1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 /**
48  * ice_get_tx_pending - returns number of Tx descriptors not processed
49  * @ring: the ring of descriptors
50  */
51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 	u16 head, tail;
54 
55 	head = ring->next_to_clean;
56 	tail = ring->next_to_use;
57 
58 	if (head != tail)
59 		return (head < tail) ?
60 			tail - head : (tail + ring->count - head);
61 	return 0;
62 }
63 
64 /**
65  * ice_check_for_hang_subtask - check for and recover hung queues
66  * @pf: pointer to PF struct
67  */
68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 	struct ice_vsi *vsi = NULL;
71 	struct ice_hw *hw;
72 	unsigned int i;
73 	int packets;
74 	u32 v;
75 
76 	ice_for_each_vsi(pf, v)
77 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 			vsi = pf->vsi[v];
79 			break;
80 		}
81 
82 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 		return;
84 
85 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 		return;
87 
88 	hw = &vsi->back->hw;
89 
90 	for (i = 0; i < vsi->num_txq; i++) {
91 		struct ice_ring *tx_ring = vsi->tx_rings[i];
92 
93 		if (tx_ring && tx_ring->desc) {
94 			/* If packet counter has not changed the queue is
95 			 * likely stalled, so force an interrupt for this
96 			 * queue.
97 			 *
98 			 * prev_pkt would be negative if there was no
99 			 * pending work.
100 			 */
101 			packets = tx_ring->stats.pkts & INT_MAX;
102 			if (tx_ring->tx_stats.prev_pkt == packets) {
103 				/* Trigger sw interrupt to revive the queue */
104 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 				continue;
106 			}
107 
108 			/* Memory barrier between read of packet count and call
109 			 * to ice_get_tx_pending()
110 			 */
111 			smp_rmb();
112 			tx_ring->tx_stats.prev_pkt =
113 			    ice_get_tx_pending(tx_ring) ? packets : -1;
114 		}
115 	}
116 }
117 
118 /**
119  * ice_init_mac_fltr - Set initial MAC filters
120  * @pf: board private structure
121  *
122  * Set initial set of MAC filters for PF VSI; configure filters for permanent
123  * address and broadcast address. If an error is encountered, netdevice will be
124  * unregistered.
125  */
126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 	enum ice_status status;
129 	struct ice_vsi *vsi;
130 	u8 *perm_addr;
131 
132 	vsi = ice_get_main_vsi(pf);
133 	if (!vsi)
134 		return -EINVAL;
135 
136 	perm_addr = vsi->port_info->mac.perm_addr;
137 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 	if (!status)
139 		return 0;
140 
141 	/* We aren't useful with no MAC filters, so unregister if we
142 	 * had an error
143 	 */
144 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 			ice_stat_str(status));
147 		unregister_netdev(vsi->netdev);
148 		free_netdev(vsi->netdev);
149 		vsi->netdev = NULL;
150 	}
151 
152 	return -EIO;
153 }
154 
155 /**
156  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157  * @netdev: the net device on which the sync is happening
158  * @addr: MAC address to sync
159  *
160  * This is a callback function which is called by the in kernel device sync
161  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163  * MAC filters from the hardware.
164  */
165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 	struct ice_netdev_priv *np = netdev_priv(netdev);
168 	struct ice_vsi *vsi = np->vsi;
169 
170 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 				     ICE_FWD_TO_VSI))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 /**
178  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179  * @netdev: the net device on which the unsync is happening
180  * @addr: MAC address to unsync
181  *
182  * This is a callback function which is called by the in kernel device unsync
183  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185  * delete the MAC filters from the hardware.
186  */
187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 	struct ice_netdev_priv *np = netdev_priv(netdev);
190 	struct ice_vsi *vsi = np->vsi;
191 
192 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
193 				     ICE_FWD_TO_VSI))
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
199 /**
200  * ice_vsi_fltr_changed - check if filter state changed
201  * @vsi: VSI to be checked
202  *
203  * returns true if filter state has changed, false otherwise.
204  */
205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
206 {
207 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
208 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
209 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
210 }
211 
212 /**
213  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
214  * @vsi: the VSI being configured
215  * @promisc_m: mask of promiscuous config bits
216  * @set_promisc: enable or disable promisc flag request
217  *
218  */
219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
220 {
221 	struct ice_hw *hw = &vsi->back->hw;
222 	enum ice_status status = 0;
223 
224 	if (vsi->type != ICE_VSI_PF)
225 		return 0;
226 
227 	if (vsi->vlan_ena) {
228 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
229 						  set_promisc);
230 	} else {
231 		if (set_promisc)
232 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
233 						     0);
234 		else
235 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
236 						       0);
237 	}
238 
239 	if (status)
240 		return -EIO;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
247  * @vsi: ptr to the VSI
248  *
249  * Push any outstanding VSI filter changes through the AdminQ.
250  */
251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
252 {
253 	struct device *dev = ice_pf_to_dev(vsi->back);
254 	struct net_device *netdev = vsi->netdev;
255 	bool promisc_forced_on = false;
256 	struct ice_pf *pf = vsi->back;
257 	struct ice_hw *hw = &pf->hw;
258 	enum ice_status status = 0;
259 	u32 changed_flags = 0;
260 	u8 promisc_m;
261 	int err = 0;
262 
263 	if (!vsi->netdev)
264 		return -EINVAL;
265 
266 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
267 		usleep_range(1000, 2000);
268 
269 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
270 	vsi->current_netdev_flags = vsi->netdev->flags;
271 
272 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
273 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
274 
275 	if (ice_vsi_fltr_changed(vsi)) {
276 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
277 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
278 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
279 
280 		/* grab the netdev's addr_list_lock */
281 		netif_addr_lock_bh(netdev);
282 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
283 			      ice_add_mac_to_unsync_list);
284 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
285 			      ice_add_mac_to_unsync_list);
286 		/* our temp lists are populated. release lock */
287 		netif_addr_unlock_bh(netdev);
288 	}
289 
290 	/* Remove MAC addresses in the unsync list */
291 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
292 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
293 	if (status) {
294 		netdev_err(netdev, "Failed to delete MAC filters\n");
295 		/* if we failed because of alloc failures, just bail */
296 		if (status == ICE_ERR_NO_MEMORY) {
297 			err = -ENOMEM;
298 			goto out;
299 		}
300 	}
301 
302 	/* Add MAC addresses in the sync list */
303 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
304 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
305 	/* If filter is added successfully or already exists, do not go into
306 	 * 'if' condition and report it as error. Instead continue processing
307 	 * rest of the function.
308 	 */
309 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
310 		netdev_err(netdev, "Failed to add MAC filters\n");
311 		/* If there is no more space for new umac filters, VSI
312 		 * should go into promiscuous mode. There should be some
313 		 * space reserved for promiscuous filters.
314 		 */
315 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
316 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
317 				      vsi->state)) {
318 			promisc_forced_on = true;
319 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
320 				    vsi->vsi_num);
321 		} else {
322 			err = -EIO;
323 			goto out;
324 		}
325 	}
326 	/* check for changes in promiscuous modes */
327 	if (changed_flags & IFF_ALLMULTI) {
328 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
329 			if (vsi->vlan_ena)
330 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
331 			else
332 				promisc_m = ICE_MCAST_PROMISC_BITS;
333 
334 			err = ice_cfg_promisc(vsi, promisc_m, true);
335 			if (err) {
336 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
337 					   vsi->vsi_num);
338 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
339 				goto out_promisc;
340 			}
341 		} else {
342 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
343 			if (vsi->vlan_ena)
344 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
345 			else
346 				promisc_m = ICE_MCAST_PROMISC_BITS;
347 
348 			err = ice_cfg_promisc(vsi, promisc_m, false);
349 			if (err) {
350 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
351 					   vsi->vsi_num);
352 				vsi->current_netdev_flags |= IFF_ALLMULTI;
353 				goto out_promisc;
354 			}
355 		}
356 	}
357 
358 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
359 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
360 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
361 		if (vsi->current_netdev_flags & IFF_PROMISC) {
362 			/* Apply Rx filter rule to get traffic from wire */
363 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
364 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
365 				if (err && err != -EEXIST) {
366 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
367 						   err, vsi->vsi_num);
368 					vsi->current_netdev_flags &=
369 						~IFF_PROMISC;
370 					goto out_promisc;
371 				}
372 				ice_cfg_vlan_pruning(vsi, false, false);
373 			}
374 		} else {
375 			/* Clear Rx filter to remove traffic from wire */
376 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
377 				err = ice_clear_dflt_vsi(pf->first_sw);
378 				if (err) {
379 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
380 						   err, vsi->vsi_num);
381 					vsi->current_netdev_flags |=
382 						IFF_PROMISC;
383 					goto out_promisc;
384 				}
385 				if (vsi->num_vlan > 1)
386 					ice_cfg_vlan_pruning(vsi, true, false);
387 			}
388 		}
389 	}
390 	goto exit;
391 
392 out_promisc:
393 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
394 	goto exit;
395 out:
396 	/* if something went wrong then set the changed flag so we try again */
397 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
398 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
399 exit:
400 	clear_bit(__ICE_CFG_BUSY, vsi->state);
401 	return err;
402 }
403 
404 /**
405  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
406  * @pf: board private structure
407  */
408 static void ice_sync_fltr_subtask(struct ice_pf *pf)
409 {
410 	int v;
411 
412 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
413 		return;
414 
415 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416 
417 	ice_for_each_vsi(pf, v)
418 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
419 		    ice_vsi_sync_fltr(pf->vsi[v])) {
420 			/* come back and try again later */
421 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
422 			break;
423 		}
424 }
425 
426 /**
427  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
428  * @pf: the PF
429  * @locked: is the rtnl_lock already held
430  */
431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
432 {
433 	int v;
434 
435 	ice_for_each_vsi(pf, v)
436 		if (pf->vsi[v])
437 			ice_dis_vsi(pf->vsi[v], locked);
438 }
439 
440 /**
441  * ice_prepare_for_reset - prep for the core to reset
442  * @pf: board private structure
443  *
444  * Inform or close all dependent features in prep for reset.
445  */
446 static void
447 ice_prepare_for_reset(struct ice_pf *pf)
448 {
449 	struct ice_hw *hw = &pf->hw;
450 	unsigned int i;
451 
452 	/* already prepared for reset */
453 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
454 		return;
455 
456 	/* Notify VFs of impending reset */
457 	if (ice_check_sq_alive(hw, &hw->mailboxq))
458 		ice_vc_notify_reset(pf);
459 
460 	/* Disable VFs until reset is completed */
461 	ice_for_each_vf(pf, i)
462 		ice_set_vf_state_qs_dis(&pf->vf[i]);
463 
464 	/* clear SW filtering DB */
465 	ice_clear_hw_tbls(hw);
466 	/* disable the VSIs and their queues that are not already DOWN */
467 	ice_pf_dis_all_vsi(pf, false);
468 
469 	if (hw->port_info)
470 		ice_sched_clear_port(hw->port_info);
471 
472 	ice_shutdown_all_ctrlq(hw);
473 
474 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
475 }
476 
477 /**
478  * ice_do_reset - Initiate one of many types of resets
479  * @pf: board private structure
480  * @reset_type: reset type requested
481  * before this function was called.
482  */
483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
484 {
485 	struct device *dev = ice_pf_to_dev(pf);
486 	struct ice_hw *hw = &pf->hw;
487 
488 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
489 
490 	ice_prepare_for_reset(pf);
491 
492 	/* trigger the reset */
493 	if (ice_reset(hw, reset_type)) {
494 		dev_err(dev, "reset %d failed\n", reset_type);
495 		set_bit(__ICE_RESET_FAILED, pf->state);
496 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
497 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
498 		clear_bit(__ICE_PFR_REQ, pf->state);
499 		clear_bit(__ICE_CORER_REQ, pf->state);
500 		clear_bit(__ICE_GLOBR_REQ, pf->state);
501 		return;
502 	}
503 
504 	/* PFR is a bit of a special case because it doesn't result in an OICR
505 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
506 	 * associated state bits.
507 	 */
508 	if (reset_type == ICE_RESET_PFR) {
509 		pf->pfr_count++;
510 		ice_rebuild(pf, reset_type);
511 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
512 		clear_bit(__ICE_PFR_REQ, pf->state);
513 		ice_reset_all_vfs(pf, true);
514 	}
515 }
516 
517 /**
518  * ice_reset_subtask - Set up for resetting the device and driver
519  * @pf: board private structure
520  */
521 static void ice_reset_subtask(struct ice_pf *pf)
522 {
523 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
524 
525 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
526 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
527 	 * of reset is pending and sets bits in pf->state indicating the reset
528 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
529 	 * prepare for pending reset if not already (for PF software-initiated
530 	 * global resets the software should already be prepared for it as
531 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
532 	 * by firmware or software on other PFs, that bit is not set so prepare
533 	 * for the reset now), poll for reset done, rebuild and return.
534 	 */
535 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
536 		/* Perform the largest reset requested */
537 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
538 			reset_type = ICE_RESET_CORER;
539 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
540 			reset_type = ICE_RESET_GLOBR;
541 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
542 			reset_type = ICE_RESET_EMPR;
543 		/* return if no valid reset type requested */
544 		if (reset_type == ICE_RESET_INVAL)
545 			return;
546 		ice_prepare_for_reset(pf);
547 
548 		/* make sure we are ready to rebuild */
549 		if (ice_check_reset(&pf->hw)) {
550 			set_bit(__ICE_RESET_FAILED, pf->state);
551 		} else {
552 			/* done with reset. start rebuild */
553 			pf->hw.reset_ongoing = false;
554 			ice_rebuild(pf, reset_type);
555 			/* clear bit to resume normal operations, but
556 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
557 			 */
558 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
559 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
560 			clear_bit(__ICE_PFR_REQ, pf->state);
561 			clear_bit(__ICE_CORER_REQ, pf->state);
562 			clear_bit(__ICE_GLOBR_REQ, pf->state);
563 			ice_reset_all_vfs(pf, true);
564 		}
565 
566 		return;
567 	}
568 
569 	/* No pending resets to finish processing. Check for new resets */
570 	if (test_bit(__ICE_PFR_REQ, pf->state))
571 		reset_type = ICE_RESET_PFR;
572 	if (test_bit(__ICE_CORER_REQ, pf->state))
573 		reset_type = ICE_RESET_CORER;
574 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
575 		reset_type = ICE_RESET_GLOBR;
576 	/* If no valid reset type requested just return */
577 	if (reset_type == ICE_RESET_INVAL)
578 		return;
579 
580 	/* reset if not already down or busy */
581 	if (!test_bit(__ICE_DOWN, pf->state) &&
582 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
583 		ice_do_reset(pf, reset_type);
584 	}
585 }
586 
587 /**
588  * ice_print_topo_conflict - print topology conflict message
589  * @vsi: the VSI whose topology status is being checked
590  */
591 static void ice_print_topo_conflict(struct ice_vsi *vsi)
592 {
593 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
594 	case ICE_AQ_LINK_TOPO_CONFLICT:
595 	case ICE_AQ_LINK_MEDIA_CONFLICT:
596 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
597 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
598 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
599 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
600 		break;
601 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
602 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
603 		break;
604 	default:
605 		break;
606 	}
607 }
608 
609 /**
610  * ice_print_link_msg - print link up or down message
611  * @vsi: the VSI whose link status is being queried
612  * @isup: boolean for if the link is now up or down
613  */
614 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
615 {
616 	struct ice_aqc_get_phy_caps_data *caps;
617 	const char *an_advertised;
618 	enum ice_status status;
619 	const char *fec_req;
620 	const char *speed;
621 	const char *fec;
622 	const char *fc;
623 	const char *an;
624 
625 	if (!vsi)
626 		return;
627 
628 	if (vsi->current_isup == isup)
629 		return;
630 
631 	vsi->current_isup = isup;
632 
633 	if (!isup) {
634 		netdev_info(vsi->netdev, "NIC Link is Down\n");
635 		return;
636 	}
637 
638 	switch (vsi->port_info->phy.link_info.link_speed) {
639 	case ICE_AQ_LINK_SPEED_100GB:
640 		speed = "100 G";
641 		break;
642 	case ICE_AQ_LINK_SPEED_50GB:
643 		speed = "50 G";
644 		break;
645 	case ICE_AQ_LINK_SPEED_40GB:
646 		speed = "40 G";
647 		break;
648 	case ICE_AQ_LINK_SPEED_25GB:
649 		speed = "25 G";
650 		break;
651 	case ICE_AQ_LINK_SPEED_20GB:
652 		speed = "20 G";
653 		break;
654 	case ICE_AQ_LINK_SPEED_10GB:
655 		speed = "10 G";
656 		break;
657 	case ICE_AQ_LINK_SPEED_5GB:
658 		speed = "5 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_2500MB:
661 		speed = "2.5 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_1000MB:
664 		speed = "1 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_100MB:
667 		speed = "100 M";
668 		break;
669 	default:
670 		speed = "Unknown";
671 		break;
672 	}
673 
674 	switch (vsi->port_info->fc.current_mode) {
675 	case ICE_FC_FULL:
676 		fc = "Rx/Tx";
677 		break;
678 	case ICE_FC_TX_PAUSE:
679 		fc = "Tx";
680 		break;
681 	case ICE_FC_RX_PAUSE:
682 		fc = "Rx";
683 		break;
684 	case ICE_FC_NONE:
685 		fc = "None";
686 		break;
687 	default:
688 		fc = "Unknown";
689 		break;
690 	}
691 
692 	/* Get FEC mode based on negotiated link info */
693 	switch (vsi->port_info->phy.link_info.fec_info) {
694 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
695 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
696 		fec = "RS-FEC";
697 		break;
698 	case ICE_AQ_LINK_25G_KR_FEC_EN:
699 		fec = "FC-FEC/BASE-R";
700 		break;
701 	default:
702 		fec = "NONE";
703 		break;
704 	}
705 
706 	/* check if autoneg completed, might be false due to not supported */
707 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
708 		an = "True";
709 	else
710 		an = "False";
711 
712 	/* Get FEC mode requested based on PHY caps last SW configuration */
713 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
714 	if (!caps) {
715 		fec_req = "Unknown";
716 		an_advertised = "Unknown";
717 		goto done;
718 	}
719 
720 	status = ice_aq_get_phy_caps(vsi->port_info, false,
721 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
722 	if (status)
723 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
724 
725 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
726 
727 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
728 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
729 		fec_req = "RS-FEC";
730 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
731 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
732 		fec_req = "FC-FEC/BASE-R";
733 	else
734 		fec_req = "NONE";
735 
736 	kfree(caps);
737 
738 done:
739 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
740 		    speed, fec_req, fec, an_advertised, an, fc);
741 	ice_print_topo_conflict(vsi);
742 }
743 
744 /**
745  * ice_vsi_link_event - update the VSI's netdev
746  * @vsi: the VSI on which the link event occurred
747  * @link_up: whether or not the VSI needs to be set up or down
748  */
749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
750 {
751 	if (!vsi)
752 		return;
753 
754 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
755 		return;
756 
757 	if (vsi->type == ICE_VSI_PF) {
758 		if (link_up == netif_carrier_ok(vsi->netdev))
759 			return;
760 
761 		if (link_up) {
762 			netif_carrier_on(vsi->netdev);
763 			netif_tx_wake_all_queues(vsi->netdev);
764 		} else {
765 			netif_carrier_off(vsi->netdev);
766 			netif_tx_stop_all_queues(vsi->netdev);
767 		}
768 	}
769 }
770 
771 /**
772  * ice_set_dflt_mib - send a default config MIB to the FW
773  * @pf: private PF struct
774  *
775  * This function sends a default configuration MIB to the FW.
776  *
777  * If this function errors out at any point, the driver is still able to
778  * function.  The main impact is that LFC may not operate as expected.
779  * Therefore an error state in this function should be treated with a DBG
780  * message and continue on with driver rebuild/reenable.
781  */
782 static void ice_set_dflt_mib(struct ice_pf *pf)
783 {
784 	struct device *dev = ice_pf_to_dev(pf);
785 	u8 mib_type, *buf, *lldpmib = NULL;
786 	u16 len, typelen, offset = 0;
787 	struct ice_lldp_org_tlv *tlv;
788 	struct ice_hw *hw;
789 	u32 ouisubtype;
790 
791 	if (!pf) {
792 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
793 		return;
794 	}
795 
796 	hw = &pf->hw;
797 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
798 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
799 	if (!lldpmib) {
800 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
801 			__func__);
802 		return;
803 	}
804 
805 	/* Add ETS CFG TLV */
806 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
807 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
808 		   ICE_IEEE_ETS_TLV_LEN);
809 	tlv->typelen = htons(typelen);
810 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
811 		      ICE_IEEE_SUBTYPE_ETS_CFG);
812 	tlv->ouisubtype = htonl(ouisubtype);
813 
814 	buf = tlv->tlvinfo;
815 	buf[0] = 0;
816 
817 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
818 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
819 	 * Octets 13 - 20 are TSA values - leave as zeros
820 	 */
821 	buf[5] = 0x64;
822 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
823 	offset += len + 2;
824 	tlv = (struct ice_lldp_org_tlv *)
825 		((char *)tlv + sizeof(tlv->typelen) + len);
826 
827 	/* Add ETS REC TLV */
828 	buf = tlv->tlvinfo;
829 	tlv->typelen = htons(typelen);
830 
831 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
832 		      ICE_IEEE_SUBTYPE_ETS_REC);
833 	tlv->ouisubtype = htonl(ouisubtype);
834 
835 	/* First octet of buf is reserved
836 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
837 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
838 	 * Octets 13 - 20 are TSA value - leave as zeros
839 	 */
840 	buf[5] = 0x64;
841 	offset += len + 2;
842 	tlv = (struct ice_lldp_org_tlv *)
843 		((char *)tlv + sizeof(tlv->typelen) + len);
844 
845 	/* Add PFC CFG TLV */
846 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
847 		   ICE_IEEE_PFC_TLV_LEN);
848 	tlv->typelen = htons(typelen);
849 
850 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
851 		      ICE_IEEE_SUBTYPE_PFC_CFG);
852 	tlv->ouisubtype = htonl(ouisubtype);
853 
854 	/* Octet 1 left as all zeros - PFC disabled */
855 	buf[0] = 0x08;
856 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
857 	offset += len + 2;
858 
859 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
860 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
861 
862 	kfree(lldpmib);
863 }
864 
865 /**
866  * ice_link_event - process the link event
867  * @pf: PF that the link event is associated with
868  * @pi: port_info for the port that the link event is associated with
869  * @link_up: true if the physical link is up and false if it is down
870  * @link_speed: current link speed received from the link event
871  *
872  * Returns 0 on success and negative on failure
873  */
874 static int
875 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
876 	       u16 link_speed)
877 {
878 	struct device *dev = ice_pf_to_dev(pf);
879 	struct ice_phy_info *phy_info;
880 	struct ice_vsi *vsi;
881 	u16 old_link_speed;
882 	bool old_link;
883 	int result;
884 
885 	phy_info = &pi->phy;
886 	phy_info->link_info_old = phy_info->link_info;
887 
888 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
889 	old_link_speed = phy_info->link_info_old.link_speed;
890 
891 	/* update the link info structures and re-enable link events,
892 	 * don't bail on failure due to other book keeping needed
893 	 */
894 	result = ice_update_link_info(pi);
895 	if (result)
896 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
897 			pi->lport);
898 
899 	/* Check if the link state is up after updating link info, and treat
900 	 * this event as an UP event since the link is actually UP now.
