1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 struct device *dev; 2494 int rx_int_idx = 0; 2495 int tx_int_idx = 0; 2496 int vector, err; 2497 int irq_num; 2498 2499 dev = ice_pf_to_dev(pf); 2500 for (vector = 0; vector < q_vectors; vector++) { 2501 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2502 2503 irq_num = q_vector->irq.virq; 2504 2505 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2506 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2507 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2508 tx_int_idx++; 2509 } else if (q_vector->rx.rx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "rx", rx_int_idx++); 2512 } else if (q_vector->tx.tx_ring) { 2513 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2514 "%s-%s-%d", basename, "tx", tx_int_idx++); 2515 } else { 2516 /* skip this unused q_vector */ 2517 continue; 2518 } 2519 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2520 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2521 IRQF_SHARED, q_vector->name, 2522 q_vector); 2523 else 2524 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2525 0, q_vector->name, q_vector); 2526 if (err) { 2527 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2528 err); 2529 goto free_q_irqs; 2530 } 2531 2532 /* register for affinity change notifications */ 2533 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2534 struct irq_affinity_notify *affinity_notify; 2535 2536 affinity_notify = &q_vector->affinity_notify; 2537 affinity_notify->notify = ice_irq_affinity_notify; 2538 affinity_notify->release = ice_irq_affinity_release; 2539 irq_set_affinity_notifier(irq_num, affinity_notify); 2540 } 2541 2542 /* assign the mask for this irq */ 2543 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2544 } 2545 2546 err = ice_set_cpu_rx_rmap(vsi); 2547 if (err) { 2548 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2549 vsi->vsi_num, ERR_PTR(err)); 2550 goto free_q_irqs; 2551 } 2552 2553 vsi->irqs_ready = true; 2554 return 0; 2555 2556 free_q_irqs: 2557 while (vector--) { 2558 irq_num = vsi->q_vectors[vector]->irq.virq; 2559 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2560 irq_set_affinity_notifier(irq_num, NULL); 2561 irq_set_affinity_hint(irq_num, NULL); 2562 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2563 } 2564 return err; 2565 } 2566 2567 /** 2568 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2569 * @vsi: VSI to setup Tx rings used by XDP 2570 * 2571 * Return 0 on success and negative value on error 2572 */ 2573 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2574 { 2575 struct device *dev = ice_pf_to_dev(vsi->back); 2576 struct ice_tx_desc *tx_desc; 2577 int i, j; 2578 2579 ice_for_each_xdp_txq(vsi, i) { 2580 u16 xdp_q_idx = vsi->alloc_txq + i; 2581 struct ice_ring_stats *ring_stats; 2582 struct ice_tx_ring *xdp_ring; 2583 2584 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2585 if (!xdp_ring) 2586 goto free_xdp_rings; 2587 2588 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2589 if (!ring_stats) { 2590 ice_free_tx_ring(xdp_ring); 2591 goto free_xdp_rings; 2592 } 2593 2594 xdp_ring->ring_stats = ring_stats; 2595 xdp_ring->q_index = xdp_q_idx; 2596 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2597 xdp_ring->vsi = vsi; 2598 xdp_ring->netdev = NULL; 2599 xdp_ring->dev = dev; 2600 xdp_ring->count = vsi->num_tx_desc; 2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2602 if (ice_setup_tx_ring(xdp_ring)) 2603 goto free_xdp_rings; 2604 ice_set_ring_xdp(xdp_ring); 2605 spin_lock_init(&xdp_ring->tx_lock); 2606 for (j = 0; j < xdp_ring->count; j++) { 2607 tx_desc = ICE_TX_DESC(xdp_ring, j); 2608 tx_desc->cmd_type_offset_bsz = 0; 2609 } 2610 } 2611 2612 return 0; 2613 2614 free_xdp_rings: 2615 for (; i >= 0; i--) { 2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2618 vsi->xdp_rings[i]->ring_stats = NULL; 2619 ice_free_tx_ring(vsi->xdp_rings[i]); 2620 } 2621 } 2622 return -ENOMEM; 2623 } 2624 2625 /** 2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2627 * @vsi: VSI to set the bpf prog on 2628 * @prog: the bpf prog pointer 2629 */ 2630 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2631 { 2632 struct bpf_prog *old_prog; 2633 int i; 2634 2635 old_prog = xchg(&vsi->xdp_prog, prog); 2636 if (old_prog) 2637 bpf_prog_put(old_prog); 2638 2639 ice_for_each_rxq(vsi, i) 2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2641 } 2642 2643 /** 2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2645 * @vsi: VSI to bring up Tx rings used by XDP 2646 * @prog: bpf program that will be assigned to VSI 2647 * 2648 * Return 0 on success and negative value on error 2649 */ 2650 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2651 { 2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2653 int xdp_rings_rem = vsi->num_xdp_txq; 2654 struct ice_pf *pf = vsi->back; 2655 struct ice_qs_cfg xdp_qs_cfg = { 2656 .qs_mutex = &pf->avail_q_mutex, 2657 .pf_map = pf->avail_txqs, 2658 .pf_map_size = pf->max_pf_txqs, 2659 .q_count = vsi->num_xdp_txq, 2660 .scatter_count = ICE_MAX_SCATTER_TXQS, 2661 .vsi_map = vsi->txq_map, 2662 .vsi_map_offset = vsi->alloc_txq, 2663 .mapping_mode = ICE_VSI_MAP_CONTIG 2664 }; 2665 struct device *dev; 2666 int i, v_idx; 2667 int status; 2668 2669 dev = ice_pf_to_dev(pf); 2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2671 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2672 if (!vsi->xdp_rings) 2673 return -ENOMEM; 2674 2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2676 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2677 goto err_map_xdp; 2678 2679 if (static_key_enabled(&ice_xdp_locking_key)) 2680 netdev_warn(vsi->netdev, 2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2682 2683 if (ice_xdp_alloc_setup_rings(vsi)) 2684 goto clear_xdp_rings; 2685 2686 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 int xdp_rings_per_v, q_id, q_base; 2690 2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2692 vsi->num_q_vectors - v_idx); 2693 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2694 2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2697 2698 xdp_ring->q_vector = q_vector; 2699 xdp_ring->next = q_vector->tx.tx_ring; 2700 q_vector->tx.tx_ring = xdp_ring; 2701 } 2702 xdp_rings_rem -= xdp_rings_per_v; 2703 } 2704 2705 ice_for_each_rxq(vsi, i) { 2706 if (static_key_enabled(&ice_xdp_locking_key)) { 2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2708 } else { 2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2710 struct ice_tx_ring *ring; 2711 2712 ice_for_each_tx_ring(ring, q_vector->tx) { 2713 if (ice_ring_is_xdp(ring)) { 2714 vsi->rx_rings[i]->xdp_ring = ring; 2715 break; 2716 } 2717 } 2718 } 2719 ice_tx_xsk_pool(vsi, i); 2720 } 2721 2722 /* omit the scheduler update if in reset path; XDP queues will be 2723 * taken into account at the end of ice_vsi_rebuild, where 2724 * ice_cfg_vsi_lan is being called 2725 */ 2726 if (ice_is_reset_in_progress(pf->state)) 2727 return 0; 2728 2729 /* tell the Tx scheduler that right now we have 2730 * additional queues 2731 */ 2732 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2734 2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 if (status) { 2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2739 status); 2740 goto clear_xdp_rings; 2741 } 2742 2743 /* assign the prog only when it's not already present on VSI; 2744 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2745 * VSI rebuild that happens under ethtool -L can expose us to 2746 * the bpf_prog refcount issues as we would be swapping same 2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2749 * this is not harmful as dev_xdp_install bumps the refcount 2750 * before calling the op exposed by the driver; 2751 */ 2752 if (!ice_is_xdp_ena_vsi(vsi)) 2753 ice_vsi_assign_bpf_prog(vsi, prog); 2754 2755 return 0; 2756 clear_xdp_rings: 2757 ice_for_each_xdp_txq(vsi, i) 2758 if (vsi->xdp_rings[i]) { 2759 kfree_rcu(vsi->xdp_rings[i], rcu); 2760 vsi->xdp_rings[i] = NULL; 2761 } 2762 2763 err_map_xdp: 2764 mutex_lock(&pf->avail_q_mutex); 2765 ice_for_each_xdp_txq(vsi, i) { 2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2768 } 2769 mutex_unlock(&pf->avail_q_mutex); 2770 2771 devm_kfree(dev, vsi->xdp_rings); 2772 return -ENOMEM; 2773 } 2774 2775 /** 2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2777 * @vsi: VSI to remove XDP rings 2778 * 2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2780 * resources 2781 */ 2782 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 int i, v_idx; 2787 2788 /* q_vectors are freed in reset path so there's no point in detaching 2789 * rings; in case of rebuild being triggered not from reset bits 2790 * in pf->state won't be set, so additionally check first q_vector 2791 * against NULL 2792 */ 2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2794 goto free_qmap; 2795 2796 ice_for_each_q_vector(vsi, v_idx) { 2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2798 struct ice_tx_ring *ring; 2799 2800 ice_for_each_tx_ring(ring, q_vector->tx) 2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2802 break; 2803 2804 /* restore the value of last node prior to XDP setup */ 2805 q_vector->tx.tx_ring = ring; 2806 } 2807 2808 free_qmap: 2809 mutex_lock(&pf->avail_q_mutex); 2810 ice_for_each_xdp_txq(vsi, i) { 2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2813 } 2814 mutex_unlock(&pf->avail_q_mutex); 2815 2816 ice_for_each_xdp_txq(vsi, i) 2817 if (vsi->xdp_rings[i]) { 2818 if (vsi->xdp_rings[i]->desc) { 2819 synchronize_rcu(); 2820 ice_free_tx_ring(vsi->xdp_rings[i]); 2821 } 2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2823 vsi->xdp_rings[i]->ring_stats = NULL; 2824 kfree_rcu(vsi->xdp_rings[i], rcu); 2825 vsi->xdp_rings[i] = NULL; 2826 } 2827 2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2829 vsi->xdp_rings = NULL; 2830 2831 if (static_key_enabled(&ice_xdp_locking_key)) 2832 static_branch_dec(&ice_xdp_locking_key); 2833 2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2835 return 0; 2836 2837 ice_vsi_assign_bpf_prog(vsi, NULL); 2838 2839 /* notify Tx scheduler that we destroyed XDP queues and bring 2840 * back the old number of child nodes 2841 */ 2842 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2843 max_txqs[i] = vsi->num_txq; 2844 2845 /* change number of XDP Tx queues to 0 */ 2846 vsi->num_xdp_txq = 0; 2847 2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2849 max_txqs); 2850 } 2851 2852 /** 2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2854 * @vsi: VSI to schedule napi on 2855 */ 2856 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2857 { 2858 int i; 2859 2860 ice_for_each_rxq(vsi, i) { 2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2862 2863 if (rx_ring->xsk_pool) 2864 napi_schedule(&rx_ring->q_vector->napi); 2865 } 2866 } 2867 2868 /** 2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2870 * @vsi: VSI to determine the count of XDP Tx qs 2871 * 2872 * returns 0 if Tx qs count is higher than at least half of CPU count, 2873 * -ENOMEM otherwise 2874 */ 2875 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2876 { 2877 u16 avail = ice_get_avail_txq_count(vsi->back); 2878 u16 cpus = num_possible_cpus(); 2879 2880 if (avail < cpus / 2) 2881 return -ENOMEM; 2882 2883 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2884 2885 if (vsi->num_xdp_txq < cpus) 2886 static_branch_inc(&ice_xdp_locking_key); 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2893 * @vsi: Pointer to VSI structure 2894 */ 2895 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2896 { 2897 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2898 return ICE_RXBUF_1664; 2899 else 2900 return ICE_RXBUF_3072; 2901 } 2902 2903 /** 2904 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2905 * @vsi: VSI to setup XDP for 2906 * @prog: XDP program 2907 * @extack: netlink extended ack 2908 */ 2909 static int 2910 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2911 struct netlink_ext_ack *extack) 2912 { 2913 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2914 bool if_running = netif_running(vsi->netdev); 2915 int ret = 0, xdp_ring_err = 0; 2916 2917 if (prog && !prog->aux->xdp_has_frags) { 2918 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2919 NL_SET_ERR_MSG_MOD(extack, 2920 "MTU is too large for linear frames and XDP prog does not support frags"); 2921 return -EOPNOTSUPP; 2922 } 2923 } 2924 2925 /* need to stop netdev while setting up the program for Rx rings */ 2926 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2927 ret = ice_down(vsi); 2928 if (ret) { 2929 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2930 return ret; 2931 } 2932 } 2933 2934 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2935 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2936 if (xdp_ring_err) { 2937 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2938 } else { 2939 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2940 if (xdp_ring_err) 2941 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2942 } 2943 xdp_features_set_redirect_target(vsi->netdev, true); 2944 /* reallocate Rx queues that are used for zero-copy */ 2945 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2946 if (xdp_ring_err) 2947 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2948 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2949 xdp_features_clear_redirect_target(vsi->netdev); 2950 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2951 if (xdp_ring_err) 2952 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2953 /* reallocate Rx queues that were used for zero-copy */ 2954 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2955 if (xdp_ring_err) 2956 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2957 } else { 2958 /* safe to call even when prog == vsi->xdp_prog as 2959 * dev_xdp_install in net/core/dev.c incremented prog's 2960 * refcount so corresponding bpf_prog_put won't cause 2961 * underflow 2962 */ 2963 ice_vsi_assign_bpf_prog(vsi, prog); 2964 } 2965 2966 if (if_running) 2967 ret = ice_up(vsi); 2968 2969 if (!ret && prog) 2970 ice_vsi_rx_napi_schedule(vsi); 2971 2972 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2973 } 2974 2975 /** 2976 * ice_xdp_safe_mode - XDP handler for safe mode 2977 * @dev: netdevice 2978 * @xdp: XDP command 2979 */ 2980 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2981 struct netdev_bpf *xdp) 2982 { 2983 NL_SET_ERR_MSG_MOD(xdp->extack, 2984 "Please provide working DDP firmware package in order to use XDP\n" 2985 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2986 return -EOPNOTSUPP; 2987 } 2988 2989 /** 2990 * ice_xdp - implements XDP handler 2991 * @dev: netdevice 2992 * @xdp: XDP command 2993 */ 2994 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2995 { 2996 struct ice_netdev_priv *np = netdev_priv(dev); 2997 struct ice_vsi *vsi = np->vsi; 2998 2999 if (vsi->type != ICE_VSI_PF) { 3000 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3001 return -EINVAL; 3002 } 3003 3004 switch (xdp->command) { 3005 case XDP_SETUP_PROG: 3006 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3007 case XDP_SETUP_XSK_POOL: 3008 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3009 xdp->xsk.queue_id); 3010 default: 3011 return -EINVAL; 3012 } 3013 } 3014 3015 /** 3016 * ice_ena_misc_vector - enable the non-queue interrupts 3017 * @pf: board private structure 3018 */ 3019 static void ice_ena_misc_vector(struct ice_pf *pf) 3020 { 3021 struct ice_hw *hw = &pf->hw; 3022 u32 val; 3023 3024 /* Disable anti-spoof detection interrupt to prevent spurious event 3025 * interrupts during a function reset. Anti-spoof functionally is 3026 * still supported. 3027 */ 3028 val = rd32(hw, GL_MDCK_TX_TDPU); 3029 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3030 wr32(hw, GL_MDCK_TX_TDPU, val); 3031 3032 /* clear things first */ 3033 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3034 rd32(hw, PFINT_OICR); /* read to clear */ 3035 3036 val = (PFINT_OICR_ECC_ERR_M | 3037 PFINT_OICR_MAL_DETECT_M | 3038 PFINT_OICR_GRST_M | 3039 PFINT_OICR_PCI_EXCEPTION_M | 3040 PFINT_OICR_VFLR_M | 3041 PFINT_OICR_HMC_ERR_M | 3042 PFINT_OICR_PE_PUSH_M | 3043 PFINT_OICR_PE_CRITERR_M); 3044 3045 wr32(hw, PFINT_OICR_ENA, val); 3046 3047 /* SW_ITR_IDX = 0, but don't change INTENA */ 3048 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3049 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3050 } 3051 3052 /** 3053 * ice_misc_intr - misc interrupt handler 3054 * @irq: interrupt number 3055 * @data: pointer to a q_vector 3056 */ 3057 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3058 { 3059 struct ice_pf *pf = (struct ice_pf *)data; 3060 struct ice_hw *hw = &pf->hw; 3061 struct device *dev; 3062 u32 oicr, ena_mask; 3063 3064 dev = ice_pf_to_dev(pf); 3065 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3066 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3067 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3068 3069 oicr = rd32(hw, PFINT_OICR); 3070 ena_mask = rd32(hw, PFINT_OICR_ENA); 3071 3072 if (oicr & PFINT_OICR_SWINT_M) { 3073 ena_mask &= ~PFINT_OICR_SWINT_M; 3074 pf->sw_int_count++; 3075 } 3076 3077 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3078 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3079 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3080 } 3081 if (oicr & PFINT_OICR_VFLR_M) { 3082 /* disable any further VFLR event notifications */ 3083 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3084 u32 reg = rd32(hw, PFINT_OICR_ENA); 3085 3086 reg &= ~PFINT_OICR_VFLR_M; 3087 wr32(hw, PFINT_OICR_ENA, reg); 3088 } else { 3089 ena_mask &= ~PFINT_OICR_VFLR_M; 3090 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3091 } 3092 } 3093 3094 if (oicr & PFINT_OICR_GRST_M) { 3095 u32 reset; 3096 3097 /* we have a reset warning */ 3098 ena_mask &= ~PFINT_OICR_GRST_M; 3099 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3100 GLGEN_RSTAT_RESET_TYPE_S; 3101 3102 if (reset == ICE_RESET_CORER) 3103 pf->corer_count++; 3104 else if (reset == ICE_RESET_GLOBR) 3105 pf->globr_count++; 3106 else if (reset == ICE_RESET_EMPR) 3107 pf->empr_count++; 3108 else 3109 dev_dbg(dev, "Invalid reset type %d\n", reset); 3110 3111 /* If a reset cycle isn't already in progress, we set a bit in 3112 * pf->state so that the service task can start a reset/rebuild. 3113 */ 3114 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3115 if (reset == ICE_RESET_CORER) 3116 set_bit(ICE_CORER_RECV, pf->state); 3117 else if (reset == ICE_RESET_GLOBR) 3118 set_bit(ICE_GLOBR_RECV, pf->state); 3119 else 3120 set_bit(ICE_EMPR_RECV, pf->state); 3121 3122 /* There are couple of different bits at play here. 3123 * hw->reset_ongoing indicates whether the hardware is 3124 * in reset. This is set to true when a reset interrupt 3125 * is received and set back to false after the driver 3126 * has determined that the hardware is out of reset. 3127 * 3128 * ICE_RESET_OICR_RECV in pf->state indicates 3129 * that a post reset rebuild is required before the 3130 * driver is operational again. This is set above. 3131 * 3132 * As this is the start of the reset/rebuild cycle, set 3133 * both to indicate that. 3134 */ 3135 hw->reset_ongoing = true; 3136 } 3137 } 3138 3139 if (oicr & PFINT_OICR_TSYN_TX_M) { 3140 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3141 if (!hw->reset_ongoing) 3142 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3143 } 3144 3145 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3146 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3147 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3148 3149 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3150 3151 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3152 /* Save EVENTs from GLTSYN register */ 3153 pf->ptp.ext_ts_irq |= gltsyn_stat & 3154 (GLTSYN_STAT_EVENT0_M | 3155 GLTSYN_STAT_EVENT1_M | 3156 GLTSYN_STAT_EVENT2_M); 3157 3158 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3159 } 3160 } 3161 3162 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3163 if (oicr & ICE_AUX_CRIT_ERR) { 3164 pf->oicr_err_reg |= oicr; 3165 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3166 ena_mask &= ~ICE_AUX_CRIT_ERR; 3167 } 3168 3169 /* Report any remaining unexpected interrupts */ 3170 oicr &= ena_mask; 3171 if (oicr) { 3172 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3173 /* If a critical error is pending there is no choice but to 3174 * reset the device. 3175 */ 3176 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3177 PFINT_OICR_ECC_ERR_M)) { 3178 set_bit(ICE_PFR_REQ, pf->state); 3179 } 3180 } 3181 3182 return IRQ_WAKE_THREAD; 3183 } 3184 3185 /** 3186 * ice_misc_intr_thread_fn - misc interrupt thread function 3187 * @irq: interrupt number 3188 * @data: pointer to a q_vector 3189 */ 3190 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3191 { 3192 struct ice_pf *pf = data; 3193 struct ice_hw *hw; 3194 3195 hw = &pf->hw; 3196 3197 if (ice_is_reset_in_progress(pf->state)) 3198 return IRQ_HANDLED; 3199 3200 ice_service_task_schedule(pf); 3201 3202 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3203 ice_ptp_extts_event(pf); 3204 3205 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3206 /* Process outstanding Tx timestamps. If there is more work, 3207 * re-arm the interrupt to trigger again. 3208 */ 3209 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3210 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3211 ice_flush(hw); 3212 } 3213 } 3214 3215 ice_irq_dynamic_ena(hw, NULL, NULL); 3216 3217 return IRQ_HANDLED; 3218 } 3219 3220 /** 3221 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3222 * @hw: pointer to HW structure 3223 */ 3224 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3225 { 3226 /* disable Admin queue Interrupt causes */ 3227 wr32(hw, PFINT_FW_CTL, 3228 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3229 3230 /* disable Mailbox queue Interrupt causes */ 3231 wr32(hw, PFINT_MBX_CTL, 3232 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3233 3234 wr32(hw, PFINT_SB_CTL, 3235 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3236 3237 /* disable Control queue Interrupt causes */ 3238 wr32(hw, PFINT_OICR_CTL, 3239 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3240 3241 ice_flush(hw); 3242 } 3243 3244 /** 3245 * ice_free_irq_msix_misc - Unroll misc vector setup 3246 * @pf: board private structure 3247 */ 3248 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3249 { 3250 int misc_irq_num = pf->oicr_irq.virq; 3251 struct ice_hw *hw = &pf->hw; 3252 3253 ice_dis_ctrlq_interrupts(hw); 3254 3255 /* disable OICR interrupt */ 3256 wr32(hw, PFINT_OICR_ENA, 0); 3257 ice_flush(hw); 3258 3259 synchronize_irq(misc_irq_num); 3260 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3261 3262 ice_free_irq(pf, pf->oicr_irq); 3263 } 3264 3265 /** 3266 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3267 * @hw: pointer to HW structure 3268 * @reg_idx: HW vector index to associate the control queue interrupts with 3269 */ 3270 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3271 { 3272 u32 val; 3273 3274 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3275 PFINT_OICR_CTL_CAUSE_ENA_M); 3276 wr32(hw, PFINT_OICR_CTL, val); 3277 3278 /* enable Admin queue Interrupt causes */ 3279 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3280 PFINT_FW_CTL_CAUSE_ENA_M); 3281 wr32(hw, PFINT_FW_CTL, val); 3282 3283 /* enable Mailbox queue Interrupt causes */ 3284 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3285 PFINT_MBX_CTL_CAUSE_ENA_M); 3286 wr32(hw, PFINT_MBX_CTL, val); 3287 3288 /* This enables Sideband queue Interrupt causes */ 3289 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3290 PFINT_SB_CTL_CAUSE_ENA_M); 3291 wr32(hw, PFINT_SB_CTL, val); 3292 3293 ice_flush(hw); 3294 } 3295 3296 /** 3297 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3298 * @pf: board private structure 3299 * 3300 * This sets up the handler for MSIX 0, which is used to manage the 3301 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3302 * when in MSI or Legacy interrupt mode. 3303 */ 3304 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3305 { 3306 struct device *dev = ice_pf_to_dev(pf); 3307 struct ice_hw *hw = &pf->hw; 3308 struct msi_map oicr_irq; 3309 int err = 0; 3310 3311 if (!pf->int_name[0]) 3312 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3313 dev_driver_string(dev), dev_name(dev)); 3314 3315 /* Do not request IRQ but do enable OICR interrupt since settings are 3316 * lost during reset. Note that this function is called only during 3317 * rebuild path and not while reset is in progress. 