1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 ice_unplug_aux_dev(pf); 2403 2404 switch (reset) { 2405 case ICE_RESET_PFR: 2406 set_bit(ICE_PFR_REQ, pf->state); 2407 break; 2408 case ICE_RESET_CORER: 2409 set_bit(ICE_CORER_REQ, pf->state); 2410 break; 2411 case ICE_RESET_GLOBR: 2412 set_bit(ICE_GLOBR_REQ, pf->state); 2413 break; 2414 default: 2415 return -EINVAL; 2416 } 2417 2418 ice_service_task_schedule(pf); 2419 return 0; 2420 } 2421 2422 /** 2423 * ice_irq_affinity_notify - Callback for affinity changes 2424 * @notify: context as to what irq was changed 2425 * @mask: the new affinity mask 2426 * 2427 * This is a callback function used by the irq_set_affinity_notifier function 2428 * so that we may register to receive changes to the irq affinity masks. 2429 */ 2430 static void 2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2432 const cpumask_t *mask) 2433 { 2434 struct ice_q_vector *q_vector = 2435 container_of(notify, struct ice_q_vector, affinity_notify); 2436 2437 cpumask_copy(&q_vector->affinity_mask, mask); 2438 } 2439 2440 /** 2441 * ice_irq_affinity_release - Callback for affinity notifier release 2442 * @ref: internal core kernel usage 2443 * 2444 * This is a callback function used by the irq_set_affinity_notifier function 2445 * to inform the current notification subscriber that they will no longer 2446 * receive notifications. 2447 */ 2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2449 2450 /** 2451 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2452 * @vsi: the VSI being configured 2453 */ 2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2455 { 2456 struct ice_hw *hw = &vsi->back->hw; 2457 int i; 2458 2459 ice_for_each_q_vector(vsi, i) 2460 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2461 2462 ice_flush(hw); 2463 return 0; 2464 } 2465 2466 /** 2467 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2468 * @vsi: the VSI being configured 2469 * @basename: name for the vector 2470 */ 2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2472 { 2473 int q_vectors = vsi->num_q_vectors; 2474 struct ice_pf *pf = vsi->back; 2475 int base = vsi->base_vector; 2476 struct device *dev; 2477 int rx_int_idx = 0; 2478 int tx_int_idx = 0; 2479 int vector, err; 2480 int irq_num; 2481 2482 dev = ice_pf_to_dev(pf); 2483 for (vector = 0; vector < q_vectors; vector++) { 2484 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2485 2486 irq_num = pf->msix_entries[base + vector].vector; 2487 2488 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2489 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2490 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2491 tx_int_idx++; 2492 } else if (q_vector->rx.rx_ring) { 2493 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2494 "%s-%s-%d", basename, "rx", rx_int_idx++); 2495 } else if (q_vector->tx.tx_ring) { 2496 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2497 "%s-%s-%d", basename, "tx", tx_int_idx++); 2498 } else { 2499 /* skip this unused q_vector */ 2500 continue; 2501 } 2502 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2503 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2504 IRQF_SHARED, q_vector->name, 2505 q_vector); 2506 else 2507 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2508 0, q_vector->name, q_vector); 2509 if (err) { 2510 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2511 err); 2512 goto free_q_irqs; 2513 } 2514 2515 /* register for affinity change notifications */ 2516 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2517 struct irq_affinity_notify *affinity_notify; 2518 2519 affinity_notify = &q_vector->affinity_notify; 2520 affinity_notify->notify = ice_irq_affinity_notify; 2521 affinity_notify->release = ice_irq_affinity_release; 2522 irq_set_affinity_notifier(irq_num, affinity_notify); 2523 } 2524 2525 /* assign the mask for this irq */ 2526 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2527 } 2528 2529 err = ice_set_cpu_rx_rmap(vsi); 2530 if (err) { 2531 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2532 vsi->vsi_num, ERR_PTR(err)); 2533 goto free_q_irqs; 2534 } 2535 2536 vsi->irqs_ready = true; 2537 return 0; 2538 2539 free_q_irqs: 2540 while (vector) { 2541 vector--; 2542 irq_num = pf->msix_entries[base + vector].vector; 2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2544 irq_set_affinity_notifier(irq_num, NULL); 2545 irq_set_affinity_hint(irq_num, NULL); 2546 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2547 } 2548 return err; 2549 } 2550 2551 /** 2552 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2553 * @vsi: VSI to setup Tx rings used by XDP 2554 * 2555 * Return 0 on success and negative value on error 2556 */ 2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2558 { 2559 struct device *dev = ice_pf_to_dev(vsi->back); 2560 struct ice_tx_desc *tx_desc; 2561 int i, j; 2562 2563 ice_for_each_xdp_txq(vsi, i) { 2564 u16 xdp_q_idx = vsi->alloc_txq + i; 2565 struct ice_tx_ring *xdp_ring; 2566 2567 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2568 2569 if (!xdp_ring) 2570 goto free_xdp_rings; 2571 2572 xdp_ring->q_index = xdp_q_idx; 2573 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2574 xdp_ring->vsi = vsi; 2575 xdp_ring->netdev = NULL; 2576 xdp_ring->dev = dev; 2577 xdp_ring->count = vsi->num_tx_desc; 2578 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2579 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2580 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2581 if (ice_setup_tx_ring(xdp_ring)) 2582 goto free_xdp_rings; 2583 ice_set_ring_xdp(xdp_ring); 2584 spin_lock_init(&xdp_ring->tx_lock); 2585 for (j = 0; j < xdp_ring->count; j++) { 2586 tx_desc = ICE_TX_DESC(xdp_ring, j); 2587 tx_desc->cmd_type_offset_bsz = 0; 2588 } 2589 } 2590 2591 return 0; 2592 2593 free_xdp_rings: 2594 for (; i >= 0; i--) 2595 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2596 ice_free_tx_ring(vsi->xdp_rings[i]); 2597 return -ENOMEM; 2598 } 2599 2600 /** 2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2602 * @vsi: VSI to set the bpf prog on 2603 * @prog: the bpf prog pointer 2604 */ 2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2606 { 2607 struct bpf_prog *old_prog; 2608 int i; 2609 2610 old_prog = xchg(&vsi->xdp_prog, prog); 2611 if (old_prog) 2612 bpf_prog_put(old_prog); 2613 2614 ice_for_each_rxq(vsi, i) 2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2616 } 2617 2618 /** 2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2620 * @vsi: VSI to bring up Tx rings used by XDP 2621 * @prog: bpf program that will be assigned to VSI 2622 * 2623 * Return 0 on success and negative value on error 2624 */ 2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2628 int xdp_rings_rem = vsi->num_xdp_txq; 2629 struct ice_pf *pf = vsi->back; 2630 struct ice_qs_cfg xdp_qs_cfg = { 2631 .qs_mutex = &pf->avail_q_mutex, 2632 .pf_map = pf->avail_txqs, 2633 .pf_map_size = pf->max_pf_txqs, 2634 .q_count = vsi->num_xdp_txq, 2635 .scatter_count = ICE_MAX_SCATTER_TXQS, 2636 .vsi_map = vsi->txq_map, 2637 .vsi_map_offset = vsi->alloc_txq, 2638 .mapping_mode = ICE_VSI_MAP_CONTIG 2639 }; 2640 struct device *dev; 2641 int i, v_idx; 2642 int status; 2643 2644 dev = ice_pf_to_dev(pf); 2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2646 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2647 if (!vsi->xdp_rings) 2648 return -ENOMEM; 2649 2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2651 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2652 goto err_map_xdp; 2653 2654 if (static_key_enabled(&ice_xdp_locking_key)) 2655 netdev_warn(vsi->netdev, 2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2657 2658 if (ice_xdp_alloc_setup_rings(vsi)) 2659 goto clear_xdp_rings; 2660 2661 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2662 ice_for_each_q_vector(vsi, v_idx) { 2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2664 int xdp_rings_per_v, q_id, q_base; 2665 2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2667 vsi->num_q_vectors - v_idx); 2668 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2669 2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2672 2673 xdp_ring->q_vector = q_vector; 2674 xdp_ring->next = q_vector->tx.tx_ring; 2675 q_vector->tx.tx_ring = xdp_ring; 2676 } 2677 xdp_rings_rem -= xdp_rings_per_v; 2678 } 2679 2680 ice_for_each_rxq(vsi, i) { 2681 if (static_key_enabled(&ice_xdp_locking_key)) { 2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2683 } else { 2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2685 struct ice_tx_ring *ring; 2686 2687 ice_for_each_tx_ring(ring, q_vector->tx) { 2688 if (ice_ring_is_xdp(ring)) { 2689 vsi->rx_rings[i]->xdp_ring = ring; 2690 break; 2691 } 2692 } 2693 } 2694 ice_tx_xsk_pool(vsi, i); 2695 } 2696 2697 /* omit the scheduler update if in reset path; XDP queues will be 2698 * taken into account at the end of ice_vsi_rebuild, where 2699 * ice_cfg_vsi_lan is being called 2700 */ 2701 if (ice_is_reset_in_progress(pf->state)) 2702 return 0; 2703 2704 /* tell the Tx scheduler that right now we have 2705 * additional queues 2706 */ 2707 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2709 2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2711 max_txqs); 2712 if (status) { 2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2714 status); 2715 goto clear_xdp_rings; 2716 } 2717 2718 /* assign the prog only when it's not already present on VSI; 2719 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2720 * VSI rebuild that happens under ethtool -L can expose us to 2721 * the bpf_prog refcount issues as we would be swapping same 2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2724 * this is not harmful as dev_xdp_install bumps the refcount 2725 * before calling the op exposed by the driver; 2726 */ 2727 if (!ice_is_xdp_ena_vsi(vsi)) 2728 ice_vsi_assign_bpf_prog(vsi, prog); 2729 2730 return 0; 2731 clear_xdp_rings: 2732 ice_for_each_xdp_txq(vsi, i) 2733 if (vsi->xdp_rings[i]) { 2734 kfree_rcu(vsi->xdp_rings[i], rcu); 2735 vsi->xdp_rings[i] = NULL; 2736 } 2737 2738 err_map_xdp: 2739 mutex_lock(&pf->avail_q_mutex); 2740 ice_for_each_xdp_txq(vsi, i) { 2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2743 } 2744 mutex_unlock(&pf->avail_q_mutex); 2745 2746 devm_kfree(dev, vsi->xdp_rings); 2747 return -ENOMEM; 2748 } 2749 2750 /** 2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2752 * @vsi: VSI to remove XDP rings 2753 * 2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2755 * resources 2756 */ 2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2758 { 2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2760 struct ice_pf *pf = vsi->back; 2761 int i, v_idx; 2762 2763 /* q_vectors are freed in reset path so there's no point in detaching 2764 * rings; in case of rebuild being triggered not from reset bits 2765 * in pf->state won't be set, so additionally check first q_vector 2766 * against NULL 2767 */ 2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2769 goto free_qmap; 2770 2771 ice_for_each_q_vector(vsi, v_idx) { 2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2773 struct ice_tx_ring *ring; 2774 2775 ice_for_each_tx_ring(ring, q_vector->tx) 2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2777 break; 2778 2779 /* restore the value of last node prior to XDP setup */ 2780 q_vector->tx.tx_ring = ring; 2781 } 2782 2783 free_qmap: 2784 mutex_lock(&pf->avail_q_mutex); 2785 ice_for_each_xdp_txq(vsi, i) { 2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2788 } 2789 mutex_unlock(&pf->avail_q_mutex); 2790 2791 ice_for_each_xdp_txq(vsi, i) 2792 if (vsi->xdp_rings[i]) { 2793 if (vsi->xdp_rings[i]->desc) { 2794 synchronize_rcu(); 2795 ice_free_tx_ring(vsi->xdp_rings[i]); 2796 } 2797 kfree_rcu(vsi->xdp_rings[i], rcu); 2798 vsi->xdp_rings[i] = NULL; 2799 } 2800 2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2802 vsi->xdp_rings = NULL; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 static_branch_dec(&ice_xdp_locking_key); 2806 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 return 0; 2809 2810 ice_vsi_assign_bpf_prog(vsi, NULL); 2811 2812 /* notify Tx scheduler that we destroyed XDP queues and bring 2813 * back the old number of child nodes 2814 */ 2815 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2816 max_txqs[i] = vsi->num_txq; 2817 2818 /* change number of XDP Tx queues to 0 */ 2819 vsi->num_xdp_txq = 0; 2820 2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2822 max_txqs); 2823 } 2824 2825 /** 2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2827 * @vsi: VSI to schedule napi on 2828 */ 2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2830 { 2831 int i; 2832 2833 ice_for_each_rxq(vsi, i) { 2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2835 2836 if (rx_ring->xsk_pool) 2837 napi_schedule(&rx_ring->q_vector->napi); 2838 } 2839 } 2840 2841 /** 2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2843 * @vsi: VSI to determine the count of XDP Tx qs 2844 * 2845 * returns 0 if Tx qs count is higher than at least half of CPU count, 2846 * -ENOMEM otherwise 2847 */ 2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2849 { 2850 u16 avail = ice_get_avail_txq_count(vsi->back); 2851 u16 cpus = num_possible_cpus(); 2852 2853 if (avail < cpus / 2) 2854 return -ENOMEM; 2855 2856 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2857 2858 if (vsi->num_xdp_txq < cpus) 2859 static_branch_inc(&ice_xdp_locking_key); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2866 * @vsi: VSI to setup XDP for 2867 * @prog: XDP program 2868 * @extack: netlink extended ack 2869 */ 2870 static int 2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2872 struct netlink_ext_ack *extack) 2873 { 2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2875 bool if_running = netif_running(vsi->netdev); 2876 int ret = 0, xdp_ring_err = 0; 2877 2878 if (frame_size > vsi->rx_buf_len) { 2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2880 return -EOPNOTSUPP; 2881 } 2882 2883 /* need to stop netdev while setting up the program for Rx rings */ 2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2885 ret = ice_down(vsi); 2886 if (ret) { 2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2888 return ret; 2889 } 2890 } 2891 2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2894 if (xdp_ring_err) { 2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2896 } else { 2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2898 if (xdp_ring_err) 2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2900 } 2901 /* reallocate Rx queues that are used for zero-copy */ 2902 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2903 if (xdp_ring_err) 2904 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2905 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2906 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2907 if (xdp_ring_err) 2908 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2909 /* reallocate Rx queues that were used for zero-copy */ 2910 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2911 if (xdp_ring_err) 2912 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2913 } else { 2914 /* safe to call even when prog == vsi->xdp_prog as 2915 * dev_xdp_install in net/core/dev.c incremented prog's 2916 * refcount so corresponding bpf_prog_put won't cause 2917 * underflow 2918 */ 2919 ice_vsi_assign_bpf_prog(vsi, prog); 2920 } 2921 2922 if (if_running) 2923 ret = ice_up(vsi); 2924 2925 if (!ret && prog) 2926 ice_vsi_rx_napi_schedule(vsi); 2927 2928 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2929 } 2930 2931 /** 2932 * ice_xdp_safe_mode - XDP handler for safe mode 2933 * @dev: netdevice 2934 * @xdp: XDP command 2935 */ 2936 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2937 struct netdev_bpf *xdp) 2938 { 2939 NL_SET_ERR_MSG_MOD(xdp->extack, 2940 "Please provide working DDP firmware package in order to use XDP\n" 2941 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2942 return -EOPNOTSUPP; 2943 } 2944 2945 /** 2946 * ice_xdp - implements XDP handler 2947 * @dev: netdevice 2948 * @xdp: XDP command 2949 */ 2950 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2951 { 2952 struct ice_netdev_priv *np = netdev_priv(dev); 2953 struct ice_vsi *vsi = np->vsi; 2954 2955 if (vsi->type != ICE_VSI_PF) { 2956 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2957 return -EINVAL; 2958 } 2959 2960 switch (xdp->command) { 2961 case XDP_SETUP_PROG: 2962 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2963 case XDP_SETUP_XSK_POOL: 2964 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2965 xdp->xsk.queue_id); 2966 default: 2967 return -EINVAL; 2968 } 2969 } 2970 2971 /** 2972 * ice_ena_misc_vector - enable the non-queue interrupts 2973 * @pf: board private structure 2974 */ 2975 static void ice_ena_misc_vector(struct ice_pf *pf) 2976 { 2977 struct ice_hw *hw = &pf->hw; 2978 u32 val; 2979 2980 /* Disable anti-spoof detection interrupt to prevent spurious event 2981 * interrupts during a function reset. Anti-spoof functionally is 2982 * still supported. 2983 */ 2984 val = rd32(hw, GL_MDCK_TX_TDPU); 2985 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2986 wr32(hw, GL_MDCK_TX_TDPU, val); 2987 2988 /* clear things first */ 2989 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2990 rd32(hw, PFINT_OICR); /* read to clear */ 2991 2992 val = (PFINT_OICR_ECC_ERR_M | 2993 PFINT_OICR_MAL_DETECT_M | 2994 PFINT_OICR_GRST_M | 2995 PFINT_OICR_PCI_EXCEPTION_M | 2996 PFINT_OICR_VFLR_M | 2997 PFINT_OICR_HMC_ERR_M | 2998 PFINT_OICR_PE_PUSH_M | 2999 PFINT_OICR_PE_CRITERR_M); 3000 3001 wr32(hw, PFINT_OICR_ENA, val); 3002 3003 /* SW_ITR_IDX = 0, but don't change INTENA */ 3004 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3005 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3006 } 3007 3008 /** 3009 * ice_misc_intr - misc interrupt handler 3010 * @irq: interrupt number 3011 * @data: pointer to a q_vector 3012 */ 3013 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3014 { 3015 struct ice_pf *pf = (struct ice_pf *)data; 3016 struct ice_hw *hw = &pf->hw; 3017 irqreturn_t ret = IRQ_NONE; 3018 struct device *dev; 3019 u32 oicr, ena_mask; 3020 3021 dev = ice_pf_to_dev(pf); 3022 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3023 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3024 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3025 3026 oicr = rd32(hw, PFINT_OICR); 3027 ena_mask = rd32(hw, PFINT_OICR_ENA); 3028 3029 if (oicr & PFINT_OICR_SWINT_M) { 3030 ena_mask &= ~PFINT_OICR_SWINT_M; 3031 pf->sw_int_count++; 3032 } 3033 3034 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3035 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3036 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3037 } 3038 if (oicr & PFINT_OICR_VFLR_M) { 3039 /* disable any further VFLR event notifications */ 3040 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3041 u32 reg = rd32(hw, PFINT_OICR_ENA); 3042 3043 reg &= ~PFINT_OICR_VFLR_M; 3044 wr32(hw, PFINT_OICR_ENA, reg); 3045 } else { 3046 ena_mask &= ~PFINT_OICR_VFLR_M; 3047 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3048 } 3049 } 3050 3051 if (oicr & PFINT_OICR_GRST_M) { 3052 u32 reset; 3053 3054 /* we have a reset warning */ 3055 ena_mask &= ~PFINT_OICR_GRST_M; 3056 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3057 GLGEN_RSTAT_RESET_TYPE_S; 3058 3059 if (reset == ICE_RESET_CORER) 3060 pf->corer_count++; 3061 else if (reset == ICE_RESET_GLOBR) 3062 pf->globr_count++; 3063 else if (reset == ICE_RESET_EMPR) 3064 pf->empr_count++; 3065 else 3066 dev_dbg(dev, "Invalid reset type %d\n", reset); 3067 3068 /* If a reset cycle isn't already in progress, we set a bit in 3069 * pf->state so that the service task can start a reset/rebuild. 3070 */ 3071 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3072 if (reset == ICE_RESET_CORER) 3073 set_bit(ICE_CORER_RECV, pf->state); 3074 else if (reset == ICE_RESET_GLOBR) 3075 set_bit(ICE_GLOBR_RECV, pf->state); 3076 else 3077 set_bit(ICE_EMPR_RECV, pf->state); 3078 3079 /* There are couple of different bits at play here. 3080 * hw->reset_ongoing indicates whether the hardware is 3081 * in reset. This is set to true when a reset interrupt 3082 * is received and set back to false after the driver 3083 * has determined that the hardware is out of reset. 3084 * 3085 * ICE_RESET_OICR_RECV in pf->state indicates 3086 * that a post reset rebuild is required before the 3087 * driver is operational again. This is set above. 3088 * 3089 * As this is the start of the reset/rebuild cycle, set 3090 * both to indicate that. 3091 */ 3092 hw->reset_ongoing = true; 3093 } 3094 } 3095 3096 if (oicr & PFINT_OICR_TSYN_TX_M) { 3097 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3098 ice_ptp_process_ts(pf); 3099 } 3100 3101 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3102 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3103 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3104 3105 /* Save EVENTs from GTSYN register */ 3106 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3107 GLTSYN_STAT_EVENT1_M | 3108 GLTSYN_STAT_EVENT2_M); 3109 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3110 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3111 } 3112 3113 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3114 if (oicr & ICE_AUX_CRIT_ERR) { 3115 pf->oicr_err_reg |= oicr; 3116 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3117 ena_mask &= ~ICE_AUX_CRIT_ERR; 3118 } 3119 3120 /* Report any remaining unexpected interrupts */ 3121 oicr &= ena_mask; 3122 if (oicr) { 3123 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3124 /* If a critical error is pending there is no choice but to 3125 * reset the device. 3126 */ 3127 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3128 PFINT_OICR_ECC_ERR_M)) { 3129 set_bit(ICE_PFR_REQ, pf->state); 3130 ice_service_task_schedule(pf); 3131 } 3132 } 3133 ret = IRQ_HANDLED; 3134 3135 ice_service_task_schedule(pf); 3136 ice_irq_dynamic_ena(hw, NULL, NULL); 3137 3138 return ret; 3139 } 3140 3141 /** 3142 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3143 * @hw: pointer to HW structure 3144 */ 3145 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3146 { 3147 /* disable Admin queue Interrupt causes */ 3148 wr32(hw, PFINT_FW_CTL, 3149 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3150 3151 /* disable Mailbox queue Interrupt causes */ 3152 wr32(hw, PFINT_MBX_CTL, 3153 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3154 3155 wr32(hw, PFINT_SB_CTL, 3156 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3157 3158 /* disable Control queue Interrupt causes */ 3159 wr32(hw, PFINT_OICR_CTL, 3160 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3161 3162 ice_flush(hw); 3163 } 3164 3165 /** 3166 * ice_free_irq_msix_misc - Unroll misc vector setup 3167 * @pf: board private structure 3168 */ 3169 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3170 { 3171 struct ice_hw *hw = &pf->hw; 3172 3173 ice_dis_ctrlq_interrupts(hw); 3174 3175 /* disable OICR interrupt */ 3176 wr32(hw, PFINT_OICR_ENA, 0); 3177 ice_flush(hw); 3178 3179 if (pf->msix_entries) { 3180 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3181 devm_free_irq(ice_pf_to_dev(pf), 3182 pf->msix_entries[pf->oicr_idx].vector, pf); 3183 } 3184 3185 pf->num_avail_sw_msix += 1; 3186 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3187 } 3188 3189 /** 3190 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3191 * @hw: pointer to HW structure 3192 * @reg_idx: HW vector index to associate the control queue interrupts with 3193 */ 3194 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3195 { 3196 u32 val; 3197 3198 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3199 PFINT_OICR_CTL_CAUSE_ENA_M); 3200 wr32(hw, PFINT_OICR_CTL, val); 3201 3202 /* enable Admin queue Interrupt causes */ 3203 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3204 PFINT_FW_CTL_CAUSE_ENA_M); 3205 wr32(hw, PFINT_FW_CTL, val); 3206 3207 /* enable Mailbox queue Interrupt causes */ 3208 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3209 PFINT_MBX_CTL_CAUSE_ENA_M); 3210 wr32(hw, PFINT_MBX_CTL, val); 3211 3212 /* This enables Sideband queue Interrupt causes */ 3213 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3214 PFINT_SB_CTL_CAUSE_ENA_M); 3215 wr32(hw, PFINT_SB_CTL, val); 3216 3217 ice_flush(hw); 3218 } 3219 3220 /** 3221 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3222 * @pf: board private structure 3223 * 3224 * This sets up the handler for MSIX 0, which is used to manage the 3225 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3226 * when in MSI or Legacy interrupt mode. 3227 */ 3228 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3229 { 3230 struct device *dev = ice_pf_to_dev(pf); 3231 struct ice_hw *hw = &pf->hw; 3232 int oicr_idx, err = 0; 3233 3234 if (!pf->int_name[0]) 3235 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3236 dev_driver_string(dev), dev_name(dev)); 3237 3238 /* Do not request IRQ but do enable OICR interrupt since settings are 3239 * lost during reset. Note that this function is called only during 3240 * rebuild path and not while reset is in progress. 