1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 #include "ice_dcb_lib.h" 11 12 #define DRV_VERSION_MAJOR 0 13 #define DRV_VERSION_MINOR 8 14 #define DRV_VERSION_BUILD 1 15 16 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 17 __stringify(DRV_VERSION_MINOR) "." \ 18 __stringify(DRV_VERSION_BUILD) "-k" 19 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 20 const char ice_drv_ver[] = DRV_VERSION; 21 static const char ice_driver_string[] = DRV_SUMMARY; 22 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 23 24 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 25 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 26 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 27 28 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 29 MODULE_DESCRIPTION(DRV_SUMMARY); 30 MODULE_LICENSE("GPL v2"); 31 MODULE_VERSION(DRV_VERSION); 32 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 33 34 static int debug = -1; 35 module_param(debug, int, 0644); 36 #ifndef CONFIG_DYNAMIC_DEBUG 37 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 38 #else 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 40 #endif /* !CONFIG_DYNAMIC_DEBUG */ 41 42 static struct workqueue_struct *ice_wq; 43 static const struct net_device_ops ice_netdev_safe_mode_ops; 44 static const struct net_device_ops ice_netdev_ops; 45 46 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 47 48 static void ice_vsi_release_all(struct ice_pf *pf); 49 50 /** 51 * ice_get_tx_pending - returns number of Tx descriptors not processed 52 * @ring: the ring of descriptors 53 */ 54 static u16 ice_get_tx_pending(struct ice_ring *ring) 55 { 56 u16 head, tail; 57 58 head = ring->next_to_clean; 59 tail = ring->next_to_use; 60 61 if (head != tail) 62 return (head < tail) ? 63 tail - head : (tail + ring->count - head); 64 return 0; 65 } 66 67 /** 68 * ice_check_for_hang_subtask - check for and recover hung queues 69 * @pf: pointer to PF struct 70 */ 71 static void ice_check_for_hang_subtask(struct ice_pf *pf) 72 { 73 struct ice_vsi *vsi = NULL; 74 struct ice_hw *hw; 75 unsigned int i; 76 int packets; 77 u32 v; 78 79 ice_for_each_vsi(pf, v) 80 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 81 vsi = pf->vsi[v]; 82 break; 83 } 84 85 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 86 return; 87 88 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 89 return; 90 91 hw = &vsi->back->hw; 92 93 for (i = 0; i < vsi->num_txq; i++) { 94 struct ice_ring *tx_ring = vsi->tx_rings[i]; 95 96 if (tx_ring && tx_ring->desc) { 97 /* If packet counter has not changed the queue is 98 * likely stalled, so force an interrupt for this 99 * queue. 100 * 101 * prev_pkt would be negative if there was no 102 * pending work. 103 */ 104 packets = tx_ring->stats.pkts & INT_MAX; 105 if (tx_ring->tx_stats.prev_pkt == packets) { 106 /* Trigger sw interrupt to revive the queue */ 107 ice_trigger_sw_intr(hw, tx_ring->q_vector); 108 continue; 109 } 110 111 /* Memory barrier between read of packet count and call 112 * to ice_get_tx_pending() 113 */ 114 smp_rmb(); 115 tx_ring->tx_stats.prev_pkt = 116 ice_get_tx_pending(tx_ring) ? packets : -1; 117 } 118 } 119 } 120 121 /** 122 * ice_init_mac_fltr - Set initial MAC filters 123 * @pf: board private structure 124 * 125 * Set initial set of MAC filters for PF VSI; configure filters for permanent 126 * address and broadcast address. If an error is encountered, netdevice will be 127 * unregistered. 128 */ 129 static int ice_init_mac_fltr(struct ice_pf *pf) 130 { 131 enum ice_status status; 132 u8 broadcast[ETH_ALEN]; 133 struct ice_vsi *vsi; 134 135 vsi = ice_get_main_vsi(pf); 136 if (!vsi) 137 return -EINVAL; 138 139 /* To add a MAC filter, first add the MAC to a list and then 140 * pass the list to ice_add_mac. 141 */ 142 143 /* Add a unicast MAC filter so the VSI can get its packets */ 144 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 145 if (status) 146 goto unregister; 147 148 /* VSI needs to receive broadcast traffic, so add the broadcast 149 * MAC address to the list as well. 150 */ 151 eth_broadcast_addr(broadcast); 152 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 153 if (status) 154 goto unregister; 155 156 return 0; 157 unregister: 158 /* We aren't useful with no MAC filters, so unregister if we 159 * had an error 160 */ 161 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 162 dev_err(&pf->pdev->dev, 163 "Could not add MAC filters error %d. Unregistering device\n", 164 status); 165 unregister_netdev(vsi->netdev); 166 free_netdev(vsi->netdev); 167 vsi->netdev = NULL; 168 } 169 170 return -EIO; 171 } 172 173 /** 174 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 175 * @netdev: the net device on which the sync is happening 176 * @addr: MAC address to sync 177 * 178 * This is a callback function which is called by the in kernel device sync 179 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 180 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 181 * MAC filters from the hardware. 182 */ 183 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 184 { 185 struct ice_netdev_priv *np = netdev_priv(netdev); 186 struct ice_vsi *vsi = np->vsi; 187 188 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 189 return -EINVAL; 190 191 return 0; 192 } 193 194 /** 195 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 196 * @netdev: the net device on which the unsync is happening 197 * @addr: MAC address to unsync 198 * 199 * This is a callback function which is called by the in kernel device unsync 200 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 201 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 202 * delete the MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_vsi_fltr_changed - check if filter state changed 217 * @vsi: VSI to be checked 218 * 219 * returns true if filter state has changed, false otherwise. 220 */ 221 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 222 { 223 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 224 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 225 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 226 } 227 228 /** 229 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 230 * @vsi: the VSI being configured 231 * @promisc_m: mask of promiscuous config bits 232 * @set_promisc: enable or disable promisc flag request 233 * 234 */ 235 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 236 { 237 struct ice_hw *hw = &vsi->back->hw; 238 enum ice_status status = 0; 239 240 if (vsi->type != ICE_VSI_PF) 241 return 0; 242 243 if (vsi->vlan_ena) { 244 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 245 set_promisc); 246 } else { 247 if (set_promisc) 248 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 249 0); 250 else 251 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 252 0); 253 } 254 255 if (status) 256 return -EIO; 257 258 return 0; 259 } 260 261 /** 262 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 263 * @vsi: ptr to the VSI 264 * 265 * Push any outstanding VSI filter changes through the AdminQ. 266 */ 267 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 268 { 269 struct device *dev = &vsi->back->pdev->dev; 270 struct net_device *netdev = vsi->netdev; 271 bool promisc_forced_on = false; 272 struct ice_pf *pf = vsi->back; 273 struct ice_hw *hw = &pf->hw; 274 enum ice_status status = 0; 275 u32 changed_flags = 0; 276 u8 promisc_m; 277 int err = 0; 278 279 if (!vsi->netdev) 280 return -EINVAL; 281 282 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 283 usleep_range(1000, 2000); 284 285 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 286 vsi->current_netdev_flags = vsi->netdev->flags; 287 288 INIT_LIST_HEAD(&vsi->tmp_sync_list); 289 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 290 291 if (ice_vsi_fltr_changed(vsi)) { 292 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 293 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 294 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 295 296 /* grab the netdev's addr_list_lock */ 297 netif_addr_lock_bh(netdev); 298 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 299 ice_add_mac_to_unsync_list); 300 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 301 ice_add_mac_to_unsync_list); 302 /* our temp lists are populated. release lock */ 303 netif_addr_unlock_bh(netdev); 304 } 305 306 /* Remove MAC addresses in the unsync list */ 307 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 308 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 309 if (status) { 310 netdev_err(netdev, "Failed to delete MAC filters\n"); 311 /* if we failed because of alloc failures, just bail */ 312 if (status == ICE_ERR_NO_MEMORY) { 313 err = -ENOMEM; 314 goto out; 315 } 316 } 317 318 /* Add MAC addresses in the sync list */ 319 status = ice_add_mac(hw, &vsi->tmp_sync_list); 320 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 321 /* If filter is added successfully or already exists, do not go into 322 * 'if' condition and report it as error. Instead continue processing 323 * rest of the function. 324 */ 325 if (status && status != ICE_ERR_ALREADY_EXISTS) { 326 netdev_err(netdev, "Failed to add MAC filters\n"); 327 /* If there is no more space for new umac filters, VSI 328 * should go into promiscuous mode. There should be some 329 * space reserved for promiscuous filters. 330 */ 331 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 332 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 333 vsi->state)) { 334 promisc_forced_on = true; 335 netdev_warn(netdev, 336 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 337 vsi->vsi_num); 338 } else { 339 err = -EIO; 340 goto out; 341 } 342 } 343 /* check for changes in promiscuous modes */ 344 if (changed_flags & IFF_ALLMULTI) { 345 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 346 if (vsi->vlan_ena) 347 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 348 else 349 promisc_m = ICE_MCAST_PROMISC_BITS; 350 351 err = ice_cfg_promisc(vsi, promisc_m, true); 352 if (err) { 353 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 354 vsi->vsi_num); 355 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 356 goto out_promisc; 357 } 358 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 359 if (vsi->vlan_ena) 360 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 361 else 362 promisc_m = ICE_MCAST_PROMISC_BITS; 363 364 err = ice_cfg_promisc(vsi, promisc_m, false); 365 if (err) { 366 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 367 vsi->vsi_num); 368 vsi->current_netdev_flags |= IFF_ALLMULTI; 369 goto out_promisc; 370 } 371 } 372 } 373 374 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 375 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 376 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 377 if (vsi->current_netdev_flags & IFF_PROMISC) { 378 /* Apply Rx filter rule to get traffic from wire */ 379 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 380 ICE_FLTR_RX); 381 if (status) { 382 netdev_err(netdev, "Error setting default VSI %i Rx rule\n", 383 vsi->vsi_num); 384 vsi->current_netdev_flags &= ~IFF_PROMISC; 385 err = -EIO; 386 goto out_promisc; 387 } 388 } else { 389 /* Clear Rx filter to remove traffic from wire */ 390 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 391 ICE_FLTR_RX); 392 if (status) { 393 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n", 394 vsi->vsi_num); 395 vsi->current_netdev_flags |= IFF_PROMISC; 396 err = -EIO; 397 goto out_promisc; 398 } 399 } 400 } 401 goto exit; 402 403 out_promisc: 404 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 405 goto exit; 406 out: 407 /* if something went wrong then set the changed flag so we try again */ 408 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 409 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 410 exit: 411 clear_bit(__ICE_CFG_BUSY, vsi->state); 412 return err; 413 } 414 415 /** 416 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 417 * @pf: board private structure 418 */ 419 static void ice_sync_fltr_subtask(struct ice_pf *pf) 420 { 421 int v; 422 423 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 424 return; 425 426 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 427 428 ice_for_each_vsi(pf, v) 429 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 430 ice_vsi_sync_fltr(pf->vsi[v])) { 431 /* come back and try again later */ 432 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 433 break; 434 } 435 } 436 437 /** 438 * ice_dis_vsi - pause a VSI 439 * @vsi: the VSI being paused 440 * @locked: is the rtnl_lock already held 441 */ 442 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 443 { 444 if (test_bit(__ICE_DOWN, vsi->state)) 445 return; 446 447 set_bit(__ICE_NEEDS_RESTART, vsi->state); 448 449 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 450 if (netif_running(vsi->netdev)) { 451 if (!locked) 452 rtnl_lock(); 453 454 ice_stop(vsi->netdev); 455 456 if (!locked) 457 rtnl_unlock(); 458 } else { 459 ice_vsi_close(vsi); 460 } 461 } 462 } 463 464 /** 465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 466 * @pf: the PF 467 * @locked: is the rtnl_lock already held 468 */ 469 #ifdef CONFIG_DCB 470 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 471 #else 472 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 473 #endif /* CONFIG_DCB */ 474 { 475 int v; 476 477 ice_for_each_vsi(pf, v) 478 if (pf->vsi[v]) 479 ice_dis_vsi(pf->vsi[v], locked); 480 } 481 482 /** 483 * ice_prepare_for_reset - prep for the core to reset 484 * @pf: board private structure 485 * 486 * Inform or close all dependent features in prep for reset. 487 */ 488 static void 489 ice_prepare_for_reset(struct ice_pf *pf) 490 { 491 struct ice_hw *hw = &pf->hw; 492 int i; 493 494 /* already prepared for reset */ 495 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 496 return; 497 498 /* Notify VFs of impending reset */ 499 if (ice_check_sq_alive(hw, &hw->mailboxq)) 500 ice_vc_notify_reset(pf); 501 502 /* Disable VFs until reset is completed */ 503 for (i = 0; i < pf->num_alloc_vfs; i++) 504 ice_set_vf_state_qs_dis(&pf->vf[i]); 505 506 /* clear SW filtering DB */ 507 ice_clear_hw_tbls(hw); 508 /* disable the VSIs and their queues that are not already DOWN */ 509 ice_pf_dis_all_vsi(pf, false); 510 511 if (hw->port_info) 512 ice_sched_clear_port(hw->port_info); 513 514 ice_shutdown_all_ctrlq(hw); 515 516 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 517 } 518 519 /** 520 * ice_do_reset - Initiate one of many types of resets 521 * @pf: board private structure 522 * @reset_type: reset type requested 523 * before this function was called. 524 */ 525 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 526 { 527 struct device *dev = &pf->pdev->dev; 528 struct ice_hw *hw = &pf->hw; 529 530 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 531 WARN_ON(in_interrupt()); 532 533 ice_prepare_for_reset(pf); 534 535 /* trigger the reset */ 536 if (ice_reset(hw, reset_type)) { 537 dev_err(dev, "reset %d failed\n", reset_type); 538 set_bit(__ICE_RESET_FAILED, pf->state); 539 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 540 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 541 clear_bit(__ICE_PFR_REQ, pf->state); 542 clear_bit(__ICE_CORER_REQ, pf->state); 543 clear_bit(__ICE_GLOBR_REQ, pf->state); 544 return; 545 } 546 547 /* PFR is a bit of a special case because it doesn't result in an OICR 548 * interrupt. So for PFR, rebuild after the reset and clear the reset- 549 * associated state bits. 550 */ 551 if (reset_type == ICE_RESET_PFR) { 552 pf->pfr_count++; 553 ice_rebuild(pf, reset_type); 554 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 555 clear_bit(__ICE_PFR_REQ, pf->state); 556 ice_reset_all_vfs(pf, true); 557 } 558 } 559 560 /** 561 * ice_reset_subtask - Set up for resetting the device and driver 562 * @pf: board private structure 563 */ 564 static void ice_reset_subtask(struct ice_pf *pf) 565 { 566 enum ice_reset_req reset_type = ICE_RESET_INVAL; 567 568 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 569 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 570 * of reset is pending and sets bits in pf->state indicating the reset 571 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 572 * prepare for pending reset if not already (for PF software-initiated 573 * global resets the software should already be prepared for it as 574 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 575 * by firmware or software on other PFs, that bit is not set so prepare 576 * for the reset now), poll for reset done, rebuild and return. 