3318 */ 3319 if (ice_is_reset_in_progress(pf->state)) 3320 goto skip_req_irq; 3321 3322 /* reserve one vector in irq_tracker for misc interrupts */ 3323 oicr_irq = ice_alloc_irq(pf, false); 3324 if (oicr_irq.index < 0) 3325 return oicr_irq.index; 3326 3327 pf->oicr_irq = oicr_irq; 3328 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3329 ice_misc_intr_thread_fn, 0, 3330 pf->int_name, pf); 3331 if (err) { 3332 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3333 pf->int_name, err); 3334 ice_free_irq(pf, pf->oicr_irq); 3335 return err; 3336 } 3337 3338 skip_req_irq: 3339 ice_ena_misc_vector(pf); 3340 3341 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3342 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3343 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3344 3345 ice_flush(hw); 3346 ice_irq_dynamic_ena(hw, NULL, NULL); 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * ice_napi_add - register NAPI handler for the VSI 3353 * @vsi: VSI for which NAPI handler is to be registered 3354 * 3355 * This function is only called in the driver's load path. Registering the NAPI 3356 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3357 * reset/rebuild, etc.) 3358 */ 3359 static void ice_napi_add(struct ice_vsi *vsi) 3360 { 3361 int v_idx; 3362 3363 if (!vsi->netdev) 3364 return; 3365 3366 ice_for_each_q_vector(vsi, v_idx) 3367 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3368 ice_napi_poll); 3369 } 3370 3371 /** 3372 * ice_set_ops - set netdev and ethtools ops for the given netdev 3373 * @vsi: the VSI associated with the new netdev 3374 */ 3375 static void ice_set_ops(struct ice_vsi *vsi) 3376 { 3377 struct net_device *netdev = vsi->netdev; 3378 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3379 3380 if (ice_is_safe_mode(pf)) { 3381 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3382 ice_set_ethtool_safe_mode_ops(netdev); 3383 return; 3384 } 3385 3386 netdev->netdev_ops = &ice_netdev_ops; 3387 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3388 ice_set_ethtool_ops(netdev); 3389 3390 if (vsi->type != ICE_VSI_PF) 3391 return; 3392 3393 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3394 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3395 NETDEV_XDP_ACT_RX_SG; 3396 } 3397 3398 /** 3399 * ice_set_netdev_features - set features for the given netdev 3400 * @netdev: netdev instance 3401 */ 3402 static void ice_set_netdev_features(struct net_device *netdev) 3403 { 3404 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3405 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3406 netdev_features_t csumo_features; 3407 netdev_features_t vlano_features; 3408 netdev_features_t dflt_features; 3409 netdev_features_t tso_features; 3410 3411 if (ice_is_safe_mode(pf)) { 3412 /* safe mode */ 3413 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3414 netdev->hw_features = netdev->features; 3415 return; 3416 } 3417 3418 dflt_features = NETIF_F_SG | 3419 NETIF_F_HIGHDMA | 3420 NETIF_F_NTUPLE | 3421 NETIF_F_RXHASH; 3422 3423 csumo_features = NETIF_F_RXCSUM | 3424 NETIF_F_IP_CSUM | 3425 NETIF_F_SCTP_CRC | 3426 NETIF_F_IPV6_CSUM; 3427 3428 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3429 NETIF_F_HW_VLAN_CTAG_TX | 3430 NETIF_F_HW_VLAN_CTAG_RX; 3431 3432 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3433 if (is_dvm_ena) 3434 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3435 3436 tso_features = NETIF_F_TSO | 3437 NETIF_F_TSO_ECN | 3438 NETIF_F_TSO6 | 3439 NETIF_F_GSO_GRE | 3440 NETIF_F_GSO_UDP_TUNNEL | 3441 NETIF_F_GSO_GRE_CSUM | 3442 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3443 NETIF_F_GSO_PARTIAL | 3444 NETIF_F_GSO_IPXIP4 | 3445 NETIF_F_GSO_IPXIP6 | 3446 NETIF_F_GSO_UDP_L4; 3447 3448 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3449 NETIF_F_GSO_GRE_CSUM; 3450 /* set features that user can change */ 3451 netdev->hw_features = dflt_features | csumo_features | 3452 vlano_features | tso_features; 3453 3454 /* add support for HW_CSUM on packets with MPLS header */ 3455 netdev->mpls_features = NETIF_F_HW_CSUM | 3456 NETIF_F_TSO | 3457 NETIF_F_TSO6; 3458 3459 /* enable features */ 3460 netdev->features |= netdev->hw_features; 3461 3462 netdev->hw_features |= NETIF_F_HW_TC; 3463 netdev->hw_features |= NETIF_F_LOOPBACK; 3464 3465 /* encap and VLAN devices inherit default, csumo and tso features */ 3466 netdev->hw_enc_features |= dflt_features | csumo_features | 3467 tso_features; 3468 netdev->vlan_features |= dflt_features | csumo_features | 3469 tso_features; 3470 3471 /* advertise support but don't enable by default since only one type of 3472 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3473 * type turns on the other has to be turned off. This is enforced by the 3474 * ice_fix_features() ndo callback. 3475 */ 3476 if (is_dvm_ena) 3477 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3478 NETIF_F_HW_VLAN_STAG_TX; 3479 3480 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3481 * be changed at runtime 3482 */ 3483 netdev->hw_features |= NETIF_F_RXFCS; 3484 3485 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3486 } 3487 3488 /** 3489 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3490 * @lut: Lookup table 3491 * @rss_table_size: Lookup table size 3492 * @rss_size: Range of queue number for hashing 3493 */ 3494 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3495 { 3496 u16 i; 3497 3498 for (i = 0; i < rss_table_size; i++) 3499 lut[i] = i % rss_size; 3500 } 3501 3502 /** 3503 * ice_pf_vsi_setup - Set up a PF VSI 3504 * @pf: board private structure 3505 * @pi: pointer to the port_info instance 3506 * 3507 * Returns pointer to the successfully allocated VSI software struct 3508 * on success, otherwise returns NULL on failure. 3509 */ 3510 static struct ice_vsi * 3511 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3512 { 3513 struct ice_vsi_cfg_params params = {}; 3514 3515 params.type = ICE_VSI_PF; 3516 params.pi = pi; 3517 params.flags = ICE_VSI_FLAG_INIT; 3518 3519 return ice_vsi_setup(pf, ¶ms); 3520 } 3521 3522 static struct ice_vsi * 3523 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3524 struct ice_channel *ch) 3525 { 3526 struct ice_vsi_cfg_params params = {}; 3527 3528 params.type = ICE_VSI_CHNL; 3529 params.pi = pi; 3530 params.ch = ch; 3531 params.flags = ICE_VSI_FLAG_INIT; 3532 3533 return ice_vsi_setup(pf, ¶ms); 3534 } 3535 3536 /** 3537 * ice_ctrl_vsi_setup - Set up a control VSI 3538 * @pf: board private structure 3539 * @pi: pointer to the port_info instance 3540 * 3541 * Returns pointer to the successfully allocated VSI software struct 3542 * on success, otherwise returns NULL on failure. 3543 */ 3544 static struct ice_vsi * 3545 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3546 { 3547 struct ice_vsi_cfg_params params = {}; 3548 3549 params.type = ICE_VSI_CTRL; 3550 params.pi = pi; 3551 params.flags = ICE_VSI_FLAG_INIT; 3552 3553 return ice_vsi_setup(pf, ¶ms); 3554 } 3555 3556 /** 3557 * ice_lb_vsi_setup - Set up a loopback VSI 3558 * @pf: board private structure 3559 * @pi: pointer to the port_info instance 3560 * 3561 * Returns pointer to the successfully allocated VSI software struct 3562 * on success, otherwise returns NULL on failure. 3563 */ 3564 struct ice_vsi * 3565 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3566 { 3567 struct ice_vsi_cfg_params params = {}; 3568 3569 params.type = ICE_VSI_LB; 3570 params.pi = pi; 3571 params.flags = ICE_VSI_FLAG_INIT; 3572 3573 return ice_vsi_setup(pf, ¶ms); 3574 } 3575 3576 /** 3577 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3578 * @netdev: network interface to be adjusted 3579 * @proto: VLAN TPID 3580 * @vid: VLAN ID to be added 3581 * 3582 * net_device_ops implementation for adding VLAN IDs 3583 */ 3584 static int 3585 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3586 { 3587 struct ice_netdev_priv *np = netdev_priv(netdev); 3588 struct ice_vsi_vlan_ops *vlan_ops; 3589 struct ice_vsi *vsi = np->vsi; 3590 struct ice_vlan vlan; 3591 int ret; 3592 3593 /* VLAN 0 is added by default during load/reset */ 3594 if (!vid) 3595 return 0; 3596 3597 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3598 usleep_range(1000, 2000); 3599 3600 /* Add multicast promisc rule for the VLAN ID to be added if 3601 * all-multicast is currently enabled. 3602 */ 3603 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3604 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3605 ICE_MCAST_VLAN_PROMISC_BITS, 3606 vid); 3607 if (ret) 3608 goto finish; 3609 } 3610 3611 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3612 3613 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3614 * packets aren't pruned by the device's internal switch on Rx 3615 */ 3616 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3617 ret = vlan_ops->add_vlan(vsi, &vlan); 3618 if (ret) 3619 goto finish; 3620 3621 /* If all-multicast is currently enabled and this VLAN ID is only one 3622 * besides VLAN-0 we have to update look-up type of multicast promisc 3623 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3624 */ 3625 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3626 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3627 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3628 ICE_MCAST_PROMISC_BITS, 0); 3629 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3630 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3631 } 3632 3633 finish: 3634 clear_bit(ICE_CFG_BUSY, vsi->state); 3635 3636 return ret; 3637 } 3638 3639 /** 3640 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3641 * @netdev: network interface to be adjusted 3642 * @proto: VLAN TPID 3643 * @vid: VLAN ID to be removed 3644 * 3645 * net_device_ops implementation for removing VLAN IDs 3646 */ 3647 static int 3648 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3649 { 3650 struct ice_netdev_priv *np = netdev_priv(netdev); 3651 struct ice_vsi_vlan_ops *vlan_ops; 3652 struct ice_vsi *vsi = np->vsi; 3653 struct ice_vlan vlan; 3654 int ret; 3655 3656 /* don't allow removal of VLAN 0 */ 3657 if (!vid) 3658 return 0; 3659 3660 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3661 usleep_range(1000, 2000); 3662 3663 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3664 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3665 if (ret) { 3666 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3667 vsi->vsi_num); 3668 vsi->current_netdev_flags |= IFF_ALLMULTI; 3669 } 3670 3671 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3672 3673 /* Make sure VLAN delete is successful before updating VLAN 3674 * information 3675 */ 3676 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3677 ret = vlan_ops->del_vlan(vsi, &vlan); 3678 if (ret) 3679 goto finish; 3680 3681 /* Remove multicast promisc rule for the removed VLAN ID if 3682 * all-multicast is enabled. 3683 */ 3684 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3685 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3686 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3687 3688 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3689 /* Update look-up type of multicast promisc rule for VLAN 0 3690 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3691 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3692 */ 3693 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3694 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3695 ICE_MCAST_VLAN_PROMISC_BITS, 3696 0); 3697 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3698 ICE_MCAST_PROMISC_BITS, 0); 3699 } 3700 } 3701 3702 finish: 3703 clear_bit(ICE_CFG_BUSY, vsi->state); 3704 3705 return ret; 3706 } 3707 3708 /** 3709 * ice_rep_indr_tc_block_unbind 3710 * @cb_priv: indirection block private data 3711 */ 3712 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3713 { 3714 struct ice_indr_block_priv *indr_priv = cb_priv; 3715 3716 list_del(&indr_priv->list); 3717 kfree(indr_priv); 3718 } 3719 3720 /** 3721 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3722 * @vsi: VSI struct which has the netdev 3723 */ 3724 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3725 { 3726 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3727 3728 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3729 ice_rep_indr_tc_block_unbind); 3730 } 3731 3732 /** 3733 * ice_tc_indir_block_register - Register TC indirect block notifications 3734 * @vsi: VSI struct which has the netdev 3735 * 3736 * Returns 0 on success, negative value on failure 3737 */ 3738 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3739 { 3740 struct ice_netdev_priv *np; 3741 3742 if (!vsi || !vsi->netdev) 3743 return -EINVAL; 3744 3745 np = netdev_priv(vsi->netdev); 3746 3747 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3748 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3749 } 3750 3751 /** 3752 * ice_get_avail_q_count - Get count of queues in use 3753 * @pf_qmap: bitmap to get queue use count from 3754 * @lock: pointer to a mutex that protects access to pf_qmap 3755 * @size: size of the bitmap 3756 */ 3757 static u16 3758 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3759 { 3760 unsigned long bit; 3761 u16 count = 0; 3762 3763 mutex_lock(lock); 3764 for_each_clear_bit(bit, pf_qmap, size) 3765 count++; 3766 mutex_unlock(lock); 3767 3768 return count; 3769 } 3770 3771 /** 3772 * ice_get_avail_txq_count - Get count of Tx queues in use 3773 * @pf: pointer to an ice_pf instance 3774 */ 3775 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3776 { 3777 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3778 pf->max_pf_txqs); 3779 } 3780 3781 /** 3782 * ice_get_avail_rxq_count - Get count of Rx queues in use 3783 * @pf: pointer to an ice_pf instance 3784 */ 3785 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3786 { 3787 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3788 pf->max_pf_rxqs); 3789 } 3790 3791 /** 3792 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3793 * @pf: board private structure to initialize 3794 */ 3795 static void ice_deinit_pf(struct ice_pf *pf) 3796 { 3797 ice_service_task_stop(pf); 3798 mutex_destroy(&pf->adev_mutex); 3799 mutex_destroy(&pf->sw_mutex); 3800 mutex_destroy(&pf->tc_mutex); 3801 mutex_destroy(&pf->avail_q_mutex); 3802 mutex_destroy(&pf->vfs.table_lock); 3803 3804 if (pf->avail_txqs) { 3805 bitmap_free(pf->avail_txqs); 3806 pf->avail_txqs = NULL; 3807 } 3808 3809 if (pf->avail_rxqs) { 3810 bitmap_free(pf->avail_rxqs); 3811 pf->avail_rxqs = NULL; 3812 } 3813 3814 if (pf->ptp.clock) 3815 ptp_clock_unregister(pf->ptp.clock); 3816 } 3817 3818 /** 3819 * ice_set_pf_caps - set PFs capability flags 3820 * @pf: pointer to the PF instance 3821 */ 3822 static void ice_set_pf_caps(struct ice_pf *pf) 3823 { 3824 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3825 3826 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3827 if (func_caps->common_cap.rdma) 3828 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3829 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3830 if (func_caps->common_cap.dcb) 3831 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3832 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3833 if (func_caps->common_cap.sr_iov_1_1) { 3834 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3835 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3836 ICE_MAX_SRIOV_VFS); 3837 } 3838 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3839 if (func_caps->common_cap.rss_table_size) 3840 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3841 3842 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3843 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3844 u16 unused; 3845 3846 /* ctrl_vsi_idx will be set to a valid value when flow director 3847 * is setup by ice_init_fdir 3848 */ 3849 pf->ctrl_vsi_idx = ICE_NO_VSI; 3850 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3851 /* force guaranteed filter pool for PF */ 3852 ice_alloc_fd_guar_item(&pf->hw, &unused, 3853 func_caps->fd_fltr_guar); 3854 /* force shared filter pool for PF */ 3855 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3856 func_caps->fd_fltr_best_effort); 3857 } 3858 3859 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3860 if (func_caps->common_cap.ieee_1588) 3861 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3862 3863 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3864 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3865 } 3866 3867 /** 3868 * ice_init_pf - Initialize general software structures (struct ice_pf) 3869 * @pf: board private structure to initialize 3870 */ 3871 static int ice_init_pf(struct ice_pf *pf) 3872 { 3873 ice_set_pf_caps(pf); 3874 3875 mutex_init(&pf->sw_mutex); 3876 mutex_init(&pf->tc_mutex); 3877 mutex_init(&pf->adev_mutex); 3878 3879 INIT_HLIST_HEAD(&pf->aq_wait_list); 3880 spin_lock_init(&pf->aq_wait_lock); 3881 init_waitqueue_head(&pf->aq_wait_queue); 3882 3883 init_waitqueue_head(&pf->reset_wait_queue); 3884 3885 /* setup service timer and periodic service task */ 3886 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3887 pf->serv_tmr_period = HZ; 3888 INIT_WORK(&pf->serv_task, ice_service_task); 3889 clear_bit(ICE_SERVICE_SCHED, pf->state); 3890 3891 mutex_init(&pf->avail_q_mutex); 3892 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3893 if (!pf->avail_txqs) 3894 return -ENOMEM; 3895 3896 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3897 if (!pf->avail_rxqs) { 3898 bitmap_free(pf->avail_txqs); 3899 pf->avail_txqs = NULL; 3900 return -ENOMEM; 3901 } 3902 3903 mutex_init(&pf->vfs.table_lock); 3904 hash_init(pf->vfs.table); 3905 ice_mbx_init_snapshot(&pf->hw); 3906 3907 return 0; 3908 } 3909 3910 /** 3911 * ice_is_wol_supported - check if WoL is supported 3912 * @hw: pointer to hardware info 3913 * 3914 * Check if WoL is supported based on the HW configuration. 3915 * Returns true if NVM supports and enables WoL for this port, false otherwise 3916 */ 3917 bool ice_is_wol_supported(struct ice_hw *hw) 3918 { 3919 u16 wol_ctrl; 3920 3921 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3922 * word) indicates WoL is not supported on the corresponding PF ID. 3923 */ 3924 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3925 return false; 3926 3927 return !(BIT(hw->port_info->lport) & wol_ctrl); 3928 } 3929 3930 /** 3931 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3932 * @vsi: VSI being changed 3933 * @new_rx: new number of Rx queues 3934 * @new_tx: new number of Tx queues 3935 * @locked: is adev device_lock held 3936 * 3937 * Only change the number of queues if new_tx, or new_rx is non-0. 3938 * 3939 * Returns 0 on success. 3940 */ 3941 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3942 { 3943 struct ice_pf *pf = vsi->back; 3944 int err = 0, timeout = 50; 3945 3946 if (!new_rx && !new_tx) 3947 return -EINVAL; 3948 3949 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3950 timeout--; 3951 if (!timeout) 3952 return -EBUSY; 3953 usleep_range(1000, 2000); 3954 } 3955 3956 if (new_tx) 3957 vsi->req_txq = (u16)new_tx; 3958 if (new_rx) 3959 vsi->req_rxq = (u16)new_rx; 3960 3961 /* set for the next time the netdev is started */ 3962 if (!netif_running(vsi->netdev)) { 3963 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3964 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3965 goto done; 3966 } 3967 3968 ice_vsi_close(vsi); 3969 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3970 ice_pf_dcb_recfg(pf, locked); 3971 ice_vsi_open(vsi); 3972 done: 3973 clear_bit(ICE_CFG_BUSY, pf->state); 3974 return err; 3975 } 3976 3977 /** 3978 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3979 * @pf: PF to configure 3980 * 3981 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3982 * VSI can still Tx/Rx VLAN tagged packets. 3983 */ 3984 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3985 { 3986 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3987 struct ice_vsi_ctx *ctxt; 3988 struct ice_hw *hw; 3989 int status; 3990 3991 if (!vsi) 3992 return; 3993 3994 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3995 if (!ctxt) 3996 return; 3997 3998 hw = &pf->hw; 3999 ctxt->info = vsi->info; 4000 4001 ctxt->info.valid_sections = 4002 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4003 ICE_AQ_VSI_PROP_SECURITY_VALID | 4004 ICE_AQ_VSI_PROP_SW_VALID); 4005 4006 /* disable VLAN anti-spoof */ 4007 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4008 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4009 4010 /* disable VLAN pruning and keep all other settings */ 4011 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4012 4013 /* allow all VLANs on Tx and don't strip on Rx */ 4014 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4015 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4016 4017 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4018 if (status) { 4019 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4020 status, ice_aq_str(hw->adminq.sq_last_status)); 4021 } else { 4022 vsi->info.sec_flags = ctxt->info.sec_flags; 4023 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4024 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4025 } 4026 4027 kfree(ctxt); 4028 } 4029 4030 /** 4031 * ice_log_pkg_init - log result of DDP package load 4032 * @hw: pointer to hardware info 4033 * @state: state of package load 4034 */ 4035 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4036 { 4037 struct ice_pf *pf = hw->back; 4038 struct device *dev; 4039 4040 dev = ice_pf_to_dev(pf); 4041 4042 switch (state) { 4043 case ICE_DDP_PKG_SUCCESS: 4044 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4045 hw->active_pkg_name, 4046 hw->active_pkg_ver.major, 4047 hw->active_pkg_ver.minor, 4048 hw->active_pkg_ver.update, 4049 hw->active_pkg_ver.draft); 4050 break; 4051 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4052 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4053 hw->active_pkg_name, 4054 hw->active_pkg_ver.major, 4055 hw->active_pkg_ver.minor, 4056 hw->active_pkg_ver.update, 4057 hw->active_pkg_ver.draft); 4058 break; 4059 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4060 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4061 hw->active_pkg_name, 4062 hw->active_pkg_ver.major, 4063 hw->active_pkg_ver.minor, 4064 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4065 break; 4066 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4067 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4068 hw->active_pkg_name, 4069 hw->active_pkg_ver.major, 4070 hw->active_pkg_ver.minor, 4071 hw->active_pkg_ver.update, 4072 hw->active_pkg_ver.draft, 4073 hw->pkg_name, 4074 hw->pkg_ver.major, 4075 hw->pkg_ver.minor, 4076 hw->pkg_ver.update, 4077 hw->pkg_ver.draft); 4078 break; 4079 case ICE_DDP_PKG_FW_MISMATCH: 4080 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4081 break; 4082 case ICE_DDP_PKG_INVALID_FILE: 4083 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4084 break; 4085 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4086 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4087 break; 4088 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4089 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4090 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4091 break; 4092 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4093 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4094 break; 4095 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4096 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4097 break; 4098 case ICE_DDP_PKG_LOAD_ERROR: 4099 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4100 /* poll for reset to complete */ 4101 if (ice_check_reset(hw)) 4102 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4103 break; 4104 case ICE_DDP_PKG_ERR: 4105 default: 4106 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4107 break; 4108 } 4109 } 4110 4111 /** 4112 * ice_load_pkg - load/reload the DDP Package file 4113 * @firmware: firmware structure when firmware requested or NULL for reload 4114 * @pf: pointer to the PF instance 4115 * 4116 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4117 * initialize HW tables. 