xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 
271 	return status;
272 }
273 
274 /**
275  * ice_clear_promisc - Disable promiscuous mode for a given PF
276  * @vsi: the VSI being configured
277  * @promisc_m: mask of promiscuous config bits
278  *
279  */
280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
281 {
282 	int status;
283 
284 	if (vsi->type != ICE_VSI_PF)
285 		return 0;
286 
287 	if (ice_vsi_has_non_zero_vlans(vsi)) {
288 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
289 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
290 							 promisc_m);
291 	} else {
292 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
293 						    promisc_m, 0);
294 	}
295 
296 	return status;
297 }
298 
299 /**
300  * ice_get_devlink_port - Get devlink port from netdev
301  * @netdev: the netdevice structure
302  */
303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
304 {
305 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
306 
307 	if (!ice_is_switchdev_running(pf))
308 		return NULL;
309 
310 	return &pf->devlink_port;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 			}
425 		} else {
426 			/* Clear Rx filter to remove traffic from wire */
427 			if (ice_is_vsi_dflt_vsi(vsi)) {
428 				err = ice_clear_dflt_vsi(vsi);
429 				if (err) {
430 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
431 						   err, vsi->vsi_num);
432 					vsi->current_netdev_flags |=
433 						IFF_PROMISC;
434 					goto out_promisc;
435 				}
436 				if (vsi->netdev->features &
437 				    NETIF_F_HW_VLAN_CTAG_FILTER)
438 					vlan_ops->ena_rx_filtering(vsi);
439 			}
440 		}
441 	}
442 	goto exit;
443 
444 out_promisc:
445 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
446 	goto exit;
447 out:
448 	/* if something went wrong then set the changed flag so we try again */
449 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
450 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
451 exit:
452 	clear_bit(ICE_CFG_BUSY, vsi->state);
453 	return err;
454 }
455 
456 /**
457  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
458  * @pf: board private structure
459  */
460 static void ice_sync_fltr_subtask(struct ice_pf *pf)
461 {
462 	int v;
463 
464 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
465 		return;
466 
467 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
468 
469 	ice_for_each_vsi(pf, v)
470 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
471 		    ice_vsi_sync_fltr(pf->vsi[v])) {
472 			/* come back and try again later */
473 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
474 			break;
475 		}
476 }
477 
478 /**
479  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
480  * @pf: the PF
481  * @locked: is the rtnl_lock already held
482  */
483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
484 {
485 	int node;
486 	int v;
487 
488 	ice_for_each_vsi(pf, v)
489 		if (pf->vsi[v])
490 			ice_dis_vsi(pf->vsi[v], locked);
491 
492 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
493 		pf->pf_agg_node[node].num_vsis = 0;
494 
495 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
496 		pf->vf_agg_node[node].num_vsis = 0;
497 }
498 
499 /**
500  * ice_clear_sw_switch_recipes - clear switch recipes
501  * @pf: board private structure
502  *
503  * Mark switch recipes as not created in sw structures. There are cases where
504  * rules (especially advanced rules) need to be restored, either re-read from
505  * hardware or added again. For example after the reset. 'recp_created' flag
506  * prevents from doing that and need to be cleared upfront.
507  */
508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
509 {
510 	struct ice_sw_recipe *recp;
511 	u8 i;
512 
513 	recp = pf->hw.switch_info->recp_list;
514 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
515 		recp[i].recp_created = false;
516 }
517 
518 /**
519  * ice_prepare_for_reset - prep for reset
520  * @pf: board private structure
521  * @reset_type: reset type requested
522  *
523  * Inform or close all dependent features in prep for reset.
524  */
525 static void
526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
527 {
528 	struct ice_hw *hw = &pf->hw;
529 	struct ice_vsi *vsi;
530 	struct ice_vf *vf;
531 	unsigned int bkt;
532 
533 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
534 
535 	/* already prepared for reset */
536 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
537 		return;
538 
539 	ice_unplug_aux_dev(pf);
540 
541 	/* Notify VFs of impending reset */
542 	if (ice_check_sq_alive(hw, &hw->mailboxq))
543 		ice_vc_notify_reset(pf);
544 
545 	/* Disable VFs until reset is completed */
546 	mutex_lock(&pf->vfs.table_lock);
547 	ice_for_each_vf(pf, bkt, vf)
548 		ice_set_vf_state_qs_dis(vf);
549 	mutex_unlock(&pf->vfs.table_lock);
550 
551 	if (ice_is_eswitch_mode_switchdev(pf)) {
552 		if (reset_type != ICE_RESET_PFR)
553 			ice_clear_sw_switch_recipes(pf);
554 	}
555 
556 	/* release ADQ specific HW and SW resources */
557 	vsi = ice_get_main_vsi(pf);
558 	if (!vsi)
559 		goto skip;
560 
561 	/* to be on safe side, reset orig_rss_size so that normal flow
562 	 * of deciding rss_size can take precedence
563 	 */
564 	vsi->orig_rss_size = 0;
565 
566 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
567 		if (reset_type == ICE_RESET_PFR) {
568 			vsi->old_ena_tc = vsi->all_enatc;
569 			vsi->old_numtc = vsi->all_numtc;
570 		} else {
571 			ice_remove_q_channels(vsi, true);
572 
573 			/* for other reset type, do not support channel rebuild
574 			 * hence reset needed info
575 			 */
576 			vsi->old_ena_tc = 0;
577 			vsi->all_enatc = 0;
578 			vsi->old_numtc = 0;
579 			vsi->all_numtc = 0;
580 			vsi->req_txq = 0;
581 			vsi->req_rxq = 0;
582 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
583 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
584 		}
585 	}
586 skip:
587 
588 	/* clear SW filtering DB */
589 	ice_clear_hw_tbls(hw);
590 	/* disable the VSIs and their queues that are not already DOWN */
591 	ice_pf_dis_all_vsi(pf, false);
592 
593 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
594 		ice_ptp_prepare_for_reset(pf);
595 
596 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
597 		ice_gnss_exit(pf);
598 
599 	if (hw->port_info)
600 		ice_sched_clear_port(hw->port_info);
601 
602 	ice_shutdown_all_ctrlq(hw);
603 
604 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
605 }
606 
607 /**
608  * ice_do_reset - Initiate one of many types of resets
609  * @pf: board private structure
610  * @reset_type: reset type requested before this function was called.
611  */
612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
613 {
614 	struct device *dev = ice_pf_to_dev(pf);
615 	struct ice_hw *hw = &pf->hw;
616 
617 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
618 
619 	ice_prepare_for_reset(pf, reset_type);
620 
621 	/* trigger the reset */
622 	if (ice_reset(hw, reset_type)) {
623 		dev_err(dev, "reset %d failed\n", reset_type);
624 		set_bit(ICE_RESET_FAILED, pf->state);
625 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
626 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 		clear_bit(ICE_PFR_REQ, pf->state);
628 		clear_bit(ICE_CORER_REQ, pf->state);
629 		clear_bit(ICE_GLOBR_REQ, pf->state);
630 		wake_up(&pf->reset_wait_queue);
631 		return;
632 	}
633 
634 	/* PFR is a bit of a special case because it doesn't result in an OICR
635 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
636 	 * associated state bits.
637 	 */
638 	if (reset_type == ICE_RESET_PFR) {
639 		pf->pfr_count++;
640 		ice_rebuild(pf, reset_type);
641 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
642 		clear_bit(ICE_PFR_REQ, pf->state);
643 		wake_up(&pf->reset_wait_queue);
644 		ice_reset_all_vfs(pf);
645 	}
646 }
647 
648 /**
649  * ice_reset_subtask - Set up for resetting the device and driver
650  * @pf: board private structure
651  */
652 static void ice_reset_subtask(struct ice_pf *pf)
653 {
654 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
655 
656 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
657 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
658 	 * of reset is pending and sets bits in pf->state indicating the reset
659 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
660 	 * prepare for pending reset if not already (for PF software-initiated
661 	 * global resets the software should already be prepared for it as
662 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
663 	 * by firmware or software on other PFs, that bit is not set so prepare
664 	 * for the reset now), poll for reset done, rebuild and return.
665 	 */
666 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
667 		/* Perform the largest reset requested */
668 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
669 			reset_type = ICE_RESET_CORER;
670 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
671 			reset_type = ICE_RESET_GLOBR;
672 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
673 			reset_type = ICE_RESET_EMPR;
674 		/* return if no valid reset type requested */
675 		if (reset_type == ICE_RESET_INVAL)
676 			return;
677 		ice_prepare_for_reset(pf, reset_type);
678 
679 		/* make sure we are ready to rebuild */
680 		if (ice_check_reset(&pf->hw)) {
681 			set_bit(ICE_RESET_FAILED, pf->state);
682 		} else {
683 			/* done with reset. start rebuild */
684 			pf->hw.reset_ongoing = false;
685 			ice_rebuild(pf, reset_type);
686 			/* clear bit to resume normal operations, but
687 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
688 			 */
689 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
690 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
691 			clear_bit(ICE_PFR_REQ, pf->state);
692 			clear_bit(ICE_CORER_REQ, pf->state);
693 			clear_bit(ICE_GLOBR_REQ, pf->state);
694 			wake_up(&pf->reset_wait_queue);
695 			ice_reset_all_vfs(pf);
696 		}
697 
698 		return;
699 	}
700 
701 	/* No pending resets to finish processing. Check for new resets */
702 	if (test_bit(ICE_PFR_REQ, pf->state))
703 		reset_type = ICE_RESET_PFR;
704 	if (test_bit(ICE_CORER_REQ, pf->state))
705 		reset_type = ICE_RESET_CORER;
706 	if (test_bit(ICE_GLOBR_REQ, pf->state))
707 		reset_type = ICE_RESET_GLOBR;
708 	/* If no valid reset type requested just return */
709 	if (reset_type == ICE_RESET_INVAL)
710 		return;
711 
712 	/* reset if not already down or busy */
713 	if (!test_bit(ICE_DOWN, pf->state) &&
714 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
715 		ice_do_reset(pf, reset_type);
716 	}
717 }
718 
719 /**
720  * ice_print_topo_conflict - print topology conflict message
721  * @vsi: the VSI whose topology status is being checked
722  */
723 static void ice_print_topo_conflict(struct ice_vsi *vsi)
724 {
725 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
726 	case ICE_AQ_LINK_TOPO_CONFLICT:
727 	case ICE_AQ_LINK_MEDIA_CONFLICT:
728 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
729 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
730 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
731 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
732 		break;
733 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
734 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
735 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
736 		else
737 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
738 		break;
739 	default:
740 		break;
741 	}
742 }
743 
744 /**
745  * ice_print_link_msg - print link up or down message
746  * @vsi: the VSI whose link status is being queried
747  * @isup: boolean for if the link is now up or down
748  */
749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
750 {
751 	struct ice_aqc_get_phy_caps_data *caps;
752 	const char *an_advertised;
753 	const char *fec_req;
754 	const char *speed;
755 	const char *fec;
756 	const char *fc;
757 	const char *an;
758 	int status;
759 
760 	if (!vsi)
761 		return;
762 
763 	if (vsi->current_isup == isup)
764 		return;
765 
766 	vsi->current_isup = isup;
767 
768 	if (!isup) {
769 		netdev_info(vsi->netdev, "NIC Link is Down\n");
770 		return;
771 	}
772 
773 	switch (vsi->port_info->phy.link_info.link_speed) {
774 	case ICE_AQ_LINK_SPEED_100GB:
775 		speed = "100 G";
776 		break;
777 	case ICE_AQ_LINK_SPEED_50GB:
778 		speed = "50 G";
779 		break;
780 	case ICE_AQ_LINK_SPEED_40GB:
781 		speed = "40 G";
782 		break;
783 	case ICE_AQ_LINK_SPEED_25GB:
784 		speed = "25 G";
785 		break;
786 	case ICE_AQ_LINK_SPEED_20GB:
787 		speed = "20 G";
788 		break;
789 	case ICE_AQ_LINK_SPEED_10GB:
790 		speed = "10 G";
791 		break;
792 	case ICE_AQ_LINK_SPEED_5GB:
793 		speed = "5 G";
794 		break;
795 	case ICE_AQ_LINK_SPEED_2500MB:
796 		speed = "2.5 G";
797 		break;
798 	case ICE_AQ_LINK_SPEED_1000MB:
799 		speed = "1 G";
800 		break;
801 	case ICE_AQ_LINK_SPEED_100MB:
802 		speed = "100 M";
803 		break;
804 	default:
805 		speed = "Unknown ";
806 		break;
807 	}
808 
809 	switch (vsi->port_info->fc.current_mode) {
810 	case ICE_FC_FULL:
811 		fc = "Rx/Tx";
812 		break;
813 	case ICE_FC_TX_PAUSE:
814 		fc = "Tx";
815 		break;
816 	case ICE_FC_RX_PAUSE:
817 		fc = "Rx";
818 		break;
819 	case ICE_FC_NONE:
820 		fc = "None";
821 		break;
822 	default:
823 		fc = "Unknown";
824 		break;
825 	}
826 
827 	/* Get FEC mode based on negotiated link info */
828 	switch (vsi->port_info->phy.link_info.fec_info) {
829 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
830 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
831 		fec = "RS-FEC";
832 		break;
833 	case ICE_AQ_LINK_25G_KR_FEC_EN:
834 		fec = "FC-FEC/BASE-R";
835 		break;
836 	default:
837 		fec = "NONE";
838 		break;
839 	}
840 
841 	/* check if autoneg completed, might be false due to not supported */
842 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
843 		an = "True";
844 	else
845 		an = "False";
846 
847 	/* Get FEC mode requested based on PHY caps last SW configuration */
848 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
849 	if (!caps) {
850 		fec_req = "Unknown";
851 		an_advertised = "Unknown";
852 		goto done;
853 	}
854 
855 	status = ice_aq_get_phy_caps(vsi->port_info, false,
856 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
857 	if (status)
858 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
859 
860 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
861 
862 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
863 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
864 		fec_req = "RS-FEC";
865 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
866 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
867 		fec_req = "FC-FEC/BASE-R";
868 	else
869 		fec_req = "NONE";
870 
871 	kfree(caps);
872 
873 done:
874 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
875 		    speed, fec_req, fec, an_advertised, an, fc);
876 	ice_print_topo_conflict(vsi);
877 }
878 
879 /**
880  * ice_vsi_link_event - update the VSI's netdev
881  * @vsi: the VSI on which the link event occurred
882  * @link_up: whether or not the VSI needs to be set up or down
883  */
884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
885 {
886 	if (!vsi)
887 		return;
888 
889 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
890 		return;
891 
892 	if (vsi->type == ICE_VSI_PF) {
893 		if (link_up == netif_carrier_ok(vsi->netdev))
894 			return;
895 
896 		if (link_up) {
897 			netif_carrier_on(vsi->netdev);
898 			netif_tx_wake_all_queues(vsi->netdev);
899 		} else {
900 			netif_carrier_off(vsi->netdev);
901 			netif_tx_stop_all_queues(vsi->netdev);
902 		}
903 	}
904 }
905 
906 /**
907  * ice_set_dflt_mib - send a default config MIB to the FW
908  * @pf: private PF struct
909  *
910  * This function sends a default configuration MIB to the FW.
911  *
912  * If this function errors out at any point, the driver is still able to
913  * function.  The main impact is that LFC may not operate as expected.
914  * Therefore an error state in this function should be treated with a DBG
915  * message and continue on with driver rebuild/reenable.
916  */
917 static void ice_set_dflt_mib(struct ice_pf *pf)
918 {
919 	struct device *dev = ice_pf_to_dev(pf);
920 	u8 mib_type, *buf, *lldpmib = NULL;
921 	u16 len, typelen, offset = 0;
922 	struct ice_lldp_org_tlv *tlv;
923 	struct ice_hw *hw = &pf->hw;
924 	u32 ouisubtype;
925 
926 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
927 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
928 	if (!lldpmib) {
929 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
930 			__func__);
931 		return;
932 	}
933 
934 	/* Add ETS CFG TLV */
935 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
936 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
937 		   ICE_IEEE_ETS_TLV_LEN);
938 	tlv->typelen = htons(typelen);
939 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
940 		      ICE_IEEE_SUBTYPE_ETS_CFG);
941 	tlv->ouisubtype = htonl(ouisubtype);
942 
943 	buf = tlv->tlvinfo;
944 	buf[0] = 0;
945 
946 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
947 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
948 	 * Octets 13 - 20 are TSA values - leave as zeros
949 	 */
950 	buf[5] = 0x64;
951 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
952 	offset += len + 2;
953 	tlv = (struct ice_lldp_org_tlv *)
954 		((char *)tlv + sizeof(tlv->typelen) + len);
955 
956 	/* Add ETS REC TLV */
957 	buf = tlv->tlvinfo;
958 	tlv->typelen = htons(typelen);
959 
960 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
961 		      ICE_IEEE_SUBTYPE_ETS_REC);
962 	tlv->ouisubtype = htonl(ouisubtype);
963 
964 	/* First octet of buf is reserved
965 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
966 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
967 	 * Octets 13 - 20 are TSA value - leave as zeros
968 	 */
969 	buf[5] = 0x64;
970 	offset += len + 2;
971 	tlv = (struct ice_lldp_org_tlv *)
972 		((char *)tlv + sizeof(tlv->typelen) + len);
973 
974 	/* Add PFC CFG TLV */
975 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
976 		   ICE_IEEE_PFC_TLV_LEN);
977 	tlv->typelen = htons(typelen);
978 
979 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 		      ICE_IEEE_SUBTYPE_PFC_CFG);
981 	tlv->ouisubtype = htonl(ouisubtype);
982 
983 	/* Octet 1 left as all zeros - PFC disabled */
984 	buf[0] = 0x08;
985 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
986 	offset += len + 2;
987 
988 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
989 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
990 
991 	kfree(lldpmib);
992 }
993 
994 /**
995  * ice_check_phy_fw_load - check if PHY FW load failed
996  * @pf: pointer to PF struct
997  * @link_cfg_err: bitmap from the link info structure
998  *
999  * check if external PHY FW load failed and print an error message if it did
1000  */
1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1002 {
1003 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1004 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1005 		return;
1006 	}
1007 
1008 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1009 		return;
1010 
1011 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1012 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1013 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1014 	}
1015 }
1016 
1017 /**
1018  * ice_check_module_power
1019  * @pf: pointer to PF struct
1020  * @link_cfg_err: bitmap from the link info structure
1021  *
1022  * check module power level returned by a previous call to aq_get_link_info
1023  * and print error messages if module power level is not supported
1024  */
1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1026 {
1027 	/* if module power level is supported, clear the flag */
1028 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1029 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1030 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1035 	 * above block didn't clear this bit, there's nothing to do
1036 	 */
1037 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1038 		return;
1039 
1040 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1041 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1042 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1043 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1044 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1045 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_link_cfg_err - check if link configuration failed
1051  * @pf: pointer to the PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * print if any link configuration failure happens due to the value in the
1055  * link_cfg_err parameter in the link info structure
1056  */
1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	ice_check_module_power(pf, link_cfg_err);
1060 	ice_check_phy_fw_load(pf, link_cfg_err);
1061 }
1062 
1063 /**
1064  * ice_link_event - process the link event
1065  * @pf: PF that the link event is associated with
1066  * @pi: port_info for the port that the link event is associated with
1067  * @link_up: true if the physical link is up and false if it is down
1068  * @link_speed: current link speed received from the link event
1069  *
1070  * Returns 0 on success and negative on failure
1071  */
1072 static int
1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1074 	       u16 link_speed)
1075 {
1076 	struct device *dev = ice_pf_to_dev(pf);
1077 	struct ice_phy_info *phy_info;
1078 	struct ice_vsi *vsi;
1079 	u16 old_link_speed;
1080 	bool old_link;
1081 	int status;
1082 
1083 	phy_info = &pi->phy;
1084 	phy_info->link_info_old = phy_info->link_info;
1085 
1086 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1087 	old_link_speed = phy_info->link_info_old.link_speed;
1088 
1089 	/* update the link info structures and re-enable link events,
1090 	 * don't bail on failure due to other book keeping needed
1091 	 */
1092 	status = ice_update_link_info(pi);
1093 	if (status)
1094 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1095 			pi->lport, status,
1096 			ice_aq_str(pi->hw->adminq.sq_last_status));
1097 
1098 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1099 
1100 	/* Check if the link state is up after updating link info, and treat
1101 	 * this event as an UP event since the link is actually UP now.
1102 	 */
1103 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1104 		link_up = true;
1105 
1106 	vsi = ice_get_main_vsi(pf);
1107 	if (!vsi || !vsi->port_info)
1108 		return -EINVAL;
1109 
1110 	/* turn off PHY if media was removed */
1111 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1112 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1113 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1114 		ice_set_link(vsi, false);
1115 	}
1116 
1117 	/* if the old link up/down and speed is the same as the new */
1118 	if (link_up == old_link && link_speed == old_link_speed)
1119 		return 0;
1120 
1121 	if (!ice_is_e810(&pf->hw))
1122 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1123 
1124 	if (ice_is_dcb_active(pf)) {
1125 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1126 			ice_dcb_rebuild(pf);
1127 	} else {
1128 		if (link_up)
1129 			ice_set_dflt_mib(pf);
1130 	}
1131 	ice_vsi_link_event(vsi, link_up);
1132 	ice_print_link_msg(vsi, link_up);
1133 
1134 	ice_vc_notify_link_state(pf);
1135 
1136 	return 0;
1137 }
1138 
1139 /**
1140  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1141  * @pf: board private structure
1142  */
1143 static void ice_watchdog_subtask(struct ice_pf *pf)
1144 {
1145 	int i;
1146 
1147 	/* if interface is down do nothing */
1148 	if (test_bit(ICE_DOWN, pf->state) ||
1149 	    test_bit(ICE_CFG_BUSY, pf->state))
1150 		return;
1151 
1152 	/* make sure we don't do these things too often */
1153 	if (time_before(jiffies,
1154 			pf->serv_tmr_prev + pf->serv_tmr_period))
1155 		return;
1156 
1157 	pf->serv_tmr_prev = jiffies;
1158 
1159 	/* Update the stats for active netdevs so the network stack
1160 	 * can look at updated numbers whenever it cares to
1161 	 */
1162 	ice_update_pf_stats(pf);
1163 	ice_for_each_vsi(pf, i)
1164 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1165 			ice_update_vsi_stats(pf->vsi[i]);
1166 }
1167 
1168 /**
1169  * ice_init_link_events - enable/initialize link events
1170  * @pi: pointer to the port_info instance
1171  *
1172  * Returns -EIO on failure, 0 on success
1173  */
1174 static int ice_init_link_events(struct ice_port_info *pi)
1175 {
1176 	u16 mask;
1177 
1178 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1179 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1180 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1181 
1182 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1183 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1184 			pi->lport);
1185 		return -EIO;
1186 	}
1187 
1188 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1189 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1190 			pi->lport);
1191 		return -EIO;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * ice_handle_link_event - handle link event via ARQ
1199  * @pf: PF that the link event is associated with
1200  * @event: event structure containing link status info
1201  */
1202 static int
1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1204 {
1205 	struct ice_aqc_get_link_status_data *link_data;
1206 	struct ice_port_info *port_info;
1207 	int status;
1208 
1209 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1210 	port_info = pf->hw.port_info;
1211 	if (!port_info)
1212 		return -EINVAL;
1213 
1214 	status = ice_link_event(pf, port_info,
1215 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1216 				le16_to_cpu(link_data->link_speed));
1217 	if (status)
1218 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1219 			status);
1220 
1221 	return status;
1222 }
1223 
1224 enum ice_aq_task_state {
1225 	ICE_AQ_TASK_WAITING = 0,
1226 	ICE_AQ_TASK_COMPLETE,
1227 	ICE_AQ_TASK_CANCELED,
1228 };
1229 
1230 struct ice_aq_task {
1231 	struct hlist_node entry;
1232 
1233 	u16 opcode;
1234 	struct ice_rq_event_info *event;
1235 	enum ice_aq_task_state state;
1236 };
1237 
1238 /**
1239  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1240  * @pf: pointer to the PF private structure
1241  * @opcode: the opcode to wait for
1242  * @timeout: how long to wait, in jiffies
1243  * @event: storage for the event info
1244  *
1245  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1246  * current thread will be put to sleep until the specified event occurs or
1247  * until the given timeout is reached.
1248  *
1249  * To obtain only the descriptor contents, pass an event without an allocated
1250  * msg_buf. If the complete data buffer is desired, allocate the
1251  * event->msg_buf with enough space ahead of time.
1252  *
1253  * Returns: zero on success, or a negative error code on failure.
1254  */
1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1256 			  struct ice_rq_event_info *event)
1257 {
1258 	struct device *dev = ice_pf_to_dev(pf);
1259 	struct ice_aq_task *task;
1260 	unsigned long start;
1261 	long ret;
1262 	int err;
1263 
1264 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1265 	if (!task)
1266 		return -ENOMEM;
1267 
1268 	INIT_HLIST_NODE(&task->entry);
1269 	task->opcode = opcode;
1270 	task->event = event;
1271 	task->state = ICE_AQ_TASK_WAITING;
1272 
1273 	spin_lock_bh(&pf->aq_wait_lock);
1274 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1275 	spin_unlock_bh(&pf->aq_wait_lock);
1276 
1277 	start = jiffies;
1278 
1279 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1280 					       timeout);
1281 	switch (task->state) {
1282 	case ICE_AQ_TASK_WAITING:
1283 		err = ret < 0 ? ret : -ETIMEDOUT;
1284 		break;
1285 	case ICE_AQ_TASK_CANCELED:
1286 		err = ret < 0 ? ret : -ECANCELED;
1287 		break;
1288 	case ICE_AQ_TASK_COMPLETE:
1289 		err = ret < 0 ? ret : 0;
1290 		break;
1291 	default:
1292 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1293 		err = -EINVAL;
1294 		break;
1295 	}
1296 
1297 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1298 		jiffies_to_msecs(jiffies - start),
1299 		jiffies_to_msecs(timeout),
1300 		opcode);
1301 
1302 	spin_lock_bh(&pf->aq_wait_lock);
1303 	hlist_del(&task->entry);
1304 	spin_unlock_bh(&pf->aq_wait_lock);
1305 	kfree(task);
1306 
1307 	return err;
1308 }
1309 
1310 /**
1311  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1312  * @pf: pointer to the PF private structure
1313  * @opcode: the opcode of the event
1314  * @event: the event to check
1315  *
1316  * Loops over the current list of pending threads waiting for an AdminQ event.
1317  * For each matching task, copy the contents of the event into the task
1318  * structure and wake up the thread.
1319  *
1320  * If multiple threads wait for the same opcode, they will all be woken up.
1321  *
1322  * Note that event->msg_buf will only be duplicated if the event has a buffer
1323  * with enough space already allocated. Otherwise, only the descriptor and
1324  * message length will be copied.
1325  *
1326  * Returns: true if an event was found, false otherwise
1327  */
1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1329 				struct ice_rq_event_info *event)
1330 {
1331 	struct ice_aq_task *task;
1332 	bool found = false;
1333 
1334 	spin_lock_bh(&pf->aq_wait_lock);
1335 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1336 		if (task->state || task->opcode != opcode)
1337 			continue;
1338 
1339 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1340 		task->event->msg_len = event->msg_len;
1341 
1342 		/* Only copy the data buffer if a destination was set */
1343 		if (task->event->msg_buf &&
1344 		    task->event->buf_len > event->buf_len) {
1345 			memcpy(task->event->msg_buf, event->msg_buf,
1346 			       event->buf_len);
1347 			task->event->buf_len = event->buf_len;
1348 		}
1349 
1350 		task->state = ICE_AQ_TASK_COMPLETE;
1351 		found = true;
1352 	}
1353 	spin_unlock_bh(&pf->aq_wait_lock);
1354 
1355 	if (found)
1356 		wake_up(&pf->aq_wait_queue);
1357 }
1358 
1359 /**
1360  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1361  * @pf: the PF private structure
1362  *
1363  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1364  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1365  */
1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1367 {
1368 	struct ice_aq_task *task;
1369 
1370 	spin_lock_bh(&pf->aq_wait_lock);
1371 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1372 		task->state = ICE_AQ_TASK_CANCELED;
1373 	spin_unlock_bh(&pf->aq_wait_lock);
1374 
1375 	wake_up(&pf->aq_wait_queue);
1376 }
1377 
1378 /**
1379  * __ice_clean_ctrlq - helper function to clean controlq rings
1380  * @pf: ptr to struct ice_pf
1381  * @q_type: specific Control queue type
1382  */
1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1384 {
1385 	struct device *dev = ice_pf_to_dev(pf);
1386 	struct ice_rq_event_info event;
1387 	struct ice_hw *hw = &pf->hw;
1388 	struct ice_ctl_q_info *cq;
1389 	u16 pending, i = 0;
1390 	const char *qtype;
1391 	u32 oldval, val;
1392 
1393 	/* Do not clean control queue if/when PF reset fails */
1394 	if (test_bit(ICE_RESET_FAILED, pf->state))
1395 		return 0;
1396 
1397 	switch (q_type) {
1398 	case ICE_CTL_Q_ADMIN:
1399 		cq = &hw->adminq;
1400 		qtype = "Admin";
1401 		break;
1402 	case ICE_CTL_Q_SB:
1403 		cq = &hw->sbq;
1404 		qtype = "Sideband";
1405 		break;
1406 	case ICE_CTL_Q_MAILBOX:
1407 		cq = &hw->mailboxq;
1408 		qtype = "Mailbox";
1409 		/* we are going to try to detect a malicious VF, so set the
1410 		 * state to begin detection
1411 		 */
1412 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1413 		break;
1414 	default:
1415 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1416 		return 0;
1417 	}
1418 
1419 	/* check for error indications - PF_xx_AxQLEN register layout for
1420 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1421 	 */
1422 	val = rd32(hw, cq->rq.len);
1423 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1424 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1425 		oldval = val;
1426 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1427 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1428 				qtype);
1429 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1430 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1431 				qtype);
1432 		}
1433 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1434 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1435 				qtype);
1436 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1437 			 PF_FW_ARQLEN_ARQCRIT_M);
1438 		if (oldval != val)
1439 			wr32(hw, cq->rq.len, val);
1440 	}
1441 
1442 	val = rd32(hw, cq->sq.len);
1443 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1444 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1445 		oldval = val;
1446 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1447 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1448 				qtype);
1449 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1450 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1451 				qtype);
1452 		}
1453 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1454 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1455 				qtype);
1456 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1457 			 PF_FW_ATQLEN_ATQCRIT_M);
1458 		if (oldval != val)
1459 			wr32(hw, cq->sq.len, val);
1460 	}
1461 
1462 	event.buf_len = cq->rq_buf_size;
1463 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1464 	if (!event.msg_buf)
1465 		return 0;
1466 
1467 	do {
1468 		u16 opcode;
1469 		int ret;
1470 
1471 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1472 		if (ret == -EALREADY)
1473 			break;
1474 		if (ret) {
1475 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1476 				ret);
1477 			break;
1478 		}
1479 
1480 		opcode = le16_to_cpu(event.desc.opcode);
1481 
1482 		/* Notify any thread that might be waiting for this event */
1483 		ice_aq_check_events(pf, opcode, &event);
1484 
1485 		switch (opcode) {
1486 		case ice_aqc_opc_get_link_status:
1487 			if (ice_handle_link_event(pf, &event))
1488 				dev_err(dev, "Could not handle link event\n");
1489 			break;
1490 		case ice_aqc_opc_event_lan_overflow:
1491 			ice_vf_lan_overflow_event(pf, &event);
1492 			break;
1493 		case ice_mbx_opc_send_msg_to_pf:
1494 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1495 				ice_vc_process_vf_msg(pf, &event);
1496 			break;
1497 		case ice_aqc_opc_fw_logging:
1498 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1499 			break;
1500 		case ice_aqc_opc_lldp_set_mib_change:
1501 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1502 			break;
1503 		default:
1504 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1505 				qtype, opcode);
1506 			break;
1507 		}
1508 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1509 
1510 	kfree(event.msg_buf);
1511 
1512 	return pending && (i == ICE_DFLT_IRQ_WORK);
1513 }
1514 
1515 /**
1516  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1517  * @hw: pointer to hardware info
1518  * @cq: control queue information
1519  *
1520  * returns true if there are pending messages in a queue, false if there aren't
1521  */
1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1523 {
1524 	u16 ntu;
1525 
1526 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1527 	return cq->rq.next_to_clean != ntu;
1528 }
1529 
1530 /**
1531  * ice_clean_adminq_subtask - clean the AdminQ rings
1532  * @pf: board private structure
1533  */
1534 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1535 {
1536 	struct ice_hw *hw = &pf->hw;
1537 
1538 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1539 		return;
1540 
1541 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1542 		return;
1543 
1544 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1545 
1546 	/* There might be a situation where new messages arrive to a control
1547 	 * queue between processing the last message and clearing the
1548 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1549 	 * ice_ctrlq_pending) and process new messages if any.