901 	 */
902 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
903 		link_up = true;
904 
905 	vsi = ice_get_main_vsi(pf);
906 	if (!vsi || !vsi->port_info)
907 		return -EINVAL;
908 
909 	/* turn off PHY if media was removed */
910 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
911 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
912 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
913 
914 		result = ice_aq_set_link_restart_an(pi, false, NULL);
915 		if (result) {
916 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
917 				vsi->vsi_num, result);
918 			return result;
919 		}
920 	}
921 
922 	/* if the old link up/down and speed is the same as the new */
923 	if (link_up == old_link && link_speed == old_link_speed)
924 		return result;
925 
926 	if (ice_is_dcb_active(pf)) {
927 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
928 			ice_dcb_rebuild(pf);
929 	} else {
930 		if (link_up)
931 			ice_set_dflt_mib(pf);
932 	}
933 	ice_vsi_link_event(vsi, link_up);
934 	ice_print_link_msg(vsi, link_up);
935 
936 	ice_vc_notify_link_state(pf);
937 
938 	return result;
939 }
940 
941 /**
942  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
943  * @pf: board private structure
944  */
945 static void ice_watchdog_subtask(struct ice_pf *pf)
946 {
947 	int i;
948 
949 	/* if interface is down do nothing */
950 	if (test_bit(__ICE_DOWN, pf->state) ||
951 	    test_bit(__ICE_CFG_BUSY, pf->state))
952 		return;
953 
954 	/* make sure we don't do these things too often */
955 	if (time_before(jiffies,
956 			pf->serv_tmr_prev + pf->serv_tmr_period))
957 		return;
958 
959 	pf->serv_tmr_prev = jiffies;
960 
961 	/* Update the stats for active netdevs so the network stack
962 	 * can look at updated numbers whenever it cares to
963 	 */
964 	ice_update_pf_stats(pf);
965 	ice_for_each_vsi(pf, i)
966 		if (pf->vsi[i] && pf->vsi[i]->netdev)
967 			ice_update_vsi_stats(pf->vsi[i]);
968 }
969 
970 /**
971  * ice_init_link_events - enable/initialize link events
972  * @pi: pointer to the port_info instance
973  *
974  * Returns -EIO on failure, 0 on success
975  */
976 static int ice_init_link_events(struct ice_port_info *pi)
977 {
978 	u16 mask;
979 
980 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
981 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
982 
983 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
984 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
985 			pi->lport);
986 		return -EIO;
987 	}
988 
989 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
990 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
991 			pi->lport);
992 		return -EIO;
993 	}
994 
995 	return 0;
996 }
997 
998 /**
999  * ice_handle_link_event - handle link event via ARQ
1000  * @pf: PF that the link event is associated with
1001  * @event: event structure containing link status info
1002  */
1003 static int
1004 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1005 {
1006 	struct ice_aqc_get_link_status_data *link_data;
1007 	struct ice_port_info *port_info;
1008 	int status;
1009 
1010 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1011 	port_info = pf->hw.port_info;
1012 	if (!port_info)
1013 		return -EINVAL;
1014 
1015 	status = ice_link_event(pf, port_info,
1016 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1017 				le16_to_cpu(link_data->link_speed));
1018 	if (status)
1019 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1020 			status);
1021 
1022 	return status;
1023 }
1024 
1025 enum ice_aq_task_state {
1026 	ICE_AQ_TASK_WAITING = 0,
1027 	ICE_AQ_TASK_COMPLETE,
1028 	ICE_AQ_TASK_CANCELED,
1029 };
1030 
1031 struct ice_aq_task {
1032 	struct hlist_node entry;
1033 
1034 	u16 opcode;
1035 	struct ice_rq_event_info *event;
1036 	enum ice_aq_task_state state;
1037 };
1038 
1039 /**
1040  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1041  * @pf: pointer to the PF private structure
1042  * @opcode: the opcode to wait for
1043  * @timeout: how long to wait, in jiffies
1044  * @event: storage for the event info
1045  *
1046  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1047  * current thread will be put to sleep until the specified event occurs or
1048  * until the given timeout is reached.
1049  *
1050  * To obtain only the descriptor contents, pass an event without an allocated
1051  * msg_buf. If the complete data buffer is desired, allocate the
1052  * event->msg_buf with enough space ahead of time.
1053  *
1054  * Returns: zero on success, or a negative error code on failure.
1055  */
1056 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1057 			  struct ice_rq_event_info *event)
1058 {
1059 	struct device *dev = ice_pf_to_dev(pf);
1060 	struct ice_aq_task *task;
1061 	unsigned long start;
1062 	long ret;
1063 	int err;
1064 
1065 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1066 	if (!task)
1067 		return -ENOMEM;
1068 
1069 	INIT_HLIST_NODE(&task->entry);
1070 	task->opcode = opcode;
1071 	task->event = event;
1072 	task->state = ICE_AQ_TASK_WAITING;
1073 
1074 	spin_lock_bh(&pf->aq_wait_lock);
1075 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1076 	spin_unlock_bh(&pf->aq_wait_lock);
1077 
1078 	start = jiffies;
1079 
1080 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1081 					       timeout);
1082 	switch (task->state) {
1083 	case ICE_AQ_TASK_WAITING:
1084 		err = ret < 0 ? ret : -ETIMEDOUT;
1085 		break;
1086 	case ICE_AQ_TASK_CANCELED:
1087 		err = ret < 0 ? ret : -ECANCELED;
1088 		break;
1089 	case ICE_AQ_TASK_COMPLETE:
1090 		err = ret < 0 ? ret : 0;
1091 		break;
1092 	default:
1093 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1094 		err = -EINVAL;
1095 		break;
1096 	}
1097 
1098 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1099 		jiffies_to_msecs(jiffies - start),
1100 		jiffies_to_msecs(timeout),
1101 		opcode);
1102 
1103 	spin_lock_bh(&pf->aq_wait_lock);
1104 	hlist_del(&task->entry);
1105 	spin_unlock_bh(&pf->aq_wait_lock);
1106 	kfree(task);
1107 
1108 	return err;
1109 }
1110 
1111 /**
1112  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1113  * @pf: pointer to the PF private structure
1114  * @opcode: the opcode of the event
1115  * @event: the event to check
1116  *
1117  * Loops over the current list of pending threads waiting for an AdminQ event.
1118  * For each matching task, copy the contents of the event into the task
1119  * structure and wake up the thread.
1120  *
1121  * If multiple threads wait for the same opcode, they will all be woken up.
1122  *
1123  * Note that event->msg_buf will only be duplicated if the event has a buffer
1124  * with enough space already allocated. Otherwise, only the descriptor and
1125  * message length will be copied.
1126  *
1127  * Returns: true if an event was found, false otherwise
1128  */
1129 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1130 				struct ice_rq_event_info *event)
1131 {
1132 	struct ice_aq_task *task;
1133 	bool found = false;
1134 
1135 	spin_lock_bh(&pf->aq_wait_lock);
1136 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1137 		if (task->state || task->opcode != opcode)
1138 			continue;
1139 
1140 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1141 		task->event->msg_len = event->msg_len;
1142 
1143 		/* Only copy the data buffer if a destination was set */
1144 		if (task->event->msg_buf &&
1145 		    task->event->buf_len > event->buf_len) {
1146 			memcpy(task->event->msg_buf, event->msg_buf,
1147 			       event->buf_len);
1148 			task->event->buf_len = event->buf_len;
1149 		}
1150 
1151 		task->state = ICE_AQ_TASK_COMPLETE;
1152 		found = true;
1153 	}
1154 	spin_unlock_bh(&pf->aq_wait_lock);
1155 
1156 	if (found)
1157 		wake_up(&pf->aq_wait_queue);
1158 }
1159 
1160 /**
1161  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1162  * @pf: the PF private structure
1163  *
1164  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1165  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1166  */
1167 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1168 {
1169 	struct ice_aq_task *task;
1170 
1171 	spin_lock_bh(&pf->aq_wait_lock);
1172 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1173 		task->state = ICE_AQ_TASK_CANCELED;
1174 	spin_unlock_bh(&pf->aq_wait_lock);
1175 
1176 	wake_up(&pf->aq_wait_queue);
1177 }
1178 
1179 /**
1180  * __ice_clean_ctrlq - helper function to clean controlq rings
1181  * @pf: ptr to struct ice_pf
1182  * @q_type: specific Control queue type
1183  */
1184 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1185 {
1186 	struct device *dev = ice_pf_to_dev(pf);
1187 	struct ice_rq_event_info event;
1188 	struct ice_hw *hw = &pf->hw;
1189 	struct ice_ctl_q_info *cq;
1190 	u16 pending, i = 0;
1191 	const char *qtype;
1192 	u32 oldval, val;
1193 
1194 	/* Do not clean control queue if/when PF reset fails */
1195 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1196 		return 0;
1197 
1198 	switch (q_type) {
1199 	case ICE_CTL_Q_ADMIN:
1200 		cq = &hw->adminq;
1201 		qtype = "Admin";
1202 		break;
1203 	case ICE_CTL_Q_MAILBOX:
1204 		cq = &hw->mailboxq;
1205 		qtype = "Mailbox";
1206 		break;
1207 	default:
1208 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1209 		return 0;
1210 	}
1211 
1212 	/* check for error indications - PF_xx_AxQLEN register layout for
1213 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1214 	 */
1215 	val = rd32(hw, cq->rq.len);
1216 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1217 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1218 		oldval = val;
1219 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1220 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1221 				qtype);
1222 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1223 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1224 				qtype);
1225 		}
1226 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1227 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1228 				qtype);
1229 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1230 			 PF_FW_ARQLEN_ARQCRIT_M);
1231 		if (oldval != val)
1232 			wr32(hw, cq->rq.len, val);
1233 	}
1234 
1235 	val = rd32(hw, cq->sq.len);
1236 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1237 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1238 		oldval = val;
1239 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1240 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1241 				qtype);
1242 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1243 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1244 				qtype);
1245 		}
1246 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1247 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1248 				qtype);
1249 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1250 			 PF_FW_ATQLEN_ATQCRIT_M);
1251 		if (oldval != val)
1252 			wr32(hw, cq->sq.len, val);
1253 	}
1254 
1255 	event.buf_len = cq->rq_buf_size;
1256 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1257 	if (!event.msg_buf)
1258 		return 0;
1259 
1260 	do {
1261 		enum ice_status ret;
1262 		u16 opcode;
1263 
1264 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1265 		if (ret == ICE_ERR_AQ_NO_WORK)
1266 			break;
1267 		if (ret) {
1268 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1269 				ice_stat_str(ret));
1270 			break;
1271 		}
1272 
1273 		opcode = le16_to_cpu(event.desc.opcode);
1274 
1275 		/* Notify any thread that might be waiting for this event */
1276 		ice_aq_check_events(pf, opcode, &event);
1277 
1278 		switch (opcode) {
1279 		case ice_aqc_opc_get_link_status:
1280 			if (ice_handle_link_event(pf, &event))
1281 				dev_err(dev, "Could not handle link event\n");
1282 			break;
1283 		case ice_aqc_opc_event_lan_overflow:
1284 			ice_vf_lan_overflow_event(pf, &event);
1285 			break;
1286 		case ice_mbx_opc_send_msg_to_pf:
1287 			ice_vc_process_vf_msg(pf, &event);
1288 			break;
1289 		case ice_aqc_opc_fw_logging:
1290 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1291 			break;
1292 		case ice_aqc_opc_lldp_set_mib_change:
1293 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1294 			break;
1295 		default:
1296 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1297 				qtype, opcode);
1298 			break;
1299 		}
1300 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1301 
1302 	kfree(event.msg_buf);
1303 
1304 	return pending && (i == ICE_DFLT_IRQ_WORK);
1305 }
1306 
1307 /**
1308  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1309  * @hw: pointer to hardware info
1310  * @cq: control queue information
1311  *
1312  * returns true if there are pending messages in a queue, false if there aren't
1313  */
1314 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1315 {
1316 	u16 ntu;
1317 
1318 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1319 	return cq->rq.next_to_clean != ntu;
1320 }
1321 
1322 /**
1323  * ice_clean_adminq_subtask - clean the AdminQ rings
1324  * @pf: board private structure
1325  */
1326 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1327 {
1328 	struct ice_hw *hw = &pf->hw;
1329 
1330 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1331 		return;
1332 
1333 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1334 		return;
1335 
1336 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1337 
1338 	/* There might be a situation where new messages arrive to a control
1339 	 * queue between processing the last message and clearing the
1340 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1341 	 * ice_ctrlq_pending) and process new messages if any.
1342 	 */
1343 	if (ice_ctrlq_pending(hw, &hw->adminq))
1344 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1345 
1346 	ice_flush(hw);
1347 }
1348 
1349 /**
1350  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1351  * @pf: board private structure
1352  */
1353 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1354 {
1355 	struct ice_hw *hw = &pf->hw;
1356 
1357 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1358 		return;
1359 
1360 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1361 		return;
1362 
1363 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1364 
1365 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1366 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1367 
1368 	ice_flush(hw);
1369 }
1370 
1371 /**
1372  * ice_service_task_schedule - schedule the service task to wake up
1373  * @pf: board private structure
1374  *
1375  * If not already scheduled, this puts the task into the work queue.
1376  */
1377 void ice_service_task_schedule(struct ice_pf *pf)
1378 {
1379 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1380 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1381 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1382 		queue_work(ice_wq, &pf->serv_task);
1383 }
1384 
1385 /**
1386  * ice_service_task_complete - finish up the service task
1387  * @pf: board private structure
1388  */
1389 static void ice_service_task_complete(struct ice_pf *pf)
1390 {
1391 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1392 
1393 	/* force memory (pf->state) to sync before next service task */
1394 	smp_mb__before_atomic();
1395 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1396 }
1397 
1398 /**
1399  * ice_service_task_stop - stop service task and cancel works
1400  * @pf: board private structure
1401  *
1402  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1403  * 1 otherwise.
1404  */
1405 static int ice_service_task_stop(struct ice_pf *pf)
1406 {
1407 	int ret;
1408 
1409 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1410 
1411 	if (pf->serv_tmr.function)
1412 		del_timer_sync(&pf->serv_tmr);
1413 	if (pf->serv_task.func)
1414 		cancel_work_sync(&pf->serv_task);
1415 
1416 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1417 	return ret;
1418 }
1419 
1420 /**
1421  * ice_service_task_restart - restart service task and schedule works
1422  * @pf: board private structure
1423  *
1424  * This function is needed for suspend and resume works (e.g WoL scenario)
1425  */
1426 static void ice_service_task_restart(struct ice_pf *pf)
1427 {
1428 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1429 	ice_service_task_schedule(pf);
1430 }
1431 
1432 /**
1433  * ice_service_timer - timer callback to schedule service task
1434  * @t: pointer to timer_list
1435  */
1436 static void ice_service_timer(struct timer_list *t)
1437 {
1438 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1439 
1440 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1441 	ice_service_task_schedule(pf);
1442 }
1443 
1444 /**
1445  * ice_handle_mdd_event - handle malicious driver detect event
1446  * @pf: pointer to the PF structure
1447  *
1448  * Called from service task. OICR interrupt handler indicates MDD event.
1449  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1450  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1451  * disable the queue, the PF can be configured to reset the VF using ethtool
1452  * private flag mdd-auto-reset-vf.
1453  */
1454 static void ice_handle_mdd_event(struct ice_pf *pf)
1455 {
1456 	struct device *dev = ice_pf_to_dev(pf);
1457 	struct ice_hw *hw = &pf->hw;
1458 	unsigned int i;
1459 	u32 reg;
1460 
1461 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1462 		/* Since the VF MDD event logging is rate limited, check if
1463 		 * there are pending MDD events.
1464 		 */
1465 		ice_print_vfs_mdd_events(pf);
1466 		return;
1467 	}
1468 
1469 	/* find what triggered an MDD event */
1470 	reg = rd32(hw, GL_MDET_TX_PQM);
1471 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1472 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1473 				GL_MDET_TX_PQM_PF_NUM_S;
1474 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1475 				GL_MDET_TX_PQM_VF_NUM_S;
1476 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1477 				GL_MDET_TX_PQM_MAL_TYPE_S;
1478 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1479 				GL_MDET_TX_PQM_QNUM_S);
1480 
1481 		if (netif_msg_tx_err(pf))
1482 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1483 				 event, queue, pf_num, vf_num);
1484 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1485 	}
1486 
1487 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1488 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1489 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1490 				GL_MDET_TX_TCLAN_PF_NUM_S;
1491 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1492 				GL_MDET_TX_TCLAN_VF_NUM_S;
1493 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1494 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1495 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1496 				GL_MDET_TX_TCLAN_QNUM_S);
1497 
1498 		if (netif_msg_tx_err(pf))
1499 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1500 				 event, queue, pf_num, vf_num);
1501 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1502 	}
1503 
1504 	reg = rd32(hw, GL_MDET_RX);
1505 	if (reg & GL_MDET_RX_VALID_M) {
1506 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1507 				GL_MDET_RX_PF_NUM_S;
1508 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1509 				GL_MDET_RX_VF_NUM_S;
1510 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1511 				GL_MDET_RX_MAL_TYPE_S;
1512 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1513 				GL_MDET_RX_QNUM_S);
1514 
1515 		if (netif_msg_rx_err(pf))
1516 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1517 				 event, queue, pf_num, vf_num);
1518 		wr32(hw, GL_MDET_RX, 0xffffffff);
1519 	}
1520 
1521 	/* check to see if this PF caused an MDD event */
1522 	reg = rd32(hw, PF_MDET_TX_PQM);
1523 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1524 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1525 		if (netif_msg_tx_err(pf))
1526 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1527 	}
1528 
1529 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1530 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1531 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1532 		if (netif_msg_tx_err(pf))
1533 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1534 	}
1535 
1536 	reg = rd32(hw, PF_MDET_RX);
1537 	if (reg & PF_MDET_RX_VALID_M) {
1538 		wr32(hw, PF_MDET_RX, 0xFFFF);
1539 		if (netif_msg_rx_err(pf))
1540 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1541 	}
1542 
1543 	/* Check to see if one of the VFs caused an MDD event, and then
1544 	 * increment counters and set print pending
1545 	 */
1546 	ice_for_each_vf(pf, i) {
1547 		struct ice_vf *vf = &pf->vf[i];
1548 
1549 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1550 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1551 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1552 			vf->mdd_tx_events.count++;
1553 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1554 			if (netif_msg_tx_err(pf))
1555 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1556 					 i);
1557 		}
1558 
1559 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1560 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1561 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1562 			vf->mdd_tx_events.count++;
1563 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1564 			if (netif_msg_tx_err(pf))
1565 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1566 					 i);
1567 		}
1568 
1569 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1570 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1571 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1572 			vf->mdd_tx_events.count++;
1573 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1574 			if (netif_msg_tx_err(pf))
1575 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1576 					 i);
1577 		}
1578 
1579 		reg = rd32(hw, VP_MDET_RX(i));
1580 		if (reg & VP_MDET_RX_VALID_M) {
1581 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1582 			vf->mdd_rx_events.count++;
1583 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1584 			if (netif_msg_rx_err(pf))
1585 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1586 					 i);
1587 
1588 			/* Since the queue is disabled on VF Rx MDD events, the
1589 			 * PF can be configured to reset the VF through ethtool
1590 			 * private flag mdd-auto-reset-vf.
1591 			 */
1592 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1593 				/* VF MDD event counters will be cleared by
1594 				 * reset, so print the event prior to reset.
1595 				 */
1596 				ice_print_vf_rx_mdd_event(vf);
1597 				ice_reset_vf(&pf->vf[i], false);
1598 			}
1599 		}
1600 	}
1601 
1602 	ice_print_vfs_mdd_events(pf);
1603 }
1604 
1605 /**
1606  * ice_force_phys_link_state - Force the physical link state
1607  * @vsi: VSI to force the physical link state to up/down
1608  * @link_up: true/false indicates to set the physical link to up/down
1609  *
1610  * Force the physical link state by getting the current PHY capabilities from
1611  * hardware and setting the PHY config based on the determined capabilities. If
1612  * link changes a link event will be triggered because both the Enable Automatic
1613  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1614  *
1615  * Returns 0 on success, negative on failure
1616  */
1617 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1618 {
1619 	struct ice_aqc_get_phy_caps_data *pcaps;
1620 	struct ice_aqc_set_phy_cfg_data *cfg;
1621 	struct ice_port_info *pi;
1622 	struct device *dev;
1623 	int retcode;
1624 
1625 	if (!vsi || !vsi->port_info || !vsi->back)
1626 		return -EINVAL;
1627 	if (vsi->type != ICE_VSI_PF)
1628 		return 0;
1629 
1630 	dev = ice_pf_to_dev(vsi->back);
1631 
1632 	pi = vsi->port_info;
1633 
1634 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1635 	if (!pcaps)
1636 		return -ENOMEM;
1637 
1638 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1639 				      NULL);
1640 	if (retcode) {
1641 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1642 			vsi->vsi_num, retcode);
1643 		retcode = -EIO;
1644 		goto out;
1645 	}
1646 
1647 	/* No change in link */
1648 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1649 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1650 		goto out;
1651 
1652 	/* Use the current user PHY configuration. The current user PHY
1653 	 * configuration is initialized during probe from PHY capabilities
1654 	 * software mode, and updated on set PHY configuration.
1655 	 */
1656 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1657 	if (!cfg) {
1658 		retcode = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1663 	if (link_up)
1664 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1665 	else
1666 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1667 
1668 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1669 	if (retcode) {
1670 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1671 			vsi->vsi_num, retcode);
1672 		retcode = -EIO;
1673 	}
1674 
1675 	kfree(cfg);
1676 out:
1677 	kfree(pcaps);
1678 	return retcode;
1679 }
1680 
1681 /**
1682  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1683  * @pi: port info structure
1684  *
1685  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1686  */
1687 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1688 {
1689 	struct ice_aqc_get_phy_caps_data *pcaps;
1690 	struct ice_pf *pf = pi->hw->back;
1691 	enum ice_status status;
1692 	int err = 0;
1693 
1694 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1695 	if (!pcaps)
1696 		return -ENOMEM;
1697 
1698 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1699 				     NULL);
1700 
1701 	if (status) {
1702 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1703 		err = -EIO;
1704 		goto out;
1705 	}
1706 
1707 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1708 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1709 
1710 out:
1711 	kfree(pcaps);
1712 	return err;
1713 }
1714 
1715 /**
1716  * ice_init_link_dflt_override - Initialize link default override
1717  * @pi: port info structure
1718  *
1719  * Initialize link default override and PHY total port shutdown during probe
1720  */
1721 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1722 {
1723 	struct ice_link_default_override_tlv *ldo;
1724 	struct ice_pf *pf = pi->hw->back;
1725 
1726 	ldo = &pf->link_dflt_override;
1727 	if (ice_get_link_default_override(ldo, pi))
1728 		return;
1729 
1730 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1731 		return;
1732 
1733 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1734 	 * ethtool private flag) for ports with Port Disable bit set.
1735 	 */
1736 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1737 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1738 }
1739 
1740 /**
1741  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1742  * @pi: port info structure
1743  *
1744  * If default override is enabled, initialized the user PHY cfg speed and FEC
1745  * settings using the default override mask from the NVM.
1746  *
1747  * The PHY should only be configured with the default override settings the
1748  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1749  * is used to indicate that the user PHY cfg default override is initialized
1750  * and the PHY has not been configured with the default override settings. The
1751  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1752  * configured.
1753  */
1754 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1755 {
1756 	struct ice_link_default_override_tlv *ldo;
1757 	struct ice_aqc_set_phy_cfg_data *cfg;
1758 	struct ice_phy_info *phy = &pi->phy;
1759 	struct ice_pf *pf = pi->hw->back;
1760 
1761 	ldo = &pf->link_dflt_override;
1762 
1763 	/* If link default override is enabled, use to mask NVM PHY capabilities
1764 	 * for speed and FEC default configuration.
1765 	 */
1766 	cfg = &phy->curr_user_phy_cfg;
1767 
1768 	if (ldo->phy_type_low || ldo->phy_type_high) {
1769 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1770 				    cpu_to_le64(ldo->phy_type_low);
1771 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1772 				     cpu_to_le64(ldo->phy_type_high);
1773 	}
1774 	cfg->link_fec_opt = ldo->fec_options;
1775 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1776 
1777 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1778 }
1779 
1780 /**
1781  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1782  * @pi: port info structure
1783  *
1784  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1785  * mode to default. The PHY defaults are from get PHY capabilities topology
1786  * with media so call when media is first available. An error is returned if
1787  * called when media is not available. The PHY initialization completed state is
1788  * set here.
1789  *
1790  * These configurations are used when setting PHY
1791  * configuration. The user PHY configuration is updated on set PHY
1792  * configuration. Returns 0 on success, negative on failure
1793  */
1794 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1795 {
1796 	struct ice_aqc_get_phy_caps_data *pcaps;
1797 	struct ice_phy_info *phy = &pi->phy;
1798 	struct ice_pf *pf = pi->hw->back;
1799 	enum ice_status status;
1800 	struct ice_vsi *vsi;
1801 	int err = 0;
1802 
1803 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1804 		return -EIO;
1805 
1806 	vsi = ice_get_main_vsi(pf);
1807 	if (!vsi)
1808 		return -EINVAL;
1809 
1810 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1811 	if (!pcaps)
1812 		return -ENOMEM;
1813 
1814 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1815 				     NULL);
1816 	if (status) {
1817 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1818 		err = -EIO;
1819 		goto err_out;
1820 	}
1821 
1822 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1823 
1824 	/* check if lenient mode is supported and enabled */
1825 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1826 	    !(pcaps->module_compliance_enforcement &
1827 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1828 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1829 
1830 		/* if link default override is enabled, initialize user PHY
1831 		 * configuration with link default override values
1832 		 */
1833 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1834 			ice_init_phy_cfg_dflt_override(pi);
1835 			goto out;
1836 		}
1837 	}
1838 
1839 	/* if link default override is not enabled, initialize PHY using
1840 	 * topology with media
1841 	 */
1842 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1843 						      pcaps->link_fec_options);
1844 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1845 
1846 out:
1847 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1848 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1849 err_out:
1850 	kfree(pcaps);
1851 	return err;
1852 }
1853 
1854 /**
1855  * ice_configure_phy - configure PHY
1856  * @vsi: VSI of PHY
1857  *
1858  * Set the PHY configuration. If the current PHY configuration is the same as
1859  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1860  * configure the based get PHY capabilities for topology with media.