4118 */ 4119 static void 4120 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4121 { 4122 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4123 struct device *dev = ice_pf_to_dev(pf); 4124 struct ice_hw *hw = &pf->hw; 4125 4126 /* Load DDP Package */ 4127 if (firmware && !hw->pkg_copy) { 4128 state = ice_copy_and_init_pkg(hw, firmware->data, 4129 firmware->size); 4130 ice_log_pkg_init(hw, state); 4131 } else if (!firmware && hw->pkg_copy) { 4132 /* Reload package during rebuild after CORER/GLOBR reset */ 4133 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4134 ice_log_pkg_init(hw, state); 4135 } else { 4136 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4137 } 4138 4139 if (!ice_is_init_pkg_successful(state)) { 4140 /* Safe Mode */ 4141 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4142 return; 4143 } 4144 4145 /* Successful download package is the precondition for advanced 4146 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4147 */ 4148 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4149 } 4150 4151 /** 4152 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4153 * @pf: pointer to the PF structure 4154 * 4155 * There is no error returned here because the driver should be able to handle 4156 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4157 * specifically with Tx. 4158 */ 4159 static void ice_verify_cacheline_size(struct ice_pf *pf) 4160 { 4161 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4162 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4163 ICE_CACHE_LINE_BYTES); 4164 } 4165 4166 /** 4167 * ice_send_version - update firmware with driver version 4168 * @pf: PF struct 4169 * 4170 * Returns 0 on success, else error code 4171 */ 4172 static int ice_send_version(struct ice_pf *pf) 4173 { 4174 struct ice_driver_ver dv; 4175 4176 dv.major_ver = 0xff; 4177 dv.minor_ver = 0xff; 4178 dv.build_ver = 0xff; 4179 dv.subbuild_ver = 0; 4180 strscpy((char *)dv.driver_string, UTS_RELEASE, 4181 sizeof(dv.driver_string)); 4182 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4183 } 4184 4185 /** 4186 * ice_init_fdir - Initialize flow director VSI and configuration 4187 * @pf: pointer to the PF instance 4188 * 4189 * returns 0 on success, negative on error 4190 */ 4191 static int ice_init_fdir(struct ice_pf *pf) 4192 { 4193 struct device *dev = ice_pf_to_dev(pf); 4194 struct ice_vsi *ctrl_vsi; 4195 int err; 4196 4197 /* Side Band Flow Director needs to have a control VSI. 4198 * Allocate it and store it in the PF. 4199 */ 4200 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4201 if (!ctrl_vsi) { 4202 dev_dbg(dev, "could not create control VSI\n"); 4203 return -ENOMEM; 4204 } 4205 4206 err = ice_vsi_open_ctrl(ctrl_vsi); 4207 if (err) { 4208 dev_dbg(dev, "could not open control VSI\n"); 4209 goto err_vsi_open; 4210 } 4211 4212 mutex_init(&pf->hw.fdir_fltr_lock); 4213 4214 err = ice_fdir_create_dflt_rules(pf); 4215 if (err) 4216 goto err_fdir_rule; 4217 4218 return 0; 4219 4220 err_fdir_rule: 4221 ice_fdir_release_flows(&pf->hw); 4222 ice_vsi_close(ctrl_vsi); 4223 err_vsi_open: 4224 ice_vsi_release(ctrl_vsi); 4225 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4226 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4227 pf->ctrl_vsi_idx = ICE_NO_VSI; 4228 } 4229 return err; 4230 } 4231 4232 static void ice_deinit_fdir(struct ice_pf *pf) 4233 { 4234 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4235 4236 if (!vsi) 4237 return; 4238 4239 ice_vsi_manage_fdir(vsi, false); 4240 ice_vsi_release(vsi); 4241 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4242 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4243 pf->ctrl_vsi_idx = ICE_NO_VSI; 4244 } 4245 4246 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4247 } 4248 4249 /** 4250 * ice_get_opt_fw_name - return optional firmware file name or NULL 4251 * @pf: pointer to the PF instance 4252 */ 4253 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4254 { 4255 /* Optional firmware name same as default with additional dash 4256 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4257 */ 4258 struct pci_dev *pdev = pf->pdev; 4259 char *opt_fw_filename; 4260 u64 dsn; 4261 4262 /* Determine the name of the optional file using the DSN (two 4263 * dwords following the start of the DSN Capability). 4264 */ 4265 dsn = pci_get_dsn(pdev); 4266 if (!dsn) 4267 return NULL; 4268 4269 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4270 if (!opt_fw_filename) 4271 return NULL; 4272 4273 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4274 ICE_DDP_PKG_PATH, dsn); 4275 4276 return opt_fw_filename; 4277 } 4278 4279 /** 4280 * ice_request_fw - Device initialization routine 4281 * @pf: pointer to the PF instance 4282 */ 4283 static void ice_request_fw(struct ice_pf *pf) 4284 { 4285 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4286 const struct firmware *firmware = NULL; 4287 struct device *dev = ice_pf_to_dev(pf); 4288 int err = 0; 4289 4290 /* optional device-specific DDP (if present) overrides the default DDP 4291 * package file. kernel logs a debug message if the file doesn't exist, 4292 * and warning messages for other errors. 4293 */ 4294 if (opt_fw_filename) { 4295 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4296 if (err) { 4297 kfree(opt_fw_filename); 4298 goto dflt_pkg_load; 4299 } 4300 4301 /* request for firmware was successful. Download to device */ 4302 ice_load_pkg(firmware, pf); 4303 kfree(opt_fw_filename); 4304 release_firmware(firmware); 4305 return; 4306 } 4307 4308 dflt_pkg_load: 4309 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4310 if (err) { 4311 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4312 return; 4313 } 4314 4315 /* request for firmware was successful. Download to device */ 4316 ice_load_pkg(firmware, pf); 4317 release_firmware(firmware); 4318 } 4319 4320 /** 4321 * ice_print_wake_reason - show the wake up cause in the log 4322 * @pf: pointer to the PF struct 4323 */ 4324 static void ice_print_wake_reason(struct ice_pf *pf) 4325 { 4326 u32 wus = pf->wakeup_reason; 4327 const char *wake_str; 4328 4329 /* if no wake event, nothing to print */ 4330 if (!wus) 4331 return; 4332 4333 if (wus & PFPM_WUS_LNKC_M) 4334 wake_str = "Link\n"; 4335 else if (wus & PFPM_WUS_MAG_M) 4336 wake_str = "Magic Packet\n"; 4337 else if (wus & PFPM_WUS_MNG_M) 4338 wake_str = "Management\n"; 4339 else if (wus & PFPM_WUS_FW_RST_WK_M) 4340 wake_str = "Firmware Reset\n"; 4341 else 4342 wake_str = "Unknown\n"; 4343 4344 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4345 } 4346 4347 /** 4348 * ice_register_netdev - register netdev 4349 * @vsi: pointer to the VSI struct 4350 */ 4351 static int ice_register_netdev(struct ice_vsi *vsi) 4352 { 4353 int err; 4354 4355 if (!vsi || !vsi->netdev) 4356 return -EIO; 4357 4358 err = register_netdev(vsi->netdev); 4359 if (err) 4360 return err; 4361 4362 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4363 netif_carrier_off(vsi->netdev); 4364 netif_tx_stop_all_queues(vsi->netdev); 4365 4366 return 0; 4367 } 4368 4369 static void ice_unregister_netdev(struct ice_vsi *vsi) 4370 { 4371 if (!vsi || !vsi->netdev) 4372 return; 4373 4374 unregister_netdev(vsi->netdev); 4375 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4376 } 4377 4378 /** 4379 * ice_cfg_netdev - Allocate, configure and register a netdev 4380 * @vsi: the VSI associated with the new netdev 4381 * 4382 * Returns 0 on success, negative value on failure 4383 */ 4384 static int ice_cfg_netdev(struct ice_vsi *vsi) 4385 { 4386 struct ice_netdev_priv *np; 4387 struct net_device *netdev; 4388 u8 mac_addr[ETH_ALEN]; 4389 4390 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4391 vsi->alloc_rxq); 4392 if (!netdev) 4393 return -ENOMEM; 4394 4395 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4396 vsi->netdev = netdev; 4397 np = netdev_priv(netdev); 4398 np->vsi = vsi; 4399 4400 ice_set_netdev_features(netdev); 4401 ice_set_ops(vsi); 4402 4403 if (vsi->type == ICE_VSI_PF) { 4404 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4405 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4406 eth_hw_addr_set(netdev, mac_addr); 4407 } 4408 4409 netdev->priv_flags |= IFF_UNICAST_FLT; 4410 4411 /* Setup netdev TC information */ 4412 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4413 4414 netdev->max_mtu = ICE_MAX_MTU; 4415 4416 return 0; 4417 } 4418 4419 static void ice_decfg_netdev(struct ice_vsi *vsi) 4420 { 4421 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4422 free_netdev(vsi->netdev); 4423 vsi->netdev = NULL; 4424 } 4425 4426 static int ice_start_eth(struct ice_vsi *vsi) 4427 { 4428 int err; 4429 4430 err = ice_init_mac_fltr(vsi->back); 4431 if (err) 4432 return err; 4433 4434 rtnl_lock(); 4435 err = ice_vsi_open(vsi); 4436 rtnl_unlock(); 4437 4438 return err; 4439 } 4440 4441 static void ice_stop_eth(struct ice_vsi *vsi) 4442 { 4443 ice_fltr_remove_all(vsi); 4444 ice_vsi_close(vsi); 4445 } 4446 4447 static int ice_init_eth(struct ice_pf *pf) 4448 { 4449 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4450 int err; 4451 4452 if (!vsi) 4453 return -EINVAL; 4454 4455 /* init channel list */ 4456 INIT_LIST_HEAD(&vsi->ch_list); 4457 4458 err = ice_cfg_netdev(vsi); 4459 if (err) 4460 return err; 4461 /* Setup DCB netlink interface */ 4462 ice_dcbnl_setup(vsi); 4463 4464 err = ice_init_mac_fltr(pf); 4465 if (err) 4466 goto err_init_mac_fltr; 4467 4468 err = ice_devlink_create_pf_port(pf); 4469 if (err) 4470 goto err_devlink_create_pf_port; 4471 4472 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4473 4474 err = ice_register_netdev(vsi); 4475 if (err) 4476 goto err_register_netdev; 4477 4478 err = ice_tc_indir_block_register(vsi); 4479 if (err) 4480 goto err_tc_indir_block_register; 4481 4482 ice_napi_add(vsi); 4483 4484 return 0; 4485 4486 err_tc_indir_block_register: 4487 ice_unregister_netdev(vsi); 4488 err_register_netdev: 4489 ice_devlink_destroy_pf_port(pf); 4490 err_devlink_create_pf_port: 4491 err_init_mac_fltr: 4492 ice_decfg_netdev(vsi); 4493 return err; 4494 } 4495 4496 static void ice_deinit_eth(struct ice_pf *pf) 4497 { 4498 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4499 4500 if (!vsi) 4501 return; 4502 4503 ice_vsi_close(vsi); 4504 ice_unregister_netdev(vsi); 4505 ice_devlink_destroy_pf_port(pf); 4506 ice_tc_indir_block_unregister(vsi); 4507 ice_decfg_netdev(vsi); 4508 } 4509 4510 static int ice_init_dev(struct ice_pf *pf) 4511 { 4512 struct device *dev = ice_pf_to_dev(pf); 4513 struct ice_hw *hw = &pf->hw; 4514 int err; 4515 4516 err = ice_init_hw(hw); 4517 if (err) { 4518 dev_err(dev, "ice_init_hw failed: %d\n", err); 4519 return err; 4520 } 4521 4522 ice_init_feature_support(pf); 4523 4524 ice_request_fw(pf); 4525 4526 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4527 * set in pf->state, which will cause ice_is_safe_mode to return 4528 * true 4529 */ 4530 if (ice_is_safe_mode(pf)) { 4531 /* we already got function/device capabilities but these don't 4532 * reflect what the driver needs to do in safe mode. Instead of 4533 * adding conditional logic everywhere to ignore these 4534 * device/function capabilities, override them. 4535 */ 4536 ice_set_safe_mode_caps(hw); 4537 } 4538 4539 err = ice_init_pf(pf); 4540 if (err) { 4541 dev_err(dev, "ice_init_pf failed: %d\n", err); 4542 goto err_init_pf; 4543 } 4544 4545 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4546 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4547 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4548 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4549 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4550 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4551 pf->hw.tnl.valid_count[TNL_VXLAN]; 4552 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4553 UDP_TUNNEL_TYPE_VXLAN; 4554 } 4555 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4556 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4557 pf->hw.tnl.valid_count[TNL_GENEVE]; 4558 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4559 UDP_TUNNEL_TYPE_GENEVE; 4560 } 4561 4562 err = ice_init_interrupt_scheme(pf); 4563 if (err) { 4564 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4565 err = -EIO; 4566 goto err_init_interrupt_scheme; 4567 } 4568 4569 /* In case of MSIX we are going to setup the misc vector right here 4570 * to handle admin queue events etc. In case of legacy and MSI 4571 * the misc functionality and queue processing is combined in 4572 * the same vector and that gets setup at open. 4573 */ 4574 err = ice_req_irq_msix_misc(pf); 4575 if (err) { 4576 dev_err(dev, "setup of misc vector failed: %d\n", err); 4577 goto err_req_irq_msix_misc; 4578 } 4579 4580 return 0; 4581 4582 err_req_irq_msix_misc: 4583 ice_clear_interrupt_scheme(pf); 4584 err_init_interrupt_scheme: 4585 ice_deinit_pf(pf); 4586 err_init_pf: 4587 ice_deinit_hw(hw); 4588 return err; 4589 } 4590 4591 static void ice_deinit_dev(struct ice_pf *pf) 4592 { 4593 ice_free_irq_msix_misc(pf); 4594 ice_deinit_pf(pf); 4595 ice_deinit_hw(&pf->hw); 4596 4597 /* Service task is already stopped, so call reset directly. */ 4598 ice_reset(&pf->hw, ICE_RESET_PFR); 4599 pci_wait_for_pending_transaction(pf->pdev); 4600 ice_clear_interrupt_scheme(pf); 4601 } 4602 4603 static void ice_init_features(struct ice_pf *pf) 4604 { 4605 struct device *dev = ice_pf_to_dev(pf); 4606 4607 if (ice_is_safe_mode(pf)) 4608 return; 4609 4610 /* initialize DDP driven features */ 4611 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4612 ice_ptp_init(pf); 4613 4614 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4615 ice_gnss_init(pf); 4616 4617 /* Note: Flow director init failure is non-fatal to load */ 4618 if (ice_init_fdir(pf)) 4619 dev_err(dev, "could not initialize flow director\n"); 4620 4621 /* Note: DCB init failure is non-fatal to load */ 4622 if (ice_init_pf_dcb(pf, false)) { 4623 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4624 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4625 } else { 4626 ice_cfg_lldp_mib_change(&pf->hw, true); 4627 } 4628 4629 if (ice_init_lag(pf)) 4630 dev_warn(dev, "Failed to init link aggregation support\n"); 4631 } 4632 4633 static void ice_deinit_features(struct ice_pf *pf) 4634 { 4635 ice_deinit_lag(pf); 4636 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4637 ice_cfg_lldp_mib_change(&pf->hw, false); 4638 ice_deinit_fdir(pf); 4639 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4640 ice_gnss_exit(pf); 4641 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4642 ice_ptp_release(pf); 4643 } 4644 4645 static void ice_init_wakeup(struct ice_pf *pf) 4646 { 4647 /* Save wakeup reason register for later use */ 4648 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4649 4650 /* check for a power management event */ 4651 ice_print_wake_reason(pf); 4652 4653 /* clear wake status, all bits */ 4654 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4655 4656 /* Disable WoL at init, wait for user to enable */ 4657 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4658 } 4659 4660 static int ice_init_link(struct ice_pf *pf) 4661 { 4662 struct device *dev = ice_pf_to_dev(pf); 4663 int err; 4664 4665 err = ice_init_link_events(pf->hw.port_info); 4666 if (err) { 4667 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4668 return err; 4669 } 4670 4671 /* not a fatal error if this fails */ 4672 err = ice_init_nvm_phy_type(pf->hw.port_info); 4673 if (err) 4674 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4675 4676 /* not a fatal error if this fails */ 4677 err = ice_update_link_info(pf->hw.port_info); 4678 if (err) 4679 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4680 4681 ice_init_link_dflt_override(pf->hw.port_info); 4682 4683 ice_check_link_cfg_err(pf, 4684 pf->hw.port_info->phy.link_info.link_cfg_err); 4685 4686 /* if media available, initialize PHY settings */ 4687 if (pf->hw.port_info->phy.link_info.link_info & 4688 ICE_AQ_MEDIA_AVAILABLE) { 4689 /* not a fatal error if this fails */ 4690 err = ice_init_phy_user_cfg(pf->hw.port_info); 4691 if (err) 4692 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4693 4694 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4695 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4696 4697 if (vsi) 4698 ice_configure_phy(vsi); 4699 } 4700 } else { 4701 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4702 } 4703 4704 return err; 4705 } 4706 4707 static int ice_init_pf_sw(struct ice_pf *pf) 4708 { 4709 bool dvm = ice_is_dvm_ena(&pf->hw); 4710 struct ice_vsi *vsi; 4711 int err; 4712 4713 /* create switch struct for the switch element created by FW on boot */ 4714 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4715 if (!pf->first_sw) 4716 return -ENOMEM; 4717 4718 if (pf->hw.evb_veb) 4719 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4720 else 4721 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4722 4723 pf->first_sw->pf = pf; 4724 4725 /* record the sw_id available for later use */ 4726 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4727 4728 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4729 if (err) 4730 goto err_aq_set_port_params; 4731 4732 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4733 if (!vsi) { 4734 err = -ENOMEM; 4735 goto err_pf_vsi_setup; 4736 } 4737 4738 return 0; 4739 4740 err_pf_vsi_setup: 4741 err_aq_set_port_params: 4742 kfree(pf->first_sw); 4743 return err; 4744 } 4745 4746 static void ice_deinit_pf_sw(struct ice_pf *pf) 4747 { 4748 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4749 4750 if (!vsi) 4751 return; 4752 4753 ice_vsi_release(vsi); 4754 kfree(pf->first_sw); 4755 } 4756 4757 static int ice_alloc_vsis(struct ice_pf *pf) 4758 { 4759 struct device *dev = ice_pf_to_dev(pf); 4760 4761 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4762 if (!pf->num_alloc_vsi) 4763 return -EIO; 4764 4765 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4766 dev_warn(dev, 4767 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4768 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4769 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4770 } 4771 4772 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4773 GFP_KERNEL); 4774 if (!pf->vsi) 4775 return -ENOMEM; 4776 4777 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4778 sizeof(*pf->vsi_stats), GFP_KERNEL); 4779 if (!pf->vsi_stats) { 4780 devm_kfree(dev, pf->vsi); 4781 return -ENOMEM; 4782 } 4783 4784 return 0; 4785 } 4786 4787 static void ice_dealloc_vsis(struct ice_pf *pf) 4788 { 4789 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4790 pf->vsi_stats = NULL; 4791 4792 pf->num_alloc_vsi = 0; 4793 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4794 pf->vsi = NULL; 4795 } 4796 4797 static int ice_init_devlink(struct ice_pf *pf) 4798 { 4799 int err; 4800 4801 err = ice_devlink_register_params(pf); 4802 if (err) 4803 return err; 4804 4805 ice_devlink_init_regions(pf); 4806 ice_devlink_register(pf); 4807 4808 return 0; 4809 } 4810 4811 static void ice_deinit_devlink(struct ice_pf *pf) 4812 { 4813 ice_devlink_unregister(pf); 4814 ice_devlink_destroy_regions(pf); 4815 ice_devlink_unregister_params(pf); 4816 } 4817 4818 static int ice_init(struct ice_pf *pf) 4819 { 4820 int err; 4821 4822 err = ice_init_dev(pf); 4823 if (err) 4824 return err; 4825 4826 err = ice_alloc_vsis(pf); 4827 if (err) 4828 goto err_alloc_vsis; 4829 4830 err = ice_init_pf_sw(pf); 4831 if (err) 4832 goto err_init_pf_sw; 4833 4834 ice_init_wakeup(pf); 4835 4836 err = ice_init_link(pf); 4837 if (err) 4838 goto err_init_link; 4839 4840 err = ice_send_version(pf); 4841 if (err) 4842 goto err_init_link; 4843 4844 ice_verify_cacheline_size(pf); 4845 4846 if (ice_is_safe_mode(pf)) 4847 ice_set_safe_mode_vlan_cfg(pf); 4848 else 4849 /* print PCI link speed and width */ 4850 pcie_print_link_status(pf->pdev); 4851 4852 /* ready to go, so clear down state bit */ 4853 clear_bit(ICE_DOWN, pf->state); 4854 clear_bit(ICE_SERVICE_DIS, pf->state); 4855 4856 /* since everything is good, start the service timer */ 4857 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4858 4859 return 0; 4860 4861 err_init_link: 4862 ice_deinit_pf_sw(pf); 4863 err_init_pf_sw: 4864 ice_dealloc_vsis(pf); 4865 err_alloc_vsis: 4866 ice_deinit_dev(pf); 4867 return err; 4868 } 4869 4870 static void ice_deinit(struct ice_pf *pf) 4871 { 4872 set_bit(ICE_SERVICE_DIS, pf->state); 4873 set_bit(ICE_DOWN, pf->state); 4874 4875 ice_deinit_pf_sw(pf); 4876 ice_dealloc_vsis(pf); 4877 ice_deinit_dev(pf); 4878 } 4879 4880 /** 4881 * ice_load - load pf by init hw and starting VSI 4882 * @pf: pointer to the pf instance 4883 */ 4884 int ice_load(struct ice_pf *pf) 4885 { 4886 struct ice_vsi_cfg_params params = {}; 4887 struct ice_vsi *vsi; 4888 int err; 4889 4890 err = ice_init_dev(pf); 4891 if (err) 4892 return err; 4893 4894 vsi = ice_get_main_vsi(pf); 4895 4896 params = ice_vsi_to_params(vsi); 4897 params.flags = ICE_VSI_FLAG_INIT; 4898 4899 err = ice_vsi_cfg(vsi, ¶ms); 4900 if (err) 4901 goto err_vsi_cfg; 4902 4903 err = ice_start_eth(ice_get_main_vsi(pf)); 4904 if (err) 4905 goto err_start_eth; 4906 4907 err = ice_init_rdma(pf); 4908 if (err) 4909 goto err_init_rdma; 4910 4911 ice_init_features(pf); 4912 ice_service_task_restart(pf); 4913 4914 clear_bit(ICE_DOWN, pf->state); 4915 4916 return 0; 4917 4918 err_init_rdma: 4919 ice_vsi_close(ice_get_main_vsi(pf)); 4920 err_start_eth: 4921 ice_vsi_decfg(ice_get_main_vsi(pf)); 4922 err_vsi_cfg: 4923 ice_deinit_dev(pf); 4924 return err; 4925 } 4926 4927 /** 4928 * ice_unload - unload pf by stopping VSI and deinit hw 4929 * @pf: pointer to the pf instance 4930 */ 4931 void ice_unload(struct ice_pf *pf) 4932 { 4933 ice_deinit_features(pf); 4934 ice_deinit_rdma(pf); 4935 ice_stop_eth(ice_get_main_vsi(pf)); 4936 ice_vsi_decfg(ice_get_main_vsi(pf)); 4937 ice_deinit_dev(pf); 4938 } 4939 4940 /** 4941 * ice_probe - Device initialization routine 4942 * @pdev: PCI device information struct 4943 * @ent: entry in ice_pci_tbl 4944 * 4945 * Returns 0 on success, negative on failure 4946 */ 4947 static int 4948 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4949 { 4950 struct device *dev = &pdev->dev; 4951 struct ice_pf *pf; 4952 struct ice_hw *hw; 4953 int err; 4954 4955 if (pdev->is_virtfn) { 4956 dev_err(dev, "can't probe a virtual function\n"); 4957 return -EINVAL; 4958 } 4959 4960 /* this driver uses devres, see 4961 * Documentation/driver-api/driver-model/devres.rst 4962 */ 4963 err = pcim_enable_device(pdev); 4964 if (err) 4965 return err; 4966 4967 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4968 if (err) { 4969 dev_err(dev, "BAR0 I/O map error %d\n", err); 4970 return err; 4971 } 4972 4973 pf = ice_allocate_pf(dev); 4974 if (!pf) 4975 return -ENOMEM; 4976 4977 /* initialize Auxiliary index to invalid value */ 4978 pf->aux_idx = -1; 4979 4980 /* set up for high or low DMA */ 4981 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4982 if (err) { 4983 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4984 return err; 4985 } 4986 4987 pci_set_master(pdev); 4988 4989 pf->pdev = pdev; 4990 pci_set_drvdata(pdev, pf); 4991 set_bit(ICE_DOWN, pf->state); 4992 /* Disable service task until DOWN bit is cleared */ 4993 set_bit(ICE_SERVICE_DIS, pf->state); 4994 4995 hw = &pf->hw; 4996 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4997 pci_save_state(pdev); 4998 4999 hw->back = pf; 5000 hw->port_info = NULL; 5001 hw->vendor_id = pdev->vendor; 5002 hw->device_id = pdev->device; 5003 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5004 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5005 hw->subsystem_device_id = pdev->subsystem_device; 5006 hw->bus.device = PCI_SLOT(pdev->devfn); 5007 hw->bus.func = PCI_FUNC(pdev->devfn); 5008 ice_set_ctrlq_len(hw); 5009 5010 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5011 5012 #ifndef CONFIG_DYNAMIC_DEBUG 5013 if (debug < -1) 5014 hw->debug_mask = debug; 5015 #endif 5016 5017 err = ice_init(pf); 5018 if (err) 5019 goto err_init; 5020 5021 err = ice_init_eth(pf); 5022 if (err) 5023 goto err_init_eth; 5024 