1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 
25 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
26 static const char ice_driver_string[] = DRV_SUMMARY;
27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
28 
29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
30 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
31 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
37 
38 static int debug = -1;
39 module_param(debug, int, 0644);
40 #ifndef CONFIG_DYNAMIC_DEBUG
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
42 #else
43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
44 #endif /* !CONFIG_DYNAMIC_DEBUG */
45 
46 static DEFINE_IDA(ice_aux_ida);
47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
48 EXPORT_SYMBOL(ice_xdp_locking_key);
49 
50 static struct workqueue_struct *ice_wq;
51 static const struct net_device_ops ice_netdev_safe_mode_ops;
52 static const struct net_device_ops ice_netdev_ops;
53 
54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
55 
56 static void ice_vsi_release_all(struct ice_pf *pf);
57 
58 static int ice_rebuild_channels(struct ice_pf *pf);
59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
60 
61 static int
62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
63 		     void *cb_priv, enum tc_setup_type type, void *type_data,
64 		     void *data,
65 		     void (*cleanup)(struct flow_block_cb *block_cb));
66 
67 bool netif_is_ice(struct net_device *dev)
68 {
69 	return dev && (dev->netdev_ops == &ice_netdev_ops);
70 }
71 
72 /**
73  * ice_get_tx_pending - returns number of Tx descriptors not processed
74  * @ring: the ring of descriptors
75  */
76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
77 {
78 	u16 head, tail;
79 
80 	head = ring->next_to_clean;
81 	tail = ring->next_to_use;
82 
83 	if (head != tail)
84 		return (head < tail) ?
85 			tail - head : (tail + ring->count - head);
86 	return 0;
87 }
88 
89 /**
90  * ice_check_for_hang_subtask - check for and recover hung queues
91  * @pf: pointer to PF struct
92  */
93 static void ice_check_for_hang_subtask(struct ice_pf *pf)
94 {
95 	struct ice_vsi *vsi = NULL;
96 	struct ice_hw *hw;
97 	unsigned int i;
98 	int packets;
99 	u32 v;
100 
101 	ice_for_each_vsi(pf, v)
102 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
103 			vsi = pf->vsi[v];
104 			break;
105 		}
106 
107 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
108 		return;
109 
110 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
111 		return;
112 
113 	hw = &vsi->back->hw;
114 
115 	ice_for_each_txq(vsi, i) {
116 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
117 
118 		if (!tx_ring)
119 			continue;
120 		if (ice_ring_ch_enabled(tx_ring))
121 			continue;
122 
123 		if (tx_ring->desc) {
124 			/* If packet counter has not changed the queue is
125 			 * likely stalled, so force an interrupt for this
126 			 * queue.
127 			 *
128 			 * prev_pkt would be negative if there was no
129 			 * pending work.
130 			 */
131 			packets = tx_ring->stats.pkts & INT_MAX;
132 			if (tx_ring->tx_stats.prev_pkt == packets) {
133 				/* Trigger sw interrupt to revive the queue */
134 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
135 				continue;
136 			}
137 
138 			/* Memory barrier between read of packet count and call
139 			 * to ice_get_tx_pending()
140 			 */
141 			smp_rmb();
142 			tx_ring->tx_stats.prev_pkt =
143 			    ice_get_tx_pending(tx_ring) ? packets : -1;
144 		}
145 	}
146 }
147 
148 /**
149  * ice_init_mac_fltr - Set initial MAC filters
150  * @pf: board private structure
151  *
152  * Set initial set of MAC filters for PF VSI; configure filters for permanent
153  * address and broadcast address. If an error is encountered, netdevice will be
154  * unregistered.