1861  */
1862 static int ice_configure_phy(struct ice_vsi *vsi)
1863 {
1864 	struct device *dev = ice_pf_to_dev(vsi->back);
1865 	struct ice_aqc_get_phy_caps_data *pcaps;
1866 	struct ice_aqc_set_phy_cfg_data *cfg;
1867 	struct ice_port_info *pi;
1868 	enum ice_status status;
1869 	int err = 0;
1870 
1871 	pi = vsi->port_info;
1872 	if (!pi)
1873 		return -EINVAL;
1874 
1875 	/* Ensure we have media as we cannot configure a medialess port */
1876 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1877 		return -EPERM;
1878 
1879 	ice_print_topo_conflict(vsi);
1880 
1881 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1882 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1883 		return -EPERM;
1884 
1885 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1886 		return ice_force_phys_link_state(vsi, true);
1887 
1888 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1889 	if (!pcaps)
1890 		return -ENOMEM;
1891 
1892 	/* Get current PHY config */
1893 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1894 				     NULL);
1895 	if (status) {
1896 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1897 			vsi->vsi_num, ice_stat_str(status));
1898 		err = -EIO;
1899 		goto done;
1900 	}
1901 
1902 	/* If PHY enable link is configured and configuration has not changed,
1903 	 * there's nothing to do
1904 	 */
1905 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1906 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1907 		goto done;
1908 
1909 	/* Use PHY topology as baseline for configuration */
1910 	memset(pcaps, 0, sizeof(*pcaps));
1911 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1912 				     NULL);
1913 	if (status) {
1914 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1915 			vsi->vsi_num, ice_stat_str(status));
1916 		err = -EIO;
1917 		goto done;
1918 	}
1919 
1920 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1921 	if (!cfg) {
1922 		err = -ENOMEM;
1923 		goto done;
1924 	}
1925 
1926 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1927 
1928 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1929 	 * ice_init_phy_user_cfg_ldo.
1930 	 */
1931 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1932 			       vsi->back->state)) {
1933 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1934 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1935 	} else {
1936 		u64 phy_low = 0, phy_high = 0;
1937 
1938 		ice_update_phy_type(&phy_low, &phy_high,
1939 				    pi->phy.curr_user_speed_req);
1940 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1941 		cfg->phy_type_high = pcaps->phy_type_high &
1942 				     cpu_to_le64(phy_high);
1943 	}
1944 
1945 	/* Can't provide what was requested; use PHY capabilities */
1946 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1947 		cfg->phy_type_low = pcaps->phy_type_low;
1948 		cfg->phy_type_high = pcaps->phy_type_high;
1949 	}
1950 
1951 	/* FEC */
1952 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1953 
1954 	/* Can't provide what was requested; use PHY capabilities */
1955 	if (cfg->link_fec_opt !=
1956 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1957 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1958 		cfg->link_fec_opt = pcaps->link_fec_options;
1959 	}
1960 
1961 	/* Flow Control - always supported; no need to check against
1962 	 * capabilities
1963 	 */
1964 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1965 
1966 	/* Enable link and link update */
1967 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1968 
1969 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1970 	if (status) {
1971 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1972 			vsi->vsi_num, ice_stat_str(status));
1973 		err = -EIO;
1974 	}
1975 
1976 	kfree(cfg);
1977 done:
1978 	kfree(pcaps);
1979 	return err;
1980 }
1981 
1982 /**
1983  * ice_check_media_subtask - Check for media
1984  * @pf: pointer to PF struct
1985  *
1986  * If media is available, then initialize PHY user configuration if it is not
1987  * been, and configure the PHY if the interface is up.
1988  */
1989 static void ice_check_media_subtask(struct ice_pf *pf)
1990 {
1991 	struct ice_port_info *pi;
1992 	struct ice_vsi *vsi;
1993 	int err;
1994 
1995 	/* No need to check for media if it's already present */
1996 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1997 		return;
1998 
1999 	vsi = ice_get_main_vsi(pf);
2000 	if (!vsi)
2001 		return;
2002 
2003 	/* Refresh link info and check if media is present */
2004 	pi = vsi->port_info;
2005 	err = ice_update_link_info(pi);
2006 	if (err)
2007 		return;
2008 
2009 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2010 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2011 			ice_init_phy_user_cfg(pi);
2012 
2013 		/* PHY settings are reset on media insertion, reconfigure
2014 		 * PHY to preserve settings.
2015 		 */
2016 		if (test_bit(__ICE_DOWN, vsi->state) &&
2017 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2018 			return;
2019 
2020 		err = ice_configure_phy(vsi);
2021 		if (!err)
2022 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2023 
2024 		/* A Link Status Event will be generated; the event handler
2025 		 * will complete bringing the interface up
2026 		 */
2027 	}
2028 }
2029 
2030 /**
2031  * ice_service_task - manage and run subtasks
2032  * @work: pointer to work_struct contained by the PF struct
2033  */
2034 static void ice_service_task(struct work_struct *work)
2035 {
2036 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2037 	unsigned long start_time = jiffies;
2038 
2039 	/* subtasks */
2040 
2041 	/* process reset requests first */
2042 	ice_reset_subtask(pf);
2043 
2044 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2045 	if (ice_is_reset_in_progress(pf->state) ||
2046 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2047 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2048 		ice_service_task_complete(pf);
2049 		return;
2050 	}
2051 
2052 	ice_clean_adminq_subtask(pf);
2053 	ice_check_media_subtask(pf);
2054 	ice_check_for_hang_subtask(pf);
2055 	ice_sync_fltr_subtask(pf);
2056 	ice_handle_mdd_event(pf);
2057 	ice_watchdog_subtask(pf);
2058 
2059 	if (ice_is_safe_mode(pf)) {
2060 		ice_service_task_complete(pf);
2061 		return;
2062 	}
2063 
2064 	ice_process_vflr_event(pf);
2065 	ice_clean_mailboxq_subtask(pf);
2066 	ice_sync_arfs_fltrs(pf);
2067 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2068 	ice_service_task_complete(pf);
2069 
2070 	/* If the tasks have taken longer than one service timer period
2071 	 * or there is more work to be done, reset the service timer to
2072 	 * schedule the service task now.
2073 	 */
2074 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2075 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2076 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2077 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2078 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2079 		mod_timer(&pf->serv_tmr, jiffies);
2080 }
2081 
2082 /**
2083  * ice_set_ctrlq_len - helper function to set controlq length
2084  * @hw: pointer to the HW instance
2085  */
2086 static void ice_set_ctrlq_len(struct ice_hw *hw)
2087 {
2088 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2089 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2090 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2091 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2092 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2093 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2094 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2095 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2096 }
2097 
2098 /**
2099  * ice_schedule_reset - schedule a reset
2100  * @pf: board private structure
2101  * @reset: reset being requested
2102  */
2103 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2104 {
2105 	struct device *dev = ice_pf_to_dev(pf);
2106 
2107 	/* bail out if earlier reset has failed */
2108 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2109 		dev_dbg(dev, "earlier reset has failed\n");
2110 		return -EIO;
2111 	}
2112 	/* bail if reset/recovery already in progress */
2113 	if (ice_is_reset_in_progress(pf->state)) {
2114 		dev_dbg(dev, "Reset already in progress\n");
2115 		return -EBUSY;
2116 	}
2117 
2118 	switch (reset) {
2119 	case ICE_RESET_PFR:
2120 		set_bit(__ICE_PFR_REQ, pf->state);
2121 		break;
2122 	case ICE_RESET_CORER:
2123 		set_bit(__ICE_CORER_REQ, pf->state);
2124 		break;
2125 	case ICE_RESET_GLOBR:
2126 		set_bit(__ICE_GLOBR_REQ, pf->state);
2127 		break;
2128 	default:
2129 		return -EINVAL;
2130 	}
2131 
2132 	ice_service_task_schedule(pf);
2133 	return 0;
2134 }
2135 
2136 /**
2137  * ice_irq_affinity_notify - Callback for affinity changes
2138  * @notify: context as to what irq was changed
2139  * @mask: the new affinity mask
2140  *
2141  * This is a callback function used by the irq_set_affinity_notifier function
2142  * so that we may register to receive changes to the irq affinity masks.
2143  */
2144 static void
2145 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2146 			const cpumask_t *mask)
2147 {
2148 	struct ice_q_vector *q_vector =
2149 		container_of(notify, struct ice_q_vector, affinity_notify);
2150 
2151 	cpumask_copy(&q_vector->affinity_mask, mask);
2152 }
2153 
2154 /**
2155  * ice_irq_affinity_release - Callback for affinity notifier release
2156  * @ref: internal core kernel usage
2157  *
2158  * This is a callback function used by the irq_set_affinity_notifier function
2159  * to inform the current notification subscriber that they will no longer
2160  * receive notifications.
2161  */
2162 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2163 
2164 /**
2165  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2166  * @vsi: the VSI being configured
2167  */
2168 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2169 {
2170 	struct ice_hw *hw = &vsi->back->hw;
2171 	int i;
2172 
2173 	ice_for_each_q_vector(vsi, i)
2174 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2175 
2176 	ice_flush(hw);
2177 	return 0;
2178 }
2179 
2180 /**
2181  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2182  * @vsi: the VSI being configured
2183  * @basename: name for the vector
2184  */
2185 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2186 {
2187 	int q_vectors = vsi->num_q_vectors;
2188 	struct ice_pf *pf = vsi->back;
2189 	int base = vsi->base_vector;
2190 	struct device *dev;
2191 	int rx_int_idx = 0;
2192 	int tx_int_idx = 0;
2193 	int vector, err;
2194 	int irq_num;
2195 
2196 	dev = ice_pf_to_dev(pf);
2197 	for (vector = 0; vector < q_vectors; vector++) {
2198 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2199 
2200 		irq_num = pf->msix_entries[base + vector].vector;
2201 
2202 		if (q_vector->tx.ring && q_vector->rx.ring) {
2203 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2204 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2205 			tx_int_idx++;
2206 		} else if (q_vector->rx.ring) {
2207 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2208 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2209 		} else if (q_vector->tx.ring) {
2210 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2211 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2212 		} else {
2213 			/* skip this unused q_vector */
2214 			continue;
2215 		}
2216 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2217 				       q_vector->name, q_vector);
2218 		if (err) {
2219 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2220 				   err);
2221 			goto free_q_irqs;
2222 		}
2223 
2224 		/* register for affinity change notifications */
2225 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2226 			struct irq_affinity_notify *affinity_notify;
2227 
2228 			affinity_notify = &q_vector->affinity_notify;
2229 			affinity_notify->notify = ice_irq_affinity_notify;
2230 			affinity_notify->release = ice_irq_affinity_release;
2231 			irq_set_affinity_notifier(irq_num, affinity_notify);
2232 		}
2233 
2234 		/* assign the mask for this irq */
2235 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2236 	}
2237 
2238 	vsi->irqs_ready = true;
2239 	return 0;
2240 
2241 free_q_irqs:
2242 	while (vector) {
2243 		vector--;
2244 		irq_num = pf->msix_entries[base + vector].vector;
2245 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2246 			irq_set_affinity_notifier(irq_num, NULL);
2247 		irq_set_affinity_hint(irq_num, NULL);
2248 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2249 	}
2250 	return err;
2251 }
2252 
2253 /**
2254  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2255  * @vsi: VSI to setup Tx rings used by XDP
2256  *
2257  * Return 0 on success and negative value on error
2258  */
2259 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2260 {
2261 	struct device *dev = ice_pf_to_dev(vsi->back);
2262 	int i;
2263 
2264 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2265 		u16 xdp_q_idx = vsi->alloc_txq + i;
2266 		struct ice_ring *xdp_ring;
2267 
2268 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2269 
2270 		if (!xdp_ring)
2271 			goto free_xdp_rings;
2272 
2273 		xdp_ring->q_index = xdp_q_idx;
2274 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2275 		xdp_ring->ring_active = false;
2276 		xdp_ring->vsi = vsi;
2277 		xdp_ring->netdev = NULL;
2278 		xdp_ring->dev = dev;
2279 		xdp_ring->count = vsi->num_tx_desc;
2280 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2281 		if (ice_setup_tx_ring(xdp_ring))
2282 			goto free_xdp_rings;
2283 		ice_set_ring_xdp(xdp_ring);
2284 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2285 	}
2286 
2287 	return 0;
2288 
2289 free_xdp_rings:
2290 	for (; i >= 0; i--)
2291 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2292 			ice_free_tx_ring(vsi->xdp_rings[i]);
2293 	return -ENOMEM;
2294 }
2295 
2296 /**
2297  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2298  * @vsi: VSI to set the bpf prog on
2299  * @prog: the bpf prog pointer
2300  */
2301 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2302 {
2303 	struct bpf_prog *old_prog;
2304 	int i;
2305 
2306 	old_prog = xchg(&vsi->xdp_prog, prog);
2307 	if (old_prog)
2308 		bpf_prog_put(old_prog);
2309 
2310 	ice_for_each_rxq(vsi, i)
2311 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2312 }
2313 
2314 /**
2315  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2316  * @vsi: VSI to bring up Tx rings used by XDP
2317  * @prog: bpf program that will be assigned to VSI
2318  *
2319  * Return 0 on success and negative value on error
2320  */
2321 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2322 {
2323 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2324 	int xdp_rings_rem = vsi->num_xdp_txq;
2325 	struct ice_pf *pf = vsi->back;
2326 	struct ice_qs_cfg xdp_qs_cfg = {
2327 		.qs_mutex = &pf->avail_q_mutex,
2328 		.pf_map = pf->avail_txqs,
2329 		.pf_map_size = pf->max_pf_txqs,
2330 		.q_count = vsi->num_xdp_txq,
2331 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2332 		.vsi_map = vsi->txq_map,
2333 		.vsi_map_offset = vsi->alloc_txq,
2334 		.mapping_mode = ICE_VSI_MAP_CONTIG
2335 	};
2336 	enum ice_status status;
2337 	struct device *dev;
2338 	int i, v_idx;
2339 
2340 	dev = ice_pf_to_dev(pf);
2341 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2342 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2343 	if (!vsi->xdp_rings)
2344 		return -ENOMEM;
2345 
2346 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2347 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2348 		goto err_map_xdp;
2349 
2350 	if (ice_xdp_alloc_setup_rings(vsi))
2351 		goto clear_xdp_rings;
2352 
2353 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2354 	ice_for_each_q_vector(vsi, v_idx) {
2355 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2356 		int xdp_rings_per_v, q_id, q_base;
2357 
2358 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2359 					       vsi->num_q_vectors - v_idx);
2360 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2361 
2362 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2363 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2364 
2365 			xdp_ring->q_vector = q_vector;
2366 			xdp_ring->next = q_vector->tx.ring;
2367 			q_vector->tx.ring = xdp_ring;
2368 		}
2369 		xdp_rings_rem -= xdp_rings_per_v;
2370 	}
2371 
2372 	/* omit the scheduler update if in reset path; XDP queues will be
2373 	 * taken into account at the end of ice_vsi_rebuild, where
2374 	 * ice_cfg_vsi_lan is being called
2375 	 */
2376 	if (ice_is_reset_in_progress(pf->state))
2377 		return 0;
2378 
2379 	/* tell the Tx scheduler that right now we have
2380 	 * additional queues
2381 	 */
2382 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2383 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2384 
2385 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2386 				 max_txqs);
2387 	if (status) {
2388 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2389 			ice_stat_str(status));
2390 		goto clear_xdp_rings;
2391 	}
2392 	ice_vsi_assign_bpf_prog(vsi, prog);
2393 
2394 	return 0;
2395 clear_xdp_rings:
2396 	for (i = 0; i < vsi->num_xdp_txq; i++)
2397 		if (vsi->xdp_rings[i]) {
2398 			kfree_rcu(vsi->xdp_rings[i], rcu);
2399 			vsi->xdp_rings[i] = NULL;
2400 		}
2401 
2402 err_map_xdp:
2403 	mutex_lock(&pf->avail_q_mutex);
2404 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2405 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2406 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2407 	}
2408 	mutex_unlock(&pf->avail_q_mutex);
2409 
2410 	devm_kfree(dev, vsi->xdp_rings);
2411 	return -ENOMEM;
2412 }
2413 
2414 /**
2415  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2416  * @vsi: VSI to remove XDP rings
2417  *
2418  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2419  * resources
2420  */
2421 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2422 {
2423 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2424 	struct ice_pf *pf = vsi->back;
2425 	int i, v_idx;
2426 
2427 	/* q_vectors are freed in reset path so there's no point in detaching
2428 	 * rings; in case of rebuild being triggered not from reset bits
2429 	 * in pf->state won't be set, so additionally check first q_vector
2430 	 * against NULL
2431 	 */
2432 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2433 		goto free_qmap;
2434 
2435 	ice_for_each_q_vector(vsi, v_idx) {
2436 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2437 		struct ice_ring *ring;
2438 
2439 		ice_for_each_ring(ring, q_vector->tx)
2440 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2441 				break;
2442 
2443 		/* restore the value of last node prior to XDP setup */
2444 		q_vector->tx.ring = ring;
2445 	}
2446 
2447 free_qmap:
2448 	mutex_lock(&pf->avail_q_mutex);
2449 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2450 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2451 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2452 	}
2453 	mutex_unlock(&pf->avail_q_mutex);
2454 
2455 	for (i = 0; i < vsi->num_xdp_txq; i++)
2456 		if (vsi->xdp_rings[i]) {
2457 			if (vsi->xdp_rings[i]->desc)
2458 				ice_free_tx_ring(vsi->xdp_rings[i]);
2459 			kfree_rcu(vsi->xdp_rings[i], rcu);
2460 			vsi->xdp_rings[i] = NULL;
2461 		}
2462 
2463 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2464 	vsi->xdp_rings = NULL;
2465 
2466 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2467 		return 0;
2468 
2469 	ice_vsi_assign_bpf_prog(vsi, NULL);
2470 
2471 	/* notify Tx scheduler that we destroyed XDP queues and bring
2472 	 * back the old number of child nodes
2473 	 */
2474 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2475 		max_txqs[i] = vsi->num_txq;
2476 
2477 	/* change number of XDP Tx queues to 0 */
2478 	vsi->num_xdp_txq = 0;
2479 
2480 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2481 			       max_txqs);
2482 }
2483 
2484 /**
2485  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2486  * @vsi: VSI to setup XDP for
2487  * @prog: XDP program
2488  * @extack: netlink extended ack
2489  */
2490 static int
2491 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2492 		   struct netlink_ext_ack *extack)
2493 {
2494 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2495 	bool if_running = netif_running(vsi->netdev);
2496 	int ret = 0, xdp_ring_err = 0;
2497 
2498 	if (frame_size > vsi->rx_buf_len) {
2499 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2500 		return -EOPNOTSUPP;
2501 	}
2502 
2503 	/* need to stop netdev while setting up the program for Rx rings */
2504 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2505 		ret = ice_down(vsi);
2506 		if (ret) {
2507 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2508 			return ret;
2509 		}
2510 	}
2511 
2512 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2513 		vsi->num_xdp_txq = vsi->alloc_rxq;
2514 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2515 		if (xdp_ring_err)
2516 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2517 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2518 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2519 		if (xdp_ring_err)
2520 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2521 	} else {
2522 		ice_vsi_assign_bpf_prog(vsi, prog);
2523 	}
2524 
2525 	if (if_running)
2526 		ret = ice_up(vsi);
2527 
2528 	if (!ret && prog && vsi->xsk_pools) {
2529 		int i;
2530 
2531 		ice_for_each_rxq(vsi, i) {
2532 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2533 
2534 			if (rx_ring->xsk_pool)
2535 				napi_schedule(&rx_ring->q_vector->napi);
2536 		}
2537 	}
2538 
2539 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2540 }
2541 
2542 /**
2543  * ice_xdp - implements XDP handler
2544  * @dev: netdevice
2545  * @xdp: XDP command
2546  */
2547 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2548 {
2549 	struct ice_netdev_priv *np = netdev_priv(dev);
2550 	struct ice_vsi *vsi = np->vsi;
2551 
2552 	if (vsi->type != ICE_VSI_PF) {
2553 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2554 		return -EINVAL;
2555 	}
2556 
2557 	switch (xdp->command) {
2558 	case XDP_SETUP_PROG:
2559 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2560 	case XDP_SETUP_XSK_POOL:
2561 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2562 					  xdp->xsk.queue_id);
2563 	default:
2564 		return -EINVAL;
2565 	}
2566 }
2567 
2568 /**
2569  * ice_ena_misc_vector - enable the non-queue interrupts
2570  * @pf: board private structure
2571  */
2572 static void ice_ena_misc_vector(struct ice_pf *pf)
2573 {
2574 	struct ice_hw *hw = &pf->hw;
2575 	u32 val;
2576 
2577 	/* Disable anti-spoof detection interrupt to prevent spurious event
2578 	 * interrupts during a function reset. Anti-spoof functionally is
2579 	 * still supported.
2580 	 */
2581 	val = rd32(hw, GL_MDCK_TX_TDPU);
2582 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2583 	wr32(hw, GL_MDCK_TX_TDPU, val);
2584 
2585 	/* clear things first */
2586 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2587 	rd32(hw, PFINT_OICR);		/* read to clear */
2588 
2589 	val = (PFINT_OICR_ECC_ERR_M |
2590 	       PFINT_OICR_MAL_DETECT_M |
2591 	       PFINT_OICR_GRST_M |
2592 	       PFINT_OICR_PCI_EXCEPTION_M |
2593 	       PFINT_OICR_VFLR_M |
2594 	       PFINT_OICR_HMC_ERR_M |
2595 	       PFINT_OICR_PE_CRITERR_M);
2596 
2597 	wr32(hw, PFINT_OICR_ENA, val);
2598 
2599 	/* SW_ITR_IDX = 0, but don't change INTENA */
2600 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2601 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2602 }
2603 
2604 /**
2605  * ice_misc_intr - misc interrupt handler
2606  * @irq: interrupt number
2607  * @data: pointer to a q_vector
2608  */
2609 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2610 {
2611 	struct ice_pf *pf = (struct ice_pf *)data;
2612 	struct ice_hw *hw = &pf->hw;
2613 	irqreturn_t ret = IRQ_NONE;
2614 	struct device *dev;
2615 	u32 oicr, ena_mask;
2616 
2617 	dev = ice_pf_to_dev(pf);
2618 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2619 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2620 
2621 	oicr = rd32(hw, PFINT_OICR);
2622 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2623 
2624 	if (oicr & PFINT_OICR_SWINT_M) {
2625 		ena_mask &= ~PFINT_OICR_SWINT_M;
2626 		pf->sw_int_count++;
2627 	}
2628 
2629 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2630 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2631 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2632 	}
2633 	if (oicr & PFINT_OICR_VFLR_M) {
2634 		/* disable any further VFLR event notifications */
2635 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2636 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2637 
2638 			reg &= ~PFINT_OICR_VFLR_M;
2639 			wr32(hw, PFINT_OICR_ENA, reg);
2640 		} else {
2641 			ena_mask &= ~PFINT_OICR_VFLR_M;
2642 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2643 		}
2644 	}
2645 
2646 	if (oicr & PFINT_OICR_GRST_M) {
2647 		u32 reset;
2648 
2649 		/* we have a reset warning */
2650 		ena_mask &= ~PFINT_OICR_GRST_M;
2651 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2652 			GLGEN_RSTAT_RESET_TYPE_S;
2653 
2654 		if (reset == ICE_RESET_CORER)
2655 			pf->corer_count++;
2656 		else if (reset == ICE_RESET_GLOBR)
2657 			pf->globr_count++;
2658 		else if (reset == ICE_RESET_EMPR)
2659 			pf->empr_count++;
2660 		else
2661 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2662 
2663 		/* If a reset cycle isn't already in progress, we set a bit in
2664 		 * pf->state so that the service task can start a reset/rebuild.
2665 		 * We also make note of which reset happened so that peer
2666 		 * devices/drivers can be informed.
2667 		 */
2668 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2669 			if (reset == ICE_RESET_CORER)
2670 				set_bit(__ICE_CORER_RECV, pf->state);
2671 			else if (reset == ICE_RESET_GLOBR)
2672 				set_bit(__ICE_GLOBR_RECV, pf->state);
2673 			else
2674 				set_bit(__ICE_EMPR_RECV, pf->state);
2675 
2676 			/* There are couple of different bits at play here.
