1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include "ice_dcb_nl.h" 13 #include "ice_devlink.h" 14 15 #define DRV_VERSION_MAJOR 0 16 #define DRV_VERSION_MINOR 8 17 #define DRV_VERSION_BUILD 2 18 19 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 20 __stringify(DRV_VERSION_MINOR) "." \ 21 __stringify(DRV_VERSION_BUILD) "-k" 22 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 23 const char ice_drv_ver[] = DRV_VERSION; 24 static const char ice_driver_string[] = DRV_SUMMARY; 25 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 26 27 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 28 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 29 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 30 31 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 32 MODULE_DESCRIPTION(DRV_SUMMARY); 33 MODULE_LICENSE("GPL v2"); 34 MODULE_VERSION(DRV_VERSION); 35 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 36 37 static int debug = -1; 38 module_param(debug, int, 0644); 39 #ifndef CONFIG_DYNAMIC_DEBUG 40 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 41 #else 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 43 #endif /* !CONFIG_DYNAMIC_DEBUG */ 44 45 static struct workqueue_struct *ice_wq; 46 static const struct net_device_ops ice_netdev_safe_mode_ops; 47 static const struct net_device_ops ice_netdev_ops; 48 static int ice_vsi_open(struct ice_vsi *vsi); 49 50 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 51 52 static void ice_vsi_release_all(struct ice_pf *pf); 53 54 /** 55 * ice_get_tx_pending - returns number of Tx descriptors not processed 56 * @ring: the ring of descriptors 57 */ 58 static u16 ice_get_tx_pending(struct ice_ring *ring) 59 { 60 u16 head, tail; 61 62 head = ring->next_to_clean; 63 tail = ring->next_to_use; 64 65 if (head != tail) 66 return (head < tail) ? 67 tail - head : (tail + ring->count - head); 68 return 0; 69 } 70 71 /** 72 * ice_check_for_hang_subtask - check for and recover hung queues 73 * @pf: pointer to PF struct 74 */ 75 static void ice_check_for_hang_subtask(struct ice_pf *pf) 76 { 77 struct ice_vsi *vsi = NULL; 78 struct ice_hw *hw; 79 unsigned int i; 80 int packets; 81 u32 v; 82 83 ice_for_each_vsi(pf, v) 84 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 85 vsi = pf->vsi[v]; 86 break; 87 } 88 89 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 90 return; 91 92 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 93 return; 94 95 hw = &vsi->back->hw; 96 97 for (i = 0; i < vsi->num_txq; i++) { 98 struct ice_ring *tx_ring = vsi->tx_rings[i]; 99 100 if (tx_ring && tx_ring->desc) { 101 /* If packet counter has not changed the queue is 102 * likely stalled, so force an interrupt for this 103 * queue. 104 * 105 * prev_pkt would be negative if there was no 106 * pending work. 107 */ 108 packets = tx_ring->stats.pkts & INT_MAX; 109 if (tx_ring->tx_stats.prev_pkt == packets) { 110 /* Trigger sw interrupt to revive the queue */ 111 ice_trigger_sw_intr(hw, tx_ring->q_vector); 112 continue; 113 } 114 115 /* Memory barrier between read of packet count and call 116 * to ice_get_tx_pending() 117 */ 118 smp_rmb(); 119 tx_ring->tx_stats.prev_pkt = 120 ice_get_tx_pending(tx_ring) ? packets : -1; 121 } 122 } 123 } 124 125 /** 126 * ice_init_mac_fltr - Set initial MAC filters 127 * @pf: board private structure 128 * 129 * Set initial set of MAC filters for PF VSI; configure filters for permanent 130 * address and broadcast address. If an error is encountered, netdevice will be 131 * unregistered. 132 */ 133 static int ice_init_mac_fltr(struct ice_pf *pf) 134 { 135 enum ice_status status; 136 u8 broadcast[ETH_ALEN]; 137 struct ice_vsi *vsi; 138 139 vsi = ice_get_main_vsi(pf); 140 if (!vsi) 141 return -EINVAL; 142 143 /* To add a MAC filter, first add the MAC to a list and then 144 * pass the list to ice_add_mac. 145 */ 146 147 /* Add a unicast MAC filter so the VSI can get its packets */ 148 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 149 if (status) 150 goto unregister; 151 152 /* VSI needs to receive broadcast traffic, so add the broadcast 153 * MAC address to the list as well. 154 */ 155 eth_broadcast_addr(broadcast); 156 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 157 if (status) 158 goto unregister; 159 160 return 0; 161 unregister: 162 /* We aren't useful with no MAC filters, so unregister if we 163 * had an error 164 */ 165 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 166 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n", 167 status); 168 unregister_netdev(vsi->netdev); 169 free_netdev(vsi->netdev); 170 vsi->netdev = NULL; 171 } 172 173 return -EIO; 174 } 175 176 /** 177 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 178 * @netdev: the net device on which the sync is happening 179 * @addr: MAC address to sync 180 * 181 * This is a callback function which is called by the in kernel device sync 182 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 183 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 184 * MAC filters from the hardware. 185 */ 186 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 187 { 188 struct ice_netdev_priv *np = netdev_priv(netdev); 189 struct ice_vsi *vsi = np->vsi; 190 191 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 192 return -EINVAL; 193 194 return 0; 195 } 196 197 /** 198 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 199 * @netdev: the net device on which the unsync is happening 200 * @addr: MAC address to unsync 201 * 202 * This is a callback function which is called by the in kernel device unsync 203 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 204 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 205 * delete the MAC filters from the hardware. 206 */ 207 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 208 { 209 struct ice_netdev_priv *np = netdev_priv(netdev); 210 struct ice_vsi *vsi = np->vsi; 211 212 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_vsi_fltr_changed - check if filter state changed 220 * @vsi: VSI to be checked 221 * 222 * returns true if filter state has changed, false otherwise. 223 */ 224 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 225 { 226 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 227 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 228 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 229 } 230 231 /** 232 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 233 * @vsi: the VSI being configured 234 * @promisc_m: mask of promiscuous config bits 235 * @set_promisc: enable or disable promisc flag request 236 * 237 */ 238 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 239 { 240 struct ice_hw *hw = &vsi->back->hw; 241 enum ice_status status = 0; 242 243 if (vsi->type != ICE_VSI_PF) 244 return 0; 245 246 if (vsi->vlan_ena) { 247 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 248 set_promisc); 249 } else { 250 if (set_promisc) 251 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 252 0); 253 else 254 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 255 0); 256 } 257 258 if (status) 259 return -EIO; 260 261 return 0; 262 } 263 264 /** 265 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 266 * @vsi: ptr to the VSI 267 * 268 * Push any outstanding VSI filter changes through the AdminQ. 269 */ 270 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 271 { 272 struct device *dev = ice_pf_to_dev(vsi->back); 273 struct net_device *netdev = vsi->netdev; 274 bool promisc_forced_on = false; 275 struct ice_pf *pf = vsi->back; 276 struct ice_hw *hw = &pf->hw; 277 enum ice_status status = 0; 278 u32 changed_flags = 0; 279 u8 promisc_m; 280 int err = 0; 281 282 if (!vsi->netdev) 283 return -EINVAL; 284 285 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 286 usleep_range(1000, 2000); 287 288 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 289 vsi->current_netdev_flags = vsi->netdev->flags; 290 291 INIT_LIST_HEAD(&vsi->tmp_sync_list); 292 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 293 294 if (ice_vsi_fltr_changed(vsi)) { 295 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 296 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 297 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 298 299 /* grab the netdev's addr_list_lock */ 300 netif_addr_lock_bh(netdev); 301 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 302 ice_add_mac_to_unsync_list); 303 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 304 ice_add_mac_to_unsync_list); 305 /* our temp lists are populated. release lock */ 306 netif_addr_unlock_bh(netdev); 307 } 308 309 /* Remove MAC addresses in the unsync list */ 310 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 311 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 312 if (status) { 313 netdev_err(netdev, "Failed to delete MAC filters\n"); 314 /* if we failed because of alloc failures, just bail */ 315 if (status == ICE_ERR_NO_MEMORY) { 316 err = -ENOMEM; 317 goto out; 318 } 319 } 320 321 /* Add MAC addresses in the sync list */ 322 status = ice_add_mac(hw, &vsi->tmp_sync_list); 323 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 324 /* If filter is added successfully or already exists, do not go into 325 * 'if' condition and report it as error. Instead continue processing 326 * rest of the function. 327 */ 328 if (status && status != ICE_ERR_ALREADY_EXISTS) { 329 netdev_err(netdev, "Failed to add MAC filters\n"); 330 /* If there is no more space for new umac filters, VSI 331 * should go into promiscuous mode. There should be some 332 * space reserved for promiscuous filters. 333 */ 334 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 335 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 336 vsi->state)) { 337 promisc_forced_on = true; 338 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 339 vsi->vsi_num); 340 } else { 341 err = -EIO; 342 goto out; 343 } 344 } 345 /* check for changes in promiscuous modes */ 346 if (changed_flags & IFF_ALLMULTI) { 347 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 348 if (vsi->vlan_ena) 349 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 350 else 351 promisc_m = ICE_MCAST_PROMISC_BITS; 352 353 err = ice_cfg_promisc(vsi, promisc_m, true); 354 if (err) { 355 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 356 vsi->vsi_num); 357 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 358 goto out_promisc; 359 } 360 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 361 if (vsi->vlan_ena) 362 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 363 else 364 promisc_m = ICE_MCAST_PROMISC_BITS; 365 366 err = ice_cfg_promisc(vsi, promisc_m, false); 367 if (err) { 368 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 369 vsi->vsi_num); 370 vsi->current_netdev_flags |= IFF_ALLMULTI; 371 goto out_promisc; 372 } 373 } 374 } 375 376 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 377 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 378 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 379 if (vsi->current_netdev_flags & IFF_PROMISC) { 380 /* Apply Rx filter rule to get traffic from wire */ 381 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 382 err = ice_set_dflt_vsi(pf->first_sw, vsi); 383 if (err && err != -EEXIST) { 384 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 385 err, vsi->vsi_num); 386 vsi->current_netdev_flags &= 387 ~IFF_PROMISC; 388 goto out_promisc; 389 } 390 } 391 } else { 392 /* Clear Rx filter to remove traffic from wire */ 393 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 394 err = ice_clear_dflt_vsi(pf->first_sw); 395 if (err) { 396 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 397 err, vsi->vsi_num); 398 vsi->current_netdev_flags |= 399 IFF_PROMISC; 400 goto out_promisc; 401 } 402 } 403 } 404 } 405 goto exit; 406 407 out_promisc: 408 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 409 goto exit; 410 out: 411 /* if something went wrong then set the changed flag so we try again */ 412 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 413 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 414 exit: 415 clear_bit(__ICE_CFG_BUSY, vsi->state); 416 return err; 417 } 418 419 /** 420 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 421 * @pf: board private structure 422 */ 423 static void ice_sync_fltr_subtask(struct ice_pf *pf) 424 { 425 int v; 426 427 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 428 return; 429 430 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 431 432 ice_for_each_vsi(pf, v) 433 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 434 ice_vsi_sync_fltr(pf->vsi[v])) { 435 /* come back and try again later */ 436 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 437 break; 438 } 439 } 440 441 /** 442 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 443 * @pf: the PF 444 * @locked: is the rtnl_lock already held 445 */ 446 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 447 { 448 int v; 449 450 ice_for_each_vsi(pf, v) 451 if (pf->vsi[v]) 452 ice_dis_vsi(pf->vsi[v], locked); 453 } 454 455 /** 456 * ice_prepare_for_reset - prep for the core to reset 457 * @pf: board private structure 458 * 459 * Inform or close all dependent features in prep for reset. 460 */ 461 static void 462 ice_prepare_for_reset(struct ice_pf *pf) 463 { 464 struct ice_hw *hw = &pf->hw; 465 int i; 466 467 /* already prepared for reset */ 468 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 469 return; 470 471 /* Notify VFs of impending reset */ 472 if (ice_check_sq_alive(hw, &hw->mailboxq)) 473 ice_vc_notify_reset(pf); 474 475 /* Disable VFs until reset is completed */ 476 ice_for_each_vf(pf, i) 477 ice_set_vf_state_qs_dis(&pf->vf[i]); 478 479 /* clear SW filtering DB */ 480 ice_clear_hw_tbls(hw); 481 /* disable the VSIs and their queues that are not already DOWN */ 482 ice_pf_dis_all_vsi(pf, false); 483 484 if (hw->port_info) 485 ice_sched_clear_port(hw->port_info); 486 487 ice_shutdown_all_ctrlq(hw); 488 489 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 490 } 491 492 /** 493 * ice_do_reset - Initiate one of many types of resets 494 * @pf: board private structure 495 * @reset_type: reset type requested 496 * before this function was called. 497 */ 498 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 499 { 500 struct device *dev = ice_pf_to_dev(pf); 501 struct ice_hw *hw = &pf->hw; 502 503 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 504 WARN_ON(in_interrupt()); 505 506 ice_prepare_for_reset(pf); 507 508 /* trigger the reset */ 509 if (ice_reset(hw, reset_type)) { 510 dev_err(dev, "reset %d failed\n", reset_type); 511 set_bit(__ICE_RESET_FAILED, pf->state); 512 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 513 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 514 clear_bit(__ICE_PFR_REQ, pf->state); 515 clear_bit(__ICE_CORER_REQ, pf->state); 516 clear_bit(__ICE_GLOBR_REQ, pf->state); 517 return; 518 } 519 520 /* PFR is a bit of a special case because it doesn't result in an OICR 521 * interrupt. So for PFR, rebuild after the reset and clear the reset- 522 * associated state bits. 523 */ 524 if (reset_type == ICE_RESET_PFR) { 525 pf->pfr_count++; 526 ice_rebuild(pf, reset_type); 527 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 528 clear_bit(__ICE_PFR_REQ, pf->state); 529 ice_reset_all_vfs(pf, true); 530 } 531 } 532 533 /** 534 * ice_reset_subtask - Set up for resetting the device and driver 535 * @pf: board private structure 536 */ 537 static void ice_reset_subtask(struct ice_pf *pf) 538 { 539 enum ice_reset_req reset_type = ICE_RESET_INVAL; 540 541 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 542 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 543 * of reset is pending and sets bits in pf->state indicating the reset 544 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 545 * prepare for pending reset if not already (for PF software-initiated 546 * global resets the software should already be prepared for it as 547 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 548 * by firmware or software on other PFs, that bit is not set so prepare 549 * for the reset now), poll for reset done, rebuild and return. 550 */ 551 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 552 /* Perform the largest reset requested */ 553 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 554 reset_type = ICE_RESET_CORER; 555 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 556 reset_type = ICE_RESET_GLOBR; 557 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 558 reset_type = ICE_RESET_EMPR; 559 /* return if no valid reset type requested */ 560 if (reset_type == ICE_RESET_INVAL) 561 return; 562 ice_prepare_for_reset(pf); 563 564 /* make sure we are ready to rebuild */ 565 if (ice_check_reset(&pf->hw)) { 566 set_bit(__ICE_RESET_FAILED, pf->state); 567 } else { 568 /* done with reset. start rebuild */ 569 pf->hw.reset_ongoing = false; 570 ice_rebuild(pf, reset_type); 571 /* clear bit to resume normal operations, but 572 * ICE_NEEDS_RESTART bit is set in case rebuild failed 573 */ 574 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 575 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 576 clear_bit(__ICE_PFR_REQ, pf->state); 577 clear_bit(__ICE_CORER_REQ, pf->state); 578 clear_bit(__ICE_GLOBR_REQ, pf->state); 579 ice_reset_all_vfs(pf, true); 580 } 581 582 return; 583 } 584 585 /* No pending resets to finish processing. Check for new resets */ 586 if (test_bit(__ICE_PFR_REQ, pf->state)) 587 reset_type = ICE_RESET_PFR; 588 if (test_bit(__ICE_CORER_REQ, pf->state)) 589 reset_type = ICE_RESET_CORER; 590 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 591 reset_type = ICE_RESET_GLOBR; 592 /* If no valid reset type requested just return */ 593 if (reset_type == ICE_RESET_INVAL) 594 return; 595 596 /* reset if not already down or busy */ 597 if (!test_bit(__ICE_DOWN, pf->state) && 598 !test_bit(__ICE_CFG_BUSY, pf->state)) { 599 ice_do_reset(pf, reset_type); 600 } 601 } 602 603 /** 604 * ice_print_topo_conflict - print topology conflict message 605 * @vsi: the VSI whose topology status is being checked 606 */ 607 static void ice_print_topo_conflict(struct ice_vsi *vsi) 608 { 609 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 610 case ICE_AQ_LINK_TOPO_CONFLICT: 611 case ICE_AQ_LINK_MEDIA_CONFLICT: 612 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 613 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 614 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 615 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 616 break; 617 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 618 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 619 break; 620 default: 621 break; 622 } 623 } 624 625 /** 626 * ice_print_link_msg - print link up or down message 627 * @vsi: the VSI whose link status is being queried 628 * @isup: boolean for if the link is now up or down 629 */ 630 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 631 { 632 struct ice_aqc_get_phy_caps_data *caps; 633 enum ice_status status; 634 const char *fec_req; 635 const char *speed; 636 const char *fec; 637 const char *fc; 638 const char *an; 639 640 if (!vsi) 641 return; 642 643 if (vsi->current_isup == isup) 644 return; 645 646 vsi->current_isup = isup; 647 648 if (!isup) { 649 netdev_info(vsi->netdev, "NIC Link is Down\n"); 650 return; 651 } 652 653 switch (vsi->port_info->phy.link_info.link_speed) { 654 case ICE_AQ_LINK_SPEED_100GB: 655 speed = "100 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_50GB: 658 speed = "50 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_40GB: 661 speed = "40 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_25GB: 664 speed = "25 G"; 