577 */ 578 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 579 /* Perform the largest reset requested */ 580 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 581 reset_type = ICE_RESET_CORER; 582 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 583 reset_type = ICE_RESET_GLOBR; 584 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 585 reset_type = ICE_RESET_EMPR; 586 /* return if no valid reset type requested */ 587 if (reset_type == ICE_RESET_INVAL) 588 return; 589 ice_prepare_for_reset(pf); 590 591 /* make sure we are ready to rebuild */ 592 if (ice_check_reset(&pf->hw)) { 593 set_bit(__ICE_RESET_FAILED, pf->state); 594 } else { 595 /* done with reset. start rebuild */ 596 pf->hw.reset_ongoing = false; 597 ice_rebuild(pf, reset_type); 598 /* clear bit to resume normal operations, but 599 * ICE_NEEDS_RESTART bit is set in case rebuild failed 600 */ 601 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 602 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 603 clear_bit(__ICE_PFR_REQ, pf->state); 604 clear_bit(__ICE_CORER_REQ, pf->state); 605 clear_bit(__ICE_GLOBR_REQ, pf->state); 606 ice_reset_all_vfs(pf, true); 607 } 608 609 return; 610 } 611 612 /* No pending resets to finish processing. Check for new resets */ 613 if (test_bit(__ICE_PFR_REQ, pf->state)) 614 reset_type = ICE_RESET_PFR; 615 if (test_bit(__ICE_CORER_REQ, pf->state)) 616 reset_type = ICE_RESET_CORER; 617 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 618 reset_type = ICE_RESET_GLOBR; 619 /* If no valid reset type requested just return */ 620 if (reset_type == ICE_RESET_INVAL) 621 return; 622 623 /* reset if not already down or busy */ 624 if (!test_bit(__ICE_DOWN, pf->state) && 625 !test_bit(__ICE_CFG_BUSY, pf->state)) { 626 ice_do_reset(pf, reset_type); 627 } 628 } 629 630 /** 631 * ice_print_topo_conflict - print topology conflict message 632 * @vsi: the VSI whose topology status is being checked 633 */ 634 static void ice_print_topo_conflict(struct ice_vsi *vsi) 635 { 636 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 637 case ICE_AQ_LINK_TOPO_CONFLICT: 638 case ICE_AQ_LINK_MEDIA_CONFLICT: 639 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 640 break; 641 default: 642 break; 643 } 644 } 645 646 /** 647 * ice_print_link_msg - print link up or down message 648 * @vsi: the VSI whose link status is being queried 649 * @isup: boolean for if the link is now up or down 650 */ 651 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 652 { 653 struct ice_aqc_get_phy_caps_data *caps; 654 enum ice_status status; 655 const char *fec_req; 656 const char *speed; 657 const char *fec; 658 const char *fc; 659 const char *an; 660 661 if (!vsi) 662 return; 663 664 if (vsi->current_isup == isup) 665 return; 666 667 vsi->current_isup = isup; 668 669 if (!isup) { 670 netdev_info(vsi->netdev, "NIC Link is Down\n"); 671 return; 672 } 673 674 switch (vsi->port_info->phy.link_info.link_speed) { 675 case ICE_AQ_LINK_SPEED_100GB: 676 speed = "100 G"; 677 break; 678 case ICE_AQ_LINK_SPEED_50GB: 679 speed = "50 G"; 680 break; 681 case ICE_AQ_LINK_SPEED_40GB: 682 speed = "40 G"; 683 break; 684 case ICE_AQ_LINK_SPEED_25GB: 685 speed = "25 G"; 686 break; 687 case ICE_AQ_LINK_SPEED_20GB: 688 speed = "20 G"; 689 break; 690 case ICE_AQ_LINK_SPEED_10GB: 691 speed = "10 G"; 692 break; 693 case ICE_AQ_LINK_SPEED_5GB: 694 speed = "5 G"; 695 break; 696 case ICE_AQ_LINK_SPEED_2500MB: 697 speed = "2.5 G"; 698 break; 699 case ICE_AQ_LINK_SPEED_1000MB: 700 speed = "1 G"; 701 break; 702 case ICE_AQ_LINK_SPEED_100MB: 703 speed = "100 M"; 704 break; 705 default: 706 speed = "Unknown"; 707 break; 708 } 709 710 switch (vsi->port_info->fc.current_mode) { 711 case ICE_FC_FULL: 712 fc = "Rx/Tx"; 713 break; 714 case ICE_FC_TX_PAUSE: 715 fc = "Tx"; 716 break; 717 case ICE_FC_RX_PAUSE: 718 fc = "Rx"; 719 break; 720 case ICE_FC_NONE: 721 fc = "None"; 722 break; 723 default: 724 fc = "Unknown"; 725 break; 726 } 727 728 /* Get FEC mode based on negotiated link info */ 729 switch (vsi->port_info->phy.link_info.fec_info) { 730 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 731 /* fall through */ 732 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 733 fec = "RS-FEC"; 734 break; 735 case ICE_AQ_LINK_25G_KR_FEC_EN: 736 fec = "FC-FEC/BASE-R"; 737 break; 738 default: 739 fec = "NONE"; 740 break; 741 } 742 743 /* check if autoneg completed, might be false due to not supported */ 744 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 745 an = "True"; 746 else 747 an = "False"; 748 749 /* Get FEC mode requested based on PHY caps last SW configuration */ 750 caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL); 751 if (!caps) { 752 fec_req = "Unknown"; 753 goto done; 754 } 755 756 status = ice_aq_get_phy_caps(vsi->port_info, false, 757 ICE_AQC_REPORT_SW_CFG, caps, NULL); 758 if (status) 759 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 760 761 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 762 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 763 fec_req = "RS-FEC"; 764 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 765 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 766 fec_req = "FC-FEC/BASE-R"; 767 else 768 fec_req = "NONE"; 769 770 devm_kfree(&vsi->back->pdev->dev, caps); 771 772 done: 773 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n", 774 speed, fec_req, fec, an, fc); 775 ice_print_topo_conflict(vsi); 776 } 777 778 /** 779 * ice_vsi_link_event - update the VSI's netdev 780 * @vsi: the VSI on which the link event occurred 781 * @link_up: whether or not the VSI needs to be set up or down 782 */ 783 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 784 { 785 if (!vsi) 786 return; 787 788 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 789 return; 790 791 if (vsi->type == ICE_VSI_PF) { 792 if (link_up == netif_carrier_ok(vsi->netdev)) 793 return; 794 795 if (link_up) { 796 netif_carrier_on(vsi->netdev); 797 netif_tx_wake_all_queues(vsi->netdev); 798 } else { 799 netif_carrier_off(vsi->netdev); 800 netif_tx_stop_all_queues(vsi->netdev); 801 } 802 } 803 } 804 805 /** 806 * ice_link_event - process the link event 807 * @pf: PF that the link event is associated with 808 * @pi: port_info for the port that the link event is associated with 809 * @link_up: true if the physical link is up and false if it is down 810 * @link_speed: current link speed received from the link event 811 * 812 * Returns 0 on success and negative on failure 813 */ 814 static int 815 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 816 u16 link_speed) 817 { 818 struct ice_phy_info *phy_info; 819 struct ice_vsi *vsi; 820 u16 old_link_speed; 821 bool old_link; 822 int result; 823 824 phy_info = &pi->phy; 825 phy_info->link_info_old = phy_info->link_info; 826 827 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 828 old_link_speed = phy_info->link_info_old.link_speed; 829 830 /* update the link info structures and re-enable link events, 831 * don't bail on failure due to other book keeping needed 832 */ 833 result = ice_update_link_info(pi); 834 if (result) 835 dev_dbg(&pf->pdev->dev, 836 "Failed to update link status and re-enable link events for port %d\n", 837 pi->lport); 838 839 /* if the old link up/down and speed is the same as the new */ 840 if (link_up == old_link && link_speed == old_link_speed) 841 return result; 842 843 vsi = ice_get_main_vsi(pf); 844 if (!vsi || !vsi->port_info) 845 return -EINVAL; 846 847 /* turn off PHY if media was removed */ 848 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 849 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 850 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 851 852 result = ice_aq_set_link_restart_an(pi, false, NULL); 853 if (result) { 854 dev_dbg(&pf->pdev->dev, 855 "Failed to set link down, VSI %d error %d\n", 856 vsi->vsi_num, result); 857 return result; 858 } 859 } 860 861 ice_vsi_link_event(vsi, link_up); 862 ice_print_link_msg(vsi, link_up); 863 864 if (pf->num_alloc_vfs) 865 ice_vc_notify_link_state(pf); 866 867 return result; 868 } 869 870 /** 871 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 872 * @pf: board private structure 873 */ 874 static void ice_watchdog_subtask(struct ice_pf *pf) 875 { 876 int i; 877 878 /* if interface is down do nothing */ 879 if (test_bit(__ICE_DOWN, pf->state) || 880 test_bit(__ICE_CFG_BUSY, pf->state)) 881 return; 882 883 /* make sure we don't do these things too often */ 884 if (time_before(jiffies, 885 pf->serv_tmr_prev + pf->serv_tmr_period)) 886 return; 887 888 pf->serv_tmr_prev = jiffies; 889 890 /* Update the stats for active netdevs so the network stack 891 * can look at updated numbers whenever it cares to 892 */ 893 ice_update_pf_stats(pf); 894 ice_for_each_vsi(pf, i) 895 if (pf->vsi[i] && pf->vsi[i]->netdev) 896 ice_update_vsi_stats(pf->vsi[i]); 897 } 898 899 /** 900 * ice_init_link_events - enable/initialize link events 901 * @pi: pointer to the port_info instance 902 * 903 * Returns -EIO on failure, 0 on success 904 */ 905 static int ice_init_link_events(struct ice_port_info *pi) 906 { 907 u16 mask; 908 909 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 910 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 911 912 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 913 dev_dbg(ice_hw_to_dev(pi->hw), 914 "Failed to set link event mask for port %d\n", 915 pi->lport); 916 return -EIO; 917 } 918 919 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 920 dev_dbg(ice_hw_to_dev(pi->hw), 921 "Failed to enable link events for port %d\n", 922 pi->lport); 923 return -EIO; 924 } 925 926 return 0; 927 } 928 929 /** 930 * ice_handle_link_event - handle link event via ARQ 931 * @pf: PF that the link event is associated with 932 * @event: event structure containing link status info 933 */ 934 static int 935 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 936 { 937 struct ice_aqc_get_link_status_data *link_data; 938 struct ice_port_info *port_info; 939 int status; 940 941 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 942 port_info = pf->hw.port_info; 943 if (!port_info) 944 return -EINVAL; 945 946 status = ice_link_event(pf, port_info, 947 !!(link_data->link_info & ICE_AQ_LINK_UP), 948 le16_to_cpu(link_data->link_speed)); 949 if (status) 950 dev_dbg(&pf->pdev->dev, 951 "Could not process link event, error %d\n", status); 952 953 return status; 954 } 955 956 /** 957 * __ice_clean_ctrlq - helper function to clean controlq rings 958 * @pf: ptr to struct ice_pf 959 * @q_type: specific Control queue type 960 */ 961 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 962 { 963 struct ice_rq_event_info event; 964 struct ice_hw *hw = &pf->hw; 965 struct ice_ctl_q_info *cq; 966 u16 pending, i = 0; 967 const char *qtype; 968 u32 oldval, val; 969 970 /* Do not clean control queue if/when PF reset fails */ 971 if (test_bit(__ICE_RESET_FAILED, pf->state)) 972 return 0; 973 974 switch (q_type) { 975 case ICE_CTL_Q_ADMIN: 976 cq = &hw->adminq; 977 qtype = "Admin"; 978 break; 979 case ICE_CTL_Q_MAILBOX: 980 cq = &hw->mailboxq; 981 qtype = "Mailbox"; 982 break; 983 default: 984 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 985 q_type); 986 return 0; 987 } 988 989 /* check for error indications - PF_xx_AxQLEN register layout for 990 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 991 */ 992 val = rd32(hw, cq->rq.len); 993 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 994 PF_FW_ARQLEN_ARQCRIT_M)) { 995 oldval = val; 996 if (val & PF_FW_ARQLEN_ARQVFE_M) 997 dev_dbg(&pf->pdev->dev, 998 "%s Receive Queue VF Error detected\n", qtype); 999 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1000 dev_dbg(&pf->pdev->dev, 1001 "%s Receive Queue Overflow Error detected\n", 1002 qtype); 1003 } 1004 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1005 dev_dbg(&pf->pdev->dev, 1006 "%s Receive Queue Critical Error detected\n", 1007 qtype); 1008 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1009 PF_FW_ARQLEN_ARQCRIT_M); 1010 if (oldval != val) 1011 wr32(hw, cq->rq.len, val); 1012 } 1013 1014 val = rd32(hw, cq->sq.len); 1015 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1016 PF_FW_ATQLEN_ATQCRIT_M)) { 1017 oldval = val; 1018 if (val & PF_FW_ATQLEN_ATQVFE_M) 1019 dev_dbg(&pf->pdev->dev, 1020 "%s Send Queue VF Error detected\n", qtype); 1021 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1022 dev_dbg(&pf->pdev->dev, 1023 "%s Send Queue Overflow Error detected\n", 1024 qtype); 1025 } 1026 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1027 dev_dbg(&pf->pdev->dev, 1028 "%s Send Queue Critical Error detected\n", 1029 qtype); 1030 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1031 PF_FW_ATQLEN_ATQCRIT_M); 1032 if (oldval != val) 1033 wr32(hw, cq->sq.len, val); 1034 } 1035 1036 event.buf_len = cq->rq_buf_size; 1037 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 1038 GFP_KERNEL); 1039 if (!event.msg_buf) 1040 return 0; 1041 1042 do { 1043 enum ice_status ret; 1044 u16 opcode; 1045 1046 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1047 if (ret == ICE_ERR_AQ_NO_WORK) 1048 break; 1049 if (ret) { 1050 dev_err(&pf->pdev->dev, 1051 "%s Receive Queue event error %d\n", qtype, 1052 ret); 1053 break; 1054 } 1055 1056 opcode = le16_to_cpu(event.desc.opcode); 1057 1058 switch (opcode) { 1059 case ice_aqc_opc_get_link_status: 1060 if (ice_handle_link_event(pf, &event)) 1061 dev_err(&pf->pdev->dev, 1062 "Could not handle link event\n"); 1063 break; 1064 case ice_mbx_opc_send_msg_to_pf: 1065 ice_vc_process_vf_msg(pf, &event); 1066 break; 1067 case ice_aqc_opc_fw_logging: 1068 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1069 break; 1070 case ice_aqc_opc_lldp_set_mib_change: 1071 ice_dcb_process_lldp_set_mib_change(pf, &event); 1072 break; 1073 default: 1074 dev_dbg(&pf->pdev->dev, 1075 "%s Receive Queue unknown event 0x%04x ignored\n", 1076 qtype, opcode); 1077 break; 1078 } 1079 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1080 1081 devm_kfree(&pf->pdev->dev, event.msg_buf); 1082 1083 return pending && (i == ICE_DFLT_IRQ_WORK); 1084 } 1085 1086 /** 1087 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1088 * @hw: pointer to hardware info 1089 * @cq: control queue information 1090 * 1091 * returns true if there are pending messages in a queue, false if there aren't 1092 */ 1093 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1094 { 1095 u16 ntu; 1096 1097 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1098 return cq->rq.next_to_clean != ntu; 1099 } 1100 1101 /** 1102 * ice_clean_adminq_subtask - clean the AdminQ rings 1103 * @pf: board private structure 1104 */ 1105 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1106 { 1107 struct ice_hw *hw = &pf->hw; 1108 1109 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1110 return; 1111 1112 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1113 return; 1114 1115 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1116 1117 /* There might be a situation where new messages arrive to a control 1118 * queue between processing the last message and clearing the 1119 * EVENT_PENDING bit. So before exiting, check queue head again (using 1120 * ice_ctrlq_pending) and process new messages if any. 1121 */ 1122 if (ice_ctrlq_pending(hw, &hw->adminq)) 1123 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1124 1125 ice_flush(hw); 1126 } 1127 1128 /** 1129 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1130 * @pf: board private structure 1131 */ 1132 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1133 { 1134 struct ice_hw *hw = &pf->hw; 1135 1136 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1137 return; 1138 1139 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1140 return; 1141 1142 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1143 1144 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1145 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1146 1147 ice_flush(hw); 1148 } 1149 1150 /** 1151 * ice_service_task_schedule - schedule the service task to wake up 1152 * @pf: board private structure 1153 * 1154 * If not already scheduled, this puts the task into the work queue. 1155 */ 1156 static void ice_service_task_schedule(struct ice_pf *pf) 1157 { 1158 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1159 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1160 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1161 queue_work(ice_wq, &pf->serv_task); 1162 } 1163 1164 /** 1165 * ice_service_task_complete - finish up the service task 1166 * @pf: board private structure 1167 */ 1168 static void ice_service_task_complete(struct ice_pf *pf) 1169 { 1170 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1171 1172 /* force memory (pf->state) to sync before next service task */ 1173 smp_mb__before_atomic(); 1174 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1175 } 1176 1177 /** 1178 * ice_service_task_stop - stop service task and cancel works 1179 * @pf: board private structure 1180 */ 1181 static void ice_service_task_stop(struct ice_pf *pf) 1182 { 1183 set_bit(__ICE_SERVICE_DIS, pf->state); 1184 1185 if (pf->serv_tmr.function) 1186 del_timer_sync(&pf->serv_tmr); 1187 if (pf->serv_task.func) 1188 cancel_work_sync(&pf->serv_task); 1189 1190 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1191 } 1192 1193 /** 1194 * ice_service_task_restart - restart service task and schedule works 1195 * @pf: board private structure 1196 * 1197 * This function is needed for suspend and resume works (e.g WoL scenario) 1198 */ 1199 static void ice_service_task_restart(struct ice_pf *pf) 1200 { 1201 clear_bit(__ICE_SERVICE_DIS, pf->state); 1202 ice_service_task_schedule(pf); 1203 } 1204 1205 /** 1206 * ice_service_timer - timer callback to schedule service task 1207 * @t: pointer to timer_list 1208 */ 1209 static void ice_service_timer(struct timer_list *t) 1210 { 1211 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1212 1213 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1214 ice_service_task_schedule(pf); 1215 } 1216 1217 /** 1218 * ice_handle_mdd_event - handle malicious driver detect event 1219 * @pf: pointer to the PF structure 1220 * 1221 * Called from service task. OICR interrupt handler indicates MDD event 1222 */ 1223 static void ice_handle_mdd_event(struct ice_pf *pf) 1224 { 1225 struct ice_hw *hw = &pf->hw; 1226 bool mdd_detected = false; 1227 u32 reg; 1228 int i; 1229 1230 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1231 return; 1232 1233 /* find what triggered the MDD event */ 1234 reg = rd32(hw, GL_MDET_TX_PQM); 1235 if (reg & GL_MDET_TX_PQM_VALID_M) { 1236 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1237 GL_MDET_TX_PQM_PF_NUM_S; 1238 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1239 GL_MDET_TX_PQM_VF_NUM_S; 1240 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1241 GL_MDET_TX_PQM_MAL_TYPE_S; 1242 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1243 GL_MDET_TX_PQM_QNUM_S); 1244 1245 if (netif_msg_tx_err(pf)) 1246 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1247 event, queue, pf_num, vf_num); 1248 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1249 