2677 			 * hw->reset_ongoing indicates whether the hardware is
2678 			 * in reset. This is set to true when a reset interrupt
2679 			 * is received and set back to false after the driver
2680 			 * has determined that the hardware is out of reset.
2681 			 *
2682 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2683 			 * that a post reset rebuild is required before the
2684 			 * driver is operational again. This is set above.
2685 			 *
2686 			 * As this is the start of the reset/rebuild cycle, set
2687 			 * both to indicate that.
2688 			 */
2689 			hw->reset_ongoing = true;
2690 		}
2691 	}
2692 
2693 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2694 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2695 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2696 			rd32(hw, PFHMC_ERRORINFO),
2697 			rd32(hw, PFHMC_ERRORDATA));
2698 	}
2699 
2700 	/* Report any remaining unexpected interrupts */
2701 	oicr &= ena_mask;
2702 	if (oicr) {
2703 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2704 		/* If a critical error is pending there is no choice but to
2705 		 * reset the device.
2706 		 */
2707 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2708 			    PFINT_OICR_PCI_EXCEPTION_M |
2709 			    PFINT_OICR_ECC_ERR_M)) {
2710 			set_bit(__ICE_PFR_REQ, pf->state);
2711 			ice_service_task_schedule(pf);
2712 		}
2713 	}
2714 	ret = IRQ_HANDLED;
2715 
2716 	ice_service_task_schedule(pf);
2717 	ice_irq_dynamic_ena(hw, NULL, NULL);
2718 
2719 	return ret;
2720 }
2721 
2722 /**
2723  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2724  * @hw: pointer to HW structure
2725  */
2726 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2727 {
2728 	/* disable Admin queue Interrupt causes */
2729 	wr32(hw, PFINT_FW_CTL,
2730 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2731 
2732 	/* disable Mailbox queue Interrupt causes */
2733 	wr32(hw, PFINT_MBX_CTL,
2734 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2735 
2736 	/* disable Control queue Interrupt causes */
2737 	wr32(hw, PFINT_OICR_CTL,
2738 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2739 
2740 	ice_flush(hw);
2741 }
2742 
2743 /**
2744  * ice_free_irq_msix_misc - Unroll misc vector setup
2745  * @pf: board private structure
2746  */
2747 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2748 {
2749 	struct ice_hw *hw = &pf->hw;
2750 
2751 	ice_dis_ctrlq_interrupts(hw);
2752 
2753 	/* disable OICR interrupt */
2754 	wr32(hw, PFINT_OICR_ENA, 0);
2755 	ice_flush(hw);
2756 
2757 	if (pf->msix_entries) {
2758 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2759 		devm_free_irq(ice_pf_to_dev(pf),
2760 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2761 	}
2762 
2763 	pf->num_avail_sw_msix += 1;
2764 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2765 }
2766 
2767 /**
2768  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2769  * @hw: pointer to HW structure
2770  * @reg_idx: HW vector index to associate the control queue interrupts with
2771  */
2772 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2773 {
2774 	u32 val;
2775 
2776 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2777 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2778 	wr32(hw, PFINT_OICR_CTL, val);
2779 
2780 	/* enable Admin queue Interrupt causes */
2781 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2782 	       PFINT_FW_CTL_CAUSE_ENA_M);
2783 	wr32(hw, PFINT_FW_CTL, val);
2784 
2785 	/* enable Mailbox queue Interrupt causes */
2786 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2787 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2788 	wr32(hw, PFINT_MBX_CTL, val);
2789 
2790 	ice_flush(hw);
2791 }
2792 
2793 /**
2794  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2795  * @pf: board private structure
2796  *
2797  * This sets up the handler for MSIX 0, which is used to manage the
2798  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2799  * when in MSI or Legacy interrupt mode.
2800  */
2801 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2802 {
2803 	struct device *dev = ice_pf_to_dev(pf);
2804 	struct ice_hw *hw = &pf->hw;
2805 	int oicr_idx, err = 0;
2806 
2807 	if (!pf->int_name[0])
2808 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2809 			 dev_driver_string(dev), dev_name(dev));
2810 
2811 	/* Do not request IRQ but do enable OICR interrupt since settings are
2812 	 * lost during reset. Note that this function is called only during
2813 	 * rebuild path and not while reset is in progress.
2814 	 */
2815 	if (ice_is_reset_in_progress(pf->state))
2816 		goto skip_req_irq;
2817 
2818 	/* reserve one vector in irq_tracker for misc interrupts */
2819 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2820 	if (oicr_idx < 0)
2821 		return oicr_idx;
2822 
2823 	pf->num_avail_sw_msix -= 1;
2824 	pf->oicr_idx = (u16)oicr_idx;
2825 
2826 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2827 			       ice_misc_intr, 0, pf->int_name, pf);
2828 	if (err) {
2829 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2830 			pf->int_name, err);
2831 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2832 		pf->num_avail_sw_msix += 1;
2833 		return err;
2834 	}
2835 
2836 skip_req_irq:
2837 	ice_ena_misc_vector(pf);
2838 
2839 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2840 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2841 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2842 
2843 	ice_flush(hw);
2844 	ice_irq_dynamic_ena(hw, NULL, NULL);
2845 
2846 	return 0;
2847 }
2848 
2849 /**
2850  * ice_napi_add - register NAPI handler for the VSI
2851  * @vsi: VSI for which NAPI handler is to be registered
2852  *
2853  * This function is only called in the driver's load path. Registering the NAPI
2854  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2855  * reset/rebuild, etc.)
2856  */
2857 static void ice_napi_add(struct ice_vsi *vsi)
2858 {
2859 	int v_idx;
2860 
2861 	if (!vsi->netdev)
2862 		return;
2863 
2864 	ice_for_each_q_vector(vsi, v_idx)
2865 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2866 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2867 }
2868 
2869 /**
2870  * ice_set_ops - set netdev and ethtools ops for the given netdev
2871  * @netdev: netdev instance
2872  */
2873 static void ice_set_ops(struct net_device *netdev)
2874 {
2875 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2876 
2877 	if (ice_is_safe_mode(pf)) {
2878 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2879 		ice_set_ethtool_safe_mode_ops(netdev);
2880 		return;
2881 	}
2882 
2883 	netdev->netdev_ops = &ice_netdev_ops;
2884 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2885 	ice_set_ethtool_ops(netdev);
2886 }
2887 
2888 /**
2889  * ice_set_netdev_features - set features for the given netdev
2890  * @netdev: netdev instance
2891  */
2892 static void ice_set_netdev_features(struct net_device *netdev)
2893 {
2894 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2895 	netdev_features_t csumo_features;
2896 	netdev_features_t vlano_features;
2897 	netdev_features_t dflt_features;
2898 	netdev_features_t tso_features;
2899 
2900 	if (ice_is_safe_mode(pf)) {
2901 		/* safe mode */
2902 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2903 		netdev->hw_features = netdev->features;
2904 		return;
2905 	}
2906 
2907 	dflt_features = NETIF_F_SG	|
2908 			NETIF_F_HIGHDMA	|
2909 			NETIF_F_NTUPLE	|
2910 			NETIF_F_RXHASH;
2911 
2912 	csumo_features = NETIF_F_RXCSUM	  |
2913 			 NETIF_F_IP_CSUM  |
2914 			 NETIF_F_SCTP_CRC |
2915 			 NETIF_F_IPV6_CSUM;
2916 
2917 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2918 			 NETIF_F_HW_VLAN_CTAG_TX     |
2919 			 NETIF_F_HW_VLAN_CTAG_RX;
2920 
2921 	tso_features = NETIF_F_TSO			|
2922 		       NETIF_F_TSO_ECN			|
2923 		       NETIF_F_TSO6			|
2924 		       NETIF_F_GSO_GRE			|
2925 		       NETIF_F_GSO_UDP_TUNNEL		|
2926 		       NETIF_F_GSO_GRE_CSUM		|
2927 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2928 		       NETIF_F_GSO_PARTIAL		|
2929 		       NETIF_F_GSO_IPXIP4		|
2930 		       NETIF_F_GSO_IPXIP6		|
2931 		       NETIF_F_GSO_UDP_L4;
2932 
2933 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2934 					NETIF_F_GSO_GRE_CSUM;
2935 	/* set features that user can change */
2936 	netdev->hw_features = dflt_features | csumo_features |
2937 			      vlano_features | tso_features;
2938 
2939 	/* add support for HW_CSUM on packets with MPLS header */
2940 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2941 
2942 	/* enable features */
2943 	netdev->features |= netdev->hw_features;
2944 	/* encap and VLAN devices inherit default, csumo and tso features */
2945 	netdev->hw_enc_features |= dflt_features | csumo_features |
2946 				   tso_features;
2947 	netdev->vlan_features |= dflt_features | csumo_features |
2948 				 tso_features;
2949 }
2950 
2951 /**
2952  * ice_cfg_netdev - Allocate, configure and register a netdev
2953  * @vsi: the VSI associated with the new netdev
2954  *
2955  * Returns 0 on success, negative value on failure
2956  */
2957 static int ice_cfg_netdev(struct ice_vsi *vsi)
2958 {
2959 	struct ice_pf *pf = vsi->back;
2960 	struct ice_netdev_priv *np;
2961 	struct net_device *netdev;
2962 	u8 mac_addr[ETH_ALEN];
2963 	int err;
2964 
2965 	err = ice_devlink_create_port(vsi);
2966 	if (err)
2967 		return err;
2968 
2969 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2970 				    vsi->alloc_rxq);
2971 	if (!netdev) {
2972 		err = -ENOMEM;
2973 		goto err_destroy_devlink_port;
2974 	}
2975 
2976 	vsi->netdev = netdev;
2977 	np = netdev_priv(netdev);
2978 	np->vsi = vsi;
2979 
2980 	ice_set_netdev_features(netdev);
2981 
2982 	ice_set_ops(netdev);
2983 
2984 	if (vsi->type == ICE_VSI_PF) {
2985 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2986 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2987 		ether_addr_copy(netdev->dev_addr, mac_addr);
2988 		ether_addr_copy(netdev->perm_addr, mac_addr);
2989 	}
2990 
2991 	netdev->priv_flags |= IFF_UNICAST_FLT;
2992 
2993 	/* Setup netdev TC information */
2994 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2995 
2996 	/* setup watchdog timeout value to be 5 second */
2997 	netdev->watchdog_timeo = 5 * HZ;
2998 
2999 	netdev->min_mtu = ETH_MIN_MTU;
3000 	netdev->max_mtu = ICE_MAX_MTU;
3001 
3002 	err = register_netdev(vsi->netdev);
3003 	if (err)
3004 		goto err_free_netdev;
3005 
3006 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3007 
3008 	netif_carrier_off(vsi->netdev);
3009 
3010 	/* make sure transmit queues start off as stopped */
3011 	netif_tx_stop_all_queues(vsi->netdev);
3012 
3013 	return 0;
3014 
3015 err_free_netdev:
3016 	free_netdev(vsi->netdev);
3017 	vsi->netdev = NULL;
3018 err_destroy_devlink_port:
3019 	ice_devlink_destroy_port(vsi);
3020 	return err;
3021 }
3022 
3023 /**
3024  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3025  * @lut: Lookup table
3026  * @rss_table_size: Lookup table size
3027  * @rss_size: Range of queue number for hashing
3028  */
3029 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3030 {
3031 	u16 i;
3032 
3033 	for (i = 0; i < rss_table_size; i++)
3034 		lut[i] = i % rss_size;
3035 }
3036 
3037 /**
3038  * ice_pf_vsi_setup - Set up a PF VSI
3039  * @pf: board private structure
3040  * @pi: pointer to the port_info instance
3041  *
3042  * Returns pointer to the successfully allocated VSI software struct
3043  * on success, otherwise returns NULL on failure.
3044  */
3045 static struct ice_vsi *
3046 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3047 {
3048 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3049 }
3050 
3051 /**
3052  * ice_ctrl_vsi_setup - Set up a control VSI
3053  * @pf: board private structure
3054  * @pi: pointer to the port_info instance
3055  *
3056  * Returns pointer to the successfully allocated VSI software struct
3057  * on success, otherwise returns NULL on failure.
3058  */
3059 static struct ice_vsi *
3060 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3061 {
3062 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3063 }
3064 
3065 /**
3066  * ice_lb_vsi_setup - Set up a loopback VSI
3067  * @pf: board private structure
3068  * @pi: pointer to the port_info instance
3069  *
3070  * Returns pointer to the successfully allocated VSI software struct
3071  * on success, otherwise returns NULL on failure.
3072  */
3073 struct ice_vsi *
3074 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3075 {
3076 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3077 }
3078 
3079 /**
3080  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3081  * @netdev: network interface to be adjusted
3082  * @proto: unused protocol
3083  * @vid: VLAN ID to be added
3084  *
3085  * net_device_ops implementation for adding VLAN IDs
3086  */
3087 static int
3088 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3089 		    u16 vid)
3090 {
3091 	struct ice_netdev_priv *np = netdev_priv(netdev);
3092 	struct ice_vsi *vsi = np->vsi;
3093 	int ret;
3094 
3095 	if (vid >= VLAN_N_VID) {
3096 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3097 			   vid, VLAN_N_VID);
3098 		return -EINVAL;
3099 	}
3100 
3101 	if (vsi->info.pvid)
3102 		return -EINVAL;
3103 
3104 	/* VLAN 0 is added by default during load/reset */
3105 	if (!vid)
3106 		return 0;
3107 
3108 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3109 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3110 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3111 		if (ret)
3112 			return ret;
3113 	}
3114 
3115 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3116 	 * packets aren't pruned by the device's internal switch on Rx
3117 	 */
3118 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3119 	if (!ret) {
3120 		vsi->vlan_ena = true;
3121 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3122 	}
3123 
3124 	return ret;
3125 }
3126 
3127 /**
3128  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3129  * @netdev: network interface to be adjusted
3130  * @proto: unused protocol
3131  * @vid: VLAN ID to be removed
3132  *
3133  * net_device_ops implementation for removing VLAN IDs
3134  */
3135 static int
3136 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3137 		     u16 vid)
3138 {
3139 	struct ice_netdev_priv *np = netdev_priv(netdev);
3140 	struct ice_vsi *vsi = np->vsi;
3141 	int ret;
3142 
3143 	if (vsi->info.pvid)
3144 		return -EINVAL;
3145 
3146 	/* don't allow removal of VLAN 0 */
3147 	if (!vid)
3148 		return 0;
3149 
3150 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3151 	 * information
3152 	 */
3153 	ret = ice_vsi_kill_vlan(vsi, vid);
3154 	if (ret)
3155 		return ret;
3156 
3157 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3158 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3159 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3160 
3161 	vsi->vlan_ena = false;
3162 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3163 	return ret;
3164 }
3165 
3166 /**
3167  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3168  * @pf: board private structure
3169  *
3170  * Returns 0 on success, negative value on failure
3171  */
3172 static int ice_setup_pf_sw(struct ice_pf *pf)
3173 {
3174 	struct ice_vsi *vsi;
3175 	int status = 0;
3176 
3177 	if (ice_is_reset_in_progress(pf->state))
3178 		return -EBUSY;
3179 
3180 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3181 	if (!vsi)
3182 		return -ENOMEM;
3183 
3184 	status = ice_cfg_netdev(vsi);
3185 	if (status) {
3186 		status = -ENODEV;
3187 		goto unroll_vsi_setup;
3188 	}
3189 	/* netdev has to be configured before setting frame size */
3190 	ice_vsi_cfg_frame_size(vsi);
3191 
3192 	/* Setup DCB netlink interface */
3193 	ice_dcbnl_setup(vsi);
3194 
3195 	/* registering the NAPI handler requires both the queues and
3196 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3197 	 * and ice_cfg_netdev() respectively
3198 	 */
3199 	ice_napi_add(vsi);
3200 
3201 	status = ice_set_cpu_rx_rmap(vsi);
3202 	if (status) {
3203 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3204 			vsi->vsi_num, status);
3205 		status = -EINVAL;
3206 		goto unroll_napi_add;
3207 	}
3208 	status = ice_init_mac_fltr(pf);
3209 	if (status)
3210 		goto free_cpu_rx_map;
3211 
3212 	return status;
3213 
3214 free_cpu_rx_map:
3215 	ice_free_cpu_rx_rmap(vsi);
3216 
3217 unroll_napi_add:
3218 	if (vsi) {
3219 		ice_napi_del(vsi);
3220 		if (vsi->netdev) {
3221 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3222 				unregister_netdev(vsi->netdev);
3223 			free_netdev(vsi->netdev);
3224 			vsi->netdev = NULL;
3225 		}
3226 	}
3227 
3228 unroll_vsi_setup:
3229 	ice_vsi_release(vsi);
3230 	return status;
3231 }
3232 
3233 /**
3234  * ice_get_avail_q_count - Get count of queues in use
3235  * @pf_qmap: bitmap to get queue use count from
3236  * @lock: pointer to a mutex that protects access to pf_qmap
3237  * @size: size of the bitmap
3238  */
3239 static u16
3240 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3241 {
3242 	unsigned long bit;
3243 	u16 count = 0;
3244 
3245 	mutex_lock(lock);
3246 	for_each_clear_bit(bit, pf_qmap, size)
3247 		count++;
3248 	mutex_unlock(lock);
3249 
3250 	return count;
3251 }
3252 
3253 /**
3254  * ice_get_avail_txq_count - Get count of Tx queues in use
3255  * @pf: pointer to an ice_pf instance
3256  */
3257 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3258 {
3259 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3260 				     pf->max_pf_txqs);
3261 }
3262 
3263 /**
3264  * ice_get_avail_rxq_count - Get count of Rx queues in use
3265  * @pf: pointer to an ice_pf instance
3266  */
3267 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3268 {
3269 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3270 				     pf->max_pf_rxqs);
3271 }
3272 
3273 /**
3274  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3275  * @pf: board private structure to initialize
3276  */
3277 static void ice_deinit_pf(struct ice_pf *pf)
3278 {
3279 	ice_service_task_stop(pf);
3280 	mutex_destroy(&pf->sw_mutex);
3281 	mutex_destroy(&pf->tc_mutex);
3282 	mutex_destroy(&pf->avail_q_mutex);
3283 
3284 	if (pf->avail_txqs) {
3285 		bitmap_free(pf->avail_txqs);
3286 		pf->avail_txqs = NULL;
3287 	}
3288 
3289 	if (pf->avail_rxqs) {
3290 		bitmap_free(pf->avail_rxqs);
3291 		pf->avail_rxqs = NULL;
3292 	}
3293 }
3294 
3295 /**
3296  * ice_set_pf_caps - set PFs capability flags
3297  * @pf: pointer to the PF instance
3298  */
3299 static void ice_set_pf_caps(struct ice_pf *pf)
3300 {
3301 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3302 
3303 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3304 	if (func_caps->common_cap.dcb)
3305 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3306 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3307 	if (func_caps->common_cap.sr_iov_1_1) {
3308 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3309 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3310 					      ICE_MAX_VF_COUNT);
3311 	}
3312 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3313 	if (func_caps->common_cap.rss_table_size)
3314 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3315 
3316 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3317 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3318 		u16 unused;
3319 
3320 		/* ctrl_vsi_idx will be set to a valid value when flow director
3321 		 * is setup by ice_init_fdir
3322 		 */
3323 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3324 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3325 		/* force guaranteed filter pool for PF */
3326 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3327 				       func_caps->fd_fltr_guar);
3328 		/* force shared filter pool for PF */
3329 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3330 				       func_caps->fd_fltr_best_effort);
3331 	}
3332 
3333 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3334 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3335 }
3336 
3337 /**
3338  * ice_init_pf - Initialize general software structures (struct ice_pf)
3339  * @pf: board private structure to initialize
3340  */
3341 static int ice_init_pf(struct ice_pf *pf)
3342 {
3343 	ice_set_pf_caps(pf);
3344 
3345 	mutex_init(&pf->sw_mutex);
3346 	mutex_init(&pf->tc_mutex);
3347 
3348 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3349 	spin_lock_init(&pf->aq_wait_lock);
3350 	init_waitqueue_head(&pf->aq_wait_queue);
3351 
3352 	/* setup service timer and periodic service task */
3353 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3354 	pf->serv_tmr_period = HZ;
3355 	INIT_WORK(&pf->serv_task, ice_service_task);
3356 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3357 
3358 	mutex_init(&pf->avail_q_mutex);
3359 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3360 	if (!pf->avail_txqs)
3361 		return -ENOMEM;
3362 
3363 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3364 	if (!pf->avail_rxqs) {
3365 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3366 		pf->avail_txqs = NULL;
3367 		return -ENOMEM;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 /**
3374  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3375  * @pf: board private structure
3376  *
3377  * compute the number of MSIX vectors required (v_budget) and request from
3378  * the OS. Return the number of vectors reserved or negative on failure
3379  */
3380 static int ice_ena_msix_range(struct ice_pf *pf)
3381 {
3382 	struct device *dev = ice_pf_to_dev(pf);
3383 	int v_left, v_actual, v_budget = 0;
3384 	int needed, err, i;
3385 
3386 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3387 
3388 	/* reserve one vector for miscellaneous handler */
3389 	needed = 1;
3390 	if (v_left < needed)
3391 		goto no_hw_vecs_left_err;
3392 	v_budget += needed;
3393 	v_left -= needed;
3394 
3395 	/* reserve vectors for LAN traffic */
3396 	needed = min_t(int, num_online_cpus(), v_left);
3397 	if (v_left < needed)
3398 		goto no_hw_vecs_left_err;
3399 	pf->num_lan_msix = needed;
3400 	v_budget += needed;
3401 	v_left -= needed;
3402 
3403 	/* reserve one vector for flow director */
3404 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3405 		needed = ICE_FDIR_MSIX;
3406 		if (v_left < needed)
3407 			goto no_hw_vecs_left_err;
3408 		v_budget += needed;
3409 		v_left -= needed;
3410 	}
3411 
3412 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3413 					sizeof(*pf->msix_entries), GFP_KERNEL);
3414 
3415 	if (!pf->msix_entries) {
3416 		err = -ENOMEM;
3417 		goto exit_err;
3418 	}
3419 
3420 	for (i = 0; i < v_budget; i++)
3421 		pf->msix_entries[i].entry = i;
3422 
3423 	/* actually reserve the vectors */
3424 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3425 					 ICE_MIN_MSIX, v_budget);
3426 
3427 	if (v_actual < 0) {
3428 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3429 		err = v_actual;
3430 		goto msix_err;
3431 	}
3432 
3433 	if (v_actual < v_budget) {
3434 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3435 			 v_budget, v_actual);
3436 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3437 #define ICE_MIN_LAN_VECS 2
3438 #define ICE_MIN_RDMA_VECS 2
3439 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3440 
3441 		if (v_actual < ICE_MIN_LAN_VECS) {
3442 			/* error if we can't get minimum vectors */
3443 			pci_disable_msix(pf->pdev);
3444 			err = -ERANGE;
3445 			goto msix_err;
3446 		} else {
3447 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
3448 		}
3449 	}
3450 
3451 	return v_actual;
3452 
3453 msix_err:
3454 	devm_kfree(dev, pf->msix_entries);
3455 	goto exit_err;
3456 
3457 no_hw_vecs_left_err:
3458 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3459 		needed, v_left);
3460 	err = -ERANGE;
3461 exit_err:
3462 	pf->num_lan_msix = 0;
3463 	return err;
3464 }
3465 
3466 /**
3467  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3468  * @pf: board private structure
3469  */
3470 static void ice_dis_msix(struct ice_pf *pf)
3471 {
3472 	pci_disable_msix(pf->pdev);
3473 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3474 	pf->msix_entries = NULL;
3475 }
3476 
3477 /**
3478  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3479  * @pf: board private structure
3480  */
3481 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3482 {
3483 	ice_dis_msix(pf);
3484 
3485 	if (pf->irq_tracker) {
3486 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3487 		pf->irq_tracker = NULL;
3488 	}
3489 }
3490 
3491 /**
3492  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3493  * @pf: board private structure to initialize
3494  */
3495 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3496 {
3497 	int vectors;
3498 
3499 	vectors = ice_ena_msix_range(pf);
3500 
3501 	if (vectors < 0)
3502 		return vectors;
3503 
3504 	/* set up vector assignment tracking */
3505 	pf->irq_tracker =
3506 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3507 			     (sizeof(u16) * vectors), GFP_KERNEL);
3508 	if (!pf->irq_tracker) {
3509 		ice_dis_msix(pf);
3510 		return -ENOMEM;
3511 	}
3512 
3513 	/* populate SW interrupts pool with number of OS granted IRQs. */
3514 	pf->num_avail_sw_msix = (u16)vectors;
3515 	pf->irq_tracker->num_entries = (u16)vectors;
3516 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3517 
3518 	return 0;
3519 }
3520 
3521 /**
3522  * ice_is_wol_supported - get NVM state of WoL
3523  * @pf: board private structure
3524  *
3525  * Check if WoL is supported based on the HW configuration.