3241 */ 3242 if (ice_is_reset_in_progress(pf->state)) 3243 goto skip_req_irq; 3244 3245 /* reserve one vector in irq_tracker for misc interrupts */ 3246 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3247 if (oicr_idx < 0) 3248 return oicr_idx; 3249 3250 pf->num_avail_sw_msix -= 1; 3251 pf->oicr_idx = (u16)oicr_idx; 3252 3253 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3254 ice_misc_intr, 0, pf->int_name, pf); 3255 if (err) { 3256 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3257 pf->int_name, err); 3258 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3259 pf->num_avail_sw_msix += 1; 3260 return err; 3261 } 3262 3263 skip_req_irq: 3264 ice_ena_misc_vector(pf); 3265 3266 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3267 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3268 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3269 3270 ice_flush(hw); 3271 ice_irq_dynamic_ena(hw, NULL, NULL); 3272 3273 return 0; 3274 } 3275 3276 /** 3277 * ice_napi_add - register NAPI handler for the VSI 3278 * @vsi: VSI for which NAPI handler is to be registered 3279 * 3280 * This function is only called in the driver's load path. Registering the NAPI 3281 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3282 * reset/rebuild, etc.) 3283 */ 3284 static void ice_napi_add(struct ice_vsi *vsi) 3285 { 3286 int v_idx; 3287 3288 if (!vsi->netdev) 3289 return; 3290 3291 ice_for_each_q_vector(vsi, v_idx) 3292 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3293 ice_napi_poll, NAPI_POLL_WEIGHT); 3294 } 3295 3296 /** 3297 * ice_set_ops - set netdev and ethtools ops for the given netdev 3298 * @netdev: netdev instance 3299 */ 3300 static void ice_set_ops(struct net_device *netdev) 3301 { 3302 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3303 3304 if (ice_is_safe_mode(pf)) { 3305 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3306 ice_set_ethtool_safe_mode_ops(netdev); 3307 return; 3308 } 3309 3310 netdev->netdev_ops = &ice_netdev_ops; 3311 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3312 ice_set_ethtool_ops(netdev); 3313 } 3314 3315 /** 3316 * ice_set_netdev_features - set features for the given netdev 3317 * @netdev: netdev instance 3318 */ 3319 static void ice_set_netdev_features(struct net_device *netdev) 3320 { 3321 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3322 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3323 netdev_features_t csumo_features; 3324 netdev_features_t vlano_features; 3325 netdev_features_t dflt_features; 3326 netdev_features_t tso_features; 3327 3328 if (ice_is_safe_mode(pf)) { 3329 /* safe mode */ 3330 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3331 netdev->hw_features = netdev->features; 3332 return; 3333 } 3334 3335 dflt_features = NETIF_F_SG | 3336 NETIF_F_HIGHDMA | 3337 NETIF_F_NTUPLE | 3338 NETIF_F_RXHASH; 3339 3340 csumo_features = NETIF_F_RXCSUM | 3341 NETIF_F_IP_CSUM | 3342 NETIF_F_SCTP_CRC | 3343 NETIF_F_IPV6_CSUM; 3344 3345 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3346 NETIF_F_HW_VLAN_CTAG_TX | 3347 NETIF_F_HW_VLAN_CTAG_RX; 3348 3349 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3350 if (is_dvm_ena) 3351 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3352 3353 tso_features = NETIF_F_TSO | 3354 NETIF_F_TSO_ECN | 3355 NETIF_F_TSO6 | 3356 NETIF_F_GSO_GRE | 3357 NETIF_F_GSO_UDP_TUNNEL | 3358 NETIF_F_GSO_GRE_CSUM | 3359 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3360 NETIF_F_GSO_PARTIAL | 3361 NETIF_F_GSO_IPXIP4 | 3362 NETIF_F_GSO_IPXIP6 | 3363 NETIF_F_GSO_UDP_L4; 3364 3365 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3366 NETIF_F_GSO_GRE_CSUM; 3367 /* set features that user can change */ 3368 netdev->hw_features = dflt_features | csumo_features | 3369 vlano_features | tso_features; 3370 3371 /* add support for HW_CSUM on packets with MPLS header */ 3372 netdev->mpls_features = NETIF_F_HW_CSUM | 3373 NETIF_F_TSO | 3374 NETIF_F_TSO6; 3375 3376 /* enable features */ 3377 netdev->features |= netdev->hw_features; 3378 3379 netdev->hw_features |= NETIF_F_HW_TC; 3380 netdev->hw_features |= NETIF_F_LOOPBACK; 3381 3382 /* encap and VLAN devices inherit default, csumo and tso features */ 3383 netdev->hw_enc_features |= dflt_features | csumo_features | 3384 tso_features; 3385 netdev->vlan_features |= dflt_features | csumo_features | 3386 tso_features; 3387 3388 /* advertise support but don't enable by default since only one type of 3389 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3390 * type turns on the other has to be turned off. This is enforced by the 3391 * ice_fix_features() ndo callback. 3392 */ 3393 if (is_dvm_ena) 3394 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3395 NETIF_F_HW_VLAN_STAG_TX; 3396 } 3397 3398 /** 3399 * ice_cfg_netdev - Allocate, configure and register a netdev 3400 * @vsi: the VSI associated with the new netdev 3401 * 3402 * Returns 0 on success, negative value on failure 3403 */ 3404 static int ice_cfg_netdev(struct ice_vsi *vsi) 3405 { 3406 struct ice_netdev_priv *np; 3407 struct net_device *netdev; 3408 u8 mac_addr[ETH_ALEN]; 3409 3410 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3411 vsi->alloc_rxq); 3412 if (!netdev) 3413 return -ENOMEM; 3414 3415 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3416 vsi->netdev = netdev; 3417 np = netdev_priv(netdev); 3418 np->vsi = vsi; 3419 3420 ice_set_netdev_features(netdev); 3421 3422 ice_set_ops(netdev); 3423 3424 if (vsi->type == ICE_VSI_PF) { 3425 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3426 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3427 eth_hw_addr_set(netdev, mac_addr); 3428 ether_addr_copy(netdev->perm_addr, mac_addr); 3429 } 3430 3431 netdev->priv_flags |= IFF_UNICAST_FLT; 3432 3433 /* Setup netdev TC information */ 3434 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3435 3436 /* setup watchdog timeout value to be 5 second */ 3437 netdev->watchdog_timeo = 5 * HZ; 3438 3439 netdev->min_mtu = ETH_MIN_MTU; 3440 netdev->max_mtu = ICE_MAX_MTU; 3441 3442 return 0; 3443 } 3444 3445 /** 3446 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3447 * @lut: Lookup table 3448 * @rss_table_size: Lookup table size 3449 * @rss_size: Range of queue number for hashing 3450 */ 3451 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3452 { 3453 u16 i; 3454 3455 for (i = 0; i < rss_table_size; i++) 3456 lut[i] = i % rss_size; 3457 } 3458 3459 /** 3460 * ice_pf_vsi_setup - Set up a PF VSI 3461 * @pf: board private structure 3462 * @pi: pointer to the port_info instance 3463 * 3464 * Returns pointer to the successfully allocated VSI software struct 3465 * on success, otherwise returns NULL on failure. 3466 */ 3467 static struct ice_vsi * 3468 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3469 { 3470 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3471 } 3472 3473 static struct ice_vsi * 3474 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3475 struct ice_channel *ch) 3476 { 3477 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3478 } 3479 3480 /** 3481 * ice_ctrl_vsi_setup - Set up a control VSI 3482 * @pf: board private structure 3483 * @pi: pointer to the port_info instance 3484 * 3485 * Returns pointer to the successfully allocated VSI software struct 3486 * on success, otherwise returns NULL on failure. 3487 */ 3488 static struct ice_vsi * 3489 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3490 { 3491 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3492 } 3493 3494 /** 3495 * ice_lb_vsi_setup - Set up a loopback VSI 3496 * @pf: board private structure 3497 * @pi: pointer to the port_info instance 3498 * 3499 * Returns pointer to the successfully allocated VSI software struct 3500 * on success, otherwise returns NULL on failure. 3501 */ 3502 struct ice_vsi * 3503 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3504 { 3505 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3506 } 3507 3508 /** 3509 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3510 * @netdev: network interface to be adjusted 3511 * @proto: VLAN TPID 3512 * @vid: VLAN ID to be added 3513 * 3514 * net_device_ops implementation for adding VLAN IDs 3515 */ 3516 static int 3517 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3518 { 3519 struct ice_netdev_priv *np = netdev_priv(netdev); 3520 struct ice_vsi_vlan_ops *vlan_ops; 3521 struct ice_vsi *vsi = np->vsi; 3522 struct ice_vlan vlan; 3523 int ret; 3524 3525 /* VLAN 0 is added by default during load/reset */ 3526 if (!vid) 3527 return 0; 3528 3529 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3530 usleep_range(1000, 2000); 3531 3532 /* Add multicast promisc rule for the VLAN ID to be added if 3533 * all-multicast is currently enabled. 3534 */ 3535 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3536 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3537 ICE_MCAST_VLAN_PROMISC_BITS, 3538 vid); 3539 if (ret) 3540 goto finish; 3541 } 3542 3543 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3544 3545 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3546 * packets aren't pruned by the device's internal switch on Rx 3547 */ 3548 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3549 ret = vlan_ops->add_vlan(vsi, &vlan); 3550 if (ret) 3551 goto finish; 3552 3553 /* If all-multicast is currently enabled and this VLAN ID is only one 3554 * besides VLAN-0 we have to update look-up type of multicast promisc 3555 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3556 */ 3557 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3558 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3559 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3560 ICE_MCAST_PROMISC_BITS, 0); 3561 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3562 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3563 } 3564 3565 finish: 3566 clear_bit(ICE_CFG_BUSY, vsi->state); 3567 3568 return ret; 3569 } 3570 3571 /** 3572 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3573 * @netdev: network interface to be adjusted 3574 * @proto: VLAN TPID 3575 * @vid: VLAN ID to be removed 3576 * 3577 * net_device_ops implementation for removing VLAN IDs 3578 */ 3579 static int 3580 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3581 { 3582 struct ice_netdev_priv *np = netdev_priv(netdev); 3583 struct ice_vsi_vlan_ops *vlan_ops; 3584 struct ice_vsi *vsi = np->vsi; 3585 struct ice_vlan vlan; 3586 int ret; 3587 3588 /* don't allow removal of VLAN 0 */ 3589 if (!vid) 3590 return 0; 3591 3592 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3593 usleep_range(1000, 2000); 3594 3595 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3596 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3597 if (ret) { 3598 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3599 vsi->vsi_num); 3600 vsi->current_netdev_flags |= IFF_ALLMULTI; 3601 } 3602 3603 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3604 3605 /* Make sure VLAN delete is successful before updating VLAN 3606 * information 3607 */ 3608 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3609 ret = vlan_ops->del_vlan(vsi, &vlan); 3610 if (ret) 3611 goto finish; 3612 3613 /* Remove multicast promisc rule for the removed VLAN ID if 3614 * all-multicast is enabled. 3615 */ 3616 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3617 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3618 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3619 3620 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3621 /* Update look-up type of multicast promisc rule for VLAN 0 3622 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3623 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3624 */ 3625 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3626 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3627 ICE_MCAST_VLAN_PROMISC_BITS, 3628 0); 3629 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3630 ICE_MCAST_PROMISC_BITS, 0); 3631 } 3632 } 3633 3634 finish: 3635 clear_bit(ICE_CFG_BUSY, vsi->state); 3636 3637 return ret; 3638 } 3639 3640 /** 3641 * ice_rep_indr_tc_block_unbind 3642 * @cb_priv: indirection block private data 3643 */ 3644 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3645 { 3646 struct ice_indr_block_priv *indr_priv = cb_priv; 3647 3648 list_del(&indr_priv->list); 3649 kfree(indr_priv); 3650 } 3651 3652 /** 3653 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3654 * @vsi: VSI struct which has the netdev 3655 */ 3656 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3657 { 3658 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3659 3660 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3661 ice_rep_indr_tc_block_unbind); 3662 } 3663 3664 /** 3665 * ice_tc_indir_block_remove - clean indirect TC block notifications 3666 * @pf: PF structure 3667 */ 3668 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3669 { 3670 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3671 3672 if (!pf_vsi) 3673 return; 3674 3675 ice_tc_indir_block_unregister(pf_vsi); 3676 } 3677 3678 /** 3679 * ice_tc_indir_block_register - Register TC indirect block notifications 3680 * @vsi: VSI struct which has the netdev 3681 * 3682 * Returns 0 on success, negative value on failure 3683 */ 3684 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3685 { 3686 struct ice_netdev_priv *np; 3687 3688 if (!vsi || !vsi->netdev) 3689 return -EINVAL; 3690 3691 np = netdev_priv(vsi->netdev); 3692 3693 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3694 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3695 } 3696 3697 /** 3698 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3699 * @pf: board private structure 3700 * 3701 * Returns 0 on success, negative value on failure 3702 */ 3703 static int ice_setup_pf_sw(struct ice_pf *pf) 3704 { 3705 struct device *dev = ice_pf_to_dev(pf); 3706 bool dvm = ice_is_dvm_ena(&pf->hw); 3707 struct ice_vsi *vsi; 3708 int status; 3709 3710 if (ice_is_reset_in_progress(pf->state)) 3711 return -EBUSY; 3712 3713 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3714 if (status) 3715 return -EIO; 3716 3717 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3718 if (!vsi) 3719 return -ENOMEM; 3720 3721 /* init channel list */ 3722 INIT_LIST_HEAD(&vsi->ch_list); 3723 3724 status = ice_cfg_netdev(vsi); 3725 if (status) 3726 goto unroll_vsi_setup; 3727 /* netdev has to be configured before setting frame size */ 3728 ice_vsi_cfg_frame_size(vsi); 3729 3730 /* init indirect block notifications */ 3731 status = ice_tc_indir_block_register(vsi); 3732 if (status) { 3733 dev_err(dev, "Failed to register netdev notifier\n"); 3734 goto unroll_cfg_netdev; 3735 } 3736 3737 /* Setup DCB netlink interface */ 3738 ice_dcbnl_setup(vsi); 3739 3740 /* registering the NAPI handler requires both the queues and 3741 * netdev to be created, which are done in ice_pf_vsi_setup() 3742 * and ice_cfg_netdev() respectively 3743 */ 3744 ice_napi_add(vsi); 3745 3746 status = ice_init_mac_fltr(pf); 3747 if (status) 3748 goto unroll_napi_add; 3749 3750 return 0; 3751 3752 unroll_napi_add: 3753 ice_tc_indir_block_unregister(vsi); 3754 unroll_cfg_netdev: 3755 if (vsi) { 3756 ice_napi_del(vsi); 3757 if (vsi->netdev) { 3758 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3759 free_netdev(vsi->netdev); 3760 vsi->netdev = NULL; 3761 } 3762 } 3763 3764 unroll_vsi_setup: 3765 ice_vsi_release(vsi); 3766 return status; 3767 } 3768 3769 /** 3770 * ice_get_avail_q_count - Get count of queues in use 3771 * @pf_qmap: bitmap to get queue use count from 3772 * @lock: pointer to a mutex that protects access to pf_qmap 3773 * @size: size of the bitmap 3774 */ 3775 static u16 3776 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3777 { 3778 unsigned long bit; 3779 u16 count = 0; 3780 3781 mutex_lock(lock); 3782 for_each_clear_bit(bit, pf_qmap, size) 3783 count++; 3784 mutex_unlock(lock); 3785 3786 return count; 3787 } 3788 3789 /** 3790 * ice_get_avail_txq_count - Get count of Tx queues in use 3791 * @pf: pointer to an ice_pf instance 3792 */ 3793 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3794 { 3795 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3796 pf->max_pf_txqs); 3797 } 3798 3799 /** 3800 * ice_get_avail_rxq_count - Get count of Rx queues in use 3801 * @pf: pointer to an ice_pf instance 3802 */ 3803 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3804 { 3805 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3806 pf->max_pf_rxqs); 3807 } 3808 3809 /** 3810 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3811 * @pf: board private structure to initialize 3812 */ 3813 static void ice_deinit_pf(struct ice_pf *pf) 3814 { 3815 ice_service_task_stop(pf); 3816 mutex_destroy(&pf->adev_mutex); 3817 mutex_destroy(&pf->sw_mutex); 3818 mutex_destroy(&pf->tc_mutex); 3819 mutex_destroy(&pf->avail_q_mutex); 3820 mutex_destroy(&pf->vfs.table_lock); 3821 3822 if (pf->avail_txqs) { 3823 bitmap_free(pf->avail_txqs); 3824 pf->avail_txqs = NULL; 3825 } 3826 3827 if (pf->avail_rxqs) { 3828 bitmap_free(pf->avail_rxqs); 3829 pf->avail_rxqs = NULL; 3830 } 3831 3832 if (pf->ptp.clock) 3833 ptp_clock_unregister(pf->ptp.clock); 3834 } 3835 3836 /** 3837 * ice_set_pf_caps - set PFs capability flags 3838 * @pf: pointer to the PF instance 3839 */ 3840 static void ice_set_pf_caps(struct ice_pf *pf) 3841 { 3842 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3843 3844 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3845 if (func_caps->common_cap.rdma) 3846 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3847 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3848 if (func_caps->common_cap.dcb) 3849 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3850 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3851 if (func_caps->common_cap.sr_iov_1_1) { 3852 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3853 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3854 ICE_MAX_SRIOV_VFS); 3855 } 3856 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3857 if (func_caps->common_cap.rss_table_size) 3858 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3859 3860 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3861 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3862 u16 unused; 3863 3864 /* ctrl_vsi_idx will be set to a valid value when flow director 3865 * is setup by ice_init_fdir 3866 */ 3867 pf->ctrl_vsi_idx = ICE_NO_VSI; 3868 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3869 /* force guaranteed filter pool for PF */ 3870 ice_alloc_fd_guar_item(&pf->hw, &unused, 3871 func_caps->fd_fltr_guar); 3872 /* force shared filter pool for PF */ 3873 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3874 func_caps->fd_fltr_best_effort); 3875 } 3876 3877 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3878 if (func_caps->common_cap.ieee_1588) 3879 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3880 3881 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3882 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3883 } 3884 3885 /** 3886 * ice_init_pf - Initialize general software structures (struct ice_pf) 3887 * @pf: board private structure to initialize 3888 */ 3889 static int ice_init_pf(struct ice_pf *pf) 3890 { 3891 ice_set_pf_caps(pf); 3892 3893 mutex_init(&pf->sw_mutex); 3894 mutex_init(&pf->tc_mutex); 3895 mutex_init(&pf->adev_mutex); 3896 3897 INIT_HLIST_HEAD(&pf->aq_wait_list); 3898 spin_lock_init(&pf->aq_wait_lock); 3899 init_waitqueue_head(&pf->aq_wait_queue); 3900 3901 init_waitqueue_head(&pf->reset_wait_queue); 3902 3903 /* setup service timer and periodic service task */ 3904 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3905 pf->serv_tmr_period = HZ; 3906 INIT_WORK(&pf->serv_task, ice_service_task); 3907 clear_bit(ICE_SERVICE_SCHED, pf->state); 3908 3909 mutex_init(&pf->avail_q_mutex); 3910 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3911 if (!pf->avail_txqs) 3912 return -ENOMEM; 3913 3914 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3915 if (!pf->avail_rxqs) { 3916 bitmap_free(pf->avail_txqs); 3917 pf->avail_txqs = NULL; 3918 return -ENOMEM; 3919 } 3920 3921 mutex_init(&pf->vfs.table_lock); 3922 hash_init(pf->vfs.table); 3923 3924 return 0; 3925 } 3926 3927 /** 3928 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3929 * @pf: board private structure 3930 * 3931 * compute the number of MSIX vectors required (v_budget) and request from 3932 * the OS. Return the number of vectors reserved or negative on failure 3933 */ 3934 static int ice_ena_msix_range(struct ice_pf *pf) 3935 { 3936 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3937 struct device *dev = ice_pf_to_dev(pf); 3938 int needed, err, i; 3939 3940 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3941 num_cpus = num_online_cpus(); 3942 3943 /* reserve for LAN miscellaneous handler */ 3944 needed = ICE_MIN_LAN_OICR_MSIX; 3945 if (v_left < needed) 3946 goto no_hw_vecs_left_err; 3947 v_budget += needed; 3948 v_left -= needed; 3949 3950 /* reserve for flow director */ 3951 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3952 needed = ICE_FDIR_MSIX; 3953 if (v_left < needed) 3954 goto no_hw_vecs_left_err; 3955 v_budget += needed; 3956 v_left -= needed; 3957 } 3958 3959 /* reserve for switchdev */ 3960 needed = ICE_ESWITCH_MSIX; 3961 if (v_left < needed) 3962 goto no_hw_vecs_left_err; 3963 v_budget += needed; 3964 v_left -= needed; 3965 3966 /* total used for non-traffic vectors */ 3967 v_other = v_budget; 3968 3969 /* reserve vectors for LAN traffic */ 3970 needed = num_cpus; 3971 if (v_left < needed) 3972 goto no_hw_vecs_left_err; 3973 pf->num_lan_msix = needed; 3974 v_budget += needed; 3975 v_left -= needed; 3976 3977 /* reserve vectors for RDMA auxiliary driver */ 3978 if (ice_is_rdma_ena(pf)) { 3979 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3980 if (v_left < needed) 3981 goto no_hw_vecs_left_err; 3982 pf->num_rdma_msix = needed; 3983 v_budget += needed; 3984 v_left -= needed; 3985 } 3986 3987 pf->msix_entries = devm_kcalloc(dev, v_budget, 3988 sizeof(*pf->msix_entries), GFP_KERNEL); 3989 if (!pf->msix_entries) { 3990 err = -ENOMEM; 3991 goto exit_err; 3992 } 3993 3994 for (i = 0; i < v_budget; i++) 3995 pf->msix_entries[i].entry = i; 3996 3997 /* actually reserve the vectors */ 3998 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3999 ICE_MIN_MSIX, v_budget); 4000 if (v_actual < 0) { 4001 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4002 err = v_actual; 4003 goto msix_err; 4004 } 4005 4006 if (v_actual < v_budget) { 4007 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4008 v_budget, v_actual); 4009 4010 if (v_actual < ICE_MIN_MSIX) { 4011 /* error if we can't get minimum vectors */ 4012 pci_disable_msix(pf->pdev); 4013 err = -ERANGE; 4014 goto msix_err; 4015 } else { 4016 int v_remain = v_actual - v_other; 4017 int v_rdma = 0, v_min_rdma = 0; 4018 4019 if (ice_is_rdma_ena(pf)) { 4020 /* Need at least 1 interrupt in addition to 4021 * AEQ MSIX 4022 */ 4023 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 4024 v_min_rdma = ICE_MIN_RDMA_MSIX; 4025 } 4026 4027 if (v_actual == ICE_MIN_MSIX || 4028 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4029 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4030 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4031 4032 pf->num_rdma_msix = 0; 4033 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4034 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4035 (v_remain - v_rdma < v_rdma)) { 4036 /* Support minimum RDMA and give remaining 4037 * vectors to LAN MSIX 4038 */ 4039 pf->num_rdma_msix = v_min_rdma; 4040 pf->num_lan_msix = v_remain - v_min_rdma; 4041 } else { 4042 /* Split remaining MSIX with RDMA after 4043 * accounting for AEQ MSIX 4044 */ 4045 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4046 ICE_RDMA_NUM_AEQ_MSIX; 4047 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4048 } 4049 4050 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4051 pf->num_lan_msix); 4052 4053 if (ice_is_rdma_ena(pf)) 4054 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4055 pf->num_rdma_msix); 4056 } 4057 } 4058 4059 return v_actual; 4060 4061 msix_err: 4062 devm_kfree(dev, pf->msix_entries); 4063 goto exit_err; 4064 4065 no_hw_vecs_left_err: 4066 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4067 needed, v_left); 4068 err = -ERANGE; 4069 exit_err: 4070 pf->num_rdma_msix = 0; 4071 pf->num_lan_msix = 0; 4072 return err; 4073 } 4074 4075 /** 4076 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4077 * @pf: board private structure 4078 */ 4079 static void ice_dis_msix(struct ice_pf *pf) 4080 { 4081 pci_disable_msix(pf->pdev); 4082 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4083 pf->msix_entries = NULL; 4084 } 4085 4086 /** 4087 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4088 * @pf: board private structure 4089 */ 4090 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4091 { 4092 ice_dis_msix(pf); 4093 4094 if (pf->irq_tracker) { 4095 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4096 pf->irq_tracker = NULL; 4097 } 4098 } 4099 4100 /** 4101 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4102 * @pf: board private structure to initialize 4103 */ 4104 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4105 { 4106 int vectors; 4107 4108 vectors = ice_ena_msix_range(pf); 4109 4110 if (vectors < 0) 4111 return vectors; 4112 4113 /* set up vector assignment tracking */ 4114 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4115 struct_size(pf->irq_tracker, list, vectors), 4116 GFP_KERNEL); 4117 if (!pf->irq_tracker) { 4118 ice_dis_msix(pf); 4119 return -ENOMEM; 4120 } 4121 4122 /* populate SW interrupts pool with number of OS granted IRQs. */ 4123 pf->num_avail_sw_msix = (u16)vectors; 4124 pf->irq_tracker->num_entries = (u16)vectors; 4125 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4126 4127 return 0; 4128 } 4129 4130 /** 4131 * ice_is_wol_supported - check if WoL is supported 4132 * @hw: pointer to hardware info 4133 * 4134 * Check if WoL is supported based on the HW configuration. 