665 break; 666 case ICE_AQ_LINK_SPEED_20GB: 667 speed = "20 G"; 668 break; 669 case ICE_AQ_LINK_SPEED_10GB: 670 speed = "10 G"; 671 break; 672 case ICE_AQ_LINK_SPEED_5GB: 673 speed = "5 G"; 674 break; 675 case ICE_AQ_LINK_SPEED_2500MB: 676 speed = "2.5 G"; 677 break; 678 case ICE_AQ_LINK_SPEED_1000MB: 679 speed = "1 G"; 680 break; 681 case ICE_AQ_LINK_SPEED_100MB: 682 speed = "100 M"; 683 break; 684 default: 685 speed = "Unknown"; 686 break; 687 } 688 689 switch (vsi->port_info->fc.current_mode) { 690 case ICE_FC_FULL: 691 fc = "Rx/Tx"; 692 break; 693 case ICE_FC_TX_PAUSE: 694 fc = "Tx"; 695 break; 696 case ICE_FC_RX_PAUSE: 697 fc = "Rx"; 698 break; 699 case ICE_FC_NONE: 700 fc = "None"; 701 break; 702 default: 703 fc = "Unknown"; 704 break; 705 } 706 707 /* Get FEC mode based on negotiated link info */ 708 switch (vsi->port_info->phy.link_info.fec_info) { 709 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 710 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 711 fec = "RS-FEC"; 712 break; 713 case ICE_AQ_LINK_25G_KR_FEC_EN: 714 fec = "FC-FEC/BASE-R"; 715 break; 716 default: 717 fec = "NONE"; 718 break; 719 } 720 721 /* check if autoneg completed, might be false due to not supported */ 722 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 723 an = "True"; 724 else 725 an = "False"; 726 727 /* Get FEC mode requested based on PHY caps last SW configuration */ 728 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 729 if (!caps) { 730 fec_req = "Unknown"; 731 goto done; 732 } 733 734 status = ice_aq_get_phy_caps(vsi->port_info, false, 735 ICE_AQC_REPORT_SW_CFG, caps, NULL); 736 if (status) 737 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 738 739 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 740 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 741 fec_req = "RS-FEC"; 742 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 743 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 744 fec_req = "FC-FEC/BASE-R"; 745 else 746 fec_req = "NONE"; 747 748 kfree(caps); 749 750 done: 751 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 752 speed, fec_req, fec, an, fc); 753 ice_print_topo_conflict(vsi); 754 } 755 756 /** 757 * ice_vsi_link_event - update the VSI's netdev 758 * @vsi: the VSI on which the link event occurred 759 * @link_up: whether or not the VSI needs to be set up or down 760 */ 761 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 762 { 763 if (!vsi) 764 return; 765 766 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 767 return; 768 769 if (vsi->type == ICE_VSI_PF) { 770 if (link_up == netif_carrier_ok(vsi->netdev)) 771 return; 772 773 if (link_up) { 774 netif_carrier_on(vsi->netdev); 775 netif_tx_wake_all_queues(vsi->netdev); 776 } else { 777 netif_carrier_off(vsi->netdev); 778 netif_tx_stop_all_queues(vsi->netdev); 779 } 780 } 781 } 782 783 /** 784 * ice_link_event - process the link event 785 * @pf: PF that the link event is associated with 786 * @pi: port_info for the port that the link event is associated with 787 * @link_up: true if the physical link is up and false if it is down 788 * @link_speed: current link speed received from the link event 789 * 790 * Returns 0 on success and negative on failure 791 */ 792 static int 793 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 794 u16 link_speed) 795 { 796 struct device *dev = ice_pf_to_dev(pf); 797 struct ice_phy_info *phy_info; 798 struct ice_vsi *vsi; 799 u16 old_link_speed; 800 bool old_link; 801 int result; 802 803 phy_info = &pi->phy; 804 phy_info->link_info_old = phy_info->link_info; 805 806 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 807 old_link_speed = phy_info->link_info_old.link_speed; 808 809 /* update the link info structures and re-enable link events, 810 * don't bail on failure due to other book keeping needed 811 */ 812 result = ice_update_link_info(pi); 813 if (result) 814 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 815 pi->lport); 816 817 /* if the old link up/down and speed is the same as the new */ 818 if (link_up == old_link && link_speed == old_link_speed) 819 return result; 820 821 vsi = ice_get_main_vsi(pf); 822 if (!vsi || !vsi->port_info) 823 return -EINVAL; 824 825 /* turn off PHY if media was removed */ 826 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 827 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 828 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 829 830 result = ice_aq_set_link_restart_an(pi, false, NULL); 831 if (result) { 832 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 833 vsi->vsi_num, result); 834 return result; 835 } 836 } 837 838 ice_dcb_rebuild(pf); 839 ice_vsi_link_event(vsi, link_up); 840 ice_print_link_msg(vsi, link_up); 841 842 ice_vc_notify_link_state(pf); 843 844 return result; 845 } 846 847 /** 848 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 849 * @pf: board private structure 850 */ 851 static void ice_watchdog_subtask(struct ice_pf *pf) 852 { 853 int i; 854 855 /* if interface is down do nothing */ 856 if (test_bit(__ICE_DOWN, pf->state) || 857 test_bit(__ICE_CFG_BUSY, pf->state)) 858 return; 859 860 /* make sure we don't do these things too often */ 861 if (time_before(jiffies, 862 pf->serv_tmr_prev + pf->serv_tmr_period)) 863 return; 864 865 pf->serv_tmr_prev = jiffies; 866 867 /* Update the stats for active netdevs so the network stack 868 * can look at updated numbers whenever it cares to 869 */ 870 ice_update_pf_stats(pf); 871 ice_for_each_vsi(pf, i) 872 if (pf->vsi[i] && pf->vsi[i]->netdev) 873 ice_update_vsi_stats(pf->vsi[i]); 874 } 875 876 /** 877 * ice_init_link_events - enable/initialize link events 878 * @pi: pointer to the port_info instance 879 * 880 * Returns -EIO on failure, 0 on success 881 */ 882 static int ice_init_link_events(struct ice_port_info *pi) 883 { 884 u16 mask; 885 886 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 887 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 888 889 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 890 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 891 pi->lport); 892 return -EIO; 893 } 894 895 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 896 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 897 pi->lport); 898 return -EIO; 899 } 900 901 return 0; 902 } 903 904 /** 905 * ice_handle_link_event - handle link event via ARQ 906 * @pf: PF that the link event is associated with 907 * @event: event structure containing link status info 908 */ 909 static int 910 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 911 { 912 struct ice_aqc_get_link_status_data *link_data; 913 struct ice_port_info *port_info; 914 int status; 915 916 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 917 port_info = pf->hw.port_info; 918 if (!port_info) 919 return -EINVAL; 920 921 status = ice_link_event(pf, port_info, 922 !!(link_data->link_info & ICE_AQ_LINK_UP), 923 le16_to_cpu(link_data->link_speed)); 924 if (status) 925 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 926 status); 927 928 return status; 929 } 930 931 /** 932 * __ice_clean_ctrlq - helper function to clean controlq rings 933 * @pf: ptr to struct ice_pf 934 * @q_type: specific Control queue type 935 */ 936 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 struct ice_rq_event_info event; 940 struct ice_hw *hw = &pf->hw; 941 struct ice_ctl_q_info *cq; 942 u16 pending, i = 0; 943 const char *qtype; 944 u32 oldval, val; 945 946 /* Do not clean control queue if/when PF reset fails */ 947 if (test_bit(__ICE_RESET_FAILED, pf->state)) 948 return 0; 949 950 switch (q_type) { 951 case ICE_CTL_Q_ADMIN: 952 cq = &hw->adminq; 953 qtype = "Admin"; 954 break; 955 case ICE_CTL_Q_MAILBOX: 956 cq = &hw->mailboxq; 957 qtype = "Mailbox"; 958 break; 959 default: 960 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 961 return 0; 962 } 963 964 /* check for error indications - PF_xx_AxQLEN register layout for 965 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 966 */ 967 val = rd32(hw, cq->rq.len); 968 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 969 PF_FW_ARQLEN_ARQCRIT_M)) { 970 oldval = val; 971 if (val & PF_FW_ARQLEN_ARQVFE_M) 972 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 973 qtype); 974 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 975 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 976 qtype); 977 } 978 if (val & PF_FW_ARQLEN_ARQCRIT_M) 979 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 980 qtype); 981 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 982 PF_FW_ARQLEN_ARQCRIT_M); 983 if (oldval != val) 984 wr32(hw, cq->rq.len, val); 985 } 986 987 val = rd32(hw, cq->sq.len); 988 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 989 PF_FW_ATQLEN_ATQCRIT_M)) { 990 oldval = val; 991 if (val & PF_FW_ATQLEN_ATQVFE_M) 992 dev_dbg(dev, "%s Send Queue VF Error detected\n", 993 qtype); 994 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 995 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 996 qtype); 997 } 998 if (val & PF_FW_ATQLEN_ATQCRIT_M) 999 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1000 qtype); 1001 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1002 PF_FW_ATQLEN_ATQCRIT_M); 1003 if (oldval != val) 1004 wr32(hw, cq->sq.len, val); 1005 } 1006 1007 event.buf_len = cq->rq_buf_size; 1008 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1009 if (!event.msg_buf) 1010 return 0; 1011 1012 do { 1013 enum ice_status ret; 1014 u16 opcode; 1015 1016 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1017 if (ret == ICE_ERR_AQ_NO_WORK) 1018 break; 1019 if (ret) { 1020 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1021 ret); 1022 break; 1023 } 1024 1025 opcode = le16_to_cpu(event.desc.opcode); 1026 1027 switch (opcode) { 1028 case ice_aqc_opc_get_link_status: 1029 if (ice_handle_link_event(pf, &event)) 1030 dev_err(dev, "Could not handle link event\n"); 1031 break; 1032 case ice_aqc_opc_event_lan_overflow: 1033 ice_vf_lan_overflow_event(pf, &event); 1034 break; 1035 case ice_mbx_opc_send_msg_to_pf: 1036 ice_vc_process_vf_msg(pf, &event); 1037 break; 1038 case ice_aqc_opc_fw_logging: 1039 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1040 break; 1041 case ice_aqc_opc_lldp_set_mib_change: 1042 ice_dcb_process_lldp_set_mib_change(pf, &event); 1043 break; 1044 default: 1045 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1046 qtype, opcode); 1047 break; 1048 } 1049 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1050 1051 kfree(event.msg_buf); 1052 1053 return pending && (i == ICE_DFLT_IRQ_WORK); 1054 } 1055 1056 /** 1057 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1058 * @hw: pointer to hardware info 1059 * @cq: control queue information 1060 * 1061 * returns true if there are pending messages in a queue, false if there aren't 1062 */ 1063 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1064 { 1065 u16 ntu; 1066 1067 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1068 return cq->rq.next_to_clean != ntu; 1069 } 1070 1071 /** 1072 * ice_clean_adminq_subtask - clean the AdminQ rings 1073 * @pf: board private structure 1074 */ 1075 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1076 { 1077 struct ice_hw *hw = &pf->hw; 1078 1079 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1080 return; 1081 1082 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1083 return; 1084 1085 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1086 1087 /* There might be a situation where new messages arrive to a control 1088 * queue between processing the last message and clearing the 1089 * EVENT_PENDING bit. So before exiting, check queue head again (using 1090 * ice_ctrlq_pending) and process new messages if any. 1091 */ 1092 if (ice_ctrlq_pending(hw, &hw->adminq)) 1093 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1094 1095 ice_flush(hw); 1096 } 1097 1098 /** 1099 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1100 * @pf: board private structure 1101 */ 1102 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1103 { 1104 struct ice_hw *hw = &pf->hw; 1105 1106 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1107 return; 1108 1109 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1110 return; 1111 1112 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1113 1114 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1115 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1116 1117 ice_flush(hw); 1118 } 1119 1120 /** 1121 * ice_service_task_schedule - schedule the service task to wake up 1122 * @pf: board private structure 1123 * 1124 * If not already scheduled, this puts the task into the work queue. 1125 */ 1126 static void ice_service_task_schedule(struct ice_pf *pf) 1127 { 1128 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1129 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1130 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1131 queue_work(ice_wq, &pf->serv_task); 1132 } 1133 1134 /** 1135 * ice_service_task_complete - finish up the service task 1136 * @pf: board private structure 1137 */ 1138 static void ice_service_task_complete(struct ice_pf *pf) 1139 { 1140 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1141 1142 /* force memory (pf->state) to sync before next service task */ 1143 smp_mb__before_atomic(); 1144 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1145 } 1146 1147 /** 1148 * ice_service_task_stop - stop service task and cancel works 1149 * @pf: board private structure 1150 */ 1151 static void ice_service_task_stop(struct ice_pf *pf) 1152 { 1153 set_bit(__ICE_SERVICE_DIS, pf->state); 1154 1155 if (pf->serv_tmr.function) 1156 del_timer_sync(&pf->serv_tmr); 1157 if (pf->serv_task.func) 1158 cancel_work_sync(&pf->serv_task); 1159 1160 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1161 } 1162 1163 /** 1164 * ice_service_task_restart - restart service task and schedule works 1165 * @pf: board private structure 1166 * 1167 * This function is needed for suspend and resume works (e.g WoL scenario) 1168 */ 1169 static void ice_service_task_restart(struct ice_pf *pf) 1170 { 1171 clear_bit(__ICE_SERVICE_DIS, pf->state); 1172 ice_service_task_schedule(pf); 1173 } 1174 1175 /** 1176 * ice_service_timer - timer callback to schedule service task 1177 * @t: pointer to timer_list 1178 */ 1179 static void ice_service_timer(struct timer_list *t) 1180 { 1181 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1182 1183 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1184 ice_service_task_schedule(pf); 1185 } 1186 1187 /** 1188 * ice_handle_mdd_event - handle malicious driver detect event 1189 * @pf: pointer to the PF structure 1190 * 1191 * Called from service task. OICR interrupt handler indicates MDD event. 1192 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1193 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1194 * disable the queue, the PF can be configured to reset the VF using ethtool 1195 * private flag mdd-auto-reset-vf. 1196 */ 1197 static void ice_handle_mdd_event(struct ice_pf *pf) 1198 { 1199 struct device *dev = ice_pf_to_dev(pf); 1200 struct ice_hw *hw = &pf->hw; 1201 u32 reg; 1202 int i; 1203 1204 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1205 /* Since the VF MDD event logging is rate limited, check if 1206 * there are pending MDD events. 1207 */ 1208 ice_print_vfs_mdd_events(pf); 1209 return; 1210 } 1211 1212 /* find what triggered an MDD event */ 1213 reg = rd32(hw, GL_MDET_TX_PQM); 1214 if (reg & GL_MDET_TX_PQM_VALID_M) { 1215 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1216 GL_MDET_TX_PQM_PF_NUM_S; 1217 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1218 GL_MDET_TX_PQM_VF_NUM_S; 1219 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1220 GL_MDET_TX_PQM_MAL_TYPE_S; 1221 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1222 GL_MDET_TX_PQM_QNUM_S); 1223 1224 if (netif_msg_tx_err(pf)) 1225 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1226 event, queue, pf_num, vf_num); 1227 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1228 } 1229 1230 reg = rd32(hw, GL_MDET_TX_TCLAN); 1231 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1232 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1233 GL_MDET_TX_TCLAN_PF_NUM_S; 1234 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1235 GL_MDET_TX_TCLAN_VF_NUM_S; 1236 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1237 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1238 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1239 GL_MDET_TX_TCLAN_QNUM_S); 1240 1241 if (netif_msg_tx_err(pf)) 1242 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1243 event, queue, pf_num, vf_num); 1244 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1245 } 1246 1247 reg = rd32(hw, GL_MDET_RX); 1248 if (reg & GL_MDET_RX_VALID_M) { 1249 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1250 GL_MDET_RX_PF_NUM_S; 1251 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1252 GL_MDET_RX_VF_NUM_S; 1253 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1254 GL_MDET_RX_MAL_TYPE_S; 1255 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1256 GL_MDET_RX_QNUM_S); 1257 1258 if (netif_msg_rx_err(pf)) 1259 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1260 event, queue, pf_num, vf_num); 1261 wr32(hw, GL_MDET_RX, 0xffffffff); 1262 } 1263 1264 /* check to see if this PF caused an MDD event */ 1265 reg = rd32(hw, PF_MDET_TX_PQM); 1266 if (reg & PF_MDET_TX_PQM_VALID_M) { 1267 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1268 if (netif_msg_tx_err(pf)) 1269 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1270 } 1271 1272 reg = rd32(hw, PF_MDET_TX_TCLAN); 1273 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1274 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1275 if (netif_msg_tx_err(pf)) 1276 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1277 } 1278 1279 reg = rd32(hw, PF_MDET_RX); 1280 if (reg & PF_MDET_RX_VALID_M) { 1281 wr32(hw, PF_MDET_RX, 0xFFFF); 1282 if (netif_msg_rx_err(pf)) 1283 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1284 } 1285 1286 /* Check to see if one of the VFs caused an MDD event, and then 1287 * increment counters and set print pending 1288 */ 1289 ice_for_each_vf(pf, i) { 1290 struct ice_vf *vf = &pf->vf[i]; 1291 1292 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1293 if (reg & VP_MDET_TX_PQM_VALID_M) { 1294 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1295 vf->mdd_tx_events.count++; 1296 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1297 if (netif_msg_tx_err(pf)) 1298 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1299 i); 1300 } 1301 1302 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1303 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1304 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1305 vf->mdd_tx_events.count++; 1306 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1307 if (netif_msg_tx_err(pf)) 1308 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1309 i); 1310 } 1311 1312 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1313 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1314 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1315 vf->mdd_tx_events.count++; 1316 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1317 if (netif_msg_tx_err(pf)) 1318 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1319 i); 1320 } 1321 1322 reg = rd32(hw, VP_MDET_RX(i)); 1323 if (reg & VP_MDET_RX_VALID_M) { 1324 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1325 vf->mdd_rx_events.count++; 1326 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1327 if (netif_msg_rx_err(pf)) 1328 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1329 i); 1330 1331 /* Since the queue is disabled on VF Rx MDD events, the 1332 * PF can be configured to reset the VF through ethtool 1333 * private flag mdd-auto-reset-vf. 1334 */ 1335 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1336 ice_reset_vf(&pf->vf[i], false); 1337 } 1338 } 1339 1340 ice_print_vfs_mdd_events(pf); 1341 } 1342 1343 /** 1344 * ice_force_phys_link_state - Force the physical link state 1345 * @vsi: VSI to force the physical link state to up/down 1346 * @link_up: true/false indicates to set the physical link to up/down 1347 * 1348 * Force the physical link state by getting the current PHY capabilities from 1349 * hardware and setting the PHY config based on the determined capabilities. If 1350 * link changes a link event will be triggered because both the Enable Automatic 1351 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1352 * 1353 * Returns 0 on success, negative on failure 1354 */ 1355 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1356 { 1357 struct ice_aqc_get_phy_caps_data *pcaps; 1358 struct ice_aqc_set_phy_cfg_data *cfg; 1359 struct ice_port_info *pi; 1360 struct device *dev; 1361 int retcode; 1362 1363 if (!vsi || !vsi->port_info || !vsi->back) 1364 return -EINVAL; 1365 if (vsi->type != ICE_VSI_PF) 1366 return 0; 1367 1368 dev = ice_pf_to_dev(vsi->back); 1369 1370 pi = vsi->port_info; 1371 1372 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1373 if (!pcaps) 1374 return -ENOMEM; 1375 1376 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1377 NULL); 1378 if (retcode) { 1379 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1380 vsi->vsi_num, retcode); 1381 retcode = -EIO; 1382 goto out; 1383 } 1384 1385 /* No change in link */ 1386 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1387 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1388 goto out; 1389 1390 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1391 if (!cfg) { 1392 retcode = -ENOMEM; 1393 goto out; 1394 } 1395 1396 cfg->phy_type_low = pcaps->phy_type_low; 1397 cfg->phy_type_high = pcaps->phy_type_high; 1398 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1399 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1400 cfg->eee_cap = pcaps->eee_cap; 1401 cfg->eeer_value = pcaps->eeer_value; 1402 cfg->link_fec_opt = pcaps->link_fec_options; 1403 if (link_up) 1404 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1405 else 1406 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1407 1408 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1409 if (retcode) { 1410 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1411 vsi->vsi_num, retcode); 1412 retcode = -EIO; 1413 } 1414 1415 kfree(cfg); 1416 out: 1417 kfree(pcaps); 1418 return retcode; 1419 } 1420 1421 /** 1422 * ice_check_media_subtask - Check for media; bring link up if detected. 