mdd_detected = true; 1250 } 1251 1252 reg = rd32(hw, GL_MDET_TX_TCLAN); 1253 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1254 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1255 GL_MDET_TX_TCLAN_PF_NUM_S; 1256 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1257 GL_MDET_TX_TCLAN_VF_NUM_S; 1258 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1259 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1260 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1261 GL_MDET_TX_TCLAN_QNUM_S); 1262 1263 if (netif_msg_rx_err(pf)) 1264 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1265 event, queue, pf_num, vf_num); 1266 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1267 mdd_detected = true; 1268 } 1269 1270 reg = rd32(hw, GL_MDET_RX); 1271 if (reg & GL_MDET_RX_VALID_M) { 1272 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1273 GL_MDET_RX_PF_NUM_S; 1274 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1275 GL_MDET_RX_VF_NUM_S; 1276 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1277 GL_MDET_RX_MAL_TYPE_S; 1278 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1279 GL_MDET_RX_QNUM_S); 1280 1281 if (netif_msg_rx_err(pf)) 1282 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1283 event, queue, pf_num, vf_num); 1284 wr32(hw, GL_MDET_RX, 0xffffffff); 1285 mdd_detected = true; 1286 } 1287 1288 if (mdd_detected) { 1289 bool pf_mdd_detected = false; 1290 1291 reg = rd32(hw, PF_MDET_TX_PQM); 1292 if (reg & PF_MDET_TX_PQM_VALID_M) { 1293 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1294 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1295 pf_mdd_detected = true; 1296 } 1297 1298 reg = rd32(hw, PF_MDET_TX_TCLAN); 1299 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1300 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1301 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1302 pf_mdd_detected = true; 1303 } 1304 1305 reg = rd32(hw, PF_MDET_RX); 1306 if (reg & PF_MDET_RX_VALID_M) { 1307 wr32(hw, PF_MDET_RX, 0xFFFF); 1308 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 1309 pf_mdd_detected = true; 1310 } 1311 /* Queue belongs to the PF initiate a reset */ 1312 if (pf_mdd_detected) { 1313 set_bit(__ICE_NEEDS_RESTART, pf->state); 1314 ice_service_task_schedule(pf); 1315 } 1316 } 1317 1318 /* check to see if one of the VFs caused the MDD */ 1319 for (i = 0; i < pf->num_alloc_vfs; i++) { 1320 struct ice_vf *vf = &pf->vf[i]; 1321 1322 bool vf_mdd_detected = false; 1323 1324 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1325 if (reg & VP_MDET_TX_PQM_VALID_M) { 1326 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1327 vf_mdd_detected = true; 1328 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1329 i); 1330 } 1331 1332 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1333 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1334 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1335 vf_mdd_detected = true; 1336 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1337 i); 1338 } 1339 1340 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1341 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1342 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1343 vf_mdd_detected = true; 1344 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1345 i); 1346 } 1347 1348 reg = rd32(hw, VP_MDET_RX(i)); 1349 if (reg & VP_MDET_RX_VALID_M) { 1350 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1351 vf_mdd_detected = true; 1352 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1353 i); 1354 } 1355 1356 if (vf_mdd_detected) { 1357 vf->num_mdd_events++; 1358 if (vf->num_mdd_events && 1359 vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD) 1360 dev_info(&pf->pdev->dev, 1361 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n", 1362 i, vf->num_mdd_events); 1363 } 1364 } 1365 } 1366 1367 /** 1368 * ice_force_phys_link_state - Force the physical link state 1369 * @vsi: VSI to force the physical link state to up/down 1370 * @link_up: true/false indicates to set the physical link to up/down 1371 * 1372 * Force the physical link state by getting the current PHY capabilities from 1373 * hardware and setting the PHY config based on the determined capabilities. If 1374 * link changes a link event will be triggered because both the Enable Automatic 1375 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1376 * 1377 * Returns 0 on success, negative on failure 1378 */ 1379 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1380 { 1381 struct ice_aqc_get_phy_caps_data *pcaps; 1382 struct ice_aqc_set_phy_cfg_data *cfg; 1383 struct ice_port_info *pi; 1384 struct device *dev; 1385 int retcode; 1386 1387 if (!vsi || !vsi->port_info || !vsi->back) 1388 return -EINVAL; 1389 if (vsi->type != ICE_VSI_PF) 1390 return 0; 1391 1392 dev = &vsi->back->pdev->dev; 1393 1394 pi = vsi->port_info; 1395 1396 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL); 1397 if (!pcaps) 1398 return -ENOMEM; 1399 1400 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1401 NULL); 1402 if (retcode) { 1403 dev_err(dev, 1404 "Failed to get phy capabilities, VSI %d error %d\n", 1405 vsi->vsi_num, retcode); 1406 retcode = -EIO; 1407 goto out; 1408 } 1409 1410 /* No change in link */ 1411 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1412 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1413 goto out; 1414 1415 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL); 1416 if (!cfg) { 1417 retcode = -ENOMEM; 1418 goto out; 1419 } 1420 1421 cfg->phy_type_low = pcaps->phy_type_low; 1422 cfg->phy_type_high = pcaps->phy_type_high; 1423 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1424 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1425 cfg->eee_cap = pcaps->eee_cap; 1426 cfg->eeer_value = pcaps->eeer_value; 1427 cfg->link_fec_opt = pcaps->link_fec_options; 1428 if (link_up) 1429 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1430 else 1431 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1432 1433 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1434 if (retcode) { 1435 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1436 vsi->vsi_num, retcode); 1437 retcode = -EIO; 1438 } 1439 1440 devm_kfree(dev, cfg); 1441 out: 1442 devm_kfree(dev, pcaps); 1443 return retcode; 1444 } 1445 1446 /** 1447 * ice_check_media_subtask - Check for media; bring link up if detected. 1448 * @pf: pointer to PF struct 1449 */ 1450 static void ice_check_media_subtask(struct ice_pf *pf) 1451 { 1452 struct ice_port_info *pi; 1453 struct ice_vsi *vsi; 1454 int err; 1455 1456 vsi = ice_get_main_vsi(pf); 1457 if (!vsi) 1458 return; 1459 1460 /* No need to check for media if it's already present or the interface 1461 * is down 1462 */ 1463 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1464 test_bit(__ICE_DOWN, vsi->state)) 1465 return; 1466 1467 /* Refresh link info and check if media is present */ 1468 pi = vsi->port_info; 1469 err = ice_update_link_info(pi); 1470 if (err) 1471 return; 1472 1473 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1474 err = ice_force_phys_link_state(vsi, true); 1475 if (err) 1476 return; 1477 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1478 1479 /* A Link Status Event will be generated; the event handler 1480 * will complete bringing the interface up 1481 */ 1482 } 1483 } 1484 1485 /** 1486 * ice_service_task - manage and run subtasks 1487 * @work: pointer to work_struct contained by the PF struct 1488 */ 1489 static void ice_service_task(struct work_struct *work) 1490 { 1491 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1492 unsigned long start_time = jiffies; 1493 1494 /* subtasks */ 1495 1496 /* process reset requests first */ 1497 ice_reset_subtask(pf); 1498 1499 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1500 if (ice_is_reset_in_progress(pf->state) || 1501 test_bit(__ICE_SUSPENDED, pf->state) || 1502 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1503 ice_service_task_complete(pf); 1504 return; 1505 } 1506 1507 ice_clean_adminq_subtask(pf); 1508 ice_check_media_subtask(pf); 1509 ice_check_for_hang_subtask(pf); 1510 ice_sync_fltr_subtask(pf); 1511 ice_handle_mdd_event(pf); 1512 ice_watchdog_subtask(pf); 1513 1514 if (ice_is_safe_mode(pf)) { 1515 ice_service_task_complete(pf); 1516 return; 1517 } 1518 1519 ice_process_vflr_event(pf); 1520 ice_clean_mailboxq_subtask(pf); 1521 1522 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1523 ice_service_task_complete(pf); 1524 1525 /* If the tasks have taken longer than one service timer period 1526 * or there is more work to be done, reset the service timer to 1527 * schedule the service task now. 1528 */ 1529 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1530 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1531 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1532 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1533 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1534 mod_timer(&pf->serv_tmr, jiffies); 1535 } 1536 1537 /** 1538 * ice_set_ctrlq_len - helper function to set controlq length 1539 * @hw: pointer to the HW instance 1540 */ 1541 static void ice_set_ctrlq_len(struct ice_hw *hw) 1542 { 1543 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1544 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1545 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1546 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1547 hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN; 1548 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1549 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1550 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1551 } 1552 1553 /** 1554 * ice_irq_affinity_notify - Callback for affinity changes 1555 * @notify: context as to what irq was changed 1556 * @mask: the new affinity mask 1557 * 1558 * This is a callback function used by the irq_set_affinity_notifier function 1559 * so that we may register to receive changes to the irq affinity masks. 1560 */ 1561 static void 1562 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1563 const cpumask_t *mask) 1564 { 1565 struct ice_q_vector *q_vector = 1566 container_of(notify, struct ice_q_vector, affinity_notify); 1567 1568 cpumask_copy(&q_vector->affinity_mask, mask); 1569 } 1570 1571 /** 1572 * ice_irq_affinity_release - Callback for affinity notifier release 1573 * @ref: internal core kernel usage 1574 * 1575 * This is a callback function used by the irq_set_affinity_notifier function 1576 * to inform the current notification subscriber that they will no longer 1577 * receive notifications. 1578 */ 1579 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1580 1581 /** 1582 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1583 * @vsi: the VSI being configured 1584 */ 1585 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1586 { 1587 struct ice_hw *hw = &vsi->back->hw; 1588 int i; 1589 1590 ice_for_each_q_vector(vsi, i) 1591 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1592 1593 ice_flush(hw); 1594 return 0; 1595 } 1596 1597 /** 1598 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1599 * @vsi: the VSI being configured 1600 * @basename: name for the vector 1601 */ 1602 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1603 { 1604 int q_vectors = vsi->num_q_vectors; 1605 struct ice_pf *pf = vsi->back; 1606 int base = vsi->base_vector; 1607 int rx_int_idx = 0; 1608 int tx_int_idx = 0; 1609 int vector, err; 1610 int irq_num; 1611 1612 for (vector = 0; vector < q_vectors; vector++) { 1613 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1614 1615 irq_num = pf->msix_entries[base + vector].vector; 1616 1617 if (q_vector->tx.ring && q_vector->rx.ring) { 1618 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1619 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1620 tx_int_idx++; 1621 } else if (q_vector->rx.ring) { 1622 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1623 "%s-%s-%d", basename, "rx", rx_int_idx++); 1624 } else if (q_vector->tx.ring) { 1625 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1626 "%s-%s-%d", basename, "tx", tx_int_idx++); 1627 } else { 1628 /* skip this unused q_vector */ 1629 continue; 1630 } 1631 err = devm_request_irq(&pf->pdev->dev, irq_num, 1632 vsi->irq_handler, 0, 1633 q_vector->name, q_vector); 1634 if (err) { 1635 netdev_err(vsi->netdev, 1636 "MSIX request_irq failed, error: %d\n", err); 1637 goto free_q_irqs; 1638 } 1639 1640 /* register for affinity change notifications */ 1641 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1642 q_vector->affinity_notify.release = ice_irq_affinity_release; 1643 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1644 1645 /* assign the mask for this irq */ 1646 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1647 } 1648 1649 vsi->irqs_ready = true; 1650 return 0; 1651 1652 free_q_irqs: 1653 while (vector) { 1654 vector--; 1655 irq_num = pf->msix_entries[base + vector].vector, 1656 irq_set_affinity_notifier(irq_num, NULL); 1657 irq_set_affinity_hint(irq_num, NULL); 1658 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1659 } 1660 return err; 1661 } 1662 1663 /** 1664 * ice_ena_misc_vector - enable the non-queue interrupts 1665 * @pf: board private structure 1666 */ 1667 static void ice_ena_misc_vector(struct ice_pf *pf) 1668 { 1669 struct ice_hw *hw = &pf->hw; 1670 u32 val; 1671 1672 /* clear things first */ 1673 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1674 rd32(hw, PFINT_OICR); /* read to clear */ 1675 1676 val = (PFINT_OICR_ECC_ERR_M | 1677 PFINT_OICR_MAL_DETECT_M | 1678 PFINT_OICR_GRST_M | 1679 PFINT_OICR_PCI_EXCEPTION_M | 1680 PFINT_OICR_VFLR_M | 1681 PFINT_OICR_HMC_ERR_M | 1682 PFINT_OICR_PE_CRITERR_M); 1683 1684 wr32(hw, PFINT_OICR_ENA, val); 1685 1686 /* SW_ITR_IDX = 0, but don't change INTENA */ 1687 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 1688 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1689 } 1690 1691 /** 1692 * ice_misc_intr - misc interrupt handler 1693 * @irq: interrupt number 1694 * @data: pointer to a q_vector 1695 */ 1696 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1697 { 1698 struct ice_pf *pf = (struct ice_pf *)data; 1699 struct ice_hw *hw = &pf->hw; 1700 irqreturn_t ret = IRQ_NONE; 1701 u32 oicr, ena_mask; 1702 1703 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1704 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1705 1706 oicr = rd32(hw, PFINT_OICR); 1707 ena_mask = rd32(hw, PFINT_OICR_ENA); 1708 1709 if (oicr & PFINT_OICR_SWINT_M) { 1710 ena_mask &= ~PFINT_OICR_SWINT_M; 1711 pf->sw_int_count++; 1712 } 1713 1714 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1715 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1716 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1717 } 1718 if (oicr & PFINT_OICR_VFLR_M) { 1719 ena_mask &= ~PFINT_OICR_VFLR_M; 1720 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1721 } 1722 1723 if (oicr & PFINT_OICR_GRST_M) { 1724 u32 reset; 1725 1726 /* we have a reset warning */ 1727 ena_mask &= ~PFINT_OICR_GRST_M; 1728 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1729 GLGEN_RSTAT_RESET_TYPE_S; 1730 1731 if (reset == ICE_RESET_CORER) 1732 pf->corer_count++; 1733 else if (reset == ICE_RESET_GLOBR) 1734 pf->globr_count++; 1735 else if (reset == ICE_RESET_EMPR) 1736 pf->empr_count++; 1737 else 1738 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1739 reset); 1740 1741 /* If a reset cycle isn't already in progress, we set a bit in 1742 * pf->state so that the service task can start a reset/rebuild. 1743 * We also make note of which reset happened so that peer 1744 * devices/drivers can be informed. 1745 */ 1746 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1747 if (reset == ICE_RESET_CORER) 1748 set_bit(__ICE_CORER_RECV, pf->state); 1749 else if (reset == ICE_RESET_GLOBR) 1750 set_bit(__ICE_GLOBR_RECV, pf->state); 1751 else 1752 set_bit(__ICE_EMPR_RECV, pf->state); 1753 1754 /* There are couple of different bits at play here. 1755 * hw->reset_ongoing indicates whether the hardware is 1756 * in reset. This is set to true when a reset interrupt 1757 * is received and set back to false after the driver 1758 * has determined that the hardware is out of reset. 1759 * 1760 * __ICE_RESET_OICR_RECV in pf->state indicates 1761 * that a post reset rebuild is required before the 1762 * driver is operational again. This is set above. 1763 * 1764 * As this is the start of the reset/rebuild cycle, set 1765 * both to indicate that. 1766 */ 1767 hw->reset_ongoing = true; 1768 } 1769 } 1770 1771 if (oicr & PFINT_OICR_HMC_ERR_M) { 1772 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1773 dev_dbg(&pf->pdev->dev, 1774 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1775 rd32(hw, PFHMC_ERRORINFO), 1776 rd32(hw, PFHMC_ERRORDATA)); 1777 } 1778 1779 /* Report any remaining unexpected interrupts */ 1780 oicr &= ena_mask; 1781 if (oicr) { 1782 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1783 oicr); 1784 /* If a critical error is pending there is no choice but to 1785 * reset the device. 