5025 err = ice_init_rdma(pf); 5026 if (err) 5027 goto err_init_rdma; 5028 5029 err = ice_init_devlink(pf); 5030 if (err) 5031 goto err_init_devlink; 5032 5033 ice_init_features(pf); 5034 5035 return 0; 5036 5037 err_init_devlink: 5038 ice_deinit_rdma(pf); 5039 err_init_rdma: 5040 ice_deinit_eth(pf); 5041 err_init_eth: 5042 ice_deinit(pf); 5043 err_init: 5044 pci_disable_device(pdev); 5045 return err; 5046 } 5047 5048 /** 5049 * ice_set_wake - enable or disable Wake on LAN 5050 * @pf: pointer to the PF struct 5051 * 5052 * Simple helper for WoL control 5053 */ 5054 static void ice_set_wake(struct ice_pf *pf) 5055 { 5056 struct ice_hw *hw = &pf->hw; 5057 bool wol = pf->wol_ena; 5058 5059 /* clear wake state, otherwise new wake events won't fire */ 5060 wr32(hw, PFPM_WUS, U32_MAX); 5061 5062 /* enable / disable APM wake up, no RMW needed */ 5063 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5064 5065 /* set magic packet filter enabled */ 5066 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5067 } 5068 5069 /** 5070 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5071 * @pf: pointer to the PF struct 5072 * 5073 * Issue firmware command to enable multicast magic wake, making 5074 * sure that any locally administered address (LAA) is used for 5075 * wake, and that PF reset doesn't undo the LAA. 5076 */ 5077 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5078 { 5079 struct device *dev = ice_pf_to_dev(pf); 5080 struct ice_hw *hw = &pf->hw; 5081 u8 mac_addr[ETH_ALEN]; 5082 struct ice_vsi *vsi; 5083 int status; 5084 u8 flags; 5085 5086 if (!pf->wol_ena) 5087 return; 5088 5089 vsi = ice_get_main_vsi(pf); 5090 if (!vsi) 5091 return; 5092 5093 /* Get current MAC address in case it's an LAA */ 5094 if (vsi->netdev) 5095 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5096 else 5097 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5098 5099 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5100 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5101 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5102 5103 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5104 if (status) 5105 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5106 status, ice_aq_str(hw->adminq.sq_last_status)); 5107 } 5108 5109 /** 5110 * ice_remove - Device removal routine 5111 * @pdev: PCI device information struct 5112 */ 5113 static void ice_remove(struct pci_dev *pdev) 5114 { 5115 struct ice_pf *pf = pci_get_drvdata(pdev); 5116 int i; 5117 5118 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5119 if (!ice_is_reset_in_progress(pf->state)) 5120 break; 5121 msleep(100); 5122 } 5123 5124 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5125 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5126 ice_free_vfs(pf); 5127 } 5128 5129 ice_service_task_stop(pf); 5130 ice_aq_cancel_waiting_tasks(pf); 5131 set_bit(ICE_DOWN, pf->state); 5132 5133 if (!ice_is_safe_mode(pf)) 5134 ice_remove_arfs(pf); 5135 ice_deinit_features(pf); 5136 ice_deinit_devlink(pf); 5137 ice_deinit_rdma(pf); 5138 ice_deinit_eth(pf); 5139 ice_deinit(pf); 5140 5141 ice_vsi_release_all(pf); 5142 5143 ice_setup_mc_magic_wake(pf); 5144 ice_set_wake(pf); 5145 5146 pci_disable_device(pdev); 5147 } 5148 5149 /** 5150 * ice_shutdown - PCI callback for shutting down device 5151 * @pdev: PCI device information struct 5152 */ 5153 static void ice_shutdown(struct pci_dev *pdev) 5154 { 5155 struct ice_pf *pf = pci_get_drvdata(pdev); 5156 5157 ice_remove(pdev); 5158 5159 if (system_state == SYSTEM_POWER_OFF) { 5160 pci_wake_from_d3(pdev, pf->wol_ena); 5161 pci_set_power_state(pdev, PCI_D3hot); 5162 } 5163 } 5164 5165 #ifdef CONFIG_PM 5166 /** 5167 * ice_prepare_for_shutdown - prep for PCI shutdown 5168 * @pf: board private structure 5169 * 5170 * Inform or close all dependent features in prep for PCI device shutdown 5171 */ 5172 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5173 { 5174 struct ice_hw *hw = &pf->hw; 5175 u32 v; 5176 5177 /* Notify VFs of impending reset */ 5178 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5179 ice_vc_notify_reset(pf); 5180 5181 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5182 5183 /* disable the VSIs and their queues that are not already DOWN */ 5184 ice_pf_dis_all_vsi(pf, false); 5185 5186 ice_for_each_vsi(pf, v) 5187 if (pf->vsi[v]) 5188 pf->vsi[v]->vsi_num = 0; 5189 5190 ice_shutdown_all_ctrlq(hw); 5191 } 5192 5193 /** 5194 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5195 * @pf: board private structure to reinitialize 5196 * 5197 * This routine reinitialize interrupt scheme that was cleared during 5198 * power management suspend callback. 5199 * 5200 * This should be called during resume routine to re-allocate the q_vectors 5201 * and reacquire interrupts. 5202 */ 5203 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5204 { 5205 struct device *dev = ice_pf_to_dev(pf); 5206 int ret, v; 5207 5208 /* Since we clear MSIX flag during suspend, we need to 5209 * set it back during resume... 5210 */ 5211 5212 ret = ice_init_interrupt_scheme(pf); 5213 if (ret) { 5214 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5215 return ret; 5216 } 5217 5218 /* Remap vectors and rings, after successful re-init interrupts */ 5219 ice_for_each_vsi(pf, v) { 5220 if (!pf->vsi[v]) 5221 continue; 5222 5223 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5224 if (ret) 5225 goto err_reinit; 5226 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5227 } 5228 5229 ret = ice_req_irq_msix_misc(pf); 5230 if (ret) { 5231 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5232 ret); 5233 goto err_reinit; 5234 } 5235 5236 return 0; 5237 5238 err_reinit: 5239 while (v--) 5240 if (pf->vsi[v]) 5241 ice_vsi_free_q_vectors(pf->vsi[v]); 5242 5243 return ret; 5244 } 5245 5246 /** 5247 * ice_suspend 5248 * @dev: generic device information structure 5249 * 5250 * Power Management callback to quiesce the device and prepare 5251 * for D3 transition. 5252 */ 5253 static int __maybe_unused ice_suspend(struct device *dev) 5254 { 5255 struct pci_dev *pdev = to_pci_dev(dev); 5256 struct ice_pf *pf; 5257 int disabled, v; 5258 5259 pf = pci_get_drvdata(pdev); 5260 5261 if (!ice_pf_state_is_nominal(pf)) { 5262 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5263 return -EBUSY; 5264 } 5265 5266 /* Stop watchdog tasks until resume completion. 5267 * Even though it is most likely that the service task is 5268 * disabled if the device is suspended or down, the service task's 5269 * state is controlled by a different state bit, and we should 5270 * store and honor whatever state that bit is in at this point. 5271 */ 5272 disabled = ice_service_task_stop(pf); 5273 5274 ice_unplug_aux_dev(pf); 5275 5276 /* Already suspended?, then there is nothing to do */ 5277 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5278 if (!disabled) 5279 ice_service_task_restart(pf); 5280 return 0; 5281 } 5282 5283 if (test_bit(ICE_DOWN, pf->state) || 5284 ice_is_reset_in_progress(pf->state)) { 5285 dev_err(dev, "can't suspend device in reset or already down\n"); 5286 if (!disabled) 5287 ice_service_task_restart(pf); 5288 return 0; 5289 } 5290 5291 ice_setup_mc_magic_wake(pf); 5292 5293 ice_prepare_for_shutdown(pf); 5294 5295 ice_set_wake(pf); 5296 5297 /* Free vectors, clear the interrupt scheme and release IRQs 5298 * for proper hibernation, especially with large number of CPUs. 5299 * Otherwise hibernation might fail when mapping all the vectors back 5300 * to CPU0. 5301 */ 5302 ice_free_irq_msix_misc(pf); 5303 ice_for_each_vsi(pf, v) { 5304 if (!pf->vsi[v]) 5305 continue; 5306 ice_vsi_free_q_vectors(pf->vsi[v]); 5307 } 5308 ice_clear_interrupt_scheme(pf); 5309 5310 pci_save_state(pdev); 5311 pci_wake_from_d3(pdev, pf->wol_ena); 5312 pci_set_power_state(pdev, PCI_D3hot); 5313 return 0; 5314 } 5315 5316 /** 5317 * ice_resume - PM callback for waking up from D3 5318 * @dev: generic device information structure 5319 */ 5320 static int __maybe_unused ice_resume(struct device *dev) 5321 { 5322 struct pci_dev *pdev = to_pci_dev(dev); 5323 enum ice_reset_req reset_type; 5324 struct ice_pf *pf; 5325 struct ice_hw *hw; 5326 int ret; 5327 5328 pci_set_power_state(pdev, PCI_D0); 5329 pci_restore_state(pdev); 5330 pci_save_state(pdev); 5331 5332 if (!pci_device_is_present(pdev)) 5333 return -ENODEV; 5334 5335 ret = pci_enable_device_mem(pdev); 5336 if (ret) { 5337 dev_err(dev, "Cannot enable device after suspend\n"); 5338 return ret; 5339 } 5340 5341 pf = pci_get_drvdata(pdev); 5342 hw = &pf->hw; 5343 5344 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5345 ice_print_wake_reason(pf); 5346 5347 /* We cleared the interrupt scheme when we suspended, so we need to 5348 * restore it now to resume device functionality. 5349 */ 5350 ret = ice_reinit_interrupt_scheme(pf); 5351 if (ret) 5352 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5353 5354 clear_bit(ICE_DOWN, pf->state); 5355 /* Now perform PF reset and rebuild */ 5356 reset_type = ICE_RESET_PFR; 5357 /* re-enable service task for reset, but allow reset to schedule it */ 5358 clear_bit(ICE_SERVICE_DIS, pf->state); 5359 5360 if (ice_schedule_reset(pf, reset_type)) 5361 dev_err(dev, "Reset during resume failed.\n"); 5362 5363 clear_bit(ICE_SUSPENDED, pf->state); 5364 ice_service_task_restart(pf); 5365 5366 /* Restart the service task */ 5367 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5368 5369 return 0; 5370 } 5371 #endif /* CONFIG_PM */ 5372 5373 /** 5374 * ice_pci_err_detected - warning that PCI error has been detected 5375 * @pdev: PCI device information struct 5376 * @err: the type of PCI error 5377 * 5378 * Called to warn that something happened on the PCI bus and the error handling 5379 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5380 */ 5381 static pci_ers_result_t 5382 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5383 { 5384 struct ice_pf *pf = pci_get_drvdata(pdev); 5385 5386 if (!pf) { 5387 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5388 __func__, err); 5389 return PCI_ERS_RESULT_DISCONNECT; 5390 } 5391 5392 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5393 ice_service_task_stop(pf); 5394 5395 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5396 set_bit(ICE_PFR_REQ, pf->state); 5397 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5398 } 5399 } 5400 5401 return PCI_ERS_RESULT_NEED_RESET; 5402 } 5403 5404 /** 5405 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5406 * @pdev: PCI device information struct 5407 * 5408 * Called to determine if the driver can recover from the PCI slot reset by 5409 * using a register read to determine if the device is recoverable. 5410 */ 5411 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5412 { 5413 struct ice_pf *pf = pci_get_drvdata(pdev); 5414 pci_ers_result_t result; 5415 int err; 5416 u32 reg; 5417 5418 err = pci_enable_device_mem(pdev); 5419 if (err) { 5420 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5421 err); 5422 result = PCI_ERS_RESULT_DISCONNECT; 5423 } else { 5424 pci_set_master(pdev); 5425 pci_restore_state(pdev); 5426 pci_save_state(pdev); 5427 pci_wake_from_d3(pdev, false); 5428 5429 /* Check for life */ 5430 reg = rd32(&pf->hw, GLGEN_RTRIG); 5431 if (!reg) 5432 result = PCI_ERS_RESULT_RECOVERED; 5433 else 5434 result = PCI_ERS_RESULT_DISCONNECT; 5435 } 5436 5437 return result; 5438 } 5439 5440 /** 5441 * ice_pci_err_resume - restart operations after PCI error recovery 5442 * @pdev: PCI device information struct 5443 * 5444 * Called to allow the driver to bring things back up after PCI error and/or 5445 * reset recovery have finished 5446 */ 5447 static void ice_pci_err_resume(struct pci_dev *pdev) 5448 { 5449 struct ice_pf *pf = pci_get_drvdata(pdev); 5450 5451 if (!pf) { 5452 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5453 __func__); 5454 return; 5455 } 5456 5457 if (test_bit(ICE_SUSPENDED, pf->state)) { 5458 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5459 __func__); 5460 return; 5461 } 5462 5463 ice_restore_all_vfs_msi_state(pdev); 5464 5465 ice_do_reset(pf, ICE_RESET_PFR); 5466 ice_service_task_restart(pf); 5467 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5468 } 5469 5470 /** 5471 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5472 * @pdev: PCI device information struct 5473 */ 5474 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5475 { 5476 struct ice_pf *pf = pci_get_drvdata(pdev); 5477 5478 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5479 ice_service_task_stop(pf); 5480 5481 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5482 set_bit(ICE_PFR_REQ, pf->state); 5483 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5484 } 5485 } 5486 } 5487 5488 /** 5489 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5490 * @pdev: PCI device information struct 5491 */ 5492 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5493 { 5494 ice_pci_err_resume(pdev); 5495 } 5496 5497 /* ice_pci_tbl - PCI Device ID Table 5498 * 5499 * Wildcard entries (PCI_ANY_ID) should come last 5500 * Last entry must be all 0s 5501 * 5502 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5503 * Class, Class Mask, private data (not used) } 5504 */ 5505 static const struct pci_device_id ice_pci_tbl[] = { 5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5529 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5530 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5531 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5532 /* required last entry */ 5533 { 0, } 5534 }; 5535 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5536 5537 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5538 5539 static const struct pci_error_handlers ice_pci_err_handler = { 5540 .error_detected = ice_pci_err_detected, 5541 .slot_reset = ice_pci_err_slot_reset, 5542 .reset_prepare = ice_pci_err_reset_prepare, 5543 .reset_done = ice_pci_err_reset_done, 5544 .resume = ice_pci_err_resume 5545 }; 5546 5547 static struct pci_driver ice_driver = { 5548 .name = KBUILD_MODNAME, 5549 .id_table = ice_pci_tbl, 5550 .probe = ice_probe, 5551 .remove = ice_remove, 5552 #ifdef CONFIG_PM 5553 .driver.pm = &ice_pm_ops, 5554 #endif /* CONFIG_PM */ 5555 .shutdown = ice_shutdown, 5556 .sriov_configure = ice_sriov_configure, 5557 .err_handler = &ice_pci_err_handler 5558 }; 5559 5560 /** 5561 * ice_module_init - Driver registration routine 5562 * 5563 * ice_module_init is the first routine called when the driver is 5564 * loaded. All it does is register with the PCI subsystem. 5565 */ 5566 static int __init ice_module_init(void) 5567 { 5568 int status; 5569 5570 pr_info("%s\n", ice_driver_string); 5571 pr_info("%s\n", ice_copyright); 5572 5573 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5574 if (!ice_wq) { 5575 pr_err("Failed to create workqueue\n"); 5576 return -ENOMEM; 5577 } 5578 5579 status = pci_register_driver(&ice_driver); 5580 if (status) { 5581 pr_err("failed to register PCI driver, err %d\n", status); 5582 destroy_workqueue(ice_wq); 5583 } 5584 5585 return status; 5586 } 5587 module_init(ice_module_init); 5588 5589 /** 5590 * ice_module_exit - Driver exit cleanup routine 5591 * 5592 * ice_module_exit is called just before the driver is removed 5593 * from memory. 5594 */ 5595 static void __exit ice_module_exit(void) 5596 { 5597 pci_unregister_driver(&ice_driver); 5598 destroy_workqueue(ice_wq); 5599 pr_info("module unloaded\n"); 5600 } 5601 module_exit(ice_module_exit); 5602 5603 /** 5604 * ice_set_mac_address - NDO callback to set MAC address 5605 * @netdev: network interface device structure 5606 * @pi: pointer to an address structure 5607 * 5608 * Returns 0 on success, negative on failure 5609 */ 5610 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5611 { 5612 struct ice_netdev_priv *np = netdev_priv(netdev); 5613 struct ice_vsi *vsi = np->vsi; 5614 struct ice_pf *pf = vsi->back; 5615 struct ice_hw *hw = &pf->hw; 5616 struct sockaddr *addr = pi; 5617 u8 old_mac[ETH_ALEN]; 5618 u8 flags = 0; 5619 u8 *mac; 5620 int err; 5621 5622 mac = (u8 *)addr->sa_data; 5623 5624 if (!is_valid_ether_addr(mac)) 5625 return -EADDRNOTAVAIL; 5626 5627 if (test_bit(ICE_DOWN, pf->state) || 5628 ice_is_reset_in_progress(pf->state)) { 5629 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5630 mac); 5631 return -EBUSY; 5632 } 5633 5634 if (ice_chnl_dmac_fltr_cnt(pf)) { 5635 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5636 mac); 5637 return -EAGAIN; 5638 } 5639 5640 netif_addr_lock_bh(netdev); 5641 ether_addr_copy(old_mac, netdev->dev_addr); 5642 /* change the netdev's MAC address */ 5643 eth_hw_addr_set(netdev, mac); 5644 netif_addr_unlock_bh(netdev); 5645 5646 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5647 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5648 if (err && err != -ENOENT) { 5649 err = -EADDRNOTAVAIL; 5650 goto err_update_filters; 5651 } 5652 5653 /* Add filter for new MAC. If filter exists, return success */ 5654 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5655 if (err == -EEXIST) { 5656 /* Although this MAC filter is already present in hardware it's 5657 * possible in some cases (e.g. bonding) that dev_addr was 5658 * modified outside of the driver and needs to be restored back 5659 * to this value. 5660 */ 5661 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5662 5663 return 0; 5664 } else if (err) { 5665 /* error if the new filter addition failed */ 5666 err = -EADDRNOTAVAIL; 5667 } 5668 5669 err_update_filters: 5670 if (err) { 5671 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5672 mac); 5673 netif_addr_lock_bh(netdev); 5674 eth_hw_addr_set(netdev, old_mac); 5675 netif_addr_unlock_bh(netdev); 5676 return err; 5677 } 5678 5679 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5680 netdev->dev_addr); 5681 5682 /* write new MAC address to the firmware */ 5683 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5684 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5685 if (err) { 5686 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5687 mac, err); 5688 } 5689 return 0; 5690 } 5691 5692 /** 5693 * ice_set_rx_mode - NDO callback to set the netdev filters 5694 * @netdev: network interface device structure 5695 */ 5696 static void ice_set_rx_mode(struct net_device *netdev) 5697 { 5698 struct ice_netdev_priv *np = netdev_priv(netdev); 5699 struct ice_vsi *vsi = np->vsi; 5700 5701 if (!vsi) 5702 return; 5703 5704 /* Set the flags to synchronize filters 5705 * ndo_set_rx_mode may be triggered even without a change in netdev 5706 * flags 5707 */ 5708 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5709 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5710 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5711 5712 /* schedule our worker thread which will take care of 5713 * applying the new filter changes 5714 */ 5715 ice_service_task_schedule(vsi->back); 5716 } 5717 5718 /** 5719 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5720 * @netdev: network interface device structure 5721 * @queue_index: Queue ID 5722 * @maxrate: maximum bandwidth in Mbps 5723 */ 5724 static int 5725 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5726 { 5727 struct ice_netdev_priv *np = netdev_priv(netdev); 5728 struct ice_vsi *vsi = np->vsi; 5729 u16 q_handle; 5730 int status; 5731 u8 tc; 5732 5733 /* Validate maxrate requested is within permitted range */ 5734 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5735 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5736 maxrate, queue_index); 5737 return -EINVAL; 5738 } 5739 5740 q_handle = vsi->tx_rings[queue_index]->q_handle; 5741 tc = ice_dcb_get_tc(vsi, queue_index); 5742 5743 /* Set BW back to default, when user set maxrate to 0 */ 5744 if (!maxrate) 5745 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5746 q_handle, ICE_MAX_BW); 5747 else 5748 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5749 q_handle, ICE_MAX_BW, maxrate * 1000); 5750 if (status) 5751 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5752 status); 5753 5754 return status; 5755 } 5756 5757 /** 5758 * ice_fdb_add - add an entry to the hardware database 5759 * @ndm: the input from the stack 5760 * @tb: pointer to array of nladdr (unused) 5761 * @dev: the net device pointer 5762 * @addr: the MAC address entry being added 5763 * @vid: VLAN ID 5764 * @flags: instructions from stack about fdb operation 5765 * @extack: netlink extended ack 5766 */ 5767 static int 5768 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5769 struct net_device *dev, const unsigned char *addr, u16 vid, 5770 u16 flags, struct netlink_ext_ack __always_unused *extack) 5771 { 5772 int err; 5773 5774 if (vid) { 5775 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5776 return -EINVAL; 5777 } 5778 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5779 netdev_err(dev, "FDB only supports static addresses\n"); 5780 return -EINVAL; 5781 } 5782 5783 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5784 err = dev_uc_add_excl(dev, addr); 5785 else if (is_multicast_ether_addr(addr)) 5786 err = dev_mc_add_excl(dev, addr); 5787 else 5788 err = -EINVAL; 5789 5790 /* Only return duplicate errors if NLM_F_EXCL is set */ 5791 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5792 err = 0; 5793 5794 return err; 5795 } 5796 5797 /** 5798 * ice_fdb_del - delete an entry from the hardware database 5799 * @ndm: the input from the stack 5800 * @tb: pointer to array of nladdr (unused) 5801 * @dev: the net device pointer 5802 * @addr: the MAC address entry being added 5803 * @vid: VLAN ID 5804 * @extack: netlink extended ack 5805 */ 5806 static int 5807 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5808 struct net_device *dev, const unsigned char *addr, 5809 __always_unused u16 vid, struct netlink_ext_ack *extack) 5810 { 5811 int err; 5812 5813 if (ndm->ndm_state & NUD_PERMANENT) { 5814 netdev_err(dev, "FDB only supports static addresses\n"); 5815 return -EINVAL; 5816 } 5817 5818 if (is_unicast_ether_addr(addr)) 5819 err = dev_uc_del(dev, addr); 5820 else if (is_multicast_ether_addr(addr)) 5821 err = dev_mc_del(dev, addr); 5822 else 5823 err = -EINVAL; 5824 5825 return err; 5826 } 5827 5828 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5829 NETIF_F_HW_VLAN_CTAG_TX | \ 5830 NETIF_F_HW_VLAN_STAG_RX | \ 5831 NETIF_F_HW_VLAN_STAG_TX) 5832 5833 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5834 NETIF_F_HW_VLAN_STAG_RX) 5835 5836 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5837 NETIF_F_HW_VLAN_STAG_FILTER) 5838 5839 /** 5840 * ice_fix_features - fix the netdev features flags based on device limitations 5841 * @netdev: ptr to the netdev that flags are being fixed on 5842 * @features: features that need to be checked and possibly fixed 5843 * 5844 * Make sure any fixups are made to features in this callback. This enables the 5845 * driver to not have to check unsupported configurations throughout the driver 5846 * because that's the responsiblity of this callback. 5847 * 5848 * Single VLAN Mode (SVM) Supported Features: 5849 * NETIF_F_HW_VLAN_CTAG_FILTER 5850 * NETIF_F_HW_VLAN_CTAG_RX 5851 * NETIF_F_HW_VLAN_CTAG_TX 5852 * 5853 * Double VLAN Mode (DVM) Supported Features: 5854 * NETIF_F_HW_VLAN_CTAG_FILTER 5855 * NETIF_F_HW_VLAN_CTAG_RX 5856 * NETIF_F_HW_VLAN_CTAG_TX 5857 * 5858 * NETIF_F_HW_VLAN_STAG_FILTER 5859 * NETIF_HW_VLAN_STAG_RX 5860 * NETIF_HW_VLAN_STAG_TX 5861 * 5862 * Features that need fixing: 5863 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5864 * These are mutually exlusive as the VSI context cannot support multiple 5865 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5866 * is not done, then default to clearing the requested STAG offload 5867 * settings. 5868 * 5869 * All supported filtering has to be enabled or disabled together. For 5870 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5871 * together. If this is not done, then default to VLAN filtering disabled. 5872 * These are mutually exclusive as there is currently no way to 5873 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5874 * prune rules. 