3526  * Returns true if NVM supports and enables WoL for this port, false otherwise
3527  */
3528 bool ice_is_wol_supported(struct ice_pf *pf)
3529 {
3530 	struct ice_hw *hw = &pf->hw;
3531 	u16 wol_ctrl;
3532 
3533 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3534 	 * word) indicates WoL is not supported on the corresponding PF ID.
3535 	 */
3536 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3537 		return false;
3538 
3539 	return !(BIT(hw->pf_id) & wol_ctrl);
3540 }
3541 
3542 /**
3543  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3544  * @vsi: VSI being changed
3545  * @new_rx: new number of Rx queues
3546  * @new_tx: new number of Tx queues
3547  *
3548  * Only change the number of queues if new_tx, or new_rx is non-0.
3549  *
3550  * Returns 0 on success.
3551  */
3552 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3553 {
3554 	struct ice_pf *pf = vsi->back;
3555 	int err = 0, timeout = 50;
3556 
3557 	if (!new_rx && !new_tx)
3558 		return -EINVAL;
3559 
3560 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3561 		timeout--;
3562 		if (!timeout)
3563 			return -EBUSY;
3564 		usleep_range(1000, 2000);
3565 	}
3566 
3567 	if (new_tx)
3568 		vsi->req_txq = (u16)new_tx;
3569 	if (new_rx)
3570 		vsi->req_rxq = (u16)new_rx;
3571 
3572 	/* set for the next time the netdev is started */
3573 	if (!netif_running(vsi->netdev)) {
3574 		ice_vsi_rebuild(vsi, false);
3575 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3576 		goto done;
3577 	}
3578 
3579 	ice_vsi_close(vsi);
3580 	ice_vsi_rebuild(vsi, false);
3581 	ice_pf_dcb_recfg(pf);
3582 	ice_vsi_open(vsi);
3583 done:
3584 	clear_bit(__ICE_CFG_BUSY, pf->state);
3585 	return err;
3586 }
3587 
3588 /**
3589  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3590  * @pf: PF to configure
3591  *
3592  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3593  * VSI can still Tx/Rx VLAN tagged packets.
3594  */
3595 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3596 {
3597 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3598 	struct ice_vsi_ctx *ctxt;
3599 	enum ice_status status;
3600 	struct ice_hw *hw;
3601 
3602 	if (!vsi)
3603 		return;
3604 
3605 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3606 	if (!ctxt)
3607 		return;
3608 
3609 	hw = &pf->hw;
3610 	ctxt->info = vsi->info;
3611 
3612 	ctxt->info.valid_sections =
3613 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3614 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3615 			    ICE_AQ_VSI_PROP_SW_VALID);
3616 
3617 	/* disable VLAN anti-spoof */
3618 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3619 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3620 
3621 	/* disable VLAN pruning and keep all other settings */
3622 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3623 
3624 	/* allow all VLANs on Tx and don't strip on Rx */
3625 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3626 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3627 
3628 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3629 	if (status) {
3630 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3631 			ice_stat_str(status),
3632 			ice_aq_str(hw->adminq.sq_last_status));
3633 	} else {
3634 		vsi->info.sec_flags = ctxt->info.sec_flags;
3635 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3636 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3637 	}
3638 
3639 	kfree(ctxt);
3640 }
3641 
3642 /**
3643  * ice_log_pkg_init - log result of DDP package load
3644  * @hw: pointer to hardware info
3645  * @status: status of package load
3646  */
3647 static void
3648 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3649 {
3650 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3651 	struct device *dev = ice_pf_to_dev(pf);
3652 
3653 	switch (*status) {
3654 	case ICE_SUCCESS:
3655 		/* The package download AdminQ command returned success because
3656 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3657 		 * already a package loaded on the device.
3658 		 */
3659 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3660 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3661 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3662 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3663 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3664 			    sizeof(hw->pkg_name))) {
3665 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3666 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3667 					 hw->active_pkg_name,
3668 					 hw->active_pkg_ver.major,
3669 					 hw->active_pkg_ver.minor,
3670 					 hw->active_pkg_ver.update,
3671 					 hw->active_pkg_ver.draft);
3672 			else
3673 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3674 					 hw->active_pkg_name,
3675 					 hw->active_pkg_ver.major,
3676 					 hw->active_pkg_ver.minor,
3677 					 hw->active_pkg_ver.update,
3678 					 hw->active_pkg_ver.draft);
3679 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3680 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3681 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3682 				hw->active_pkg_name,
3683 				hw->active_pkg_ver.major,
3684 				hw->active_pkg_ver.minor,
3685 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3686 			*status = ICE_ERR_NOT_SUPPORTED;
3687 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3688 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3689 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3690 				 hw->active_pkg_name,
3691 				 hw->active_pkg_ver.major,
3692 				 hw->active_pkg_ver.minor,
3693 				 hw->active_pkg_ver.update,
3694 				 hw->active_pkg_ver.draft,
3695 				 hw->pkg_name,
3696 				 hw->pkg_ver.major,
3697 				 hw->pkg_ver.minor,
3698 				 hw->pkg_ver.update,
3699 				 hw->pkg_ver.draft);
3700 		} else {
3701 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3702 			*status = ICE_ERR_NOT_SUPPORTED;
3703 		}
3704 		break;
3705 	case ICE_ERR_FW_DDP_MISMATCH:
3706 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3707 		break;
3708 	case ICE_ERR_BUF_TOO_SHORT:
3709 	case ICE_ERR_CFG:
3710 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3711 		break;
3712 	case ICE_ERR_NOT_SUPPORTED:
3713 		/* Package File version not supported */
3714 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3715 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3716 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3717 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3718 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3719 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3720 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3721 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3722 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3723 		break;
3724 	case ICE_ERR_AQ_ERROR:
3725 		switch (hw->pkg_dwnld_status) {
3726 		case ICE_AQ_RC_ENOSEC:
3727 		case ICE_AQ_RC_EBADSIG:
3728 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3729 			return;
3730 		case ICE_AQ_RC_ESVN:
3731 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3732 			return;
3733 		case ICE_AQ_RC_EBADMAN:
3734 		case ICE_AQ_RC_EBADBUF:
3735 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3736 			/* poll for reset to complete */
3737 			if (ice_check_reset(hw))
3738 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3739 			return;
3740 		default:
3741 			break;
3742 		}
3743 		fallthrough;
3744 	default:
3745 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3746 			*status);
3747 		break;
3748 	}
3749 }
3750 
3751 /**
3752  * ice_load_pkg - load/reload the DDP Package file
3753  * @firmware: firmware structure when firmware requested or NULL for reload
3754  * @pf: pointer to the PF instance
3755  *
3756  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3757  * initialize HW tables.
3758  */
3759 static void
3760 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3761 {
3762 	enum ice_status status = ICE_ERR_PARAM;
3763 	struct device *dev = ice_pf_to_dev(pf);
3764 	struct ice_hw *hw = &pf->hw;
3765 
3766 	/* Load DDP Package */
3767 	if (firmware && !hw->pkg_copy) {
3768 		status = ice_copy_and_init_pkg(hw, firmware->data,
3769 					       firmware->size);
3770 		ice_log_pkg_init(hw, &status);
3771 	} else if (!firmware && hw->pkg_copy) {
3772 		/* Reload package during rebuild after CORER/GLOBR reset */
3773 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3774 		ice_log_pkg_init(hw, &status);
3775 	} else {
3776 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3777 	}
3778 
3779 	if (status) {
3780 		/* Safe Mode */
3781 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3782 		return;
3783 	}
3784 
3785 	/* Successful download package is the precondition for advanced
3786 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3787 	 */
3788 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3789 }
3790 
3791 /**
3792  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3793  * @pf: pointer to the PF structure
3794  *
3795  * There is no error returned here because the driver should be able to handle
3796  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3797  * specifically with Tx.
3798  */
3799 static void ice_verify_cacheline_size(struct ice_pf *pf)
3800 {
3801 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3802 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3803 			 ICE_CACHE_LINE_BYTES);
3804 }
3805 
3806 /**
3807  * ice_send_version - update firmware with driver version
3808  * @pf: PF struct
3809  *
3810  * Returns ICE_SUCCESS on success, else error code
3811  */
3812 static enum ice_status ice_send_version(struct ice_pf *pf)
3813 {
3814 	struct ice_driver_ver dv;
3815 
3816 	dv.major_ver = 0xff;
3817 	dv.minor_ver = 0xff;
3818 	dv.build_ver = 0xff;
3819 	dv.subbuild_ver = 0;
3820 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3821 		sizeof(dv.driver_string));
3822 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3823 }
3824 
3825 /**
3826  * ice_init_fdir - Initialize flow director VSI and configuration
3827  * @pf: pointer to the PF instance
3828  *
3829  * returns 0 on success, negative on error
3830  */
3831 static int ice_init_fdir(struct ice_pf *pf)
3832 {
3833 	struct device *dev = ice_pf_to_dev(pf);
3834 	struct ice_vsi *ctrl_vsi;
3835 	int err;
3836 
3837 	/* Side Band Flow Director needs to have a control VSI.
3838 	 * Allocate it and store it in the PF.
3839 	 */
3840 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3841 	if (!ctrl_vsi) {
3842 		dev_dbg(dev, "could not create control VSI\n");
3843 		return -ENOMEM;
3844 	}
3845 
3846 	err = ice_vsi_open_ctrl(ctrl_vsi);
3847 	if (err) {
3848 		dev_dbg(dev, "could not open control VSI\n");
3849 		goto err_vsi_open;
3850 	}
3851 
3852 	mutex_init(&pf->hw.fdir_fltr_lock);
3853 
3854 	err = ice_fdir_create_dflt_rules(pf);
3855 	if (err)
3856 		goto err_fdir_rule;
3857 
3858 	return 0;
3859 
3860 err_fdir_rule:
3861 	ice_fdir_release_flows(&pf->hw);
3862 	ice_vsi_close(ctrl_vsi);
3863 err_vsi_open:
3864 	ice_vsi_release(ctrl_vsi);
3865 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3866 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3867 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3868 	}
3869 	return err;
3870 }
3871 
3872 /**
3873  * ice_get_opt_fw_name - return optional firmware file name or NULL
3874  * @pf: pointer to the PF instance
3875  */
3876 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3877 {
3878 	/* Optional firmware name same as default with additional dash
3879 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3880 	 */
3881 	struct pci_dev *pdev = pf->pdev;
3882 	char *opt_fw_filename;
3883 	u64 dsn;
3884 
3885 	/* Determine the name of the optional file using the DSN (two
3886 	 * dwords following the start of the DSN Capability).
3887 	 */
3888 	dsn = pci_get_dsn(pdev);
3889 	if (!dsn)
3890 		return NULL;
3891 
3892 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3893 	if (!opt_fw_filename)
3894 		return NULL;
3895 
3896 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3897 		 ICE_DDP_PKG_PATH, dsn);
3898 
3899 	return opt_fw_filename;
3900 }
3901 
3902 /**
3903  * ice_request_fw - Device initialization routine
3904  * @pf: pointer to the PF instance
3905  */
3906 static void ice_request_fw(struct ice_pf *pf)
3907 {
3908 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3909 	const struct firmware *firmware = NULL;
3910 	struct device *dev = ice_pf_to_dev(pf);
3911 	int err = 0;
3912 
3913 	/* optional device-specific DDP (if present) overrides the default DDP
3914 	 * package file. kernel logs a debug message if the file doesn't exist,
3915 	 * and warning messages for other errors.
3916 	 */
3917 	if (opt_fw_filename) {
3918 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3919 		if (err) {
3920 			kfree(opt_fw_filename);
3921 			goto dflt_pkg_load;
3922 		}
3923 
3924 		/* request for firmware was successful. Download to device */
3925 		ice_load_pkg(firmware, pf);
3926 		kfree(opt_fw_filename);
3927 		release_firmware(firmware);
3928 		return;
3929 	}
3930 
3931 dflt_pkg_load:
3932 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3933 	if (err) {
3934 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3935 		return;
3936 	}
3937 
3938 	/* request for firmware was successful. Download to device */
3939 	ice_load_pkg(firmware, pf);
3940 	release_firmware(firmware);
3941 }
3942 
3943 /**
3944  * ice_print_wake_reason - show the wake up cause in the log
3945  * @pf: pointer to the PF struct
3946  */
3947 static void ice_print_wake_reason(struct ice_pf *pf)
3948 {
3949 	u32 wus = pf->wakeup_reason;
3950 	const char *wake_str;
3951 
3952 	/* if no wake event, nothing to print */
3953 	if (!wus)
3954 		return;
3955 
3956 	if (wus & PFPM_WUS_LNKC_M)
3957 		wake_str = "Link\n";
3958 	else if (wus & PFPM_WUS_MAG_M)
3959 		wake_str = "Magic Packet\n";
3960 	else if (wus & PFPM_WUS_MNG_M)
3961 		wake_str = "Management\n";
3962 	else if (wus & PFPM_WUS_FW_RST_WK_M)
3963 		wake_str = "Firmware Reset\n";
3964 	else
3965 		wake_str = "Unknown\n";
3966 
3967 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3968 }
3969 
3970 /**
3971  * ice_probe - Device initialization routine
3972  * @pdev: PCI device information struct
3973  * @ent: entry in ice_pci_tbl
3974  *
3975  * Returns 0 on success, negative on failure
3976  */
3977 static int
3978 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3979 {
3980 	struct device *dev = &pdev->dev;
3981 	struct ice_pf *pf;
3982 	struct ice_hw *hw;
3983 	int i, err;
3984 
3985 	/* this driver uses devres, see
3986 	 * Documentation/driver-api/driver-model/devres.rst
3987 	 */
3988 	err = pcim_enable_device(pdev);
3989 	if (err)
3990 		return err;
3991 
3992 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3993 	if (err) {
3994 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3995 		return err;
3996 	}
3997 
3998 	pf = ice_allocate_pf(dev);
3999 	if (!pf)
4000 		return -ENOMEM;
4001 
4002 	/* set up for high or low DMA */
4003 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4004 	if (err)
4005 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4006 	if (err) {
4007 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4008 		return err;
4009 	}
4010 
4011 	pci_enable_pcie_error_reporting(pdev);
4012 	pci_set_master(pdev);
4013 
4014 	pf->pdev = pdev;
4015 	pci_set_drvdata(pdev, pf);
4016 	set_bit(__ICE_DOWN, pf->state);
4017 	/* Disable service task until DOWN bit is cleared */
4018 	set_bit(__ICE_SERVICE_DIS, pf->state);
4019 
4020 	hw = &pf->hw;
4021 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4022 	pci_save_state(pdev);
4023 
4024 	hw->back = pf;
4025 	hw->vendor_id = pdev->vendor;
4026 	hw->device_id = pdev->device;
4027 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4028 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4029 	hw->subsystem_device_id = pdev->subsystem_device;
4030 	hw->bus.device = PCI_SLOT(pdev->devfn);
4031 	hw->bus.func = PCI_FUNC(pdev->devfn);
4032 	ice_set_ctrlq_len(hw);
4033 
4034 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4035 
4036 	err = ice_devlink_register(pf);
4037 	if (err) {
4038 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4039 		goto err_exit_unroll;
4040 	}
4041 
4042 #ifndef CONFIG_DYNAMIC_DEBUG
4043 	if (debug < -1)
4044 		hw->debug_mask = debug;
4045 #endif
4046 
4047 	err = ice_init_hw(hw);
4048 	if (err) {
4049 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4050 		err = -EIO;
4051 		goto err_exit_unroll;
4052 	}
4053 
4054 	ice_request_fw(pf);
4055 
4056 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4057 	 * set in pf->state, which will cause ice_is_safe_mode to return
4058 	 * true
4059 	 */
4060 	if (ice_is_safe_mode(pf)) {
4061 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4062 		/* we already got function/device capabilities but these don't
4063 		 * reflect what the driver needs to do in safe mode. Instead of
4064 		 * adding conditional logic everywhere to ignore these
4065 		 * device/function capabilities, override them.
4066 		 */
4067 		ice_set_safe_mode_caps(hw);
4068 	}
4069 
4070 	err = ice_init_pf(pf);
4071 	if (err) {
4072 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4073 		goto err_init_pf_unroll;
4074 	}
4075 
4076 	ice_devlink_init_regions(pf);
4077 
4078 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4079 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4080 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4081 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4082 	i = 0;
4083 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4084 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4085 			pf->hw.tnl.valid_count[TNL_VXLAN];
4086 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4087 			UDP_TUNNEL_TYPE_VXLAN;
4088 		i++;
4089 	}
4090 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4091 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4092 			pf->hw.tnl.valid_count[TNL_GENEVE];
4093 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4094 			UDP_TUNNEL_TYPE_GENEVE;
4095 		i++;
4096 	}
4097 
4098 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4099 	if (!pf->num_alloc_vsi) {
4100 		err = -EIO;
4101 		goto err_init_pf_unroll;
4102 	}
4103 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4104 		dev_warn(&pf->pdev->dev,
4105 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4106 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4107 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4108 	}
4109 
4110 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4111 			       GFP_KERNEL);
4112 	if (!pf->vsi) {
4113 		err = -ENOMEM;
4114 		goto err_init_pf_unroll;
4115 	}
4116 
4117 	err = ice_init_interrupt_scheme(pf);
4118 	if (err) {
4119 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4120 		err = -EIO;
4121 		goto err_init_vsi_unroll;
4122 	}
4123 
4124 	/* In case of MSIX we are going to setup the misc vector right here
4125 	 * to handle admin queue events etc. In case of legacy and MSI
4126 	 * the misc functionality and queue processing is combined in
4127 	 * the same vector and that gets setup at open.
4128 	 */
4129 	err = ice_req_irq_msix_misc(pf);
4130 	if (err) {
4131 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4132 		goto err_init_interrupt_unroll;
4133 	}
4134 
4135 	/* create switch struct for the switch element created by FW on boot */
4136 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4137 	if (!pf->first_sw) {
4138 		err = -ENOMEM;
4139 		goto err_msix_misc_unroll;
4140 	}
4141 
4142 	if (hw->evb_veb)
4143 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4144 	else
4145 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4146 
4147 	pf->first_sw->pf = pf;
4148 
4149 	/* record the sw_id available for later use */
4150 	pf->first_sw->sw_id = hw->port_info->sw_id;
4151 
4152 	err = ice_setup_pf_sw(pf);
4153 	if (err) {
4154 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4155 		goto err_alloc_sw_unroll;
4156 	}
4157 
4158 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4159 
4160 	/* tell the firmware we are up */
4161 	err = ice_send_version(pf);
4162 	if (err) {
4163 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4164 			UTS_RELEASE, err);
4165 		goto err_send_version_unroll;
4166 	}
4167 
4168 	/* since everything is good, start the service timer */
4169 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4170 
4171 	err = ice_init_link_events(pf->hw.port_info);
4172 	if (err) {
4173 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4174 		goto err_send_version_unroll;
4175 	}
4176 
4177 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4178 	if (err) {
4179 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4180 		goto err_send_version_unroll;
4181 	}
4182 
4183 	err = ice_update_link_info(pf->hw.port_info);
4184 	if (err) {
4185 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4186 		goto err_send_version_unroll;
4187 	}
4188 
4189 	ice_init_link_dflt_override(pf->hw.port_info);
4190 
4191 	/* if media available, initialize PHY settings */
4192 	if (pf->hw.port_info->phy.link_info.link_info &
4193 	    ICE_AQ_MEDIA_AVAILABLE) {
4194 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4195 		if (err) {
4196 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4197 			goto err_send_version_unroll;
4198 		}
4199 
4200 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4201 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4202 
4203 			if (vsi)
4204 				ice_configure_phy(vsi);
4205 		}
4206 	} else {
4207 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4208 	}
4209 
4210 	ice_verify_cacheline_size(pf);
4211 
4212 	/* Save wakeup reason register for later use */
4213 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4214 
4215 	/* check for a power management event */
4216 	ice_print_wake_reason(pf);
4217 
4218 	/* clear wake status, all bits */
4219 	wr32(hw, PFPM_WUS, U32_MAX);
4220 
4221 	/* Disable WoL at init, wait for user to enable */
4222 	device_set_wakeup_enable(dev, false);
4223 
4224 	if (ice_is_safe_mode(pf)) {
4225 		ice_set_safe_mode_vlan_cfg(pf);
4226 		goto probe_done;
4227 	}
4228 
4229 	/* initialize DDP driven features */
4230 
4231 	/* Note: Flow director init failure is non-fatal to load */
4232 	if (ice_init_fdir(pf))
4233 		dev_err(dev, "could not initialize flow director\n");
4234 
4235 	/* Note: DCB init failure is non-fatal to load */
4236 	if (ice_init_pf_dcb(pf, false)) {
4237 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4238 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4239 	} else {
4240 		ice_cfg_lldp_mib_change(&pf->hw, true);
4241 	}
4242 
4243 	/* print PCI link speed and width */
4244 	pcie_print_link_status(pf->pdev);
4245 
4246 probe_done:
4247 	/* ready to go, so clear down state bit */
4248 	clear_bit(__ICE_DOWN, pf->state);
4249 	return 0;
4250 
4251 err_send_version_unroll:
4252 	ice_vsi_release_all(pf);
4253 err_alloc_sw_unroll:
4254 	set_bit(__ICE_SERVICE_DIS, pf->state);
4255 	set_bit(__ICE_DOWN, pf->state);
4256 	devm_kfree(dev, pf->first_sw);
4257 err_msix_misc_unroll:
4258 	ice_free_irq_msix_misc(pf);
4259 err_init_interrupt_unroll:
4260 	ice_clear_interrupt_scheme(pf);
4261 err_init_vsi_unroll:
4262 	devm_kfree(dev, pf->vsi);
4263 err_init_pf_unroll:
4264 	ice_deinit_pf(pf);
4265 	ice_devlink_destroy_regions(pf);
4266 	ice_deinit_hw(hw);
4267 err_exit_unroll:
4268 	ice_devlink_unregister(pf);
4269 	pci_disable_pcie_error_reporting(pdev);
4270 	pci_disable_device(pdev);
4271 	return err;
4272 }
4273 
4274 /**
4275  * ice_set_wake - enable or disable Wake on LAN
4276  * @pf: pointer to the PF struct
4277  *
4278  * Simple helper for WoL control
4279  */
4280 static void ice_set_wake(struct ice_pf *pf)
4281 {
4282 	struct ice_hw *hw = &pf->hw;
4283 	bool wol = pf->wol_ena;
4284 
4285 	/* clear wake state, otherwise new wake events won't fire */
4286 	wr32(hw, PFPM_WUS, U32_MAX);
4287 
4288 	/* enable / disable APM wake up, no RMW needed */
4289 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4290 
4291 	/* set magic packet filter enabled */
4292 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4293 }
4294 
4295 /**
4296  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4297  * @pf: pointer to the PF struct
4298  *
4299  * Issue firmware command to enable multicast magic wake, making
4300  * sure that any locally administered address (LAA) is used for
4301  * wake, and that PF reset doesn't undo the LAA.
4302  */
4303 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4304 {
4305 	struct device *dev = ice_pf_to_dev(pf);
4306 	struct ice_hw *hw = &pf->hw;
4307 	enum ice_status status;
4308 	u8 mac_addr[ETH_ALEN];
4309 	struct ice_vsi *vsi;
4310 	u8 flags;
4311 
4312 	if (!pf->wol_ena)
4313 		return;
4314 
4315 	vsi = ice_get_main_vsi(pf);
4316 	if (!vsi)
4317 		return;
4318 
4319 	/* Get current MAC address in case it's an LAA */
4320 	if (vsi->netdev)
4321 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4322 	else
4323 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4324 
4325 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4326 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4327 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4328 
4329 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4330 	if (status)
4331 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4332 			ice_stat_str(status),
4333 			ice_aq_str(hw->adminq.sq_last_status));
4334 }
4335 
4336 /**
4337  * ice_remove - Device removal routine
4338  * @pdev: PCI device information struct
4339  */
4340 static void ice_remove(struct pci_dev *pdev)
4341 {
4342 	struct ice_pf *pf = pci_get_drvdata(pdev);
4343 	int i;
4344 
4345 	if (!pf)
4346 		return;
4347 
4348 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4349 		if (!ice_is_reset_in_progress(pf->state))
4350 			break;
4351 		msleep(100);
4352 	}
4353 
4354 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4355 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4356 		ice_free_vfs(pf);
4357 	}
4358 
4359 	set_bit(__ICE_DOWN, pf->state);
4360 	ice_service_task_stop(pf);
4361 
4362 	ice_aq_cancel_waiting_tasks(pf);
4363 
4364 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4365 	if (!ice_is_safe_mode(pf))
4366 		ice_remove_arfs(pf);
4367 	ice_setup_mc_magic_wake(pf);
4368 	ice_vsi_release_all(pf);
4369 	ice_set_wake(pf);
4370 	ice_free_irq_msix_misc(pf);
4371 	ice_for_each_vsi(pf, i) {
4372 		if (!pf->vsi[i])
4373 			continue;
4374 		ice_vsi_free_q_vectors(pf->vsi[i]);
4375 	}
4376 	ice_deinit_pf(pf);
4377 	ice_devlink_destroy_regions(pf);
4378 	ice_deinit_hw(&pf->hw);
4379 	ice_devlink_unregister(pf);
4380 
4381 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4382 	 * do it via ice_schedule_reset() since there is no need to rebuild
4383 	 * and the service task is already stopped.