1786 */ 1787 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1788 PFINT_OICR_PCI_EXCEPTION_M | 1789 PFINT_OICR_ECC_ERR_M)) { 1790 set_bit(__ICE_PFR_REQ, pf->state); 1791 ice_service_task_schedule(pf); 1792 } 1793 } 1794 ret = IRQ_HANDLED; 1795 1796 if (!test_bit(__ICE_DOWN, pf->state)) { 1797 ice_service_task_schedule(pf); 1798 ice_irq_dynamic_ena(hw, NULL, NULL); 1799 } 1800 1801 return ret; 1802 } 1803 1804 /** 1805 * ice_dis_ctrlq_interrupts - disable control queue interrupts 1806 * @hw: pointer to HW structure 1807 */ 1808 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 1809 { 1810 /* disable Admin queue Interrupt causes */ 1811 wr32(hw, PFINT_FW_CTL, 1812 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 1813 1814 /* disable Mailbox queue Interrupt causes */ 1815 wr32(hw, PFINT_MBX_CTL, 1816 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 1817 1818 /* disable Control queue Interrupt causes */ 1819 wr32(hw, PFINT_OICR_CTL, 1820 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 1821 1822 ice_flush(hw); 1823 } 1824 1825 /** 1826 * ice_free_irq_msix_misc - Unroll misc vector setup 1827 * @pf: board private structure 1828 */ 1829 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1830 { 1831 struct ice_hw *hw = &pf->hw; 1832 1833 ice_dis_ctrlq_interrupts(hw); 1834 1835 /* disable OICR interrupt */ 1836 wr32(hw, PFINT_OICR_ENA, 0); 1837 ice_flush(hw); 1838 1839 if (pf->msix_entries) { 1840 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 1841 devm_free_irq(&pf->pdev->dev, 1842 pf->msix_entries[pf->oicr_idx].vector, pf); 1843 } 1844 1845 pf->num_avail_sw_msix += 1; 1846 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 1847 } 1848 1849 /** 1850 * ice_ena_ctrlq_interrupts - enable control queue interrupts 1851 * @hw: pointer to HW structure 1852 * @reg_idx: HW vector index to associate the control queue interrupts with 1853 */ 1854 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 1855 { 1856 u32 val; 1857 1858 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1859 PFINT_OICR_CTL_CAUSE_ENA_M); 1860 wr32(hw, PFINT_OICR_CTL, val); 1861 1862 /* enable Admin queue Interrupt causes */ 1863 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1864 PFINT_FW_CTL_CAUSE_ENA_M); 1865 wr32(hw, PFINT_FW_CTL, val); 1866 1867 /* enable Mailbox queue Interrupt causes */ 1868 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1869 PFINT_MBX_CTL_CAUSE_ENA_M); 1870 wr32(hw, PFINT_MBX_CTL, val); 1871 1872 ice_flush(hw); 1873 } 1874 1875 /** 1876 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1877 * @pf: board private structure 1878 * 1879 * This sets up the handler for MSIX 0, which is used to manage the 1880 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1881 * when in MSI or Legacy interrupt mode. 1882 */ 1883 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1884 { 1885 struct ice_hw *hw = &pf->hw; 1886 int oicr_idx, err = 0; 1887 1888 if (!pf->int_name[0]) 1889 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1890 dev_driver_string(&pf->pdev->dev), 1891 dev_name(&pf->pdev->dev)); 1892 1893 /* Do not request IRQ but do enable OICR interrupt since settings are 1894 * lost during reset. Note that this function is called only during 1895 * rebuild path and not while reset is in progress. 1896 */ 1897 if (ice_is_reset_in_progress(pf->state)) 1898 goto skip_req_irq; 1899 1900 /* reserve one vector in irq_tracker for misc interrupts */ 1901 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1902 if (oicr_idx < 0) 1903 return oicr_idx; 1904 1905 pf->num_avail_sw_msix -= 1; 1906 pf->oicr_idx = oicr_idx; 1907 1908 err = devm_request_irq(&pf->pdev->dev, 1909 pf->msix_entries[pf->oicr_idx].vector, 1910 ice_misc_intr, 0, pf->int_name, pf); 1911 if (err) { 1912 dev_err(&pf->pdev->dev, 1913 "devm_request_irq for %s failed: %d\n", 1914 pf->int_name, err); 1915 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1916 pf->num_avail_sw_msix += 1; 1917 return err; 1918 } 1919 1920 skip_req_irq: 1921 ice_ena_misc_vector(pf); 1922 1923 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 1924 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 1925 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 1926 1927 ice_flush(hw); 1928 ice_irq_dynamic_ena(hw, NULL, NULL); 1929 1930 return 0; 1931 } 1932 1933 /** 1934 * ice_napi_add - register NAPI handler for the VSI 1935 * @vsi: VSI for which NAPI handler is to be registered 1936 * 1937 * This function is only called in the driver's load path. Registering the NAPI 1938 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1939 * reset/rebuild, etc.) 1940 */ 1941 static void ice_napi_add(struct ice_vsi *vsi) 1942 { 1943 int v_idx; 1944 1945 if (!vsi->netdev) 1946 return; 1947 1948 ice_for_each_q_vector(vsi, v_idx) 1949 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1950 ice_napi_poll, NAPI_POLL_WEIGHT); 1951 } 1952 1953 /** 1954 * ice_set_ops - set netdev and ethtools ops for the given netdev 1955 * @netdev: netdev instance 1956 */ 1957 static void ice_set_ops(struct net_device *netdev) 1958 { 1959 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1960 1961 if (ice_is_safe_mode(pf)) { 1962 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 1963 ice_set_ethtool_safe_mode_ops(netdev); 1964 return; 1965 } 1966 1967 netdev->netdev_ops = &ice_netdev_ops; 1968 ice_set_ethtool_ops(netdev); 1969 } 1970 1971 /** 1972 * ice_set_netdev_features - set features for the given netdev 1973 * @netdev: netdev instance 1974 */ 1975 static void ice_set_netdev_features(struct net_device *netdev) 1976 { 1977 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1978 netdev_features_t csumo_features; 1979 netdev_features_t vlano_features; 1980 netdev_features_t dflt_features; 1981 netdev_features_t tso_features; 1982 1983 if (ice_is_safe_mode(pf)) { 1984 /* safe mode */ 1985 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 1986 netdev->hw_features = netdev->features; 1987 return; 1988 } 1989 1990 dflt_features = NETIF_F_SG | 1991 NETIF_F_HIGHDMA | 1992 NETIF_F_RXHASH; 1993 1994 csumo_features = NETIF_F_RXCSUM | 1995 NETIF_F_IP_CSUM | 1996 NETIF_F_SCTP_CRC | 1997 NETIF_F_IPV6_CSUM; 1998 1999 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2000 NETIF_F_HW_VLAN_CTAG_TX | 2001 NETIF_F_HW_VLAN_CTAG_RX; 2002 2003 tso_features = NETIF_F_TSO; 2004 2005 /* set features that user can change */ 2006 netdev->hw_features = dflt_features | csumo_features | 2007 vlano_features | tso_features; 2008 2009 /* enable features */ 2010 netdev->features |= netdev->hw_features; 2011 /* encap and VLAN devices inherit default, csumo and tso features */ 2012 netdev->hw_enc_features |= dflt_features | csumo_features | 2013 tso_features; 2014 netdev->vlan_features |= dflt_features | csumo_features | 2015 tso_features; 2016 } 2017 2018 /** 2019 * ice_cfg_netdev - Allocate, configure and register a netdev 2020 * @vsi: the VSI associated with the new netdev 2021 * 2022 * Returns 0 on success, negative value on failure 2023 */ 2024 static int ice_cfg_netdev(struct ice_vsi *vsi) 2025 { 2026 struct ice_pf *pf = vsi->back; 2027 struct ice_netdev_priv *np; 2028 struct net_device *netdev; 2029 u8 mac_addr[ETH_ALEN]; 2030 int err; 2031 2032 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2033 vsi->alloc_rxq); 2034 if (!netdev) 2035 return -ENOMEM; 2036 2037 vsi->netdev = netdev; 2038 np = netdev_priv(netdev); 2039 np->vsi = vsi; 2040 2041 ice_set_netdev_features(netdev); 2042 2043 ice_set_ops(netdev); 2044 2045 if (vsi->type == ICE_VSI_PF) { 2046 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 2047 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2048 ether_addr_copy(netdev->dev_addr, mac_addr); 2049 ether_addr_copy(netdev->perm_addr, mac_addr); 2050 } 2051 2052 netdev->priv_flags |= IFF_UNICAST_FLT; 2053 2054 /* Setup netdev TC information */ 2055 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2056 2057 /* setup watchdog timeout value to be 5 second */ 2058 netdev->watchdog_timeo = 5 * HZ; 2059 2060 netdev->min_mtu = ETH_MIN_MTU; 2061 netdev->max_mtu = ICE_MAX_MTU; 2062 2063 err = register_netdev(vsi->netdev); 2064 if (err) 2065 return err; 2066 2067 netif_carrier_off(vsi->netdev); 2068 2069 /* make sure transmit queues start off as stopped */ 2070 netif_tx_stop_all_queues(vsi->netdev); 2071 2072 return 0; 2073 } 2074 2075 /** 2076 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2077 * @lut: Lookup table 2078 * @rss_table_size: Lookup table size 2079 * @rss_size: Range of queue number for hashing 2080 */ 2081 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2082 { 2083 u16 i; 2084 2085 for (i = 0; i < rss_table_size; i++) 2086 lut[i] = i % rss_size; 2087 } 2088 2089 /** 2090 * ice_pf_vsi_setup - Set up a PF VSI 2091 * @pf: board private structure 2092 * @pi: pointer to the port_info instance 2093 * 2094 * Returns pointer to the successfully allocated VSI software struct 2095 * on success, otherwise returns NULL on failure. 2096 */ 2097 static struct ice_vsi * 2098 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2099 { 2100 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2101 } 2102 2103 /** 2104 * ice_lb_vsi_setup - Set up a loopback VSI 2105 * @pf: board private structure 2106 * @pi: pointer to the port_info instance 2107 * 2108 * Returns pointer to the successfully allocated VSI software struct 2109 * on success, otherwise returns NULL on failure. 2110 */ 2111 struct ice_vsi * 2112 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2113 { 2114 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2115 } 2116 2117 /** 2118 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2119 * @netdev: network interface to be adjusted 2120 * @proto: unused protocol 2121 * @vid: VLAN ID to be added 2122 * 2123 * net_device_ops implementation for adding VLAN IDs 2124 */ 2125 static int 2126 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2127 u16 vid) 2128 { 2129 struct ice_netdev_priv *np = netdev_priv(netdev); 2130 struct ice_vsi *vsi = np->vsi; 2131 int ret; 2132 2133 if (vid >= VLAN_N_VID) { 2134 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2135 vid, VLAN_N_VID); 2136 return -EINVAL; 2137 } 2138 2139 if (vsi->info.pvid) 2140 return -EINVAL; 2141 2142 /* Enable VLAN pruning when VLAN 0 is added */ 2143 if (unlikely(!vid)) { 2144 ret = ice_cfg_vlan_pruning(vsi, true, false); 2145 if (ret) 2146 return ret; 2147 } 2148 2149 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 2150 * needed to continue allowing all untagged packets since VLAN prune 2151 * list is applied to all packets by the switch 2152 */ 2153 ret = ice_vsi_add_vlan(vsi, vid); 2154 if (!ret) { 2155 vsi->vlan_ena = true; 2156 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2157 } 2158 2159 return ret; 2160 } 2161 2162 /** 2163 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2164 * @netdev: network interface to be adjusted 2165 * @proto: unused protocol 2166 * @vid: VLAN ID to be removed 2167 * 2168 * net_device_ops implementation for removing VLAN IDs 2169 */ 2170 static int 2171 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2172 u16 vid) 2173 { 2174 struct ice_netdev_priv *np = netdev_priv(netdev); 2175 struct ice_vsi *vsi = np->vsi; 2176 int ret; 2177 2178 if (vsi->info.pvid) 2179 return -EINVAL; 2180 2181 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2182 * information 2183 */ 2184 ret = ice_vsi_kill_vlan(vsi, vid); 2185 if (ret) 2186 return ret; 2187 2188 /* Disable VLAN pruning when VLAN 0 is removed */ 2189 if (unlikely(!vid)) 2190 ret = ice_cfg_vlan_pruning(vsi, false, false); 2191 2192 vsi->vlan_ena = false; 2193 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2194 return ret; 2195 } 2196 2197 /** 2198 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2199 * @pf: board private structure 2200 * 2201 * Returns 0 on success, negative value on failure 2202 */ 2203 static int ice_setup_pf_sw(struct ice_pf *pf) 2204 { 2205 struct ice_vsi *vsi; 2206 int status = 0; 2207 2208 if (ice_is_reset_in_progress(pf->state)) 2209 return -EBUSY; 2210 2211 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2212 if (!vsi) { 2213 status = -ENOMEM; 2214 goto unroll_vsi_setup; 2215 } 2216 2217 status = ice_cfg_netdev(vsi); 2218 if (status) { 2219 status = -ENODEV; 2220 goto unroll_vsi_setup; 2221 } 2222 2223 /* registering the NAPI handler requires both the queues and 2224 * netdev to be created, which are done in ice_pf_vsi_setup() 2225 * and ice_cfg_netdev() respectively 2226 */ 2227 ice_napi_add(vsi); 2228 2229 status = ice_init_mac_fltr(pf); 2230 if (status) 2231 goto unroll_napi_add; 2232 2233 return status; 2234 2235 unroll_napi_add: 2236 if (vsi) { 2237 ice_napi_del(vsi); 2238 if (vsi->netdev) { 2239 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2240 unregister_netdev(vsi->netdev); 2241 free_netdev(vsi->netdev); 2242 vsi->netdev = NULL; 2243 } 2244 } 2245 2246 unroll_vsi_setup: 2247 if (vsi) { 2248 ice_vsi_free_q_vectors(vsi); 2249 ice_vsi_delete(vsi); 2250 ice_vsi_put_qs(vsi); 2251 ice_vsi_clear(vsi); 2252 } 2253 return status; 2254 } 2255 2256 /** 2257 * ice_get_avail_q_count - Get count of queues in use 2258 * @pf_qmap: bitmap to get queue use count from 2259 * @lock: pointer to a mutex that protects access to pf_qmap 2260 * @size: size of the bitmap 2261 */ 2262 static u16 2263 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2264 { 2265 u16 count = 0, bit; 2266 2267 mutex_lock(lock); 2268 for_each_clear_bit(bit, pf_qmap, size) 2269 count++; 2270 mutex_unlock(lock); 2271 2272 return count; 2273 } 2274 2275 /** 2276 * ice_get_avail_txq_count - Get count of Tx queues in use 2277 * @pf: pointer to an ice_pf instance 2278 */ 2279 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2280 { 2281 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2282 pf->max_pf_txqs); 2283 } 2284 2285 /** 2286 * ice_get_avail_rxq_count - Get count of Rx queues in use 2287 * @pf: pointer to an ice_pf instance 2288 */ 2289 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2290 { 2291 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2292 pf->max_pf_rxqs); 2293 } 2294 2295 /** 2296 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2297 * @pf: board private structure to initialize 2298 */ 2299 static void ice_deinit_pf(struct ice_pf *pf) 2300 { 2301 ice_service_task_stop(pf); 2302 mutex_destroy(&pf->sw_mutex); 2303 mutex_destroy(&pf->avail_q_mutex); 2304 2305 if (pf->avail_txqs) { 2306 bitmap_free(pf->avail_txqs); 2307 pf->avail_txqs = NULL; 2308 } 2309 2310 if (pf->avail_rxqs) { 2311 bitmap_free(pf->avail_rxqs); 2312 pf->avail_rxqs = NULL; 2313 } 2314 } 2315 2316 /** 2317 * ice_set_pf_caps - set PFs capability flags 2318 * @pf: pointer to the PF instance 2319 */ 2320 static void ice_set_pf_caps(struct ice_pf *pf) 2321 { 2322 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2323 2324 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2325 if (func_caps->common_cap.dcb) 2326 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2327 #ifdef CONFIG_PCI_IOV 2328 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2329 if (func_caps->common_cap.sr_iov_1_1) { 2330 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2331 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2332 ICE_MAX_VF_COUNT); 2333 } 2334 #endif /* CONFIG_PCI_IOV */ 2335 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2336 if (func_caps->common_cap.rss_table_size) 2337 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2338 2339 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2340 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2341 } 2342 2343 /** 2344 * ice_init_pf - Initialize general software structures (struct ice_pf) 2345 * @pf: board private structure to initialize 2346 */ 2347 static int ice_init_pf(struct ice_pf *pf) 2348 { 2349 ice_set_pf_caps(pf); 2350 2351 mutex_init(&pf->sw_mutex); 2352 2353 /* setup service timer and periodic service task */ 2354 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2355 pf->serv_tmr_period = HZ; 2356 INIT_WORK(&pf->serv_task, ice_service_task); 2357 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2358 2359 mutex_init(&pf->avail_q_mutex); 2360 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2361 if (!pf->avail_txqs) 2362 return -ENOMEM; 2363 2364 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2365 if (!pf->avail_rxqs) { 2366 devm_kfree(&pf->pdev->dev, pf->avail_txqs); 2367 pf->avail_txqs = NULL; 2368 return -ENOMEM; 2369 } 2370 2371 return 0; 2372 } 2373 2374 /** 2375 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2376 * @pf: board private structure 2377 * 2378 * compute the number of MSIX vectors required (v_budget) and request from 2379 * the OS. Return the number of vectors reserved or negative on failure 2380 */ 2381 static int ice_ena_msix_range(struct ice_pf *pf) 2382 { 2383 int v_left, v_actual, v_budget = 0; 2384 int needed, err, i; 2385 2386 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2387 2388 /* reserve one vector for miscellaneous handler */ 2389 needed = 1; 2390 if (v_left < needed) 2391 goto no_hw_vecs_left_err; 2392 v_budget += needed; 2393 v_left -= needed; 2394 2395 /* reserve vectors for LAN traffic */ 2396 needed = min_t(int, num_online_cpus(), v_left); 2397 if (v_left < needed) 2398 goto no_hw_vecs_left_err; 2399 pf->num_lan_msix = needed; 2400 v_budget += needed; 2401 v_left -= needed; 2402 2403 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 2404 sizeof(*pf->msix_entries), GFP_KERNEL); 2405 2406 if (!pf->msix_entries) { 2407 err = -ENOMEM; 2408 goto exit_err; 2409 } 2410 2411 for (i = 0; i < v_budget; i++) 2412 pf->msix_entries[i].entry = i; 2413 2414 /* actually reserve the vectors */ 2415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2416 ICE_MIN_MSIX, v_budget); 2417 2418 if (v_actual < 0) { 2419 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 2420 err = v_actual; 2421 goto msix_err; 2422 } 2423 2424 if (v_actual < v_budget) { 2425 dev_warn(&pf->pdev->dev, 2426 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2427 v_budget, v_actual); 2428 /* 2 vectors for LAN (traffic + OICR) */ 2429 #define ICE_MIN_LAN_VECS 2 2430 2431 if (v_actual < ICE_MIN_LAN_VECS) { 2432 /* error if we can't get minimum vectors */ 2433 pci_disable_msix(pf->pdev); 2434 err = -ERANGE; 2435 goto msix_err; 2436 } else { 2437 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2438 } 2439 } 2440 2441 return v_actual; 2442 2443 msix_err: 2444 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2445 goto exit_err; 2446 2447 no_hw_vecs_left_err: 2448 dev_err(&pf->pdev->dev, 2449 "not enough device MSI-X vectors. requested = %d, available = %d\n", 2450 needed, v_left); 2451 err = -ERANGE; 2452 exit_err: 2453 pf->num_lan_msix = 0; 2454 return err; 2455 } 2456 2457 /** 2458 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2459 * @pf: board private structure 2460 */ 2461 static void ice_dis_msix(struct ice_pf *pf) 2462 { 2463 pci_disable_msix(pf->pdev); 2464 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2465 pf->msix_entries = NULL; 2466 } 2467 2468 /** 2469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2470 * @pf: board private structure 2471 */ 2472 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2473 { 2474 ice_dis_msix(pf); 2475 2476 if (pf->irq_tracker) { 2477 devm_kfree(&pf->pdev->dev, pf->irq_tracker); 2478 pf->irq_tracker = NULL; 2479 } 2480 } 2481 2482 /** 2483 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2484 * @pf: board private structure to initialize 2485 */ 2486 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2487 { 2488 int vectors; 2489 2490 vectors = ice_ena_msix_range(pf); 2491 2492 if (vectors < 0) 2493 return vectors; 2494 2495 /* set up vector assignment tracking */ 2496 pf->irq_tracker = 2497 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) + 2498 (sizeof(u16) * vectors), GFP_KERNEL); 2499 if (!pf->irq_tracker) { 2500 ice_dis_msix(pf); 2501 return -ENOMEM; 2502 } 2503 2504 /* populate SW interrupts pool with number of OS granted IRQs. */ 2505 pf->num_avail_sw_msix = vectors; 2506 pf->irq_tracker->num_entries = vectors; 2507 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2508 2509 return 0; 2510 } 2511 2512 /** 2513 * ice_log_pkg_init - log result of DDP package load 2514 * @hw: pointer to hardware info 2515 * @status: status of package load 2516 */ 2517 static void 2518 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2519 { 2520 struct ice_pf *pf = (struct ice_pf *)hw->back; 2521 struct device *dev = &pf->pdev->dev; 2522 2523 switch (*status) { 2524 case ICE_SUCCESS: 2525 /* The package download AdminQ command returned success because 2526 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 2527 * already a package loaded on the device. 