155  */
156 static int ice_init_mac_fltr(struct ice_pf *pf)
157 {
158 	enum ice_status status;
159 	struct ice_vsi *vsi;
160 	u8 *perm_addr;
161 
162 	vsi = ice_get_main_vsi(pf);
163 	if (!vsi)
164 		return -EINVAL;
165 
166 	perm_addr = vsi->port_info->mac.perm_addr;
167 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
168 	if (status)
169 		return -EIO;
170 
171 	return 0;
172 }
173 
174 /**
175  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
176  * @netdev: the net device on which the sync is happening
177  * @addr: MAC address to sync
178  *
179  * This is a callback function which is called by the in kernel device sync
180  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
181  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
182  * MAC filters from the hardware.
183  */
184 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
185 {
186 	struct ice_netdev_priv *np = netdev_priv(netdev);
187 	struct ice_vsi *vsi = np->vsi;
188 
189 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
190 				     ICE_FWD_TO_VSI))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /**
197  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
198  * @netdev: the net device on which the unsync is happening
199  * @addr: MAC address to unsync
200  *
201  * This is a callback function which is called by the in kernel device unsync
202  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
203  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
204  * delete the MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	/* Under some circumstances, we might receive a request to delete our
212 	 * own device address from our uc list. Because we store the device
213 	 * address in the VSI's MAC filter list, we need to ignore such
214 	 * requests and not delete our device address from this list.
215 	 */
216 	if (ether_addr_equal(addr, netdev->dev_addr))
217 		return 0;
218 
219 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
220 				     ICE_FWD_TO_VSI))
221 		return -EINVAL;
222 
223 	return 0;
224 }
225 
226 /**
227  * ice_vsi_fltr_changed - check if filter state changed
228  * @vsi: VSI to be checked
229  *
230  * returns true if filter state has changed, false otherwise.
231  */
232 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
233 {
234 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
235 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
236 	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
237 }
238 
239 /**
240  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
241  * @vsi: the VSI being configured
242  * @promisc_m: mask of promiscuous config bits
243  * @set_promisc: enable or disable promisc flag request
244  *
245  */
246 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
247 {
248 	struct ice_hw *hw = &vsi->back->hw;
249 	enum ice_status status = 0;
250 
251 	if (vsi->type != ICE_VSI_PF)
252 		return 0;
253 
254 	if (vsi->num_vlan > 1) {
255 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
256 						  set_promisc);
257 	} else {
258 		if (set_promisc)
259 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
260 						     0);
261 		else
262 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
263 						       0);
264 	}
265 
266 	if (status)
267 		return -EIO;
268 
269 	return 0;
270 }
271 
272 /**
273  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
274  * @vsi: ptr to the VSI
275  *
276  * Push any outstanding VSI filter changes through the AdminQ.
277  */
278 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
279 {
280 	struct device *dev = ice_pf_to_dev(vsi->back);
281 	struct net_device *netdev = vsi->netdev;
282 	bool promisc_forced_on = false;
283 	struct ice_pf *pf = vsi->back;
284 	struct ice_hw *hw = &pf->hw;
285 	enum ice_status status = 0;
286 	u32 changed_flags = 0;
287 	u8 promisc_m;
288 	int err = 0;
289 
290 	if (!vsi->netdev)
291 		return -EINVAL;
292 
293 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
294 		usleep_range(1000, 2000);
295 
296 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
297 	vsi->current_netdev_flags = vsi->netdev->flags;
298 
299 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
300 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
301 
302 	if (ice_vsi_fltr_changed(vsi)) {
303 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
304 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
305 		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
306 
307 		/* grab the netdev's addr_list_lock */
308 		netif_addr_lock_bh(netdev);
309 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
310 			      ice_add_mac_to_unsync_list);
311 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
312 			      ice_add_mac_to_unsync_list);
313 		/* our temp lists are populated. release lock */
314 		netif_addr_unlock_bh(netdev);
315 	}
316 
317 	/* Remove MAC addresses in the unsync list */
318 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
319 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
320 	if (status) {
321 		netdev_err(netdev, "Failed to delete MAC filters\n");
322 		/* if we failed because of alloc failures, just bail */
323 		if (status == ICE_ERR_NO_MEMORY) {
324 			err = -ENOMEM;
325 			goto out;
326 		}
327 	}
328 
329 	/* Add MAC addresses in the sync list */
330 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
331 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
332 	/* If filter is added successfully or already exists, do not go into
333 	 * 'if' condition and report it as error. Instead continue processing
334 	 * rest of the function.