1423 * @pf: pointer to PF struct 1424 */ 1425 static void ice_check_media_subtask(struct ice_pf *pf) 1426 { 1427 struct ice_port_info *pi; 1428 struct ice_vsi *vsi; 1429 int err; 1430 1431 vsi = ice_get_main_vsi(pf); 1432 if (!vsi) 1433 return; 1434 1435 /* No need to check for media if it's already present or the interface 1436 * is down 1437 */ 1438 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1439 test_bit(__ICE_DOWN, vsi->state)) 1440 return; 1441 1442 /* Refresh link info and check if media is present */ 1443 pi = vsi->port_info; 1444 err = ice_update_link_info(pi); 1445 if (err) 1446 return; 1447 1448 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1449 err = ice_force_phys_link_state(vsi, true); 1450 if (err) 1451 return; 1452 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1453 1454 /* A Link Status Event will be generated; the event handler 1455 * will complete bringing the interface up 1456 */ 1457 } 1458 } 1459 1460 /** 1461 * ice_service_task - manage and run subtasks 1462 * @work: pointer to work_struct contained by the PF struct 1463 */ 1464 static void ice_service_task(struct work_struct *work) 1465 { 1466 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1467 unsigned long start_time = jiffies; 1468 1469 /* subtasks */ 1470 1471 /* process reset requests first */ 1472 ice_reset_subtask(pf); 1473 1474 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1475 if (ice_is_reset_in_progress(pf->state) || 1476 test_bit(__ICE_SUSPENDED, pf->state) || 1477 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1478 ice_service_task_complete(pf); 1479 return; 1480 } 1481 1482 ice_clean_adminq_subtask(pf); 1483 ice_check_media_subtask(pf); 1484 ice_check_for_hang_subtask(pf); 1485 ice_sync_fltr_subtask(pf); 1486 ice_handle_mdd_event(pf); 1487 ice_watchdog_subtask(pf); 1488 1489 if (ice_is_safe_mode(pf)) { 1490 ice_service_task_complete(pf); 1491 return; 1492 } 1493 1494 ice_process_vflr_event(pf); 1495 ice_clean_mailboxq_subtask(pf); 1496 1497 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1498 ice_service_task_complete(pf); 1499 1500 /* If the tasks have taken longer than one service timer period 1501 * or there is more work to be done, reset the service timer to 1502 * schedule the service task now. 1503 */ 1504 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1505 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1506 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1507 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1508 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1509 mod_timer(&pf->serv_tmr, jiffies); 1510 } 1511 1512 /** 1513 * ice_set_ctrlq_len - helper function to set controlq length 1514 * @hw: pointer to the HW instance 1515 */ 1516 static void ice_set_ctrlq_len(struct ice_hw *hw) 1517 { 1518 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1519 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1520 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1521 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1522 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 1523 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1524 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1525 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1526 } 1527 1528 /** 1529 * ice_schedule_reset - schedule a reset 1530 * @pf: board private structure 1531 * @reset: reset being requested 1532 */ 1533 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 1534 { 1535 struct device *dev = ice_pf_to_dev(pf); 1536 1537 /* bail out if earlier reset has failed */ 1538 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 1539 dev_dbg(dev, "earlier reset has failed\n"); 1540 return -EIO; 1541 } 1542 /* bail if reset/recovery already in progress */ 1543 if (ice_is_reset_in_progress(pf->state)) { 1544 dev_dbg(dev, "Reset already in progress\n"); 1545 return -EBUSY; 1546 } 1547 1548 switch (reset) { 1549 case ICE_RESET_PFR: 1550 set_bit(__ICE_PFR_REQ, pf->state); 1551 break; 1552 case ICE_RESET_CORER: 1553 set_bit(__ICE_CORER_REQ, pf->state); 1554 break; 1555 case ICE_RESET_GLOBR: 1556 set_bit(__ICE_GLOBR_REQ, pf->state); 1557 break; 1558 default: 1559 return -EINVAL; 1560 } 1561 1562 ice_service_task_schedule(pf); 1563 return 0; 1564 } 1565 1566 /** 1567 * ice_irq_affinity_notify - Callback for affinity changes 1568 * @notify: context as to what irq was changed 1569 * @mask: the new affinity mask 1570 * 1571 * This is a callback function used by the irq_set_affinity_notifier function 1572 * so that we may register to receive changes to the irq affinity masks. 1573 */ 1574 static void 1575 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1576 const cpumask_t *mask) 1577 { 1578 struct ice_q_vector *q_vector = 1579 container_of(notify, struct ice_q_vector, affinity_notify); 1580 1581 cpumask_copy(&q_vector->affinity_mask, mask); 1582 } 1583 1584 /** 1585 * ice_irq_affinity_release - Callback for affinity notifier release 1586 * @ref: internal core kernel usage 1587 * 1588 * This is a callback function used by the irq_set_affinity_notifier function 1589 * to inform the current notification subscriber that they will no longer 1590 * receive notifications. 1591 */ 1592 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1593 1594 /** 1595 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1596 * @vsi: the VSI being configured 1597 */ 1598 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1599 { 1600 struct ice_hw *hw = &vsi->back->hw; 1601 int i; 1602 1603 ice_for_each_q_vector(vsi, i) 1604 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1605 1606 ice_flush(hw); 1607 return 0; 1608 } 1609 1610 /** 1611 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1612 * @vsi: the VSI being configured 1613 * @basename: name for the vector 1614 */ 1615 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1616 { 1617 int q_vectors = vsi->num_q_vectors; 1618 struct ice_pf *pf = vsi->back; 1619 int base = vsi->base_vector; 1620 struct device *dev; 1621 int rx_int_idx = 0; 1622 int tx_int_idx = 0; 1623 int vector, err; 1624 int irq_num; 1625 1626 dev = ice_pf_to_dev(pf); 1627 for (vector = 0; vector < q_vectors; vector++) { 1628 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1629 1630 irq_num = pf->msix_entries[base + vector].vector; 1631 1632 if (q_vector->tx.ring && q_vector->rx.ring) { 1633 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1634 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1635 tx_int_idx++; 1636 } else if (q_vector->rx.ring) { 1637 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1638 "%s-%s-%d", basename, "rx", rx_int_idx++); 1639 } else if (q_vector->tx.ring) { 1640 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1641 "%s-%s-%d", basename, "tx", tx_int_idx++); 1642 } else { 1643 /* skip this unused q_vector */ 1644 continue; 1645 } 1646 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 1647 q_vector->name, q_vector); 1648 if (err) { 1649 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 1650 err); 1651 goto free_q_irqs; 1652 } 1653 1654 /* register for affinity change notifications */ 1655 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1656 q_vector->affinity_notify.release = ice_irq_affinity_release; 1657 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1658 1659 /* assign the mask for this irq */ 1660 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1661 } 1662 1663 vsi->irqs_ready = true; 1664 return 0; 1665 1666 free_q_irqs: 1667 while (vector) { 1668 vector--; 1669 irq_num = pf->msix_entries[base + vector].vector, 1670 irq_set_affinity_notifier(irq_num, NULL); 1671 irq_set_affinity_hint(irq_num, NULL); 1672 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 1673 } 1674 return err; 1675 } 1676 1677 /** 1678 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1679 * @vsi: VSI to setup Tx rings used by XDP 1680 * 1681 * Return 0 on success and negative value on error 1682 */ 1683 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1684 { 1685 struct device *dev = ice_pf_to_dev(vsi->back); 1686 int i; 1687 1688 for (i = 0; i < vsi->num_xdp_txq; i++) { 1689 u16 xdp_q_idx = vsi->alloc_txq + i; 1690 struct ice_ring *xdp_ring; 1691 1692 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1693 1694 if (!xdp_ring) 1695 goto free_xdp_rings; 1696 1697 xdp_ring->q_index = xdp_q_idx; 1698 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1699 xdp_ring->ring_active = false; 1700 xdp_ring->vsi = vsi; 1701 xdp_ring->netdev = NULL; 1702 xdp_ring->dev = dev; 1703 xdp_ring->count = vsi->num_tx_desc; 1704 vsi->xdp_rings[i] = xdp_ring; 1705 if (ice_setup_tx_ring(xdp_ring)) 1706 goto free_xdp_rings; 1707 ice_set_ring_xdp(xdp_ring); 1708 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1709 } 1710 1711 return 0; 1712 1713 free_xdp_rings: 1714 for (; i >= 0; i--) 1715 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1716 ice_free_tx_ring(vsi->xdp_rings[i]); 1717 return -ENOMEM; 1718 } 1719 1720 /** 1721 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1722 * @vsi: VSI to set the bpf prog on 1723 * @prog: the bpf prog pointer 1724 */ 1725 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1726 { 1727 struct bpf_prog *old_prog; 1728 int i; 1729 1730 old_prog = xchg(&vsi->xdp_prog, prog); 1731 if (old_prog) 1732 bpf_prog_put(old_prog); 1733 1734 ice_for_each_rxq(vsi, i) 1735 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1736 } 1737 1738 /** 1739 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1740 * @vsi: VSI to bring up Tx rings used by XDP 1741 * @prog: bpf program that will be assigned to VSI 1742 * 1743 * Return 0 on success and negative value on error 1744 */ 1745 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1746 { 1747 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1748 int xdp_rings_rem = vsi->num_xdp_txq; 1749 struct ice_pf *pf = vsi->back; 1750 struct ice_qs_cfg xdp_qs_cfg = { 1751 .qs_mutex = &pf->avail_q_mutex, 1752 .pf_map = pf->avail_txqs, 1753 .pf_map_size = pf->max_pf_txqs, 1754 .q_count = vsi->num_xdp_txq, 1755 .scatter_count = ICE_MAX_SCATTER_TXQS, 1756 .vsi_map = vsi->txq_map, 1757 .vsi_map_offset = vsi->alloc_txq, 1758 .mapping_mode = ICE_VSI_MAP_CONTIG 1759 }; 1760 enum ice_status status; 1761 struct device *dev; 1762 int i, v_idx; 1763 1764 dev = ice_pf_to_dev(pf); 1765 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 1766 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1767 if (!vsi->xdp_rings) 1768 return -ENOMEM; 1769 1770 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1771 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1772 goto err_map_xdp; 1773 1774 if (ice_xdp_alloc_setup_rings(vsi)) 1775 goto clear_xdp_rings; 1776 1777 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1778 ice_for_each_q_vector(vsi, v_idx) { 1779 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1780 int xdp_rings_per_v, q_id, q_base; 1781 1782 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1783 vsi->num_q_vectors - v_idx); 1784 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1785 1786 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1787 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1788 1789 xdp_ring->q_vector = q_vector; 1790 xdp_ring->next = q_vector->tx.ring; 1791 q_vector->tx.ring = xdp_ring; 1792 } 1793 xdp_rings_rem -= xdp_rings_per_v; 1794 } 1795 1796 /* omit the scheduler update if in reset path; XDP queues will be 1797 * taken into account at the end of ice_vsi_rebuild, where 1798 * ice_cfg_vsi_lan is being called 1799 */ 1800 if (ice_is_reset_in_progress(pf->state)) 1801 return 0; 1802 1803 /* tell the Tx scheduler that right now we have 1804 * additional queues 1805 */ 1806 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1807 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1808 1809 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1810 max_txqs); 1811 if (status) { 1812 dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n", 1813 status); 1814 goto clear_xdp_rings; 1815 } 1816 ice_vsi_assign_bpf_prog(vsi, prog); 1817 1818 return 0; 1819 clear_xdp_rings: 1820 for (i = 0; i < vsi->num_xdp_txq; i++) 1821 if (vsi->xdp_rings[i]) { 1822 kfree_rcu(vsi->xdp_rings[i], rcu); 1823 vsi->xdp_rings[i] = NULL; 1824 } 1825 1826 err_map_xdp: 1827 mutex_lock(&pf->avail_q_mutex); 1828 for (i = 0; i < vsi->num_xdp_txq; i++) { 1829 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1830 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1831 } 1832 mutex_unlock(&pf->avail_q_mutex); 1833 1834 devm_kfree(dev, vsi->xdp_rings); 1835 return -ENOMEM; 1836 } 1837 1838 /** 1839 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1840 * @vsi: VSI to remove XDP rings 1841 * 1842 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1843 * resources 1844 */ 1845 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1846 { 1847 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1848 struct ice_pf *pf = vsi->back; 1849 int i, v_idx; 1850 1851 /* q_vectors are freed in reset path so there's no point in detaching 1852 * rings; in case of rebuild being triggered not from reset reset bits 1853 * in pf->state won't be set, so additionally check first q_vector 1854 * against NULL 1855 */ 1856 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1857 goto free_qmap; 1858 1859 ice_for_each_q_vector(vsi, v_idx) { 1860 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1861 struct ice_ring *ring; 1862 1863 ice_for_each_ring(ring, q_vector->tx) 1864 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1865 break; 1866 1867 /* restore the value of last node prior to XDP setup */ 1868 q_vector->tx.ring = ring; 1869 } 1870 1871 free_qmap: 1872 mutex_lock(&pf->avail_q_mutex); 1873 for (i = 0; i < vsi->num_xdp_txq; i++) { 1874 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1875 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1876 } 1877 mutex_unlock(&pf->avail_q_mutex); 1878 1879 for (i = 0; i < vsi->num_xdp_txq; i++) 1880 if (vsi->xdp_rings[i]) { 1881 if (vsi->xdp_rings[i]->desc) 1882 ice_free_tx_ring(vsi->xdp_rings[i]); 1883 kfree_rcu(vsi->xdp_rings[i], rcu); 1884 vsi->xdp_rings[i] = NULL; 1885 } 1886 1887 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 1888 vsi->xdp_rings = NULL; 1889 1890 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1891 return 0; 1892 1893 ice_vsi_assign_bpf_prog(vsi, NULL); 1894 1895 /* notify Tx scheduler that we destroyed XDP queues and bring 1896 * back the old number of child nodes 1897 */ 1898 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1899 max_txqs[i] = vsi->num_txq; 1900 1901 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1902 max_txqs); 1903 } 1904 1905 /** 1906 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1907 * @vsi: VSI to setup XDP for 1908 * @prog: XDP program 1909 * @extack: netlink extended ack 1910 */ 1911 static int 1912 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1913 struct netlink_ext_ack *extack) 1914 { 1915 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1916 bool if_running = netif_running(vsi->netdev); 1917 int ret = 0, xdp_ring_err = 0; 1918 1919 if (frame_size > vsi->rx_buf_len) { 1920 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1921 return -EOPNOTSUPP; 1922 } 1923 1924 /* need to stop netdev while setting up the program for Rx rings */ 1925 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1926 ret = ice_down(vsi); 1927 if (ret) { 1928 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 1929 return ret; 1930 } 1931 } 1932 1933 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1934 vsi->num_xdp_txq = vsi->alloc_txq; 1935 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1936 if (xdp_ring_err) 1937 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 1938 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1939 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1940 if (xdp_ring_err) 1941 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 1942 } else { 1943 ice_vsi_assign_bpf_prog(vsi, prog); 1944 } 1945 1946 if (if_running) 1947 ret = ice_up(vsi); 1948 1949 if (!ret && prog && vsi->xsk_umems) { 1950 int i; 1951 1952 ice_for_each_rxq(vsi, i) { 1953 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1954 1955 if (rx_ring->xsk_umem) 1956 napi_schedule(&rx_ring->q_vector->napi); 1957 } 1958 } 1959 1960 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1961 } 1962 1963 /** 1964 * ice_xdp - implements XDP handler 1965 * @dev: netdevice 1966 * @xdp: XDP command 1967 */ 1968 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1969 { 1970 struct ice_netdev_priv *np = netdev_priv(dev); 1971 struct ice_vsi *vsi = np->vsi; 1972 1973 if (vsi->type != ICE_VSI_PF) { 1974 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 1975 return -EINVAL; 1976 } 1977 1978 switch (xdp->command) { 1979 case XDP_SETUP_PROG: 1980 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1981 case XDP_QUERY_PROG: 1982 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1983 return 0; 1984 case XDP_SETUP_XSK_UMEM: 1985 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1986 xdp->xsk.queue_id); 1987 default: 1988 return -EINVAL; 1989 } 1990 } 1991 1992 /** 1993 * ice_ena_misc_vector - enable the non-queue interrupts 1994 * @pf: board private structure 1995 */ 1996 static void ice_ena_misc_vector(struct ice_pf *pf) 1997 { 1998 struct ice_hw *hw = &pf->hw; 1999 u32 val; 2000 2001 /* Disable anti-spoof detection interrupt to prevent spurious event 2002 * interrupts during a function reset. Anti-spoof functionally is 2003 * still supported. 