1550 	 */
1551 	if (ice_ctrlq_pending(hw, &hw->adminq))
1552 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1553 
1554 	ice_flush(hw);
1555 }
1556 
1557 /**
1558  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1559  * @pf: board private structure
1560  */
1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1562 {
1563 	struct ice_hw *hw = &pf->hw;
1564 
1565 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1566 		return;
1567 
1568 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1569 		return;
1570 
1571 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1572 
1573 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1574 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1575 
1576 	ice_flush(hw);
1577 }
1578 
1579 /**
1580  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1581  * @pf: board private structure
1582  */
1583 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1584 {
1585 	struct ice_hw *hw = &pf->hw;
1586 
1587 	/* Nothing to do here if sideband queue is not supported */
1588 	if (!ice_is_sbq_supported(hw)) {
1589 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1590 		return;
1591 	}
1592 
1593 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1594 		return;
1595 
1596 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1597 		return;
1598 
1599 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1600 
1601 	if (ice_ctrlq_pending(hw, &hw->sbq))
1602 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1603 
1604 	ice_flush(hw);
1605 }
1606 
1607 /**
1608  * ice_service_task_schedule - schedule the service task to wake up
1609  * @pf: board private structure
1610  *
1611  * If not already scheduled, this puts the task into the work queue.
1612  */
1613 void ice_service_task_schedule(struct ice_pf *pf)
1614 {
1615 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1616 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1617 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1618 		queue_work(ice_wq, &pf->serv_task);
1619 }
1620 
1621 /**
1622  * ice_service_task_complete - finish up the service task
1623  * @pf: board private structure
1624  */
1625 static void ice_service_task_complete(struct ice_pf *pf)
1626 {
1627 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1628 
1629 	/* force memory (pf->state) to sync before next service task */
1630 	smp_mb__before_atomic();
1631 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1632 }
1633 
1634 /**
1635  * ice_service_task_stop - stop service task and cancel works
1636  * @pf: board private structure
1637  *
1638  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1639  * 1 otherwise.
1640  */
1641 static int ice_service_task_stop(struct ice_pf *pf)
1642 {
1643 	int ret;
1644 
1645 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1646 
1647 	if (pf->serv_tmr.function)
1648 		del_timer_sync(&pf->serv_tmr);
1649 	if (pf->serv_task.func)
1650 		cancel_work_sync(&pf->serv_task);
1651 
1652 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1653 	return ret;
1654 }
1655 
1656 /**
1657  * ice_service_task_restart - restart service task and schedule works
1658  * @pf: board private structure
1659  *
1660  * This function is needed for suspend and resume works (e.g WoL scenario)
1661  */
1662 static void ice_service_task_restart(struct ice_pf *pf)
1663 {
1664 	clear_bit(ICE_SERVICE_DIS, pf->state);
1665 	ice_service_task_schedule(pf);
1666 }
1667 
1668 /**
1669  * ice_service_timer - timer callback to schedule service task
1670  * @t: pointer to timer_list
1671  */
1672 static void ice_service_timer(struct timer_list *t)
1673 {
1674 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1675 
1676 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1677 	ice_service_task_schedule(pf);
1678 }
1679 
1680 /**
1681  * ice_handle_mdd_event - handle malicious driver detect event
1682  * @pf: pointer to the PF structure
1683  *
1684  * Called from service task. OICR interrupt handler indicates MDD event.
1685  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1686  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1687  * disable the queue, the PF can be configured to reset the VF using ethtool
1688  * private flag mdd-auto-reset-vf.
1689  */
1690 static void ice_handle_mdd_event(struct ice_pf *pf)
1691 {
1692 	struct device *dev = ice_pf_to_dev(pf);
1693 	struct ice_hw *hw = &pf->hw;
1694 	struct ice_vf *vf;
1695 	unsigned int bkt;
1696 	u32 reg;
1697 
1698 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1699 		/* Since the VF MDD event logging is rate limited, check if
1700 		 * there are pending MDD events.
1701 		 */
1702 		ice_print_vfs_mdd_events(pf);
1703 		return;
1704 	}
1705 
1706 	/* find what triggered an MDD event */
1707 	reg = rd32(hw, GL_MDET_TX_PQM);
1708 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1709 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1710 				GL_MDET_TX_PQM_PF_NUM_S;
1711 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1712 				GL_MDET_TX_PQM_VF_NUM_S;
1713 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1714 				GL_MDET_TX_PQM_MAL_TYPE_S;
1715 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1716 				GL_MDET_TX_PQM_QNUM_S);
1717 
1718 		if (netif_msg_tx_err(pf))
1719 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1720 				 event, queue, pf_num, vf_num);
1721 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1722 	}
1723 
1724 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1725 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1726 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1727 				GL_MDET_TX_TCLAN_PF_NUM_S;
1728 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_VF_NUM_S;
1730 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1731 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1732 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1733 				GL_MDET_TX_TCLAN_QNUM_S);
1734 
1735 		if (netif_msg_tx_err(pf))
1736 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1737 				 event, queue, pf_num, vf_num);
1738 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1739 	}
1740 
1741 	reg = rd32(hw, GL_MDET_RX);
1742 	if (reg & GL_MDET_RX_VALID_M) {
1743 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1744 				GL_MDET_RX_PF_NUM_S;
1745 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1746 				GL_MDET_RX_VF_NUM_S;
1747 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1748 				GL_MDET_RX_MAL_TYPE_S;
1749 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1750 				GL_MDET_RX_QNUM_S);
1751 
1752 		if (netif_msg_rx_err(pf))
1753 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1754 				 event, queue, pf_num, vf_num);
1755 		wr32(hw, GL_MDET_RX, 0xffffffff);
1756 	}
1757 
1758 	/* check to see if this PF caused an MDD event */
1759 	reg = rd32(hw, PF_MDET_TX_PQM);
1760 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1761 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1762 		if (netif_msg_tx_err(pf))
1763 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1764 	}
1765 
1766 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1767 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1768 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1769 		if (netif_msg_tx_err(pf))
1770 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1771 	}
1772 
1773 	reg = rd32(hw, PF_MDET_RX);
1774 	if (reg & PF_MDET_RX_VALID_M) {
1775 		wr32(hw, PF_MDET_RX, 0xFFFF);
1776 		if (netif_msg_rx_err(pf))
1777 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1778 	}
1779 
1780 	/* Check to see if one of the VFs caused an MDD event, and then
1781 	 * increment counters and set print pending
1782 	 */
1783 	mutex_lock(&pf->vfs.table_lock);
1784 	ice_for_each_vf(pf, bkt, vf) {
1785 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1786 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1787 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1788 			vf->mdd_tx_events.count++;
1789 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1790 			if (netif_msg_tx_err(pf))
1791 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1792 					 vf->vf_id);
1793 		}
1794 
1795 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1796 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1797 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1798 			vf->mdd_tx_events.count++;
1799 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1800 			if (netif_msg_tx_err(pf))
1801 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1802 					 vf->vf_id);
1803 		}
1804 
1805 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1806 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1807 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1808 			vf->mdd_tx_events.count++;
1809 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1810 			if (netif_msg_tx_err(pf))
1811 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1812 					 vf->vf_id);
1813 		}
1814 
1815 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1816 		if (reg & VP_MDET_RX_VALID_M) {
1817 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1818 			vf->mdd_rx_events.count++;
1819 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1820 			if (netif_msg_rx_err(pf))
1821 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1822 					 vf->vf_id);
1823 
1824 			/* Since the queue is disabled on VF Rx MDD events, the
1825 			 * PF can be configured to reset the VF through ethtool
1826 			 * private flag mdd-auto-reset-vf.
1827 			 */
1828 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1829 				/* VF MDD event counters will be cleared by
1830 				 * reset, so print the event prior to reset.
1831 				 */
1832 				ice_print_vf_rx_mdd_event(vf);
1833 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1834 			}
1835 		}
1836 	}
1837 	mutex_unlock(&pf->vfs.table_lock);
1838 
1839 	ice_print_vfs_mdd_events(pf);
1840 }
1841 
1842 /**
1843  * ice_force_phys_link_state - Force the physical link state
1844  * @vsi: VSI to force the physical link state to up/down
1845  * @link_up: true/false indicates to set the physical link to up/down
1846  *
1847  * Force the physical link state by getting the current PHY capabilities from
1848  * hardware and setting the PHY config based on the determined capabilities. If
1849  * link changes a link event will be triggered because both the Enable Automatic
1850  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1851  *
1852  * Returns 0 on success, negative on failure
1853  */
1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1855 {
1856 	struct ice_aqc_get_phy_caps_data *pcaps;
1857 	struct ice_aqc_set_phy_cfg_data *cfg;
1858 	struct ice_port_info *pi;
1859 	struct device *dev;
1860 	int retcode;
1861 
1862 	if (!vsi || !vsi->port_info || !vsi->back)
1863 		return -EINVAL;
1864 	if (vsi->type != ICE_VSI_PF)
1865 		return 0;
1866 
1867 	dev = ice_pf_to_dev(vsi->back);
1868 
1869 	pi = vsi->port_info;
1870 
1871 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1872 	if (!pcaps)
1873 		return -ENOMEM;
1874 
1875 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1876 				      NULL);
1877 	if (retcode) {
1878 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1879 			vsi->vsi_num, retcode);
1880 		retcode = -EIO;
1881 		goto out;
1882 	}
1883 
1884 	/* No change in link */
1885 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1886 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1887 		goto out;
1888 
1889 	/* Use the current user PHY configuration. The current user PHY
1890 	 * configuration is initialized during probe from PHY capabilities
1891 	 * software mode, and updated on set PHY configuration.
1892 	 */
1893 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1894 	if (!cfg) {
1895 		retcode = -ENOMEM;
1896 		goto out;
1897 	}
1898 
1899 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1900 	if (link_up)
1901 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1902 	else
1903 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1904 
1905 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1906 	if (retcode) {
1907 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1908 			vsi->vsi_num, retcode);
1909 		retcode = -EIO;
1910 	}
1911 
1912 	kfree(cfg);
1913 out:
1914 	kfree(pcaps);
1915 	return retcode;
1916 }
1917 
1918 /**
1919  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1920  * @pi: port info structure
1921  *
1922  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1923  */
1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1925 {
1926 	struct ice_aqc_get_phy_caps_data *pcaps;
1927 	struct ice_pf *pf = pi->hw->back;
1928 	int err;
1929 
1930 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1931 	if (!pcaps)
1932 		return -ENOMEM;
1933 
1934 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1935 				  pcaps, NULL);
1936 
1937 	if (err) {
1938 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1939 		goto out;
1940 	}
1941 
1942 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1943 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1944 
1945 out:
1946 	kfree(pcaps);
1947 	return err;
1948 }
1949 
1950 /**
1951  * ice_init_link_dflt_override - Initialize link default override
1952  * @pi: port info structure
1953  *
1954  * Initialize link default override and PHY total port shutdown during probe
1955  */
1956 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1957 {
1958 	struct ice_link_default_override_tlv *ldo;
1959 	struct ice_pf *pf = pi->hw->back;
1960 
1961 	ldo = &pf->link_dflt_override;
1962 	if (ice_get_link_default_override(ldo, pi))
1963 		return;
1964 
1965 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1966 		return;
1967 
1968 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1969 	 * ethtool private flag) for ports with Port Disable bit set.
1970 	 */
1971 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1972 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1973 }
1974 
1975 /**
1976  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1977  * @pi: port info structure
1978  *
1979  * If default override is enabled, initialize the user PHY cfg speed and FEC
1980  * settings using the default override mask from the NVM.
1981  *
1982  * The PHY should only be configured with the default override settings the
1983  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1984  * is used to indicate that the user PHY cfg default override is initialized
1985  * and the PHY has not been configured with the default override settings. The
1986  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1987  * configured.
1988  *
1989  * This function should be called only if the FW doesn't support default
1990  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1991  */
1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1993 {
1994 	struct ice_link_default_override_tlv *ldo;
1995 	struct ice_aqc_set_phy_cfg_data *cfg;
1996 	struct ice_phy_info *phy = &pi->phy;
1997 	struct ice_pf *pf = pi->hw->back;
1998 
1999 	ldo = &pf->link_dflt_override;
2000 
2001 	/* If link default override is enabled, use to mask NVM PHY capabilities
2002 	 * for speed and FEC default configuration.
2003 	 */
2004 	cfg = &phy->curr_user_phy_cfg;
2005 
2006 	if (ldo->phy_type_low || ldo->phy_type_high) {
2007 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2008 				    cpu_to_le64(ldo->phy_type_low);
2009 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2010 				     cpu_to_le64(ldo->phy_type_high);
2011 	}
2012 	cfg->link_fec_opt = ldo->fec_options;
2013 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2014 
2015 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2016 }
2017 
2018 /**
2019  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2020  * @pi: port info structure
2021  *
2022  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2023  * mode to default. The PHY defaults are from get PHY capabilities topology
2024  * with media so call when media is first available. An error is returned if
2025  * called when media is not available. The PHY initialization completed state is
2026  * set here.
2027  *
2028  * These configurations are used when setting PHY
2029  * configuration. The user PHY configuration is updated on set PHY
2030  * configuration. Returns 0 on success, negative on failure
2031  */
2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2033 {
2034 	struct ice_aqc_get_phy_caps_data *pcaps;
2035 	struct ice_phy_info *phy = &pi->phy;
2036 	struct ice_pf *pf = pi->hw->back;
2037 	int err;
2038 
2039 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2040 		return -EIO;
2041 
2042 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2043 	if (!pcaps)
2044 		return -ENOMEM;
2045 
2046 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2047 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2048 					  pcaps, NULL);
2049 	else
2050 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2051 					  pcaps, NULL);
2052 	if (err) {
2053 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2054 		goto err_out;
2055 	}
2056 
2057 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2058 
2059 	/* check if lenient mode is supported and enabled */
2060 	if (ice_fw_supports_link_override(pi->hw) &&
2061 	    !(pcaps->module_compliance_enforcement &
2062 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2063 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2064 
2065 		/* if the FW supports default PHY configuration mode, then the driver
2066 		 * does not have to apply link override settings. If not,
2067 		 * initialize user PHY configuration with link override values
2068 		 */
2069 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2070 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2071 			ice_init_phy_cfg_dflt_override(pi);
2072 			goto out;
2073 		}
2074 	}
2075 
2076 	/* if link default override is not enabled, set user flow control and
2077 	 * FEC settings based on what get_phy_caps returned
2078 	 */
2079 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2080 						      pcaps->link_fec_options);
2081 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2082 
2083 out:
2084 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2085 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2086 err_out:
2087 	kfree(pcaps);
2088 	return err;
2089 }
2090 
2091 /**
2092  * ice_configure_phy - configure PHY
2093  * @vsi: VSI of PHY
2094  *
2095  * Set the PHY configuration. If the current PHY configuration is the same as
2096  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2097  * configure the based get PHY capabilities for topology with media.
2098  */
2099 static int ice_configure_phy(struct ice_vsi *vsi)
2100 {
2101 	struct device *dev = ice_pf_to_dev(vsi->back);
2102 	struct ice_port_info *pi = vsi->port_info;
2103 	struct ice_aqc_get_phy_caps_data *pcaps;
2104 	struct ice_aqc_set_phy_cfg_data *cfg;
2105 	struct ice_phy_info *phy = &pi->phy;
2106 	struct ice_pf *pf = vsi->back;
2107 	int err;
2108 
2109 	/* Ensure we have media as we cannot configure a medialess port */
2110 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2111 		return -EPERM;
2112 
2113 	ice_print_topo_conflict(vsi);
2114 
2115 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2116 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2117 		return -EPERM;
2118 
2119 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2120 		return ice_force_phys_link_state(vsi, true);
2121 
2122 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2123 	if (!pcaps)
2124 		return -ENOMEM;
2125 
2126 	/* Get current PHY config */
2127 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2128 				  NULL);
2129 	if (err) {
2130 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2131 			vsi->vsi_num, err);
2132 		goto done;
2133 	}
2134 
2135 	/* If PHY enable link is configured and configuration has not changed,
2136 	 * there's nothing to do
2137 	 */
2138 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2139 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2140 		goto done;
2141 
2142 	/* Use PHY topology as baseline for configuration */
2143 	memset(pcaps, 0, sizeof(*pcaps));
2144 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2145 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2146 					  pcaps, NULL);
2147 	else
2148 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2149 					  pcaps, NULL);
2150 	if (err) {
2151 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2152 			vsi->vsi_num, err);
2153 		goto done;
2154 	}
2155 
2156 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2157 	if (!cfg) {
2158 		err = -ENOMEM;
2159 		goto done;
2160 	}
2161 
2162 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2163 
2164 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2165 	 * ice_init_phy_user_cfg_ldo.
2166 	 */
2167 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2168 			       vsi->back->state)) {
2169 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2170 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2171 	} else {
2172 		u64 phy_low = 0, phy_high = 0;
2173 
2174 		ice_update_phy_type(&phy_low, &phy_high,
2175 				    pi->phy.curr_user_speed_req);
2176 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2177 		cfg->phy_type_high = pcaps->phy_type_high &
2178 				     cpu_to_le64(phy_high);
2179 	}
2180 
2181 	/* Can't provide what was requested; use PHY capabilities */
2182 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2183 		cfg->phy_type_low = pcaps->phy_type_low;
2184 		cfg->phy_type_high = pcaps->phy_type_high;
2185 	}
2186 
2187 	/* FEC */
2188 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2189 
2190 	/* Can't provide what was requested; use PHY capabilities */
2191 	if (cfg->link_fec_opt !=
2192 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2193 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2194 		cfg->link_fec_opt = pcaps->link_fec_options;
2195 	}
2196 
2197 	/* Flow Control - always supported; no need to check against
2198 	 * capabilities
2199 	 */
2200 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2201 
2202 	/* Enable link and link update */
2203 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2204 
2205 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2206 	if (err)
2207 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2208 			vsi->vsi_num, err);
2209 
2210 	kfree(cfg);
2211 done:
2212 	kfree(pcaps);
2213 	return err;
2214 }
2215 
2216 /**
2217  * ice_check_media_subtask - Check for media
2218  * @pf: pointer to PF struct
2219  *
2220  * If media is available, then initialize PHY user configuration if it is not
2221  * been, and configure the PHY if the interface is up.
2222  */
2223 static void ice_check_media_subtask(struct ice_pf *pf)
2224 {
2225 	struct ice_port_info *pi;
2226 	struct ice_vsi *vsi;
2227 	int err;
2228 
2229 	/* No need to check for media if it's already present */
2230 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2231 		return;
2232 
2233 	vsi = ice_get_main_vsi(pf);
2234 	if (!vsi)
2235 		return;
2236 
2237 	/* Refresh link info and check if media is present */
2238 	pi = vsi->port_info;
2239 	err = ice_update_link_info(pi);
2240 	if (err)
2241 		return;
2242 
2243 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2244 
2245 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2246 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2247 			ice_init_phy_user_cfg(pi);
2248 
2249 		/* PHY settings are reset on media insertion, reconfigure
2250 		 * PHY to preserve settings.
2251 		 */
2252 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2253 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2254 			return;
2255 
2256 		err = ice_configure_phy(vsi);
2257 		if (!err)
2258 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2259 
2260 		/* A Link Status Event will be generated; the event handler
2261 		 * will complete bringing the interface up
2262 		 */
2263 	}
2264 }
2265 
2266 /**
2267  * ice_service_task - manage and run subtasks
2268  * @work: pointer to work_struct contained by the PF struct
2269  */
2270 static void ice_service_task(struct work_struct *work)
2271 {
2272 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2273 	unsigned long start_time = jiffies;
2274 
2275 	/* subtasks */
2276 
2277 	/* process reset requests first */
2278 	ice_reset_subtask(pf);
2279 
2280 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2281 	if (ice_is_reset_in_progress(pf->state) ||
2282 	    test_bit(ICE_SUSPENDED, pf->state) ||
2283 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2284 		ice_service_task_complete(pf);
2285 		return;
2286 	}
2287 
2288 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2289 		struct iidc_event *event;
2290 
2291 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2292 		if (event) {
2293 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2294 			/* report the entire OICR value to AUX driver */
2295 			swap(event->reg, pf->oicr_err_reg);
2296 			ice_send_event_to_aux(pf, event);
2297 			kfree(event);
2298 		}
2299 	}
2300 
2301 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2302 		/* Plug aux device per request */
2303 		ice_plug_aux_dev(pf);
2304 
2305 		/* Mark plugging as done but check whether unplug was
2306 		 * requested during ice_plug_aux_dev() call
2307 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2308 		 * plug aux device.
2309 		 */
2310 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2311 			ice_unplug_aux_dev(pf);
2312 	}
2313 
2314 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2315 		struct iidc_event *event;
2316 
2317 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2318 		if (event) {
2319 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2320 			ice_send_event_to_aux(pf, event);
2321 			kfree(event);
2322 		}
2323 	}
2324 
2325 	ice_clean_adminq_subtask(pf);
2326 	ice_check_media_subtask(pf);
2327 	ice_check_for_hang_subtask(pf);
2328 	ice_sync_fltr_subtask(pf);
2329 	ice_handle_mdd_event(pf);
2330 	ice_watchdog_subtask(pf);
2331 
2332 	if (ice_is_safe_mode(pf)) {
2333 		ice_service_task_complete(pf);
2334 		return;
2335 	}
2336 
2337 	ice_process_vflr_event(pf);
2338 	ice_clean_mailboxq_subtask(pf);
2339 	ice_clean_sbq_subtask(pf);
2340 	ice_sync_arfs_fltrs(pf);
2341 	ice_flush_fdir_ctx(pf);
2342 
2343 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2344 	ice_service_task_complete(pf);
2345 
2346 	/* If the tasks have taken longer than one service timer period
2347 	 * or there is more work to be done, reset the service timer to
2348 	 * schedule the service task now.
2349 	 */
2350 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2351 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2352 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2353 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2355 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2357 		mod_timer(&pf->serv_tmr, jiffies);
2358 }
2359 
2360 /**
2361  * ice_set_ctrlq_len - helper function to set controlq length
2362  * @hw: pointer to the HW instance
2363  */
2364 static void ice_set_ctrlq_len(struct ice_hw *hw)
2365 {
2366 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2367 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2368 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2369 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2370 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2371 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2372 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2373 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2374 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2375 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2376 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2377 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2378 }
2379 
2380 /**
2381  * ice_schedule_reset - schedule a reset
2382  * @pf: board private structure
2383  * @reset: reset being requested
2384  */
2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2386 {
2387 	struct device *dev = ice_pf_to_dev(pf);
2388 
2389 	/* bail out if earlier reset has failed */
2390 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2391 		dev_dbg(dev, "earlier reset has failed\n");
2392 		return -EIO;
2393 	}
2394 	/* bail if reset/recovery already in progress */
2395 	if (ice_is_reset_in_progress(pf->state)) {
2396 		dev_dbg(dev, "Reset already in progress\n");
2397 		return -EBUSY;
2398 	}
2399 
2400 	ice_unplug_aux_dev(pf);
2401 
2402 	switch (reset) {
2403 	case ICE_RESET_PFR:
2404 		set_bit(ICE_PFR_REQ, pf->state);
2405 		break;
2406 	case ICE_RESET_CORER:
2407 		set_bit(ICE_CORER_REQ, pf->state);
2408 		break;
2409 	case ICE_RESET_GLOBR:
2410 		set_bit(ICE_GLOBR_REQ, pf->state);
2411 		break;
2412 	default:
2413 		return -EINVAL;
2414 	}
2415 
2416 	ice_service_task_schedule(pf);
2417 	return 0;
2418 }
2419 
2420 /**
2421  * ice_irq_affinity_notify - Callback for affinity changes
2422  * @notify: context as to what irq was changed
2423  * @mask: the new affinity mask
2424  *
2425  * This is a callback function used by the irq_set_affinity_notifier function
2426  * so that we may register to receive changes to the irq affinity masks.
2427  */
2428 static void
2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2430 			const cpumask_t *mask)
2431 {
2432 	struct ice_q_vector *q_vector =
2433 		container_of(notify, struct ice_q_vector, affinity_notify);
2434 
2435 	cpumask_copy(&q_vector->affinity_mask, mask);
2436 }
2437 
2438 /**
2439  * ice_irq_affinity_release - Callback for affinity notifier release
2440  * @ref: internal core kernel usage
2441  *
2442  * This is a callback function used by the irq_set_affinity_notifier function
2443  * to inform the current notification subscriber that they will no longer
2444  * receive notifications.