335 	 */
336 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
337 		netdev_err(netdev, "Failed to add MAC filters\n");
338 		/* If there is no more space for new umac filters, VSI
339 		 * should go into promiscuous mode. There should be some
340 		 * space reserved for promiscuous filters.
341 		 */
342 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
343 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
344 				      vsi->state)) {
345 			promisc_forced_on = true;
346 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
347 				    vsi->vsi_num);
348 		} else {
349 			err = -EIO;
350 			goto out;
351 		}
352 	}
353 	/* check for changes in promiscuous modes */
354 	if (changed_flags & IFF_ALLMULTI) {
355 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
356 			if (vsi->num_vlan > 1)
357 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
358 			else
359 				promisc_m = ICE_MCAST_PROMISC_BITS;
360 
361 			err = ice_cfg_promisc(vsi, promisc_m, true);
362 			if (err) {
363 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
364 					   vsi->vsi_num);
365 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
366 				goto out_promisc;
367 			}
368 		} else {
369 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
370 			if (vsi->num_vlan > 1)
371 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
372 			else
373 				promisc_m = ICE_MCAST_PROMISC_BITS;
374 
375 			err = ice_cfg_promisc(vsi, promisc_m, false);
376 			if (err) {
377 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
378 					   vsi->vsi_num);
379 				vsi->current_netdev_flags |= IFF_ALLMULTI;
380 				goto out_promisc;
381 			}
382 		}
383 	}
384 
385 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
386 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
387 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
388 		if (vsi->current_netdev_flags & IFF_PROMISC) {
389 			/* Apply Rx filter rule to get traffic from wire */
390 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
391 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
392 				if (err && err != -EEXIST) {
393 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
394 						   err, vsi->vsi_num);
395 					vsi->current_netdev_flags &=
396 						~IFF_PROMISC;
397 					goto out_promisc;
398 				}
399 				ice_cfg_vlan_pruning(vsi, false);
400 			}
401 		} else {
402 			/* Clear Rx filter to remove traffic from wire */
403 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
404 				err = ice_clear_dflt_vsi(pf->first_sw);
405 				if (err) {
406 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
407 						   err, vsi->vsi_num);
408 					vsi->current_netdev_flags |=
409 						IFF_PROMISC;
410 					goto out_promisc;
411 				}
412 				if (vsi->num_vlan > 1)
413 					ice_cfg_vlan_pruning(vsi, true);
414 			}
415 		}
416 	}
417 	goto exit;
418 
419 out_promisc:
420 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
421 	goto exit;
422 out:
423 	/* if something went wrong then set the changed flag so we try again */
424 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
425 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
426 exit:
427 	clear_bit(ICE_CFG_BUSY, vsi->state);
428 	return err;
429 }
430 
431 /**
432  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
433  * @pf: board private structure
434  */
435 static void ice_sync_fltr_subtask(struct ice_pf *pf)
436 {
437 	int v;
438 
439 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
440 		return;
441 
442 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
443 
444 	ice_for_each_vsi(pf, v)
445 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
446 		    ice_vsi_sync_fltr(pf->vsi[v])) {
447 			/* come back and try again later */
448 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
449 			break;
450 		}
451 }
452 
453 /**
454  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
455  * @pf: the PF
456  * @locked: is the rtnl_lock already held
457  */
458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
459 {
460 	int node;
461 	int v;
462 
463 	ice_for_each_vsi(pf, v)
464 		if (pf->vsi[v])
465 			ice_dis_vsi(pf->vsi[v], locked);
466 
467 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
468 		pf->pf_agg_node[node].num_vsis = 0;
469 
470 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
471 		pf->vf_agg_node[node].num_vsis = 0;
472 }
473 
474 /**
475  * ice_prepare_for_reset - prep for reset
476  * @pf: board private structure
477  * @reset_type: reset type requested
478  *
479  * Inform or close all dependent features in prep for reset.
