base_q + i]; 7879 rx_ring = vsi->rx_rings[ch->base_q + i]; 7880 if (tx_ring) { 7881 tx_ring->ch = NULL; 7882 if (tx_ring->q_vector) 7883 tx_ring->q_vector->ch = NULL; 7884 } 7885 if (rx_ring) { 7886 rx_ring->ch = NULL; 7887 if (rx_ring->q_vector) 7888 rx_ring->q_vector->ch = NULL; 7889 } 7890 } 7891 7892 /* Release FD resources for the channel VSI */ 7893 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 7894 7895 /* clear the VSI from scheduler tree */ 7896 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7897 7898 /* Delete VSI from FW */ 7899 ice_vsi_delete(ch->ch_vsi); 7900 7901 /* Delete VSI from PF and HW VSI arrays */ 7902 ice_vsi_clear(ch->ch_vsi); 7903 7904 /* free the channel */ 7905 kfree(ch); 7906 } 7907 7908 /* clear the channel VSI map which is stored in main VSI */ 7909 ice_for_each_chnl_tc(i) 7910 vsi->tc_map_vsi[i] = NULL; 7911 7912 /* reset main VSI's all TC information */ 7913 vsi->all_enatc = 0; 7914 vsi->all_numtc = 0; 7915 } 7916 7917 /** 7918 * ice_rebuild_channels - rebuild channel 7919 * @pf: ptr to PF 7920 * 7921 * Recreate channel VSIs and replay filters 7922 */ 7923 static int ice_rebuild_channels(struct ice_pf *pf) 7924 { 7925 struct device *dev = ice_pf_to_dev(pf); 7926 struct ice_vsi *main_vsi; 7927 bool rem_adv_fltr = true; 7928 struct ice_channel *ch; 7929 struct ice_vsi *vsi; 7930 int tc_idx = 1; 7931 int i, err; 7932 7933 main_vsi = ice_get_main_vsi(pf); 7934 if (!main_vsi) 7935 return 0; 7936 7937 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7938 main_vsi->old_numtc == 1) 7939 return 0; /* nothing to be done */ 7940 7941 /* reconfigure main VSI based on old value of TC and cached values 7942 * for MQPRIO opts 7943 */ 7944 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7945 if (err) { 7946 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7947 main_vsi->old_ena_tc, main_vsi->vsi_num); 7948 return err; 7949 } 7950 7951 /* rebuild ADQ VSIs */ 7952 ice_for_each_vsi(pf, i) { 7953 enum ice_vsi_type type; 7954 7955 vsi = pf->vsi[i]; 7956 if (!vsi || vsi->type != ICE_VSI_CHNL) 7957 continue; 7958 7959 type = vsi->type; 7960 7961 /* rebuild ADQ VSI */ 7962 err = ice_vsi_rebuild(vsi, true); 7963 if (err) { 7964 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7965 ice_vsi_type_str(type), vsi->idx, err); 7966 goto cleanup; 7967 } 7968 7969 /* Re-map HW VSI number, using VSI handle that has been 7970 * previously validated in ice_replay_vsi() call above 7971 */ 7972 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7973 7974 /* replay filters for the VSI */ 7975 err = ice_replay_vsi(&pf->hw, vsi->idx); 7976 if (err) { 7977 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7978 ice_vsi_type_str(type), err, vsi->idx); 7979 rem_adv_fltr = false; 7980 goto cleanup; 7981 } 7982 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7983 ice_vsi_type_str(type), vsi->idx); 7984 7985 /* store ADQ VSI at correct TC index in main VSI's 7986 * map of TC to VSI 7987 */ 7988 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7989 } 7990 7991 /* ADQ VSI(s) has been rebuilt successfully, so setup 7992 * channel for main VSI's Tx and Rx rings 7993 */ 7994 list_for_each_entry(ch, &main_vsi->ch_list, list) { 7995 struct ice_vsi *ch_vsi; 7996 7997 ch_vsi = ch->ch_vsi; 7998 if (!ch_vsi) 7999 continue; 8000 8001 /* reconfig channel resources */ 8002 ice_cfg_chnl_all_res(main_vsi, ch); 8003 8004 /* replay BW rate limit if it is non-zero */ 8005 if (!ch->max_tx_rate && !ch->min_tx_rate) 8006 continue; 8007 8008 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8009 ch->min_tx_rate); 8010 if (err) 8011 