2445  */
2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2447 
2448 /**
2449  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2450  * @vsi: the VSI being configured
2451  */
2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2453 {
2454 	struct ice_hw *hw = &vsi->back->hw;
2455 	int i;
2456 
2457 	ice_for_each_q_vector(vsi, i)
2458 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2459 
2460 	ice_flush(hw);
2461 	return 0;
2462 }
2463 
2464 /**
2465  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2466  * @vsi: the VSI being configured
2467  * @basename: name for the vector
2468  */
2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2470 {
2471 	int q_vectors = vsi->num_q_vectors;
2472 	struct ice_pf *pf = vsi->back;
2473 	int base = vsi->base_vector;
2474 	struct device *dev;
2475 	int rx_int_idx = 0;
2476 	int tx_int_idx = 0;
2477 	int vector, err;
2478 	int irq_num;
2479 
2480 	dev = ice_pf_to_dev(pf);
2481 	for (vector = 0; vector < q_vectors; vector++) {
2482 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2483 
2484 		irq_num = pf->msix_entries[base + vector].vector;
2485 
2486 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2487 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2488 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2489 			tx_int_idx++;
2490 		} else if (q_vector->rx.rx_ring) {
2491 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2492 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2493 		} else if (q_vector->tx.tx_ring) {
2494 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2495 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2496 		} else {
2497 			/* skip this unused q_vector */
2498 			continue;
2499 		}
2500 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2501 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2502 					       IRQF_SHARED, q_vector->name,
2503 					       q_vector);
2504 		else
2505 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2506 					       0, q_vector->name, q_vector);
2507 		if (err) {
2508 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2509 				   err);
2510 			goto free_q_irqs;
2511 		}
2512 
2513 		/* register for affinity change notifications */
2514 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2515 			struct irq_affinity_notify *affinity_notify;
2516 
2517 			affinity_notify = &q_vector->affinity_notify;
2518 			affinity_notify->notify = ice_irq_affinity_notify;
2519 			affinity_notify->release = ice_irq_affinity_release;
2520 			irq_set_affinity_notifier(irq_num, affinity_notify);
2521 		}
2522 
2523 		/* assign the mask for this irq */
2524 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2525 	}
2526 
2527 	err = ice_set_cpu_rx_rmap(vsi);
2528 	if (err) {
2529 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2530 			   vsi->vsi_num, ERR_PTR(err));
2531 		goto free_q_irqs;
2532 	}
2533 
2534 	vsi->irqs_ready = true;
2535 	return 0;
2536 
2537 free_q_irqs:
2538 	while (vector) {
2539 		vector--;
2540 		irq_num = pf->msix_entries[base + vector].vector;
2541 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2542 			irq_set_affinity_notifier(irq_num, NULL);
2543 		irq_set_affinity_hint(irq_num, NULL);
2544 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2545 	}
2546 	return err;
2547 }
2548 
2549 /**
2550  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2551  * @vsi: VSI to setup Tx rings used by XDP
2552  *
2553  * Return 0 on success and negative value on error
2554  */
2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2556 {
2557 	struct device *dev = ice_pf_to_dev(vsi->back);
2558 	struct ice_tx_desc *tx_desc;
2559 	int i, j;
2560 
2561 	ice_for_each_xdp_txq(vsi, i) {
2562 		u16 xdp_q_idx = vsi->alloc_txq + i;
2563 		struct ice_tx_ring *xdp_ring;
2564 
2565 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2566 
2567 		if (!xdp_ring)
2568 			goto free_xdp_rings;
2569 
2570 		xdp_ring->q_index = xdp_q_idx;
2571 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2572 		xdp_ring->vsi = vsi;
2573 		xdp_ring->netdev = NULL;
2574 		xdp_ring->dev = dev;
2575 		xdp_ring->count = vsi->num_tx_desc;
2576 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2577 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2578 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2579 		if (ice_setup_tx_ring(xdp_ring))
2580 			goto free_xdp_rings;
2581 		ice_set_ring_xdp(xdp_ring);
2582 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2583 		spin_lock_init(&xdp_ring->tx_lock);
2584 		for (j = 0; j < xdp_ring->count; j++) {
2585 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2586 			tx_desc->cmd_type_offset_bsz = 0;
2587 		}
2588 	}
2589 
2590 	ice_for_each_rxq(vsi, i) {
2591 		if (static_key_enabled(&ice_xdp_locking_key))
2592 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2593 		else
2594 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2595 	}
2596 
2597 	return 0;
2598 
2599 free_xdp_rings:
2600 	for (; i >= 0; i--)
2601 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2602 			ice_free_tx_ring(vsi->xdp_rings[i]);
2603 	return -ENOMEM;
2604 }
2605 
2606 /**
2607  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2608  * @vsi: VSI to set the bpf prog on
2609  * @prog: the bpf prog pointer
2610  */
2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2612 {
2613 	struct bpf_prog *old_prog;
2614 	int i;
2615 
2616 	old_prog = xchg(&vsi->xdp_prog, prog);
2617 	if (old_prog)
2618 		bpf_prog_put(old_prog);
2619 
2620 	ice_for_each_rxq(vsi, i)
2621 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2622 }
2623 
2624 /**
2625  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2626  * @vsi: VSI to bring up Tx rings used by XDP
2627  * @prog: bpf program that will be assigned to VSI
2628  *
2629  * Return 0 on success and negative value on error
2630  */
2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2632 {
2633 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2634 	int xdp_rings_rem = vsi->num_xdp_txq;
2635 	struct ice_pf *pf = vsi->back;
2636 	struct ice_qs_cfg xdp_qs_cfg = {
2637 		.qs_mutex = &pf->avail_q_mutex,
2638 		.pf_map = pf->avail_txqs,
2639 		.pf_map_size = pf->max_pf_txqs,
2640 		.q_count = vsi->num_xdp_txq,
2641 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2642 		.vsi_map = vsi->txq_map,
2643 		.vsi_map_offset = vsi->alloc_txq,
2644 		.mapping_mode = ICE_VSI_MAP_CONTIG
2645 	};
2646 	struct device *dev;
2647 	int i, v_idx;
2648 	int status;
2649 
2650 	dev = ice_pf_to_dev(pf);
2651 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2652 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2653 	if (!vsi->xdp_rings)
2654 		return -ENOMEM;
2655 
2656 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2657 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2658 		goto err_map_xdp;
2659 
2660 	if (static_key_enabled(&ice_xdp_locking_key))
2661 		netdev_warn(vsi->netdev,
2662 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2663 
2664 	if (ice_xdp_alloc_setup_rings(vsi))
2665 		goto clear_xdp_rings;
2666 
2667 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2668 	ice_for_each_q_vector(vsi, v_idx) {
2669 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2670 		int xdp_rings_per_v, q_id, q_base;
2671 
2672 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2673 					       vsi->num_q_vectors - v_idx);
2674 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2675 
2676 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2677 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2678 
2679 			xdp_ring->q_vector = q_vector;
2680 			xdp_ring->next = q_vector->tx.tx_ring;
2681 			q_vector->tx.tx_ring = xdp_ring;
2682 		}
2683 		xdp_rings_rem -= xdp_rings_per_v;
2684 	}
2685 
2686 	/* omit the scheduler update if in reset path; XDP queues will be
2687 	 * taken into account at the end of ice_vsi_rebuild, where
2688 	 * ice_cfg_vsi_lan is being called
2689 	 */
2690 	if (ice_is_reset_in_progress(pf->state))
2691 		return 0;
2692 
2693 	/* tell the Tx scheduler that right now we have
2694 	 * additional queues
2695 	 */
2696 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2697 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2698 
2699 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2700 				 max_txqs);
2701 	if (status) {
2702 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2703 			status);
2704 		goto clear_xdp_rings;
2705 	}
2706 
2707 	/* assign the prog only when it's not already present on VSI;
2708 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2709 	 * VSI rebuild that happens under ethtool -L can expose us to
2710 	 * the bpf_prog refcount issues as we would be swapping same
2711 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2712 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2713 	 * this is not harmful as dev_xdp_install bumps the refcount
2714 	 * before calling the op exposed by the driver;
2715 	 */
2716 	if (!ice_is_xdp_ena_vsi(vsi))
2717 		ice_vsi_assign_bpf_prog(vsi, prog);
2718 
2719 	return 0;
2720 clear_xdp_rings:
2721 	ice_for_each_xdp_txq(vsi, i)
2722 		if (vsi->xdp_rings[i]) {
2723 			kfree_rcu(vsi->xdp_rings[i], rcu);
2724 			vsi->xdp_rings[i] = NULL;
2725 		}
2726 
2727 err_map_xdp:
2728 	mutex_lock(&pf->avail_q_mutex);
2729 	ice_for_each_xdp_txq(vsi, i) {
2730 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2731 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2732 	}
2733 	mutex_unlock(&pf->avail_q_mutex);
2734 
2735 	devm_kfree(dev, vsi->xdp_rings);
2736 	return -ENOMEM;
2737 }
2738 
2739 /**
2740  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2741  * @vsi: VSI to remove XDP rings
2742  *
2743  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2744  * resources
2745  */
2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2747 {
2748 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2749 	struct ice_pf *pf = vsi->back;
2750 	int i, v_idx;
2751 
2752 	/* q_vectors are freed in reset path so there's no point in detaching
2753 	 * rings; in case of rebuild being triggered not from reset bits
2754 	 * in pf->state won't be set, so additionally check first q_vector
2755 	 * against NULL
2756 	 */
2757 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2758 		goto free_qmap;
2759 
2760 	ice_for_each_q_vector(vsi, v_idx) {
2761 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2762 		struct ice_tx_ring *ring;
2763 
2764 		ice_for_each_tx_ring(ring, q_vector->tx)
2765 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2766 				break;
2767 
2768 		/* restore the value of last node prior to XDP setup */
2769 		q_vector->tx.tx_ring = ring;
2770 	}
2771 
2772 free_qmap:
2773 	mutex_lock(&pf->avail_q_mutex);
2774 	ice_for_each_xdp_txq(vsi, i) {
2775 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2776 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2777 	}
2778 	mutex_unlock(&pf->avail_q_mutex);
2779 
2780 	ice_for_each_xdp_txq(vsi, i)
2781 		if (vsi->xdp_rings[i]) {
2782 			if (vsi->xdp_rings[i]->desc) {
2783 				synchronize_rcu();
2784 				ice_free_tx_ring(vsi->xdp_rings[i]);
2785 			}
2786 			kfree_rcu(vsi->xdp_rings[i], rcu);
2787 			vsi->xdp_rings[i] = NULL;
2788 		}
2789 
2790 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2791 	vsi->xdp_rings = NULL;
2792 
2793 	if (static_key_enabled(&ice_xdp_locking_key))
2794 		static_branch_dec(&ice_xdp_locking_key);
2795 
2796 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2797 		return 0;
2798 
2799 	ice_vsi_assign_bpf_prog(vsi, NULL);
2800 
2801 	/* notify Tx scheduler that we destroyed XDP queues and bring
2802 	 * back the old number of child nodes
2803 	 */
2804 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2805 		max_txqs[i] = vsi->num_txq;
2806 
2807 	/* change number of XDP Tx queues to 0 */
2808 	vsi->num_xdp_txq = 0;
2809 
2810 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2811 			       max_txqs);
2812 }
2813 
2814 /**
2815  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2816  * @vsi: VSI to schedule napi on
2817  */
2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2819 {
2820 	int i;
2821 
2822 	ice_for_each_rxq(vsi, i) {
2823 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2824 
2825 		if (rx_ring->xsk_pool)
2826 			napi_schedule(&rx_ring->q_vector->napi);
2827 	}
2828 }
2829 
2830 /**
2831  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2832  * @vsi: VSI to determine the count of XDP Tx qs
2833  *
2834  * returns 0 if Tx qs count is higher than at least half of CPU count,
2835  * -ENOMEM otherwise
2836  */
2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2838 {
2839 	u16 avail = ice_get_avail_txq_count(vsi->back);
2840 	u16 cpus = num_possible_cpus();
2841 
2842 	if (avail < cpus / 2)
2843 		return -ENOMEM;
2844 
2845 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2846 
2847 	if (vsi->num_xdp_txq < cpus)
2848 		static_branch_inc(&ice_xdp_locking_key);
2849 
2850 	return 0;
2851 }
2852 
2853 /**
2854  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2855  * @vsi: VSI to setup XDP for
2856  * @prog: XDP program
2857  * @extack: netlink extended ack
2858  */
2859 static int
2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2861 		   struct netlink_ext_ack *extack)
2862 {
2863 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2864 	bool if_running = netif_running(vsi->netdev);
2865 	int ret = 0, xdp_ring_err = 0;
2866 
2867 	if (frame_size > vsi->rx_buf_len) {
2868 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2869 		return -EOPNOTSUPP;
2870 	}
2871 
2872 	/* need to stop netdev while setting up the program for Rx rings */
2873 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2874 		ret = ice_down(vsi);
2875 		if (ret) {
2876 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2877 			return ret;
2878 		}
2879 	}
2880 
2881 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2882 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2883 		if (xdp_ring_err) {
2884 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2885 		} else {
2886 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2887 			if (xdp_ring_err)
2888 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2889 		}
2890 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2891 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2892 		if (xdp_ring_err)
2893 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2894 	} else {
2895 		/* safe to call even when prog == vsi->xdp_prog as
2896 		 * dev_xdp_install in net/core/dev.c incremented prog's
2897 		 * refcount so corresponding bpf_prog_put won't cause
2898 		 * underflow
2899 		 */
2900 		ice_vsi_assign_bpf_prog(vsi, prog);
2901 	}
2902 
2903 	if (if_running)
2904 		ret = ice_up(vsi);
2905 
2906 	if (!ret && prog)
2907 		ice_vsi_rx_napi_schedule(vsi);
2908 
2909 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2910 }
2911 
2912 /**
2913  * ice_xdp_safe_mode - XDP handler for safe mode
2914  * @dev: netdevice
2915  * @xdp: XDP command
2916  */
2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2918 			     struct netdev_bpf *xdp)
2919 {
2920 	NL_SET_ERR_MSG_MOD(xdp->extack,
2921 			   "Please provide working DDP firmware package in order to use XDP\n"
2922 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2923 	return -EOPNOTSUPP;
2924 }
2925 
2926 /**
2927  * ice_xdp - implements XDP handler
2928  * @dev: netdevice
2929  * @xdp: XDP command
2930  */
2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2932 {
2933 	struct ice_netdev_priv *np = netdev_priv(dev);
2934 	struct ice_vsi *vsi = np->vsi;
2935 
2936 	if (vsi->type != ICE_VSI_PF) {
2937 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2938 		return -EINVAL;
2939 	}
2940 
2941 	switch (xdp->command) {
2942 	case XDP_SETUP_PROG:
2943 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2944 	case XDP_SETUP_XSK_POOL:
2945 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2946 					  xdp->xsk.queue_id);
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 }
2951 
2952 /**
2953  * ice_ena_misc_vector - enable the non-queue interrupts
2954  * @pf: board private structure
2955  */
2956 static void ice_ena_misc_vector(struct ice_pf *pf)
2957 {
2958 	struct ice_hw *hw = &pf->hw;
2959 	u32 val;
2960 
2961 	/* Disable anti-spoof detection interrupt to prevent spurious event
2962 	 * interrupts during a function reset. Anti-spoof functionally is
2963 	 * still supported.
2964 	 */
2965 	val = rd32(hw, GL_MDCK_TX_TDPU);
2966 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2967 	wr32(hw, GL_MDCK_TX_TDPU, val);
2968 
2969 	/* clear things first */
2970 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2971 	rd32(hw, PFINT_OICR);		/* read to clear */
2972 
2973 	val = (PFINT_OICR_ECC_ERR_M |
2974 	       PFINT_OICR_MAL_DETECT_M |
2975 	       PFINT_OICR_GRST_M |
2976 	       PFINT_OICR_PCI_EXCEPTION_M |
2977 	       PFINT_OICR_VFLR_M |
2978 	       PFINT_OICR_HMC_ERR_M |
2979 	       PFINT_OICR_PE_PUSH_M |
2980 	       PFINT_OICR_PE_CRITERR_M);
2981 
2982 	wr32(hw, PFINT_OICR_ENA, val);
2983 
2984 	/* SW_ITR_IDX = 0, but don't change INTENA */
2985 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2986 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2987 }
2988 
2989 /**
2990  * ice_misc_intr - misc interrupt handler
2991  * @irq: interrupt number
2992  * @data: pointer to a q_vector
2993  */
2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2995 {
2996 	struct ice_pf *pf = (struct ice_pf *)data;
2997 	struct ice_hw *hw = &pf->hw;
2998 	irqreturn_t ret = IRQ_NONE;
2999 	struct device *dev;
3000 	u32 oicr, ena_mask;
3001 
3002 	dev = ice_pf_to_dev(pf);
3003 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3004 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3005 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3006 
3007 	oicr = rd32(hw, PFINT_OICR);
3008 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3009 
3010 	if (oicr & PFINT_OICR_SWINT_M) {
3011 		ena_mask &= ~PFINT_OICR_SWINT_M;
3012 		pf->sw_int_count++;
3013 	}
3014 
3015 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3016 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3017 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3018 	}
3019 	if (oicr & PFINT_OICR_VFLR_M) {
3020 		/* disable any further VFLR event notifications */
3021 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3022 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3023 
3024 			reg &= ~PFINT_OICR_VFLR_M;
3025 			wr32(hw, PFINT_OICR_ENA, reg);
3026 		} else {
3027 			ena_mask &= ~PFINT_OICR_VFLR_M;
3028 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3029 		}
3030 	}
3031 
3032 	if (oicr & PFINT_OICR_GRST_M) {
3033 		u32 reset;
3034 
3035 		/* we have a reset warning */
3036 		ena_mask &= ~PFINT_OICR_GRST_M;
3037 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3038 			GLGEN_RSTAT_RESET_TYPE_S;
3039 
3040 		if (reset == ICE_RESET_CORER)
3041 			pf->corer_count++;
3042 		else if (reset == ICE_RESET_GLOBR)
3043 			pf->globr_count++;
3044 		else if (reset == ICE_RESET_EMPR)
3045 			pf->empr_count++;
3046 		else
3047 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3048 
3049 		/* If a reset cycle isn't already in progress, we set a bit in
3050 		 * pf->state so that the service task can start a reset/rebuild.
3051 		 */
3052 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3053 			if (reset == ICE_RESET_CORER)
3054 				set_bit(ICE_CORER_RECV, pf->state);
3055 			else if (reset == ICE_RESET_GLOBR)
3056 				set_bit(ICE_GLOBR_RECV, pf->state);
3057 			else
3058 				set_bit(ICE_EMPR_RECV, pf->state);
3059 
3060 			/* There are couple of different bits at play here.
3061 			 * hw->reset_ongoing indicates whether the hardware is
3062 			 * in reset. This is set to true when a reset interrupt
3063 			 * is received and set back to false after the driver
3064 			 * has determined that the hardware is out of reset.
3065 			 *
3066 			 * ICE_RESET_OICR_RECV in pf->state indicates
3067 			 * that a post reset rebuild is required before the
3068 			 * driver is operational again. This is set above.
3069 			 *
3070 			 * As this is the start of the reset/rebuild cycle, set
3071 			 * both to indicate that.
3072 			 */
3073 			hw->reset_ongoing = true;
3074 		}
3075 	}
3076 
3077 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3078 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3079 		ice_ptp_process_ts(pf);
3080 	}
3081 
3082 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3083 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3084 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3085 
3086 		/* Save EVENTs from GTSYN register */
3087 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3088 						     GLTSYN_STAT_EVENT1_M |
3089 						     GLTSYN_STAT_EVENT2_M);
3090 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3091 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3092 	}
3093 
3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3095 	if (oicr & ICE_AUX_CRIT_ERR) {
3096 		pf->oicr_err_reg |= oicr;
3097 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3098 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3099 	}
3100 
3101 	/* Report any remaining unexpected interrupts */
3102 	oicr &= ena_mask;
3103 	if (oicr) {
3104 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3105 		/* If a critical error is pending there is no choice but to
3106 		 * reset the device.
3107 		 */
3108 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3109 			    PFINT_OICR_ECC_ERR_M)) {
3110 			set_bit(ICE_PFR_REQ, pf->state);
3111 			ice_service_task_schedule(pf);
3112 		}
3113 	}
3114 	ret = IRQ_HANDLED;
3115 
3116 	ice_service_task_schedule(pf);
3117 	ice_irq_dynamic_ena(hw, NULL, NULL);
3118 
3119 	return ret;
3120 }
3121 
3122 /**
3123  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3124  * @hw: pointer to HW structure
3125  */
3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3127 {
3128 	/* disable Admin queue Interrupt causes */
3129 	wr32(hw, PFINT_FW_CTL,
3130 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3131 
3132 	/* disable Mailbox queue Interrupt causes */
3133 	wr32(hw, PFINT_MBX_CTL,
3134 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3135 
3136 	wr32(hw, PFINT_SB_CTL,
3137 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3138 
3139 	/* disable Control queue Interrupt causes */
3140 	wr32(hw, PFINT_OICR_CTL,
3141 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3142 
3143 	ice_flush(hw);
3144 }
3145 
3146 /**
3147  * ice_free_irq_msix_misc - Unroll misc vector setup
3148  * @pf: board private structure
3149  */
3150 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3151 {
3152 	struct ice_hw *hw = &pf->hw;
3153 
3154 	ice_dis_ctrlq_interrupts(hw);
3155 
3156 	/* disable OICR interrupt */
3157 	wr32(hw, PFINT_OICR_ENA, 0);
3158 	ice_flush(hw);
3159 
3160 	if (pf->msix_entries) {
3161 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3162 		devm_free_irq(ice_pf_to_dev(pf),
3163 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3164 	}
3165 
3166 	pf->num_avail_sw_msix += 1;
3167 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3168 }
3169 
3170 /**
3171  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3172  * @hw: pointer to HW structure
3173  * @reg_idx: HW vector index to associate the control queue interrupts with
3174  */
3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3176 {
3177 	u32 val;
3178 
3179 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3180 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3181 	wr32(hw, PFINT_OICR_CTL, val);
3182 
3183 	/* enable Admin queue Interrupt causes */
3184 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3185 	       PFINT_FW_CTL_CAUSE_ENA_M);
3186 	wr32(hw, PFINT_FW_CTL, val);
3187 
3188 	/* enable Mailbox queue Interrupt causes */
3189 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3190 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3191 	wr32(hw, PFINT_MBX_CTL, val);
3192 
3193 	/* This enables Sideband queue Interrupt causes */
3194 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3195 	       PFINT_SB_CTL_CAUSE_ENA_M);
3196 	wr32(hw, PFINT_SB_CTL, val);
3197 
3198 	ice_flush(hw);
3199 }
3200 
3201 /**
3202  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3203  * @pf: board private structure
3204  *
3205  * This sets up the handler for MSIX 0, which is used to manage the
3206  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3207  * when in MSI or Legacy interrupt mode.
3208  */
3209 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3210 {
3211 	struct device *dev = ice_pf_to_dev(pf);
3212 	struct ice_hw *hw = &pf->hw;
3213 	int oicr_idx, err = 0;
3214 
3215 	if (!pf->int_name[0])
3216 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3217 			 dev_driver_string(dev), dev_name(dev));
3218 
3219 	/* Do not request IRQ but do enable OICR interrupt since settings are
3220 	 * lost during reset. Note that this function is called only during
3221 	 * rebuild path and not while reset is in progress.
3222 	 */
3223 	if (ice_is_reset_in_progress(pf->state))
3224 		goto skip_req_irq;
3225 
3226 	/* reserve one vector in irq_tracker for misc interrupts */
3227 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3228 	if (oicr_idx < 0)
3229 		return oicr_idx;
3230 
3231 	pf->num_avail_sw_msix -= 1;
3232 	pf->oicr_idx = (u16)oicr_idx;
3233 
3234 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3235 			       ice_misc_intr, 0, pf->int_name, pf);
3236 	if (err) {
3237 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3238 			pf->int_name, err);
3239 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3240 		pf->num_avail_sw_msix += 1;
3241 		return err;
3242 	}
3243 
3244 skip_req_irq:
3245 	ice_ena_misc_vector(pf);
3246 
3247 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3248 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3249 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3250 
3251 	ice_flush(hw);
3252 	ice_irq_dynamic_ena(hw, NULL, NULL);
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * ice_napi_add - register NAPI handler for the VSI
3259  * @vsi: VSI for which NAPI handler is to be registered
3260  *
3261  * This function is only called in the driver's load path. Registering the NAPI
3262  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3263  * reset/rebuild, etc.)
3264  */
3265 static void ice_napi_add(struct ice_vsi *vsi)
3266 {
3267 	int v_idx;
3268 
3269 	if (!vsi->netdev)
3270 		return;
3271 
3272 	ice_for_each_q_vector(vsi, v_idx)
3273 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3274 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3275 }
3276 
3277 /**
3278  * ice_set_ops - set netdev and ethtools ops for the given netdev
3279  * @netdev: netdev instance
3280  */
3281 static void ice_set_ops(struct net_device *netdev)
3282 {
3283 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3284 
3285 	if (ice_is_safe_mode(pf)) {
3286 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3287 		ice_set_ethtool_safe_mode_ops(netdev);
3288 		return;
3289 	}
3290 
3291 	netdev->netdev_ops = &ice_netdev_ops;
3292 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3293 	ice_set_ethtool_ops(netdev);
3294 }
3295 
3296 /**
3297  * ice_set_netdev_features - set features for the given netdev
3298  * @netdev: netdev instance
3299  */
3300 static void ice_set_netdev_features(struct net_device *netdev)
3301 {
3302 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3303 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3304 	netdev_features_t csumo_features;
3305 	netdev_features_t vlano_features;
3306 	netdev_features_t dflt_features;
3307 	netdev_features_t tso_features;
3308 
3309 	if (ice_is_safe_mode(pf)) {
3310 		/* safe mode */
3311 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3312 		netdev->hw_features = netdev->features;
3313 		return;
3314 	}
3315 
3316 	dflt_features = NETIF_F_SG	|
3317 			NETIF_F_HIGHDMA	|
3318 			NETIF_F_NTUPLE	|
3319 			NETIF_F_RXHASH;
3320 
3321 	csumo_features = NETIF_F_RXCSUM	  |
3322 			 NETIF_F_IP_CSUM  |
3323 			 NETIF_F_SCTP_CRC |
3324 			 NETIF_F_IPV6_CSUM;
3325 
3326 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3327 			 NETIF_F_HW_VLAN_CTAG_TX     |
3328 			 NETIF_F_HW_VLAN_CTAG_RX;
3329 
3330 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3331 	if (is_dvm_ena)
3332 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3333 
3334 	tso_features = NETIF_F_TSO			|
3335 		       NETIF_F_TSO_ECN			|
3336 		       NETIF_F_TSO6			|
3337 		       NETIF_F_GSO_GRE			|
3338 		       NETIF_F_GSO_UDP_TUNNEL		|
3339 		       NETIF_F_GSO_GRE_CSUM		|
3340 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3341 		       NETIF_F_GSO_PARTIAL		|
3342 		       NETIF_F_GSO_IPXIP4		|
3343 		       NETIF_F_GSO_IPXIP6		|
3344 		       NETIF_F_GSO_UDP_L4;
3345 
3346 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3347 					NETIF_F_GSO_GRE_CSUM;
3348 	/* set features that user can change */
3349 	netdev->hw_features = dflt_features | csumo_features |
3350 			      vlano_features | tso_features;
3351 
3352 	/* add support for HW_CSUM on packets with MPLS header */
3353 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3354 				 NETIF_F_TSO     |
3355 				 NETIF_F_TSO6;
3356 
3357 	/* enable features */
3358 	netdev->features |= netdev->hw_features;
3359 
3360 	netdev->hw_features |= NETIF_F_HW_TC;
3361 	netdev->hw_features |= NETIF_F_LOOPBACK;
3362 
3363 	/* encap and VLAN devices inherit default, csumo and tso features */
3364 	netdev->hw_enc_features |= dflt_features | csumo_features |
3365 				   tso_features;
3366 	netdev->vlan_features |= dflt_features | csumo_features |
3367 				 tso_features;
3368 
3369 	/* advertise support but don't enable by default since only one type of
3370 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3371 	 * type turns on the other has to be turned off. This is enforced by the
3372 	 * ice_fix_features() ndo callback.
3373 	 */
3374 	if (is_dvm_ena)
3375 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3376 			NETIF_F_HW_VLAN_STAG_TX;
3377 }
3378 
3379 /**
3380  * ice_cfg_netdev - Allocate, configure and register a netdev
3381  * @vsi: the VSI associated with the new netdev
3382  *
3383  * Returns 0 on success, negative value on failure
3384  */
3385 static int ice_cfg_netdev(struct ice_vsi *vsi)
3386 {
3387 	struct ice_netdev_priv *np;
3388 	struct net_device *netdev;
3389 	u8 mac_addr[ETH_ALEN];
3390 
3391 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3392 				    vsi->alloc_rxq);
3393 	if (!netdev)
3394 		return -ENOMEM;
3395 
3396 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3397 	vsi->netdev = netdev;
3398 	np = netdev_priv(netdev);
3399 	np->vsi = vsi;
3400 
3401 	ice_set_netdev_features(netdev);
3402 
3403 	ice_set_ops(netdev);
3404 
3405 	if (vsi->type == ICE_VSI_PF) {
3406 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3407 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3408 		eth_hw_addr_set(netdev, mac_addr);
3409 		ether_addr_copy(netdev->perm_addr, mac_addr);
3410 	}
3411 
3412 	netdev->priv_flags |= IFF_UNICAST_FLT;
3413 
3414 	/* Setup netdev TC information */
3415 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3416 
3417 	/* setup watchdog timeout value to be 5 second */
3418 	netdev->watchdog_timeo = 5 * HZ;
3419 
3420 	netdev->min_mtu = ETH_MIN_MTU;
3421 	netdev->max_mtu = ICE_MAX_MTU;
3422 
3423 	return 0;
3424 }
3425 
3426 /**
3427  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3428  * @lut: Lookup table
3429  * @rss_table_size: Lookup table size
3430  * @rss_size: Range of queue number for hashing
3431  */
3432 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3433 {
3434 	u16 i;
3435 
3436 	for (i = 0; i < rss_table_size; i++)
3437 		lut[i] = i % rss_size;
3438 }
3439 
3440 /**
3441  * ice_pf_vsi_setup - Set up a PF VSI
3442  * @pf: board private structure
3443  * @pi: pointer to the port_info instance
3444  *
3445  * Returns pointer to the successfully allocated VSI software struct
3446  * on success, otherwise returns NULL on failure.
3447  */
3448 static struct ice_vsi *
3449 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3450 {
3451 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3452 }
3453 
3454 static struct ice_vsi *
3455 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3456 		   struct ice_channel *ch)
3457 {
3458 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3459 }
3460 
3461 /**
3462  * ice_ctrl_vsi_setup - Set up a control VSI
3463  * @pf: board private structure
3464  * @pi: pointer to the port_info instance
3465  *
3466  * Returns pointer to the successfully allocated VSI software struct
3467  * on success, otherwise returns NULL on failure.
3468  */
3469 static struct ice_vsi *
3470 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3471 {
3472 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3473 }
3474 
3475 /**
3476  * ice_lb_vsi_setup - Set up a loopback VSI
3477  * @pf: board private structure
3478  * @pi: pointer to the port_info instance
3479  *
3480  * Returns pointer to the successfully allocated VSI software struct
3481  * on success, otherwise returns NULL on failure.
3482  */
3483 struct ice_vsi *
3484 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3485 {
3486 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3487 }
3488 
3489 /**
3490  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3491  * @netdev: network interface to be adjusted
3492  * @proto: VLAN TPID
3493  * @vid: VLAN ID to be added
3494  *
3495  * net_device_ops implementation for adding VLAN IDs
3496  */
3497 static int
3498 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3499 {
3500 	struct ice_netdev_priv *np = netdev_priv(netdev);
3501 	struct ice_vsi_vlan_ops *vlan_ops;
3502 	struct ice_vsi *vsi = np->vsi;
3503 	struct ice_vlan vlan;
3504 	int ret;
3505 
3506 	/* VLAN 0 is added by default during load/reset */
3507 	if (!vid)
3508 		return 0;
3509 
3510 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3511 		usleep_range(1000, 2000);
3512 
3513 	/* Add multicast promisc rule for the VLAN ID to be added if
3514 	 * all-multicast is currently enabled.
3515 	 */
3516 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3517 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3518 					       ICE_MCAST_VLAN_PROMISC_BITS,
3519 					       vid);
3520 		if (ret)
3521 			goto finish;
3522 	}
3523 
3524 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3525 
3526 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3527 	 * packets aren't pruned by the device's internal switch on Rx
3528 	 */
3529 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3530 	ret = vlan_ops->add_vlan(vsi, &vlan);
3531 	if (ret)
3532 		goto finish;
3533 
3534 	/* If all-multicast is currently enabled and this VLAN ID is only one
3535 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3536 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3537 	 */
3538 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3539 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3540 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3541 					   ICE_MCAST_PROMISC_BITS, 0);
3542 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3543 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3544 	}
3545 
3546 finish:
3547 	clear_bit(ICE_CFG_BUSY, vsi->state);
3548 
3549 	return ret;
3550 }
3551 
3552 /**
3553  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3554  * @netdev: network interface to be adjusted
3555  * @proto: VLAN TPID
3556  * @vid: VLAN ID to be removed
3557  *
3558  * net_device_ops implementation for removing VLAN IDs
3559  */
3560 static int
3561 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3562 {
3563 	struct ice_netdev_priv *np = netdev_priv(netdev);
3564 	struct ice_vsi_vlan_ops *vlan_ops;
3565 	struct ice_vsi *vsi = np->vsi;
3566 	struct ice_vlan vlan;
3567 	int ret;
3568 
3569 	/* don't allow removal of VLAN 0 */
3570 	if (!vid)
3571 		return 0;
3572 
3573 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3574 		usleep_range(1000, 2000);
3575 
3576 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3577 
3578 	/* Make sure VLAN delete is successful before updating VLAN
3579 	 * information
3580 	 */
3581 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3582 	ret = vlan_ops->del_vlan(vsi, &vlan);
3583 	if (ret)
3584 		goto finish;
3585 
3586 	/* Remove multicast promisc rule for the removed VLAN ID if
3587 	 * all-multicast is enabled.