480  */
481 static void
482 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
483 {
484 	struct ice_hw *hw = &pf->hw;
485 	struct ice_vsi *vsi;
486 	unsigned int i;
487 
488 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
489 
490 	/* already prepared for reset */
491 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
492 		return;
493 
494 	ice_unplug_aux_dev(pf);
495 
496 	/* Notify VFs of impending reset */
497 	if (ice_check_sq_alive(hw, &hw->mailboxq))
498 		ice_vc_notify_reset(pf);
499 
500 	/* Disable VFs until reset is completed */
501 	ice_for_each_vf(pf, i)
502 		ice_set_vf_state_qs_dis(&pf->vf[i]);
503 
504 	/* release ADQ specific HW and SW resources */
505 	vsi = ice_get_main_vsi(pf);
506 	if (!vsi)
507 		goto skip;
508 
509 	/* to be on safe side, reset orig_rss_size so that normal flow
510 	 * of deciding rss_size can take precedence
511 	 */
512 	vsi->orig_rss_size = 0;
513 
514 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
515 		if (reset_type == ICE_RESET_PFR) {
516 			vsi->old_ena_tc = vsi->all_enatc;
517 			vsi->old_numtc = vsi->all_numtc;
518 		} else {
519 			ice_remove_q_channels(vsi, true);
520 
521 			/* for other reset type, do not support channel rebuild
522 			 * hence reset needed info
523 			 */
524 			vsi->old_ena_tc = 0;
525 			vsi->all_enatc = 0;
526 			vsi->old_numtc = 0;
527 			vsi->all_numtc = 0;
528 			vsi->req_txq = 0;
529 			vsi->req_rxq = 0;
530 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
531 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
532 		}
533 	}
534 skip:
535 
536 	/* clear SW filtering DB */
537 	ice_clear_hw_tbls(hw);
538 	/* disable the VSIs and their queues that are not already DOWN */
539 	ice_pf_dis_all_vsi(pf, false);
540 
541 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
542 		ice_ptp_release(pf);
543 
544 	if (hw->port_info)
545 		ice_sched_clear_port(hw->port_info);
546 
547 	ice_shutdown_all_ctrlq(hw);
548 
549 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
550 }
551 
552 /**
553  * ice_do_reset - Initiate one of many types of resets
554  * @pf: board private structure
555  * @reset_type: reset type requested before this function was called.
556  */
557 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
558 {
559 	struct device *dev = ice_pf_to_dev(pf);
560 	struct ice_hw *hw = &pf->hw;
561 
562 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
563 
564 	ice_prepare_for_reset(pf, reset_type);
565 
566 	/* trigger the reset */
567 	if (ice_reset(hw, reset_type)) {
568 		dev_err(dev, "reset %d failed\n", reset_type);
569 		set_bit(ICE_RESET_FAILED, pf->state);
570 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
571 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
572 		clear_bit(ICE_PFR_REQ, pf->state);
573 		clear_bit(ICE_CORER_REQ, pf->state);
574 		clear_bit(ICE_GLOBR_REQ, pf->state);
575 		wake_up(&pf->reset_wait_queue);
576 		return;
577 	}
578 
579 	/* PFR is a bit of a special case because it doesn't result in an OICR
580 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
581 	 * associated state bits.
582 	 */
583 	if (reset_type == ICE_RESET_PFR) {
584 		pf->pfr_count++;
585 		ice_rebuild(pf, reset_type);
586 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
587 		clear_bit(ICE_PFR_REQ, pf->state);
588 		wake_up(&pf->reset_wait_queue);
589 		ice_reset_all_vfs(pf, true);
590 	}
591 }
592 
593 /**
594  * ice_reset_subtask - Set up for resetting the device and driver
595  * @pf: board private structure
596  */
597 static void ice_reset_subtask(struct ice_pf *pf)
598 {
599 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
600 
601 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
602 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
603 	 * of reset is pending and sets bits in pf->state indicating the reset
604 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
605 	 * prepare for pending reset if not already (for PF software-initiated
606 	 * global resets the software should already be prepared for it as
607 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
608 	 * by firmware or software on other PFs, that bit is not set so prepare
609 	 * for the reset now), poll for reset done, rebuild and return.
