1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 	if (status && status != -EEXIST)
271 		return status;
272 
273 	return 0;
274 }
275 
276 /**
277  * ice_clear_promisc - Disable promiscuous mode for a given PF
278  * @vsi: the VSI being configured
279  * @promisc_m: mask of promiscuous config bits
280  *
281  */
282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
283 {
284 	int status;
285 
286 	if (vsi->type != ICE_VSI_PF)
287 		return 0;
288 
289 	if (ice_vsi_has_non_zero_vlans(vsi)) {
290 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
291 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
292 							 promisc_m);
293 	} else {
294 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
295 						    promisc_m, 0);
296 	}
297 
298 	return status;
299 }
300 
301 /**
302  * ice_get_devlink_port - Get devlink port from netdev
303  * @netdev: the netdevice structure
304  */
305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
306 {
307 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
308 
309 	if (!ice_is_switchdev_running(pf))
310 		return NULL;
311 
312 	return &pf->devlink_port;
313 }
314 
315 /**
316  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
317  * @vsi: ptr to the VSI
318  *
319  * Push any outstanding VSI filter changes through the AdminQ.
320  */
321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
322 {
323 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
324 	struct device *dev = ice_pf_to_dev(vsi->back);
325 	struct net_device *netdev = vsi->netdev;
326 	bool promisc_forced_on = false;
327 	struct ice_pf *pf = vsi->back;
328 	struct ice_hw *hw = &pf->hw;
329 	u32 changed_flags = 0;
330 	int err;
331 
332 	if (!vsi->netdev)
333 		return -EINVAL;
334 
335 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
336 		usleep_range(1000, 2000);
337 
338 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
339 	vsi->current_netdev_flags = vsi->netdev->flags;
340 
341 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
342 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
343 
344 	if (ice_vsi_fltr_changed(vsi)) {
345 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
346 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
347 
348 		/* grab the netdev's addr_list_lock */
349 		netif_addr_lock_bh(netdev);
350 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
353 			      ice_add_mac_to_unsync_list);
354 		/* our temp lists are populated. release lock */
355 		netif_addr_unlock_bh(netdev);
356 	}
357 
358 	/* Remove MAC addresses in the unsync list */
359 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
360 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
361 	if (err) {
362 		netdev_err(netdev, "Failed to delete MAC filters\n");
363 		/* if we failed because of alloc failures, just bail */
364 		if (err == -ENOMEM)
365 			goto out;
366 	}
367 
368 	/* Add MAC addresses in the sync list */
369 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
370 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
371 	/* If filter is added successfully or already exists, do not go into
372 	 * 'if' condition and report it as error. Instead continue processing
373 	 * rest of the function.
374 	 */
375 	if (err && err != -EEXIST) {
376 		netdev_err(netdev, "Failed to add MAC filters\n");
377 		/* If there is no more space for new umac filters, VSI
378 		 * should go into promiscuous mode. There should be some
379 		 * space reserved for promiscuous filters.
380 		 */
381 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
382 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
383 				      vsi->state)) {
384 			promisc_forced_on = true;
385 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
386 				    vsi->vsi_num);
387 		} else {
388 			goto out;
389 		}
390 	}
391 	err = 0;
392 	/* check for changes in promiscuous modes */
393 	if (changed_flags & IFF_ALLMULTI) {
394 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
395 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
396 			if (err) {
397 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
398 				goto out_promisc;
399 			}
400 		} else {
401 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
402 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
403 			if (err) {
404 				vsi->current_netdev_flags |= IFF_ALLMULTI;
405 				goto out_promisc;
406 			}
407 		}
408 	}
409 
410 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
411 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
412 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
413 		if (vsi->current_netdev_flags & IFF_PROMISC) {
414 			/* Apply Rx filter rule to get traffic from wire */
415 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
416 				err = ice_set_dflt_vsi(vsi);
417 				if (err && err != -EEXIST) {
418 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
419 						   err, vsi->vsi_num);
420 					vsi->current_netdev_flags &=
421 						~IFF_PROMISC;
422 					goto out_promisc;
423 				}
424 				err = 0;
425 				vlan_ops->dis_rx_filtering(vsi);
426 			}
427 		} else {
428 			/* Clear Rx filter to remove traffic from wire */
429 			if (ice_is_vsi_dflt_vsi(vsi)) {
430 				err = ice_clear_dflt_vsi(vsi);
431 				if (err) {
432 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
433 						   err, vsi->vsi_num);
434 					vsi->current_netdev_flags |=
435 						IFF_PROMISC;
436 					goto out_promisc;
437 				}
438 				if (vsi->netdev->features &
439 				    NETIF_F_HW_VLAN_CTAG_FILTER)
440 					vlan_ops->ena_rx_filtering(vsi);
441 			}
442 		}
443 	}
444 	goto exit;
445 
446 out_promisc:
447 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
448 	goto exit;
449 out:
450 	/* if something went wrong then set the changed flag so we try again */
451 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
452 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
453 exit:
454 	clear_bit(ICE_CFG_BUSY, vsi->state);
455 	return err;
456 }
457 
458 /**
459  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
460  * @pf: board private structure
461  */
462 static void ice_sync_fltr_subtask(struct ice_pf *pf)
463 {
464 	int v;
465 
466 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
467 		return;
468 
469 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
470 
471 	ice_for_each_vsi(pf, v)
472 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
473 		    ice_vsi_sync_fltr(pf->vsi[v])) {
474 			/* come back and try again later */
475 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
476 			break;
477 		}
478 }
479 
480 /**
481  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
482  * @pf: the PF
483  * @locked: is the rtnl_lock already held
484  */
485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
486 {
487 	int node;
488 	int v;
489 
490 	ice_for_each_vsi(pf, v)
491 		if (pf->vsi[v])
492 			ice_dis_vsi(pf->vsi[v], locked);
493 
494 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
495 		pf->pf_agg_node[node].num_vsis = 0;
496 
497 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
498 		pf->vf_agg_node[node].num_vsis = 0;
499 }
500 
501 /**
502  * ice_clear_sw_switch_recipes - clear switch recipes
503  * @pf: board private structure
504  *
505  * Mark switch recipes as not created in sw structures. There are cases where
506  * rules (especially advanced rules) need to be restored, either re-read from
507  * hardware or added again. For example after the reset. 'recp_created' flag
508  * prevents from doing that and need to be cleared upfront.
509  */
510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
511 {
512 	struct ice_sw_recipe *recp;
513 	u8 i;
514 
515 	recp = pf->hw.switch_info->recp_list;
516 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
517 		recp[i].recp_created = false;
518 }
519 
520 /**
521  * ice_prepare_for_reset - prep for reset
522  * @pf: board private structure
523  * @reset_type: reset type requested
524  *
525  * Inform or close all dependent features in prep for reset.
526  */
527 static void
528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
529 {
530 	struct ice_hw *hw = &pf->hw;
531 	struct ice_vsi *vsi;
532 	struct ice_vf *vf;
533 	unsigned int bkt;
534 
535 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
536 
537 	/* already prepared for reset */
538 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
539 		return;
540 
541 	ice_unplug_aux_dev(pf);
542 
543 	/* Notify VFs of impending reset */
544 	if (ice_check_sq_alive(hw, &hw->mailboxq))
545 		ice_vc_notify_reset(pf);
546 
547 	/* Disable VFs until reset is completed */
548 	mutex_lock(&pf->vfs.table_lock);
549 	ice_for_each_vf(pf, bkt, vf)
550 		ice_set_vf_state_qs_dis(vf);
551 	mutex_unlock(&pf->vfs.table_lock);
552 
553 	if (ice_is_eswitch_mode_switchdev(pf)) {
554 		if (reset_type != ICE_RESET_PFR)
555 			ice_clear_sw_switch_recipes(pf);
556 	}
557 
558 	/* release ADQ specific HW and SW resources */
559 	vsi = ice_get_main_vsi(pf);
560 	if (!vsi)
561 		goto skip;
562 
563 	/* to be on safe side, reset orig_rss_size so that normal flow
564 	 * of deciding rss_size can take precedence
565 	 */
566 	vsi->orig_rss_size = 0;
567 
568 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
569 		if (reset_type == ICE_RESET_PFR) {
570 			vsi->old_ena_tc = vsi->all_enatc;
571 			vsi->old_numtc = vsi->all_numtc;
572 		} else {
573 			ice_remove_q_channels(vsi, true);
574 
575 			/* for other reset type, do not support channel rebuild
576 			 * hence reset needed info
577 			 */
578 			vsi->old_ena_tc = 0;
579 			vsi->all_enatc = 0;
580 			vsi->old_numtc = 0;
581 			vsi->all_numtc = 0;
582 			vsi->req_txq = 0;
583 			vsi->req_rxq = 0;
584 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
585 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
586 		}
587 	}
588 skip:
589 
590 	/* clear SW filtering DB */
591 	ice_clear_hw_tbls(hw);
592 	/* disable the VSIs and their queues that are not already DOWN */
593 	ice_pf_dis_all_vsi(pf, false);
594 
595 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
596 		ice_ptp_prepare_for_reset(pf);
597 
598 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
599 		ice_gnss_exit(pf);
600 
601 	if (hw->port_info)
602 		ice_sched_clear_port(hw->port_info);
603 
604 	ice_shutdown_all_ctrlq(hw);
605 
606 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
607 }
608 
609 /**
610  * ice_do_reset - Initiate one of many types of resets
611  * @pf: board private structure
612  * @reset_type: reset type requested before this function was called.
613  */
614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
615 {
616 	struct device *dev = ice_pf_to_dev(pf);
617 	struct ice_hw *hw = &pf->hw;
618 
619 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
620 
621 	ice_prepare_for_reset(pf, reset_type);
622 
623 	/* trigger the reset */
624 	if (ice_reset(hw, reset_type)) {
625 		dev_err(dev, "reset %d failed\n", reset_type);
626 		set_bit(ICE_RESET_FAILED, pf->state);
627 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
628 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
629 		clear_bit(ICE_PFR_REQ, pf->state);
630 		clear_bit(ICE_CORER_REQ, pf->state);
631 		clear_bit(ICE_GLOBR_REQ, pf->state);
632 		wake_up(&pf->reset_wait_queue);
633 		return;
634 	}
635 
636 	/* PFR is a bit of a special case because it doesn't result in an OICR
637 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
638 	 * associated state bits.
639 	 */
640 	if (reset_type == ICE_RESET_PFR) {
641 		pf->pfr_count++;
642 		ice_rebuild(pf, reset_type);
643 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
644 		clear_bit(ICE_PFR_REQ, pf->state);
645 		wake_up(&pf->reset_wait_queue);
646 		ice_reset_all_vfs(pf);
647 	}
648 }
649 
650 /**
651  * ice_reset_subtask - Set up for resetting the device and driver
652  * @pf: board private structure
653  */
654 static void ice_reset_subtask(struct ice_pf *pf)
655 {
656 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
657 
658 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
659 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
660 	 * of reset is pending and sets bits in pf->state indicating the reset
661 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
662 	 * prepare for pending reset if not already (for PF software-initiated
663 	 * global resets the software should already be prepared for it as
664 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
665 	 * by firmware or software on other PFs, that bit is not set so prepare
666 	 * for the reset now), poll for reset done, rebuild and return.
667 	 */
668 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
669 		/* Perform the largest reset requested */
670 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
671 			reset_type = ICE_RESET_CORER;
672 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
673 			reset_type = ICE_RESET_GLOBR;
674 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
675 			reset_type = ICE_RESET_EMPR;
676 		/* return if no valid reset type requested */
677 		if (reset_type == ICE_RESET_INVAL)
678 			return;
679 		ice_prepare_for_reset(pf, reset_type);
680 
681 		/* make sure we are ready to rebuild */
682 		if (ice_check_reset(&pf->hw)) {
683 			set_bit(ICE_RESET_FAILED, pf->state);
684 		} else {
685 			/* done with reset. start rebuild */
686 			pf->hw.reset_ongoing = false;
687 			ice_rebuild(pf, reset_type);
688 			/* clear bit to resume normal operations, but
689 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
690 			 */
691 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
692 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
693 			clear_bit(ICE_PFR_REQ, pf->state);
694 			clear_bit(ICE_CORER_REQ, pf->state);
695 			clear_bit(ICE_GLOBR_REQ, pf->state);
696 			wake_up(&pf->reset_wait_queue);
697 			ice_reset_all_vfs(pf);
698 		}
699 
700 		return;
701 	}
702 
703 	/* No pending resets to finish processing. Check for new resets */
704 	if (test_bit(ICE_PFR_REQ, pf->state))
705 		reset_type = ICE_RESET_PFR;
706 	if (test_bit(ICE_CORER_REQ, pf->state))
707 		reset_type = ICE_RESET_CORER;
708 	if (test_bit(ICE_GLOBR_REQ, pf->state))
709 		reset_type = ICE_RESET_GLOBR;
710 	/* If no valid reset type requested just return */
711 	if (reset_type == ICE_RESET_INVAL)
712 		return;
713 
714 	/* reset if not already down or busy */
715 	if (!test_bit(ICE_DOWN, pf->state) &&
716 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
717 		ice_do_reset(pf, reset_type);
718 	}
719 }
720 
721 /**
722  * ice_print_topo_conflict - print topology conflict message
723  * @vsi: the VSI whose topology status is being checked
724  */
725 static void ice_print_topo_conflict(struct ice_vsi *vsi)
726 {
727 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
728 	case ICE_AQ_LINK_TOPO_CONFLICT:
729 	case ICE_AQ_LINK_MEDIA_CONFLICT:
730 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
731 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
732 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
733 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
734 		break;
735 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
736 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
737 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
738 		else
739 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
740 		break;
741 	default:
742 		break;
743 	}
744 }
745 
746 /**
747  * ice_print_link_msg - print link up or down message
748  * @vsi: the VSI whose link status is being queried
749  * @isup: boolean for if the link is now up or down
750  */
751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
752 {
753 	struct ice_aqc_get_phy_caps_data *caps;
754 	const char *an_advertised;
755 	const char *fec_req;
756 	const char *speed;
757 	const char *fec;
758 	const char *fc;
759 	const char *an;
760 	int status;
761 
762 	if (!vsi)
763 		return;
764 
765 	if (vsi->current_isup == isup)
766 		return;
767 
768 	vsi->current_isup = isup;
769 
770 	if (!isup) {
771 		netdev_info(vsi->netdev, "NIC Link is Down\n");
772 		return;
773 	}
774 
775 	switch (vsi->port_info->phy.link_info.link_speed) {
776 	case ICE_AQ_LINK_SPEED_100GB:
777 		speed = "100 G";
778 		break;
779 	case ICE_AQ_LINK_SPEED_50GB:
780 		speed = "50 G";
781 		break;
782 	case ICE_AQ_LINK_SPEED_40GB:
783 		speed = "40 G";
784 		break;
785 	case ICE_AQ_LINK_SPEED_25GB:
786 		speed = "25 G";
787 		break;
788 	case ICE_AQ_LINK_SPEED_20GB:
789 		speed = "20 G";
790 		break;
791 	case ICE_AQ_LINK_SPEED_10GB:
792 		speed = "10 G";
793 		break;
794 	case ICE_AQ_LINK_SPEED_5GB:
795 		speed = "5 G";
796 		break;
797 	case ICE_AQ_LINK_SPEED_2500MB:
798 		speed = "2.5 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_1000MB:
801 		speed = "1 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_100MB:
804 		speed = "100 M";
805 		break;
806 	default:
807 		speed = "Unknown ";
808 		break;
809 	}
810 
811 	switch (vsi->port_info->fc.current_mode) {
812 	case ICE_FC_FULL:
813 		fc = "Rx/Tx";
814 		break;
815 	case ICE_FC_TX_PAUSE:
816 		fc = "Tx";
817 		break;
818 	case ICE_FC_RX_PAUSE:
819 		fc = "Rx";
820 		break;
821 	case ICE_FC_NONE:
822 		fc = "None";
823 		break;
824 	default:
825 		fc = "Unknown";
826 		break;
827 	}
828 
829 	/* Get FEC mode based on negotiated link info */
830 	switch (vsi->port_info->phy.link_info.fec_info) {
831 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
832 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
833 		fec = "RS-FEC";
834 		break;
835 	case ICE_AQ_LINK_25G_KR_FEC_EN:
836 		fec = "FC-FEC/BASE-R";
837 		break;
838 	default:
839 		fec = "NONE";
840 		break;
841 	}
842 
843 	/* check if autoneg completed, might be false due to not supported */
844 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
845 		an = "True";
846 	else
847 		an = "False";
848 
849 	/* Get FEC mode requested based on PHY caps last SW configuration */
850 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
851 	if (!caps) {
852 		fec_req = "Unknown";
853 		an_advertised = "Unknown";
854 		goto done;
855 	}
856 
857 	status = ice_aq_get_phy_caps(vsi->port_info, false,
858 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
859 	if (status)
860 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
861 
862 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
863 
864 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
865 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
866 		fec_req = "RS-FEC";
867 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
868 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
869 		fec_req = "FC-FEC/BASE-R";
870 	else
871 		fec_req = "NONE";
872 
873 	kfree(caps);
874 
875 done:
876 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
877 		    speed, fec_req, fec, an_advertised, an, fc);
878 	ice_print_topo_conflict(vsi);
879 }
880 
881 /**
882  * ice_vsi_link_event - update the VSI's netdev
883  * @vsi: the VSI on which the link event occurred
884  * @link_up: whether or not the VSI needs to be set up or down
885  */
886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
887 {
888 	if (!vsi)
889 		return;
890 
891 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
892 		return;
893 
894 	if (vsi->type == ICE_VSI_PF) {
895 		if (link_up == netif_carrier_ok(vsi->netdev))
896 			return;
897 
898 		if (link_up) {
899 			netif_carrier_on(vsi->netdev);
900 			netif_tx_wake_all_queues(vsi->netdev);
901 		} else {
902 			netif_carrier_off(vsi->netdev);
903 			netif_tx_stop_all_queues(vsi->netdev);
904 		}
905 	}
906 }
907 
908 /**
909  * ice_set_dflt_mib - send a default config MIB to the FW
910  * @pf: private PF struct
911  *
912  * This function sends a default configuration MIB to the FW.
913  *
914  * If this function errors out at any point, the driver is still able to
915  * function.  The main impact is that LFC may not operate as expected.
916  * Therefore an error state in this function should be treated with a DBG
917  * message and continue on with driver rebuild/reenable.
918  */
919 static void ice_set_dflt_mib(struct ice_pf *pf)
920 {
921 	struct device *dev = ice_pf_to_dev(pf);
922 	u8 mib_type, *buf, *lldpmib = NULL;
923 	u16 len, typelen, offset = 0;
924 	struct ice_lldp_org_tlv *tlv;
925 	struct ice_hw *hw = &pf->hw;
926 	u32 ouisubtype;
927 
928 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
929 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
930 	if (!lldpmib) {
931 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
932 			__func__);
933 		return;
934 	}
935 
936 	/* Add ETS CFG TLV */
937 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
938 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
939 		   ICE_IEEE_ETS_TLV_LEN);
940 	tlv->typelen = htons(typelen);
941 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
942 		      ICE_IEEE_SUBTYPE_ETS_CFG);
943 	tlv->ouisubtype = htonl(ouisubtype);
944 
945 	buf = tlv->tlvinfo;
946 	buf[0] = 0;
947 
948 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
949 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
950 	 * Octets 13 - 20 are TSA values - leave as zeros
951 	 */
952 	buf[5] = 0x64;
953 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
954 	offset += len + 2;
955 	tlv = (struct ice_lldp_org_tlv *)
956 		((char *)tlv + sizeof(tlv->typelen) + len);
957 
958 	/* Add ETS REC TLV */
959 	buf = tlv->tlvinfo;
960 	tlv->typelen = htons(typelen);
961 
962 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
963 		      ICE_IEEE_SUBTYPE_ETS_REC);
964 	tlv->ouisubtype = htonl(ouisubtype);
965 
966 	/* First octet of buf is reserved
967 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
968 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
969 	 * Octets 13 - 20 are TSA value - leave as zeros
970 	 */
971 	buf[5] = 0x64;
972 	offset += len + 2;
973 	tlv = (struct ice_lldp_org_tlv *)
974 		((char *)tlv + sizeof(tlv->typelen) + len);
975 
976 	/* Add PFC CFG TLV */
977 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
978 		   ICE_IEEE_PFC_TLV_LEN);
979 	tlv->typelen = htons(typelen);
980 
981 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
982 		      ICE_IEEE_SUBTYPE_PFC_CFG);
983 	tlv->ouisubtype = htonl(ouisubtype);
984 
985 	/* Octet 1 left as all zeros - PFC disabled */
986 	buf[0] = 0x08;
987 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
988 	offset += len + 2;
989 
990 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
991 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
992 
993 	kfree(lldpmib);
994 }
995 
996 /**
997  * ice_check_phy_fw_load - check if PHY FW load failed
998  * @pf: pointer to PF struct
999  * @link_cfg_err: bitmap from the link info structure
1000  *
1001  * check if external PHY FW load failed and print an error message if it did
1002  */
1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1004 {
1005 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1006 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 		return;
1008 	}
1009 
1010 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1011 		return;
1012 
1013 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1014 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1015 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1016 	}
1017 }
1018 
1019 /**
1020  * ice_check_module_power
1021  * @pf: pointer to PF struct
1022  * @link_cfg_err: bitmap from the link info structure
1023  *
1024  * check module power level returned by a previous call to aq_get_link_info
1025  * and print error messages if module power level is not supported
1026  */
1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	/* if module power level is supported, clear the flag */
1030 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1031 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1032 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1033 		return;
1034 	}
1035 
1036 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1037 	 * above block didn't clear this bit, there's nothing to do
1038 	 */
1039 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1040 		return;
1041 
1042 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1043 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1044 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1045 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1046 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1047 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1048 	}
1049 }
1050 
1051 /**
1052  * ice_check_link_cfg_err - check if link configuration failed
1053  * @pf: pointer to the PF struct
1054  * @link_cfg_err: bitmap from the link info structure
1055  *
1056  * print if any link configuration failure happens due to the value in the
1057  * link_cfg_err parameter in the link info structure
1058  */
1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1060 {
1061 	ice_check_module_power(pf, link_cfg_err);
1062 	ice_check_phy_fw_load(pf, link_cfg_err);
1063 }
1064 
1065 /**
1066  * ice_link_event - process the link event
1067  * @pf: PF that the link event is associated with
1068  * @pi: port_info for the port that the link event is associated with
1069  * @link_up: true if the physical link is up and false if it is down
1070  * @link_speed: current link speed received from the link event
1071  *
1072  * Returns 0 on success and negative on failure
1073  */
1074 static int
1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1076 	       u16 link_speed)
1077 {
1078 	struct device *dev = ice_pf_to_dev(pf);
1079 	struct ice_phy_info *phy_info;
1080 	struct ice_vsi *vsi;
1081 	u16 old_link_speed;
1082 	bool old_link;
1083 	int status;
1084 
1085 	phy_info = &pi->phy;
1086 	phy_info->link_info_old = phy_info->link_info;
1087 
1088 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1089 	old_link_speed = phy_info->link_info_old.link_speed;
1090 
1091 	/* update the link info structures and re-enable link events,
1092 	 * don't bail on failure due to other book keeping needed
1093 	 */
1094 	status = ice_update_link_info(pi);
1095 	if (status)
1096 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1097 			pi->lport, status,
1098 			ice_aq_str(pi->hw->adminq.sq_last_status));
1099 
1100 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1101 
1102 	/* Check if the link state is up after updating link info, and treat
1103 	 * this event as an UP event since the link is actually UP now.
1104 	 */
1105 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1106 		link_up = true;
1107 
1108 	vsi = ice_get_main_vsi(pf);
1109 	if (!vsi || !vsi->port_info)
1110 		return -EINVAL;
1111 
1112 	/* turn off PHY if media was removed */
1113 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1114 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1115 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1116 		ice_set_link(vsi, false);
1117 	}
1118 
1119 	/* if the old link up/down and speed is the same as the new */
1120 	if (link_up == old_link && link_speed == old_link_speed)
1121 		return 0;
1122 
1123 	if (!ice_is_e810(&pf->hw))
1124 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1125 
1126 	if (ice_is_dcb_active(pf)) {
1127 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1128 			ice_dcb_rebuild(pf);
1129 	} else {
1130 		if (link_up)
1131 			ice_set_dflt_mib(pf);
1132 	}
1133 	ice_vsi_link_event(vsi, link_up);
1134 	ice_print_link_msg(vsi, link_up);
1135 
1136 	ice_vc_notify_link_state(pf);
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1143  * @pf: board private structure
1144  */
1145 static void ice_watchdog_subtask(struct ice_pf *pf)
1146 {
1147 	int i;
1148 
1149 	/* if interface is down do nothing */
1150 	if (test_bit(ICE_DOWN, pf->state) ||
1151 	    test_bit(ICE_CFG_BUSY, pf->state))
1152 		return;
1153 
1154 	/* make sure we don't do these things too often */
1155 	if (time_before(jiffies,
1156 			pf->serv_tmr_prev + pf->serv_tmr_period))
1157 		return;
1158 
1159 	pf->serv_tmr_prev = jiffies;
1160 
1161 	/* Update the stats for active netdevs so the network stack
1162 	 * can look at updated numbers whenever it cares to
1163 	 */
1164 	ice_update_pf_stats(pf);
1165 	ice_for_each_vsi(pf, i)
1166 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1167 			ice_update_vsi_stats(pf->vsi[i]);
1168 }
1169 
1170 /**
1171  * ice_init_link_events - enable/initialize link events
1172  * @pi: pointer to the port_info instance
1173  *
1174  * Returns -EIO on failure, 0 on success
1175  */
1176 static int ice_init_link_events(struct ice_port_info *pi)
1177 {
1178 	u16 mask;
1179 
1180 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1181 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1182 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1183 
1184 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1185 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1186 			pi->lport);
1187 		return -EIO;
1188 	}
1189 
1190 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1191 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1192 			pi->lport);
1193 		return -EIO;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * ice_handle_link_event - handle link event via ARQ
1201  * @pf: PF that the link event is associated with
1202  * @event: event structure containing link status info
1203  */
1204 static int
1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1206 {
1207 	struct ice_aqc_get_link_status_data *link_data;
1208 	struct ice_port_info *port_info;
1209 	int status;
1210 
1211 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1212 	port_info = pf->hw.port_info;
1213 	if (!port_info)
1214 		return -EINVAL;
1215 
1216 	status = ice_link_event(pf, port_info,
1217 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1218 				le16_to_cpu(link_data->link_speed));
1219 	if (status)
1220 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1221 			status);
1222 
1223 	return status;
1224 }
1225 
1226 enum ice_aq_task_state {
1227 	ICE_AQ_TASK_WAITING = 0,
1228 	ICE_AQ_TASK_COMPLETE,
1229 	ICE_AQ_TASK_CANCELED,
1230 };
1231 
1232 struct ice_aq_task {
1233 	struct hlist_node entry;
1234 
1235 	u16 opcode;
1236 	struct ice_rq_event_info *event;
1237 	enum ice_aq_task_state state;
1238 };
1239 
1240 /**
1241  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1242  * @pf: pointer to the PF private structure
1243  * @opcode: the opcode to wait for
1244  * @timeout: how long to wait, in jiffies
1245  * @event: storage for the event info
1246  *
1247  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1248  * current thread will be put to sleep until the specified event occurs or
1249  * until the given timeout is reached.
1250  *
1251  * To obtain only the descriptor contents, pass an event without an allocated
1252  * msg_buf. If the complete data buffer is desired, allocate the
1253  * event->msg_buf with enough space ahead of time.
1254  *
1255  * Returns: zero on success, or a negative error code on failure.
1256  */
1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1258 			  struct ice_rq_event_info *event)
1259 {
1260 	struct device *dev = ice_pf_to_dev(pf);
1261 	struct ice_aq_task *task;
1262 	unsigned long start;
1263 	long ret;
1264 	int err;
1265 
1266 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1267 	if (!task)
1268 		return -ENOMEM;
1269 
1270 	INIT_HLIST_NODE(&task->entry);
1271 	task->opcode = opcode;
1272 	task->event = event;
1273 	task->state = ICE_AQ_TASK_WAITING;
1274 
1275 	spin_lock_bh(&pf->aq_wait_lock);
1276 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1277 	spin_unlock_bh(&pf->aq_wait_lock);
1278 
1279 	start = jiffies;
1280 
1281 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1282 					       timeout);
1283 	switch (task->state) {
1284 	case ICE_AQ_TASK_WAITING:
1285 		err = ret < 0 ? ret : -ETIMEDOUT;
1286 		break;
1287 	case ICE_AQ_TASK_CANCELED:
1288 		err = ret < 0 ? ret : -ECANCELED;
1289 		break;
1290 	case ICE_AQ_TASK_COMPLETE:
1291 		err = ret < 0 ? ret : 0;
1292 		break;
1293 	default:
1294 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1295 		err = -EINVAL;
1296 		break;
1297 	}
1298 
1299 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1300 		jiffies_to_msecs(jiffies - start),
1301 		jiffies_to_msecs(timeout),
1302 		opcode);
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_del(&task->entry);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 	kfree(task);
1308 
1309 	return err;
1310 }
1311 
1312 /**
1313  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1314  * @pf: pointer to the PF private structure
1315  * @opcode: the opcode of the event
1316  * @event: the event to check
1317  *
1318  * Loops over the current list of pending threads waiting for an AdminQ event.
1319  * For each matching task, copy the contents of the event into the task
1320  * structure and wake up the thread.
1321  *
1322  * If multiple threads wait for the same opcode, they will all be woken up.
1323  *
1324  * Note that event->msg_buf will only be duplicated if the event has a buffer
1325  * with enough space already allocated. Otherwise, only the descriptor and
1326  * message length will be copied.