4135 * Returns true if NVM supports and enables WoL for this port, false otherwise 4136 */ 4137 bool ice_is_wol_supported(struct ice_hw *hw) 4138 { 4139 u16 wol_ctrl; 4140 4141 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4142 * word) indicates WoL is not supported on the corresponding PF ID. 4143 */ 4144 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4145 return false; 4146 4147 return !(BIT(hw->port_info->lport) & wol_ctrl); 4148 } 4149 4150 /** 4151 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4152 * @vsi: VSI being changed 4153 * @new_rx: new number of Rx queues 4154 * @new_tx: new number of Tx queues 4155 * 4156 * Only change the number of queues if new_tx, or new_rx is non-0. 4157 * 4158 * Returns 0 on success. 4159 */ 4160 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4161 { 4162 struct ice_pf *pf = vsi->back; 4163 int err = 0, timeout = 50; 4164 4165 if (!new_rx && !new_tx) 4166 return -EINVAL; 4167 4168 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4169 timeout--; 4170 if (!timeout) 4171 return -EBUSY; 4172 usleep_range(1000, 2000); 4173 } 4174 4175 if (new_tx) 4176 vsi->req_txq = (u16)new_tx; 4177 if (new_rx) 4178 vsi->req_rxq = (u16)new_rx; 4179 4180 /* set for the next time the netdev is started */ 4181 if (!netif_running(vsi->netdev)) { 4182 ice_vsi_rebuild(vsi, false); 4183 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4184 goto done; 4185 } 4186 4187 ice_vsi_close(vsi); 4188 ice_vsi_rebuild(vsi, false); 4189 ice_pf_dcb_recfg(pf); 4190 ice_vsi_open(vsi); 4191 done: 4192 clear_bit(ICE_CFG_BUSY, pf->state); 4193 return err; 4194 } 4195 4196 /** 4197 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4198 * @pf: PF to configure 4199 * 4200 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4201 * VSI can still Tx/Rx VLAN tagged packets. 4202 */ 4203 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4204 { 4205 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4206 struct ice_vsi_ctx *ctxt; 4207 struct ice_hw *hw; 4208 int status; 4209 4210 if (!vsi) 4211 return; 4212 4213 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4214 if (!ctxt) 4215 return; 4216 4217 hw = &pf->hw; 4218 ctxt->info = vsi->info; 4219 4220 ctxt->info.valid_sections = 4221 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4222 ICE_AQ_VSI_PROP_SECURITY_VALID | 4223 ICE_AQ_VSI_PROP_SW_VALID); 4224 4225 /* disable VLAN anti-spoof */ 4226 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4227 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4228 4229 /* disable VLAN pruning and keep all other settings */ 4230 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4231 4232 /* allow all VLANs on Tx and don't strip on Rx */ 4233 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4234 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4235 4236 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4237 if (status) { 4238 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4239 status, ice_aq_str(hw->adminq.sq_last_status)); 4240 } else { 4241 vsi->info.sec_flags = ctxt->info.sec_flags; 4242 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4243 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4244 } 4245 4246 kfree(ctxt); 4247 } 4248 4249 /** 4250 * ice_log_pkg_init - log result of DDP package load 4251 * @hw: pointer to hardware info 4252 * @state: state of package load 4253 */ 4254 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4255 { 4256 struct ice_pf *pf = hw->back; 4257 struct device *dev; 4258 4259 dev = ice_pf_to_dev(pf); 4260 4261 switch (state) { 4262 case ICE_DDP_PKG_SUCCESS: 4263 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4264 hw->active_pkg_name, 4265 hw->active_pkg_ver.major, 4266 hw->active_pkg_ver.minor, 4267 hw->active_pkg_ver.update, 4268 hw->active_pkg_ver.draft); 4269 break; 4270 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4271 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4272 hw->active_pkg_name, 4273 hw->active_pkg_ver.major, 4274 hw->active_pkg_ver.minor, 4275 hw->active_pkg_ver.update, 4276 hw->active_pkg_ver.draft); 4277 break; 4278 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4279 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4280 hw->active_pkg_name, 4281 hw->active_pkg_ver.major, 4282 hw->active_pkg_ver.minor, 4283 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4284 break; 4285 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4286 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4287 hw->active_pkg_name, 4288 hw->active_pkg_ver.major, 4289 hw->active_pkg_ver.minor, 4290 hw->active_pkg_ver.update, 4291 hw->active_pkg_ver.draft, 4292 hw->pkg_name, 4293 hw->pkg_ver.major, 4294 hw->pkg_ver.minor, 4295 hw->pkg_ver.update, 4296 hw->pkg_ver.draft); 4297 break; 4298 case ICE_DDP_PKG_FW_MISMATCH: 4299 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_INVALID_FILE: 4302 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4303 break; 4304 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4305 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4306 break; 4307 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4308 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4309 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4310 break; 4311 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4312 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4313 break; 4314 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4315 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4316 break; 4317 case ICE_DDP_PKG_LOAD_ERROR: 4318 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4319 /* poll for reset to complete */ 4320 if (ice_check_reset(hw)) 4321 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4322 break; 4323 case ICE_DDP_PKG_ERR: 4324 default: 4325 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4326 break; 4327 } 4328 } 4329 4330 /** 4331 * ice_load_pkg - load/reload the DDP Package file 4332 * @firmware: firmware structure when firmware requested or NULL for reload 4333 * @pf: pointer to the PF instance 4334 * 4335 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4336 * initialize HW tables. 4337 */ 4338 static void 4339 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4340 { 4341 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4342 struct device *dev = ice_pf_to_dev(pf); 4343 struct ice_hw *hw = &pf->hw; 4344 4345 /* Load DDP Package */ 4346 if (firmware && !hw->pkg_copy) { 4347 state = ice_copy_and_init_pkg(hw, firmware->data, 4348 firmware->size); 4349 ice_log_pkg_init(hw, state); 4350 } else if (!firmware && hw->pkg_copy) { 4351 /* Reload package during rebuild after CORER/GLOBR reset */ 4352 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4353 ice_log_pkg_init(hw, state); 4354 } else { 4355 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4356 } 4357 4358 if (!ice_is_init_pkg_successful(state)) { 4359 /* Safe Mode */ 4360 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4361 return; 4362 } 4363 4364 /* Successful download package is the precondition for advanced 4365 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4366 */ 4367 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4368 } 4369 4370 /** 4371 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4372 * @pf: pointer to the PF structure 4373 * 4374 * There is no error returned here because the driver should be able to handle 4375 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4376 * specifically with Tx. 4377 */ 4378 static void ice_verify_cacheline_size(struct ice_pf *pf) 4379 { 4380 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4381 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4382 ICE_CACHE_LINE_BYTES); 4383 } 4384 4385 /** 4386 * ice_send_version - update firmware with driver version 4387 * @pf: PF struct 4388 * 4389 * Returns 0 on success, else error code 4390 */ 4391 static int ice_send_version(struct ice_pf *pf) 4392 { 4393 struct ice_driver_ver dv; 4394 4395 dv.major_ver = 0xff; 4396 dv.minor_ver = 0xff; 4397 dv.build_ver = 0xff; 4398 dv.subbuild_ver = 0; 4399 strscpy((char *)dv.driver_string, UTS_RELEASE, 4400 sizeof(dv.driver_string)); 4401 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4402 } 4403 4404 /** 4405 * ice_init_fdir - Initialize flow director VSI and configuration 4406 * @pf: pointer to the PF instance 4407 * 4408 * returns 0 on success, negative on error 4409 */ 4410 static int ice_init_fdir(struct ice_pf *pf) 4411 { 4412 struct device *dev = ice_pf_to_dev(pf); 4413 struct ice_vsi *ctrl_vsi; 4414 int err; 4415 4416 /* Side Band Flow Director needs to have a control VSI. 4417 * Allocate it and store it in the PF. 4418 */ 4419 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4420 if (!ctrl_vsi) { 4421 dev_dbg(dev, "could not create control VSI\n"); 4422 return -ENOMEM; 4423 } 4424 4425 err = ice_vsi_open_ctrl(ctrl_vsi); 4426 if (err) { 4427 dev_dbg(dev, "could not open control VSI\n"); 4428 goto err_vsi_open; 4429 } 4430 4431 mutex_init(&pf->hw.fdir_fltr_lock); 4432 4433 err = ice_fdir_create_dflt_rules(pf); 4434 if (err) 4435 goto err_fdir_rule; 4436 4437 return 0; 4438 4439 err_fdir_rule: 4440 ice_fdir_release_flows(&pf->hw); 4441 ice_vsi_close(ctrl_vsi); 4442 err_vsi_open: 4443 ice_vsi_release(ctrl_vsi); 4444 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4445 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4446 pf->ctrl_vsi_idx = ICE_NO_VSI; 4447 } 4448 return err; 4449 } 4450 4451 /** 4452 * ice_get_opt_fw_name - return optional firmware file name or NULL 4453 * @pf: pointer to the PF instance 4454 */ 4455 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4456 { 4457 /* Optional firmware name same as default with additional dash 4458 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4459 */ 4460 struct pci_dev *pdev = pf->pdev; 4461 char *opt_fw_filename; 4462 u64 dsn; 4463 4464 /* Determine the name of the optional file using the DSN (two 4465 * dwords following the start of the DSN Capability). 4466 */ 4467 dsn = pci_get_dsn(pdev); 4468 if (!dsn) 4469 return NULL; 4470 4471 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4472 if (!opt_fw_filename) 4473 return NULL; 4474 4475 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4476 ICE_DDP_PKG_PATH, dsn); 4477 4478 return opt_fw_filename; 4479 } 4480 4481 /** 4482 * ice_request_fw - Device initialization routine 4483 * @pf: pointer to the PF instance 4484 */ 4485 static void ice_request_fw(struct ice_pf *pf) 4486 { 4487 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4488 const struct firmware *firmware = NULL; 4489 struct device *dev = ice_pf_to_dev(pf); 4490 int err = 0; 4491 4492 /* optional device-specific DDP (if present) overrides the default DDP 4493 * package file. kernel logs a debug message if the file doesn't exist, 4494 * and warning messages for other errors. 4495 */ 4496 if (opt_fw_filename) { 4497 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4498 if (err) { 4499 kfree(opt_fw_filename); 4500 goto dflt_pkg_load; 4501 } 4502 4503 /* request for firmware was successful. Download to device */ 4504 ice_load_pkg(firmware, pf); 4505 kfree(opt_fw_filename); 4506 release_firmware(firmware); 4507 return; 4508 } 4509 4510 dflt_pkg_load: 4511 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4512 if (err) { 4513 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4514 return; 4515 } 4516 4517 /* request for firmware was successful. Download to device */ 4518 ice_load_pkg(firmware, pf); 4519 release_firmware(firmware); 4520 } 4521 4522 /** 4523 * ice_print_wake_reason - show the wake up cause in the log 4524 * @pf: pointer to the PF struct 4525 */ 4526 static void ice_print_wake_reason(struct ice_pf *pf) 4527 { 4528 u32 wus = pf->wakeup_reason; 4529 const char *wake_str; 4530 4531 /* if no wake event, nothing to print */ 4532 if (!wus) 4533 return; 4534 4535 if (wus & PFPM_WUS_LNKC_M) 4536 wake_str = "Link\n"; 4537 else if (wus & PFPM_WUS_MAG_M) 4538 wake_str = "Magic Packet\n"; 4539 else if (wus & PFPM_WUS_MNG_M) 4540 wake_str = "Management\n"; 4541 else if (wus & PFPM_WUS_FW_RST_WK_M) 4542 wake_str = "Firmware Reset\n"; 4543 else 4544 wake_str = "Unknown\n"; 4545 4546 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4547 } 4548 4549 /** 4550 * ice_register_netdev - register netdev and devlink port 4551 * @pf: pointer to the PF struct 4552 */ 4553 static int ice_register_netdev(struct ice_pf *pf) 4554 { 4555 struct ice_vsi *vsi; 4556 int err = 0; 4557 4558 vsi = ice_get_main_vsi(pf); 4559 if (!vsi || !vsi->netdev) 4560 return -EIO; 4561 4562 err = register_netdev(vsi->netdev); 4563 if (err) 4564 goto err_register_netdev; 4565 4566 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4567 netif_carrier_off(vsi->netdev); 4568 netif_tx_stop_all_queues(vsi->netdev); 4569 err = ice_devlink_create_pf_port(pf); 4570 if (err) 4571 goto err_devlink_create; 4572 4573 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4574 4575 return 0; 4576 err_devlink_create: 4577 unregister_netdev(vsi->netdev); 4578 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4579 err_register_netdev: 4580 free_netdev(vsi->netdev); 4581 vsi->netdev = NULL; 4582 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4583 return err; 4584 } 4585 4586 /** 4587 * ice_probe - Device initialization routine 4588 * @pdev: PCI device information struct 4589 * @ent: entry in ice_pci_tbl 4590 * 4591 * Returns 0 on success, negative on failure 4592 */ 4593 static int 4594 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4595 { 4596 struct device *dev = &pdev->dev; 4597 struct ice_pf *pf; 4598 struct ice_hw *hw; 4599 int i, err; 4600 4601 if (pdev->is_virtfn) { 4602 dev_err(dev, "can't probe a virtual function\n"); 4603 return -EINVAL; 4604 } 4605 4606 /* this driver uses devres, see 4607 * Documentation/driver-api/driver-model/devres.rst 4608 */ 4609 err = pcim_enable_device(pdev); 4610 if (err) 4611 return err; 4612 4613 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4614 if (err) { 4615 dev_err(dev, "BAR0 I/O map error %d\n", err); 4616 return err; 4617 } 4618 4619 pf = ice_allocate_pf(dev); 4620 if (!pf) 4621 return -ENOMEM; 4622 4623 /* initialize Auxiliary index to invalid value */ 4624 pf->aux_idx = -1; 4625 4626 /* set up for high or low DMA */ 4627 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4628 if (err) { 4629 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4630 return err; 4631 } 4632 4633 pci_enable_pcie_error_reporting(pdev); 4634 pci_set_master(pdev); 4635 4636 pf->pdev = pdev; 4637 pci_set_drvdata(pdev, pf); 4638 set_bit(ICE_DOWN, pf->state); 4639 /* Disable service task until DOWN bit is cleared */ 4640 set_bit(ICE_SERVICE_DIS, pf->state); 4641 4642 hw = &pf->hw; 4643 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4644 pci_save_state(pdev); 4645 4646 hw->back = pf; 4647 hw->vendor_id = pdev->vendor; 4648 hw->device_id = pdev->device; 4649 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4650 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4651 hw->subsystem_device_id = pdev->subsystem_device; 4652 hw->bus.device = PCI_SLOT(pdev->devfn); 4653 hw->bus.func = PCI_FUNC(pdev->devfn); 4654 ice_set_ctrlq_len(hw); 4655 4656 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4657 4658 #ifndef CONFIG_DYNAMIC_DEBUG 4659 if (debug < -1) 4660 hw->debug_mask = debug; 4661 #endif 4662 4663 err = ice_init_hw(hw); 4664 if (err) { 4665 dev_err(dev, "ice_init_hw failed: %d\n", err); 4666 err = -EIO; 4667 goto err_exit_unroll; 4668 } 4669 4670 ice_init_feature_support(pf); 4671 4672 ice_request_fw(pf); 4673 4674 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4675 * set in pf->state, which will cause ice_is_safe_mode to return 4676 * true 4677 */ 4678 if (ice_is_safe_mode(pf)) { 4679 /* we already got function/device capabilities but these don't 4680 * reflect what the driver needs to do in safe mode. Instead of 4681 * adding conditional logic everywhere to ignore these 4682 * device/function capabilities, override them. 4683 */ 4684 ice_set_safe_mode_caps(hw); 4685 } 4686 4687 hw->ucast_shared = true; 4688 4689 err = ice_init_pf(pf); 4690 if (err) { 4691 dev_err(dev, "ice_init_pf failed: %d\n", err); 4692 goto err_init_pf_unroll; 4693 } 4694 4695 ice_devlink_init_regions(pf); 4696 4697 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4698 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4699 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4700 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4701 i = 0; 4702 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4703 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4704 pf->hw.tnl.valid_count[TNL_VXLAN]; 4705 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4706 UDP_TUNNEL_TYPE_VXLAN; 4707 i++; 4708 } 4709 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4710 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4711 pf->hw.tnl.valid_count[TNL_GENEVE]; 4712 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4713 UDP_TUNNEL_TYPE_GENEVE; 4714 i++; 4715 } 4716 4717 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4718 if (!pf->num_alloc_vsi) { 4719 err = -EIO; 4720 goto err_init_pf_unroll; 4721 } 4722 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4723 dev_warn(&pf->pdev->dev, 4724 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4725 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4726 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4727 } 4728 4729 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4730 GFP_KERNEL); 4731 if (!pf->vsi) { 4732 err = -ENOMEM; 4733 goto err_init_pf_unroll; 4734 } 4735 4736 err = ice_init_interrupt_scheme(pf); 4737 if (err) { 4738 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4739 err = -EIO; 4740 goto err_init_vsi_unroll; 4741 } 4742 4743 /* In case of MSIX we are going to setup the misc vector right here 4744 * to handle admin queue events etc. In case of legacy and MSI 4745 * the misc functionality and queue processing is combined in 4746 * the same vector and that gets setup at open. 4747 */ 4748 err = ice_req_irq_msix_misc(pf); 4749 if (err) { 4750 dev_err(dev, "setup of misc vector failed: %d\n", err); 4751 goto err_init_interrupt_unroll; 4752 } 4753 4754 /* create switch struct for the switch element created by FW on boot */ 4755 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4756 if (!pf->first_sw) { 4757 err = -ENOMEM; 4758 goto err_msix_misc_unroll; 4759 } 4760 4761 if (hw->evb_veb) 4762 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4763 else 4764 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4765 4766 pf->first_sw->pf = pf; 4767 4768 /* record the sw_id available for later use */ 4769 pf->first_sw->sw_id = hw->port_info->sw_id; 4770 4771 err = ice_setup_pf_sw(pf); 4772 if (err) { 4773 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4774 goto err_alloc_sw_unroll; 4775 } 4776 4777 clear_bit(ICE_SERVICE_DIS, pf->state); 4778 4779 /* tell the firmware we are up */ 4780 err = ice_send_version(pf); 4781 if (err) { 4782 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4783 UTS_RELEASE, err); 4784 goto err_send_version_unroll; 4785 } 4786 4787 /* since everything is good, start the service timer */ 4788 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4789 4790 err = ice_init_link_events(pf->hw.port_info); 4791 if (err) { 4792 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4793 goto err_send_version_unroll; 4794 } 4795 4796 /* not a fatal error if this fails */ 4797 err = ice_init_nvm_phy_type(pf->hw.port_info); 4798 if (err) 4799 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4800 4801 /* not a fatal error if this fails */ 4802 err = ice_update_link_info(pf->hw.port_info); 4803 if (err) 4804 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4805 4806 ice_init_link_dflt_override(pf->hw.port_info); 4807 4808 ice_check_link_cfg_err(pf, 4809 pf->hw.port_info->phy.link_info.link_cfg_err); 4810 4811 /* if media available, initialize PHY settings */ 4812 if (pf->hw.port_info->phy.link_info.link_info & 4813 ICE_AQ_MEDIA_AVAILABLE) { 4814 /* not a fatal error if this fails */ 4815 err = ice_init_phy_user_cfg(pf->hw.port_info); 4816 if (err) 4817 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4818 4819 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4820 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4821 4822 if (vsi) 4823 ice_configure_phy(vsi); 4824 } 4825 } else { 4826 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4827 } 4828 4829 ice_verify_cacheline_size(pf); 4830 4831 /* Save wakeup reason register for later use */ 4832 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4833 4834 /* check for a power management event */ 4835 ice_print_wake_reason(pf); 4836 4837 /* clear wake status, all bits */ 4838 wr32(hw, PFPM_WUS, U32_MAX); 4839 4840 /* Disable WoL at init, wait for user to enable */ 4841 device_set_wakeup_enable(dev, false); 4842 4843 if (ice_is_safe_mode(pf)) { 4844 ice_set_safe_mode_vlan_cfg(pf); 4845 goto probe_done; 4846 } 4847 4848 /* initialize DDP driven features */ 4849 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4850 ice_ptp_init(pf); 4851 4852 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4853 ice_gnss_init(pf); 4854 4855 /* Note: Flow director init failure is non-fatal to load */ 4856 if (ice_init_fdir(pf)) 4857 dev_err(dev, "could not initialize flow director\n"); 4858 4859 /* Note: DCB init failure is non-fatal to load */ 4860 if (ice_init_pf_dcb(pf, false)) { 4861 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4862 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4863 } else { 4864 ice_cfg_lldp_mib_change(&pf->hw, true); 4865 } 4866 4867 if (ice_init_lag(pf)) 4868 dev_warn(dev, "Failed to init link aggregation support\n"); 4869 4870 /* print PCI link speed and width */ 4871 pcie_print_link_status(pf->pdev); 