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8012 err, ch->max_tx_rate, ch->min_tx_rate, 8013 ch_vsi->vsi_num); 8014 else 8015 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8016 ch->max_tx_rate, ch->min_tx_rate, 8017 ch_vsi->vsi_num); 8018 } 8019 8020 /* reconfig RSS for main VSI */ 8021 if (main_vsi->ch_rss_size) 8022 ice_vsi_cfg_rss_lut_key(main_vsi); 8023 8024 return 0; 8025 8026 cleanup: 8027 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8028 return err; 8029 } 8030 8031 /** 8032 * ice_create_q_channels - Add queue channel for the given TCs 8033 * @vsi: VSI to be configured 8034 * 8035 * Configures queue channel mapping to the given TCs 8036 */ 8037 static int ice_create_q_channels(struct ice_vsi *vsi) 8038 { 8039 struct ice_pf *pf = vsi->back; 8040 struct ice_channel *ch; 8041 int ret = 0, i; 8042 8043 ice_for_each_chnl_tc(i) { 8044 if (!(vsi->all_enatc & BIT(i))) 8045 continue; 8046 8047 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8048 if (!ch) { 8049 ret = -ENOMEM; 8050 goto err_free; 8051 } 8052 INIT_LIST_HEAD(&ch->list); 8053 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8054 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8055 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8056 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8057 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8058 8059 /* convert to Kbits/s */ 8060 if (ch->max_tx_rate) 8061 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8062 ICE_BW_KBPS_DIVISOR); 8063 if (ch->min_tx_rate) 8064 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8065 ICE_BW_KBPS_DIVISOR); 8066 8067 ret = ice_create_q_channel(vsi, ch); 8068 if (ret) { 8069 dev_err(ice_pf_to_dev(pf), 8070 "failed creating channel TC:%d\n", i); 8071 kfree(ch); 8072 goto err_free; 8073 } 8074 list_add_tail(&ch->list, &vsi->ch_list); 8075 vsi->tc_map_vsi[i] = ch->ch_vsi; 8076 dev_dbg(ice_pf_to_dev(pf), 8077 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8078 } 8079 return 0; 8080 8081 err_free: 8082 ice_remove_q_channels(vsi, false); 8083 8084 return ret; 8085 } 8086 8087 /** 8088 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8089 * @netdev: net device to configure 8090 * @type_data: TC offload data 8091 */ 8092 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8093 { 8094 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8095 struct ice_netdev_priv *np = netdev_priv(netdev); 8096 struct ice_vsi *vsi = np->vsi; 8097 struct ice_pf *pf = vsi->back; 8098 u16 mode, ena_tc_qdisc = 0; 8099 int cur_txq, cur_rxq; 8100 u8 hw = 0, num_tcf; 8101 struct device *dev; 8102 int ret, i; 8103 8104 dev = ice_pf_to_dev(pf); 8105 num_tcf = mqprio_qopt->qopt.num_tc; 8106 hw = mqprio_qopt->qopt.hw; 8107 mode = mqprio_qopt->mode; 8108 if (!hw) { 8109 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8110 vsi->ch_rss_size = 0; 8111 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8112 goto config_tcf; 8113 } 8114 8115 /* Generate queue region map for number of TCF requested */ 8116 for (i = 0; i < num_tcf; i++) 8117 ena_tc_qdisc |= BIT(i); 8118 8119 switch (mode) { 8120 case TC_MQPRIO_MODE_CHANNEL: 8121 8122 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8123 if (ret) { 8124 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8125 ret); 8126 return ret; 8127 } 8128 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8129 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8130 /* don't assume state of hw_tc_offload during driver load 8131 * and set the flag for TC flower filter if hw_tc_offload 8132 * already ON 8133 */ 8134 if (vsi->netdev->features & NETIF_F_HW_TC) 8135 