1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 11 #define DRV_VERSION "0.7.2-k" 12 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 13 const char ice_drv_ver[] = DRV_VERSION; 14 static const char ice_driver_string[] = DRV_SUMMARY; 15 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 16 17 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 18 MODULE_DESCRIPTION(DRV_SUMMARY); 19 MODULE_LICENSE("GPL v2"); 20 MODULE_VERSION(DRV_VERSION); 21 22 static int debug = -1; 23 module_param(debug, int, 0644); 24 #ifndef CONFIG_DYNAMIC_DEBUG 25 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 26 #else 27 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 28 #endif /* !CONFIG_DYNAMIC_DEBUG */ 29 30 static struct workqueue_struct *ice_wq; 31 static const struct net_device_ops ice_netdev_ops; 32 33 static void ice_pf_dis_all_vsi(struct ice_pf *pf); 34 static void ice_rebuild(struct ice_pf *pf); 35 36 static void ice_vsi_release_all(struct ice_pf *pf); 37 static void ice_update_vsi_stats(struct ice_vsi *vsi); 38 static void ice_update_pf_stats(struct ice_pf *pf); 39 40 /** 41 * ice_get_tx_pending - returns number of Tx descriptors not processed 42 * @ring: the ring of descriptors 43 */ 44 static u32 ice_get_tx_pending(struct ice_ring *ring) 45 { 46 u32 head, tail; 47 48 head = ring->next_to_clean; 49 tail = readl(ring->tail); 50 51 if (head != tail) 52 return (head < tail) ? 53 tail - head : (tail + ring->count - head); 54 return 0; 55 } 56 57 /** 58 * ice_check_for_hang_subtask - check for and recover hung queues 59 * @pf: pointer to PF struct 60 */ 61 static void ice_check_for_hang_subtask(struct ice_pf *pf) 62 { 63 struct ice_vsi *vsi = NULL; 64 unsigned int i; 65 u32 v, v_idx; 66 int packets; 67 68 ice_for_each_vsi(pf, v) 69 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 70 vsi = pf->vsi[v]; 71 break; 72 } 73 74 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 75 return; 76 77 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 78 return; 79 80 for (i = 0; i < vsi->num_txq; i++) { 81 struct ice_ring *tx_ring = vsi->tx_rings[i]; 82 83 if (tx_ring && tx_ring->desc) { 84 int itr = ICE_ITR_NONE; 85 86 /* If packet counter has not changed the queue is 87 * likely stalled, so force an interrupt for this 88 * queue. 89 * 90 * prev_pkt would be negative if there was no 91 * pending work. 92 */ 93 packets = tx_ring->stats.pkts & INT_MAX; 94 if (tx_ring->tx_stats.prev_pkt == packets) { 95 /* Trigger sw interrupt to revive the queue */ 96 v_idx = tx_ring->q_vector->v_idx; 97 wr32(&vsi->back->hw, 98 GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 99 (itr << GLINT_DYN_CTL_ITR_INDX_S) | 100 GLINT_DYN_CTL_SWINT_TRIG_M | 101 GLINT_DYN_CTL_INTENA_MSK_M); 102 continue; 103 } 104 105 /* Memory barrier between read of packet count and call 106 * to ice_get_tx_pending() 107 */ 108 smp_rmb(); 109 tx_ring->tx_stats.prev_pkt = 110 ice_get_tx_pending(tx_ring) ? packets : -1; 111 } 112 } 113 } 114 115 /** 116 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced 117 * @netdev: the net device on which the sync is happening 118 * @addr: mac address to sync 119 * 120 * This is a callback function which is called by the in kernel device sync 121 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 122 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 123 * mac filters from the hardware. 124 */ 125 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 126 { 127 struct ice_netdev_priv *np = netdev_priv(netdev); 128 struct ice_vsi *vsi = np->vsi; 129 130 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 131 return -EINVAL; 132 133 return 0; 134 } 135 136 /** 137 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced 138 * @netdev: the net device on which the unsync is happening 139 * @addr: mac address to unsync 140 * 141 * This is a callback function which is called by the in kernel device unsync 142 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 143 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 144 * delete the mac filters from the hardware. 145 */ 146 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 147 { 148 struct ice_netdev_priv *np = netdev_priv(netdev); 149 struct ice_vsi *vsi = np->vsi; 150 151 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 152 return -EINVAL; 153 154 return 0; 155 } 156 157 /** 158 * ice_vsi_fltr_changed - check if filter state changed 159 * @vsi: VSI to be checked 160 * 161 * returns true if filter state has changed, false otherwise. 162 */ 163 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 164 { 165 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 166 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 167 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 168 } 169 170 /** 171 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 172 * @vsi: ptr to the VSI 173 * 174 * Push any outstanding VSI filter changes through the AdminQ. 175 */ 176 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 177 { 178 struct device *dev = &vsi->back->pdev->dev; 179 struct net_device *netdev = vsi->netdev; 180 bool promisc_forced_on = false; 181 struct ice_pf *pf = vsi->back; 182 struct ice_hw *hw = &pf->hw; 183 enum ice_status status = 0; 184 u32 changed_flags = 0; 185 int err = 0; 186 187 if (!vsi->netdev) 188 return -EINVAL; 189 190 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 191 usleep_range(1000, 2000); 192 193 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 194 vsi->current_netdev_flags = vsi->netdev->flags; 195 196 INIT_LIST_HEAD(&vsi->tmp_sync_list); 197 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 198 199 if (ice_vsi_fltr_changed(vsi)) { 200 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 201 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 202 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 203 204 /* grab the netdev's addr_list_lock */ 205 netif_addr_lock_bh(netdev); 206 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 207 ice_add_mac_to_unsync_list); 208 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 209 ice_add_mac_to_unsync_list); 210 /* our temp lists are populated. release lock */ 211 netif_addr_unlock_bh(netdev); 212 } 213 214 /* Remove mac addresses in the unsync list */ 215 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 216 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 217 if (status) { 218 netdev_err(netdev, "Failed to delete MAC filters\n"); 219 /* if we failed because of alloc failures, just bail */ 220 if (status == ICE_ERR_NO_MEMORY) { 221 err = -ENOMEM; 222 goto out; 223 } 224 } 225 226 /* Add mac addresses in the sync list */ 227 status = ice_add_mac(hw, &vsi->tmp_sync_list); 228 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 229 if (status) { 230 netdev_err(netdev, "Failed to add MAC filters\n"); 231 /* If there is no more space for new umac filters, vsi 232 * should go into promiscuous mode. There should be some 233 * space reserved for promiscuous filters. 234 */ 235 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 236 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 237 vsi->state)) { 238 promisc_forced_on = true; 239 netdev_warn(netdev, 240 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 241 vsi->vsi_num); 242 } else { 243 err = -EIO; 244 goto out; 245 } 246 } 247 /* check for changes in promiscuous modes */ 248 if (changed_flags & IFF_ALLMULTI) 249 netdev_warn(netdev, "Unsupported configuration\n"); 250 251 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 252 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 253 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 254 if (vsi->current_netdev_flags & IFF_PROMISC) { 255 /* Apply TX filter rule to get traffic from VMs */ 256 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 257 ICE_FLTR_TX); 258 if (status) { 259 netdev_err(netdev, "Error setting default VSI %i tx rule\n", 260 vsi->vsi_num); 261 vsi->current_netdev_flags &= ~IFF_PROMISC; 262 err = -EIO; 263 goto out_promisc; 264 } 265 /* Apply RX filter rule to get traffic from wire */ 266 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 267 ICE_FLTR_RX); 268 if (status) { 269 netdev_err(netdev, "Error setting default VSI %i rx rule\n", 270 vsi->vsi_num); 271 vsi->current_netdev_flags &= ~IFF_PROMISC; 272 err = -EIO; 273 goto out_promisc; 274 } 275 } else { 276 /* Clear TX filter rule to stop traffic from VMs */ 277 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 278 ICE_FLTR_TX); 279 if (status) { 280 netdev_err(netdev, "Error clearing default VSI %i tx rule\n", 281 vsi->vsi_num); 282 vsi->current_netdev_flags |= IFF_PROMISC; 283 err = -EIO; 284 goto out_promisc; 285 } 286 /* Clear RX filter to remove traffic from wire */ 287 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 288 ICE_FLTR_RX); 289 if (status) { 290 netdev_err(netdev, "Error clearing default VSI %i rx rule\n", 291 vsi->vsi_num); 292 vsi->current_netdev_flags |= IFF_PROMISC; 293 err = -EIO; 294 goto out_promisc; 295 } 296 } 297 } 298 goto exit; 299 300 out_promisc: 301 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 302 goto exit; 303 out: 304 /* if something went wrong then set the changed flag so we try again */ 305 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 306 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 307 exit: 308 clear_bit(__ICE_CFG_BUSY, vsi->state); 309 return err; 310 } 311 312 /** 313 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 314 * @pf: board private structure 315 */ 316 static void ice_sync_fltr_subtask(struct ice_pf *pf) 317 { 318 int v; 319 320 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 321 return; 322 323 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 324 325 for (v = 0; v < pf->num_alloc_vsi; v++) 326 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 327 ice_vsi_sync_fltr(pf->vsi[v])) { 328 /* come back and try again later */ 329 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 330 break; 331 } 332 } 333 334 /** 335 * ice_prepare_for_reset - prep for the core to reset 336 * @pf: board private structure 337 * 338 * Inform or close all dependent features in prep for reset. 339 */ 340 static void 341 ice_prepare_for_reset(struct ice_pf *pf) 342 { 343 struct ice_hw *hw = &pf->hw; 344 345 /* Notify VFs of impending reset */ 346 if (ice_check_sq_alive(hw, &hw->mailboxq)) 347 ice_vc_notify_reset(pf); 348 349 /* disable the VSIs and their queues that are not already DOWN */ 350 ice_pf_dis_all_vsi(pf); 351 352 ice_shutdown_all_ctrlq(hw); 353 354 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 355 } 356 357 /** 358 * ice_do_reset - Initiate one of many types of resets 359 * @pf: board private structure 360 * @reset_type: reset type requested 361 * before this function was called. 362 */ 363 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 364 { 365 struct device *dev = &pf->pdev->dev; 366 struct ice_hw *hw = &pf->hw; 367 368 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 369 WARN_ON(in_interrupt()); 370 371 ice_prepare_for_reset(pf); 372 373 /* trigger the reset */ 374 if (ice_reset(hw, reset_type)) { 375 dev_err(dev, "reset %d failed\n", reset_type); 376 set_bit(__ICE_RESET_FAILED, pf->state); 377 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 378 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 379 clear_bit(__ICE_PFR_REQ, pf->state); 380 clear_bit(__ICE_CORER_REQ, pf->state); 381 clear_bit(__ICE_GLOBR_REQ, pf->state); 382 return; 383 } 384 385 /* PFR is a bit of a special case because it doesn't result in an OICR 386 * interrupt. So for PFR, rebuild after the reset and clear the reset- 387 * associated state bits. 388 */ 389 if (reset_type == ICE_RESET_PFR) { 390 pf->pfr_count++; 391 ice_rebuild(pf); 392 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 393 clear_bit(__ICE_PFR_REQ, pf->state); 394 } 395 } 396 397 /** 398 * ice_reset_subtask - Set up for resetting the device and driver 399 * @pf: board private structure 400 */ 401 static void ice_reset_subtask(struct ice_pf *pf) 402 { 403 enum ice_reset_req reset_type = ICE_RESET_INVAL; 404 405 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 406 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 407 * of reset is pending and sets bits in pf->state indicating the reset 408 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 409 * prepare for pending reset if not already (for PF software-initiated 410 * global resets the software should already be prepared for it as 411 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 412 * by firmware or software on other PFs, that bit is not set so prepare 413 * for the reset now), poll for reset done, rebuild and return. 414 */ 415 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 416 clear_bit(__ICE_GLOBR_RECV, pf->state); 417 clear_bit(__ICE_CORER_RECV, pf->state); 418 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 419 ice_prepare_for_reset(pf); 420 421 /* make sure we are ready to rebuild */ 422 if (ice_check_reset(&pf->hw)) { 423 set_bit(__ICE_RESET_FAILED, pf->state); 424 } else { 425 /* done with reset. start rebuild */ 426 pf->hw.reset_ongoing = false; 427 ice_rebuild(pf); 428 /* clear bit to resume normal operations, but 429 * ICE_NEEDS_RESTART bit is set incase rebuild failed 430 */ 431 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 432 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 433 clear_bit(__ICE_PFR_REQ, pf->state); 434 clear_bit(__ICE_CORER_REQ, pf->state); 435 clear_bit(__ICE_GLOBR_REQ, pf->state); 436 } 437 438 return; 439 } 440 441 /* No pending resets to finish processing. Check for new resets */ 442 if (test_bit(__ICE_PFR_REQ, pf->state)) 443 reset_type = ICE_RESET_PFR; 444 if (test_bit(__ICE_CORER_REQ, pf->state)) 445 reset_type = ICE_RESET_CORER; 446 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 447 reset_type = ICE_RESET_GLOBR; 448 /* If no valid reset type requested just return */ 449 if (reset_type == ICE_RESET_INVAL) 450 return; 451 452 /* reset if not already down or busy */ 453 if (!test_bit(__ICE_DOWN, pf->state) && 454 !test_bit(__ICE_CFG_BUSY, pf->state)) { 455 ice_do_reset(pf, reset_type); 456 } 457 } 458 459 /** 460 * ice_print_link_msg - print link up or down message 461 * @vsi: the VSI whose link status is being queried 462 * @isup: boolean for if the link is now up or down 463 */ 464 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 465 { 466 const char *speed; 467 const char *fc; 468 469 if (vsi->current_isup == isup) 470 return; 471 472 vsi->current_isup = isup; 473 474 if (!isup) { 475 netdev_info(vsi->netdev, "NIC Link is Down\n"); 476 return; 477 } 478 479 switch (vsi->port_info->phy.link_info.link_speed) { 480 case ICE_AQ_LINK_SPEED_40GB: 481 speed = "40 G"; 482 break; 483 case ICE_AQ_LINK_SPEED_25GB: 484 speed = "25 G"; 485 break; 486 case ICE_AQ_LINK_SPEED_20GB: 487 speed = "20 G"; 488 break; 489 case ICE_AQ_LINK_SPEED_10GB: 490 speed = "10 G"; 491 break; 492 case ICE_AQ_LINK_SPEED_5GB: 493 speed = "5 G"; 494 break; 495 case ICE_AQ_LINK_SPEED_2500MB: 496 speed = "2.5 G"; 497 break; 498 case ICE_AQ_LINK_SPEED_1000MB: 499 speed = "1 G"; 500 break; 501 case ICE_AQ_LINK_SPEED_100MB: 502 speed = "100 M"; 503 break; 504 default: 505 speed = "Unknown"; 506 break; 507 } 508 509 switch (vsi->port_info->fc.current_mode) { 510 case ICE_FC_FULL: 511 fc = "RX/TX"; 512 break; 513 case ICE_FC_TX_PAUSE: 514 fc = "TX"; 515 break; 516 case ICE_FC_RX_PAUSE: 517 fc = "RX"; 518 break; 519 default: 520 fc = "Unknown"; 521 break; 522 } 523 524 netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n", 525 speed, fc); 526 } 527 528 /** 529 * ice_vsi_link_event - update the vsi's netdev 530 * @vsi: the vsi on which the link event occurred 531 * @link_up: whether or not the vsi needs to be set up or down 532 */ 533 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 534 { 535 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 536 return; 537 538 if (vsi->type == ICE_VSI_PF) { 539 if (!vsi->netdev) { 540 dev_dbg(&vsi->back->pdev->dev, 541 "vsi->netdev is not initialized!