1327  *
1328  * Returns: true if an event was found, false otherwise
1329  */
1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1331 				struct ice_rq_event_info *event)
1332 {
1333 	struct ice_aq_task *task;
1334 	bool found = false;
1335 
1336 	spin_lock_bh(&pf->aq_wait_lock);
1337 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1338 		if (task->state || task->opcode != opcode)
1339 			continue;
1340 
1341 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1342 		task->event->msg_len = event->msg_len;
1343 
1344 		/* Only copy the data buffer if a destination was set */
1345 		if (task->event->msg_buf &&
1346 		    task->event->buf_len > event->buf_len) {
1347 			memcpy(task->event->msg_buf, event->msg_buf,
1348 			       event->buf_len);
1349 			task->event->buf_len = event->buf_len;
1350 		}
1351 
1352 		task->state = ICE_AQ_TASK_COMPLETE;
1353 		found = true;
1354 	}
1355 	spin_unlock_bh(&pf->aq_wait_lock);
1356 
1357 	if (found)
1358 		wake_up(&pf->aq_wait_queue);
1359 }
1360 
1361 /**
1362  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1363  * @pf: the PF private structure
1364  *
1365  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1366  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1367  */
1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1369 {
1370 	struct ice_aq_task *task;
1371 
1372 	spin_lock_bh(&pf->aq_wait_lock);
1373 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1374 		task->state = ICE_AQ_TASK_CANCELED;
1375 	spin_unlock_bh(&pf->aq_wait_lock);
1376 
1377 	wake_up(&pf->aq_wait_queue);
1378 }
1379 
1380 /**
1381  * __ice_clean_ctrlq - helper function to clean controlq rings
1382  * @pf: ptr to struct ice_pf
1383  * @q_type: specific Control queue type
1384  */
1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1386 {
1387 	struct device *dev = ice_pf_to_dev(pf);
1388 	struct ice_rq_event_info event;
1389 	struct ice_hw *hw = &pf->hw;
1390 	struct ice_ctl_q_info *cq;
1391 	u16 pending, i = 0;
1392 	const char *qtype;
1393 	u32 oldval, val;
1394 
1395 	/* Do not clean control queue if/when PF reset fails */
1396 	if (test_bit(ICE_RESET_FAILED, pf->state))
1397 		return 0;
1398 
1399 	switch (q_type) {
1400 	case ICE_CTL_Q_ADMIN:
1401 		cq = &hw->adminq;
1402 		qtype = "Admin";
1403 		break;
1404 	case ICE_CTL_Q_SB:
1405 		cq = &hw->sbq;
1406 		qtype = "Sideband";
1407 		break;
1408 	case ICE_CTL_Q_MAILBOX:
1409 		cq = &hw->mailboxq;
1410 		qtype = "Mailbox";
1411 		/* we are going to try to detect a malicious VF, so set the
1412 		 * state to begin detection
1413 		 */
1414 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1415 		break;
1416 	default:
1417 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1418 		return 0;
1419 	}
1420 
1421 	/* check for error indications - PF_xx_AxQLEN register layout for
1422 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1423 	 */
1424 	val = rd32(hw, cq->rq.len);
1425 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1426 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1427 		oldval = val;
1428 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1429 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1430 				qtype);
1431 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1432 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1433 				qtype);
1434 		}
1435 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1436 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1437 				qtype);
1438 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1439 			 PF_FW_ARQLEN_ARQCRIT_M);
1440 		if (oldval != val)
1441 			wr32(hw, cq->rq.len, val);
1442 	}
1443 
1444 	val = rd32(hw, cq->sq.len);
1445 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1446 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1447 		oldval = val;
1448 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1449 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1450 				qtype);
1451 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1452 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1453 				qtype);
1454 		}
1455 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1456 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1457 				qtype);
1458 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1459 			 PF_FW_ATQLEN_ATQCRIT_M);
1460 		if (oldval != val)
1461 			wr32(hw, cq->sq.len, val);
1462 	}
1463 
1464 	event.buf_len = cq->rq_buf_size;
1465 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1466 	if (!event.msg_buf)
1467 		return 0;
1468 
1469 	do {
1470 		u16 opcode;
1471 		int ret;
1472 
1473 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1474 		if (ret == -EALREADY)
1475 			break;
1476 		if (ret) {
1477 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1478 				ret);
1479 			break;
1480 		}
1481 
1482 		opcode = le16_to_cpu(event.desc.opcode);
1483 
1484 		/* Notify any thread that might be waiting for this event */
1485 		ice_aq_check_events(pf, opcode, &event);
1486 
1487 		switch (opcode) {
1488 		case ice_aqc_opc_get_link_status:
1489 			if (ice_handle_link_event(pf, &event))
1490 				dev_err(dev, "Could not handle link event\n");
1491 			break;
1492 		case ice_aqc_opc_event_lan_overflow:
1493 			ice_vf_lan_overflow_event(pf, &event);
1494 			break;
1495 		case ice_mbx_opc_send_msg_to_pf:
1496 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1497 				ice_vc_process_vf_msg(pf, &event);
1498 			break;
1499 		case ice_aqc_opc_fw_logging:
1500 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1501 			break;
1502 		case ice_aqc_opc_lldp_set_mib_change:
1503 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1504 			break;
1505 		default:
1506 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1507 				qtype, opcode);
1508 			break;
1509 		}
1510 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1511 
1512 	kfree(event.msg_buf);
1513 
1514 	return pending && (i == ICE_DFLT_IRQ_WORK);
1515 }
1516 
1517 /**
1518  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1519  * @hw: pointer to hardware info
1520  * @cq: control queue information
1521  *
1522  * returns true if there are pending messages in a queue, false if there aren't
1523  */
1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1525 {
1526 	u16 ntu;
1527 
1528 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1529 	return cq->rq.next_to_clean != ntu;
1530 }
1531 
1532 /**
1533  * ice_clean_adminq_subtask - clean the AdminQ rings
1534  * @pf: board private structure
1535  */
1536 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1537 {
1538 	struct ice_hw *hw = &pf->hw;
1539 
1540 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1541 		return;
1542 
1543 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1544 		return;
1545 
1546 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1547 
1548 	/* There might be a situation where new messages arrive to a control
1549 	 * queue between processing the last message and clearing the
1550 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1551 	 * ice_ctrlq_pending) and process new messages if any.
1552 	 */
1553 	if (ice_ctrlq_pending(hw, &hw->adminq))
1554 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1555 
1556 	ice_flush(hw);
1557 }
1558 
1559 /**
1560  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1561  * @pf: board private structure
1562  */
1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1564 {
1565 	struct ice_hw *hw = &pf->hw;
1566 
1567 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1568 		return;
1569 
1570 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1571 		return;
1572 
1573 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1574 
1575 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1576 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1577 
1578 	ice_flush(hw);
1579 }
1580 
1581 /**
1582  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1583  * @pf: board private structure
1584  */
1585 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1586 {
1587 	struct ice_hw *hw = &pf->hw;
1588 
1589 	/* Nothing to do here if sideband queue is not supported */
1590 	if (!ice_is_sbq_supported(hw)) {
1591 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 		return;
1593 	}
1594 
1595 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1596 		return;
1597 
1598 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1599 		return;
1600 
1601 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1602 
1603 	if (ice_ctrlq_pending(hw, &hw->sbq))
1604 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1605 
1606 	ice_flush(hw);
1607 }
1608 
1609 /**
1610  * ice_service_task_schedule - schedule the service task to wake up
1611  * @pf: board private structure
1612  *
1613  * If not already scheduled, this puts the task into the work queue.
1614  */
1615 void ice_service_task_schedule(struct ice_pf *pf)
1616 {
1617 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1618 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1619 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1620 		queue_work(ice_wq, &pf->serv_task);
1621 }
1622 
1623 /**
1624  * ice_service_task_complete - finish up the service task
1625  * @pf: board private structure
1626  */
1627 static void ice_service_task_complete(struct ice_pf *pf)
1628 {
1629 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1630 
1631 	/* force memory (pf->state) to sync before next service task */
1632 	smp_mb__before_atomic();
1633 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1634 }
1635 
1636 /**
1637  * ice_service_task_stop - stop service task and cancel works
1638  * @pf: board private structure
1639  *
1640  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1641  * 1 otherwise.
1642  */
1643 static int ice_service_task_stop(struct ice_pf *pf)
1644 {
1645 	int ret;
1646 
1647 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1648 
1649 	if (pf->serv_tmr.function)
1650 		del_timer_sync(&pf->serv_tmr);
1651 	if (pf->serv_task.func)
1652 		cancel_work_sync(&pf->serv_task);
1653 
1654 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1655 	return ret;
1656 }
1657 
1658 /**
1659  * ice_service_task_restart - restart service task and schedule works
1660  * @pf: board private structure
1661  *
1662  * This function is needed for suspend and resume works (e.g WoL scenario)
1663  */
1664 static void ice_service_task_restart(struct ice_pf *pf)
1665 {
1666 	clear_bit(ICE_SERVICE_DIS, pf->state);
1667 	ice_service_task_schedule(pf);
1668 }
1669 
1670 /**
1671  * ice_service_timer - timer callback to schedule service task
1672  * @t: pointer to timer_list
1673  */
1674 static void ice_service_timer(struct timer_list *t)
1675 {
1676 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1677 
1678 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1679 	ice_service_task_schedule(pf);
1680 }
1681 
1682 /**
1683  * ice_handle_mdd_event - handle malicious driver detect event
1684  * @pf: pointer to the PF structure
1685  *
1686  * Called from service task. OICR interrupt handler indicates MDD event.
1687  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1688  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1689  * disable the queue, the PF can be configured to reset the VF using ethtool
1690  * private flag mdd-auto-reset-vf.
1691  */
1692 static void ice_handle_mdd_event(struct ice_pf *pf)
1693 {
1694 	struct device *dev = ice_pf_to_dev(pf);
1695 	struct ice_hw *hw = &pf->hw;
1696 	struct ice_vf *vf;
1697 	unsigned int bkt;
1698 	u32 reg;
1699 
1700 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1701 		/* Since the VF MDD event logging is rate limited, check if
1702 		 * there are pending MDD events.
1703 		 */
1704 		ice_print_vfs_mdd_events(pf);
1705 		return;
1706 	}
1707 
1708 	/* find what triggered an MDD event */
1709 	reg = rd32(hw, GL_MDET_TX_PQM);
1710 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1711 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1712 				GL_MDET_TX_PQM_PF_NUM_S;
1713 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1714 				GL_MDET_TX_PQM_VF_NUM_S;
1715 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1716 				GL_MDET_TX_PQM_MAL_TYPE_S;
1717 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1718 				GL_MDET_TX_PQM_QNUM_S);
1719 
1720 		if (netif_msg_tx_err(pf))
1721 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1722 				 event, queue, pf_num, vf_num);
1723 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1724 	}
1725 
1726 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1727 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1728 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_PF_NUM_S;
1730 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1731 				GL_MDET_TX_TCLAN_VF_NUM_S;
1732 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1733 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1734 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1735 				GL_MDET_TX_TCLAN_QNUM_S);
1736 
1737 		if (netif_msg_tx_err(pf))
1738 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1739 				 event, queue, pf_num, vf_num);
1740 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1741 	}
1742 
1743 	reg = rd32(hw, GL_MDET_RX);
1744 	if (reg & GL_MDET_RX_VALID_M) {
1745 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1746 				GL_MDET_RX_PF_NUM_S;
1747 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1748 				GL_MDET_RX_VF_NUM_S;
1749 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1750 				GL_MDET_RX_MAL_TYPE_S;
1751 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1752 				GL_MDET_RX_QNUM_S);
1753 
1754 		if (netif_msg_rx_err(pf))
1755 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1756 				 event, queue, pf_num, vf_num);
1757 		wr32(hw, GL_MDET_RX, 0xffffffff);
1758 	}
1759 
1760 	/* check to see if this PF caused an MDD event */
1761 	reg = rd32(hw, PF_MDET_TX_PQM);
1762 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1763 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1764 		if (netif_msg_tx_err(pf))
1765 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1766 	}
1767 
1768 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1769 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1770 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1771 		if (netif_msg_tx_err(pf))
1772 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1773 	}
1774 
1775 	reg = rd32(hw, PF_MDET_RX);
1776 	if (reg & PF_MDET_RX_VALID_M) {
1777 		wr32(hw, PF_MDET_RX, 0xFFFF);
1778 		if (netif_msg_rx_err(pf))
1779 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1780 	}
1781 
1782 	/* Check to see if one of the VFs caused an MDD event, and then
1783 	 * increment counters and set print pending
1784 	 */
1785 	mutex_lock(&pf->vfs.table_lock);
1786 	ice_for_each_vf(pf, bkt, vf) {
1787 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1788 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1789 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1790 			vf->mdd_tx_events.count++;
1791 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 			if (netif_msg_tx_err(pf))
1793 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1794 					 vf->vf_id);
1795 		}
1796 
1797 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1798 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1799 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1800 			vf->mdd_tx_events.count++;
1801 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 			if (netif_msg_tx_err(pf))
1803 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1804 					 vf->vf_id);
1805 		}
1806 
1807 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1808 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1809 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1810 			vf->mdd_tx_events.count++;
1811 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 			if (netif_msg_tx_err(pf))
1813 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1814 					 vf->vf_id);
1815 		}
1816 
1817 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1818 		if (reg & VP_MDET_RX_VALID_M) {
1819 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1820 			vf->mdd_rx_events.count++;
1821 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1822 			if (netif_msg_rx_err(pf))
1823 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1824 					 vf->vf_id);
1825 
1826 			/* Since the queue is disabled on VF Rx MDD events, the
1827 			 * PF can be configured to reset the VF through ethtool
1828 			 * private flag mdd-auto-reset-vf.
1829 			 */
1830 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1831 				/* VF MDD event counters will be cleared by
1832 				 * reset, so print the event prior to reset.
1833 				 */
1834 				ice_print_vf_rx_mdd_event(vf);
1835 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1836 			}
1837 		}
1838 	}
1839 	mutex_unlock(&pf->vfs.table_lock);
1840 
1841 	ice_print_vfs_mdd_events(pf);
1842 }
1843 
1844 /**
1845  * ice_force_phys_link_state - Force the physical link state
1846  * @vsi: VSI to force the physical link state to up/down
1847  * @link_up: true/false indicates to set the physical link to up/down
1848  *
1849  * Force the physical link state by getting the current PHY capabilities from
1850  * hardware and setting the PHY config based on the determined capabilities. If
1851  * link changes a link event will be triggered because both the Enable Automatic
1852  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1853  *
1854  * Returns 0 on success, negative on failure
1855  */
1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1857 {
1858 	struct ice_aqc_get_phy_caps_data *pcaps;
1859 	struct ice_aqc_set_phy_cfg_data *cfg;
1860 	struct ice_port_info *pi;
1861 	struct device *dev;
1862 	int retcode;
1863 
1864 	if (!vsi || !vsi->port_info || !vsi->back)
1865 		return -EINVAL;
1866 	if (vsi->type != ICE_VSI_PF)
1867 		return 0;
1868 
1869 	dev = ice_pf_to_dev(vsi->back);
1870 
1871 	pi = vsi->port_info;
1872 
1873 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1874 	if (!pcaps)
1875 		return -ENOMEM;
1876 
1877 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1878 				      NULL);
1879 	if (retcode) {
1880 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1881 			vsi->vsi_num, retcode);
1882 		retcode = -EIO;
1883 		goto out;
1884 	}
1885 
1886 	/* No change in link */
1887 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1888 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1889 		goto out;
1890 
1891 	/* Use the current user PHY configuration. The current user PHY
1892 	 * configuration is initialized during probe from PHY capabilities
1893 	 * software mode, and updated on set PHY configuration.
1894 	 */
1895 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1896 	if (!cfg) {
1897 		retcode = -ENOMEM;
1898 		goto out;
1899 	}
1900 
1901 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1902 	if (link_up)
1903 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1904 	else
1905 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1906 
1907 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1908 	if (retcode) {
1909 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1910 			vsi->vsi_num, retcode);
1911 		retcode = -EIO;
1912 	}
1913 
1914 	kfree(cfg);
1915 out:
1916 	kfree(pcaps);
1917 	return retcode;
1918 }
1919 
1920 /**
1921  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1922  * @pi: port info structure
1923  *
1924  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1925  */
1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1927 {
1928 	struct ice_aqc_get_phy_caps_data *pcaps;
1929 	struct ice_pf *pf = pi->hw->back;
1930 	int err;
1931 
1932 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1933 	if (!pcaps)
1934 		return -ENOMEM;
1935 
1936 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1937 				  pcaps, NULL);
1938 
1939 	if (err) {
1940 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1941 		goto out;
1942 	}
1943 
1944 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1945 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1946 
1947 out:
1948 	kfree(pcaps);
1949 	return err;
1950 }
1951 
1952 /**
1953  * ice_init_link_dflt_override - Initialize link default override
1954  * @pi: port info structure
1955  *
1956  * Initialize link default override and PHY total port shutdown during probe
1957  */
1958 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1959 {
1960 	struct ice_link_default_override_tlv *ldo;
1961 	struct ice_pf *pf = pi->hw->back;
1962 
1963 	ldo = &pf->link_dflt_override;
1964 	if (ice_get_link_default_override(ldo, pi))
1965 		return;
1966 
1967 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1968 		return;
1969 
1970 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1971 	 * ethtool private flag) for ports with Port Disable bit set.
1972 	 */
1973 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1974 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1975 }
1976 
1977 /**
1978  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1979  * @pi: port info structure
1980  *
1981  * If default override is enabled, initialize the user PHY cfg speed and FEC
1982  * settings using the default override mask from the NVM.
1983  *
1984  * The PHY should only be configured with the default override settings the
1985  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1986  * is used to indicate that the user PHY cfg default override is initialized
1987  * and the PHY has not been configured with the default override settings. The
1988  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1989  * configured.
1990  *
1991  * This function should be called only if the FW doesn't support default
1992  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1993  */
1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1995 {
1996 	struct ice_link_default_override_tlv *ldo;
1997 	struct ice_aqc_set_phy_cfg_data *cfg;
1998 	struct ice_phy_info *phy = &pi->phy;
1999 	struct ice_pf *pf = pi->hw->back;
2000 
2001 	ldo = &pf->link_dflt_override;
2002 
2003 	/* If link default override is enabled, use to mask NVM PHY capabilities
2004 	 * for speed and FEC default configuration.
2005 	 */
2006 	cfg = &phy->curr_user_phy_cfg;
2007 
2008 	if (ldo->phy_type_low || ldo->phy_type_high) {
2009 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2010 				    cpu_to_le64(ldo->phy_type_low);
2011 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2012 				     cpu_to_le64(ldo->phy_type_high);
2013 	}
2014 	cfg->link_fec_opt = ldo->fec_options;
2015 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2016 
2017 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2018 }
2019 
2020 /**
2021  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2022  * @pi: port info structure
2023  *
2024  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2025  * mode to default. The PHY defaults are from get PHY capabilities topology
2026  * with media so call when media is first available. An error is returned if
2027  * called when media is not available. The PHY initialization completed state is
2028  * set here.
2029  *
2030  * These configurations are used when setting PHY
2031  * configuration. The user PHY configuration is updated on set PHY
2032  * configuration. Returns 0 on success, negative on failure
2033  */
2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2035 {
2036 	struct ice_aqc_get_phy_caps_data *pcaps;
2037 	struct ice_phy_info *phy = &pi->phy;
2038 	struct ice_pf *pf = pi->hw->back;
2039 	int err;
2040 
2041 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2042 		return -EIO;
2043 
2044 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2045 	if (!pcaps)
2046 		return -ENOMEM;
2047 
2048 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2049 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2050 					  pcaps, NULL);
2051 	else
2052 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2053 					  pcaps, NULL);
2054 	if (err) {
2055 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2056 		goto err_out;
2057 	}
2058 
2059 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2060 
2061 	/* check if lenient mode is supported and enabled */
2062 	if (ice_fw_supports_link_override(pi->hw) &&
2063 	    !(pcaps->module_compliance_enforcement &
2064 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2065 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2066 
2067 		/* if the FW supports default PHY configuration mode, then the driver
2068 		 * does not have to apply link override settings. If not,
2069 		 * initialize user PHY configuration with link override values
2070 		 */
2071 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2072 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2073 			ice_init_phy_cfg_dflt_override(pi);
2074 			goto out;
2075 		}
2076 	}
2077 
2078 	/* if link default override is not enabled, set user flow control and
2079 	 * FEC settings based on what get_phy_caps returned
2080 	 */
2081 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2082 						      pcaps->link_fec_options);
2083 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2084 
2085 out:
2086 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2087 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2088 err_out:
2089 	kfree(pcaps);
2090 	return err;
2091 }
2092 
2093 /**
2094  * ice_configure_phy - configure PHY
2095  * @vsi: VSI of PHY
2096  *
2097  * Set the PHY configuration. If the current PHY configuration is the same as
2098  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2099  * configure the based get PHY capabilities for topology with media.
2100  */
2101 static int ice_configure_phy(struct ice_vsi *vsi)
2102 {
2103 	struct device *dev = ice_pf_to_dev(vsi->back);
2104 	struct ice_port_info *pi = vsi->port_info;
2105 	struct ice_aqc_get_phy_caps_data *pcaps;
2106 	struct ice_aqc_set_phy_cfg_data *cfg;
2107 	struct ice_phy_info *phy = &pi->phy;
2108 	struct ice_pf *pf = vsi->back;
2109 	int err;
2110 
2111 	/* Ensure we have media as we cannot configure a medialess port */
2112 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2113 		return -EPERM;
2114 
2115 	ice_print_topo_conflict(vsi);
2116 
2117 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2118 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2119 		return -EPERM;
2120 
2121 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2122 		return ice_force_phys_link_state(vsi, true);
2123 
2124 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2125 	if (!pcaps)
2126 		return -ENOMEM;
2127 
2128 	/* Get current PHY config */
2129 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2130 				  NULL);
2131 	if (err) {
2132 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2133 			vsi->vsi_num, err);
2134 		goto done;
2135 	}
2136 
2137 	/* If PHY enable link is configured and configuration has not changed,
2138 	 * there's nothing to do
2139 	 */
2140 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2141 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2142 		goto done;
2143 
2144 	/* Use PHY topology as baseline for configuration */
2145 	memset(pcaps, 0, sizeof(*pcaps));
2146 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2147 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2148 					  pcaps, NULL);
2149 	else
2150 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2151 					  pcaps, NULL);
2152 	if (err) {
2153 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2154 			vsi->vsi_num, err);
2155 		goto done;
2156 	}
2157 
2158 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2159 	if (!cfg) {
2160 		err = -ENOMEM;
2161 		goto done;
2162 	}
2163 
2164 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2165 
2166 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2167 	 * ice_init_phy_user_cfg_ldo.
2168 	 */
2169 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2170 			       vsi->back->state)) {
2171 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2172 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2173 	} else {
2174 		u64 phy_low = 0, phy_high = 0;
2175 
2176 		ice_update_phy_type(&phy_low, &phy_high,
2177 				    pi->phy.curr_user_speed_req);
2178 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2179 		cfg->phy_type_high = pcaps->phy_type_high &
2180 				     cpu_to_le64(phy_high);
2181 	}
2182 
2183 	/* Can't provide what was requested; use PHY capabilities */
2184 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2185 		cfg->phy_type_low = pcaps->phy_type_low;
2186 		cfg->phy_type_high = pcaps->phy_type_high;
2187 	}
2188 
2189 	/* FEC */
2190 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2191 
2192 	/* Can't provide what was requested; use PHY capabilities */
2193 	if (cfg->link_fec_opt !=
2194 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2195 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2196 		cfg->link_fec_opt = pcaps->link_fec_options;
2197 	}
2198 
2199 	/* Flow Control - always supported; no need to check against
2200 	 * capabilities
2201 	 */
2202 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2203 
2204 	/* Enable link and link update */
2205 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2206 
2207 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2208 	if (err)
2209 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2210 			vsi->vsi_num, err);
2211 
2212 	kfree(cfg);
2213 done:
2214 	kfree(pcaps);
2215 	return err;
2216 }
2217 
2218 /**
2219  * ice_check_media_subtask - Check for media
2220  * @pf: pointer to PF struct
2221  *
2222  * If media is available, then initialize PHY user configuration if it is not
2223  * been, and configure the PHY if the interface is up.
2224  */
2225 static void ice_check_media_subtask(struct ice_pf *pf)
2226 {
2227 	struct ice_port_info *pi;
2228 	struct ice_vsi *vsi;
2229 	int err;
2230 
2231 	/* No need to check for media if it's already present */
2232 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2233 		return;
2234 
2235 	vsi = ice_get_main_vsi(pf);
2236 	if (!vsi)
2237 		return;
2238 
2239 	/* Refresh link info and check if media is present */
2240 	pi = vsi->port_info;
2241 	err = ice_update_link_info(pi);
2242 	if (err)
2243 		return;
2244 
2245 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2246 
2247 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2248 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2249 			ice_init_phy_user_cfg(pi);
2250 
2251 		/* PHY settings are reset on media insertion, reconfigure
2252 		 * PHY to preserve settings.
2253 		 */
2254 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2255 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2256 			return;
2257 
2258 		err = ice_configure_phy(vsi);
2259 		if (!err)
2260 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2261 
2262 		/* A Link Status Event will be generated; the event handler
2263 		 * will complete bringing the interface up
2264 		 */
2265 	}
2266 }
2267 
2268 /**
2269  * ice_service_task - manage and run subtasks
2270  * @work: pointer to work_struct contained by the PF struct
2271  */
2272 static void ice_service_task(struct work_struct *work)
2273 {
2274 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2275 	unsigned long start_time = jiffies;
2276 
2277 	/* subtasks */
2278 
2279 	/* process reset requests first */
2280 	ice_reset_subtask(pf);
2281 
2282 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2283 	if (ice_is_reset_in_progress(pf->state) ||
2284 	    test_bit(ICE_SUSPENDED, pf->state) ||
2285 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2286 		ice_service_task_complete(pf);
2287 		return;
2288 	}
2289 
2290 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2291 		struct iidc_event *event;
2292 
2293 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2294 		if (event) {
2295 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2296 			/* report the entire OICR value to AUX driver */
2297 			swap(event->reg, pf->oicr_err_reg);
2298 			ice_send_event_to_aux(pf, event);
2299 			kfree(event);
2300 		}
2301 	}
2302 
2303 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2304 		/* Plug aux device per request */
2305 		ice_plug_aux_dev(pf);
2306 
2307 		/* Mark plugging as done but check whether unplug was
2308 		 * requested during ice_plug_aux_dev() call
2309 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2310 		 * plug aux device.
2311 		 */
2312 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2313 			ice_unplug_aux_dev(pf);
2314 	}
2315 
2316 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2317 		struct iidc_event *event;
2318 
2319 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2320 		if (event) {
2321 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2322 			ice_send_event_to_aux(pf, event);
2323 			kfree(event);
2324 		}
2325 	}
2326 
2327 	ice_clean_adminq_subtask(pf);
2328 	ice_check_media_subtask(pf);
2329 	ice_check_for_hang_subtask(pf);
2330 	ice_sync_fltr_subtask(pf);
2331 	ice_handle_mdd_event(pf);
2332 	ice_watchdog_subtask(pf);
2333 
2334 	if (ice_is_safe_mode(pf)) {
2335 		ice_service_task_complete(pf);
2336 		return;
2337 	}
2338 
2339 	ice_process_vflr_event(pf);
2340 	ice_clean_mailboxq_subtask(pf);
2341 	ice_clean_sbq_subtask(pf);
2342 	ice_sync_arfs_fltrs(pf);
2343 	ice_flush_fdir_ctx(pf);
2344 
2345 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2346 	ice_service_task_complete(pf);
2347 
2348 	/* If the tasks have taken longer than one service timer period
2349 	 * or there is more work to be done, reset the service timer to
2350 	 * schedule the service task now.
2351 	 */
2352 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2353 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2355 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2357 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2358 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2359 		mod_timer(&pf->serv_tmr, jiffies);
2360 }
2361 
2362 /**
2363  * ice_set_ctrlq_len - helper function to set controlq length
2364  * @hw: pointer to the HW instance
2365  */
2366 static void ice_set_ctrlq_len(struct ice_hw *hw)
2367 {
2368 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2369 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2370 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2371 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2372 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2373 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2374 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2375 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2376 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2377 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2378 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2379 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2380 }
2381 
2382 /**
2383  * ice_schedule_reset - schedule a reset
2384  * @pf: board private structure
2385  * @reset: reset being requested
2386  */
2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2388 {
2389 	struct device *dev = ice_pf_to_dev(pf);
2390 
2391 	/* bail out if earlier reset has failed */
2392 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2393 		dev_dbg(dev, "earlier reset has failed\n");
2394 		return -EIO;
2395 	}
2396 	/* bail if reset/recovery already in progress */
2397 	if (ice_is_reset_in_progress(pf->state)) {
2398 		dev_dbg(dev, "Reset already in progress\n");
2399 		return -EBUSY;
2400 	}
2401 
2402 	ice_unplug_aux_dev(pf);
2403 
2404 	switch (reset) {
2405 	case ICE_RESET_PFR:
2406 		set_bit(ICE_PFR_REQ, pf->state);
2407 		break;
2408 	case ICE_RESET_CORER:
2409 		set_bit(ICE_CORER_REQ, pf->state);
2410 		break;
2411 	case ICE_RESET_GLOBR:
2412 		set_bit(ICE_GLOBR_REQ, pf->state);
2413 		break;
2414 	default:
2415 		return -EINVAL;
2416 	}
2417 
2418 	ice_service_task_schedule(pf);
2419 	return 0;
2420 }
2421 
2422 /**
2423  * ice_irq_affinity_notify - Callback for affinity changes
2424  * @notify: context as to what irq was changed
2425  * @mask: the new affinity mask
2426  *
2427  * This is a callback function used by the irq_set_affinity_notifier function
2428  * so that we may register to receive changes to the irq affinity masks.
2429  */
2430 static void
2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2432 			const cpumask_t *mask)
2433 {
2434 	struct ice_q_vector *q_vector =
2435 		container_of(notify, struct ice_q_vector, affinity_notify);
2436 
2437 	cpumask_copy(&q_vector->affinity_mask, mask);
2438 }
2439 
2440 /**
2441  * ice_irq_affinity_release - Callback for affinity notifier release
2442  * @ref: internal core kernel usage
2443  *
2444  * This is a callback function used by the irq_set_affinity_notifier function
2445  * to inform the current notification subscriber that they will no longer
2446  * receive notifications.