2004 */ 2005 val = rd32(hw, GL_MDCK_TX_TDPU); 2006 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2007 wr32(hw, GL_MDCK_TX_TDPU, val); 2008 2009 /* clear things first */ 2010 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2011 rd32(hw, PFINT_OICR); /* read to clear */ 2012 2013 val = (PFINT_OICR_ECC_ERR_M | 2014 PFINT_OICR_MAL_DETECT_M | 2015 PFINT_OICR_GRST_M | 2016 PFINT_OICR_PCI_EXCEPTION_M | 2017 PFINT_OICR_VFLR_M | 2018 PFINT_OICR_HMC_ERR_M | 2019 PFINT_OICR_PE_CRITERR_M); 2020 2021 wr32(hw, PFINT_OICR_ENA, val); 2022 2023 /* SW_ITR_IDX = 0, but don't change INTENA */ 2024 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2025 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2026 } 2027 2028 /** 2029 * ice_misc_intr - misc interrupt handler 2030 * @irq: interrupt number 2031 * @data: pointer to a q_vector 2032 */ 2033 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2034 { 2035 struct ice_pf *pf = (struct ice_pf *)data; 2036 struct ice_hw *hw = &pf->hw; 2037 irqreturn_t ret = IRQ_NONE; 2038 struct device *dev; 2039 u32 oicr, ena_mask; 2040 2041 dev = ice_pf_to_dev(pf); 2042 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2043 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2044 2045 oicr = rd32(hw, PFINT_OICR); 2046 ena_mask = rd32(hw, PFINT_OICR_ENA); 2047 2048 if (oicr & PFINT_OICR_SWINT_M) { 2049 ena_mask &= ~PFINT_OICR_SWINT_M; 2050 pf->sw_int_count++; 2051 } 2052 2053 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2054 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2055 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2056 } 2057 if (oicr & PFINT_OICR_VFLR_M) { 2058 /* disable any further VFLR event notifications */ 2059 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2060 u32 reg = rd32(hw, PFINT_OICR_ENA); 2061 2062 reg &= ~PFINT_OICR_VFLR_M; 2063 wr32(hw, PFINT_OICR_ENA, reg); 2064 } else { 2065 ena_mask &= ~PFINT_OICR_VFLR_M; 2066 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2067 } 2068 } 2069 2070 if (oicr & PFINT_OICR_GRST_M) { 2071 u32 reset; 2072 2073 /* we have a reset warning */ 2074 ena_mask &= ~PFINT_OICR_GRST_M; 2075 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2076 GLGEN_RSTAT_RESET_TYPE_S; 2077 2078 if (reset == ICE_RESET_CORER) 2079 pf->corer_count++; 2080 else if (reset == ICE_RESET_GLOBR) 2081 pf->globr_count++; 2082 else if (reset == ICE_RESET_EMPR) 2083 pf->empr_count++; 2084 else 2085 dev_dbg(dev, "Invalid reset type %d\n", reset); 2086 2087 /* If a reset cycle isn't already in progress, we set a bit in 2088 * pf->state so that the service task can start a reset/rebuild. 2089 * We also make note of which reset happened so that peer 2090 * devices/drivers can be informed. 2091 */ 2092 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2093 if (reset == ICE_RESET_CORER) 2094 set_bit(__ICE_CORER_RECV, pf->state); 2095 else if (reset == ICE_RESET_GLOBR) 2096 set_bit(__ICE_GLOBR_RECV, pf->state); 2097 else 2098 set_bit(__ICE_EMPR_RECV, pf->state); 2099 2100 /* There are couple of different bits at play here. 2101 * hw->reset_ongoing indicates whether the hardware is 2102 * in reset. This is set to true when a reset interrupt 2103 * is received and set back to false after the driver 2104 * has determined that the hardware is out of reset. 2105 * 2106 * __ICE_RESET_OICR_RECV in pf->state indicates 2107 * that a post reset rebuild is required before the 2108 * driver is operational again. This is set above. 2109 * 2110 * As this is the start of the reset/rebuild cycle, set 2111 * both to indicate that. 2112 */ 2113 hw->reset_ongoing = true; 2114 } 2115 } 2116 2117 if (oicr & PFINT_OICR_HMC_ERR_M) { 2118 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2119 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2120 rd32(hw, PFHMC_ERRORINFO), 2121 rd32(hw, PFHMC_ERRORDATA)); 2122 } 2123 2124 /* Report any remaining unexpected interrupts */ 2125 oicr &= ena_mask; 2126 if (oicr) { 2127 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2128 /* If a critical error is pending there is no choice but to 2129 * reset the device. 2130 */ 2131 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2132 PFINT_OICR_PCI_EXCEPTION_M | 2133 PFINT_OICR_ECC_ERR_M)) { 2134 set_bit(__ICE_PFR_REQ, pf->state); 2135 ice_service_task_schedule(pf); 2136 } 2137 } 2138 ret = IRQ_HANDLED; 2139 2140 if (!test_bit(__ICE_DOWN, pf->state)) { 2141 ice_service_task_schedule(pf); 2142 ice_irq_dynamic_ena(hw, NULL, NULL); 2143 } 2144 2145 return ret; 2146 } 2147 2148 /** 2149 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2150 * @hw: pointer to HW structure 2151 */ 2152 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2153 { 2154 /* disable Admin queue Interrupt causes */ 2155 wr32(hw, PFINT_FW_CTL, 2156 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2157 2158 /* disable Mailbox queue Interrupt causes */ 2159 wr32(hw, PFINT_MBX_CTL, 2160 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2161 2162 /* disable Control queue Interrupt causes */ 2163 wr32(hw, PFINT_OICR_CTL, 2164 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2165 2166 ice_flush(hw); 2167 } 2168 2169 /** 2170 * ice_free_irq_msix_misc - Unroll misc vector setup 2171 * @pf: board private structure 2172 */ 2173 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2174 { 2175 struct ice_hw *hw = &pf->hw; 2176 2177 ice_dis_ctrlq_interrupts(hw); 2178 2179 /* disable OICR interrupt */ 2180 wr32(hw, PFINT_OICR_ENA, 0); 2181 ice_flush(hw); 2182 2183 if (pf->msix_entries) { 2184 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2185 devm_free_irq(ice_pf_to_dev(pf), 2186 pf->msix_entries[pf->oicr_idx].vector, pf); 2187 } 2188 2189 pf->num_avail_sw_msix += 1; 2190 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2191 } 2192 2193 /** 2194 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2195 * @hw: pointer to HW structure 2196 * @reg_idx: HW vector index to associate the control queue interrupts with 2197 */ 2198 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2199 { 2200 u32 val; 2201 2202 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2203 PFINT_OICR_CTL_CAUSE_ENA_M); 2204 wr32(hw, PFINT_OICR_CTL, val); 2205 2206 /* enable Admin queue Interrupt causes */ 2207 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2208 PFINT_FW_CTL_CAUSE_ENA_M); 2209 wr32(hw, PFINT_FW_CTL, val); 2210 2211 /* enable Mailbox queue Interrupt causes */ 2212 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2213 PFINT_MBX_CTL_CAUSE_ENA_M); 2214 wr32(hw, PFINT_MBX_CTL, val); 2215 2216 ice_flush(hw); 2217 } 2218 2219 /** 2220 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2221 * @pf: board private structure 2222 * 2223 * This sets up the handler for MSIX 0, which is used to manage the 2224 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2225 * when in MSI or Legacy interrupt mode. 2226 */ 2227 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2228 { 2229 struct device *dev = ice_pf_to_dev(pf); 2230 struct ice_hw *hw = &pf->hw; 2231 int oicr_idx, err = 0; 2232 2233 if (!pf->int_name[0]) 2234 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2235 dev_driver_string(dev), dev_name(dev)); 2236 2237 /* Do not request IRQ but do enable OICR interrupt since settings are 2238 * lost during reset. Note that this function is called only during 2239 * rebuild path and not while reset is in progress. 2240 */ 2241 if (ice_is_reset_in_progress(pf->state)) 2242 goto skip_req_irq; 2243 2244 /* reserve one vector in irq_tracker for misc interrupts */ 2245 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2246 if (oicr_idx < 0) 2247 return oicr_idx; 2248 2249 pf->num_avail_sw_msix -= 1; 2250 pf->oicr_idx = oicr_idx; 2251 2252 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2253 ice_misc_intr, 0, pf->int_name, pf); 2254 if (err) { 2255 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2256 pf->int_name, err); 2257 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2258 pf->num_avail_sw_msix += 1; 2259 return err; 2260 } 2261 2262 skip_req_irq: 2263 ice_ena_misc_vector(pf); 2264 2265 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2266 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2267 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2268 2269 ice_flush(hw); 2270 ice_irq_dynamic_ena(hw, NULL, NULL); 2271 2272 return 0; 2273 } 2274 2275 /** 2276 * ice_napi_add - register NAPI handler for the VSI 2277 * @vsi: VSI for which NAPI handler is to be registered 2278 * 2279 * This function is only called in the driver's load path. Registering the NAPI 2280 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2281 * reset/rebuild, etc.) 2282 */ 2283 static void ice_napi_add(struct ice_vsi *vsi) 2284 { 2285 int v_idx; 2286 2287 if (!vsi->netdev) 2288 return; 2289 2290 ice_for_each_q_vector(vsi, v_idx) 2291 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2292 ice_napi_poll, NAPI_POLL_WEIGHT); 2293 } 2294 2295 /** 2296 * ice_set_ops - set netdev and ethtools ops for the given netdev 2297 * @netdev: netdev instance 2298 */ 2299 static void ice_set_ops(struct net_device *netdev) 2300 { 2301 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2302 2303 if (ice_is_safe_mode(pf)) { 2304 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2305 ice_set_ethtool_safe_mode_ops(netdev); 2306 return; 2307 } 2308 2309 netdev->netdev_ops = &ice_netdev_ops; 2310 ice_set_ethtool_ops(netdev); 2311 } 2312 2313 /** 2314 * ice_set_netdev_features - set features for the given netdev 2315 * @netdev: netdev instance 2316 */ 2317 static void ice_set_netdev_features(struct net_device *netdev) 2318 { 2319 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2320 netdev_features_t csumo_features; 2321 netdev_features_t vlano_features; 2322 netdev_features_t dflt_features; 2323 netdev_features_t tso_features; 2324 2325 if (ice_is_safe_mode(pf)) { 2326 /* safe mode */ 2327 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2328 netdev->hw_features = netdev->features; 2329 return; 2330 } 2331 2332 dflt_features = NETIF_F_SG | 2333 NETIF_F_HIGHDMA | 2334 NETIF_F_RXHASH; 2335 2336 csumo_features = NETIF_F_RXCSUM | 2337 NETIF_F_IP_CSUM | 2338 NETIF_F_SCTP_CRC | 2339 NETIF_F_IPV6_CSUM; 2340 2341 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2342 NETIF_F_HW_VLAN_CTAG_TX | 2343 NETIF_F_HW_VLAN_CTAG_RX; 2344 2345 tso_features = NETIF_F_TSO | 2346 NETIF_F_GSO_UDP_L4; 2347 2348 /* set features that user can change */ 2349 netdev->hw_features = dflt_features | csumo_features | 2350 vlano_features | tso_features; 2351 2352 /* enable features */ 2353 netdev->features |= netdev->hw_features; 2354 /* encap and VLAN devices inherit default, csumo and tso features */ 2355 netdev->hw_enc_features |= dflt_features | csumo_features | 2356 tso_features; 2357 netdev->vlan_features |= dflt_features | csumo_features | 2358 tso_features; 2359 } 2360 2361 /** 2362 * ice_cfg_netdev - Allocate, configure and register a netdev 2363 * @vsi: the VSI associated with the new netdev 2364 * 2365 * Returns 0 on success, negative value on failure 2366 */ 2367 static int ice_cfg_netdev(struct ice_vsi *vsi) 2368 { 2369 struct ice_pf *pf = vsi->back; 2370 struct ice_netdev_priv *np; 2371 struct net_device *netdev; 2372 u8 mac_addr[ETH_ALEN]; 2373 int err; 2374 2375 err = ice_devlink_create_port(pf); 2376 if (err) 2377 return err; 2378 2379 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2380 vsi->alloc_rxq); 2381 if (!netdev) { 2382 err = -ENOMEM; 2383 goto err_destroy_devlink_port; 2384 } 2385 2386 vsi->netdev = netdev; 2387 np = netdev_priv(netdev); 2388 np->vsi = vsi; 2389 2390 ice_set_netdev_features(netdev); 2391 2392 ice_set_ops(netdev); 2393 2394 if (vsi->type == ICE_VSI_PF) { 2395 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2396 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2397 ether_addr_copy(netdev->dev_addr, mac_addr); 2398 ether_addr_copy(netdev->perm_addr, mac_addr); 2399 } 2400 2401 netdev->priv_flags |= IFF_UNICAST_FLT; 2402 2403 /* Setup netdev TC information */ 2404 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2405 2406 /* setup watchdog timeout value to be 5 second */ 2407 netdev->watchdog_timeo = 5 * HZ; 2408 2409 netdev->min_mtu = ETH_MIN_MTU; 2410 netdev->max_mtu = ICE_MAX_MTU; 2411 2412 err = register_netdev(vsi->netdev); 2413 if (err) 2414 goto err_destroy_devlink_port; 2415 2416 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 2417 2418 netif_carrier_off(vsi->netdev); 2419 2420 /* make sure transmit queues start off as stopped */ 2421 netif_tx_stop_all_queues(vsi->netdev); 2422 2423 return 0; 2424 2425 err_destroy_devlink_port: 2426 ice_devlink_destroy_port(pf); 2427 2428 return err; 2429 } 2430 2431 /** 2432 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2433 * @lut: Lookup table 2434 * @rss_table_size: Lookup table size 2435 * @rss_size: Range of queue number for hashing 2436 */ 2437 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2438 { 2439 u16 i; 2440 2441 for (i = 0; i < rss_table_size; i++) 2442 lut[i] = i % rss_size; 2443 } 2444 2445 /** 2446 * ice_pf_vsi_setup - Set up a PF VSI 2447 * @pf: board private structure 2448 * @pi: pointer to the port_info instance 2449 * 2450 * Returns pointer to the successfully allocated VSI software struct 2451 * on success, otherwise returns NULL on failure. 2452 */ 2453 static struct ice_vsi * 2454 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2455 { 2456 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2457 } 2458 2459 /** 2460 * ice_lb_vsi_setup - Set up a loopback VSI 2461 * @pf: board private structure 2462 * @pi: pointer to the port_info instance 2463 * 2464 * Returns pointer to the successfully allocated VSI software struct 2465 * on success, otherwise returns NULL on failure. 2466 */ 2467 struct ice_vsi * 2468 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2469 { 2470 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2471 } 2472 2473 /** 2474 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2475 * @netdev: network interface to be adjusted 2476 * @proto: unused protocol 2477 * @vid: VLAN ID to be added 2478 * 2479 * net_device_ops implementation for adding VLAN IDs 2480 */ 2481 static int 2482 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2483 u16 vid) 2484 { 2485 struct ice_netdev_priv *np = netdev_priv(netdev); 2486 struct ice_vsi *vsi = np->vsi; 2487 int ret; 2488 2489 if (vid >= VLAN_N_VID) { 2490 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2491 vid, VLAN_N_VID); 2492 return -EINVAL; 2493 } 2494 2495 if (vsi->info.pvid) 2496 return -EINVAL; 2497 2498 /* VLAN 0 is added by default during load/reset */ 2499 if (!vid) 2500 return 0; 2501 2502 /* Enable VLAN pruning when a VLAN other than 0 is added */ 2503 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 2504 ret = ice_cfg_vlan_pruning(vsi, true, false); 2505 if (ret) 2506 return ret; 2507 } 2508 2509 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 2510 * packets aren't pruned by the device's internal switch on Rx 2511 */ 2512 ret = ice_vsi_add_vlan(vsi, vid); 2513 if (!ret) { 2514 vsi->vlan_ena = true; 2515 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2516 } 2517 2518 return ret; 2519 } 2520 2521 /** 2522 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2523 * @netdev: network interface to be adjusted 2524 * @proto: unused protocol 2525 * @vid: VLAN ID to be removed 2526 * 2527 * net_device_ops implementation for removing VLAN IDs 2528 */ 2529 static int 2530 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2531 u16 vid) 2532 { 2533 struct ice_netdev_priv *np = netdev_priv(netdev); 2534 struct ice_vsi *vsi = np->vsi; 2535 int ret; 2536 2537 if (vsi->info.pvid) 2538 return -EINVAL; 2539 2540 /* don't allow removal of VLAN 0 */ 2541 if (!vid) 2542 return 0; 2543 2544 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2545 * information 2546 */ 2547 ret = ice_vsi_kill_vlan(vsi, vid); 2548 if (ret) 2549 return ret; 2550 2551 /* Disable pruning when VLAN 0 is the only VLAN rule */ 2552 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 2553 ret = ice_cfg_vlan_pruning(vsi, false, false); 2554 2555 vsi->vlan_ena = false; 2556 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2557 return ret; 2558 } 2559 2560 /** 2561 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2562 * @pf: board private structure 2563 * 2564 * Returns 0 on success, negative value on failure 2565 */ 2566 static int ice_setup_pf_sw(struct ice_pf *pf) 2567 { 2568 struct ice_vsi *vsi; 2569 int status = 0; 2570 2571 if (ice_is_reset_in_progress(pf->state)) 2572 return -EBUSY; 2573 2574 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2575 if (!vsi) { 2576 status = -ENOMEM; 2577 goto unroll_vsi_setup; 2578 } 2579 2580 status = ice_cfg_netdev(vsi); 2581 if (status) { 2582 status = -ENODEV; 2583 goto unroll_vsi_setup; 2584 } 2585 /* netdev has to be configured before setting frame size */ 2586 ice_vsi_cfg_frame_size(vsi); 2587 2588 /* Setup DCB netlink interface */ 2589 ice_dcbnl_setup(vsi); 2590 2591 /* registering the NAPI handler requires both the queues and 2592 * netdev to be created, which are done in ice_pf_vsi_setup() 2593 * and ice_cfg_netdev() respectively 2594 */ 2595 ice_napi_add(vsi); 2596 2597 status = ice_init_mac_fltr(pf); 2598 if (status) 2599 goto unroll_napi_add; 2600 2601 return status; 2602 2603 unroll_napi_add: 2604 if (vsi) { 2605 ice_napi_del(vsi); 2606 if (vsi->netdev) { 2607 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2608 unregister_netdev(vsi->netdev); 2609 free_netdev(vsi->netdev); 2610 vsi->netdev = NULL; 2611 } 2612 } 2613 2614 unroll_vsi_setup: 2615 if (vsi) { 2616 ice_vsi_free_q_vectors(vsi); 2617 ice_vsi_delete(vsi); 2618 ice_vsi_put_qs(vsi); 2619 ice_vsi_clear(vsi); 2620 } 2621 return status; 2622 } 2623 2624 /** 2625 * ice_get_avail_q_count - Get count of queues in use 2626 * @pf_qmap: bitmap to get queue use count from 2627 * @lock: pointer to a mutex that protects access to pf_qmap 2628 * @size: size of the bitmap 2629 */ 2630 static u16 2631 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2632 { 2633 u16 count = 0, bit; 2634 2635 mutex_lock(lock); 2636 for_each_clear_bit(bit, pf_qmap, size) 2637 count++; 2638 mutex_unlock(lock); 2639 2640 return count; 2641 } 2642 2643 /** 2644 * ice_get_avail_txq_count - Get count of Tx queues in use 2645 * @pf: pointer to an ice_pf instance 2646 */ 2647 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2648 { 2649 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2650 pf->max_pf_txqs); 2651 } 2652 2653 /** 2654 * ice_get_avail_rxq_count - Get count of Rx queues in use 2655 * @pf: pointer to an ice_pf instance 2656 */ 2657 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2658 { 2659 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2660 pf->max_pf_rxqs); 2661 } 2662 2663 /** 2664 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2665 * @pf: board private structure to initialize 2666 */ 2667 static void