4384 	 */
4385 	ice_reset(&pf->hw, ICE_RESET_PFR);
4386 	pci_wait_for_pending_transaction(pdev);
4387 	ice_clear_interrupt_scheme(pf);
4388 	pci_disable_pcie_error_reporting(pdev);
4389 	pci_disable_device(pdev);
4390 }
4391 
4392 /**
4393  * ice_shutdown - PCI callback for shutting down device
4394  * @pdev: PCI device information struct
4395  */
4396 static void ice_shutdown(struct pci_dev *pdev)
4397 {
4398 	struct ice_pf *pf = pci_get_drvdata(pdev);
4399 
4400 	ice_remove(pdev);
4401 
4402 	if (system_state == SYSTEM_POWER_OFF) {
4403 		pci_wake_from_d3(pdev, pf->wol_ena);
4404 		pci_set_power_state(pdev, PCI_D3hot);
4405 	}
4406 }
4407 
4408 #ifdef CONFIG_PM
4409 /**
4410  * ice_prepare_for_shutdown - prep for PCI shutdown
4411  * @pf: board private structure
4412  *
4413  * Inform or close all dependent features in prep for PCI device shutdown
4414  */
4415 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4416 {
4417 	struct ice_hw *hw = &pf->hw;
4418 	u32 v;
4419 
4420 	/* Notify VFs of impending reset */
4421 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4422 		ice_vc_notify_reset(pf);
4423 
4424 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4425 
4426 	/* disable the VSIs and their queues that are not already DOWN */
4427 	ice_pf_dis_all_vsi(pf, false);
4428 
4429 	ice_for_each_vsi(pf, v)
4430 		if (pf->vsi[v])
4431 			pf->vsi[v]->vsi_num = 0;
4432 
4433 	ice_shutdown_all_ctrlq(hw);
4434 }
4435 
4436 /**
4437  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4438  * @pf: board private structure to reinitialize
4439  *
4440  * This routine reinitialize interrupt scheme that was cleared during
4441  * power management suspend callback.
4442  *
4443  * This should be called during resume routine to re-allocate the q_vectors
4444  * and reacquire interrupts.
4445  */
4446 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4447 {
4448 	struct device *dev = ice_pf_to_dev(pf);
4449 	int ret, v;
4450 
4451 	/* Since we clear MSIX flag during suspend, we need to
4452 	 * set it back during resume...
4453 	 */
4454 
4455 	ret = ice_init_interrupt_scheme(pf);
4456 	if (ret) {
4457 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4458 		return ret;
4459 	}
4460 
4461 	/* Remap vectors and rings, after successful re-init interrupts */
4462 	ice_for_each_vsi(pf, v) {
4463 		if (!pf->vsi[v])
4464 			continue;
4465 
4466 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4467 		if (ret)
4468 			goto err_reinit;
4469 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4470 	}
4471 
4472 	ret = ice_req_irq_msix_misc(pf);
4473 	if (ret) {
4474 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4475 			ret);
4476 		goto err_reinit;
4477 	}
4478 
4479 	return 0;
4480 
4481 err_reinit:
4482 	while (v--)
4483 		if (pf->vsi[v])
4484 			ice_vsi_free_q_vectors(pf->vsi[v]);
4485 
4486 	return ret;
4487 }
4488 
4489 /**
4490  * ice_suspend
4491  * @dev: generic device information structure
4492  *
4493  * Power Management callback to quiesce the device and prepare
4494  * for D3 transition.
4495  */
4496 static int __maybe_unused ice_suspend(struct device *dev)
4497 {
4498 	struct pci_dev *pdev = to_pci_dev(dev);
4499 	struct ice_pf *pf;
4500 	int disabled, v;
4501 
4502 	pf = pci_get_drvdata(pdev);
4503 
4504 	if (!ice_pf_state_is_nominal(pf)) {
4505 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4506 		return -EBUSY;
4507 	}
4508 
4509 	/* Stop watchdog tasks until resume completion.
4510 	 * Even though it is most likely that the service task is
4511 	 * disabled if the device is suspended or down, the service task's
4512 	 * state is controlled by a different state bit, and we should
4513 	 * store and honor whatever state that bit is in at this point.
4514 	 */
4515 	disabled = ice_service_task_stop(pf);
4516 
4517 	/* Already suspended?, then there is nothing to do */
4518 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4519 		if (!disabled)
4520 			ice_service_task_restart(pf);
4521 		return 0;
4522 	}
4523 
4524 	if (test_bit(__ICE_DOWN, pf->state) ||
4525 	    ice_is_reset_in_progress(pf->state)) {
4526 		dev_err(dev, "can't suspend device in reset or already down\n");
4527 		if (!disabled)
4528 			ice_service_task_restart(pf);
4529 		return 0;
4530 	}
4531 
4532 	ice_setup_mc_magic_wake(pf);
4533 
4534 	ice_prepare_for_shutdown(pf);
4535 
4536 	ice_set_wake(pf);
4537 
4538 	/* Free vectors, clear the interrupt scheme and release IRQs
4539 	 * for proper hibernation, especially with large number of CPUs.
4540 	 * Otherwise hibernation might fail when mapping all the vectors back
4541 	 * to CPU0.
4542 	 */
4543 	ice_free_irq_msix_misc(pf);
4544 	ice_for_each_vsi(pf, v) {
4545 		if (!pf->vsi[v])
4546 			continue;
4547 		ice_vsi_free_q_vectors(pf->vsi[v]);
4548 	}
4549 	ice_clear_interrupt_scheme(pf);
4550 
4551 	pci_save_state(pdev);
4552 	pci_wake_from_d3(pdev, pf->wol_ena);
4553 	pci_set_power_state(pdev, PCI_D3hot);
4554 	return 0;
4555 }
4556 
4557 /**
4558  * ice_resume - PM callback for waking up from D3
4559  * @dev: generic device information structure
4560  */
4561 static int __maybe_unused ice_resume(struct device *dev)
4562 {
4563 	struct pci_dev *pdev = to_pci_dev(dev);
4564 	enum ice_reset_req reset_type;
4565 	struct ice_pf *pf;
4566 	struct ice_hw *hw;
4567 	int ret;
4568 
4569 	pci_set_power_state(pdev, PCI_D0);
4570 	pci_restore_state(pdev);
4571 	pci_save_state(pdev);
4572 
4573 	if (!pci_device_is_present(pdev))
4574 		return -ENODEV;
4575 
4576 	ret = pci_enable_device_mem(pdev);
4577 	if (ret) {
4578 		dev_err(dev, "Cannot enable device after suspend\n");
4579 		return ret;
4580 	}
4581 
4582 	pf = pci_get_drvdata(pdev);
4583 	hw = &pf->hw;
4584 
4585 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4586 	ice_print_wake_reason(pf);
4587 
4588 	/* We cleared the interrupt scheme when we suspended, so we need to
4589 	 * restore it now to resume device functionality.
4590 	 */
4591 	ret = ice_reinit_interrupt_scheme(pf);
4592 	if (ret)
4593 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4594 
4595 	clear_bit(__ICE_DOWN, pf->state);
4596 	/* Now perform PF reset and rebuild */
4597 	reset_type = ICE_RESET_PFR;
4598 	/* re-enable service task for reset, but allow reset to schedule it */
4599 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4600 
4601 	if (ice_schedule_reset(pf, reset_type))
4602 		dev_err(dev, "Reset during resume failed.\n");
4603 
4604 	clear_bit(__ICE_SUSPENDED, pf->state);
4605 	ice_service_task_restart(pf);
4606 
4607 	/* Restart the service task */
4608 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4609 
4610 	return 0;
4611 }
4612 #endif /* CONFIG_PM */
4613 
4614 /**
4615  * ice_pci_err_detected - warning that PCI error has been detected
4616  * @pdev: PCI device information struct
4617  * @err: the type of PCI error
4618  *
4619  * Called to warn that something happened on the PCI bus and the error handling
4620  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4621  */
4622 static pci_ers_result_t
4623 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4624 {
4625 	struct ice_pf *pf = pci_get_drvdata(pdev);
4626 
4627 	if (!pf) {
4628 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4629 			__func__, err);
4630 		return PCI_ERS_RESULT_DISCONNECT;
4631 	}
4632 
4633 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4634 		ice_service_task_stop(pf);
4635 
4636 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4637 			set_bit(__ICE_PFR_REQ, pf->state);
4638 			ice_prepare_for_reset(pf);
4639 		}
4640 	}
4641 
4642 	return PCI_ERS_RESULT_NEED_RESET;
4643 }
4644 
4645 /**
4646  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4647  * @pdev: PCI device information struct
4648  *
4649  * Called to determine if the driver can recover from the PCI slot reset by
4650  * using a register read to determine if the device is recoverable.
4651  */
4652 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4653 {
4654 	struct ice_pf *pf = pci_get_drvdata(pdev);
4655 	pci_ers_result_t result;
4656 	int err;
4657 	u32 reg;
4658 
4659 	err = pci_enable_device_mem(pdev);
4660 	if (err) {
4661 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4662 			err);
4663 		result = PCI_ERS_RESULT_DISCONNECT;
4664 	} else {
4665 		pci_set_master(pdev);
4666 		pci_restore_state(pdev);
4667 		pci_save_state(pdev);
4668 		pci_wake_from_d3(pdev, false);
4669 
4670 		/* Check for life */
4671 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4672 		if (!reg)
4673 			result = PCI_ERS_RESULT_RECOVERED;
4674 		else
4675 			result = PCI_ERS_RESULT_DISCONNECT;
4676 	}
4677 
4678 	err = pci_aer_clear_nonfatal_status(pdev);
4679 	if (err)
4680 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4681 			err);
4682 		/* non-fatal, continue */
4683 
4684 	return result;
4685 }
4686 
4687 /**
4688  * ice_pci_err_resume - restart operations after PCI error recovery
4689  * @pdev: PCI device information struct
4690  *
4691  * Called to allow the driver to bring things back up after PCI error and/or
4692  * reset recovery have finished
4693  */
4694 static void ice_pci_err_resume(struct pci_dev *pdev)
4695 {
4696 	struct ice_pf *pf = pci_get_drvdata(pdev);
4697 
4698 	if (!pf) {
4699 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4700 			__func__);
4701 		return;
4702 	}
4703 
4704 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4705 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4706 			__func__);
4707 		return;
4708 	}
4709 
4710 	ice_restore_all_vfs_msi_state(pdev);
4711 
4712 	ice_do_reset(pf, ICE_RESET_PFR);
4713 	ice_service_task_restart(pf);
4714 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4715 }
4716 
4717 /**
4718  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4719  * @pdev: PCI device information struct
4720  */
4721 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4722 {
4723 	struct ice_pf *pf = pci_get_drvdata(pdev);
4724 
4725 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4726 		ice_service_task_stop(pf);
4727 
4728 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4729 			set_bit(__ICE_PFR_REQ, pf->state);
4730 			ice_prepare_for_reset(pf);
4731 		}
4732 	}
4733 }
4734 
4735 /**
4736  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4737  * @pdev: PCI device information struct
4738  */
4739 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4740 {
4741 	ice_pci_err_resume(pdev);
4742 }
4743 
4744 /* ice_pci_tbl - PCI Device ID Table
4745  *
4746  * Wildcard entries (PCI_ANY_ID) should come last
4747  * Last entry must be all 0s
4748  *
4749  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4750  *   Class, Class Mask, private data (not used) }
4751  */
4752 static const struct pci_device_id ice_pci_tbl[] = {
4753 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4754 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4755 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4756 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4757 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4758 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4759 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4760 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4761 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4762 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4763 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4764 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4765 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4766 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4767 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4768 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4769 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4770 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4771 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4772 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4773 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4774 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4775 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4776 	/* required last entry */
4777 	{ 0, }
4778 };
4779 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4780 
4781 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4782 
4783 static const struct pci_error_handlers ice_pci_err_handler = {
4784 	.error_detected = ice_pci_err_detected,
4785 	.slot_reset = ice_pci_err_slot_reset,
4786 	.reset_prepare = ice_pci_err_reset_prepare,
4787 	.reset_done = ice_pci_err_reset_done,
4788 	.resume = ice_pci_err_resume
4789 };
4790 
4791 static struct pci_driver ice_driver = {
4792 	.name = KBUILD_MODNAME,
4793 	.id_table = ice_pci_tbl,
4794 	.probe = ice_probe,
4795 	.remove = ice_remove,
4796 #ifdef CONFIG_PM
4797 	.driver.pm = &ice_pm_ops,
4798 #endif /* CONFIG_PM */
4799 	.shutdown = ice_shutdown,
4800 	.sriov_configure = ice_sriov_configure,
4801 	.err_handler = &ice_pci_err_handler
4802 };
4803 
4804 /**
4805  * ice_module_init - Driver registration routine
4806  *
4807  * ice_module_init is the first routine called when the driver is
4808  * loaded. All it does is register with the PCI subsystem.
4809  */
4810 static int __init ice_module_init(void)
4811 {
4812 	int status;
4813 
4814 	pr_info("%s\n", ice_driver_string);
4815 	pr_info("%s\n", ice_copyright);
4816 
4817 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4818 	if (!ice_wq) {
4819 		pr_err("Failed to create workqueue\n");
4820 		return -ENOMEM;
4821 	}
4822 
4823 	status = pci_register_driver(&ice_driver);
4824 	if (status) {
4825 		pr_err("failed to register PCI driver, err %d\n", status);
4826 		destroy_workqueue(ice_wq);
4827 	}
4828 
4829 	return status;
4830 }
4831 module_init(ice_module_init);
4832 
4833 /**
4834  * ice_module_exit - Driver exit cleanup routine
4835  *
4836  * ice_module_exit is called just before the driver is removed
4837  * from memory.
4838  */
4839 static void __exit ice_module_exit(void)
4840 {
4841 	pci_unregister_driver(&ice_driver);
4842 	destroy_workqueue(ice_wq);
4843 	pr_info("module unloaded\n");
4844 }
4845 module_exit(ice_module_exit);
4846 
4847 /**
4848  * ice_set_mac_address - NDO callback to set MAC address
4849  * @netdev: network interface device structure
4850  * @pi: pointer to an address structure
4851  *
4852  * Returns 0 on success, negative on failure
4853  */
4854 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4855 {
4856 	struct ice_netdev_priv *np = netdev_priv(netdev);
4857 	struct ice_vsi *vsi = np->vsi;
4858 	struct ice_pf *pf = vsi->back;
4859 	struct ice_hw *hw = &pf->hw;
4860 	struct sockaddr *addr = pi;
4861 	enum ice_status status;
4862 	u8 flags = 0;
4863 	int err = 0;
4864 	u8 *mac;
4865 
4866 	mac = (u8 *)addr->sa_data;
4867 
4868 	if (!is_valid_ether_addr(mac))
4869 		return -EADDRNOTAVAIL;
4870 
4871 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4872 		netdev_warn(netdev, "already using mac %pM\n", mac);
4873 		return 0;
4874 	}
4875 
4876 	if (test_bit(__ICE_DOWN, pf->state) ||
4877 	    ice_is_reset_in_progress(pf->state)) {
4878 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4879 			   mac);
4880 		return -EBUSY;
4881 	}
4882 
4883 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4884 	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4885 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4886 		err = -EADDRNOTAVAIL;
4887 		goto err_update_filters;
4888 	}
4889 
4890 	/* Add filter for new MAC. If filter exists, just return success */
4891 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4892 	if (status == ICE_ERR_ALREADY_EXISTS) {
4893 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4894 		return 0;
4895 	}
4896 
4897 	/* error if the new filter addition failed */
4898 	if (status)
4899 		err = -EADDRNOTAVAIL;
4900 
4901 err_update_filters:
4902 	if (err) {
4903 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4904 			   mac);
4905 		return err;
4906 	}
4907 
4908 	/* change the netdev's MAC address */
4909 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4910 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4911 		   netdev->dev_addr);
4912 
4913 	/* write new MAC address to the firmware */
4914 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4915 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4916 	if (status) {
4917 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4918 			   mac, ice_stat_str(status));
4919 	}
4920 	return 0;
4921 }
4922 
4923 /**
4924  * ice_set_rx_mode - NDO callback to set the netdev filters
4925  * @netdev: network interface device structure
4926  */
4927 static void ice_set_rx_mode(struct net_device *netdev)
4928 {
4929 	struct ice_netdev_priv *np = netdev_priv(netdev);
4930 	struct ice_vsi *vsi = np->vsi;
4931 
4932 	if (!vsi)
4933 		return;
4934 
4935 	/* Set the flags to synchronize filters
4936 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4937 	 * flags
4938 	 */
4939 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4940 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4941 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4942 
4943 	/* schedule our worker thread which will take care of
4944 	 * applying the new filter changes
4945 	 */
4946 	ice_service_task_schedule(vsi->back);
4947 }
4948 
4949 /**
4950  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4951  * @netdev: network interface device structure
4952  * @queue_index: Queue ID
4953  * @maxrate: maximum bandwidth in Mbps
4954  */
4955 static int
4956 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4957 {
4958 	struct ice_netdev_priv *np = netdev_priv(netdev);
4959 	struct ice_vsi *vsi = np->vsi;
4960 	enum ice_status status;
4961 	u16 q_handle;
4962 	u8 tc;
4963 
4964 	/* Validate maxrate requested is within permitted range */
4965 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4966 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4967 			   maxrate, queue_index);
4968 		return -EINVAL;
4969 	}
4970 
4971 	q_handle = vsi->tx_rings[queue_index]->q_handle;
4972 	tc = ice_dcb_get_tc(vsi, queue_index);
4973 
4974 	/* Set BW back to default, when user set maxrate to 0 */
4975 	if (!maxrate)
4976 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4977 					       q_handle, ICE_MAX_BW);
4978 	else
4979 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4980 					  q_handle, ICE_MAX_BW, maxrate * 1000);
4981 	if (status) {
4982 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4983 			   ice_stat_str(status));
4984 		return -EIO;
4985 	}
4986 
4987 	return 0;
4988 }
4989 
4990 /**
4991  * ice_fdb_add - add an entry to the hardware database
4992  * @ndm: the input from the stack
4993  * @tb: pointer to array of nladdr (unused)
4994  * @dev: the net device pointer
4995  * @addr: the MAC address entry being added
4996  * @vid: VLAN ID
4997  * @flags: instructions from stack about fdb operation
4998  * @extack: netlink extended ack
4999  */
5000 static int
5001 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5002 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5003 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5004 {
5005 	int err;
5006 
5007 	if (vid) {
5008 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5009 		return -EINVAL;
5010 	}
5011 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5012 		netdev_err(dev, "FDB only supports static addresses\n");
5013 		return -EINVAL;
5014 	}
5015 
5016 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5017 		err = dev_uc_add_excl(dev, addr);
5018 	else if (is_multicast_ether_addr(addr))
5019 		err = dev_mc_add_excl(dev, addr);
5020 	else
5021 		err = -EINVAL;
5022 
5023 	/* Only return duplicate errors if NLM_F_EXCL is set */
5024 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5025 		err = 0;
5026 
5027 	return err;
5028 }
5029 
5030 /**
5031  * ice_fdb_del - delete an entry from the hardware database
5032  * @ndm: the input from the stack
5033  * @tb: pointer to array of nladdr (unused)
5034  * @dev: the net device pointer
5035  * @addr: the MAC address entry being added
5036  * @vid: VLAN ID
5037  */
5038 static int
5039 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5040 	    struct net_device *dev, const unsigned char *addr,
5041 	    __always_unused u16 vid)
5042 {
5043 	int err;
5044 
5045 	if (ndm->ndm_state & NUD_PERMANENT) {
5046 		netdev_err(dev, "FDB only supports static addresses\n");
5047 		return -EINVAL;
5048 	}
5049 
5050 	if (is_unicast_ether_addr(addr))
5051 		err = dev_uc_del(dev, addr);
5052 	else if (is_multicast_ether_addr(addr))
5053 		err = dev_mc_del(dev, addr);
5054 	else
5055 		err = -EINVAL;
5056 
5057 	return err;
5058 }
5059 
5060 /**
5061  * ice_set_features - set the netdev feature flags
5062  * @netdev: ptr to the netdev being adjusted
5063  * @features: the feature set that the stack is suggesting
5064  */
5065 static int
5066 ice_set_features(struct net_device *netdev, netdev_features_t features)
5067 {
5068 	struct ice_netdev_priv *np = netdev_priv(netdev);
5069 	struct ice_vsi *vsi = np->vsi;
5070 	struct ice_pf *pf = vsi->back;
5071 	int ret = 0;
5072 
5073 	/* Don't set any netdev advanced features with device in Safe Mode */
5074 	if (ice_is_safe_mode(vsi->back)) {
5075 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5076 		return ret;
5077 	}
5078 
5079 	/* Do not change setting during reset */
5080 	if (ice_is_reset_in_progress(pf->state)) {
5081 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5082 		return -EBUSY;
5083 	}
5084 
5085 	/* Multiple features can be changed in one call so keep features in
5086 	 * separate if/else statements to guarantee each feature is checked
5087 	 */
5088 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5089 		ret = ice_vsi_manage_rss_lut(vsi, true);
5090 	else if (!(features & NETIF_F_RXHASH) &&
5091 		 netdev->features & NETIF_F_RXHASH)
5092 		ret = ice_vsi_manage_rss_lut(vsi, false);
5093 
5094 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5095 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5096 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5097 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5098 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5099 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5100 
5101 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5102 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5103 		ret = ice_vsi_manage_vlan_insertion(vsi);
5104 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5105 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5106 		ret = ice_vsi_manage_vlan_insertion(vsi);
5107 
5108 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5109 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5110 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5111 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5112 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5113 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5114 
5115 	if ((features & NETIF_F_NTUPLE) &&
5116 	    !(netdev->features & NETIF_F_NTUPLE)) {
5117 		ice_vsi_manage_fdir(vsi, true);
5118 		ice_init_arfs(vsi);
5119 	} else if (!(features & NETIF_F_NTUPLE) &&
5120 		 (netdev->features & NETIF_F_NTUPLE)) {
5121 		ice_vsi_manage_fdir(vsi, false);
5122 		ice_clear_arfs(vsi);
5123 	}
5124 
5125 	return ret;
5126 }
5127 
5128 /**
5129  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5130  * @vsi: VSI to setup VLAN properties for
5131  */
5132 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5133 {
5134 	int ret = 0;
5135 
5136 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5137 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5138 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5139 		ret = ice_vsi_manage_vlan_insertion(vsi);
5140 
5141 	return ret;
5142 }
5143 
5144 /**
5145  * ice_vsi_cfg - Setup the VSI
5146  * @vsi: the VSI being configured
5147  *
5148  * Return 0 on success and negative value on error
5149  */
5150 int ice_vsi_cfg(struct ice_vsi *vsi)
5151 {
5152 	int err;
5153 
5154 	if (vsi->netdev) {
5155 		ice_set_rx_mode(vsi->netdev);
5156 
5157 		err = ice_vsi_vlan_setup(vsi);
5158 
5159 		if (err)
5160 			return err;
5161 	}
5162 	ice_vsi_cfg_dcb_rings(vsi);
5163 
5164 	err = ice_vsi_cfg_lan_txqs(vsi);
5165 	if (!err && ice_is_xdp_ena_vsi(vsi))
5166 		err = ice_vsi_cfg_xdp_txqs(vsi);
5167 	if (!err)
5168 		err = ice_vsi_cfg_rxqs(vsi);
5169 
5170 	return err;
5171 }
5172 
5173 /**
5174  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5175  * @vsi: the VSI being configured
5176  */
5177 static void ice_napi_enable_all(struct ice_vsi *vsi)
5178 {
5179 	int q_idx;
5180 
5181 	if (!vsi->netdev)
5182 		return;
5183 
5184 	ice_for_each_q_vector(vsi, q_idx) {
5185 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5186 
5187 		if (q_vector->rx.ring || q_vector->tx.ring)
5188 			napi_enable(&q_vector->napi);
5189 	}
5190 }
5191 
5192 /**
5193  * ice_up_complete - Finish the last steps of bringing up a connection
5194  * @vsi: The VSI being configured
5195  *
5196  * Return 0 on success and negative value on error
5197  */
5198 static int ice_up_complete(struct ice_vsi *vsi)
5199 {
5200 	struct ice_pf *pf = vsi->back;
5201 	int err;
5202 
5203 	ice_vsi_cfg_msix(vsi);
5204 
5205 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5206 	 * Tx queue group list was configured and the context bits were
5207 	 * programmed using ice_vsi_cfg_txqs
5208 	 */
5209 	err = ice_vsi_start_all_rx_rings(vsi);
5210 	if (err)
5211 		return err;
5212 
5213 	clear_bit(__ICE_DOWN, vsi->state);
5214 	ice_napi_enable_all(vsi);
5215 	ice_vsi_ena_irq(vsi);
5216 
5217 	if (vsi->port_info &&
5218 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5219 	    vsi->netdev) {
5220 		ice_print_link_msg(vsi, true);
5221 		netif_tx_start_all_queues(vsi->netdev);
5222 		netif_carrier_on(vsi->netdev);
5223 	}
5224 
5225 	ice_service_task_schedule(pf);
5226 
5227 	return 0;
5228 }
5229 
5230 /**
5231  * ice_up - Bring the connection back up after being down
5232  * @vsi: VSI being configured
5233  */
5234 int ice_up(struct ice_vsi *vsi)
5235 {
5236 	int err;
5237 
5238 	err = ice_vsi_cfg(vsi);
5239 	if (!err)
5240 		err = ice_up_complete(vsi);
5241 
5242 	return err;
5243 }
5244 
5245 /**
5246  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5247  * @ring: Tx or Rx ring to read stats from
5248  * @pkts: packets stats counter
5249  * @bytes: bytes stats counter
5250  *
5251  * This function fetches stats from the ring considering the atomic operations
5252  * that needs to be performed to read u64 values in 32 bit machine.