4872 4873 probe_done: 4874 err = ice_register_netdev(pf); 4875 if (err) 4876 goto err_netdev_reg; 4877 4878 err = ice_devlink_register_params(pf); 4879 if (err) 4880 goto err_netdev_reg; 4881 4882 /* ready to go, so clear down state bit */ 4883 clear_bit(ICE_DOWN, pf->state); 4884 if (ice_is_rdma_ena(pf)) { 4885 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4886 if (pf->aux_idx < 0) { 4887 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4888 err = -ENOMEM; 4889 goto err_devlink_reg_param; 4890 } 4891 4892 err = ice_init_rdma(pf); 4893 if (err) { 4894 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4895 err = -EIO; 4896 goto err_init_aux_unroll; 4897 } 4898 } else { 4899 dev_warn(dev, "RDMA is not supported on this device\n"); 4900 } 4901 4902 ice_devlink_register(pf); 4903 return 0; 4904 4905 err_init_aux_unroll: 4906 pf->adev = NULL; 4907 ida_free(&ice_aux_ida, pf->aux_idx); 4908 err_devlink_reg_param: 4909 ice_devlink_unregister_params(pf); 4910 err_netdev_reg: 4911 err_send_version_unroll: 4912 ice_vsi_release_all(pf); 4913 err_alloc_sw_unroll: 4914 set_bit(ICE_SERVICE_DIS, pf->state); 4915 set_bit(ICE_DOWN, pf->state); 4916 devm_kfree(dev, pf->first_sw); 4917 err_msix_misc_unroll: 4918 ice_free_irq_msix_misc(pf); 4919 err_init_interrupt_unroll: 4920 ice_clear_interrupt_scheme(pf); 4921 err_init_vsi_unroll: 4922 devm_kfree(dev, pf->vsi); 4923 err_init_pf_unroll: 4924 ice_deinit_pf(pf); 4925 ice_devlink_destroy_regions(pf); 4926 ice_deinit_hw(hw); 4927 err_exit_unroll: 4928 pci_disable_pcie_error_reporting(pdev); 4929 pci_disable_device(pdev); 4930 return err; 4931 } 4932 4933 /** 4934 * ice_set_wake - enable or disable Wake on LAN 4935 * @pf: pointer to the PF struct 4936 * 4937 * Simple helper for WoL control 4938 */ 4939 static void ice_set_wake(struct ice_pf *pf) 4940 { 4941 struct ice_hw *hw = &pf->hw; 4942 bool wol = pf->wol_ena; 4943 4944 /* clear wake state, otherwise new wake events won't fire */ 4945 wr32(hw, PFPM_WUS, U32_MAX); 4946 4947 /* enable / disable APM wake up, no RMW needed */ 4948 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4949 4950 /* set magic packet filter enabled */ 4951 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4952 } 4953 4954 /** 4955 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4956 * @pf: pointer to the PF struct 4957 * 4958 * Issue firmware command to enable multicast magic wake, making 4959 * sure that any locally administered address (LAA) is used for 4960 * wake, and that PF reset doesn't undo the LAA. 4961 */ 4962 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4963 { 4964 struct device *dev = ice_pf_to_dev(pf); 4965 struct ice_hw *hw = &pf->hw; 4966 u8 mac_addr[ETH_ALEN]; 4967 struct ice_vsi *vsi; 4968 int status; 4969 u8 flags; 4970 4971 if (!pf->wol_ena) 4972 return; 4973 4974 vsi = ice_get_main_vsi(pf); 4975 if (!vsi) 4976 return; 4977 4978 /* Get current MAC address in case it's an LAA */ 4979 if (vsi->netdev) 4980 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4981 else 4982 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4983 4984 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4985 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4986 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4987 4988 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4989 if (status) 4990 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4991 status, ice_aq_str(hw->adminq.sq_last_status)); 4992 } 4993 4994 /** 4995 * ice_remove - Device removal routine 4996 * @pdev: PCI device information struct 4997 */ 4998 static void ice_remove(struct pci_dev *pdev) 4999 { 5000 struct ice_pf *pf = pci_get_drvdata(pdev); 5001 int i; 5002 5003 ice_devlink_unregister(pf); 5004 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5005 if (!ice_is_reset_in_progress(pf->state)) 5006 break; 5007 msleep(100); 5008 } 5009 5010 ice_tc_indir_block_remove(pf); 5011 5012 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5013 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5014 ice_free_vfs(pf); 5015 } 5016 5017 ice_service_task_stop(pf); 5018 5019 ice_aq_cancel_waiting_tasks(pf); 5020 ice_unplug_aux_dev(pf); 5021 if (pf->aux_idx >= 0) 5022 ida_free(&ice_aux_ida, pf->aux_idx); 5023 ice_devlink_unregister_params(pf); 5024 set_bit(ICE_DOWN, pf->state); 5025 5026 ice_deinit_lag(pf); 5027 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5028 ice_ptp_release(pf); 5029 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5030 ice_gnss_exit(pf); 5031 if (!ice_is_safe_mode(pf)) 5032 ice_remove_arfs(pf); 5033 ice_setup_mc_magic_wake(pf); 5034 ice_vsi_release_all(pf); 5035 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5036 ice_set_wake(pf); 5037 ice_free_irq_msix_misc(pf); 5038 ice_for_each_vsi(pf, i) { 5039 if (!pf->vsi[i]) 5040 continue; 5041 ice_vsi_free_q_vectors(pf->vsi[i]); 5042 } 5043 ice_deinit_pf(pf); 5044 ice_devlink_destroy_regions(pf); 5045 ice_deinit_hw(&pf->hw); 5046 5047 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5048 * do it via ice_schedule_reset() since there is no need to rebuild 5049 * and the service task is already stopped. 5050 */ 5051 ice_reset(&pf->hw, ICE_RESET_PFR); 5052 pci_wait_for_pending_transaction(pdev); 5053 ice_clear_interrupt_scheme(pf); 5054 pci_disable_pcie_error_reporting(pdev); 5055 pci_disable_device(pdev); 5056 } 5057 5058 /** 5059 * ice_shutdown - PCI callback for shutting down device 5060 * @pdev: PCI device information struct 5061 */ 5062 static void ice_shutdown(struct pci_dev *pdev) 5063 { 5064 struct ice_pf *pf = pci_get_drvdata(pdev); 5065 5066 ice_remove(pdev); 5067 5068 if (system_state == SYSTEM_POWER_OFF) { 5069 pci_wake_from_d3(pdev, pf->wol_ena); 5070 pci_set_power_state(pdev, PCI_D3hot); 5071 } 5072 } 5073 5074 #ifdef CONFIG_PM 5075 /** 5076 * ice_prepare_for_shutdown - prep for PCI shutdown 5077 * @pf: board private structure 5078 * 5079 * Inform or close all dependent features in prep for PCI device shutdown 5080 */ 5081 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5082 { 5083 struct ice_hw *hw = &pf->hw; 5084 u32 v; 5085 5086 /* Notify VFs of impending reset */ 5087 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5088 ice_vc_notify_reset(pf); 5089 5090 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5091 5092 /* disable the VSIs and their queues that are not already DOWN */ 5093 ice_pf_dis_all_vsi(pf, false); 5094 5095 ice_for_each_vsi(pf, v) 5096 if (pf->vsi[v]) 5097 pf->vsi[v]->vsi_num = 0; 5098 5099 ice_shutdown_all_ctrlq(hw); 5100 } 5101 5102 /** 5103 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5104 * @pf: board private structure to reinitialize 5105 * 5106 * This routine reinitialize interrupt scheme that was cleared during 5107 * power management suspend callback. 5108 * 5109 * This should be called during resume routine to re-allocate the q_vectors 5110 * and reacquire interrupts. 5111 */ 5112 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5113 { 5114 struct device *dev = ice_pf_to_dev(pf); 5115 int ret, v; 5116 5117 /* Since we clear MSIX flag during suspend, we need to 5118 * set it back during resume... 5119 */ 5120 5121 ret = ice_init_interrupt_scheme(pf); 5122 if (ret) { 5123 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5124 return ret; 5125 } 5126 5127 /* Remap vectors and rings, after successful re-init interrupts */ 5128 ice_for_each_vsi(pf, v) { 5129 if (!pf->vsi[v]) 5130 continue; 5131 5132 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5133 if (ret) 5134 goto err_reinit; 5135 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5136 } 5137 5138 ret = ice_req_irq_msix_misc(pf); 5139 if (ret) { 5140 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5141 ret); 5142 goto err_reinit; 5143 } 5144 5145 return 0; 5146 5147 err_reinit: 5148 while (v--) 5149 if (pf->vsi[v]) 5150 ice_vsi_free_q_vectors(pf->vsi[v]); 5151 5152 return ret; 5153 } 5154 5155 /** 5156 * ice_suspend 5157 * @dev: generic device information structure 5158 * 5159 * Power Management callback to quiesce the device and prepare 5160 * for D3 transition. 5161 */ 5162 static int __maybe_unused ice_suspend(struct device *dev) 5163 { 5164 struct pci_dev *pdev = to_pci_dev(dev); 5165 struct ice_pf *pf; 5166 int disabled, v; 5167 5168 pf = pci_get_drvdata(pdev); 5169 5170 if (!ice_pf_state_is_nominal(pf)) { 5171 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5172 return -EBUSY; 5173 } 5174 5175 /* Stop watchdog tasks until resume completion. 5176 * Even though it is most likely that the service task is 5177 * disabled if the device is suspended or down, the service task's 5178 * state is controlled by a different state bit, and we should 5179 * store and honor whatever state that bit is in at this point. 5180 */ 5181 disabled = ice_service_task_stop(pf); 5182 5183 ice_unplug_aux_dev(pf); 5184 5185 /* Already suspended?, then there is nothing to do */ 5186 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5187 if (!disabled) 5188 ice_service_task_restart(pf); 5189 return 0; 5190 } 5191 5192 if (test_bit(ICE_DOWN, pf->state) || 5193 ice_is_reset_in_progress(pf->state)) { 5194 dev_err(dev, "can't suspend device in reset or already down\n"); 5195 if (!disabled) 5196 ice_service_task_restart(pf); 5197 return 0; 5198 } 5199 5200 ice_setup_mc_magic_wake(pf); 5201 5202 ice_prepare_for_shutdown(pf); 5203 5204 ice_set_wake(pf); 5205 5206 /* Free vectors, clear the interrupt scheme and release IRQs 5207 * for proper hibernation, especially with large number of CPUs. 5208 * Otherwise hibernation might fail when mapping all the vectors back 5209 * to CPU0. 5210 */ 5211 ice_free_irq_msix_misc(pf); 5212 ice_for_each_vsi(pf, v) { 5213 if (!pf->vsi[v]) 5214 continue; 5215 ice_vsi_free_q_vectors(pf->vsi[v]); 5216 } 5217 ice_clear_interrupt_scheme(pf); 5218 5219 pci_save_state(pdev); 5220 pci_wake_from_d3(pdev, pf->wol_ena); 5221 pci_set_power_state(pdev, PCI_D3hot); 5222 return 0; 5223 } 5224 5225 /** 5226 * ice_resume - PM callback for waking up from D3 5227 * @dev: generic device information structure 5228 */ 5229 static int __maybe_unused ice_resume(struct device *dev) 5230 { 5231 struct pci_dev *pdev = to_pci_dev(dev); 5232 enum ice_reset_req reset_type; 5233 struct ice_pf *pf; 5234 struct ice_hw *hw; 5235 int ret; 5236 5237 pci_set_power_state(pdev, PCI_D0); 5238 pci_restore_state(pdev); 5239 pci_save_state(pdev); 5240 5241 if (!pci_device_is_present(pdev)) 5242 return -ENODEV; 5243 5244 ret = pci_enable_device_mem(pdev); 5245 if (ret) { 5246 dev_err(dev, "Cannot enable device after suspend\n"); 5247 return ret; 5248 } 5249 5250 pf = pci_get_drvdata(pdev); 5251 hw = &pf->hw; 5252 5253 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5254 ice_print_wake_reason(pf); 5255 5256 /* We cleared the interrupt scheme when we suspended, so we need to 5257 * restore it now to resume device functionality. 5258 */ 5259 ret = ice_reinit_interrupt_scheme(pf); 5260 if (ret) 5261 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5262 5263 clear_bit(ICE_DOWN, pf->state); 5264 /* Now perform PF reset and rebuild */ 5265 reset_type = ICE_RESET_PFR; 5266 /* re-enable service task for reset, but allow reset to schedule it */ 5267 clear_bit(ICE_SERVICE_DIS, pf->state); 5268 5269 if (ice_schedule_reset(pf, reset_type)) 5270 dev_err(dev, "Reset during resume failed.\n"); 5271 5272 clear_bit(ICE_SUSPENDED, pf->state); 5273 ice_service_task_restart(pf); 5274 5275 /* Restart the service task */ 5276 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5277 5278 return 0; 5279 } 5280 #endif /* CONFIG_PM */ 5281 5282 /** 5283 * ice_pci_err_detected - warning that PCI error has been detected 5284 * @pdev: PCI device information struct 5285 * @err: the type of PCI error 5286 * 5287 * Called to warn that something happened on the PCI bus and the error handling 5288 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5289 */ 5290 static pci_ers_result_t 5291 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5292 { 5293 struct ice_pf *pf = pci_get_drvdata(pdev); 5294 5295 if (!pf) { 5296 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5297 __func__, err); 5298 return PCI_ERS_RESULT_DISCONNECT; 5299 } 5300 5301 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5302 ice_service_task_stop(pf); 5303 5304 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5305 set_bit(ICE_PFR_REQ, pf->state); 5306 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5307 } 5308 } 5309 5310 return PCI_ERS_RESULT_NEED_RESET; 5311 } 5312 5313 /** 5314 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5315 * @pdev: PCI device information struct 5316 * 5317 * Called to determine if the driver can recover from the PCI slot reset by 5318 * using a register read to determine if the device is recoverable. 5319 */ 5320 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5321 { 5322 struct ice_pf *pf = pci_get_drvdata(pdev); 5323 pci_ers_result_t result; 5324 int err; 5325 u32 reg; 5326 5327 err = pci_enable_device_mem(pdev); 5328 if (err) { 5329 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5330 err); 5331 result = PCI_ERS_RESULT_DISCONNECT; 5332 } else { 5333 pci_set_master(pdev); 5334 pci_restore_state(pdev); 5335 pci_save_state(pdev); 5336 pci_wake_from_d3(pdev, false); 5337 5338 /* Check for life */ 5339 reg = rd32(&pf->hw, GLGEN_RTRIG); 5340 if (!reg) 5341 result = PCI_ERS_RESULT_RECOVERED; 5342 else 5343 result = PCI_ERS_RESULT_DISCONNECT; 5344 } 5345 5346 return result; 5347 } 5348 5349 /** 5350 * ice_pci_err_resume - restart operations after PCI error recovery 5351 * @pdev: PCI device information struct 5352 * 5353 * Called to allow the driver to bring things back up after PCI error and/or 5354 * reset recovery have finished 5355 */ 5356 static void ice_pci_err_resume(struct pci_dev *pdev) 5357 { 5358 struct ice_pf *pf = pci_get_drvdata(pdev); 5359 5360 if (!pf) { 5361 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5362 __func__); 5363 return; 5364 } 5365 5366 if (test_bit(ICE_SUSPENDED, pf->state)) { 5367 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5368 __func__); 5369 return; 5370 } 5371 5372 ice_restore_all_vfs_msi_state(pdev); 5373 5374 ice_do_reset(pf, ICE_RESET_PFR); 5375 ice_service_task_restart(pf); 5376 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5377 } 5378 5379 /** 5380 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5381 * @pdev: PCI device information struct 5382 */ 5383 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5384 { 5385 struct ice_pf *pf = pci_get_drvdata(pdev); 5386 5387 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5388 ice_service_task_stop(pf); 5389 5390 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5391 set_bit(ICE_PFR_REQ, pf->state); 5392 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5393 } 5394 } 5395 } 5396 5397 /** 5398 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5399 * @pdev: PCI device information struct 5400 */ 5401 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5402 { 5403 ice_pci_err_resume(pdev); 5404 } 5405 5406 /* ice_pci_tbl - PCI Device ID Table 5407 * 5408 * Wildcard entries (PCI_ANY_ID) should come last 5409 * Last entry must be all 0s 5410 * 5411 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5412 * Class, Class Mask, private data (not used) } 5413 */ 5414 static const struct pci_device_id ice_pci_tbl[] = { 5415 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5416 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5417 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5418 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5419 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5420 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5421 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5422 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5423 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5424 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5425 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5426 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5427 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5428 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5429 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5430 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5431 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5432 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5433 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5434 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5435 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5436 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5437 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5438 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5439 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5440 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5441 /* required last entry */ 5442 { 0, } 5443 }; 5444 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5445 5446 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5447 5448 static const struct pci_error_handlers ice_pci_err_handler = { 5449 .error_detected = ice_pci_err_detected, 5450 .slot_reset = ice_pci_err_slot_reset, 5451 .reset_prepare = ice_pci_err_reset_prepare, 5452 .reset_done = ice_pci_err_reset_done, 5453 .resume = ice_pci_err_resume 5454 }; 5455 5456 static struct pci_driver ice_driver = { 5457 .name = KBUILD_MODNAME, 5458 .id_table = ice_pci_tbl, 5459 .probe = ice_probe, 5460 .remove = ice_remove, 5461 #ifdef CONFIG_PM 5462 .driver.pm = &ice_pm_ops, 5463 #endif /* CONFIG_PM */ 5464 .shutdown = ice_shutdown, 5465 .sriov_configure = ice_sriov_configure, 5466 .err_handler = &ice_pci_err_handler 5467 }; 5468 5469 /** 5470 * ice_module_init - Driver registration routine 5471 * 5472 * ice_module_init is the first routine called when the driver is 5473 * loaded. All it does is register with the PCI subsystem. 5474 */ 5475 static int __init ice_module_init(void) 5476 { 5477 int status; 5478 5479 pr_info("%s\n", ice_driver_string); 5480 pr_info("%s\n", ice_copyright); 5481 5482 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5483 if (!ice_wq) { 5484 pr_err("Failed to create workqueue\n"); 5485 return -ENOMEM; 5486 } 5487 5488 status = pci_register_driver(&ice_driver); 5489 if (status) { 5490 pr_err("failed to register PCI driver, err %d\n", status); 5491 destroy_workqueue(ice_wq); 5492 } 5493 5494 return status; 5495 } 5496 module_init(ice_module_init); 5497 5498 /** 5499 * ice_module_exit - Driver exit cleanup routine 5500 * 5501 * ice_module_exit is called just before the driver is removed 5502 * from memory. 5503 */ 5504 static void __exit ice_module_exit(void) 5505 { 5506 pci_unregister_driver(&ice_driver); 5507 destroy_workqueue(ice_wq); 5508 pr_info("module unloaded\n"); 5509 } 5510 module_exit(ice_module_exit); 5511 5512 /** 5513 * ice_set_mac_address - NDO callback to set MAC address 5514 * @netdev: network interface device structure 5515 * @pi: pointer to an address structure 5516 * 5517 * Returns 0 on success, negative on failure 5518 */ 5519 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5520 { 5521 struct ice_netdev_priv *np = netdev_priv(netdev); 5522 struct ice_vsi *vsi = np->vsi; 5523 struct ice_pf *pf = vsi->back; 5524 struct ice_hw *hw = &pf->hw; 5525 struct sockaddr *addr = pi; 5526 u8 old_mac[ETH_ALEN]; 5527 u8 flags = 0; 5528 u8 *mac; 5529 int err; 5530 5531 mac = (u8 *)addr->sa_data; 5532 5533 if (!is_valid_ether_addr(mac)) 5534 return -EADDRNOTAVAIL; 5535 5536 if (ether_addr_equal(netdev->dev_addr, mac)) { 5537 netdev_dbg(netdev, "already using mac %pM\n", mac); 5538 return 0; 5539 } 5540 5541 if (test_bit(ICE_DOWN, pf->state) || 5542 ice_is_reset_in_progress(pf->state)) { 5543 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5544 mac); 5545 return -EBUSY; 5546 } 5547 5548 if (ice_chnl_dmac_fltr_cnt(pf)) { 5549 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5550 mac); 5551 return -EAGAIN; 5552 } 5553 5554 netif_addr_lock_bh(netdev); 5555 ether_addr_copy(old_mac, netdev->dev_addr); 5556 /* change the netdev's MAC address */ 5557 eth_hw_addr_set(netdev, mac); 5558 netif_addr_unlock_bh(netdev); 5559 5560 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5561 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5562 if (err && err != -ENOENT) { 5563 err = -EADDRNOTAVAIL; 5564 goto err_update_filters; 5565 } 5566 5567 /* Add filter for new MAC. If filter exists, return success */ 5568 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5569 if (err == -EEXIST) { 5570 /* Although this MAC filter is already present in hardware it's 5571 * possible in some cases (e.g. bonding) that dev_addr was 5572 * modified outside of the driver and needs to be restored back 5573 * to this value. 5574 */ 5575 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5576 5577 return 0; 5578 } else if (err) { 5579 /* error if the new filter addition failed */ 5580 err = -EADDRNOTAVAIL; 5581 } 5582 5583 err_update_filters: 5584 if (err) { 5585 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5586 mac); 5587 netif_addr_lock_bh(netdev); 5588 eth_hw_addr_set(netdev, old_mac); 5589 netif_addr_unlock_bh(netdev); 5590 return err; 5591 } 5592 5593 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5594 netdev->dev_addr); 5595 5596 /* write new MAC address to the firmware */ 5597 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5598 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5599 if (err) { 5600 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5601 mac, err); 5602 } 5603 return 0; 5604 } 5605 5606 /** 5607 * ice_set_rx_mode - NDO callback to set the netdev filters 5608 * @netdev: network interface device structure 5609 */ 5610 static void ice_set_rx_mode(struct net_device *netdev) 5611 { 5612 struct ice_netdev_priv *np = netdev_priv(netdev); 5613 struct ice_vsi *vsi = np->vsi; 5614 5615 if (!vsi) 5616 return; 5617 5618 /* Set the flags to synchronize filters 5619 * ndo_set_rx_mode may be triggered even without a change in netdev 5620 * flags 5621 */ 5622 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5623 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5624 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5625 5626 /* schedule our worker thread which will take care of 5627 * applying the new filter changes 5628 */ 5629 ice_service_task_schedule(vsi->back); 5630 } 5631 5632 /** 5633 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5634 * @netdev: network interface device structure 5635 * @queue_index: Queue ID 5636 * @maxrate: maximum bandwidth in Mbps 5637 */ 5638 static int 5639 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5640 { 5641 struct ice_netdev_priv *np = netdev_priv(netdev); 5642 struct ice_vsi *vsi = np->vsi; 5643 u16 q_handle; 5644 int status; 5645 u8 tc; 5646 5647 /* Validate maxrate requested is within permitted range */ 5648 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5649 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5650 maxrate, queue_index); 5651 return -EINVAL; 5652 } 5653 5654 q_handle = vsi->tx_rings[queue_index]->q_handle; 5655 tc = ice_dcb_get_tc(vsi, queue_index); 5656 5657 /* Set BW back to default, when user set maxrate to 0 */ 5658 if (!maxrate) 5659 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5660 q_handle, ICE_MAX_BW); 5661 else 5662 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5663 q_handle, ICE_MAX_BW, maxrate * 1000); 5664 if (status) 5665 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5666 status); 5667 5668 return status; 5669 } 5670 5671 /** 5672 * ice_fdb_add - add an entry to the hardware database 5673 * @ndm: the input from the stack 5674 * @tb: pointer to array of nladdr (unused) 5675 * @dev: the net device pointer 5676 * @addr: the MAC address entry being added 5677 * @vid: VLAN ID 5678 * @flags: instructions from stack about fdb operation 5679 * @extack: netlink extended ack 5680 */ 5681 static int 5682 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5683 struct net_device *dev, const unsigned char *addr, u16 vid, 5684 u16 flags, struct netlink_ext_ack __always_unused *extack) 5685 { 5686 int err; 5687 5688 if (vid) { 5689 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5690 return -EINVAL; 5691 } 5692 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5693 netdev_err(dev, "FDB only supports static addresses\n"); 5694 return -EINVAL; 5695 } 5696 5697 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5698 err = dev_uc_add_excl(dev, addr); 5699 else if (is_multicast_ether_addr(addr)) 5700 err = dev_mc_add_excl(dev, addr); 5701 else 5702 err = -EINVAL; 5703 5704 /* Only return duplicate errors if NLM_F_EXCL is set */ 5705 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5706 err = 0; 5707 5708 return err; 5709 } 5710 5711 /** 5712 * ice_fdb_del - delete an entry from the hardware database 5713 * @ndm: the input from the stack 5714 * @tb: pointer to array of nladdr (unused) 5715 * @dev: the net device pointer 5716 * @addr: the MAC address entry being added 5717 * @vid: VLAN ID 5718 * @extack: netlink extended ack 5719 */ 5720 static int 5721 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5722 struct net_device *dev, const unsigned char *addr, 5723 __always_unused u16 vid, struct netlink_ext_ack *extack) 5724 { 5725 int err; 5726 5727 if (ndm->ndm_state & NUD_PERMANENT) { 5728 netdev_err(dev, "FDB only supports static addresses\n"); 5729 return -EINVAL; 5730 } 5731 5732 if (is_unicast_ether_addr(addr)) 5733 err = dev_uc_del(dev, addr); 5734 else if (is_multicast_ether_addr(addr)) 5735 err = dev_mc_del(dev, addr); 5736 else 5737 err = -EINVAL; 5738 5739 return err; 5740 } 5741 5742 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5743 NETIF_F_HW_VLAN_CTAG_TX | \ 5744 NETIF_F_HW_VLAN_STAG_RX | \ 5745 NETIF_F_HW_VLAN_STAG_TX) 5746 5747 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5748 NETIF_F_HW_VLAN_STAG_FILTER) 5749 5750 /** 5751 * ice_fix_features - fix the netdev features flags based on device limitations 5752 * @netdev: ptr to the netdev that flags are being fixed on 5753 * @features: features that need to be checked and possibly fixed 5754 * 5755 * Make sure any fixups are made to features in this callback. This enables the 5756 * driver to not have to check unsupported configurations throughout the driver 5757 * because that's the responsiblity of this callback. 