\n"); 542 return; 543 } 544 if (link_up) { 545 netif_carrier_on(vsi->netdev); 546 netif_tx_wake_all_queues(vsi->netdev); 547 } else { 548 netif_carrier_off(vsi->netdev); 549 netif_tx_stop_all_queues(vsi->netdev); 550 } 551 } 552 } 553 554 /** 555 * ice_link_event - process the link event 556 * @pf: pf that the link event is associated with 557 * @pi: port_info for the port that the link event is associated with 558 * 559 * Returns -EIO if ice_get_link_status() fails 560 * Returns 0 on success 561 */ 562 static int 563 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi) 564 { 565 u8 new_link_speed, old_link_speed; 566 struct ice_phy_info *phy_info; 567 bool new_link_same_as_old; 568 bool new_link, old_link; 569 u8 lport; 570 u16 v; 571 572 phy_info = &pi->phy; 573 phy_info->link_info_old = phy_info->link_info; 574 /* Force ice_get_link_status() to update link info */ 575 phy_info->get_link_info = true; 576 577 old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 578 old_link_speed = phy_info->link_info_old.link_speed; 579 580 lport = pi->lport; 581 if (ice_get_link_status(pi, &new_link)) { 582 dev_dbg(&pf->pdev->dev, 583 "Could not get link status for port %d\n", lport); 584 return -EIO; 585 } 586 587 new_link_speed = phy_info->link_info.link_speed; 588 589 new_link_same_as_old = (new_link == old_link && 590 new_link_speed == old_link_speed); 591 592 ice_for_each_vsi(pf, v) { 593 struct ice_vsi *vsi = pf->vsi[v]; 594 595 if (!vsi || !vsi->port_info) 596 continue; 597 598 if (new_link_same_as_old && 599 (test_bit(__ICE_DOWN, vsi->state) || 600 new_link == netif_carrier_ok(vsi->netdev))) 601 continue; 602 603 if (vsi->port_info->lport == lport) { 604 ice_print_link_msg(vsi, new_link); 605 ice_vsi_link_event(vsi, new_link); 606 } 607 } 608 609 ice_vc_notify_link_state(pf); 610 611 return 0; 612 } 613 614 /** 615 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 616 * @pf: board private structure 617 */ 618 static void ice_watchdog_subtask(struct ice_pf *pf) 619 { 620 int i; 621 622 /* if interface is down do nothing */ 623 if (test_bit(__ICE_DOWN, pf->state) || 624 test_bit(__ICE_CFG_BUSY, pf->state)) 625 return; 626 627 /* make sure we don't do these things too often */ 628 if (time_before(jiffies, 629 pf->serv_tmr_prev + pf->serv_tmr_period)) 630 return; 631 632 pf->serv_tmr_prev = jiffies; 633 634 if (ice_link_event(pf, pf->hw.port_info)) 635 dev_dbg(&pf->pdev->dev, "ice_link_event failed\n"); 636 637 /* Update the stats for active netdevs so the network stack 638 * can look at updated numbers whenever it cares to 639 */ 640 ice_update_pf_stats(pf); 641 for (i = 0; i < pf->num_alloc_vsi; i++) 642 if (pf->vsi[i] && pf->vsi[i]->netdev) 643 ice_update_vsi_stats(pf->vsi[i]); 644 } 645 646 /** 647 * __ice_clean_ctrlq - helper function to clean controlq rings 648 * @pf: ptr to struct ice_pf 649 * @q_type: specific Control queue type 650 */ 651 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 652 { 653 struct ice_rq_event_info event; 654 struct ice_hw *hw = &pf->hw; 655 struct ice_ctl_q_info *cq; 656 u16 pending, i = 0; 657 const char *qtype; 658 u32 oldval, val; 659 660 /* Do not clean control queue if/when PF reset fails */ 661 if (test_bit(__ICE_RESET_FAILED, pf->state)) 662 return 0; 663 664 switch (q_type) { 665 case ICE_CTL_Q_ADMIN: 666 cq = &hw->adminq; 667 qtype = "Admin"; 668 break; 669 case ICE_CTL_Q_MAILBOX: 670 cq = &hw->mailboxq; 671 qtype = "Mailbox"; 672 break; 673 default: 674 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 675 q_type); 676 return 0; 677 } 678 679 /* check for error indications - PF_xx_AxQLEN register layout for 680 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 681 */ 682 val = rd32(hw, cq->rq.len); 683 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 684 PF_FW_ARQLEN_ARQCRIT_M)) { 685 oldval = val; 686 if (val & PF_FW_ARQLEN_ARQVFE_M) 687 dev_dbg(&pf->pdev->dev, 688 "%s Receive Queue VF Error detected\n", qtype); 689 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 690 dev_dbg(&pf->pdev->dev, 691 "%s Receive Queue Overflow Error detected\n", 692 qtype); 693 } 694 if (val & PF_FW_ARQLEN_ARQCRIT_M) 695 dev_dbg(&pf->pdev->dev, 696 "%s Receive Queue Critical Error detected\n", 697 qtype); 698 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 699 PF_FW_ARQLEN_ARQCRIT_M); 700 if (oldval != val) 701 wr32(hw, cq->rq.len, val); 702 } 703 704 val = rd32(hw, cq->sq.len); 705 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 706 PF_FW_ATQLEN_ATQCRIT_M)) { 707 oldval = val; 708 if (val & PF_FW_ATQLEN_ATQVFE_M) 709 dev_dbg(&pf->pdev->dev, 710 "%s Send Queue VF Error detected\n", qtype); 711 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 712 dev_dbg(&pf->pdev->dev, 713 "%s Send Queue Overflow Error detected\n", 714 qtype); 715 } 716 if (val & PF_FW_ATQLEN_ATQCRIT_M) 717 dev_dbg(&pf->pdev->dev, 718 "%s Send Queue Critical Error detected\n", 719 qtype); 720 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 721 PF_FW_ATQLEN_ATQCRIT_M); 722 if (oldval != val) 723 wr32(hw, cq->sq.len, val); 724 } 725 726 event.buf_len = cq->rq_buf_size; 727 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 728 GFP_KERNEL); 729 if (!event.msg_buf) 730 return 0; 731 732 do { 733 enum ice_status ret; 734 u16 opcode; 735 736 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 737 if (ret == ICE_ERR_AQ_NO_WORK) 738 break; 739 if (ret) { 740 dev_err(&pf->pdev->dev, 741 "%s Receive Queue event error %d\n", qtype, 742 ret); 743 break; 744 } 745 746 opcode = le16_to_cpu(event.desc.opcode); 747 748 switch (opcode) { 749 case ice_mbx_opc_send_msg_to_pf: 750 ice_vc_process_vf_msg(pf, &event); 751 break; 752 case ice_aqc_opc_fw_logging: 753 ice_output_fw_log(hw, &event.desc, event.msg_buf); 754 break; 755 default: 756 dev_dbg(&pf->pdev->dev, 757 "%s Receive Queue unknown event 0x%04x ignored\n", 758 qtype, opcode); 759 break; 760 } 761 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 762 763 devm_kfree(&pf->pdev->dev, event.msg_buf); 764 765 return pending && (i == ICE_DFLT_IRQ_WORK); 766 } 767 768 /** 769 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 770 * @hw: pointer to hardware info 771 * @cq: control queue information 772 * 773 * returns true if there are pending messages in a queue, false if there aren't 774 */ 775 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 776 { 777 u16 ntu; 778 779 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 780 return cq->rq.next_to_clean != ntu; 781 } 782 783 /** 784 * ice_clean_adminq_subtask - clean the AdminQ rings 785 * @pf: board private structure 786 */ 787 static void ice_clean_adminq_subtask(struct ice_pf *pf) 788 { 789 struct ice_hw *hw = &pf->hw; 790 791 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 792 return; 793 794 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 795 return; 796 797 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 798 799 /* There might be a situation where new messages arrive to a control 800 * queue between processing the last message and clearing the 801 * EVENT_PENDING bit. So before exiting, check queue head again (using 802 * ice_ctrlq_pending) and process new messages if any. 803 */ 804 if (ice_ctrlq_pending(hw, &hw->adminq)) 805 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 806 807 ice_flush(hw); 808 } 809 810 /** 811 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 812 * @pf: board private structure 813 */ 814 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 815 { 816 struct ice_hw *hw = &pf->hw; 817 818 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 819 return; 820 821 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 822 return; 823 824 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 825 826 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 827 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 828 829 ice_flush(hw); 830 } 831 832 /** 833 * ice_service_task_schedule - schedule the service task to wake up 834 * @pf: board private structure 835 * 836 * If not already scheduled, this puts the task into the work queue. 837 */ 838 static void ice_service_task_schedule(struct ice_pf *pf) 839 { 840 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 841 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 842 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 843 queue_work(ice_wq, &pf->serv_task); 844 } 845 846 /** 847 * ice_service_task_complete - finish up the service task 848 * @pf: board private structure 849 */ 850 static void ice_service_task_complete(struct ice_pf *pf) 851 { 852 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 853 854 /* force memory (pf->state) to sync before next service task */ 855 smp_mb__before_atomic(); 856 clear_bit(__ICE_SERVICE_SCHED, pf->state); 857 } 858 859 /** 860 * ice_service_task_stop - stop service task and cancel works 861 * @pf: board private structure 862 */ 863 static void ice_service_task_stop(struct ice_pf *pf) 864 { 865 set_bit(__ICE_SERVICE_DIS, pf->state); 866 867 if (pf->serv_tmr.function) 868 del_timer_sync(&pf->serv_tmr); 869 if (pf->serv_task.func) 870 cancel_work_sync(&pf->serv_task); 871 872 clear_bit(__ICE_SERVICE_SCHED, pf->state); 873 } 874 875 /** 876 * ice_service_timer - timer callback to schedule service task 877 * @t: pointer to timer_list 878 */ 879 static void ice_service_timer(struct timer_list *t) 880 { 881 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 882 883 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 884 ice_service_task_schedule(pf); 885 } 886 887 /** 888 * ice_handle_mdd_event - handle malicious driver detect event 889 * @pf: pointer to the PF structure 890 * 891 * Called from service task. OICR interrupt handler indicates MDD event 892 */ 893 static void ice_handle_mdd_event(struct ice_pf *pf) 894 { 895 struct ice_hw *hw = &pf->hw; 896 bool mdd_detected = false; 897 u32 reg; 898 int i; 899 900 if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 901 return; 902 903 /* find what triggered the MDD event */ 904 reg = rd32(hw, GL_MDET_TX_PQM); 905 if (reg & GL_MDET_TX_PQM_VALID_M) { 906 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 907 GL_MDET_TX_PQM_PF_NUM_S; 908 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 909 GL_MDET_TX_PQM_VF_NUM_S; 910 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 911 GL_MDET_TX_PQM_MAL_TYPE_S; 912 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 913 GL_MDET_TX_PQM_QNUM_S); 914 915 if (netif_msg_tx_err(pf)) 916 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 917 event, queue, pf_num, vf_num); 918 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 919 mdd_detected = true; 920 } 921 922 reg = rd32(hw, GL_MDET_TX_TCLAN); 923 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 924 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 925 GL_MDET_TX_TCLAN_PF_NUM_S; 926 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 927 GL_MDET_TX_TCLAN_VF_NUM_S; 928 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 929 GL_MDET_TX_TCLAN_MAL_TYPE_S; 930 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 931 GL_MDET_TX_TCLAN_QNUM_S); 932 933 if (netif_msg_rx_err(pf)) 934 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 935 event, queue, pf_num, vf_num); 936 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 937 mdd_detected = true; 938 } 939 940 reg = rd32(hw, GL_MDET_RX); 941 if (reg & GL_MDET_RX_VALID_M) { 942 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 943 GL_MDET_RX_PF_NUM_S; 944 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 945 GL_MDET_RX_VF_NUM_S; 946 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 947 GL_MDET_RX_MAL_TYPE_S; 948 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 949 GL_MDET_RX_QNUM_S); 950 951 if (netif_msg_rx_err(pf)) 952 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 953 event, queue, pf_num, vf_num); 954 wr32(hw, GL_MDET_RX, 0xffffffff); 955 mdd_detected = true; 956 } 957 958 if (mdd_detected) { 959 bool pf_mdd_detected = false; 960 961 reg = rd32(hw, PF_MDET_TX_PQM); 962 if (reg & PF_MDET_TX_PQM_VALID_M) { 963 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 964 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 965 pf_mdd_detected = true; 966 } 967 968 reg = rd32(hw, PF_MDET_TX_TCLAN); 969 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 970 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 971 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 972 pf_mdd_detected = true; 973 } 974 975 reg = rd32(hw, PF_MDET_RX); 976 if (reg & PF_MDET_RX_VALID_M) { 977 wr32(hw, PF_MDET_RX, 0xFFFF); 978 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 979 pf_mdd_detected = true; 980 } 981 /* Queue belongs to the PF initiate a reset */ 982 if (pf_mdd_detected) { 983 