2447  */
2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2449 
2450 /**
2451  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2452  * @vsi: the VSI being configured
2453  */
2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2455 {
2456 	struct ice_hw *hw = &vsi->back->hw;
2457 	int i;
2458 
2459 	ice_for_each_q_vector(vsi, i)
2460 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2461 
2462 	ice_flush(hw);
2463 	return 0;
2464 }
2465 
2466 /**
2467  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2468  * @vsi: the VSI being configured
2469  * @basename: name for the vector
2470  */
2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2472 {
2473 	int q_vectors = vsi->num_q_vectors;
2474 	struct ice_pf *pf = vsi->back;
2475 	int base = vsi->base_vector;
2476 	struct device *dev;
2477 	int rx_int_idx = 0;
2478 	int tx_int_idx = 0;
2479 	int vector, err;
2480 	int irq_num;
2481 
2482 	dev = ice_pf_to_dev(pf);
2483 	for (vector = 0; vector < q_vectors; vector++) {
2484 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2485 
2486 		irq_num = pf->msix_entries[base + vector].vector;
2487 
2488 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2489 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2490 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2491 			tx_int_idx++;
2492 		} else if (q_vector->rx.rx_ring) {
2493 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2494 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2495 		} else if (q_vector->tx.tx_ring) {
2496 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2497 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2498 		} else {
2499 			/* skip this unused q_vector */
2500 			continue;
2501 		}
2502 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2503 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2504 					       IRQF_SHARED, q_vector->name,
2505 					       q_vector);
2506 		else
2507 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2508 					       0, q_vector->name, q_vector);
2509 		if (err) {
2510 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2511 				   err);
2512 			goto free_q_irqs;
2513 		}
2514 
2515 		/* register for affinity change notifications */
2516 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2517 			struct irq_affinity_notify *affinity_notify;
2518 
2519 			affinity_notify = &q_vector->affinity_notify;
2520 			affinity_notify->notify = ice_irq_affinity_notify;
2521 			affinity_notify->release = ice_irq_affinity_release;
2522 			irq_set_affinity_notifier(irq_num, affinity_notify);
2523 		}
2524 
2525 		/* assign the mask for this irq */
2526 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2527 	}
2528 
2529 	err = ice_set_cpu_rx_rmap(vsi);
2530 	if (err) {
2531 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2532 			   vsi->vsi_num, ERR_PTR(err));
2533 		goto free_q_irqs;
2534 	}
2535 
2536 	vsi->irqs_ready = true;
2537 	return 0;
2538 
2539 free_q_irqs:
2540 	while (vector) {
2541 		vector--;
2542 		irq_num = pf->msix_entries[base + vector].vector;
2543 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2544 			irq_set_affinity_notifier(irq_num, NULL);
2545 		irq_set_affinity_hint(irq_num, NULL);
2546 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2547 	}
2548 	return err;
2549 }
2550 
2551 /**
2552  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2553  * @vsi: VSI to setup Tx rings used by XDP
2554  *
2555  * Return 0 on success and negative value on error
2556  */
2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2558 {
2559 	struct device *dev = ice_pf_to_dev(vsi->back);
2560 	struct ice_tx_desc *tx_desc;
2561 	int i, j;
2562 
2563 	ice_for_each_xdp_txq(vsi, i) {
2564 		u16 xdp_q_idx = vsi->alloc_txq + i;
2565 		struct ice_tx_ring *xdp_ring;
2566 
2567 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2568 
2569 		if (!xdp_ring)
2570 			goto free_xdp_rings;
2571 
2572 		xdp_ring->q_index = xdp_q_idx;
2573 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2574 		xdp_ring->vsi = vsi;
2575 		xdp_ring->netdev = NULL;
2576 		xdp_ring->dev = dev;
2577 		xdp_ring->count = vsi->num_tx_desc;
2578 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2579 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2580 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2581 		if (ice_setup_tx_ring(xdp_ring))
2582 			goto free_xdp_rings;
2583 		ice_set_ring_xdp(xdp_ring);
2584 		spin_lock_init(&xdp_ring->tx_lock);
2585 		for (j = 0; j < xdp_ring->count; j++) {
2586 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2587 			tx_desc->cmd_type_offset_bsz = 0;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 
2593 free_xdp_rings:
2594 	for (; i >= 0; i--)
2595 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2596 			ice_free_tx_ring(vsi->xdp_rings[i]);
2597 	return -ENOMEM;
2598 }
2599 
2600 /**
2601  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2602  * @vsi: VSI to set the bpf prog on
2603  * @prog: the bpf prog pointer
2604  */
2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2606 {
2607 	struct bpf_prog *old_prog;
2608 	int i;
2609 
2610 	old_prog = xchg(&vsi->xdp_prog, prog);
2611 	if (old_prog)
2612 		bpf_prog_put(old_prog);
2613 
2614 	ice_for_each_rxq(vsi, i)
2615 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2616 }
2617 
2618 /**
2619  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2620  * @vsi: VSI to bring up Tx rings used by XDP
2621  * @prog: bpf program that will be assigned to VSI
2622  *
2623  * Return 0 on success and negative value on error
2624  */
2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2626 {
2627 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2628 	int xdp_rings_rem = vsi->num_xdp_txq;
2629 	struct ice_pf *pf = vsi->back;
2630 	struct ice_qs_cfg xdp_qs_cfg = {
2631 		.qs_mutex = &pf->avail_q_mutex,
2632 		.pf_map = pf->avail_txqs,
2633 		.pf_map_size = pf->max_pf_txqs,
2634 		.q_count = vsi->num_xdp_txq,
2635 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2636 		.vsi_map = vsi->txq_map,
2637 		.vsi_map_offset = vsi->alloc_txq,
2638 		.mapping_mode = ICE_VSI_MAP_CONTIG
2639 	};
2640 	struct device *dev;
2641 	int i, v_idx;
2642 	int status;
2643 
2644 	dev = ice_pf_to_dev(pf);
2645 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2646 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2647 	if (!vsi->xdp_rings)
2648 		return -ENOMEM;
2649 
2650 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2651 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2652 		goto err_map_xdp;
2653 
2654 	if (static_key_enabled(&ice_xdp_locking_key))
2655 		netdev_warn(vsi->netdev,
2656 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2657 
2658 	if (ice_xdp_alloc_setup_rings(vsi))
2659 		goto clear_xdp_rings;
2660 
2661 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2662 	ice_for_each_q_vector(vsi, v_idx) {
2663 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2664 		int xdp_rings_per_v, q_id, q_base;
2665 
2666 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2667 					       vsi->num_q_vectors - v_idx);
2668 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2669 
2670 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2671 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2672 
2673 			xdp_ring->q_vector = q_vector;
2674 			xdp_ring->next = q_vector->tx.tx_ring;
2675 			q_vector->tx.tx_ring = xdp_ring;
2676 		}
2677 		xdp_rings_rem -= xdp_rings_per_v;
2678 	}
2679 
2680 	ice_for_each_rxq(vsi, i) {
2681 		if (static_key_enabled(&ice_xdp_locking_key)) {
2682 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2683 		} else {
2684 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2685 			struct ice_tx_ring *ring;
2686 
2687 			ice_for_each_tx_ring(ring, q_vector->tx) {
2688 				if (ice_ring_is_xdp(ring)) {
2689 					vsi->rx_rings[i]->xdp_ring = ring;
2690 					break;
2691 				}
2692 			}
2693 		}
2694 		ice_tx_xsk_pool(vsi, i);
2695 	}
2696 
2697 	/* omit the scheduler update if in reset path; XDP queues will be
2698 	 * taken into account at the end of ice_vsi_rebuild, where
2699 	 * ice_cfg_vsi_lan is being called
2700 	 */
2701 	if (ice_is_reset_in_progress(pf->state))
2702 		return 0;
2703 
2704 	/* tell the Tx scheduler that right now we have
2705 	 * additional queues
2706 	 */
2707 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2708 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2709 
2710 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2711 				 max_txqs);
2712 	if (status) {
2713 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2714 			status);
2715 		goto clear_xdp_rings;
2716 	}
2717 
2718 	/* assign the prog only when it's not already present on VSI;
2719 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2720 	 * VSI rebuild that happens under ethtool -L can expose us to
2721 	 * the bpf_prog refcount issues as we would be swapping same
2722 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2723 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2724 	 * this is not harmful as dev_xdp_install bumps the refcount
2725 	 * before calling the op exposed by the driver;
2726 	 */
2727 	if (!ice_is_xdp_ena_vsi(vsi))
2728 		ice_vsi_assign_bpf_prog(vsi, prog);
2729 
2730 	return 0;
2731 clear_xdp_rings:
2732 	ice_for_each_xdp_txq(vsi, i)
2733 		if (vsi->xdp_rings[i]) {
2734 			kfree_rcu(vsi->xdp_rings[i], rcu);
2735 			vsi->xdp_rings[i] = NULL;
2736 		}
2737 
2738 err_map_xdp:
2739 	mutex_lock(&pf->avail_q_mutex);
2740 	ice_for_each_xdp_txq(vsi, i) {
2741 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2742 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2743 	}
2744 	mutex_unlock(&pf->avail_q_mutex);
2745 
2746 	devm_kfree(dev, vsi->xdp_rings);
2747 	return -ENOMEM;
2748 }
2749 
2750 /**
2751  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2752  * @vsi: VSI to remove XDP rings
2753  *
2754  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2755  * resources
2756  */
2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2758 {
2759 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2760 	struct ice_pf *pf = vsi->back;
2761 	int i, v_idx;
2762 
2763 	/* q_vectors are freed in reset path so there's no point in detaching
2764 	 * rings; in case of rebuild being triggered not from reset bits
2765 	 * in pf->state won't be set, so additionally check first q_vector
2766 	 * against NULL
2767 	 */
2768 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2769 		goto free_qmap;
2770 
2771 	ice_for_each_q_vector(vsi, v_idx) {
2772 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2773 		struct ice_tx_ring *ring;
2774 
2775 		ice_for_each_tx_ring(ring, q_vector->tx)
2776 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2777 				break;
2778 
2779 		/* restore the value of last node prior to XDP setup */
2780 		q_vector->tx.tx_ring = ring;
2781 	}
2782 
2783 free_qmap:
2784 	mutex_lock(&pf->avail_q_mutex);
2785 	ice_for_each_xdp_txq(vsi, i) {
2786 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2787 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2788 	}
2789 	mutex_unlock(&pf->avail_q_mutex);
2790 
2791 	ice_for_each_xdp_txq(vsi, i)
2792 		if (vsi->xdp_rings[i]) {
2793 			if (vsi->xdp_rings[i]->desc) {
2794 				synchronize_rcu();
2795 				ice_free_tx_ring(vsi->xdp_rings[i]);
2796 			}
2797 			kfree_rcu(vsi->xdp_rings[i], rcu);
2798 			vsi->xdp_rings[i] = NULL;
2799 		}
2800 
2801 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2802 	vsi->xdp_rings = NULL;
2803 
2804 	if (static_key_enabled(&ice_xdp_locking_key))
2805 		static_branch_dec(&ice_xdp_locking_key);
2806 
2807 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2808 		return 0;
2809 
2810 	ice_vsi_assign_bpf_prog(vsi, NULL);
2811 
2812 	/* notify Tx scheduler that we destroyed XDP queues and bring
2813 	 * back the old number of child nodes
2814 	 */
2815 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2816 		max_txqs[i] = vsi->num_txq;
2817 
2818 	/* change number of XDP Tx queues to 0 */
2819 	vsi->num_xdp_txq = 0;
2820 
2821 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2822 			       max_txqs);
2823 }
2824 
2825 /**
2826  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2827  * @vsi: VSI to schedule napi on
2828  */
2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2830 {
2831 	int i;
2832 
2833 	ice_for_each_rxq(vsi, i) {
2834 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2835 
2836 		if (rx_ring->xsk_pool)
2837 			napi_schedule(&rx_ring->q_vector->napi);
2838 	}
2839 }
2840 
2841 /**
2842  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2843  * @vsi: VSI to determine the count of XDP Tx qs
2844  *
2845  * returns 0 if Tx qs count is higher than at least half of CPU count,
2846  * -ENOMEM otherwise
2847  */
2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2849 {
2850 	u16 avail = ice_get_avail_txq_count(vsi->back);
2851 	u16 cpus = num_possible_cpus();
2852 
2853 	if (avail < cpus / 2)
2854 		return -ENOMEM;
2855 
2856 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2857 
2858 	if (vsi->num_xdp_txq < cpus)
2859 		static_branch_inc(&ice_xdp_locking_key);
2860 
2861 	return 0;
2862 }
2863 
2864 /**
2865  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2866  * @vsi: VSI to setup XDP for
2867  * @prog: XDP program
2868  * @extack: netlink extended ack
2869  */
2870 static int
2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2872 		   struct netlink_ext_ack *extack)
2873 {
2874 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2875 	bool if_running = netif_running(vsi->netdev);
2876 	int ret = 0, xdp_ring_err = 0;
2877 
2878 	if (frame_size > vsi->rx_buf_len) {
2879 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2880 		return -EOPNOTSUPP;
2881 	}
2882 
2883 	/* need to stop netdev while setting up the program for Rx rings */
2884 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2885 		ret = ice_down(vsi);
2886 		if (ret) {
2887 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2888 			return ret;
2889 		}
2890 	}
2891 
2892 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2893 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2894 		if (xdp_ring_err) {
2895 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2896 		} else {
2897 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2898 			if (xdp_ring_err)
2899 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2900 		}
2901 		/* reallocate Rx queues that are used for zero-copy */
2902 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2903 		if (xdp_ring_err)
2904 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2905 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2906 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2907 		if (xdp_ring_err)
2908 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2909 		/* reallocate Rx queues that were used for zero-copy */
2910 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2911 		if (xdp_ring_err)
2912 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2913 	} else {
2914 		/* safe to call even when prog == vsi->xdp_prog as
2915 		 * dev_xdp_install in net/core/dev.c incremented prog's
2916 		 * refcount so corresponding bpf_prog_put won't cause
2917 		 * underflow
2918 		 */
2919 		ice_vsi_assign_bpf_prog(vsi, prog);
2920 	}
2921 
2922 	if (if_running)
2923 		ret = ice_up(vsi);
2924 
2925 	if (!ret && prog)
2926 		ice_vsi_rx_napi_schedule(vsi);
2927 
2928 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2929 }
2930 
2931 /**
2932  * ice_xdp_safe_mode - XDP handler for safe mode
2933  * @dev: netdevice
2934  * @xdp: XDP command
2935  */
2936 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2937 			     struct netdev_bpf *xdp)
2938 {
2939 	NL_SET_ERR_MSG_MOD(xdp->extack,
2940 			   "Please provide working DDP firmware package in order to use XDP\n"
2941 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2942 	return -EOPNOTSUPP;
2943 }
2944 
2945 /**
2946  * ice_xdp - implements XDP handler
2947  * @dev: netdevice
2948  * @xdp: XDP command
2949  */
2950 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2951 {
2952 	struct ice_netdev_priv *np = netdev_priv(dev);
2953 	struct ice_vsi *vsi = np->vsi;
2954 
2955 	if (vsi->type != ICE_VSI_PF) {
2956 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2957 		return -EINVAL;
2958 	}
2959 
2960 	switch (xdp->command) {
2961 	case XDP_SETUP_PROG:
2962 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2963 	case XDP_SETUP_XSK_POOL:
2964 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2965 					  xdp->xsk.queue_id);
2966 	default:
2967 		return -EINVAL;
2968 	}
2969 }
2970 
2971 /**
2972  * ice_ena_misc_vector - enable the non-queue interrupts
2973  * @pf: board private structure
2974  */
2975 static void ice_ena_misc_vector(struct ice_pf *pf)
2976 {
2977 	struct ice_hw *hw = &pf->hw;
2978 	u32 val;
2979 
2980 	/* Disable anti-spoof detection interrupt to prevent spurious event
2981 	 * interrupts during a function reset. Anti-spoof functionally is
2982 	 * still supported.
2983 	 */
2984 	val = rd32(hw, GL_MDCK_TX_TDPU);
2985 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2986 	wr32(hw, GL_MDCK_TX_TDPU, val);
2987 
2988 	/* clear things first */
2989 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2990 	rd32(hw, PFINT_OICR);		/* read to clear */
2991 
2992 	val = (PFINT_OICR_ECC_ERR_M |
2993 	       PFINT_OICR_MAL_DETECT_M |
2994 	       PFINT_OICR_GRST_M |
2995 	       PFINT_OICR_PCI_EXCEPTION_M |
2996 	       PFINT_OICR_VFLR_M |
2997 	       PFINT_OICR_HMC_ERR_M |
2998 	       PFINT_OICR_PE_PUSH_M |
2999 	       PFINT_OICR_PE_CRITERR_M);
3000 
3001 	wr32(hw, PFINT_OICR_ENA, val);
3002 
3003 	/* SW_ITR_IDX = 0, but don't change INTENA */
3004 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3005 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3006 }
3007 
3008 /**
3009  * ice_misc_intr - misc interrupt handler
3010  * @irq: interrupt number
3011  * @data: pointer to a q_vector
3012  */
3013 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3014 {
3015 	struct ice_pf *pf = (struct ice_pf *)data;
3016 	struct ice_hw *hw = &pf->hw;
3017 	irqreturn_t ret = IRQ_NONE;
3018 	struct device *dev;
3019 	u32 oicr, ena_mask;
3020 
3021 	dev = ice_pf_to_dev(pf);
3022 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3023 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3024 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3025 
3026 	oicr = rd32(hw, PFINT_OICR);
3027 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3028 
3029 	if (oicr & PFINT_OICR_SWINT_M) {
3030 		ena_mask &= ~PFINT_OICR_SWINT_M;
3031 		pf->sw_int_count++;
3032 	}
3033 
3034 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3035 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3036 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3037 	}
3038 	if (oicr & PFINT_OICR_VFLR_M) {
3039 		/* disable any further VFLR event notifications */
3040 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3041 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3042 
3043 			reg &= ~PFINT_OICR_VFLR_M;
3044 			wr32(hw, PFINT_OICR_ENA, reg);
3045 		} else {
3046 			ena_mask &= ~PFINT_OICR_VFLR_M;
3047 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3048 		}
3049 	}
3050 
3051 	if (oicr & PFINT_OICR_GRST_M) {
3052 		u32 reset;
3053 
3054 		/* we have a reset warning */
3055 		ena_mask &= ~PFINT_OICR_GRST_M;
3056 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3057 			GLGEN_RSTAT_RESET_TYPE_S;
3058 
3059 		if (reset == ICE_RESET_CORER)
3060 			pf->corer_count++;
3061 		else if (reset == ICE_RESET_GLOBR)
3062 			pf->globr_count++;
3063 		else if (reset == ICE_RESET_EMPR)
3064 			pf->empr_count++;
3065 		else
3066 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3067 
3068 		/* If a reset cycle isn't already in progress, we set a bit in
3069 		 * pf->state so that the service task can start a reset/rebuild.
3070 		 */
3071 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3072 			if (reset == ICE_RESET_CORER)
3073 				set_bit(ICE_CORER_RECV, pf->state);
3074 			else if (reset == ICE_RESET_GLOBR)
3075 				set_bit(ICE_GLOBR_RECV, pf->state);
3076 			else
3077 				set_bit(ICE_EMPR_RECV, pf->state);
3078 
3079 			/* There are couple of different bits at play here.
3080 			 * hw->reset_ongoing indicates whether the hardware is
3081 			 * in reset. This is set to true when a reset interrupt
3082 			 * is received and set back to false after the driver
3083 			 * has determined that the hardware is out of reset.
3084 			 *
3085 			 * ICE_RESET_OICR_RECV in pf->state indicates
3086 			 * that a post reset rebuild is required before the
3087 			 * driver is operational again. This is set above.
3088 			 *
3089 			 * As this is the start of the reset/rebuild cycle, set
3090 			 * both to indicate that.
3091 			 */
3092 			hw->reset_ongoing = true;
3093 		}
3094 	}
3095 
3096 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3097 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3098 		ice_ptp_process_ts(pf);
3099 	}
3100 
3101 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3102 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3103 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3104 
3105 		/* Save EVENTs from GTSYN register */
3106 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3107 						     GLTSYN_STAT_EVENT1_M |
3108 						     GLTSYN_STAT_EVENT2_M);
3109 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3110 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3111 	}
3112 
3113 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3114 	if (oicr & ICE_AUX_CRIT_ERR) {
3115 		pf->oicr_err_reg |= oicr;
3116 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3117 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3118 	}
3119 
3120 	/* Report any remaining unexpected interrupts */
3121 	oicr &= ena_mask;
3122 	if (oicr) {
3123 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3124 		/* If a critical error is pending there is no choice but to
3125 		 * reset the device.
3126 		 */
3127 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3128 			    PFINT_OICR_ECC_ERR_M)) {
3129 			set_bit(ICE_PFR_REQ, pf->state);
3130 			ice_service_task_schedule(pf);
3131 		}
3132 	}
3133 	ret = IRQ_HANDLED;
3134 
3135 	ice_service_task_schedule(pf);
3136 	ice_irq_dynamic_ena(hw, NULL, NULL);
3137 
3138 	return ret;
3139 }
3140 
3141 /**
3142  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3143  * @hw: pointer to HW structure
3144  */
3145 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3146 {
3147 	/* disable Admin queue Interrupt causes */
3148 	wr32(hw, PFINT_FW_CTL,
3149 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3150 
3151 	/* disable Mailbox queue Interrupt causes */
3152 	wr32(hw, PFINT_MBX_CTL,
3153 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3154 
3155 	wr32(hw, PFINT_SB_CTL,
3156 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3157 
3158 	/* disable Control queue Interrupt causes */
3159 	wr32(hw, PFINT_OICR_CTL,
3160 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3161 
3162 	ice_flush(hw);
3163 }
3164 
3165 /**
3166  * ice_free_irq_msix_misc - Unroll misc vector setup
3167  * @pf: board private structure
3168  */
3169 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3170 {
3171 	struct ice_hw *hw = &pf->hw;
3172 
3173 	ice_dis_ctrlq_interrupts(hw);
3174 
3175 	/* disable OICR interrupt */
3176 	wr32(hw, PFINT_OICR_ENA, 0);
3177 	ice_flush(hw);
3178 
3179 	if (pf->msix_entries) {
3180 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3181 		devm_free_irq(ice_pf_to_dev(pf),
3182 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3183 	}
3184 
3185 	pf->num_avail_sw_msix += 1;
3186 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3187 }
3188 
3189 /**
3190  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3191  * @hw: pointer to HW structure
3192  * @reg_idx: HW vector index to associate the control queue interrupts with
3193  */
3194 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3195 {
3196 	u32 val;
3197 
3198 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3199 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3200 	wr32(hw, PFINT_OICR_CTL, val);
3201 
3202 	/* enable Admin queue Interrupt causes */
3203 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3204 	       PFINT_FW_CTL_CAUSE_ENA_M);
3205 	wr32(hw, PFINT_FW_CTL, val);
3206 
3207 	/* enable Mailbox queue Interrupt causes */
3208 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3209 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3210 	wr32(hw, PFINT_MBX_CTL, val);
3211 
3212 	/* This enables Sideband queue Interrupt causes */
3213 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3214 	       PFINT_SB_CTL_CAUSE_ENA_M);
3215 	wr32(hw, PFINT_SB_CTL, val);
3216 
3217 	ice_flush(hw);
3218 }
3219 
3220 /**
3221  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3222  * @pf: board private structure
3223  *
3224  * This sets up the handler for MSIX 0, which is used to manage the
3225  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3226  * when in MSI or Legacy interrupt mode.
3227  */
3228 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3229 {
3230 	struct device *dev = ice_pf_to_dev(pf);
3231 	struct ice_hw *hw = &pf->hw;
3232 	int oicr_idx, err = 0;
3233 
3234 	if (!pf->int_name[0])
3235 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3236 			 dev_driver_string(dev), dev_name(dev));
3237 
3238 	/* Do not request IRQ but do enable OICR interrupt since settings are
3239 	 * lost during reset. Note that this function is called only during
3240 	 * rebuild path and not while reset is in progress.
3241 	 */
3242 	if (ice_is_reset_in_progress(pf->state))
3243 		goto skip_req_irq;
3244 
3245 	/* reserve one vector in irq_tracker for misc interrupts */
3246 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3247 	if (oicr_idx < 0)
3248 		return oicr_idx;
3249 
3250 	pf->num_avail_sw_msix -= 1;
3251 	pf->oicr_idx = (u16)oicr_idx;
3252 
3253 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3254 			       ice_misc_intr, 0, pf->int_name, pf);
3255 	if (err) {
3256 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3257 			pf->int_name, err);
3258 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3259 		pf->num_avail_sw_msix += 1;
3260 		return err;
3261 	}
3262 
3263 skip_req_irq:
3264 	ice_ena_misc_vector(pf);
3265 
3266 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3267 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3268 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3269 
3270 	ice_flush(hw);
3271 	ice_irq_dynamic_ena(hw, NULL, NULL);
3272 
3273 	return 0;
3274 }
3275 
3276 /**
3277  * ice_napi_add - register NAPI handler for the VSI
3278  * @vsi: VSI for which NAPI handler is to be registered
3279  *
3280  * This function is only called in the driver's load path. Registering the NAPI
3281  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3282  * reset/rebuild, etc.)
3283  */
3284 static void ice_napi_add(struct ice_vsi *vsi)
3285 {
3286 	int v_idx;
3287 
3288 	if (!vsi->netdev)
3289 		return;
3290 
3291 	ice_for_each_q_vector(vsi, v_idx)
3292 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3293 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3294 }
3295 
3296 /**
3297  * ice_set_ops - set netdev and ethtools ops for the given netdev
3298  * @netdev: netdev instance
3299  */
3300 static void ice_set_ops(struct net_device *netdev)
3301 {
3302 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3303 
3304 	if (ice_is_safe_mode(pf)) {
3305 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3306 		ice_set_ethtool_safe_mode_ops(netdev);
3307 		return;
3308 	}
3309 
3310 	netdev->netdev_ops = &ice_netdev_ops;
3311 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3312 	ice_set_ethtool_ops(netdev);
3313 }
3314 
3315 /**
3316  * ice_set_netdev_features - set features for the given netdev
3317  * @netdev: netdev instance
3318  */
3319 static void ice_set_netdev_features(struct net_device *netdev)
3320 {
3321 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3322 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3323 	netdev_features_t csumo_features;
3324 	netdev_features_t vlano_features;
3325 	netdev_features_t dflt_features;
3326 	netdev_features_t tso_features;
3327 
3328 	if (ice_is_safe_mode(pf)) {
3329 		/* safe mode */
3330 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3331 		netdev->hw_features = netdev->features;
3332 		return;
3333 	}
3334 
3335 	dflt_features = NETIF_F_SG	|
3336 			NETIF_F_HIGHDMA	|
3337 			NETIF_F_NTUPLE	|
3338 			NETIF_F_RXHASH;
3339 
3340 	csumo_features = NETIF_F_RXCSUM	  |
3341 			 NETIF_F_IP_CSUM  |
3342 			 NETIF_F_SCTP_CRC |
3343 			 NETIF_F_IPV6_CSUM;
3344 
3345 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3346 			 NETIF_F_HW_VLAN_CTAG_TX     |
3347 			 NETIF_F_HW_VLAN_CTAG_RX;
3348 
3349 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3350 	if (is_dvm_ena)
3351 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3352 
3353 	tso_features = NETIF_F_TSO			|
3354 		       NETIF_F_TSO_ECN			|
3355 		       NETIF_F_TSO6			|
3356 		       NETIF_F_GSO_GRE			|
3357 		       NETIF_F_GSO_UDP_TUNNEL		|
3358 		       NETIF_F_GSO_GRE_CSUM		|
3359 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3360 		       NETIF_F_GSO_PARTIAL		|
3361 		       NETIF_F_GSO_IPXIP4		|
3362 		       NETIF_F_GSO_IPXIP6		|
3363 		       NETIF_F_GSO_UDP_L4;
3364 
3365 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3366 					NETIF_F_GSO_GRE_CSUM;
3367 	/* set features that user can change */
3368 	netdev->hw_features = dflt_features | csumo_features |
3369 			      vlano_features | tso_features;
3370 
3371 	/* add support for HW_CSUM on packets with MPLS header */
3372 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3373 				 NETIF_F_TSO     |
3374 				 NETIF_F_TSO6;
3375 
3376 	/* enable features */
3377 	netdev->features |= netdev->hw_features;
3378 
3379 	netdev->hw_features |= NETIF_F_HW_TC;
3380 	netdev->hw_features |= NETIF_F_LOOPBACK;
3381 
3382 	/* encap and VLAN devices inherit default, csumo and tso features */
3383 	netdev->hw_enc_features |= dflt_features | csumo_features |
3384 				   tso_features;
3385 	netdev->vlan_features |= dflt_features | csumo_features |
3386 				 tso_features;
3387 
3388 	/* advertise support but don't enable by default since only one type of
3389 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3390 	 * type turns on the other has to be turned off. This is enforced by the
3391 	 * ice_fix_features() ndo callback.
3392 	 */
3393 	if (is_dvm_ena)
3394 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3395 			NETIF_F_HW_VLAN_STAG_TX;
3396 }
3397 
3398 /**
3399  * ice_cfg_netdev - Allocate, configure and register a netdev
3400  * @vsi: the VSI associated with the new netdev
3401  *
3402  * Returns 0 on success, negative value on failure
3403  */
3404 static int ice_cfg_netdev(struct ice_vsi *vsi)
3405 {
3406 	struct ice_netdev_priv *np;
3407 	struct net_device *netdev;
3408 	u8 mac_addr[ETH_ALEN];
3409 
3410 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3411 				    vsi->alloc_rxq);
3412 	if (!netdev)
3413 		return -ENOMEM;
3414 
3415 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3416 	vsi->netdev = netdev;
3417 	np = netdev_priv(netdev);
3418 	np->vsi = vsi;
3419 
3420 	ice_set_netdev_features(netdev);
3421 
3422 	ice_set_ops(netdev);
3423 
3424 	if (vsi->type == ICE_VSI_PF) {
3425 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3426 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3427 		eth_hw_addr_set(netdev, mac_addr);
3428 		ether_addr_copy(netdev->perm_addr, mac_addr);
3429 	}
3430 
3431 	netdev->priv_flags |= IFF_UNICAST_FLT;
3432 
3433 	/* Setup netdev TC information */
3434 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3435 
3436 	/* setup watchdog timeout value to be 5 second */
3437 	netdev->watchdog_timeo = 5 * HZ;
3438 
3439 	netdev->min_mtu = ETH_MIN_MTU;
3440 	netdev->max_mtu = ICE_MAX_MTU;
3441 
3442 	return 0;
3443 }
3444 
3445 /**
3446  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3447  * @lut: Lookup table
3448  * @rss_table_size: Lookup table size
3449  * @rss_size: Range of queue number for hashing
3450  */
3451 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3452 {
3453 	u16 i;
3454 
3455 	for (i = 0; i < rss_table_size; i++)
3456 		lut[i] = i % rss_size;
3457 }
3458 
3459 /**
3460  * ice_pf_vsi_setup - Set up a PF VSI
3461  * @pf: board private structure
3462  * @pi: pointer to the port_info instance
3463  *
3464  * Returns pointer to the successfully allocated VSI software struct
3465  * on success, otherwise returns NULL on failure.
3466  */
3467 static struct ice_vsi *
3468 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3469 {
3470 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3471 }
3472 
3473 static struct ice_vsi *
3474 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3475 		   struct ice_channel *ch)
3476 {
3477 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3478 }
3479 
3480 /**
3481  * ice_ctrl_vsi_setup - Set up a control VSI
3482  * @pf: board private structure
3483  * @pi: pointer to the port_info instance
3484  *
3485  * Returns pointer to the successfully allocated VSI software struct
3486  * on success, otherwise returns NULL on failure.
3487  */
3488 static struct ice_vsi *
3489 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3490 {
3491 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3492 }
3493 
3494 /**
3495  * ice_lb_vsi_setup - Set up a loopback VSI
3496  * @pf: board private structure
3497  * @pi: pointer to the port_info instance
3498  *
3499  * Returns pointer to the successfully allocated VSI software struct
3500  * on success, otherwise returns NULL on failure.
3501  */
3502 struct ice_vsi *
3503 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3504 {
3505 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3506 }
3507 
3508 /**
3509  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3510  * @netdev: network interface to be adjusted
3511  * @proto: VLAN TPID
3512  * @vid: VLAN ID to be added
3513  *
3514  * net_device_ops implementation for adding VLAN IDs
3515  */
3516 static int
3517 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3518 {
3519 	struct ice_netdev_priv *np = netdev_priv(netdev);
3520 	struct ice_vsi_vlan_ops *vlan_ops;
3521 	struct ice_vsi *vsi = np->vsi;
3522 	struct ice_vlan vlan;
3523 	int ret;
3524 
3525 	/* VLAN 0 is added by default during load/reset */
3526 	if (!vid)
3527 		return 0;
3528 
3529 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3530 		usleep_range(1000, 2000);
3531 
3532 	/* Add multicast promisc rule for the VLAN ID to be added if
3533 	 * all-multicast is currently enabled.
3534 	 */
3535 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3536 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3537 					       ICE_MCAST_VLAN_PROMISC_BITS,
3538 					       vid);
3539 		if (ret)
3540 			goto finish;
3541 	}
3542 
3543 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3544 
3545 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3546 	 * packets aren't pruned by the device's internal switch on Rx
3547 	 */
3548 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3549 	ret = vlan_ops->add_vlan(vsi, &vlan);
3550 	if (ret)
3551 		goto finish;
3552 
3553 	/* If all-multicast is currently enabled and this VLAN ID is only one
3554 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3555 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3556 	 */
3557 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3558 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3559 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3560 					   ICE_MCAST_PROMISC_BITS, 0);
3561 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3562 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3563 	}
3564 
3565 finish:
3566 	clear_bit(ICE_CFG_BUSY, vsi->state);
3567 
3568 	return ret;
3569 }
3570 
3571 /**
3572  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3573  * @netdev: network interface to be adjusted
3574  * @proto: VLAN TPID
3575  * @vid: VLAN ID to be removed
3576  *
3577  * net_device_ops implementation for removing VLAN IDs
3578  */
3579 static int
3580 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3581 {
3582 	struct ice_netdev_priv *np = netdev_priv(netdev);
3583 	struct ice_vsi_vlan_ops *vlan_ops;
3584 	struct ice_vsi *vsi = np->vsi;
3585 	struct ice_vlan vlan;
3586 	int ret;
3587 
3588 	/* don't allow removal of VLAN 0 */
3589 	if (!vid)
3590 		return 0;
3591 
3592 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3593 		usleep_range(1000, 2000);
3594 
3595 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3596 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3597 	if (ret) {
3598 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3599 			   vsi->vsi_num);
3600 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3601 	}
3602 
3603 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3604 
3605 	/* Make sure VLAN delete is successful before updating VLAN
3606 	 * information
3607 	 */
3608 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3609 	ret = vlan_ops->del_vlan(vsi, &vlan);
3610 	if (ret)
3611 		goto finish;
3612 
3613 	/* Remove multicast promisc rule for the removed VLAN ID if
3614 	 * all-multicast is enabled.