3588 	 */
3589 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3590 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3591 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3592 
3593 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3594 		/* Update look-up type of multicast promisc rule for VLAN 0
3595 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3596 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3597 		 */
3598 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3599 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3600 						   ICE_MCAST_VLAN_PROMISC_BITS,
3601 						   0);
3602 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3603 						 ICE_MCAST_PROMISC_BITS, 0);
3604 		}
3605 	}
3606 
3607 finish:
3608 	clear_bit(ICE_CFG_BUSY, vsi->state);
3609 
3610 	return ret;
3611 }
3612 
3613 /**
3614  * ice_rep_indr_tc_block_unbind
3615  * @cb_priv: indirection block private data
3616  */
3617 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3618 {
3619 	struct ice_indr_block_priv *indr_priv = cb_priv;
3620 
3621 	list_del(&indr_priv->list);
3622 	kfree(indr_priv);
3623 }
3624 
3625 /**
3626  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3627  * @vsi: VSI struct which has the netdev
3628  */
3629 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3630 {
3631 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3632 
3633 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3634 				 ice_rep_indr_tc_block_unbind);
3635 }
3636 
3637 /**
3638  * ice_tc_indir_block_remove - clean indirect TC block notifications
3639  * @pf: PF structure
3640  */
3641 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3642 {
3643 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3644 
3645 	if (!pf_vsi)
3646 		return;
3647 
3648 	ice_tc_indir_block_unregister(pf_vsi);
3649 }
3650 
3651 /**
3652  * ice_tc_indir_block_register - Register TC indirect block notifications
3653  * @vsi: VSI struct which has the netdev
3654  *
3655  * Returns 0 on success, negative value on failure
3656  */
3657 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3658 {
3659 	struct ice_netdev_priv *np;
3660 
3661 	if (!vsi || !vsi->netdev)
3662 		return -EINVAL;
3663 
3664 	np = netdev_priv(vsi->netdev);
3665 
3666 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3667 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3668 }
3669 
3670 /**
3671  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3672  * @pf: board private structure
3673  *
3674  * Returns 0 on success, negative value on failure
3675  */
3676 static int ice_setup_pf_sw(struct ice_pf *pf)
3677 {
3678 	struct device *dev = ice_pf_to_dev(pf);
3679 	bool dvm = ice_is_dvm_ena(&pf->hw);
3680 	struct ice_vsi *vsi;
3681 	int status;
3682 
3683 	if (ice_is_reset_in_progress(pf->state))
3684 		return -EBUSY;
3685 
3686 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3687 	if (status)
3688 		return -EIO;
3689 
3690 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3691 	if (!vsi)
3692 		return -ENOMEM;
3693 
3694 	/* init channel list */
3695 	INIT_LIST_HEAD(&vsi->ch_list);
3696 
3697 	status = ice_cfg_netdev(vsi);
3698 	if (status)
3699 		goto unroll_vsi_setup;
3700 	/* netdev has to be configured before setting frame size */
3701 	ice_vsi_cfg_frame_size(vsi);
3702 
3703 	/* init indirect block notifications */
3704 	status = ice_tc_indir_block_register(vsi);
3705 	if (status) {
3706 		dev_err(dev, "Failed to register netdev notifier\n");
3707 		goto unroll_cfg_netdev;
3708 	}
3709 
3710 	/* Setup DCB netlink interface */
3711 	ice_dcbnl_setup(vsi);
3712 
3713 	/* registering the NAPI handler requires both the queues and
3714 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3715 	 * and ice_cfg_netdev() respectively
3716 	 */
3717 	ice_napi_add(vsi);
3718 
3719 	status = ice_init_mac_fltr(pf);
3720 	if (status)
3721 		goto unroll_napi_add;
3722 
3723 	return 0;
3724 
3725 unroll_napi_add:
3726 	ice_tc_indir_block_unregister(vsi);
3727 unroll_cfg_netdev:
3728 	if (vsi) {
3729 		ice_napi_del(vsi);
3730 		if (vsi->netdev) {
3731 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3732 			free_netdev(vsi->netdev);
3733 			vsi->netdev = NULL;
3734 		}
3735 	}
3736 
3737 unroll_vsi_setup:
3738 	ice_vsi_release(vsi);
3739 	return status;
3740 }
3741 
3742 /**
3743  * ice_get_avail_q_count - Get count of queues in use
3744  * @pf_qmap: bitmap to get queue use count from
3745  * @lock: pointer to a mutex that protects access to pf_qmap
3746  * @size: size of the bitmap
3747  */
3748 static u16
3749 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3750 {
3751 	unsigned long bit;
3752 	u16 count = 0;
3753 
3754 	mutex_lock(lock);
3755 	for_each_clear_bit(bit, pf_qmap, size)
3756 		count++;
3757 	mutex_unlock(lock);
3758 
3759 	return count;
3760 }
3761 
3762 /**
3763  * ice_get_avail_txq_count - Get count of Tx queues in use
3764  * @pf: pointer to an ice_pf instance
3765  */
3766 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3767 {
3768 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3769 				     pf->max_pf_txqs);
3770 }
3771 
3772 /**
3773  * ice_get_avail_rxq_count - Get count of Rx queues in use
3774  * @pf: pointer to an ice_pf instance
3775  */
3776 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3777 {
3778 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3779 				     pf->max_pf_rxqs);
3780 }
3781 
3782 /**
3783  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3784  * @pf: board private structure to initialize
3785  */
3786 static void ice_deinit_pf(struct ice_pf *pf)
3787 {
3788 	ice_service_task_stop(pf);
3789 	mutex_destroy(&pf->adev_mutex);
3790 	mutex_destroy(&pf->sw_mutex);
3791 	mutex_destroy(&pf->tc_mutex);
3792 	mutex_destroy(&pf->avail_q_mutex);
3793 	mutex_destroy(&pf->vfs.table_lock);
3794 
3795 	if (pf->avail_txqs) {
3796 		bitmap_free(pf->avail_txqs);
3797 		pf->avail_txqs = NULL;
3798 	}
3799 
3800 	if (pf->avail_rxqs) {
3801 		bitmap_free(pf->avail_rxqs);
3802 		pf->avail_rxqs = NULL;
3803 	}
3804 
3805 	if (pf->ptp.clock)
3806 		ptp_clock_unregister(pf->ptp.clock);
3807 }
3808 
3809 /**
3810  * ice_set_pf_caps - set PFs capability flags
3811  * @pf: pointer to the PF instance
3812  */
3813 static void ice_set_pf_caps(struct ice_pf *pf)
3814 {
3815 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3816 
3817 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3818 	if (func_caps->common_cap.rdma)
3819 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3820 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3821 	if (func_caps->common_cap.dcb)
3822 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3823 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3824 	if (func_caps->common_cap.sr_iov_1_1) {
3825 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3826 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3827 					      ICE_MAX_SRIOV_VFS);
3828 	}
3829 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3830 	if (func_caps->common_cap.rss_table_size)
3831 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3832 
3833 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3834 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3835 		u16 unused;
3836 
3837 		/* ctrl_vsi_idx will be set to a valid value when flow director
3838 		 * is setup by ice_init_fdir
3839 		 */
3840 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3841 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3842 		/* force guaranteed filter pool for PF */
3843 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3844 				       func_caps->fd_fltr_guar);
3845 		/* force shared filter pool for PF */
3846 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3847 				       func_caps->fd_fltr_best_effort);
3848 	}
3849 
3850 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3851 	if (func_caps->common_cap.ieee_1588)
3852 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3853 
3854 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3855 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3856 }
3857 
3858 /**
3859  * ice_init_pf - Initialize general software structures (struct ice_pf)
3860  * @pf: board private structure to initialize
3861  */
3862 static int ice_init_pf(struct ice_pf *pf)
3863 {
3864 	ice_set_pf_caps(pf);
3865 
3866 	mutex_init(&pf->sw_mutex);
3867 	mutex_init(&pf->tc_mutex);
3868 	mutex_init(&pf->adev_mutex);
3869 
3870 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3871 	spin_lock_init(&pf->aq_wait_lock);
3872 	init_waitqueue_head(&pf->aq_wait_queue);
3873 
3874 	init_waitqueue_head(&pf->reset_wait_queue);
3875 
3876 	/* setup service timer and periodic service task */
3877 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3878 	pf->serv_tmr_period = HZ;
3879 	INIT_WORK(&pf->serv_task, ice_service_task);
3880 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3881 
3882 	mutex_init(&pf->avail_q_mutex);
3883 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3884 	if (!pf->avail_txqs)
3885 		return -ENOMEM;
3886 
3887 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3888 	if (!pf->avail_rxqs) {
3889 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3890 		pf->avail_txqs = NULL;
3891 		return -ENOMEM;
3892 	}
3893 
3894 	mutex_init(&pf->vfs.table_lock);
3895 	hash_init(pf->vfs.table);
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3902  * @pf: board private structure
3903  *
3904  * compute the number of MSIX vectors required (v_budget) and request from
3905  * the OS. Return the number of vectors reserved or negative on failure
3906  */
3907 static int ice_ena_msix_range(struct ice_pf *pf)
3908 {
3909 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3910 	struct device *dev = ice_pf_to_dev(pf);
3911 	int needed, err, i;
3912 
3913 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3914 	num_cpus = num_online_cpus();
3915 
3916 	/* reserve for LAN miscellaneous handler */
3917 	needed = ICE_MIN_LAN_OICR_MSIX;
3918 	if (v_left < needed)
3919 		goto no_hw_vecs_left_err;
3920 	v_budget += needed;
3921 	v_left -= needed;
3922 
3923 	/* reserve for flow director */
3924 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3925 		needed = ICE_FDIR_MSIX;
3926 		if (v_left < needed)
3927 			goto no_hw_vecs_left_err;
3928 		v_budget += needed;
3929 		v_left -= needed;
3930 	}
3931 
3932 	/* reserve for switchdev */
3933 	needed = ICE_ESWITCH_MSIX;
3934 	if (v_left < needed)
3935 		goto no_hw_vecs_left_err;
3936 	v_budget += needed;
3937 	v_left -= needed;
3938 
3939 	/* total used for non-traffic vectors */
3940 	v_other = v_budget;
3941 
3942 	/* reserve vectors for LAN traffic */
3943 	needed = num_cpus;
3944 	if (v_left < needed)
3945 		goto no_hw_vecs_left_err;
3946 	pf->num_lan_msix = needed;
3947 	v_budget += needed;
3948 	v_left -= needed;
3949 
3950 	/* reserve vectors for RDMA auxiliary driver */
3951 	if (ice_is_rdma_ena(pf)) {
3952 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3953 		if (v_left < needed)
3954 			goto no_hw_vecs_left_err;
3955 		pf->num_rdma_msix = needed;
3956 		v_budget += needed;
3957 		v_left -= needed;
3958 	}
3959 
3960 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3961 					sizeof(*pf->msix_entries), GFP_KERNEL);
3962 	if (!pf->msix_entries) {
3963 		err = -ENOMEM;
3964 		goto exit_err;
3965 	}
3966 
3967 	for (i = 0; i < v_budget; i++)
3968 		pf->msix_entries[i].entry = i;
3969 
3970 	/* actually reserve the vectors */
3971 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3972 					 ICE_MIN_MSIX, v_budget);
3973 	if (v_actual < 0) {
3974 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3975 		err = v_actual;
3976 		goto msix_err;
3977 	}
3978 
3979 	if (v_actual < v_budget) {
3980 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3981 			 v_budget, v_actual);
3982 
3983 		if (v_actual < ICE_MIN_MSIX) {
3984 			/* error if we can't get minimum vectors */
3985 			pci_disable_msix(pf->pdev);
3986 			err = -ERANGE;
3987 			goto msix_err;
3988 		} else {
3989 			int v_remain = v_actual - v_other;
3990 			int v_rdma = 0, v_min_rdma = 0;
3991 
3992 			if (ice_is_rdma_ena(pf)) {
3993 				/* Need at least 1 interrupt in addition to
3994 				 * AEQ MSIX
3995 				 */
3996 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3997 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3998 			}
3999 
4000 			if (v_actual == ICE_MIN_MSIX ||
4001 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4002 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4003 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4004 
4005 				pf->num_rdma_msix = 0;
4006 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4007 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4008 				   (v_remain - v_rdma < v_rdma)) {
4009 				/* Support minimum RDMA and give remaining
4010 				 * vectors to LAN MSIX
4011 				 */
4012 				pf->num_rdma_msix = v_min_rdma;
4013 				pf->num_lan_msix = v_remain - v_min_rdma;
4014 			} else {
4015 				/* Split remaining MSIX with RDMA after
4016 				 * accounting for AEQ MSIX
4017 				 */
4018 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4019 						    ICE_RDMA_NUM_AEQ_MSIX;
4020 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4021 			}
4022 
4023 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4024 				   pf->num_lan_msix);
4025 
4026 			if (ice_is_rdma_ena(pf))
4027 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4028 					   pf->num_rdma_msix);
4029 		}
4030 	}
4031 
4032 	return v_actual;
4033 
4034 msix_err:
4035 	devm_kfree(dev, pf->msix_entries);
4036 	goto exit_err;
4037 
4038 no_hw_vecs_left_err:
4039 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4040 		needed, v_left);
4041 	err = -ERANGE;
4042 exit_err:
4043 	pf->num_rdma_msix = 0;
4044 	pf->num_lan_msix = 0;
4045 	return err;
4046 }
4047 
4048 /**
4049  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4050  * @pf: board private structure
4051  */
4052 static void ice_dis_msix(struct ice_pf *pf)
4053 {
4054 	pci_disable_msix(pf->pdev);
4055 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4056 	pf->msix_entries = NULL;
4057 }
4058 
4059 /**
4060  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4061  * @pf: board private structure
4062  */
4063 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4064 {
4065 	ice_dis_msix(pf);
4066 
4067 	if (pf->irq_tracker) {
4068 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4069 		pf->irq_tracker = NULL;
4070 	}
4071 }
4072 
4073 /**
4074  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4075  * @pf: board private structure to initialize
4076  */
4077 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4078 {
4079 	int vectors;
4080 
4081 	vectors = ice_ena_msix_range(pf);
4082 
4083 	if (vectors < 0)
4084 		return vectors;
4085 
4086 	/* set up vector assignment tracking */
4087 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4088 				       struct_size(pf->irq_tracker, list, vectors),
4089 				       GFP_KERNEL);
4090 	if (!pf->irq_tracker) {
4091 		ice_dis_msix(pf);
4092 		return -ENOMEM;
4093 	}
4094 
4095 	/* populate SW interrupts pool with number of OS granted IRQs. */
4096 	pf->num_avail_sw_msix = (u16)vectors;
4097 	pf->irq_tracker->num_entries = (u16)vectors;
4098 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4099 
4100 	return 0;
4101 }
4102 
4103 /**
4104  * ice_is_wol_supported - check if WoL is supported
4105  * @hw: pointer to hardware info
4106  *
4107  * Check if WoL is supported based on the HW configuration.
4108  * Returns true if NVM supports and enables WoL for this port, false otherwise
4109  */
4110 bool ice_is_wol_supported(struct ice_hw *hw)
4111 {
4112 	u16 wol_ctrl;
4113 
4114 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4115 	 * word) indicates WoL is not supported on the corresponding PF ID.
4116 	 */
4117 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4118 		return false;
4119 
4120 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4121 }
4122 
4123 /**
4124  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4125  * @vsi: VSI being changed
4126  * @new_rx: new number of Rx queues
4127  * @new_tx: new number of Tx queues
4128  *
4129  * Only change the number of queues if new_tx, or new_rx is non-0.
4130  *
4131  * Returns 0 on success.
4132  */
4133 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4134 {
4135 	struct ice_pf *pf = vsi->back;
4136 	int err = 0, timeout = 50;
4137 
4138 	if (!new_rx && !new_tx)
4139 		return -EINVAL;
4140 
4141 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4142 		timeout--;
4143 		if (!timeout)
4144 			return -EBUSY;
4145 		usleep_range(1000, 2000);
4146 	}
4147 
4148 	if (new_tx)
4149 		vsi->req_txq = (u16)new_tx;
4150 	if (new_rx)
4151 		vsi->req_rxq = (u16)new_rx;
4152 
4153 	/* set for the next time the netdev is started */
4154 	if (!netif_running(vsi->netdev)) {
4155 		ice_vsi_rebuild(vsi, false);
4156 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4157 		goto done;
4158 	}
4159 
4160 	ice_vsi_close(vsi);
4161 	ice_vsi_rebuild(vsi, false);
4162 	ice_pf_dcb_recfg(pf);
4163 	ice_vsi_open(vsi);
4164 done:
4165 	clear_bit(ICE_CFG_BUSY, pf->state);
4166 	return err;
4167 }
4168 
4169 /**
4170  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4171  * @pf: PF to configure
4172  *
4173  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4174  * VSI can still Tx/Rx VLAN tagged packets.
4175  */
4176 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4177 {
4178 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4179 	struct ice_vsi_ctx *ctxt;
4180 	struct ice_hw *hw;
4181 	int status;
4182 
4183 	if (!vsi)
4184 		return;
4185 
4186 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4187 	if (!ctxt)
4188 		return;
4189 
4190 	hw = &pf->hw;
4191 	ctxt->info = vsi->info;
4192 
4193 	ctxt->info.valid_sections =
4194 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4195 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4196 			    ICE_AQ_VSI_PROP_SW_VALID);
4197 
4198 	/* disable VLAN anti-spoof */
4199 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4200 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4201 
4202 	/* disable VLAN pruning and keep all other settings */
4203 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4204 
4205 	/* allow all VLANs on Tx and don't strip on Rx */
4206 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4207 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4208 
4209 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4210 	if (status) {
4211 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4212 			status, ice_aq_str(hw->adminq.sq_last_status));
4213 	} else {
4214 		vsi->info.sec_flags = ctxt->info.sec_flags;
4215 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4216 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4217 	}
4218 
4219 	kfree(ctxt);
4220 }
4221 
4222 /**
4223  * ice_log_pkg_init - log result of DDP package load
4224  * @hw: pointer to hardware info
4225  * @state: state of package load
4226  */
4227 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4228 {
4229 	struct ice_pf *pf = hw->back;
4230 	struct device *dev;
4231 
4232 	dev = ice_pf_to_dev(pf);
4233 
4234 	switch (state) {
4235 	case ICE_DDP_PKG_SUCCESS:
4236 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4237 			 hw->active_pkg_name,
4238 			 hw->active_pkg_ver.major,
4239 			 hw->active_pkg_ver.minor,
4240 			 hw->active_pkg_ver.update,
4241 			 hw->active_pkg_ver.draft);
4242 		break;
4243 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4244 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4245 			 hw->active_pkg_name,
4246 			 hw->active_pkg_ver.major,
4247 			 hw->active_pkg_ver.minor,
4248 			 hw->active_pkg_ver.update,
4249 			 hw->active_pkg_ver.draft);
4250 		break;
4251 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4252 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4253 			hw->active_pkg_name,
4254 			hw->active_pkg_ver.major,
4255 			hw->active_pkg_ver.minor,
4256 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4257 		break;
4258 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4259 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4260 			 hw->active_pkg_name,
4261 			 hw->active_pkg_ver.major,
4262 			 hw->active_pkg_ver.minor,
4263 			 hw->active_pkg_ver.update,
4264 			 hw->active_pkg_ver.draft,
4265 			 hw->pkg_name,
4266 			 hw->pkg_ver.major,
4267 			 hw->pkg_ver.minor,
4268 			 hw->pkg_ver.update,
4269 			 hw->pkg_ver.draft);
4270 		break;
4271 	case ICE_DDP_PKG_FW_MISMATCH:
4272 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4273 		break;
4274 	case ICE_DDP_PKG_INVALID_FILE:
4275 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4276 		break;
4277 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4278 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4279 		break;
4280 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4281 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4282 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4283 		break;
4284 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4285 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4286 		break;
4287 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4288 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4289 		break;
4290 	case ICE_DDP_PKG_LOAD_ERROR:
4291 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4292 		/* poll for reset to complete */
4293 		if (ice_check_reset(hw))
4294 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4295 		break;
4296 	case ICE_DDP_PKG_ERR:
4297 	default:
4298 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4299 		break;
4300 	}
4301 }
4302 
4303 /**
4304  * ice_load_pkg - load/reload the DDP Package file
4305  * @firmware: firmware structure when firmware requested or NULL for reload
4306  * @pf: pointer to the PF instance
4307  *
4308  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4309  * initialize HW tables.
4310  */
4311 static void
4312 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4313 {
4314 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4315 	struct device *dev = ice_pf_to_dev(pf);
4316 	struct ice_hw *hw = &pf->hw;
4317 
4318 	/* Load DDP Package */
4319 	if (firmware && !hw->pkg_copy) {
4320 		state = ice_copy_and_init_pkg(hw, firmware->data,
4321 					      firmware->size);
4322 		ice_log_pkg_init(hw, state);
4323 	} else if (!firmware && hw->pkg_copy) {
4324 		/* Reload package during rebuild after CORER/GLOBR reset */
4325 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4326 		ice_log_pkg_init(hw, state);
4327 	} else {
4328 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4329 	}
4330 
4331 	if (!ice_is_init_pkg_successful(state)) {
4332 		/* Safe Mode */
4333 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4334 		return;
4335 	}
4336 
4337 	/* Successful download package is the precondition for advanced
4338 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4339 	 */
4340 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4341 }
4342 
4343 /**
4344  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4345  * @pf: pointer to the PF structure
4346  *
4347  * There is no error returned here because the driver should be able to handle
4348  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4349  * specifically with Tx.
4350  */
4351 static void ice_verify_cacheline_size(struct ice_pf *pf)
4352 {
4353 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4354 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4355 			 ICE_CACHE_LINE_BYTES);
4356 }
4357 
4358 /**
4359  * ice_send_version - update firmware with driver version
4360  * @pf: PF struct
4361  *
4362  * Returns 0 on success, else error code
4363  */
4364 static int ice_send_version(struct ice_pf *pf)
4365 {
4366 	struct ice_driver_ver dv;
4367 
4368 	dv.major_ver = 0xff;
4369 	dv.minor_ver = 0xff;
4370 	dv.build_ver = 0xff;
4371 	dv.subbuild_ver = 0;
4372 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4373 		sizeof(dv.driver_string));
4374 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4375 }
4376 
4377 /**
4378  * ice_init_fdir - Initialize flow director VSI and configuration
4379  * @pf: pointer to the PF instance
4380  *
4381  * returns 0 on success, negative on error
4382  */
4383 static int ice_init_fdir(struct ice_pf *pf)
4384 {
4385 	struct device *dev = ice_pf_to_dev(pf);
4386 	struct ice_vsi *ctrl_vsi;
4387 	int err;
4388 
4389 	/* Side Band Flow Director needs to have a control VSI.
4390 	 * Allocate it and store it in the PF.
4391 	 */
4392 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4393 	if (!ctrl_vsi) {
4394 		dev_dbg(dev, "could not create control VSI\n");
4395 		return -ENOMEM;
4396 	}
4397 
4398 	err = ice_vsi_open_ctrl(ctrl_vsi);
4399 	if (err) {
4400 		dev_dbg(dev, "could not open control VSI\n");
4401 		goto err_vsi_open;
4402 	}
4403 
4404 	mutex_init(&pf->hw.fdir_fltr_lock);
4405 
4406 	err = ice_fdir_create_dflt_rules(pf);
4407 	if (err)
4408 		goto err_fdir_rule;
4409 
4410 	return 0;
4411 
4412 err_fdir_rule:
4413 	ice_fdir_release_flows(&pf->hw);
4414 	ice_vsi_close(ctrl_vsi);
4415 err_vsi_open:
4416 	ice_vsi_release(ctrl_vsi);
4417 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4418 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4419 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4420 	}
4421 	return err;
4422 }
4423 
4424 /**
4425  * ice_get_opt_fw_name - return optional firmware file name or NULL
4426  * @pf: pointer to the PF instance
4427  */
4428 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4429 {
4430 	/* Optional firmware name same as default with additional dash
4431 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4432 	 */
4433 	struct pci_dev *pdev = pf->pdev;
4434 	char *opt_fw_filename;
4435 	u64 dsn;
4436 
4437 	/* Determine the name of the optional file using the DSN (two
4438 	 * dwords following the start of the DSN Capability).
4439 	 */
4440 	dsn = pci_get_dsn(pdev);
4441 	if (!dsn)
4442 		return NULL;
4443 
4444 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4445 	if (!opt_fw_filename)
4446 		return NULL;
4447 
4448 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4449 		 ICE_DDP_PKG_PATH, dsn);
4450 
4451 	return opt_fw_filename;
4452 }
4453 
4454 /**
4455  * ice_request_fw - Device initialization routine
4456  * @pf: pointer to the PF instance
4457  */
4458 static void ice_request_fw(struct ice_pf *pf)
4459 {
4460 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4461 	const struct firmware *firmware = NULL;
4462 	struct device *dev = ice_pf_to_dev(pf);
4463 	int err = 0;
4464 
4465 	/* optional device-specific DDP (if present) overrides the default DDP
4466 	 * package file. kernel logs a debug message if the file doesn't exist,
4467 	 * and warning messages for other errors.
4468 	 */
4469 	if (opt_fw_filename) {
4470 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4471 		if (err) {
4472 			kfree(opt_fw_filename);
4473 			goto dflt_pkg_load;
4474 		}
4475 
4476 		/* request for firmware was successful. Download to device */
4477 		ice_load_pkg(firmware, pf);
4478 		kfree(opt_fw_filename);
4479 		release_firmware(firmware);
4480 		return;
4481 	}
4482 
4483 dflt_pkg_load:
4484 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4485 	if (err) {
4486 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4487 		return;
4488 	}
4489 
4490 	/* request for firmware was successful. Download to device */
4491 	ice_load_pkg(firmware, pf);
4492 	release_firmware(firmware);
4493 }
4494 
4495 /**
4496  * ice_print_wake_reason - show the wake up cause in the log
4497  * @pf: pointer to the PF struct
4498  */
4499 static void ice_print_wake_reason(struct ice_pf *pf)
4500 {
4501 	u32 wus = pf->wakeup_reason;
4502 	const char *wake_str;
4503 
4504 	/* if no wake event, nothing to print */
4505 	if (!wus)
4506 		return;
4507 
4508 	if (wus & PFPM_WUS_LNKC_M)
4509 		wake_str = "Link\n";
4510 	else if (wus & PFPM_WUS_MAG_M)
4511 		wake_str = "Magic Packet\n";
4512 	else if (wus & PFPM_WUS_MNG_M)
4513 		wake_str = "Management\n";
4514 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4515 		wake_str = "Firmware Reset\n";
4516 	else
4517 		wake_str = "Unknown\n";
4518 
4519 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4520 }
4521 
4522 /**
4523  * ice_register_netdev - register netdev and devlink port
4524  * @pf: pointer to the PF struct
4525  */
4526 static int ice_register_netdev(struct ice_pf *pf)
4527 {
4528 	struct ice_vsi *vsi;
4529 	int err = 0;
4530 
4531 	vsi = ice_get_main_vsi(pf);
4532 	if (!vsi || !vsi->netdev)
4533 		return -EIO;
4534 
4535 	err = register_netdev(vsi->netdev);
4536 	if (err)
4537 		goto err_register_netdev;
4538 
4539 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4540 	netif_carrier_off(vsi->netdev);
4541 	netif_tx_stop_all_queues(vsi->netdev);
4542 	err = ice_devlink_create_pf_port(pf);
4543 	if (err)
4544 		goto err_devlink_create;
4545 
4546 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4547 
4548 	return 0;
4549 err_devlink_create:
4550 	unregister_netdev(vsi->netdev);
4551 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4552 err_register_netdev:
4553 	free_netdev(vsi->netdev);
4554 	vsi->netdev = NULL;
4555 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4556 	return err;
4557 }
4558 
4559 /**
4560  * ice_probe - Device initialization routine
4561  * @pdev: PCI device information struct
4562  * @ent: entry in ice_pci_tbl
4563  *
4564  * Returns 0 on success, negative on failure
4565  */
4566 static int
4567 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4568 {
4569 	struct device *dev = &pdev->dev;
4570 	struct ice_pf *pf;
4571 	struct ice_hw *hw;
4572 	int i, err;
4573 
4574 	if (pdev->is_virtfn) {
4575 		dev_err(dev, "can't probe a virtual function\n");
4576 		return -EINVAL;
4577 	}
4578 
4579 	/* this driver uses devres, see
4580 	 * Documentation/driver-api/driver-model/devres.rst
4581 	 */
4582 	err = pcim_enable_device(pdev);
4583 	if (err)
4584 		return err;
4585 
4586 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4587 	if (err) {
4588 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4589 		return err;
4590 	}
4591 
4592 	pf = ice_allocate_pf(dev);
4593 	if (!pf)
4594 		return -ENOMEM;
4595 
4596 	/* initialize Auxiliary index to invalid value */
4597 	pf->aux_idx = -1;
4598 
4599 	/* set up for high or low DMA */
4600 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4601 	if (err) {
4602 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4603 		return err;
4604 	}
4605 
4606 	pci_enable_pcie_error_reporting(pdev);
4607 	pci_set_master(pdev);
4608 
4609 	pf->pdev = pdev;
4610 	pci_set_drvdata(pdev, pf);
4611 	set_bit(ICE_DOWN, pf->state);
4612 	/* Disable service task until DOWN bit is cleared */
4613 	set_bit(ICE_SERVICE_DIS, pf->state);
4614 
4615 	hw = &pf->hw;
4616 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4617 	pci_save_state(pdev);
4618 
4619 	hw->back = pf;
4620 	hw->vendor_id = pdev->vendor;
4621 	hw->device_id = pdev->device;
4622 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4623 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4624 	hw->subsystem_device_id = pdev->subsystem_device;
4625 	hw->bus.device = PCI_SLOT(pdev->devfn);
4626 	hw->bus.func = PCI_FUNC(pdev->devfn);
4627 	ice_set_ctrlq_len(hw);
4628 
4629 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4630 
4631 #ifndef CONFIG_DYNAMIC_DEBUG
4632 	if (debug < -1)
4633 		hw->debug_mask = debug;
4634 #endif
4635 
4636 	err = ice_init_hw(hw);
4637 	if (err) {
4638 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4639 		err = -EIO;
4640 		goto err_exit_unroll;
4641 	}
4642 
4643 	ice_init_feature_support(pf);
4644 
4645 	ice_request_fw(pf);
4646 
4647 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4648 	 * set in pf->state, which will cause ice_is_safe_mode to return
4649 	 * true
4650 	 */
4651 	if (ice_is_safe_mode(pf)) {
4652 		/* we already got function/device capabilities but these don't
4653 		 * reflect what the driver needs to do in safe mode. Instead of
4654 		 * adding conditional logic everywhere to ignore these
4655 		 * device/function capabilities, override them.
4656 		 */
4657 		ice_set_safe_mode_caps(hw);
4658 	}
4659 
4660 	hw->ucast_shared = true;
4661 
4662 	err = ice_init_pf(pf);
4663 	if (err) {
4664 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4665 		goto err_init_pf_unroll;
4666 	}
4667 
4668 	ice_devlink_init_regions(pf);
4669 
4670 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4671 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4672 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4673 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4674 	i = 0;
4675 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4676 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4677 			pf->hw.tnl.valid_count[TNL_VXLAN];
4678 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4679 			UDP_TUNNEL_TYPE_VXLAN;
4680 		i++;
4681 	}
4682 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4683 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4684 			pf->hw.tnl.valid_count[TNL_GENEVE];
4685 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4686 			UDP_TUNNEL_TYPE_GENEVE;
4687 		i++;
4688 	}
4689 
4690 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4691 	if (!pf->num_alloc_vsi) {
4692 		err = -EIO;
4693 		goto err_init_pf_unroll;
4694 	}
4695 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4696 		dev_warn(&pf->pdev->dev,
4697 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4698 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4699 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4700 	}
4701 
4702 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4703 			       GFP_KERNEL);
4704 	if (!pf->vsi) {
4705 		err = -ENOMEM;
4706 		goto err_init_pf_unroll;
4707 	}
4708 
4709 	err = ice_init_interrupt_scheme(pf);
4710 	if (err) {
4711 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4712 		err = -EIO;
4713 		goto err_init_vsi_unroll;
4714 	}
4715 
4716 	/* In case of MSIX we are going to setup the misc vector right here
4717 	 * to handle admin queue events etc. In case of legacy and MSI
4718 	 * the misc functionality and queue processing is combined in
4719 	 * the same vector and that gets setup at open.