set_bit(__ICE_NEEDS_RESTART, pf->state); 984 ice_service_task_schedule(pf); 985 } 986 } 987 988 /* see if one of the VFs needs to be reset */ 989 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 990 struct ice_vf *vf = &pf->vf[i]; 991 992 reg = rd32(hw, VP_MDET_TX_PQM(i)); 993 if (reg & VP_MDET_TX_PQM_VALID_M) { 994 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 995 vf->num_mdd_events++; 996 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 997 i); 998 } 999 1000 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1001 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1002 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1003 vf->num_mdd_events++; 1004 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1005 i); 1006 } 1007 1008 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1009 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1010 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1011 vf->num_mdd_events++; 1012 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1013 i); 1014 } 1015 1016 reg = rd32(hw, VP_MDET_RX(i)); 1017 if (reg & VP_MDET_RX_VALID_M) { 1018 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1019 vf->num_mdd_events++; 1020 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1021 i); 1022 } 1023 1024 if (vf->num_mdd_events > ICE_DFLT_NUM_MDD_EVENTS_ALLOWED) { 1025 dev_info(&pf->pdev->dev, 1026 "Too many MDD events on VF %d, disabled\n", i); 1027 dev_info(&pf->pdev->dev, 1028 "Use PF Control I/F to re-enable the VF\n"); 1029 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 1030 } 1031 } 1032 1033 /* re-enable MDD interrupt cause */ 1034 clear_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1035 reg = rd32(hw, PFINT_OICR_ENA); 1036 reg |= PFINT_OICR_MAL_DETECT_M; 1037 wr32(hw, PFINT_OICR_ENA, reg); 1038 ice_flush(hw); 1039 } 1040 1041 /** 1042 * ice_service_task - manage and run subtasks 1043 * @work: pointer to work_struct contained by the PF struct 1044 */ 1045 static void ice_service_task(struct work_struct *work) 1046 { 1047 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1048 unsigned long start_time = jiffies; 1049 1050 /* subtasks */ 1051 1052 /* process reset requests first */ 1053 ice_reset_subtask(pf); 1054 1055 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1056 if (ice_is_reset_in_progress(pf->state) || 1057 test_bit(__ICE_SUSPENDED, pf->state) || 1058 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1059 ice_service_task_complete(pf); 1060 return; 1061 } 1062 1063 ice_check_for_hang_subtask(pf); 1064 ice_sync_fltr_subtask(pf); 1065 ice_handle_mdd_event(pf); 1066 ice_process_vflr_event(pf); 1067 ice_watchdog_subtask(pf); 1068 ice_clean_adminq_subtask(pf); 1069 ice_clean_mailboxq_subtask(pf); 1070 1071 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1072 ice_service_task_complete(pf); 1073 1074 /* If the tasks have taken longer than one service timer period 1075 * or there is more work to be done, reset the service timer to 1076 * schedule the service task now. 1077 */ 1078 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1079 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1080 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1081 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1082 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1083 mod_timer(&pf->serv_tmr, jiffies); 1084 } 1085 1086 /** 1087 * ice_set_ctrlq_len - helper function to set controlq length 1088 * @hw: pointer to the hw instance 1089 */ 1090 static void ice_set_ctrlq_len(struct ice_hw *hw) 1091 { 1092 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1093 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1094 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1095 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1096 hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN; 1097 hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN; 1098 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1099 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1100 } 1101 1102 /** 1103 * ice_irq_affinity_notify - Callback for affinity changes 1104 * @notify: context as to what irq was changed 1105 * @mask: the new affinity mask 1106 * 1107 * This is a callback function used by the irq_set_affinity_notifier function 1108 * so that we may register to receive changes to the irq affinity masks. 1109 */ 1110 static void ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1111 const cpumask_t *mask) 1112 { 1113 struct ice_q_vector *q_vector = 1114 container_of(notify, struct ice_q_vector, affinity_notify); 1115 1116 cpumask_copy(&q_vector->affinity_mask, mask); 1117 } 1118 1119 /** 1120 * ice_irq_affinity_release - Callback for affinity notifier release 1121 * @ref: internal core kernel usage 1122 * 1123 * This is a callback function used by the irq_set_affinity_notifier function 1124 * to inform the current notification subscriber that they will no longer 1125 * receive notifications. 1126 */ 1127 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1128 1129 /** 1130 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1131 * @vsi: the VSI being configured 1132 */ 1133 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1134 { 1135 struct ice_pf *pf = vsi->back; 1136 struct ice_hw *hw = &pf->hw; 1137 1138 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1139 int i; 1140 1141 for (i = 0; i < vsi->num_q_vectors; i++) 1142 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1143 } 1144 1145 ice_flush(hw); 1146 return 0; 1147 } 1148 1149 /** 1150 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1151 * @vsi: the VSI being configured 1152 * @basename: name for the vector 1153 */ 1154 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1155 { 1156 int q_vectors = vsi->num_q_vectors; 1157 struct ice_pf *pf = vsi->back; 1158 int base = vsi->sw_base_vector; 1159 int rx_int_idx = 0; 1160 int tx_int_idx = 0; 1161 int vector, err; 1162 int irq_num; 1163 1164 for (vector = 0; vector < q_vectors; vector++) { 1165 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1166 1167 irq_num = pf->msix_entries[base + vector].vector; 1168 1169 if (q_vector->tx.ring && q_vector->rx.ring) { 1170 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1171 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1172 tx_int_idx++; 1173 } else if (q_vector->rx.ring) { 1174 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1175 "%s-%s-%d", basename, "rx", rx_int_idx++); 1176 } else if (q_vector->tx.ring) { 1177 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1178 "%s-%s-%d", basename, "tx", tx_int_idx++); 1179 } else { 1180 /* skip this unused q_vector */ 1181 continue; 1182 } 1183 err = devm_request_irq(&pf->pdev->dev, 1184 pf->msix_entries[base + vector].vector, 1185 vsi->irq_handler, 0, q_vector->name, 1186 q_vector); 1187 if (err) { 1188 netdev_err(vsi->netdev, 1189 "MSIX request_irq failed, error: %d\n", err); 1190 goto free_q_irqs; 1191 } 1192 1193 /* register for affinity change notifications */ 1194 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1195 q_vector->affinity_notify.release = ice_irq_affinity_release; 1196 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1197 1198 /* assign the mask for this irq */ 1199 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1200 } 1201 1202 vsi->irqs_ready = true; 1203 return 0; 1204 1205 free_q_irqs: 1206 while (vector) { 1207 vector--; 1208 irq_num = pf->msix_entries[base + vector].vector, 1209 irq_set_affinity_notifier(irq_num, NULL); 1210 irq_set_affinity_hint(irq_num, NULL); 1211 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1212 } 1213 return err; 1214 } 1215 1216 /** 1217 * ice_ena_misc_vector - enable the non-queue interrupts 1218 * @pf: board private structure 1219 */ 1220 static void ice_ena_misc_vector(struct ice_pf *pf) 1221 { 1222 struct ice_hw *hw = &pf->hw; 1223 u32 val; 1224 1225 /* clear things first */ 1226 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1227 rd32(hw, PFINT_OICR); /* read to clear */ 1228 1229 val = (PFINT_OICR_ECC_ERR_M | 1230 PFINT_OICR_MAL_DETECT_M | 1231 PFINT_OICR_GRST_M | 1232 PFINT_OICR_PCI_EXCEPTION_M | 1233 PFINT_OICR_VFLR_M | 1234 PFINT_OICR_HMC_ERR_M | 1235 PFINT_OICR_PE_CRITERR_M); 1236 1237 wr32(hw, PFINT_OICR_ENA, val); 1238 1239 /* SW_ITR_IDX = 0, but don't change INTENA */ 1240 wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx), 1241 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1242 } 1243 1244 /** 1245 * ice_misc_intr - misc interrupt handler 1246 * @irq: interrupt number 1247 * @data: pointer to a q_vector 1248 */ 1249 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1250 { 1251 struct ice_pf *pf = (struct ice_pf *)data; 1252 struct ice_hw *hw = &pf->hw; 1253 irqreturn_t ret = IRQ_NONE; 1254 u32 oicr, ena_mask; 1255 1256 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1257 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1258 1259 oicr = rd32(hw, PFINT_OICR); 1260 ena_mask = rd32(hw, PFINT_OICR_ENA); 1261 1262 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1263 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1264 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1265 } 1266 if (oicr & PFINT_OICR_VFLR_M) { 1267 ena_mask &= ~PFINT_OICR_VFLR_M; 1268 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1269 } 1270 1271 if (oicr & PFINT_OICR_GRST_M) { 1272 u32 reset; 1273 1274 /* we have a reset warning */ 1275 ena_mask &= ~PFINT_OICR_GRST_M; 1276 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1277 GLGEN_RSTAT_RESET_TYPE_S; 1278 1279 if (reset == ICE_RESET_CORER) 1280 pf->corer_count++; 1281 else if (reset == ICE_RESET_GLOBR) 1282 pf->globr_count++; 1283 else if (reset == ICE_RESET_EMPR) 1284 pf->empr_count++; 1285 else 1286 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1287 reset); 1288 1289 /* If a reset cycle isn't already in progress, we set a bit in 1290 * pf->state so that the service task can start a reset/rebuild. 1291 * We also make note of which reset happened so that peer 1292 * devices/drivers can be informed. 1293 */ 1294 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1295 if (reset == ICE_RESET_CORER) 1296 set_bit(__ICE_CORER_RECV, pf->state); 1297 else if (reset == ICE_RESET_GLOBR) 1298 set_bit(__ICE_GLOBR_RECV, pf->state); 1299 else 1300 set_bit(__ICE_EMPR_RECV, pf->state); 1301 1302 /* There are couple of different bits at play here. 1303 * hw->reset_ongoing indicates whether the hardware is 1304 * in reset. This is set to true when a reset interrupt 1305 * is received and set back to false after the driver 1306 * has determined that the hardware is out of reset. 1307 * 1308 * __ICE_RESET_OICR_RECV in pf->state indicates 1309 * that a post reset rebuild is required before the 1310 * driver is operational again. This is set above. 1311 * 1312 * As this is the start of the reset/rebuild cycle, set 1313 * both to indicate that. 1314 */ 1315 hw->reset_ongoing = true; 1316 } 1317 } 1318 1319 if (oicr & PFINT_OICR_HMC_ERR_M) { 1320 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1321 dev_dbg(&pf->pdev->dev, 1322 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1323 rd32(hw, PFHMC_ERRORINFO), 1324 rd32(hw, PFHMC_ERRORDATA)); 1325 } 1326 1327 /* Report and mask off any remaining unexpected interrupts */ 1328 oicr &= ena_mask; 1329 if (oicr) { 1330 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1331 oicr); 1332 /* If a critical error is pending there is no choice but to 1333 * reset the device. 1334 */ 1335 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1336 PFINT_OICR_PCI_EXCEPTION_M | 1337 PFINT_OICR_ECC_ERR_M)) { 1338 set_bit(__ICE_PFR_REQ, pf->state); 1339 ice_service_task_schedule(pf); 1340 } 1341 ena_mask &= ~oicr; 1342 } 1343 ret = IRQ_HANDLED; 1344 1345 /* re-enable interrupt causes that are not handled during this pass */ 1346 wr32(hw, PFINT_OICR_ENA, ena_mask); 1347 if (!test_bit(__ICE_DOWN, pf->state)) { 1348 ice_service_task_schedule(pf); 1349 ice_irq_dynamic_ena(hw, NULL, NULL); 1350 } 1351 1352 return ret; 1353 } 1354 1355 /** 1356 * ice_free_irq_msix_misc - Unroll misc vector setup 1357 * @pf: board private structure 1358 */ 1359 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1360 { 1361 /* disable OICR interrupt */ 1362 wr32(&pf->hw, PFINT_OICR_ENA, 0); 1363 ice_flush(&pf->hw); 1364 1365 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 1366 synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector); 1367 devm_free_irq(&pf->pdev->dev, 1368 pf->msix_entries[pf->sw_oicr_idx].vector, pf); 1369 } 1370 1371 pf->num_avail_sw_msix += 1; 1372 ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID); 1373 pf->num_avail_hw_msix += 1; 1374 ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID); 1375 } 1376 1377 /** 1378 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1379 * @pf: board private structure 1380 * 1381 * This sets up the handler for MSIX 0, which is used to manage the 1382 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1383 * when in MSI or Legacy interrupt mode. 1384 */ 1385 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1386 { 1387 struct ice_hw *hw = &pf->hw; 1388 int oicr_idx, err = 0; 1389 u8 itr_gran; 1390 u32 val; 1391 1392 if (!pf->int_name[0]) 1393 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1394 dev_driver_string(&pf->pdev->dev), 1395 dev_name(&pf->pdev->dev)); 1396 1397 /* Do not request IRQ but do enable OICR interrupt since settings are 1398 * lost during reset. Note that this function is called only during 1399 * rebuild path and not while reset is in progress. 