610 	 */
611 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
612 		/* Perform the largest reset requested */
613 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
614 			reset_type = ICE_RESET_CORER;
615 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
616 			reset_type = ICE_RESET_GLOBR;
617 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
618 			reset_type = ICE_RESET_EMPR;
619 		/* return if no valid reset type requested */
620 		if (reset_type == ICE_RESET_INVAL)
621 			return;
622 		ice_prepare_for_reset(pf, reset_type);
623 
624 		/* make sure we are ready to rebuild */
625 		if (ice_check_reset(&pf->hw)) {
626 			set_bit(ICE_RESET_FAILED, pf->state);
627 		} else {
628 			/* done with reset. start rebuild */
629 			pf->hw.reset_ongoing = false;
630 			ice_rebuild(pf, reset_type);
631 			/* clear bit to resume normal operations, but
632 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
633 			 */
634 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
635 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
636 			clear_bit(ICE_PFR_REQ, pf->state);
637 			clear_bit(ICE_CORER_REQ, pf->state);
638 			clear_bit(ICE_GLOBR_REQ, pf->state);
639 			wake_up(&pf->reset_wait_queue);
640 			ice_reset_all_vfs(pf, true);
641 		}
642 
643 		return;
644 	}
645 
646 	/* No pending resets to finish processing. Check for new resets */
647 	if (test_bit(ICE_PFR_REQ, pf->state))
648 		reset_type = ICE_RESET_PFR;
649 	if (test_bit(ICE_CORER_REQ, pf->state))
650 		reset_type = ICE_RESET_CORER;
651 	if (test_bit(ICE_GLOBR_REQ, pf->state))
652 		reset_type = ICE_RESET_GLOBR;
653 	/* If no valid reset type requested just return */
654 	if (reset_type == ICE_RESET_INVAL)
655 		return;
656 
657 	/* reset if not already down or busy */
658 	if (!test_bit(ICE_DOWN, pf->state) &&
659 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
660 		ice_do_reset(pf, reset_type);
661 	}
662 }
663 
664 /**
665  * ice_print_topo_conflict - print topology conflict message
666  * @vsi: the VSI whose topology status is being checked
667  */
668 static void ice_print_topo_conflict(struct ice_vsi *vsi)
669 {
670 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
671 	case ICE_AQ_LINK_TOPO_CONFLICT:
672 	case ICE_AQ_LINK_MEDIA_CONFLICT:
673 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
674 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
675 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
676 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
677 		break;
678 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
679 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
680 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
681 		else
682 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
683 		break;
684 	default:
685 		break;
686 	}
687 }
688 
689 /**
690  * ice_print_link_msg - print link up or down message
691  * @vsi: the VSI whose link status is being queried
692  * @isup: boolean for if the link is now up or down
693  */
694 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
695 {
696 	struct ice_aqc_get_phy_caps_data *caps;
697 	const char *an_advertised;
698 	enum ice_status status;
699 	const char *fec_req;
700 	const char *speed;
701 	const char *fec;
702 	const char *fc;
703 	const char *an;
704 
705 	if (!vsi)
706 		return;
707 
708 	if (vsi->current_isup == isup)
709 		return;
710 
711 	vsi->current_isup = isup;
712 
713 	if (!isup) {
714 		netdev_info(vsi->netdev, "NIC Link is Down\n");
715 		return;
716 	}
717 
718 	switch (vsi->port_info->phy.link_info.link_speed) {