4720 	 */
4721 	err = ice_req_irq_msix_misc(pf);
4722 	if (err) {
4723 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4724 		goto err_init_interrupt_unroll;
4725 	}
4726 
4727 	/* create switch struct for the switch element created by FW on boot */
4728 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4729 	if (!pf->first_sw) {
4730 		err = -ENOMEM;
4731 		goto err_msix_misc_unroll;
4732 	}
4733 
4734 	if (hw->evb_veb)
4735 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4736 	else
4737 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4738 
4739 	pf->first_sw->pf = pf;
4740 
4741 	/* record the sw_id available for later use */
4742 	pf->first_sw->sw_id = hw->port_info->sw_id;
4743 
4744 	err = ice_setup_pf_sw(pf);
4745 	if (err) {
4746 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4747 		goto err_alloc_sw_unroll;
4748 	}
4749 
4750 	clear_bit(ICE_SERVICE_DIS, pf->state);
4751 
4752 	/* tell the firmware we are up */
4753 	err = ice_send_version(pf);
4754 	if (err) {
4755 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4756 			UTS_RELEASE, err);
4757 		goto err_send_version_unroll;
4758 	}
4759 
4760 	/* since everything is good, start the service timer */
4761 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4762 
4763 	err = ice_init_link_events(pf->hw.port_info);
4764 	if (err) {
4765 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4766 		goto err_send_version_unroll;
4767 	}
4768 
4769 	/* not a fatal error if this fails */
4770 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4771 	if (err)
4772 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4773 
4774 	/* not a fatal error if this fails */
4775 	err = ice_update_link_info(pf->hw.port_info);
4776 	if (err)
4777 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4778 
4779 	ice_init_link_dflt_override(pf->hw.port_info);
4780 
4781 	ice_check_link_cfg_err(pf,
4782 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4783 
4784 	/* if media available, initialize PHY settings */
4785 	if (pf->hw.port_info->phy.link_info.link_info &
4786 	    ICE_AQ_MEDIA_AVAILABLE) {
4787 		/* not a fatal error if this fails */
4788 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4789 		if (err)
4790 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4791 
4792 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4793 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4794 
4795 			if (vsi)
4796 				ice_configure_phy(vsi);
4797 		}
4798 	} else {
4799 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4800 	}
4801 
4802 	ice_verify_cacheline_size(pf);
4803 
4804 	/* Save wakeup reason register for later use */
4805 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4806 
4807 	/* check for a power management event */
4808 	ice_print_wake_reason(pf);
4809 
4810 	/* clear wake status, all bits */
4811 	wr32(hw, PFPM_WUS, U32_MAX);
4812 
4813 	/* Disable WoL at init, wait for user to enable */
4814 	device_set_wakeup_enable(dev, false);
4815 
4816 	if (ice_is_safe_mode(pf)) {
4817 		ice_set_safe_mode_vlan_cfg(pf);
4818 		goto probe_done;
4819 	}
4820 
4821 	/* initialize DDP driven features */
4822 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4823 		ice_ptp_init(pf);
4824 
4825 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4826 		ice_gnss_init(pf);
4827 
4828 	/* Note: Flow director init failure is non-fatal to load */
4829 	if (ice_init_fdir(pf))
4830 		dev_err(dev, "could not initialize flow director\n");
4831 
4832 	/* Note: DCB init failure is non-fatal to load */
4833 	if (ice_init_pf_dcb(pf, false)) {
4834 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4835 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4836 	} else {
4837 		ice_cfg_lldp_mib_change(&pf->hw, true);
4838 	}
4839 
4840 	if (ice_init_lag(pf))
4841 		dev_warn(dev, "Failed to init link aggregation support\n");
4842 
4843 	/* print PCI link speed and width */
4844 	pcie_print_link_status(pf->pdev);
4845 
4846 probe_done:
4847 	err = ice_register_netdev(pf);
4848 	if (err)
4849 		goto err_netdev_reg;
4850 
4851 	err = ice_devlink_register_params(pf);
4852 	if (err)
4853 		goto err_netdev_reg;
4854 
4855 	/* ready to go, so clear down state bit */
4856 	clear_bit(ICE_DOWN, pf->state);
4857 	if (ice_is_rdma_ena(pf)) {
4858 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4859 		if (pf->aux_idx < 0) {
4860 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4861 			err = -ENOMEM;
4862 			goto err_devlink_reg_param;
4863 		}
4864 
4865 		err = ice_init_rdma(pf);
4866 		if (err) {
4867 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4868 			err = -EIO;
4869 			goto err_init_aux_unroll;
4870 		}
4871 	} else {
4872 		dev_warn(dev, "RDMA is not supported on this device\n");
4873 	}
4874 
4875 	ice_devlink_register(pf);
4876 	return 0;
4877 
4878 err_init_aux_unroll:
4879 	pf->adev = NULL;
4880 	ida_free(&ice_aux_ida, pf->aux_idx);
4881 err_devlink_reg_param:
4882 	ice_devlink_unregister_params(pf);
4883 err_netdev_reg:
4884 err_send_version_unroll:
4885 	ice_vsi_release_all(pf);
4886 err_alloc_sw_unroll:
4887 	set_bit(ICE_SERVICE_DIS, pf->state);
4888 	set_bit(ICE_DOWN, pf->state);
4889 	devm_kfree(dev, pf->first_sw);
4890 err_msix_misc_unroll:
4891 	ice_free_irq_msix_misc(pf);
4892 err_init_interrupt_unroll:
4893 	ice_clear_interrupt_scheme(pf);
4894 err_init_vsi_unroll:
4895 	devm_kfree(dev, pf->vsi);
4896 err_init_pf_unroll:
4897 	ice_deinit_pf(pf);
4898 	ice_devlink_destroy_regions(pf);
4899 	ice_deinit_hw(hw);
4900 err_exit_unroll:
4901 	pci_disable_pcie_error_reporting(pdev);
4902 	pci_disable_device(pdev);
4903 	return err;
4904 }
4905 
4906 /**
4907  * ice_set_wake - enable or disable Wake on LAN
4908  * @pf: pointer to the PF struct
4909  *
4910  * Simple helper for WoL control
4911  */
4912 static void ice_set_wake(struct ice_pf *pf)
4913 {
4914 	struct ice_hw *hw = &pf->hw;
4915 	bool wol = pf->wol_ena;
4916 
4917 	/* clear wake state, otherwise new wake events won't fire */
4918 	wr32(hw, PFPM_WUS, U32_MAX);
4919 
4920 	/* enable / disable APM wake up, no RMW needed */
4921 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4922 
4923 	/* set magic packet filter enabled */
4924 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4925 }
4926 
4927 /**
4928  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4929  * @pf: pointer to the PF struct
4930  *
4931  * Issue firmware command to enable multicast magic wake, making
4932  * sure that any locally administered address (LAA) is used for
4933  * wake, and that PF reset doesn't undo the LAA.
4934  */
4935 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4936 {
4937 	struct device *dev = ice_pf_to_dev(pf);
4938 	struct ice_hw *hw = &pf->hw;
4939 	u8 mac_addr[ETH_ALEN];
4940 	struct ice_vsi *vsi;
4941 	int status;
4942 	u8 flags;
4943 
4944 	if (!pf->wol_ena)
4945 		return;
4946 
4947 	vsi = ice_get_main_vsi(pf);
4948 	if (!vsi)
4949 		return;
4950 
4951 	/* Get current MAC address in case it's an LAA */
4952 	if (vsi->netdev)
4953 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4954 	else
4955 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4956 
4957 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4958 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4959 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4960 
4961 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4962 	if (status)
4963 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4964 			status, ice_aq_str(hw->adminq.sq_last_status));
4965 }
4966 
4967 /**
4968  * ice_remove - Device removal routine
4969  * @pdev: PCI device information struct
4970  */
4971 static void ice_remove(struct pci_dev *pdev)
4972 {
4973 	struct ice_pf *pf = pci_get_drvdata(pdev);
4974 	int i;
4975 
4976 	ice_devlink_unregister(pf);
4977 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4978 		if (!ice_is_reset_in_progress(pf->state))
4979 			break;
4980 		msleep(100);
4981 	}
4982 
4983 	ice_tc_indir_block_remove(pf);
4984 
4985 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4986 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4987 		ice_free_vfs(pf);
4988 	}
4989 
4990 	ice_service_task_stop(pf);
4991 
4992 	ice_aq_cancel_waiting_tasks(pf);
4993 	ice_unplug_aux_dev(pf);
4994 	if (pf->aux_idx >= 0)
4995 		ida_free(&ice_aux_ida, pf->aux_idx);
4996 	ice_devlink_unregister_params(pf);
4997 	set_bit(ICE_DOWN, pf->state);
4998 
4999 	ice_deinit_lag(pf);
5000 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5001 		ice_ptp_release(pf);
5002 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5003 		ice_gnss_exit(pf);
5004 	if (!ice_is_safe_mode(pf))
5005 		ice_remove_arfs(pf);
5006 	ice_setup_mc_magic_wake(pf);
5007 	ice_vsi_release_all(pf);
5008 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5009 	ice_set_wake(pf);
5010 	ice_free_irq_msix_misc(pf);
5011 	ice_for_each_vsi(pf, i) {
5012 		if (!pf->vsi[i])
5013 			continue;
5014 		ice_vsi_free_q_vectors(pf->vsi[i]);
5015 	}
5016 	ice_deinit_pf(pf);
5017 	ice_devlink_destroy_regions(pf);
5018 	ice_deinit_hw(&pf->hw);
5019 
5020 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5021 	 * do it via ice_schedule_reset() since there is no need to rebuild
5022 	 * and the service task is already stopped.
5023 	 */
5024 	ice_reset(&pf->hw, ICE_RESET_PFR);
5025 	pci_wait_for_pending_transaction(pdev);
5026 	ice_clear_interrupt_scheme(pf);
5027 	pci_disable_pcie_error_reporting(pdev);
5028 	pci_disable_device(pdev);
5029 }
5030 
5031 /**
5032  * ice_shutdown - PCI callback for shutting down device
5033  * @pdev: PCI device information struct
5034  */
5035 static void ice_shutdown(struct pci_dev *pdev)
5036 {
5037 	struct ice_pf *pf = pci_get_drvdata(pdev);
5038 
5039 	ice_remove(pdev);
5040 
5041 	if (system_state == SYSTEM_POWER_OFF) {
5042 		pci_wake_from_d3(pdev, pf->wol_ena);
5043 		pci_set_power_state(pdev, PCI_D3hot);
5044 	}
5045 }
5046 
5047 #ifdef CONFIG_PM
5048 /**
5049  * ice_prepare_for_shutdown - prep for PCI shutdown
5050  * @pf: board private structure
5051  *
5052  * Inform or close all dependent features in prep for PCI device shutdown
5053  */
5054 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5055 {
5056 	struct ice_hw *hw = &pf->hw;
5057 	u32 v;
5058 
5059 	/* Notify VFs of impending reset */
5060 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5061 		ice_vc_notify_reset(pf);
5062 
5063 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5064 
5065 	/* disable the VSIs and their queues that are not already DOWN */
5066 	ice_pf_dis_all_vsi(pf, false);
5067 
5068 	ice_for_each_vsi(pf, v)
5069 		if (pf->vsi[v])
5070 			pf->vsi[v]->vsi_num = 0;
5071 
5072 	ice_shutdown_all_ctrlq(hw);
5073 }
5074 
5075 /**
5076  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5077  * @pf: board private structure to reinitialize
5078  *
5079  * This routine reinitialize interrupt scheme that was cleared during
5080  * power management suspend callback.
5081  *
5082  * This should be called during resume routine to re-allocate the q_vectors
5083  * and reacquire interrupts.
5084  */
5085 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5086 {
5087 	struct device *dev = ice_pf_to_dev(pf);
5088 	int ret, v;
5089 
5090 	/* Since we clear MSIX flag during suspend, we need to
5091 	 * set it back during resume...
5092 	 */
5093 
5094 	ret = ice_init_interrupt_scheme(pf);
5095 	if (ret) {
5096 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5097 		return ret;
5098 	}
5099 
5100 	/* Remap vectors and rings, after successful re-init interrupts */
5101 	ice_for_each_vsi(pf, v) {
5102 		if (!pf->vsi[v])
5103 			continue;
5104 
5105 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5106 		if (ret)
5107 			goto err_reinit;
5108 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5109 	}
5110 
5111 	ret = ice_req_irq_msix_misc(pf);
5112 	if (ret) {
5113 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5114 			ret);
5115 		goto err_reinit;
5116 	}
5117 
5118 	return 0;
5119 
5120 err_reinit:
5121 	while (v--)
5122 		if (pf->vsi[v])
5123 			ice_vsi_free_q_vectors(pf->vsi[v]);
5124 
5125 	return ret;
5126 }
5127 
5128 /**
5129  * ice_suspend
5130  * @dev: generic device information structure
5131  *
5132  * Power Management callback to quiesce the device and prepare
5133  * for D3 transition.
5134  */
5135 static int __maybe_unused ice_suspend(struct device *dev)
5136 {
5137 	struct pci_dev *pdev = to_pci_dev(dev);
5138 	struct ice_pf *pf;
5139 	int disabled, v;
5140 
5141 	pf = pci_get_drvdata(pdev);
5142 
5143 	if (!ice_pf_state_is_nominal(pf)) {
5144 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5145 		return -EBUSY;
5146 	}
5147 
5148 	/* Stop watchdog tasks until resume completion.
5149 	 * Even though it is most likely that the service task is
5150 	 * disabled if the device is suspended or down, the service task's
5151 	 * state is controlled by a different state bit, and we should
5152 	 * store and honor whatever state that bit is in at this point.
5153 	 */
5154 	disabled = ice_service_task_stop(pf);
5155 
5156 	ice_unplug_aux_dev(pf);
5157 
5158 	/* Already suspended?, then there is nothing to do */
5159 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5160 		if (!disabled)
5161 			ice_service_task_restart(pf);
5162 		return 0;
5163 	}
5164 
5165 	if (test_bit(ICE_DOWN, pf->state) ||
5166 	    ice_is_reset_in_progress(pf->state)) {
5167 		dev_err(dev, "can't suspend device in reset or already down\n");
5168 		if (!disabled)
5169 			ice_service_task_restart(pf);
5170 		return 0;
5171 	}
5172 
5173 	ice_setup_mc_magic_wake(pf);
5174 
5175 	ice_prepare_for_shutdown(pf);
5176 
5177 	ice_set_wake(pf);
5178 
5179 	/* Free vectors, clear the interrupt scheme and release IRQs
5180 	 * for proper hibernation, especially with large number of CPUs.
5181 	 * Otherwise hibernation might fail when mapping all the vectors back
5182 	 * to CPU0.
5183 	 */
5184 	ice_free_irq_msix_misc(pf);
5185 	ice_for_each_vsi(pf, v) {
5186 		if (!pf->vsi[v])
5187 			continue;
5188 		ice_vsi_free_q_vectors(pf->vsi[v]);
5189 	}
5190 	ice_clear_interrupt_scheme(pf);
5191 
5192 	pci_save_state(pdev);
5193 	pci_wake_from_d3(pdev, pf->wol_ena);
5194 	pci_set_power_state(pdev, PCI_D3hot);
5195 	return 0;
5196 }
5197 
5198 /**
5199  * ice_resume - PM callback for waking up from D3
5200  * @dev: generic device information structure
5201  */
5202 static int __maybe_unused ice_resume(struct device *dev)
5203 {
5204 	struct pci_dev *pdev = to_pci_dev(dev);
5205 	enum ice_reset_req reset_type;
5206 	struct ice_pf *pf;
5207 	struct ice_hw *hw;
5208 	int ret;
5209 
5210 	pci_set_power_state(pdev, PCI_D0);
5211 	pci_restore_state(pdev);
5212 	pci_save_state(pdev);
5213 
5214 	if (!pci_device_is_present(pdev))
5215 		return -ENODEV;
5216 
5217 	ret = pci_enable_device_mem(pdev);
5218 	if (ret) {
5219 		dev_err(dev, "Cannot enable device after suspend\n");
5220 		return ret;
5221 	}
5222 
5223 	pf = pci_get_drvdata(pdev);
5224 	hw = &pf->hw;
5225 
5226 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5227 	ice_print_wake_reason(pf);
5228 
5229 	/* We cleared the interrupt scheme when we suspended, so we need to
5230 	 * restore it now to resume device functionality.
5231 	 */
5232 	ret = ice_reinit_interrupt_scheme(pf);
5233 	if (ret)
5234 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5235 
5236 	clear_bit(ICE_DOWN, pf->state);
5237 	/* Now perform PF reset and rebuild */
5238 	reset_type = ICE_RESET_PFR;
5239 	/* re-enable service task for reset, but allow reset to schedule it */
5240 	clear_bit(ICE_SERVICE_DIS, pf->state);
5241 
5242 	if (ice_schedule_reset(pf, reset_type))
5243 		dev_err(dev, "Reset during resume failed.\n");
5244 
5245 	clear_bit(ICE_SUSPENDED, pf->state);
5246 	ice_service_task_restart(pf);
5247 
5248 	/* Restart the service task */
5249 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5250 
5251 	return 0;
5252 }
5253 #endif /* CONFIG_PM */
5254 
5255 /**
5256  * ice_pci_err_detected - warning that PCI error has been detected
5257  * @pdev: PCI device information struct
5258  * @err: the type of PCI error
5259  *
5260  * Called to warn that something happened on the PCI bus and the error handling
5261  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5262  */
5263 static pci_ers_result_t
5264 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5265 {
5266 	struct ice_pf *pf = pci_get_drvdata(pdev);
5267 
5268 	if (!pf) {
5269 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5270 			__func__, err);
5271 		return PCI_ERS_RESULT_DISCONNECT;
5272 	}
5273 
5274 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5275 		ice_service_task_stop(pf);
5276 
5277 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5278 			set_bit(ICE_PFR_REQ, pf->state);
5279 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5280 		}
5281 	}
5282 
5283 	return PCI_ERS_RESULT_NEED_RESET;
5284 }
5285 
5286 /**
5287  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5288  * @pdev: PCI device information struct
5289  *
5290  * Called to determine if the driver can recover from the PCI slot reset by
5291  * using a register read to determine if the device is recoverable.
5292  */
5293 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5294 {
5295 	struct ice_pf *pf = pci_get_drvdata(pdev);
5296 	pci_ers_result_t result;
5297 	int err;
5298 	u32 reg;
5299 
5300 	err = pci_enable_device_mem(pdev);
5301 	if (err) {
5302 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5303 			err);
5304 		result = PCI_ERS_RESULT_DISCONNECT;
5305 	} else {
5306 		pci_set_master(pdev);
5307 		pci_restore_state(pdev);
5308 		pci_save_state(pdev);
5309 		pci_wake_from_d3(pdev, false);
5310 
5311 		/* Check for life */
5312 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5313 		if (!reg)
5314 			result = PCI_ERS_RESULT_RECOVERED;
5315 		else
5316 			result = PCI_ERS_RESULT_DISCONNECT;
5317 	}
5318 
5319 	return result;
5320 }
5321 
5322 /**
5323  * ice_pci_err_resume - restart operations after PCI error recovery
5324  * @pdev: PCI device information struct
5325  *
5326  * Called to allow the driver to bring things back up after PCI error and/or
5327  * reset recovery have finished
5328  */
5329 static void ice_pci_err_resume(struct pci_dev *pdev)
5330 {
5331 	struct ice_pf *pf = pci_get_drvdata(pdev);
5332 
5333 	if (!pf) {
5334 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5335 			__func__);
5336 		return;
5337 	}
5338 
5339 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5340 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5341 			__func__);
5342 		return;
5343 	}
5344 
5345 	ice_restore_all_vfs_msi_state(pdev);
5346 
5347 	ice_do_reset(pf, ICE_RESET_PFR);
5348 	ice_service_task_restart(pf);
5349 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5350 }
5351 
5352 /**
5353  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5354  * @pdev: PCI device information struct
5355  */
5356 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5357 {
5358 	struct ice_pf *pf = pci_get_drvdata(pdev);
5359 
5360 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5361 		ice_service_task_stop(pf);
5362 
5363 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5364 			set_bit(ICE_PFR_REQ, pf->state);
5365 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5366 		}
5367 	}
5368 }
5369 
5370 /**
5371  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5372  * @pdev: PCI device information struct
5373  */
5374 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5375 {
5376 	ice_pci_err_resume(pdev);
5377 }
5378 
5379 /* ice_pci_tbl - PCI Device ID Table
5380  *
5381  * Wildcard entries (PCI_ANY_ID) should come last
5382  * Last entry must be all 0s
5383  *
5384  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5385  *   Class, Class Mask, private data (not used) }
5386  */
5387 static const struct pci_device_id ice_pci_tbl[] = {
5388 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5389 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5390 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5391 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5392 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5393 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5394 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5395 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5396 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5397 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5398 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5399 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5400 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5401 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5402 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5403 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5404 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5405 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5406 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5407 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5408 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5409 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5410 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5411 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5412 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5413 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5414 	/* required last entry */
5415 	{ 0, }
5416 };
5417 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5418 
5419 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5420 
5421 static const struct pci_error_handlers ice_pci_err_handler = {
5422 	.error_detected = ice_pci_err_detected,
5423 	.slot_reset = ice_pci_err_slot_reset,
5424 	.reset_prepare = ice_pci_err_reset_prepare,
5425 	.reset_done = ice_pci_err_reset_done,
5426 	.resume = ice_pci_err_resume
5427 };
5428 
5429 static struct pci_driver ice_driver = {
5430 	.name = KBUILD_MODNAME,
5431 	.id_table = ice_pci_tbl,
5432 	.probe = ice_probe,
5433 	.remove = ice_remove,
5434 #ifdef CONFIG_PM
5435 	.driver.pm = &ice_pm_ops,
5436 #endif /* CONFIG_PM */
5437 	.shutdown = ice_shutdown,
5438 	.sriov_configure = ice_sriov_configure,
5439 	.err_handler = &ice_pci_err_handler
5440 };
5441 
5442 /**
5443  * ice_module_init - Driver registration routine
5444  *
5445  * ice_module_init is the first routine called when the driver is
5446  * loaded. All it does is register with the PCI subsystem.
5447  */
5448 static int __init ice_module_init(void)
5449 {
5450 	int status;
5451 
5452 	pr_info("%s\n", ice_driver_string);
5453 	pr_info("%s\n", ice_copyright);
5454 
5455 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5456 	if (!ice_wq) {
5457 		pr_err("Failed to create workqueue\n");
5458 		return -ENOMEM;
5459 	}
5460 
5461 	status = pci_register_driver(&ice_driver);
5462 	if (status) {
5463 		pr_err("failed to register PCI driver, err %d\n", status);
5464 		destroy_workqueue(ice_wq);
5465 	}
5466 
5467 	return status;
5468 }
5469 module_init(ice_module_init);
5470 
5471 /**
5472  * ice_module_exit - Driver exit cleanup routine
5473  *
5474  * ice_module_exit is called just before the driver is removed
5475  * from memory.
5476  */
5477 static void __exit ice_module_exit(void)
5478 {
5479 	pci_unregister_driver(&ice_driver);
5480 	destroy_workqueue(ice_wq);
5481 	pr_info("module unloaded\n");
5482 }
5483 module_exit(ice_module_exit);
5484 
5485 /**
5486  * ice_set_mac_address - NDO callback to set MAC address
5487  * @netdev: network interface device structure
5488  * @pi: pointer to an address structure
5489  *
5490  * Returns 0 on success, negative on failure
5491  */
5492 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5493 {
5494 	struct ice_netdev_priv *np = netdev_priv(netdev);
5495 	struct ice_vsi *vsi = np->vsi;
5496 	struct ice_pf *pf = vsi->back;
5497 	struct ice_hw *hw = &pf->hw;
5498 	struct sockaddr *addr = pi;
5499 	u8 old_mac[ETH_ALEN];
5500 	u8 flags = 0;
5501 	u8 *mac;
5502 	int err;
5503 
5504 	mac = (u8 *)addr->sa_data;
5505 
5506 	if (!is_valid_ether_addr(mac))
5507 		return -EADDRNOTAVAIL;
5508 
5509 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5510 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5511 		return 0;
5512 	}
5513 
5514 	if (test_bit(ICE_DOWN, pf->state) ||
5515 	    ice_is_reset_in_progress(pf->state)) {
5516 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5517 			   mac);
5518 		return -EBUSY;
5519 	}
5520 
5521 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5522 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5523 			   mac);
5524 		return -EAGAIN;
5525 	}
5526 
5527 	netif_addr_lock_bh(netdev);
5528 	ether_addr_copy(old_mac, netdev->dev_addr);
5529 	/* change the netdev's MAC address */
5530 	eth_hw_addr_set(netdev, mac);
5531 	netif_addr_unlock_bh(netdev);
5532 
5533 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5534 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5535 	if (err && err != -ENOENT) {
5536 		err = -EADDRNOTAVAIL;
5537 		goto err_update_filters;
5538 	}
5539 
5540 	/* Add filter for new MAC. If filter exists, return success */
5541 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5542 	if (err == -EEXIST) {
5543 		/* Although this MAC filter is already present in hardware it's
5544 		 * possible in some cases (e.g. bonding) that dev_addr was
5545 		 * modified outside of the driver and needs to be restored back
5546 		 * to this value.
5547 		 */
5548 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5549 
5550 		return 0;
5551 	} else if (err) {
5552 		/* error if the new filter addition failed */
5553 		err = -EADDRNOTAVAIL;
5554 	}
5555 
5556 err_update_filters:
5557 	if (err) {
5558 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5559 			   mac);
5560 		netif_addr_lock_bh(netdev);
5561 		eth_hw_addr_set(netdev, old_mac);
5562 		netif_addr_unlock_bh(netdev);
5563 		return err;
5564 	}
5565 
5566 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5567 		   netdev->dev_addr);
5568 
5569 	/* write new MAC address to the firmware */
5570 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5571 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5572 	if (err) {
5573 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5574 			   mac, err);
5575 	}
5576 	return 0;
5577 }
5578 
5579 /**
5580  * ice_set_rx_mode - NDO callback to set the netdev filters
5581  * @netdev: network interface device structure
5582  */
5583 static void ice_set_rx_mode(struct net_device *netdev)
5584 {
5585 	struct ice_netdev_priv *np = netdev_priv(netdev);
5586 	struct ice_vsi *vsi = np->vsi;
5587 
5588 	if (!vsi)
5589 		return;
5590 
5591 	/* Set the flags to synchronize filters
5592 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5593 	 * flags
5594 	 */
5595 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5596 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5597 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5598 
5599 	/* schedule our worker thread which will take care of
5600 	 * applying the new filter changes
5601 	 */
5602 	ice_service_task_schedule(vsi->back);
5603 }
5604 
5605 /**
5606  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5607  * @netdev: network interface device structure
5608  * @queue_index: Queue ID
5609  * @maxrate: maximum bandwidth in Mbps
5610  */
5611 static int
5612 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5613 {
5614 	struct ice_netdev_priv *np = netdev_priv(netdev);
5615 	struct ice_vsi *vsi = np->vsi;
5616 	u16 q_handle;
5617 	int status;
5618 	u8 tc;
5619 
5620 	/* Validate maxrate requested is within permitted range */
5621 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5622 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5623 			   maxrate, queue_index);
5624 		return -EINVAL;
5625 	}
5626 
5627 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5628 	tc = ice_dcb_get_tc(vsi, queue_index);
5629 
5630 	/* Set BW back to default, when user set maxrate to 0 */
5631 	if (!maxrate)
5632 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5633 					       q_handle, ICE_MAX_BW);
5634 	else
5635 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5636 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5637 	if (status)
5638 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5639 			   status);
5640 
5641 	return status;
5642 }
5643 
5644 /**
5645  * ice_fdb_add - add an entry to the hardware database
5646  * @ndm: the input from the stack
5647  * @tb: pointer to array of nladdr (unused)
5648  * @dev: the net device pointer
5649  * @addr: the MAC address entry being added
5650  * @vid: VLAN ID
5651  * @flags: instructions from stack about fdb operation
5652  * @extack: netlink extended ack
5653  */
5654 static int
5655 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5656 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5657 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5658 {
5659 	int err;
5660 
5661 	if (vid) {
5662 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5663 		return -EINVAL;
5664 	}
5665 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5666 		netdev_err(dev, "FDB only supports static addresses\n");
5667 		return -EINVAL;
5668 	}
5669 
5670 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5671 		err = dev_uc_add_excl(dev, addr);
5672 	else if (is_multicast_ether_addr(addr))
5673 		err = dev_mc_add_excl(dev, addr);
5674 	else
5675 		err = -EINVAL;
5676 
5677 	/* Only return duplicate errors if NLM_F_EXCL is set */
5678 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5679 		err = 0;
5680 
5681 	return err;
5682 }
5683 
5684 /**
5685  * ice_fdb_del - delete an entry from the hardware database
5686  * @ndm: the input from the stack
5687  * @tb: pointer to array of nladdr (unused)
5688  * @dev: the net device pointer
5689  * @addr: the MAC address entry being added
5690  * @vid: VLAN ID
5691  * @extack: netlink extended ack
5692  */
5693 static int
5694 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5695 	    struct net_device *dev, const unsigned char *addr,
5696 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5697 {
5698 	int err;
5699 
5700 	if (ndm->ndm_state & NUD_PERMANENT) {
5701 		netdev_err(dev, "FDB only supports static addresses\n");
5702 		return -EINVAL;
5703 	}
5704 
5705 	if (is_unicast_ether_addr(addr))
5706 		err = dev_uc_del(dev, addr);
5707 	else if (is_multicast_ether_addr(addr))
5708 		err = dev_mc_del(dev, addr);
5709 	else
5710 		err = -EINVAL;
5711 
5712 	return err;
5713 }
5714 
5715 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5716 					 NETIF_F_HW_VLAN_CTAG_TX | \
5717 					 NETIF_F_HW_VLAN_STAG_RX | \
5718 					 NETIF_F_HW_VLAN_STAG_TX)
5719 
5720 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5721 					 NETIF_F_HW_VLAN_STAG_FILTER)
5722 
5723 /**
5724  * ice_fix_features - fix the netdev features flags based on device limitations
5725  * @netdev: ptr to the netdev that flags are being fixed on
5726  * @features: features that need to be checked and possibly fixed
5727  *
5728  * Make sure any fixups are made to features in this callback. This enables the
5729  * driver to not have to check unsupported configurations throughout the driver
5730  * because that's the responsiblity of this callback.
5731  *
5732  * Single VLAN Mode (SVM) Supported Features:
5733  *	NETIF_F_HW_VLAN_CTAG_FILTER
5734  *	NETIF_F_HW_VLAN_CTAG_RX
5735  *	NETIF_F_HW_VLAN_CTAG_TX
5736  *
5737  * Double VLAN Mode (DVM) Supported Features:
5738  *	NETIF_F_HW_VLAN_CTAG_FILTER
5739  *	NETIF_F_HW_VLAN_CTAG_RX
5740  *	NETIF_F_HW_VLAN_CTAG_TX
5741  *
5742  *	NETIF_F_HW_VLAN_STAG_FILTER
5743  *	NETIF_HW_VLAN_STAG_RX
5744  *	NETIF_HW_VLAN_STAG_TX
5745  *
5746  * Features that need fixing:
5747  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5748  *	These are mutually exlusive as the VSI context cannot support multiple
5749  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5750  *	is not done, then default to clearing the requested STAG offload
5751  *	settings.
5752  *
5753  *	All supported filtering has to be enabled or disabled together. For
5754  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5755  *	together. If this is not done, then default to VLAN filtering disabled.
5756  *	These are mutually exclusive as there is currently no way to
5757  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5758  *	prune rules.
5759  */
5760 static netdev_features_t
5761 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5762 {
5763 	struct ice_netdev_priv *np = netdev_priv(netdev);
5764 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5765 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5766 
5767 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5768 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5769 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5770 
5771 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5772 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5773 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5774 
5775 	if (req_vlan_fltr != cur_vlan_fltr) {
5776 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5777 			if (req_ctag && req_stag) {
5778 				features |= NETIF_VLAN_FILTERING_FEATURES;
5779 			} else if (!req_ctag && !req_stag) {
5780 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5781 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5782 				   (!cur_stag && req_stag && !cur_ctag)) {
5783 				features |= NETIF_VLAN_FILTERING_FEATURES;
5784 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5785 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5786 				   (cur_stag && !req_stag && cur_ctag)) {
5787 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5788 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5789 			}
5790 		} else {
5791 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5792 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5793 
5794 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5795 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5796 		}
5797 	}
5798 
5799 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5800 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5801 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5802 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5803 			      NETIF_F_HW_VLAN_STAG_TX);
5804 	}
5805 
5806 	return features;
5807 }
5808 
5809 /**
5810  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5811  * @vsi: PF's VSI
5812  * @features: features used to determine VLAN offload settings
5813  *
5814  * First, determine the vlan_ethertype based on the VLAN offload bits in
5815  * features. Then determine if stripping and insertion should be enabled or
5816  * disabled. Finally enable or disable VLAN stripping and insertion.