1400 */ 1401 if (ice_is_reset_in_progress(pf->state)) 1402 goto skip_req_irq; 1403 1404 /* reserve one vector in sw_irq_tracker for misc interrupts */ 1405 oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1406 if (oicr_idx < 0) 1407 return oicr_idx; 1408 1409 pf->num_avail_sw_msix -= 1; 1410 pf->sw_oicr_idx = oicr_idx; 1411 1412 /* reserve one vector in hw_irq_tracker for misc interrupts */ 1413 oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1414 if (oicr_idx < 0) { 1415 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1416 pf->num_avail_sw_msix += 1; 1417 return oicr_idx; 1418 } 1419 pf->num_avail_hw_msix -= 1; 1420 pf->hw_oicr_idx = oicr_idx; 1421 1422 err = devm_request_irq(&pf->pdev->dev, 1423 pf->msix_entries[pf->sw_oicr_idx].vector, 1424 ice_misc_intr, 0, pf->int_name, pf); 1425 if (err) { 1426 dev_err(&pf->pdev->dev, 1427 "devm_request_irq for %s failed: %d\n", 1428 pf->int_name, err); 1429 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1430 pf->num_avail_sw_msix += 1; 1431 ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1432 pf->num_avail_hw_msix += 1; 1433 return err; 1434 } 1435 1436 skip_req_irq: 1437 ice_ena_misc_vector(pf); 1438 1439 val = ((pf->hw_oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1440 PFINT_OICR_CTL_CAUSE_ENA_M); 1441 wr32(hw, PFINT_OICR_CTL, val); 1442 1443 /* This enables Admin queue Interrupt causes */ 1444 val = ((pf->hw_oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1445 PFINT_FW_CTL_CAUSE_ENA_M); 1446 wr32(hw, PFINT_FW_CTL, val); 1447 1448 /* This enables Mailbox queue Interrupt causes */ 1449 val = ((pf->hw_oicr_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1450 PFINT_MBX_CTL_CAUSE_ENA_M); 1451 wr32(hw, PFINT_MBX_CTL, val); 1452 1453 itr_gran = hw->itr_gran; 1454 1455 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx), 1456 ITR_TO_REG(ICE_ITR_8K, itr_gran)); 1457 1458 ice_flush(hw); 1459 ice_irq_dynamic_ena(hw, NULL, NULL); 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * ice_napi_del - Remove NAPI handler for the VSI 1466 * @vsi: VSI for which NAPI handler is to be removed 1467 */ 1468 static void ice_napi_del(struct ice_vsi *vsi) 1469 { 1470 int v_idx; 1471 1472 if (!vsi->netdev) 1473 return; 1474 1475 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1476 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 1477 } 1478 1479 /** 1480 * ice_napi_add - register NAPI handler for the VSI 1481 * @vsi: VSI for which NAPI handler is to be registered 1482 * 1483 * This function is only called in the driver's load path. Registering the NAPI 1484 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1485 * reset/rebuild, etc.) 1486 */ 1487 static void ice_napi_add(struct ice_vsi *vsi) 1488 { 1489 int v_idx; 1490 1491 if (!vsi->netdev) 1492 return; 1493 1494 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1495 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1496 ice_napi_poll, NAPI_POLL_WEIGHT); 1497 } 1498 1499 /** 1500 * ice_cfg_netdev - Allocate, configure and register a netdev 1501 * @vsi: the VSI associated with the new netdev 1502 * 1503 * Returns 0 on success, negative value on failure 1504 */ 1505 static int ice_cfg_netdev(struct ice_vsi *vsi) 1506 { 1507 netdev_features_t csumo_features; 1508 netdev_features_t vlano_features; 1509 netdev_features_t dflt_features; 1510 netdev_features_t tso_features; 1511 struct ice_netdev_priv *np; 1512 struct net_device *netdev; 1513 u8 mac_addr[ETH_ALEN]; 1514 int err; 1515 1516 netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv), 1517 vsi->alloc_txq, vsi->alloc_rxq); 1518 if (!netdev) 1519 return -ENOMEM; 1520 1521 vsi->netdev = netdev; 1522 np = netdev_priv(netdev); 1523 np->vsi = vsi; 1524 1525 dflt_features = NETIF_F_SG | 1526 NETIF_F_HIGHDMA | 1527 NETIF_F_RXHASH; 1528 1529 csumo_features = NETIF_F_RXCSUM | 1530 NETIF_F_IP_CSUM | 1531 NETIF_F_IPV6_CSUM; 1532 1533 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 1534 NETIF_F_HW_VLAN_CTAG_TX | 1535 NETIF_F_HW_VLAN_CTAG_RX; 1536 1537 tso_features = NETIF_F_TSO; 1538 1539 /* set features that user can change */ 1540 netdev->hw_features = dflt_features | csumo_features | 1541 vlano_features | tso_features; 1542 1543 /* enable features */ 1544 netdev->features |= netdev->hw_features; 1545 /* encap and VLAN devices inherit default, csumo and tso features */ 1546 netdev->hw_enc_features |= dflt_features | csumo_features | 1547 tso_features; 1548 netdev->vlan_features |= dflt_features | csumo_features | 1549 tso_features; 1550 1551 if (vsi->type == ICE_VSI_PF) { 1552 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); 1553 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 1554 1555 ether_addr_copy(netdev->dev_addr, mac_addr); 1556 ether_addr_copy(netdev->perm_addr, mac_addr); 1557 } 1558 1559 netdev->priv_flags |= IFF_UNICAST_FLT; 1560 1561 /* assign netdev_ops */ 1562 netdev->netdev_ops = &ice_netdev_ops; 1563 1564 /* setup watchdog timeout value to be 5 second */ 1565 netdev->watchdog_timeo = 5 * HZ; 1566 1567 ice_set_ethtool_ops(netdev); 1568 1569 netdev->min_mtu = ETH_MIN_MTU; 1570 netdev->max_mtu = ICE_MAX_MTU; 1571 1572 err = register_netdev(vsi->netdev); 1573 if (err) 1574 return err; 1575 1576 netif_carrier_off(vsi->netdev); 1577 1578 /* make sure transmit queues start off as stopped */ 1579 netif_tx_stop_all_queues(vsi->netdev); 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * ice_fill_rss_lut - Fill the RSS lookup table with default values 1586 * @lut: Lookup table 1587 * @rss_table_size: Lookup table size 1588 * @rss_size: Range of queue number for hashing 1589 */ 1590 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 1591 { 1592 u16 i; 1593 1594 for (i = 0; i < rss_table_size; i++) 1595 lut[i] = i % rss_size; 1596 } 1597 1598 /** 1599 * ice_pf_vsi_setup - Set up a PF VSI 1600 * @pf: board private structure 1601 * @pi: pointer to the port_info instance 1602 * 1603 * Returns pointer to the successfully allocated VSI sw struct on success, 1604 * otherwise returns NULL on failure. 1605 */ 1606 static struct ice_vsi * 1607 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 1608 { 1609 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 1610 } 1611 1612 /** 1613 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload 1614 * @netdev: network interface to be adjusted 1615 * @proto: unused protocol 1616 * @vid: vlan id to be added 1617 * 1618 * net_device_ops implementation for adding vlan ids 1619 */ 1620 static int ice_vlan_rx_add_vid(struct net_device *netdev, 1621 __always_unused __be16 proto, u16 vid) 1622 { 1623 struct ice_netdev_priv *np = netdev_priv(netdev); 1624 struct ice_vsi *vsi = np->vsi; 1625 int ret; 1626 1627 if (vid >= VLAN_N_VID) { 1628 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 1629 vid, VLAN_N_VID); 1630 return -EINVAL; 1631 } 1632 1633 if (vsi->info.pvid) 1634 return -EINVAL; 1635 1636 /* Enable VLAN pruning when VLAN 0 is added */ 1637 if (unlikely(!vid)) { 1638 ret = ice_cfg_vlan_pruning(vsi, true); 1639 if (ret) 1640 return ret; 1641 } 1642 1643 /* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is 1644 * needed to continue allowing all untagged packets since VLAN prune 1645 * list is applied to all packets by the switch 1646 */ 1647 ret = ice_vsi_add_vlan(vsi, vid); 1648 1649 if (!ret) 1650 set_bit(vid, vsi->active_vlans); 1651 1652 return ret; 1653 } 1654 1655 /** 1656 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 1657 * @netdev: network interface to be adjusted 1658 * @proto: unused protocol 1659 * @vid: vlan id to be removed 1660 * 1661 * net_device_ops implementation for removing vlan ids 1662 */ 1663 static int ice_vlan_rx_kill_vid(struct net_device *netdev, 1664 __always_unused __be16 proto, u16 vid) 1665 { 1666 struct ice_netdev_priv *np = netdev_priv(netdev); 1667 struct ice_vsi *vsi = np->vsi; 1668 int status; 1669 1670 if (vsi->info.pvid) 1671 return -EINVAL; 1672 1673 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 1674 * information 1675 */ 1676 status = ice_vsi_kill_vlan(vsi, vid); 1677 if (status) 1678 return status; 1679 1680 clear_bit(vid, vsi->active_vlans); 1681 1682 /* Disable VLAN pruning when VLAN 0 is removed */ 1683 if (unlikely(!vid)) 1684 status = ice_cfg_vlan_pruning(vsi, false); 1685 1686 return status; 1687 } 1688 1689 /** 1690 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 1691 * @pf: board private structure 1692 * 1693 * Returns 0 on success, negative value on failure 1694 */ 1695 static int ice_setup_pf_sw(struct ice_pf *pf) 1696 { 1697 LIST_HEAD(tmp_add_list); 1698 u8 broadcast[ETH_ALEN]; 1699 struct ice_vsi *vsi; 1700 int status = 0; 1701 1702 if (ice_is_reset_in_progress(pf->state)) 1703 return -EBUSY; 1704 1705 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 1706 if (!vsi) { 1707 status = -ENOMEM; 1708 goto unroll_vsi_setup; 1709 } 1710 1711 status = ice_cfg_netdev(vsi); 1712 if (status) { 1713 status = -ENODEV; 1714 goto unroll_vsi_setup; 1715 } 1716 1717 /* registering the NAPI handler requires both the queues and 1718 * netdev to be created, which are done in ice_pf_vsi_setup() 1719 * and ice_cfg_netdev() respectively 1720 */ 1721 ice_napi_add(vsi); 1722 1723 /* To add a MAC filter, first add the MAC to a list and then 1724 * pass the list to ice_add_mac. 1725 */ 1726 1727 /* Add a unicast MAC filter so the VSI can get its packets */ 1728 status = ice_add_mac_to_list(vsi, &tmp_add_list, 1729 vsi->port_info->mac.perm_addr); 1730 if (status) 1731 goto unroll_napi_add; 1732 1733 /* VSI needs to receive broadcast traffic, so add the broadcast 1734 * MAC address to the list as well. 1735 */ 1736 eth_broadcast_addr(broadcast); 1737 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); 1738 if (status) 1739 goto free_mac_list; 1740 1741 /* program MAC filters for entries in tmp_add_list */ 1742 status = ice_add_mac(&pf->hw, &tmp_add_list); 1743 if (status) { 1744 dev_err(&pf->pdev->dev, "Could not add MAC filters\n"); 1745 status = -ENOMEM; 1746 goto free_mac_list; 1747 } 1748 1749 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1750 return status; 1751 1752 free_mac_list: 1753 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1754 1755 unroll_napi_add: 1756 if (vsi) { 1757 ice_napi_del(vsi); 1758 if (vsi->netdev) { 1759 if (vsi->netdev->reg_state == NETREG_REGISTERED) 1760 unregister_netdev(vsi->netdev); 1761 free_netdev(vsi->netdev); 1762 vsi->netdev = NULL; 1763 } 1764 } 1765 1766 unroll_vsi_setup: 1767 if (vsi) { 1768 ice_vsi_free_q_vectors(vsi); 1769 ice_vsi_delete(vsi); 1770 ice_vsi_put_qs(vsi); 1771 pf->q_left_tx += vsi->alloc_txq; 1772 pf->q_left_rx += vsi->alloc_rxq; 1773 ice_vsi_clear(vsi); 1774 } 1775 return status; 1776 } 1777 1778 /** 1779 * ice_determine_q_usage - Calculate queue distribution 1780 * @pf: board private structure 1781 * 1782 * Return -ENOMEM if we don't get enough queues for all ports 1783 */ 1784 static void ice_determine_q_usage(struct ice_pf *pf) 1785 { 1786 u16 q_left_tx, q_left_rx; 1787 1788 q_left_tx = pf->hw.func_caps.common_cap.num_txq; 1789 q_left_rx = pf->hw.func_caps.common_cap.num_rxq; 1790 1791 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus()); 1792 1793 /* only 1 rx queue unless RSS is enabled */ 1794 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1795 pf->num_lan_rx = 1; 1796 else 1797 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus()); 1798 1799 pf->q_left_tx = q_left_tx - pf->num_lan_tx; 1800 pf->q_left_rx = q_left_rx - pf->num_lan_rx; 1801 } 1802 1803 /** 1804 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 1805 * @pf: board private structure to initialize 1806 */ 1807 static void ice_deinit_pf(struct ice_pf *pf) 1808 { 1809 ice_service_task_stop(pf); 1810 mutex_destroy(&pf->sw_mutex); 1811 mutex_destroy(&pf->avail_q_mutex); 1812 } 1813 1814 /** 1815 * ice_init_pf - Initialize general software structures (struct ice_pf) 1816 * @pf: board private structure to initialize 1817 */ 1818 static void ice_init_pf(struct ice_pf *pf) 1819 { 1820 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); 1821 set_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1822 #ifdef CONFIG_PCI_IOV 1823 if (pf->hw.func_caps.common_cap.sr_iov_1_1) { 1824 struct ice_hw *hw = &pf->hw; 1825 1826 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 1827 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs, 1828 ICE_MAX_VF_COUNT); 1829 } 1830 #endif /* CONFIG_PCI_IOV */ 1831 1832 mutex_init(&pf->sw_mutex); 1833 mutex_init(&pf->avail_q_mutex); 1834 1835 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */ 1836 mutex_lock(&pf->avail_q_mutex); 1837 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS); 1838 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS); 1839 mutex_unlock(&pf->avail_q_mutex); 1840 1841 if (pf->hw.func_caps.common_cap.rss_table_size) 1842 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 1843 1844 /* setup service timer and periodic service task */ 1845 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 1846 pf->serv_tmr_period = HZ; 1847 INIT_WORK(&pf->serv_task, ice_service_task); 1848 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1849 } 1850 1851 /** 1852 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 1853 * @pf: board private structure 1854 * 1855 * compute the number of MSIX vectors required (v_budget) and request from 1856 * the OS. Return the number of vectors reserved or negative on failure 1857 */ 1858 static int ice_ena_msix_range(struct ice_pf *pf) 1859 { 1860 int v_left, v_actual, v_budget = 0; 1861 int needed, err, i; 1862 1863 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 1864 1865 /* reserve one vector for miscellaneous handler */ 1866 needed = 1; 1867 v_budget += needed; 1868 v_left -= needed; 1869 1870 /* reserve vectors for LAN traffic */ 1871 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left); 1872 v_budget += pf->num_lan_msix; 1873 v_left -= pf->num_lan_msix; 1874 1875 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 1876 sizeof(struct msix_entry), GFP_KERNEL); 1877 1878 if (!pf->msix_entries) { 1879 err = -ENOMEM; 1880 goto exit_err; 1881 } 1882 1883 for (i = 0; i < v_budget; i++) 1884 pf->msix_entries[i].entry = i; 1885 1886 /* actually reserve the vectors */ 1887 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 1888 ICE_MIN_MSIX, v_budget); 1889 1890 if (v_actual < 0) { 1891 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 1892 err = v_actual; 1893 goto msix_err; 1894 } 1895 1896 if (v_actual < v_budget) { 1897 dev_warn(&pf->pdev->dev, 1898 "not enough vectors. requested = %d, obtained = %d\n", 1899 v_budget, v_actual); 1900 if (v_actual >= (pf->num_lan_msix + 1)) { 1901 pf->num_avail_sw_msix = v_actual - 1902 (pf->num_lan_msix + 1); 1903 } else if (v_actual >= 2) { 1904 pf->num_lan_msix = 1; 1905 pf->num_avail_sw_msix = v_actual - 2; 1906 } else { 1907 pci_disable_msix(pf->pdev); 1908 err = -ERANGE; 1909 goto msix_err; 1910 } 1911 } 1912 1913 return v_actual; 1914 1915 msix_err: 1916 devm_kfree(&pf->pdev->dev, pf->msix_entries); 1917 goto exit_err; 1918 1919 exit_err: 1920 pf->num_lan_msix = 0; 1921 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1922 return err; 1923 } 1924 1925 /** 1926 * ice_dis_msix - Disable MSI-X interrupt setup