2528 */ 2529 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 2530 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 2531 hw->pkg_ver.update == hw->active_pkg_ver.update && 2532 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 2533 !memcmp(hw->pkg_name, hw->active_pkg_name, 2534 sizeof(hw->pkg_name))) { 2535 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 2536 dev_info(dev, 2537 "DDP package already present on device: %s version %d.%d.%d.%d\n", 2538 hw->active_pkg_name, 2539 hw->active_pkg_ver.major, 2540 hw->active_pkg_ver.minor, 2541 hw->active_pkg_ver.update, 2542 hw->active_pkg_ver.draft); 2543 else 2544 dev_info(dev, 2545 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 2546 hw->active_pkg_name, 2547 hw->active_pkg_ver.major, 2548 hw->active_pkg_ver.minor, 2549 hw->active_pkg_ver.update, 2550 hw->active_pkg_ver.draft); 2551 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 2552 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 2553 dev_err(dev, 2554 "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 2555 hw->active_pkg_name, 2556 hw->active_pkg_ver.major, 2557 hw->active_pkg_ver.minor, 2558 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2559 *status = ICE_ERR_NOT_SUPPORTED; 2560 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2561 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 2562 dev_info(dev, 2563 "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 2564 hw->active_pkg_name, 2565 hw->active_pkg_ver.major, 2566 hw->active_pkg_ver.minor, 2567 hw->active_pkg_ver.update, 2568 hw->active_pkg_ver.draft, 2569 hw->pkg_name, 2570 hw->pkg_ver.major, 2571 hw->pkg_ver.minor, 2572 hw->pkg_ver.update, 2573 hw->pkg_ver.draft); 2574 } else { 2575 dev_err(dev, 2576 "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 2577 *status = ICE_ERR_NOT_SUPPORTED; 2578 } 2579 break; 2580 case ICE_ERR_BUF_TOO_SHORT: 2581 /* fall-through */ 2582 case ICE_ERR_CFG: 2583 dev_err(dev, 2584 "The DDP package file is invalid. Entering Safe Mode.\n"); 2585 break; 2586 case ICE_ERR_NOT_SUPPORTED: 2587 /* Package File version not supported */ 2588 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 2589 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2590 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 2591 dev_err(dev, 2592 "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 2593 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 2594 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2595 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 2596 dev_err(dev, 2597 "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 2598 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2599 break; 2600 case ICE_ERR_AQ_ERROR: 2601 switch (hw->adminq.sq_last_status) { 2602 case ICE_AQ_RC_ENOSEC: 2603 case ICE_AQ_RC_EBADSIG: 2604 dev_err(dev, 2605 "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 2606 return; 2607 case ICE_AQ_RC_ESVN: 2608 dev_err(dev, 2609 "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 2610 return; 2611 case ICE_AQ_RC_EBADMAN: 2612 case ICE_AQ_RC_EBADBUF: 2613 dev_err(dev, 2614 "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 2615 return; 2616 default: 2617 break; 2618 } 2619 /* fall-through */ 2620 default: 2621 dev_err(dev, 2622 "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 2623 *status); 2624 break; 2625 } 2626 } 2627 2628 /** 2629 * ice_load_pkg - load/reload the DDP Package file 2630 * @firmware: firmware structure when firmware requested or NULL for reload 2631 * @pf: pointer to the PF instance 2632 * 2633 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 2634 * initialize HW tables. 2635 */ 2636 static void 2637 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 2638 { 2639 enum ice_status status = ICE_ERR_PARAM; 2640 struct device *dev = &pf->pdev->dev; 2641 struct ice_hw *hw = &pf->hw; 2642 2643 /* Load DDP Package */ 2644 if (firmware && !hw->pkg_copy) { 2645 status = ice_copy_and_init_pkg(hw, firmware->data, 2646 firmware->size); 2647 ice_log_pkg_init(hw, &status); 2648 } else if (!firmware && hw->pkg_copy) { 2649 /* Reload package during rebuild after CORER/GLOBR reset */ 2650 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 2651 ice_log_pkg_init(hw, &status); 2652 } else { 2653 dev_err(dev, 2654 "The DDP package file failed to load. Entering Safe Mode.\n"); 2655 } 2656 2657 if (status) { 2658 /* Safe Mode */ 2659 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 2660 return; 2661 } 2662 2663 /* Successful download package is the precondition for advanced 2664 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 2665 */ 2666 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 2667 } 2668 2669 /** 2670 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 2671 * @pf: pointer to the PF structure 2672 * 2673 * There is no error returned here because the driver should be able to handle 2674 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2675 * specifically with Tx. 2676 */ 2677 static void ice_verify_cacheline_size(struct ice_pf *pf) 2678 { 2679 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2680 dev_warn(&pf->pdev->dev, 2681 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2682 ICE_CACHE_LINE_BYTES); 2683 } 2684 2685 /** 2686 * ice_send_version - update firmware with driver version 2687 * @pf: PF struct 2688 * 2689 * Returns ICE_SUCCESS on success, else error code 2690 */ 2691 static enum ice_status ice_send_version(struct ice_pf *pf) 2692 { 2693 struct ice_driver_ver dv; 2694 2695 dv.major_ver = DRV_VERSION_MAJOR; 2696 dv.minor_ver = DRV_VERSION_MINOR; 2697 dv.build_ver = DRV_VERSION_BUILD; 2698 dv.subbuild_ver = 0; 2699 strscpy((char *)dv.driver_string, DRV_VERSION, 2700 sizeof(dv.driver_string)); 2701 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 2702 } 2703 2704 /** 2705 * ice_get_opt_fw_name - return optional firmware file name or NULL 2706 * @pf: pointer to the PF instance 2707 */ 2708 static char *ice_get_opt_fw_name(struct ice_pf *pf) 2709 { 2710 /* Optional firmware name same as default with additional dash 2711 * followed by a EUI-64 identifier (PCIe Device Serial Number) 2712 */ 2713 struct pci_dev *pdev = pf->pdev; 2714 char *opt_fw_filename = NULL; 2715 u32 dword; 2716 u8 dsn[8]; 2717 int pos; 2718 2719 /* Determine the name of the optional file using the DSN (two 2720 * dwords following the start of the DSN Capability). 2721 */ 2722 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN); 2723 if (pos) { 2724 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 2725 if (!opt_fw_filename) 2726 return NULL; 2727 2728 pci_read_config_dword(pdev, pos + 4, &dword); 2729 put_unaligned_le32(dword, &dsn[0]); 2730 pci_read_config_dword(pdev, pos + 8, &dword); 2731 put_unaligned_le32(dword, &dsn[4]); 2732 snprintf(opt_fw_filename, NAME_MAX, 2733 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg", 2734 ICE_DDP_PKG_PATH, 2735 dsn[7], dsn[6], dsn[5], dsn[4], 2736 dsn[3], dsn[2], dsn[1], dsn[0]); 2737 } 2738 2739 return opt_fw_filename; 2740 } 2741 2742 /** 2743 * ice_request_fw - Device initialization routine 2744 * @pf: pointer to the PF instance 2745 */ 2746 static void ice_request_fw(struct ice_pf *pf) 2747 { 2748 char *opt_fw_filename = ice_get_opt_fw_name(pf); 2749 const struct firmware *firmware = NULL; 2750 struct device *dev = &pf->pdev->dev; 2751 int err = 0; 2752 2753 /* optional device-specific DDP (if present) overrides the default DDP 2754 * package file. kernel logs a debug message if the file doesn't exist, 2755 * and warning messages for other errors. 2756 */ 2757 if (opt_fw_filename) { 2758 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 2759 if (err) { 2760 kfree(opt_fw_filename); 2761 goto dflt_pkg_load; 2762 } 2763 2764 /* request for firmware was successful. Download to device */ 2765 ice_load_pkg(firmware, pf); 2766 kfree(opt_fw_filename); 2767 release_firmware(firmware); 2768 return; 2769 } 2770 2771 dflt_pkg_load: 2772 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 2773 if (err) { 2774 dev_err(dev, 2775 "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 2776 return; 2777 } 2778 2779 /* request for firmware was successful. Download to device */ 2780 ice_load_pkg(firmware, pf); 2781 release_firmware(firmware); 2782 } 2783 2784 /** 2785 * ice_probe - Device initialization routine 2786 * @pdev: PCI device information struct 2787 * @ent: entry in ice_pci_tbl 2788 * 2789 * Returns 0 on success, negative on failure 2790 */ 2791 static int 2792 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 2793 { 2794 struct device *dev = &pdev->dev; 2795 struct ice_pf *pf; 2796 struct ice_hw *hw; 2797 int err; 2798 2799 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */ 2800 err = pcim_enable_device(pdev); 2801 if (err) 2802 return err; 2803 2804 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2805 if (err) { 2806 dev_err(dev, "BAR0 I/O map error %d\n", err); 2807 return err; 2808 } 2809 2810 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 2811 if (!pf) 2812 return -ENOMEM; 2813 2814 /* set up for high or low DMA */ 2815 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 2816 if (err) 2817 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2818 if (err) { 2819 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 2820 return err; 2821 } 2822 2823 pci_enable_pcie_error_reporting(pdev); 2824 pci_set_master(pdev); 2825 2826 pf->pdev = pdev; 2827 pci_set_drvdata(pdev, pf); 2828 set_bit(__ICE_DOWN, pf->state); 2829 /* Disable service task until DOWN bit is cleared */ 2830 set_bit(__ICE_SERVICE_DIS, pf->state); 2831 2832 hw = &pf->hw; 2833 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2834 hw->back = pf; 2835 hw->vendor_id = pdev->vendor; 2836 hw->device_id = pdev->device; 2837 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2838 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2839 hw->subsystem_device_id = pdev->subsystem_device; 2840 hw->bus.device = PCI_SLOT(pdev->devfn); 2841 hw->bus.func = PCI_FUNC(pdev->devfn); 2842 ice_set_ctrlq_len(hw); 2843 2844 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2845 2846 #ifndef CONFIG_DYNAMIC_DEBUG 2847 if (debug < -1) 2848 hw->debug_mask = debug; 2849 #endif 2850 2851 err = ice_init_hw(hw); 2852 if (err) { 2853 dev_err(dev, "ice_init_hw failed: %d\n", err); 2854 err = -EIO; 2855 goto err_exit_unroll; 2856 } 2857 2858 dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n", 2859 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch, 2860 hw->api_maj_ver, hw->api_min_ver, hw->api_patch, 2861 ice_nvm_version_str(hw), hw->fw_build); 2862 2863 ice_request_fw(pf); 2864 2865 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 2866 * set in pf->state, which will cause ice_is_safe_mode to return 2867 * true 2868 */ 2869 if (ice_is_safe_mode(pf)) { 2870 dev_err(dev, 2871 "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 2872 /* we already got function/device capabilities but these don't 2873 * reflect what the driver needs to do in safe mode. Instead of 2874 * adding conditional logic everywhere to ignore these 2875 * device/function capabilities, override them. 2876 */ 2877 ice_set_safe_mode_caps(hw); 2878 } 2879 2880 err = ice_init_pf(pf); 2881 if (err) { 2882 dev_err(dev, "ice_init_pf failed: %d\n", err); 2883 goto err_init_pf_unroll; 2884 } 2885 2886 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 2887 if (!pf->num_alloc_vsi) { 2888 err = -EIO; 2889 goto err_init_pf_unroll; 2890 } 2891 2892 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 2893 GFP_KERNEL); 2894 if (!pf->vsi) { 2895 err = -ENOMEM; 2896 goto err_init_pf_unroll; 2897 } 2898 2899 err = ice_init_interrupt_scheme(pf); 2900 if (err) { 2901 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 2902 err = -EIO; 2903 goto err_init_interrupt_unroll; 2904 } 2905 2906 /* Driver is mostly up */ 2907 clear_bit(__ICE_DOWN, pf->state); 2908 2909 /* In case of MSIX we are going to setup the misc vector right here 2910 * to handle admin queue events etc. In case of legacy and MSI 2911 * the misc functionality and queue processing is combined in 2912 * the same vector and that gets setup at open. 2913 */ 2914 err = ice_req_irq_msix_misc(pf); 2915 if (err) { 2916 dev_err(dev, "setup of misc vector failed: %d\n", err); 2917 goto err_init_interrupt_unroll; 2918 } 2919 2920 /* create switch struct for the switch element created by FW on boot */ 2921 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 2922 if (!pf->first_sw) { 2923 err = -ENOMEM; 2924 goto err_msix_misc_unroll; 2925 } 2926 2927 if (hw->evb_veb) 2928 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2929 else 2930 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2931 2932 pf->first_sw->pf = pf; 2933 2934 /* record the sw_id available for later use */ 2935 pf->first_sw->sw_id = hw->port_info->sw_id; 2936 2937 err = ice_setup_pf_sw(pf); 2938 if (err) { 2939 dev_err(dev, "probe failed due to setup PF switch:%d\n", err); 2940 goto err_alloc_sw_unroll; 2941 } 2942 2943 clear_bit(__ICE_SERVICE_DIS, pf->state); 2944 2945 /* tell the firmware we are up */ 2946 err = ice_send_version(pf); 2947 if (err) { 2948 dev_err(dev, 2949 "probe failed sending driver version %s. error: %d\n", 2950 ice_drv_ver, err); 2951 goto err_alloc_sw_unroll; 2952 } 2953 2954 /* since everything is good, start the service timer */ 2955 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2956 2957 err = ice_init_link_events(pf->hw.port_info); 2958 if (err) { 2959 dev_err(dev, "ice_init_link_events failed: %d\n", err); 2960 goto err_alloc_sw_unroll; 2961 } 2962 2963 ice_verify_cacheline_size(pf); 2964 2965 /* If no DDP driven features have to be setup, return here */ 2966 if (ice_is_safe_mode(pf)) 2967 return 0; 2968 2969 /* initialize DDP driven features */ 2970 2971 /* Note: DCB init failure is non-fatal to load */ 2972 if (ice_init_pf_dcb(pf, false)) { 2973 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2974 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 2975 } else { 2976 ice_cfg_lldp_mib_change(&pf->hw, true); 2977 } 2978 2979 return 0; 2980 2981 err_alloc_sw_unroll: 2982 set_bit(__ICE_SERVICE_DIS, pf->state); 2983 set_bit(__ICE_DOWN, pf->state); 2984 devm_kfree(&pf->pdev->dev, pf->first_sw); 2985 err_msix_misc_unroll: 2986 ice_free_irq_msix_misc(pf); 2987 err_init_interrupt_unroll: 2988 ice_clear_interrupt_scheme(pf); 2989 devm_kfree(dev, pf->vsi); 2990 err_init_pf_unroll: 2991 ice_deinit_pf(pf); 2992 ice_deinit_hw(hw); 2993 err_exit_unroll: 2994 pci_disable_pcie_error_reporting(pdev); 2995 return err; 2996 } 2997 2998 /** 2999 * ice_remove - Device removal routine 3000 * @pdev: PCI device information struct 3001 */ 3002 static void ice_remove(struct pci_dev *pdev) 3003 { 3004 struct ice_pf *pf = pci_get_drvdata(pdev); 3005 int i; 3006 3007 if (!pf) 3008 return; 3009 3010 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3011 if (!ice_is_reset_in_progress(pf->state)) 3012 break; 3013 msleep(100); 3014 } 3015 3016 set_bit(__ICE_DOWN, pf->state); 3017 ice_service_task_stop(pf); 3018 3019 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 3020 ice_free_vfs(pf); 3021 ice_vsi_release_all(pf); 3022 ice_free_irq_msix_misc(pf); 3023 ice_for_each_vsi(pf, i) { 3024 if (!pf->vsi[i]) 3025 continue; 3026 ice_vsi_free_q_vectors(pf->vsi[i]); 3027 } 3028 ice_deinit_pf(pf); 3029 ice_deinit_hw(&pf->hw); 3030 ice_clear_interrupt_scheme(pf); 3031 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3032 * do it via ice_schedule_reset() since there is no need to rebuild 3033 * and the service task is already stopped. 