3615 	 */
3616 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3617 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3618 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3619 
3620 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3621 		/* Update look-up type of multicast promisc rule for VLAN 0
3622 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3623 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3624 		 */
3625 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3626 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3627 						   ICE_MCAST_VLAN_PROMISC_BITS,
3628 						   0);
3629 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3630 						 ICE_MCAST_PROMISC_BITS, 0);
3631 		}
3632 	}
3633 
3634 finish:
3635 	clear_bit(ICE_CFG_BUSY, vsi->state);
3636 
3637 	return ret;
3638 }
3639 
3640 /**
3641  * ice_rep_indr_tc_block_unbind
3642  * @cb_priv: indirection block private data
3643  */
3644 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3645 {
3646 	struct ice_indr_block_priv *indr_priv = cb_priv;
3647 
3648 	list_del(&indr_priv->list);
3649 	kfree(indr_priv);
3650 }
3651 
3652 /**
3653  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3654  * @vsi: VSI struct which has the netdev
3655  */
3656 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3657 {
3658 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3659 
3660 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3661 				 ice_rep_indr_tc_block_unbind);
3662 }
3663 
3664 /**
3665  * ice_tc_indir_block_remove - clean indirect TC block notifications
3666  * @pf: PF structure
3667  */
3668 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3669 {
3670 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3671 
3672 	if (!pf_vsi)
3673 		return;
3674 
3675 	ice_tc_indir_block_unregister(pf_vsi);
3676 }
3677 
3678 /**
3679  * ice_tc_indir_block_register - Register TC indirect block notifications
3680  * @vsi: VSI struct which has the netdev
3681  *
3682  * Returns 0 on success, negative value on failure
3683  */
3684 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3685 {
3686 	struct ice_netdev_priv *np;
3687 
3688 	if (!vsi || !vsi->netdev)
3689 		return -EINVAL;
3690 
3691 	np = netdev_priv(vsi->netdev);
3692 
3693 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3694 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3695 }
3696 
3697 /**
3698  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3699  * @pf: board private structure
3700  *
3701  * Returns 0 on success, negative value on failure
3702  */
3703 static int ice_setup_pf_sw(struct ice_pf *pf)
3704 {
3705 	struct device *dev = ice_pf_to_dev(pf);
3706 	bool dvm = ice_is_dvm_ena(&pf->hw);
3707 	struct ice_vsi *vsi;
3708 	int status;
3709 
3710 	if (ice_is_reset_in_progress(pf->state))
3711 		return -EBUSY;
3712 
3713 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3714 	if (status)
3715 		return -EIO;
3716 
3717 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3718 	if (!vsi)
3719 		return -ENOMEM;
3720 
3721 	/* init channel list */
3722 	INIT_LIST_HEAD(&vsi->ch_list);
3723 
3724 	status = ice_cfg_netdev(vsi);
3725 	if (status)
3726 		goto unroll_vsi_setup;
3727 	/* netdev has to be configured before setting frame size */
3728 	ice_vsi_cfg_frame_size(vsi);
3729 
3730 	/* init indirect block notifications */
3731 	status = ice_tc_indir_block_register(vsi);
3732 	if (status) {
3733 		dev_err(dev, "Failed to register netdev notifier\n");
3734 		goto unroll_cfg_netdev;
3735 	}
3736 
3737 	/* Setup DCB netlink interface */
3738 	ice_dcbnl_setup(vsi);
3739 
3740 	/* registering the NAPI handler requires both the queues and
3741 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3742 	 * and ice_cfg_netdev() respectively
3743 	 */
3744 	ice_napi_add(vsi);
3745 
3746 	status = ice_init_mac_fltr(pf);
3747 	if (status)
3748 		goto unroll_napi_add;
3749 
3750 	return 0;
3751 
3752 unroll_napi_add:
3753 	ice_tc_indir_block_unregister(vsi);
3754 unroll_cfg_netdev:
3755 	if (vsi) {
3756 		ice_napi_del(vsi);
3757 		if (vsi->netdev) {
3758 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3759 			free_netdev(vsi->netdev);
3760 			vsi->netdev = NULL;
3761 		}
3762 	}
3763 
3764 unroll_vsi_setup:
3765 	ice_vsi_release(vsi);
3766 	return status;
3767 }
3768 
3769 /**
3770  * ice_get_avail_q_count - Get count of queues in use
3771  * @pf_qmap: bitmap to get queue use count from
3772  * @lock: pointer to a mutex that protects access to pf_qmap
3773  * @size: size of the bitmap
3774  */
3775 static u16
3776 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3777 {
3778 	unsigned long bit;
3779 	u16 count = 0;
3780 
3781 	mutex_lock(lock);
3782 	for_each_clear_bit(bit, pf_qmap, size)
3783 		count++;
3784 	mutex_unlock(lock);
3785 
3786 	return count;
3787 }
3788 
3789 /**
3790  * ice_get_avail_txq_count - Get count of Tx queues in use
3791  * @pf: pointer to an ice_pf instance
3792  */
3793 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3794 {
3795 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3796 				     pf->max_pf_txqs);
3797 }
3798 
3799 /**
3800  * ice_get_avail_rxq_count - Get count of Rx queues in use
3801  * @pf: pointer to an ice_pf instance
3802  */
3803 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3804 {
3805 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3806 				     pf->max_pf_rxqs);
3807 }
3808 
3809 /**
3810  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3811  * @pf: board private structure to initialize
3812  */
3813 static void ice_deinit_pf(struct ice_pf *pf)
3814 {
3815 	ice_service_task_stop(pf);
3816 	mutex_destroy(&pf->adev_mutex);
3817 	mutex_destroy(&pf->sw_mutex);
3818 	mutex_destroy(&pf->tc_mutex);
3819 	mutex_destroy(&pf->avail_q_mutex);
3820 	mutex_destroy(&pf->vfs.table_lock);
3821 
3822 	if (pf->avail_txqs) {
3823 		bitmap_free(pf->avail_txqs);
3824 		pf->avail_txqs = NULL;
3825 	}
3826 
3827 	if (pf->avail_rxqs) {
3828 		bitmap_free(pf->avail_rxqs);
3829 		pf->avail_rxqs = NULL;
3830 	}
3831 
3832 	if (pf->ptp.clock)
3833 		ptp_clock_unregister(pf->ptp.clock);
3834 }
3835 
3836 /**
3837  * ice_set_pf_caps - set PFs capability flags
3838  * @pf: pointer to the PF instance
3839  */
3840 static void ice_set_pf_caps(struct ice_pf *pf)
3841 {
3842 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3843 
3844 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3845 	if (func_caps->common_cap.rdma)
3846 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3847 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3848 	if (func_caps->common_cap.dcb)
3849 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3850 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3851 	if (func_caps->common_cap.sr_iov_1_1) {
3852 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3853 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3854 					      ICE_MAX_SRIOV_VFS);
3855 	}
3856 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3857 	if (func_caps->common_cap.rss_table_size)
3858 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3859 
3860 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3861 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3862 		u16 unused;
3863 
3864 		/* ctrl_vsi_idx will be set to a valid value when flow director
3865 		 * is setup by ice_init_fdir
3866 		 */
3867 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3868 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3869 		/* force guaranteed filter pool for PF */
3870 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3871 				       func_caps->fd_fltr_guar);
3872 		/* force shared filter pool for PF */
3873 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3874 				       func_caps->fd_fltr_best_effort);
3875 	}
3876 
3877 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3878 	if (func_caps->common_cap.ieee_1588)
3879 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3880 
3881 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3882 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3883 }
3884 
3885 /**
3886  * ice_init_pf - Initialize general software structures (struct ice_pf)
3887  * @pf: board private structure to initialize
3888  */
3889 static int ice_init_pf(struct ice_pf *pf)
3890 {
3891 	ice_set_pf_caps(pf);
3892 
3893 	mutex_init(&pf->sw_mutex);
3894 	mutex_init(&pf->tc_mutex);
3895 	mutex_init(&pf->adev_mutex);
3896 
3897 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3898 	spin_lock_init(&pf->aq_wait_lock);
3899 	init_waitqueue_head(&pf->aq_wait_queue);
3900 
3901 	init_waitqueue_head(&pf->reset_wait_queue);
3902 
3903 	/* setup service timer and periodic service task */
3904 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3905 	pf->serv_tmr_period = HZ;
3906 	INIT_WORK(&pf->serv_task, ice_service_task);
3907 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3908 
3909 	mutex_init(&pf->avail_q_mutex);
3910 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3911 	if (!pf->avail_txqs)
3912 		return -ENOMEM;
3913 
3914 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3915 	if (!pf->avail_rxqs) {
3916 		bitmap_free(pf->avail_txqs);
3917 		pf->avail_txqs = NULL;
3918 		return -ENOMEM;
3919 	}
3920 
3921 	mutex_init(&pf->vfs.table_lock);
3922 	hash_init(pf->vfs.table);
3923 
3924 	return 0;
3925 }
3926 
3927 /**
3928  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3929  * @pf: board private structure
3930  *
3931  * compute the number of MSIX vectors required (v_budget) and request from
3932  * the OS. Return the number of vectors reserved or negative on failure
3933  */
3934 static int ice_ena_msix_range(struct ice_pf *pf)
3935 {
3936 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3937 	struct device *dev = ice_pf_to_dev(pf);
3938 	int needed, err, i;
3939 
3940 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3941 	num_cpus = num_online_cpus();
3942 
3943 	/* reserve for LAN miscellaneous handler */
3944 	needed = ICE_MIN_LAN_OICR_MSIX;
3945 	if (v_left < needed)
3946 		goto no_hw_vecs_left_err;
3947 	v_budget += needed;
3948 	v_left -= needed;
3949 
3950 	/* reserve for flow director */
3951 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3952 		needed = ICE_FDIR_MSIX;
3953 		if (v_left < needed)
3954 			goto no_hw_vecs_left_err;
3955 		v_budget += needed;
3956 		v_left -= needed;
3957 	}
3958 
3959 	/* reserve for switchdev */
3960 	needed = ICE_ESWITCH_MSIX;
3961 	if (v_left < needed)
3962 		goto no_hw_vecs_left_err;
3963 	v_budget += needed;
3964 	v_left -= needed;
3965 
3966 	/* total used for non-traffic vectors */
3967 	v_other = v_budget;
3968 
3969 	/* reserve vectors for LAN traffic */
3970 	needed = num_cpus;
3971 	if (v_left < needed)
3972 		goto no_hw_vecs_left_err;
3973 	pf->num_lan_msix = needed;
3974 	v_budget += needed;
3975 	v_left -= needed;
3976 
3977 	/* reserve vectors for RDMA auxiliary driver */
3978 	if (ice_is_rdma_ena(pf)) {
3979 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3980 		if (v_left < needed)
3981 			goto no_hw_vecs_left_err;
3982 		pf->num_rdma_msix = needed;
3983 		v_budget += needed;
3984 		v_left -= needed;
3985 	}
3986 
3987 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3988 					sizeof(*pf->msix_entries), GFP_KERNEL);
3989 	if (!pf->msix_entries) {
3990 		err = -ENOMEM;
3991 		goto exit_err;
3992 	}
3993 
3994 	for (i = 0; i < v_budget; i++)
3995 		pf->msix_entries[i].entry = i;
3996 
3997 	/* actually reserve the vectors */
3998 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3999 					 ICE_MIN_MSIX, v_budget);
4000 	if (v_actual < 0) {
4001 		dev_err(dev, "unable to reserve MSI-X vectors\n");
4002 		err = v_actual;
4003 		goto msix_err;
4004 	}
4005 
4006 	if (v_actual < v_budget) {
4007 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4008 			 v_budget, v_actual);
4009 
4010 		if (v_actual < ICE_MIN_MSIX) {
4011 			/* error if we can't get minimum vectors */
4012 			pci_disable_msix(pf->pdev);
4013 			err = -ERANGE;
4014 			goto msix_err;
4015 		} else {
4016 			int v_remain = v_actual - v_other;
4017 			int v_rdma = 0, v_min_rdma = 0;
4018 
4019 			if (ice_is_rdma_ena(pf)) {
4020 				/* Need at least 1 interrupt in addition to
4021 				 * AEQ MSIX
4022 				 */
4023 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4024 				v_min_rdma = ICE_MIN_RDMA_MSIX;
4025 			}
4026 
4027 			if (v_actual == ICE_MIN_MSIX ||
4028 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4029 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4030 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4031 
4032 				pf->num_rdma_msix = 0;
4033 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4034 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4035 				   (v_remain - v_rdma < v_rdma)) {
4036 				/* Support minimum RDMA and give remaining
4037 				 * vectors to LAN MSIX
4038 				 */
4039 				pf->num_rdma_msix = v_min_rdma;
4040 				pf->num_lan_msix = v_remain - v_min_rdma;
4041 			} else {
4042 				/* Split remaining MSIX with RDMA after
4043 				 * accounting for AEQ MSIX
4044 				 */
4045 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4046 						    ICE_RDMA_NUM_AEQ_MSIX;
4047 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4048 			}
4049 
4050 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4051 				   pf->num_lan_msix);
4052 
4053 			if (ice_is_rdma_ena(pf))
4054 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4055 					   pf->num_rdma_msix);
4056 		}
4057 	}
4058 
4059 	return v_actual;
4060 
4061 msix_err:
4062 	devm_kfree(dev, pf->msix_entries);
4063 	goto exit_err;
4064 
4065 no_hw_vecs_left_err:
4066 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4067 		needed, v_left);
4068 	err = -ERANGE;
4069 exit_err:
4070 	pf->num_rdma_msix = 0;
4071 	pf->num_lan_msix = 0;
4072 	return err;
4073 }
4074 
4075 /**
4076  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4077  * @pf: board private structure
4078  */
4079 static void ice_dis_msix(struct ice_pf *pf)
4080 {
4081 	pci_disable_msix(pf->pdev);
4082 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4083 	pf->msix_entries = NULL;
4084 }
4085 
4086 /**
4087  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4088  * @pf: board private structure
4089  */
4090 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4091 {
4092 	ice_dis_msix(pf);
4093 
4094 	if (pf->irq_tracker) {
4095 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4096 		pf->irq_tracker = NULL;
4097 	}
4098 }
4099 
4100 /**
4101  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4102  * @pf: board private structure to initialize
4103  */
4104 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4105 {
4106 	int vectors;
4107 
4108 	vectors = ice_ena_msix_range(pf);
4109 
4110 	if (vectors < 0)
4111 		return vectors;
4112 
4113 	/* set up vector assignment tracking */
4114 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4115 				       struct_size(pf->irq_tracker, list, vectors),
4116 				       GFP_KERNEL);
4117 	if (!pf->irq_tracker) {
4118 		ice_dis_msix(pf);
4119 		return -ENOMEM;
4120 	}
4121 
4122 	/* populate SW interrupts pool with number of OS granted IRQs. */
4123 	pf->num_avail_sw_msix = (u16)vectors;
4124 	pf->irq_tracker->num_entries = (u16)vectors;
4125 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4126 
4127 	return 0;
4128 }
4129 
4130 /**
4131  * ice_is_wol_supported - check if WoL is supported
4132  * @hw: pointer to hardware info
4133  *
4134  * Check if WoL is supported based on the HW configuration.
4135  * Returns true if NVM supports and enables WoL for this port, false otherwise
4136  */
4137 bool ice_is_wol_supported(struct ice_hw *hw)
4138 {
4139 	u16 wol_ctrl;
4140 
4141 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4142 	 * word) indicates WoL is not supported on the corresponding PF ID.
4143 	 */
4144 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4145 		return false;
4146 
4147 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4148 }
4149 
4150 /**
4151  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4152  * @vsi: VSI being changed
4153  * @new_rx: new number of Rx queues
4154  * @new_tx: new number of Tx queues
4155  *
4156  * Only change the number of queues if new_tx, or new_rx is non-0.
4157  *
4158  * Returns 0 on success.
4159  */
4160 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4161 {
4162 	struct ice_pf *pf = vsi->back;
4163 	int err = 0, timeout = 50;
4164 
4165 	if (!new_rx && !new_tx)
4166 		return -EINVAL;
4167 
4168 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4169 		timeout--;
4170 		if (!timeout)
4171 			return -EBUSY;
4172 		usleep_range(1000, 2000);
4173 	}
4174 
4175 	if (new_tx)
4176 		vsi->req_txq = (u16)new_tx;
4177 	if (new_rx)
4178 		vsi->req_rxq = (u16)new_rx;
4179 
4180 	/* set for the next time the netdev is started */
4181 	if (!netif_running(vsi->netdev)) {
4182 		ice_vsi_rebuild(vsi, false);
4183 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4184 		goto done;
4185 	}
4186 
4187 	ice_vsi_close(vsi);
4188 	ice_vsi_rebuild(vsi, false);
4189 	ice_pf_dcb_recfg(pf);
4190 	ice_vsi_open(vsi);
4191 done:
4192 	clear_bit(ICE_CFG_BUSY, pf->state);
4193 	return err;
4194 }
4195 
4196 /**
4197  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4198  * @pf: PF to configure
4199  *
4200  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4201  * VSI can still Tx/Rx VLAN tagged packets.
4202  */
4203 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4204 {
4205 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4206 	struct ice_vsi_ctx *ctxt;
4207 	struct ice_hw *hw;
4208 	int status;
4209 
4210 	if (!vsi)
4211 		return;
4212 
4213 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4214 	if (!ctxt)
4215 		return;
4216 
4217 	hw = &pf->hw;
4218 	ctxt->info = vsi->info;
4219 
4220 	ctxt->info.valid_sections =
4221 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4222 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4223 			    ICE_AQ_VSI_PROP_SW_VALID);
4224 
4225 	/* disable VLAN anti-spoof */
4226 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4227 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4228 
4229 	/* disable VLAN pruning and keep all other settings */
4230 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4231 
4232 	/* allow all VLANs on Tx and don't strip on Rx */
4233 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4234 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4235 
4236 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4237 	if (status) {
4238 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4239 			status, ice_aq_str(hw->adminq.sq_last_status));
4240 	} else {
4241 		vsi->info.sec_flags = ctxt->info.sec_flags;
4242 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4243 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4244 	}
4245 
4246 	kfree(ctxt);
4247 }
4248 
4249 /**
4250  * ice_log_pkg_init - log result of DDP package load
4251  * @hw: pointer to hardware info
4252  * @state: state of package load
4253  */
4254 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4255 {
4256 	struct ice_pf *pf = hw->back;
4257 	struct device *dev;
4258 
4259 	dev = ice_pf_to_dev(pf);
4260 
4261 	switch (state) {
4262 	case ICE_DDP_PKG_SUCCESS:
4263 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4264 			 hw->active_pkg_name,
4265 			 hw->active_pkg_ver.major,
4266 			 hw->active_pkg_ver.minor,
4267 			 hw->active_pkg_ver.update,
4268 			 hw->active_pkg_ver.draft);
4269 		break;
4270 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4271 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4272 			 hw->active_pkg_name,
4273 			 hw->active_pkg_ver.major,
4274 			 hw->active_pkg_ver.minor,
4275 			 hw->active_pkg_ver.update,
4276 			 hw->active_pkg_ver.draft);
4277 		break;
4278 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4279 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4280 			hw->active_pkg_name,
4281 			hw->active_pkg_ver.major,
4282 			hw->active_pkg_ver.minor,
4283 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4284 		break;
4285 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4286 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4287 			 hw->active_pkg_name,
4288 			 hw->active_pkg_ver.major,
4289 			 hw->active_pkg_ver.minor,
4290 			 hw->active_pkg_ver.update,
4291 			 hw->active_pkg_ver.draft,
4292 			 hw->pkg_name,
4293 			 hw->pkg_ver.major,
4294 			 hw->pkg_ver.minor,
4295 			 hw->pkg_ver.update,
4296 			 hw->pkg_ver.draft);
4297 		break;
4298 	case ICE_DDP_PKG_FW_MISMATCH:
4299 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4300 		break;
4301 	case ICE_DDP_PKG_INVALID_FILE:
4302 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4303 		break;
4304 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4305 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4306 		break;
4307 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4308 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4309 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4310 		break;
4311 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4312 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4313 		break;
4314 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4315 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4316 		break;
4317 	case ICE_DDP_PKG_LOAD_ERROR:
4318 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4319 		/* poll for reset to complete */
4320 		if (ice_check_reset(hw))
4321 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4322 		break;
4323 	case ICE_DDP_PKG_ERR:
4324 	default:
4325 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4326 		break;
4327 	}
4328 }
4329 
4330 /**
4331  * ice_load_pkg - load/reload the DDP Package file
4332  * @firmware: firmware structure when firmware requested or NULL for reload
4333  * @pf: pointer to the PF instance
4334  *
4335  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4336  * initialize HW tables.
4337  */
4338 static void
4339 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4340 {
4341 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4342 	struct device *dev = ice_pf_to_dev(pf);
4343 	struct ice_hw *hw = &pf->hw;
4344 
4345 	/* Load DDP Package */
4346 	if (firmware && !hw->pkg_copy) {
4347 		state = ice_copy_and_init_pkg(hw, firmware->data,
4348 					      firmware->size);
4349 		ice_log_pkg_init(hw, state);
4350 	} else if (!firmware && hw->pkg_copy) {
4351 		/* Reload package during rebuild after CORER/GLOBR reset */
4352 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4353 		ice_log_pkg_init(hw, state);
4354 	} else {
4355 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4356 	}
4357 
4358 	if (!ice_is_init_pkg_successful(state)) {
4359 		/* Safe Mode */
4360 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4361 		return;
4362 	}
4363 
4364 	/* Successful download package is the precondition for advanced
4365 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4366 	 */
4367 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4368 }
4369 
4370 /**
4371  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4372  * @pf: pointer to the PF structure
4373  *
4374  * There is no error returned here because the driver should be able to handle
4375  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4376  * specifically with Tx.
4377  */
4378 static void ice_verify_cacheline_size(struct ice_pf *pf)
4379 {
4380 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4381 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4382 			 ICE_CACHE_LINE_BYTES);
4383 }
4384 
4385 /**
4386  * ice_send_version - update firmware with driver version
4387  * @pf: PF struct
4388  *
4389  * Returns 0 on success, else error code
4390  */
4391 static int ice_send_version(struct ice_pf *pf)
4392 {
4393 	struct ice_driver_ver dv;
4394 
4395 	dv.major_ver = 0xff;
4396 	dv.minor_ver = 0xff;
4397 	dv.build_ver = 0xff;
4398 	dv.subbuild_ver = 0;
4399 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4400 		sizeof(dv.driver_string));
4401 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4402 }
4403 
4404 /**
4405  * ice_init_fdir - Initialize flow director VSI and configuration
4406  * @pf: pointer to the PF instance
4407  *
4408  * returns 0 on success, negative on error
4409  */
4410 static int ice_init_fdir(struct ice_pf *pf)
4411 {
4412 	struct device *dev = ice_pf_to_dev(pf);
4413 	struct ice_vsi *ctrl_vsi;
4414 	int err;
4415 
4416 	/* Side Band Flow Director needs to have a control VSI.
4417 	 * Allocate it and store it in the PF.
4418 	 */
4419 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4420 	if (!ctrl_vsi) {
4421 		dev_dbg(dev, "could not create control VSI\n");
4422 		return -ENOMEM;
4423 	}
4424 
4425 	err = ice_vsi_open_ctrl(ctrl_vsi);
4426 	if (err) {
4427 		dev_dbg(dev, "could not open control VSI\n");
4428 		goto err_vsi_open;
4429 	}
4430 
4431 	mutex_init(&pf->hw.fdir_fltr_lock);
4432 
4433 	err = ice_fdir_create_dflt_rules(pf);
4434 	if (err)
4435 		goto err_fdir_rule;
4436 
4437 	return 0;
4438 
4439 err_fdir_rule:
4440 	ice_fdir_release_flows(&pf->hw);
4441 	ice_vsi_close(ctrl_vsi);
4442 err_vsi_open:
4443 	ice_vsi_release(ctrl_vsi);
4444 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4445 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4446 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4447 	}
4448 	return err;
4449 }
4450 
4451 /**
4452  * ice_get_opt_fw_name - return optional firmware file name or NULL
4453  * @pf: pointer to the PF instance
4454  */
4455 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4456 {
4457 	/* Optional firmware name same as default with additional dash
4458 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4459 	 */
4460 	struct pci_dev *pdev = pf->pdev;
4461 	char *opt_fw_filename;
4462 	u64 dsn;
4463 
4464 	/* Determine the name of the optional file using the DSN (two
4465 	 * dwords following the start of the DSN Capability).
4466 	 */
4467 	dsn = pci_get_dsn(pdev);
4468 	if (!dsn)
4469 		return NULL;
4470 
4471 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4472 	if (!opt_fw_filename)
4473 		return NULL;
4474 
4475 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4476 		 ICE_DDP_PKG_PATH, dsn);
4477 
4478 	return opt_fw_filename;
4479 }
4480 
4481 /**
4482  * ice_request_fw - Device initialization routine
4483  * @pf: pointer to the PF instance
4484  */
4485 static void ice_request_fw(struct ice_pf *pf)
4486 {
4487 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4488 	const struct firmware *firmware = NULL;
4489 	struct device *dev = ice_pf_to_dev(pf);
4490 	int err = 0;
4491 
4492 	/* optional device-specific DDP (if present) overrides the default DDP
4493 	 * package file. kernel logs a debug message if the file doesn't exist,
4494 	 * and warning messages for other errors.
4495 	 */
4496 	if (opt_fw_filename) {
4497 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4498 		if (err) {
4499 			kfree(opt_fw_filename);
4500 			goto dflt_pkg_load;
4501 		}
4502 
4503 		/* request for firmware was successful. Download to device */
4504 		ice_load_pkg(firmware, pf);
4505 		kfree(opt_fw_filename);
4506 		release_firmware(firmware);
4507 		return;
4508 	}
4509 
4510 dflt_pkg_load:
4511 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4512 	if (err) {
4513 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4514 		return;
4515 	}
4516 
4517 	/* request for firmware was successful. Download to device */
4518 	ice_load_pkg(firmware, pf);
4519 	release_firmware(firmware);
4520 }
4521 
4522 /**
4523  * ice_print_wake_reason - show the wake up cause in the log
4524  * @pf: pointer to the PF struct
4525  */
4526 static void ice_print_wake_reason(struct ice_pf *pf)
4527 {
4528 	u32 wus = pf->wakeup_reason;
4529 	const char *wake_str;
4530 
4531 	/* if no wake event, nothing to print */
4532 	if (!wus)
4533 		return;
4534 
4535 	if (wus & PFPM_WUS_LNKC_M)
4536 		wake_str = "Link\n";
4537 	else if (wus & PFPM_WUS_MAG_M)
4538 		wake_str = "Magic Packet\n";
4539 	else if (wus & PFPM_WUS_MNG_M)
4540 		wake_str = "Management\n";
4541 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4542 		wake_str = "Firmware Reset\n";
4543 	else
4544 		wake_str = "Unknown\n";
4545 
4546 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4547 }
4548 
4549 /**
4550  * ice_register_netdev - register netdev and devlink port
4551  * @pf: pointer to the PF struct
4552  */
4553 static int ice_register_netdev(struct ice_pf *pf)
4554 {
4555 	struct ice_vsi *vsi;
4556 	int err = 0;
4557 
4558 	vsi = ice_get_main_vsi(pf);
4559 	if (!vsi || !vsi->netdev)
4560 		return -EIO;
4561 
4562 	err = register_netdev(vsi->netdev);
4563 	if (err)
4564 		goto err_register_netdev;
4565 
4566 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4567 	netif_carrier_off(vsi->netdev);
4568 	netif_tx_stop_all_queues(vsi->netdev);
4569 	err = ice_devlink_create_pf_port(pf);
4570 	if (err)
4571 		goto err_devlink_create;
4572 
4573 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4574 
4575 	return 0;
4576 err_devlink_create:
4577 	unregister_netdev(vsi->netdev);
4578 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4579 err_register_netdev:
4580 	free_netdev(vsi->netdev);
4581 	vsi->netdev = NULL;
4582 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4583 	return err;
4584 }
4585 
4586 /**
4587  * ice_probe - Device initialization routine
4588  * @pdev: PCI device information struct
4589  * @ent: entry in ice_pci_tbl
4590  *
4591  * Returns 0 on success, negative on failure
4592  */
4593 static int
4594 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4595 {
4596 	struct device *dev = &pdev->dev;
4597 	struct ice_pf *pf;
4598 	struct ice_hw *hw;
4599 	int i, err;
4600 
4601 	if (pdev->is_virtfn) {
4602 		dev_err(dev, "can't probe a virtual function\n");
4603 		return -EINVAL;
4604 	}
4605 
4606 	/* this driver uses devres, see
4607 	 * Documentation/driver-api/driver-model/devres.rst
4608 	 */
4609 	err = pcim_enable_device(pdev);
4610 	if (err)
4611 		return err;
4612 
4613 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4614 	if (err) {
4615 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4616 		return err;
4617 	}
4618 
4619 	pf = ice_allocate_pf(dev);
4620 	if (!pf)
4621 		return -ENOMEM;
4622 
4623 	/* initialize Auxiliary index to invalid value */
4624 	pf->aux_idx = -1;
4625 
4626 	/* set up for high or low DMA */
4627 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4628 	if (err) {
4629 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4630 		return err;
4631 	}
4632 
4633 	pci_enable_pcie_error_reporting(pdev);
4634 	pci_set_master(pdev);
4635 
4636 	pf->pdev = pdev;
4637 	pci_set_drvdata(pdev, pf);
4638 	set_bit(ICE_DOWN, pf->state);
4639 	/* Disable service task until DOWN bit is cleared */
4640 	set_bit(ICE_SERVICE_DIS, pf->state);
4641 
4642 	hw = &pf->hw;
4643 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4644 	pci_save_state(pdev);
4645 
4646 	hw->back = pf;
4647 	hw->vendor_id = pdev->vendor;
4648 	hw->device_id = pdev->device;
4649 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4650 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4651 	hw->subsystem_device_id = pdev->subsystem_device;
4652 	hw->bus.device = PCI_SLOT(pdev->devfn);
4653 	hw->bus.func = PCI_FUNC(pdev->devfn);
4654 	ice_set_ctrlq_len(hw);
4655 
4656 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4657 
4658 #ifndef CONFIG_DYNAMIC_DEBUG
4659 	if (debug < -1)
4660 		hw->debug_mask = debug;
4661 #endif
4662 
4663 	err = ice_init_hw(hw);
4664 	if (err) {
4665 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4666 		err = -EIO;
4667 		goto err_exit_unroll;
4668 	}
4669 
4670 	ice_init_feature_support(pf);
4671 
4672 	ice_request_fw(pf);
4673 
4674 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4675 	 * set in pf->state, which will cause ice_is_safe_mode to return
4676 	 * true
4677 	 */
4678 	if (ice_is_safe_mode(pf)) {
4679 		/* we already got function/device capabilities but these don't
4680 		 * reflect what the driver needs to do in safe mode. Instead of
4681 		 * adding conditional logic everywhere to ignore these
4682 		 * device/function capabilities, override them.
4683 		 */
4684 		ice_set_safe_mode_caps(hw);
4685 	}
4686 
4687 	hw->ucast_shared = true;
4688 
4689 	err = ice_init_pf(pf);
4690 	if (err) {
4691 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4692 		goto err_init_pf_unroll;
4693 	}
4694 
4695 	ice_devlink_init_regions(pf);
4696 
4697 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4698 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4699 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4700 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4701 	i = 0;
4702 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4703 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4704 			pf->hw.tnl.valid_count[TNL_VXLAN];
4705 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4706 			UDP_TUNNEL_TYPE_VXLAN;
4707 		i++;
4708 	}
4709 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4710 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4711 			pf->hw.tnl.valid_count[TNL_GENEVE];
4712 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4713 			UDP_TUNNEL_TYPE_GENEVE;
4714 		i++;
4715 	}
4716 
4717 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4718 	if (!pf->num_alloc_vsi) {
4719 		err = -EIO;
4720 		goto err_init_pf_unroll;
4721 	}
4722 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4723 		dev_warn(&pf->pdev->dev,
4724 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4725 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4726 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4727 	}
4728 
4729 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4730 			       GFP_KERNEL);
4731 	if (!pf->vsi) {
4732 		err = -ENOMEM;
4733 		goto err_init_pf_unroll;
4734 	}
4735 
4736 	err = ice_init_interrupt_scheme(pf);
4737 	if (err) {
4738 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4739 		err = -EIO;
4740 		goto err_init_vsi_unroll;
4741 	}
4742 
4743 	/* In case of MSIX we are going to setup the misc vector right here
4744 	 * to handle admin queue events etc. In case of legacy and MSI
4745 	 * the misc functionality and queue processing is combined in
4746 	 * the same vector and that gets setup at open.