in OS 1927 * @pf: board private structure 1928 */ 1929 static void ice_dis_msix(struct ice_pf *pf) 1930 { 1931 pci_disable_msix(pf->pdev); 1932 devm_kfree(&pf->pdev->dev, pf->msix_entries); 1933 pf->msix_entries = NULL; 1934 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1935 } 1936 1937 /** 1938 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 1939 * @pf: board private structure 1940 */ 1941 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 1942 { 1943 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1944 ice_dis_msix(pf); 1945 1946 if (pf->sw_irq_tracker) { 1947 devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker); 1948 pf->sw_irq_tracker = NULL; 1949 } 1950 1951 if (pf->hw_irq_tracker) { 1952 devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker); 1953 pf->hw_irq_tracker = NULL; 1954 } 1955 } 1956 1957 /** 1958 * ice_init_interrupt_scheme - Determine proper interrupt scheme 1959 * @pf: board private structure to initialize 1960 */ 1961 static int ice_init_interrupt_scheme(struct ice_pf *pf) 1962 { 1963 int vectors = 0, hw_vectors = 0; 1964 ssize_t size; 1965 1966 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1967 vectors = ice_ena_msix_range(pf); 1968 else 1969 return -ENODEV; 1970 1971 if (vectors < 0) 1972 return vectors; 1973 1974 /* set up vector assignment tracking */ 1975 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors); 1976 1977 pf->sw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL); 1978 if (!pf->sw_irq_tracker) { 1979 ice_dis_msix(pf); 1980 return -ENOMEM; 1981 } 1982 1983 /* populate SW interrupts pool with number of OS granted IRQs. */ 1984 pf->num_avail_sw_msix = vectors; 1985 pf->sw_irq_tracker->num_entries = vectors; 1986 1987 /* set up HW vector assignment tracking */ 1988 hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 1989 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * hw_vectors); 1990 1991 pf->hw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL); 1992 if (!pf->hw_irq_tracker) { 1993 ice_clear_interrupt_scheme(pf); 1994 return -ENOMEM; 1995 } 1996 1997 /* populate HW interrupts pool with number of HW supported irqs. */ 1998 pf->num_avail_hw_msix = hw_vectors; 1999 pf->hw_irq_tracker->num_entries = hw_vectors; 2000 2001 return 0; 2002 } 2003 2004 /** 2005 * ice_probe - Device initialization routine 2006 * @pdev: PCI device information struct 2007 * @ent: entry in ice_pci_tbl 2008 * 2009 * Returns 0 on success, negative on failure 2010 */ 2011 static int ice_probe(struct pci_dev *pdev, 2012 const struct pci_device_id __always_unused *ent) 2013 { 2014 struct ice_pf *pf; 2015 struct ice_hw *hw; 2016 int err; 2017 2018 /* this driver uses devres, see Documentation/driver-model/devres.txt */ 2019 err = pcim_enable_device(pdev); 2020 if (err) 2021 return err; 2022 2023 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2024 if (err) { 2025 dev_err(&pdev->dev, "BAR0 I/O map error %d\n", err); 2026 return err; 2027 } 2028 2029 pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL); 2030 if (!pf) 2031 return -ENOMEM; 2032 2033 /* set up for high or low dma */ 2034 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2035 if (err) 2036 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2037 if (err) { 2038 dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); 2039 return err; 2040 } 2041 2042 pci_enable_pcie_error_reporting(pdev); 2043 pci_set_master(pdev); 2044 2045 pf->pdev = pdev; 2046 pci_set_drvdata(pdev, pf); 2047 set_bit(__ICE_DOWN, pf->state); 2048 /* Disable service task until DOWN bit is cleared */ 2049 set_bit(__ICE_SERVICE_DIS, pf->state); 2050 2051 hw = &pf->hw; 2052 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2053 hw->back = pf; 2054 hw->vendor_id = pdev->vendor; 2055 hw->device_id = pdev->device; 2056 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2057 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2058 hw->subsystem_device_id = pdev->subsystem_device; 2059 hw->bus.device = PCI_SLOT(pdev->devfn); 2060 hw->bus.func = PCI_FUNC(pdev->devfn); 2061 ice_set_ctrlq_len(hw); 2062 2063 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2064 2065 #ifndef CONFIG_DYNAMIC_DEBUG 2066 if (debug < -1) 2067 hw->debug_mask = debug; 2068 #endif 2069 2070 err = ice_init_hw(hw); 2071 if (err) { 2072 dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err); 2073 err = -EIO; 2074 goto err_exit_unroll; 2075 } 2076 2077 dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n", 2078 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, 2079 hw->api_maj_ver, hw->api_min_ver); 2080 2081 ice_init_pf(pf); 2082 2083 ice_determine_q_usage(pf); 2084 2085 pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC, 2086 hw->func_caps.guaranteed_num_vsi); 2087 if (!pf->num_alloc_vsi) { 2088 err = -EIO; 2089 goto err_init_pf_unroll; 2090 } 2091 2092 pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi, 2093 sizeof(struct ice_vsi *), GFP_KERNEL); 2094 if (!pf->vsi) { 2095 err = -ENOMEM; 2096 goto err_init_pf_unroll; 2097 } 2098 2099 err = ice_init_interrupt_scheme(pf); 2100 if (err) { 2101 dev_err(&pdev->dev, 2102 "ice_init_interrupt_scheme failed: %d\n", err); 2103 err = -EIO; 2104 goto err_init_interrupt_unroll; 2105 } 2106 2107 /* Driver is mostly up */ 2108 clear_bit(__ICE_DOWN, pf->state); 2109 2110 /* In case of MSIX we are going to setup the misc vector right here 2111 * to handle admin queue events etc. In case of legacy and MSI 2112 * the misc functionality and queue processing is combined in 2113 * the same vector and that gets setup at open. 2114 */ 2115 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2116 err = ice_req_irq_msix_misc(pf); 2117 if (err) { 2118 dev_err(&pdev->dev, 2119 "setup of misc vector failed: %d\n", err); 2120 goto err_init_interrupt_unroll; 2121 } 2122 } 2123 2124 /* create switch struct for the switch element created by FW on boot */ 2125 pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw), 2126 GFP_KERNEL); 2127 if (!pf->first_sw) { 2128 err = -ENOMEM; 2129 goto err_msix_misc_unroll; 2130 } 2131 2132 if (hw->evb_veb) 2133 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2134 else 2135 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2136 2137 pf->first_sw->pf = pf; 2138 2139 /* record the sw_id available for later use */ 2140 pf->first_sw->sw_id = hw->port_info->sw_id; 2141 2142 err = ice_setup_pf_sw(pf); 2143 if (err) { 2144 dev_err(&pdev->dev, 2145 "probe failed due to setup pf switch:%d\n", err); 2146 goto err_alloc_sw_unroll; 2147 } 2148 2149 clear_bit(__ICE_SERVICE_DIS, pf->state); 2150 2151 /* since everything is good, start the service timer */ 2152 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2153 2154 return 0; 2155 2156 err_alloc_sw_unroll: 2157 set_bit(__ICE_SERVICE_DIS, pf->state); 2158 set_bit(__ICE_DOWN, pf->state); 2159 devm_kfree(&pf->pdev->dev, pf->first_sw); 2160 err_msix_misc_unroll: 2161 ice_free_irq_msix_misc(pf); 2162 err_init_interrupt_unroll: 2163 ice_clear_interrupt_scheme(pf); 2164 devm_kfree(&pdev->dev, pf->vsi); 2165 err_init_pf_unroll: 2166 ice_deinit_pf(pf); 2167 ice_deinit_hw(hw); 2168 err_exit_unroll: 2169 pci_disable_pcie_error_reporting(pdev); 2170 return err; 2171 } 2172 2173 /** 2174 * ice_remove - Device removal routine 2175 * @pdev: PCI device information struct 2176 */ 2177 static void ice_remove(struct pci_dev *pdev) 2178 { 2179 struct ice_pf *pf = pci_get_drvdata(pdev); 2180 int i; 2181 2182 if (!pf) 2183 return; 2184 2185 set_bit(__ICE_DOWN, pf->state); 2186 ice_service_task_stop(pf); 2187 2188 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2189 ice_free_vfs(pf); 2190 ice_vsi_release_all(pf); 2191 ice_free_irq_msix_misc(pf); 2192 ice_for_each_vsi(pf, i) { 2193 if (!pf->vsi[i]) 2194 continue; 2195 ice_vsi_free_q_vectors(pf->vsi[i]); 2196 } 2197 ice_clear_interrupt_scheme(pf); 2198 ice_deinit_pf(pf); 2199 ice_deinit_hw(&pf->hw); 2200 pci_disable_pcie_error_reporting(pdev); 2201 } 2202 2203 /* ice_pci_tbl - PCI Device ID Table 2204 * 2205 * Wildcard entries (PCI_ANY_ID) should come last 2206 * Last entry must be all 0s 2207 * 2208 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 2209 * Class, Class Mask, private data (not used) } 2210 */ 2211 static const struct pci_device_id ice_pci_tbl[] = { 2212 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 2213 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 2214 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 2215 /* required last entry */ 2216 { 0, } 2217 }; 2218 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 2219 2220 static struct pci_driver ice_driver = { 2221 .name = KBUILD_MODNAME, 2222 .id_table = ice_pci_tbl, 2223 .probe = ice_probe, 2224 .remove = ice_remove, 2225 .sriov_configure = ice_sriov_configure, 2226 }; 2227 2228 /** 2229 * ice_module_init - Driver registration routine 2230 * 2231 * ice_module_init is the first routine called when the driver is 2232 * loaded. All it does is register with the PCI subsystem. 2233 */ 2234 static int __init ice_module_init(void) 2235 { 2236 int status; 2237 2238 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 2239 pr_info("%s\n", ice_copyright); 2240 2241 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 2242 if (!ice_wq) { 2243 pr_err("Failed to create workqueue\n"); 2244 return -ENOMEM; 2245 } 2246 2247 status = pci_register_driver(&ice_driver); 2248 if (status) { 2249 pr_err("failed to register pci driver, err %d\n", status); 2250 destroy_workqueue(ice_wq); 2251 } 2252 2253 return status; 2254 } 2255 module_init(ice_module_init); 2256 2257 /** 2258 * ice_module_exit - Driver exit cleanup routine 2259 * 2260 * ice_module_exit is called just before the driver is removed 2261 * from memory. 2262 */ 2263 static void __exit ice_module_exit(void) 2264 { 2265 pci_unregister_driver(&ice_driver); 2266 destroy_workqueue(ice_wq); 2267 pr_info("module unloaded\n"); 2268 } 2269 module_exit(ice_module_exit); 2270 2271 /** 2272 * ice_set_mac_address - NDO callback to set mac address 2273 * @netdev: network interface device structure 2274 * @pi: pointer to an address structure 2275 * 2276 * Returns 0 on success, negative on failure 2277 */ 2278 static int ice_set_mac_address(struct net_device *netdev, void *pi) 2279 { 2280 struct ice_netdev_priv *np = netdev_priv(netdev); 2281 struct ice_vsi *vsi = np->vsi; 2282 struct ice_pf *pf = vsi->back; 2283 struct ice_hw *hw = &pf->hw; 2284 struct sockaddr *addr = pi; 2285 enum ice_status status; 2286 LIST_HEAD(a_mac_list); 2287 LIST_HEAD(r_mac_list); 2288 u8 flags = 0; 2289 int err; 2290 u8 *mac; 2291 2292 mac = (u8 *)addr->sa_data; 2293 2294 if (!is_valid_ether_addr(mac)) 2295 return -EADDRNOTAVAIL; 2296 2297 if (ether_addr_equal(netdev->dev_addr, mac)) { 2298 netdev_warn(netdev, "already using mac %pM\n", mac); 2299 return 0; 2300 } 2301 2302 if (test_bit(__ICE_DOWN, pf->state) || 2303 ice_is_reset_in_progress(pf->state)) { 2304 netdev_err(netdev, "can't set mac %pM. device not ready\n", 2305 mac); 2306 return -EBUSY; 2307 } 2308 2309 /* When we change the mac address we also have to change the mac address 2310 * based filter rules that were created previously for the old mac 2311 * address. So first, we remove the old filter rule using ice_remove_mac 2312 * and then create a new filter rule using ice_add_mac. Note that for 2313 * both these operations, we first need to form a "list" of mac 2314 * addresses (even though in this case, we have only 1 mac address to be 2315 * added/removed) and this done using ice_add_mac_to_list. Depending on 2316 * the ensuing operation this "list" of mac addresses is either to be 2317 * added or removed from the filter. 2318 */ 2319 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr); 2320 if (err) { 2321 err = -EADDRNOTAVAIL; 2322 goto free_lists; 2323 } 2324 2325 status = ice_remove_mac(hw, &r_mac_list); 2326 if (status) { 2327 err = -EADDRNOTAVAIL; 2328 goto free_lists; 2329 } 2330 2331 err = ice_add_mac_to_list(vsi, &a_mac_list, mac); 2332 if (err) { 2333 err = -EADDRNOTAVAIL; 2334 goto free_lists; 2335 } 2336 2337 status = ice_add_mac(hw, &a_mac_list); 2338 if (status) { 2339 err = -EADDRNOTAVAIL; 2340 goto free_lists; 2341 } 2342 2343 free_lists: 2344 /* free list entries */ 2345 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list); 2346 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list); 2347 2348 if (err) { 2349 netdev_err(netdev, "can't set mac %pM. filter update failed\n", 2350 mac); 2351 return err; 2352 } 2353 2354 /* change the netdev's mac address */ 2355 memcpy(netdev->dev_addr, mac, netdev->addr_len); 2356 netdev_dbg(vsi->netdev, "updated mac address to %pM\n", 2357 netdev->dev_addr); 2358 2359 /* write new mac address to the firmware */ 2360 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 2361 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 2362 if (status) { 2363 netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n", 2364 mac); 2365 } 2366 return 0; 2367 } 2368 2369 /** 2370 * ice_set_rx_mode - NDO callback to set the netdev filters 2371 * @netdev: network interface device structure 2372 */ 2373 static void ice_set_rx_mode(struct net_device *netdev) 2374 { 2375 struct ice_netdev_priv *np = netdev_priv(netdev); 2376 struct ice_vsi *vsi = np->vsi; 2377 2378 if (!vsi) 2379 return; 2380 2381 /* Set the flags to synchronize filters 2382 * ndo_set_rx_mode may be triggered even without a change in netdev 2383 * flags 2384 */ 2385 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 2386 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 2387 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 2388 2389 /* schedule our worker thread which will take care of 2390 * applying the new filter changes 2391 */ 2392 ice_service_task_schedule(vsi->back); 2393 } 2394 2395 /** 2396 * ice_fdb_add - add an entry to the hardware database 2397 * @ndm: the input from the stack 2398 * @tb: pointer to array of nladdr (unused) 2399 * @dev: the net device pointer 2400 * @addr: the MAC address entry being added 2401 * @vid: VLAN id 2402 * @flags: instructions from stack about fdb operation 2403 */ 2404 static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 2405 struct net_device *dev, const unsigned char *addr, 2406 u16 vid, u16 flags) 2407 { 2408 int err; 2409 2410 if (vid) { 2411 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 2412 return -EINVAL; 2413 } 2414 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 2415 netdev_err(dev, "FDB only supports static addresses\n"); 2416 return -EINVAL; 2417 } 2418 2419 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 2420 err = dev_uc_add_excl(dev, addr); 2421 else if (is_multicast_ether_addr(addr)) 2422 err = dev_mc_add_excl(dev, addr); 2423 else 2424 err = -EINVAL; 2425 2426 /* Only return duplicate errors if NLM_F_EXCL is set */ 2427 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 2428 err = 0; 2429 2430 return err; 2431 } 2432 2433 /** 2434 * ice_fdb_del - delete an entry from the hardware database 2435 * @ndm: the input from the stack 2436 * @tb: pointer to array of nladdr (unused) 2437 * @dev: the net device pointer 2438 * @addr: the MAC address entry being added 2439 * @vid: VLAN id 2440 */ 2441 static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 2442 struct net_device *dev, const unsigned char *addr, 2443 __always_unused u16 vid) 2444 { 2445 int err; 2446 2447 if (ndm->ndm_state & NUD_PERMANENT) { 2448 netdev_err(dev, "FDB only supports static addresses\n"); 2449 return -EINVAL; 2450 } 2451 2452 if (is_unicast_ether_addr(addr)) 2453 err = dev_uc_del(dev, addr); 2454 else if (is_multicast_ether_addr(addr)) 2455 err = dev_mc_del(dev, addr); 2456 else 2457 err = -EINVAL; 2458 2459 return err; 2460 } 2461 2462 /** 2463 * ice_set_features - set the netdev feature flags 2464 * @netdev: ptr to the netdev being adjusted 2465 * @features: the feature set that the stack is suggesting 2466 */ 2467 static int ice_set_features(struct net_device *netdev, 2468 netdev_features_t features) 2469 { 2470 struct ice_netdev_priv *np = netdev_priv(netdev); 2471 struct ice_vsi *vsi = np->vsi; 2472 int ret = 0; 2473 2474 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 2475 ret = ice_vsi_manage_rss_lut(vsi, true); 2476 else if (!