719 	case ICE_AQ_LINK_SPEED_100GB:
720 		speed = "100 G";
721 		break;
722 	case ICE_AQ_LINK_SPEED_50GB:
723 		speed = "50 G";
724 		break;
725 	case ICE_AQ_LINK_SPEED_40GB:
726 		speed = "40 G";
727 		break;
728 	case ICE_AQ_LINK_SPEED_25GB:
729 		speed = "25 G";
730 		break;
731 	case ICE_AQ_LINK_SPEED_20GB:
732 		speed = "20 G";
733 		break;
734 	case ICE_AQ_LINK_SPEED_10GB:
735 		speed = "10 G";
736 		break;
737 	case ICE_AQ_LINK_SPEED_5GB:
738 		speed = "5 G";
739 		break;
740 	case ICE_AQ_LINK_SPEED_2500MB:
741 		speed = "2.5 G";
742 		break;
743 	case ICE_AQ_LINK_SPEED_1000MB:
744 		speed = "1 G";
745 		break;
746 	case ICE_AQ_LINK_SPEED_100MB:
747 		speed = "100 M";
748 		break;
749 	default:
750 		speed = "Unknown ";
751 		break;
752 	}
753 
754 	switch (vsi->port_info->fc.current_mode) {
755 	case ICE_FC_FULL:
756 		fc = "Rx/Tx";
757 		break;
758 	case ICE_FC_TX_PAUSE:
759 		fc = "Tx";
760 		break;
761 	case ICE_FC_RX_PAUSE:
762 		fc = "Rx";
763 		break;
764 	case ICE_FC_NONE:
765 		fc = "None";
766 		break;
767 	default:
768 		fc = "Unknown";
769 		break;
770 	}
771 
772 	/* Get FEC mode based on negotiated link info */
773 	switch (vsi->port_info->phy.link_info.fec_info) {
774 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
775 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
776 		fec = "RS-FEC";
777 		break;
778 	case ICE_AQ_LINK_25G_KR_FEC_EN:
779 		fec = "FC-FEC/BASE-R";
780 		break;
781 	default:
782 		fec = "NONE";
783 		break;
784 	}
785 
786 	/* check if autoneg completed, might be false due to not supported */
787 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
788 		an = "True";
789 	else
790 		an = "False";
791 
792 	/* Get FEC mode requested based on PHY caps last SW configuration */
793 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
794 	if (!caps) {
795 		fec_req = "Unknown";
796 		an_advertised = "Unknown";
797 		goto done;
798 	}
799 
800 	status = ice_aq_get_phy_caps(vsi->port_info, false,
801 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
802 	if (status)
803 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
804 
805 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
806 
807 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
808 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
809 		fec_req = "RS-FEC";
810 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
811 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
812 		fec_req = "FC-FEC/BASE-R";
813 	else
814 		fec_req = "NONE";
815 
816 	kfree(caps);
817 
818 done:
819 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
820 		    speed, fec_req, fec, an_advertised, an, fc);
821 	ice_print_topo_conflict(vsi);
822 }
823 
824 /**
825  * ice_vsi_link_event - update the VSI's netdev
826  * @vsi: the VSI on which the link event occurred
827  * @link_up: whether or not the VSI needs to be set up or down
828  */
829 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
830 {
831 	if (!vsi)
832 		return;
833 
834 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
835 		return;
836 
837 	if (vsi->type == ICE_VSI_PF) {
838 		if (link_up == netif_carrier_ok(vsi->netdev))
839 			return;
840 
841 		if (link_up) {
842 			netif_carrier_on(vsi->netdev);
843 			netif_tx_wake_all_queues(vsi->netdev);
844 		} else {
845 			netif_carrier_off(vsi->netdev);
846 			netif_tx_stop_all_queues(vsi->netdev);
847 		}
848 	}
849 }
850 
851 /**
852  * ice_set_dflt_mib - send a default config MIB to the FW
853  * @pf: private PF struct
854  *
855  * This function sends a default configuration MIB to the FW.