5817  */
5818 static int
5819 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5820 {
5821 	bool enable_stripping = true, enable_insertion = true;
5822 	struct ice_vsi_vlan_ops *vlan_ops;
5823 	int strip_err = 0, insert_err = 0;
5824 	u16 vlan_ethertype = 0;
5825 
5826 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5827 
5828 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5829 		vlan_ethertype = ETH_P_8021AD;
5830 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5831 		vlan_ethertype = ETH_P_8021Q;
5832 
5833 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5834 		enable_stripping = false;
5835 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5836 		enable_insertion = false;
5837 
5838 	if (enable_stripping)
5839 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5840 	else
5841 		strip_err = vlan_ops->dis_stripping(vsi);
5842 
5843 	if (enable_insertion)
5844 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5845 	else
5846 		insert_err = vlan_ops->dis_insertion(vsi);
5847 
5848 	if (strip_err || insert_err)
5849 		return -EIO;
5850 
5851 	return 0;
5852 }
5853 
5854 /**
5855  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5856  * @vsi: PF's VSI
5857  * @features: features used to determine VLAN filtering settings
5858  *
5859  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5860  * features.
5861  */
5862 static int
5863 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5864 {
5865 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5866 	int err = 0;
5867 
5868 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5869 	 * if either bit is set
5870 	 */
5871 	if (features &
5872 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5873 		err = vlan_ops->ena_rx_filtering(vsi);
5874 	else
5875 		err = vlan_ops->dis_rx_filtering(vsi);
5876 
5877 	return err;
5878 }
5879 
5880 /**
5881  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5882  * @netdev: ptr to the netdev being adjusted
5883  * @features: the feature set that the stack is suggesting
5884  *
5885  * Only update VLAN settings if the requested_vlan_features are different than
5886  * the current_vlan_features.
5887  */
5888 static int
5889 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5890 {
5891 	netdev_features_t current_vlan_features, requested_vlan_features;
5892 	struct ice_netdev_priv *np = netdev_priv(netdev);
5893 	struct ice_vsi *vsi = np->vsi;
5894 	int err;
5895 
5896 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5897 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5898 	if (current_vlan_features ^ requested_vlan_features) {
5899 		err = ice_set_vlan_offload_features(vsi, features);
5900 		if (err)
5901 			return err;
5902 	}
5903 
5904 	current_vlan_features = netdev->features &
5905 		NETIF_VLAN_FILTERING_FEATURES;
5906 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5907 	if (current_vlan_features ^ requested_vlan_features) {
5908 		err = ice_set_vlan_filtering_features(vsi, features);
5909 		if (err)
5910 			return err;
5911 	}
5912 
5913 	return 0;
5914 }
5915 
5916 /**
5917  * ice_set_loopback - turn on/off loopback mode on underlying PF
5918  * @vsi: ptr to VSI
5919  * @ena: flag to indicate the on/off setting
5920  */
5921 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
5922 {
5923 	bool if_running = netif_running(vsi->netdev);
5924 	int ret;
5925 
5926 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
5927 		ret = ice_down(vsi);
5928 		if (ret) {
5929 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
5930 			return ret;
5931 		}
5932 	}
5933 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
5934 	if (ret)
5935 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
5936 	if (if_running)
5937 		ret = ice_up(vsi);
5938 
5939 	return ret;
5940 }
5941 
5942 /**
5943  * ice_set_features - set the netdev feature flags
5944  * @netdev: ptr to the netdev being adjusted
5945  * @features: the feature set that the stack is suggesting
5946  */
5947 static int
5948 ice_set_features(struct net_device *netdev, netdev_features_t features)
5949 {
5950 	netdev_features_t changed = netdev->features ^ features;
5951 	struct ice_netdev_priv *np = netdev_priv(netdev);
5952 	struct ice_vsi *vsi = np->vsi;
5953 	struct ice_pf *pf = vsi->back;
5954 	int ret = 0;
5955 
5956 	/* Don't set any netdev advanced features with device in Safe Mode */
5957 	if (ice_is_safe_mode(pf)) {
5958 		dev_err(ice_pf_to_dev(pf),
5959 			"Device is in Safe Mode - not enabling advanced netdev features\n");
5960 		return ret;
5961 	}
5962 
5963 	/* Do not change setting during reset */
5964 	if (ice_is_reset_in_progress(pf->state)) {
5965 		dev_err(ice_pf_to_dev(pf),
5966 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5967 		return -EBUSY;
5968 	}
5969 
5970 	/* Multiple features can be changed in one call so keep features in
5971 	 * separate if/else statements to guarantee each feature is checked
5972 	 */
5973 	if (changed & NETIF_F_RXHASH)
5974 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
5975 
5976 	ret = ice_set_vlan_features(netdev, features);
5977 	if (ret)
5978 		return ret;
5979 
5980 	if (changed & NETIF_F_NTUPLE) {
5981 		bool ena = !!(features & NETIF_F_NTUPLE);
5982 
5983 		ice_vsi_manage_fdir(vsi, ena);
5984 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
5985 	}
5986 
5987 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5988 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5989 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5990 		return -EACCES;
5991 	}
5992 
5993 	if (changed & NETIF_F_HW_TC) {
5994 		bool ena = !!(features & NETIF_F_HW_TC);
5995 
5996 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
5997 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5998 	}
5999 
6000 	if (changed & NETIF_F_LOOPBACK)
6001 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6002 
6003 	return ret;
6004 }
6005 
6006 /**
6007  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6008  * @vsi: VSI to setup VLAN properties for
6009  */
6010 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6011 {
6012 	int err;
6013 
6014 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6015 	if (err)
6016 		return err;
6017 
6018 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6019 	if (err)
6020 		return err;
6021 
6022 	return ice_vsi_add_vlan_zero(vsi);
6023 }
6024 
6025 /**
6026  * ice_vsi_cfg - Setup the VSI
6027  * @vsi: the VSI being configured
6028  *
6029  * Return 0 on success and negative value on error
6030  */
6031 int ice_vsi_cfg(struct ice_vsi *vsi)
6032 {
6033 	int err;
6034 
6035 	if (vsi->netdev) {
6036 		ice_set_rx_mode(vsi->netdev);
6037 
6038 		if (vsi->type != ICE_VSI_LB) {
6039 			err = ice_vsi_vlan_setup(vsi);
6040 
6041 			if (err)
6042 				return err;
6043 		}
6044 	}
6045 	ice_vsi_cfg_dcb_rings(vsi);
6046 
6047 	err = ice_vsi_cfg_lan_txqs(vsi);
6048 	if (!err && ice_is_xdp_ena_vsi(vsi))
6049 		err = ice_vsi_cfg_xdp_txqs(vsi);
6050 	if (!err)
6051 		err = ice_vsi_cfg_rxqs(vsi);
6052 
6053 	return err;
6054 }
6055 
6056 /* THEORY OF MODERATION:
6057  * The ice driver hardware works differently than the hardware that DIMLIB was
6058  * originally made for. ice hardware doesn't have packet count limits that
6059  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6060  * which is hard-coded to a limit of 250,000 ints/second.
6061  * If not using dynamic moderation, the INTRL value can be modified
6062  * by ethtool rx-usecs-high.
6063  */
6064 struct ice_dim {
6065 	/* the throttle rate for interrupts, basically worst case delay before
6066 	 * an initial interrupt fires, value is stored in microseconds.
6067 	 */
6068 	u16 itr;
6069 };
6070 
6071 /* Make a different profile for Rx that doesn't allow quite so aggressive
6072  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6073  * second.
6074  */
6075 static const struct ice_dim rx_profile[] = {
6076 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6077 	{8},    /* 125,000 ints/s */
6078 	{16},   /*  62,500 ints/s */
6079 	{62},   /*  16,129 ints/s */
6080 	{126}   /*   7,936 ints/s */
6081 };
6082 
6083 /* The transmit profile, which has the same sorts of values
6084  * as the previous struct
6085  */
6086 static const struct ice_dim tx_profile[] = {
6087 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6088 	{8},    /* 125,000 ints/s */
6089 	{40},   /*  16,125 ints/s */
6090 	{128},  /*   7,812 ints/s */
6091 	{256}   /*   3,906 ints/s */
6092 };
6093 
6094 static void ice_tx_dim_work(struct work_struct *work)
6095 {
6096 	struct ice_ring_container *rc;
6097 	struct dim *dim;
6098 	u16 itr;
6099 
6100 	dim = container_of(work, struct dim, work);
6101 	rc = (struct ice_ring_container *)dim->priv;
6102 
6103 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6104 
6105 	/* look up the values in our local table */
6106 	itr = tx_profile[dim->profile_ix].itr;
6107 
6108 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6109 	ice_write_itr(rc, itr);
6110 
6111 	dim->state = DIM_START_MEASURE;
6112 }
6113 
6114 static void ice_rx_dim_work(struct work_struct *work)
6115 {
6116 	struct ice_ring_container *rc;
6117 	struct dim *dim;
6118 	u16 itr;
6119 
6120 	dim = container_of(work, struct dim, work);
6121 	rc = (struct ice_ring_container *)dim->priv;
6122 
6123 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6124 
6125 	/* look up the values in our local table */
6126 	itr = rx_profile[dim->profile_ix].itr;
6127 
6128 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6129 	ice_write_itr(rc, itr);
6130 
6131 	dim->state = DIM_START_MEASURE;
6132 }
6133 
6134 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6135 
6136 /**
6137  * ice_init_moderation - set up interrupt moderation
6138  * @q_vector: the vector containing rings to be configured
6139  *
6140  * Set up interrupt moderation registers, with the intent to do the right thing
6141  * when called from reset or from probe, and whether or not dynamic moderation
6142  * is enabled or not. Take special care to write all the registers in both
6143  * dynamic moderation mode or not in order to make sure hardware is in a known
6144  * state.
6145  */
6146 static void ice_init_moderation(struct ice_q_vector *q_vector)
6147 {
6148 	struct ice_ring_container *rc;
6149 	bool tx_dynamic, rx_dynamic;
6150 
6151 	rc = &q_vector->tx;
6152 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6153 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6154 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6155 	rc->dim.priv = rc;
6156 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6157 
6158 	/* set the initial TX ITR to match the above */
6159 	ice_write_itr(rc, tx_dynamic ?
6160 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6161 
6162 	rc = &q_vector->rx;
6163 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6164 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6165 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6166 	rc->dim.priv = rc;
6167 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6168 
6169 	/* set the initial RX ITR to match the above */
6170 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6171 				       rc->itr_setting);
6172 
6173 	ice_set_q_vector_intrl(q_vector);
6174 }
6175 
6176 /**
6177  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6178  * @vsi: the VSI being configured
6179  */
6180 static void ice_napi_enable_all(struct ice_vsi *vsi)
6181 {
6182 	int q_idx;
6183 
6184 	if (!vsi->netdev)
6185 		return;
6186 
6187 	ice_for_each_q_vector(vsi, q_idx) {
6188 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6189 
6190 		ice_init_moderation(q_vector);
6191 
6192 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6193 			napi_enable(&q_vector->napi);
6194 	}
6195 }
6196 
6197 /**
6198  * ice_up_complete - Finish the last steps of bringing up a connection
6199  * @vsi: The VSI being configured
6200  *
6201  * Return 0 on success and negative value on error
6202  */
6203 static int ice_up_complete(struct ice_vsi *vsi)
6204 {
6205 	struct ice_pf *pf = vsi->back;
6206 	int err;
6207 
6208 	ice_vsi_cfg_msix(vsi);
6209 
6210 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6211 	 * Tx queue group list was configured and the context bits were
6212 	 * programmed using ice_vsi_cfg_txqs
6213 	 */
6214 	err = ice_vsi_start_all_rx_rings(vsi);
6215 	if (err)
6216 		return err;
6217 
6218 	clear_bit(ICE_VSI_DOWN, vsi->state);
6219 	ice_napi_enable_all(vsi);
6220 	ice_vsi_ena_irq(vsi);
6221 
6222 	if (vsi->port_info &&
6223 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6224 	    vsi->netdev) {
6225 		ice_print_link_msg(vsi, true);
6226 		netif_tx_start_all_queues(vsi->netdev);
6227 		netif_carrier_on(vsi->netdev);
6228 		if (!ice_is_e810(&pf->hw))
6229 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6230 	}
6231 
6232 	/* Perform an initial read of the statistics registers now to
6233 	 * set the baseline so counters are ready when interface is up
6234 	 */
6235 	ice_update_eth_stats(vsi);
6236 	ice_service_task_schedule(pf);
6237 
6238 	return 0;
6239 }
6240 
6241 /**
6242  * ice_up - Bring the connection back up after being down
6243  * @vsi: VSI being configured
6244  */
6245 int ice_up(struct ice_vsi *vsi)
6246 {
6247 	int err;
6248 
6249 	err = ice_vsi_cfg(vsi);
6250 	if (!err)
6251 		err = ice_up_complete(vsi);
6252 
6253 	return err;
6254 }
6255 
6256 /**
6257  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6258  * @syncp: pointer to u64_stats_sync
6259  * @stats: stats that pkts and bytes count will be taken from
6260  * @pkts: packets stats counter
6261  * @bytes: bytes stats counter
6262  *
6263  * This function fetches stats from the ring considering the atomic operations
6264  * that needs to be performed to read u64 values in 32 bit machine.
6265  */
6266 void
6267 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6268 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6269 {
6270 	unsigned int start;
6271 
6272 	do {
6273 		start = u64_stats_fetch_begin_irq(syncp);
6274 		*pkts = stats.pkts;
6275 		*bytes = stats.bytes;
6276 	} while (u64_stats_fetch_retry_irq(syncp, start));
6277 }
6278 
6279 /**
6280  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6281  * @vsi: the VSI to be updated
6282  * @vsi_stats: the stats struct to be updated
6283  * @rings: rings to work on
6284  * @count: number of rings
6285  */
6286 static void
6287 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6288 			     struct rtnl_link_stats64 *vsi_stats,
6289 			     struct ice_tx_ring **rings, u16 count)
6290 {
6291 	u16 i;
6292 
6293 	for (i = 0; i < count; i++) {
6294 		struct ice_tx_ring *ring;
6295 		u64 pkts = 0, bytes = 0;
6296 
6297 		ring = READ_ONCE(rings[i]);
6298 		if (!ring)
6299 			continue;
6300 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6301 		vsi_stats->tx_packets += pkts;
6302 		vsi_stats->tx_bytes += bytes;
6303 		vsi->tx_restart += ring->tx_stats.restart_q;
6304 		vsi->tx_busy += ring->tx_stats.tx_busy;
6305 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6306 	}
6307 }
6308 
6309 /**
6310  * ice_update_vsi_ring_stats - Update VSI stats counters
6311  * @vsi: the VSI to be updated
6312  */
6313 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6314 {
6315 	struct rtnl_link_stats64 *vsi_stats;
6316 	u64 pkts, bytes;
6317 	int i;
6318 
6319 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6320 	if (!vsi_stats)
6321 		return;
6322 
6323 	/* reset non-netdev (extended) stats */
6324 	vsi->tx_restart = 0;
6325 	vsi->tx_busy = 0;
6326 	vsi->tx_linearize = 0;
6327 	vsi->rx_buf_failed = 0;
6328 	vsi->rx_page_failed = 0;
6329 
6330 	rcu_read_lock();
6331 
6332 	/* update Tx rings counters */
6333 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6334 				     vsi->num_txq);
6335 
6336 	/* update Rx rings counters */
6337 	ice_for_each_rxq(vsi, i) {
6338 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6339 
6340 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6341 		vsi_stats->rx_packets += pkts;
6342 		vsi_stats->rx_bytes += bytes;
6343 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6344 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6345 	}
6346 
6347 	/* update XDP Tx rings counters */
6348 	if (ice_is_xdp_ena_vsi(vsi))
6349 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6350 					     vsi->num_xdp_txq);
6351 
6352 	rcu_read_unlock();
6353 
6354 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6355 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6356 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6357 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6358 
6359 	kfree(vsi_stats);
6360 }
6361 
6362 /**
6363  * ice_update_vsi_stats - Update VSI stats counters
6364  * @vsi: the VSI to be updated
6365  */
6366 void ice_update_vsi_stats(struct ice_vsi *vsi)
6367 {
6368 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6369 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6370 	struct ice_pf *pf = vsi->back;
6371 
6372 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6373 	    test_bit(ICE_CFG_BUSY, pf->state))
6374 		return;
6375 
6376 	/* get stats as recorded by Tx/Rx rings */
6377 	ice_update_vsi_ring_stats(vsi);
6378 
6379 	/* get VSI stats as recorded by the hardware */
6380 	ice_update_eth_stats(vsi);
6381 
6382 	cur_ns->tx_errors = cur_es->tx_errors;
6383 	cur_ns->rx_dropped = cur_es->rx_discards;
6384 	cur_ns->tx_dropped = cur_es->tx_discards;
6385 	cur_ns->multicast = cur_es->rx_multicast;
6386 
6387 	/* update some more netdev stats if this is main VSI */
6388 	if (vsi->type == ICE_VSI_PF) {
6389 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6390 		cur_ns->rx_errors = pf->stats.crc_errors +
6391 				    pf->stats.illegal_bytes +
6392 				    pf->stats.rx_len_errors +
6393 				    pf->stats.rx_undersize +
6394 				    pf->hw_csum_rx_error +
6395 				    pf->stats.rx_jabber +
6396 				    pf->stats.rx_fragments +
6397 				    pf->stats.rx_oversize;
6398 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6399 		/* record drops from the port level */
6400 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6401 	}
6402 }
6403 
6404 /**
6405  * ice_update_pf_stats - Update PF port stats counters
6406  * @pf: PF whose stats needs to be updated
6407  */
6408 void ice_update_pf_stats(struct ice_pf *pf)
6409 {
6410 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6411 	struct ice_hw *hw = &pf->hw;
6412 	u16 fd_ctr_base;
6413 	u8 port;
6414 
6415 	port = hw->port_info->lport;
6416 	prev_ps = &pf->stats_prev;
6417 	cur_ps = &pf->stats;
6418 
6419 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6420 			  &prev_ps->eth.rx_bytes,
6421 			  &cur_ps->eth.rx_bytes);
6422 
6423 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6424 			  &prev_ps->eth.rx_unicast,
6425 			  &cur_ps->eth.rx_unicast);
6426 
6427 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6428 			  &prev_ps->eth.rx_multicast,
6429 			  &cur_ps->eth.rx_multicast);
6430 
6431 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6432 			  &prev_ps->eth.rx_broadcast,
6433 			  &cur_ps->eth.rx_broadcast);
6434 
6435 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6436 			  &prev_ps->eth.rx_discards,
6437 			  &cur_ps->eth.rx_discards);
6438 
6439 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6440 			  &prev_ps->eth.tx_bytes,
6441 			  &cur_ps->eth.tx_bytes);
6442 
6443 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6444 			  &prev_ps->eth.tx_unicast,
6445 			  &cur_ps->eth.tx_unicast);
6446 
6447 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6448 			  &prev_ps->eth.tx_multicast,
6449 			  &cur_ps->eth.tx_multicast);
6450 
6451 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6452 			  &prev_ps->eth.tx_broadcast,
6453 			  &cur_ps->eth.tx_broadcast);
6454 
6455 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6456 			  &prev_ps->tx_dropped_link_down,
6457 			  &cur_ps->tx_dropped_link_down);
6458 
6459 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6460 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6461 
6462 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6463 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6464 
6465 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6466 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6467 
6468 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6469 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6470 
6471 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6472 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6473 
6474 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6475 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6476 
6477 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6478 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6479 
6480 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6481 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6482 
6483 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6484 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6485 
6486 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6487 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6488 
6489 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6490 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6491 
6492 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6493 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6494 
6495 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6496 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6497 
6498 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6499 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6500 
6501 	fd_ctr_base = hw->fd_ctr_base;
6502 
6503 	ice_stat_update40(hw,
6504 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6505 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6506 			  &cur_ps->fd_sb_match);
6507 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6508 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6509 
6510 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6511 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6512 
6513 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6514 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6515 
6516 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6517 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6518 
6519 	ice_update_dcb_stats(pf);
6520 
6521 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6522 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6523 
6524 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6525 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6526 
6527 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6528 			  &prev_ps->mac_local_faults,
6529 			  &cur_ps->mac_local_faults);
6530 
6531 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6532 			  &prev_ps->mac_remote_faults,
6533 			  &cur_ps->mac_remote_faults);
6534 
6535 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6536 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6537 
6538 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6539 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6540 
6541 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6542 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6543 
6544 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6545 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6546 
6547 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6548 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6549 
6550 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6551 
6552 	pf->stat_prev_loaded = true;
6553 }
6554 
6555 /**
6556  * ice_get_stats64 - get statistics for network device structure
6557  * @netdev: network interface device structure
6558  * @stats: main device statistics structure
6559  */
6560 static
6561 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6562 {
6563 	struct ice_netdev_priv *np = netdev_priv(netdev);
6564 	struct rtnl_link_stats64 *vsi_stats;
6565 	struct ice_vsi *vsi = np->vsi;
6566 
6567 	vsi_stats = &vsi->net_stats;
6568 
6569 	if (!vsi->num_txq || !vsi->num_rxq)
6570 		return;
6571 
6572 	/* netdev packet/byte stats come from ring counter. These are obtained
6573 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6574 	 * But, only call the update routine and read the registers if VSI is
6575 	 * not down.
6576 	 */
6577 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6578 		ice_update_vsi_ring_stats(vsi);
6579 	stats->tx_packets = vsi_stats->tx_packets;
6580 	stats->tx_bytes = vsi_stats->tx_bytes;
6581 	stats->rx_packets = vsi_stats->rx_packets;
6582 	stats->rx_bytes = vsi_stats->rx_bytes;
6583 
6584 	/* The rest of the stats can be read from the hardware but instead we
6585 	 * just return values that the watchdog task has already obtained from
6586 	 * the hardware.
6587 	 */
6588 	stats->multicast = vsi_stats->multicast;
6589 	stats->tx_errors = vsi_stats->tx_errors;
6590 	stats->tx_dropped = vsi_stats->tx_dropped;
6591 	stats->rx_errors = vsi_stats->rx_errors;
6592 	stats->rx_dropped = vsi_stats->rx_dropped;
6593 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6594 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6595 }
6596 
6597 /**
6598  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6599  * @vsi: VSI having NAPI disabled
6600  */
6601 static void ice_napi_disable_all(struct ice_vsi *vsi)
6602 {
6603 	int q_idx;
6604 
6605 	if (!vsi->netdev)
6606 		return;
6607 
6608 	ice_for_each_q_vector(vsi, q_idx) {
6609 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6610 
6611 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6612 			napi_disable(&q_vector->napi);
6613 
6614 		cancel_work_sync(&q_vector->tx.dim.work);
6615 		cancel_work_sync(&q_vector->rx.dim.work);
6616 	}
6617 }
6618 
6619 /**
6620  * ice_down - Shutdown the connection
6621  * @vsi: The VSI being stopped
6622  *
6623  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6624  */
6625 int ice_down(struct ice_vsi *vsi)
6626 {
6627 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6628 
6629 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6630 
6631 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6632 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6633 		if (!ice_is_e810(&vsi->back->hw))
6634 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6635 		netif_carrier_off(vsi->netdev);
6636 		netif_tx_disable(vsi->netdev);
6637 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6638 		ice_eswitch_stop_all_tx_queues(vsi->back);
6639 	}
6640 
6641 	ice_vsi_dis_irq(vsi);
6642 
6643 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6644 	if (tx_err)
6645 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6646 			   vsi->vsi_num, tx_err);
6647 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6648 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6649 		if (tx_err)
6650 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6651 				   vsi->vsi_num, tx_err);
6652 	}
6653 
6654 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6655 	if (rx_err)
6656 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6657 			   vsi->vsi_num, rx_err);
6658 
6659 	ice_napi_disable_all(vsi);
6660 
6661 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6662 		link_err = ice_force_phys_link_state(vsi, false);
6663 		if (link_err)
6664 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6665 				   vsi->vsi_num, link_err);
6666 	}
6667 
6668 	ice_for_each_txq(vsi, i)
6669 		ice_clean_tx_ring(vsi->tx_rings[i]);
6670 
6671 	ice_for_each_rxq(vsi, i)
6672 		ice_clean_rx_ring(vsi->rx_rings[i]);
6673 
6674 	if (tx_err || rx_err || link_err || vlan_err) {
6675 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6676 			   vsi->vsi_num, vsi->vsw->sw_id);
6677 		return -EIO;
6678 	}
6679 
6680 	return 0;
6681 }
6682 
6683 /**
6684  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6685  * @vsi: VSI having resources allocated
6686  *
6687  * Return 0 on success, negative on failure
6688  */
6689 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6690 {
6691 	int i, err = 0;
6692 
6693 	if (!vsi->num_txq) {
6694 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6695 			vsi->vsi_num);
6696 		return -EINVAL;
6697 	}
6698 
6699 	ice_for_each_txq(vsi, i) {
6700 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6701 
6702 		if (!ring)
6703 			return -EINVAL;
6704 
6705 		if (vsi->netdev)
6706 			ring->netdev = vsi->netdev;
6707 		err = ice_setup_tx_ring(ring);
6708 		if (err)
6709 			break;
6710 	}
6711 
6712 	return err;
6713 }
6714 
6715 /**
6716  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6717  * @vsi: VSI having resources allocated
6718  *
6719  * Return 0 on success, negative on failure
6720  */
6721 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6722 {
6723 	int i, err = 0;
6724 
6725 	if (!vsi->num_rxq) {
6726 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6727 			vsi->vsi_num);
6728 		return -EINVAL;
6729 	}
6730 
6731 	ice_for_each_rxq(vsi, i) {
6732 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6733 
6734 		if (!ring)
6735 			return -EINVAL;
6736 
6737 		if (vsi->netdev)
6738 			ring->netdev = vsi->netdev;
6739 		err = ice_setup_rx_ring(ring);
6740 		if (err)
6741 			break;
6742 	}
6743 
6744 	return err;
6745 }
6746 
6747 /**
6748  * ice_vsi_open_ctrl - open control VSI for use
6749  * @vsi: the VSI to open
6750  *
6751  * Initialization of the Control VSI
6752  *
6753  * Returns 0 on success, negative value on error
6754  */
6755 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6756 {
6757 	char int_name[ICE_INT_NAME_STR_LEN];
6758 	struct ice_pf *pf = vsi->back;
6759 	struct device *dev;
6760 	int err;
6761 
6762 	dev = ice_pf_to_dev(pf);
6763 	/* allocate descriptors */
6764 	err = ice_vsi_setup_tx_rings(vsi);
6765 	if (err)
6766 		goto err_setup_tx;
6767 
6768 	err = ice_vsi_setup_rx_rings(vsi);
6769 	if (err)
6770 		goto err_setup_rx;
6771 
6772 	err = ice_vsi_cfg(vsi);
6773 	if (err)
6774 		goto err_setup_rx;
6775 
6776 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6777 		 dev_driver_string(dev), dev_name(dev));
6778 	err = ice_vsi_req_irq_msix(vsi, int_name);
6779 	if (err)
6780 		goto err_setup_rx;
6781 
6782 	ice_vsi_cfg_msix(vsi);
6783 
6784 	err = ice_vsi_start_all_rx_rings(vsi);
6785 	if (err)
6786 		goto err_up_complete;
6787 
6788 	clear_bit(ICE_VSI_DOWN, vsi->state);
6789 	ice_vsi_ena_irq(vsi);
6790 
6791 	return 0;
6792 
6793 err_up_complete:
6794 	ice_down(vsi);
6795 err_setup_rx:
6796 	ice_vsi_free_rx_rings(vsi);
6797 err_setup_tx:
6798 	ice_vsi_free_tx_rings(vsi);
6799 
6800 	return err;
6801 }
6802 
6803 /**
6804  * ice_vsi_open - Called when a network interface is made active
6805  * @vsi: the VSI to open
6806  *
6807  * Initialization of the VSI
6808  *
6809  * Returns 0 on success, negative value on error
6810  */
6811 int ice_vsi_open(struct ice_vsi *vsi)
6812 {
6813 	char int_name[ICE_INT_NAME_STR_LEN];
6814 	struct ice_pf *pf = vsi->back;
6815 	int err;
6816 
6817 	/* allocate descriptors */
6818 	err = ice_vsi_setup_tx_rings(vsi);
6819 	if (err)
6820 		goto err_setup_tx;
6821 
6822 	err = ice_vsi_setup_rx_rings(vsi);
6823 	if (err)
6824 		goto err_setup_rx;
6825 
6826 	err = ice_vsi_cfg(vsi);
6827 	if (err)
6828 		goto err_setup_rx;
6829 
6830 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6831 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6832 	err = ice_vsi_req_irq_msix(vsi, int_name);
6833 	if (err)
6834 		goto err_setup_rx;
6835 
6836 	if (vsi->type == ICE_VSI_PF) {
6837 		/* Notify the stack of the actual queue counts. */
6838 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6839 		if (err)
6840 			goto err_set_qs;
6841 
6842 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6843 		if (err)
6844 			goto err_set_qs;
6845 	}
6846 
6847 	err = ice_up_complete(vsi);
6848 	if (err)
6849 		goto err_up_complete;
6850 
6851 	return 0;
6852 
6853 err_up_complete:
6854 	ice_down(vsi);
6855 err_set_qs:
6856 	ice_vsi_free_irq(vsi);
6857 err_setup_rx:
6858 	ice_vsi_free_rx_rings(vsi);
6859 err_setup_tx:
6860 	ice_vsi_free_tx_rings(vsi);
6861 
6862 	return err;
6863 }
6864 
6865 /**
6866  * ice_vsi_release_all - Delete all VSIs
6867  * @pf: PF from which all VSIs are being removed
6868  */
6869 static void ice_vsi_release_all(struct ice_pf *pf)
6870 {
6871 	int err, i;
6872 
6873 	if (!pf->vsi)
6874 		return;
6875 
6876 	ice_for_each_vsi(pf, i) {
6877 		if (!pf->vsi[i])
6878 			continue;
6879 
6880 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6881 			continue;
6882 
6883 		err = ice_vsi_release(pf->vsi[i]);
6884 		if (err)
6885 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6886 				i, err, pf->vsi[i]->vsi_num);
6887 	}
6888 }
6889 
6890 /**
6891  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6892  * @pf: pointer to the PF instance
6893  * @type: VSI type to rebuild
6894  *
6895  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6896  */
6897 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6898 {
6899 	struct device *dev = ice_pf_to_dev(pf);
6900 	int i, err;
6901 
6902 	ice_for_each_vsi(pf, i) {
6903 		struct ice_vsi *vsi = pf->vsi[i];
6904 
6905 		if (!vsi || vsi->type != type)
6906 			continue;
6907 
6908 		/* rebuild the VSI */
6909 		err = ice_vsi_rebuild(vsi, true);
6910 		if (err) {
6911 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6912 				err, vsi->idx, ice_vsi_type_str(type));
6913 			return err;
6914 		}
6915 
6916 		/* replay filters for the VSI */
6917 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6918 		if (err) {
6919 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6920 				err, vsi->idx, ice_vsi_type_str(type));
6921 			return err;
6922 		}
6923 
6924 		/* Re-map HW VSI number, using VSI handle that has been
6925 		 * previously validated in ice_replay_vsi() call above
6926 		 */
6927 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6928 
6929 		/* enable the VSI */
6930 		err = ice_ena_vsi(vsi, false);
6931 		if (err) {
6932 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6933 				err, vsi->idx, ice_vsi_type_str(type));
6934 			return err;
6935 		}
6936 
6937 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6938 			 ice_vsi_type_str(type));
6939 	}
6940 
6941 	return 0;
6942 }
6943 
6944 /**
6945  * ice_update_pf_netdev_link - Update PF netdev link status
6946  * @pf: pointer to the PF instance
6947  */
6948 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6949 {
6950 	bool link_up;
6951 	int i;
6952 
6953 	ice_for_each_vsi(pf, i) {
6954 		struct ice_vsi *vsi = pf->vsi[i];
6955 
6956 		if (!vsi || vsi->type != ICE_VSI_PF)
6957 			return;
6958 
6959 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6960 		if (link_up) {
6961 			netif_carrier_on(pf->vsi[i]->netdev);
6962 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6963 		} else {
6964 			netif_carrier_off(pf->vsi[i]->netdev);
6965 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6966 		}
6967 	}
6968 }
6969 
6970 /**
6971  * ice_rebuild - rebuild after reset
6972  * @pf: PF to rebuild
6973  * @reset_type: type of reset
6974  *
6975  * Do not rebuild VF VSI in this flow because that is already handled via
6976  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6977  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6978  * to reset/rebuild all the VF VSI twice.