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8136 break; 8137 default: 8138 return -EINVAL; 8139 } 8140 8141 config_tcf: 8142 8143 /* Requesting same TCF configuration as already enabled */ 8144 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8145 mode != TC_MQPRIO_MODE_CHANNEL) 8146 return 0; 8147 8148 /* Pause VSI queues */ 8149 ice_dis_vsi(vsi, true); 8150 8151 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8152 ice_remove_q_channels(vsi, true); 8153 8154 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8155 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8156 num_online_cpus()); 8157 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8158 num_online_cpus()); 8159 } else { 8160 /* logic to rebuild VSI, same like ethtool -L */ 8161 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8162 8163 for (i = 0; i < num_tcf; i++) { 8164 if (!(ena_tc_qdisc & BIT(i))) 8165 continue; 8166 8167 offset = vsi->mqprio_qopt.qopt.offset[i]; 8168 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8169 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8170 } 8171 vsi->req_txq = offset + qcount_tx; 8172 vsi->req_rxq = offset + qcount_rx; 8173 8174 /* store away original rss_size info, so that it gets reused 8175 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8176 * determine, what should be the rss_sizefor main VSI 8177 */ 8178 vsi->orig_rss_size = vsi->rss_size; 8179 } 8180 8181 /* save current values of Tx and Rx queues before calling VSI rebuild 8182 * for fallback option 8183 */ 8184 cur_txq = vsi->num_txq; 8185 cur_rxq = vsi->num_rxq; 8186 8187 /* proceed with rebuild main VSI using correct number of queues */ 8188 ret = ice_vsi_rebuild(vsi, false); 8189 if (ret) { 8190 /* fallback to current number of queues */ 8191 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8192 vsi->req_txq = cur_txq; 8193 vsi->req_rxq = cur_rxq; 8194 clear_bit(ICE_RESET_FAILED, pf->state); 8195 if (ice_vsi_rebuild(vsi, false)) { 8196 dev_err(dev, "Rebuild of main VSI failed again\n"); 8197 return ret; 8198 } 8199 } 8200 8201 vsi->all_numtc = num_tcf; 8202 vsi->all_enatc = ena_tc_qdisc; 8203 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8204 if (ret) { 8205 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8206 vsi->vsi_num); 8207 goto exit; 8208 } 8209 8210 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8211 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8212 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8213 8214 /* set TC0 rate limit if specified */ 8215 if (max_tx_rate || min_tx_rate) { 8216 /* convert to Kbits/s */ 8217 if (max_tx_rate) 8218 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8219 if (min_tx_rate) 8220 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8221 8222 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8223 if (!ret) { 8224 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8225 max_tx_rate, min_tx_rate, vsi->vsi_num); 8226 } else { 8227 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8228 max_tx_rate, min_tx_rate, vsi->vsi_num); 8229 goto exit; 8230 } 8231 } 8232 ret = ice_create_q_channels(vsi); 8233 if (ret) { 8234 netdev_err(netdev, "failed configuring queue channels\n"); 8235 goto exit; 8236 } else { 8237 netdev_dbg(netdev, "successfully configured channels\n"); 8238 } 8239 } 8240 8241 if (vsi->ch_rss_size) 8242 ice_vsi_cfg_rss_lut_key(vsi); 8243 8244 exit: 8245 /* if error, reset the all_numtc and all_enatc */ 8246 if (ret) { 8247 vsi->all_numtc = 0; 8248 vsi->all_enatc = 0; 8249 } 8250 /* resume VSI */ 8251 ice_ena_vsi(vsi, true); 8252 8253 return ret; 8254 } 8255 8256 static LIST_HEAD(ice_block_cb_list); 