(features & NETIF_F_RXHASH) && 2477 netdev->features & NETIF_F_RXHASH) 2478 ret = ice_vsi_manage_rss_lut(vsi, false); 2479 2480 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 2481 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2482 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2483 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 2484 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2485 ret = ice_vsi_manage_vlan_stripping(vsi, false); 2486 else if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 2487 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2488 ret = ice_vsi_manage_vlan_insertion(vsi); 2489 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 2490 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2491 ret = ice_vsi_manage_vlan_insertion(vsi); 2492 2493 return ret; 2494 } 2495 2496 /** 2497 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI 2498 * @vsi: VSI to setup vlan properties for 2499 */ 2500 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 2501 { 2502 int ret = 0; 2503 2504 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2505 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2506 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 2507 ret = ice_vsi_manage_vlan_insertion(vsi); 2508 2509 return ret; 2510 } 2511 2512 /** 2513 * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up 2514 * @vsi: the VSI being brought back up 2515 */ 2516 static int ice_restore_vlan(struct ice_vsi *vsi) 2517 { 2518 int err; 2519 u16 vid; 2520 2521 if (!vsi->netdev) 2522 return -EINVAL; 2523 2524 err = ice_vsi_vlan_setup(vsi); 2525 if (err) 2526 return err; 2527 2528 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) { 2529 err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid); 2530 if (err) 2531 break; 2532 } 2533 2534 return err; 2535 } 2536 2537 /** 2538 * ice_vsi_cfg - Setup the VSI 2539 * @vsi: the VSI being configured 2540 * 2541 * Return 0 on success and negative value on error 2542 */ 2543 static int ice_vsi_cfg(struct ice_vsi *vsi) 2544 { 2545 int err; 2546 2547 if (vsi->netdev) { 2548 ice_set_rx_mode(vsi->netdev); 2549 err = ice_restore_vlan(vsi); 2550 if (err) 2551 return err; 2552 } 2553 2554 err = ice_vsi_cfg_txqs(vsi); 2555 if (!err) 2556 err = ice_vsi_cfg_rxqs(vsi); 2557 2558 return err; 2559 } 2560 2561 /** 2562 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 2563 * @vsi: the VSI being configured 2564 */ 2565 static void ice_napi_enable_all(struct ice_vsi *vsi) 2566 { 2567 int q_idx; 2568 2569 if (!vsi->netdev) 2570 return; 2571 2572 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) 2573 napi_enable(&vsi->q_vectors[q_idx]->napi); 2574 } 2575 2576 /** 2577 * ice_up_complete - Finish the last steps of bringing up a connection 2578 * @vsi: The VSI being configured 2579 * 2580 * Return 0 on success and negative value on error 2581 */ 2582 static int ice_up_complete(struct ice_vsi *vsi) 2583 { 2584 struct ice_pf *pf = vsi->back; 2585 int err; 2586 2587 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2588 ice_vsi_cfg_msix(vsi); 2589 else 2590 return -ENOTSUPP; 2591 2592 /* Enable only Rx rings, Tx rings were enabled by the FW when the 2593 * Tx queue group list was configured and the context bits were 2594 * programmed using ice_vsi_cfg_txqs 2595 */ 2596 err = ice_vsi_start_rx_rings(vsi); 2597 if (err) 2598 return err; 2599 2600 clear_bit(__ICE_DOWN, vsi->state); 2601 ice_napi_enable_all(vsi); 2602 ice_vsi_ena_irq(vsi); 2603 2604 if (vsi->port_info && 2605 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 2606 vsi->netdev) { 2607 ice_print_link_msg(vsi, true); 2608 netif_tx_start_all_queues(vsi->netdev); 2609 netif_carrier_on(vsi->netdev); 2610 } 2611 2612 ice_service_task_schedule(pf); 2613 2614 return err; 2615 } 2616 2617 /** 2618 * ice_up - Bring the connection back up after being down 2619 * @vsi: VSI being configured 2620 */ 2621 int ice_up(struct ice_vsi *vsi) 2622 { 2623 int err; 2624 2625 err = ice_vsi_cfg(vsi); 2626 if (!err) 2627 err = ice_up_complete(vsi); 2628 2629 return err; 2630 } 2631 2632 /** 2633 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 2634 * @ring: Tx or Rx ring to read stats from 2635 * @pkts: packets stats counter 2636 * @bytes: bytes stats counter 2637 * 2638 * This function fetches stats from the ring considering the atomic operations 2639 * that needs to be performed to read u64 values in 32 bit machine. 2640 */ 2641 static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, 2642 u64 *bytes) 2643 { 2644 unsigned int start; 2645 *pkts = 0; 2646 *bytes = 0; 2647 2648 if (!ring) 2649 return; 2650 do { 2651 start = u64_stats_fetch_begin_irq(&ring->syncp); 2652 *pkts = ring->stats.pkts; 2653 *bytes = ring->stats.bytes; 2654 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 2655 } 2656 2657 /** 2658 * ice_update_vsi_ring_stats - Update VSI stats counters 2659 * @vsi: the VSI to be updated 2660 */ 2661 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 2662 { 2663 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 2664 struct ice_ring *ring; 2665 u64 pkts, bytes; 2666 int i; 2667 2668 /* reset netdev stats */ 2669 vsi_stats->tx_packets = 0; 2670 vsi_stats->tx_bytes = 0; 2671 vsi_stats->rx_packets = 0; 2672 vsi_stats->rx_bytes = 0; 2673 2674 /* reset non-netdev (extended) stats */ 2675 vsi->tx_restart = 0; 2676 vsi->tx_busy = 0; 2677 vsi->tx_linearize = 0; 2678 vsi->rx_buf_failed = 0; 2679 vsi->rx_page_failed = 0; 2680 2681 rcu_read_lock(); 2682 2683 /* update Tx rings counters */ 2684 ice_for_each_txq(vsi, i) { 2685 ring = READ_ONCE(vsi->tx_rings[i]); 2686 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 2687 vsi_stats->tx_packets += pkts; 2688 vsi_stats->tx_bytes += bytes; 2689 vsi->tx_restart += ring->tx_stats.restart_q; 2690 vsi->tx_busy += ring->tx_stats.tx_busy; 2691 vsi->tx_linearize += ring->tx_stats.tx_linearize; 2692 } 2693 2694 /* update Rx rings counters */ 2695 ice_for_each_rxq(vsi, i) { 2696 ring = READ_ONCE(vsi->rx_rings[i]); 2697 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 2698 vsi_stats->rx_packets += pkts; 2699 vsi_stats->rx_bytes += bytes; 2700 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 2701 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 2702 } 2703 2704 rcu_read_unlock(); 2705 } 2706 2707 /** 2708 * ice_update_vsi_stats - Update VSI stats counters 2709 * @vsi: the VSI to be updated 2710 */ 2711 static void ice_update_vsi_stats(struct ice_vsi *vsi) 2712 { 2713 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 2714 struct ice_eth_stats *cur_es = &vsi->eth_stats; 2715 struct ice_pf *pf = vsi->back; 2716 2717 if (test_bit(__ICE_DOWN, vsi->state) || 2718 test_bit(__ICE_CFG_BUSY, pf->state)) 2719 return; 2720 2721 /* get stats as recorded by Tx/Rx rings */ 2722 ice_update_vsi_ring_stats(vsi); 2723 2724 /* get VSI stats as recorded by the hardware */ 2725 ice_update_eth_stats(vsi); 2726 2727 cur_ns->tx_errors = cur_es->tx_errors; 2728 cur_ns->rx_dropped = cur_es->rx_discards; 2729 cur_ns->tx_dropped = cur_es->tx_discards; 2730 cur_ns->multicast = cur_es->rx_multicast; 2731 2732 /* update some more netdev stats if this is main VSI */ 2733 if (vsi->type == ICE_VSI_PF) { 2734 cur_ns->rx_crc_errors = pf->stats.crc_errors; 2735 cur_ns->rx_errors = pf->stats.crc_errors + 2736 pf->stats.illegal_bytes; 2737 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 2738 } 2739 } 2740 2741 /** 2742 * ice_update_pf_stats - Update PF port stats counters 2743 * @pf: PF whose stats needs to be updated 2744 */ 2745 static void ice_update_pf_stats(struct ice_pf *pf) 2746 { 2747 struct ice_hw_port_stats *prev_ps, *cur_ps; 2748 struct ice_hw *hw = &pf->hw; 2749 u8 pf_id; 2750 2751 prev_ps = &pf->stats_prev; 2752 cur_ps = &pf->stats; 2753 pf_id = hw->pf_id; 2754 2755 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id), 2756 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, 2757 &cur_ps->eth.rx_bytes); 2758 2759 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id), 2760 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, 2761 &cur_ps->eth.rx_unicast); 2762 2763 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id), 2764 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, 2765 &cur_ps->eth.rx_multicast); 2766 2767 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id), 2768 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, 2769 &cur_ps->eth.rx_broadcast); 2770 2771 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id), 2772 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, 2773 &cur_ps->eth.tx_bytes); 2774 2775 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id), 2776 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, 2777 &cur_ps->eth.tx_unicast); 2778 2779 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id), 2780 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, 2781 &cur_ps->eth.tx_multicast); 2782 2783 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id), 2784 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, 2785 &cur_ps->eth.tx_broadcast); 2786 2787 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded, 2788 &prev_ps->tx_dropped_link_down, 2789 &cur_ps->tx_dropped_link_down); 2790 2791 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id), 2792 pf->stat_prev_loaded, &prev_ps->rx_size_64, 2793 &cur_ps->rx_size_64); 2794 2795 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id), 2796 pf->stat_prev_loaded, &prev_ps->rx_size_127, 2797 &cur_ps->rx_size_127); 2798 2799 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id), 2800 pf->stat_prev_loaded, &prev_ps->rx_size_255, 2801 &cur_ps->rx_size_255); 2802 2803 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id), 2804 pf->stat_prev_loaded, &prev_ps->rx_size_511, 2805 &cur_ps->rx_size_511); 2806 2807 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id), 2808 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded, 2809 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 2810 2811 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id), 2812 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded, 2813 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 2814 2815 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id), 2816 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded, 2817 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 2818 2819 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id), 2820 pf->stat_prev_loaded, &prev_ps->tx_size_64, 2821 &cur_ps->tx_size_64); 2822 2823 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id), 2824 pf->stat_prev_loaded, &prev_ps->tx_size_127, 2825 &cur_ps->tx_size_127); 2826 2827 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id), 2828 pf->stat_prev_loaded, &prev_ps->tx_size_255, 2829 &cur_ps->tx_size_255); 2830 2831 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id), 2832 pf->stat_prev_loaded, &prev_ps->tx_size_511, 2833 &cur_ps->tx_size_511); 2834 2835 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id), 2836 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded, 2837 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 2838 2839 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id), 2840 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded, 2841 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 2842 2843 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id), 2844 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded, 2845 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 2846 2847 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded, 2848 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 2849 2850 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded, 2851 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 2852 2853 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded, 2854 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 2855 2856 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded, 2857 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 2858 2859 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded, 2860 &prev_ps->crc_errors, &cur_ps->crc_errors); 2861 2862 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded, 2863 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 2864 2865 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded, 2866 &prev_ps->mac_local_faults, 2867 &cur_ps->mac_local_faults); 2868 2869 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded, 2870 &prev_ps->mac_remote_faults, 2871 &cur_ps->mac_remote_faults); 2872 2873 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded, 2874 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 2875 2876 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded, 2877 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 2878 2879 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded, 2880 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 2881 2882 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded, 2883 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 2884 2885 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded, 2886 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 2887 2888 pf->stat_prev_loaded = true; 2889 } 2890 2891 /** 2892 * ice_get_stats64 - get statistics for network device structure 2893 * @netdev: network interface device structure 2894 * @stats: main device statistics structure 2895 */ 2896 static 2897 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 2898 { 2899 struct ice_netdev_priv *np = netdev_priv(netdev); 2900 struct rtnl_link_stats64 *vsi_stats; 2901 struct ice_vsi *vsi = np->vsi; 2902 2903 vsi_stats = &vsi->net_stats; 2904 2905 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq) 2906 return; 2907 /* netdev packet/byte stats come from ring counter. These are obtained 2908 * by summing up ring counters (done by ice_update_vsi_ring_stats). 