5758 * 5759 * Single VLAN Mode (SVM) Supported Features: 5760 * NETIF_F_HW_VLAN_CTAG_FILTER 5761 * NETIF_F_HW_VLAN_CTAG_RX 5762 * NETIF_F_HW_VLAN_CTAG_TX 5763 * 5764 * Double VLAN Mode (DVM) Supported Features: 5765 * NETIF_F_HW_VLAN_CTAG_FILTER 5766 * NETIF_F_HW_VLAN_CTAG_RX 5767 * NETIF_F_HW_VLAN_CTAG_TX 5768 * 5769 * NETIF_F_HW_VLAN_STAG_FILTER 5770 * NETIF_HW_VLAN_STAG_RX 5771 * NETIF_HW_VLAN_STAG_TX 5772 * 5773 * Features that need fixing: 5774 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5775 * These are mutually exlusive as the VSI context cannot support multiple 5776 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5777 * is not done, then default to clearing the requested STAG offload 5778 * settings. 5779 * 5780 * All supported filtering has to be enabled or disabled together. For 5781 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5782 * together. If this is not done, then default to VLAN filtering disabled. 5783 * These are mutually exclusive as there is currently no way to 5784 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5785 * prune rules. 5786 */ 5787 static netdev_features_t 5788 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5789 { 5790 struct ice_netdev_priv *np = netdev_priv(netdev); 5791 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5792 bool cur_ctag, cur_stag, req_ctag, req_stag; 5793 5794 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5795 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5796 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5797 5798 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5799 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5800 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5801 5802 if (req_vlan_fltr != cur_vlan_fltr) { 5803 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5804 if (req_ctag && req_stag) { 5805 features |= NETIF_VLAN_FILTERING_FEATURES; 5806 } else if (!req_ctag && !req_stag) { 5807 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5808 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5809 (!cur_stag && req_stag && !cur_ctag)) { 5810 features |= NETIF_VLAN_FILTERING_FEATURES; 5811 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5812 } else if ((cur_ctag && !req_ctag && cur_stag) || 5813 (cur_stag && !req_stag && cur_ctag)) { 5814 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5815 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5816 } 5817 } else { 5818 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5819 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5820 5821 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5822 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5823 } 5824 } 5825 5826 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5827 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5828 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5829 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5830 NETIF_F_HW_VLAN_STAG_TX); 5831 } 5832 5833 return features; 5834 } 5835 5836 /** 5837 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5838 * @vsi: PF's VSI 5839 * @features: features used to determine VLAN offload settings 5840 * 5841 * First, determine the vlan_ethertype based on the VLAN offload bits in 5842 * features. Then determine if stripping and insertion should be enabled or 5843 * disabled. Finally enable or disable VLAN stripping and insertion. 5844 */ 5845 static int 5846 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5847 { 5848 bool enable_stripping = true, enable_insertion = true; 5849 struct ice_vsi_vlan_ops *vlan_ops; 5850 int strip_err = 0, insert_err = 0; 5851 u16 vlan_ethertype = 0; 5852 5853 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5854 5855 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5856 vlan_ethertype = ETH_P_8021AD; 5857 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5858 vlan_ethertype = ETH_P_8021Q; 5859 5860 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5861 enable_stripping = false; 5862 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5863 enable_insertion = false; 5864 5865 if (enable_stripping) 5866 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5867 else 5868 strip_err = vlan_ops->dis_stripping(vsi); 5869 5870 if (enable_insertion) 5871 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5872 else 5873 insert_err = vlan_ops->dis_insertion(vsi); 5874 5875 if (strip_err || insert_err) 5876 return -EIO; 5877 5878 return 0; 5879 } 5880 5881 /** 5882 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5883 * @vsi: PF's VSI 5884 * @features: features used to determine VLAN filtering settings 5885 * 5886 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5887 * features. 5888 */ 5889 static int 5890 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5891 { 5892 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5893 int err = 0; 5894 5895 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5896 * if either bit is set 5897 */ 5898 if (features & 5899 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5900 err = vlan_ops->ena_rx_filtering(vsi); 5901 else 5902 err = vlan_ops->dis_rx_filtering(vsi); 5903 5904 return err; 5905 } 5906 5907 /** 5908 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5909 * @netdev: ptr to the netdev being adjusted 5910 * @features: the feature set that the stack is suggesting 5911 * 5912 * Only update VLAN settings if the requested_vlan_features are different than 5913 * the current_vlan_features. 5914 */ 5915 static int 5916 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5917 { 5918 netdev_features_t current_vlan_features, requested_vlan_features; 5919 struct ice_netdev_priv *np = netdev_priv(netdev); 5920 struct ice_vsi *vsi = np->vsi; 5921 int err; 5922 5923 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5924 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5925 if (current_vlan_features ^ requested_vlan_features) { 5926 err = ice_set_vlan_offload_features(vsi, features); 5927 if (err) 5928 return err; 5929 } 5930 5931 current_vlan_features = netdev->features & 5932 NETIF_VLAN_FILTERING_FEATURES; 5933 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5934 if (current_vlan_features ^ requested_vlan_features) { 5935 err = ice_set_vlan_filtering_features(vsi, features); 5936 if (err) 5937 return err; 5938 } 5939 5940 return 0; 5941 } 5942 5943 /** 5944 * ice_set_loopback - turn on/off loopback mode on underlying PF 5945 * @vsi: ptr to VSI 5946 * @ena: flag to indicate the on/off setting 5947 */ 5948 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5949 { 5950 bool if_running = netif_running(vsi->netdev); 5951 int ret; 5952 5953 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5954 ret = ice_down(vsi); 5955 if (ret) { 5956 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5957 return ret; 5958 } 5959 } 5960 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5961 if (ret) 5962 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5963 if (if_running) 5964 ret = ice_up(vsi); 5965 5966 return ret; 5967 } 5968 5969 /** 5970 * ice_set_features - set the netdev feature flags 5971 * @netdev: ptr to the netdev being adjusted 5972 * @features: the feature set that the stack is suggesting 5973 */ 5974 static int 5975 ice_set_features(struct net_device *netdev, netdev_features_t features) 5976 { 5977 netdev_features_t changed = netdev->features ^ features; 5978 struct ice_netdev_priv *np = netdev_priv(netdev); 5979 struct ice_vsi *vsi = np->vsi; 5980 struct ice_pf *pf = vsi->back; 5981 int ret = 0; 5982 5983 /* Don't set any netdev advanced features with device in Safe Mode */ 5984 if (ice_is_safe_mode(pf)) { 5985 dev_err(ice_pf_to_dev(pf), 5986 "Device is in Safe Mode - not enabling advanced netdev features\n"); 5987 return ret; 5988 } 5989 5990 /* Do not change setting during reset */ 5991 if (ice_is_reset_in_progress(pf->state)) { 5992 dev_err(ice_pf_to_dev(pf), 5993 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5994 return -EBUSY; 5995 } 5996 5997 /* Multiple features can be changed in one call so keep features in 5998 * separate if/else statements to guarantee each feature is checked 5999 */ 6000 if (changed & NETIF_F_RXHASH) 6001 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6002 6003 ret = ice_set_vlan_features(netdev, features); 6004 if (ret) 6005 return ret; 6006 6007 if (changed & NETIF_F_NTUPLE) { 6008 bool ena = !!(features & NETIF_F_NTUPLE); 6009 6010 ice_vsi_manage_fdir(vsi, ena); 6011 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6012 } 6013 6014 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6015 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6016 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6017 return -EACCES; 6018 } 6019 6020 if (changed & NETIF_F_HW_TC) { 6021 bool ena = !!(features & NETIF_F_HW_TC); 6022 6023 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6024 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6025 } 6026 6027 if (changed & NETIF_F_LOOPBACK) 6028 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6029 6030 return ret; 6031 } 6032 6033 /** 6034 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6035 * @vsi: VSI to setup VLAN properties for 6036 */ 6037 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6038 { 6039 int err; 6040 6041 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6042 if (err) 6043 return err; 6044 6045 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6046 if (err) 6047 return err; 6048 6049 return ice_vsi_add_vlan_zero(vsi); 6050 } 6051 6052 /** 6053 * ice_vsi_cfg - Setup the VSI 6054 * @vsi: the VSI being configured 6055 * 6056 * Return 0 on success and negative value on error 6057 */ 6058 int ice_vsi_cfg(struct ice_vsi *vsi) 6059 { 6060 int err; 6061 6062 if (vsi->netdev) { 6063 ice_set_rx_mode(vsi->netdev); 6064 6065 if (vsi->type != ICE_VSI_LB) { 6066 err = ice_vsi_vlan_setup(vsi); 6067 6068 if (err) 6069 return err; 6070 } 6071 } 6072 ice_vsi_cfg_dcb_rings(vsi); 6073 6074 err = ice_vsi_cfg_lan_txqs(vsi); 6075 if (!err && ice_is_xdp_ena_vsi(vsi)) 6076 err = ice_vsi_cfg_xdp_txqs(vsi); 6077 if (!err) 6078 err = ice_vsi_cfg_rxqs(vsi); 6079 6080 return err; 6081 } 6082 6083 /* THEORY OF MODERATION: 6084 * The ice driver hardware works differently than the hardware that DIMLIB was 6085 * originally made for. ice hardware doesn't have packet count limits that 6086 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6087 * which is hard-coded to a limit of 250,000 ints/second. 6088 * If not using dynamic moderation, the INTRL value can be modified 6089 * by ethtool rx-usecs-high. 6090 */ 6091 struct ice_dim { 6092 /* the throttle rate for interrupts, basically worst case delay before 6093 * an initial interrupt fires, value is stored in microseconds. 6094 */ 6095 u16 itr; 6096 }; 6097 6098 /* Make a different profile for Rx that doesn't allow quite so aggressive 6099 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6100 * second. 6101 */ 6102 static const struct ice_dim rx_profile[] = { 6103 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6104 {8}, /* 125,000 ints/s */ 6105 {16}, /* 62,500 ints/s */ 6106 {62}, /* 16,129 ints/s */ 6107 {126} /* 7,936 ints/s */ 6108 }; 6109 6110 /* The transmit profile, which has the same sorts of values 6111 * as the previous struct 6112 */ 6113 static const struct ice_dim tx_profile[] = { 6114 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6115 {8}, /* 125,000 ints/s */ 6116 {40}, /* 16,125 ints/s */ 6117 {128}, /* 7,812 ints/s */ 6118 {256} /* 3,906 ints/s */ 6119 }; 6120 6121 static void ice_tx_dim_work(struct work_struct *work) 6122 { 6123 struct ice_ring_container *rc; 6124 struct dim *dim; 6125 u16 itr; 6126 6127 dim = container_of(work, struct dim, work); 6128 rc = (struct ice_ring_container *)dim->priv; 6129 6130 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6131 6132 /* look up the values in our local table */ 6133 itr = tx_profile[dim->profile_ix].itr; 6134 6135 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6136 ice_write_itr(rc, itr); 6137 6138 dim->state = DIM_START_MEASURE; 6139 } 6140 6141 static void ice_rx_dim_work(struct work_struct *work) 6142 { 6143 struct ice_ring_container *rc; 6144 struct dim *dim; 6145 u16 itr; 6146 6147 dim = container_of(work, struct dim, work); 6148 rc = (struct ice_ring_container *)dim->priv; 6149 6150 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6151 6152 /* look up the values in our local table */ 6153 itr = rx_profile[dim->profile_ix].itr; 6154 6155 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6156 ice_write_itr(rc, itr); 6157 6158 dim->state = DIM_START_MEASURE; 6159 } 6160 6161 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6162 6163 /** 6164 * ice_init_moderation - set up interrupt moderation 6165 * @q_vector: the vector containing rings to be configured 6166 * 6167 * Set up interrupt moderation registers, with the intent to do the right thing 6168 * when called from reset or from probe, and whether or not dynamic moderation 6169 * is enabled or not. Take special care to write all the registers in both 6170 * dynamic moderation mode or not in order to make sure hardware is in a known 6171 * state. 6172 */ 6173 static void ice_init_moderation(struct ice_q_vector *q_vector) 6174 { 6175 struct ice_ring_container *rc; 6176 bool tx_dynamic, rx_dynamic; 6177 6178 rc = &q_vector->tx; 6179 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6180 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6181 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6182 rc->dim.priv = rc; 6183 tx_dynamic = ITR_IS_DYNAMIC(rc); 6184 6185 /* set the initial TX ITR to match the above */ 6186 ice_write_itr(rc, tx_dynamic ? 6187 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6188 6189 rc = &q_vector->rx; 6190 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6191 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6192 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6193 rc->dim.priv = rc; 6194 rx_dynamic = ITR_IS_DYNAMIC(rc); 6195 6196 /* set the initial RX ITR to match the above */ 6197 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6198 rc->itr_setting); 6199 6200 ice_set_q_vector_intrl(q_vector); 6201 } 6202 6203 /** 6204 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6205 * @vsi: the VSI being configured 6206 */ 6207 static void ice_napi_enable_all(struct ice_vsi *vsi) 6208 { 6209 int q_idx; 6210 6211 if (!vsi->netdev) 6212 return; 6213 6214 ice_for_each_q_vector(vsi, q_idx) { 6215 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6216 6217 ice_init_moderation(q_vector); 6218 6219 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6220 napi_enable(&q_vector->napi); 6221 } 6222 } 6223 6224 /** 6225 * ice_up_complete - Finish the last steps of bringing up a connection 6226 * @vsi: The VSI being configured 6227 * 6228 * Return 0 on success and negative value on error 6229 */ 6230 static int ice_up_complete(struct ice_vsi *vsi) 6231 { 6232 struct ice_pf *pf = vsi->back; 6233 int err; 6234 6235 ice_vsi_cfg_msix(vsi); 6236 6237 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6238 * Tx queue group list was configured and the context bits were 6239 * programmed using ice_vsi_cfg_txqs 6240 */ 6241 err = ice_vsi_start_all_rx_rings(vsi); 6242 if (err) 6243 return err; 6244 6245 clear_bit(ICE_VSI_DOWN, vsi->state); 6246 ice_napi_enable_all(vsi); 6247 ice_vsi_ena_irq(vsi); 6248 6249 if (vsi->port_info && 6250 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6251 vsi->netdev) { 6252 ice_print_link_msg(vsi, true); 6253 netif_tx_start_all_queues(vsi->netdev); 6254 netif_carrier_on(vsi->netdev); 6255 if (!ice_is_e810(&pf->hw)) 6256 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6257 } 6258 6259 /* Perform an initial read of the statistics registers now to 6260 * set the baseline so counters are ready when interface is up 6261 */ 6262 ice_update_eth_stats(vsi); 6263 ice_service_task_schedule(pf); 6264 6265 return 0; 6266 } 6267 6268 /** 6269 * ice_up - Bring the connection back up after being down 6270 * @vsi: VSI being configured 6271 */ 6272 int ice_up(struct ice_vsi *vsi) 6273 { 6274 int err; 6275 6276 err = ice_vsi_cfg(vsi); 6277 if (!err) 6278 err = ice_up_complete(vsi); 6279 6280 return err; 6281 } 6282 6283 /** 6284 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6285 * @syncp: pointer to u64_stats_sync 6286 * @stats: stats that pkts and bytes count will be taken from 6287 * @pkts: packets stats counter 6288 * @bytes: bytes stats counter 6289 * 6290 * This function fetches stats from the ring considering the atomic operations 6291 * that needs to be performed to read u64 values in 32 bit machine. 6292 */ 6293 void 6294 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6295 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6296 { 6297 unsigned int start; 6298 6299 do { 6300 start = u64_stats_fetch_begin_irq(syncp); 6301 *pkts = stats.pkts; 6302 *bytes = stats.bytes; 6303 } while (u64_stats_fetch_retry_irq(syncp, start)); 6304 } 6305 6306 /** 6307 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6308 * @vsi: the VSI to be updated 6309 * @vsi_stats: the stats struct to be updated 6310 * @rings: rings to work on 6311 * @count: number of rings 6312 */ 6313 static void 6314 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6315 struct rtnl_link_stats64 *vsi_stats, 6316 struct ice_tx_ring **rings, u16 count) 6317 { 6318 u16 i; 6319 6320 for (i = 0; i < count; i++) { 6321 struct ice_tx_ring *ring; 6322 u64 pkts = 0, bytes = 0; 6323 6324 ring = READ_ONCE(rings[i]); 6325 if (!ring) 6326 continue; 6327 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6328 vsi_stats->tx_packets += pkts; 6329 vsi_stats->tx_bytes += bytes; 6330 vsi->tx_restart += ring->tx_stats.restart_q; 6331 vsi->tx_busy += ring->tx_stats.tx_busy; 6332 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6333 } 6334 } 6335 6336 /** 6337 * ice_update_vsi_ring_stats - Update VSI stats counters 6338 * @vsi: the VSI to be updated 6339 */ 6340 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6341 { 6342 struct rtnl_link_stats64 *vsi_stats; 6343 u64 pkts, bytes; 6344 int i; 6345 6346 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6347 if (!vsi_stats) 6348 return; 6349 6350 /* reset non-netdev (extended) stats */ 6351 vsi->tx_restart = 0; 6352 vsi->tx_busy = 0; 6353 vsi->tx_linearize = 0; 6354 vsi->rx_buf_failed = 0; 6355 vsi->rx_page_failed = 0; 6356 6357 rcu_read_lock(); 6358 6359 /* update Tx rings counters */ 6360 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6361 vsi->num_txq); 6362 6363 /* update Rx rings counters */ 6364 ice_for_each_rxq(vsi, i) { 6365 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6366 6367 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6368 vsi_stats->rx_packets += pkts; 6369 vsi_stats->rx_bytes += bytes; 6370 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6371 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6372 } 6373 6374 /* update XDP Tx rings counters */ 6375 if (ice_is_xdp_ena_vsi(vsi)) 6376 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6377 vsi->num_xdp_txq); 6378 6379 rcu_read_unlock(); 6380 6381 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6382 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6383 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6384 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6385 6386 kfree(vsi_stats); 6387 } 6388 6389 /** 6390 * ice_update_vsi_stats - Update VSI stats counters 6391 * @vsi: the VSI to be updated 6392 */ 6393 void ice_update_vsi_stats(struct ice_vsi *vsi) 6394 { 6395 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6396 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6397 struct ice_pf *pf = vsi->back; 6398 6399 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6400 test_bit(ICE_CFG_BUSY, pf->state)) 6401 return; 6402 6403 /* get stats as recorded by Tx/Rx rings */ 6404 ice_update_vsi_ring_stats(vsi); 6405 6406 /* get VSI stats as recorded by the hardware */ 6407 ice_update_eth_stats(vsi); 6408 6409 cur_ns->tx_errors = cur_es->tx_errors; 6410 cur_ns->rx_dropped = cur_es->rx_discards; 6411 cur_ns->tx_dropped = cur_es->tx_discards; 6412 cur_ns->multicast = cur_es->rx_multicast; 6413 6414 /* update some more netdev stats if this is main VSI */ 6415 if (vsi->type == ICE_VSI_PF) { 6416 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6417 cur_ns->rx_errors = pf->stats.crc_errors + 6418 pf->stats.illegal_bytes + 6419 pf->stats.rx_len_errors + 6420 pf->stats.rx_undersize + 6421 pf->hw_csum_rx_error + 6422 pf->stats.rx_jabber + 6423 pf->stats.rx_fragments + 6424 pf->stats.rx_oversize; 6425 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6426 /* record drops from the port level */ 6427 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6428 } 6429 } 6430 6431 /** 6432 * ice_update_pf_stats - Update PF port stats counters 6433 * @pf: PF whose stats needs to be updated 6434 */ 6435 void ice_update_pf_stats(struct ice_pf *pf) 6436 { 6437 struct ice_hw_port_stats *prev_ps, *cur_ps; 6438 struct ice_hw *hw = &pf->hw; 6439 u16 fd_ctr_base; 6440 u8 port; 6441 6442 port = hw->port_info->lport; 6443 prev_ps = &pf->stats_prev; 6444 cur_ps = &pf->stats; 6445 6446 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6447 &prev_ps->eth.rx_bytes, 6448 &cur_ps->eth.rx_bytes); 6449 6450 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6451 &prev_ps->eth.rx_unicast, 6452 &cur_ps->eth.rx_unicast); 6453 6454 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6455 &prev_ps->eth.rx_multicast, 6456 &cur_ps->eth.rx_multicast); 6457 6458 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6459 &prev_ps->eth.rx_broadcast, 6460 &cur_ps->eth.rx_broadcast); 6461 6462 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6463 &prev_ps->eth.rx_discards, 6464 &cur_ps->eth.rx_discards); 6465 6466 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6467 &prev_ps->eth.tx_bytes, 6468 &cur_ps->eth.tx_bytes); 6469 6470 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6471 &prev_ps->eth.tx_unicast, 6472 &cur_ps->eth.tx_unicast); 6473 6474 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6475 &prev_ps->eth.tx_multicast, 6476 &cur_ps->eth.tx_multicast); 6477 6478 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6479 &prev_ps->eth.tx_broadcast, 6480 &cur_ps->eth.tx_broadcast); 6481 6482 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6483 &prev_ps->tx_dropped_link_down, 6484 &cur_ps->tx_dropped_link_down); 6485 6486 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6487 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6488 6489 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6490 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6491 6492 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6493 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6494 6495 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6496 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6497 6498 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6499 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6500 6501 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6502 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6503 6504 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6505 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6506 6507 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6508 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6509 6510 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6511 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6512 6513 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6514 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6515 6516 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6517 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6518 6519 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6520 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6521 6522 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6523 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6524 6525 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6526 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6527 6528 fd_ctr_base = hw->fd_ctr_base; 6529 6530 ice_stat_update40(hw, 6531 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6532 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6533 &cur_ps->fd_sb_match); 6534 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6535 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6536 6537 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6538 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6539 6540 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6541 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6542 6543 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6544 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6545 6546 ice_update_dcb_stats(pf); 6547 6548 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6549 &prev_ps->crc_errors, &cur_ps->crc_errors); 6550 6551 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6552 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6553 6554 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6555 &prev_ps->mac_local_faults, 6556 &cur_ps->mac_local_faults); 6557 6558 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6559 &prev_ps->mac_remote_faults, 6560 &cur_ps->mac_remote_faults); 6561 6562 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6563 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6564 6565 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6566 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6567 6568 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6569 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6570 6571 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6572 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6573 6574 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6575 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6576 6577 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6578 6579 pf->stat_prev_loaded = true; 6580 } 6581 6582 /** 6583 * ice_get_stats64 - get statistics for network device structure 6584 * @netdev: network interface device structure 6585 * @stats: main device statistics structure 6586 */ 6587 static 6588 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6589 { 6590 struct ice_netdev_priv *np = netdev_priv(netdev); 6591 struct rtnl_link_stats64 *vsi_stats; 6592 struct ice_vsi *vsi = np->vsi; 6593 6594 vsi_stats = &vsi->net_stats; 6595 6596 if (!vsi->num_txq || !vsi->num_rxq) 6597 return; 6598 6599 /* netdev packet/byte stats come from ring counter. These are obtained 6600 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6601 * But, only call the update routine and read the registers if VSI is 6602 * not down. 6603 */ 6604 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6605 ice_update_vsi_ring_stats(vsi); 6606 stats->tx_packets = vsi_stats->tx_packets; 6607 stats->tx_bytes = vsi_stats->tx_bytes; 6608 stats->rx_packets = vsi_stats->rx_packets; 6609 stats->rx_bytes = vsi_stats->rx_bytes; 6610 6611 /* The rest of the stats can be read from the hardware but instead we 6612 * just return values that the watchdog task has already obtained from 6613 * the hardware. 6614 */ 6615 stats->multicast = vsi_stats->multicast; 6616 stats->tx_errors = vsi_stats->tx_errors; 6617 stats->tx_dropped = vsi_stats->tx_dropped; 6618 stats->rx_errors = vsi_stats->rx_errors; 6619 stats->rx_dropped = vsi_stats->rx_dropped; 6620 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6621 stats->rx_length_errors = vsi_stats->rx_length_errors; 6622 } 6623 6624 /** 6625 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6626 * @vsi: VSI having NAPI disabled 6627 */ 6628 static void ice_napi_disable_all(struct ice_vsi *vsi) 6629 { 6630 int q_idx; 6631 6632 if (!vsi->netdev) 6633 return; 6634 6635 ice_for_each_q_vector(vsi, q_idx) { 6636 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6637 6638 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6639 napi_disable(&q_vector->napi); 6640 6641 cancel_work_sync(&q_vector->tx.dim.work); 6642 cancel_work_sync(&q_vector->rx.dim.work); 6643 } 6644 } 6645 6646 /** 6647 * ice_down - Shutdown the connection 6648 * @vsi: The VSI being stopped 6649 * 6650 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6651 */ 6652 int ice_down(struct ice_vsi *vsi) 6653 { 6654 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6655 6656 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6657 6658 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6659 vlan_err = ice_vsi_del_vlan_zero(vsi); 6660 if (!ice_is_e810(&vsi->back->hw)) 6661 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6662 netif_carrier_off(vsi->netdev); 6663 netif_tx_disable(vsi->netdev); 6664 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6665 ice_eswitch_stop_all_tx_queues(vsi->back); 6666 } 6667 6668 ice_vsi_dis_irq(vsi); 6669 6670 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6671 if (tx_err) 6672 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6673 vsi->vsi_num, tx_err); 6674 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6675 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6676 if (tx_err) 6677 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6678 vsi->vsi_num, tx_err); 6679 } 6680 6681 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6682 if (rx_err) 6683 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6684 vsi->vsi_num, rx_err); 6685 6686 ice_napi_disable_all(vsi); 6687 6688 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6689 link_err = ice_force_phys_link_state(vsi, false); 6690 if (link_err) 6691 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6692 vsi->vsi_num, link_err); 6693 } 6694 6695 ice_for_each_txq(vsi, i) 6696 ice_clean_tx_ring(vsi->tx_rings[i]); 6697 6698 ice_for_each_rxq(vsi, i) 6699 ice_clean_rx_ring(vsi->rx_rings[i]); 6700 6701 if (tx_err || rx_err || link_err || vlan_err) { 6702 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6703 vsi->vsi_num, vsi->vsw->sw_id); 6704 return -EIO; 6705 } 6706 6707 return 0; 6708 } 6709 6710 /** 6711 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6712 * @vsi: VSI having resources allocated 6713 * 6714 * Return 0 on success, negative on failure 6715 */ 6716 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6717 { 6718 int i, err = 0; 6719 6720 if (!vsi->num_txq) { 6721 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6722 vsi->vsi_num); 6723 return -EINVAL; 6724 } 6725 6726 ice_for_each_txq(vsi, i) { 6727 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6728 6729 if (!ring) 6730 return -EINVAL; 6731 6732 if (vsi->netdev) 6733 ring->netdev = vsi->netdev; 6734 err = ice_setup_tx_ring(ring); 6735 if (err) 6736 break; 6737 } 6738 6739 return err; 6740 } 6741 6742 /** 6743 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6744 * @vsi: VSI having resources allocated 6745 * 6746 * Return 0 on success, negative on failure 6747 */ 6748 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6749 { 6750 int i, err = 0; 6751 6752 if (!vsi->num_rxq) { 6753 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6754 vsi->vsi_num); 6755 return -EINVAL; 6756 } 6757 6758 ice_for_each_rxq(vsi, i) { 6759 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6760 6761 if (!ring) 6762 return -EINVAL; 6763 6764 if (vsi->netdev) 6765 ring->netdev = vsi->netdev; 6766 err = ice_setup_rx_ring(ring); 6767 if (err) 6768 break; 6769 } 6770 6771 return err; 6772 } 6773 6774 /** 6775 * ice_vsi_open_ctrl - open control VSI for use 6776 * @vsi: the VSI to open 6777 * 6778 * Initialization of the Control VSI 6779 * 6780 * Returns 0 on success, negative value on error 6781 */ 6782 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6783 { 6784 char int_name[ICE_INT_NAME_STR_LEN]; 6785 struct ice_pf *pf = vsi->back; 6786 struct device *dev; 6787 int err; 6788 6789 dev = ice_pf_to_dev(pf); 6790 /* allocate descriptors */ 6791 err = ice_vsi_setup_tx_rings(vsi); 6792 if (err) 6793 goto err_setup_tx; 6794 6795 err = ice_vsi_setup_rx_rings(vsi); 6796 if (err) 6797 goto err_setup_rx; 6798 6799 err = ice_vsi_cfg(vsi); 6800 if (err) 6801 goto err_setup_rx; 6802 6803 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6804 dev_driver_string(dev), dev_name(dev)); 6805 err = ice_vsi_req_irq_msix(vsi, int_name); 6806 if (err) 6807 goto err_setup_rx; 6808 6809 ice_vsi_cfg_msix(vsi); 6810 6811 err = ice_vsi_start_all_rx_rings(vsi); 6812 if (err) 6813 goto err_up_complete; 6814 6815 clear_bit(ICE_VSI_DOWN, vsi->state); 6816 ice_vsi_ena_irq(vsi); 6817 6818 return 0; 6819 6820 err_up_complete: 6821 ice_down(vsi); 6822 err_setup_rx: 6823 ice_vsi_free_rx_rings(vsi); 6824 err_setup_tx: 6825 ice_vsi_free_tx_rings(vsi); 6826 6827 return err; 6828 } 6829 6830 /** 6831 * ice_vsi_open - Called when a network interface is made active 6832 * @vsi: the VSI to open 6833 * 6834 * Initialization of the VSI 6835 * 6836 * Returns 0 on success, negative value on error 6837 */ 6838 int ice_vsi_open(struct ice_vsi *vsi) 6839 { 6840 char int_name[ICE_INT_NAME_STR_LEN]; 6841 struct ice_pf *pf = vsi->back; 6842 int err; 6843 6844 /* allocate descriptors */ 6845 err = ice_vsi_setup_tx_rings(vsi); 6846 if (err) 6847 goto err_setup_tx; 6848 6849 err = ice_vsi_setup_rx_rings(vsi); 6850 if (err) 6851 goto err_setup_rx; 6852 6853 err = ice_vsi_cfg(vsi); 6854 if (err) 6855 goto err_setup_rx; 6856 6857 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6858 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6859 err = ice_vsi_req_irq_msix(vsi, int_name); 6860 if (err) 6861 goto err_setup_rx; 6862 6863 if (vsi->type == ICE_VSI_PF) { 6864 /* Notify the stack of the actual queue counts. */ 6865 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6866 if (err) 6867 goto err_set_qs; 6868 6869 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6870 if (err) 6871 goto err_set_qs; 6872 } 6873 6874 err = ice_up_complete(vsi); 6875 if (err) 6876 goto err_up_complete; 6877 6878 return 0; 6879 6880 err_up_complete: 6881 ice_down(vsi); 6882 err_set_qs: 6883 ice_vsi_free_irq(vsi); 6884 err_setup_rx: 6885 ice_vsi_free_rx_rings(vsi); 6886 err_setup_tx: 6887 ice_vsi_free_tx_rings(vsi); 6888 6889 return err; 6890 } 6891 6892 /** 6893 * ice_vsi_release_all - Delete all VSIs 6894 * @pf: PF from which all VSIs are being removed 6895 */ 6896 static void ice_vsi_release_all(struct ice_pf *pf) 6897 { 6898 int err, i; 6899 6900 if (!pf->vsi) 6901 return; 6902 6903 ice_for_each_vsi(pf, i) { 6904 if (!pf->vsi[i]) 6905 continue; 6906 6907 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6908 continue; 6909 6910 err = ice_vsi_release(pf->vsi[i]); 6911 if (err) 6912 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6913 i, err, pf->vsi[i]->vsi_num); 6914 } 6915 } 6916 6917 /** 6918 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6919 * @pf: pointer to the PF instance 6920 * @type: VSI type to rebuild 6921 * 6922 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6923 */ 6924 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6925 { 6926 struct device *dev = ice_pf_to_dev(pf); 6927 int i, err; 6928 6929 ice_for_each_vsi(pf, i) { 6930 struct ice_vsi *vsi = pf->vsi[i]; 6931 6932 if (!vsi || vsi->type != type) 6933 continue; 6934 6935 /* rebuild the VSI */ 6936 err = ice_vsi_rebuild(vsi, true); 6937 if (err) { 6938 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6939 err, vsi->idx, ice_vsi_type_str(type)); 6940 return err; 6941 } 6942 6943 /* replay filters for the VSI */ 6944 err = ice_replay_vsi(&pf->hw, vsi->idx); 6945 if (err) { 6946 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6947 err, vsi->idx, ice_vsi_type_str(type)); 6948 return err; 6949 } 6950 6951 /* Re-map HW VSI number, using VSI handle that has been 6952 * previously validated in ice_replay_vsi() call above 6953 */ 6954 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6955 6956 /* enable the VSI */ 6957 err = ice_ena_vsi(vsi, false); 6958 if (err) { 6959 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6960 err, vsi->idx, ice_vsi_type_str(type)); 6961 return err; 6962 } 6963 6964 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6965 ice_vsi_type_str(type)); 6966 } 6967 6968 return 0; 6969 } 6970 6971 /** 6972 * ice_update_pf_netdev_link - Update PF netdev link status 6973 * @pf: pointer to the PF instance 6974 */ 6975 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6976 { 6977 bool link_up; 6978 int i; 6979 6980 ice_for_each_vsi(pf, i) { 6981 struct ice_vsi *vsi = pf->vsi[i]; 6982 6983 if (!vsi || vsi->type != ICE_VSI_PF) 6984 return; 6985 6986 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6987 if (link_up) { 6988 netif_carrier_on(pf->vsi[i]->netdev); 6989 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6990 } else { 6991 netif_carrier_off(pf->vsi[i]->netdev); 6992 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6993 } 6994 } 6995 } 6996 6997 /** 6998 * ice_rebuild - rebuild after reset 6999 * @pf: PF to rebuild 7000 * @reset_type: type of reset 7001 * 7002 * Do not rebuild VF VSI in this flow because that is already handled via 7003 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7004 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7005 * to reset/rebuild all the VF VSI twice. 7006 */ 7007 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7008 { 7009 struct device *dev = ice_pf_to_dev(pf); 7010 struct ice_hw *hw = &pf->hw; 7011 bool dvm; 7012 int err; 7013 7014 if (test_bit(ICE_DOWN, pf->state)) 7015 goto clear_recovery; 7016 7017 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7018 7019 #define ICE_EMP_RESET_SLEEP_MS 5000 7020 if (reset_type == ICE_RESET_EMPR) { 7021 /* If an EMP reset has occurred, any previously pending flash 7022 * update will have completed. We no longer know whether or 7023 * not the NVM update EMP reset is restricted. 7024 */ 7025 pf->fw_emp_reset_disabled = false; 7026 7027 msleep(ICE_EMP_RESET_SLEEP_MS); 7028 } 7029 7030 err = ice_init_all_ctrlq(hw); 7031 if (err) { 7032 dev_err(dev, "control queues init failed %d\n", err); 7033 goto err_init_ctrlq; 7034 } 7035 7036 /* if DDP was previously loaded successfully */ 7037 if (!ice_is_safe_mode(pf)) { 7038 /* reload the SW DB of filter tables */ 7039 if (reset_type == ICE_RESET_PFR) 7040 ice_fill_blk_tbls(hw); 7041 else 7042 /* Reload DDP Package after CORER/GLOBR reset */ 7043 ice_load_pkg(NULL, pf); 7044 } 7045 7046 err = ice_clear_pf_cfg(hw); 7047 if (err) { 7048 dev_err(dev, "clear PF configuration failed %d\n", err); 7049 goto err_init_ctrlq; 7050 } 7051 7052 ice_clear_pxe_mode(hw); 7053 7054 err = ice_init_nvm(hw); 7055 if (err) { 7056 dev_err(dev, "ice_init_nvm failed %d\n", err); 7057 goto err_init_ctrlq; 7058 } 7059 7060 err = ice_get_caps(hw); 7061 if (err) { 7062 dev_err(dev, "ice_get_caps failed %d\n", err); 7063 goto err_init_ctrlq; 7064 } 7065 7066 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7067 if (err) { 7068 dev_err(dev, "set_mac_cfg failed %d\n", err); 7069 goto err_init_ctrlq; 7070 } 7071 7072 dvm = ice_is_dvm_ena(hw); 7073 7074 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7075 if (err) 7076 goto err_init_ctrlq; 7077 7078 err = ice_sched_init_port(hw->port_info); 7079 if (err) 7080 goto err_sched_init_port; 7081 7082 /* start misc vector */ 7083 err = ice_req_irq_msix_misc(pf); 7084 if (err) { 7085 dev_err(dev, "misc vector setup failed: %d\n", err); 7086 goto err_sched_init_port; 7087 } 7088 7089 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7090 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7091 if (!rd32(hw, PFQF_FD_SIZE)) { 7092 u16 unused, guar, b_effort; 7093 7094 guar = hw->func_caps.fd_fltr_guar; 7095 b_effort = hw->func_caps.fd_fltr_best_effort; 7096 7097 /* force guaranteed filter pool for PF */ 7098 ice_alloc_fd_guar_item(hw, &unused, guar); 7099 /* force shared filter pool for PF */ 7100 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7101 } 7102 } 7103 7104 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7105 ice_dcb_rebuild(pf); 7106 7107 /* If the PF previously had enabled PTP, PTP init needs to happen before 7108 * the VSI rebuild. If not, this causes the PTP link status events to 7109 * fail. 7110 */ 7111 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7112 ice_ptp_reset(pf); 7113 7114 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7115 ice_gnss_init(pf); 7116 7117 /* rebuild PF VSI */ 7118 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7119 if (err) { 7120 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7121 goto err_vsi_rebuild; 7122 } 7123 7124 /* configure PTP timestamping after VSI rebuild */ 7125 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7126 ice_ptp_cfg_timestamp(pf, false); 7127 7128 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7129 if (err) { 7130 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7131 goto err_vsi_rebuild; 7132 } 7133 7134 if (reset_type == ICE_RESET_PFR) { 7135 err = ice_rebuild_channels(pf); 7136 if (err) { 7137 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7138 err); 7139 goto err_vsi_rebuild; 7140 } 7141 } 7142 7143 /* If Flow Director is active */ 7144 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7145 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7146 if (err) { 7147 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7148 goto err_vsi_rebuild; 7149 } 7150 7151 /* replay HW Flow Director recipes */ 7152 if (hw->fdir_prof) 7153 ice_fdir_replay_flows(hw); 7154 7155 /* replay Flow Director filters */ 7156 ice_fdir_replay_fltrs(pf); 7157 7158 ice_rebuild_arfs(pf); 7159 } 7160 7161 ice_update_pf_netdev_link(pf); 7162 7163 /* tell the firmware we are up */ 7164 err = ice_send_version(pf); 7165 if (err) { 7166 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7167 err); 7168 goto err_vsi_rebuild; 7169 } 7170 7171 ice_replay_post(hw); 7172 7173 /* if we get here, reset flow is successful */ 7174 clear_bit(ICE_RESET_FAILED, pf->state); 7175 7176 ice_plug_aux_dev(pf); 7177 return; 7178 7179 err_vsi_rebuild: 7180 err_sched_init_port: 7181 ice_sched_cleanup_all(hw); 7182 err_init_ctrlq: 7183 ice_shutdown_all_ctrlq(hw); 7184 set_bit(ICE_RESET_FAILED, pf->state); 7185 clear_recovery: 7186 /* set this bit in PF state to control service task scheduling */ 7187 set_bit(ICE_NEEDS_RESTART, pf->state); 7188 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7189 } 7190 7191 /** 7192 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7193 * @vsi: Pointer to VSI structure 7194 */ 7195 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7196 { 7197 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7198 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7199 else 7200 return ICE_RXBUF_3072; 7201 } 7202 7203 /** 7204 * ice_change_mtu - NDO callback to change the MTU 7205 * @netdev: network interface device structure 7206 * @new_mtu: new value for maximum frame size 7207 * 7208 * Returns 0 on success, negative on failure 7209 */ 7210 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7211 { 7212 struct ice_netdev_priv *np = netdev_priv(netdev); 7213 struct ice_vsi *vsi = np->vsi; 7214 struct ice_pf *pf = vsi->back; 7215 u8 count = 0; 7216 int err = 0; 7217 7218 if (new_mtu == (int)netdev->mtu) { 7219 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7220 return 0; 7221 } 7222 7223 if (ice_is_xdp_ena_vsi(vsi)) { 7224 int frame_size = ice_max_xdp_frame_size(vsi); 7225 7226 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7227 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7228 frame_size - ICE_ETH_PKT_HDR_PAD); 7229 return -EINVAL; 7230 } 7231 } 7232 7233 /* if a reset is in progress, wait for some time for it to complete */ 7234 do { 7235 if (ice_is_reset_in_progress(pf->state)) { 7236 count++; 7237 usleep_range(1000, 2000); 7238 } else { 7239 break; 7240 } 7241 7242 } while (count < 100); 7243 7244 if (count == 100) { 7245 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7246 return -EBUSY; 7247 } 7248 7249 netdev->mtu = (unsigned int)new_mtu; 7250 7251 /* if VSI is up, bring it down and then back up */ 7252 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7253 err = ice_down(vsi); 7254 if (err) { 7255 netdev_err(netdev, "change MTU if_down err %d\n", err); 7256 return err; 7257 } 7258 7259 err = ice_up(vsi); 7260 if (err) { 7261 netdev_err(netdev, "change MTU if_up err %d\n", err); 7262 return err; 7263 } 7264 } 7265 7266 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7267 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7268 7269 return err; 7270 } 7271 7272 /** 7273 * ice_eth_ioctl - Access the hwtstamp interface 7274 * @netdev: network interface device structure 7275 * @ifr: interface request data 7276 * @cmd: ioctl command 7277 */ 7278 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7279 { 7280 struct ice_netdev_priv *np = netdev_priv(netdev); 7281 struct ice_pf *pf = np->vsi->back; 7282 7283 switch (cmd) { 7284 case SIOCGHWTSTAMP: 7285 return ice_ptp_get_ts_config(pf, ifr); 7286 case SIOCSHWTSTAMP: 7287 return ice_ptp_set_ts_config(pf, ifr); 7288 default: 7289 return -EOPNOTSUPP; 7290 } 7291 } 7292 7293 /** 7294 * ice_aq_str - convert AQ err code to a string 7295 * @aq_err: the AQ error code to convert 7296 */ 7297 const char *ice_aq_str(enum ice_aq_err aq_err) 7298 { 7299 switch (aq_err) { 7300 case ICE_AQ_RC_OK: 7301 return "OK"; 7302 case ICE_AQ_RC_EPERM: 7303 return "ICE_AQ_RC_EPERM"; 7304 case ICE_AQ_RC_ENOENT: 7305 return "ICE_AQ_RC_ENOENT"; 7306 case ICE_AQ_RC_ENOMEM: 7307 return "ICE_AQ_RC_ENOMEM"; 7308 case ICE_AQ_RC_EBUSY: 7309 return "ICE_AQ_RC_EBUSY"; 7310 case ICE_AQ_RC_EEXIST: 7311 return "ICE_AQ_RC_EEXIST"; 7312 case ICE_AQ_RC_EINVAL: 7313 return "ICE_AQ_RC_EINVAL"; 7314 case ICE_AQ_RC_ENOSPC: 7315 return "ICE_AQ_RC_ENOSPC"; 7316 case ICE_AQ_RC_ENOSYS: 7317 return "ICE_AQ_RC_ENOSYS"; 7318 case ICE_AQ_RC_EMODE: 7319 return "ICE_AQ_RC_EMODE"; 7320 case ICE_AQ_RC_ENOSEC: 7321 return "ICE_AQ_RC_ENOSEC"; 7322 case ICE_AQ_RC_EBADSIG: 7323 return "ICE_AQ_RC_EBADSIG"; 7324 case ICE_AQ_RC_ESVN: 7325 return "ICE_AQ_RC_ESVN"; 7326 case ICE_AQ_RC_EBADMAN: 7327 return "ICE_AQ_RC_EBADMAN"; 7328 case ICE_AQ_RC_EBADBUF: 7329 return "ICE_AQ_RC_EBADBUF"; 7330 } 7331 7332 return "ICE_AQ_RC_UNKNOWN"; 7333 } 7334 7335 /** 7336 * ice_set_rss_lut - Set RSS LUT 7337 * @vsi: Pointer to VSI structure 7338 * @lut: Lookup table 7339 * @lut_size: Lookup table size 7340 * 7341 * Returns 0 on success, negative on failure 7342 */ 7343 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7344 { 7345 struct ice_aq_get_set_rss_lut_params