5875 */ 5876 static netdev_features_t 5877 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5878 { 5879 struct ice_netdev_priv *np = netdev_priv(netdev); 5880 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5881 bool cur_ctag, cur_stag, req_ctag, req_stag; 5882 5883 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5884 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5885 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5886 5887 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5888 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5889 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5890 5891 if (req_vlan_fltr != cur_vlan_fltr) { 5892 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5893 if (req_ctag && req_stag) { 5894 features |= NETIF_VLAN_FILTERING_FEATURES; 5895 } else if (!req_ctag && !req_stag) { 5896 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5897 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5898 (!cur_stag && req_stag && !cur_ctag)) { 5899 features |= NETIF_VLAN_FILTERING_FEATURES; 5900 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5901 } else if ((cur_ctag && !req_ctag && cur_stag) || 5902 (cur_stag && !req_stag && cur_ctag)) { 5903 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5904 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5905 } 5906 } else { 5907 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5908 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5909 5910 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5911 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5912 } 5913 } 5914 5915 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5916 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5917 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5918 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5919 NETIF_F_HW_VLAN_STAG_TX); 5920 } 5921 5922 if (!(netdev->features & NETIF_F_RXFCS) && 5923 (features & NETIF_F_RXFCS) && 5924 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5925 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5926 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5927 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5928 } 5929 5930 return features; 5931 } 5932 5933 /** 5934 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5935 * @vsi: PF's VSI 5936 * @features: features used to determine VLAN offload settings 5937 * 5938 * First, determine the vlan_ethertype based on the VLAN offload bits in 5939 * features. Then determine if stripping and insertion should be enabled or 5940 * disabled. Finally enable or disable VLAN stripping and insertion. 5941 */ 5942 static int 5943 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5944 { 5945 bool enable_stripping = true, enable_insertion = true; 5946 struct ice_vsi_vlan_ops *vlan_ops; 5947 int strip_err = 0, insert_err = 0; 5948 u16 vlan_ethertype = 0; 5949 5950 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5951 5952 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5953 vlan_ethertype = ETH_P_8021AD; 5954 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5955 vlan_ethertype = ETH_P_8021Q; 5956 5957 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5958 enable_stripping = false; 5959 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5960 enable_insertion = false; 5961 5962 if (enable_stripping) 5963 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5964 else 5965 strip_err = vlan_ops->dis_stripping(vsi); 5966 5967 if (enable_insertion) 5968 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5969 else 5970 insert_err = vlan_ops->dis_insertion(vsi); 5971 5972 if (strip_err || insert_err) 5973 return -EIO; 5974 5975 return 0; 5976 } 5977 5978 /** 5979 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5980 * @vsi: PF's VSI 5981 * @features: features used to determine VLAN filtering settings 5982 * 5983 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5984 * features. 5985 */ 5986 static int 5987 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5988 { 5989 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5990 int err = 0; 5991 5992 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5993 * if either bit is set 5994 */ 5995 if (features & 5996 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5997 err = vlan_ops->ena_rx_filtering(vsi); 5998 else 5999 err = vlan_ops->dis_rx_filtering(vsi); 6000 6001 return err; 6002 } 6003 6004 /** 6005 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6006 * @netdev: ptr to the netdev being adjusted 6007 * @features: the feature set that the stack is suggesting 6008 * 6009 * Only update VLAN settings if the requested_vlan_features are different than 6010 * the current_vlan_features. 6011 */ 6012 static int 6013 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6014 { 6015 netdev_features_t current_vlan_features, requested_vlan_features; 6016 struct ice_netdev_priv *np = netdev_priv(netdev); 6017 struct ice_vsi *vsi = np->vsi; 6018 int err; 6019 6020 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6021 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6022 if (current_vlan_features ^ requested_vlan_features) { 6023 if ((features & NETIF_F_RXFCS) && 6024 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6025 dev_err(ice_pf_to_dev(vsi->back), 6026 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6027 return -EIO; 6028 } 6029 6030 err = ice_set_vlan_offload_features(vsi, features); 6031 if (err) 6032 return err; 6033 } 6034 6035 current_vlan_features = netdev->features & 6036 NETIF_VLAN_FILTERING_FEATURES; 6037 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6038 if (current_vlan_features ^ requested_vlan_features) { 6039 err = ice_set_vlan_filtering_features(vsi, features); 6040 if (err) 6041 return err; 6042 } 6043 6044 return 0; 6045 } 6046 6047 /** 6048 * ice_set_loopback - turn on/off loopback mode on underlying PF 6049 * @vsi: ptr to VSI 6050 * @ena: flag to indicate the on/off setting 6051 */ 6052 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6053 { 6054 bool if_running = netif_running(vsi->netdev); 6055 int ret; 6056 6057 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6058 ret = ice_down(vsi); 6059 if (ret) { 6060 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6061 return ret; 6062 } 6063 } 6064 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6065 if (ret) 6066 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6067 if (if_running) 6068 ret = ice_up(vsi); 6069 6070 return ret; 6071 } 6072 6073 /** 6074 * ice_set_features - set the netdev feature flags 6075 * @netdev: ptr to the netdev being adjusted 6076 * @features: the feature set that the stack is suggesting 6077 */ 6078 static int 6079 ice_set_features(struct net_device *netdev, netdev_features_t features) 6080 { 6081 netdev_features_t changed = netdev->features ^ features; 6082 struct ice_netdev_priv *np = netdev_priv(netdev); 6083 struct ice_vsi *vsi = np->vsi; 6084 struct ice_pf *pf = vsi->back; 6085 int ret = 0; 6086 6087 /* Don't set any netdev advanced features with device in Safe Mode */ 6088 if (ice_is_safe_mode(pf)) { 6089 dev_err(ice_pf_to_dev(pf), 6090 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6091 return ret; 6092 } 6093 6094 /* Do not change setting during reset */ 6095 if (ice_is_reset_in_progress(pf->state)) { 6096 dev_err(ice_pf_to_dev(pf), 6097 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6098 return -EBUSY; 6099 } 6100 6101 /* Multiple features can be changed in one call so keep features in 6102 * separate if/else statements to guarantee each feature is checked 6103 */ 6104 if (changed & NETIF_F_RXHASH) 6105 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6106 6107 ret = ice_set_vlan_features(netdev, features); 6108 if (ret) 6109 return ret; 6110 6111 /* Turn on receive of FCS aka CRC, and after setting this 6112 * flag the packet data will have the 4 byte CRC appended 6113 */ 6114 if (changed & NETIF_F_RXFCS) { 6115 if ((features & NETIF_F_RXFCS) && 6116 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6117 dev_err(ice_pf_to_dev(vsi->back), 6118 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6119 return -EIO; 6120 } 6121 6122 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6123 ret = ice_down_up(vsi); 6124 if (ret) 6125 return ret; 6126 } 6127 6128 if (changed & NETIF_F_NTUPLE) { 6129 bool ena = !!(features & NETIF_F_NTUPLE); 6130 6131 ice_vsi_manage_fdir(vsi, ena); 6132 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6133 } 6134 6135 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6136 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6137 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6138 return -EACCES; 6139 } 6140 6141 if (changed & NETIF_F_HW_TC) { 6142 bool ena = !!(features & NETIF_F_HW_TC); 6143 6144 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6145 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6146 } 6147 6148 if (changed & NETIF_F_LOOPBACK) 6149 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6150 6151 return ret; 6152 } 6153 6154 /** 6155 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6156 * @vsi: VSI to setup VLAN properties for 6157 */ 6158 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6159 { 6160 int err; 6161 6162 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6163 if (err) 6164 return err; 6165 6166 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6167 if (err) 6168 return err; 6169 6170 return ice_vsi_add_vlan_zero(vsi); 6171 } 6172 6173 /** 6174 * ice_vsi_cfg_lan - Setup the VSI lan related config 6175 * @vsi: the VSI being configured 6176 * 6177 * Return 0 on success and negative value on error 6178 */ 6179 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6180 { 6181 int err; 6182 6183 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6184 ice_set_rx_mode(vsi->netdev); 6185 6186 err = ice_vsi_vlan_setup(vsi); 6187 if (err) 6188 return err; 6189 } 6190 ice_vsi_cfg_dcb_rings(vsi); 6191 6192 err = ice_vsi_cfg_lan_txqs(vsi); 6193 if (!err && ice_is_xdp_ena_vsi(vsi)) 6194 err = ice_vsi_cfg_xdp_txqs(vsi); 6195 if (!err) 6196 err = ice_vsi_cfg_rxqs(vsi); 6197 6198 return err; 6199 } 6200 6201 /* THEORY OF MODERATION: 6202 * The ice driver hardware works differently than the hardware that DIMLIB was 6203 * originally made for. ice hardware doesn't have packet count limits that 6204 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6205 * which is hard-coded to a limit of 250,000 ints/second. 6206 * If not using dynamic moderation, the INTRL value can be modified 6207 * by ethtool rx-usecs-high. 6208 */ 6209 struct ice_dim { 6210 /* the throttle rate for interrupts, basically worst case delay before 6211 * an initial interrupt fires, value is stored in microseconds. 6212 */ 6213 u16 itr; 6214 }; 6215 6216 /* Make a different profile for Rx that doesn't allow quite so aggressive 6217 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6218 * second. 6219 */ 6220 static const struct ice_dim rx_profile[] = { 6221 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6222 {8}, /* 125,000 ints/s */ 6223 {16}, /* 62,500 ints/s */ 6224 {62}, /* 16,129 ints/s */ 6225 {126} /* 7,936 ints/s */ 6226 }; 6227 6228 /* The transmit profile, which has the same sorts of values 6229 * as the previous struct 6230 */ 6231 static const struct ice_dim tx_profile[] = { 6232 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6233 {8}, /* 125,000 ints/s */ 6234 {40}, /* 16,125 ints/s */ 6235 {128}, /* 7,812 ints/s */ 6236 {256} /* 3,906 ints/s */ 6237 }; 6238 6239 static void ice_tx_dim_work(struct work_struct *work) 6240 { 6241 struct ice_ring_container *rc; 6242 struct dim *dim; 6243 u16 itr; 6244 6245 dim = container_of(work, struct dim, work); 6246 rc = (struct ice_ring_container *)dim->priv; 6247 6248 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6249 6250 /* look up the values in our local table */ 6251 itr = tx_profile[dim->profile_ix].itr; 6252 6253 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6254 ice_write_itr(rc, itr); 6255 6256 dim->state = DIM_START_MEASURE; 6257 } 6258 6259 static void ice_rx_dim_work(struct work_struct *work) 6260 { 6261 struct ice_ring_container *rc; 6262 struct dim *dim; 6263 u16 itr; 6264 6265 dim = container_of(work, struct dim, work); 6266 rc = (struct ice_ring_container *)dim->priv; 6267 6268 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6269 6270 /* look up the values in our local table */ 6271 itr = rx_profile[dim->profile_ix].itr; 6272 6273 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6274 ice_write_itr(rc, itr); 6275 6276 dim->state = DIM_START_MEASURE; 6277 } 6278 6279 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6280 6281 /** 6282 * ice_init_moderation - set up interrupt moderation 6283 * @q_vector: the vector containing rings to be configured 6284 * 6285 * Set up interrupt moderation registers, with the intent to do the right thing 6286 * when called from reset or from probe, and whether or not dynamic moderation 6287 * is enabled or not. Take special care to write all the registers in both 6288 * dynamic moderation mode or not in order to make sure hardware is in a known 6289 * state. 6290 */ 6291 static void ice_init_moderation(struct ice_q_vector *q_vector) 6292 { 6293 struct ice_ring_container *rc; 6294 bool tx_dynamic, rx_dynamic; 6295 6296 rc = &q_vector->tx; 6297 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6298 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6299 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6300 rc->dim.priv = rc; 6301 tx_dynamic = ITR_IS_DYNAMIC(rc); 6302 6303 /* set the initial TX ITR to match the above */ 6304 ice_write_itr(rc, tx_dynamic ? 6305 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6306 6307 rc = &q_vector->rx; 6308 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6309 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6310 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6311 rc->dim.priv = rc; 6312 rx_dynamic = ITR_IS_DYNAMIC(rc); 6313 6314 /* set the initial RX ITR to match the above */ 6315 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6316 rc->itr_setting); 6317 6318 ice_set_q_vector_intrl(q_vector); 6319 } 6320 6321 /** 6322 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6323 * @vsi: the VSI being configured 6324 */ 6325 static void ice_napi_enable_all(struct ice_vsi *vsi) 6326 { 6327 int q_idx; 6328 6329 if (!vsi->netdev) 6330 return; 6331 6332 ice_for_each_q_vector(vsi, q_idx) { 6333 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6334 6335 ice_init_moderation(q_vector); 6336 6337 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6338 napi_enable(&q_vector->napi); 6339 } 6340 } 6341 6342 /** 6343 * ice_up_complete - Finish the last steps of bringing up a connection 6344 * @vsi: The VSI being configured 6345 * 6346 * Return 0 on success and negative value on error 6347 */ 6348 static int ice_up_complete(struct ice_vsi *vsi) 6349 { 6350 struct ice_pf *pf = vsi->back; 6351 int err; 6352 6353 ice_vsi_cfg_msix(vsi); 6354 6355 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6356 * Tx queue group list was configured and the context bits were 6357 * programmed using ice_vsi_cfg_txqs 6358 */ 6359 err = ice_vsi_start_all_rx_rings(vsi); 6360 if (err) 6361 return err; 6362 6363 clear_bit(ICE_VSI_DOWN, vsi->state); 6364 ice_napi_enable_all(vsi); 6365 ice_vsi_ena_irq(vsi); 6366 6367 if (vsi->port_info && 6368 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6369 vsi->netdev && vsi->type == ICE_VSI_PF) { 6370 ice_print_link_msg(vsi, true); 6371 netif_tx_start_all_queues(vsi->netdev); 6372 netif_carrier_on(vsi->netdev); 6373 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6374 } 6375 6376 /* Perform an initial read of the statistics registers now to 6377 * set the baseline so counters are ready when interface is up 6378 */ 6379 ice_update_eth_stats(vsi); 6380 6381 if (vsi->type == ICE_VSI_PF) 6382 ice_service_task_schedule(pf); 6383 6384 return 0; 6385 } 6386 6387 /** 6388 * ice_up - Bring the connection back up after being down 6389 * @vsi: VSI being configured 6390 */ 6391 int ice_up(struct ice_vsi *vsi) 6392 { 6393 int err; 6394 6395 err = ice_vsi_cfg_lan(vsi); 6396 if (!err) 6397 err = ice_up_complete(vsi); 6398 6399 return err; 6400 } 6401 6402 /** 6403 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6404 * @syncp: pointer to u64_stats_sync 6405 * @stats: stats that pkts and bytes count will be taken from 6406 * @pkts: packets stats counter 6407 * @bytes: bytes stats counter 6408 * 6409 * This function fetches stats from the ring considering the atomic operations 6410 * that needs to be performed to read u64 values in 32 bit machine. 6411 */ 6412 void 6413 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6414 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6415 { 6416 unsigned int start; 6417 6418 do { 6419 start = u64_stats_fetch_begin(syncp); 6420 *pkts = stats.pkts; 6421 *bytes = stats.bytes; 6422 } while (u64_stats_fetch_retry(syncp, start)); 6423 } 6424 6425 /** 6426 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6427 * @vsi: the VSI to be updated 6428 * @vsi_stats: the stats struct to be updated 6429 * @rings: rings to work on 6430 * @count: number of rings 6431 */ 6432 static void 6433 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6434 struct rtnl_link_stats64 *vsi_stats, 6435 struct ice_tx_ring **rings, u16 count) 6436 { 6437 u16 i; 6438 6439 for (i = 0; i < count; i++) { 6440 struct ice_tx_ring *ring; 6441 u64 pkts = 0, bytes = 0; 6442 6443 ring = READ_ONCE(rings[i]); 6444 if (!ring || !ring->ring_stats) 6445 continue; 6446 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6447 ring->ring_stats->stats, &pkts, 6448 &bytes); 6449 vsi_stats->tx_packets += pkts; 6450 vsi_stats->tx_bytes += bytes; 6451 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6452 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6453 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6454 } 6455 } 6456 6457 /** 6458 * ice_update_vsi_ring_stats - Update VSI stats counters 6459 * @vsi: the VSI to be updated 6460 */ 6461 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6462 { 6463 struct rtnl_link_stats64 *net_stats, *stats_prev; 6464 struct rtnl_link_stats64 *vsi_stats; 6465 u64 pkts, bytes; 6466 int i; 6467 6468 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6469 if (!vsi_stats) 6470 return; 6471 6472 /* reset non-netdev (extended) stats */ 6473 vsi->tx_restart = 0; 6474 vsi->tx_busy = 0; 6475 vsi->tx_linearize = 0; 6476 vsi->rx_buf_failed = 0; 6477 vsi->rx_page_failed = 0; 6478 6479 rcu_read_lock(); 6480 6481 /* update Tx rings counters */ 6482 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6483 vsi->num_txq); 6484 6485 /* update Rx rings counters */ 6486 ice_for_each_rxq(vsi, i) { 6487 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6488 struct ice_ring_stats *ring_stats; 6489 6490 ring_stats = ring->ring_stats; 6491 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6492 ring_stats->stats, &pkts, 6493 &bytes); 6494 vsi_stats->rx_packets += pkts; 6495 vsi_stats->rx_bytes += bytes; 6496 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6497 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6498 } 6499 6500 /* update XDP Tx rings counters */ 6501 if (ice_is_xdp_ena_vsi(vsi)) 6502 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6503 vsi->num_xdp_txq); 6504 6505 rcu_read_unlock(); 6506 6507 net_stats = &vsi->net_stats; 6508 stats_prev = &vsi->net_stats_prev; 6509 6510 /* clear prev counters after reset */ 6511 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6512 vsi_stats->rx_packets < stats_prev->rx_packets) { 6513 stats_prev->tx_packets = 0; 6514 stats_prev->tx_bytes = 0; 6515 stats_prev->rx_packets = 0; 6516 stats_prev->rx_bytes = 0; 6517 } 6518 6519 /* update netdev counters */ 6520 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6521 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6522 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6523 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6524 6525 stats_prev->tx_packets = vsi_stats->tx_packets; 6526 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6527 stats_prev->rx_packets = vsi_stats->rx_packets; 6528 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6529 6530 kfree(vsi_stats); 6531 } 6532 6533 /** 6534 * ice_update_vsi_stats - Update VSI stats counters 6535 * @vsi: the VSI to be updated 6536 */ 6537 void ice_update_vsi_stats(struct ice_vsi *vsi) 6538 { 6539 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6540 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6541 struct ice_pf *pf = vsi->back; 6542 6543 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6544 test_bit(ICE_CFG_BUSY, pf->state)) 6545 return; 6546 6547 /* get stats as recorded by Tx/Rx rings */ 6548 ice_update_vsi_ring_stats(vsi); 6549 6550 /* get VSI stats as recorded by the hardware */ 6551 ice_update_eth_stats(vsi); 6552 6553 cur_ns->tx_errors = cur_es->tx_errors; 6554 cur_ns->rx_dropped = cur_es->rx_discards; 6555 cur_ns->tx_dropped = cur_es->tx_discards; 6556 cur_ns->multicast = cur_es->rx_multicast; 6557 6558 /* update some more netdev stats if this is main VSI */ 6559 if (vsi->type == ICE_VSI_PF) { 6560 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6561 cur_ns->rx_errors = pf->stats.crc_errors + 6562 pf->stats.illegal_bytes + 6563 pf->stats.rx_len_errors + 6564 pf->stats.rx_undersize + 6565 pf->hw_csum_rx_error + 6566 pf->stats.rx_jabber + 6567 pf->stats.rx_fragments + 6568 pf->stats.rx_oversize; 6569 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6570 /* record drops from the port level */ 6571 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6572 } 6573 } 6574 6575 /** 6576 * ice_update_pf_stats - Update PF port stats counters 6577 * @pf: PF whose stats needs to be updated 6578 */ 6579 void ice_update_pf_stats(struct ice_pf *pf) 6580 { 6581 struct ice_hw_port_stats *prev_ps, *cur_ps; 6582 struct ice_hw *hw = &pf->hw; 6583 u16 fd_ctr_base; 6584 u8 port; 6585 6586 port = hw->port_info->lport; 6587 prev_ps = &pf->stats_prev; 6588 cur_ps = &pf->stats; 6589 6590 if (ice_is_reset_in_progress(pf->state)) 6591 pf->stat_prev_loaded = false; 6592 6593 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6594 &prev_ps->eth.rx_bytes, 6595 &cur_ps->eth.rx_bytes); 6596 6597 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6598 &prev_ps->eth.rx_unicast, 6599 &cur_ps->eth.rx_unicast); 6600 6601 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6602 &prev_ps->eth.rx_multicast, 6603 &cur_ps->eth.rx_multicast); 6604 6605 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6606 &prev_ps->eth.rx_broadcast, 6607 &cur_ps->eth.rx_broadcast); 6608 6609 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6610 &prev_ps->eth.rx_discards, 6611 &cur_ps->eth.rx_discards); 6612 6613 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6614 &prev_ps->eth.tx_bytes, 6615 &cur_ps->eth.tx_bytes); 6616 6617 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6618 &prev_ps->eth.tx_unicast, 6619 &cur_ps->eth.tx_unicast); 6620 6621 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6622 &prev_ps->eth.tx_multicast, 6623 &cur_ps->eth.tx_multicast); 6624 6625 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6626 &prev_ps->eth.tx_broadcast, 6627 &cur_ps->eth.tx_broadcast); 6628 6629 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6630 &prev_ps->tx_dropped_link_down, 6631 &cur_ps->tx_dropped_link_down); 6632 6633 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6634 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6635 6636 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6637 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6638 6639 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6640 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6641 6642 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6643 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6644 6645 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6646 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6647 6648 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6649 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6650 6651 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6652 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6653 6654 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6655 