6979  */
6980 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6981 {
6982 	struct device *dev = ice_pf_to_dev(pf);
6983 	struct ice_hw *hw = &pf->hw;
6984 	bool dvm;
6985 	int err;
6986 
6987 	if (test_bit(ICE_DOWN, pf->state))
6988 		goto clear_recovery;
6989 
6990 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6991 
6992 #define ICE_EMP_RESET_SLEEP_MS 5000
6993 	if (reset_type == ICE_RESET_EMPR) {
6994 		/* If an EMP reset has occurred, any previously pending flash
6995 		 * update will have completed. We no longer know whether or
6996 		 * not the NVM update EMP reset is restricted.
6997 		 */
6998 		pf->fw_emp_reset_disabled = false;
6999 
7000 		msleep(ICE_EMP_RESET_SLEEP_MS);
7001 	}
7002 
7003 	err = ice_init_all_ctrlq(hw);
7004 	if (err) {
7005 		dev_err(dev, "control queues init failed %d\n", err);
7006 		goto err_init_ctrlq;
7007 	}
7008 
7009 	/* if DDP was previously loaded successfully */
7010 	if (!ice_is_safe_mode(pf)) {
7011 		/* reload the SW DB of filter tables */
7012 		if (reset_type == ICE_RESET_PFR)
7013 			ice_fill_blk_tbls(hw);
7014 		else
7015 			/* Reload DDP Package after CORER/GLOBR reset */
7016 			ice_load_pkg(NULL, pf);
7017 	}
7018 
7019 	err = ice_clear_pf_cfg(hw);
7020 	if (err) {
7021 		dev_err(dev, "clear PF configuration failed %d\n", err);
7022 		goto err_init_ctrlq;
7023 	}
7024 
7025 	ice_clear_pxe_mode(hw);
7026 
7027 	err = ice_init_nvm(hw);
7028 	if (err) {
7029 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7030 		goto err_init_ctrlq;
7031 	}
7032 
7033 	err = ice_get_caps(hw);
7034 	if (err) {
7035 		dev_err(dev, "ice_get_caps failed %d\n", err);
7036 		goto err_init_ctrlq;
7037 	}
7038 
7039 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7040 	if (err) {
7041 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7042 		goto err_init_ctrlq;
7043 	}
7044 
7045 	dvm = ice_is_dvm_ena(hw);
7046 
7047 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7048 	if (err)
7049 		goto err_init_ctrlq;
7050 
7051 	err = ice_sched_init_port(hw->port_info);
7052 	if (err)
7053 		goto err_sched_init_port;
7054 
7055 	/* start misc vector */
7056 	err = ice_req_irq_msix_misc(pf);
7057 	if (err) {
7058 		dev_err(dev, "misc vector setup failed: %d\n", err);
7059 		goto err_sched_init_port;
7060 	}
7061 
7062 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7063 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7064 		if (!rd32(hw, PFQF_FD_SIZE)) {
7065 			u16 unused, guar, b_effort;
7066 
7067 			guar = hw->func_caps.fd_fltr_guar;
7068 			b_effort = hw->func_caps.fd_fltr_best_effort;
7069 
7070 			/* force guaranteed filter pool for PF */
7071 			ice_alloc_fd_guar_item(hw, &unused, guar);
7072 			/* force shared filter pool for PF */
7073 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7074 		}
7075 	}
7076 
7077 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7078 		ice_dcb_rebuild(pf);
7079 
7080 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7081 	 * the VSI rebuild. If not, this causes the PTP link status events to
7082 	 * fail.
7083 	 */
7084 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7085 		ice_ptp_reset(pf);
7086 
7087 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7088 		ice_gnss_init(pf);
7089 
7090 	/* rebuild PF VSI */
7091 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7092 	if (err) {
7093 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7094 		goto err_vsi_rebuild;
7095 	}
7096 
7097 	/* configure PTP timestamping after VSI rebuild */
7098 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7099 		ice_ptp_cfg_timestamp(pf, false);
7100 
7101 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7102 	if (err) {
7103 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7104 		goto err_vsi_rebuild;
7105 	}
7106 
7107 	if (reset_type == ICE_RESET_PFR) {
7108 		err = ice_rebuild_channels(pf);
7109 		if (err) {
7110 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7111 				err);
7112 			goto err_vsi_rebuild;
7113 		}
7114 	}
7115 
7116 	/* If Flow Director is active */
7117 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7118 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7119 		if (err) {
7120 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7121 			goto err_vsi_rebuild;
7122 		}
7123 
7124 		/* replay HW Flow Director recipes */
7125 		if (hw->fdir_prof)
7126 			ice_fdir_replay_flows(hw);
7127 
7128 		/* replay Flow Director filters */
7129 		ice_fdir_replay_fltrs(pf);
7130 
7131 		ice_rebuild_arfs(pf);
7132 	}
7133 
7134 	ice_update_pf_netdev_link(pf);
7135 
7136 	/* tell the firmware we are up */
7137 	err = ice_send_version(pf);
7138 	if (err) {
7139 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7140 			err);
7141 		goto err_vsi_rebuild;
7142 	}
7143 
7144 	ice_replay_post(hw);
7145 
7146 	/* if we get here, reset flow is successful */
7147 	clear_bit(ICE_RESET_FAILED, pf->state);
7148 
7149 	ice_plug_aux_dev(pf);
7150 	return;
7151 
7152 err_vsi_rebuild:
7153 err_sched_init_port:
7154 	ice_sched_cleanup_all(hw);
7155 err_init_ctrlq:
7156 	ice_shutdown_all_ctrlq(hw);
7157 	set_bit(ICE_RESET_FAILED, pf->state);
7158 clear_recovery:
7159 	/* set this bit in PF state to control service task scheduling */
7160 	set_bit(ICE_NEEDS_RESTART, pf->state);
7161 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7162 }
7163 
7164 /**
7165  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7166  * @vsi: Pointer to VSI structure
7167  */
7168 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7169 {
7170 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7171 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7172 	else
7173 		return ICE_RXBUF_3072;
7174 }
7175 
7176 /**
7177  * ice_change_mtu - NDO callback to change the MTU
7178  * @netdev: network interface device structure
7179  * @new_mtu: new value for maximum frame size
7180  *
7181  * Returns 0 on success, negative on failure
7182  */
7183 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7184 {
7185 	struct ice_netdev_priv *np = netdev_priv(netdev);
7186 	struct ice_vsi *vsi = np->vsi;
7187 	struct ice_pf *pf = vsi->back;
7188 	u8 count = 0;
7189 	int err = 0;
7190 
7191 	if (new_mtu == (int)netdev->mtu) {
7192 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7193 		return 0;
7194 	}
7195 
7196 	if (ice_is_xdp_ena_vsi(vsi)) {
7197 		int frame_size = ice_max_xdp_frame_size(vsi);
7198 
7199 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7200 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7201 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7202 			return -EINVAL;
7203 		}
7204 	}
7205 
7206 	/* if a reset is in progress, wait for some time for it to complete */
7207 	do {
7208 		if (ice_is_reset_in_progress(pf->state)) {
7209 			count++;
7210 			usleep_range(1000, 2000);
7211 		} else {
7212 			break;
7213 		}
7214 
7215 	} while (count < 100);
7216 
7217 	if (count == 100) {
7218 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7219 		return -EBUSY;
7220 	}
7221 
7222 	netdev->mtu = (unsigned int)new_mtu;
7223 
7224 	/* if VSI is up, bring it down and then back up */
7225 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7226 		err = ice_down(vsi);
7227 		if (err) {
7228 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7229 			return err;
7230 		}
7231 
7232 		err = ice_up(vsi);
7233 		if (err) {
7234 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7235 			return err;
7236 		}
7237 	}
7238 
7239 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7240 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7241 
7242 	return err;
7243 }
7244 
7245 /**
7246  * ice_eth_ioctl - Access the hwtstamp interface
7247  * @netdev: network interface device structure
7248  * @ifr: interface request data
7249  * @cmd: ioctl command
7250  */
7251 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7252 {
7253 	struct ice_netdev_priv *np = netdev_priv(netdev);
7254 	struct ice_pf *pf = np->vsi->back;
7255 
7256 	switch (cmd) {
7257 	case SIOCGHWTSTAMP:
7258 		return ice_ptp_get_ts_config(pf, ifr);
7259 	case SIOCSHWTSTAMP:
7260 		return ice_ptp_set_ts_config(pf, ifr);
7261 	default:
7262 		return -EOPNOTSUPP;
7263 	}
7264 }
7265 
7266 /**
7267  * ice_aq_str - convert AQ err code to a string
7268  * @aq_err: the AQ error code to convert
7269  */
7270 const char *ice_aq_str(enum ice_aq_err aq_err)
7271 {
7272 	switch (aq_err) {
7273 	case ICE_AQ_RC_OK:
7274 		return "OK";
7275 	case ICE_AQ_RC_EPERM:
7276 		return "ICE_AQ_RC_EPERM";
7277 	case ICE_AQ_RC_ENOENT:
7278 		return "ICE_AQ_RC_ENOENT";
7279 	case ICE_AQ_RC_ENOMEM:
7280 		return "ICE_AQ_RC_ENOMEM";
7281 	case ICE_AQ_RC_EBUSY:
7282 		return "ICE_AQ_RC_EBUSY";
7283 	case ICE_AQ_RC_EEXIST:
7284 		return "ICE_AQ_RC_EEXIST";
7285 	case ICE_AQ_RC_EINVAL:
7286 		return "ICE_AQ_RC_EINVAL";
7287 	case ICE_AQ_RC_ENOSPC:
7288 		return "ICE_AQ_RC_ENOSPC";
7289 	case ICE_AQ_RC_ENOSYS:
7290 		return "ICE_AQ_RC_ENOSYS";
7291 	case ICE_AQ_RC_EMODE:
7292 		return "ICE_AQ_RC_EMODE";
7293 	case ICE_AQ_RC_ENOSEC:
7294 		return "ICE_AQ_RC_ENOSEC";
7295 	case ICE_AQ_RC_EBADSIG:
7296 		return "ICE_AQ_RC_EBADSIG";
7297 	case ICE_AQ_RC_ESVN:
7298 		return "ICE_AQ_RC_ESVN";
7299 	case ICE_AQ_RC_EBADMAN:
7300 		return "ICE_AQ_RC_EBADMAN";
7301 	case ICE_AQ_RC_EBADBUF:
7302 		return "ICE_AQ_RC_EBADBUF";
7303 	}
7304 
7305 	return "ICE_AQ_RC_UNKNOWN";
7306 }
7307 
7308 /**
7309  * ice_set_rss_lut - Set RSS LUT
7310  * @vsi: Pointer to VSI structure
7311  * @lut: Lookup table
7312  * @lut_size: Lookup table size
7313  *
7314  * Returns 0 on success, negative on failure
7315  */
7316 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7317 {
7318 	struct ice_aq_get_set_rss_lut_params params = {};
7319 	struct ice_hw *hw = &vsi->back->hw;
7320 	int status;
7321 
7322 	if (!lut)
7323 		return -EINVAL;
7324 
7325 	params.vsi_handle = vsi->idx;
7326 	params.lut_size = lut_size;
7327 	params.lut_type = vsi->rss_lut_type;
7328 	params.lut = lut;
7329 
7330 	status = ice_aq_set_rss_lut(hw, &params);
7331 	if (status)
7332 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7333 			status, ice_aq_str(hw->adminq.sq_last_status));
7334 
7335 	return status;
7336 }
7337 
7338 /**
7339  * ice_set_rss_key - Set RSS key
7340  * @vsi: Pointer to the VSI structure
7341  * @seed: RSS hash seed
7342  *
7343  * Returns 0 on success, negative on failure
7344  */
7345 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7346 {
7347 	struct ice_hw *hw = &vsi->back->hw;
7348 	int status;
7349 
7350 	if (!seed)
7351 		return -EINVAL;
7352 
7353 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7354 	if (status)
7355 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7356 			status, ice_aq_str(hw->adminq.sq_last_status));
7357 
7358 	return status;
7359 }
7360 
7361 /**
7362  * ice_get_rss_lut - Get RSS LUT
7363  * @vsi: Pointer to VSI structure
7364  * @lut: Buffer to store the lookup table entries
7365  * @lut_size: Size of buffer to store the lookup table entries
7366  *
7367  * Returns 0 on success, negative on failure
7368  */
7369 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7370 {
7371 	struct ice_aq_get_set_rss_lut_params params = {};
7372 	struct ice_hw *hw = &vsi->back->hw;
7373 	int status;
7374 
7375 	if (!lut)
7376 		return -EINVAL;
7377 
7378 	params.vsi_handle = vsi->idx;
7379 	params.lut_size = lut_size;
7380 	params.lut_type = vsi->rss_lut_type;
7381 	params.lut = lut;
7382 
7383 	status = ice_aq_get_rss_lut(hw, &params);
7384 	if (status)
7385 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7386 			status, ice_aq_str(hw->adminq.sq_last_status));
7387 
7388 	return status;
7389 }
7390 
7391 /**
7392  * ice_get_rss_key - Get RSS key
7393  * @vsi: Pointer to VSI structure
7394  * @seed: Buffer to store the key in
7395  *
7396  * Returns 0 on success, negative on failure
7397  */
7398 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7399 {
7400 	struct ice_hw *hw = &vsi->back->hw;
7401 	int status;
7402 
7403 	if (!seed)
7404 		return -EINVAL;
7405 
7406 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7407 	if (status)
7408 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7409 			status, ice_aq_str(hw->adminq.sq_last_status));
7410 
7411 	return status;
7412 }
7413 
7414 /**
7415  * ice_bridge_getlink - Get the hardware bridge mode
7416  * @skb: skb buff
7417  * @pid: process ID
7418  * @seq: RTNL message seq
7419  * @dev: the netdev being configured
7420  * @filter_mask: filter mask passed in
7421  * @nlflags: netlink flags passed in
7422  *
7423  * Return the bridge mode (VEB/VEPA)
7424  */
7425 static int
7426 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7427 		   struct net_device *dev, u32 filter_mask, int nlflags)
7428 {
7429 	struct ice_netdev_priv *np = netdev_priv(dev);
7430 	struct ice_vsi *vsi = np->vsi;
7431 	struct ice_pf *pf = vsi->back;
7432 	u16 bmode;
7433 
7434 	bmode = pf->first_sw->bridge_mode;
7435 
7436 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7437 				       filter_mask, NULL);
7438 }
7439 
7440 /**
7441  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7442  * @vsi: Pointer to VSI structure
7443  * @bmode: Hardware bridge mode (VEB/VEPA)
7444  *
7445  * Returns 0 on success, negative on failure
7446  */
7447 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7448 {
7449 	struct ice_aqc_vsi_props *vsi_props;
7450 	struct ice_hw *hw = &vsi->back->hw;
7451 	struct ice_vsi_ctx *ctxt;
7452 	int ret;
7453 
7454 	vsi_props = &vsi->info;
7455 
7456 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7457 	if (!ctxt)
7458 		return -ENOMEM;
7459 
7460 	ctxt->info = vsi->info;
7461 
7462 	if (bmode == BRIDGE_MODE_VEB)
7463 		/* change from VEPA to VEB mode */
7464 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7465 	else
7466 		/* change from VEB to VEPA mode */
7467 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7468 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7469 
7470 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7471 	if (ret) {
7472 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7473 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7474 		goto out;
7475 	}
7476 	/* Update sw flags for book keeping */
7477 	vsi_props->sw_flags = ctxt->info.sw_flags;
7478 
7479 out:
7480 	kfree(ctxt);
7481 	return ret;
7482 }
7483 
7484 /**
7485  * ice_bridge_setlink - Set the hardware bridge mode
7486  * @dev: the netdev being configured
7487  * @nlh: RTNL message
7488  * @flags: bridge setlink flags
7489  * @extack: netlink extended ack
7490  *
7491  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7492  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7493  * not already set for all VSIs connected to this switch. And also update the
7494  * unicast switch filter rules for the corresponding switch of the netdev.
7495  */
7496 static int
7497 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7498 		   u16 __always_unused flags,
7499 		   struct netlink_ext_ack __always_unused *extack)
7500 {
7501 	struct ice_netdev_priv *np = netdev_priv(dev);
7502 	struct ice_pf *pf = np->vsi->back;
7503 	struct nlattr *attr, *br_spec;
7504 	struct ice_hw *hw = &pf->hw;
7505 	struct ice_sw *pf_sw;
7506 	int rem, v, err = 0;
7507 
7508 	pf_sw = pf->first_sw;
7509 	/* find the attribute in the netlink message */
7510 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7511 
7512 	nla_for_each_nested(attr, br_spec, rem) {
7513 		__u16 mode;
7514 
7515 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7516 			continue;
7517 		mode = nla_get_u16(attr);
7518 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7519 			return -EINVAL;
7520 		/* Continue  if bridge mode is not being flipped */
7521 		if (mode == pf_sw->bridge_mode)
7522 			continue;
7523 		/* Iterates through the PF VSI list and update the loopback
7524 		 * mode of the VSI
7525 		 */
7526 		ice_for_each_vsi(pf, v) {
7527 			if (!pf->vsi[v])
7528 				continue;
7529 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7530 			if (err)
7531 				return err;
7532 		}
7533 
7534 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7535 		/* Update the unicast switch filter rules for the corresponding
7536 		 * switch of the netdev
7537 		 */
7538 		err = ice_update_sw_rule_bridge_mode(hw);
7539 		if (err) {
7540 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7541 				   mode, err,
7542 				   ice_aq_str(hw->adminq.sq_last_status));
7543 			/* revert hw->evb_veb */
7544 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7545 			return err;
7546 		}
7547 
7548 		pf_sw->bridge_mode = mode;
7549 	}
7550 
7551 	return 0;
7552 }
7553 
7554 /**
7555  * ice_tx_timeout - Respond to a Tx Hang
7556  * @netdev: network interface device structure
7557  * @txqueue: Tx queue
7558  */
7559 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7560 {
7561 	struct ice_netdev_priv *np = netdev_priv(netdev);
7562 	struct ice_tx_ring *tx_ring = NULL;
7563 	struct ice_vsi *vsi = np->vsi;
7564 	struct ice_pf *pf = vsi->back;
7565 	u32 i;
7566 
7567 	pf->tx_timeout_count++;
7568 
7569 	/* Check if PFC is enabled for the TC to which the queue belongs
7570 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7571 	 * need to reset and rebuild
7572 	 */
7573 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7574 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7575 			 txqueue);
7576 		return;
7577 	}
7578 
7579 	/* now that we have an index, find the tx_ring struct */
7580 	ice_for_each_txq(vsi, i)
7581 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7582 			if (txqueue == vsi->tx_rings[i]->q_index) {
7583 				tx_ring = vsi->tx_rings[i];
7584 				break;
7585 			}
7586 
7587 	/* Reset recovery level if enough time has elapsed after last timeout.
7588 	 * Also ensure no new reset action happens before next timeout period.
7589 	 */
7590 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7591 		pf->tx_timeout_recovery_level = 1;
7592 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7593 				       netdev->watchdog_timeo)))
7594 		return;
7595 
7596 	if (tx_ring) {
7597 		struct ice_hw *hw = &pf->hw;
7598 		u32 head, val = 0;
7599 
7600 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7601 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7602 		/* Read interrupt register */
7603 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7604 
7605 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7606 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7607 			    head, tx_ring->next_to_use, val);
7608 	}
7609 
7610 	pf->tx_timeout_last_recovery = jiffies;
7611 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7612 		    pf->tx_timeout_recovery_level, txqueue);
7613 
7614 	switch (pf->tx_timeout_recovery_level) {
7615 	case 1:
7616 		set_bit(ICE_PFR_REQ, pf->state);
7617 		break;
7618 	case 2:
7619 		set_bit(ICE_CORER_REQ, pf->state);
7620 		break;
7621 	case 3:
7622 		set_bit(ICE_GLOBR_REQ, pf->state);
7623 		break;
7624 	default:
7625 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7626 		set_bit(ICE_DOWN, pf->state);
7627 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7628 		set_bit(ICE_SERVICE_DIS, pf->state);
7629 		break;
7630 	}
7631 
7632 	ice_service_task_schedule(pf);
7633 	pf->tx_timeout_recovery_level++;
7634 }
7635 
7636 /**
7637  * ice_setup_tc_cls_flower - flower classifier offloads
7638  * @np: net device to configure
7639  * @filter_dev: device on which filter is added
7640  * @cls_flower: offload data
7641  */
7642 static int
7643 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7644 			struct net_device *filter_dev,
7645 			struct flow_cls_offload *cls_flower)
7646 {
7647 	struct ice_vsi *vsi = np->vsi;
7648 
7649 	if (cls_flower->common.chain_index)
7650 		return -EOPNOTSUPP;
7651 
7652 	switch (cls_flower->command) {
7653 	case FLOW_CLS_REPLACE:
7654 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7655 	case FLOW_CLS_DESTROY:
7656 		return ice_del_cls_flower(vsi, cls_flower);
7657 	default:
7658 		return -EINVAL;
7659 	}
7660 }
7661 
7662 /**
7663  * ice_setup_tc_block_cb - callback handler registered for TC block
7664  * @type: TC SETUP type
7665  * @type_data: TC flower offload data that contains user input
7666  * @cb_priv: netdev private data
7667  */
7668 static int
7669 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7670 {
7671 	struct ice_netdev_priv *np = cb_priv;
7672 
7673 	switch (type) {
7674 	case TC_SETUP_CLSFLOWER:
7675 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7676 					       type_data);
7677 	default:
7678 		return -EOPNOTSUPP;
7679 	}
7680 }
7681 
7682 /**
7683  * ice_validate_mqprio_qopt - Validate TCF input parameters
7684  * @vsi: Pointer to VSI
7685  * @mqprio_qopt: input parameters for mqprio queue configuration
7686  *
7687  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7688  * needed), and make sure user doesn't specify qcount and BW rate limit
7689  * for TCs, which are more than "num_tc"
7690  */
7691 static int
7692 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7693 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7694 {
7695 	u64 sum_max_rate = 0, sum_min_rate = 0;
7696 	int non_power_of_2_qcount = 0;
7697 	struct ice_pf *pf = vsi->back;
7698 	int max_rss_q_cnt = 0;
7699 	struct device *dev;
7700 	int i, speed;
7701 	u8 num_tc;
7702 
7703 	if (vsi->type != ICE_VSI_PF)
7704 		return -EINVAL;
7705 
7706 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7707 	    mqprio_qopt->qopt.num_tc < 1 ||
7708 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7709 		return -EINVAL;
7710 
7711 	dev = ice_pf_to_dev(pf);
7712 	vsi->ch_rss_size = 0;
7713 	num_tc = mqprio_qopt->qopt.num_tc;
7714 
7715 	for (i = 0; num_tc; i++) {
7716 		int qcount = mqprio_qopt->qopt.count[i];
7717 		u64 max_rate, min_rate, rem;
7718 
7719 		if (!qcount)
7720 			return -EINVAL;
7721 
7722 		if (is_power_of_2(qcount)) {
7723 			if (non_power_of_2_qcount &&
7724 			    qcount > non_power_of_2_qcount) {
7725 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7726 					qcount, non_power_of_2_qcount);
7727 				return -EINVAL;
7728 			}
7729 			if (qcount > max_rss_q_cnt)
7730 				max_rss_q_cnt = qcount;
7731 		} else {
7732 			if (non_power_of_2_qcount &&
7733 			    qcount != non_power_of_2_qcount) {
7734 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7735 					qcount, non_power_of_2_qcount);
7736 				return -EINVAL;
7737 			}
7738 			if (qcount < max_rss_q_cnt) {
7739 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7740 					qcount, max_rss_q_cnt);
7741 				return -EINVAL;
7742 			}
7743 			max_rss_q_cnt = qcount;
7744 			non_power_of_2_qcount = qcount;
7745 		}
7746 
7747 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7748 		 * converts the bandwidth rate limit into Bytes/s when
7749 		 * passing it down to the driver. So convert input bandwidth
7750 		 * from Bytes/s to Kbps
7751 		 */
7752 		max_rate = mqprio_qopt->max_rate[i];
7753 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7754 		sum_max_rate += max_rate;
7755 
7756 		/* min_rate is minimum guaranteed rate and it can't be zero */
7757 		min_rate = mqprio_qopt->min_rate[i];
7758 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7759 		sum_min_rate += min_rate;
7760 
7761 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7762 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7763 				min_rate, ICE_MIN_BW_LIMIT);
7764 			return -EINVAL;
7765 		}
7766 
7767 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7768 		if (rem) {
7769 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7770 				i, ICE_MIN_BW_LIMIT);
7771 			return -EINVAL;
7772 		}
7773 
7774 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7775 		if (rem) {
7776 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7777 				i, ICE_MIN_BW_LIMIT);
7778 			return -EINVAL;
7779 		}
7780 
7781 		/* min_rate can't be more than max_rate, except when max_rate
7782 		 * is zero (implies max_rate sought is max line rate). In such
7783 		 * a case min_rate can be more than max.
7784 		 */
7785 		if (max_rate && min_rate > max_rate) {
7786 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7787 				min_rate, max_rate);
7788 			return -EINVAL;
7789 		}
7790 
7791 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7792 			break;
7793 		if (mqprio_qopt->qopt.offset[i + 1] !=
7794 		    (mqprio_qopt->qopt.offset[i] + qcount))
7795 			return -EINVAL;
7796 	}
7797 	if (vsi->num_rxq <
7798 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7799 		return -EINVAL;
7800 	if (vsi->num_txq <
7801 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7802 		return -EINVAL;
7803 
7804 	speed = ice_get_link_speed_kbps(vsi);
7805 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7806 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7807 			sum_max_rate, speed);
7808 		return -EINVAL;
7809 	}
7810 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7811 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7812 			sum_min_rate, speed);
7813 		return -EINVAL;
7814 	}
7815 
7816 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7817 	vsi->ch_rss_size = max_rss_q_cnt;
7818 
7819 	return 0;
7820 }
7821 
7822 /**
7823  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7824  * @pf: ptr to PF device
7825  * @vsi: ptr to VSI
7826  */
7827 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7828 {
7829 	struct device *dev = ice_pf_to_dev(pf);
7830 	bool added = false;
7831 	struct ice_hw *hw;
7832 	int flow;
7833 
7834 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7835 		return -EINVAL;
7836 
7837 	hw = &pf->hw;
7838 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7839 		struct ice_fd_hw_prof *prof;
7840 		int tun, status;
7841 		u64 entry_h;
7842 
7843 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7844 		      hw->fdir_prof[flow]->cnt))
7845 			continue;
7846 
7847 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7848 			enum ice_flow_priority prio;
7849 			u64 prof_id;
7850 
7851 			/* add this VSI to FDir profile for this flow */
7852 			prio = ICE_FLOW_PRIO_NORMAL;
7853 			prof = hw->fdir_prof[flow];
7854 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7855 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7856 						    prof->vsi_h[0], vsi->idx,
7857 						    prio, prof->fdir_seg[tun],
7858 						    &entry_h);
7859 			if (status) {
7860 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7861 					vsi->idx, flow);
7862 				continue;
7863 			}
7864 
7865 			prof->entry_h[prof->cnt][tun] = entry_h;
7866 		}
7867 
7868 		/* store VSI for filter replay and delete */
7869 		prof->vsi_h[prof->cnt] = vsi->idx;
7870 		prof->cnt++;
7871 
7872 		added = true;
7873 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7874 			flow);
7875 	}
7876 
7877 	if (!added)
7878 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7879 
7880 	return 0;
7881 }
7882 
7883 /**
7884  * ice_add_channel - add a channel by adding VSI
7885  * @pf: ptr to PF device
7886  * @sw_id: underlying HW switching element ID
7887  * @ch: ptr to channel structure
7888  *
7889  * Add a channel (VSI) using add_vsi and queue_map
7890  */
7891 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7892 {
7893 	struct device *dev = ice_pf_to_dev(pf);
7894 	struct ice_vsi *vsi;
7895 
7896 	if (ch->type != ICE_VSI_CHNL) {
7897 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7898 		return -EINVAL;
7899 	}
7900 
7901 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7902 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7903 		dev_err(dev, "create chnl VSI failure\n");
7904 		return -EINVAL;
7905 	}
7906 
7907 	ice_add_vsi_to_fdir(pf, vsi);
7908 
7909 	ch->sw_id = sw_id;
7910 	ch->vsi_num = vsi->vsi_num;
7911 	ch->info.mapping_flags = vsi->info.mapping_flags;
7912 	ch->ch_vsi = vsi;
7913 	/* set the back pointer of channel for newly created VSI */
7914 	vsi->ch = ch;
7915 
7916 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7917 	       sizeof(vsi->info.q_mapping));
7918 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7919 	       sizeof(vsi->info.tc_mapping));
7920 
7921 	return 0;
7922 }
7923 
7924 /**
7925  * ice_chnl_cfg_res
7926  * @vsi: the VSI being setup
7927  * @ch: ptr to channel structure
7928  *
7929  * Configure channel specific resources such as rings, vector.