2909 */ 2910 ice_update_vsi_ring_stats(vsi); 2911 stats->tx_packets = vsi_stats->tx_packets; 2912 stats->tx_bytes = vsi_stats->tx_bytes; 2913 stats->rx_packets = vsi_stats->rx_packets; 2914 stats->rx_bytes = vsi_stats->rx_bytes; 2915 2916 /* The rest of the stats can be read from the hardware but instead we 2917 * just return values that the watchdog task has already obtained from 2918 * the hardware. 2919 */ 2920 stats->multicast = vsi_stats->multicast; 2921 stats->tx_errors = vsi_stats->tx_errors; 2922 stats->tx_dropped = vsi_stats->tx_dropped; 2923 stats->rx_errors = vsi_stats->rx_errors; 2924 stats->rx_dropped = vsi_stats->rx_dropped; 2925 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 2926 stats->rx_length_errors = vsi_stats->rx_length_errors; 2927 } 2928 2929 /** 2930 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 2931 * @vsi: VSI having NAPI disabled 2932 */ 2933 static void ice_napi_disable_all(struct ice_vsi *vsi) 2934 { 2935 int q_idx; 2936 2937 if (!vsi->netdev) 2938 return; 2939 2940 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) 2941 napi_disable(&vsi->q_vectors[q_idx]->napi); 2942 } 2943 2944 /** 2945 * ice_down - Shutdown the connection 2946 * @vsi: The VSI being stopped 2947 */ 2948 int ice_down(struct ice_vsi *vsi) 2949 { 2950 int i, tx_err, rx_err; 2951 2952 /* Caller of this function is expected to set the 2953 * vsi->state __ICE_DOWN bit 2954 */ 2955 if (vsi->netdev) { 2956 netif_carrier_off(vsi->netdev); 2957 netif_tx_disable(vsi->netdev); 2958 } 2959 2960 ice_vsi_dis_irq(vsi); 2961 tx_err = ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0); 2962 if (tx_err) 2963 netdev_err(vsi->netdev, 2964 "Failed stop Tx rings, VSI %d error %d\n", 2965 vsi->vsi_num, tx_err); 2966 2967 rx_err = ice_vsi_stop_rx_rings(vsi); 2968 if (rx_err) 2969 netdev_err(vsi->netdev, 2970 "Failed stop Rx rings, VSI %d error %d\n", 2971 vsi->vsi_num, rx_err); 2972 2973 ice_napi_disable_all(vsi); 2974 2975 ice_for_each_txq(vsi, i) 2976 ice_clean_tx_ring(vsi->tx_rings[i]); 2977 2978 ice_for_each_rxq(vsi, i) 2979 ice_clean_rx_ring(vsi->rx_rings[i]); 2980 2981 if (tx_err || rx_err) { 2982 netdev_err(vsi->netdev, 2983 "Failed to close VSI 0x%04X on switch 0x%04X\n", 2984 vsi->vsi_num, vsi->vsw->sw_id); 2985 return -EIO; 2986 } 2987 2988 return 0; 2989 } 2990 2991 /** 2992 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 2993 * @vsi: VSI having resources allocated 2994 * 2995 * Return 0 on success, negative on failure 2996 */ 2997 static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 2998 { 2999 int i, err = 0; 3000 3001 if (!vsi->num_txq) { 3002 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 3003 vsi->vsi_num); 3004 return -EINVAL; 3005 } 3006 3007 ice_for_each_txq(vsi, i) { 3008 vsi->tx_rings[i]->netdev = vsi->netdev; 3009 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3010 if (err) 3011 break; 3012 } 3013 3014 return err; 3015 } 3016 3017 /** 3018 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3019 * @vsi: VSI having resources allocated 3020 * 3021 * Return 0 on success, negative on failure 3022 */ 3023 static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3024 { 3025 int i, err = 0; 3026 3027 if (!vsi->num_rxq) { 3028 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3029 vsi->vsi_num); 3030 return -EINVAL; 3031 } 3032 3033 ice_for_each_rxq(vsi, i) { 3034 vsi->rx_rings[i]->netdev = vsi->netdev; 3035 err = ice_setup_rx_ring(vsi->rx_rings[i]); 3036 if (err) 3037 break; 3038 } 3039 3040 return err; 3041 } 3042 3043 /** 3044 * ice_vsi_req_irq - Request IRQ from the OS 3045 * @vsi: The VSI IRQ is being requested for 3046 * @basename: name for the vector 3047 * 3048 * Return 0 on success and a negative value on error 3049 */ 3050 static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename) 3051 { 3052 struct ice_pf *pf = vsi->back; 3053 int err = -EINVAL; 3054 3055 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3056 err = ice_vsi_req_irq_msix(vsi, basename); 3057 3058 return err; 3059 } 3060 3061 /** 3062 * ice_vsi_open - Called when a network interface is made active 3063 * @vsi: the VSI to open 3064 * 3065 * Initialization of the VSI 3066 * 3067 * Returns 0 on success, negative value on error 3068 */ 3069 static int ice_vsi_open(struct ice_vsi *vsi) 3070 { 3071 char int_name[ICE_INT_NAME_STR_LEN]; 3072 struct ice_pf *pf = vsi->back; 3073 int err; 3074 3075 /* allocate descriptors */ 3076 err = ice_vsi_setup_tx_rings(vsi); 3077 if (err) 3078 goto err_setup_tx; 3079 3080 err = ice_vsi_setup_rx_rings(vsi); 3081 if (err) 3082 goto err_setup_rx; 3083 3084 err = ice_vsi_cfg(vsi); 3085 if (err) 3086 goto err_setup_rx; 3087 3088 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 3089 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 3090 err = ice_vsi_req_irq(vsi, int_name); 3091 if (err) 3092 goto err_setup_rx; 3093 3094 /* Notify the stack of the actual queue counts. */ 3095 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 3096 if (err) 3097 goto err_set_qs; 3098 3099 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 3100 if (err) 3101 goto err_set_qs; 3102 3103 err = ice_up_complete(vsi); 3104 if (err) 3105 goto err_up_complete; 3106 3107 return 0; 3108 3109 err_up_complete: 3110 ice_down(vsi); 3111 err_set_qs: 3112 ice_vsi_free_irq(vsi); 3113 err_setup_rx: 3114 ice_vsi_free_rx_rings(vsi); 3115 err_setup_tx: 3116 ice_vsi_free_tx_rings(vsi); 3117 3118 return err; 3119 } 3120 3121 /** 3122 * ice_vsi_release_all - Delete all VSIs 3123 * @pf: PF from which all VSIs are being removed 3124 */ 3125 static void ice_vsi_release_all(struct ice_pf *pf) 3126 { 3127 int err, i; 3128 3129 if (!pf->vsi) 3130 return; 3131 3132 for (i = 0; i < pf->num_alloc_vsi; i++) { 3133 if (!pf->vsi[i]) 3134 continue; 3135 3136 err = ice_vsi_release(pf->vsi[i]); 3137 if (err) 3138 dev_dbg(&pf->pdev->dev, 3139 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 3140 i, err, pf->vsi[i]->vsi_num); 3141 } 3142 } 3143 3144 /** 3145 * ice_dis_vsi - pause a VSI 3146 * @vsi: the VSI being paused 3147 */ 3148 static void ice_dis_vsi(struct ice_vsi *vsi) 3149 { 3150 if (test_bit(__ICE_DOWN, vsi->state)) 3151 return; 3152 3153 set_bit(__ICE_NEEDS_RESTART, vsi->state); 3154 3155 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 3156 if (netif_running(vsi->netdev)) { 3157 rtnl_lock(); 3158 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 3159 rtnl_unlock(); 3160 } else { 3161 ice_vsi_close(vsi); 3162 } 3163 } 3164 } 3165 3166 /** 3167 * ice_ena_vsi - resume a VSI 3168 * @vsi: the VSI being resume 3169 */ 3170 static int ice_ena_vsi(struct ice_vsi *vsi) 3171 { 3172 int err = 0; 3173 3174 if (test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state) && 3175 vsi->netdev) { 3176 if (netif_running(vsi->netdev)) { 3177 rtnl_lock(); 3178 err = vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 3179 rtnl_unlock(); 3180 } else { 3181 err = ice_vsi_open(vsi); 3182 } 3183 } 3184 3185 return err; 3186 } 3187 3188 /** 3189 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 3190 * @pf: the PF 3191 */ 3192 static void ice_pf_dis_all_vsi(struct ice_pf *pf) 3193 { 3194 int v; 3195 3196 ice_for_each_vsi(pf, v) 3197 if (pf->vsi[v]) 3198 ice_dis_vsi(pf->vsi[v]); 3199 } 3200 3201 /** 3202 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 3203 * @pf: the PF 3204 */ 3205 static int ice_pf_ena_all_vsi(struct ice_pf *pf) 3206 { 3207 int v; 3208 3209 ice_for_each_vsi(pf, v) 3210 if (pf->vsi[v]) 3211 if (ice_ena_vsi(pf->vsi[v])) 3212 return -EIO; 3213 3214 return 0; 3215 } 3216 3217 /** 3218 * ice_vsi_rebuild_all - rebuild all VSIs in pf 3219 * @pf: the PF 3220 */ 3221 static int ice_vsi_rebuild_all(struct ice_pf *pf) 3222 { 3223 int i; 3224 3225 /* loop through pf->vsi array and reinit the VSI if found */ 3226 for (i = 0; i < pf->num_alloc_vsi; i++) { 3227 int err; 3228 3229 if (!pf->vsi[i]) 3230 continue; 3231 3232 /* VF VSI rebuild isn't supported yet */ 3233 if (pf->vsi[i]->type == ICE_VSI_VF) 3234 continue; 3235 3236 err = ice_vsi_rebuild(pf->vsi[i]); 3237 if (err) { 3238 dev_err(&pf->pdev->dev, 3239 "VSI at index %d rebuild failed\n", 3240 pf->vsi[i]->idx); 3241 return err; 3242 } 3243 3244 dev_info(&pf->pdev->dev, 3245 "VSI at index %d rebuilt. vsi_num = 0x%x\n", 3246 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3247 } 3248 3249 return 0; 3250 } 3251 3252 /** 3253 * ice_vsi_replay_all - replay all VSIs configuration in the PF 3254 * @pf: the PF 3255 */ 3256 static int ice_vsi_replay_all(struct ice_pf *pf) 3257 { 3258 struct ice_hw *hw = &pf->hw; 3259 enum ice_status ret; 3260 int i; 3261 3262 /* loop through pf->vsi array and replay the VSI if found */ 3263 for (i = 0; i < pf->num_alloc_vsi; i++) { 3264 if (!pf->vsi[i]) 3265 continue; 3266 3267 ret = ice_replay_vsi(hw, pf->vsi[i]->idx); 3268 if (ret) { 3269 dev_err(&pf->pdev->dev, 3270 "VSI at index %d replay failed %d\n", 3271 pf->vsi[i]->idx, ret); 3272 return -EIO; 3273 } 3274 3275 /* Re-map HW VSI number, using VSI handle that has been 3276 * previously validated in ice_replay_vsi() call above 3277 */ 3278 pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx); 3279 3280 dev_info(&pf->pdev->dev, 3281 "VSI at index %d filter replayed successfully - vsi_num %i\n", 3282 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3283 } 3284 3285 /* Clean up replay filter after successful re-configuration */ 3286 ice_replay_post(hw); 3287 return 0; 3288 } 3289 3290 /** 3291 * ice_rebuild - rebuild after reset 3292 * @pf: pf to rebuild 3293 */ 3294 static void ice_rebuild(struct ice_pf *pf) 3295 { 3296 struct device *dev = &pf->pdev->dev; 3297 struct ice_hw *hw = &pf->hw; 3298 enum ice_status ret; 3299 int err; 3300 3301 if (test_bit(__ICE_DOWN, pf->state)) 3302 goto clear_recovery; 3303 3304 dev_dbg(dev, "rebuilding pf\n"); 3305 3306 ret = ice_init_all_ctrlq(hw); 3307 if (ret) { 3308 dev_err(dev, "control queues init failed %d\n", ret); 3309 goto err_init_ctrlq; 3310 } 3311 3312 ret = ice_clear_pf_cfg(hw); 3313 if (ret) { 3314 dev_err(dev, "clear PF configuration failed %d\n", ret); 3315 goto err_init_ctrlq; 3316 } 3317 3318 ice_clear_pxe_mode(hw); 3319 3320 ret = ice_get_caps(hw); 3321 if (ret) { 3322 dev_err(dev, "ice_get_caps failed %d\n", ret); 3323 goto err_init_ctrlq; 3324 } 3325 3326 err = ice_sched_init_port(hw->port_info); 3327 if (err) 3328 goto err_sched_init_port; 3329 3330 /* reset search_hint of irq_trackers to 0 since interrupts are 3331 * reclaimed and could be allocated from beginning during VSI rebuild 3332 */ 3333 pf->sw_irq_tracker->search_hint = 0; 3334 pf->hw_irq_tracker->search_hint = 0; 3335 3336 err = ice_vsi_rebuild_all(pf); 3337 if (err) { 3338 dev_err(dev, "ice_vsi_rebuild_all failed\n"); 3339 goto err_vsi_rebuild; 3340 } 3341 3342 err = ice_update_link_info(hw->port_info); 3343 if (err) 3344 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 3345 3346 /* Replay all VSIs Configuration, including filters after reset */ 3347 if (ice_vsi_replay_all(pf)) { 3348 dev_err(&pf->pdev->dev, 3349 "error replaying VSI configurations with switch filter rules\n"); 3350 goto err_vsi_rebuild; 3351 } 3352 3353 /* start misc vector */ 3354 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 3355 err = ice_req_irq_msix_misc(pf); 3356 if (err) { 3357 dev_err(dev, "misc vector setup failed: %d\n", err); 3358 goto err_vsi_rebuild; 3359 } 3360 } 3361 3362 /* restart the VSIs that were rebuilt and running before the reset */ 3363 err = ice_pf_ena_all_vsi(pf); 3364 if (err) { 3365 dev_err(&pf->pdev->dev, "error enabling VSIs\n"); 3366 /* no need to disable VSIs in tear down path in ice_rebuild() 3367 * since its already taken care in ice_vsi_open() 3368 */ 3369 goto err_vsi_rebuild; 3370 } 3371 3372 ice_reset_all_vfs(pf, true); 3373 /* if we get here, reset flow is successful */ 3374 clear_bit(__ICE_RESET_FAILED, pf->state); 3375 return; 3376 3377 err_vsi_rebuild: 3378 ice_vsi_release_all(pf); 3379 err_sched_init_port: 3380 ice_sched_cleanup_all(hw); 3381 err_init_ctrlq: 3382 ice_shutdown_all_ctrlq(hw); 3383 set_bit(__ICE_RESET_FAILED, pf->state); 3384 clear_recovery: 3385 /* set this bit in PF state to control service task scheduling */ 3386 set_bit(__ICE_NEEDS_RESTART, pf->state); 3387 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 3388 } 3389 3390 /** 3391 * ice_change_mtu - NDO callback to change the MTU 3392 * @netdev: network interface device structure 3393 * @new_mtu: new value for maximum frame size 3394 * 3395 * Returns 0 on success, negative on failure 3396 */ 3397 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 3398 { 3399 struct ice_netdev_priv *np = netdev_priv(netdev); 3400 struct ice_vsi *vsi = np->vsi; 3401 struct ice_pf *pf = vsi->back; 3402 u8 count = 0; 3403 3404 if (new_mtu == netdev->mtu) { 3405 netdev_warn(netdev, "mtu is already %u\n", netdev->mtu); 3406 return 0; 3407 } 3408 3409 if (new_mtu < netdev->min_mtu) { 3410 netdev_err(netdev, "new mtu invalid. min_mtu is %d\n", 3411 netdev->min_mtu); 3412 return -EINVAL; 3413 } else if (new_mtu > netdev->max_mtu) { 3414 netdev_err(netdev, "new mtu