3034 */ 3035 ice_reset(&pf->hw, ICE_RESET_PFR); 3036 pci_disable_pcie_error_reporting(pdev); 3037 } 3038 3039 /** 3040 * ice_pci_err_detected - warning that PCI error has been detected 3041 * @pdev: PCI device information struct 3042 * @err: the type of PCI error 3043 * 3044 * Called to warn that something happened on the PCI bus and the error handling 3045 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3046 */ 3047 static pci_ers_result_t 3048 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3049 { 3050 struct ice_pf *pf = pci_get_drvdata(pdev); 3051 3052 if (!pf) { 3053 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3054 __func__, err); 3055 return PCI_ERS_RESULT_DISCONNECT; 3056 } 3057 3058 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3059 ice_service_task_stop(pf); 3060 3061 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3062 set_bit(__ICE_PFR_REQ, pf->state); 3063 ice_prepare_for_reset(pf); 3064 } 3065 } 3066 3067 return PCI_ERS_RESULT_NEED_RESET; 3068 } 3069 3070 /** 3071 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3072 * @pdev: PCI device information struct 3073 * 3074 * Called to determine if the driver can recover from the PCI slot reset by 3075 * using a register read to determine if the device is recoverable. 3076 */ 3077 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3078 { 3079 struct ice_pf *pf = pci_get_drvdata(pdev); 3080 pci_ers_result_t result; 3081 int err; 3082 u32 reg; 3083 3084 err = pci_enable_device_mem(pdev); 3085 if (err) { 3086 dev_err(&pdev->dev, 3087 "Cannot re-enable PCI device after reset, error %d\n", 3088 err); 3089 result = PCI_ERS_RESULT_DISCONNECT; 3090 } else { 3091 pci_set_master(pdev); 3092 pci_restore_state(pdev); 3093 pci_save_state(pdev); 3094 pci_wake_from_d3(pdev, false); 3095 3096 /* Check for life */ 3097 reg = rd32(&pf->hw, GLGEN_RTRIG); 3098 if (!reg) 3099 result = PCI_ERS_RESULT_RECOVERED; 3100 else 3101 result = PCI_ERS_RESULT_DISCONNECT; 3102 } 3103 3104 err = pci_cleanup_aer_uncorrect_error_status(pdev); 3105 if (err) 3106 dev_dbg(&pdev->dev, 3107 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 3108 err); 3109 /* non-fatal, continue */ 3110 3111 return result; 3112 } 3113 3114 /** 3115 * ice_pci_err_resume - restart operations after PCI error recovery 3116 * @pdev: PCI device information struct 3117 * 3118 * Called to allow the driver to bring things back up after PCI error and/or 3119 * reset recovery have finished 3120 */ 3121 static void ice_pci_err_resume(struct pci_dev *pdev) 3122 { 3123 struct ice_pf *pf = pci_get_drvdata(pdev); 3124 3125 if (!pf) { 3126 dev_err(&pdev->dev, 3127 "%s failed, device is unrecoverable\n", __func__); 3128 return; 3129 } 3130 3131 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3132 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3133 __func__); 3134 return; 3135 } 3136 3137 ice_do_reset(pf, ICE_RESET_PFR); 3138 ice_service_task_restart(pf); 3139 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3140 } 3141 3142 /** 3143 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3144 * @pdev: PCI device information struct 3145 */ 3146 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3147 { 3148 struct ice_pf *pf = pci_get_drvdata(pdev); 3149 3150 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3151 ice_service_task_stop(pf); 3152 3153 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3154 set_bit(__ICE_PFR_REQ, pf->state); 3155 ice_prepare_for_reset(pf); 3156 } 3157 } 3158 } 3159 3160 /** 3161 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3162 * @pdev: PCI device information struct 3163 */ 3164 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3165 { 3166 ice_pci_err_resume(pdev); 3167 } 3168 3169 /* ice_pci_tbl - PCI Device ID Table 3170 * 3171 * Wildcard entries (PCI_ANY_ID) should come last 3172 * Last entry must be all 0s 3173 * 3174 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3175 * Class, Class Mask, private data (not used) } 3176 */ 3177 static const struct pci_device_id ice_pci_tbl[] = { 3178 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3179 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3180 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3181 /* required last entry */ 3182 { 0, } 3183 }; 3184 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3185 3186 static const struct pci_error_handlers ice_pci_err_handler = { 3187 .error_detected = ice_pci_err_detected, 3188 .slot_reset = ice_pci_err_slot_reset, 3189 .reset_prepare = ice_pci_err_reset_prepare, 3190 .reset_done = ice_pci_err_reset_done, 3191 .resume = ice_pci_err_resume 3192 }; 3193 3194 static struct pci_driver ice_driver = { 3195 .name = KBUILD_MODNAME, 3196 .id_table = ice_pci_tbl, 3197 .probe = ice_probe, 3198 .remove = ice_remove, 3199 .sriov_configure = ice_sriov_configure, 3200 .err_handler = &ice_pci_err_handler 3201 }; 3202 3203 /** 3204 * ice_module_init - Driver registration routine 3205 * 3206 * ice_module_init is the first routine called when the driver is 3207 * loaded. All it does is register with the PCI subsystem. 3208 */ 3209 static int __init ice_module_init(void) 3210 { 3211 int status; 3212 3213 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3214 pr_info("%s\n", ice_copyright); 3215 3216 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3217 if (!ice_wq) { 3218 pr_err("Failed to create workqueue\n"); 3219 return -ENOMEM; 3220 } 3221 3222 status = pci_register_driver(&ice_driver); 3223 if (status) { 3224 pr_err("failed to register PCI driver, err %d\n", status); 3225 destroy_workqueue(ice_wq); 3226 } 3227 3228 return status; 3229 } 3230 module_init(ice_module_init); 3231 3232 /** 3233 * ice_module_exit - Driver exit cleanup routine 3234 * 3235 * ice_module_exit is called just before the driver is removed 3236 * from memory. 3237 */ 3238 static void __exit ice_module_exit(void) 3239 { 3240 pci_unregister_driver(&ice_driver); 3241 destroy_workqueue(ice_wq); 3242 pr_info("module unloaded\n"); 3243 } 3244 module_exit(ice_module_exit); 3245 3246 /** 3247 * ice_set_mac_address - NDO callback to set MAC address 3248 * @netdev: network interface device structure 3249 * @pi: pointer to an address structure 3250 * 3251 * Returns 0 on success, negative on failure 3252 */ 3253 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3254 { 3255 struct ice_netdev_priv *np = netdev_priv(netdev); 3256 struct ice_vsi *vsi = np->vsi; 3257 struct ice_pf *pf = vsi->back; 3258 struct ice_hw *hw = &pf->hw; 3259 struct sockaddr *addr = pi; 3260 enum ice_status status; 3261 u8 flags = 0; 3262 int err = 0; 3263 u8 *mac; 3264 3265 mac = (u8 *)addr->sa_data; 3266 3267 if (!is_valid_ether_addr(mac)) 3268 return -EADDRNOTAVAIL; 3269 3270 if (ether_addr_equal(netdev->dev_addr, mac)) { 3271 netdev_warn(netdev, "already using mac %pM\n", mac); 3272 return 0; 3273 } 3274 3275 if (test_bit(__ICE_DOWN, pf->state) || 3276 ice_is_reset_in_progress(pf->state)) { 3277 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3278 mac); 3279 return -EBUSY; 3280 } 3281 3282 /* When we change the MAC address we also have to change the MAC address 3283 * based filter rules that were created previously for the old MAC 3284 * address. So first, we remove the old filter rule using ice_remove_mac 3285 * and then create a new filter rule using ice_add_mac via 3286 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 3287 * filters. 3288 */ 3289 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 3290 if (status) { 3291 err = -EADDRNOTAVAIL; 3292 goto err_update_filters; 3293 } 3294 3295 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 3296 if (status) { 3297 err = -EADDRNOTAVAIL; 3298 goto err_update_filters; 3299 } 3300 3301 err_update_filters: 3302 if (err) { 3303 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3304 mac); 3305 return err; 3306 } 3307 3308 /* change the netdev's MAC address */ 3309 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3310 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3311 netdev->dev_addr); 3312 3313 /* write new MAC address to the firmware */ 3314 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3315 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3316 if (status) { 3317 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 3318 mac, status); 3319 } 3320 return 0; 3321 } 3322 3323 /** 3324 * ice_set_rx_mode - NDO callback to set the netdev filters 3325 * @netdev: network interface device structure 3326 */ 3327 static void ice_set_rx_mode(struct net_device *netdev) 3328 { 3329 struct ice_netdev_priv *np = netdev_priv(netdev); 3330 struct ice_vsi *vsi = np->vsi; 3331 3332 if (!vsi) 3333 return; 3334 3335 /* Set the flags to synchronize filters 3336 * ndo_set_rx_mode may be triggered even without a change in netdev 3337 * flags 3338 */ 3339 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3340 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3341 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3342 3343 /* schedule our worker thread which will take care of 3344 * applying the new filter changes 3345 */ 3346 ice_service_task_schedule(vsi->back); 3347 } 3348 3349 /** 3350 * ice_fdb_add - add an entry to the hardware database 3351 * @ndm: the input from the stack 3352 * @tb: pointer to array of nladdr (unused) 3353 * @dev: the net device pointer 3354 * @addr: the MAC address entry being added 3355 * @vid: VLAN ID 3356 * @flags: instructions from stack about fdb operation 3357 * @extack: netlink extended ack 3358 */ 3359 static int 3360 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3361 struct net_device *dev, const unsigned char *addr, u16 vid, 3362 u16 flags, struct netlink_ext_ack __always_unused *extack) 3363 { 3364 int err; 3365 3366 if (vid) { 3367 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3368 return -EINVAL; 3369 } 3370 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3371 netdev_err(dev, "FDB only supports static addresses\n"); 3372 return -EINVAL; 3373 } 3374 3375 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3376 err = dev_uc_add_excl(dev, addr); 3377 else if (is_multicast_ether_addr(addr)) 3378 err = dev_mc_add_excl(dev, addr); 3379 else 3380 err = -EINVAL; 3381 3382 /* Only return duplicate errors if NLM_F_EXCL is set */ 3383 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3384 err = 0; 3385 3386 return err; 3387 } 3388 3389 /** 3390 * ice_fdb_del - delete an entry from the hardware database 3391 * @ndm: the input from the stack 3392 * @tb: pointer to array of nladdr (unused) 3393 * @dev: the net device pointer 3394 * @addr: the MAC address entry being added 3395 * @vid: VLAN ID 3396 */ 3397 static int 3398 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3399 struct net_device *dev, const unsigned char *addr, 3400 __always_unused u16 vid) 3401 { 3402 int err; 3403 3404 if (ndm->ndm_state & NUD_PERMANENT) { 3405 netdev_err(dev, "FDB only supports static addresses\n"); 3406 return -EINVAL; 3407 } 3408 3409 if (is_unicast_ether_addr(addr)) 3410 err = dev_uc_del(dev, addr); 3411 else if (is_multicast_ether_addr(addr)) 3412 err = dev_mc_del(dev, addr); 3413 else 3414 err = -EINVAL; 3415 3416 return err; 3417 } 3418 3419 /** 3420 * ice_set_features - set the netdev feature flags 3421 * @netdev: ptr to the netdev being adjusted 3422 * @features: the feature set that the stack is suggesting 3423 */ 3424 static int 3425 ice_set_features(struct net_device *netdev, netdev_features_t features) 3426 { 3427 struct ice_netdev_priv *np = netdev_priv(netdev); 3428 struct ice_vsi *vsi = np->vsi; 3429 int ret = 0; 3430 3431 /* Don't set any netdev advanced features with device in Safe Mode */ 3432 if (ice_is_safe_mode(vsi->back)) { 3433 dev_err(&vsi->back->pdev->dev, 3434 "Device is in Safe Mode - not enabling advanced netdev features\n"); 3435 return ret; 3436 } 3437 3438 /* Multiple features can be changed in one call so keep features in 3439 * separate if/else statements to guarantee each feature is checked 3440 */ 3441 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3442 ret = ice_vsi_manage_rss_lut(vsi, true); 3443 else if (!(features & NETIF_F_RXHASH) && 3444 netdev->features & NETIF_F_RXHASH) 3445 ret = ice_vsi_manage_rss_lut(vsi, false); 3446 3447 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3448 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3449 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3450 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3451 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3452 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3453 3454 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3455 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3456 ret = ice_vsi_manage_vlan_insertion(vsi); 3457 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3458 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3459 ret = ice_vsi_manage_vlan_insertion(vsi); 3460 3461 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3462 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3463 ret = ice_cfg_vlan_pruning(vsi, true, false); 3464 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3465 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3466 ret = ice_cfg_vlan_pruning(vsi, false, false); 3467 3468 return ret; 3469 } 3470 3471 /** 3472 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3473 * @vsi: VSI to setup VLAN properties for 3474 */ 3475 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3476 { 3477 int ret = 0; 3478 3479 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3480 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3481 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3482 ret = ice_vsi_manage_vlan_insertion(vsi); 3483 3484 return ret; 3485 } 3486 3487 /** 3488 * ice_vsi_cfg - Setup the VSI 3489 * @vsi: the VSI being configured 3490 * 3491 * Return 0 on success and negative value on error 3492 */ 3493 int ice_vsi_cfg(struct ice_vsi *vsi) 3494 { 3495 int err; 3496 3497 if (vsi->netdev) { 3498 ice_set_rx_mode(vsi->netdev); 3499 3500 err = ice_vsi_vlan_setup(vsi); 3501 3502 if (err) 3503 return err; 3504 } 3505 ice_vsi_cfg_dcb_rings(vsi); 3506 3507 err = ice_vsi_cfg_lan_txqs(vsi); 3508 if (!err) 3509 err = ice_vsi_cfg_rxqs(vsi); 3510 3511 return err; 3512 } 3513 3514 /** 3515 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3516 * @vsi: the VSI being configured 3517 */ 3518 static void ice_napi_enable_all(struct ice_vsi *vsi) 3519 { 3520 int q_idx; 3521 3522 if (!vsi->netdev) 3523 return; 3524 3525 ice_for_each_q_vector(vsi, q_idx) { 3526 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3527 3528 if (q_vector->rx.ring || q_vector->tx.ring) 3529 napi_enable(&q_vector->napi); 3530 } 3531 } 3532 3533 /** 3534 * ice_up_complete - Finish the last steps of bringing up a connection 3535 * @vsi: The VSI being configured 3536 * 3537 * Return 0 on success and negative value on error 3538 */ 3539 static int ice_up_complete(struct ice_vsi *vsi) 3540 { 3541 struct ice_pf *pf = vsi->back; 3542 int err; 3543 3544 ice_vsi_cfg_msix(vsi); 3545 3546 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3547 * Tx queue group list was configured and the context bits were 3548 * programmed using ice_vsi_cfg_txqs 3549 */ 3550 err = ice_vsi_start_rx_rings(vsi); 3551 if (err) 3552 return err; 3553 3554 clear_bit(__ICE_DOWN, vsi->state); 3555 ice_napi_enable_all(vsi); 3556 ice_vsi_ena_irq(vsi); 3557 3558 if (vsi->port_info && 3559 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 3560 vsi->netdev) { 3561 ice_print_link_msg(vsi, true); 3562 netif_tx_start_all_queues(vsi->netdev); 3563 netif_carrier_on(vsi->netdev); 3564 } 3565 3566 ice_service_task_schedule(pf); 3567 3568 return 0; 3569 } 3570 3571 /** 3572 * ice_up - Bring the connection back up after being down 3573 * @vsi: VSI being configured 3574 */ 3575 int ice_up(struct ice_vsi *vsi) 3576 { 3577 int err; 3578 3579 err = ice_vsi_cfg(vsi); 3580 if (!err) 3581 err = ice_up_complete(vsi); 3582 3583 return err; 3584 } 3585 3586 /** 3587 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 3588 * @ring: Tx or Rx ring to read stats from 3589 * @pkts: packets stats counter 3590 * @bytes: bytes stats counter 3591 * 3592 * This function fetches stats from the ring considering the atomic operations 3593 * that needs to be performed to read u64 values in 32 bit machine. 