4747 	 */
4748 	err = ice_req_irq_msix_misc(pf);
4749 	if (err) {
4750 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4751 		goto err_init_interrupt_unroll;
4752 	}
4753 
4754 	/* create switch struct for the switch element created by FW on boot */
4755 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4756 	if (!pf->first_sw) {
4757 		err = -ENOMEM;
4758 		goto err_msix_misc_unroll;
4759 	}
4760 
4761 	if (hw->evb_veb)
4762 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4763 	else
4764 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4765 
4766 	pf->first_sw->pf = pf;
4767 
4768 	/* record the sw_id available for later use */
4769 	pf->first_sw->sw_id = hw->port_info->sw_id;
4770 
4771 	err = ice_setup_pf_sw(pf);
4772 	if (err) {
4773 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4774 		goto err_alloc_sw_unroll;
4775 	}
4776 
4777 	clear_bit(ICE_SERVICE_DIS, pf->state);
4778 
4779 	/* tell the firmware we are up */
4780 	err = ice_send_version(pf);
4781 	if (err) {
4782 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4783 			UTS_RELEASE, err);
4784 		goto err_send_version_unroll;
4785 	}
4786 
4787 	/* since everything is good, start the service timer */
4788 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4789 
4790 	err = ice_init_link_events(pf->hw.port_info);
4791 	if (err) {
4792 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4793 		goto err_send_version_unroll;
4794 	}
4795 
4796 	/* not a fatal error if this fails */
4797 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4798 	if (err)
4799 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4800 
4801 	/* not a fatal error if this fails */
4802 	err = ice_update_link_info(pf->hw.port_info);
4803 	if (err)
4804 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4805 
4806 	ice_init_link_dflt_override(pf->hw.port_info);
4807 
4808 	ice_check_link_cfg_err(pf,
4809 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4810 
4811 	/* if media available, initialize PHY settings */
4812 	if (pf->hw.port_info->phy.link_info.link_info &
4813 	    ICE_AQ_MEDIA_AVAILABLE) {
4814 		/* not a fatal error if this fails */
4815 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4816 		if (err)
4817 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4818 
4819 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4820 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4821 
4822 			if (vsi)
4823 				ice_configure_phy(vsi);
4824 		}
4825 	} else {
4826 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4827 	}
4828 
4829 	ice_verify_cacheline_size(pf);
4830 
4831 	/* Save wakeup reason register for later use */
4832 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4833 
4834 	/* check for a power management event */
4835 	ice_print_wake_reason(pf);
4836 
4837 	/* clear wake status, all bits */
4838 	wr32(hw, PFPM_WUS, U32_MAX);
4839 
4840 	/* Disable WoL at init, wait for user to enable */
4841 	device_set_wakeup_enable(dev, false);
4842 
4843 	if (ice_is_safe_mode(pf)) {
4844 		ice_set_safe_mode_vlan_cfg(pf);
4845 		goto probe_done;
4846 	}
4847 
4848 	/* initialize DDP driven features */
4849 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4850 		ice_ptp_init(pf);
4851 
4852 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4853 		ice_gnss_init(pf);
4854 
4855 	/* Note: Flow director init failure is non-fatal to load */
4856 	if (ice_init_fdir(pf))
4857 		dev_err(dev, "could not initialize flow director\n");
4858 
4859 	/* Note: DCB init failure is non-fatal to load */
4860 	if (ice_init_pf_dcb(pf, false)) {
4861 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4862 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4863 	} else {
4864 		ice_cfg_lldp_mib_change(&pf->hw, true);
4865 	}
4866 
4867 	if (ice_init_lag(pf))
4868 		dev_warn(dev, "Failed to init link aggregation support\n");
4869 
4870 	/* print PCI link speed and width */
4871 	pcie_print_link_status(pf->pdev);
4872 
4873 probe_done:
4874 	err = ice_register_netdev(pf);
4875 	if (err)
4876 		goto err_netdev_reg;
4877 
4878 	err = ice_devlink_register_params(pf);
4879 	if (err)
4880 		goto err_netdev_reg;
4881 
4882 	/* ready to go, so clear down state bit */
4883 	clear_bit(ICE_DOWN, pf->state);
4884 	if (ice_is_rdma_ena(pf)) {
4885 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4886 		if (pf->aux_idx < 0) {
4887 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4888 			err = -ENOMEM;
4889 			goto err_devlink_reg_param;
4890 		}
4891 
4892 		err = ice_init_rdma(pf);
4893 		if (err) {
4894 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4895 			err = -EIO;
4896 			goto err_init_aux_unroll;
4897 		}
4898 	} else {
4899 		dev_warn(dev, "RDMA is not supported on this device\n");
4900 	}
4901 
4902 	ice_devlink_register(pf);
4903 	return 0;
4904 
4905 err_init_aux_unroll:
4906 	pf->adev = NULL;
4907 	ida_free(&ice_aux_ida, pf->aux_idx);
4908 err_devlink_reg_param:
4909 	ice_devlink_unregister_params(pf);
4910 err_netdev_reg:
4911 err_send_version_unroll:
4912 	ice_vsi_release_all(pf);
4913 err_alloc_sw_unroll:
4914 	set_bit(ICE_SERVICE_DIS, pf->state);
4915 	set_bit(ICE_DOWN, pf->state);
4916 	devm_kfree(dev, pf->first_sw);
4917 err_msix_misc_unroll:
4918 	ice_free_irq_msix_misc(pf);
4919 err_init_interrupt_unroll:
4920 	ice_clear_interrupt_scheme(pf);
4921 err_init_vsi_unroll:
4922 	devm_kfree(dev, pf->vsi);
4923 err_init_pf_unroll:
4924 	ice_deinit_pf(pf);
4925 	ice_devlink_destroy_regions(pf);
4926 	ice_deinit_hw(hw);
4927 err_exit_unroll:
4928 	pci_disable_pcie_error_reporting(pdev);
4929 	pci_disable_device(pdev);
4930 	return err;
4931 }
4932 
4933 /**
4934  * ice_set_wake - enable or disable Wake on LAN
4935  * @pf: pointer to the PF struct
4936  *
4937  * Simple helper for WoL control
4938  */
4939 static void ice_set_wake(struct ice_pf *pf)
4940 {
4941 	struct ice_hw *hw = &pf->hw;
4942 	bool wol = pf->wol_ena;
4943 
4944 	/* clear wake state, otherwise new wake events won't fire */
4945 	wr32(hw, PFPM_WUS, U32_MAX);
4946 
4947 	/* enable / disable APM wake up, no RMW needed */
4948 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4949 
4950 	/* set magic packet filter enabled */
4951 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4952 }
4953 
4954 /**
4955  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4956  * @pf: pointer to the PF struct
4957  *
4958  * Issue firmware command to enable multicast magic wake, making
4959  * sure that any locally administered address (LAA) is used for
4960  * wake, and that PF reset doesn't undo the LAA.
4961  */
4962 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4963 {
4964 	struct device *dev = ice_pf_to_dev(pf);
4965 	struct ice_hw *hw = &pf->hw;
4966 	u8 mac_addr[ETH_ALEN];
4967 	struct ice_vsi *vsi;
4968 	int status;
4969 	u8 flags;
4970 
4971 	if (!pf->wol_ena)
4972 		return;
4973 
4974 	vsi = ice_get_main_vsi(pf);
4975 	if (!vsi)
4976 		return;
4977 
4978 	/* Get current MAC address in case it's an LAA */
4979 	if (vsi->netdev)
4980 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4981 	else
4982 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4983 
4984 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4985 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4986 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4987 
4988 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4989 	if (status)
4990 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4991 			status, ice_aq_str(hw->adminq.sq_last_status));
4992 }
4993 
4994 /**
4995  * ice_remove - Device removal routine
4996  * @pdev: PCI device information struct
4997  */
4998 static void ice_remove(struct pci_dev *pdev)
4999 {
5000 	struct ice_pf *pf = pci_get_drvdata(pdev);
5001 	int i;
5002 
5003 	ice_devlink_unregister(pf);
5004 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5005 		if (!ice_is_reset_in_progress(pf->state))
5006 			break;
5007 		msleep(100);
5008 	}
5009 
5010 	ice_tc_indir_block_remove(pf);
5011 
5012 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5013 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5014 		ice_free_vfs(pf);
5015 	}
5016 
5017 	ice_service_task_stop(pf);
5018 
5019 	ice_aq_cancel_waiting_tasks(pf);
5020 	ice_unplug_aux_dev(pf);
5021 	if (pf->aux_idx >= 0)
5022 		ida_free(&ice_aux_ida, pf->aux_idx);
5023 	ice_devlink_unregister_params(pf);
5024 	set_bit(ICE_DOWN, pf->state);
5025 
5026 	ice_deinit_lag(pf);
5027 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5028 		ice_ptp_release(pf);
5029 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5030 		ice_gnss_exit(pf);
5031 	if (!ice_is_safe_mode(pf))
5032 		ice_remove_arfs(pf);
5033 	ice_setup_mc_magic_wake(pf);
5034 	ice_vsi_release_all(pf);
5035 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5036 	ice_set_wake(pf);
5037 	ice_free_irq_msix_misc(pf);
5038 	ice_for_each_vsi(pf, i) {
5039 		if (!pf->vsi[i])
5040 			continue;
5041 		ice_vsi_free_q_vectors(pf->vsi[i]);
5042 	}
5043 	ice_deinit_pf(pf);
5044 	ice_devlink_destroy_regions(pf);
5045 	ice_deinit_hw(&pf->hw);
5046 
5047 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5048 	 * do it via ice_schedule_reset() since there is no need to rebuild
5049 	 * and the service task is already stopped.
5050 	 */
5051 	ice_reset(&pf->hw, ICE_RESET_PFR);
5052 	pci_wait_for_pending_transaction(pdev);
5053 	ice_clear_interrupt_scheme(pf);
5054 	pci_disable_pcie_error_reporting(pdev);
5055 	pci_disable_device(pdev);
5056 }
5057 
5058 /**
5059  * ice_shutdown - PCI callback for shutting down device
5060  * @pdev: PCI device information struct
5061  */
5062 static void ice_shutdown(struct pci_dev *pdev)
5063 {
5064 	struct ice_pf *pf = pci_get_drvdata(pdev);
5065 
5066 	ice_remove(pdev);
5067 
5068 	if (system_state == SYSTEM_POWER_OFF) {
5069 		pci_wake_from_d3(pdev, pf->wol_ena);
5070 		pci_set_power_state(pdev, PCI_D3hot);
5071 	}
5072 }
5073 
5074 #ifdef CONFIG_PM
5075 /**
5076  * ice_prepare_for_shutdown - prep for PCI shutdown
5077  * @pf: board private structure
5078  *
5079  * Inform or close all dependent features in prep for PCI device shutdown
5080  */
5081 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5082 {
5083 	struct ice_hw *hw = &pf->hw;
5084 	u32 v;
5085 
5086 	/* Notify VFs of impending reset */
5087 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5088 		ice_vc_notify_reset(pf);
5089 
5090 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5091 
5092 	/* disable the VSIs and their queues that are not already DOWN */
5093 	ice_pf_dis_all_vsi(pf, false);
5094 
5095 	ice_for_each_vsi(pf, v)
5096 		if (pf->vsi[v])
5097 			pf->vsi[v]->vsi_num = 0;
5098 
5099 	ice_shutdown_all_ctrlq(hw);
5100 }
5101 
5102 /**
5103  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5104  * @pf: board private structure to reinitialize
5105  *
5106  * This routine reinitialize interrupt scheme that was cleared during
5107  * power management suspend callback.
5108  *
5109  * This should be called during resume routine to re-allocate the q_vectors
5110  * and reacquire interrupts.
5111  */
5112 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5113 {
5114 	struct device *dev = ice_pf_to_dev(pf);
5115 	int ret, v;
5116 
5117 	/* Since we clear MSIX flag during suspend, we need to
5118 	 * set it back during resume...
5119 	 */
5120 
5121 	ret = ice_init_interrupt_scheme(pf);
5122 	if (ret) {
5123 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5124 		return ret;
5125 	}
5126 
5127 	/* Remap vectors and rings, after successful re-init interrupts */
5128 	ice_for_each_vsi(pf, v) {
5129 		if (!pf->vsi[v])
5130 			continue;
5131 
5132 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5133 		if (ret)
5134 			goto err_reinit;
5135 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5136 	}
5137 
5138 	ret = ice_req_irq_msix_misc(pf);
5139 	if (ret) {
5140 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5141 			ret);
5142 		goto err_reinit;
5143 	}
5144 
5145 	return 0;
5146 
5147 err_reinit:
5148 	while (v--)
5149 		if (pf->vsi[v])
5150 			ice_vsi_free_q_vectors(pf->vsi[v]);
5151 
5152 	return ret;
5153 }
5154 
5155 /**
5156  * ice_suspend
5157  * @dev: generic device information structure
5158  *
5159  * Power Management callback to quiesce the device and prepare
5160  * for D3 transition.
5161  */
5162 static int __maybe_unused ice_suspend(struct device *dev)
5163 {
5164 	struct pci_dev *pdev = to_pci_dev(dev);
5165 	struct ice_pf *pf;
5166 	int disabled, v;
5167 
5168 	pf = pci_get_drvdata(pdev);
5169 
5170 	if (!ice_pf_state_is_nominal(pf)) {
5171 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5172 		return -EBUSY;
5173 	}
5174 
5175 	/* Stop watchdog tasks until resume completion.
5176 	 * Even though it is most likely that the service task is
5177 	 * disabled if the device is suspended or down, the service task's
5178 	 * state is controlled by a different state bit, and we should
5179 	 * store and honor whatever state that bit is in at this point.
5180 	 */
5181 	disabled = ice_service_task_stop(pf);
5182 
5183 	ice_unplug_aux_dev(pf);
5184 
5185 	/* Already suspended?, then there is nothing to do */
5186 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5187 		if (!disabled)
5188 			ice_service_task_restart(pf);
5189 		return 0;
5190 	}
5191 
5192 	if (test_bit(ICE_DOWN, pf->state) ||
5193 	    ice_is_reset_in_progress(pf->state)) {
5194 		dev_err(dev, "can't suspend device in reset or already down\n");
5195 		if (!disabled)
5196 			ice_service_task_restart(pf);
5197 		return 0;
5198 	}
5199 
5200 	ice_setup_mc_magic_wake(pf);
5201 
5202 	ice_prepare_for_shutdown(pf);
5203 
5204 	ice_set_wake(pf);
5205 
5206 	/* Free vectors, clear the interrupt scheme and release IRQs
5207 	 * for proper hibernation, especially with large number of CPUs.
5208 	 * Otherwise hibernation might fail when mapping all the vectors back
5209 	 * to CPU0.
5210 	 */
5211 	ice_free_irq_msix_misc(pf);
5212 	ice_for_each_vsi(pf, v) {
5213 		if (!pf->vsi[v])
5214 			continue;
5215 		ice_vsi_free_q_vectors(pf->vsi[v]);
5216 	}
5217 	ice_clear_interrupt_scheme(pf);
5218 
5219 	pci_save_state(pdev);
5220 	pci_wake_from_d3(pdev, pf->wol_ena);
5221 	pci_set_power_state(pdev, PCI_D3hot);
5222 	return 0;
5223 }
5224 
5225 /**
5226  * ice_resume - PM callback for waking up from D3
5227  * @dev: generic device information structure
5228  */
5229 static int __maybe_unused ice_resume(struct device *dev)
5230 {
5231 	struct pci_dev *pdev = to_pci_dev(dev);
5232 	enum ice_reset_req reset_type;
5233 	struct ice_pf *pf;
5234 	struct ice_hw *hw;
5235 	int ret;
5236 
5237 	pci_set_power_state(pdev, PCI_D0);
5238 	pci_restore_state(pdev);
5239 	pci_save_state(pdev);
5240 
5241 	if (!pci_device_is_present(pdev))
5242 		return -ENODEV;
5243 
5244 	ret = pci_enable_device_mem(pdev);
5245 	if (ret) {
5246 		dev_err(dev, "Cannot enable device after suspend\n");
5247 		return ret;
5248 	}
5249 
5250 	pf = pci_get_drvdata(pdev);
5251 	hw = &pf->hw;
5252 
5253 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5254 	ice_print_wake_reason(pf);
5255 
5256 	/* We cleared the interrupt scheme when we suspended, so we need to
5257 	 * restore it now to resume device functionality.
5258 	 */
5259 	ret = ice_reinit_interrupt_scheme(pf);
5260 	if (ret)
5261 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5262 
5263 	clear_bit(ICE_DOWN, pf->state);
5264 	/* Now perform PF reset and rebuild */
5265 	reset_type = ICE_RESET_PFR;
5266 	/* re-enable service task for reset, but allow reset to schedule it */
5267 	clear_bit(ICE_SERVICE_DIS, pf->state);
5268 
5269 	if (ice_schedule_reset(pf, reset_type))
5270 		dev_err(dev, "Reset during resume failed.\n");
5271 
5272 	clear_bit(ICE_SUSPENDED, pf->state);
5273 	ice_service_task_restart(pf);
5274 
5275 	/* Restart the service task */
5276 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5277 
5278 	return 0;
5279 }
5280 #endif /* CONFIG_PM */
5281 
5282 /**
5283  * ice_pci_err_detected - warning that PCI error has been detected
5284  * @pdev: PCI device information struct
5285  * @err: the type of PCI error
5286  *
5287  * Called to warn that something happened on the PCI bus and the error handling
5288  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5289  */
5290 static pci_ers_result_t
5291 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5292 {
5293 	struct ice_pf *pf = pci_get_drvdata(pdev);
5294 
5295 	if (!pf) {
5296 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5297 			__func__, err);
5298 		return PCI_ERS_RESULT_DISCONNECT;
5299 	}
5300 
5301 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5302 		ice_service_task_stop(pf);
5303 
5304 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5305 			set_bit(ICE_PFR_REQ, pf->state);
5306 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5307 		}
5308 	}
5309 
5310 	return PCI_ERS_RESULT_NEED_RESET;
5311 }
5312 
5313 /**
5314  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5315  * @pdev: PCI device information struct
5316  *
5317  * Called to determine if the driver can recover from the PCI slot reset by
5318  * using a register read to determine if the device is recoverable.
5319  */
5320 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5321 {
5322 	struct ice_pf *pf = pci_get_drvdata(pdev);
5323 	pci_ers_result_t result;
5324 	int err;
5325 	u32 reg;
5326 
5327 	err = pci_enable_device_mem(pdev);
5328 	if (err) {
5329 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5330 			err);
5331 		result = PCI_ERS_RESULT_DISCONNECT;
5332 	} else {
5333 		pci_set_master(pdev);
5334 		pci_restore_state(pdev);
5335 		pci_save_state(pdev);
5336 		pci_wake_from_d3(pdev, false);
5337 
5338 		/* Check for life */
5339 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5340 		if (!reg)
5341 			result = PCI_ERS_RESULT_RECOVERED;
5342 		else
5343 			result = PCI_ERS_RESULT_DISCONNECT;
5344 	}
5345 
5346 	return result;
5347 }
5348 
5349 /**
5350  * ice_pci_err_resume - restart operations after PCI error recovery
5351  * @pdev: PCI device information struct
5352  *
5353  * Called to allow the driver to bring things back up after PCI error and/or
5354  * reset recovery have finished
5355  */
5356 static void ice_pci_err_resume(struct pci_dev *pdev)
5357 {
5358 	struct ice_pf *pf = pci_get_drvdata(pdev);
5359 
5360 	if (!pf) {
5361 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5362 			__func__);
5363 		return;
5364 	}
5365 
5366 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5367 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5368 			__func__);
5369 		return;
5370 	}
5371 
5372 	ice_restore_all_vfs_msi_state(pdev);
5373 
5374 	ice_do_reset(pf, ICE_RESET_PFR);
5375 	ice_service_task_restart(pf);
5376 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5377 }
5378 
5379 /**
5380  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5381  * @pdev: PCI device information struct
5382  */
5383 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5384 {
5385 	struct ice_pf *pf = pci_get_drvdata(pdev);
5386 
5387 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5388 		ice_service_task_stop(pf);
5389 
5390 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5391 			set_bit(ICE_PFR_REQ, pf->state);
5392 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5393 		}
5394 	}
5395 }
5396 
5397 /**
5398  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5399  * @pdev: PCI device information struct
5400  */
5401 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5402 {
5403 	ice_pci_err_resume(pdev);
5404 }
5405 
5406 /* ice_pci_tbl - PCI Device ID Table
5407  *
5408  * Wildcard entries (PCI_ANY_ID) should come last
5409  * Last entry must be all 0s
5410  *
5411  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5412  *   Class, Class Mask, private data (not used) }
5413  */
5414 static const struct pci_device_id ice_pci_tbl[] = {
5415 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5416 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5417 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5418 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5419 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5420 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5421 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5422 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5423 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5424 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5425 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5426 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5427 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5428 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5429 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5430 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5431 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5432 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5433 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5434 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5435 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5436 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5437 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5438 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5439 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5440 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5441 	/* required last entry */
5442 	{ 0, }
5443 };
5444 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5445 
5446 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5447 
5448 static const struct pci_error_handlers ice_pci_err_handler = {
5449 	.error_detected = ice_pci_err_detected,
5450 	.slot_reset = ice_pci_err_slot_reset,
5451 	.reset_prepare = ice_pci_err_reset_prepare,
5452 	.reset_done = ice_pci_err_reset_done,
5453 	.resume = ice_pci_err_resume
5454 };
5455 
5456 static struct pci_driver ice_driver = {
5457 	.name = KBUILD_MODNAME,
5458 	.id_table = ice_pci_tbl,
5459 	.probe = ice_probe,
5460 	.remove = ice_remove,
5461 #ifdef CONFIG_PM
5462 	.driver.pm = &ice_pm_ops,
5463 #endif /* CONFIG_PM */
5464 	.shutdown = ice_shutdown,
5465 	.sriov_configure = ice_sriov_configure,
5466 	.err_handler = &ice_pci_err_handler
5467 };
5468 
5469 /**
5470  * ice_module_init - Driver registration routine
5471  *
5472  * ice_module_init is the first routine called when the driver is
5473  * loaded. All it does is register with the PCI subsystem.
5474  */
5475 static int __init ice_module_init(void)
5476 {
5477 	int status;
5478 
5479 	pr_info("%s\n", ice_driver_string);
5480 	pr_info("%s\n", ice_copyright);
5481 
5482 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5483 	if (!ice_wq) {
5484 		pr_err("Failed to create workqueue\n");
5485 		return -ENOMEM;
5486 	}
5487 
5488 	status = pci_register_driver(&ice_driver);
5489 	if (status) {
5490 		pr_err("failed to register PCI driver, err %d\n", status);
5491 		destroy_workqueue(ice_wq);
5492 	}
5493 
5494 	return status;
5495 }
5496 module_init(ice_module_init);
5497 
5498 /**
5499  * ice_module_exit - Driver exit cleanup routine
5500  *
5501  * ice_module_exit is called just before the driver is removed
5502  * from memory.
5503  */
5504 static void __exit ice_module_exit(void)
5505 {
5506 	pci_unregister_driver(&ice_driver);
5507 	destroy_workqueue(ice_wq);
5508 	pr_info("module unloaded\n");
5509 }
5510 module_exit(ice_module_exit);
5511 
5512 /**
5513  * ice_set_mac_address - NDO callback to set MAC address
5514  * @netdev: network interface device structure
5515  * @pi: pointer to an address structure
5516  *
5517  * Returns 0 on success, negative on failure
5518  */
5519 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5520 {
5521 	struct ice_netdev_priv *np = netdev_priv(netdev);
5522 	struct ice_vsi *vsi = np->vsi;
5523 	struct ice_pf *pf = vsi->back;
5524 	struct ice_hw *hw = &pf->hw;
5525 	struct sockaddr *addr = pi;
5526 	u8 old_mac[ETH_ALEN];
5527 	u8 flags = 0;
5528 	u8 *mac;
5529 	int err;
5530 
5531 	mac = (u8 *)addr->sa_data;
5532 
5533 	if (!is_valid_ether_addr(mac))
5534 		return -EADDRNOTAVAIL;
5535 
5536 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5537 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5538 		return 0;
5539 	}
5540 
5541 	if (test_bit(ICE_DOWN, pf->state) ||
5542 	    ice_is_reset_in_progress(pf->state)) {
5543 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5544 			   mac);
5545 		return -EBUSY;
5546 	}
5547 
5548 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5549 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5550 			   mac);
5551 		return -EAGAIN;
5552 	}
5553 
5554 	netif_addr_lock_bh(netdev);
5555 	ether_addr_copy(old_mac, netdev->dev_addr);
5556 	/* change the netdev's MAC address */
5557 	eth_hw_addr_set(netdev, mac);
5558 	netif_addr_unlock_bh(netdev);
5559 
5560 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5561 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5562 	if (err && err != -ENOENT) {
5563 		err = -EADDRNOTAVAIL;
5564 		goto err_update_filters;
5565 	}
5566 
5567 	/* Add filter for new MAC. If filter exists, return success */
5568 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5569 	if (err == -EEXIST) {
5570 		/* Although this MAC filter is already present in hardware it's
5571 		 * possible in some cases (e.g. bonding) that dev_addr was
5572 		 * modified outside of the driver and needs to be restored back
5573 		 * to this value.
5574 		 */
5575 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5576 
5577 		return 0;
5578 	} else if (err) {
5579 		/* error if the new filter addition failed */
5580 		err = -EADDRNOTAVAIL;
5581 	}
5582 
5583 err_update_filters:
5584 	if (err) {
5585 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5586 			   mac);
5587 		netif_addr_lock_bh(netdev);
5588 		eth_hw_addr_set(netdev, old_mac);
5589 		netif_addr_unlock_bh(netdev);
5590 		return err;
5591 	}
5592 
5593 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5594 		   netdev->dev_addr);
5595 
5596 	/* write new MAC address to the firmware */
5597 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5598 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5599 	if (err) {
5600 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5601 			   mac, err);
5602 	}
5603 	return 0;
5604 }
5605 
5606 /**
5607  * ice_set_rx_mode - NDO callback to set the netdev filters
5608  * @netdev: network interface device structure
5609  */
5610 static void ice_set_rx_mode(struct net_device *netdev)
5611 {
5612 	struct ice_netdev_priv *np = netdev_priv(netdev);
5613 	struct ice_vsi *vsi = np->vsi;
5614 
5615 	if (!vsi)
5616 		return;
5617 
5618 	/* Set the flags to synchronize filters
5619 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5620 	 * flags
5621 	 */
5622 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5623 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5624 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5625 
5626 	/* schedule our worker thread which will take care of
5627 	 * applying the new filter changes
5628 	 */
5629 	ice_service_task_schedule(vsi->back);
5630 }
5631 
5632 /**
5633  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5634  * @netdev: network interface device structure
5635  * @queue_index: Queue ID
5636  * @maxrate: maximum bandwidth in Mbps
5637  */
5638 static int
5639 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5640 {
5641 	struct ice_netdev_priv *np = netdev_priv(netdev);
5642 	struct ice_vsi *vsi = np->vsi;
5643 	u16 q_handle;
5644 	int status;
5645 	u8 tc;
5646 
5647 	/* Validate maxrate requested is within permitted range */
5648 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5649 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5650 			   maxrate, queue_index);
5651 		return -EINVAL;
5652 	}
5653 
5654 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5655 	tc = ice_dcb_get_tc(vsi, queue_index);
5656 
5657 	/* Set BW back to default, when user set maxrate to 0 */
5658 	if (!maxrate)
5659 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5660 					       q_handle, ICE_MAX_BW);
5661 	else
5662 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5663 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5664 	if (status)
5665 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5666 			   status);
5667 
5668 	return status;
5669 }
5670 
5671 /**
5672  * ice_fdb_add - add an entry to the hardware database
5673  * @ndm: the input from the stack
5674  * @tb: pointer to array of nladdr (unused)
5675  * @dev: the net device pointer
5676  * @addr: the MAC address entry being added
5677  * @vid: VLAN ID
5678  * @flags: instructions from stack about fdb operation
5679  * @extack: netlink extended ack
5680  */
5681 static int
5682 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5683 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5684 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5685 {
5686 	int err;
5687 
5688 	if (vid) {
5689 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5690 		return -EINVAL;
5691 	}
5692 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5693 		netdev_err(dev, "FDB only supports static addresses\n");
5694 		return -EINVAL;
5695 	}
5696 
5697 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5698 		err = dev_uc_add_excl(dev, addr);
5699 	else if (is_multicast_ether_addr(addr))
5700 		err = dev_mc_add_excl(dev, addr);
5701 	else
5702 		err = -EINVAL;
5703 
5704 	/* Only return duplicate errors if NLM_F_EXCL is set */
5705 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5706 		err = 0;
5707 
5708 	return err;
5709 }
5710 
5711 /**
5712  * ice_fdb_del - delete an entry from the hardware database
5713  * @ndm: the input from the stack
5714  * @tb: pointer to array of nladdr (unused)
5715  * @dev: the net device pointer
5716  * @addr: the MAC address entry being added
5717  * @vid: VLAN ID
5718  * @extack: netlink extended ack
5719  */
5720 static int
5721 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5722 	    struct net_device *dev, const unsigned char *addr,
5723 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5724 {
5725 	int err;
5726 
5727 	if (ndm->ndm_state & NUD_PERMANENT) {
5728 		netdev_err(dev, "FDB only supports static addresses\n");
5729 		return -EINVAL;
5730 	}
5731 
5732 	if (is_unicast_ether_addr(addr))
5733 		err = dev_uc_del(dev, addr);
5734 	else if (is_multicast_ether_addr(addr))
5735 		err = dev_mc_del(dev, addr);
5736 	else
5737 		err = -EINVAL;
5738 
5739 	return err;
5740 }
5741 
5742 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5743 					 NETIF_F_HW_VLAN_CTAG_TX | \
5744 					 NETIF_F_HW_VLAN_STAG_RX | \
5745 					 NETIF_F_HW_VLAN_STAG_TX)
5746 
5747 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5748 					 NETIF_F_HW_VLAN_STAG_FILTER)
5749 
5750 /**
5751  * ice_fix_features - fix the netdev features flags based on device limitations
5752  * @netdev: ptr to the netdev that flags are being fixed on
5753  * @features: features that need to be checked and possibly fixed
5754  *
5755  * Make sure any fixups are made to features in this callback. This enables the
5756  * driver to not have to check unsupported configurations throughout the driver
5757  * because that's the responsiblity of this callback.
5758  *
5759  * Single VLAN Mode (SVM) Supported Features:
5760  *	NETIF_F_HW_VLAN_CTAG_FILTER
5761  *	NETIF_F_HW_VLAN_CTAG_RX
5762  *	NETIF_F_HW_VLAN_CTAG_TX
5763  *
5764  * Double VLAN Mode (DVM) Supported Features:
5765  *	NETIF_F_HW_VLAN_CTAG_FILTER
5766  *	NETIF_F_HW_VLAN_CTAG_RX
5767  *	NETIF_F_HW_VLAN_CTAG_TX
5768  *
5769  *	NETIF_F_HW_VLAN_STAG_FILTER
5770  *	NETIF_HW_VLAN_STAG_RX
5771  *	NETIF_HW_VLAN_STAG_TX
5772  *
5773  * Features that need fixing:
5774  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5775  *	These are mutually exlusive as the VSI context cannot support multiple
5776  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5777  *	is not done, then default to clearing the requested STAG offload
5778  *	settings.