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6656 6657 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6658 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6659 6660 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6661 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6662 6663 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6664 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6665 6666 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6667 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6668 6669 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6670 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6671 6672 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6673 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6674 6675 fd_ctr_base = hw->fd_ctr_base; 6676 6677 ice_stat_update40(hw, 6678 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6679 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6680 &cur_ps->fd_sb_match); 6681 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6682 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6683 6684 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6685 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6686 6687 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6688 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6689 6690 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6691 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6692 6693 ice_update_dcb_stats(pf); 6694 6695 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6696 &prev_ps->crc_errors, &cur_ps->crc_errors); 6697 6698 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6699 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6700 6701 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6702 &prev_ps->mac_local_faults, 6703 &cur_ps->mac_local_faults); 6704 6705 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6706 &prev_ps->mac_remote_faults, 6707 &cur_ps->mac_remote_faults); 6708 6709 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6710 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6711 6712 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6713 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6714 6715 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6716 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6717 6718 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6719 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6720 6721 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6722 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6723 6724 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6725 6726 pf->stat_prev_loaded = true; 6727 } 6728 6729 /** 6730 * ice_get_stats64 - get statistics for network device structure 6731 * @netdev: network interface device structure 6732 * @stats: main device statistics structure 6733 */ 6734 static 6735 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6736 { 6737 struct ice_netdev_priv *np = netdev_priv(netdev); 6738 struct rtnl_link_stats64 *vsi_stats; 6739 struct ice_vsi *vsi = np->vsi; 6740 6741 vsi_stats = &vsi->net_stats; 6742 6743 if (!vsi->num_txq || !vsi->num_rxq) 6744 return; 6745 6746 /* netdev packet/byte stats come from ring counter. These are obtained 6747 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6748 * But, only call the update routine and read the registers if VSI is 6749 * not down. 6750 */ 6751 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6752 ice_update_vsi_ring_stats(vsi); 6753 stats->tx_packets = vsi_stats->tx_packets; 6754 stats->tx_bytes = vsi_stats->tx_bytes; 6755 stats->rx_packets = vsi_stats->rx_packets; 6756 stats->rx_bytes = vsi_stats->rx_bytes; 6757 6758 /* The rest of the stats can be read from the hardware but instead we 6759 * just return values that the watchdog task has already obtained from 6760 * the hardware. 6761 */ 6762 stats->multicast = vsi_stats->multicast; 6763 stats->tx_errors = vsi_stats->tx_errors; 6764 stats->tx_dropped = vsi_stats->tx_dropped; 6765 stats->rx_errors = vsi_stats->rx_errors; 6766 stats->rx_dropped = vsi_stats->rx_dropped; 6767 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6768 stats->rx_length_errors = vsi_stats->rx_length_errors; 6769 } 6770 6771 /** 6772 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6773 * @vsi: VSI having NAPI disabled 6774 */ 6775 static void ice_napi_disable_all(struct ice_vsi *vsi) 6776 { 6777 int q_idx; 6778 6779 if (!vsi->netdev) 6780 return; 6781 6782 ice_for_each_q_vector(vsi, q_idx) { 6783 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6784 6785 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6786 napi_disable(&q_vector->napi); 6787 6788 cancel_work_sync(&q_vector->tx.dim.work); 6789 cancel_work_sync(&q_vector->rx.dim.work); 6790 } 6791 } 6792 6793 /** 6794 * ice_down - Shutdown the connection 6795 * @vsi: The VSI being stopped 6796 * 6797 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6798 */ 6799 int ice_down(struct ice_vsi *vsi) 6800 { 6801 int i, tx_err, rx_err, vlan_err = 0; 6802 6803 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6804 6805 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6806 vlan_err = ice_vsi_del_vlan_zero(vsi); 6807 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6808 netif_carrier_off(vsi->netdev); 6809 netif_tx_disable(vsi->netdev); 6810 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6811 ice_eswitch_stop_all_tx_queues(vsi->back); 6812 } 6813 6814 ice_vsi_dis_irq(vsi); 6815 6816 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6817 if (tx_err) 6818 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6819 vsi->vsi_num, tx_err); 6820 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6821 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6822 if (tx_err) 6823 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6824 vsi->vsi_num, tx_err); 6825 } 6826 6827 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6828 if (rx_err) 6829 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6830 vsi->vsi_num, rx_err); 6831 6832 ice_napi_disable_all(vsi); 6833 6834 ice_for_each_txq(vsi, i) 6835 ice_clean_tx_ring(vsi->tx_rings[i]); 6836 6837 if (ice_is_xdp_ena_vsi(vsi)) 6838 ice_for_each_xdp_txq(vsi, i) 6839 ice_clean_tx_ring(vsi->xdp_rings[i]); 6840 6841 ice_for_each_rxq(vsi, i) 6842 ice_clean_rx_ring(vsi->rx_rings[i]); 6843 6844 if (tx_err || rx_err || vlan_err) { 6845 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6846 vsi->vsi_num, vsi->vsw->sw_id); 6847 return -EIO; 6848 } 6849 6850 return 0; 6851 } 6852 6853 /** 6854 * ice_down_up - shutdown the VSI connection and bring it up 6855 * @vsi: the VSI to be reconnected 6856 */ 6857 int ice_down_up(struct ice_vsi *vsi) 6858 { 6859 int ret; 6860 6861 /* if DOWN already set, nothing to do */ 6862 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6863 return 0; 6864 6865 ret = ice_down(vsi); 6866 if (ret) 6867 return ret; 6868 6869 ret = ice_up(vsi); 6870 if (ret) { 6871 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6872 return ret; 6873 } 6874 6875 return 0; 6876 } 6877 6878 /** 6879 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6880 * @vsi: VSI having resources allocated 6881 * 6882 * Return 0 on success, negative on failure 6883 */ 6884 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6885 { 6886 int i, err = 0; 6887 6888 if (!vsi->num_txq) { 6889 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6890 vsi->vsi_num); 6891 return -EINVAL; 6892 } 6893 6894 ice_for_each_txq(vsi, i) { 6895 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6896 6897 if (!ring) 6898 return -EINVAL; 6899 6900 if (vsi->netdev) 6901 ring->netdev = vsi->netdev; 6902 err = ice_setup_tx_ring(ring); 6903 if (err) 6904 break; 6905 } 6906 6907 return err; 6908 } 6909 6910 /** 6911 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6912 * @vsi: VSI having resources allocated 6913 * 6914 * Return 0 on success, negative on failure 6915 */ 6916 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6917 { 6918 int i, err = 0; 6919 6920 if (!vsi->num_rxq) { 6921 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6922 vsi->vsi_num); 6923 return -EINVAL; 6924 } 6925 6926 ice_for_each_rxq(vsi, i) { 6927 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6928 6929 if (!ring) 6930 return -EINVAL; 6931 6932 if (vsi->netdev) 6933 ring->netdev = vsi->netdev; 6934 err = ice_setup_rx_ring(ring); 6935 if (err) 6936 break; 6937 } 6938 6939 return err; 6940 } 6941 6942 /** 6943 * ice_vsi_open_ctrl - open control VSI for use 6944 * @vsi: the VSI to open 6945 * 6946 * Initialization of the Control VSI 6947 * 6948 * Returns 0 on success, negative value on error 6949 */ 6950 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6951 { 6952 char int_name[ICE_INT_NAME_STR_LEN]; 6953 struct ice_pf *pf = vsi->back; 6954 struct device *dev; 6955 int err; 6956 6957 dev = ice_pf_to_dev(pf); 6958 /* allocate descriptors */ 6959 err = ice_vsi_setup_tx_rings(vsi); 6960 if (err) 6961 goto err_setup_tx; 6962 6963 err = ice_vsi_setup_rx_rings(vsi); 6964 if (err) 6965 goto err_setup_rx; 6966 6967 err = ice_vsi_cfg_lan(vsi); 6968 if (err) 6969 goto err_setup_rx; 6970 6971 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6972 dev_driver_string(dev), dev_name(dev)); 6973 err = ice_vsi_req_irq_msix(vsi, int_name); 6974 if (err) 6975 goto err_setup_rx; 6976 6977 ice_vsi_cfg_msix(vsi); 6978 6979 err = ice_vsi_start_all_rx_rings(vsi); 6980 if (err) 6981 goto err_up_complete; 6982 6983 clear_bit(ICE_VSI_DOWN, vsi->state); 6984 ice_vsi_ena_irq(vsi); 6985 6986 return 0; 6987 6988 err_up_complete: 6989 ice_down(vsi); 6990 err_setup_rx: 6991 ice_vsi_free_rx_rings(vsi); 6992 err_setup_tx: 6993 ice_vsi_free_tx_rings(vsi); 6994 6995 return err; 6996 } 6997 6998 /** 6999 * ice_vsi_open - Called when a network interface is made active 7000 * @vsi: the VSI to open 7001 * 7002 * Initialization of the VSI 7003 * 7004 * Returns 0 on success, negative value on error 7005 */ 7006 int ice_vsi_open(struct ice_vsi *vsi) 7007 { 7008 char int_name[ICE_INT_NAME_STR_LEN]; 7009 struct ice_pf *pf = vsi->back; 7010 int err; 7011 7012 /* allocate descriptors */ 7013 err = ice_vsi_setup_tx_rings(vsi); 7014 if (err) 7015 goto err_setup_tx; 7016 7017 err = ice_vsi_setup_rx_rings(vsi); 7018 if (err) 7019 goto err_setup_rx; 7020 7021 err = ice_vsi_cfg_lan(vsi); 7022 if (err) 7023 goto err_setup_rx; 7024 7025 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7026 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7027 err = ice_vsi_req_irq_msix(vsi, int_name); 7028 if (err) 7029 goto err_setup_rx; 7030 7031 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7032 7033 if (vsi->type == ICE_VSI_PF) { 7034 /* Notify the stack of the actual queue counts. */ 7035 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7036 if (err) 7037 goto err_set_qs; 7038 7039 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7040 if (err) 7041 goto err_set_qs; 7042 } 7043 7044 err = ice_up_complete(vsi); 7045 if (err) 7046 goto err_up_complete; 7047 7048 return 0; 7049 7050 err_up_complete: 7051 ice_down(vsi); 7052 err_set_qs: 7053 ice_vsi_free_irq(vsi); 7054 err_setup_rx: 7055 ice_vsi_free_rx_rings(vsi); 7056 err_setup_tx: 7057 ice_vsi_free_tx_rings(vsi); 7058 7059 return err; 7060 } 7061 7062 /** 7063 * ice_vsi_release_all - Delete all VSIs 7064 * @pf: PF from which all VSIs are being removed 7065 */ 7066 static void ice_vsi_release_all(struct ice_pf *pf) 7067 { 7068 int err, i; 7069 7070 if (!pf->vsi) 7071 return; 7072 7073 ice_for_each_vsi(pf, i) { 7074 if (!pf->vsi[i]) 7075 continue; 7076 7077 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7078 continue; 7079 7080 err = ice_vsi_release(pf->vsi[i]); 7081 if (err) 7082 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7083 i, err, pf->vsi[i]->vsi_num); 7084 } 7085 } 7086 7087 /** 7088 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7089 * @pf: pointer to the PF instance 7090 * @type: VSI type to rebuild 7091 * 7092 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7093 */ 7094 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7095 { 7096 struct device *dev = ice_pf_to_dev(pf); 7097 int i, err; 7098 7099 ice_for_each_vsi(pf, i) { 7100 struct ice_vsi *vsi = pf->vsi[i]; 7101 7102 if (!vsi || vsi->type != type) 7103 continue; 7104 7105 /* rebuild the VSI */ 7106 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7107 if (err) { 7108 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7109 err, vsi->idx, ice_vsi_type_str(type)); 7110 return err; 7111 } 7112 7113 /* replay filters for the VSI */ 7114 err = ice_replay_vsi(&pf->hw, vsi->idx); 7115 if (err) { 7116 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7117 err, vsi->idx, ice_vsi_type_str(type)); 7118 return err; 7119 } 7120 7121 /* Re-map HW VSI number, using VSI handle that has been 7122 * previously validated in ice_replay_vsi() call above 7123 */ 7124 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7125 7126 /* enable the VSI */ 7127 err = ice_ena_vsi(vsi, false); 7128 if (err) { 7129 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7130 err, vsi->idx, ice_vsi_type_str(type)); 7131 return err; 7132 } 7133 7134 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7135 ice_vsi_type_str(type)); 7136 } 7137 7138 return 0; 7139 } 7140 7141 /** 7142 * ice_update_pf_netdev_link - Update PF netdev link status 7143 * @pf: pointer to the PF instance 7144 */ 7145 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7146 { 7147 bool link_up; 7148 int i; 7149 7150 ice_for_each_vsi(pf, i) { 7151 struct ice_vsi *vsi = pf->vsi[i]; 7152 7153 if (!vsi || vsi->type != ICE_VSI_PF) 7154 return; 7155 7156 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7157 if (link_up) { 7158 netif_carrier_on(pf->vsi[i]->netdev); 7159 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7160 } else { 7161 netif_carrier_off(pf->vsi[i]->netdev); 7162 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7163 } 7164 } 7165 } 7166 7167 /** 7168 * ice_rebuild - rebuild after reset 7169 * @pf: PF to rebuild 7170 * @reset_type: type of reset 7171 * 7172 * Do not rebuild VF VSI in this flow because that is already handled via 7173 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7174 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7175 * to reset/rebuild all the VF VSI twice. 7176 */ 7177 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7178 { 7179 struct device *dev = ice_pf_to_dev(pf); 7180 struct ice_hw *hw = &pf->hw; 7181 bool dvm; 7182 int err; 7183 7184 if (test_bit(ICE_DOWN, pf->state)) 7185 goto clear_recovery; 7186 7187 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7188 7189 #define ICE_EMP_RESET_SLEEP_MS 5000 7190 if (reset_type == ICE_RESET_EMPR) { 7191 /* If an EMP reset has occurred, any previously pending flash 7192 * update will have completed. We no longer know whether or 7193 * not the NVM update EMP reset is restricted. 7194 */ 7195 pf->fw_emp_reset_disabled = false; 7196 7197 msleep(ICE_EMP_RESET_SLEEP_MS); 7198 } 7199 7200 err = ice_init_all_ctrlq(hw); 7201 if (err) { 7202 dev_err(dev, "control queues init failed %d\n", err); 7203 goto err_init_ctrlq; 7204 } 7205 7206 /* if DDP was previously loaded successfully */ 7207 if (!ice_is_safe_mode(pf)) { 7208 /* reload the SW DB of filter tables */ 7209 if (reset_type == ICE_RESET_PFR) 7210 ice_fill_blk_tbls(hw); 7211 else 7212 /* Reload DDP Package after CORER/GLOBR reset */ 7213 ice_load_pkg(NULL, pf); 7214 } 7215 7216 err = ice_clear_pf_cfg(hw); 7217 if (err) { 7218 dev_err(dev, "clear PF configuration failed %d\n", err); 7219 goto err_init_ctrlq; 7220 } 7221 7222 ice_clear_pxe_mode(hw); 7223 7224 err = ice_init_nvm(hw); 7225 if (err) { 7226 dev_err(dev, "ice_init_nvm failed %d\n", err); 7227 goto err_init_ctrlq; 7228 } 7229 7230 err = ice_get_caps(hw); 7231 if (err) { 7232 dev_err(dev, "ice_get_caps failed %d\n", err); 7233 goto err_init_ctrlq; 7234 } 7235 7236 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7237 if (err) { 7238 dev_err(dev, "set_mac_cfg failed %d\n", err); 7239 goto err_init_ctrlq; 7240 } 7241 7242 dvm = ice_is_dvm_ena(hw); 7243 7244 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7245 if (err) 7246 goto err_init_ctrlq; 7247 7248 err = ice_sched_init_port(hw->port_info); 7249 if (err) 7250 goto err_sched_init_port; 7251 7252 /* start misc vector */ 7253 err = ice_req_irq_msix_misc(pf); 7254 if (err) { 7255 dev_err(dev, "misc vector setup failed: %d\n", err); 7256 goto err_sched_init_port; 7257 } 7258 7259 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7260 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7261 if (!rd32(hw, PFQF_FD_SIZE)) { 7262 u16 unused, guar, b_effort; 7263 7264 guar = hw->func_caps.fd_fltr_guar; 7265 b_effort = hw->func_caps.fd_fltr_best_effort; 7266 7267 /* force guaranteed filter pool for PF */ 7268 ice_alloc_fd_guar_item(hw, &unused, guar); 7269 /* force shared filter pool for PF */ 7270 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7271 } 7272 } 7273 7274 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7275 ice_dcb_rebuild(pf); 7276 7277 /* If the PF previously had enabled PTP, PTP init needs to happen before 7278 * the VSI rebuild. If not, this causes the PTP link status events to 7279 * fail. 7280 */ 7281 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7282 ice_ptp_reset(pf); 7283 7284 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7285 ice_gnss_init(pf); 7286 7287 /* rebuild PF VSI */ 7288 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7289 if (err) { 7290 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7291 goto err_vsi_rebuild; 7292 } 7293 7294 /* configure PTP timestamping after VSI rebuild */ 7295 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7296 ice_ptp_cfg_timestamp(pf, false); 7297 7298 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7299 if (err) { 7300 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7301 goto err_vsi_rebuild; 7302 } 7303 7304 if (reset_type == ICE_RESET_PFR) { 7305 err = ice_rebuild_channels(pf); 7306 if (err) { 7307 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7308 err); 7309 goto err_vsi_rebuild; 7310 } 7311 } 7312 7313 /* If Flow Director is active */ 7314 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7315 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7316 if (err) { 7317 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7318 goto err_vsi_rebuild; 7319 } 7320 7321 /* replay HW Flow Director recipes */ 7322 if (hw->fdir_prof) 7323 ice_fdir_replay_flows(hw); 7324 7325 /* replay Flow Director filters */ 7326 ice_fdir_replay_fltrs(pf); 7327 7328 ice_rebuild_arfs(pf); 7329 } 7330 7331 ice_update_pf_netdev_link(pf); 7332 7333 /* tell the firmware we are up */ 7334 err = ice_send_version(pf); 7335 if (err) { 7336 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7337 err); 7338 goto err_vsi_rebuild; 7339 } 7340 7341 ice_replay_post(hw); 7342 7343 /* if we get here, reset flow is successful */ 7344 clear_bit(ICE_RESET_FAILED, pf->state); 7345 7346 ice_plug_aux_dev(pf); 7347 return; 7348 7349 err_vsi_rebuild: 7350 err_sched_init_port: 7351 ice_sched_cleanup_all(hw); 7352 err_init_ctrlq: 7353 ice_shutdown_all_ctrlq(hw); 7354 set_bit(ICE_RESET_FAILED, pf->state); 7355 clear_recovery: 7356 /* set this bit in PF state to control service task scheduling */ 7357 set_bit(ICE_NEEDS_RESTART, pf->state); 7358 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7359 } 7360 7361 /** 7362 * ice_change_mtu - NDO callback to change the MTU 7363 * @netdev: network interface device structure 7364 * @new_mtu: new value for maximum frame size 7365 * 7366 * Returns 0 on success, negative on failure 7367 */ 7368 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7369 { 7370 struct ice_netdev_priv *np = netdev_priv(netdev); 7371 struct ice_vsi *vsi = np->vsi; 7372 struct ice_pf *pf = vsi->back; 7373 struct bpf_prog *prog; 7374 u8 count = 0; 7375 int err = 0; 7376 7377 if (new_mtu == (int)netdev->mtu) { 7378 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7379 return 0; 7380 } 7381 7382 prog = vsi->xdp_prog; 7383 if (prog && !prog->aux->xdp_has_frags) { 7384 int frame_size = ice_max_xdp_frame_size(vsi); 7385 7386 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7387 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7388 frame_size - ICE_ETH_PKT_HDR_PAD); 7389 return -EINVAL; 7390 } 7391 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7392 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7393 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7394 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7395 return -EINVAL; 7396 } 7397 } 7398 7399 /* if a reset is in progress, wait for some time for it to complete */ 7400 do { 7401 if (ice_is_reset_in_progress(pf->state)) { 7402 count++; 7403 usleep_range(1000, 2000); 7404 } else { 7405 break; 7406 } 7407 7408 } while (count < 100); 7409 7410 if (count == 100) { 7411 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7412 return -EBUSY; 7413 } 7414 7415 netdev->mtu = (unsigned int)new_mtu; 7416 7417 /* if VSI is up, bring it down and then back up */ 7418 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7419 err = ice_down(vsi); 7420 if (err) { 7421 netdev_err(netdev, "change MTU if_down err %d\n", err); 7422 return err; 7423 } 7424 7425 err = ice_up(vsi); 7426 if (err) { 7427 netdev_err(netdev, "change MTU if_up err %d\n", err); 7428 return err; 7429 } 7430 } 7431 7432 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7433 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7434 7435 return err; 7436 } 7437 7438 /** 7439 * ice_eth_ioctl - Access the hwtstamp interface 7440 * @netdev: network interface device structure 7441 * @ifr: interface request data 7442 * @cmd: ioctl command 7443 */ 7444 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7445 { 7446 struct ice_netdev_priv *np = netdev_priv(netdev); 7447 struct ice_pf *pf = np->vsi->back; 7448 7449 switch (cmd) { 7450 case SIOCGHWTSTAMP: 7451 return ice_ptp_get_ts_config(pf, ifr); 7452 case SIOCSHWTSTAMP: 7453 return ice_ptp_set_ts_config(pf, ifr); 7454 default: 7455 return -EOPNOTSUPP; 7456 } 7457 } 7458 7459 /** 7460 * ice_aq_str - convert AQ err code to a string 7461 * @aq_err: the AQ error code to convert 7462 */ 7463 const char *ice_aq_str(enum ice_aq_err aq_err) 7464 { 7465 switch (aq_err) { 7466 case ICE_AQ_RC_OK: 7467 return "OK"; 7468 case ICE_AQ_RC_EPERM: 7469 return "ICE_AQ_RC_EPERM"; 7470 case ICE_AQ_RC_ENOENT: 7471 return "ICE_AQ_RC_ENOENT"; 7472 case ICE_AQ_RC_ENOMEM: 7473 return "ICE_AQ_RC_ENOMEM"; 7474 case ICE_AQ_RC_EBUSY: 7475 return "ICE_AQ_RC_EBUSY"; 7476 case ICE_AQ_RC_EEXIST: 7477 return "ICE_AQ_RC_EEXIST"; 7478 case ICE_AQ_RC_EINVAL: 7479 return "ICE_AQ_RC_EINVAL"; 7480 case ICE_AQ_RC_ENOSPC: 7481 return "ICE_AQ_RC_ENOSPC"; 7482 case ICE_AQ_RC_ENOSYS: 7483 return "ICE_AQ_RC_ENOSYS"; 7484 case ICE_AQ_RC_EMODE: 7485 return "ICE_AQ_RC_EMODE"; 7486 case ICE_AQ_RC_ENOSEC: 7487 return "ICE_AQ_RC_ENOSEC"; 7488 case ICE_AQ_RC_EBADSIG: 7489 return "ICE_AQ_RC_EBADSIG"; 7490 case ICE_AQ_RC_ESVN: 7491 return "ICE_AQ_RC_ESVN"; 7492 case ICE_AQ_RC_EBADMAN: 7493 return "ICE_AQ_RC_EBADMAN"; 7494 case ICE_AQ_RC_EBADBUF: 7495 return "ICE_AQ_RC_EBADBUF"; 7496 } 7497 7498 return "ICE_AQ_RC_UNKNOWN"; 7499 } 7500 7501 /** 7502 * ice_set_rss_lut - Set RSS LUT 7503 * @vsi: Pointer to VSI structure 7504 * @lut: Lookup table 7505 * @lut_size: Lookup table size 7506 * 7507 * Returns 0 on success, negative on failure 7508 */ 7509 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7510 { 7511 struct ice_aq_get_set_rss_lut_params params = {}; 7512 struct ice_hw *hw = &vsi->back->hw; 7513 int status; 7514 7515 if (!lut) 7516 return -EINVAL; 7517 7518 params.vsi_handle = vsi->idx; 7519 params.lut_size = lut_size; 7520 params.lut_type = vsi->rss_lut_type; 7521 params.lut = lut; 7522 7523 status = ice_aq_set_rss_lut(hw, ¶ms); 7524 if (status) 7525 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7526 status, ice_aq_str(hw->adminq.sq_last_status)); 7527 7528 return status; 7529 } 7530 7531 /** 7532 * ice_set_rss_key - Set RSS key 7533 * @vsi: Pointer to the VSI structure 7534 * @seed: RSS hash seed 7535 * 7536 * Returns 0 on