7930  */
7931 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7932 {
7933 	int i;
7934 
7935 	for (i = 0; i < ch->num_txq; i++) {
7936 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7937 		struct ice_ring_container *rc;
7938 		struct ice_tx_ring *tx_ring;
7939 		struct ice_rx_ring *rx_ring;
7940 
7941 		tx_ring = vsi->tx_rings[ch->base_q + i];
7942 		rx_ring = vsi->rx_rings[ch->base_q + i];
7943 		if (!tx_ring || !rx_ring)
7944 			continue;
7945 
7946 		/* setup ring being channel enabled */
7947 		tx_ring->ch = ch;
7948 		rx_ring->ch = ch;
7949 
7950 		/* following code block sets up vector specific attributes */
7951 		tx_q_vector = tx_ring->q_vector;
7952 		rx_q_vector = rx_ring->q_vector;
7953 		if (!tx_q_vector && !rx_q_vector)
7954 			continue;
7955 
7956 		if (tx_q_vector) {
7957 			tx_q_vector->ch = ch;
7958 			/* setup Tx and Rx ITR setting if DIM is off */
7959 			rc = &tx_q_vector->tx;
7960 			if (!ITR_IS_DYNAMIC(rc))
7961 				ice_write_itr(rc, rc->itr_setting);
7962 		}
7963 		if (rx_q_vector) {
7964 			rx_q_vector->ch = ch;
7965 			/* setup Tx and Rx ITR setting if DIM is off */
7966 			rc = &rx_q_vector->rx;
7967 			if (!ITR_IS_DYNAMIC(rc))
7968 				ice_write_itr(rc, rc->itr_setting);
7969 		}
7970 	}
7971 
7972 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7973 	 * GLINT_ITR register would have written to perform in-context
7974 	 * update, hence perform flush
7975 	 */
7976 	if (ch->num_txq || ch->num_rxq)
7977 		ice_flush(&vsi->back->hw);
7978 }
7979 
7980 /**
7981  * ice_cfg_chnl_all_res - configure channel resources
7982  * @vsi: pte to main_vsi
7983  * @ch: ptr to channel structure
7984  *
7985  * This function configures channel specific resources such as flow-director
7986  * counter index, and other resources such as queues, vectors, ITR settings
7987  */
7988 static void
7989 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7990 {
7991 	/* configure channel (aka ADQ) resources such as queues, vectors,
7992 	 * ITR settings for channel specific vectors and anything else
7993 	 */
7994 	ice_chnl_cfg_res(vsi, ch);
7995 }
7996 
7997 /**
7998  * ice_setup_hw_channel - setup new channel
7999  * @pf: ptr to PF device
8000  * @vsi: the VSI being setup
8001  * @ch: ptr to channel structure
8002  * @sw_id: underlying HW switching element ID
8003  * @type: type of channel to be created (VMDq2/VF)
8004  *
8005  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8006  * and configures Tx rings accordingly
8007  */
8008 static int
8009 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8010 		     struct ice_channel *ch, u16 sw_id, u8 type)
8011 {
8012 	struct device *dev = ice_pf_to_dev(pf);
8013 	int ret;
8014 
8015 	ch->base_q = vsi->next_base_q;
8016 	ch->type = type;
8017 
8018 	ret = ice_add_channel(pf, sw_id, ch);
8019 	if (ret) {
8020 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8021 		return ret;
8022 	}
8023 
8024 	/* configure/setup ADQ specific resources */
8025 	ice_cfg_chnl_all_res(vsi, ch);
8026 
8027 	/* make sure to update the next_base_q so that subsequent channel's
8028 	 * (aka ADQ) VSI queue map is correct
8029 	 */
8030 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8031 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8032 		ch->num_rxq);
8033 
8034 	return 0;
8035 }
8036 
8037 /**
8038  * ice_setup_channel - setup new channel using uplink element
8039  * @pf: ptr to PF device
8040  * @vsi: the VSI being setup
8041  * @ch: ptr to channel structure
8042  *
8043  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8044  * and uplink switching element
8045  */
8046 static bool
8047 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8048 		  struct ice_channel *ch)
8049 {
8050 	struct device *dev = ice_pf_to_dev(pf);
8051 	u16 sw_id;
8052 	int ret;
8053 
8054 	if (vsi->type != ICE_VSI_PF) {
8055 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8056 		return false;
8057 	}
8058 
8059 	sw_id = pf->first_sw->sw_id;
8060 
8061 	/* create channel (VSI) */
8062 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8063 	if (ret) {
8064 		dev_err(dev, "failed to setup hw_channel\n");
8065 		return false;
8066 	}
8067 	dev_dbg(dev, "successfully created channel()\n");
8068 
8069 	return ch->ch_vsi ? true : false;
8070 }
8071 
8072 /**
8073  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8074  * @vsi: VSI to be configured
8075  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8076  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8077  */
8078 static int
8079 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8080 {
8081 	int err;
8082 
8083 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8084 	if (err)
8085 		return err;
8086 
8087 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8088 }
8089 
8090 /**
8091  * ice_create_q_channel - function to create channel
8092  * @vsi: VSI to be configured
8093  * @ch: ptr to channel (it contains channel specific params)
8094  *
8095  * This function creates channel (VSI) using num_queues specified by user,
8096  * reconfigs RSS if needed.
8097  */
8098 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8099 {
8100 	struct ice_pf *pf = vsi->back;
8101 	struct device *dev;
8102 
8103 	if (!ch)
8104 		return -EINVAL;
8105 
8106 	dev = ice_pf_to_dev(pf);
8107 	if (!ch->num_txq || !ch->num_rxq) {
8108 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8109 		return -EINVAL;
8110 	}
8111 
8112 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8113 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8114 			vsi->cnt_q_avail, ch->num_txq);
8115 		return -EINVAL;
8116 	}
8117 
8118 	if (!ice_setup_channel(pf, vsi, ch)) {
8119 		dev_info(dev, "Failed to setup channel\n");
8120 		return -EINVAL;
8121 	}
8122 	/* configure BW rate limit */
8123 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8124 		int ret;
8125 
8126 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8127 				       ch->min_tx_rate);
8128 		if (ret)
8129 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8130 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8131 		else
8132 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8133 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8134 	}
8135 
8136 	vsi->cnt_q_avail -= ch->num_txq;
8137 
8138 	return 0;
8139 }
8140 
8141 /**
8142  * ice_rem_all_chnl_fltrs - removes all channel filters
8143  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8144  *
8145  * Remove all advanced switch filters only if they are channel specific
8146  * tc-flower based filter
8147  */
8148 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8149 {
8150 	struct ice_tc_flower_fltr *fltr;
8151 	struct hlist_node *node;
8152 
8153 	/* to remove all channel filters, iterate an ordered list of filters */
8154 	hlist_for_each_entry_safe(fltr, node,
8155 				  &pf->tc_flower_fltr_list,
8156 				  tc_flower_node) {
8157 		struct ice_rule_query_data rule;
8158 		int status;
8159 
8160 		/* for now process only channel specific filters */
8161 		if (!ice_is_chnl_fltr(fltr))
8162 			continue;
8163 
8164 		rule.rid = fltr->rid;
8165 		rule.rule_id = fltr->rule_id;
8166 		rule.vsi_handle = fltr->dest_id;
8167 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8168 		if (status) {
8169 			if (status == -ENOENT)
8170 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8171 					rule.rule_id);
8172 			else
8173 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8174 					status);
8175 		} else if (fltr->dest_vsi) {
8176 			/* update advanced switch filter count */
8177 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8178 				u32 flags = fltr->flags;
8179 
8180 				fltr->dest_vsi->num_chnl_fltr--;
8181 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8182 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8183 					pf->num_dmac_chnl_fltrs--;
8184 			}
8185 		}
8186 
8187 		hlist_del(&fltr->tc_flower_node);
8188 		kfree(fltr);
8189 	}
8190 }
8191 
8192 /**
8193  * ice_remove_q_channels - Remove queue channels for the TCs
8194  * @vsi: VSI to be configured
8195  * @rem_fltr: delete advanced switch filter or not
8196  *
8197  * Remove queue channels for the TCs
8198  */
8199 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8200 {
8201 	struct ice_channel *ch, *ch_tmp;
8202 	struct ice_pf *pf = vsi->back;
8203 	int i;
8204 
8205 	/* remove all tc-flower based filter if they are channel filters only */
8206 	if (rem_fltr)
8207 		ice_rem_all_chnl_fltrs(pf);
8208 
8209 	/* remove ntuple filters since queue configuration is being changed */
8210 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8211 		struct ice_hw *hw = &pf->hw;
8212 
8213 		mutex_lock(&hw->fdir_fltr_lock);
8214 		ice_fdir_del_all_fltrs(vsi);
8215 		mutex_unlock(&hw->fdir_fltr_lock);
8216 	}
8217 
8218 	/* perform cleanup for channels if they exist */
8219 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8220 		struct ice_vsi *ch_vsi;
8221 
8222 		list_del(&ch->list);
8223 		ch_vsi = ch->ch_vsi;
8224 		if (!ch_vsi) {
8225 			kfree(ch);
8226 			continue;
8227 		}
8228 
8229 		/* Reset queue contexts */
8230 		for (i = 0; i < ch->num_rxq; i++) {
8231 			struct ice_tx_ring *tx_ring;
8232 			struct ice_rx_ring *rx_ring;
8233 
8234 			tx_ring = vsi->tx_rings[ch->base_q + i];
8235 			rx_ring = vsi->rx_rings[ch->base_q + i];
8236 			if (tx_ring) {
8237 				tx_ring->ch = NULL;
8238 				if (tx_ring->q_vector)
8239 					tx_ring->q_vector->ch = NULL;
8240 			}
8241 			if (rx_ring) {
8242 				rx_ring->ch = NULL;
8243 				if (rx_ring->q_vector)
8244 					rx_ring->q_vector->ch = NULL;
8245 			}
8246 		}
8247 
8248 		/* Release FD resources for the channel VSI */
8249 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8250 
8251 		/* clear the VSI from scheduler tree */
8252 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8253 
8254 		/* Delete VSI from FW */
8255 		ice_vsi_delete(ch->ch_vsi);
8256 
8257 		/* Delete VSI from PF and HW VSI arrays */
8258 		ice_vsi_clear(ch->ch_vsi);
8259 
8260 		/* free the channel */
8261 		kfree(ch);
8262 	}
8263 
8264 	/* clear the channel VSI map which is stored in main VSI */
8265 	ice_for_each_chnl_tc(i)
8266 		vsi->tc_map_vsi[i] = NULL;
8267 
8268 	/* reset main VSI's all TC information */
8269 	vsi->all_enatc = 0;
8270 	vsi->all_numtc = 0;
8271 }
8272 
8273 /**
8274  * ice_rebuild_channels - rebuild channel
8275  * @pf: ptr to PF
8276  *
8277  * Recreate channel VSIs and replay filters
8278  */
8279 static int ice_rebuild_channels(struct ice_pf *pf)
8280 {
8281 	struct device *dev = ice_pf_to_dev(pf);
8282 	struct ice_vsi *main_vsi;
8283 	bool rem_adv_fltr = true;
8284 	struct ice_channel *ch;
8285 	struct ice_vsi *vsi;
8286 	int tc_idx = 1;
8287 	int i, err;
8288 
8289 	main_vsi = ice_get_main_vsi(pf);
8290 	if (!main_vsi)
8291 		return 0;
8292 
8293 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8294 	    main_vsi->old_numtc == 1)
8295 		return 0; /* nothing to be done */
8296 
8297 	/* reconfigure main VSI based on old value of TC and cached values
8298 	 * for MQPRIO opts
8299 	 */
8300 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8301 	if (err) {
8302 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8303 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8304 		return err;
8305 	}
8306 
8307 	/* rebuild ADQ VSIs */
8308 	ice_for_each_vsi(pf, i) {
8309 		enum ice_vsi_type type;
8310 
8311 		vsi = pf->vsi[i];
8312 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8313 			continue;
8314 
8315 		type = vsi->type;
8316 
8317 		/* rebuild ADQ VSI */
8318 		err = ice_vsi_rebuild(vsi, true);
8319 		if (err) {
8320 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8321 				ice_vsi_type_str(type), vsi->idx, err);
8322 			goto cleanup;
8323 		}
8324 
8325 		/* Re-map HW VSI number, using VSI handle that has been
8326 		 * previously validated in ice_replay_vsi() call above
8327 		 */
8328 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8329 
8330 		/* replay filters for the VSI */
8331 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8332 		if (err) {
8333 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8334 				ice_vsi_type_str(type), err, vsi->idx);
8335 			rem_adv_fltr = false;
8336 			goto cleanup;
8337 		}
8338 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8339 			 ice_vsi_type_str(type), vsi->idx);
8340 
8341 		/* store ADQ VSI at correct TC index in main VSI's
8342 		 * map of TC to VSI
8343 		 */
8344 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8345 	}
8346 
8347 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8348 	 * channel for main VSI's Tx and Rx rings
8349 	 */
8350 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8351 		struct ice_vsi *ch_vsi;
8352 
8353 		ch_vsi = ch->ch_vsi;
8354 		if (!ch_vsi)
8355 			continue;
8356 
8357 		/* reconfig channel resources */
8358 		ice_cfg_chnl_all_res(main_vsi, ch);
8359 
8360 		/* replay BW rate limit if it is non-zero */
8361 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8362 			continue;
8363 
8364 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8365 				       ch->min_tx_rate);
8366 		if (err)
8367 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8368 				err, ch->max_tx_rate, ch->min_tx_rate,
8369 				ch_vsi->vsi_num);
8370 		else
8371 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8372 				ch->max_tx_rate, ch->min_tx_rate,
8373 				ch_vsi->vsi_num);
8374 	}
8375 
8376 	/* reconfig RSS for main VSI */
8377 	if (main_vsi->ch_rss_size)
8378 		ice_vsi_cfg_rss_lut_key(main_vsi);
8379 
8380 	return 0;
8381 
8382 cleanup:
8383 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8384 	return err;
8385 }
8386 
8387 /**
8388  * ice_create_q_channels - Add queue channel for the given TCs
8389  * @vsi: VSI to be configured
8390  *
8391  * Configures queue channel mapping to the given TCs
8392  */
8393 static int ice_create_q_channels(struct ice_vsi *vsi)
8394 {
8395 	struct ice_pf *pf = vsi->back;
8396 	struct ice_channel *ch;
8397 	int ret = 0, i;
8398 
8399 	ice_for_each_chnl_tc(i) {
8400 		if (!(vsi->all_enatc & BIT(i)))
8401 			continue;
8402 
8403 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8404 		if (!ch) {
8405 			ret = -ENOMEM;
8406 			goto err_free;
8407 		}
8408 		INIT_LIST_HEAD(&ch->list);
8409 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8410 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8411 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8412 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8413 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8414 
8415 		/* convert to Kbits/s */
8416 		if (ch->max_tx_rate)
8417 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8418 						  ICE_BW_KBPS_DIVISOR);
8419 		if (ch->min_tx_rate)
8420 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8421 						  ICE_BW_KBPS_DIVISOR);
8422 
8423 		ret = ice_create_q_channel(vsi, ch);
8424 		if (ret) {
8425 			dev_err(ice_pf_to_dev(pf),
8426 				"failed creating channel TC:%d\n", i);
8427 			kfree(ch);
8428 			goto err_free;
8429 		}
8430 		list_add_tail(&ch->list, &vsi->ch_list);
8431 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8432 		dev_dbg(ice_pf_to_dev(pf),
8433 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8434 	}
8435 	return 0;
8436 
8437 err_free:
8438 	ice_remove_q_channels(vsi, false);
8439 
8440 	return ret;
8441 }
8442 
8443 /**
8444  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8445  * @netdev: net device to configure
8446  * @type_data: TC offload data
8447  */
8448 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8449 {
8450 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8451 	struct ice_netdev_priv *np = netdev_priv(netdev);
8452 	struct ice_vsi *vsi = np->vsi;
8453 	struct ice_pf *pf = vsi->back;
8454 	u16 mode, ena_tc_qdisc = 0;
8455 	int cur_txq, cur_rxq;
8456 	u8 hw = 0, num_tcf;
8457 	struct device *dev;
8458 	int ret, i;
8459 
8460 	dev = ice_pf_to_dev(pf);
8461 	num_tcf = mqprio_qopt->qopt.num_tc;
8462 	hw = mqprio_qopt->qopt.hw;
8463 	mode = mqprio_qopt->mode;
8464 	if (!hw) {
8465 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8466 		vsi->ch_rss_size = 0;
8467 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8468 		goto config_tcf;
8469 	}
8470 
8471 	/* Generate queue region map for number of TCF requested */
8472 	for (i = 0; i < num_tcf; i++)
8473 		ena_tc_qdisc |= BIT(i);
8474 
8475 	switch (mode) {
8476 	case TC_MQPRIO_MODE_CHANNEL:
8477 
8478 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8479 		if (ret) {
8480 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8481 				   ret);
8482 			return ret;
8483 		}
8484 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8485 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8486 		/* don't assume state of hw_tc_offload during driver load
8487 		 * and set the flag for TC flower filter if hw_tc_offload
8488 		 * already ON
8489 		 */
8490 		if (vsi->netdev->features & NETIF_F_HW_TC)
8491 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8492 		break;
8493 	default:
8494 		return -EINVAL;
8495 	}
8496 
8497 config_tcf:
8498 
8499 	/* Requesting same TCF configuration as already enabled */
8500 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8501 	    mode != TC_MQPRIO_MODE_CHANNEL)
8502 		return 0;
8503 
8504 	/* Pause VSI queues */
8505 	ice_dis_vsi(vsi, true);
8506 
8507 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8508 		ice_remove_q_channels(vsi, true);
8509 
8510 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8511 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8512 				     num_online_cpus());
8513 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8514 				     num_online_cpus());
8515 	} else {
8516 		/* logic to rebuild VSI, same like ethtool -L */
8517 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8518 
8519 		for (i = 0; i < num_tcf; i++) {
8520 			if (!(ena_tc_qdisc & BIT(i)))
8521 				continue;
8522 
8523 			offset = vsi->mqprio_qopt.qopt.offset[i];
8524 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8525 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8526 		}
8527 		vsi->req_txq = offset + qcount_tx;
8528 		vsi->req_rxq = offset + qcount_rx;
8529 
8530 		/* store away original rss_size info, so that it gets reused
8531 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8532 		 * determine, what should be the rss_sizefor main VSI
8533 		 */
8534 		vsi->orig_rss_size = vsi->rss_size;
8535 	}
8536 
8537 	/* save current values of Tx and Rx queues before calling VSI rebuild
8538 	 * for fallback option
8539 	 */
8540 	cur_txq = vsi->num_txq;
8541 	cur_rxq = vsi->num_rxq;
8542 
8543 	/* proceed with rebuild main VSI using correct number of queues */
8544 	ret = ice_vsi_rebuild(vsi, false);
8545 	if (ret) {
8546 		/* fallback to current number of queues */
8547 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8548 		vsi->req_txq = cur_txq;
8549 		vsi->req_rxq = cur_rxq;
8550 		clear_bit(ICE_RESET_FAILED, pf->state);
8551 		if (ice_vsi_rebuild(vsi, false)) {
8552 			dev_err(dev, "Rebuild of main VSI failed again\n");
8553 			return ret;
8554 		}
8555 	}
8556 
8557 	vsi->all_numtc = num_tcf;
8558 	vsi->all_enatc = ena_tc_qdisc;
8559 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8560 	if (ret) {
8561 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8562 			   vsi->vsi_num);
8563 		goto exit;
8564 	}
8565 
8566 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8567 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8568 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8569 
8570 		/* set TC0 rate limit if specified */
8571 		if (max_tx_rate || min_tx_rate) {
8572 			/* convert to Kbits/s */
8573 			if (max_tx_rate)
8574 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8575 			if (min_tx_rate)
8576 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8577 
8578 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8579 			if (!ret) {
8580 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8581 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8582 			} else {
8583 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8584 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8585 				goto exit;
8586 			}
8587 		}
8588 		ret = ice_create_q_channels(vsi);
8589 		if (ret) {
8590 			netdev_err(netdev, "failed configuring queue channels\n");
8591 			goto exit;
8592 		} else {
8593 			netdev_dbg(netdev, "successfully configured channels\n");
8594 		}
8595 	}
8596 
8597 	if (vsi->ch_rss_size)
8598 		ice_vsi_cfg_rss_lut_key(vsi);
8599 
8600 exit:
8601 	/* if error, reset the all_numtc and all_enatc */
8602 	if (ret) {
8603 		vsi->all_numtc = 0;
8604 		vsi->all_enatc = 0;
8605 	}
8606 	/* resume VSI */
8607 	ice_ena_vsi(vsi, true);
8608 
8609 	return ret;
8610 }
8611 
8612 static LIST_HEAD(ice_block_cb_list);
8613 
8614 static int
8615 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8616 	     void *type_data)
8617 {
8618 	struct ice_netdev_priv *np = netdev_priv(netdev);
8619 	struct ice_pf *pf = np->vsi->back;
8620 	int err;
8621 
8622 	switch (type) {
8623 	case TC_SETUP_BLOCK:
8624 		return flow_block_cb_setup_simple(type_data,
8625 						  &ice_block_cb_list,
8626 						  ice_setup_tc_block_cb,
8627 						  np, np, true);
8628 	case TC_SETUP_QDISC_MQPRIO:
8629 		/* setup traffic classifier for receive side */
8630 		mutex_lock(&pf->tc_mutex);
8631 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8632 		mutex_unlock(&pf->tc_mutex);
8633 		return err;
8634 	default:
8635 		return -EOPNOTSUPP;
8636 	}
8637 	return -EOPNOTSUPP;
8638 }
8639 
8640 static struct ice_indr_block_priv *
8641 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8642 			   struct net_device *netdev)
8643 {
8644 	struct ice_indr_block_priv *cb_priv;
8645 
8646 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8647 		if (!cb_priv->netdev)
8648 			return NULL;
8649 		if (cb_priv->netdev == netdev)
8650 			return cb_priv;
8651 	}
8652 	return NULL;
8653 }
8654 
8655 static int
8656 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8657 			void *indr_priv)
8658 {
8659 	struct ice_indr_block_priv *priv = indr_priv;
8660 	struct ice_netdev_priv *np = priv->np;
8661 
8662 	switch (type) {
8663 	case TC_SETUP_CLSFLOWER:
8664 		return ice_setup_tc_cls_flower(np, priv->netdev,
8665 					       (struct flow_cls_offload *)
8666 					       type_data);
8667 	default:
8668 		return -EOPNOTSUPP;
8669 	}
8670 }
8671 
8672 static int
8673 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8674 			struct ice_netdev_priv *np,
8675 			struct flow_block_offload *f, void *data,
8676 			void (*cleanup)(struct flow_block_cb *block_cb))
8677 {
8678 	struct ice_indr_block_priv *indr_priv;
8679 	struct flow_block_cb *block_cb;
8680 
8681 	if (!ice_is_tunnel_supported(netdev) &&
8682 	    !(is_vlan_dev(netdev) &&
8683 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8684 		return -EOPNOTSUPP;
8685 
8686 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8687 		return -EOPNOTSUPP;
8688 
8689 	switch (f->command) {
8690 	case FLOW_BLOCK_BIND:
8691 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8692 		if (indr_priv)
8693 			return -EEXIST;
8694 
8695 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8696 		if (!indr_priv)
8697 			return -ENOMEM;
8698 
8699 		indr_priv->netdev = netdev;
8700 		indr_priv->np = np;
8701 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8702 
8703 		block_cb =
8704 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8705 						 indr_priv, indr_priv,
8706 						 ice_rep_indr_tc_block_unbind,
8707 						 f, netdev, sch, data, np,
8708 						 cleanup);
8709 
8710 		if (IS_ERR(block_cb)) {
8711 			list_del(&indr_priv->list);
8712 			kfree(indr_priv);
8713 			return PTR_ERR(block_cb);
8714 		}
8715 		flow_block_cb_add(block_cb, f);
8716 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8717 		break;
8718 	case FLOW_BLOCK_UNBIND:
8719 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8720 		if (!indr_priv)
8721 			return -ENOENT;
8722 
8723 		block_cb = flow_block_cb_lookup(f->block,
8724 						ice_indr_setup_block_cb,
8725 						indr_priv);
8726 		if (!block_cb)
8727 			return -ENOENT;
8728 
8729 		flow_indr_block_cb_remove(block_cb, f);
8730 
8731 		list_del(&block_cb->driver_list);
8732 		break;
8733 	default:
8734 		return -EOPNOTSUPP;
8735 	}
8736 	return 0;
8737 }
8738 
8739 static int
8740 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8741 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8742 		     void *data,
8743 		     void (*cleanup)(struct flow_block_cb *block_cb))
8744 {
8745 	switch (type) {
8746 	case TC_SETUP_BLOCK:
8747 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8748 					       data, cleanup);
8749 
8750 	default:
8751 		return -EOPNOTSUPP;
8752 	}
8753 }
8754 
8755 /**
8756  * ice_open - Called when a network interface becomes active
8757  * @netdev: network interface device structure
8758  *
8759  * The open entry point is called when a network interface is made
8760  * active by the system (IFF_UP). At this point all resources needed
8761  * for transmit and receive operations are allocated, the interrupt
8762  * handler is registered with the OS, the netdev watchdog is enabled,
8763  * and the stack is notified that the interface is ready.
8764  *
8765  * Returns 0 on success, negative value on failure
8766  */
8767 int ice_open(struct net_device *netdev)
8768 {
8769 	struct ice_netdev_priv *np = netdev_priv(netdev);
8770 	struct ice_pf *pf = np->vsi->back;
8771 
8772 	if (ice_is_reset_in_progress(pf->state)) {
8773 		netdev_err(netdev, "can't open net device while reset is in progress");
8774 		return -EBUSY;
8775 	}
8776 
8777 	return ice_open_internal(netdev);
8778 }
8779 
8780 /**
8781  * ice_open_internal - Called when a network interface becomes active
8782  * @netdev: network interface device structure
8783  *
8784  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8785  * handling routine
8786  *
8787  * Returns 0 on success, negative value on failure
8788  */
8789 int ice_open_internal(struct net_device *netdev)
8790 {
8791 	struct ice_netdev_priv *np = netdev_priv(netdev);
8792 	struct ice_vsi *vsi = np->vsi;
8793 	struct ice_pf *pf = vsi->back;
8794 	struct ice_port_info *pi;
8795 	int err;
8796 
8797 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8798 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8799 		return -EIO;
8800 	}
8801 
8802 	netif_carrier_off(netdev);
8803 
8804 	pi = vsi->port_info;
8805 	err = ice_update_link_info(pi);
8806 	if (err) {
8807 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8808 		return err;
8809 	}
8810 
8811 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8812 
8813 	/* Set PHY if there is media, otherwise, turn off PHY */
8814 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8815 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8816 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8817 			err = ice_init_phy_user_cfg(pi);
8818 			if (err) {
8819 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8820 					   err);
8821 				return err;
8822 			}
8823 		}
8824 
8825 		err = ice_configure_phy(vsi);
8826 		if (err) {
8827 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8828 				   err);
8829 			return err;
8830 		}
8831 	} else {
8832 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8833 		ice_set_link(vsi, false);
8834 	}
8835 
8836 	err = ice_vsi_open(vsi);
8837 	if (err)
8838 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8839 			   vsi->vsi_num, vsi->vsw->sw_id);
8840 
8841 	/* Update existing tunnels information */
8842 	udp_tunnel_get_rx_info(netdev);
8843 
8844 	return err;
8845 }
8846 
8847 /**
8848  * ice_stop - Disables a network interface
8849  * @netdev: network interface device structure
8850  *
8851  * The stop entry point is called when an interface is de-activated by the OS,
8852  * and the netdevice enters the DOWN state. The hardware is still under the
8853  * driver's control, but the netdev interface is disabled.
8854  *
8855  * Returns success only - not allowed to fail
8856  */
8857 int ice_stop(struct net_device *netdev)
8858 {
8859 	struct ice_netdev_priv *np = netdev_priv(netdev);
8860 	struct ice_vsi *vsi = np->vsi;
8861 	struct ice_pf *pf = vsi->back;
8862 
8863 	if (ice_is_reset_in_progress(pf->state)) {
8864 		netdev_err(netdev, "can't stop net device while reset is in progress");
8865 		return -EBUSY;
8866 	}
8867 
8868 	ice_vsi_close(vsi);
8869 
8870 	return 0;
8871 }
8872 
8873 /**
8874  * ice_features_check - Validate encapsulated packet conforms to limits
8875  * @skb: skb buffer
8876  * @netdev: This port's netdev
8877  * @features: Offload features that the stack believes apply
8878  */
8879 static netdev_features_t
8880 ice_features_check(struct sk_buff *skb,
8881 		   struct net_device __always_unused *netdev,
8882 		   netdev_features_t features)
8883 {
8884 	bool gso = skb_is_gso(skb);
8885 	size_t len;
8886 
8887 	/* No point in doing any of this if neither checksum nor GSO are
8888 	 * being requested for this frame. We can rule out both by just
8889 	 * checking for CHECKSUM_PARTIAL
8890 	 */
8891 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8892 		return features;
8893 
8894 	/* We cannot support GSO if the MSS is going to be less than
8895 	 * 64 bytes. If it is then we need to drop support for GSO.
8896 	 */
8897 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8898 		features &= ~NETIF_F_GSO_MASK;
8899 
8900 	len = skb_network_offset(skb);
8901 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8902 		goto out_rm_features;
8903 
8904 	len = skb_network_header_len(skb);
8905 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8906 		goto out_rm_features;
8907 
8908 	if (skb->encapsulation) {
8909 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8910 		 * the case of IPIP frames, the transport header pointer is
8911 		 * after the inner header! So check to make sure that this
8912 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8913 		 */
8914 		if (gso && (skb_shinfo(skb)->gso_type &
8915 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8916 			len = skb_inner_network_header(skb) -
8917 			      skb_transport_header(skb);
8918 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8919 				goto out_rm_features;
8920 		}
8921 
8922 		len = skb_inner_network_header_len(skb);
8923 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8924 			goto out_rm_features;
8925 	}
8926 
8927 	return features;
8928 out_rm_features:
8929 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8930 }
8931 
8932 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8933 	.ndo_open = ice_open,
8934 	.ndo_stop = ice_stop,
8935 	.ndo_start_xmit = ice_start_xmit,
8936 	.ndo_set_mac_address = ice_set_mac_address,
8937 	.ndo_validate_addr = eth_validate_addr,
8938 	.ndo_change_mtu = ice_change_mtu,
8939 	.ndo_get_stats64 = ice_get_stats64,
8940 	.ndo_tx_timeout = ice_tx_timeout,
8941 	.ndo_bpf = ice_xdp_safe_mode,
8942 };
8943 
8944 static const struct net_device_ops ice_netdev_ops = {
8945 	.ndo_open = ice_open,
8946 	.ndo_stop = ice_stop,
8947 	.ndo_start_xmit = ice_start_xmit,
8948 	.ndo_select_queue = ice_select_queue,
8949 	.ndo_features_check = ice_features_check,
8950 	.ndo_fix_features = ice_fix_features,
8951 	.ndo_set_rx_mode = ice_set_rx_mode,
8952 	.ndo_set_mac_address = ice_set_mac_address,
8953 	.ndo_validate_addr = eth_validate_addr,
8954 	.ndo_change_mtu = ice_change_mtu,
8955 	.ndo_get_stats64 = ice_get_stats64,
8956 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8957 	.ndo_eth_ioctl = ice_eth_ioctl,
8958 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8959 	.ndo_set_vf_mac = ice_set_vf_mac,
8960 	.ndo_get_vf_config = ice_get_vf_cfg,
8961 	.ndo_set_vf_trust = ice_set_vf_trust,
8962 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8963 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8964 	.ndo_get_vf_stats = ice_get_vf_stats,
8965 	.ndo_set_vf_rate = ice_set_vf_bw,
8966 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8967 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8968 	.ndo_setup_tc = ice_setup_tc,
8969 	.ndo_set_features = ice_set_features,
8970 	.ndo_bridge_getlink = ice_bridge_getlink,
8971 	.ndo_bridge_setlink = ice_bridge_setlink,
8972 	.ndo_fdb_add = ice_fdb_add,
8973 	.ndo_fdb_del = ice_fdb_del,
8974 #ifdef CONFIG_RFS_ACCEL
8975 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8976 #endif
8977 	.ndo_tx_timeout = ice_tx_timeout,
8978 	.ndo_bpf = ice_xdp,
8979 	.ndo_xdp_xmit = ice_xdp_xmit,
8980 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8981 	.ndo_get_devlink_port = ice_get_devlink_port,
8982 };
8983