5253  */
5254 static void
5255 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5256 {
5257 	unsigned int start;
5258 	*pkts = 0;
5259 	*bytes = 0;
5260 
5261 	if (!ring)
5262 		return;
5263 	do {
5264 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5265 		*pkts = ring->stats.pkts;
5266 		*bytes = ring->stats.bytes;
5267 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5268 }
5269 
5270 /**
5271  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5272  * @vsi: the VSI to be updated
5273  * @rings: rings to work on
5274  * @count: number of rings
5275  */
5276 static void
5277 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5278 			     u16 count)
5279 {
5280 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5281 	u16 i;
5282 
5283 	for (i = 0; i < count; i++) {
5284 		struct ice_ring *ring;
5285 		u64 pkts, bytes;
5286 
5287 		ring = READ_ONCE(rings[i]);
5288 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5289 		vsi_stats->tx_packets += pkts;
5290 		vsi_stats->tx_bytes += bytes;
5291 		vsi->tx_restart += ring->tx_stats.restart_q;
5292 		vsi->tx_busy += ring->tx_stats.tx_busy;
5293 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5294 	}
5295 }
5296 
5297 /**
5298  * ice_update_vsi_ring_stats - Update VSI stats counters
5299  * @vsi: the VSI to be updated
5300  */
5301 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5302 {
5303 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5304 	struct ice_ring *ring;
5305 	u64 pkts, bytes;
5306 	int i;
5307 
5308 	/* reset netdev stats */
5309 	vsi_stats->tx_packets = 0;
5310 	vsi_stats->tx_bytes = 0;
5311 	vsi_stats->rx_packets = 0;
5312 	vsi_stats->rx_bytes = 0;
5313 
5314 	/* reset non-netdev (extended) stats */
5315 	vsi->tx_restart = 0;
5316 	vsi->tx_busy = 0;
5317 	vsi->tx_linearize = 0;
5318 	vsi->rx_buf_failed = 0;
5319 	vsi->rx_page_failed = 0;
5320 	vsi->rx_gro_dropped = 0;
5321 
5322 	rcu_read_lock();
5323 
5324 	/* update Tx rings counters */
5325 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5326 
5327 	/* update Rx rings counters */
5328 	ice_for_each_rxq(vsi, i) {
5329 		ring = READ_ONCE(vsi->rx_rings[i]);
5330 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5331 		vsi_stats->rx_packets += pkts;
5332 		vsi_stats->rx_bytes += bytes;
5333 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5334 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5335 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5336 	}
5337 
5338 	/* update XDP Tx rings counters */
5339 	if (ice_is_xdp_ena_vsi(vsi))
5340 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5341 					     vsi->num_xdp_txq);
5342 
5343 	rcu_read_unlock();
5344 }
5345 
5346 /**
5347  * ice_update_vsi_stats - Update VSI stats counters
5348  * @vsi: the VSI to be updated
5349  */
5350 void ice_update_vsi_stats(struct ice_vsi *vsi)
5351 {
5352 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5353 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5354 	struct ice_pf *pf = vsi->back;
5355 
5356 	if (test_bit(__ICE_DOWN, vsi->state) ||
5357 	    test_bit(__ICE_CFG_BUSY, pf->state))
5358 		return;
5359 
5360 	/* get stats as recorded by Tx/Rx rings */
5361 	ice_update_vsi_ring_stats(vsi);
5362 
5363 	/* get VSI stats as recorded by the hardware */
5364 	ice_update_eth_stats(vsi);
5365 
5366 	cur_ns->tx_errors = cur_es->tx_errors;
5367 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5368 	cur_ns->tx_dropped = cur_es->tx_discards;
5369 	cur_ns->multicast = cur_es->rx_multicast;
5370 
5371 	/* update some more netdev stats if this is main VSI */
5372 	if (vsi->type == ICE_VSI_PF) {
5373 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5374 		cur_ns->rx_errors = pf->stats.crc_errors +
5375 				    pf->stats.illegal_bytes +
5376 				    pf->stats.rx_len_errors +
5377 				    pf->stats.rx_undersize +
5378 				    pf->hw_csum_rx_error +
5379 				    pf->stats.rx_jabber +
5380 				    pf->stats.rx_fragments +
5381 				    pf->stats.rx_oversize;
5382 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5383 		/* record drops from the port level */
5384 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5385 	}
5386 }
5387 
5388 /**
5389  * ice_update_pf_stats - Update PF port stats counters
5390  * @pf: PF whose stats needs to be updated
5391  */
5392 void ice_update_pf_stats(struct ice_pf *pf)
5393 {
5394 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5395 	struct ice_hw *hw = &pf->hw;
5396 	u16 fd_ctr_base;
5397 	u8 port;
5398 
5399 	port = hw->port_info->lport;
5400 	prev_ps = &pf->stats_prev;
5401 	cur_ps = &pf->stats;
5402 
5403 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5404 			  &prev_ps->eth.rx_bytes,
5405 			  &cur_ps->eth.rx_bytes);
5406 
5407 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5408 			  &prev_ps->eth.rx_unicast,
5409 			  &cur_ps->eth.rx_unicast);
5410 
5411 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5412 			  &prev_ps->eth.rx_multicast,
5413 			  &cur_ps->eth.rx_multicast);
5414 
5415 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5416 			  &prev_ps->eth.rx_broadcast,
5417 			  &cur_ps->eth.rx_broadcast);
5418 
5419 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5420 			  &prev_ps->eth.rx_discards,
5421 			  &cur_ps->eth.rx_discards);
5422 
5423 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5424 			  &prev_ps->eth.tx_bytes,
5425 			  &cur_ps->eth.tx_bytes);
5426 
5427 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5428 			  &prev_ps->eth.tx_unicast,
5429 			  &cur_ps->eth.tx_unicast);
5430 
5431 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5432 			  &prev_ps->eth.tx_multicast,
5433 			  &cur_ps->eth.tx_multicast);
5434 
5435 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5436 			  &prev_ps->eth.tx_broadcast,
5437 			  &cur_ps->eth.tx_broadcast);
5438 
5439 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5440 			  &prev_ps->tx_dropped_link_down,
5441 			  &cur_ps->tx_dropped_link_down);
5442 
5443 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5444 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5445 
5446 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5447 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5448 
5449 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5450 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5451 
5452 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5453 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5454 
5455 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5456 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5457 
5458 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5459 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5460 
5461 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5462 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5463 
5464 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5465 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5466 
5467 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5468 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5469 
5470 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5471 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5472 
5473 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5474 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5475 
5476 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5477 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5478 
5479 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5480 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5481 
5482 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5483 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5484 
5485 	fd_ctr_base = hw->fd_ctr_base;
5486 
5487 	ice_stat_update40(hw,
5488 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5489 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5490 			  &cur_ps->fd_sb_match);
5491 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5492 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5493 
5494 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5495 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5496 
5497 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5498 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5499 
5500 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5501 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5502 
5503 	ice_update_dcb_stats(pf);
5504 
5505 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5506 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5507 
5508 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5509 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5510 
5511 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5512 			  &prev_ps->mac_local_faults,
5513 			  &cur_ps->mac_local_faults);
5514 
5515 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5516 			  &prev_ps->mac_remote_faults,
5517 			  &cur_ps->mac_remote_faults);
5518 
5519 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5520 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5521 
5522 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5523 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5524 
5525 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5526 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5527 
5528 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5529 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5530 
5531 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5532 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5533 
5534 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5535 
5536 	pf->stat_prev_loaded = true;
5537 }
5538 
5539 /**
5540  * ice_get_stats64 - get statistics for network device structure
5541  * @netdev: network interface device structure
5542  * @stats: main device statistics structure
5543  */
5544 static
5545 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5546 {
5547 	struct ice_netdev_priv *np = netdev_priv(netdev);
5548 	struct rtnl_link_stats64 *vsi_stats;
5549 	struct ice_vsi *vsi = np->vsi;
5550 
5551 	vsi_stats = &vsi->net_stats;
5552 
5553 	if (!vsi->num_txq || !vsi->num_rxq)
5554 		return;
5555 
5556 	/* netdev packet/byte stats come from ring counter. These are obtained
5557 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5558 	 * But, only call the update routine and read the registers if VSI is
5559 	 * not down.
5560 	 */
5561 	if (!test_bit(__ICE_DOWN, vsi->state))
5562 		ice_update_vsi_ring_stats(vsi);
5563 	stats->tx_packets = vsi_stats->tx_packets;
5564 	stats->tx_bytes = vsi_stats->tx_bytes;
5565 	stats->rx_packets = vsi_stats->rx_packets;
5566 	stats->rx_bytes = vsi_stats->rx_bytes;
5567 
5568 	/* The rest of the stats can be read from the hardware but instead we
5569 	 * just return values that the watchdog task has already obtained from
5570 	 * the hardware.
5571 	 */
5572 	stats->multicast = vsi_stats->multicast;
5573 	stats->tx_errors = vsi_stats->tx_errors;
5574 	stats->tx_dropped = vsi_stats->tx_dropped;
5575 	stats->rx_errors = vsi_stats->rx_errors;
5576 	stats->rx_dropped = vsi_stats->rx_dropped;
5577 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5578 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5579 }
5580 
5581 /**
5582  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5583  * @vsi: VSI having NAPI disabled
5584  */
5585 static void ice_napi_disable_all(struct ice_vsi *vsi)
5586 {
5587 	int q_idx;
5588 
5589 	if (!vsi->netdev)
5590 		return;
5591 
5592 	ice_for_each_q_vector(vsi, q_idx) {
5593 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5594 
5595 		if (q_vector->rx.ring || q_vector->tx.ring)
5596 			napi_disable(&q_vector->napi);
5597 	}
5598 }
5599 
5600 /**
5601  * ice_down - Shutdown the connection
5602  * @vsi: The VSI being stopped
5603  */
5604 int ice_down(struct ice_vsi *vsi)
5605 {
5606 	int i, tx_err, rx_err, link_err = 0;
5607 
5608 	/* Caller of this function is expected to set the
5609 	 * vsi->state __ICE_DOWN bit
5610 	 */
5611 	if (vsi->netdev) {
5612 		netif_carrier_off(vsi->netdev);
5613 		netif_tx_disable(vsi->netdev);
5614 	}
5615 
5616 	ice_vsi_dis_irq(vsi);
5617 
5618 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5619 	if (tx_err)
5620 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5621 			   vsi->vsi_num, tx_err);
5622 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5623 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5624 		if (tx_err)
5625 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5626 				   vsi->vsi_num, tx_err);
5627 	}
5628 
5629 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5630 	if (rx_err)
5631 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5632 			   vsi->vsi_num, rx_err);
5633 
5634 	ice_napi_disable_all(vsi);
5635 
5636 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5637 		link_err = ice_force_phys_link_state(vsi, false);
5638 		if (link_err)
5639 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5640 				   vsi->vsi_num, link_err);
5641 	}
5642 
5643 	ice_for_each_txq(vsi, i)
5644 		ice_clean_tx_ring(vsi->tx_rings[i]);
5645 
5646 	ice_for_each_rxq(vsi, i)
5647 		ice_clean_rx_ring(vsi->rx_rings[i]);
5648 
5649 	if (tx_err || rx_err || link_err) {
5650 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5651 			   vsi->vsi_num, vsi->vsw->sw_id);
5652 		return -EIO;
5653 	}
5654 
5655 	return 0;
5656 }
5657 
5658 /**
5659  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5660  * @vsi: VSI having resources allocated
5661  *
5662  * Return 0 on success, negative on failure
5663  */
5664 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5665 {
5666 	int i, err = 0;
5667 
5668 	if (!vsi->num_txq) {
5669 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5670 			vsi->vsi_num);
5671 		return -EINVAL;
5672 	}
5673 
5674 	ice_for_each_txq(vsi, i) {
5675 		struct ice_ring *ring = vsi->tx_rings[i];
5676 
5677 		if (!ring)
5678 			return -EINVAL;
5679 
5680 		ring->netdev = vsi->netdev;
5681 		err = ice_setup_tx_ring(ring);
5682 		if (err)
5683 			break;
5684 	}
5685 
5686 	return err;
5687 }
5688 
5689 /**
5690  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5691  * @vsi: VSI having resources allocated
5692  *
5693  * Return 0 on success, negative on failure
5694  */
5695 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5696 {
5697 	int i, err = 0;
5698 
5699 	if (!vsi->num_rxq) {
5700 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5701 			vsi->vsi_num);
5702 		return -EINVAL;
5703 	}
5704 
5705 	ice_for_each_rxq(vsi, i) {
5706 		struct ice_ring *ring = vsi->rx_rings[i];
5707 
5708 		if (!ring)
5709 			return -EINVAL;
5710 
5711 		ring->netdev = vsi->netdev;
5712 		err = ice_setup_rx_ring(ring);
5713 		if (err)
5714 			break;
5715 	}
5716 
5717 	return err;
5718 }
5719 
5720 /**
5721  * ice_vsi_open_ctrl - open control VSI for use
5722  * @vsi: the VSI to open
5723  *
5724  * Initialization of the Control VSI
5725  *
5726  * Returns 0 on success, negative value on error
5727  */
5728 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5729 {
5730 	char int_name[ICE_INT_NAME_STR_LEN];
5731 	struct ice_pf *pf = vsi->back;
5732 	struct device *dev;
5733 	int err;
5734 
5735 	dev = ice_pf_to_dev(pf);
5736 	/* allocate descriptors */
5737 	err = ice_vsi_setup_tx_rings(vsi);
5738 	if (err)
5739 		goto err_setup_tx;
5740 
5741 	err = ice_vsi_setup_rx_rings(vsi);
5742 	if (err)
5743 		goto err_setup_rx;
5744 
5745 	err = ice_vsi_cfg(vsi);
5746 	if (err)
5747 		goto err_setup_rx;
5748 
5749 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5750 		 dev_driver_string(dev), dev_name(dev));
5751 	err = ice_vsi_req_irq_msix(vsi, int_name);
5752 	if (err)
5753 		goto err_setup_rx;
5754 
5755 	ice_vsi_cfg_msix(vsi);
5756 
5757 	err = ice_vsi_start_all_rx_rings(vsi);
5758 	if (err)
5759 		goto err_up_complete;
5760 
5761 	clear_bit(__ICE_DOWN, vsi->state);
5762 	ice_vsi_ena_irq(vsi);
5763 
5764 	return 0;
5765 
5766 err_up_complete:
5767 	ice_down(vsi);
5768 err_setup_rx:
5769 	ice_vsi_free_rx_rings(vsi);
5770 err_setup_tx:
5771 	ice_vsi_free_tx_rings(vsi);
5772 
5773 	return err;
5774 }
5775 
5776 /**
5777  * ice_vsi_open - Called when a network interface is made active
5778  * @vsi: the VSI to open
5779  *
5780  * Initialization of the VSI
5781  *
5782  * Returns 0 on success, negative value on error
5783  */
5784 static int ice_vsi_open(struct ice_vsi *vsi)
5785 {
5786 	char int_name[ICE_INT_NAME_STR_LEN];
5787 	struct ice_pf *pf = vsi->back;
5788 	int err;
5789 
5790 	/* allocate descriptors */
5791 	err = ice_vsi_setup_tx_rings(vsi);
5792 	if (err)
5793 		goto err_setup_tx;
5794 
5795 	err = ice_vsi_setup_rx_rings(vsi);
5796 	if (err)
5797 		goto err_setup_rx;
5798 
5799 	err = ice_vsi_cfg(vsi);
5800 	if (err)
5801 		goto err_setup_rx;
5802 
5803 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5804 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5805 	err = ice_vsi_req_irq_msix(vsi, int_name);
5806 	if (err)
5807 		goto err_setup_rx;
5808 
5809 	/* Notify the stack of the actual queue counts. */
5810 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5811 	if (err)
5812 		goto err_set_qs;
5813 
5814 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5815 	if (err)
5816 		goto err_set_qs;
5817 
5818 	err = ice_up_complete(vsi);
5819 	if (err)
5820 		goto err_up_complete;
5821 
5822 	return 0;
5823 
5824 err_up_complete:
5825 	ice_down(vsi);
5826 err_set_qs:
5827 	ice_vsi_free_irq(vsi);
5828 err_setup_rx:
5829 	ice_vsi_free_rx_rings(vsi);
5830 err_setup_tx:
5831 	ice_vsi_free_tx_rings(vsi);
5832 
5833 	return err;
5834 }
5835 
5836 /**
5837  * ice_vsi_release_all - Delete all VSIs
5838  * @pf: PF from which all VSIs are being removed
5839  */
5840 static void ice_vsi_release_all(struct ice_pf *pf)
5841 {
5842 	int err, i;
5843 
5844 	if (!pf->vsi)
5845 		return;
5846 
5847 	ice_for_each_vsi(pf, i) {
5848 		if (!pf->vsi[i])
5849 			continue;
5850 
5851 		err = ice_vsi_release(pf->vsi[i]);
5852 		if (err)
5853 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5854 				i, err, pf->vsi[i]->vsi_num);
5855 	}
5856 }
5857 
5858 /**
5859  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5860  * @pf: pointer to the PF instance
5861  * @type: VSI type to rebuild
5862  *
5863  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5864  */
5865 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5866 {
5867 	struct device *dev = ice_pf_to_dev(pf);
5868 	enum ice_status status;
5869 	int i, err;
5870 
5871 	ice_for_each_vsi(pf, i) {
5872 		struct ice_vsi *vsi = pf->vsi[i];
5873 
5874 		if (!vsi || vsi->type != type)
5875 			continue;
5876 
5877 		/* rebuild the VSI */
5878 		err = ice_vsi_rebuild(vsi, true);
5879 		if (err) {
5880 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5881 				err, vsi->idx, ice_vsi_type_str(type));
5882 			return err;
5883 		}
5884 
5885 		/* replay filters for the VSI */
5886 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5887 		if (status) {
5888 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5889 				ice_stat_str(status), vsi->idx,
5890 				ice_vsi_type_str(type));
5891 			return -EIO;
5892 		}
5893 
5894 		/* Re-map HW VSI number, using VSI handle that has been
5895 		 * previously validated in ice_replay_vsi() call above
5896 		 */
5897 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5898 
5899 		/* enable the VSI */
5900 		err = ice_ena_vsi(vsi, false);
5901 		if (err) {
5902 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5903 				err, vsi->idx, ice_vsi_type_str(type));
5904 			return err;
5905 		}
5906 
5907 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5908 			 ice_vsi_type_str(type));
5909 	}
5910 
5911 	return 0;
5912 }
5913 
5914 /**
5915  * ice_update_pf_netdev_link - Update PF netdev link status
5916  * @pf: pointer to the PF instance
5917  */
5918 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5919 {
5920 	bool link_up;
5921 	int i;
5922 
5923 	ice_for_each_vsi(pf, i) {
5924 		struct ice_vsi *vsi = pf->vsi[i];
5925 
5926 		if (!vsi || vsi->type != ICE_VSI_PF)
5927 			return;
5928 
5929 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5930 		if (link_up) {
5931 			netif_carrier_on(pf->vsi[i]->netdev);
5932 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5933 		} else {
5934 			netif_carrier_off(pf->vsi[i]->netdev);
5935 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5936 		}
5937 	}
5938 }
5939 
5940 /**
5941  * ice_rebuild - rebuild after reset
5942  * @pf: PF to rebuild
5943  * @reset_type: type of reset
5944  *
5945  * Do not rebuild VF VSI in this flow because that is already handled via
5946  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5947  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5948  * to reset/rebuild all the VF VSI twice.