ice_deinit_pf(struct ice_pf *pf) 2668 { 2669 ice_service_task_stop(pf); 2670 mutex_destroy(&pf->sw_mutex); 2671 mutex_destroy(&pf->tc_mutex); 2672 mutex_destroy(&pf->avail_q_mutex); 2673 2674 if (pf->avail_txqs) { 2675 bitmap_free(pf->avail_txqs); 2676 pf->avail_txqs = NULL; 2677 } 2678 2679 if (pf->avail_rxqs) { 2680 bitmap_free(pf->avail_rxqs); 2681 pf->avail_rxqs = NULL; 2682 } 2683 } 2684 2685 /** 2686 * ice_set_pf_caps - set PFs capability flags 2687 * @pf: pointer to the PF instance 2688 */ 2689 static void ice_set_pf_caps(struct ice_pf *pf) 2690 { 2691 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2692 2693 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2694 if (func_caps->common_cap.dcb) 2695 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2696 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2697 if (func_caps->common_cap.sr_iov_1_1) { 2698 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2699 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2700 ICE_MAX_VF_COUNT); 2701 } 2702 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2703 if (func_caps->common_cap.rss_table_size) 2704 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2705 2706 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2707 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2708 } 2709 2710 /** 2711 * ice_init_pf - Initialize general software structures (struct ice_pf) 2712 * @pf: board private structure to initialize 2713 */ 2714 static int ice_init_pf(struct ice_pf *pf) 2715 { 2716 ice_set_pf_caps(pf); 2717 2718 mutex_init(&pf->sw_mutex); 2719 mutex_init(&pf->tc_mutex); 2720 2721 /* setup service timer and periodic service task */ 2722 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2723 pf->serv_tmr_period = HZ; 2724 INIT_WORK(&pf->serv_task, ice_service_task); 2725 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2726 2727 mutex_init(&pf->avail_q_mutex); 2728 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2729 if (!pf->avail_txqs) 2730 return -ENOMEM; 2731 2732 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2733 if (!pf->avail_rxqs) { 2734 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 2735 pf->avail_txqs = NULL; 2736 return -ENOMEM; 2737 } 2738 2739 return 0; 2740 } 2741 2742 /** 2743 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2744 * @pf: board private structure 2745 * 2746 * compute the number of MSIX vectors required (v_budget) and request from 2747 * the OS. Return the number of vectors reserved or negative on failure 2748 */ 2749 static int ice_ena_msix_range(struct ice_pf *pf) 2750 { 2751 struct device *dev = ice_pf_to_dev(pf); 2752 int v_left, v_actual, v_budget = 0; 2753 int needed, err, i; 2754 2755 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2756 2757 /* reserve one vector for miscellaneous handler */ 2758 needed = 1; 2759 if (v_left < needed) 2760 goto no_hw_vecs_left_err; 2761 v_budget += needed; 2762 v_left -= needed; 2763 2764 /* reserve vectors for LAN traffic */ 2765 needed = min_t(int, num_online_cpus(), v_left); 2766 if (v_left < needed) 2767 goto no_hw_vecs_left_err; 2768 pf->num_lan_msix = needed; 2769 v_budget += needed; 2770 v_left -= needed; 2771 2772 pf->msix_entries = devm_kcalloc(dev, v_budget, 2773 sizeof(*pf->msix_entries), GFP_KERNEL); 2774 2775 if (!pf->msix_entries) { 2776 err = -ENOMEM; 2777 goto exit_err; 2778 } 2779 2780 for (i = 0; i < v_budget; i++) 2781 pf->msix_entries[i].entry = i; 2782 2783 /* actually reserve the vectors */ 2784 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2785 ICE_MIN_MSIX, v_budget); 2786 2787 if (v_actual < 0) { 2788 dev_err(dev, "unable to reserve MSI-X vectors\n"); 2789 err = v_actual; 2790 goto msix_err; 2791 } 2792 2793 if (v_actual < v_budget) { 2794 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2795 v_budget, v_actual); 2796 /* 2 vectors for LAN (traffic + OICR) */ 2797 #define ICE_MIN_LAN_VECS 2 2798 2799 if (v_actual < ICE_MIN_LAN_VECS) { 2800 /* error if we can't get minimum vectors */ 2801 pci_disable_msix(pf->pdev); 2802 err = -ERANGE; 2803 goto msix_err; 2804 } else { 2805 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2806 } 2807 } 2808 2809 return v_actual; 2810 2811 msix_err: 2812 devm_kfree(dev, pf->msix_entries); 2813 goto exit_err; 2814 2815 no_hw_vecs_left_err: 2816 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 2817 needed, v_left); 2818 err = -ERANGE; 2819 exit_err: 2820 pf->num_lan_msix = 0; 2821 return err; 2822 } 2823 2824 /** 2825 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2826 * @pf: board private structure 2827 */ 2828 static void ice_dis_msix(struct ice_pf *pf) 2829 { 2830 pci_disable_msix(pf->pdev); 2831 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 2832 pf->msix_entries = NULL; 2833 } 2834 2835 /** 2836 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2837 * @pf: board private structure 2838 */ 2839 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2840 { 2841 ice_dis_msix(pf); 2842 2843 if (pf->irq_tracker) { 2844 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 2845 pf->irq_tracker = NULL; 2846 } 2847 } 2848 2849 /** 2850 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2851 * @pf: board private structure to initialize 2852 */ 2853 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2854 { 2855 int vectors; 2856 2857 vectors = ice_ena_msix_range(pf); 2858 2859 if (vectors < 0) 2860 return vectors; 2861 2862 /* set up vector assignment tracking */ 2863 pf->irq_tracker = 2864 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 2865 (sizeof(u16) * vectors), GFP_KERNEL); 2866 if (!pf->irq_tracker) { 2867 ice_dis_msix(pf); 2868 return -ENOMEM; 2869 } 2870 2871 /* populate SW interrupts pool with number of OS granted IRQs. */ 2872 pf->num_avail_sw_msix = vectors; 2873 pf->irq_tracker->num_entries = vectors; 2874 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * ice_vsi_recfg_qs - Change the number of queues on a VSI 2881 * @vsi: VSI being changed 2882 * @new_rx: new number of Rx queues 2883 * @new_tx: new number of Tx queues 2884 * 2885 * Only change the number of queues if new_tx, or new_rx is non-0. 2886 * 2887 * Returns 0 on success. 2888 */ 2889 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 2890 { 2891 struct ice_pf *pf = vsi->back; 2892 int err = 0, timeout = 50; 2893 2894 if (!new_rx && !new_tx) 2895 return -EINVAL; 2896 2897 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 2898 timeout--; 2899 if (!timeout) 2900 return -EBUSY; 2901 usleep_range(1000, 2000); 2902 } 2903 2904 if (new_tx) 2905 vsi->req_txq = new_tx; 2906 if (new_rx) 2907 vsi->req_rxq = new_rx; 2908 2909 /* set for the next time the netdev is started */ 2910 if (!netif_running(vsi->netdev)) { 2911 ice_vsi_rebuild(vsi, false); 2912 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 2913 goto done; 2914 } 2915 2916 ice_vsi_close(vsi); 2917 ice_vsi_rebuild(vsi, false); 2918 ice_pf_dcb_recfg(pf); 2919 ice_vsi_open(vsi); 2920 done: 2921 clear_bit(__ICE_CFG_BUSY, pf->state); 2922 return err; 2923 } 2924 2925 /** 2926 * ice_log_pkg_init - log result of DDP package load 2927 * @hw: pointer to hardware info 2928 * @status: status of package load 2929 */ 2930 static void 2931 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2932 { 2933 struct ice_pf *pf = (struct ice_pf *)hw->back; 2934 struct device *dev = ice_pf_to_dev(pf); 2935 2936 switch (*status) { 2937 case ICE_SUCCESS: 2938 /* The package download AdminQ command returned success because 2939 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 2940 * already a package loaded on the device. 2941 */ 2942 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 2943 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 2944 hw->pkg_ver.update == hw->active_pkg_ver.update && 2945 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 2946 !memcmp(hw->pkg_name, hw->active_pkg_name, 2947 sizeof(hw->pkg_name))) { 2948 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 2949 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 2950 hw->active_pkg_name, 2951 hw->active_pkg_ver.major, 2952 hw->active_pkg_ver.minor, 2953 hw->active_pkg_ver.update, 2954 hw->active_pkg_ver.draft); 2955 else 2956 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 2957 hw->active_pkg_name, 2958 hw->active_pkg_ver.major, 2959 hw->active_pkg_ver.minor, 2960 hw->active_pkg_ver.update, 2961 hw->active_pkg_ver.draft); 2962 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 2963 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 2964 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 2965 hw->active_pkg_name, 2966 hw->active_pkg_ver.major, 2967 hw->active_pkg_ver.minor, 2968 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2969 *status = ICE_ERR_NOT_SUPPORTED; 2970 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2971 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 2972 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 2973 hw->active_pkg_name, 2974 hw->active_pkg_ver.major, 2975 hw->active_pkg_ver.minor, 2976 hw->active_pkg_ver.update, 2977 hw->active_pkg_ver.draft, 2978 hw->pkg_name, 2979 hw->pkg_ver.major, 2980 hw->pkg_ver.minor, 2981 hw->pkg_ver.update, 2982 hw->pkg_ver.draft); 2983 } else { 2984 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 2985 *status = ICE_ERR_NOT_SUPPORTED; 2986 } 2987 break; 2988 case ICE_ERR_BUF_TOO_SHORT: 2989 case ICE_ERR_CFG: 2990 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 2991 break; 2992 case ICE_ERR_NOT_SUPPORTED: 2993 /* Package File version not supported */ 2994 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 2995 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2996 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 2997 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 2998 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 2999 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3000 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3001 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3002 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3003 break; 3004 case ICE_ERR_AQ_ERROR: 3005 switch (hw->pkg_dwnld_status) { 3006 case ICE_AQ_RC_ENOSEC: 3007 case ICE_AQ_RC_EBADSIG: 3008 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3009 return; 3010 case ICE_AQ_RC_ESVN: 3011 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3012 return; 3013 case ICE_AQ_RC_EBADMAN: 3014 case ICE_AQ_RC_EBADBUF: 3015 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3016 return; 3017 default: 3018 break; 3019 } 3020 fallthrough; 3021 default: 3022 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3023 *status); 3024 break; 3025 } 3026 } 3027 3028 /** 3029 * ice_load_pkg - load/reload the DDP Package file 3030 * @firmware: firmware structure when firmware requested or NULL for reload 3031 * @pf: pointer to the PF instance 3032 * 3033 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3034 * initialize HW tables. 3035 */ 3036 static void 3037 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3038 { 3039 enum ice_status status = ICE_ERR_PARAM; 3040 struct device *dev = ice_pf_to_dev(pf); 3041 struct ice_hw *hw = &pf->hw; 3042 3043 /* Load DDP Package */ 3044 if (firmware && !hw->pkg_copy) { 3045 status = ice_copy_and_init_pkg(hw, firmware->data, 3046 firmware->size); 3047 ice_log_pkg_init(hw, &status); 3048 } else if (!firmware && hw->pkg_copy) { 3049 /* Reload package during rebuild after CORER/GLOBR reset */ 3050 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3051 ice_log_pkg_init(hw, &status); 3052 } else { 3053 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3054 } 3055 3056 if (status) { 3057 /* Safe Mode */ 3058 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3059 return; 3060 } 3061 3062 /* Successful download package is the precondition for advanced 3063 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3064 */ 3065 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3066 } 3067 3068 /** 3069 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3070 * @pf: pointer to the PF structure 3071 * 3072 * There is no error returned here because the driver should be able to handle 3073 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3074 * specifically with Tx. 3075 */ 3076 static void ice_verify_cacheline_size(struct ice_pf *pf) 3077 { 3078 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3079 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3080 ICE_CACHE_LINE_BYTES); 3081 } 3082 3083 /** 3084 * ice_send_version - update firmware with driver version 3085 * @pf: PF struct 3086 * 3087 * Returns ICE_SUCCESS on success, else error code 3088 */ 3089 static enum ice_status ice_send_version(struct ice_pf *pf) 3090 { 3091 struct ice_driver_ver dv; 3092 3093 dv.major_ver = DRV_VERSION_MAJOR; 3094 dv.minor_ver = DRV_VERSION_MINOR; 3095 dv.build_ver = DRV_VERSION_BUILD; 3096 dv.subbuild_ver = 0; 3097 strscpy((char *)dv.driver_string, DRV_VERSION, 3098 sizeof(dv.driver_string)); 3099 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3100 } 3101 3102 /** 3103 * ice_get_opt_fw_name - return optional firmware file name or NULL 3104 * @pf: pointer to the PF instance 3105 */ 3106 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3107 { 3108 /* Optional firmware name same as default with additional dash 3109 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3110 */ 3111 struct pci_dev *pdev = pf->pdev; 3112 char *opt_fw_filename; 3113 u64 dsn; 3114 3115 /* Determine the name of the optional file using the DSN (two 3116 * dwords following the start of the DSN Capability). 3117 */ 3118 dsn = pci_get_dsn(pdev); 3119 if (!dsn) 3120 return NULL; 3121 3122 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3123 if (!opt_fw_filename) 3124 return NULL; 3125 3126 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llX.pkg", 3127 ICE_DDP_PKG_PATH, dsn); 3128 3129 return opt_fw_filename; 3130 } 3131 3132 /** 3133 * ice_request_fw - Device initialization routine 3134 * @pf: pointer to the PF instance 3135 */ 3136 static void ice_request_fw(struct ice_pf *pf) 3137 { 3138 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3139 const struct firmware *firmware = NULL; 3140 struct device *dev = ice_pf_to_dev(pf); 3141 int err = 0; 3142 3143 /* optional device-specific DDP (if present) overrides the default DDP 3144 * package file. kernel logs a debug message if the file doesn't exist, 3145 * and warning messages for other errors. 3146 */ 3147 if (opt_fw_filename) { 3148 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3149 if (err) { 3150 kfree(opt_fw_filename); 3151 goto dflt_pkg_load; 3152 } 3153 3154 /* request for firmware was successful. Download to device */ 3155 ice_load_pkg(firmware, pf); 3156 kfree(opt_fw_filename); 3157 release_firmware(firmware); 3158 return; 3159 } 3160 3161 dflt_pkg_load: 3162 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3163 if (err) { 3164 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3165 return; 3166 } 3167 3168 /* request for firmware was successful. Download to device */ 3169 ice_load_pkg(firmware, pf); 3170 release_firmware(firmware); 3171 } 3172 3173 /** 3174 * ice_probe - Device initialization routine 3175 * @pdev: PCI device information struct 3176 * @ent: entry in ice_pci_tbl 3177 * 3178 * Returns 0 on success, negative on failure 3179 */ 3180 static int 3181 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3182 { 3183 struct device *dev = &pdev->dev; 3184 struct ice_pf *pf; 3185 struct ice_hw *hw; 3186 int err; 3187 3188 /* this driver uses devres, see 3189 * Documentation/driver-api/driver-model/devres.rst 3190 */ 3191 err = pcim_enable_device(pdev); 3192 if (err) 3193 return err; 3194 3195 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3196 if (err) { 3197 dev_err(dev, "BAR0 I/O map error %d\n", err); 3198 return err; 3199 } 3200 3201 pf = ice_allocate_pf(dev); 3202 if (!pf) 3203 return -ENOMEM; 3204 3205 /* set up for high or low DMA */ 3206 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3207 if (err) 3208 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3209 if (err) { 3210 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3211 return err; 3212 } 3213 3214 pci_enable_pcie_error_reporting(pdev); 3215 pci_set_master(pdev); 3216 3217 pf->pdev = pdev; 3218 pci_set_drvdata(pdev, pf); 3219 set_bit(__ICE_DOWN, pf->state); 3220 /* Disable service task until DOWN bit is cleared */ 3221 set_bit(__ICE_SERVICE_DIS, pf->state); 3222 3223 hw = &pf->hw; 3224 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3225 pci_save_state(pdev); 3226 3227 hw->back = pf; 3228 hw->vendor_id = pdev->vendor; 3229 hw->device_id = pdev->device; 3230 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3231 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3232 hw->subsystem_device_id = pdev->subsystem_device; 3233 hw->bus.device = PCI_SLOT(pdev->devfn); 3234 hw->bus.func = PCI_FUNC(pdev->devfn); 3235 ice_set_ctrlq_len(hw); 3236 3237 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3238 3239 err = ice_devlink_register(pf); 3240 if (err) { 3241 dev_err(dev, "ice_devlink_register failed: %d\n", err); 3242 goto err_exit_unroll; 3243 } 3244 3245 #ifndef CONFIG_DYNAMIC_DEBUG 3246 if (debug < -1) 3247 hw->debug_mask = debug; 3248 #endif 3249 3250 err = ice_init_hw(hw); 3251 if (err) { 3252 dev_err(dev, "ice_init_hw failed: %d\n", err); 3253 err = -EIO; 3254 goto err_exit_unroll; 3255 } 3256 3257 ice_request_fw(pf); 3258 3259 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3260 * set in pf->state, which will cause ice_is_safe_mode to return 3261 * true 3262 */ 3263 if (ice_is_safe_mode(pf)) { 3264 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3265 /* we already got function/device capabilities but these don't 3266 * reflect what the driver needs to do in safe mode. Instead of 3267 * adding conditional logic everywhere to ignore these 3268 * device/function capabilities, override them. 3269 */ 3270 ice_set_safe_mode_caps(hw); 3271 } 3272 3273 err = ice_init_pf(pf); 3274 if (err) { 3275 dev_err(dev, "ice_init_pf failed: %d\n", err); 3276 goto err_init_pf_unroll; 3277 } 3278 3279 ice_devlink_init_regions(pf); 3280 3281 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3282 if (!pf->num_alloc_vsi) { 3283 err = -EIO; 3284 goto err_init_pf_unroll; 3285 } 3286 3287 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3288 GFP_KERNEL); 3289 if (!pf->vsi) { 3290 err = -ENOMEM; 3291 goto err_init_pf_unroll; 3292 } 3293 3294 err = ice_init_interrupt_scheme(pf); 3295 if (err) { 3296 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3297 err = -EIO; 3298 goto err_init_interrupt_unroll; 3299 } 3300 3301 /* Driver is mostly up */ 3302 clear_bit(__ICE_DOWN, pf->state); 3303 3304 /* In case of MSIX we are going to setup the misc vector right here 3305 * to handle admin queue events etc. In case of legacy and MSI 3306 * the misc functionality and queue processing is combined in 3307 * the same vector and that gets setup at open. 3308 */ 3309 err = ice_req_irq_msix_misc(pf); 3310 if (err) { 3311 dev_err(dev, "setup of misc vector failed: %d\n", err); 3312 goto err_init_interrupt_unroll; 3313 } 3314 3315 /* create switch struct for the switch element created by FW on boot */ 3316 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3317 if (!pf->first_sw) { 3318 err = -ENOMEM; 3319 goto err_msix_misc_unroll; 3320 } 3321 3322 if (hw->evb_veb) 3323 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3324 else 3325 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3326 3327 pf->first_sw->pf = pf; 3328 3329 /* record the sw_id available for later use */ 3330 pf->first_sw->sw_id = hw->port_info->sw_id; 3331 3332 