8257 8258 static int 8259 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8260 void *type_data) 8261 { 8262 struct ice_netdev_priv *np = netdev_priv(netdev); 8263 struct ice_pf *pf = np->vsi->back; 8264 int err; 8265 8266 switch (type) { 8267 case TC_SETUP_BLOCK: 8268 return flow_block_cb_setup_simple(type_data, 8269 &ice_block_cb_list, 8270 ice_setup_tc_block_cb, 8271 np, np, true); 8272 case TC_SETUP_QDISC_MQPRIO: 8273 /* setup traffic classifier for receive side */ 8274 mutex_lock(&pf->tc_mutex); 8275 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8276 mutex_unlock(&pf->tc_mutex); 8277 return err; 8278 default: 8279 return -EOPNOTSUPP; 8280 } 8281 return -EOPNOTSUPP; 8282 } 8283 8284 static struct ice_indr_block_priv * 8285 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8286 struct net_device *netdev) 8287 { 8288 struct ice_indr_block_priv *cb_priv; 8289 8290 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8291 if (!cb_priv->netdev) 8292 return NULL; 8293 if (cb_priv->netdev == netdev) 8294 return cb_priv; 8295 } 8296 return NULL; 8297 } 8298 8299 static int 8300 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8301 void *indr_priv) 8302 { 8303 struct ice_indr_block_priv *priv = indr_priv; 8304 struct ice_netdev_priv *np = priv->np; 8305 8306 switch (type) { 8307 case TC_SETUP_CLSFLOWER: 8308 return ice_setup_tc_cls_flower(np, priv->netdev, 8309 (struct flow_cls_offload *) 8310 type_data); 8311 default: 8312 return -EOPNOTSUPP; 8313 } 8314 } 8315 8316 static int 8317 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8318 struct ice_netdev_priv *np, 8319 struct flow_block_offload *f, void *data, 8320 void (*cleanup)(struct flow_block_cb *block_cb)) 8321 { 8322 struct ice_indr_block_priv *indr_priv; 8323 struct flow_block_cb *block_cb; 8324 8325 if (!ice_is_tunnel_supported(netdev) && 8326 !(is_vlan_dev(netdev) && 8327 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8328 return -EOPNOTSUPP; 8329 8330 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8331 return -EOPNOTSUPP; 8332 8333 switch (f->command) { 8334 case FLOW_BLOCK_BIND: 8335 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8336 if (indr_priv) 8337 return -EEXIST; 8338 8339 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8340 if (!indr_priv) 8341 return -ENOMEM; 8342 8343 indr_priv->netdev = netdev; 8344 indr_priv->np = np; 8345 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8346 8347 block_cb = 8348 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8349 indr_priv, indr_priv, 8350 ice_rep_indr_tc_block_unbind, 8351 f, netdev, sch, data, np, 8352 cleanup); 8353 8354 if (IS_ERR(block_cb)) { 8355 list_del(&indr_priv->list); 8356 kfree(indr_priv); 8357 return PTR_ERR(block_cb); 8358 } 8359 flow_block_cb_add(block_cb, f); 8360 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8361 break; 8362 case FLOW_BLOCK_UNBIND: 8363 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8364 if (!indr_priv) 8365 return -ENOENT; 8366 8367 block_cb = flow_block_cb_lookup(f->block, 8368 ice_indr_setup_block_cb, 8369 indr_priv); 8370 if (!block_cb) 8371 return -ENOENT; 8372 8373 flow_indr_block_cb_remove(block_cb, f); 8374 8375 list_del(&block_cb->driver_list); 8376 break; 8377 default: 8378 return -EOPNOTSUPP; 8379 } 8380 return 0; 8381 } 8382 8383 static int 8384 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8385 void *cb_priv, enum tc_setup_type type, void *type_data, 8386 void *data, 8387 void (*cleanup)(struct flow_block_cb *block_cb)) 8388 { 8389 switch (type) { 8390 case TC_SETUP_BLOCK: 8391 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8392 