3594 */ 3595 static void 3596 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 3597 { 3598 unsigned int start; 3599 *pkts = 0; 3600 *bytes = 0; 3601 3602 if (!ring) 3603 return; 3604 do { 3605 start = u64_stats_fetch_begin_irq(&ring->syncp); 3606 *pkts = ring->stats.pkts; 3607 *bytes = ring->stats.bytes; 3608 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3609 } 3610 3611 /** 3612 * ice_update_vsi_ring_stats - Update VSI stats counters 3613 * @vsi: the VSI to be updated 3614 */ 3615 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 3616 { 3617 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 3618 struct ice_ring *ring; 3619 u64 pkts, bytes; 3620 int i; 3621 3622 /* reset netdev stats */ 3623 vsi_stats->tx_packets = 0; 3624 vsi_stats->tx_bytes = 0; 3625 vsi_stats->rx_packets = 0; 3626 vsi_stats->rx_bytes = 0; 3627 3628 /* reset non-netdev (extended) stats */ 3629 vsi->tx_restart = 0; 3630 vsi->tx_busy = 0; 3631 vsi->tx_linearize = 0; 3632 vsi->rx_buf_failed = 0; 3633 vsi->rx_page_failed = 0; 3634 3635 rcu_read_lock(); 3636 3637 /* update Tx rings counters */ 3638 ice_for_each_txq(vsi, i) { 3639 ring = READ_ONCE(vsi->tx_rings[i]); 3640 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3641 vsi_stats->tx_packets += pkts; 3642 vsi_stats->tx_bytes += bytes; 3643 vsi->tx_restart += ring->tx_stats.restart_q; 3644 vsi->tx_busy += ring->tx_stats.tx_busy; 3645 vsi->tx_linearize += ring->tx_stats.tx_linearize; 3646 } 3647 3648 /* update Rx rings counters */ 3649 ice_for_each_rxq(vsi, i) { 3650 ring = READ_ONCE(vsi->rx_rings[i]); 3651 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3652 vsi_stats->rx_packets += pkts; 3653 vsi_stats->rx_bytes += bytes; 3654 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 3655 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 3656 } 3657 3658 rcu_read_unlock(); 3659 } 3660 3661 /** 3662 * ice_update_vsi_stats - Update VSI stats counters 3663 * @vsi: the VSI to be updated 3664 */ 3665 void ice_update_vsi_stats(struct ice_vsi *vsi) 3666 { 3667 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 3668 struct ice_eth_stats *cur_es = &vsi->eth_stats; 3669 struct ice_pf *pf = vsi->back; 3670 3671 if (test_bit(__ICE_DOWN, vsi->state) || 3672 test_bit(__ICE_CFG_BUSY, pf->state)) 3673 return; 3674 3675 /* get stats as recorded by Tx/Rx rings */ 3676 ice_update_vsi_ring_stats(vsi); 3677 3678 /* get VSI stats as recorded by the hardware */ 3679 ice_update_eth_stats(vsi); 3680 3681 cur_ns->tx_errors = cur_es->tx_errors; 3682 cur_ns->rx_dropped = cur_es->rx_discards; 3683 cur_ns->tx_dropped = cur_es->tx_discards; 3684 cur_ns->multicast = cur_es->rx_multicast; 3685 3686 /* update some more netdev stats if this is main VSI */ 3687 if (vsi->type == ICE_VSI_PF) { 3688 cur_ns->rx_crc_errors = pf->stats.crc_errors; 3689 cur_ns->rx_errors = pf->stats.crc_errors + 3690 pf->stats.illegal_bytes; 3691 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 3692 /* record drops from the port level */ 3693 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 3694 } 3695 } 3696 3697 /** 3698 * ice_update_pf_stats - Update PF port stats counters 3699 * @pf: PF whose stats needs to be updated 3700 */ 3701 void ice_update_pf_stats(struct ice_pf *pf) 3702 { 3703 struct ice_hw_port_stats *prev_ps, *cur_ps; 3704 struct ice_hw *hw = &pf->hw; 3705 u8 port; 3706 3707 port = hw->port_info->lport; 3708 prev_ps = &pf->stats_prev; 3709 cur_ps = &pf->stats; 3710 3711 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 3712 &prev_ps->eth.rx_bytes, 3713 &cur_ps->eth.rx_bytes); 3714 3715 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 3716 &prev_ps->eth.rx_unicast, 3717 &cur_ps->eth.rx_unicast); 3718 3719 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 3720 &prev_ps->eth.rx_multicast, 3721 &cur_ps->eth.rx_multicast); 3722 3723 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 3724 &prev_ps->eth.rx_broadcast, 3725 &cur_ps->eth.rx_broadcast); 3726 3727 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 3728 &prev_ps->eth.rx_discards, 3729 &cur_ps->eth.rx_discards); 3730 3731 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 3732 &prev_ps->eth.tx_bytes, 3733 &cur_ps->eth.tx_bytes); 3734 3735 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 3736 &prev_ps->eth.tx_unicast, 3737 &cur_ps->eth.tx_unicast); 3738 3739 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 3740 &prev_ps->eth.tx_multicast, 3741 &cur_ps->eth.tx_multicast); 3742 3743 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 3744 &prev_ps->eth.tx_broadcast, 3745 &cur_ps->eth.tx_broadcast); 3746 3747 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 3748 &prev_ps->tx_dropped_link_down, 3749 &cur_ps->tx_dropped_link_down); 3750 3751 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 3752 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 3753 3754 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 3755 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 3756 3757 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 3758 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 3759 3760 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 3761 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 3762 3763 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 3764 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 3765 3766 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 3767 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 3768 3769 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 3770 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 3771 3772 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 3773 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 3774 3775 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 3776 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 3777 3778 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 3779 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 3780 3781 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 3782 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 3783 3784 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 3785 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 3786 3787 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 3788 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 3789 3790 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 3791 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 3792 3793 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 3794 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 3795 3796 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 3797 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 3798 3799 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 3800 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 3801 3802 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 3803 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 3804 3805 ice_update_dcb_stats(pf); 3806 3807 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 3808 &prev_ps->crc_errors, &cur_ps->crc_errors); 3809 3810 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 3811 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 3812 3813 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 3814 &prev_ps->mac_local_faults, 3815 &cur_ps->mac_local_faults); 3816 3817 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 3818 &prev_ps->mac_remote_faults, 3819 &cur_ps->mac_remote_faults); 3820 3821 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 3822 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 3823 3824 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 3825 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 3826 3827 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 3828 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 3829 3830 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 3831 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 3832 3833 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 3834 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 3835 3836 pf->stat_prev_loaded = true; 3837 } 3838 3839 /** 3840 * ice_get_stats64 - get statistics for network device structure 3841 * @netdev: network interface device structure 3842 * @stats: main device statistics structure 3843 */ 3844 static 3845 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3846 { 3847 struct ice_netdev_priv *np = netdev_priv(netdev); 3848 struct rtnl_link_stats64 *vsi_stats; 3849 struct ice_vsi *vsi = np->vsi; 3850 3851 vsi_stats = &vsi->net_stats; 3852 3853 if (!vsi->num_txq || !vsi->num_rxq) 3854 return; 3855 3856 /* netdev packet/byte stats come from ring counter. These are obtained 3857 * by summing up ring counters (done by ice_update_vsi_ring_stats). 3858 * But, only call the update routine and read the registers if VSI is 3859 * not down. 3860 */ 3861 if (!test_bit(__ICE_DOWN, vsi->state)) 3862 ice_update_vsi_ring_stats(vsi); 3863 stats->tx_packets = vsi_stats->tx_packets; 3864 stats->tx_bytes = vsi_stats->tx_bytes; 3865 stats->rx_packets = vsi_stats->rx_packets; 3866 stats->rx_bytes = vsi_stats->rx_bytes; 3867 3868 /* The rest of the stats can be read from the hardware but instead we 3869 * just return values that the watchdog task has already obtained from 3870 * the hardware. 3871 */ 3872 stats->multicast = vsi_stats->multicast; 3873 stats->tx_errors = vsi_stats->tx_errors; 3874 stats->tx_dropped = vsi_stats->tx_dropped; 3875 stats->rx_errors = vsi_stats->rx_errors; 3876 stats->rx_dropped = vsi_stats->rx_dropped; 3877 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 3878 stats->rx_length_errors = vsi_stats->rx_length_errors; 3879 } 3880 3881 /** 3882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 3883 * @vsi: VSI having NAPI disabled 3884 */ 3885 static void ice_napi_disable_all(struct ice_vsi *vsi) 3886 { 3887 int q_idx; 3888 3889 if (!vsi->netdev) 3890 return; 3891 3892 ice_for_each_q_vector(vsi, q_idx) { 3893 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3894 3895 if (q_vector->rx.ring || q_vector->tx.ring) 3896 napi_disable(&q_vector->napi); 3897 } 3898 } 3899 3900 /** 3901 * ice_down - Shutdown the connection 3902 * @vsi: The VSI being stopped 3903 */ 3904 int ice_down(struct ice_vsi *vsi) 3905 { 3906 int i, tx_err, rx_err, link_err = 0; 3907 3908 /* Caller of this function is expected to set the 3909 * vsi->state __ICE_DOWN bit 3910 */ 3911 if (vsi->netdev) { 3912 netif_carrier_off(vsi->netdev); 3913 netif_tx_disable(vsi->netdev); 3914 } 3915 3916 ice_vsi_dis_irq(vsi); 3917 3918 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 3919 if (tx_err) 3920 netdev_err(vsi->netdev, 3921 "Failed stop Tx rings, VSI %d error %d\n", 3922 vsi->vsi_num, tx_err); 3923 3924 rx_err = ice_vsi_stop_rx_rings(vsi); 3925 if (rx_err) 3926 netdev_err(vsi->netdev, 3927 "Failed stop Rx rings, VSI %d error %d\n", 3928 vsi->vsi_num, rx_err); 3929 3930 ice_napi_disable_all(vsi); 3931 3932 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 3933 link_err = ice_force_phys_link_state(vsi, false); 3934 if (link_err) 3935 netdev_err(vsi->netdev, 3936 "Failed to set physical link down, VSI %d error %d\n", 3937 vsi->vsi_num, link_err); 3938 } 3939 3940 ice_for_each_txq(vsi, i) 3941 ice_clean_tx_ring(vsi->tx_rings[i]); 3942 3943 ice_for_each_rxq(vsi, i) 3944 ice_clean_rx_ring(vsi->rx_rings[i]); 3945 3946 if (tx_err || rx_err || link_err) { 3947 netdev_err(vsi->netdev, 3948 "Failed to close VSI 0x%04X on switch 0x%04X\n", 3949 vsi->vsi_num, vsi->vsw->sw_id); 3950 return -EIO; 3951 } 3952 3953 return 0; 3954 } 3955 3956 /** 3957 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 3958 * @vsi: VSI having resources allocated 3959 * 3960 * Return 0 on success, negative on failure 3961 */ 3962 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 3963 { 3964 int i, err = 0; 3965 3966 if (!vsi->num_txq) { 3967 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 3968 vsi->vsi_num); 3969 return -EINVAL; 3970 } 3971 3972 ice_for_each_txq(vsi, i) { 3973 vsi->tx_rings[i]->netdev = vsi->netdev; 3974 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3975 if (err) 3976 break; 3977 } 3978 3979 return err; 3980 } 3981 3982 /** 3983 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3984 * @vsi: VSI having resources allocated 3985 * 3986 * Return 0 on success, negative on failure 3987 */ 3988 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3989 { 3990 int i, err = 0; 3991 3992 if (!vsi->num_rxq) { 3993 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3994 vsi->vsi_num); 3995 return -EINVAL; 3996 } 3997 3998 ice_for_each_rxq(vsi, i) { 3999 vsi->rx_rings[i]->netdev = vsi->netdev; 4000 err = ice_setup_rx_ring(vsi->rx_rings[i]); 4001 if (err) 4002 break; 4003 } 4004 4005 return err; 4006 } 4007 4008 /** 4009 * ice_vsi_open - Called when a network interface is made active 4010 * @vsi: the VSI to open 4011 * 4012 * Initialization of the VSI 4013 * 4014 * Returns 0 on success, negative value on error 4015 */ 4016 static int ice_vsi_open(struct ice_vsi *vsi) 4017 { 4018 char int_name[ICE_INT_NAME_STR_LEN]; 4019 struct ice_pf *pf = vsi->back; 4020 int err; 4021 4022 /* allocate descriptors */ 4023 err = ice_vsi_setup_tx_rings(vsi); 4024 if (err) 4025 goto err_setup_tx; 4026 4027 err = ice_vsi_setup_rx_rings(vsi); 4028 if (err) 4029 goto err_setup_rx; 4030 4031 err = ice_vsi_cfg(vsi); 4032 if (err) 4033 goto err_setup_rx; 4034 4035 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4036 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 4037 err = ice_vsi_req_irq_msix(vsi, int_name); 4038 if (err) 4039 goto err_setup_rx; 4040 4041 /* Notify the stack of the actual queue counts. */ 4042 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4043 if (err) 4044 goto err_set_qs; 4045 4046 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4047 if (err) 4048 goto err_set_qs; 4049 4050 err = ice_up_complete(vsi); 4051 if (err) 4052 goto err_up_complete; 4053 4054 return 0; 4055 4056 err_up_complete: 4057 ice_down(vsi); 4058 err_set_qs: 4059 ice_vsi_free_irq(vsi); 4060 err_setup_rx: 4061 ice_vsi_free_rx_rings(vsi); 4062 err_setup_tx: 4063 ice_vsi_free_tx_rings(vsi); 4064 4065 return err; 4066 } 4067 4068 /** 4069 * ice_vsi_release_all - Delete all VSIs 4070 * @pf: PF from which all VSIs are being removed 4071 */ 4072 static void ice_vsi_release_all(struct ice_pf *pf) 4073 { 4074 int err, i; 4075 4076 if (!pf->vsi) 4077 return; 4078 4079 ice_for_each_vsi(pf, i) { 4080 if (!pf->vsi[i]) 4081 continue; 4082 4083 err = ice_vsi_release(pf->vsi[i]); 4084 if (err) 4085 dev_dbg(&pf->pdev->dev, 4086 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4087 i, err, pf->vsi[i]->vsi_num); 4088 } 4089 } 4090 4091 /** 4092 * ice_ena_vsi - resume a VSI 4093 * @vsi: the VSI being resume 4094 * @locked: is the rtnl_lock already held 4095 */ 4096 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 4097 { 4098 int err = 0; 4099 4100 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 4101 return 0; 4102 4103 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 4104 4105 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 4106 if (netif_running(vsi->netdev)) { 4107 if (!locked) 4108 rtnl_lock(); 4109 4110 err = ice_open(vsi->netdev); 4111 4112 if (!locked) 4113 rtnl_unlock(); 4114 } 4115 } 4116 4117 return err; 4118 } 4119 4120 /** 4121 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 4122 * @pf: the PF 4123 * @locked: is the rtnl_lock already held 4124 */ 4125 #ifdef CONFIG_DCB 4126 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 4127 { 4128 int v; 4129 4130 ice_for_each_vsi(pf, v) 4131 if (pf->vsi[v]) 4132 if (ice_ena_vsi(pf->vsi[v], locked)) 4133 return -EIO; 4134 4135 return 0; 4136 } 4137 #endif /* CONFIG_DCB */ 4138 4139 /** 4140 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4141 * @pf: pointer to the PF instance 4142 * @type: VSI type to rebuild 4143 * 4144 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4145 */ 4146 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4147 { 4148 enum ice_status status; 4149 int i, err; 4150 4151 ice_for_each_vsi(pf, i) { 4152 struct ice_vsi *vsi = pf->vsi[i]; 4153 4154 if (!vsi || vsi->type != type) 4155 continue; 4156 4157 /* rebuild the VSI */ 4158 err = ice_vsi_rebuild(vsi); 4159 if (err) { 4160 dev_err(&pf->pdev->dev, 4161 "rebuild VSI failed, err %d, VSI index %d, type %d\n", 4162 err, vsi->idx, type); 4163 return err; 4164 } 4165 4166 /* replay filters for the VSI */ 4167 status = ice_replay_vsi(&pf->hw, vsi->idx); 4168 if (status) { 4169 dev_err(&pf->pdev->dev, 4170 "replay VSI failed, status %d, VSI index %d, type %d\n", 4171 status, vsi->idx, type); 4172 return -EIO; 4173 } 4174 4175 /* Re-map HW VSI number, using VSI handle that has been 4176 * previously validated in ice_replay_vsi() call above 4177 */ 4178 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4179 4180 /* enable the VSI */ 4181 err = ice_ena_vsi(vsi, false); 4182 if (err) { 4183 dev_err(&pf->pdev->dev, 4184 "enable VSI failed, err %d, VSI index %d, type %d\n", 4185 err, vsi->idx, type); 4186 return err; 4187 } 4188 4189 dev_info(&pf->pdev->dev, "VSI rebuilt. VSI index %d, type %d\n", 4190 vsi->idx, type); 4191 } 4192 4193 return 0; 4194 } 4195 4196 /** 4197 * ice_update_pf_netdev_link - Update PF netdev link status 4198 * @pf: pointer to the PF instance 4199 */ 4200 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4201 { 4202 bool link_up; 4203 int i; 4204 4205 ice_for_each_vsi(pf, i) { 4206 struct ice_vsi *vsi = pf->vsi[i]; 4207 4208 if (!vsi || vsi->type != ICE_VSI_PF) 4209 return; 4210 4211 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4212 if (link_up) { 4213 netif_carrier_on(pf->vsi[i]->netdev); 4214 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4215 } else { 4216 netif_carrier_off(pf->vsi[i]->netdev); 4217 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4218 } 4219 } 4220 } 4221 4222 /** 4223 * ice_rebuild - rebuild after reset 4224 * @pf: PF to rebuild 4225 * @reset_type: type of reset 4226 */ 4227 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4228 { 4229 struct device *dev = &pf->pdev->dev; 4230 struct ice_hw *hw = &pf->hw; 4231 enum ice_status ret; 4232 int err; 4233 4234 if (test_bit(__ICE_DOWN, pf->state)) 4235 goto clear_recovery; 4236 4237 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4238 4239 ret = ice_init_all_ctrlq(hw); 4240 if (ret) { 4241 dev_err(dev, "control queues init failed %d\n", ret); 4242 goto err_init_ctrlq; 4243 } 4244 4245 /* if DDP was previously loaded successfully */ 4246 if (!ice_is_safe_mode(pf)) { 4247 /* reload the SW DB of filter tables */ 4248 if (reset_type == ICE_RESET_PFR) 4249 ice_fill_blk_tbls(hw); 4250 else 4251 /* Reload DDP Package after CORER/GLOBR reset */ 4252 ice_load_pkg(NULL, pf); 4253 } 4254 4255 ret = ice_clear_pf_cfg(hw); 4256 if (ret) { 4257 dev_err(dev, "clear PF configuration failed %d\n", ret); 4258 goto err_init_ctrlq; 4259 } 4260 4261 ice_clear_pxe_mode(hw); 4262 4263 ret = ice_get_caps(hw); 4264 if (ret) { 4265 dev_err(dev, "ice_get_caps failed %d\n", ret); 4266 goto err_init_ctrlq; 4267 } 4268 4269 err = ice_sched_init_port(hw->port_info); 4270 if (err) 4271 goto err_sched_init_port; 4272 4273 err = ice_update_link_info(hw->port_info); 4274 if (err) 4275 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 4276 4277 /* start misc vector */ 4278 err = ice_req_irq_msix_misc(pf); 4279 if (err) { 4280 dev_err(dev, "misc vector setup failed: %d\n", err); 