params = {}; 7346 struct ice_hw *hw = &vsi->back->hw; 7347 int status; 7348 7349 if (!lut) 7350 return -EINVAL; 7351 7352 params.vsi_handle = vsi->idx; 7353 params.lut_size = lut_size; 7354 params.lut_type = vsi->rss_lut_type; 7355 params.lut = lut; 7356 7357 status = ice_aq_set_rss_lut(hw, ¶ms); 7358 if (status) 7359 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7360 status, ice_aq_str(hw->adminq.sq_last_status)); 7361 7362 return status; 7363 } 7364 7365 /** 7366 * ice_set_rss_key - Set RSS key 7367 * @vsi: Pointer to the VSI structure 7368 * @seed: RSS hash seed 7369 * 7370 * Returns 0 on success, negative on failure 7371 */ 7372 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7373 { 7374 struct ice_hw *hw = &vsi->back->hw; 7375 int status; 7376 7377 if (!seed) 7378 return -EINVAL; 7379 7380 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7381 if (status) 7382 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7383 status, ice_aq_str(hw->adminq.sq_last_status)); 7384 7385 return status; 7386 } 7387 7388 /** 7389 * ice_get_rss_lut - Get RSS LUT 7390 * @vsi: Pointer to VSI structure 7391 * @lut: Buffer to store the lookup table entries 7392 * @lut_size: Size of buffer to store the lookup table entries 7393 * 7394 * Returns 0 on success, negative on failure 7395 */ 7396 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7397 { 7398 struct ice_aq_get_set_rss_lut_params params = {}; 7399 struct ice_hw *hw = &vsi->back->hw; 7400 int status; 7401 7402 if (!lut) 7403 return -EINVAL; 7404 7405 params.vsi_handle = vsi->idx; 7406 params.lut_size = lut_size; 7407 params.lut_type = vsi->rss_lut_type; 7408 params.lut = lut; 7409 7410 status = ice_aq_get_rss_lut(hw, ¶ms); 7411 if (status) 7412 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7413 status, ice_aq_str(hw->adminq.sq_last_status)); 7414 7415 return status; 7416 } 7417 7418 /** 7419 * ice_get_rss_key - Get RSS key 7420 * @vsi: Pointer to VSI structure 7421 * @seed: Buffer to store the key in 7422 * 7423 * Returns 0 on success, negative on failure 7424 */ 7425 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7426 { 7427 struct ice_hw *hw = &vsi->back->hw; 7428 int status; 7429 7430 if (!seed) 7431 return -EINVAL; 7432 7433 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7434 if (status) 7435 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7436 status, ice_aq_str(hw->adminq.sq_last_status)); 7437 7438 return status; 7439 } 7440 7441 /** 7442 * ice_bridge_getlink - Get the hardware bridge mode 7443 * @skb: skb buff 7444 * @pid: process ID 7445 * @seq: RTNL message seq 7446 * @dev: the netdev being configured 7447 * @filter_mask: filter mask passed in 7448 * @nlflags: netlink flags passed in 7449 * 7450 * Return the bridge mode (VEB/VEPA) 7451 */ 7452 static int 7453 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7454 struct net_device *dev, u32 filter_mask, int nlflags) 7455 { 7456 struct ice_netdev_priv *np = netdev_priv(dev); 7457 struct ice_vsi *vsi = np->vsi; 7458 struct ice_pf *pf = vsi->back; 7459 u16 bmode; 7460 7461 bmode = pf->first_sw->bridge_mode; 7462 7463 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7464 filter_mask, NULL); 7465 } 7466 7467 /** 7468 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7469 * @vsi: Pointer to VSI structure 7470 * @bmode: Hardware bridge mode (VEB/VEPA) 7471 * 7472 * Returns 0 on success, negative on failure 7473 */ 7474 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7475 { 7476 struct ice_aqc_vsi_props *vsi_props; 7477 struct ice_hw *hw = &vsi->back->hw; 7478 struct ice_vsi_ctx *ctxt; 7479 int ret; 7480 7481 vsi_props = &vsi->info; 7482 7483 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7484 if (!ctxt) 7485 return -ENOMEM; 7486 7487 ctxt->info = vsi->info; 7488 7489 if (bmode == BRIDGE_MODE_VEB) 7490 /* change from VEPA to VEB mode */ 7491 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7492 else 7493 /* change from VEB to VEPA mode */ 7494 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7495 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7496 7497 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7498 if (ret) { 7499 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7500 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7501 goto out; 7502 } 7503 /* Update sw flags for book keeping */ 7504 vsi_props->sw_flags = ctxt->info.sw_flags; 7505 7506 out: 7507 kfree(ctxt); 7508 return ret; 7509 } 7510 7511 /** 7512 * ice_bridge_setlink - Set the hardware bridge mode 7513 * @dev: the netdev being configured 7514 * @nlh: RTNL message 7515 * @flags: bridge setlink flags 7516 * @extack: netlink extended ack 7517 * 7518 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7519 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7520 * not already set for all VSIs connected to this switch. And also update the 7521 * unicast switch filter rules for the corresponding switch of the netdev. 7522 */ 7523 static int 7524 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7525 u16 __always_unused flags, 7526 struct netlink_ext_ack __always_unused *extack) 7527 { 7528 struct ice_netdev_priv *np = netdev_priv(dev); 7529 struct ice_pf *pf = np->vsi->back; 7530 struct nlattr *attr, *br_spec; 7531 struct ice_hw *hw = &pf->hw; 7532 struct ice_sw *pf_sw; 7533 int rem, v, err = 0; 7534 7535 pf_sw = pf->first_sw; 7536 /* find the attribute in the netlink message */ 7537 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7538 7539 nla_for_each_nested(attr, br_spec, rem) { 7540 __u16 mode; 7541 7542 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7543 continue; 7544 mode = nla_get_u16(attr); 7545 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7546 return -EINVAL; 7547 /* Continue if bridge mode is not being flipped */ 7548 if (mode == pf_sw->bridge_mode) 7549 continue; 7550 /* Iterates through the PF VSI list and update the loopback 7551 * mode of the VSI 7552 */ 7553 ice_for_each_vsi(pf, v) { 7554 if (!pf->vsi[v]) 7555 continue; 7556 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7557 if (err) 7558 return err; 7559 } 7560 7561 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7562 /* Update the unicast switch filter rules for the corresponding 7563 * switch of the netdev 7564 */ 7565 err = ice_update_sw_rule_bridge_mode(hw); 7566 if (err) { 7567 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7568 mode, err, 7569 ice_aq_str(hw->adminq.sq_last_status)); 7570 /* revert hw->evb_veb */ 7571 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7572 return err; 7573 } 7574 7575 pf_sw->bridge_mode = mode; 7576 } 7577 7578 return 0; 7579 } 7580 7581 /** 7582 * ice_tx_timeout - Respond to a Tx Hang 7583 * @netdev: network interface device structure 7584 * @txqueue: Tx queue 7585 */ 7586 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7587 { 7588 struct ice_netdev_priv *np = netdev_priv(netdev); 7589 struct ice_tx_ring *tx_ring = NULL; 7590 struct ice_vsi *vsi = np->vsi; 7591 struct ice_pf *pf = vsi->back; 7592 u32 i; 7593 7594 pf->tx_timeout_count++; 7595 7596 /* Check if PFC is enabled for the TC to which the queue belongs 7597 * to. If yes then Tx timeout is not caused by a hung queue, no 7598 * need to reset and rebuild 7599 */ 7600 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7601 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7602 txqueue); 7603 return; 7604 } 7605 7606 /* now that we have an index, find the tx_ring struct */ 7607 ice_for_each_txq(vsi, i) 7608 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7609 if (txqueue == vsi->tx_rings[i]->q_index) { 7610 tx_ring = vsi->tx_rings[i]; 7611 break; 7612 } 7613 7614 /* Reset recovery level if enough time has elapsed after last timeout. 7615 * Also ensure no new reset action happens before next timeout period. 7616 */ 7617 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7618 pf->tx_timeout_recovery_level = 1; 7619 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7620 netdev->watchdog_timeo))) 7621 return; 7622 7623 if (tx_ring) { 7624 struct ice_hw *hw = &pf->hw; 7625 u32 head, val = 0; 7626 7627 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7628 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7629 /* Read interrupt register */ 7630 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7631 7632 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7633 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7634 head, tx_ring->next_to_use, val); 7635 } 7636 7637 pf->tx_timeout_last_recovery = jiffies; 7638 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7639 pf->tx_timeout_recovery_level, txqueue); 7640 7641 switch (pf->tx_timeout_recovery_level) { 7642 case 1: 7643 set_bit(ICE_PFR_REQ, pf->state); 7644 break; 7645 case 2: 7646 set_bit(ICE_CORER_REQ, pf->state); 7647 break; 7648 case 3: 7649 set_bit(ICE_GLOBR_REQ, pf->state); 7650 break; 7651 default: 7652 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7653 set_bit(ICE_DOWN, pf->state); 7654 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7655 set_bit(ICE_SERVICE_DIS, pf->state); 7656 break; 7657 } 7658 7659 ice_service_task_schedule(pf); 7660 pf->tx_timeout_recovery_level++; 7661 } 7662 7663 /** 7664 * ice_setup_tc_cls_flower - flower classifier offloads 7665 * @np: net device to configure 7666 * @filter_dev: device on which filter is added 7667 * @cls_flower: offload data 7668 */ 7669 static int 7670 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7671 struct net_device *filter_dev, 7672 struct flow_cls_offload *cls_flower) 7673 { 7674 struct ice_vsi *vsi = np->vsi; 7675 7676 if (cls_flower->common.chain_index) 7677 return -EOPNOTSUPP; 7678 7679 switch (cls_flower->command) { 7680 case FLOW_CLS_REPLACE: 7681 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7682 case FLOW_CLS_DESTROY: 7683 return ice_del_cls_flower(vsi, cls_flower); 7684 default: 7685 return -EINVAL; 7686 } 7687 } 7688 7689 /** 7690 * ice_setup_tc_block_cb - callback handler registered for TC block 7691 * @type: TC SETUP type 7692 * @type_data: TC flower offload data that contains user input 7693 * @cb_priv: netdev private data 7694 */ 7695 static int 7696 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7697 { 7698 struct ice_netdev_priv *np = cb_priv; 7699 7700 switch (type) { 7701 case TC_SETUP_CLSFLOWER: 7702 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7703 type_data); 7704 default: 7705 return -EOPNOTSUPP; 7706 } 7707 } 7708 7709 /** 7710 * ice_validate_mqprio_qopt - Validate TCF input parameters 7711 * @vsi: Pointer to VSI 7712 * @mqprio_qopt: input parameters for mqprio queue configuration 7713 * 7714 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7715 * needed), and make sure user doesn't specify qcount and BW rate limit 7716 * for TCs, which are more than "num_tc" 7717 */ 7718 static int 7719 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7720 struct tc_mqprio_qopt_offload *mqprio_qopt) 7721 { 7722 u64 sum_max_rate = 0, sum_min_rate = 0; 7723 int non_power_of_2_qcount = 0; 7724 struct ice_pf *pf = vsi->back; 7725 int max_rss_q_cnt = 0; 7726 struct device *dev; 7727 int i, speed; 7728 u8 num_tc; 7729 7730 if (vsi->type != ICE_VSI_PF) 7731 return -EINVAL; 7732 7733 if (mqprio_qopt->qopt.offset[0] != 0 || 7734 mqprio_qopt->qopt.num_tc < 1 || 7735 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7736 return -EINVAL; 7737 7738 dev = ice_pf_to_dev(pf); 7739 vsi->ch_rss_size = 0; 7740 num_tc = mqprio_qopt->qopt.num_tc; 7741 7742 for (i = 0; num_tc; i++) { 7743 int qcount = mqprio_qopt->qopt.count[i]; 7744 u64 max_rate, min_rate, rem; 7745 7746 if (!qcount) 7747 return -EINVAL; 7748 7749 if (is_power_of_2(qcount)) { 7750 if (non_power_of_2_qcount && 7751 qcount > non_power_of_2_qcount) { 7752 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7753 qcount, non_power_of_2_qcount); 7754 return -EINVAL; 7755 } 7756 if (qcount > max_rss_q_cnt) 7757 max_rss_q_cnt = qcount; 7758 } else { 7759 if (non_power_of_2_qcount && 7760 qcount != non_power_of_2_qcount) { 7761 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7762 qcount, non_power_of_2_qcount); 7763 return -EINVAL; 7764 } 7765 if (qcount < max_rss_q_cnt) { 7766 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7767 qcount, max_rss_q_cnt); 7768 return -EINVAL; 7769 } 7770 max_rss_q_cnt = qcount; 7771 non_power_of_2_qcount = qcount; 7772 } 7773 7774 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7775 * converts the bandwidth rate limit into Bytes/s when 7776 * passing it down to the driver. So convert input bandwidth 7777 * from Bytes/s to Kbps 7778 */ 7779 max_rate = mqprio_qopt->max_rate[i]; 7780 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7781 sum_max_rate += max_rate; 7782 7783 /* min_rate is minimum guaranteed rate and it can't be zero */ 7784 min_rate = mqprio_qopt->min_rate[i]; 7785 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7786 sum_min_rate += min_rate; 7787 7788 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7789 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7790 min_rate, ICE_MIN_BW_LIMIT); 7791 return -EINVAL; 7792 } 7793 7794 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7795 if (rem) { 7796 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7797 i, ICE_MIN_BW_LIMIT); 7798 return -EINVAL; 7799 } 7800 7801 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7802 if (rem) { 7803 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7804 i, ICE_MIN_BW_LIMIT); 7805 return -EINVAL; 7806 } 7807 7808 /* min_rate can't be more than max_rate, except when max_rate 7809 * is zero (implies max_rate sought is max line rate). In such 7810 * a case min_rate can be more than max. 7811 */ 7812 if (max_rate && min_rate > max_rate) { 7813 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7814 min_rate, max_rate); 7815 return -EINVAL; 7816 } 7817 7818 if (i >= mqprio_qopt->qopt.num_tc - 1) 7819 break; 7820 if (mqprio_qopt->qopt.offset[i + 1] != 7821 (mqprio_qopt->qopt.offset[i] + qcount)) 7822 return -EINVAL; 7823 } 7824 if (vsi->num_rxq < 7825 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7826 return -EINVAL; 7827 if (vsi->num_txq < 7828 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7829 return -EINVAL; 7830 7831 speed = ice_get_link_speed_kbps(vsi); 7832 if (sum_max_rate && sum_max_rate > (u64)speed) { 7833 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7834 sum_max_rate, speed); 7835 return -EINVAL; 7836 } 7837 if (sum_min_rate && sum_min_rate > (u64)speed) { 7838 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7839 sum_min_rate, speed); 7840 return -EINVAL; 7841 } 7842 7843 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7844 vsi->ch_rss_size = max_rss_q_cnt; 7845 7846 return 0; 7847 } 7848 7849 /** 7850 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7851 * @pf: ptr to PF device 7852 * @vsi: ptr to VSI 7853 */ 7854 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7855 { 7856 struct device *dev = ice_pf_to_dev(pf); 7857 bool added = false; 7858 struct ice_hw *hw; 7859 int flow; 7860 7861 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7862 return -EINVAL; 7863 7864 hw = &pf->hw; 7865 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7866 struct ice_fd_hw_prof *prof; 7867 int tun, status; 7868 u64 entry_h; 7869 7870 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7871 hw->fdir_prof[flow]->cnt)) 7872 continue; 7873 7874 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7875 enum ice_flow_priority prio; 7876 u64 prof_id; 7877 7878 /* add this VSI to FDir profile for this flow */ 7879 prio = ICE_FLOW_PRIO_NORMAL; 7880 prof = hw->fdir_prof[flow]; 7881 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7882 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7883 prof->vsi_h[0], vsi->idx, 7884 prio, prof->fdir_seg[tun], 7885 &entry_h); 7886 if (status) { 7887 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7888 vsi->idx, flow); 7889 continue; 7890 } 7891 7892 prof->entry_h[prof->cnt][tun] = entry_h; 7893 } 7894 7895 /* store VSI for filter replay and delete */ 7896 prof->vsi_h[prof->cnt] = vsi->idx; 7897 prof->cnt++; 7898 7899 added = true; 7900 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7901 flow); 7902 } 7903 7904 if (!added) 7905 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7906 7907 return 0; 7908 } 7909 7910 /** 7911 * ice_add_channel - add a channel by adding VSI 7912 * @pf: ptr to PF device 7913 * @sw_id: underlying HW switching element ID 7914 * @ch: ptr to channel structure 7915 * 7916 * Add a channel (VSI) using add_vsi and queue_map 7917 */ 7918 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7919 { 7920 struct device *dev = ice_pf_to_dev(pf); 7921 struct ice_vsi *vsi; 7922 7923 if (ch->type != ICE_VSI_CHNL) { 7924 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7925 return -EINVAL; 7926 } 7927 7928 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7929 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7930 dev_err(dev, "create chnl VSI failure\n"); 7931 return -EINVAL; 7932 } 7933 7934 ice_add_vsi_to_fdir(pf, vsi); 7935 7936 ch->sw_id = sw_id; 7937 ch->vsi_num = vsi->vsi_num; 7938 ch->info.mapping_flags = vsi->info.mapping_flags; 7939 ch->ch_vsi = vsi; 7940 /* set the back pointer of channel for newly created VSI */ 7941 vsi->ch = ch; 7942 7943 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7944 sizeof(vsi->info.q_mapping)); 7945 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7946 sizeof(vsi->info.tc_mapping)); 7947 7948 return 0; 7949 } 7950 7951 /** 7952 * ice_chnl_cfg_res 7953 * @vsi: the VSI being setup 7954 * @ch: ptr to channel structure 7955 * 7956 * Configure channel specific resources such as rings, vector. 7957 */ 7958 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7959 { 7960 int i; 7961 7962 for (i = 0; i < ch->num_txq; i++) { 7963 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7964 struct ice_ring_container *rc; 7965 struct ice_tx_ring *tx_ring; 7966 struct ice_rx_ring *rx_ring; 7967 7968 tx_ring = vsi->tx_rings[ch->base_q + i]; 7969 rx_ring = vsi->rx_rings[ch->base_q + i]; 7970 if (!tx_ring || !rx_ring) 7971 continue; 7972 7973 /* setup ring being channel enabled */ 7974 tx_ring->ch = ch; 7975 rx_ring->ch = ch; 7976 7977 /* following code block sets up vector specific attributes */ 7978 tx_q_vector = tx_ring->q_vector; 7979 rx_q_vector = rx_ring->q_vector; 7980 if (!tx_q_vector && !rx_q_vector) 7981 continue; 7982 7983 if (tx_q_vector) { 7984 tx_q_vector->ch = ch; 7985 /* setup Tx and Rx ITR setting if DIM is off */ 7986 rc = &tx_q_vector->tx; 7987 if (!ITR_IS_DYNAMIC(rc)) 7988 ice_write_itr(rc, rc->itr_setting); 7989 } 7990 if (rx_q_vector) { 7991 rx_q_vector->ch = ch; 7992 /* setup Tx and Rx ITR setting if DIM is off */ 7993 rc = &rx_q_vector->rx; 7994 if (!ITR_IS_DYNAMIC(rc)) 7995 ice_write_itr(rc, rc->itr_setting); 7996 } 7997 } 7998 7999 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8000 * GLINT_ITR register would have written to perform in-context 8001 * update, hence perform flush 8002 */ 8003 if (ch->num_txq || ch->num_rxq) 8004 ice_flush(&vsi->back->hw); 8005 } 8006 8007 /** 8008 * ice_cfg_chnl_all_res - configure channel resources 8009 * @vsi: pte to main_vsi 8010 * @ch: ptr to channel structure 8011 * 8012 * This function configures channel specific resources such as flow-director 8013 * counter index, and other resources such as queues, vectors, ITR settings 8014 */ 8015 static void 8016 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8017 { 8018 /* configure channel (aka ADQ) resources such as queues, vectors, 8019 * ITR settings for channel specific vectors and anything else 8020 */ 8021 ice_chnl_cfg_res(vsi, ch); 8022 } 8023 8024 /** 8025 * ice_setup_hw_channel - setup new channel 8026 * @pf: ptr to PF device 8027 * @vsi: the VSI being setup 8028 * @ch: ptr to channel structure 8029 * @sw_id: underlying HW switching element ID 8030 * @type: type of channel to be created (VMDq2/VF) 8031 * 8032 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8033 * and configures Tx rings accordingly 8034 */ 8035 static int 8036 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8037 struct ice_channel *ch, u16 sw_id, u8 type) 8038 { 8039 struct device *dev = ice_pf_to_dev(pf); 8040 int ret; 8041 8042 ch->base_q = vsi->next_base_q; 8043 ch->type = type; 8044 8045 ret = ice_add_channel(pf, sw_id, ch); 8046 if (ret) { 8047 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8048 return ret; 8049 } 8050 8051 /* configure/setup ADQ specific resources */ 8052 ice_cfg_chnl_all_res(vsi, ch); 8053 8054 /* make sure to update the next_base_q so that subsequent channel's 8055 * (aka ADQ) VSI queue map is correct 8056 */ 8057 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8058 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8059 ch->num_rxq); 8060 8061 return 0; 8062 } 8063 8064 /** 8065 * ice_setup_channel - setup new channel using uplink element 8066 * @pf: ptr to PF device 8067 * @vsi: the VSI being setup 8068 * @ch: ptr to channel structure 8069 * 8070 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8071 * and uplink switching element 8072 */ 8073 static bool 8074 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8075 struct ice_channel *ch) 8076 { 8077 struct device *dev = ice_pf_to_dev(pf); 8078 u16 sw_id; 8079 int ret; 8080 8081 if (vsi->type != ICE_VSI_PF) { 8082 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8083 return false; 8084 } 8085 8086 sw_id = pf->first_sw->sw_id; 8087 8088 /* create channel (VSI) */ 8089 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8090 if (ret) { 8091 dev_err(dev, "failed to setup hw_channel\n"); 8092 return false; 8093 } 8094 dev_dbg(dev, "successfully created channel()\n"); 8095 8096 return ch->ch_vsi ? true : false; 8097 } 8098 8099 /** 8100 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8101 * @vsi: VSI to be configured 8102 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8103 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8104 */ 8105 static int 8106 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8107 { 8108 int err; 8109 8110 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8111 if (err) 8112 return err; 8113 8114 return ice_set_max_bw_limit(vsi, max_tx_rate); 8115 } 8116 8117 /** 8118 * ice_create_q_channel - function to create channel 8119 * @vsi: VSI to be configured 8120 * @ch: ptr to channel (it contains channel specific params) 8121 * 8122 * This function creates channel (VSI) using num_queues specified by user, 8123 * reconfigs RSS if needed. 