data, cleanup); 8393 8394 default: 8395 return -EOPNOTSUPP; 8396 } 8397 } 8398 8399 /** 8400 * ice_open - Called when a network interface becomes active 8401 * @netdev: network interface device structure 8402 * 8403 * The open entry point is called when a network interface is made 8404 * active by the system (IFF_UP). At this point all resources needed 8405 * for transmit and receive operations are allocated, the interrupt 8406 * handler is registered with the OS, the netdev watchdog is enabled, 8407 * and the stack is notified that the interface is ready. 8408 * 8409 * Returns 0 on success, negative value on failure 8410 */ 8411 int ice_open(struct net_device *netdev) 8412 { 8413 struct ice_netdev_priv *np = netdev_priv(netdev); 8414 struct ice_pf *pf = np->vsi->back; 8415 8416 if (ice_is_reset_in_progress(pf->state)) { 8417 netdev_err(netdev, "can't open net device while reset is in progress"); 8418 return -EBUSY; 8419 } 8420 8421 return ice_open_internal(netdev); 8422 } 8423 8424 /** 8425 * ice_open_internal - Called when a network interface becomes active 8426 * @netdev: network interface device structure 8427 * 8428 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8429 * handling routine 8430 * 8431 * Returns 0 on success, negative value on failure 8432 */ 8433 int ice_open_internal(struct net_device *netdev) 8434 { 8435 struct ice_netdev_priv *np = netdev_priv(netdev); 8436 struct ice_vsi *vsi = np->vsi; 8437 struct ice_pf *pf = vsi->back; 8438 struct ice_port_info *pi; 8439 int err; 8440 8441 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8442 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8443 return -EIO; 8444 } 8445 8446 netif_carrier_off(netdev); 8447 8448 pi = vsi->port_info; 8449 err = ice_update_link_info(pi); 8450 if (err) { 8451 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8452 return err; 8453 } 8454 8455 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8456 8457 /* Set PHY if there is media, otherwise, turn off PHY */ 8458 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8459 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8460 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8461 err = ice_init_phy_user_cfg(pi); 8462 if (err) { 8463 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8464 err); 8465 return err; 8466 } 8467 } 8468 8469 err = ice_configure_phy(vsi); 8470 if (err) { 8471 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8472 err); 8473 return err; 8474 } 8475 } else { 8476 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8477 ice_set_link(vsi, false); 8478 } 8479 8480 err = ice_vsi_open(vsi); 8481 if (err) 8482 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8483 vsi->vsi_num, vsi->vsw->sw_id); 8484 8485 /* Update existing tunnels information */ 8486 udp_tunnel_get_rx_info(netdev); 8487 8488 return err; 8489 } 8490 8491 /** 8492 * ice_stop - Disables a network interface 8493 * @netdev: network interface device structure 8494 * 8495 * The stop entry point is called when an interface is de-activated by the OS, 8496 * and the netdevice enters the DOWN state. The hardware is still under the 8497 * driver's control, but the netdev interface is disabled. 