5779  *
5780  *	All supported filtering has to be enabled or disabled together. For
5781  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5782  *	together. If this is not done, then default to VLAN filtering disabled.
5783  *	These are mutually exclusive as there is currently no way to
5784  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5785  *	prune rules.
5786  */
5787 static netdev_features_t
5788 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5789 {
5790 	struct ice_netdev_priv *np = netdev_priv(netdev);
5791 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5792 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5793 
5794 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5795 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5796 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5797 
5798 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5799 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5800 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5801 
5802 	if (req_vlan_fltr != cur_vlan_fltr) {
5803 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5804 			if (req_ctag && req_stag) {
5805 				features |= NETIF_VLAN_FILTERING_FEATURES;
5806 			} else if (!req_ctag && !req_stag) {
5807 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5808 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5809 				   (!cur_stag && req_stag && !cur_ctag)) {
5810 				features |= NETIF_VLAN_FILTERING_FEATURES;
5811 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5812 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5813 				   (cur_stag && !req_stag && cur_ctag)) {
5814 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5815 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5816 			}
5817 		} else {
5818 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5819 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5820 
5821 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5822 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5823 		}
5824 	}
5825 
5826 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5827 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5828 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5829 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5830 			      NETIF_F_HW_VLAN_STAG_TX);
5831 	}
5832 
5833 	return features;
5834 }
5835 
5836 /**
5837  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5838  * @vsi: PF's VSI
5839  * @features: features used to determine VLAN offload settings
5840  *
5841  * First, determine the vlan_ethertype based on the VLAN offload bits in
5842  * features. Then determine if stripping and insertion should be enabled or
5843  * disabled. Finally enable or disable VLAN stripping and insertion.
5844  */
5845 static int
5846 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5847 {
5848 	bool enable_stripping = true, enable_insertion = true;
5849 	struct ice_vsi_vlan_ops *vlan_ops;
5850 	int strip_err = 0, insert_err = 0;
5851 	u16 vlan_ethertype = 0;
5852 
5853 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5854 
5855 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5856 		vlan_ethertype = ETH_P_8021AD;
5857 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5858 		vlan_ethertype = ETH_P_8021Q;
5859 
5860 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5861 		enable_stripping = false;
5862 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5863 		enable_insertion = false;
5864 
5865 	if (enable_stripping)
5866 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5867 	else
5868 		strip_err = vlan_ops->dis_stripping(vsi);
5869 
5870 	if (enable_insertion)
5871 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5872 	else
5873 		insert_err = vlan_ops->dis_insertion(vsi);
5874 
5875 	if (strip_err || insert_err)
5876 		return -EIO;
5877 
5878 	return 0;
5879 }
5880 
5881 /**
5882  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5883  * @vsi: PF's VSI
5884  * @features: features used to determine VLAN filtering settings
5885  *
5886  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5887  * features.
5888  */
5889 static int
5890 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5891 {
5892 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5893 	int err = 0;
5894 
5895 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5896 	 * if either bit is set
5897 	 */
5898 	if (features &
5899 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5900 		err = vlan_ops->ena_rx_filtering(vsi);
5901 	else
5902 		err = vlan_ops->dis_rx_filtering(vsi);
5903 
5904 	return err;
5905 }
5906 
5907 /**
5908  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5909  * @netdev: ptr to the netdev being adjusted
5910  * @features: the feature set that the stack is suggesting
5911  *
5912  * Only update VLAN settings if the requested_vlan_features are different than
5913  * the current_vlan_features.
5914  */
5915 static int
5916 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5917 {
5918 	netdev_features_t current_vlan_features, requested_vlan_features;
5919 	struct ice_netdev_priv *np = netdev_priv(netdev);
5920 	struct ice_vsi *vsi = np->vsi;
5921 	int err;
5922 
5923 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5924 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5925 	if (current_vlan_features ^ requested_vlan_features) {
5926 		err = ice_set_vlan_offload_features(vsi, features);
5927 		if (err)
5928 			return err;
5929 	}
5930 
5931 	current_vlan_features = netdev->features &
5932 		NETIF_VLAN_FILTERING_FEATURES;
5933 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5934 	if (current_vlan_features ^ requested_vlan_features) {
5935 		err = ice_set_vlan_filtering_features(vsi, features);
5936 		if (err)
5937 			return err;
5938 	}
5939 
5940 	return 0;
5941 }
5942 
5943 /**
5944  * ice_set_loopback - turn on/off loopback mode on underlying PF
5945  * @vsi: ptr to VSI
5946  * @ena: flag to indicate the on/off setting
5947  */
5948 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
5949 {
5950 	bool if_running = netif_running(vsi->netdev);
5951 	int ret;
5952 
5953 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
5954 		ret = ice_down(vsi);
5955 		if (ret) {
5956 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
5957 			return ret;
5958 		}
5959 	}
5960 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
5961 	if (ret)
5962 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
5963 	if (if_running)
5964 		ret = ice_up(vsi);
5965 
5966 	return ret;
5967 }
5968 
5969 /**
5970  * ice_set_features - set the netdev feature flags
5971  * @netdev: ptr to the netdev being adjusted
5972  * @features: the feature set that the stack is suggesting
5973  */
5974 static int
5975 ice_set_features(struct net_device *netdev, netdev_features_t features)
5976 {
5977 	netdev_features_t changed = netdev->features ^ features;
5978 	struct ice_netdev_priv *np = netdev_priv(netdev);
5979 	struct ice_vsi *vsi = np->vsi;
5980 	struct ice_pf *pf = vsi->back;
5981 	int ret = 0;
5982 
5983 	/* Don't set any netdev advanced features with device in Safe Mode */
5984 	if (ice_is_safe_mode(pf)) {
5985 		dev_err(ice_pf_to_dev(pf),
5986 			"Device is in Safe Mode - not enabling advanced netdev features\n");
5987 		return ret;
5988 	}
5989 
5990 	/* Do not change setting during reset */
5991 	if (ice_is_reset_in_progress(pf->state)) {
5992 		dev_err(ice_pf_to_dev(pf),
5993 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5994 		return -EBUSY;
5995 	}
5996 
5997 	/* Multiple features can be changed in one call so keep features in
5998 	 * separate if/else statements to guarantee each feature is checked
5999 	 */
6000 	if (changed & NETIF_F_RXHASH)
6001 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6002 
6003 	ret = ice_set_vlan_features(netdev, features);
6004 	if (ret)
6005 		return ret;
6006 
6007 	if (changed & NETIF_F_NTUPLE) {
6008 		bool ena = !!(features & NETIF_F_NTUPLE);
6009 
6010 		ice_vsi_manage_fdir(vsi, ena);
6011 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6012 	}
6013 
6014 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6015 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6016 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6017 		return -EACCES;
6018 	}
6019 
6020 	if (changed & NETIF_F_HW_TC) {
6021 		bool ena = !!(features & NETIF_F_HW_TC);
6022 
6023 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6024 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6025 	}
6026 
6027 	if (changed & NETIF_F_LOOPBACK)
6028 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6029 
6030 	return ret;
6031 }
6032 
6033 /**
6034  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6035  * @vsi: VSI to setup VLAN properties for
6036  */
6037 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6038 {
6039 	int err;
6040 
6041 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6042 	if (err)
6043 		return err;
6044 
6045 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6046 	if (err)
6047 		return err;
6048 
6049 	return ice_vsi_add_vlan_zero(vsi);
6050 }
6051 
6052 /**
6053  * ice_vsi_cfg - Setup the VSI
6054  * @vsi: the VSI being configured
6055  *
6056  * Return 0 on success and negative value on error
6057  */
6058 int ice_vsi_cfg(struct ice_vsi *vsi)
6059 {
6060 	int err;
6061 
6062 	if (vsi->netdev) {
6063 		ice_set_rx_mode(vsi->netdev);
6064 
6065 		if (vsi->type != ICE_VSI_LB) {
6066 			err = ice_vsi_vlan_setup(vsi);
6067 
6068 			if (err)
6069 				return err;
6070 		}
6071 	}
6072 	ice_vsi_cfg_dcb_rings(vsi);
6073 
6074 	err = ice_vsi_cfg_lan_txqs(vsi);
6075 	if (!err && ice_is_xdp_ena_vsi(vsi))
6076 		err = ice_vsi_cfg_xdp_txqs(vsi);
6077 	if (!err)
6078 		err = ice_vsi_cfg_rxqs(vsi);
6079 
6080 	return err;
6081 }
6082 
6083 /* THEORY OF MODERATION:
6084  * The ice driver hardware works differently than the hardware that DIMLIB was
6085  * originally made for. ice hardware doesn't have packet count limits that
6086  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6087  * which is hard-coded to a limit of 250,000 ints/second.
6088  * If not using dynamic moderation, the INTRL value can be modified
6089  * by ethtool rx-usecs-high.
6090  */
6091 struct ice_dim {
6092 	/* the throttle rate for interrupts, basically worst case delay before
6093 	 * an initial interrupt fires, value is stored in microseconds.
6094 	 */
6095 	u16 itr;
6096 };
6097 
6098 /* Make a different profile for Rx that doesn't allow quite so aggressive
6099  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6100  * second.
6101  */
6102 static const struct ice_dim rx_profile[] = {
6103 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6104 	{8},    /* 125,000 ints/s */
6105 	{16},   /*  62,500 ints/s */
6106 	{62},   /*  16,129 ints/s */
6107 	{126}   /*   7,936 ints/s */
6108 };
6109 
6110 /* The transmit profile, which has the same sorts of values
6111  * as the previous struct
6112  */
6113 static const struct ice_dim tx_profile[] = {
6114 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6115 	{8},    /* 125,000 ints/s */
6116 	{40},   /*  16,125 ints/s */
6117 	{128},  /*   7,812 ints/s */
6118 	{256}   /*   3,906 ints/s */
6119 };
6120 
6121 static void ice_tx_dim_work(struct work_struct *work)
6122 {
6123 	struct ice_ring_container *rc;
6124 	struct dim *dim;
6125 	u16 itr;
6126 
6127 	dim = container_of(work, struct dim, work);
6128 	rc = (struct ice_ring_container *)dim->priv;
6129 
6130 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6131 
6132 	/* look up the values in our local table */
6133 	itr = tx_profile[dim->profile_ix].itr;
6134 
6135 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6136 	ice_write_itr(rc, itr);
6137 
6138 	dim->state = DIM_START_MEASURE;
6139 }
6140 
6141 static void ice_rx_dim_work(struct work_struct *work)
6142 {
6143 	struct ice_ring_container *rc;
6144 	struct dim *dim;
6145 	u16 itr;
6146 
6147 	dim = container_of(work, struct dim, work);
6148 	rc = (struct ice_ring_container *)dim->priv;
6149 
6150 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6151 
6152 	/* look up the values in our local table */
6153 	itr = rx_profile[dim->profile_ix].itr;
6154 
6155 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6156 	ice_write_itr(rc, itr);
6157 
6158 	dim->state = DIM_START_MEASURE;
6159 }
6160 
6161 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6162 
6163 /**
6164  * ice_init_moderation - set up interrupt moderation
6165  * @q_vector: the vector containing rings to be configured
6166  *
6167  * Set up interrupt moderation registers, with the intent to do the right thing
6168  * when called from reset or from probe, and whether or not dynamic moderation
6169  * is enabled or not. Take special care to write all the registers in both
6170  * dynamic moderation mode or not in order to make sure hardware is in a known
6171  * state.
6172  */
6173 static void ice_init_moderation(struct ice_q_vector *q_vector)
6174 {
6175 	struct ice_ring_container *rc;
6176 	bool tx_dynamic, rx_dynamic;
6177 
6178 	rc = &q_vector->tx;
6179 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6180 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6181 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6182 	rc->dim.priv = rc;
6183 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6184 
6185 	/* set the initial TX ITR to match the above */
6186 	ice_write_itr(rc, tx_dynamic ?
6187 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6188 
6189 	rc = &q_vector->rx;
6190 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6191 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6192 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6193 	rc->dim.priv = rc;
6194 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6195 
6196 	/* set the initial RX ITR to match the above */
6197 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6198 				       rc->itr_setting);
6199 
6200 	ice_set_q_vector_intrl(q_vector);
6201 }
6202 
6203 /**
6204  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6205  * @vsi: the VSI being configured
6206  */
6207 static void ice_napi_enable_all(struct ice_vsi *vsi)
6208 {
6209 	int q_idx;
6210 
6211 	if (!vsi->netdev)
6212 		return;
6213 
6214 	ice_for_each_q_vector(vsi, q_idx) {
6215 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6216 
6217 		ice_init_moderation(q_vector);
6218 
6219 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6220 			napi_enable(&q_vector->napi);
6221 	}
6222 }
6223 
6224 /**
6225  * ice_up_complete - Finish the last steps of bringing up a connection
6226  * @vsi: The VSI being configured
6227  *
6228  * Return 0 on success and negative value on error
6229  */
6230 static int ice_up_complete(struct ice_vsi *vsi)
6231 {
6232 	struct ice_pf *pf = vsi->back;
6233 	int err;
6234 
6235 	ice_vsi_cfg_msix(vsi);
6236 
6237 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6238 	 * Tx queue group list was configured and the context bits were
6239 	 * programmed using ice_vsi_cfg_txqs
6240 	 */
6241 	err = ice_vsi_start_all_rx_rings(vsi);
6242 	if (err)
6243 		return err;
6244 
6245 	clear_bit(ICE_VSI_DOWN, vsi->state);
6246 	ice_napi_enable_all(vsi);
6247 	ice_vsi_ena_irq(vsi);
6248 
6249 	if (vsi->port_info &&
6250 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6251 	    vsi->netdev) {
6252 		ice_print_link_msg(vsi, true);
6253 		netif_tx_start_all_queues(vsi->netdev);
6254 		netif_carrier_on(vsi->netdev);
6255 		if (!ice_is_e810(&pf->hw))
6256 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6257 	}
6258 
6259 	/* Perform an initial read of the statistics registers now to
6260 	 * set the baseline so counters are ready when interface is up
6261 	 */
6262 	ice_update_eth_stats(vsi);
6263 	ice_service_task_schedule(pf);
6264 
6265 	return 0;
6266 }
6267 
6268 /**
6269  * ice_up - Bring the connection back up after being down
6270  * @vsi: VSI being configured
6271  */
6272 int ice_up(struct ice_vsi *vsi)
6273 {
6274 	int err;
6275 
6276 	err = ice_vsi_cfg(vsi);
6277 	if (!err)
6278 		err = ice_up_complete(vsi);
6279 
6280 	return err;
6281 }
6282 
6283 /**
6284  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6285  * @syncp: pointer to u64_stats_sync
6286  * @stats: stats that pkts and bytes count will be taken from
6287  * @pkts: packets stats counter
6288  * @bytes: bytes stats counter
6289  *
6290  * This function fetches stats from the ring considering the atomic operations
6291  * that needs to be performed to read u64 values in 32 bit machine.
6292  */
6293 void
6294 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6295 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6296 {
6297 	unsigned int start;
6298 
6299 	do {
6300 		start = u64_stats_fetch_begin_irq(syncp);
6301 		*pkts = stats.pkts;
6302 		*bytes = stats.bytes;
6303 	} while (u64_stats_fetch_retry_irq(syncp, start));
6304 }
6305 
6306 /**
6307  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6308  * @vsi: the VSI to be updated
6309  * @vsi_stats: the stats struct to be updated
6310  * @rings: rings to work on
6311  * @count: number of rings
6312  */
6313 static void
6314 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6315 			     struct rtnl_link_stats64 *vsi_stats,
6316 			     struct ice_tx_ring **rings, u16 count)
6317 {
6318 	u16 i;
6319 
6320 	for (i = 0; i < count; i++) {
6321 		struct ice_tx_ring *ring;
6322 		u64 pkts = 0, bytes = 0;
6323 
6324 		ring = READ_ONCE(rings[i]);
6325 		if (!ring)
6326 			continue;
6327 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6328 		vsi_stats->tx_packets += pkts;
6329 		vsi_stats->tx_bytes += bytes;
6330 		vsi->tx_restart += ring->tx_stats.restart_q;
6331 		vsi->tx_busy += ring->tx_stats.tx_busy;
6332 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6333 	}
6334 }
6335 
6336 /**
6337  * ice_update_vsi_ring_stats - Update VSI stats counters
6338  * @vsi: the VSI to be updated
6339  */
6340 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6341 {
6342 	struct rtnl_link_stats64 *vsi_stats;
6343 	u64 pkts, bytes;
6344 	int i;
6345 
6346 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6347 	if (!vsi_stats)
6348 		return;
6349 
6350 	/* reset non-netdev (extended) stats */
6351 	vsi->tx_restart = 0;
6352 	vsi->tx_busy = 0;
6353 	vsi->tx_linearize = 0;
6354 	vsi->rx_buf_failed = 0;
6355 	vsi->rx_page_failed = 0;
6356 
6357 	rcu_read_lock();
6358 
6359 	/* update Tx rings counters */
6360 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6361 				     vsi->num_txq);
6362 
6363 	/* update Rx rings counters */
6364 	ice_for_each_rxq(vsi, i) {
6365 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6366 
6367 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6368 		vsi_stats->rx_packets += pkts;
6369 		vsi_stats->rx_bytes += bytes;
6370 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6371 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6372 	}
6373 
6374 	/* update XDP Tx rings counters */
6375 	if (ice_is_xdp_ena_vsi(vsi))
6376 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6377 					     vsi->num_xdp_txq);
6378 
6379 	rcu_read_unlock();
6380 
6381 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6382 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6383 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6384 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6385 
6386 	kfree(vsi_stats);
6387 }
6388 
6389 /**
6390  * ice_update_vsi_stats - Update VSI stats counters
6391  * @vsi: the VSI to be updated
6392  */
6393 void ice_update_vsi_stats(struct ice_vsi *vsi)
6394 {
6395 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6396 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6397 	struct ice_pf *pf = vsi->back;
6398 
6399 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6400 	    test_bit(ICE_CFG_BUSY, pf->state))
6401 		return;
6402 
6403 	/* get stats as recorded by Tx/Rx rings */
6404 	ice_update_vsi_ring_stats(vsi);
6405 
6406 	/* get VSI stats as recorded by the hardware */
6407 	ice_update_eth_stats(vsi);
6408 
6409 	cur_ns->tx_errors = cur_es->tx_errors;
6410 	cur_ns->rx_dropped = cur_es->rx_discards;
6411 	cur_ns->tx_dropped = cur_es->tx_discards;
6412 	cur_ns->multicast = cur_es->rx_multicast;
6413 
6414 	/* update some more netdev stats if this is main VSI */
6415 	if (vsi->type == ICE_VSI_PF) {
6416 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6417 		cur_ns->rx_errors = pf->stats.crc_errors +
6418 				    pf->stats.illegal_bytes +
6419 				    pf->stats.rx_len_errors +
6420 				    pf->stats.rx_undersize +
6421 				    pf->hw_csum_rx_error +
6422 				    pf->stats.rx_jabber +
6423 				    pf->stats.rx_fragments +
6424 				    pf->stats.rx_oversize;
6425 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6426 		/* record drops from the port level */
6427 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6428 	}
6429 }
6430 
6431 /**
6432  * ice_update_pf_stats - Update PF port stats counters
6433  * @pf: PF whose stats needs to be updated
6434  */
6435 void ice_update_pf_stats(struct ice_pf *pf)
6436 {
6437 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6438 	struct ice_hw *hw = &pf->hw;
6439 	u16 fd_ctr_base;
6440 	u8 port;
6441 
6442 	port = hw->port_info->lport;
6443 	prev_ps = &pf->stats_prev;
6444 	cur_ps = &pf->stats;
6445 
6446 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6447 			  &prev_ps->eth.rx_bytes,
6448 			  &cur_ps->eth.rx_bytes);
6449 
6450 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6451 			  &prev_ps->eth.rx_unicast,
6452 			  &cur_ps->eth.rx_unicast);
6453 
6454 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6455 			  &prev_ps->eth.rx_multicast,
6456 			  &cur_ps->eth.rx_multicast);
6457 
6458 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6459 			  &prev_ps->eth.rx_broadcast,
6460 			  &cur_ps->eth.rx_broadcast);
6461 
6462 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6463 			  &prev_ps->eth.rx_discards,
6464 			  &cur_ps->eth.rx_discards);
6465 
6466 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6467 			  &prev_ps->eth.tx_bytes,
6468 			  &cur_ps->eth.tx_bytes);
6469 
6470 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6471 			  &prev_ps->eth.tx_unicast,
6472 			  &cur_ps->eth.tx_unicast);
6473 
6474 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6475 			  &prev_ps->eth.tx_multicast,
6476 			  &cur_ps->eth.tx_multicast);
6477 
6478 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6479 			  &prev_ps->eth.tx_broadcast,
6480 			  &cur_ps->eth.tx_broadcast);
6481 
6482 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6483 			  &prev_ps->tx_dropped_link_down,
6484 			  &cur_ps->tx_dropped_link_down);
6485 
6486 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6487 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6488 
6489 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6490 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6491 
6492 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6493 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6494 
6495 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6496 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6497 
6498 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6499 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6500 
6501 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6502 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6503 
6504 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6505 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6506 
6507 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6508 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6509 
6510 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6511 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6512 
6513 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6514 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6515 
6516 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6517 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6518 
6519 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6520 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6521 
6522 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6523 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6524 
6525 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6526 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6527 
6528 	fd_ctr_base = hw->fd_ctr_base;
6529 
6530 	ice_stat_update40(hw,
6531 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6532 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6533 			  &cur_ps->fd_sb_match);
6534 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6535 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6536 
6537 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6538 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6539 
6540 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6541 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6542 
6543 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6544 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6545 
6546 	ice_update_dcb_stats(pf);
6547 
6548 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6549 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6550 
6551 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6552 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6553 
6554 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6555 			  &prev_ps->mac_local_faults,
6556 			  &cur_ps->mac_local_faults);
6557 
6558 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6559 			  &prev_ps->mac_remote_faults,
6560 			  &cur_ps->mac_remote_faults);
6561 
6562 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6563 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6564 
6565 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6566 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6567 
6568 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6569 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6570 
6571 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6572 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6573 
6574 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6575 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6576 
6577 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6578 
6579 	pf->stat_prev_loaded = true;
6580 }
6581 
6582 /**
6583  * ice_get_stats64 - get statistics for network device structure
6584  * @netdev: network interface device structure
6585  * @stats: main device statistics structure
6586  */
6587 static
6588 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6589 {
6590 	struct ice_netdev_priv *np = netdev_priv(netdev);
6591 	struct rtnl_link_stats64 *vsi_stats;
6592 	struct ice_vsi *vsi = np->vsi;
6593 
6594 	vsi_stats = &vsi->net_stats;
6595 
6596 	if (!vsi->num_txq || !vsi->num_rxq)
6597 		return;
6598 
6599 	/* netdev packet/byte stats come from ring counter. These are obtained
6600 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6601 	 * But, only call the update routine and read the registers if VSI is
6602 	 * not down.
6603 	 */
6604 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6605 		ice_update_vsi_ring_stats(vsi);
6606 	stats->tx_packets = vsi_stats->tx_packets;
6607 	stats->tx_bytes = vsi_stats->tx_bytes;
6608 	stats->rx_packets = vsi_stats->rx_packets;
6609 	stats->rx_bytes = vsi_stats->rx_bytes;
6610 
6611 	/* The rest of the stats can be read from the hardware but instead we
6612 	 * just return values that the watchdog task has already obtained from
6613 	 * the hardware.
6614 	 */
6615 	stats->multicast = vsi_stats->multicast;
6616 	stats->tx_errors = vsi_stats->tx_errors;
6617 	stats->tx_dropped = vsi_stats->tx_dropped;
6618 	stats->rx_errors = vsi_stats->rx_errors;
6619 	stats->rx_dropped = vsi_stats->rx_dropped;
6620 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6621 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6622 }
6623 
6624 /**
6625  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6626  * @vsi: VSI having NAPI disabled
6627  */
6628 static void ice_napi_disable_all(struct ice_vsi *vsi)
6629 {
6630 	int q_idx;
6631 
6632 	if (!vsi->netdev)
6633 		return;
6634 
6635 	ice_for_each_q_vector(vsi, q_idx) {
6636 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6637 
6638 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6639 			napi_disable(&q_vector->napi);
6640 
6641 		cancel_work_sync(&q_vector->tx.dim.work);
6642 		cancel_work_sync(&q_vector->rx.dim.work);
6643 	}
6644 }
6645 
6646 /**
6647  * ice_down - Shutdown the connection
6648  * @vsi: The VSI being stopped
6649  *
6650  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6651  */
6652 int ice_down(struct ice_vsi *vsi)
6653 {
6654 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6655 
6656 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6657 
6658 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6659 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6660 		if (!ice_is_e810(&vsi->back->hw))
6661 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6662 		netif_carrier_off(vsi->netdev);
6663 		netif_tx_disable(vsi->netdev);
6664 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6665 		ice_eswitch_stop_all_tx_queues(vsi->back);
6666 	}
6667 
6668 	ice_vsi_dis_irq(vsi);
6669 
6670 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6671 	if (tx_err)
6672 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6673 			   vsi->vsi_num, tx_err);
6674 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6675 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6676 		if (tx_err)
6677 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6678 				   vsi->vsi_num, tx_err);
6679 	}
6680 
6681 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6682 	if (rx_err)
6683 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6684 			   vsi->vsi_num, rx_err);
6685 
6686 	ice_napi_disable_all(vsi);
6687 
6688 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6689 		link_err = ice_force_phys_link_state(vsi, false);
6690 		if (link_err)
6691 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6692 				   vsi->vsi_num, link_err);
6693 	}
6694 
6695 	ice_for_each_txq(vsi, i)
6696 		ice_clean_tx_ring(vsi->tx_rings[i]);
6697 
6698 	ice_for_each_rxq(vsi, i)
6699 		ice_clean_rx_ring(vsi->rx_rings[i]);
6700 
6701 	if (tx_err || rx_err || link_err || vlan_err) {
6702 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6703 			   vsi->vsi_num, vsi->vsw->sw_id);
6704 		return -EIO;
6705 	}
6706 
6707 	return 0;
6708 }
6709 
6710 /**
6711  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6712  * @vsi: VSI having resources allocated
6713  *
6714  * Return 0 on success, negative on failure
6715  */
6716 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6717 {
6718 	int i, err = 0;
6719 
6720 	if (!vsi->num_txq) {
6721 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6722 			vsi->vsi_num);
6723 		return -EINVAL;
6724 	}
6725 
6726 	ice_for_each_txq(vsi, i) {
6727 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6728 
6729 		if (!ring)
6730 			return -EINVAL;
6731 
6732 		if (vsi->netdev)
6733 			ring->netdev = vsi->netdev;
6734 		err = ice_setup_tx_ring(ring);
6735 		if (err)
6736 			break;
6737 	}
6738 
6739 	return err;
6740 }
6741 
6742 /**
6743  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6744  * @vsi: VSI having resources allocated
6745  *
6746  * Return 0 on success, negative on failure
6747  */
6748 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6749 {
6750 	int i, err = 0;
6751 
6752 	if (!vsi->num_rxq) {
6753 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6754 			vsi->vsi_num);
6755 		return -EINVAL;
6756 	}
6757 
6758 	ice_for_each_rxq(vsi, i) {
6759 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6760 
6761 		if (!ring)
6762 			return -EINVAL;
6763 
6764 		if (vsi->netdev)
6765 			ring->netdev = vsi->netdev;
6766 		err = ice_setup_rx_ring(ring);
6767 		if (err)
6768 			break;
6769 	}
6770 
6771 	return err;
6772 }
6773 
6774 /**
6775  * ice_vsi_open_ctrl - open control VSI for use
6776  * @vsi: the VSI to open
6777  *
6778  * Initialization of the Control VSI
6779  *
6780  * Returns 0 on success, negative value on error
6781  */
6782 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6783 {
6784 	char int_name[ICE_INT_NAME_STR_LEN];
6785 	struct ice_pf *pf = vsi->back;
6786 	struct device *dev;
6787 	int err;
6788 
6789 	dev = ice_pf_to_dev(pf);
6790 	/* allocate descriptors */
6791 	err = ice_vsi_setup_tx_rings(vsi);
6792 	if (err)
6793 		goto err_setup_tx;
6794 
6795 	err = ice_vsi_setup_rx_rings(vsi);
6796 	if (err)
6797 		goto err_setup_rx;
6798 
6799 	err = ice_vsi_cfg(vsi);
6800 	if (err)
6801 		goto err_setup_rx;
6802 
6803 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6804 		 dev_driver_string(dev), dev_name(dev));
6805 	err = ice_vsi_req_irq_msix(vsi, int_name);
6806 	if (err)
6807 		goto err_setup_rx;
6808 
6809 	ice_vsi_cfg_msix(vsi);
6810 
6811 	err = ice_vsi_start_all_rx_rings(vsi);
6812 	if (err)
6813 		goto err_up_complete;
6814 
6815 	clear_bit(ICE_VSI_DOWN, vsi->state);
6816 	ice_vsi_ena_irq(vsi);
6817 
6818 	return 0;
6819 
6820 err_up_complete:
6821 	ice_down(vsi);
6822 err_setup_rx:
6823 	ice_vsi_free_rx_rings(vsi);
6824 err_setup_tx:
6825 	ice_vsi_free_tx_rings(vsi);
6826 
6827 	return err;
6828 }
6829 
6830 /**
6831  * ice_vsi_open - Called when a network interface is made active
6832  * @vsi: the VSI to open
6833  *
6834  * Initialization of the VSI
6835  *
6836  * Returns 0 on success, negative value on error
6837  */
6838 int ice_vsi_open(struct ice_vsi *vsi)
6839 {
6840 	char int_name[ICE_INT_NAME_STR_LEN];
6841 	struct ice_pf *pf = vsi->back;
6842 	int err;
6843 
6844 	/* allocate descriptors */
6845 	err = ice_vsi_setup_tx_rings(vsi);
6846 	if (err)
6847 		goto err_setup_tx;
6848 
6849 	err = ice_vsi_setup_rx_rings(vsi);
6850 	if (err)
6851 		goto err_setup_rx;
6852 
6853 	err = ice_vsi_cfg(vsi);
6854 	if (err)
6855 		goto err_setup_rx;
6856 
6857 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6858 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6859 	err = ice_vsi_req_irq_msix(vsi, int_name);
6860 	if (err)
6861 		goto err_setup_rx;
6862 
6863 	if (vsi->type == ICE_VSI_PF) {
6864 		/* Notify the stack of the actual queue counts. */
6865 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6866 		if (err)
6867 			goto err_set_qs;
6868 
6869 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6870 		if (err)
6871 			goto err_set_qs;
6872 	}
6873 
6874 	err = ice_up_complete(vsi);
6875 	if (err)
6876 		goto err_up_complete;
6877 
6878 	return 0;
6879 
6880 err_up_complete:
6881 	ice_down(vsi);
6882 err_set_qs:
6883 	ice_vsi_free_irq(vsi);
6884 err_setup_rx:
6885 	ice_vsi_free_rx_rings(vsi);
6886 err_setup_tx:
6887 	ice_vsi_free_tx_rings(vsi);
6888 
6889 	return err;
6890 }
6891 
6892 /**
6893  * ice_vsi_release_all - Delete all VSIs
6894  * @pf: PF from which all VSIs are being removed
6895  */
6896 static void ice_vsi_release_all(struct ice_pf *pf)
6897 {
6898 	int err, i;
6899 
6900 	if (!pf->vsi)
6901 		return;
6902 
6903 	ice_for_each_vsi(pf, i) {
6904 		if (!pf->vsi[i])
6905 			continue;
6906 
6907 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6908 			continue;
6909 
6910 		err = ice_vsi_release(pf->vsi[i]);
6911 		if (err)
6912 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6913 				i, err, pf->vsi[i]->vsi_num);
6914 	}
6915 }
6916 
6917 /**
6918  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6919  * @pf: pointer to the PF instance
6920  * @type: VSI type to rebuild
6921  *
6922  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6923  */
6924 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6925 {
6926 	struct device *dev = ice_pf_to_dev(pf);
6927 	int i, err;
6928 
6929 	ice_for_each_vsi(pf, i) {
6930 		struct ice_vsi *vsi = pf->vsi[i];
6931 
6932 		if (!vsi || vsi->type != type)
6933 			continue;
6934 
6935 		/* rebuild the VSI */
6936 		err = ice_vsi_rebuild(vsi, true);
6937 		if (err) {
6938 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6939 				err, vsi->idx, ice_vsi_type_str(type));
6940 			return err;
6941 		}
6942 
6943 		/* replay filters for the VSI */
6944 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6945 		if (err) {
6946 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6947 				err, vsi->idx, ice_vsi_type_str(type));
6948 			return err;
6949 		}
6950 
6951 		/* Re-map HW VSI number, using VSI handle that has been
6952 		 * previously validated in ice_replay_vsi() call above
6953 		 */
6954 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6955 
6956 		/* enable the VSI */
6957 		err = ice_ena_vsi(vsi, false);
6958 		if (err) {
6959 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6960 				err, vsi->idx, ice_vsi_type_str(type));
6961 			return err;
6962 		}
6963 
6964 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6965 			 ice_vsi_type_str(type));
6966 	}
6967 
6968 	return 0;
6969 }
6970 
6971 /**
6972  * ice_update_pf_netdev_link - Update PF netdev link status
6973  * @pf: pointer to the PF instance
6974  */
6975 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6976 {
6977 	bool link_up;
6978 	int i;
6979 
6980 	ice_for_each_vsi(pf, i) {
6981 		struct ice_vsi *vsi = pf->vsi[i];
6982 
6983 		if (!vsi || vsi->type != ICE_VSI_PF)
6984 			return;
6985 
6986 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6987 		if (link_up) {
6988 			netif_carrier_on(pf->vsi[i]->netdev);
6989 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6990 		} else {
6991 			netif_carrier_off(pf->vsi[i]->netdev);
6992 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6993 		}
6994 	}
6995 }
6996 
6997 /**
6998  * ice_rebuild - rebuild after reset
6999  * @pf: PF to rebuild
7000  * @reset_type: type of reset
7001  *
7002  * Do not rebuild VF VSI in this flow because that is already handled via
7003  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7004  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7005  * to reset/rebuild all the VF VSI twice.