856  *
857  * If this function errors out at any point, the driver is still able to
858  * function.  The main impact is that LFC may not operate as expected.
859  * Therefore an error state in this function should be treated with a DBG
860  * message and continue on with driver rebuild/reenable.
861  */
862 static void ice_set_dflt_mib(struct ice_pf *pf)
863 {
864 	struct device *dev = ice_pf_to_dev(pf);
865 	u8 mib_type, *buf, *lldpmib = NULL;
866 	u16 len, typelen, offset = 0;
867 	struct ice_lldp_org_tlv *tlv;
868 	struct ice_hw *hw = &pf->hw;
869 	u32 ouisubtype;
870 
871 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
872 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
873 	if (!lldpmib) {
874 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
875 			__func__);
876 		return;
877 	}
878 
879 	/* Add ETS CFG TLV */
880 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
881 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
882 		   ICE_IEEE_ETS_TLV_LEN);
883 	tlv->typelen = htons(typelen);
884 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
885 		      ICE_IEEE_SUBTYPE_ETS_CFG);
886 	tlv->ouisubtype = htonl(ouisubtype);
887 
888 	buf = tlv->tlvinfo;
889 	buf[0] = 0;
890 
891 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
892 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
893 	 * Octets 13 - 20 are TSA values - leave as zeros
894 	 */
895 	buf[5] = 0x64;
896 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
897 	offset += len + 2;
898 	tlv = (struct ice_lldp_org_tlv *)
899 		((char *)tlv + sizeof(tlv->typelen) + len);
900 
901 	/* Add ETS REC TLV */
902 	buf = tlv->tlvinfo;
903 	tlv->typelen = htons(typelen);
904 
905 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
906 		      ICE_IEEE_SUBTYPE_ETS_REC);
907 	tlv->ouisubtype = htonl(ouisubtype);
908 
909 	/* First octet of buf is reserved
910 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
911 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
912 	 * Octets 13 - 20 are TSA value - leave as zeros
913 	 */
914 	buf[5] = 0x64;
915 	offset += len + 2;
916 	tlv = (struct ice_lldp_org_tlv *)
917 		((char *)tlv + sizeof(tlv->typelen) + len);
918 
919 	/* Add PFC CFG TLV */
920 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
921 		   ICE_IEEE_PFC_TLV_LEN);
922 	tlv->typelen = htons(typelen);
923 
924 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
925 		      ICE_IEEE_SUBTYPE_PFC_CFG);
926 	tlv->ouisubtype = htonl(ouisubtype);
927 
928 	/* Octet 1 left as all zeros - PFC disabled */
929 	buf[0] = 0x08;
930 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
931 	offset += len + 2;
932 
933 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
934 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
935 
936 	kfree(lldpmib);
937 }
938 
939 /**
940  * ice_check_phy_fw_load - check if PHY FW load failed
941  * @pf: pointer to PF struct
942  * @link_cfg_err: bitmap from the link info structure
943  *
944  * check if external PHY FW load failed and print an error message if it did
945  */
946 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
947 {
948 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
949 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
950 		return;
951 	}
952 
953 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
954 		return;
955 
956 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
957 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
958 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
959 	}
960 }
961 
962 /**
963  * ice_check_module_power
964  * @pf: pointer to PF struct
965  * @link_cfg_err: bitmap from the link info structure
966  *
967  * check module power level returned by a previous call to aq_get_link_info
968  * and print error messages if module power level is not supported
969  */
970 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
971 {
972 	/* if module power level is supported, clear the flag */
973 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
974 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
975 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
976 		return;
977 	}
978 
979 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
980 	 * above block didn't clear this bit, there's nothing to do
981 	 */
982 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
983 		return;
984 
985 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
986 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
987 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