invalid. max_mtu is %d\n", 3415 netdev->min_mtu); 3416 return -EINVAL; 3417 } 3418 /* if a reset is in progress, wait for some time for it to complete */ 3419 do { 3420 if (ice_is_reset_in_progress(pf->state)) { 3421 count++; 3422 usleep_range(1000, 2000); 3423 } else { 3424 break; 3425 } 3426 3427 } while (count < 100); 3428 3429 if (count == 100) { 3430 netdev_err(netdev, "can't change mtu. Device is busy\n"); 3431 return -EBUSY; 3432 } 3433 3434 netdev->mtu = new_mtu; 3435 3436 /* if VSI is up, bring it down and then back up */ 3437 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 3438 int err; 3439 3440 err = ice_down(vsi); 3441 if (err) { 3442 netdev_err(netdev, "change mtu if_up err %d\n", err); 3443 return err; 3444 } 3445 3446 err = ice_up(vsi); 3447 if (err) { 3448 netdev_err(netdev, "change mtu if_up err %d\n", err); 3449 return err; 3450 } 3451 } 3452 3453 netdev_dbg(netdev, "changed mtu to %d\n", new_mtu); 3454 return 0; 3455 } 3456 3457 /** 3458 * ice_set_rss - Set RSS keys and lut 3459 * @vsi: Pointer to VSI structure 3460 * @seed: RSS hash seed 3461 * @lut: Lookup table 3462 * @lut_size: Lookup table size 3463 * 3464 * Returns 0 on success, negative on failure 3465 */ 3466 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3467 { 3468 struct ice_pf *pf = vsi->back; 3469 struct ice_hw *hw = &pf->hw; 3470 enum ice_status status; 3471 3472 if (seed) { 3473 struct ice_aqc_get_set_rss_keys *buf = 3474 (struct ice_aqc_get_set_rss_keys *)seed; 3475 3476 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 3477 3478 if (status) { 3479 dev_err(&pf->pdev->dev, 3480 "Cannot set RSS key, err %d aq_err %d\n", 3481 status, hw->adminq.rq_last_status); 3482 return -EIO; 3483 } 3484 } 3485 3486 if (lut) { 3487 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3488 lut, lut_size); 3489 if (status) { 3490 dev_err(&pf->pdev->dev, 3491 "Cannot set RSS lut, err %d aq_err %d\n", 3492 status, hw->adminq.rq_last_status); 3493 return -EIO; 3494 } 3495 } 3496 3497 return 0; 3498 } 3499 3500 /** 3501 * ice_get_rss - Get RSS keys and lut 3502 * @vsi: Pointer to VSI structure 3503 * @seed: Buffer to store the keys 3504 * @lut: Buffer to store the lookup table entries 3505 * @lut_size: Size of buffer to store the lookup table entries 3506 * 3507 * Returns 0 on success, negative on failure 3508 */ 3509 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3510 { 3511 struct ice_pf *pf = vsi->back; 3512 struct ice_hw *hw = &pf->hw; 3513 enum ice_status status; 3514 3515 if (seed) { 3516 struct ice_aqc_get_set_rss_keys *buf = 3517 (struct ice_aqc_get_set_rss_keys *)seed; 3518 3519 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 3520 if (status) { 3521 dev_err(&pf->pdev->dev, 3522 "Cannot get RSS key, err %d aq_err %d\n", 3523 status, hw->adminq.rq_last_status); 3524 return -EIO; 3525 } 3526 } 3527 3528 if (lut) { 3529 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3530 lut, lut_size); 3531 if (status) { 3532 dev_err(&pf->pdev->dev, 3533 "Cannot get RSS lut, err %d aq_err %d\n", 3534 status, hw->adminq.rq_last_status); 3535 return -EIO; 3536 } 3537 } 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * ice_bridge_getlink - Get the hardware bridge mode 3544 * @skb: skb buff 3545 * @pid: process id 3546 * @seq: RTNL message seq 3547 * @dev: the netdev being configured 3548 * @filter_mask: filter mask passed in 3549 * @nlflags: netlink flags passed in 3550 * 3551 * Return the bridge mode (VEB/VEPA) 3552 */ 3553 static int 3554 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 3555 struct net_device *dev, u32 filter_mask, int nlflags) 3556 { 3557 struct ice_netdev_priv *np = netdev_priv(dev); 3558 struct ice_vsi *vsi = np->vsi; 3559 struct ice_pf *pf = vsi->back; 3560 u16 bmode; 3561 3562 bmode = pf->first_sw->bridge_mode; 3563 3564 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 3565 filter_mask, NULL); 3566 } 3567 3568 /** 3569 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 3570 * @vsi: Pointer to VSI structure 3571 * @bmode: Hardware bridge mode (VEB/VEPA) 3572 * 3573 * Returns 0 on success, negative on failure 3574 */ 3575 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 3576 { 3577 struct device *dev = &vsi->back->pdev->dev; 3578 struct ice_aqc_vsi_props *vsi_props; 3579 struct ice_hw *hw = &vsi->back->hw; 3580 struct ice_vsi_ctx ctxt = { 0 }; 3581 enum ice_status status; 3582 3583 vsi_props = &vsi->info; 3584 ctxt.info = vsi->info; 3585 3586 if (bmode == BRIDGE_MODE_VEB) 3587 /* change from VEPA to VEB mode */ 3588 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 3589 else 3590 /* change from VEB to VEPA mode */ 3591 ctxt.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 3592 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 3593 3594 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 3595 if (status) { 3596 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 3597 bmode, status, hw->adminq.sq_last_status); 3598 return -EIO; 3599 } 3600 /* Update sw flags for book keeping */ 3601 vsi_props->sw_flags = ctxt.info.sw_flags; 3602 3603 return 0; 3604 } 3605 3606 /** 3607 * ice_bridge_setlink - Set the hardware bridge mode 3608 * @dev: the netdev being configured 3609 * @nlh: RTNL message 3610 * @flags: bridge setlink flags 3611 * 3612 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 3613 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 3614 * not already set for all VSIs connected to this switch. And also update the 3615 * unicast switch filter rules for the corresponding switch of the netdev. 3616 */ 3617 static int 3618 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 3619 u16 __always_unused flags) 3620 { 3621 struct ice_netdev_priv *np = netdev_priv(dev); 3622 struct ice_pf *pf = np->vsi->back; 3623 struct nlattr *attr, *br_spec; 3624 struct ice_hw *hw = &pf->hw; 3625 enum ice_status status; 3626 struct ice_sw *pf_sw; 3627 int rem, v, err = 0; 3628 3629 pf_sw = pf->first_sw; 3630 /* find the attribute in the netlink message */ 3631 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 3632 3633 nla_for_each_nested(attr, br_spec, rem) { 3634 __u16 mode; 3635 3636 if (nla_type(attr) != IFLA_BRIDGE_MODE) 3637 continue; 3638 mode = nla_get_u16(attr); 3639 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 3640 return -EINVAL; 3641 /* Continue if bridge mode is not being flipped */ 3642 if (mode == pf_sw->bridge_mode) 3643 continue; 3644 /* Iterates through the PF VSI list and update the loopback 3645 * mode of the VSI 3646 */ 3647 ice_for_each_vsi(pf, v) { 3648 if (!pf->vsi[v]) 3649 continue; 3650 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 3651 if (err) 3652 return err; 3653 } 3654 3655 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 3656 /* Update the unicast switch filter rules for the corresponding 3657 * switch of the netdev 3658 */ 3659 status = ice_update_sw_rule_bridge_mode(hw); 3660 if (status) { 3661 netdev_err(dev, "update SW_RULE for bridge mode failed, = %d err %d aq_err %d\n", 3662 mode, status, hw->adminq.sq_last_status); 3663 /* revert hw->evb_veb */ 3664 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 3665 return -EIO; 3666 } 3667 3668 pf_sw->bridge_mode = mode; 3669 } 3670 3671 return 0; 3672 } 3673 3674 /** 3675 * ice_tx_timeout - Respond to a Tx Hang 3676 * @netdev: network interface device structure 3677 */ 3678 static void ice_tx_timeout(struct net_device *netdev) 3679 { 3680 struct ice_netdev_priv *np = netdev_priv(netdev); 3681 struct ice_ring *tx_ring = NULL; 3682 struct ice_vsi *vsi = np->vsi; 3683 struct ice_pf *pf = vsi->back; 3684 u32 head, val = 0, i; 3685 int hung_queue = -1; 3686 3687 pf->tx_timeout_count++; 3688 3689 /* find the stopped queue the same way the stack does */ 3690 for (i = 0; i < netdev->num_tx_queues; i++) { 3691 struct netdev_queue *q; 3692 unsigned long trans_start; 3693 3694 q = netdev_get_tx_queue(netdev, i); 3695 trans_start = q->trans_start; 3696 if (netif_xmit_stopped(q) && 3697 time_after(jiffies, 3698 (trans_start + netdev->watchdog_timeo))) { 3699 hung_queue = i; 3700 break; 3701 } 3702 } 3703 3704 if (i == netdev->num_tx_queues) { 3705 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 3706 } else { 3707 /* now that we have an index, find the tx_ring struct */ 3708 for (i = 0; i < vsi->num_txq; i++) { 3709 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 3710 if (hung_queue == 3711 vsi->tx_rings[i]->q_index) { 3712 tx_ring = vsi->tx_rings[i]; 3713 break; 3714 } 3715 } 3716 } 3717 } 3718 3719 /* Reset recovery level if enough time has elapsed after last timeout. 3720 * Also ensure no new reset action happens before next timeout period. 3721 */ 3722 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 3723 pf->tx_timeout_recovery_level = 1; 3724 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 3725 netdev->watchdog_timeo))) 3726 return; 3727 3728 if (tx_ring) { 3729 head = tx_ring->next_to_clean; 3730 /* Read interrupt register */ 3731 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3732 val = rd32(&pf->hw, 3733 GLINT_DYN_CTL(tx_ring->q_vector->v_idx + 3734 tx_ring->vsi->hw_base_vector)); 3735 3736 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 3737 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 3738 head, tx_ring->next_to_use, 3739 readl(tx_ring->tail), val); 3740 } 3741 3742 pf->tx_timeout_last_recovery = jiffies; 3743 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 3744 pf->tx_timeout_recovery_level, hung_queue); 3745 3746 switch (pf->tx_timeout_recovery_level) { 3747 case 1: 3748 set_bit(__ICE_PFR_REQ, pf->state); 3749 break; 3750 case 2: 3751 set_bit(__ICE_CORER_REQ, pf->state); 3752 break; 3753 case 3: 3754 set_bit(__ICE_GLOBR_REQ, pf->state); 3755 break; 3756 default: 3757 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 3758 set_bit(__ICE_DOWN, pf->state); 3759 set_bit(__ICE_NEEDS_RESTART, vsi->state); 3760 set_bit(__ICE_SERVICE_DIS, pf->state); 3761 break; 3762 } 3763 3764 ice_service_task_schedule(pf); 3765 pf->tx_timeout_recovery_level++; 3766 } 3767 3768 /** 3769 * ice_open - Called when a network interface becomes active 3770 * @netdev: network interface device structure 3771 * 3772 * The open entry point is called when a network interface is made 3773 * active by the system (IFF_UP). At this point all resources needed 3774 * for transmit and receive operations are allocated, the interrupt 3775 * handler is registered with the OS, the netdev watchdog is enabled, 3776 * and the stack is notified that the interface is ready. 3777 * 3778 * Returns 0 on success, negative value on failure 3779 */ 3780 static int ice_open(struct net_device *netdev) 3781 { 3782 struct ice_netdev_priv *np = netdev_priv(netdev); 3783 struct ice_vsi *vsi = np->vsi; 3784 int err; 3785 3786 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 3787 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 3788 return -EIO; 3789 } 3790 3791 netif_carrier_off(netdev); 3792 3793 err = ice_vsi_open(vsi); 3794 3795 if (err) 3796 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 3797 vsi->vsi_num, vsi->vsw->sw_id); 3798 return err; 3799 } 3800 3801 /** 3802 * ice_stop - Disables a network interface 3803 * @netdev: network interface device structure 3804 * 3805 * The stop entry point is called when an interface is de-activated by the OS, 3806 * and the netdevice enters the DOWN state. The hardware is still under the 3807 * driver's control, but the netdev interface is disabled. 3808 * 3809 * Returns success only - not allowed to fail 3810 */ 3811 static int ice_stop(struct net_device *netdev) 3812 { 3813 struct ice_netdev_priv *np = netdev_priv(netdev); 3814 struct ice_vsi *vsi = np->vsi; 3815 3816 ice_vsi_close(vsi); 3817 3818 return 0; 3819 } 3820 3821 /** 3822 * ice_features_check - Validate encapsulated packet conforms to limits 3823 * @skb: skb buffer 3824 * @netdev: This port's netdev 3825 * @features: Offload features that the stack believes apply 3826 */ 3827 static netdev_features_t 3828 ice_features_check(struct sk_buff *skb, 3829 struct net_device __always_unused *netdev, 3830 netdev_features_t features) 3831 { 3832 size_t len; 3833 3834 /* No point in doing any of this if neither checksum nor GSO are 3835 * being requested for this frame. We can rule out both by just 3836 * checking for CHECKSUM_PARTIAL 3837 */ 3838 if (skb->ip_summed != CHECKSUM_PARTIAL) 3839 return features; 3840 3841 /* We cannot support GSO if the MSS is going to be less than 3842 * 64 bytes. If it is then we need to drop support for GSO. 3843 */ 3844 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3845 features &= ~NETIF_F_GSO_MASK; 3846 3847 len = skb_network_header(skb) - skb->data; 3848 if (len & ~(ICE_TXD_MACLEN_MAX)) 3849 goto out_rm_features; 3850 3851 len = skb_transport_header(skb) - skb_network_header(skb); 3852 if (len & ~(ICE_TXD_IPLEN_MAX)) 3853 goto out_rm_features; 3854 3855 if (skb->encapsulation) { 3856 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3857 if (len & ~(ICE_TXD_L4LEN_MAX)) 3858 goto out_rm_features; 3859 3860 len = skb_inner_transport_header(skb) - 3861 skb_inner_network_header(skb); 3862 if (len & ~(ICE_TXD_IPLEN_MAX)) 3863 goto out_rm_features; 3864 } 3865 3866 return features; 3867 out_rm_features: 3868 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3869 } 3870 3871 static const struct net_device_ops ice_netdev_ops = { 3872 .ndo_open = ice_open, 3873 .ndo_stop = ice_stop, 3874 .ndo_start_xmit = ice_start_xmit, 3875 .ndo_features_check = ice_features_check, 3876 .ndo_set_rx_mode = ice_set_rx_mode, 3877 .ndo_set_mac_address = ice_set_mac_address, 3878 .ndo_validate_addr = eth_validate_addr, 3879 .ndo_change_mtu = ice_change_mtu, 3880 .ndo_get_stats64 = ice_get_stats64, 3881 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 3882 .ndo_set_vf_mac = ice_set_vf_mac, 3883 .ndo_get_vf_config = ice_get_vf_cfg, 3884 .ndo_set_vf_trust = ice_set_vf_trust, 3885 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 3886 .ndo_set_vf_link_state = ice_set_vf_link_state, 3887 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 3888 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 3889 .ndo_set_features = ice_set_features, 3890 .ndo_bridge_getlink = ice_bridge_getlink, 3891 .ndo_bridge_setlink = ice_bridge_setlink, 3892 .ndo_fdb_add = ice_fdb_add, 3893 .ndo_fdb_del = ice_fdb_del, 3894 .ndo_tx_timeout = ice_tx_timeout, 3895 }; 3896