4281 goto err_sched_init_port; 4282 } 4283 4284 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4285 ice_dcb_rebuild(pf); 4286 4287 /* rebuild PF VSI */ 4288 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4289 if (err) { 4290 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4291 goto err_vsi_rebuild; 4292 } 4293 4294 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4295 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF); 4296 if (err) { 4297 dev_err(dev, "VF VSI rebuild failed: %d\n", err); 4298 goto err_vsi_rebuild; 4299 } 4300 } 4301 4302 ice_update_pf_netdev_link(pf); 4303 4304 /* tell the firmware we are up */ 4305 ret = ice_send_version(pf); 4306 if (ret) { 4307 dev_err(dev, 4308 "Rebuild failed due to error sending driver version: %d\n", 4309 ret); 4310 goto err_vsi_rebuild; 4311 } 4312 4313 ice_replay_post(hw); 4314 4315 /* if we get here, reset flow is successful */ 4316 clear_bit(__ICE_RESET_FAILED, pf->state); 4317 return; 4318 4319 err_vsi_rebuild: 4320 err_sched_init_port: 4321 ice_sched_cleanup_all(hw); 4322 err_init_ctrlq: 4323 ice_shutdown_all_ctrlq(hw); 4324 set_bit(__ICE_RESET_FAILED, pf->state); 4325 clear_recovery: 4326 /* set this bit in PF state to control service task scheduling */ 4327 set_bit(__ICE_NEEDS_RESTART, pf->state); 4328 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 4329 } 4330 4331 /** 4332 * ice_change_mtu - NDO callback to change the MTU 4333 * @netdev: network interface device structure 4334 * @new_mtu: new value for maximum frame size 4335 * 4336 * Returns 0 on success, negative on failure 4337 */ 4338 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 4339 { 4340 struct ice_netdev_priv *np = netdev_priv(netdev); 4341 struct ice_vsi *vsi = np->vsi; 4342 struct ice_pf *pf = vsi->back; 4343 u8 count = 0; 4344 4345 if (new_mtu == netdev->mtu) { 4346 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 4347 return 0; 4348 } 4349 4350 if (new_mtu < netdev->min_mtu) { 4351 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 4352 netdev->min_mtu); 4353 return -EINVAL; 4354 } else if (new_mtu > netdev->max_mtu) { 4355 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 4356 netdev->min_mtu); 4357 return -EINVAL; 4358 } 4359 /* if a reset is in progress, wait for some time for it to complete */ 4360 do { 4361 if (ice_is_reset_in_progress(pf->state)) { 4362 count++; 4363 usleep_range(1000, 2000); 4364 } else { 4365 break; 4366 } 4367 4368 } while (count < 100); 4369 4370 if (count == 100) { 4371 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4372 return -EBUSY; 4373 } 4374 4375 netdev->mtu = new_mtu; 4376 4377 /* if VSI is up, bring it down and then back up */ 4378 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4379 int err; 4380 4381 err = ice_down(vsi); 4382 if (err) { 4383 netdev_err(netdev, "change MTU if_up err %d\n", err); 4384 return err; 4385 } 4386 4387 err = ice_up(vsi); 4388 if (err) { 4389 netdev_err(netdev, "change MTU if_up err %d\n", err); 4390 return err; 4391 } 4392 } 4393 4394 netdev_info(netdev, "changed MTU to %d\n", new_mtu); 4395 return 0; 4396 } 4397 4398 /** 4399 * ice_set_rss - Set RSS keys and lut 4400 * @vsi: Pointer to VSI structure 4401 * @seed: RSS hash seed 4402 * @lut: Lookup table 4403 * @lut_size: Lookup table size 4404 * 4405 * Returns 0 on success, negative on failure 4406 */ 4407 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4408 { 4409 struct ice_pf *pf = vsi->back; 4410 struct ice_hw *hw = &pf->hw; 4411 enum ice_status status; 4412 4413 if (seed) { 4414 struct ice_aqc_get_set_rss_keys *buf = 4415 (struct ice_aqc_get_set_rss_keys *)seed; 4416 4417 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4418 4419 if (status) { 4420 dev_err(&pf->pdev->dev, 4421 "Cannot set RSS key, err %d aq_err %d\n", 4422 status, hw->adminq.rq_last_status); 4423 return -EIO; 4424 } 4425 } 4426 4427 if (lut) { 4428 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4429 lut, lut_size); 4430 if (status) { 4431 dev_err(&pf->pdev->dev, 4432 "Cannot set RSS lut, err %d aq_err %d\n", 4433 status, hw->adminq.rq_last_status); 4434 return -EIO; 4435 } 4436 } 4437 4438 return 0; 4439 } 4440 4441 /** 4442 * ice_get_rss - Get RSS keys and lut 4443 * @vsi: Pointer to VSI structure 4444 * @seed: Buffer to store the keys 4445 * @lut: Buffer to store the lookup table entries 4446 * @lut_size: Size of buffer to store the lookup table entries 4447 * 4448 * Returns 0 on success, negative on failure 4449 */ 4450 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4451 { 4452 struct ice_pf *pf = vsi->back; 4453 struct ice_hw *hw = &pf->hw; 4454 enum ice_status status; 4455 4456 if (seed) { 4457 struct ice_aqc_get_set_rss_keys *buf = 4458 (struct ice_aqc_get_set_rss_keys *)seed; 4459 4460 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4461 if (status) { 4462 dev_err(&pf->pdev->dev, 4463 "Cannot get RSS key, err %d aq_err %d\n", 4464 status, hw->adminq.rq_last_status); 4465 return -EIO; 4466 } 4467 } 4468 4469 if (lut) { 4470 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4471 lut, lut_size); 4472 if (status) { 4473 dev_err(&pf->pdev->dev, 4474 "Cannot get RSS lut, err %d aq_err %d\n", 4475 status, hw->adminq.rq_last_status); 4476 return -EIO; 4477 } 4478 } 4479 4480 return 0; 4481 } 4482 4483 /** 4484 * ice_bridge_getlink - Get the hardware bridge mode 4485 * @skb: skb buff 4486 * @pid: process ID 4487 * @seq: RTNL message seq 4488 * @dev: the netdev being configured 4489 * @filter_mask: filter mask passed in 4490 * @nlflags: netlink flags passed in 4491 * 4492 * Return the bridge mode (VEB/VEPA) 4493 */ 4494 static int 4495 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4496 struct net_device *dev, u32 filter_mask, int nlflags) 4497 { 4498 struct ice_netdev_priv *np = netdev_priv(dev); 4499 struct ice_vsi *vsi = np->vsi; 4500 struct ice_pf *pf = vsi->back; 4501 u16 bmode; 4502 4503 bmode = pf->first_sw->bridge_mode; 4504 4505 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4506 filter_mask, NULL); 4507 } 4508 4509 /** 4510 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4511 * @vsi: Pointer to VSI structure 4512 * @bmode: Hardware bridge mode (VEB/VEPA) 4513 * 4514 * Returns 0 on success, negative on failure 4515 */ 4516 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4517 { 4518 struct device *dev = &vsi->back->pdev->dev; 4519 struct ice_aqc_vsi_props *vsi_props; 4520 struct ice_hw *hw = &vsi->back->hw; 4521 struct ice_vsi_ctx *ctxt; 4522 enum ice_status status; 4523 int ret = 0; 4524 4525 vsi_props = &vsi->info; 4526 4527 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 4528 if (!ctxt) 4529 return -ENOMEM; 4530 4531 ctxt->info = vsi->info; 4532 4533 if (bmode == BRIDGE_MODE_VEB) 4534 /* change from VEPA to VEB mode */ 4535 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4536 else 4537 /* change from VEB to VEPA mode */ 4538 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4539 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4540 4541 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4542 if (status) { 4543 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4544 bmode, status, hw->adminq.sq_last_status); 4545 ret = -EIO; 4546 goto out; 4547 } 4548 /* Update sw flags for book keeping */ 4549 vsi_props->sw_flags = ctxt->info.sw_flags; 4550 4551 out: 4552 devm_kfree(dev, ctxt); 4553 return ret; 4554 } 4555 4556 /** 4557 * ice_bridge_setlink - Set the hardware bridge mode 4558 * @dev: the netdev being configured 4559 * @nlh: RTNL message 4560 * @flags: bridge setlink flags 4561 * @extack: netlink extended ack 4562 * 4563 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4564 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4565 * not already set for all VSIs connected to this switch. And also update the 4566 * unicast switch filter rules for the corresponding switch of the netdev. 4567 */ 4568 static int 4569 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 4570 u16 __always_unused flags, 4571 struct netlink_ext_ack __always_unused *extack) 4572 { 4573 struct ice_netdev_priv *np = netdev_priv(dev); 4574 struct ice_pf *pf = np->vsi->back; 4575 struct nlattr *attr, *br_spec; 4576 struct ice_hw *hw = &pf->hw; 4577 enum ice_status status; 4578 struct ice_sw *pf_sw; 4579 int rem, v, err = 0; 4580 4581 pf_sw = pf->first_sw; 4582 /* find the attribute in the netlink message */ 4583 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 4584 4585 nla_for_each_nested(attr, br_spec, rem) { 4586 __u16 mode; 4587 4588 if (nla_type(attr) != IFLA_BRIDGE_MODE) 4589 continue; 4590 mode = nla_get_u16(attr); 4591 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 4592 return -EINVAL; 4593 /* Continue if bridge mode is not being flipped */ 4594 if (mode == pf_sw->bridge_mode) 4595 continue; 4596 /* Iterates through the PF VSI list and update the loopback 4597 * mode of the VSI 4598 */ 4599 ice_for_each_vsi(pf, v) { 4600 if (!pf->vsi[v]) 4601 continue; 4602 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 4603 if (err) 4604 return err; 4605 } 4606 4607 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 4608 /* Update the unicast switch filter rules for the corresponding 4609 * switch of the netdev 4610 */ 4611 status = ice_update_sw_rule_bridge_mode(hw); 4612 if (status) { 4613 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 4614 mode, status, hw->adminq.sq_last_status); 4615 /* revert hw->evb_veb */ 4616 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 4617 return -EIO; 4618 } 4619 4620 pf_sw->bridge_mode = mode; 4621 } 4622 4623 return 0; 4624 } 4625 4626 /** 4627 * ice_tx_timeout - Respond to a Tx Hang 4628 * @netdev: network interface device structure 4629 */ 4630 static void ice_tx_timeout(struct net_device *netdev) 4631 { 4632 struct ice_netdev_priv *np = netdev_priv(netdev); 4633 struct ice_ring *tx_ring = NULL; 4634 struct ice_vsi *vsi = np->vsi; 4635 struct ice_pf *pf = vsi->back; 4636 int hung_queue = -1; 4637 u32 i; 4638 4639 pf->tx_timeout_count++; 4640 4641 /* find the stopped queue the same way dev_watchdog() does */ 4642 for (i = 0; i < netdev->num_tx_queues; i++) { 4643 unsigned long trans_start; 4644 struct netdev_queue *q; 4645 4646 q = netdev_get_tx_queue(netdev, i); 4647 trans_start = q->trans_start; 4648 if (netif_xmit_stopped(q) && 4649 time_after(jiffies, 4650 trans_start + netdev->watchdog_timeo)) { 4651 hung_queue = i; 4652 break; 4653 } 4654 } 4655 4656 if (i == netdev->num_tx_queues) 4657 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 4658 else 4659 /* now that we have an index, find the tx_ring struct */ 4660 for (i = 0; i < vsi->num_txq; i++) 4661 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 4662 if (hung_queue == vsi->tx_rings[i]->q_index) { 4663 tx_ring = vsi->tx_rings[i]; 4664 break; 4665 } 4666 4667 /* Reset recovery level if enough time has elapsed after last timeout. 4668 * Also ensure no new reset action happens before next timeout period. 4669 */ 4670 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 4671 pf->tx_timeout_recovery_level = 1; 4672 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 4673 netdev->watchdog_timeo))) 4674 return; 4675 4676 if (tx_ring) { 4677 struct ice_hw *hw = &pf->hw; 4678 u32 head, val = 0; 4679 4680 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 4681 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 4682 /* Read interrupt register */ 4683 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 4684 4685 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 4686 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 4687 head, tx_ring->next_to_use, val); 4688 } 4689 4690 pf->tx_timeout_last_recovery = jiffies; 4691 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 4692 pf->tx_timeout_recovery_level, hung_queue); 4693 4694 switch (pf->tx_timeout_recovery_level) { 4695 case 1: 4696 set_bit(__ICE_PFR_REQ, pf->state); 4697 break; 4698 case 2: 4699 set_bit(__ICE_CORER_REQ, pf->state); 4700 break; 4701 case 3: 4702 set_bit(__ICE_GLOBR_REQ, pf->state); 4703 break; 4704 default: 4705 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 4706 set_bit(__ICE_DOWN, pf->state); 4707 set_bit(__ICE_NEEDS_RESTART, vsi->state); 4708 set_bit(__ICE_SERVICE_DIS, pf->state); 4709 break; 4710 } 4711 4712 ice_service_task_schedule(pf); 4713 pf->tx_timeout_recovery_level++; 4714 } 4715 4716 /** 4717 * ice_open - Called when a network interface becomes active 4718 * @netdev: network interface device structure 4719 * 4720 * The open entry point is called when a network interface is made 4721 * active by the system (IFF_UP). At this point all resources needed 4722 * for transmit and receive operations are allocated, the interrupt 4723 * handler is registered with the OS, the netdev watchdog is enabled, 4724 * and the stack is notified that the interface is ready. 4725 * 4726 * Returns 0 on success, negative value on failure 4727 */ 4728 int ice_open(struct net_device *netdev) 4729 { 4730 struct ice_netdev_priv *np = netdev_priv(netdev); 4731 struct ice_vsi *vsi = np->vsi; 4732 struct ice_port_info *pi; 4733 int err; 4734 4735 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 4736 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 4737 return -EIO; 4738 } 4739 4740 netif_carrier_off(netdev); 4741 4742 pi = vsi->port_info; 4743 err = ice_update_link_info(pi); 4744 if (err) { 4745 netdev_err(netdev, "Failed to get link info, error %d\n", 4746 err); 4747 return err; 4748 } 4749 4750 /* Set PHY if there is media, otherwise, turn off PHY */ 4751 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 4752 err = ice_force_phys_link_state(vsi, true); 4753 if (err) { 4754 netdev_err(netdev, 4755 "Failed to set physical link up, error %d\n", 4756 err); 4757 return err; 4758 } 4759 } else { 4760 err = ice_aq_set_link_restart_an(pi, false, NULL); 4761 if (err) { 4762 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 4763 vsi->vsi_num, err); 4764 return err; 4765 } 4766 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 4767 } 4768 4769 err = ice_vsi_open(vsi); 4770 if (err) 4771 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 4772 vsi->vsi_num, vsi->vsw->sw_id); 4773 return err; 4774 } 4775 4776 /** 4777 * ice_stop - Disables a network interface 4778 * @netdev: network interface device structure 4779 * 4780 * The stop entry point is called when an interface is de-activated by the OS, 4781 * and the netdevice enters the DOWN state. The hardware is still under the 4782 * driver's control, but the netdev interface is disabled. 4783 * 4784 * Returns success only - not allowed to fail 4785 */ 4786 int ice_stop(struct net_device *netdev) 4787 { 4788 struct ice_netdev_priv *np = netdev_priv(netdev); 4789 struct ice_vsi *vsi = np->vsi; 4790 4791 ice_vsi_close(vsi); 4792 4793 return 0; 4794 } 4795 4796 /** 4797 * ice_features_check - Validate encapsulated packet conforms to limits 4798 * @skb: skb buffer 4799 * @netdev: This port's netdev 4800 * @features: Offload features that the stack believes apply 4801 */ 4802 static netdev_features_t 4803 ice_features_check(struct sk_buff *skb, 4804 struct net_device __always_unused *netdev, 4805 netdev_features_t features) 4806 { 4807 size_t len; 4808 4809 /* No point in doing any of this if neither checksum nor GSO are 4810 * being requested for this frame. We can rule out both by just 4811 * checking for CHECKSUM_PARTIAL 4812 */ 4813 if (skb->ip_summed != CHECKSUM_PARTIAL) 4814 return features; 4815 4816 /* We cannot support GSO if the MSS is going to be less than 4817 * 64 bytes. If it is then we need to drop support for GSO. 4818 */ 4819 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4820 features &= ~NETIF_F_GSO_MASK; 4821 4822 len = skb_network_header(skb) - skb->data; 4823 if (len & ~(ICE_TXD_MACLEN_MAX)) 4824 goto out_rm_features; 4825 4826 len = skb_transport_header(skb) - skb_network_header(skb); 4827 if (len & ~(ICE_TXD_IPLEN_MAX)) 4828 goto out_rm_features; 4829 4830 if (skb->encapsulation) { 4831 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4832 if (len & ~(ICE_TXD_L4LEN_MAX)) 4833 goto out_rm_features; 4834 4835 len = skb_inner_transport_header(skb) - 4836 skb_inner_network_header(skb); 4837 if (len & ~(ICE_TXD_IPLEN_MAX)) 4838 goto out_rm_features; 4839 } 4840 4841 return features; 4842 out_rm_features: 4843 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4844 } 4845 4846 static const struct net_device_ops ice_netdev_safe_mode_ops = { 4847 .ndo_open = ice_open, 4848 .ndo_stop = ice_stop, 4849 .ndo_start_xmit = ice_start_xmit, 4850 .ndo_set_mac_address = ice_set_mac_address, 4851 .ndo_validate_addr = eth_validate_addr, 4852 .ndo_change_mtu = ice_change_mtu, 4853 .ndo_get_stats64 = ice_get_stats64, 4854 .ndo_tx_timeout = ice_tx_timeout, 4855 }; 4856 4857 static const struct net_device_ops ice_netdev_ops = { 4858 .ndo_open = ice_open, 4859 .ndo_stop = ice_stop, 4860 .ndo_start_xmit = ice_start_xmit, 4861 .ndo_features_check = ice_features_check, 4862 .ndo_set_rx_mode = ice_set_rx_mode, 4863 .ndo_set_mac_address = ice_set_mac_address, 4864 .ndo_validate_addr = eth_validate_addr, 4865 .ndo_change_mtu = ice_change_mtu, 4866 .ndo_get_stats64 = ice_get_stats64, 4867 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 4868 .ndo_set_vf_mac = ice_set_vf_mac, 4869 .ndo_get_vf_config = ice_get_vf_cfg, 4870 .ndo_set_vf_trust = ice_set_vf_trust, 4871 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 4872 .ndo_set_vf_link_state = ice_set_vf_link_state, 4873 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 4874 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 4875 .ndo_set_features = ice_set_features, 4876 .ndo_bridge_getlink = ice_bridge_getlink, 4877 .ndo_bridge_setlink = ice_bridge_setlink, 4878 .ndo_fdb_add = ice_fdb_add, 4879 .ndo_fdb_del = ice_fdb_del, 4880 .ndo_tx_timeout = ice_tx_timeout, 4881 }; 4882