8498 * 8499 * Returns success only - not allowed to fail 8500 */ 8501 int ice_stop(struct net_device *netdev) 8502 { 8503 struct ice_netdev_priv *np = netdev_priv(netdev); 8504 struct ice_vsi *vsi = np->vsi; 8505 struct ice_pf *pf = vsi->back; 8506 8507 if (ice_is_reset_in_progress(pf->state)) { 8508 netdev_err(netdev, "can't stop net device while reset is in progress"); 8509 return -EBUSY; 8510 } 8511 8512 ice_vsi_close(vsi); 8513 8514 return 0; 8515 } 8516 8517 /** 8518 * ice_features_check - Validate encapsulated packet conforms to limits 8519 * @skb: skb buffer 8520 * @netdev: This port's netdev 8521 * @features: Offload features that the stack believes apply 8522 */ 8523 static netdev_features_t 8524 ice_features_check(struct sk_buff *skb, 8525 struct net_device __always_unused *netdev, 8526 netdev_features_t features) 8527 { 8528 size_t len; 8529 8530 /* No point in doing any of this if neither checksum nor GSO are 8531 * being requested for this frame. We can rule out both by just 8532 * checking for CHECKSUM_PARTIAL 8533 */ 8534 if (skb->ip_summed != CHECKSUM_PARTIAL) 8535 return features; 8536 8537 /* We cannot support GSO if the MSS is going to be less than 8538 * 64 bytes. If it is then we need to drop support for GSO. 8539 */ 8540 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 8541 features &= ~NETIF_F_GSO_MASK; 8542 8543 len = skb_network_header(skb) - skb->data; 8544 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8545 goto out_rm_features; 8546 8547 len = skb_transport_header(skb) - skb_network_header(skb); 8548 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8549 goto out_rm_features; 8550 8551 if (skb->encapsulation) { 8552 len = skb_inner_network_header(skb) - skb_transport_header(skb); 8553 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8554 goto out_rm_features; 8555 8556 len = skb_inner_transport_header(skb) - 8557 skb_inner_network_header(skb); 8558 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8559 goto out_rm_features; 8560 } 8561 8562 return features; 8563 out_rm_features: 8564 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8565 } 8566 8567 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8568 .ndo_open = ice_open, 8569 .ndo_stop = ice_stop, 8570 .ndo_start_xmit = ice_start_xmit, 8571 .ndo_set_mac_address = ice_set_mac_address, 8572 .ndo_validate_addr = eth_validate_addr, 8573 .ndo_change_mtu = ice_change_mtu, 8574 .ndo_get_stats64 = ice_get_stats64, 8575 .ndo_tx_timeout = ice_tx_timeout, 8576 .ndo_bpf = ice_xdp_safe_mode, 8577 }; 8578 8579 static const struct net_device_ops ice_netdev_ops = { 8580 .ndo_open = ice_open, 8581 .ndo_stop = ice_stop, 8582 .ndo_start_xmit = ice_start_xmit, 8583 .ndo_select_queue = ice_select_queue, 8584 .ndo_features_check = ice_features_check, 8585 .ndo_set_rx_mode = ice_set_rx_mode, 8586 .ndo_set_mac_address = ice_set_mac_address, 8587 .ndo_validate_addr = eth_validate_addr, 8588 .ndo_change_mtu = ice_change_mtu, 8589 .ndo_get_stats64 = ice_get_stats64, 8590 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8591 .ndo_eth_ioctl = ice_eth_ioctl, 8592 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8593 .ndo_set_vf_mac = ice_set_vf_mac, 8594 .ndo_get_vf_config = ice_get_vf_cfg, 8595 .ndo_set_vf_trust = ice_set_vf_trust, 8596 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8597 .ndo_set_vf_link_state = ice_set_vf_link_state, 8598 .ndo_get_vf_stats = ice_get_vf_stats, 8599 .ndo_set_vf_rate = ice_set_vf_bw, 8600 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8601 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8602 .ndo_setup_tc = ice_setup_tc, 8603 .ndo_set_features = ice_set_features, 8604 .ndo_bridge_getlink = ice_bridge_getlink, 8605 .ndo_bridge_setlink = ice_bridge_setlink, 8606 .ndo_fdb_add = ice_fdb_add, 8607 .ndo_fdb_del = ice_fdb_del, 8608 #ifdef CONFIG_RFS_ACCEL 8609 .ndo_rx_flow_steer = ice_rx_flow_steer, 8610 #endif 8611 .ndo_tx_timeout = ice_tx_timeout, 8612 .ndo_bpf = ice_xdp, 8613 .ndo_xdp_xmit = ice_xdp_xmit, 8614 .ndo_xsk_wakeup = ice_xsk_wakeup, 8615 }; 8616