8124 */ 8125 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8126 { 8127 struct ice_pf *pf = vsi->back; 8128 struct device *dev; 8129 8130 if (!ch) 8131 return -EINVAL; 8132 8133 dev = ice_pf_to_dev(pf); 8134 if (!ch->num_txq || !ch->num_rxq) { 8135 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8136 return -EINVAL; 8137 } 8138 8139 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8140 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8141 vsi->cnt_q_avail, ch->num_txq); 8142 return -EINVAL; 8143 } 8144 8145 if (!ice_setup_channel(pf, vsi, ch)) { 8146 dev_info(dev, "Failed to setup channel\n"); 8147 return -EINVAL; 8148 } 8149 /* configure BW rate limit */ 8150 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8151 int ret; 8152 8153 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8154 ch->min_tx_rate); 8155 if (ret) 8156 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8157 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8158 else 8159 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8160 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8161 } 8162 8163 vsi->cnt_q_avail -= ch->num_txq; 8164 8165 return 0; 8166 } 8167 8168 /** 8169 * ice_rem_all_chnl_fltrs - removes all channel filters 8170 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8171 * 8172 * Remove all advanced switch filters only if they are channel specific 8173 * tc-flower based filter 8174 */ 8175 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8176 { 8177 struct ice_tc_flower_fltr *fltr; 8178 struct hlist_node *node; 8179 8180 /* to remove all channel filters, iterate an ordered list of filters */ 8181 hlist_for_each_entry_safe(fltr, node, 8182 &pf->tc_flower_fltr_list, 8183 tc_flower_node) { 8184 struct ice_rule_query_data rule; 8185 int status; 8186 8187 /* for now process only channel specific filters */ 8188 if (!ice_is_chnl_fltr(fltr)) 8189 continue; 8190 8191 rule.rid = fltr->rid; 8192 rule.rule_id = fltr->rule_id; 8193 rule.vsi_handle = fltr->dest_id; 8194 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8195 if (status) { 8196 if (status == -ENOENT) 8197 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8198 rule.rule_id); 8199 else 8200 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8201 status); 8202 } else if (fltr->dest_vsi) { 8203 /* update advanced switch filter count */ 8204 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8205 u32 flags = fltr->flags; 8206 8207 fltr->dest_vsi->num_chnl_fltr--; 8208 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8209 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8210 pf->num_dmac_chnl_fltrs--; 8211 } 8212 } 8213 8214 hlist_del(&fltr->tc_flower_node); 8215 kfree(fltr); 8216 } 8217 } 8218 8219 /** 8220 * ice_remove_q_channels - Remove queue channels for the TCs 8221 * @vsi: VSI to be configured 8222 * @rem_fltr: delete advanced switch filter or not 8223 * 8224 * Remove queue channels for the TCs 8225 */ 8226 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8227 { 8228 struct ice_channel *ch, *ch_tmp; 8229 struct ice_pf *pf = vsi->back; 8230 int i; 8231 8232 /* remove all tc-flower based filter if they are channel filters only */ 8233 if (rem_fltr) 8234 ice_rem_all_chnl_fltrs(pf); 8235 8236 /* remove ntuple filters since queue configuration is being changed */ 8237 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8238 struct ice_hw *hw = &pf->hw; 8239 8240 mutex_lock(&hw->fdir_fltr_lock); 8241 ice_fdir_del_all_fltrs(vsi); 8242 mutex_unlock(&hw->fdir_fltr_lock); 8243 } 8244 8245 /* perform cleanup for channels if they exist */ 8246 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8247 struct ice_vsi *ch_vsi; 8248 8249 list_del(&ch->list); 8250 ch_vsi = ch->ch_vsi; 8251 if (!ch_vsi) { 8252 kfree(ch); 8253 continue; 8254 } 8255 8256 /* Reset queue contexts */ 8257 for (i = 0; i < ch->num_rxq; i++) { 8258 struct ice_tx_ring *tx_ring; 8259 struct ice_rx_ring *rx_ring; 8260 8261 tx_ring = vsi->tx_rings[ch->base_q + i]; 8262 rx_ring = vsi->rx_rings[ch->base_q + i]; 8263 if (tx_ring) { 8264 tx_ring->ch = NULL; 8265 if (tx_ring->q_vector) 8266 tx_ring->q_vector->ch = NULL; 8267 } 8268 if (rx_ring) { 8269 rx_ring->ch = NULL; 8270 if (rx_ring->q_vector) 8271 rx_ring->q_vector->ch = NULL; 8272 } 8273 } 8274 8275 /* Release FD resources for the channel VSI */ 8276 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8277 8278 /* clear the VSI from scheduler tree */ 8279 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8280 8281 /* Delete VSI from FW */ 8282 ice_vsi_delete(ch->ch_vsi); 8283 8284 /* Delete VSI from PF and HW VSI arrays */ 8285 ice_vsi_clear(ch->ch_vsi); 8286 8287 /* free the channel */ 8288 kfree(ch); 8289 } 8290 8291 /* clear the channel VSI map which is stored in main VSI */ 8292 ice_for_each_chnl_tc(i) 8293 vsi->tc_map_vsi[i] = NULL; 8294 8295 /* reset main VSI's all TC information */ 8296 vsi->all_enatc = 0; 8297 vsi->all_numtc = 0; 8298 } 8299 8300 /** 8301 * ice_rebuild_channels - rebuild channel 8302 * @pf: ptr to PF 8303 * 8304 * Recreate channel VSIs and replay filters 8305 */ 8306 static int ice_rebuild_channels(struct ice_pf *pf) 8307 { 8308 struct device *dev = ice_pf_to_dev(pf); 8309 struct ice_vsi *main_vsi; 8310 bool rem_adv_fltr = true; 8311 struct ice_channel *ch; 8312 struct ice_vsi *vsi; 8313 int tc_idx = 1; 8314 int i, err; 8315 8316 main_vsi = ice_get_main_vsi(pf); 8317 if (!main_vsi) 8318 return 0; 8319 8320 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8321 main_vsi->old_numtc == 1) 8322 return 0; /* nothing to be done */ 8323 8324 /* reconfigure main VSI based on old value of TC and cached values 8325 * for MQPRIO opts 8326 */ 8327 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8328 if (err) { 8329 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8330 main_vsi->old_ena_tc, main_vsi->vsi_num); 8331 return err; 8332 } 8333 8334 /* rebuild ADQ VSIs */ 8335 ice_for_each_vsi(pf, i) { 8336 enum ice_vsi_type type; 8337 8338 vsi = pf->vsi[i]; 8339 if (!vsi || vsi->type != ICE_VSI_CHNL) 8340 continue; 8341 8342 type = vsi->type; 8343 8344 /* rebuild ADQ VSI */ 8345 err = ice_vsi_rebuild(vsi, true); 8346 if (err) { 8347 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8348 ice_vsi_type_str(type), vsi->idx, err); 8349 goto cleanup; 8350 } 8351 8352 /* Re-map HW VSI number, using VSI handle that has been 8353 * previously validated in ice_replay_vsi() call above 8354 */ 8355 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8356 8357 /* replay filters for the VSI */ 8358 err = ice_replay_vsi(&pf->hw, vsi->idx); 8359 if (err) { 8360 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8361 ice_vsi_type_str(type), err, vsi->idx); 8362 rem_adv_fltr = false; 8363 goto cleanup; 8364 } 8365 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8366 ice_vsi_type_str(type), vsi->idx); 8367 8368 /* store ADQ VSI at correct TC index in main VSI's 8369 * map of TC to VSI 8370 */ 8371 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8372 } 8373 8374 /* ADQ VSI(s) has been rebuilt successfully, so setup 8375 * channel for main VSI's Tx and Rx rings 8376 */ 8377 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8378 struct ice_vsi *ch_vsi; 8379 8380 ch_vsi = ch->ch_vsi; 8381 if (!ch_vsi) 8382 continue; 8383 8384 /* reconfig channel resources */ 8385 ice_cfg_chnl_all_res(main_vsi, ch); 8386 8387 /* replay BW rate limit if it is non-zero */ 8388 if (!ch->max_tx_rate && !ch->min_tx_rate) 8389 continue; 8390 8391 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8392 ch->min_tx_rate); 8393 if (err) 8394 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8395 err, ch->max_tx_rate, ch->min_tx_rate, 8396 ch_vsi->vsi_num); 8397 else 8398 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8399 ch->max_tx_rate, ch->min_tx_rate, 8400 ch_vsi->vsi_num); 8401 } 8402 8403 /* reconfig RSS for main VSI */ 8404 if (main_vsi->ch_rss_size) 8405 ice_vsi_cfg_rss_lut_key(main_vsi); 8406 8407 return 0; 8408 8409 cleanup: 8410 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8411 return err; 8412 } 8413 8414 /** 8415 * ice_create_q_channels - Add queue channel for the given TCs 8416 * @vsi: VSI to be configured 8417 * 8418 * Configures queue channel mapping to the given TCs 8419 */ 8420 static int ice_create_q_channels(struct ice_vsi *vsi) 8421 { 8422 struct ice_pf *pf = vsi->back; 8423 struct ice_channel *ch; 8424 int ret = 0, i; 8425 8426 ice_for_each_chnl_tc(i) { 8427 if (!(vsi->all_enatc & BIT(i))) 8428 continue; 8429 8430 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8431 if (!ch) { 8432 ret = -ENOMEM; 8433 goto err_free; 8434 } 8435 INIT_LIST_HEAD(&ch->list); 8436 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8437 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8438 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8439 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8440 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8441 8442 /* convert to Kbits/s */ 8443 if (ch->max_tx_rate) 8444 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8445 ICE_BW_KBPS_DIVISOR); 8446 if (ch->min_tx_rate) 8447 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8448 ICE_BW_KBPS_DIVISOR); 8449 8450 ret = ice_create_q_channel(vsi, ch); 8451 if (ret) { 8452 dev_err(ice_pf_to_dev(pf), 8453 "failed creating channel TC:%d\n", i); 8454 kfree(ch); 8455 goto err_free; 8456 } 8457 list_add_tail(&ch->list, &vsi->ch_list); 8458 vsi->tc_map_vsi[i] = ch->ch_vsi; 8459 dev_dbg(ice_pf_to_dev(pf), 8460 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8461 } 8462 return 0; 8463 8464 err_free: 8465 ice_remove_q_channels(vsi, false); 8466 8467 return ret; 8468 } 8469 8470 /** 8471 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8472 * @netdev: net device to configure 8473 * @type_data: TC offload data 8474 */ 8475 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8476 { 8477 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8478 struct ice_netdev_priv *np = netdev_priv(netdev); 8479 struct ice_vsi *vsi = np->vsi; 8480 struct ice_pf *pf = vsi->back; 8481 u16 mode, ena_tc_qdisc = 0; 8482 int cur_txq, cur_rxq; 8483 u8 hw = 0, num_tcf; 8484 struct device *dev; 8485 int ret, i; 8486 8487 dev = ice_pf_to_dev(pf); 8488 num_tcf = mqprio_qopt->qopt.num_tc; 8489 hw = mqprio_qopt->qopt.hw; 8490 mode = mqprio_qopt->mode; 8491 if (!hw) { 8492 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8493 vsi->ch_rss_size = 0; 8494 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8495 goto config_tcf; 8496 } 8497 8498 /* Generate queue region map for number of TCF requested */ 8499 for (i = 0; i < num_tcf; i++) 8500 ena_tc_qdisc |= BIT(i); 8501 8502 switch (mode) { 8503 case TC_MQPRIO_MODE_CHANNEL: 8504 8505 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8506 if (ret) { 8507 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8508 ret); 8509 return ret; 8510 } 8511 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8512 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8513 /* don't assume state of hw_tc_offload during driver load 8514 * and set the flag for TC flower filter if hw_tc_offload 8515 * already ON 8516 */ 8517 if (vsi->netdev->features & NETIF_F_HW_TC) 8518 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8519 break; 8520 default: 8521 return -EINVAL; 8522 } 8523 8524 config_tcf: 8525 8526 /* Requesting same TCF configuration as already enabled */ 8527 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8528 mode != TC_MQPRIO_MODE_CHANNEL) 8529 return 0; 8530 8531 /* Pause VSI queues */ 8532 ice_dis_vsi(vsi, true); 8533 8534 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8535 ice_remove_q_channels(vsi, true); 8536 8537 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8538 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8539 num_online_cpus()); 8540 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8541 num_online_cpus()); 8542 } else { 8543 /* logic to rebuild VSI, same like ethtool -L */ 8544 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8545 8546 for (i = 0; i < num_tcf; i++) { 8547 if (!(ena_tc_qdisc & BIT(i))) 8548 continue; 8549 8550 offset = vsi->mqprio_qopt.qopt.offset[i]; 8551 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8552 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8553 } 8554 vsi->req_txq = offset + qcount_tx; 8555 vsi->req_rxq = offset + qcount_rx; 8556 8557 /* store away original rss_size info, so that it gets reused 8558 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8559 * determine, what should be the rss_sizefor main VSI 8560 */ 8561 vsi->orig_rss_size = vsi->rss_size; 8562 } 8563 8564 /* save current values of Tx and Rx queues before calling VSI rebuild 8565 * for fallback option 8566 */ 8567 cur_txq = vsi->num_txq; 8568 cur_rxq = vsi->num_rxq; 8569 8570 /* proceed with rebuild main VSI using correct number of queues */ 8571 ret = ice_vsi_rebuild(vsi, false); 8572 if (ret) { 8573 /* fallback to current number of queues */ 8574 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8575 vsi->req_txq = cur_txq; 8576 vsi->req_rxq = cur_rxq; 8577 clear_bit(ICE_RESET_FAILED, pf->state); 8578 if (ice_vsi_rebuild(vsi, false)) { 8579 dev_err(dev, "Rebuild of main VSI failed again\n"); 8580 return ret; 8581 } 8582 } 8583 8584 vsi->all_numtc = num_tcf; 8585 vsi->all_enatc = ena_tc_qdisc; 8586 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8587 if (ret) { 8588 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8589 vsi->vsi_num); 8590 goto exit; 8591 } 8592 8593 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8594 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8595 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8596 8597 /* set TC0 rate limit if specified */ 8598 if (max_tx_rate || min_tx_rate) { 8599 /* convert to Kbits/s */ 8600 if (max_tx_rate) 8601 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8602 if (min_tx_rate) 8603 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8604 8605 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8606 if (!ret) { 8607 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8608 max_tx_rate, min_tx_rate, vsi->vsi_num); 8609 } else { 8610 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8611 max_tx_rate, min_tx_rate, vsi->vsi_num); 8612 goto exit; 8613 } 8614 } 8615 ret = ice_create_q_channels(vsi); 8616 if (ret) { 8617 netdev_err(netdev, "failed configuring queue channels\n"); 8618 goto exit; 8619 } else { 8620 netdev_dbg(netdev, "successfully configured channels\n"); 8621 } 8622 } 8623 8624 if (vsi->ch_rss_size) 8625 ice_vsi_cfg_rss_lut_key(vsi); 8626 8627 exit: 8628 /* if error, reset the all_numtc and all_enatc */ 8629 if (ret) { 8630 vsi->all_numtc = 0; 8631 vsi->all_enatc = 0; 8632 } 8633 /* resume VSI */ 8634 ice_ena_vsi(vsi, true); 8635 8636 return ret; 8637 } 8638 8639 static LIST_HEAD(ice_block_cb_list); 8640 8641 static int 8642 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8643 void *type_data) 8644 { 8645 struct ice_netdev_priv *np = netdev_priv(netdev); 8646 struct ice_pf *pf = np->vsi->back; 8647 int err; 8648 8649 switch (type) { 8650 case TC_SETUP_BLOCK: 8651 return flow_block_cb_setup_simple(type_data, 8652 &ice_block_cb_list, 8653 ice_setup_tc_block_cb, 8654 np, np, true); 8655 case TC_SETUP_QDISC_MQPRIO: 8656 /* setup traffic classifier for receive side */ 8657 mutex_lock(&pf->tc_mutex); 8658 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8659 mutex_unlock(&pf->tc_mutex); 8660 return err; 8661 default: 8662 return -EOPNOTSUPP; 8663 } 8664 return -EOPNOTSUPP; 8665 } 8666 8667 static struct ice_indr_block_priv * 8668 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8669 struct net_device *netdev) 8670 { 8671 struct ice_indr_block_priv *cb_priv; 8672 8673 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8674 if (!cb_priv->netdev) 8675 return NULL; 8676 if (cb_priv->netdev == netdev) 8677 return cb_priv; 8678 } 8679 return NULL; 8680 } 8681 8682 static int 8683 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8684 void *indr_priv) 8685 { 8686 struct ice_indr_block_priv *priv = indr_priv; 8687 struct ice_netdev_priv *np = priv->np; 8688 8689 switch (type) { 8690 case TC_SETUP_CLSFLOWER: 8691 return ice_setup_tc_cls_flower(np, priv->netdev, 8692 (struct flow_cls_offload *) 8693 type_data); 8694 default: 8695 return -EOPNOTSUPP; 8696 } 8697 } 8698 8699 static int 8700 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8701 struct ice_netdev_priv *np, 8702 struct flow_block_offload *f, void *data, 8703 void (*cleanup)(struct flow_block_cb *block_cb)) 8704 { 8705 struct ice_indr_block_priv *indr_priv; 8706 struct flow_block_cb *block_cb; 8707 8708 if (!ice_is_tunnel_supported(netdev) && 8709 !(is_vlan_dev(netdev) && 8710 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8711 return -EOPNOTSUPP; 8712 8713 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8714 return -EOPNOTSUPP; 8715 8716 switch (f->command) { 8717 case FLOW_BLOCK_BIND: 8718 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8719 if (indr_priv) 8720 return -EEXIST; 8721 8722 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8723 if (!indr_priv) 8724 return -ENOMEM; 8725 8726 indr_priv->netdev = netdev; 8727 indr_priv->np = np; 8728 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8729 8730 block_cb = 8731 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8732 indr_priv, indr_priv, 8733 ice_rep_indr_tc_block_unbind, 8734 f, netdev, sch, data, np, 8735 cleanup); 8736 8737 if (IS_ERR(block_cb)) { 8738 list_del(&indr_priv->list); 8739 kfree(indr_priv); 8740 return PTR_ERR(block_cb); 8741 } 8742 flow_block_cb_add(block_cb, f); 8743 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8744 break; 8745 case FLOW_BLOCK_UNBIND: 8746 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8747 if (!indr_priv) 8748 return -ENOENT; 8749 8750 block_cb = flow_block_cb_lookup(f->block, 8751 ice_indr_setup_block_cb, 8752 indr_priv); 8753 if (!block_cb) 8754 return -ENOENT; 8755 8756 flow_indr_block_cb_remove(block_cb, f); 8757 8758 list_del(&block_cb->driver_list); 8759 break; 8760 default: 8761 return -EOPNOTSUPP; 8762 } 8763 return 0; 8764 } 8765 8766 static int 8767 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8768 void *cb_priv, enum tc_setup_type type, void *type_data, 8769 void *data, 8770 void (*cleanup)(struct flow_block_cb *block_cb)) 8771 { 8772 switch (type) { 8773 case TC_SETUP_BLOCK: 8774 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8775 data, cleanup); 8776 8777 default: 8778 return -EOPNOTSUPP; 8779 } 8780 } 8781 8782 /** 8783 * ice_open - Called when a network interface becomes active 8784 * @netdev: network interface device structure 8785 * 8786 * The open entry point is called when a network interface is made 8787 * active by the system (IFF_UP). At this point all resources needed 8788 * for transmit and receive operations are allocated, the interrupt 8789 * handler is registered with the OS, the netdev watchdog is enabled, 8790 * and the stack is notified that the interface is ready. 8791 * 8792 * Returns 0 on success, negative value on failure 8793 */ 8794 int ice_open(struct net_device *netdev) 8795 { 8796 struct ice_netdev_priv *np = netdev_priv(netdev); 8797 struct ice_pf *pf = np->vsi->back; 8798 8799 if (ice_is_reset_in_progress(pf->state)) { 8800 netdev_err(netdev, "can't open net device while reset is in progress"); 8801 return -EBUSY; 8802 } 8803 8804 return ice_open_internal(netdev); 8805 } 8806 8807 /** 8808 * ice_open_internal - Called when a network interface becomes active 8809 * @netdev: network interface device structure 8810 * 8811 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8812 * handling routine 8813 * 8814 * Returns 0 on success, negative value on failure 8815 */ 8816 int ice_open_internal(struct net_device *netdev) 8817 { 8818 struct ice_netdev_priv *np = netdev_priv(netdev); 8819 struct ice_vsi *vsi = np->vsi; 8820 struct ice_pf *pf = vsi->back; 8821 struct ice_port_info *pi; 8822 int err; 8823 8824 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8825 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8826 return -EIO; 8827 } 8828 8829 netif_carrier_off(netdev); 8830 8831 pi = vsi->port_info; 8832 err = ice_update_link_info(pi); 8833 if (err) { 8834 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8835 return err; 8836 } 8837 8838 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8839 8840 /* Set PHY if there is media, otherwise, turn off PHY */ 8841 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8842 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8843 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8844 err = ice_init_phy_user_cfg(pi); 8845 if (err) { 8846 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8847 err); 8848 return err; 8849 } 8850 } 8851 8852 err = ice_configure_phy(vsi); 8853 if (err) { 8854 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8855 err); 8856 return err; 8857 } 8858 } else { 8859 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8860 ice_set_link(vsi, false); 8861 } 8862 8863 err = ice_vsi_open(vsi); 8864 if (err) 8865 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8866 vsi->vsi_num, vsi->vsw->sw_id); 8867 8868 /* Update existing tunnels information */ 8869 udp_tunnel_get_rx_info(netdev); 8870 8871 return err; 8872 } 8873 8874 /** 8875 * ice_stop - Disables a network interface 8876 * @netdev: network interface device structure 8877 * 8878 * The stop entry point is called when an interface is de-activated by the OS, 8879 * and the netdevice enters the DOWN state. The hardware is still under the 8880 * driver's control, but the netdev interface is disabled. 8881 * 8882 * Returns success only - not allowed to fail 8883 */ 8884 int ice_stop(struct net_device *netdev) 8885 { 8886 struct ice_netdev_priv *np = netdev_priv(netdev); 8887 struct ice_vsi *vsi = np->vsi; 8888 struct ice_pf *pf = vsi->back; 8889 8890 if (ice_is_reset_in_progress(pf->state)) { 8891 netdev_err(netdev, "can't stop net device while reset is in progress"); 8892 return -EBUSY; 8893 } 8894 8895 ice_vsi_close(vsi); 8896 8897 return 0; 8898 } 8899 8900 /** 8901 * ice_features_check - Validate encapsulated packet conforms to limits 8902 * @skb: skb buffer 8903 * @netdev: This port's netdev 8904 * @features: Offload features that the stack believes apply 8905 */ 8906 static netdev_features_t 8907 ice_features_check(struct sk_buff *skb, 8908 struct net_device __always_unused *netdev, 8909 netdev_features_t features) 8910 { 8911 bool gso = skb_is_gso(skb); 8912 size_t len; 8913 8914 /* No point in doing any of this if neither checksum nor GSO are 8915 * being requested for this frame. We can rule out both by just 8916 * checking for CHECKSUM_PARTIAL 8917 */ 8918 if (skb->ip_summed != CHECKSUM_PARTIAL) 8919 return features; 8920 8921 /* We cannot support GSO if the MSS is going to be less than 8922 * 64 bytes. If it is then we need to drop support for GSO. 8923 */ 8924 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8925 features &= ~NETIF_F_GSO_MASK; 8926 8927 len = skb_network_offset(skb); 8928 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8929 goto out_rm_features; 8930 8931 len = skb_network_header_len(skb); 8932 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8933 goto out_rm_features; 8934 8935 if (skb->encapsulation) { 8936 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8937 * the case of IPIP frames, the transport header pointer is 8938 * after the inner header! So check to make sure that this 8939 * is a GRE or UDP_TUNNEL frame before doing that math. 8940 */ 8941 if (gso && (skb_shinfo(skb)->gso_type & 8942 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8943 len = skb_inner_network_header(skb) - 8944 skb_transport_header(skb); 8945 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8946 goto out_rm_features; 8947 } 8948 8949 len = skb_inner_network_header_len(skb); 8950 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8951 goto out_rm_features; 8952 } 8953 8954 return features; 8955 out_rm_features: 8956 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8957 } 8958 8959 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8960 .ndo_open = ice_open, 8961 .ndo_stop = ice_stop, 8962 .ndo_start_xmit = ice_start_xmit, 8963 .ndo_set_mac_address = ice_set_mac_address, 8964 .ndo_validate_addr = eth_validate_addr, 8965 .ndo_change_mtu = ice_change_mtu, 8966 .ndo_get_stats64 = ice_get_stats64, 8967 .ndo_tx_timeout = ice_tx_timeout, 8968 .ndo_bpf = ice_xdp_safe_mode, 8969 }; 8970 8971 static const struct net_device_ops ice_netdev_ops = { 8972 .ndo_open = ice_open, 8973 .ndo_stop = ice_stop, 8974 .ndo_start_xmit = ice_start_xmit, 8975 .ndo_select_queue = ice_select_queue, 8976 .ndo_features_check = ice_features_check, 8977 .ndo_fix_features = ice_fix_features, 8978 .ndo_set_rx_mode = ice_set_rx_mode, 8979 .ndo_set_mac_address = ice_set_mac_address, 8980 .ndo_validate_addr = eth_validate_addr, 8981 .ndo_change_mtu = ice_change_mtu, 8982 .ndo_get_stats64 = ice_get_stats64, 8983 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8984 .ndo_eth_ioctl = ice_eth_ioctl, 8985 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8986 .ndo_set_vf_mac = ice_set_vf_mac, 8987 .ndo_get_vf_config = ice_get_vf_cfg, 8988 .ndo_set_vf_trust = ice_set_vf_trust, 8989 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8990 .ndo_set_vf_link_state = ice_set_vf_link_state, 8991 .ndo_get_vf_stats = ice_get_vf_stats, 8992 .ndo_set_vf_rate = ice_set_vf_bw, 8993 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8994 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8995 .ndo_setup_tc = ice_setup_tc, 8996 .ndo_set_features = ice_set_features, 8997 .ndo_bridge_getlink = ice_bridge_getlink, 8998 .ndo_bridge_setlink = ice_bridge_setlink, 8999 .ndo_fdb_add = ice_fdb_add, 9000 .ndo_fdb_del = ice_fdb_del, 9001 #ifdef CONFIG_RFS_ACCEL 9002 .ndo_rx_flow_steer = ice_rx_flow_steer, 9003 #endif 9004 .ndo_tx_timeout = ice_tx_timeout, 9005 .ndo_bpf = ice_xdp, 9006 .ndo_xdp_xmit = ice_xdp_xmit, 9007 .ndo_xsk_wakeup = ice_xsk_wakeup, 9008 .ndo_get_devlink_port = ice_get_devlink_port, 9009 }; 9010