7006  */
7007 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7008 {
7009 	struct device *dev = ice_pf_to_dev(pf);
7010 	struct ice_hw *hw = &pf->hw;
7011 	bool dvm;
7012 	int err;
7013 
7014 	if (test_bit(ICE_DOWN, pf->state))
7015 		goto clear_recovery;
7016 
7017 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7018 
7019 #define ICE_EMP_RESET_SLEEP_MS 5000
7020 	if (reset_type == ICE_RESET_EMPR) {
7021 		/* If an EMP reset has occurred, any previously pending flash
7022 		 * update will have completed. We no longer know whether or
7023 		 * not the NVM update EMP reset is restricted.
7024 		 */
7025 		pf->fw_emp_reset_disabled = false;
7026 
7027 		msleep(ICE_EMP_RESET_SLEEP_MS);
7028 	}
7029 
7030 	err = ice_init_all_ctrlq(hw);
7031 	if (err) {
7032 		dev_err(dev, "control queues init failed %d\n", err);
7033 		goto err_init_ctrlq;
7034 	}
7035 
7036 	/* if DDP was previously loaded successfully */
7037 	if (!ice_is_safe_mode(pf)) {
7038 		/* reload the SW DB of filter tables */
7039 		if (reset_type == ICE_RESET_PFR)
7040 			ice_fill_blk_tbls(hw);
7041 		else
7042 			/* Reload DDP Package after CORER/GLOBR reset */
7043 			ice_load_pkg(NULL, pf);
7044 	}
7045 
7046 	err = ice_clear_pf_cfg(hw);
7047 	if (err) {
7048 		dev_err(dev, "clear PF configuration failed %d\n", err);
7049 		goto err_init_ctrlq;
7050 	}
7051 
7052 	ice_clear_pxe_mode(hw);
7053 
7054 	err = ice_init_nvm(hw);
7055 	if (err) {
7056 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7057 		goto err_init_ctrlq;
7058 	}
7059 
7060 	err = ice_get_caps(hw);
7061 	if (err) {
7062 		dev_err(dev, "ice_get_caps failed %d\n", err);
7063 		goto err_init_ctrlq;
7064 	}
7065 
7066 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7067 	if (err) {
7068 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7069 		goto err_init_ctrlq;
7070 	}
7071 
7072 	dvm = ice_is_dvm_ena(hw);
7073 
7074 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7075 	if (err)
7076 		goto err_init_ctrlq;
7077 
7078 	err = ice_sched_init_port(hw->port_info);
7079 	if (err)
7080 		goto err_sched_init_port;
7081 
7082 	/* start misc vector */
7083 	err = ice_req_irq_msix_misc(pf);
7084 	if (err) {
7085 		dev_err(dev, "misc vector setup failed: %d\n", err);
7086 		goto err_sched_init_port;
7087 	}
7088 
7089 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7090 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7091 		if (!rd32(hw, PFQF_FD_SIZE)) {
7092 			u16 unused, guar, b_effort;
7093 
7094 			guar = hw->func_caps.fd_fltr_guar;
7095 			b_effort = hw->func_caps.fd_fltr_best_effort;
7096 
7097 			/* force guaranteed filter pool for PF */
7098 			ice_alloc_fd_guar_item(hw, &unused, guar);
7099 			/* force shared filter pool for PF */
7100 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7101 		}
7102 	}
7103 
7104 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7105 		ice_dcb_rebuild(pf);
7106 
7107 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7108 	 * the VSI rebuild. If not, this causes the PTP link status events to
7109 	 * fail.
7110 	 */
7111 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7112 		ice_ptp_reset(pf);
7113 
7114 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7115 		ice_gnss_init(pf);
7116 
7117 	/* rebuild PF VSI */
7118 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7119 	if (err) {
7120 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7121 		goto err_vsi_rebuild;
7122 	}
7123 
7124 	/* configure PTP timestamping after VSI rebuild */
7125 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7126 		ice_ptp_cfg_timestamp(pf, false);
7127 
7128 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7129 	if (err) {
7130 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7131 		goto err_vsi_rebuild;
7132 	}
7133 
7134 	if (reset_type == ICE_RESET_PFR) {
7135 		err = ice_rebuild_channels(pf);
7136 		if (err) {
7137 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7138 				err);
7139 			goto err_vsi_rebuild;
7140 		}
7141 	}
7142 
7143 	/* If Flow Director is active */
7144 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7145 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7146 		if (err) {
7147 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7148 			goto err_vsi_rebuild;
7149 		}
7150 
7151 		/* replay HW Flow Director recipes */
7152 		if (hw->fdir_prof)
7153 			ice_fdir_replay_flows(hw);
7154 
7155 		/* replay Flow Director filters */
7156 		ice_fdir_replay_fltrs(pf);
7157 
7158 		ice_rebuild_arfs(pf);
7159 	}
7160 
7161 	ice_update_pf_netdev_link(pf);
7162 
7163 	/* tell the firmware we are up */
7164 	err = ice_send_version(pf);
7165 	if (err) {
7166 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7167 			err);
7168 		goto err_vsi_rebuild;
7169 	}
7170 
7171 	ice_replay_post(hw);
7172 
7173 	/* if we get here, reset flow is successful */
7174 	clear_bit(ICE_RESET_FAILED, pf->state);
7175 
7176 	ice_plug_aux_dev(pf);
7177 	return;
7178 
7179 err_vsi_rebuild:
7180 err_sched_init_port:
7181 	ice_sched_cleanup_all(hw);
7182 err_init_ctrlq:
7183 	ice_shutdown_all_ctrlq(hw);
7184 	set_bit(ICE_RESET_FAILED, pf->state);
7185 clear_recovery:
7186 	/* set this bit in PF state to control service task scheduling */
7187 	set_bit(ICE_NEEDS_RESTART, pf->state);
7188 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7189 }
7190 
7191 /**
7192  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7193  * @vsi: Pointer to VSI structure
7194  */
7195 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7196 {
7197 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7198 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7199 	else
7200 		return ICE_RXBUF_3072;
7201 }
7202 
7203 /**
7204  * ice_change_mtu - NDO callback to change the MTU
7205  * @netdev: network interface device structure
7206  * @new_mtu: new value for maximum frame size
7207  *
7208  * Returns 0 on success, negative on failure
7209  */
7210 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7211 {
7212 	struct ice_netdev_priv *np = netdev_priv(netdev);
7213 	struct ice_vsi *vsi = np->vsi;
7214 	struct ice_pf *pf = vsi->back;
7215 	u8 count = 0;
7216 	int err = 0;
7217 
7218 	if (new_mtu == (int)netdev->mtu) {
7219 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7220 		return 0;
7221 	}
7222 
7223 	if (ice_is_xdp_ena_vsi(vsi)) {
7224 		int frame_size = ice_max_xdp_frame_size(vsi);
7225 
7226 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7227 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7228 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7229 			return -EINVAL;
7230 		}
7231 	}
7232 
7233 	/* if a reset is in progress, wait for some time for it to complete */
7234 	do {
7235 		if (ice_is_reset_in_progress(pf->state)) {
7236 			count++;
7237 			usleep_range(1000, 2000);
7238 		} else {
7239 			break;
7240 		}
7241 
7242 	} while (count < 100);
7243 
7244 	if (count == 100) {
7245 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7246 		return -EBUSY;
7247 	}
7248 
7249 	netdev->mtu = (unsigned int)new_mtu;
7250 
7251 	/* if VSI is up, bring it down and then back up */
7252 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7253 		err = ice_down(vsi);
7254 		if (err) {
7255 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7256 			return err;
7257 		}
7258 
7259 		err = ice_up(vsi);
7260 		if (err) {
7261 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7262 			return err;
7263 		}
7264 	}
7265 
7266 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7267 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7268 
7269 	return err;
7270 }
7271 
7272 /**
7273  * ice_eth_ioctl - Access the hwtstamp interface
7274  * @netdev: network interface device structure
7275  * @ifr: interface request data
7276  * @cmd: ioctl command
7277  */
7278 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7279 {
7280 	struct ice_netdev_priv *np = netdev_priv(netdev);
7281 	struct ice_pf *pf = np->vsi->back;
7282 
7283 	switch (cmd) {
7284 	case SIOCGHWTSTAMP:
7285 		return ice_ptp_get_ts_config(pf, ifr);
7286 	case SIOCSHWTSTAMP:
7287 		return ice_ptp_set_ts_config(pf, ifr);
7288 	default:
7289 		return -EOPNOTSUPP;
7290 	}
7291 }
7292 
7293 /**
7294  * ice_aq_str - convert AQ err code to a string
7295  * @aq_err: the AQ error code to convert
7296  */
7297 const char *ice_aq_str(enum ice_aq_err aq_err)
7298 {
7299 	switch (aq_err) {
7300 	case ICE_AQ_RC_OK:
7301 		return "OK";
7302 	case ICE_AQ_RC_EPERM:
7303 		return "ICE_AQ_RC_EPERM";
7304 	case ICE_AQ_RC_ENOENT:
7305 		return "ICE_AQ_RC_ENOENT";
7306 	case ICE_AQ_RC_ENOMEM:
7307 		return "ICE_AQ_RC_ENOMEM";
7308 	case ICE_AQ_RC_EBUSY:
7309 		return "ICE_AQ_RC_EBUSY";
7310 	case ICE_AQ_RC_EEXIST:
7311 		return "ICE_AQ_RC_EEXIST";
7312 	case ICE_AQ_RC_EINVAL:
7313 		return "ICE_AQ_RC_EINVAL";
7314 	case ICE_AQ_RC_ENOSPC:
7315 		return "ICE_AQ_RC_ENOSPC";
7316 	case ICE_AQ_RC_ENOSYS:
7317 		return "ICE_AQ_RC_ENOSYS";
7318 	case ICE_AQ_RC_EMODE:
7319 		return "ICE_AQ_RC_EMODE";
7320 	case ICE_AQ_RC_ENOSEC:
7321 		return "ICE_AQ_RC_ENOSEC";
7322 	case ICE_AQ_RC_EBADSIG:
7323 		return "ICE_AQ_RC_EBADSIG";
7324 	case ICE_AQ_RC_ESVN:
7325 		return "ICE_AQ_RC_ESVN";
7326 	case ICE_AQ_RC_EBADMAN:
7327 		return "ICE_AQ_RC_EBADMAN";
7328 	case ICE_AQ_RC_EBADBUF:
7329 		return "ICE_AQ_RC_EBADBUF";
7330 	}
7331 
7332 	return "ICE_AQ_RC_UNKNOWN";
7333 }
7334 
7335 /**
7336  * ice_set_rss_lut - Set RSS LUT
7337  * @vsi: Pointer to VSI structure
7338  * @lut: Lookup table
7339  * @lut_size: Lookup table size
7340  *
7341  * Returns 0 on success, negative on failure
7342  */
7343 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7344 {
7345 	struct ice_aq_get_set_rss_lut_params params = {};
7346 	struct ice_hw *hw = &vsi->back->hw;
7347 	int status;
7348 
7349 	if (!lut)
7350 		return -EINVAL;
7351 
7352 	params.vsi_handle = vsi->idx;
7353 	params.lut_size = lut_size;
7354 	params.lut_type = vsi->rss_lut_type;
7355 	params.lut = lut;
7356 
7357 	status = ice_aq_set_rss_lut(hw, &params);
7358 	if (status)
7359 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7360 			status, ice_aq_str(hw->adminq.sq_last_status));
7361 
7362 	return status;
7363 }
7364 
7365 /**
7366  * ice_set_rss_key - Set RSS key
7367  * @vsi: Pointer to the VSI structure
7368  * @seed: RSS hash seed
7369  *
7370  * Returns 0 on success, negative on failure
7371  */
7372 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7373 {
7374 	struct ice_hw *hw = &vsi->back->hw;
7375 	int status;
7376 
7377 	if (!seed)
7378 		return -EINVAL;
7379 
7380 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7381 	if (status)
7382 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7383 			status, ice_aq_str(hw->adminq.sq_last_status));
7384 
7385 	return status;
7386 }
7387 
7388 /**
7389  * ice_get_rss_lut - Get RSS LUT
7390  * @vsi: Pointer to VSI structure
7391  * @lut: Buffer to store the lookup table entries
7392  * @lut_size: Size of buffer to store the lookup table entries
7393  *
7394  * Returns 0 on success, negative on failure
7395  */
7396 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7397 {
7398 	struct ice_aq_get_set_rss_lut_params params = {};
7399 	struct ice_hw *hw = &vsi->back->hw;
7400 	int status;
7401 
7402 	if (!lut)
7403 		return -EINVAL;
7404 
7405 	params.vsi_handle = vsi->idx;
7406 	params.lut_size = lut_size;
7407 	params.lut_type = vsi->rss_lut_type;
7408 	params.lut = lut;
7409 
7410 	status = ice_aq_get_rss_lut(hw, &params);
7411 	if (status)
7412 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7413 			status, ice_aq_str(hw->adminq.sq_last_status));
7414 
7415 	return status;
7416 }
7417 
7418 /**
7419  * ice_get_rss_key - Get RSS key
7420  * @vsi: Pointer to VSI structure
7421  * @seed: Buffer to store the key in
7422  *
7423  * Returns 0 on success, negative on failure
7424  */
7425 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7426 {
7427 	struct ice_hw *hw = &vsi->back->hw;
7428 	int status;
7429 
7430 	if (!seed)
7431 		return -EINVAL;
7432 
7433 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7434 	if (status)
7435 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7436 			status, ice_aq_str(hw->adminq.sq_last_status));
7437 
7438 	return status;
7439 }
7440 
7441 /**
7442  * ice_bridge_getlink - Get the hardware bridge mode
7443  * @skb: skb buff
7444  * @pid: process ID
7445  * @seq: RTNL message seq
7446  * @dev: the netdev being configured
7447  * @filter_mask: filter mask passed in
7448  * @nlflags: netlink flags passed in
7449  *
7450  * Return the bridge mode (VEB/VEPA)
7451  */
7452 static int
7453 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7454 		   struct net_device *dev, u32 filter_mask, int nlflags)
7455 {
7456 	struct ice_netdev_priv *np = netdev_priv(dev);
7457 	struct ice_vsi *vsi = np->vsi;
7458 	struct ice_pf *pf = vsi->back;
7459 	u16 bmode;
7460 
7461 	bmode = pf->first_sw->bridge_mode;
7462 
7463 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7464 				       filter_mask, NULL);
7465 }
7466 
7467 /**
7468  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7469  * @vsi: Pointer to VSI structure
7470  * @bmode: Hardware bridge mode (VEB/VEPA)
7471  *
7472  * Returns 0 on success, negative on failure
7473  */
7474 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7475 {
7476 	struct ice_aqc_vsi_props *vsi_props;
7477 	struct ice_hw *hw = &vsi->back->hw;
7478 	struct ice_vsi_ctx *ctxt;
7479 	int ret;
7480 
7481 	vsi_props = &vsi->info;
7482 
7483 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7484 	if (!ctxt)
7485 		return -ENOMEM;
7486 
7487 	ctxt->info = vsi->info;
7488 
7489 	if (bmode == BRIDGE_MODE_VEB)
7490 		/* change from VEPA to VEB mode */
7491 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7492 	else
7493 		/* change from VEB to VEPA mode */
7494 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7495 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7496 
7497 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7498 	if (ret) {
7499 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7500 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7501 		goto out;
7502 	}
7503 	/* Update sw flags for book keeping */
7504 	vsi_props->sw_flags = ctxt->info.sw_flags;
7505 
7506 out:
7507 	kfree(ctxt);
7508 	return ret;
7509 }
7510 
7511 /**
7512  * ice_bridge_setlink - Set the hardware bridge mode
7513  * @dev: the netdev being configured
7514  * @nlh: RTNL message
7515  * @flags: bridge setlink flags
7516  * @extack: netlink extended ack
7517  *
7518  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7519  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7520  * not already set for all VSIs connected to this switch. And also update the
7521  * unicast switch filter rules for the corresponding switch of the netdev.
7522  */
7523 static int
7524 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7525 		   u16 __always_unused flags,
7526 		   struct netlink_ext_ack __always_unused *extack)
7527 {
7528 	struct ice_netdev_priv *np = netdev_priv(dev);
7529 	struct ice_pf *pf = np->vsi->back;
7530 	struct nlattr *attr, *br_spec;
7531 	struct ice_hw *hw = &pf->hw;
7532 	struct ice_sw *pf_sw;
7533 	int rem, v, err = 0;
7534 
7535 	pf_sw = pf->first_sw;
7536 	/* find the attribute in the netlink message */
7537 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7538 
7539 	nla_for_each_nested(attr, br_spec, rem) {
7540 		__u16 mode;
7541 
7542 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7543 			continue;
7544 		mode = nla_get_u16(attr);
7545 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7546 			return -EINVAL;
7547 		/* Continue  if bridge mode is not being flipped */
7548 		if (mode == pf_sw->bridge_mode)
7549 			continue;
7550 		/* Iterates through the PF VSI list and update the loopback
7551 		 * mode of the VSI
7552 		 */
7553 		ice_for_each_vsi(pf, v) {
7554 			if (!pf->vsi[v])
7555 				continue;
7556 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7557 			if (err)
7558 				return err;
7559 		}
7560 
7561 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7562 		/* Update the unicast switch filter rules for the corresponding
7563 		 * switch of the netdev
7564 		 */
7565 		err = ice_update_sw_rule_bridge_mode(hw);
7566 		if (err) {
7567 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7568 				   mode, err,
7569 				   ice_aq_str(hw->adminq.sq_last_status));
7570 			/* revert hw->evb_veb */
7571 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7572 			return err;
7573 		}
7574 
7575 		pf_sw->bridge_mode = mode;
7576 	}
7577 
7578 	return 0;
7579 }
7580 
7581 /**
7582  * ice_tx_timeout - Respond to a Tx Hang
7583  * @netdev: network interface device structure
7584  * @txqueue: Tx queue
7585  */
7586 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7587 {
7588 	struct ice_netdev_priv *np = netdev_priv(netdev);
7589 	struct ice_tx_ring *tx_ring = NULL;
7590 	struct ice_vsi *vsi = np->vsi;
7591 	struct ice_pf *pf = vsi->back;
7592 	u32 i;
7593 
7594 	pf->tx_timeout_count++;
7595 
7596 	/* Check if PFC is enabled for the TC to which the queue belongs
7597 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7598 	 * need to reset and rebuild
7599 	 */
7600 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7601 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7602 			 txqueue);
7603 		return;
7604 	}
7605 
7606 	/* now that we have an index, find the tx_ring struct */
7607 	ice_for_each_txq(vsi, i)
7608 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7609 			if (txqueue == vsi->tx_rings[i]->q_index) {
7610 				tx_ring = vsi->tx_rings[i];
7611 				break;
7612 			}
7613 
7614 	/* Reset recovery level if enough time has elapsed after last timeout.
7615 	 * Also ensure no new reset action happens before next timeout period.
7616 	 */
7617 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7618 		pf->tx_timeout_recovery_level = 1;
7619 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7620 				       netdev->watchdog_timeo)))
7621 		return;
7622 
7623 	if (tx_ring) {
7624 		struct ice_hw *hw = &pf->hw;
7625 		u32 head, val = 0;
7626 
7627 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7628 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7629 		/* Read interrupt register */
7630 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7631 
7632 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7633 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7634 			    head, tx_ring->next_to_use, val);
7635 	}
7636 
7637 	pf->tx_timeout_last_recovery = jiffies;
7638 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7639 		    pf->tx_timeout_recovery_level, txqueue);
7640 
7641 	switch (pf->tx_timeout_recovery_level) {
7642 	case 1:
7643 		set_bit(ICE_PFR_REQ, pf->state);
7644 		break;
7645 	case 2:
7646 		set_bit(ICE_CORER_REQ, pf->state);
7647 		break;
7648 	case 3:
7649 		set_bit(ICE_GLOBR_REQ, pf->state);
7650 		break;
7651 	default:
7652 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7653 		set_bit(ICE_DOWN, pf->state);
7654 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7655 		set_bit(ICE_SERVICE_DIS, pf->state);
7656 		break;
7657 	}
7658 
7659 	ice_service_task_schedule(pf);
7660 	pf->tx_timeout_recovery_level++;
7661 }
7662 
7663 /**
7664  * ice_setup_tc_cls_flower - flower classifier offloads
7665  * @np: net device to configure
7666  * @filter_dev: device on which filter is added
7667  * @cls_flower: offload data
7668  */
7669 static int
7670 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7671 			struct net_device *filter_dev,
7672 			struct flow_cls_offload *cls_flower)
7673 {
7674 	struct ice_vsi *vsi = np->vsi;
7675 
7676 	if (cls_flower->common.chain_index)
7677 		return -EOPNOTSUPP;
7678 
7679 	switch (cls_flower->command) {
7680 	case FLOW_CLS_REPLACE:
7681 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7682 	case FLOW_CLS_DESTROY:
7683 		return ice_del_cls_flower(vsi, cls_flower);
7684 	default:
7685 		return -EINVAL;
7686 	}
7687 }
7688 
7689 /**
7690  * ice_setup_tc_block_cb - callback handler registered for TC block
7691  * @type: TC SETUP type
7692  * @type_data: TC flower offload data that contains user input
7693  * @cb_priv: netdev private data
7694  */
7695 static int
7696 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7697 {
7698 	struct ice_netdev_priv *np = cb_priv;
7699 
7700 	switch (type) {
7701 	case TC_SETUP_CLSFLOWER:
7702 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7703 					       type_data);
7704 	default:
7705 		return -EOPNOTSUPP;
7706 	}
7707 }
7708 
7709 /**
7710  * ice_validate_mqprio_qopt - Validate TCF input parameters
7711  * @vsi: Pointer to VSI
7712  * @mqprio_qopt: input parameters for mqprio queue configuration
7713  *
7714  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7715  * needed), and make sure user doesn't specify qcount and BW rate limit
7716  * for TCs, which are more than "num_tc"
7717  */
7718 static int
7719 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7720 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7721 {
7722 	u64 sum_max_rate = 0, sum_min_rate = 0;
7723 	int non_power_of_2_qcount = 0;
7724 	struct ice_pf *pf = vsi->back;
7725 	int max_rss_q_cnt = 0;
7726 	struct device *dev;
7727 	int i, speed;
7728 	u8 num_tc;
7729 
7730 	if (vsi->type != ICE_VSI_PF)
7731 		return -EINVAL;
7732 
7733 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7734 	    mqprio_qopt->qopt.num_tc < 1 ||
7735 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7736 		return -EINVAL;
7737 
7738 	dev = ice_pf_to_dev(pf);
7739 	vsi->ch_rss_size = 0;
7740 	num_tc = mqprio_qopt->qopt.num_tc;
7741 
7742 	for (i = 0; num_tc; i++) {
7743 		int qcount = mqprio_qopt->qopt.count[i];
7744 		u64 max_rate, min_rate, rem;
7745 
7746 		if (!qcount)
7747 			return -EINVAL;
7748 
7749 		if (is_power_of_2(qcount)) {
7750 			if (non_power_of_2_qcount &&
7751 			    qcount > non_power_of_2_qcount) {
7752 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7753 					qcount, non_power_of_2_qcount);
7754 				return -EINVAL;
7755 			}
7756 			if (qcount > max_rss_q_cnt)
7757 				max_rss_q_cnt = qcount;
7758 		} else {
7759 			if (non_power_of_2_qcount &&
7760 			    qcount != non_power_of_2_qcount) {
7761 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7762 					qcount, non_power_of_2_qcount);
7763 				return -EINVAL;
7764 			}
7765 			if (qcount < max_rss_q_cnt) {
7766 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7767 					qcount, max_rss_q_cnt);
7768 				return -EINVAL;
7769 			}
7770 			max_rss_q_cnt = qcount;
7771 			non_power_of_2_qcount = qcount;
7772 		}
7773 
7774 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7775 		 * converts the bandwidth rate limit into Bytes/s when
7776 		 * passing it down to the driver. So convert input bandwidth
7777 		 * from Bytes/s to Kbps
7778 		 */
7779 		max_rate = mqprio_qopt->max_rate[i];
7780 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7781 		sum_max_rate += max_rate;
7782 
7783 		/* min_rate is minimum guaranteed rate and it can't be zero */
7784 		min_rate = mqprio_qopt->min_rate[i];
7785 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7786 		sum_min_rate += min_rate;
7787 
7788 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7789 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7790 				min_rate, ICE_MIN_BW_LIMIT);
7791 			return -EINVAL;
7792 		}
7793 
7794 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7795 		if (rem) {
7796 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7797 				i, ICE_MIN_BW_LIMIT);
7798 			return -EINVAL;
7799 		}
7800 
7801 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7802 		if (rem) {
7803 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7804 				i, ICE_MIN_BW_LIMIT);
7805 			return -EINVAL;
7806 		}
7807 
7808 		/* min_rate can't be more than max_rate, except when max_rate
7809 		 * is zero (implies max_rate sought is max line rate). In such
7810 		 * a case min_rate can be more than max.
7811 		 */
7812 		if (max_rate && min_rate > max_rate) {
7813 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7814 				min_rate, max_rate);
7815 			return -EINVAL;
7816 		}
7817 
7818 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7819 			break;
7820 		if (mqprio_qopt->qopt.offset[i + 1] !=
7821 		    (mqprio_qopt->qopt.offset[i] + qcount))
7822 			return -EINVAL;
7823 	}
7824 	if (vsi->num_rxq <
7825 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7826 		return -EINVAL;
7827 	if (vsi->num_txq <
7828 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7829 		return -EINVAL;
7830 
7831 	speed = ice_get_link_speed_kbps(vsi);
7832 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7833 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7834 			sum_max_rate, speed);
7835 		return -EINVAL;
7836 	}
7837 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7838 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7839 			sum_min_rate, speed);
7840 		return -EINVAL;
7841 	}
7842 
7843 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7844 	vsi->ch_rss_size = max_rss_q_cnt;
7845 
7846 	return 0;
7847 }
7848 
7849 /**
7850  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7851  * @pf: ptr to PF device
7852  * @vsi: ptr to VSI
7853  */
7854 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7855 {
7856 	struct device *dev = ice_pf_to_dev(pf);
7857 	bool added = false;
7858 	struct ice_hw *hw;
7859 	int flow;
7860 
7861 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7862 		return -EINVAL;
7863 
7864 	hw = &pf->hw;
7865 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7866 		struct ice_fd_hw_prof *prof;
7867 		int tun, status;
7868 		u64 entry_h;
7869 
7870 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7871 		      hw->fdir_prof[flow]->cnt))
7872 			continue;
7873 
7874 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7875 			enum ice_flow_priority prio;
7876 			u64 prof_id;
7877 
7878 			/* add this VSI to FDir profile for this flow */
7879 			prio = ICE_FLOW_PRIO_NORMAL;
7880 			prof = hw->fdir_prof[flow];
7881 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7882 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7883 						    prof->vsi_h[0], vsi->idx,
7884 						    prio, prof->fdir_seg[tun],
7885 						    &entry_h);
7886 			if (status) {
7887 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7888 					vsi->idx, flow);
7889 				continue;
7890 			}
7891 
7892 			prof->entry_h[prof->cnt][tun] = entry_h;
7893 		}
7894 
7895 		/* store VSI for filter replay and delete */
7896 		prof->vsi_h[prof->cnt] = vsi->idx;
7897 		prof->cnt++;
7898 
7899 		added = true;
7900 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7901 			flow);
7902 	}
7903 
7904 	if (!added)
7905 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7906 
7907 	return 0;
7908 }
7909 
7910 /**
7911  * ice_add_channel - add a channel by adding VSI
7912  * @pf: ptr to PF device
7913  * @sw_id: underlying HW switching element ID
7914  * @ch: ptr to channel structure
7915  *
7916  * Add a channel (VSI) using add_vsi and queue_map
7917  */
7918 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7919 {
7920 	struct device *dev = ice_pf_to_dev(pf);
7921 	struct ice_vsi *vsi;
7922 
7923 	if (ch->type != ICE_VSI_CHNL) {
7924 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7925 		return -EINVAL;
7926 	}
7927 
7928 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7929 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7930 		dev_err(dev, "create chnl VSI failure\n");
7931 		return -EINVAL;
7932 	}
7933 
7934 	ice_add_vsi_to_fdir(pf, vsi);
7935 
7936 	ch->sw_id = sw_id;
7937 	ch->vsi_num = vsi->vsi_num;
7938 	ch->info.mapping_flags = vsi->info.mapping_flags;
7939 	ch->ch_vsi = vsi;
7940 	/* set the back pointer of channel for newly created VSI */
7941 	vsi->ch = ch;
7942 
7943 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7944 	       sizeof(vsi->info.q_mapping));
7945 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7946 	       sizeof(vsi->info.tc_mapping));
7947 
7948 	return 0;
7949 }
7950 
7951 /**
7952  * ice_chnl_cfg_res
7953  * @vsi: the VSI being setup
7954  * @ch: ptr to channel structure
7955  *
7956  * Configure channel specific resources such as rings, vector.