success, negative on failure 7537 */ 7538 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7539 { 7540 struct ice_hw *hw = &vsi->back->hw; 7541 int status; 7542 7543 if (!seed) 7544 return -EINVAL; 7545 7546 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7547 if (status) 7548 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7549 status, ice_aq_str(hw->adminq.sq_last_status)); 7550 7551 return status; 7552 } 7553 7554 /** 7555 * ice_get_rss_lut - Get RSS LUT 7556 * @vsi: Pointer to VSI structure 7557 * @lut: Buffer to store the lookup table entries 7558 * @lut_size: Size of buffer to store the lookup table entries 7559 * 7560 * Returns 0 on success, negative on failure 7561 */ 7562 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7563 { 7564 struct ice_aq_get_set_rss_lut_params params = {}; 7565 struct ice_hw *hw = &vsi->back->hw; 7566 int status; 7567 7568 if (!lut) 7569 return -EINVAL; 7570 7571 params.vsi_handle = vsi->idx; 7572 params.lut_size = lut_size; 7573 params.lut_type = vsi->rss_lut_type; 7574 params.lut = lut; 7575 7576 status = ice_aq_get_rss_lut(hw, ¶ms); 7577 if (status) 7578 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7579 status, ice_aq_str(hw->adminq.sq_last_status)); 7580 7581 return status; 7582 } 7583 7584 /** 7585 * ice_get_rss_key - Get RSS key 7586 * @vsi: Pointer to VSI structure 7587 * @seed: Buffer to store the key in 7588 * 7589 * Returns 0 on success, negative on failure 7590 */ 7591 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7592 { 7593 struct ice_hw *hw = &vsi->back->hw; 7594 int status; 7595 7596 if (!seed) 7597 return -EINVAL; 7598 7599 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7600 if (status) 7601 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7602 status, ice_aq_str(hw->adminq.sq_last_status)); 7603 7604 return status; 7605 } 7606 7607 /** 7608 * ice_bridge_getlink - Get the hardware bridge mode 7609 * @skb: skb buff 7610 * @pid: process ID 7611 * @seq: RTNL message seq 7612 * @dev: the netdev being configured 7613 * @filter_mask: filter mask passed in 7614 * @nlflags: netlink flags passed in 7615 * 7616 * Return the bridge mode (VEB/VEPA) 7617 */ 7618 static int 7619 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7620 struct net_device *dev, u32 filter_mask, int nlflags) 7621 { 7622 struct ice_netdev_priv *np = netdev_priv(dev); 7623 struct ice_vsi *vsi = np->vsi; 7624 struct ice_pf *pf = vsi->back; 7625 u16 bmode; 7626 7627 bmode = pf->first_sw->bridge_mode; 7628 7629 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7630 filter_mask, NULL); 7631 } 7632 7633 /** 7634 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7635 * @vsi: Pointer to VSI structure 7636 * @bmode: Hardware bridge mode (VEB/VEPA) 7637 * 7638 * Returns 0 on success, negative on failure 7639 */ 7640 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7641 { 7642 struct ice_aqc_vsi_props *vsi_props; 7643 struct ice_hw *hw = &vsi->back->hw; 7644 struct ice_vsi_ctx *ctxt; 7645 int ret; 7646 7647 vsi_props = &vsi->info; 7648 7649 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7650 if (!ctxt) 7651 return -ENOMEM; 7652 7653 ctxt->info = vsi->info; 7654 7655 if (bmode == BRIDGE_MODE_VEB) 7656 /* change from VEPA to VEB mode */ 7657 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7658 else 7659 /* change from VEB to VEPA mode */ 7660 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7661 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7662 7663 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7664 if (ret) { 7665 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7666 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7667 goto out; 7668 } 7669 /* Update sw flags for book keeping */ 7670 vsi_props->sw_flags = ctxt->info.sw_flags; 7671 7672 out: 7673 kfree(ctxt); 7674 return ret; 7675 } 7676 7677 /** 7678 * ice_bridge_setlink - Set the hardware bridge mode 7679 * @dev: the netdev being configured 7680 * @nlh: RTNL message 7681 * @flags: bridge setlink flags 7682 * @extack: netlink extended ack 7683 * 7684 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7685 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7686 * not already set for all VSIs connected to this switch. And also update the 7687 * unicast switch filter rules for the corresponding switch of the netdev. 7688 */ 7689 static int 7690 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7691 u16 __always_unused flags, 7692 struct netlink_ext_ack __always_unused *extack) 7693 { 7694 struct ice_netdev_priv *np = netdev_priv(dev); 7695 struct ice_pf *pf = np->vsi->back; 7696 struct nlattr *attr, *br_spec; 7697 struct ice_hw *hw = &pf->hw; 7698 struct ice_sw *pf_sw; 7699 int rem, v, err = 0; 7700 7701 pf_sw = pf->first_sw; 7702 /* find the attribute in the netlink message */ 7703 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7704 7705 nla_for_each_nested(attr, br_spec, rem) { 7706 __u16 mode; 7707 7708 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7709 continue; 7710 mode = nla_get_u16(attr); 7711 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7712 return -EINVAL; 7713 /* Continue if bridge mode is not being flipped */ 7714 if (mode == pf_sw->bridge_mode) 7715 continue; 7716 /* Iterates through the PF VSI list and update the loopback 7717 * mode of the VSI 7718 */ 7719 ice_for_each_vsi(pf, v) { 7720 if (!pf->vsi[v]) 7721 continue; 7722 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7723 if (err) 7724 return err; 7725 } 7726 7727 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7728 /* Update the unicast switch filter rules for the corresponding 7729 * switch of the netdev 7730 */ 7731 err = ice_update_sw_rule_bridge_mode(hw); 7732 if (err) { 7733 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7734 mode, err, 7735 ice_aq_str(hw->adminq.sq_last_status)); 7736 /* revert hw->evb_veb */ 7737 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7738 return err; 7739 } 7740 7741 pf_sw->bridge_mode = mode; 7742 } 7743 7744 return 0; 7745 } 7746 7747 /** 7748 * ice_tx_timeout - Respond to a Tx Hang 7749 * @netdev: network interface device structure 7750 * @txqueue: Tx queue 7751 */ 7752 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7753 { 7754 struct ice_netdev_priv *np = netdev_priv(netdev); 7755 struct ice_tx_ring *tx_ring = NULL; 7756 struct ice_vsi *vsi = np->vsi; 7757 struct ice_pf *pf = vsi->back; 7758 u32 i; 7759 7760 pf->tx_timeout_count++; 7761 7762 /* Check if PFC is enabled for the TC to which the queue belongs 7763 * to. If yes then Tx timeout is not caused by a hung queue, no 7764 * need to reset and rebuild 7765 */ 7766 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7767 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7768 txqueue); 7769 return; 7770 } 7771 7772 /* now that we have an index, find the tx_ring struct */ 7773 ice_for_each_txq(vsi, i) 7774 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7775 if (txqueue == vsi->tx_rings[i]->q_index) { 7776 tx_ring = vsi->tx_rings[i]; 7777 break; 7778 } 7779 7780 /* Reset recovery level if enough time has elapsed after last timeout. 7781 * Also ensure no new reset action happens before next timeout period. 7782 */ 7783 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7784 pf->tx_timeout_recovery_level = 1; 7785 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7786 netdev->watchdog_timeo))) 7787 return; 7788 7789 if (tx_ring) { 7790 struct ice_hw *hw = &pf->hw; 7791 u32 head, val = 0; 7792 7793 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7794 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7795 /* Read interrupt register */ 7796 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7797 7798 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7799 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7800 head, tx_ring->next_to_use, val); 7801 } 7802 7803 pf->tx_timeout_last_recovery = jiffies; 7804 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7805 pf->tx_timeout_recovery_level, txqueue); 7806 7807 switch (pf->tx_timeout_recovery_level) { 7808 case 1: 7809 set_bit(ICE_PFR_REQ, pf->state); 7810 break; 7811 case 2: 7812 set_bit(ICE_CORER_REQ, pf->state); 7813 break; 7814 case 3: 7815 set_bit(ICE_GLOBR_REQ, pf->state); 7816 break; 7817 default: 7818 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7819 set_bit(ICE_DOWN, pf->state); 7820 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7821 set_bit(ICE_SERVICE_DIS, pf->state); 7822 break; 7823 } 7824 7825 ice_service_task_schedule(pf); 7826 pf->tx_timeout_recovery_level++; 7827 } 7828 7829 /** 7830 * ice_setup_tc_cls_flower - flower classifier offloads 7831 * @np: net device to configure 7832 * @filter_dev: device on which filter is added 7833 * @cls_flower: offload data 7834 */ 7835 static int 7836 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7837 struct net_device *filter_dev, 7838 struct flow_cls_offload *cls_flower) 7839 { 7840 struct ice_vsi *vsi = np->vsi; 7841 7842 if (cls_flower->common.chain_index) 7843 return -EOPNOTSUPP; 7844 7845 switch (cls_flower->command) { 7846 case FLOW_CLS_REPLACE: 7847 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7848 case FLOW_CLS_DESTROY: 7849 return ice_del_cls_flower(vsi, cls_flower); 7850 default: 7851 return -EINVAL; 7852 } 7853 } 7854 7855 /** 7856 * ice_setup_tc_block_cb - callback handler registered for TC block 7857 * @type: TC SETUP type 7858 * @type_data: TC flower offload data that contains user input 7859 * @cb_priv: netdev private data 7860 */ 7861 static int 7862 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7863 { 7864 struct ice_netdev_priv *np = cb_priv; 7865 7866 switch (type) { 7867 case TC_SETUP_CLSFLOWER: 7868 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7869 type_data); 7870 default: 7871 return -EOPNOTSUPP; 7872 } 7873 } 7874 7875 /** 7876 * ice_validate_mqprio_qopt - Validate TCF input parameters 7877 * @vsi: Pointer to VSI 7878 * @mqprio_qopt: input parameters for mqprio queue configuration 7879 * 7880 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7881 * needed), and make sure user doesn't specify qcount and BW rate limit 7882 * for TCs, which are more than "num_tc" 7883 */ 7884 static int 7885 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7886 struct tc_mqprio_qopt_offload *mqprio_qopt) 7887 { 7888 u64 sum_max_rate = 0, sum_min_rate = 0; 7889 int non_power_of_2_qcount = 0; 7890 struct ice_pf *pf = vsi->back; 7891 int max_rss_q_cnt = 0; 7892 struct device *dev; 7893 int i, speed; 7894 u8 num_tc; 7895 7896 if (vsi->type != ICE_VSI_PF) 7897 return -EINVAL; 7898 7899 if (mqprio_qopt->qopt.offset[0] != 0 || 7900 mqprio_qopt->qopt.num_tc < 1 || 7901 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7902 return -EINVAL; 7903 7904 dev = ice_pf_to_dev(pf); 7905 vsi->ch_rss_size = 0; 7906 num_tc = mqprio_qopt->qopt.num_tc; 7907 7908 for (i = 0; num_tc; i++) { 7909 int qcount = mqprio_qopt->qopt.count[i]; 7910 u64 max_rate, min_rate, rem; 7911 7912 if (!qcount) 7913 return -EINVAL; 7914 7915 if (is_power_of_2(qcount)) { 7916 if (non_power_of_2_qcount && 7917 qcount > non_power_of_2_qcount) { 7918 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7919 qcount, non_power_of_2_qcount); 7920 return -EINVAL; 7921 } 7922 if (qcount > max_rss_q_cnt) 7923 max_rss_q_cnt = qcount; 7924 } else { 7925 if (non_power_of_2_qcount && 7926 qcount != non_power_of_2_qcount) { 7927 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7928 qcount, non_power_of_2_qcount); 7929 return -EINVAL; 7930 } 7931 if (qcount < max_rss_q_cnt) { 7932 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7933 qcount, max_rss_q_cnt); 7934 return -EINVAL; 7935 } 7936 max_rss_q_cnt = qcount; 7937 non_power_of_2_qcount = qcount; 7938 } 7939 7940 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7941 * converts the bandwidth rate limit into Bytes/s when 7942 * passing it down to the driver. So convert input bandwidth 7943 * from Bytes/s to Kbps 7944 */ 7945 max_rate = mqprio_qopt->max_rate[i]; 7946 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7947 sum_max_rate += max_rate; 7948 7949 /* min_rate is minimum guaranteed rate and it can't be zero */ 7950 min_rate = mqprio_qopt->min_rate[i]; 7951 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7952 sum_min_rate += min_rate; 7953 7954 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7955 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7956 min_rate, ICE_MIN_BW_LIMIT); 7957 return -EINVAL; 7958 } 7959 7960 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7961 if (rem) { 7962 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7963 i, ICE_MIN_BW_LIMIT); 7964 return -EINVAL; 7965 } 7966 7967 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7968 if (rem) { 7969 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7970 i, ICE_MIN_BW_LIMIT); 7971 return -EINVAL; 7972 } 7973 7974 /* min_rate can't be more than max_rate, except when max_rate 7975 * is zero (implies max_rate sought is max line rate). In such 7976 * a case min_rate can be more than max. 7977 */ 7978 if (max_rate && min_rate > max_rate) { 7979 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7980 min_rate, max_rate); 7981 return -EINVAL; 7982 } 7983 7984 if (i >= mqprio_qopt->qopt.num_tc - 1) 7985 break; 7986 if (mqprio_qopt->qopt.offset[i + 1] != 7987 (mqprio_qopt->qopt.offset[i] + qcount)) 7988 return -EINVAL; 7989 } 7990 if (vsi->num_rxq < 7991 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7992 return -EINVAL; 7993 if (vsi->num_txq < 7994 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7995 return -EINVAL; 7996 7997 speed = ice_get_link_speed_kbps(vsi); 7998 if (sum_max_rate && sum_max_rate > (u64)speed) { 7999 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8000 sum_max_rate, speed); 8001 return -EINVAL; 8002 } 8003 if (sum_min_rate && sum_min_rate > (u64)speed) { 8004 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8005 sum_min_rate, speed); 8006 return -EINVAL; 8007 } 8008 8009 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8010 vsi->ch_rss_size = max_rss_q_cnt; 8011 8012 return 0; 8013 } 8014 8015 /** 8016 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8017 * @pf: ptr to PF device 8018 * @vsi: ptr to VSI 8019 */ 8020 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8021 { 8022 struct device *dev = ice_pf_to_dev(pf); 8023 bool added = false; 8024 struct ice_hw *hw; 8025 int flow; 8026 8027 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8028 return -EINVAL; 8029 8030 hw = &pf->hw; 8031 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8032 struct ice_fd_hw_prof *prof; 8033 int tun, status; 8034 u64 entry_h; 8035 8036 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8037 hw->fdir_prof[flow]->cnt)) 8038 continue; 8039 8040 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8041 enum ice_flow_priority prio; 8042 u64 prof_id; 8043 8044 /* add this VSI to FDir profile for this flow */ 8045 prio = ICE_FLOW_PRIO_NORMAL; 8046 prof = hw->fdir_prof[flow]; 8047 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8048 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8049 prof->vsi_h[0], vsi->idx, 8050 prio, prof->fdir_seg[tun], 8051 &entry_h); 8052 if (status) { 8053 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8054 vsi->idx, flow); 8055 continue; 8056 } 8057 8058 prof->entry_h[prof->cnt][tun] = entry_h; 8059 } 8060 8061 /* store VSI for filter replay and delete */ 8062 prof->vsi_h[prof->cnt] = vsi->idx; 8063 prof->cnt++; 8064 8065 added = true; 8066 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8067 flow); 8068 } 8069 8070 if (!added) 8071 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8072 8073 return 0; 8074 } 8075 8076 /** 8077 * ice_add_channel - add a channel by adding VSI 8078 * @pf: ptr to PF device 8079 * @sw_id: underlying HW switching element ID 8080 * @ch: ptr to channel structure 8081 * 8082 * Add a channel (VSI) using add_vsi and queue_map 8083 */ 8084 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8085 { 8086 struct device *dev = ice_pf_to_dev(pf); 8087 struct ice_vsi *vsi; 8088 8089 if (ch->type != ICE_VSI_CHNL) { 8090 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8091 return -EINVAL; 8092 } 8093 8094 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8095 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8096 dev_err(dev, "create chnl VSI failure\n"); 8097 return -EINVAL; 8098 } 8099 8100 ice_add_vsi_to_fdir(pf, vsi); 8101 8102 ch->sw_id = sw_id; 8103 ch->vsi_num = vsi->vsi_num; 8104 ch->info.mapping_flags = vsi->info.mapping_flags; 8105 ch->ch_vsi = vsi; 8106 /* set the back pointer of channel for newly created VSI */ 8107 vsi->ch = ch; 8108 8109 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8110 sizeof(vsi->info.q_mapping)); 8111 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8112 sizeof(vsi->info.tc_mapping)); 8113 8114 return 0; 8115 } 8116 8117 /** 8118 * ice_chnl_cfg_res 8119 * @vsi: the VSI being setup 8120 * @ch: ptr to channel structure 8121 * 8122 * Configure channel specific resources such as rings, vector. 8123 */ 8124 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8125 { 8126 int i; 8127 8128 for (i = 0; i < ch->num_txq; i++) { 8129 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8130 struct ice_ring_container *rc; 8131 struct ice_tx_ring *tx_ring; 8132 struct ice_rx_ring *rx_ring; 8133 8134 tx_ring = vsi->tx_rings[ch->base_q + i]; 8135 rx_ring = vsi->rx_rings[ch->base_q + i]; 8136 if (!tx_ring || !rx_ring) 8137 continue; 8138 8139 /* setup ring being channel enabled */ 8140 tx_ring->ch = ch; 8141 rx_ring->ch = ch; 8142 8143 /* following code block sets up vector specific attributes */ 8144 tx_q_vector = tx_ring->q_vector; 8145 rx_q_vector = rx_ring->q_vector; 8146 if (!tx_q_vector && !rx_q_vector) 8147 continue; 8148 8149 if (tx_q_vector) { 8150 tx_q_vector->ch = ch; 8151 /* setup Tx and Rx ITR setting if DIM is off */ 8152 rc = &tx_q_vector->tx; 8153 if (!ITR_IS_DYNAMIC(rc)) 8154 ice_write_itr(rc, rc->itr_setting); 8155 } 8156 if (rx_q_vector) { 8157 rx_q_vector->ch = ch; 8158 /* setup Tx and Rx ITR setting if DIM is off */ 8159 rc = &rx_q_vector->rx; 8160 if (!ITR_IS_DYNAMIC(rc)) 8161 ice_write_itr(rc, rc->itr_setting); 8162 } 8163 } 8164 8165 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8166 * GLINT_ITR register would have written to perform in-context 8167 * update, hence perform flush 8168 */ 8169 if (ch->num_txq || ch->num_rxq) 8170 ice_flush(&vsi->back->hw); 8171 } 8172 8173 /** 8174 * ice_cfg_chnl_all_res - configure channel resources 8175 * @vsi: pte to main_vsi 8176 * @ch: ptr to channel structure 8177 * 8178 * This function configures channel specific resources such as flow-director 8179 * counter index, and other resources such as queues, vectors, ITR settings 8180 */ 8181 static void 8182 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8183 { 8184 /* configure channel (aka ADQ) resources such as queues, vectors, 8185 * ITR settings for channel specific vectors and anything else 8186 */ 8187 ice_chnl_cfg_res(vsi, ch); 8188 } 8189 8190 /** 8191 * ice_setup_hw_channel - setup new channel 8192 * @pf: ptr to PF device 8193 * @vsi: the VSI being setup 8194 * @ch: ptr to channel structure 8195 * @sw_id: underlying HW switching element ID 8196 * @type: type of channel to be created (VMDq2/VF) 8197 * 8198 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8199 * and configures Tx rings accordingly 8200 */ 8201 static int 8202 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8203 struct ice_channel *ch, u16 sw_id, u8 type) 8204 { 8205 struct device *dev = ice_pf_to_dev(pf); 8206 int ret; 8207 8208 ch->base_q = vsi->next_base_q; 8209 ch->type = type; 8210 8211 ret = ice_add_channel(pf, sw_id, ch); 8212 if (ret) { 8213 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8214 return ret; 8215 } 8216 8217 /* configure/setup ADQ specific resources */ 8218 ice_cfg_chnl_all_res(vsi, ch); 8219 8220 /* make sure to update the next_base_q so that subsequent channel's 8221 * (aka ADQ) VSI queue map is correct 8222 */ 8223 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8224 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8225 ch->num_rxq); 8226 8227 return 0; 8228 } 8229 8230 /** 8231 * ice_setup_channel - setup new channel using uplink element 8232 * @pf: ptr to PF device 8233 * @vsi: the VSI being setup 8234 * @ch: ptr to channel structure 8235 * 8236 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8237 * and uplink switching element 8238 */ 8239 static bool 8240 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8241 struct ice_channel *ch) 8242 { 8243 struct device *dev = ice_pf_to_dev(pf); 8244 u16 sw_id; 8245 int ret; 8246 8247 if (vsi->type != ICE_VSI_PF) { 8248 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8249 return false; 8250 } 8251 8252 sw_id = pf->first_sw->sw_id; 8253 8254 /* create channel (VSI) */ 8255 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8256 if (ret) { 8257 dev_err(dev, "failed to setup hw_channel\n"); 8258 return false; 8259 } 8260 dev_dbg(dev, "successfully created channel()\n"); 8261 8262 return ch->ch_vsi ? true : false; 8263 } 8264 8265 /** 8266 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8267 * @vsi: VSI to be configured 8268 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8269 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8270 */ 8271 static int 8272 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8273 { 8274 int err; 8275 8276 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8277 if (err) 8278 return err; 8279 8280 return ice_set_max_bw_limit(vsi, max_tx_rate); 8281 } 8282 8283 /** 8284 * ice_create_q_channel - function to create channel 8285 * @vsi: VSI to be configured 8286 * @ch: ptr to channel (it contains channel specific params) 8287 * 8288 * This function creates channel (VSI) using num_queues specified by user, 8289 * reconfigs RSS if needed. 