5949  */
5950 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5951 {
5952 	struct device *dev = ice_pf_to_dev(pf);
5953 	struct ice_hw *hw = &pf->hw;
5954 	enum ice_status ret;
5955 	int err;
5956 
5957 	if (test_bit(__ICE_DOWN, pf->state))
5958 		goto clear_recovery;
5959 
5960 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5961 
5962 	ret = ice_init_all_ctrlq(hw);
5963 	if (ret) {
5964 		dev_err(dev, "control queues init failed %s\n",
5965 			ice_stat_str(ret));
5966 		goto err_init_ctrlq;
5967 	}
5968 
5969 	/* if DDP was previously loaded successfully */
5970 	if (!ice_is_safe_mode(pf)) {
5971 		/* reload the SW DB of filter tables */
5972 		if (reset_type == ICE_RESET_PFR)
5973 			ice_fill_blk_tbls(hw);
5974 		else
5975 			/* Reload DDP Package after CORER/GLOBR reset */
5976 			ice_load_pkg(NULL, pf);
5977 	}
5978 
5979 	ret = ice_clear_pf_cfg(hw);
5980 	if (ret) {
5981 		dev_err(dev, "clear PF configuration failed %s\n",
5982 			ice_stat_str(ret));
5983 		goto err_init_ctrlq;
5984 	}
5985 
5986 	if (pf->first_sw->dflt_vsi_ena)
5987 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5988 	/* clear the default VSI configuration if it exists */
5989 	pf->first_sw->dflt_vsi = NULL;
5990 	pf->first_sw->dflt_vsi_ena = false;
5991 
5992 	ice_clear_pxe_mode(hw);
5993 
5994 	ret = ice_get_caps(hw);
5995 	if (ret) {
5996 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5997 		goto err_init_ctrlq;
5998 	}
5999 
6000 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6001 	if (ret) {
6002 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6003 		goto err_init_ctrlq;
6004 	}
6005 
6006 	err = ice_sched_init_port(hw->port_info);
6007 	if (err)
6008 		goto err_sched_init_port;
6009 
6010 	/* start misc vector */
6011 	err = ice_req_irq_msix_misc(pf);
6012 	if (err) {
6013 		dev_err(dev, "misc vector setup failed: %d\n", err);
6014 		goto err_sched_init_port;
6015 	}
6016 
6017 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6018 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6019 		if (!rd32(hw, PFQF_FD_SIZE)) {
6020 			u16 unused, guar, b_effort;
6021 
6022 			guar = hw->func_caps.fd_fltr_guar;
6023 			b_effort = hw->func_caps.fd_fltr_best_effort;
6024 
6025 			/* force guaranteed filter pool for PF */
6026 			ice_alloc_fd_guar_item(hw, &unused, guar);
6027 			/* force shared filter pool for PF */
6028 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6029 		}
6030 	}
6031 
6032 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6033 		ice_dcb_rebuild(pf);
6034 
6035 	/* rebuild PF VSI */
6036 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6037 	if (err) {
6038 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6039 		goto err_vsi_rebuild;
6040 	}
6041 
6042 	/* If Flow Director is active */
6043 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6044 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6045 		if (err) {
6046 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6047 			goto err_vsi_rebuild;
6048 		}
6049 
6050 		/* replay HW Flow Director recipes */
6051 		if (hw->fdir_prof)
6052 			ice_fdir_replay_flows(hw);
6053 
6054 		/* replay Flow Director filters */
6055 		ice_fdir_replay_fltrs(pf);
6056 
6057 		ice_rebuild_arfs(pf);
6058 	}
6059 
6060 	ice_update_pf_netdev_link(pf);
6061 
6062 	/* tell the firmware we are up */
6063 	ret = ice_send_version(pf);
6064 	if (ret) {
6065 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6066 			ice_stat_str(ret));
6067 		goto err_vsi_rebuild;
6068 	}
6069 
6070 	ice_replay_post(hw);
6071 
6072 	/* if we get here, reset flow is successful */
6073 	clear_bit(__ICE_RESET_FAILED, pf->state);
6074 	return;
6075 
6076 err_vsi_rebuild:
6077 err_sched_init_port:
6078 	ice_sched_cleanup_all(hw);
6079 err_init_ctrlq:
6080 	ice_shutdown_all_ctrlq(hw);
6081 	set_bit(__ICE_RESET_FAILED, pf->state);
6082 clear_recovery:
6083 	/* set this bit in PF state to control service task scheduling */
6084 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6085 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6086 }
6087 
6088 /**
6089  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6090  * @vsi: Pointer to VSI structure
6091  */
6092 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6093 {
6094 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6095 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6096 	else
6097 		return ICE_RXBUF_3072;
6098 }
6099 
6100 /**
6101  * ice_change_mtu - NDO callback to change the MTU
6102  * @netdev: network interface device structure
6103  * @new_mtu: new value for maximum frame size
6104  *
6105  * Returns 0 on success, negative on failure
6106  */
6107 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6108 {
6109 	struct ice_netdev_priv *np = netdev_priv(netdev);
6110 	struct ice_vsi *vsi = np->vsi;
6111 	struct ice_pf *pf = vsi->back;
6112 	u8 count = 0;
6113 
6114 	if (new_mtu == (int)netdev->mtu) {
6115 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6116 		return 0;
6117 	}
6118 
6119 	if (ice_is_xdp_ena_vsi(vsi)) {
6120 		int frame_size = ice_max_xdp_frame_size(vsi);
6121 
6122 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6123 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6124 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6125 			return -EINVAL;
6126 		}
6127 	}
6128 
6129 	if (new_mtu < (int)netdev->min_mtu) {
6130 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6131 			   netdev->min_mtu);
6132 		return -EINVAL;
6133 	} else if (new_mtu > (int)netdev->max_mtu) {
6134 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6135 			   netdev->min_mtu);
6136 		return -EINVAL;
6137 	}
6138 	/* if a reset is in progress, wait for some time for it to complete */
6139 	do {
6140 		if (ice_is_reset_in_progress(pf->state)) {
6141 			count++;
6142 			usleep_range(1000, 2000);
6143 		} else {
6144 			break;
6145 		}
6146 
6147 	} while (count < 100);
6148 
6149 	if (count == 100) {
6150 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6151 		return -EBUSY;
6152 	}
6153 
6154 	netdev->mtu = (unsigned int)new_mtu;
6155 
6156 	/* if VSI is up, bring it down and then back up */
6157 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6158 		int err;
6159 
6160 		err = ice_down(vsi);
6161 		if (err) {
6162 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6163 			return err;
6164 		}
6165 
6166 		err = ice_up(vsi);
6167 		if (err) {
6168 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6169 			return err;
6170 		}
6171 	}
6172 
6173 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6174 	return 0;
6175 }
6176 
6177 /**
6178  * ice_aq_str - convert AQ err code to a string
6179  * @aq_err: the AQ error code to convert
6180  */
6181 const char *ice_aq_str(enum ice_aq_err aq_err)
6182 {
6183 	switch (aq_err) {
6184 	case ICE_AQ_RC_OK:
6185 		return "OK";
6186 	case ICE_AQ_RC_EPERM:
6187 		return "ICE_AQ_RC_EPERM";
6188 	case ICE_AQ_RC_ENOENT:
6189 		return "ICE_AQ_RC_ENOENT";
6190 	case ICE_AQ_RC_ENOMEM:
6191 		return "ICE_AQ_RC_ENOMEM";
6192 	case ICE_AQ_RC_EBUSY:
6193 		return "ICE_AQ_RC_EBUSY";
6194 	case ICE_AQ_RC_EEXIST:
6195 		return "ICE_AQ_RC_EEXIST";
6196 	case ICE_AQ_RC_EINVAL:
6197 		return "ICE_AQ_RC_EINVAL";
6198 	case ICE_AQ_RC_ENOSPC:
6199 		return "ICE_AQ_RC_ENOSPC";
6200 	case ICE_AQ_RC_ENOSYS:
6201 		return "ICE_AQ_RC_ENOSYS";
6202 	case ICE_AQ_RC_EMODE:
6203 		return "ICE_AQ_RC_EMODE";
6204 	case ICE_AQ_RC_ENOSEC:
6205 		return "ICE_AQ_RC_ENOSEC";
6206 	case ICE_AQ_RC_EBADSIG:
6207 		return "ICE_AQ_RC_EBADSIG";
6208 	case ICE_AQ_RC_ESVN:
6209 		return "ICE_AQ_RC_ESVN";
6210 	case ICE_AQ_RC_EBADMAN:
6211 		return "ICE_AQ_RC_EBADMAN";
6212 	case ICE_AQ_RC_EBADBUF:
6213 		return "ICE_AQ_RC_EBADBUF";
6214 	}
6215 
6216 	return "ICE_AQ_RC_UNKNOWN";
6217 }
6218 
6219 /**
6220  * ice_stat_str - convert status err code to a string
6221  * @stat_err: the status error code to convert
6222  */
6223 const char *ice_stat_str(enum ice_status stat_err)
6224 {
6225 	switch (stat_err) {
6226 	case ICE_SUCCESS:
6227 		return "OK";
6228 	case ICE_ERR_PARAM:
6229 		return "ICE_ERR_PARAM";
6230 	case ICE_ERR_NOT_IMPL:
6231 		return "ICE_ERR_NOT_IMPL";
6232 	case ICE_ERR_NOT_READY:
6233 		return "ICE_ERR_NOT_READY";
6234 	case ICE_ERR_NOT_SUPPORTED:
6235 		return "ICE_ERR_NOT_SUPPORTED";
6236 	case ICE_ERR_BAD_PTR:
6237 		return "ICE_ERR_BAD_PTR";
6238 	case ICE_ERR_INVAL_SIZE:
6239 		return "ICE_ERR_INVAL_SIZE";
6240 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6241 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6242 	case ICE_ERR_RESET_FAILED:
6243 		return "ICE_ERR_RESET_FAILED";
6244 	case ICE_ERR_FW_API_VER:
6245 		return "ICE_ERR_FW_API_VER";
6246 	case ICE_ERR_NO_MEMORY:
6247 		return "ICE_ERR_NO_MEMORY";
6248 	case ICE_ERR_CFG:
6249 		return "ICE_ERR_CFG";
6250 	case ICE_ERR_OUT_OF_RANGE:
6251 		return "ICE_ERR_OUT_OF_RANGE";
6252 	case ICE_ERR_ALREADY_EXISTS:
6253 		return "ICE_ERR_ALREADY_EXISTS";
6254 	case ICE_ERR_NVM_CHECKSUM:
6255 		return "ICE_ERR_NVM_CHECKSUM";
6256 	case ICE_ERR_BUF_TOO_SHORT:
6257 		return "ICE_ERR_BUF_TOO_SHORT";
6258 	case ICE_ERR_NVM_BLANK_MODE:
6259 		return "ICE_ERR_NVM_BLANK_MODE";
6260 	case ICE_ERR_IN_USE:
6261 		return "ICE_ERR_IN_USE";
6262 	case ICE_ERR_MAX_LIMIT:
6263 		return "ICE_ERR_MAX_LIMIT";
6264 	case ICE_ERR_RESET_ONGOING:
6265 		return "ICE_ERR_RESET_ONGOING";
6266 	case ICE_ERR_HW_TABLE:
6267 		return "ICE_ERR_HW_TABLE";
6268 	case ICE_ERR_DOES_NOT_EXIST:
6269 		return "ICE_ERR_DOES_NOT_EXIST";
6270 	case ICE_ERR_FW_DDP_MISMATCH:
6271 		return "ICE_ERR_FW_DDP_MISMATCH";
6272 	case ICE_ERR_AQ_ERROR:
6273 		return "ICE_ERR_AQ_ERROR";
6274 	case ICE_ERR_AQ_TIMEOUT:
6275 		return "ICE_ERR_AQ_TIMEOUT";
6276 	case ICE_ERR_AQ_FULL:
6277 		return "ICE_ERR_AQ_FULL";
6278 	case ICE_ERR_AQ_NO_WORK:
6279 		return "ICE_ERR_AQ_NO_WORK";
6280 	case ICE_ERR_AQ_EMPTY:
6281 		return "ICE_ERR_AQ_EMPTY";
6282 	case ICE_ERR_AQ_FW_CRITICAL:
6283 		return "ICE_ERR_AQ_FW_CRITICAL";
6284 	}
6285 
6286 	return "ICE_ERR_UNKNOWN";
6287 }
6288 
6289 /**
6290  * ice_set_rss - Set RSS keys and lut
6291  * @vsi: Pointer to VSI structure
6292  * @seed: RSS hash seed
6293  * @lut: Lookup table
6294  * @lut_size: Lookup table size
6295  *
6296  * Returns 0 on success, negative on failure
6297  */
6298 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6299 {
6300 	struct ice_pf *pf = vsi->back;
6301 	struct ice_hw *hw = &pf->hw;
6302 	enum ice_status status;
6303 	struct device *dev;
6304 
6305 	dev = ice_pf_to_dev(pf);
6306 	if (seed) {
6307 		struct ice_aqc_get_set_rss_keys *buf =
6308 				  (struct ice_aqc_get_set_rss_keys *)seed;
6309 
6310 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6311 
6312 		if (status) {
6313 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6314 				ice_stat_str(status),
6315 				ice_aq_str(hw->adminq.sq_last_status));
6316 			return -EIO;
6317 		}
6318 	}
6319 
6320 	if (lut) {
6321 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6322 					    lut, lut_size);
6323 		if (status) {
6324 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6325 				ice_stat_str(status),
6326 				ice_aq_str(hw->adminq.sq_last_status));
6327 			return -EIO;
6328 		}
6329 	}
6330 
6331 	return 0;
6332 }
6333 
6334 /**
6335  * ice_get_rss - Get RSS keys and lut
6336  * @vsi: Pointer to VSI structure
6337  * @seed: Buffer to store the keys
6338  * @lut: Buffer to store the lookup table entries
6339  * @lut_size: Size of buffer to store the lookup table entries
6340  *
6341  * Returns 0 on success, negative on failure
6342  */
6343 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6344 {
6345 	struct ice_pf *pf = vsi->back;
6346 	struct ice_hw *hw = &pf->hw;
6347 	enum ice_status status;
6348 	struct device *dev;
6349 
6350 	dev = ice_pf_to_dev(pf);
6351 	if (seed) {
6352 		struct ice_aqc_get_set_rss_keys *buf =
6353 				  (struct ice_aqc_get_set_rss_keys *)seed;
6354 
6355 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6356 		if (status) {
6357 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6358 				ice_stat_str(status),
6359 				ice_aq_str(hw->adminq.sq_last_status));
6360 			return -EIO;
6361 		}
6362 	}
6363 
6364 	if (lut) {
6365 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6366 					    lut, lut_size);
6367 		if (status) {
6368 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6369 				ice_stat_str(status),
6370 				ice_aq_str(hw->adminq.sq_last_status));
6371 			return -EIO;
6372 		}
6373 	}
6374 
6375 	return 0;
6376 }
6377 
6378 /**
6379  * ice_bridge_getlink - Get the hardware bridge mode
6380  * @skb: skb buff
6381  * @pid: process ID
6382  * @seq: RTNL message seq
6383  * @dev: the netdev being configured
6384  * @filter_mask: filter mask passed in
6385  * @nlflags: netlink flags passed in
6386  *
6387  * Return the bridge mode (VEB/VEPA)
6388  */
6389 static int
6390 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6391 		   struct net_device *dev, u32 filter_mask, int nlflags)
6392 {
6393 	struct ice_netdev_priv *np = netdev_priv(dev);
6394 	struct ice_vsi *vsi = np->vsi;
6395 	struct ice_pf *pf = vsi->back;
6396 	u16 bmode;
6397 
6398 	bmode = pf->first_sw->bridge_mode;
6399 
6400 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6401 				       filter_mask, NULL);
6402 }
6403 
6404 /**
6405  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6406  * @vsi: Pointer to VSI structure
6407  * @bmode: Hardware bridge mode (VEB/VEPA)
6408  *
6409  * Returns 0 on success, negative on failure
6410  */
6411 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6412 {
6413 	struct ice_aqc_vsi_props *vsi_props;
6414 	struct ice_hw *hw = &vsi->back->hw;
6415 	struct ice_vsi_ctx *ctxt;
6416 	enum ice_status status;
6417 	int ret = 0;
6418 
6419 	vsi_props = &vsi->info;
6420 
6421 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6422 	if (!ctxt)
6423 		return -ENOMEM;
6424 
6425 	ctxt->info = vsi->info;
6426 
6427 	if (bmode == BRIDGE_MODE_VEB)
6428 		/* change from VEPA to VEB mode */
6429 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6430 	else
6431 		/* change from VEB to VEPA mode */
6432 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6433 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6434 
6435 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6436 	if (status) {
6437 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6438 			bmode, ice_stat_str(status),
6439 			ice_aq_str(hw->adminq.sq_last_status));
6440 		ret = -EIO;
6441 		goto out;
6442 	}
6443 	/* Update sw flags for book keeping */
6444 	vsi_props->sw_flags = ctxt->info.sw_flags;
6445 
6446 out:
6447 	kfree(ctxt);
6448 	return ret;
6449 }
6450 
6451 /**
6452  * ice_bridge_setlink - Set the hardware bridge mode
6453  * @dev: the netdev being configured
6454  * @nlh: RTNL message
6455  * @flags: bridge setlink flags
6456  * @extack: netlink extended ack
6457  *
6458  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6459  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6460  * not already set for all VSIs connected to this switch. And also update the
6461  * unicast switch filter rules for the corresponding switch of the netdev.
6462  */
6463 static int
6464 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6465 		   u16 __always_unused flags,
6466 		   struct netlink_ext_ack __always_unused *extack)
6467 {
6468 	struct ice_netdev_priv *np = netdev_priv(dev);
6469 	struct ice_pf *pf = np->vsi->back;
6470 	struct nlattr *attr, *br_spec;
6471 	struct ice_hw *hw = &pf->hw;
6472 	enum ice_status status;
6473 	struct ice_sw *pf_sw;
6474 	int rem, v, err = 0;
6475 
6476 	pf_sw = pf->first_sw;
6477 	/* find the attribute in the netlink message */
6478 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6479 
6480 	nla_for_each_nested(attr, br_spec, rem) {
6481 		__u16 mode;
6482 
6483 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6484 			continue;
6485 		mode = nla_get_u16(attr);
6486 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6487 			return -EINVAL;
6488 		/* Continue  if bridge mode is not being flipped */
6489 		if (mode == pf_sw->bridge_mode)
6490 			continue;
6491 		/* Iterates through the PF VSI list and update the loopback
6492 		 * mode of the VSI
6493 		 */
6494 		ice_for_each_vsi(pf, v) {
6495 			if (!pf->vsi[v])
6496 				continue;
6497 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6498 			if (err)
6499 				return err;
6500 		}
6501 
6502 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6503 		/* Update the unicast switch filter rules for the corresponding
6504 		 * switch of the netdev
6505 		 */
6506 		status = ice_update_sw_rule_bridge_mode(hw);
6507 		if (status) {
6508 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6509 				   mode, ice_stat_str(status),
6510 				   ice_aq_str(hw->adminq.sq_last_status));
6511 			/* revert hw->evb_veb */
6512 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6513 			return -EIO;
6514 		}
6515 
6516 		pf_sw->bridge_mode = mode;
6517 	}
6518 
6519 	return 0;
6520 }
6521 
6522 /**
6523  * ice_tx_timeout - Respond to a Tx Hang
6524  * @netdev: network interface device structure
6525  * @txqueue: Tx queue
6526  */
6527 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6528 {
6529 	struct ice_netdev_priv *np = netdev_priv(netdev);
6530 	struct ice_ring *tx_ring = NULL;
6531 	struct ice_vsi *vsi = np->vsi;
6532 	struct ice_pf *pf = vsi->back;
6533 	u32 i;
6534 
6535 	pf->tx_timeout_count++;
6536 
6537 	/* Check if PFC is enabled for the TC to which the queue belongs
6538 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6539 	 * need to reset and rebuild
6540 	 */
6541 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6542 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6543 			 txqueue);
6544 		return;
6545 	}
6546 
6547 	/* now that we have an index, find the tx_ring struct */
6548 	for (i = 0; i < vsi->num_txq; i++)
6549 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6550 			if (txqueue == vsi->tx_rings[i]->q_index) {
6551 				tx_ring = vsi->tx_rings[i];
6552 				break;
6553 			}
6554 
6555 	/* Reset recovery level if enough time has elapsed after last timeout.
6556 	 * Also ensure no new reset action happens before next timeout period.
6557 	 */
6558 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6559 		pf->tx_timeout_recovery_level = 1;
6560 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6561 				       netdev->watchdog_timeo)))
6562 		return;
6563 
6564 	if (tx_ring) {
6565 		struct ice_hw *hw = &pf->hw;
6566 		u32 head, val = 0;
6567 
6568 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6569 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6570 		/* Read interrupt register */
6571 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6572 
6573 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6574 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6575 			    head, tx_ring->next_to_use, val);
6576 	}
6577 
6578 	pf->tx_timeout_last_recovery = jiffies;
6579 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6580 		    pf->tx_timeout_recovery_level, txqueue);
6581 
6582 	switch (pf->tx_timeout_recovery_level) {
6583 	case 1:
6584 		set_bit(__ICE_PFR_REQ, pf->state);
6585 		break;
6586 	case 2:
6587 		set_bit(__ICE_CORER_REQ, pf->state);
6588 		break;
6589 	case 3:
6590 		set_bit(__ICE_GLOBR_REQ, pf->state);
6591 		break;
6592 	default:
6593 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6594 		set_bit(__ICE_DOWN, pf->state);
6595 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6596 		set_bit(__ICE_SERVICE_DIS, pf->state);
6597 		break;
6598 	}
6599 
6600 	ice_service_task_schedule(pf);
6601 	pf->tx_timeout_recovery_level++;
6602 }
6603 
6604 /**
6605  * ice_open - Called when a network interface becomes active
6606  * @netdev: network interface device structure
6607  *
6608  * The open entry point is called when a network interface is made
6609  * active by the system (IFF_UP). At this point all resources needed
6610  * for transmit and receive operations are allocated, the interrupt
6611  * handler is registered with the OS, the netdev watchdog is enabled,
6612  * and the stack is notified that the interface is ready.
6613  *
6614  * Returns 0 on success, negative value on failure
6615  */
6616 int ice_open(struct net_device *netdev)
6617 {
6618 	struct ice_netdev_priv *np = netdev_priv(netdev);
6619 	struct ice_vsi *vsi = np->vsi;
6620 	struct ice_pf *pf = vsi->back;
6621 	struct ice_port_info *pi;
6622 	int err;
6623 
6624 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6625 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6626 		return -EIO;
6627 	}
6628 
6629 	if (test_bit(__ICE_DOWN, pf->state)) {
6630 		netdev_err(netdev, "device is not ready yet\n");
6631 		return -EBUSY;
6632 	}
6633 
6634 	netif_carrier_off(netdev);
6635 
6636 	pi = vsi->port_info;
6637 	err = ice_update_link_info(pi);
6638 	if (err) {
6639 		netdev_err(netdev, "Failed to get link info, error %d\n",
6640 			   err);
6641 		return err;
6642 	}
6643 
6644 	/* Set PHY if there is media, otherwise, turn off PHY */
6645 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6646 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6647 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6648 			err = ice_init_phy_user_cfg(pi);
6649 			if (err) {
6650 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6651 					   err);
6652 				return err;
6653 			}
6654 		}
6655 
6656 		err = ice_configure_phy(vsi);
6657 		if (err) {
6658 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6659 				   err);
6660 			return err;
6661 		}
6662 	} else {
6663 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6664 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6665 		if (err) {
6666 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6667 				   vsi->vsi_num, err);
6668 			return err;
6669 		}
6670 	}
6671 
6672 	err = ice_vsi_open(vsi);
6673 	if (err)
6674 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6675 			   vsi->vsi_num, vsi->vsw->sw_id);
6676 
6677 	/* Update existing tunnels information */
6678 	udp_tunnel_get_rx_info(netdev);
6679 
6680 	return err;
6681 }
6682 
6683 /**
6684  * ice_stop - Disables a network interface
6685  * @netdev: network interface device structure
6686  *
6687  * The stop entry point is called when an interface is de-activated by the OS,
6688  * and the netdevice enters the DOWN state. The hardware is still under the
6689  * driver's control, but the netdev interface is disabled.
6690  *
6691  * Returns success only - not allowed to fail
6692  */
6693 int ice_stop(struct net_device *netdev)
6694 {
6695 	struct ice_netdev_priv *np = netdev_priv(netdev);
6696 	struct ice_vsi *vsi = np->vsi;
6697 
6698 	ice_vsi_close(vsi);
6699 
6700 	return 0;
6701 }
6702 
6703 /**
6704  * ice_features_check - Validate encapsulated packet conforms to limits
6705  * @skb: skb buffer
6706  * @netdev: This port's netdev
6707  * @features: Offload features that the stack believes apply
6708  */
6709 static netdev_features_t
6710 ice_features_check(struct sk_buff *skb,
6711 		   struct net_device __always_unused *netdev,
6712 		   netdev_features_t features)
6713 {
6714 	size_t len;
6715 
6716 	/* No point in doing any of this if neither checksum nor GSO are
6717 	 * being requested for this frame. We can rule out both by just
6718 	 * checking for CHECKSUM_PARTIAL
6719 	 */
6720 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6721 		return features;
6722 
6723 	/* We cannot support GSO if the MSS is going to be less than
6724 	 * 64 bytes. If it is then we need to drop support for GSO.
6725 	 */
6726 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6727 		features &= ~NETIF_F_GSO_MASK;
6728 
6729 	len = skb_network_header(skb) - skb->data;
6730 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6731 		goto out_rm_features;
6732 
6733 	len = skb_transport_header(skb) - skb_network_header(skb);
6734 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6735 		goto out_rm_features;
6736 
6737 	if (skb->encapsulation) {
6738 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6739 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6740 			goto out_rm_features;
6741 
6742 		len = skb_inner_transport_header(skb) -
6743 		      skb_inner_network_header(skb);
6744 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6745 			goto out_rm_features;
6746 	}
6747 
6748 	return features;
6749 out_rm_features:
6750 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6751 }
6752 
6753 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6754 	.ndo_open = ice_open,
6755 	.ndo_stop = ice_stop,
6756 	.ndo_start_xmit = ice_start_xmit,
6757 	.ndo_set_mac_address = ice_set_mac_address,
6758 	.ndo_validate_addr = eth_validate_addr,
6759 	.ndo_change_mtu = ice_change_mtu,
6760 	.ndo_get_stats64 = ice_get_stats64,
6761 	.ndo_tx_timeout = ice_tx_timeout,
6762 };
6763 
6764 static const struct net_device_ops ice_netdev_ops = {
6765 	.ndo_open = ice_open,
6766 	.ndo_stop = ice_stop,
6767 	.ndo_start_xmit = ice_start_xmit,
6768 	.ndo_features_check = ice_features_check,
6769 	.ndo_set_rx_mode = ice_set_rx_mode,
6770 	.ndo_set_mac_address = ice_set_mac_address,
6771 	.ndo_validate_addr = eth_validate_addr,
6772 	.ndo_change_mtu = ice_change_mtu,
6773 	.ndo_get_stats64 = ice_get_stats64,
6774 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6775 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6776 	.ndo_set_vf_mac = ice_set_vf_mac,
6777 	.ndo_get_vf_config = ice_get_vf_cfg,
6778 	.ndo_set_vf_trust = ice_set_vf_trust,
6779 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6780 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6781 	.ndo_get_vf_stats = ice_get_vf_stats,
6782 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6783 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6784 	.ndo_set_features = ice_set_features,
6785 	.ndo_bridge_getlink = ice_bridge_getlink,
6786 	.ndo_bridge_setlink = ice_bridge_setlink,
6787 	.ndo_fdb_add = ice_fdb_add,
6788 	.ndo_fdb_del = ice_fdb_del,
6789 #ifdef CONFIG_RFS_ACCEL
6790 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6791 #endif
6792 	.ndo_tx_timeout = ice_tx_timeout,
6793 	.ndo_bpf = ice_xdp,
6794 	.ndo_xdp_xmit = ice_xdp_xmit,
6795 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6796 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6797 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6798 };
6799