7957  */
7958 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7959 {
7960 	int i;
7961 
7962 	for (i = 0; i < ch->num_txq; i++) {
7963 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7964 		struct ice_ring_container *rc;
7965 		struct ice_tx_ring *tx_ring;
7966 		struct ice_rx_ring *rx_ring;
7967 
7968 		tx_ring = vsi->tx_rings[ch->base_q + i];
7969 		rx_ring = vsi->rx_rings[ch->base_q + i];
7970 		if (!tx_ring || !rx_ring)
7971 			continue;
7972 
7973 		/* setup ring being channel enabled */
7974 		tx_ring->ch = ch;
7975 		rx_ring->ch = ch;
7976 
7977 		/* following code block sets up vector specific attributes */
7978 		tx_q_vector = tx_ring->q_vector;
7979 		rx_q_vector = rx_ring->q_vector;
7980 		if (!tx_q_vector && !rx_q_vector)
7981 			continue;
7982 
7983 		if (tx_q_vector) {
7984 			tx_q_vector->ch = ch;
7985 			/* setup Tx and Rx ITR setting if DIM is off */
7986 			rc = &tx_q_vector->tx;
7987 			if (!ITR_IS_DYNAMIC(rc))
7988 				ice_write_itr(rc, rc->itr_setting);
7989 		}
7990 		if (rx_q_vector) {
7991 			rx_q_vector->ch = ch;
7992 			/* setup Tx and Rx ITR setting if DIM is off */
7993 			rc = &rx_q_vector->rx;
7994 			if (!ITR_IS_DYNAMIC(rc))
7995 				ice_write_itr(rc, rc->itr_setting);
7996 		}
7997 	}
7998 
7999 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8000 	 * GLINT_ITR register would have written to perform in-context
8001 	 * update, hence perform flush
8002 	 */
8003 	if (ch->num_txq || ch->num_rxq)
8004 		ice_flush(&vsi->back->hw);
8005 }
8006 
8007 /**
8008  * ice_cfg_chnl_all_res - configure channel resources
8009  * @vsi: pte to main_vsi
8010  * @ch: ptr to channel structure
8011  *
8012  * This function configures channel specific resources such as flow-director
8013  * counter index, and other resources such as queues, vectors, ITR settings
8014  */
8015 static void
8016 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8017 {
8018 	/* configure channel (aka ADQ) resources such as queues, vectors,
8019 	 * ITR settings for channel specific vectors and anything else
8020 	 */
8021 	ice_chnl_cfg_res(vsi, ch);
8022 }
8023 
8024 /**
8025  * ice_setup_hw_channel - setup new channel
8026  * @pf: ptr to PF device
8027  * @vsi: the VSI being setup
8028  * @ch: ptr to channel structure
8029  * @sw_id: underlying HW switching element ID
8030  * @type: type of channel to be created (VMDq2/VF)
8031  *
8032  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8033  * and configures Tx rings accordingly
8034  */
8035 static int
8036 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8037 		     struct ice_channel *ch, u16 sw_id, u8 type)
8038 {
8039 	struct device *dev = ice_pf_to_dev(pf);
8040 	int ret;
8041 
8042 	ch->base_q = vsi->next_base_q;
8043 	ch->type = type;
8044 
8045 	ret = ice_add_channel(pf, sw_id, ch);
8046 	if (ret) {
8047 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8048 		return ret;
8049 	}
8050 
8051 	/* configure/setup ADQ specific resources */
8052 	ice_cfg_chnl_all_res(vsi, ch);
8053 
8054 	/* make sure to update the next_base_q so that subsequent channel's
8055 	 * (aka ADQ) VSI queue map is correct
8056 	 */
8057 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8058 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8059 		ch->num_rxq);
8060 
8061 	return 0;
8062 }
8063 
8064 /**
8065  * ice_setup_channel - setup new channel using uplink element
8066  * @pf: ptr to PF device
8067  * @vsi: the VSI being setup
8068  * @ch: ptr to channel structure
8069  *
8070  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8071  * and uplink switching element
8072  */
8073 static bool
8074 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8075 		  struct ice_channel *ch)
8076 {
8077 	struct device *dev = ice_pf_to_dev(pf);
8078 	u16 sw_id;
8079 	int ret;
8080 
8081 	if (vsi->type != ICE_VSI_PF) {
8082 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8083 		return false;
8084 	}
8085 
8086 	sw_id = pf->first_sw->sw_id;
8087 
8088 	/* create channel (VSI) */
8089 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8090 	if (ret) {
8091 		dev_err(dev, "failed to setup hw_channel\n");
8092 		return false;
8093 	}
8094 	dev_dbg(dev, "successfully created channel()\n");
8095 
8096 	return ch->ch_vsi ? true : false;
8097 }
8098 
8099 /**
8100  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8101  * @vsi: VSI to be configured
8102  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8103  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8104  */
8105 static int
8106 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8107 {
8108 	int err;
8109 
8110 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8111 	if (err)
8112 		return err;
8113 
8114 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8115 }
8116 
8117 /**
8118  * ice_create_q_channel - function to create channel
8119  * @vsi: VSI to be configured
8120  * @ch: ptr to channel (it contains channel specific params)
8121  *
8122  * This function creates channel (VSI) using num_queues specified by user,
8123  * reconfigs RSS if needed.
8124  */
8125 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8126 {
8127 	struct ice_pf *pf = vsi->back;
8128 	struct device *dev;
8129 
8130 	if (!ch)
8131 		return -EINVAL;
8132 
8133 	dev = ice_pf_to_dev(pf);
8134 	if (!ch->num_txq || !ch->num_rxq) {
8135 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8136 		return -EINVAL;
8137 	}
8138 
8139 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8140 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8141 			vsi->cnt_q_avail, ch->num_txq);
8142 		return -EINVAL;
8143 	}
8144 
8145 	if (!ice_setup_channel(pf, vsi, ch)) {
8146 		dev_info(dev, "Failed to setup channel\n");
8147 		return -EINVAL;
8148 	}
8149 	/* configure BW rate limit */
8150 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8151 		int ret;
8152 
8153 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8154 				       ch->min_tx_rate);
8155 		if (ret)
8156 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8157 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8158 		else
8159 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8160 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8161 	}
8162 
8163 	vsi->cnt_q_avail -= ch->num_txq;
8164 
8165 	return 0;
8166 }
8167 
8168 /**
8169  * ice_rem_all_chnl_fltrs - removes all channel filters
8170  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8171  *
8172  * Remove all advanced switch filters only if they are channel specific
8173  * tc-flower based filter
8174  */
8175 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8176 {
8177 	struct ice_tc_flower_fltr *fltr;
8178 	struct hlist_node *node;
8179 
8180 	/* to remove all channel filters, iterate an ordered list of filters */
8181 	hlist_for_each_entry_safe(fltr, node,
8182 				  &pf->tc_flower_fltr_list,
8183 				  tc_flower_node) {
8184 		struct ice_rule_query_data rule;
8185 		int status;
8186 
8187 		/* for now process only channel specific filters */
8188 		if (!ice_is_chnl_fltr(fltr))
8189 			continue;
8190 
8191 		rule.rid = fltr->rid;
8192 		rule.rule_id = fltr->rule_id;
8193 		rule.vsi_handle = fltr->dest_id;
8194 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8195 		if (status) {
8196 			if (status == -ENOENT)
8197 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8198 					rule.rule_id);
8199 			else
8200 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8201 					status);
8202 		} else if (fltr->dest_vsi) {
8203 			/* update advanced switch filter count */
8204 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8205 				u32 flags = fltr->flags;
8206 
8207 				fltr->dest_vsi->num_chnl_fltr--;
8208 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8209 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8210 					pf->num_dmac_chnl_fltrs--;
8211 			}
8212 		}
8213 
8214 		hlist_del(&fltr->tc_flower_node);
8215 		kfree(fltr);
8216 	}
8217 }
8218 
8219 /**
8220  * ice_remove_q_channels - Remove queue channels for the TCs
8221  * @vsi: VSI to be configured
8222  * @rem_fltr: delete advanced switch filter or not
8223  *
8224  * Remove queue channels for the TCs
8225  */
8226 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8227 {
8228 	struct ice_channel *ch, *ch_tmp;
8229 	struct ice_pf *pf = vsi->back;
8230 	int i;
8231 
8232 	/* remove all tc-flower based filter if they are channel filters only */
8233 	if (rem_fltr)
8234 		ice_rem_all_chnl_fltrs(pf);
8235 
8236 	/* remove ntuple filters since queue configuration is being changed */
8237 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8238 		struct ice_hw *hw = &pf->hw;
8239 
8240 		mutex_lock(&hw->fdir_fltr_lock);
8241 		ice_fdir_del_all_fltrs(vsi);
8242 		mutex_unlock(&hw->fdir_fltr_lock);
8243 	}
8244 
8245 	/* perform cleanup for channels if they exist */
8246 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8247 		struct ice_vsi *ch_vsi;
8248 
8249 		list_del(&ch->list);
8250 		ch_vsi = ch->ch_vsi;
8251 		if (!ch_vsi) {
8252 			kfree(ch);
8253 			continue;
8254 		}
8255 
8256 		/* Reset queue contexts */
8257 		for (i = 0; i < ch->num_rxq; i++) {
8258 			struct ice_tx_ring *tx_ring;
8259 			struct ice_rx_ring *rx_ring;
8260 
8261 			tx_ring = vsi->tx_rings[ch->base_q + i];
8262 			rx_ring = vsi->rx_rings[ch->base_q + i];
8263 			if (tx_ring) {
8264 				tx_ring->ch = NULL;
8265 				if (tx_ring->q_vector)
8266 					tx_ring->q_vector->ch = NULL;
8267 			}
8268 			if (rx_ring) {
8269 				rx_ring->ch = NULL;
8270 				if (rx_ring->q_vector)
8271 					rx_ring->q_vector->ch = NULL;
8272 			}
8273 		}
8274 
8275 		/* Release FD resources for the channel VSI */
8276 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8277 
8278 		/* clear the VSI from scheduler tree */
8279 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8280 
8281 		/* Delete VSI from FW */
8282 		ice_vsi_delete(ch->ch_vsi);
8283 
8284 		/* Delete VSI from PF and HW VSI arrays */
8285 		ice_vsi_clear(ch->ch_vsi);
8286 
8287 		/* free the channel */
8288 		kfree(ch);
8289 	}
8290 
8291 	/* clear the channel VSI map which is stored in main VSI */
8292 	ice_for_each_chnl_tc(i)
8293 		vsi->tc_map_vsi[i] = NULL;
8294 
8295 	/* reset main VSI's all TC information */
8296 	vsi->all_enatc = 0;
8297 	vsi->all_numtc = 0;
8298 }
8299 
8300 /**
8301  * ice_rebuild_channels - rebuild channel
8302  * @pf: ptr to PF
8303  *
8304  * Recreate channel VSIs and replay filters
8305  */
8306 static int ice_rebuild_channels(struct ice_pf *pf)
8307 {
8308 	struct device *dev = ice_pf_to_dev(pf);
8309 	struct ice_vsi *main_vsi;
8310 	bool rem_adv_fltr = true;
8311 	struct ice_channel *ch;
8312 	struct ice_vsi *vsi;
8313 	int tc_idx = 1;
8314 	int i, err;
8315 
8316 	main_vsi = ice_get_main_vsi(pf);
8317 	if (!main_vsi)
8318 		return 0;
8319 
8320 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8321 	    main_vsi->old_numtc == 1)
8322 		return 0; /* nothing to be done */
8323 
8324 	/* reconfigure main VSI based on old value of TC and cached values
8325 	 * for MQPRIO opts
8326 	 */
8327 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8328 	if (err) {
8329 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8330 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8331 		return err;
8332 	}
8333 
8334 	/* rebuild ADQ VSIs */
8335 	ice_for_each_vsi(pf, i) {
8336 		enum ice_vsi_type type;
8337 
8338 		vsi = pf->vsi[i];
8339 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8340 			continue;
8341 
8342 		type = vsi->type;
8343 
8344 		/* rebuild ADQ VSI */
8345 		err = ice_vsi_rebuild(vsi, true);
8346 		if (err) {
8347 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8348 				ice_vsi_type_str(type), vsi->idx, err);
8349 			goto cleanup;
8350 		}
8351 
8352 		/* Re-map HW VSI number, using VSI handle that has been
8353 		 * previously validated in ice_replay_vsi() call above
8354 		 */
8355 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8356 
8357 		/* replay filters for the VSI */
8358 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8359 		if (err) {
8360 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8361 				ice_vsi_type_str(type), err, vsi->idx);
8362 			rem_adv_fltr = false;
8363 			goto cleanup;
8364 		}
8365 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8366 			 ice_vsi_type_str(type), vsi->idx);
8367 
8368 		/* store ADQ VSI at correct TC index in main VSI's
8369 		 * map of TC to VSI
8370 		 */
8371 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8372 	}
8373 
8374 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8375 	 * channel for main VSI's Tx and Rx rings
8376 	 */
8377 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8378 		struct ice_vsi *ch_vsi;
8379 
8380 		ch_vsi = ch->ch_vsi;
8381 		if (!ch_vsi)
8382 			continue;
8383 
8384 		/* reconfig channel resources */
8385 		ice_cfg_chnl_all_res(main_vsi, ch);
8386 
8387 		/* replay BW rate limit if it is non-zero */
8388 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8389 			continue;
8390 
8391 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8392 				       ch->min_tx_rate);
8393 		if (err)
8394 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8395 				err, ch->max_tx_rate, ch->min_tx_rate,
8396 				ch_vsi->vsi_num);
8397 		else
8398 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8399 				ch->max_tx_rate, ch->min_tx_rate,
8400 				ch_vsi->vsi_num);
8401 	}
8402 
8403 	/* reconfig RSS for main VSI */
8404 	if (main_vsi->ch_rss_size)
8405 		ice_vsi_cfg_rss_lut_key(main_vsi);
8406 
8407 	return 0;
8408 
8409 cleanup:
8410 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8411 	return err;
8412 }
8413 
8414 /**
8415  * ice_create_q_channels - Add queue channel for the given TCs
8416  * @vsi: VSI to be configured
8417  *
8418  * Configures queue channel mapping to the given TCs
8419  */
8420 static int ice_create_q_channels(struct ice_vsi *vsi)
8421 {
8422 	struct ice_pf *pf = vsi->back;
8423 	struct ice_channel *ch;
8424 	int ret = 0, i;
8425 
8426 	ice_for_each_chnl_tc(i) {
8427 		if (!(vsi->all_enatc & BIT(i)))
8428 			continue;
8429 
8430 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8431 		if (!ch) {
8432 			ret = -ENOMEM;
8433 			goto err_free;
8434 		}
8435 		INIT_LIST_HEAD(&ch->list);
8436 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8437 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8438 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8439 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8440 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8441 
8442 		/* convert to Kbits/s */
8443 		if (ch->max_tx_rate)
8444 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8445 						  ICE_BW_KBPS_DIVISOR);
8446 		if (ch->min_tx_rate)
8447 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8448 						  ICE_BW_KBPS_DIVISOR);
8449 
8450 		ret = ice_create_q_channel(vsi, ch);
8451 		if (ret) {
8452 			dev_err(ice_pf_to_dev(pf),
8453 				"failed creating channel TC:%d\n", i);
8454 			kfree(ch);
8455 			goto err_free;
8456 		}
8457 		list_add_tail(&ch->list, &vsi->ch_list);
8458 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8459 		dev_dbg(ice_pf_to_dev(pf),
8460 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8461 	}
8462 	return 0;
8463 
8464 err_free:
8465 	ice_remove_q_channels(vsi, false);
8466 
8467 	return ret;
8468 }
8469 
8470 /**
8471  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8472  * @netdev: net device to configure
8473  * @type_data: TC offload data
8474  */
8475 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8476 {
8477 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8478 	struct ice_netdev_priv *np = netdev_priv(netdev);
8479 	struct ice_vsi *vsi = np->vsi;
8480 	struct ice_pf *pf = vsi->back;
8481 	u16 mode, ena_tc_qdisc = 0;
8482 	int cur_txq, cur_rxq;
8483 	u8 hw = 0, num_tcf;
8484 	struct device *dev;
8485 	int ret, i;
8486 
8487 	dev = ice_pf_to_dev(pf);
8488 	num_tcf = mqprio_qopt->qopt.num_tc;
8489 	hw = mqprio_qopt->qopt.hw;
8490 	mode = mqprio_qopt->mode;
8491 	if (!hw) {
8492 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8493 		vsi->ch_rss_size = 0;
8494 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8495 		goto config_tcf;
8496 	}
8497 
8498 	/* Generate queue region map for number of TCF requested */
8499 	for (i = 0; i < num_tcf; i++)
8500 		ena_tc_qdisc |= BIT(i);
8501 
8502 	switch (mode) {
8503 	case TC_MQPRIO_MODE_CHANNEL:
8504 
8505 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8506 		if (ret) {
8507 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8508 				   ret);
8509 			return ret;
8510 		}
8511 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8512 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8513 		/* don't assume state of hw_tc_offload during driver load
8514 		 * and set the flag for TC flower filter if hw_tc_offload
8515 		 * already ON
8516 		 */
8517 		if (vsi->netdev->features & NETIF_F_HW_TC)
8518 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8519 		break;
8520 	default:
8521 		return -EINVAL;
8522 	}
8523 
8524 config_tcf:
8525 
8526 	/* Requesting same TCF configuration as already enabled */
8527 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8528 	    mode != TC_MQPRIO_MODE_CHANNEL)
8529 		return 0;
8530 
8531 	/* Pause VSI queues */
8532 	ice_dis_vsi(vsi, true);
8533 
8534 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8535 		ice_remove_q_channels(vsi, true);
8536 
8537 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8538 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8539 				     num_online_cpus());
8540 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8541 				     num_online_cpus());
8542 	} else {
8543 		/* logic to rebuild VSI, same like ethtool -L */
8544 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8545 
8546 		for (i = 0; i < num_tcf; i++) {
8547 			if (!(ena_tc_qdisc & BIT(i)))
8548 				continue;
8549 
8550 			offset = vsi->mqprio_qopt.qopt.offset[i];
8551 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8552 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8553 		}
8554 		vsi->req_txq = offset + qcount_tx;
8555 		vsi->req_rxq = offset + qcount_rx;
8556 
8557 		/* store away original rss_size info, so that it gets reused
8558 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8559 		 * determine, what should be the rss_sizefor main VSI
8560 		 */
8561 		vsi->orig_rss_size = vsi->rss_size;
8562 	}
8563 
8564 	/* save current values of Tx and Rx queues before calling VSI rebuild
8565 	 * for fallback option
8566 	 */
8567 	cur_txq = vsi->num_txq;
8568 	cur_rxq = vsi->num_rxq;
8569 
8570 	/* proceed with rebuild main VSI using correct number of queues */
8571 	ret = ice_vsi_rebuild(vsi, false);
8572 	if (ret) {
8573 		/* fallback to current number of queues */
8574 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8575 		vsi->req_txq = cur_txq;
8576 		vsi->req_rxq = cur_rxq;
8577 		clear_bit(ICE_RESET_FAILED, pf->state);
8578 		if (ice_vsi_rebuild(vsi, false)) {
8579 			dev_err(dev, "Rebuild of main VSI failed again\n");
8580 			return ret;
8581 		}
8582 	}
8583 
8584 	vsi->all_numtc = num_tcf;
8585 	vsi->all_enatc = ena_tc_qdisc;
8586 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8587 	if (ret) {
8588 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8589 			   vsi->vsi_num);
8590 		goto exit;
8591 	}
8592 
8593 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8594 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8595 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8596 
8597 		/* set TC0 rate limit if specified */
8598 		if (max_tx_rate || min_tx_rate) {
8599 			/* convert to Kbits/s */
8600 			if (max_tx_rate)
8601 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8602 			if (min_tx_rate)
8603 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8604 
8605 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8606 			if (!ret) {
8607 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8608 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8609 			} else {
8610 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8611 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8612 				goto exit;
8613 			}
8614 		}
8615 		ret = ice_create_q_channels(vsi);
8616 		if (ret) {
8617 			netdev_err(netdev, "failed configuring queue channels\n");
8618 			goto exit;
8619 		} else {
8620 			netdev_dbg(netdev, "successfully configured channels\n");
8621 		}
8622 	}
8623 
8624 	if (vsi->ch_rss_size)
8625 		ice_vsi_cfg_rss_lut_key(vsi);
8626 
8627 exit:
8628 	/* if error, reset the all_numtc and all_enatc */
8629 	if (ret) {
8630 		vsi->all_numtc = 0;
8631 		vsi->all_enatc = 0;
8632 	}
8633 	/* resume VSI */
8634 	ice_ena_vsi(vsi, true);
8635 
8636 	return ret;
8637 }
8638 
8639 static LIST_HEAD(ice_block_cb_list);
8640 
8641 static int
8642 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8643 	     void *type_data)
8644 {
8645 	struct ice_netdev_priv *np = netdev_priv(netdev);
8646 	struct ice_pf *pf = np->vsi->back;
8647 	int err;
8648 
8649 	switch (type) {
8650 	case TC_SETUP_BLOCK:
8651 		return flow_block_cb_setup_simple(type_data,
8652 						  &ice_block_cb_list,
8653 						  ice_setup_tc_block_cb,
8654 						  np, np, true);
8655 	case TC_SETUP_QDISC_MQPRIO:
8656 		/* setup traffic classifier for receive side */
8657 		mutex_lock(&pf->tc_mutex);
8658 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8659 		mutex_unlock(&pf->tc_mutex);
8660 		return err;
8661 	default:
8662 		return -EOPNOTSUPP;
8663 	}
8664 	return -EOPNOTSUPP;
8665 }
8666 
8667 static struct ice_indr_block_priv *
8668 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8669 			   struct net_device *netdev)
8670 {
8671 	struct ice_indr_block_priv *cb_priv;
8672 
8673 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8674 		if (!cb_priv->netdev)
8675 			return NULL;
8676 		if (cb_priv->netdev == netdev)
8677 			return cb_priv;
8678 	}
8679 	return NULL;
8680 }
8681 
8682 static int
8683 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8684 			void *indr_priv)
8685 {
8686 	struct ice_indr_block_priv *priv = indr_priv;
8687 	struct ice_netdev_priv *np = priv->np;
8688 
8689 	switch (type) {
8690 	case TC_SETUP_CLSFLOWER:
8691 		return ice_setup_tc_cls_flower(np, priv->netdev,
8692 					       (struct flow_cls_offload *)
8693 					       type_data);
8694 	default:
8695 		return -EOPNOTSUPP;
8696 	}
8697 }
8698 
8699 static int
8700 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8701 			struct ice_netdev_priv *np,
8702 			struct flow_block_offload *f, void *data,
8703 			void (*cleanup)(struct flow_block_cb *block_cb))
8704 {
8705 	struct ice_indr_block_priv *indr_priv;
8706 	struct flow_block_cb *block_cb;
8707 
8708 	if (!ice_is_tunnel_supported(netdev) &&
8709 	    !(is_vlan_dev(netdev) &&
8710 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8711 		return -EOPNOTSUPP;
8712 
8713 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8714 		return -EOPNOTSUPP;
8715 
8716 	switch (f->command) {
8717 	case FLOW_BLOCK_BIND:
8718 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8719 		if (indr_priv)
8720 			return -EEXIST;
8721 
8722 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8723 		if (!indr_priv)
8724 			return -ENOMEM;
8725 
8726 		indr_priv->netdev = netdev;
8727 		indr_priv->np = np;
8728 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8729 
8730 		block_cb =
8731 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8732 						 indr_priv, indr_priv,
8733 						 ice_rep_indr_tc_block_unbind,
8734 						 f, netdev, sch, data, np,
8735 						 cleanup);
8736 
8737 		if (IS_ERR(block_cb)) {
8738 			list_del(&indr_priv->list);
8739 			kfree(indr_priv);
8740 			return PTR_ERR(block_cb);
8741 		}
8742 		flow_block_cb_add(block_cb, f);
8743 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8744 		break;
8745 	case FLOW_BLOCK_UNBIND:
8746 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8747 		if (!indr_priv)
8748 			return -ENOENT;
8749 
8750 		block_cb = flow_block_cb_lookup(f->block,
8751 						ice_indr_setup_block_cb,
8752 						indr_priv);
8753 		if (!block_cb)
8754 			return -ENOENT;
8755 
8756 		flow_indr_block_cb_remove(block_cb, f);
8757 
8758 		list_del(&block_cb->driver_list);
8759 		break;
8760 	default:
8761 		return -EOPNOTSUPP;
8762 	}
8763 	return 0;
8764 }
8765 
8766 static int
8767 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8768 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8769 		     void *data,
8770 		     void (*cleanup)(struct flow_block_cb *block_cb))
8771 {
8772 	switch (type) {
8773 	case TC_SETUP_BLOCK:
8774 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8775 					       data, cleanup);
8776 
8777 	default:
8778 		return -EOPNOTSUPP;
8779 	}
8780 }
8781 
8782 /**
8783  * ice_open - Called when a network interface becomes active
8784  * @netdev: network interface device structure
8785  *
8786  * The open entry point is called when a network interface is made
8787  * active by the system (IFF_UP). At this point all resources needed
8788  * for transmit and receive operations are allocated, the interrupt
8789  * handler is registered with the OS, the netdev watchdog is enabled,
8790  * and the stack is notified that the interface is ready.
8791  *
8792  * Returns 0 on success, negative value on failure
8793  */
8794 int ice_open(struct net_device *netdev)
8795 {
8796 	struct ice_netdev_priv *np = netdev_priv(netdev);
8797 	struct ice_pf *pf = np->vsi->back;
8798 
8799 	if (ice_is_reset_in_progress(pf->state)) {
8800 		netdev_err(netdev, "can't open net device while reset is in progress");
8801 		return -EBUSY;
8802 	}
8803 
8804 	return ice_open_internal(netdev);
8805 }
8806 
8807 /**
8808  * ice_open_internal - Called when a network interface becomes active
8809  * @netdev: network interface device structure
8810  *
8811  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8812  * handling routine
8813  *
8814  * Returns 0 on success, negative value on failure
8815  */
8816 int ice_open_internal(struct net_device *netdev)
8817 {
8818 	struct ice_netdev_priv *np = netdev_priv(netdev);
8819 	struct ice_vsi *vsi = np->vsi;
8820 	struct ice_pf *pf = vsi->back;
8821 	struct ice_port_info *pi;
8822 	int err;
8823 
8824 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8825 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8826 		return -EIO;
8827 	}
8828 
8829 	netif_carrier_off(netdev);
8830 
8831 	pi = vsi->port_info;
8832 	err = ice_update_link_info(pi);
8833 	if (err) {
8834 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8835 		return err;
8836 	}
8837 
8838 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8839 
8840 	/* Set PHY if there is media, otherwise, turn off PHY */
8841 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8842 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8843 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8844 			err = ice_init_phy_user_cfg(pi);
8845 			if (err) {
8846 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8847 					   err);
8848 				return err;
8849 			}
8850 		}
8851 
8852 		err = ice_configure_phy(vsi);
8853 		if (err) {
8854 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8855 				   err);
8856 			return err;
8857 		}
8858 	} else {
8859 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8860 		ice_set_link(vsi, false);
8861 	}
8862 
8863 	err = ice_vsi_open(vsi);
8864 	if (err)
8865 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8866 			   vsi->vsi_num, vsi->vsw->sw_id);
8867 
8868 	/* Update existing tunnels information */
8869 	udp_tunnel_get_rx_info(netdev);
8870 
8871 	return err;
8872 }
8873 
8874 /**
8875  * ice_stop - Disables a network interface
8876  * @netdev: network interface device structure
8877  *
8878  * The stop entry point is called when an interface is de-activated by the OS,
8879  * and the netdevice enters the DOWN state. The hardware is still under the
8880  * driver's control, but the netdev interface is disabled.
8881  *
8882  * Returns success only - not allowed to fail
8883  */
8884 int ice_stop(struct net_device *netdev)
8885 {
8886 	struct ice_netdev_priv *np = netdev_priv(netdev);
8887 	struct ice_vsi *vsi = np->vsi;
8888 	struct ice_pf *pf = vsi->back;
8889 
8890 	if (ice_is_reset_in_progress(pf->state)) {
8891 		netdev_err(netdev, "can't stop net device while reset is in progress");
8892 		return -EBUSY;
8893 	}
8894 
8895 	ice_vsi_close(vsi);
8896 
8897 	return 0;
8898 }
8899 
8900 /**
8901  * ice_features_check - Validate encapsulated packet conforms to limits
8902  * @skb: skb buffer
8903  * @netdev: This port's netdev
8904  * @features: Offload features that the stack believes apply
8905  */
8906 static netdev_features_t
8907 ice_features_check(struct sk_buff *skb,
8908 		   struct net_device __always_unused *netdev,
8909 		   netdev_features_t features)
8910 {
8911 	bool gso = skb_is_gso(skb);
8912 	size_t len;
8913 
8914 	/* No point in doing any of this if neither checksum nor GSO are
8915 	 * being requested for this frame. We can rule out both by just
8916 	 * checking for CHECKSUM_PARTIAL
8917 	 */
8918 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8919 		return features;
8920 
8921 	/* We cannot support GSO if the MSS is going to be less than
8922 	 * 64 bytes. If it is then we need to drop support for GSO.
8923 	 */
8924 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8925 		features &= ~NETIF_F_GSO_MASK;
8926 
8927 	len = skb_network_offset(skb);
8928 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8929 		goto out_rm_features;
8930 
8931 	len = skb_network_header_len(skb);
8932 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8933 		goto out_rm_features;
8934 
8935 	if (skb->encapsulation) {
8936 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8937 		 * the case of IPIP frames, the transport header pointer is
8938 		 * after the inner header! So check to make sure that this
8939 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8940 		 */
8941 		if (gso && (skb_shinfo(skb)->gso_type &
8942 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8943 			len = skb_inner_network_header(skb) -
8944 			      skb_transport_header(skb);
8945 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8946 				goto out_rm_features;
8947 		}
8948 
8949 		len = skb_inner_network_header_len(skb);
8950 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8951 			goto out_rm_features;
8952 	}
8953 
8954 	return features;
8955 out_rm_features:
8956 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8957 }
8958 
8959 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8960 	.ndo_open = ice_open,
8961 	.ndo_stop = ice_stop,
8962 	.ndo_start_xmit = ice_start_xmit,
8963 	.ndo_set_mac_address = ice_set_mac_address,
8964 	.ndo_validate_addr = eth_validate_addr,
8965 	.ndo_change_mtu = ice_change_mtu,
8966 	.ndo_get_stats64 = ice_get_stats64,
8967 	.ndo_tx_timeout = ice_tx_timeout,
8968 	.ndo_bpf = ice_xdp_safe_mode,
8969 };
8970 
8971 static const struct net_device_ops ice_netdev_ops = {
8972 	.ndo_open = ice_open,
8973 	.ndo_stop = ice_stop,
8974 	.ndo_start_xmit = ice_start_xmit,
8975 	.ndo_select_queue = ice_select_queue,
8976 	.ndo_features_check = ice_features_check,
8977 	.ndo_fix_features = ice_fix_features,
8978 	.ndo_set_rx_mode = ice_set_rx_mode,
8979 	.ndo_set_mac_address = ice_set_mac_address,
8980 	.ndo_validate_addr = eth_validate_addr,
8981 	.ndo_change_mtu = ice_change_mtu,
8982 	.ndo_get_stats64 = ice_get_stats64,
8983 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8984 	.ndo_eth_ioctl = ice_eth_ioctl,
8985 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8986 	.ndo_set_vf_mac = ice_set_vf_mac,
8987 	.ndo_get_vf_config = ice_get_vf_cfg,
8988 	.ndo_set_vf_trust = ice_set_vf_trust,
8989 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8990 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8991 	.ndo_get_vf_stats = ice_get_vf_stats,
8992 	.ndo_set_vf_rate = ice_set_vf_bw,
8993 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8994 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8995 	.ndo_setup_tc = ice_setup_tc,
8996 	.ndo_set_features = ice_set_features,
8997 	.ndo_bridge_getlink = ice_bridge_getlink,
8998 	.ndo_bridge_setlink = ice_bridge_setlink,
8999 	.ndo_fdb_add = ice_fdb_add,
9000 	.ndo_fdb_del = ice_fdb_del,
9001 #ifdef CONFIG_RFS_ACCEL
9002 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9003 #endif
9004 	.ndo_tx_timeout = ice_tx_timeout,
9005 	.ndo_bpf = ice_xdp,
9006 	.ndo_xdp_xmit = ice_xdp_xmit,
9007 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9008 	.ndo_get_devlink_port = ice_get_devlink_port,
9009 };
9010