err = ice_setup_pf_sw(pf); 3333 if (err) { 3334 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 3335 goto err_alloc_sw_unroll; 3336 } 3337 3338 clear_bit(__ICE_SERVICE_DIS, pf->state); 3339 3340 /* tell the firmware we are up */ 3341 err = ice_send_version(pf); 3342 if (err) { 3343 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 3344 ice_drv_ver, err); 3345 goto err_alloc_sw_unroll; 3346 } 3347 3348 /* since everything is good, start the service timer */ 3349 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3350 3351 err = ice_init_link_events(pf->hw.port_info); 3352 if (err) { 3353 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3354 goto err_alloc_sw_unroll; 3355 } 3356 3357 ice_verify_cacheline_size(pf); 3358 3359 /* If no DDP driven features have to be setup, return here */ 3360 if (ice_is_safe_mode(pf)) 3361 return 0; 3362 3363 /* initialize DDP driven features */ 3364 3365 /* Note: DCB init failure is non-fatal to load */ 3366 if (ice_init_pf_dcb(pf, false)) { 3367 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3368 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3369 } else { 3370 ice_cfg_lldp_mib_change(&pf->hw, true); 3371 } 3372 3373 /* print PCI link speed and width */ 3374 pcie_print_link_status(pf->pdev); 3375 3376 return 0; 3377 3378 err_alloc_sw_unroll: 3379 ice_devlink_destroy_port(pf); 3380 set_bit(__ICE_SERVICE_DIS, pf->state); 3381 set_bit(__ICE_DOWN, pf->state); 3382 devm_kfree(dev, pf->first_sw); 3383 err_msix_misc_unroll: 3384 ice_free_irq_msix_misc(pf); 3385 err_init_interrupt_unroll: 3386 ice_clear_interrupt_scheme(pf); 3387 devm_kfree(dev, pf->vsi); 3388 err_init_pf_unroll: 3389 ice_deinit_pf(pf); 3390 ice_devlink_destroy_regions(pf); 3391 ice_deinit_hw(hw); 3392 err_exit_unroll: 3393 ice_devlink_unregister(pf); 3394 pci_disable_pcie_error_reporting(pdev); 3395 return err; 3396 } 3397 3398 /** 3399 * ice_remove - Device removal routine 3400 * @pdev: PCI device information struct 3401 */ 3402 static void ice_remove(struct pci_dev *pdev) 3403 { 3404 struct ice_pf *pf = pci_get_drvdata(pdev); 3405 int i; 3406 3407 if (!pf) 3408 return; 3409 3410 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3411 if (!ice_is_reset_in_progress(pf->state)) 3412 break; 3413 msleep(100); 3414 } 3415 3416 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 3417 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 3418 ice_free_vfs(pf); 3419 } 3420 3421 set_bit(__ICE_DOWN, pf->state); 3422 ice_service_task_stop(pf); 3423 3424 ice_devlink_destroy_port(pf); 3425 ice_vsi_release_all(pf); 3426 ice_free_irq_msix_misc(pf); 3427 ice_for_each_vsi(pf, i) { 3428 if (!pf->vsi[i]) 3429 continue; 3430 ice_vsi_free_q_vectors(pf->vsi[i]); 3431 } 3432 ice_deinit_pf(pf); 3433 ice_devlink_destroy_regions(pf); 3434 ice_deinit_hw(&pf->hw); 3435 ice_devlink_unregister(pf); 3436 3437 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3438 * do it via ice_schedule_reset() since there is no need to rebuild 3439 * and the service task is already stopped. 3440 */ 3441 ice_reset(&pf->hw, ICE_RESET_PFR); 3442 pci_wait_for_pending_transaction(pdev); 3443 ice_clear_interrupt_scheme(pf); 3444 pci_disable_pcie_error_reporting(pdev); 3445 } 3446 3447 /** 3448 * ice_pci_err_detected - warning that PCI error has been detected 3449 * @pdev: PCI device information struct 3450 * @err: the type of PCI error 3451 * 3452 * Called to warn that something happened on the PCI bus and the error handling 3453 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3454 */ 3455 static pci_ers_result_t 3456 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3457 { 3458 struct ice_pf *pf = pci_get_drvdata(pdev); 3459 3460 if (!pf) { 3461 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3462 __func__, err); 3463 return PCI_ERS_RESULT_DISCONNECT; 3464 } 3465 3466 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3467 ice_service_task_stop(pf); 3468 3469 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3470 set_bit(__ICE_PFR_REQ, pf->state); 3471 ice_prepare_for_reset(pf); 3472 } 3473 } 3474 3475 return PCI_ERS_RESULT_NEED_RESET; 3476 } 3477 3478 /** 3479 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3480 * @pdev: PCI device information struct 3481 * 3482 * Called to determine if the driver can recover from the PCI slot reset by 3483 * using a register read to determine if the device is recoverable. 3484 */ 3485 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3486 { 3487 struct ice_pf *pf = pci_get_drvdata(pdev); 3488 pci_ers_result_t result; 3489 int err; 3490 u32 reg; 3491 3492 err = pci_enable_device_mem(pdev); 3493 if (err) { 3494 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 3495 err); 3496 result = PCI_ERS_RESULT_DISCONNECT; 3497 } else { 3498 pci_set_master(pdev); 3499 pci_restore_state(pdev); 3500 pci_save_state(pdev); 3501 pci_wake_from_d3(pdev, false); 3502 3503 /* Check for life */ 3504 reg = rd32(&pf->hw, GLGEN_RTRIG); 3505 if (!reg) 3506 result = PCI_ERS_RESULT_RECOVERED; 3507 else 3508 result = PCI_ERS_RESULT_DISCONNECT; 3509 } 3510 3511 err = pci_aer_clear_nonfatal_status(pdev); 3512 if (err) 3513 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 3514 err); 3515 /* non-fatal, continue */ 3516 3517 return result; 3518 } 3519 3520 /** 3521 * ice_pci_err_resume - restart operations after PCI error recovery 3522 * @pdev: PCI device information struct 3523 * 3524 * Called to allow the driver to bring things back up after PCI error and/or 3525 * reset recovery have finished 3526 */ 3527 static void ice_pci_err_resume(struct pci_dev *pdev) 3528 { 3529 struct ice_pf *pf = pci_get_drvdata(pdev); 3530 3531 if (!pf) { 3532 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 3533 __func__); 3534 return; 3535 } 3536 3537 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3538 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3539 __func__); 3540 return; 3541 } 3542 3543 ice_do_reset(pf, ICE_RESET_PFR); 3544 ice_service_task_restart(pf); 3545 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3546 } 3547 3548 /** 3549 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3550 * @pdev: PCI device information struct 3551 */ 3552 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3553 { 3554 struct ice_pf *pf = pci_get_drvdata(pdev); 3555 3556 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3557 ice_service_task_stop(pf); 3558 3559 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3560 set_bit(__ICE_PFR_REQ, pf->state); 3561 ice_prepare_for_reset(pf); 3562 } 3563 } 3564 } 3565 3566 /** 3567 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3568 * @pdev: PCI device information struct 3569 */ 3570 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3571 { 3572 ice_pci_err_resume(pdev); 3573 } 3574 3575 /* ice_pci_tbl - PCI Device ID Table 3576 * 3577 * Wildcard entries (PCI_ANY_ID) should come last 3578 * Last entry must be all 0s 3579 * 3580 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3581 * Class, Class Mask, private data (not used) } 3582 */ 3583 static const struct pci_device_id ice_pci_tbl[] = { 3584 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3585 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3586 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3587 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 3588 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 3589 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 3590 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 3591 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 3592 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 3593 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 3594 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 3595 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 3596 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 3597 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 3598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 3599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 3600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 3601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 3602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 3603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 3604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 3605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 3606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 3607 /* required last entry */ 3608 { 0, } 3609 }; 3610 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3611 3612 static const struct pci_error_handlers ice_pci_err_handler = { 3613 .error_detected = ice_pci_err_detected, 3614 .slot_reset = ice_pci_err_slot_reset, 3615 .reset_prepare = ice_pci_err_reset_prepare, 3616 .reset_done = ice_pci_err_reset_done, 3617 .resume = ice_pci_err_resume 3618 }; 3619 3620 static struct pci_driver ice_driver = { 3621 .name = KBUILD_MODNAME, 3622 .id_table = ice_pci_tbl, 3623 .probe = ice_probe, 3624 .remove = ice_remove, 3625 .sriov_configure = ice_sriov_configure, 3626 .err_handler = &ice_pci_err_handler 3627 }; 3628 3629 /** 3630 * ice_module_init - Driver registration routine 3631 * 3632 * ice_module_init is the first routine called when the driver is 3633 * loaded. All it does is register with the PCI subsystem. 3634 */ 3635 static int __init ice_module_init(void) 3636 { 3637 int status; 3638 3639 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3640 pr_info("%s\n", ice_copyright); 3641 3642 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3643 if (!ice_wq) { 3644 pr_err("Failed to create workqueue\n"); 3645 return -ENOMEM; 3646 } 3647 3648 status = pci_register_driver(&ice_driver); 3649 if (status) { 3650 pr_err("failed to register PCI driver, err %d\n", status); 3651 destroy_workqueue(ice_wq); 3652 } 3653 3654 return status; 3655 } 3656 module_init(ice_module_init); 3657 3658 /** 3659 * ice_module_exit - Driver exit cleanup routine 3660 * 3661 * ice_module_exit is called just before the driver is removed 3662 * from memory. 3663 */ 3664 static void __exit ice_module_exit(void) 3665 { 3666 pci_unregister_driver(&ice_driver); 3667 destroy_workqueue(ice_wq); 3668 pr_info("module unloaded\n"); 3669 } 3670 module_exit(ice_module_exit); 3671 3672 /** 3673 * ice_set_mac_address - NDO callback to set MAC address 3674 * @netdev: network interface device structure 3675 * @pi: pointer to an address structure 3676 * 3677 * Returns 0 on success, negative on failure 3678 */ 3679 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3680 { 3681 struct ice_netdev_priv *np = netdev_priv(netdev); 3682 struct ice_vsi *vsi = np->vsi; 3683 struct ice_pf *pf = vsi->back; 3684 struct ice_hw *hw = &pf->hw; 3685 struct sockaddr *addr = pi; 3686 enum ice_status status; 3687 u8 flags = 0; 3688 int err = 0; 3689 u8 *mac; 3690 3691 mac = (u8 *)addr->sa_data; 3692 3693 if (!is_valid_ether_addr(mac)) 3694 return -EADDRNOTAVAIL; 3695 3696 if (ether_addr_equal(netdev->dev_addr, mac)) { 3697 netdev_warn(netdev, "already using mac %pM\n", mac); 3698 return 0; 3699 } 3700 3701 if (test_bit(__ICE_DOWN, pf->state) || 3702 ice_is_reset_in_progress(pf->state)) { 3703 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3704 mac); 3705 return -EBUSY; 3706 } 3707 3708 /* When we change the MAC address we also have to change the MAC address 3709 * based filter rules that were created previously for the old MAC 3710 * address. So first, we remove the old filter rule using ice_remove_mac 3711 * and then create a new filter rule using ice_add_mac via 3712 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 3713 * filters. 3714 */ 3715 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 3716 if (status) { 3717 err = -EADDRNOTAVAIL; 3718 goto err_update_filters; 3719 } 3720 3721 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 3722 if (status) { 3723 err = -EADDRNOTAVAIL; 3724 goto err_update_filters; 3725 } 3726 3727 err_update_filters: 3728 if (err) { 3729 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3730 mac); 3731 return err; 3732 } 3733 3734 /* change the netdev's MAC address */ 3735 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3736 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3737 netdev->dev_addr); 3738 3739 /* write new MAC address to the firmware */ 3740 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3741 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3742 if (status) { 3743 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 3744 mac, status); 3745 } 3746 return 0; 3747 } 3748 3749 /** 3750 * ice_set_rx_mode - NDO callback to set the netdev filters 3751 * @netdev: network interface device structure 3752 */ 3753 static void ice_set_rx_mode(struct net_device *netdev) 3754 { 3755 struct ice_netdev_priv *np = netdev_priv(netdev); 3756 struct ice_vsi *vsi = np->vsi; 3757 3758 if (!vsi) 3759 return; 3760 3761 /* Set the flags to synchronize filters 3762 * ndo_set_rx_mode may be triggered even without a change in netdev 3763 * flags 3764 */ 3765 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3766 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3767 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3768 3769 /* schedule our worker thread which will take care of 3770 * applying the new filter changes 3771 */ 3772 ice_service_task_schedule(vsi->back); 3773 } 3774 3775 /** 3776 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3777 * @netdev: network interface device structure 3778 * @queue_index: Queue ID 3779 * @maxrate: maximum bandwidth in Mbps 3780 */ 3781 static int 3782 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3783 { 3784 struct ice_netdev_priv *np = netdev_priv(netdev); 3785 struct ice_vsi *vsi = np->vsi; 3786 enum ice_status status; 3787 u16 q_handle; 3788 u8 tc; 3789 3790 /* Validate maxrate requested is within permitted range */ 3791 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3792 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 3793 maxrate, queue_index); 3794 return -EINVAL; 3795 } 3796 3797 q_handle = vsi->tx_rings[queue_index]->q_handle; 3798 tc = ice_dcb_get_tc(vsi, queue_index); 3799 3800 /* Set BW back to default, when user set maxrate to 0 */ 3801 if (!maxrate) 3802 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3803 q_handle, ICE_MAX_BW); 3804 else 3805 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3806 q_handle, ICE_MAX_BW, maxrate * 1000); 3807 if (status) { 3808 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 3809 status); 3810 return -EIO; 3811 } 3812 3813 return 0; 3814 } 3815 3816 /** 3817 * ice_fdb_add - add an entry to the hardware database 3818 * @ndm: the input from the stack 3819 * @tb: pointer to array of nladdr (unused) 3820 * @dev: the net device pointer 3821 * @addr: the MAC address entry being added 3822 * @vid: VLAN ID 3823 * @flags: instructions from stack about fdb operation 3824 * @extack: netlink extended ack 3825 */ 3826 static int 3827 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3828 struct net_device *dev, const unsigned char *addr, u16 vid, 3829 u16 flags, struct netlink_ext_ack __always_unused *extack) 3830 { 3831 int err; 3832 3833 if (vid) { 3834 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3835 return -EINVAL; 3836 } 3837 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3838 netdev_err(dev, "FDB only supports static addresses\n"); 3839 return -EINVAL; 3840 } 3841 3842 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3843 err = dev_uc_add_excl(dev, addr); 3844 else if (is_multicast_ether_addr(addr)) 3845 err = dev_mc_add_excl(dev, addr); 3846 else 3847 err = -EINVAL; 3848 3849 /* Only return duplicate errors if NLM_F_EXCL is set */ 3850 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3851 err = 0; 3852 3853 return err; 3854 } 3855 3856 /** 3857 * ice_fdb_del - delete an entry from the hardware database 3858 * @ndm: the input from the stack 3859 * @tb: pointer to array of nladdr (unused) 3860 * @dev: the net device pointer 3861 * @addr: the MAC address entry being added 3862 * @vid: VLAN ID 3863 */ 3864 static int 3865 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3866 struct net_device *dev, const unsigned char *addr, 3867 __always_unused u16 vid) 3868 { 3869 int err; 3870 3871 if (ndm->ndm_state & NUD_PERMANENT) { 3872 netdev_err(dev, "FDB only supports static addresses\n"); 3873 return -EINVAL; 3874 } 3875 3876 if (is_unicast_ether_addr(addr)) 3877 err = dev_uc_del(dev, addr); 3878 else if (is_multicast_ether_addr(addr)) 3879 err = dev_mc_del(dev, addr); 3880 else 3881 err = -EINVAL; 3882 3883 return err; 3884 } 3885 3886 /** 3887 * ice_set_features - set the netdev feature flags 3888 * @netdev: ptr to the netdev being adjusted 3889 * @features: the feature set that the stack is suggesting 3890 */ 3891 static int 3892 ice_set_features(struct net_device *netdev, netdev_features_t features) 3893 { 3894 struct ice_netdev_priv *np = netdev_priv(netdev); 3895 struct ice_vsi *vsi = np->vsi; 3896 struct ice_pf *pf = vsi->back; 3897 int ret = 0; 3898 3899 /* Don't set any netdev advanced features with device in Safe Mode */ 3900 if (ice_is_safe_mode(vsi->back)) { 3901 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 3902 return ret; 3903 } 3904 3905 /* Do not change setting during reset */ 3906 if (ice_is_reset_in_progress(pf->state)) { 3907 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 3908 return -EBUSY; 3909 } 3910 3911 /* Multiple features can be changed in one call so keep features in 3912 * separate if/else statements to guarantee each feature is checked 3913 */ 3914 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3915 ret = ice_vsi_manage_rss_lut(vsi, true); 3916 else if (!