8290 */ 8291 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8292 { 8293 struct ice_pf *pf = vsi->back; 8294 struct device *dev; 8295 8296 if (!ch) 8297 return -EINVAL; 8298 8299 dev = ice_pf_to_dev(pf); 8300 if (!ch->num_txq || !ch->num_rxq) { 8301 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8302 return -EINVAL; 8303 } 8304 8305 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8306 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8307 vsi->cnt_q_avail, ch->num_txq); 8308 return -EINVAL; 8309 } 8310 8311 if (!ice_setup_channel(pf, vsi, ch)) { 8312 dev_info(dev, "Failed to setup channel\n"); 8313 return -EINVAL; 8314 } 8315 /* configure BW rate limit */ 8316 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8317 int ret; 8318 8319 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8320 ch->min_tx_rate); 8321 if (ret) 8322 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8323 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8324 else 8325 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8326 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8327 } 8328 8329 vsi->cnt_q_avail -= ch->num_txq; 8330 8331 return 0; 8332 } 8333 8334 /** 8335 * ice_rem_all_chnl_fltrs - removes all channel filters 8336 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8337 * 8338 * Remove all advanced switch filters only if they are channel specific 8339 * tc-flower based filter 8340 */ 8341 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8342 { 8343 struct ice_tc_flower_fltr *fltr; 8344 struct hlist_node *node; 8345 8346 /* to remove all channel filters, iterate an ordered list of filters */ 8347 hlist_for_each_entry_safe(fltr, node, 8348 &pf->tc_flower_fltr_list, 8349 tc_flower_node) { 8350 struct ice_rule_query_data rule; 8351 int status; 8352 8353 /* for now process only channel specific filters */ 8354 if (!ice_is_chnl_fltr(fltr)) 8355 continue; 8356 8357 rule.rid = fltr->rid; 8358 rule.rule_id = fltr->rule_id; 8359 rule.vsi_handle = fltr->dest_vsi_handle; 8360 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8361 if (status) { 8362 if (status == -ENOENT) 8363 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8364 rule.rule_id); 8365 else 8366 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8367 status); 8368 } else if (fltr->dest_vsi) { 8369 /* update advanced switch filter count */ 8370 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8371 u32 flags = fltr->flags; 8372 8373 fltr->dest_vsi->num_chnl_fltr--; 8374 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8375 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8376 pf->num_dmac_chnl_fltrs--; 8377 } 8378 } 8379 8380 hlist_del(&fltr->tc_flower_node); 8381 kfree(fltr); 8382 } 8383 } 8384 8385 /** 8386 * ice_remove_q_channels - Remove queue channels for the TCs 8387 * @vsi: VSI to be configured 8388 * @rem_fltr: delete advanced switch filter or not 8389 * 8390 * Remove queue channels for the TCs 8391 */ 8392 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8393 { 8394 struct ice_channel *ch, *ch_tmp; 8395 struct ice_pf *pf = vsi->back; 8396 int i; 8397 8398 /* remove all tc-flower based filter if they are channel filters only */ 8399 if (rem_fltr) 8400 ice_rem_all_chnl_fltrs(pf); 8401 8402 /* remove ntuple filters since queue configuration is being changed */ 8403 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8404 struct ice_hw *hw = &pf->hw; 8405 8406 mutex_lock(&hw->fdir_fltr_lock); 8407 ice_fdir_del_all_fltrs(vsi); 8408 mutex_unlock(&hw->fdir_fltr_lock); 8409 } 8410 8411 /* perform cleanup for channels if they exist */ 8412 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8413 struct ice_vsi *ch_vsi; 8414 8415 list_del(&ch->list); 8416 ch_vsi = ch->ch_vsi; 8417 if (!ch_vsi) { 8418 kfree(ch); 8419 continue; 8420 } 8421 8422 /* Reset queue contexts */ 8423 for (i = 0; i < ch->num_rxq; i++) { 8424 struct ice_tx_ring *tx_ring; 8425 struct ice_rx_ring *rx_ring; 8426 8427 tx_ring = vsi->tx_rings[ch->base_q + i]; 8428 rx_ring = vsi->rx_rings[ch->base_q + i]; 8429 if (tx_ring) { 8430 tx_ring->ch = NULL; 8431 if (tx_ring->q_vector) 8432 tx_ring->q_vector->ch = NULL; 8433 } 8434 if (rx_ring) { 8435 rx_ring->ch = NULL; 8436 if (rx_ring->q_vector) 8437 rx_ring->q_vector->ch = NULL; 8438 } 8439 } 8440 8441 /* Release FD resources for the channel VSI */ 8442 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8443 8444 /* clear the VSI from scheduler tree */ 8445 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8446 8447 /* Delete VSI from FW, PF and HW VSI arrays */ 8448 ice_vsi_delete(ch->ch_vsi); 8449 8450 /* free the channel */ 8451 kfree(ch); 8452 } 8453 8454 /* clear the channel VSI map which is stored in main VSI */ 8455 ice_for_each_chnl_tc(i) 8456 vsi->tc_map_vsi[i] = NULL; 8457 8458 /* reset main VSI's all TC information */ 8459 vsi->all_enatc = 0; 8460 vsi->all_numtc = 0; 8461 } 8462 8463 /** 8464 * ice_rebuild_channels - rebuild channel 8465 * @pf: ptr to PF 8466 * 8467 * Recreate channel VSIs and replay filters 8468 */ 8469 static int ice_rebuild_channels(struct ice_pf *pf) 8470 { 8471 struct device *dev = ice_pf_to_dev(pf); 8472 struct ice_vsi *main_vsi; 8473 bool rem_adv_fltr = true; 8474 struct ice_channel *ch; 8475 struct ice_vsi *vsi; 8476 int tc_idx = 1; 8477 int i, err; 8478 8479 main_vsi = ice_get_main_vsi(pf); 8480 if (!main_vsi) 8481 return 0; 8482 8483 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8484 main_vsi->old_numtc == 1) 8485 return 0; /* nothing to be done */ 8486 8487 /* reconfigure main VSI based on old value of TC and cached values 8488 * for MQPRIO opts 8489 */ 8490 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8491 if (err) { 8492 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8493 main_vsi->old_ena_tc, main_vsi->vsi_num); 8494 return err; 8495 } 8496 8497 /* rebuild ADQ VSIs */ 8498 ice_for_each_vsi(pf, i) { 8499 enum ice_vsi_type type; 8500 8501 vsi = pf->vsi[i]; 8502 if (!vsi || vsi->type != ICE_VSI_CHNL) 8503 continue; 8504 8505 type = vsi->type; 8506 8507 /* rebuild ADQ VSI */ 8508 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8509 if (err) { 8510 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8511 ice_vsi_type_str(type), vsi->idx, err); 8512 goto cleanup; 8513 } 8514 8515 /* Re-map HW VSI number, using VSI handle that has been 8516 * previously validated in ice_replay_vsi() call above 8517 */ 8518 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8519 8520 /* replay filters for the VSI */ 8521 err = ice_replay_vsi(&pf->hw, vsi->idx); 8522 if (err) { 8523 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8524 ice_vsi_type_str(type), err, vsi->idx); 8525 rem_adv_fltr = false; 8526 goto cleanup; 8527 } 8528 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8529 ice_vsi_type_str(type), vsi->idx); 8530 8531 /* store ADQ VSI at correct TC index in main VSI's 8532 * map of TC to VSI 8533 */ 8534 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8535 } 8536 8537 /* ADQ VSI(s) has been rebuilt successfully, so setup 8538 * channel for main VSI's Tx and Rx rings 8539 */ 8540 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8541 struct ice_vsi *ch_vsi; 8542 8543 ch_vsi = ch->ch_vsi; 8544 if (!ch_vsi) 8545 continue; 8546 8547 /* reconfig channel resources */ 8548 ice_cfg_chnl_all_res(main_vsi, ch); 8549 8550 /* replay BW rate limit if it is non-zero */ 8551 if (!ch->max_tx_rate && !ch->min_tx_rate) 8552 continue; 8553 8554 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8555 ch->min_tx_rate); 8556 if (err) 8557 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8558 err, ch->max_tx_rate, ch->min_tx_rate, 8559 ch_vsi->vsi_num); 8560 else 8561 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8562 ch->max_tx_rate, ch->min_tx_rate, 8563 ch_vsi->vsi_num); 8564 } 8565 8566 /* reconfig RSS for main VSI */ 8567 if (main_vsi->ch_rss_size) 8568 ice_vsi_cfg_rss_lut_key(main_vsi); 8569 8570 return 0; 8571 8572 cleanup: 8573 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8574 return err; 8575 } 8576 8577 /** 8578 * ice_create_q_channels - Add queue channel for the given TCs 8579 * @vsi: VSI to be configured 8580 * 8581 * Configures queue channel mapping to the given TCs 8582 */ 8583 static int ice_create_q_channels(struct ice_vsi *vsi) 8584 { 8585 struct ice_pf *pf = vsi->back; 8586 struct ice_channel *ch; 8587 int ret = 0, i; 8588 8589 ice_for_each_chnl_tc(i) { 8590 if (!(vsi->all_enatc & BIT(i))) 8591 continue; 8592 8593 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8594 if (!ch) { 8595 ret = -ENOMEM; 8596 goto err_free; 8597 } 8598 INIT_LIST_HEAD(&ch->list); 8599 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8600 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8601 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8602 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8603 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8604 8605 /* convert to Kbits/s */ 8606 if (ch->max_tx_rate) 8607 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8608 ICE_BW_KBPS_DIVISOR); 8609 if (ch->min_tx_rate) 8610 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8611 ICE_BW_KBPS_DIVISOR); 8612 8613 ret = ice_create_q_channel(vsi, ch); 8614 if (ret) { 8615 dev_err(ice_pf_to_dev(pf), 8616 "failed creating channel TC:%d\n", i); 8617 kfree(ch); 8618 goto err_free; 8619 } 8620 list_add_tail(&ch->list, &vsi->ch_list); 8621 vsi->tc_map_vsi[i] = ch->ch_vsi; 8622 dev_dbg(ice_pf_to_dev(pf), 8623 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8624 } 8625 return 0; 8626 8627 err_free: 8628 ice_remove_q_channels(vsi, false); 8629 8630 return ret; 8631 } 8632 8633 /** 8634 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8635 * @netdev: net device to configure 8636 * @type_data: TC offload data 8637 */ 8638 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8639 { 8640 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8641 struct ice_netdev_priv *np = netdev_priv(netdev); 8642 struct ice_vsi *vsi = np->vsi; 8643 struct ice_pf *pf = vsi->back; 8644 u16 mode, ena_tc_qdisc = 0; 8645 int cur_txq, cur_rxq; 8646 u8 hw = 0, num_tcf; 8647 struct device *dev; 8648 int ret, i; 8649 8650 dev = ice_pf_to_dev(pf); 8651 num_tcf = mqprio_qopt->qopt.num_tc; 8652 hw = mqprio_qopt->qopt.hw; 8653 mode = mqprio_qopt->mode; 8654 if (!hw) { 8655 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8656 vsi->ch_rss_size = 0; 8657 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8658 goto config_tcf; 8659 } 8660 8661 /* Generate queue region map for number of TCF requested */ 8662 for (i = 0; i < num_tcf; i++) 8663 ena_tc_qdisc |= BIT(i); 8664 8665 switch (mode) { 8666 case TC_MQPRIO_MODE_CHANNEL: 8667 8668 if (pf->hw.port_info->is_custom_tx_enabled) { 8669 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8670 return -EBUSY; 8671 } 8672 ice_tear_down_devlink_rate_tree(pf); 8673 8674 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8675 if (ret) { 8676 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8677 ret); 8678 return ret; 8679 } 8680 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8681 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8682 /* don't assume state of hw_tc_offload during driver load 8683 * and set the flag for TC flower filter if hw_tc_offload 8684 * already ON 8685 */ 8686 if (vsi->netdev->features & NETIF_F_HW_TC) 8687 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8688 break; 8689 default: 8690 return -EINVAL; 8691 } 8692 8693 config_tcf: 8694 8695 /* Requesting same TCF configuration as already enabled */ 8696 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8697 mode != TC_MQPRIO_MODE_CHANNEL) 8698 return 0; 8699 8700 /* Pause VSI queues */ 8701 ice_dis_vsi(vsi, true); 8702 8703 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8704 ice_remove_q_channels(vsi, true); 8705 8706 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8707 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8708 num_online_cpus()); 8709 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8710 num_online_cpus()); 8711 } else { 8712 /* logic to rebuild VSI, same like ethtool -L */ 8713 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8714 8715 for (i = 0; i < num_tcf; i++) { 8716 if (!(ena_tc_qdisc & BIT(i))) 8717 continue; 8718 8719 offset = vsi->mqprio_qopt.qopt.offset[i]; 8720 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8721 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8722 } 8723 vsi->req_txq = offset + qcount_tx; 8724 vsi->req_rxq = offset + qcount_rx; 8725 8726 /* store away original rss_size info, so that it gets reused 8727 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8728 * determine, what should be the rss_sizefor main VSI 8729 */ 8730 vsi->orig_rss_size = vsi->rss_size; 8731 } 8732 8733 /* save current values of Tx and Rx queues before calling VSI rebuild 8734 * for fallback option 8735 */ 8736 cur_txq = vsi->num_txq; 8737 cur_rxq = vsi->num_rxq; 8738 8739 /* proceed with rebuild main VSI using correct number of queues */ 8740 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8741 if (ret) { 8742 /* fallback to current number of queues */ 8743 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8744 vsi->req_txq = cur_txq; 8745 vsi->req_rxq = cur_rxq; 8746 clear_bit(ICE_RESET_FAILED, pf->state); 8747 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8748 dev_err(dev, "Rebuild of main VSI failed again\n"); 8749 return ret; 8750 } 8751 } 8752 8753 vsi->all_numtc = num_tcf; 8754 vsi->all_enatc = ena_tc_qdisc; 8755 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8756 if (ret) { 8757 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8758 vsi->vsi_num); 8759 goto exit; 8760 } 8761 8762 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8763 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8764 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8765 8766 /* set TC0 rate limit if specified */ 8767 if (max_tx_rate || min_tx_rate) { 8768 /* convert to Kbits/s */ 8769 if (max_tx_rate) 8770 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8771 if (min_tx_rate) 8772 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8773 8774 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8775 if (!ret) { 8776 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8777 max_tx_rate, min_tx_rate, vsi->vsi_num); 8778 } else { 8779 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8780 max_tx_rate, min_tx_rate, vsi->vsi_num); 8781 goto exit; 8782 } 8783 } 8784 ret = ice_create_q_channels(vsi); 8785 if (ret) { 8786 netdev_err(netdev, "failed configuring queue channels\n"); 8787 goto exit; 8788 } else { 8789 netdev_dbg(netdev, "successfully configured channels\n"); 8790 } 8791 } 8792 8793 if (vsi->ch_rss_size) 8794 ice_vsi_cfg_rss_lut_key(vsi); 8795 8796 exit: 8797 /* if error, reset the all_numtc and all_enatc */ 8798 if (ret) { 8799 vsi->all_numtc = 0; 8800 vsi->all_enatc = 0; 8801 } 8802 /* resume VSI */ 8803 ice_ena_vsi(vsi, true); 8804 8805 return ret; 8806 } 8807 8808 static LIST_HEAD(ice_block_cb_list); 8809 8810 static int 8811 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8812 void *type_data) 8813 { 8814 struct ice_netdev_priv *np = netdev_priv(netdev); 8815 struct ice_pf *pf = np->vsi->back; 8816 int err; 8817 8818 switch (type) { 8819 case TC_SETUP_BLOCK: 8820 return flow_block_cb_setup_simple(type_data, 8821 &ice_block_cb_list, 8822 ice_setup_tc_block_cb, 8823 np, np, true); 8824 case TC_SETUP_QDISC_MQPRIO: 8825 /* setup traffic classifier for receive side */ 8826 mutex_lock(&pf->tc_mutex); 8827 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8828 mutex_unlock(&pf->tc_mutex); 8829 return err; 8830 default: 8831 return -EOPNOTSUPP; 8832 } 8833 return -EOPNOTSUPP; 8834 } 8835 8836 static struct ice_indr_block_priv * 8837 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8838 struct net_device *netdev) 8839 { 8840 struct ice_indr_block_priv *cb_priv; 8841 8842 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8843 if (!cb_priv->netdev) 8844 return NULL; 8845 if (cb_priv->netdev == netdev) 8846 return cb_priv; 8847 } 8848 return NULL; 8849 } 8850 8851 static int 8852 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8853 void *indr_priv) 8854 { 8855 struct ice_indr_block_priv *priv = indr_priv; 8856 struct ice_netdev_priv *np = priv->np; 8857 8858 switch (type) { 8859 case TC_SETUP_CLSFLOWER: 8860 return ice_setup_tc_cls_flower(np, priv->netdev, 8861 (struct flow_cls_offload *) 8862 type_data); 8863 default: 8864 return -EOPNOTSUPP; 8865 } 8866 } 8867 8868 static int 8869 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8870 struct ice_netdev_priv *np, 8871 struct flow_block_offload *f, void *data, 8872 void (*cleanup)(struct flow_block_cb *block_cb)) 8873 { 8874 struct ice_indr_block_priv *indr_priv; 8875 struct flow_block_cb *block_cb; 8876 8877 if (!ice_is_tunnel_supported(netdev) && 8878 !(is_vlan_dev(netdev) && 8879 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8880 return -EOPNOTSUPP; 8881 8882 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8883 return -EOPNOTSUPP; 8884 8885 switch (f->command) { 8886 case FLOW_BLOCK_BIND: 8887 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8888 if (indr_priv) 8889 return -EEXIST; 8890 8891 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8892 if (!indr_priv) 8893 return -ENOMEM; 8894 8895 indr_priv->netdev = netdev; 8896 indr_priv->np = np; 8897 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8898 8899 block_cb = 8900 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8901 indr_priv, indr_priv, 8902 ice_rep_indr_tc_block_unbind, 8903 f, netdev, sch, data, np, 8904 cleanup); 8905 8906 if (IS_ERR(block_cb)) { 8907 list_del(&indr_priv->list); 8908 kfree(indr_priv); 8909 return PTR_ERR(block_cb); 8910 } 8911 flow_block_cb_add(block_cb, f); 8912 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8913 break; 8914 case FLOW_BLOCK_UNBIND: 8915 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8916 if (!indr_priv) 8917 return -ENOENT; 8918 8919 block_cb = flow_block_cb_lookup(f->block, 8920 ice_indr_setup_block_cb, 8921 indr_priv); 8922 if (!block_cb) 8923 return -ENOENT; 8924 8925 flow_indr_block_cb_remove(block_cb, f); 8926 8927 list_del(&block_cb->driver_list); 8928 break; 8929 default: 8930 return -EOPNOTSUPP; 8931 } 8932 return 0; 8933 } 8934 8935 static int 8936 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8937 void *cb_priv, enum tc_setup_type type, void *type_data, 8938 void *data, 8939 void (*cleanup)(struct flow_block_cb *block_cb)) 8940 { 8941 switch (type) { 8942 case TC_SETUP_BLOCK: 8943 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8944 data, cleanup); 8945 8946 default: 8947 return -EOPNOTSUPP; 8948 } 8949 } 8950 8951 /** 8952 * ice_open - Called when a network interface becomes active 8953 * @netdev: network interface device structure 8954 * 8955 * The open entry point is called when a network interface is made 8956 * active by the system (IFF_UP). At this point all resources needed 8957 * for transmit and receive operations are allocated, the interrupt 8958 * handler is registered with the OS, the netdev watchdog is enabled, 8959 * and the stack is notified that the interface is ready. 8960 * 8961 * Returns 0 on success, negative value on failure 8962 */ 8963 int ice_open(struct net_device *netdev) 8964 { 8965 struct ice_netdev_priv *np = netdev_priv(netdev); 8966 struct ice_pf *pf = np->vsi->back; 8967 8968 if (ice_is_reset_in_progress(pf->state)) { 8969 netdev_err(netdev, "can't open net device while reset is in progress"); 8970 return -EBUSY; 8971 } 8972 8973 return ice_open_internal(netdev); 8974 } 8975 8976 /** 8977 * ice_open_internal - Called when a network interface becomes active 8978 * @netdev: network interface device structure 8979 * 8980 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8981 * handling routine 8982 * 8983 * Returns 0 on success, negative value on failure 8984 */ 8985 int ice_open_internal(struct net_device *netdev) 8986 { 8987 struct ice_netdev_priv *np = netdev_priv(netdev); 8988 struct ice_vsi *vsi = np->vsi; 8989 struct ice_pf *pf = vsi->back; 8990 struct ice_port_info *pi; 8991 int err; 8992 8993 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8994 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8995 return -EIO; 8996 } 8997 8998 netif_carrier_off(netdev); 8999 9000 pi = vsi->port_info; 9001 err = ice_update_link_info(pi); 9002 if (err) { 9003 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9004 return err; 9005 } 9006 9007 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9008 9009 /* Set PHY if there is media, otherwise, turn off PHY */ 9010 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9011 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9012 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9013 err = ice_init_phy_user_cfg(pi); 9014 if (err) { 9015 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9016 err); 9017 return err; 9018 } 9019 } 9020 9021 err = ice_configure_phy(vsi); 9022 if (err) { 9023 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9024 err); 9025 return err; 9026 } 9027 } else { 9028 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9029 ice_set_link(vsi, false); 9030 } 9031 9032 err = ice_vsi_open(vsi); 9033 if (err) 9034 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9035 vsi->vsi_num, vsi->vsw->sw_id); 9036 9037 /* Update existing tunnels information */ 9038 udp_tunnel_get_rx_info(netdev); 9039 9040 return err; 9041 } 9042 9043 /** 9044 * ice_stop - Disables a network interface 9045 * @netdev: network interface device structure 9046 * 9047 * The stop entry point is called when an interface is de-activated by the OS, 9048 * and the netdevice enters the DOWN state. The hardware is still under the 9049 * driver's control, but the netdev interface is disabled. 9050 * 9051 * Returns success only - not allowed to fail 9052 */ 9053 int ice_stop(struct net_device *netdev) 9054 { 9055 struct ice_netdev_priv *np = netdev_priv(netdev); 9056 struct ice_vsi *vsi = np->vsi; 9057 struct ice_pf *pf = vsi->back; 9058 9059 if (ice_is_reset_in_progress(pf->state)) { 9060 netdev_err(netdev, "can't stop net device while reset is in progress"); 9061 return -EBUSY; 9062 } 9063 9064 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9065 int link_err = ice_force_phys_link_state(vsi, false); 9066 9067 if (link_err) { 9068 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9069 vsi->vsi_num, link_err); 9070 return -EIO; 9071 } 9072 } 9073 9074 ice_vsi_close(vsi); 9075 9076 return 0; 9077 } 9078 9079 /** 9080 * ice_features_check - Validate encapsulated packet conforms to limits 9081 * @skb: skb buffer 9082 * @netdev: This port's netdev 9083 * @features: Offload features that the stack believes apply 9084 */ 9085 static netdev_features_t 9086 ice_features_check(struct sk_buff *skb, 9087 struct net_device __always_unused *netdev, 9088 netdev_features_t features) 9089 { 9090 bool gso = skb_is_gso(skb); 9091 size_t len; 9092 9093 /* No point in doing any of this if neither checksum nor GSO are 9094 * being requested for this frame. We can rule out both by just 9095 * checking for CHECKSUM_PARTIAL 9096 */ 9097 if (skb->ip_summed != CHECKSUM_PARTIAL) 9098 return features; 9099 9100 /* We cannot support GSO if the MSS is going to be less than 9101 * 64 bytes. If it is then we need to drop support for GSO. 9102 */ 9103 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9104 features &= ~NETIF_F_GSO_MASK; 9105 9106 len = skb_network_offset(skb); 9107 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9108 goto out_rm_features; 9109 9110 len = skb_network_header_len(skb); 9111 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9112 goto out_rm_features; 9113 9114 if (skb->encapsulation) { 9115 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9116 * the case of IPIP frames, the transport header pointer is 9117 * after the inner header! So check to make sure that this 9118 * is a GRE or UDP_TUNNEL frame before doing that math. 9119 */ 9120 if (gso && (skb_shinfo(skb)->gso_type & 9121 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9122 len = skb_inner_network_header(skb) - 9123 skb_transport_header(skb); 9124 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9125 goto out_rm_features; 9126 } 9127 9128 len = skb_inner_network_header_len(skb); 9129 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9130 goto out_rm_features; 9131 } 9132 9133 return features; 9134 out_rm_features: 9135 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9136 } 9137 9138 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9139 .ndo_open = ice_open, 9140 .ndo_stop = ice_stop, 9141 .ndo_start_xmit = ice_start_xmit, 9142 .ndo_set_mac_address = ice_set_mac_address, 9143 .ndo_validate_addr = eth_validate_addr, 9144 .ndo_change_mtu = ice_change_mtu, 9145 .ndo_get_stats64 = ice_get_stats64, 9146 .ndo_tx_timeout = ice_tx_timeout, 9147 .ndo_bpf = ice_xdp_safe_mode, 9148 }; 9149 9150 static const struct net_device_ops ice_netdev_ops = { 9151 .ndo_open = ice_open, 9152 .ndo_stop = ice_stop, 9153 .ndo_start_xmit = ice_start_xmit, 9154 .ndo_select_queue = ice_select_queue, 9155 .ndo_features_check = ice_features_check, 9156 .ndo_fix_features = ice_fix_features, 9157 .ndo_set_rx_mode = ice_set_rx_mode, 9158 .ndo_set_mac_address = ice_set_mac_address, 9159 .ndo_validate_addr = eth_validate_addr, 9160 .ndo_change_mtu = ice_change_mtu, 9161 .ndo_get_stats64 = ice_get_stats64, 9162 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9163 .ndo_eth_ioctl = ice_eth_ioctl, 9164 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9165 .ndo_set_vf_mac = ice_set_vf_mac, 9166 .ndo_get_vf_config = ice_get_vf_cfg, 9167 .ndo_set_vf_trust = ice_set_vf_trust, 9168 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9169 .ndo_set_vf_link_state = ice_set_vf_link_state, 9170 .ndo_get_vf_stats = ice_get_vf_stats, 9171 .ndo_set_vf_rate = ice_set_vf_bw, 9172 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9173 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9174 .ndo_setup_tc = ice_setup_tc, 9175 .ndo_set_features = ice_set_features, 9176 .ndo_bridge_getlink = ice_bridge_getlink, 9177 .ndo_bridge_setlink = ice_bridge_setlink, 9178 .ndo_fdb_add = ice_fdb_add, 9179 .ndo_fdb_del = ice_fdb_del, 9180 #ifdef CONFIG_RFS_ACCEL 9181 .ndo_rx_flow_steer = ice_rx_flow_steer, 9182 #endif 9183 .ndo_tx_timeout = ice_tx_timeout, 9184 .ndo_bpf = ice_xdp, 9185 .ndo_xdp_xmit = ice_xdp_xmit, 9186 .ndo_xsk_wakeup = ice_xsk_wakeup, 9187 }; 9188