(features & NETIF_F_RXHASH) && 3917 netdev->features & NETIF_F_RXHASH) 3918 ret = ice_vsi_manage_rss_lut(vsi, false); 3919 3920 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3921 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3922 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3923 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3924 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3925 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3926 3927 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3928 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3929 ret = ice_vsi_manage_vlan_insertion(vsi); 3930 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3931 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3932 ret = ice_vsi_manage_vlan_insertion(vsi); 3933 3934 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3935 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3936 ret = ice_cfg_vlan_pruning(vsi, true, false); 3937 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3938 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3939 ret = ice_cfg_vlan_pruning(vsi, false, false); 3940 3941 return ret; 3942 } 3943 3944 /** 3945 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3946 * @vsi: VSI to setup VLAN properties for 3947 */ 3948 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3949 { 3950 int ret = 0; 3951 3952 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3953 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3954 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3955 ret = ice_vsi_manage_vlan_insertion(vsi); 3956 3957 return ret; 3958 } 3959 3960 /** 3961 * ice_vsi_cfg - Setup the VSI 3962 * @vsi: the VSI being configured 3963 * 3964 * Return 0 on success and negative value on error 3965 */ 3966 int ice_vsi_cfg(struct ice_vsi *vsi) 3967 { 3968 int err; 3969 3970 if (vsi->netdev) { 3971 ice_set_rx_mode(vsi->netdev); 3972 3973 err = ice_vsi_vlan_setup(vsi); 3974 3975 if (err) 3976 return err; 3977 } 3978 ice_vsi_cfg_dcb_rings(vsi); 3979 3980 err = ice_vsi_cfg_lan_txqs(vsi); 3981 if (!err && ice_is_xdp_ena_vsi(vsi)) 3982 err = ice_vsi_cfg_xdp_txqs(vsi); 3983 if (!err) 3984 err = ice_vsi_cfg_rxqs(vsi); 3985 3986 return err; 3987 } 3988 3989 /** 3990 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3991 * @vsi: the VSI being configured 3992 */ 3993 static void ice_napi_enable_all(struct ice_vsi *vsi) 3994 { 3995 int q_idx; 3996 3997 if (!vsi->netdev) 3998 return; 3999 4000 ice_for_each_q_vector(vsi, q_idx) { 4001 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4002 4003 if (q_vector->rx.ring || q_vector->tx.ring) 4004 napi_enable(&q_vector->napi); 4005 } 4006 } 4007 4008 /** 4009 * ice_up_complete - Finish the last steps of bringing up a connection 4010 * @vsi: The VSI being configured 4011 * 4012 * Return 0 on success and negative value on error 4013 */ 4014 static int ice_up_complete(struct ice_vsi *vsi) 4015 { 4016 struct ice_pf *pf = vsi->back; 4017 int err; 4018 4019 ice_vsi_cfg_msix(vsi); 4020 4021 /* Enable only Rx rings, Tx rings were enabled by the FW when the 4022 * Tx queue group list was configured and the context bits were 4023 * programmed using ice_vsi_cfg_txqs 4024 */ 4025 err = ice_vsi_start_all_rx_rings(vsi); 4026 if (err) 4027 return err; 4028 4029 clear_bit(__ICE_DOWN, vsi->state); 4030 ice_napi_enable_all(vsi); 4031 ice_vsi_ena_irq(vsi); 4032 4033 if (vsi->port_info && 4034 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 4035 vsi->netdev) { 4036 ice_print_link_msg(vsi, true); 4037 netif_tx_start_all_queues(vsi->netdev); 4038 netif_carrier_on(vsi->netdev); 4039 } 4040 4041 ice_service_task_schedule(pf); 4042 4043 return 0; 4044 } 4045 4046 /** 4047 * ice_up - Bring the connection back up after being down 4048 * @vsi: VSI being configured 4049 */ 4050 int ice_up(struct ice_vsi *vsi) 4051 { 4052 int err; 4053 4054 err = ice_vsi_cfg(vsi); 4055 if (!err) 4056 err = ice_up_complete(vsi); 4057 4058 return err; 4059 } 4060 4061 /** 4062 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 4063 * @ring: Tx or Rx ring to read stats from 4064 * @pkts: packets stats counter 4065 * @bytes: bytes stats counter 4066 * 4067 * This function fetches stats from the ring considering the atomic operations 4068 * that needs to be performed to read u64 values in 32 bit machine. 4069 */ 4070 static void 4071 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 4072 { 4073 unsigned int start; 4074 *pkts = 0; 4075 *bytes = 0; 4076 4077 if (!ring) 4078 return; 4079 do { 4080 start = u64_stats_fetch_begin_irq(&ring->syncp); 4081 *pkts = ring->stats.pkts; 4082 *bytes = ring->stats.bytes; 4083 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4084 } 4085 4086 /** 4087 * ice_update_vsi_ring_stats - Update VSI stats counters 4088 * @vsi: the VSI to be updated 4089 */ 4090 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 4091 { 4092 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4093 struct ice_ring *ring; 4094 u64 pkts, bytes; 4095 int i; 4096 4097 /* reset netdev stats */ 4098 vsi_stats->tx_packets = 0; 4099 vsi_stats->tx_bytes = 0; 4100 vsi_stats->rx_packets = 0; 4101 vsi_stats->rx_bytes = 0; 4102 4103 /* reset non-netdev (extended) stats */ 4104 vsi->tx_restart = 0; 4105 vsi->tx_busy = 0; 4106 vsi->tx_linearize = 0; 4107 vsi->rx_buf_failed = 0; 4108 vsi->rx_page_failed = 0; 4109 4110 rcu_read_lock(); 4111 4112 /* update Tx rings counters */ 4113 ice_for_each_txq(vsi, i) { 4114 ring = READ_ONCE(vsi->tx_rings[i]); 4115 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4116 vsi_stats->tx_packets += pkts; 4117 vsi_stats->tx_bytes += bytes; 4118 vsi->tx_restart += ring->tx_stats.restart_q; 4119 vsi->tx_busy += ring->tx_stats.tx_busy; 4120 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4121 } 4122 4123 /* update Rx rings counters */ 4124 ice_for_each_rxq(vsi, i) { 4125 ring = READ_ONCE(vsi->rx_rings[i]); 4126 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4127 vsi_stats->rx_packets += pkts; 4128 vsi_stats->rx_bytes += bytes; 4129 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4130 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4131 } 4132 4133 rcu_read_unlock(); 4134 } 4135 4136 /** 4137 * ice_update_vsi_stats - Update VSI stats counters 4138 * @vsi: the VSI to be updated 4139 */ 4140 void ice_update_vsi_stats(struct ice_vsi *vsi) 4141 { 4142 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4143 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4144 struct ice_pf *pf = vsi->back; 4145 4146 if (test_bit(__ICE_DOWN, vsi->state) || 4147 test_bit(__ICE_CFG_BUSY, pf->state)) 4148 return; 4149 4150 /* get stats as recorded by Tx/Rx rings */ 4151 ice_update_vsi_ring_stats(vsi); 4152 4153 /* get VSI stats as recorded by the hardware */ 4154 ice_update_eth_stats(vsi); 4155 4156 cur_ns->tx_errors = cur_es->tx_errors; 4157 cur_ns->rx_dropped = cur_es->rx_discards; 4158 cur_ns->tx_dropped = cur_es->tx_discards; 4159 cur_ns->multicast = cur_es->rx_multicast; 4160 4161 /* update some more netdev stats if this is main VSI */ 4162 if (vsi->type == ICE_VSI_PF) { 4163 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4164 cur_ns->rx_errors = pf->stats.crc_errors + 4165 pf->stats.illegal_bytes; 4166 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4167 /* record drops from the port level */ 4168 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4169 } 4170 } 4171 4172 /** 4173 * ice_update_pf_stats - Update PF port stats counters 4174 * @pf: PF whose stats needs to be updated 4175 */ 4176 void ice_update_pf_stats(struct ice_pf *pf) 4177 { 4178 struct ice_hw_port_stats *prev_ps, *cur_ps; 4179 struct ice_hw *hw = &pf->hw; 4180 u8 port; 4181 4182 port = hw->port_info->lport; 4183 prev_ps = &pf->stats_prev; 4184 cur_ps = &pf->stats; 4185 4186 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4187 &prev_ps->eth.rx_bytes, 4188 &cur_ps->eth.rx_bytes); 4189 4190 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4191 &prev_ps->eth.rx_unicast, 4192 &cur_ps->eth.rx_unicast); 4193 4194 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4195 &prev_ps->eth.rx_multicast, 4196 &cur_ps->eth.rx_multicast); 4197 4198 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4199 &prev_ps->eth.rx_broadcast, 4200 &cur_ps->eth.rx_broadcast); 4201 4202 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4203 &prev_ps->eth.rx_discards, 4204 &cur_ps->eth.rx_discards); 4205 4206 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4207 &prev_ps->eth.tx_bytes, 4208 &cur_ps->eth.tx_bytes); 4209 4210 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4211 &prev_ps->eth.tx_unicast, 4212 &cur_ps->eth.tx_unicast); 4213 4214 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4215 &prev_ps->eth.tx_multicast, 4216 &cur_ps->eth.tx_multicast); 4217 4218 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4219 &prev_ps->eth.tx_broadcast, 4220 &cur_ps->eth.tx_broadcast); 4221 4222 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4223 &prev_ps->tx_dropped_link_down, 4224 &cur_ps->tx_dropped_link_down); 4225 4226 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4227 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4228 4229 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4230 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4231 4232 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4233 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4234 4235 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4236 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4237 4238 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4239 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4240 4241 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4242 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4243 4244 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4245 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4246 4247 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4248 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4249 4250 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4251 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4252 4253 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4254 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4255 4256 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4257 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4258 4259 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4260 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4261 4262 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4263 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4264 4265 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4266 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4267 4268 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4269 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4270 4271 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4272 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4273 4274 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4275 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4276 4277 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4278 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4279 4280 ice_update_dcb_stats(pf); 4281 4282 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4283 &prev_ps->crc_errors, &cur_ps->crc_errors); 4284 4285 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4286 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4287 4288 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4289 &prev_ps->mac_local_faults, 4290 &cur_ps->mac_local_faults); 4291 4292 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4293 &prev_ps->mac_remote_faults, 4294 &cur_ps->mac_remote_faults); 4295 4296 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4297 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4298 4299 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4300 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4301 4302 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4303 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4304 4305 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4306 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4307 4308 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4309 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4310 4311 pf->stat_prev_loaded = true; 4312 } 4313 4314 /** 4315 * ice_get_stats64 - get statistics for network device structure 4316 * @netdev: network interface device structure 4317 * @stats: main device statistics structure 4318 */ 4319 static 4320 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4321 { 4322 struct ice_netdev_priv *np = netdev_priv(netdev); 4323 struct rtnl_link_stats64 *vsi_stats; 4324 struct ice_vsi *vsi = np->vsi; 4325 4326 vsi_stats = &vsi->net_stats; 4327 4328 if (!vsi->num_txq || !vsi->num_rxq) 4329 return; 4330 4331 /* netdev packet/byte stats come from ring counter. These are obtained 4332 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4333 * But, only call the update routine and read the registers if VSI is 4334 * not down. 4335 */ 4336 if (!test_bit(__ICE_DOWN, vsi->state)) 4337 ice_update_vsi_ring_stats(vsi); 4338 stats->tx_packets = vsi_stats->tx_packets; 4339 stats->tx_bytes = vsi_stats->tx_bytes; 4340 stats->rx_packets = vsi_stats->rx_packets; 4341 stats->rx_bytes = vsi_stats->rx_bytes; 4342 4343 /* The rest of the stats can be read from the hardware but instead we 4344 * just return values that the watchdog task has already obtained from 4345 * the hardware. 4346 */ 4347 stats->multicast = vsi_stats->multicast; 4348 stats->tx_errors = vsi_stats->tx_errors; 4349 stats->tx_dropped = vsi_stats->tx_dropped; 4350 stats->rx_errors = vsi_stats->rx_errors; 4351 stats->rx_dropped = vsi_stats->rx_dropped; 4352 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4353 stats->rx_length_errors = vsi_stats->rx_length_errors; 4354 } 4355 4356 /** 4357 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4358 * @vsi: VSI having NAPI disabled 4359 */ 4360 static void ice_napi_disable_all(struct ice_vsi *vsi) 4361 { 4362 int q_idx; 4363 4364 if (!vsi->netdev) 4365 return; 4366 4367 ice_for_each_q_vector(vsi, q_idx) { 4368 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4369 4370 if (q_vector->rx.ring || q_vector->tx.ring) 4371 napi_disable(&q_vector->napi); 4372 } 4373 } 4374 4375 /** 4376 * ice_down - Shutdown the connection 4377 * @vsi: The VSI being stopped 4378 */ 4379 int ice_down(struct ice_vsi *vsi) 4380 { 4381 int i, tx_err, rx_err, link_err = 0; 4382 4383 /* Caller of this function is expected to set the 4384 * vsi->state __ICE_DOWN bit 4385 */ 4386 if (vsi->netdev) { 4387 netif_carrier_off(vsi->netdev); 4388 netif_tx_disable(vsi->netdev); 4389 } 4390 4391 ice_vsi_dis_irq(vsi); 4392 4393 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4394 if (tx_err) 4395 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 4396 vsi->vsi_num, tx_err); 4397 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4398 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4399 if (tx_err) 4400 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 4401 vsi->vsi_num, tx_err); 4402 } 4403 4404 rx_err = ice_vsi_stop_all_rx_rings(vsi); 4405 if (rx_err) 4406 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 4407 vsi->vsi_num, rx_err); 4408 4409 ice_napi_disable_all(vsi); 4410 4411 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4412 link_err = ice_force_phys_link_state(vsi, false); 4413 if (link_err) 4414 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 4415 vsi->vsi_num, link_err); 4416 } 4417 4418 ice_for_each_txq(vsi, i) 4419 ice_clean_tx_ring(vsi->tx_rings[i]); 4420 4421 ice_for_each_rxq(vsi, i) 4422 ice_clean_rx_ring(vsi->rx_rings[i]); 4423 4424 if (tx_err || rx_err || link_err) { 4425 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 4426 vsi->vsi_num, vsi->vsw->sw_id); 4427 return -EIO; 4428 } 4429 4430 return 0; 4431 } 4432 4433 /** 4434 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4435 * @vsi: VSI having resources allocated 4436 * 4437 * Return 0 on success, negative on failure 4438 */ 4439 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4440 { 4441 int i, err = 0; 4442 4443 if (!vsi->num_txq) { 4444 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 4445 vsi->vsi_num); 4446 return -EINVAL; 4447 } 4448 4449 ice_for_each_txq(vsi, i) { 4450 struct ice_ring *ring = vsi->tx_rings[i]; 4451 4452 if (!ring) 4453 return -EINVAL; 4454 4455 ring->netdev = vsi->netdev; 4456 err = ice_setup_tx_ring(ring); 4457 if (err) 4458 break; 4459 } 4460 4461 return err; 4462 } 4463 4464 /** 4465 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4466 * @vsi: VSI having resources allocated 4467 * 4468 * Return 0 on success, negative on failure 4469 */ 4470 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4471 { 4472 int i, err = 0; 4473 4474 if (!vsi->num_rxq) { 4475 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 4476 vsi->vsi_num); 4477 return -EINVAL; 4478 } 4479 4480 ice_for_each_rxq(vsi, i) { 4481 struct ice_ring *ring = vsi->rx_rings[i]; 4482 4483 if (!ring) 4484 return -EINVAL; 4485 4486 ring->netdev = vsi->netdev; 4487 err = ice_setup_rx_ring(ring); 4488 if (err) 4489 break; 4490 } 4491 4492 return err; 4493 } 4494 4495 /** 4496 * ice_vsi_open - Called when a network interface is made active 4497 * @vsi: the VSI to open 4498 * 4499 * Initialization of the VSI 4500 * 4501 * Returns 0 on success, negative value on error 4502 */ 4503 static int ice_vsi_open(struct ice_vsi *vsi) 4504 { 4505 char int_name[ICE_INT_NAME_STR_LEN]; 4506 struct ice_pf *pf = vsi->back; 4507 int err; 4508 4509 /* allocate descriptors */ 4510 err = ice_vsi_setup_tx_rings(vsi); 4511 if (err) 4512 goto err_setup_tx; 4513 4514 err = ice_vsi_setup_rx_rings(vsi); 4515 if (err) 4516 goto err_setup_rx; 4517 4518 err = ice_vsi_cfg(vsi); 4519 if (err) 4520 goto err_setup_rx; 4521 4522 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4523 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 4524 err = ice_vsi_req_irq_msix(vsi, int_name); 4525 if (err) 4526 goto err_setup_rx; 4527 4528 /* Notify the stack of the actual queue counts. */ 4529 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4530 if (err) 4531 goto err_set_qs; 4532 4533 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4534 if (err) 4535 goto err_set_qs; 4536 4537 err = ice_up_complete(vsi); 4538 if (err) 4539 goto err_up_complete; 4540 4541 return 0; 4542 4543 err_up_complete: 4544 ice_down(vsi); 4545 err_set_qs: 4546 ice_vsi_free_irq(vsi); 4547 err_setup_rx: 4548 ice_vsi_free_rx_rings(vsi); 4549 err_setup_tx: 4550 ice_vsi_free_tx_rings(vsi); 4551 4552 return err; 4553 } 4554 4555 /** 4556 * ice_vsi_release_all - Delete all VSIs 4557 * @pf: PF from which all VSIs are being removed 4558 */ 4559 static void ice_vsi_release_all(struct ice_pf *pf) 4560 { 4561 int err, i; 4562 4563 if (!pf->vsi) 4564 return; 4565 4566 ice_for_each_vsi(pf, i) { 4567 if (!pf->vsi[i]) 4568 continue; 4569 4570 err = ice_vsi_release(pf->vsi[i]); 4571 if (err) 4572 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4573 i, err, pf->vsi[i]->vsi_num); 4574 } 4575 } 4576 4577 /** 4578 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4579 * @pf: pointer to the PF instance 4580 * @type: VSI type to rebuild 4581 * 4582 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4583 */ 4584 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4585 { 4586 struct device *dev = ice_pf_to_dev(pf); 4587 enum ice_status status; 4588 int i, err; 4589 4590 ice_for_each_vsi(pf, i) { 4591 struct ice_vsi *vsi = pf->vsi[i]; 4592 4593 if (!vsi || vsi->type != type) 4594 continue; 4595 4596 /* rebuild the VSI */ 4597 err = ice_vsi_rebuild(vsi, true); 4598 if (err) { 4599 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4600 err, vsi->idx, ice_vsi_type_str(type)); 4601 return err; 4602 } 4603 4604 /* replay filters for the VSI */ 4605 status = ice_replay_vsi(&pf->hw, vsi->idx); 4606 if (status) { 4607 dev_err(dev, "replay VSI failed, status %d, VSI index %d, type %s\n", 4608 status, vsi->idx, ice_vsi_type_str(type)); 4609 return -EIO; 4610 } 4611 4612 /* Re-map HW VSI number, using VSI handle that has been 4613 * previously validated in ice_replay_vsi() call above 4614 */ 4615 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4616 4617 /* enable the VSI */ 4618 err = ice_ena_vsi(vsi, false); 4619 if (err) { 4620 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 4621 err, vsi->idx, ice_vsi_type_str(type)); 4622 return err; 4623 } 4624 4625 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 4626 ice_vsi_type_str(type)); 4627 } 4628 4629 return 0; 4630 } 4631 4632 /** 4633 * ice_update_pf_netdev_link - Update PF netdev link status 4634 * @pf: pointer to the PF instance 4635 */ 4636 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4637 { 4638 bool link_up; 4639 int i; 4640 4641 ice_for_each_vsi(pf, i) { 4642 struct ice_vsi *vsi = pf->vsi[i]; 4643 4644 if (!vsi || vsi->type != ICE_VSI_PF) 4645 return; 4646 4647 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4648 if (link_up) { 4649 netif_carrier_on(pf->vsi[i]->netdev); 4650 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4651 } else { 4652 netif_carrier_off(pf->vsi[i]->netdev); 4653 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4654 } 4655 } 4656 } 4657 4658 /** 4659 * ice_rebuild - rebuild after reset 4660 * @pf: PF to rebuild 4661 * @reset_type: type of reset 4662 */ 4663 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4664 { 4665 struct device *dev = ice_pf_to_dev(pf); 4666 struct ice_hw *hw = &pf->hw; 4667 enum ice_status ret; 4668 int err; 4669 4670 if (test_bit(__ICE_DOWN, pf->state)) 4671 goto clear_recovery; 4672 4673 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4674 4675 ret = ice_init_all_ctrlq(hw); 4676 if (ret) { 4677 dev_err(dev, "control queues init failed %d\n", ret); 4678 goto err_init_ctrlq; 4679 } 4680 4681 /* if DDP was previously loaded successfully */ 4682 if (!ice_is_safe_mode(pf)) { 4683 /* reload the SW DB of filter tables */ 4684 if (reset_type == ICE_RESET_PFR) 4685 ice_fill_blk_tbls(hw); 4686 else 4687 /* Reload DDP Package after CORER/GLOBR reset */ 4688 ice_load_pkg(NULL, pf); 4689 } 4690 4691 ret = ice_clear_pf_cfg(hw); 4692 if (ret) { 4693 dev_err(dev, "clear PF configuration failed %d\n", ret); 4694 goto err_init_ctrlq; 4695 } 4696 4697 if (pf->first_sw->dflt_vsi_ena) 4698 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 4699 /* clear the default VSI configuration if it exists */ 4700 pf->first_sw->dflt_vsi = NULL; 4701 pf->first_sw->dflt_vsi_ena = false; 4702 4703 ice_clear_pxe_mode(hw); 4704 4705 ret = ice_get_caps(hw); 4706 if (ret) { 4707 dev_err(dev, "ice_get_caps failed %d\n", ret); 4708 goto err_init_ctrlq; 4709 } 4710 4711 err = ice_sched_init_port(hw->port_info); 4712 if (err) 4713 goto err_sched_init_port; 4714 4715 err = ice_update_link_info(hw->port_info); 4716 if (err) 4717 dev_err(dev, "Get link status error %d\n", err); 4718 4719 /* start misc vector */ 4720 err = ice_req_irq_msix_misc(pf); 4721 if (err) { 4722 dev_err(dev, "misc vector setup failed: %d\n", err); 4723 goto err_sched_init_port; 4724 } 4725 4726 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4727 ice_dcb_rebuild(pf); 4728 4729 /* rebuild PF VSI */ 4730 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4731 if (err) { 4732 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4733 goto err_vsi_rebuild; 4734 } 4735 4736 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4737 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF); 4738 if (err) { 4739 dev_err(dev, "VF VSI rebuild failed: %d\n", err); 4740 goto err_vsi_rebuild; 4741 } 4742 } 4743 4744 ice_update_pf_netdev_link(pf); 4745 4746 /* tell the firmware we are up */ 4747 ret = ice_send_version(pf); 4748 if (ret) { 4749 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 4750 ret); 4751 goto err_vsi_rebuild; 4752 } 4753 4754 ice_replay_post(hw); 4755 4756 /* if we get here, reset flow is successful */ 4757 clear_bit(__ICE_RESET_FAILED, pf->state); 4758 return; 4759 4760 err_vsi_rebuild: 4761 err_sched_init_port: 4762 ice_sched_cleanup_all(hw); 4763 err_init_ctrlq: 4764 ice_shutdown_all_ctrlq(hw); 4765 set_bit(__ICE_RESET_FAILED, pf->state); 4766 clear_recovery: 4767 /* set this bit in PF state to control service task scheduling */ 4768 set_bit(__ICE_NEEDS_RESTART, pf->state); 4769 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 4770 } 4771 4772 /** 4773 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 4774 * @vsi: Pointer to VSI structure 4775 */ 4776 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 4777 { 4778 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 4779 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 4780 else 4781 return ICE_RXBUF_3072; 4782 } 4783 4784 /** 4785 * ice_change_mtu - NDO callback to change the MTU 4786 * @netdev: network interface device structure 4787 * @new_mtu: new value for maximum frame size 4788 * 4789 * Returns 0 on success, negative on failure 4790 */ 4791 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 4792 { 4793 struct ice_netdev_priv *np = netdev_priv(netdev); 4794 struct ice_vsi *vsi = np->vsi; 4795 struct ice_pf *pf = vsi->back; 4796 u8 count = 0; 4797 4798 if (new_mtu == netdev->mtu) { 4799 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 4800 return 0; 4801 } 4802 4803 if (ice_is_xdp_ena_vsi(vsi)) { 4804 int frame_size = ice_max_xdp_frame_size(vsi); 4805 4806 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 4807 netdev_err(netdev, "max MTU for XDP usage is %d\n", 4808 frame_size - ICE_ETH_PKT_HDR_PAD); 4809 return -EINVAL; 4810 } 4811 } 4812 4813 if (new_mtu < netdev->min_mtu) { 4814 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 4815 netdev->min_mtu); 4816 return -EINVAL; 4817 } else if (new_mtu > netdev->max_mtu) { 4818 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 4819 netdev->min_mtu); 4820 return -EINVAL; 4821 } 4822 /* if a reset is in progress, wait for some time for it to complete */ 4823 do { 4824 if (ice_is_reset_in_progress(pf->state)) { 4825 count++; 4826 usleep_range(1000, 2000); 4827 } else { 4828 break; 4829 } 4830 4831 } while (count < 100); 4832 4833 if (count == 100) { 4834 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4835 return -EBUSY; 4836 } 4837 4838 netdev->mtu = new_mtu; 4839 4840 /* if VSI is up, bring it down and then back up */ 4841 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4842 int err; 4843 4844 err = ice_down(vsi); 4845 if (err) { 4846 netdev_err(netdev, "change MTU if_up err %d\n", err); 4847 return err; 4848 } 4849 4850 err = ice_up(vsi); 4851 if (err) { 4852 netdev_err(netdev, "change MTU if_up err %d\n", err); 4853 return err; 4854 } 4855 } 4856 4857 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 4858 return 0; 4859 } 4860 4861 /** 4862 * ice_set_rss - Set RSS keys and lut 4863 * @vsi: Pointer to VSI structure 4864 * @seed: RSS hash seed 4865 * @lut: Lookup table 4866 * @lut_size: Lookup table size 4867 * 4868 * Returns 0 on success, negative on failure 4869 */ 4870 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4871 { 4872 struct ice_pf *pf = vsi->back; 4873 struct ice_hw *hw = &pf->hw; 4874 enum ice_status status; 4875 struct device *dev; 4876 4877 dev = ice_pf_to_dev(pf); 4878 if (seed) { 4879 struct ice_aqc_get_set_rss_keys *buf = 4880 (struct ice_aqc_get_set_rss_keys *)seed; 4881 4882 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4883 4884 if (status) { 4885 dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n", 4886 status, hw->adminq.rq_last_status); 4887 return -EIO; 4888 } 4889 } 4890 4891 if (lut) { 4892 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4893 lut, lut_size); 4894 if (status) { 4895 dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n", 4896 status, hw->adminq.rq_last_status); 4897 return -EIO; 4898 } 4899 } 4900 4901 return 0; 4902 } 4903 4904 /** 4905 * ice_get_rss - Get RSS keys and lut 4906 * @vsi: Pointer to VSI structure 4907 * @seed: Buffer to store the keys 4908 * @lut: Buffer to store the lookup table entries 4909 * @lut_size: Size of buffer to store the lookup table entries 4910 * 4911 * Returns 0 on success, negative on failure 4912 */ 4913 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4914 { 4915 struct ice_pf *pf = vsi->back; 4916 struct ice_hw *hw = &pf->hw; 4917 enum ice_status status; 4918 struct device *dev; 4919 4920 dev = ice_pf_to_dev(pf); 4921 if (seed) { 4922 struct ice_aqc_get_set_rss_keys *buf = 4923 (struct ice_aqc_get_set_rss_keys *)seed; 4924 4925 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4926 if (status) { 4927 dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n", 4928 status, hw->adminq.rq_last_status); 4929 return -EIO; 4930 } 4931 } 4932 4933 if (lut) { 4934 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4935 lut, lut_size); 4936 if (status) { 4937 dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n", 4938 status, hw->adminq.rq_last_status); 4939 return -EIO; 4940 } 4941 } 4942 4943 return 0; 4944 } 4945 4946 /** 4947 * ice_bridge_getlink - Get the hardware bridge mode 4948 * @skb: skb buff 4949 * @pid: process ID 4950 * @seq: RTNL message seq 4951 * @dev: the netdev being configured 4952 * @filter_mask: filter mask passed in 4953 * @nlflags: netlink flags passed in 4954 * 4955 * Return the bridge mode (VEB/VEPA) 4956 */ 4957 static int 4958 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4959 struct net_device *dev, u32 filter_mask, int nlflags) 4960 { 4961 struct ice_netdev_priv *np = netdev_priv(dev); 4962 struct ice_vsi *vsi = np->vsi; 4963 struct ice_pf *pf = vsi->back; 4964 u16 bmode; 4965 4966 bmode = pf->first_sw->bridge_mode; 4967 4968 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4969 filter_mask, NULL); 4970 } 4971 4972 /** 4973 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4974 * @vsi: Pointer to VSI structure 4975 * @bmode: Hardware bridge mode (VEB/VEPA) 4976 * 4977 * Returns 0 on success, negative on failure 4978 */ 4979 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4980 { 4981 struct ice_aqc_vsi_props *vsi_props; 4982 struct ice_hw *hw = &vsi->back->hw; 4983 struct ice_vsi_ctx *ctxt; 4984 enum ice_status status; 4985 int ret = 0; 4986 4987 vsi_props = &vsi->info; 4988 4989 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4990 if (!ctxt) 4991 return -ENOMEM; 4992 4993 ctxt->info = vsi->info; 4994 4995 if (bmode == BRIDGE_MODE_VEB) 4996 /* change from VEPA to VEB mode */ 4997 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4998 else 4999 /* change from VEB to VEPA mode */ 5000 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 5001 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 5002 5003 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 5004 if (status) { 5005 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 5006 bmode, status, hw->adminq.sq_last_status); 5007 ret = -EIO; 5008 goto out; 5009 } 5010 /* Update sw flags for book keeping */ 5011 vsi_props->sw_flags = ctxt->info.sw_flags; 5012 5013 out: 5014 kfree(ctxt); 5015 return ret; 5016 } 5017 5018 /** 5019 * ice_bridge_setlink - Set the hardware bridge mode 5020 * @dev: the netdev being configured 5021 * @nlh: RTNL message 5022 * @flags: bridge setlink flags 5023 * @extack: netlink extended ack 5024 * 5025 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 5026 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 5027 * not already set for all VSIs connected to this switch. And also update the 5028 * unicast switch filter rules for the corresponding switch of the netdev. 5029 */ 5030 static int 5031 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 5032 u16 __always_unused flags, 5033 struct netlink_ext_ack __always_unused *extack) 5034 { 5035 struct ice_netdev_priv *np = netdev_priv(dev); 5036 struct ice_pf *pf = np->vsi->back; 5037 struct nlattr *attr, *br_spec; 5038 struct ice_hw *hw = &pf->hw; 5039 enum ice_status status; 5040 struct ice_sw *pf_sw; 5041 int rem, v, err = 0; 5042 5043 pf_sw = pf->first_sw; 5044 /* find the attribute in the netlink message */ 5045 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 5046 5047 nla_for_each_nested(attr, br_spec, rem) { 5048 __u16 mode; 5049 5050 if (nla_type(attr) != IFLA_BRIDGE_MODE) 5051 continue; 5052 mode = nla_get_u16(attr); 5053 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 5054 return -EINVAL; 5055 /* Continue if bridge mode is not being flipped */ 5056 if (mode == pf_sw->bridge_mode) 5057 continue; 5058 /* Iterates through the PF VSI list and update the loopback 5059 * mode of the VSI 5060 */ 5061 ice_for_each_vsi(pf, v) { 5062 if (!pf->vsi[v]) 5063 continue; 5064 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 5065 if (err) 5066 return err; 5067 } 5068 5069 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 5070 /* Update the unicast switch filter rules for the corresponding 5071 * switch of the netdev 5072 */ 5073 status = ice_update_sw_rule_bridge_mode(hw); 5074 if (status) { 5075 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 5076 mode, status, hw->adminq.sq_last_status); 5077 /* revert hw->evb_veb */ 5078 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 5079 return -EIO; 5080 } 5081 5082 pf_sw->bridge_mode = mode; 5083 } 5084 5085 return 0; 5086 } 5087 5088 /** 5089 * ice_tx_timeout - Respond to a Tx Hang 5090 * @netdev: network interface device structure 5091 * @txqueue: Tx queue 5092 */ 5093 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 5094 { 5095 struct ice_netdev_priv *np = netdev_priv(netdev); 5096 struct ice_ring *tx_ring = NULL; 5097 struct ice_vsi *vsi = np->vsi; 5098 struct ice_pf *pf = vsi->back; 5099 u32 i; 5100 5101 pf->tx_timeout_count++; 5102 5103 /* now that we have an index, find the tx_ring struct */ 5104 for (i = 0; i < vsi->num_txq; i++) 5105 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5106 if (txqueue == vsi->tx_rings[i]->q_index) { 5107 tx_ring = vsi->tx_rings[i]; 5108 break; 5109 } 5110 5111 /* Reset recovery level if enough time has elapsed after last timeout. 5112 * Also ensure no new reset action happens before next timeout period. 5113 */ 5114 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5115 pf->tx_timeout_recovery_level = 1; 5116 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5117 netdev->watchdog_timeo))) 5118 return; 5119 5120 if (tx_ring) { 5121 struct ice_hw *hw = &pf->hw; 5122 u32 head, val = 0; 5123 5124 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 5125 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5126 /* Read interrupt register */ 5127 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5128 5129 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5130 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 5131 head, tx_ring->next_to_use, val); 5132 } 5133 5134 pf->tx_timeout_last_recovery = jiffies; 5135 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 5136 pf->tx_timeout_recovery_level, txqueue); 5137 5138 switch (pf->tx_timeout_recovery_level) { 5139 case 1: 5140 set_bit(__ICE_PFR_REQ, pf->state); 5141 break; 5142 case 2: 5143 set_bit(__ICE_CORER_REQ, pf->state); 5144 break; 5145 case 3: 5146 set_bit(__ICE_GLOBR_REQ, pf->state); 5147 break; 5148 default: 5149 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5150 set_bit(__ICE_DOWN, pf->state); 5151 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5152 set_bit(__ICE_SERVICE_DIS, pf->state); 5153 break; 5154 } 5155 5156 ice_service_task_schedule(pf); 5157 pf->tx_timeout_recovery_level++; 5158 } 5159 5160 /** 5161 * ice_open - Called when a network interface becomes active 5162 * @netdev: network interface device structure 5163 * 5164 * The open entry point is called when a network interface is made 5165 * active by the system (IFF_UP). At this point all resources needed 5166 * for transmit and receive operations are allocated, the interrupt 5167 * handler is registered with the OS, the netdev watchdog is enabled, 5168 * and the stack is notified that the interface is ready. 5169 * 5170 * Returns 0 on success, negative value on failure 5171 */ 5172 int ice_open(struct net_device *netdev) 5173 { 5174 struct ice_netdev_priv *np = netdev_priv(netdev); 5175 struct ice_vsi *vsi = np->vsi; 5176 struct ice_port_info *pi; 5177 int err; 5178 5179 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 5180 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5181 return -EIO; 5182 } 5183 5184 netif_carrier_off(netdev); 5185 5186 pi = vsi->port_info; 5187 err = ice_update_link_info(pi); 5188 if (err) { 5189 netdev_err(netdev, "Failed to get link info, error %d\n", 5190 err); 5191 return err; 5192 } 5193 5194 /* Set PHY if there is media, otherwise, turn off PHY */ 5195 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5196 err = ice_force_phys_link_state(vsi, true); 5197 if (err) { 5198 netdev_err(netdev, "Failed to set physical link up, error %d\n", 5199 err); 5200 return err; 5201 } 5202 } else { 5203 err = ice_aq_set_link_restart_an(pi, false, NULL); 5204 if (err) { 5205 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5206 vsi->vsi_num, err); 5207 return err; 5208 } 5209 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5210 } 5211 5212 err = ice_vsi_open(vsi); 5213 if (err) 5214 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5215 vsi->vsi_num, vsi->vsw->sw_id); 5216 return err; 5217 } 5218 5219 /** 5220 * ice_stop - Disables a network interface 5221 * @netdev: network interface device structure 5222 * 5223 * The stop entry point is called when an interface is de-activated by the OS, 5224 * and the netdevice enters the DOWN state. The hardware is still under the 5225 * driver's control, but the netdev interface is disabled. 5226 * 5227 * Returns success only - not allowed to fail 5228 */ 5229 int ice_stop(struct net_device *netdev) 5230 { 5231 struct ice_netdev_priv *np = netdev_priv(netdev); 5232 struct ice_vsi *vsi = np->vsi; 5233 5234 ice_vsi_close(vsi); 5235 5236 return 0; 5237 } 5238 5239 /** 5240 * ice_features_check - Validate encapsulated packet conforms to limits 5241 * @skb: skb buffer 5242 * @netdev: This port's netdev 5243 * @features: Offload features that the stack believes apply 5244 */ 5245 static netdev_features_t 5246 ice_features_check(struct sk_buff *skb, 5247 struct net_device __always_unused *netdev, 5248 netdev_features_t features) 5249 { 5250 size_t len; 5251 5252 /* No point in doing any of this if neither checksum nor GSO are 5253 * being requested for this frame. We can rule out both by just 5254 * checking for CHECKSUM_PARTIAL 5255 */ 5256 if (skb->ip_summed != CHECKSUM_PARTIAL) 5257 return features; 5258 5259 /* We cannot support GSO if the MSS is going to be less than 5260 * 64 bytes. If it is then we need to drop support for GSO. 5261 */ 5262 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5263 features &= ~NETIF_F_GSO_MASK; 5264 5265 len = skb_network_header(skb) - skb->data; 5266 if (len & ~(ICE_TXD_MACLEN_MAX)) 5267 goto out_rm_features; 5268 5269 len = skb_transport_header(skb) - skb_network_header(skb); 5270 if (len & ~(ICE_TXD_IPLEN_MAX)) 5271 goto out_rm_features; 5272 5273 if (skb->encapsulation) { 5274 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5275 if (len & ~(ICE_TXD_L4LEN_MAX)) 5276 goto out_rm_features; 5277 5278 len = skb_inner_transport_header(skb) - 5279 skb_inner_network_header(skb); 5280 if (len & ~(ICE_TXD_IPLEN_MAX)) 5281 goto out_rm_features; 5282 } 5283 5284 return features; 5285 out_rm_features: 5286 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5287 } 5288 5289 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5290 .ndo_open = ice_open, 5291 .ndo_stop = ice_stop, 5292 .ndo_start_xmit = ice_start_xmit, 5293 .ndo_set_mac_address = ice_set_mac_address, 5294 .ndo_validate_addr = eth_validate_addr, 5295 .ndo_change_mtu = ice_change_mtu, 5296 .ndo_get_stats64 = ice_get_stats64, 5297 .ndo_tx_timeout = ice_tx_timeout, 5298 }; 5299 5300 static const struct net_device_ops ice_netdev_ops = { 5301 .ndo_open = ice_open, 5302 .ndo_stop = ice_stop, 5303 .ndo_start_xmit = ice_start_xmit, 5304 .ndo_features_check = ice_features_check, 5305 .ndo_set_rx_mode = ice_set_rx_mode, 5306 .ndo_set_mac_address = ice_set_mac_address, 5307 .ndo_validate_addr = eth_validate_addr, 5308 .ndo_change_mtu = ice_change_mtu, 5309 .ndo_get_stats64 = ice_get_stats64, 5310 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5311 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5312 .ndo_set_vf_mac = ice_set_vf_mac, 5313 .ndo_get_vf_config = ice_get_vf_cfg, 5314 .ndo_set_vf_trust = ice_set_vf_trust, 5315 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5316 .ndo_set_vf_link_state = ice_set_vf_link_state, 5317 .ndo_get_vf_stats = ice_get_vf_stats, 5318 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5319 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5320 .ndo_set_features = ice_set_features, 5321 .ndo_bridge_getlink = ice_bridge_getlink, 5322 .ndo_bridge_setlink = ice_bridge_setlink, 5323 .ndo_fdb_add = ice_fdb_add, 5324 .ndo_fdb_del = ice_fdb_del, 5325 .ndo_tx_timeout = ice_tx_timeout, 5326 .ndo_bpf = ice_xdp, 5327 .ndo_xdp_xmit = ice_xdp_xmit, 5328 .ndo_xsk_wakeup = ice_xsk_wakeup, 5329 }; 5330