988 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
989 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
990 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
991 	}
992 }
993 
994 /**
995  * ice_check_link_cfg_err - check if link configuration failed
996  * @pf: pointer to the PF struct
997  * @link_cfg_err: bitmap from the link info structure
998  *
999  * print if any link configuration failure happens due to the value in the
1000  * link_cfg_err parameter in the link info structure
1001  */
1002 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1003 {
1004 	ice_check_module_power(pf, link_cfg_err);
1005 	ice_check_phy_fw_load(pf, link_cfg_err);
1006 }
1007 
1008 /**
1009  * ice_link_event - process the link event
1010  * @pf: PF that the link event is associated with
1011  * @pi: port_info for the port that the link event is associated with
1012  * @link_up: true if the physical link is up and false if it is down
1013  * @link_speed: current link speed received from the link event
1014  *
1015  * Returns 0 on success and negative on failure
1016  */
1017 static int
1018 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1019 	       u16 link_speed)
1020 {
1021 	struct device *dev = ice_pf_to_dev(pf);
1022 	struct ice_phy_info *phy_info;
1023 	enum ice_status status;
1024 	struct ice_vsi *vsi;
1025 	u16 old_link_speed;
1026 	bool old_link;
1027 
1028 	phy_info = &pi->phy;
1029 	phy_info->link_info_old = phy_info->link_info;
1030 
1031 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1032 	old_link_speed = phy_info->link_info_old.link_speed;
1033 
1034 	/* update the link info structures and re-enable link events,
1035 	 * don't bail on failure due to other book keeping needed
1036 	 */
1037 	status = ice_update_link_info(pi);
1038 	if (status)
1039 		dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
1040 			pi->lport, ice_stat_str(status),
1041 			ice_aq_str(pi->hw->adminq.sq_last_status));
1042 
1043 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1044 
1045 	/* Check if the link state is up after updating link info, and treat
1046 	 * this event as an UP event since the link is actually UP now.
1047 	 */
1048 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1049 		link_up = true;
1050 
1051 	vsi = ice_get_main_vsi(pf);
1052 	if (!vsi || !vsi->port_info)
1053 		return -EINVAL;
1054 
1055 	/* turn off PHY if media was removed */
1056 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1057 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1058 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1059 		ice_set_link(vsi, false);
1060 	}
1061 
1062 	/* if the old link up/down and speed is the same as the new */
1063 	if (link_up == old_link && link_speed == old_link_speed)
1064 		return 0;
1065 
1066 	if (ice_is_dcb_active(pf)) {
1067 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1068 			ice_dcb_rebuild(pf);
1069 	} else {
1070 		if (link_up)
1071 			ice_set_dflt_mib(pf);
1072 	}
1073 	ice_vsi_link_event(vsi, link_up);
1074 	ice_print_link_msg(vsi, link_up);
1075 
1076 	ice_vc_notify_link_state(pf);
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1083  * @pf: board private structure
1084  */
1085 static void ice_watchdog_subtask(struct ice_pf *pf)
1086 {
1087 	int i;
1088 
1089 	/* if interface is down do nothing */
1090 	if (test_bit(ICE_DOWN, pf->state) ||
1091 	    test_bit(ICE_CFG_BUSY, pf->state))
1092 		return;
1093 
1094 	/* make sure we don't do these things too often */
1095 	if (time_before(jiffies,
1096 			pf->serv_tmr_prev + pf->serv_tmr_period))
1097 		return;
1098 
1099 	pf->serv_tmr_prev = jiffies;
1100 
1101 	/* Update the stats for active netdevs so the network stack
1102 	 * can look at updated numbers whenever it cares to
1103 	 */
1104 	ice_update_pf_stats(pf);
1105 	ice_for_each_vsi(pf, i)
1106 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1107 			ice_update_vsi_stats(pf->vsi[i]);
1108 }
1109 
1110 /**
1111  * ice_init_link_events - enable/initialize link events
1112  * @pi: pointer to the port_info instance
1113  *
1114  * Returns -EIO on failure, 0 on success
1115  */
1116 static int ice_init_link_events(struct ice_port_info *pi)
1117 {
1118 	u16 mask;
1119 
1120 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1121 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1122 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1123 
1124 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1125 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1126 			pi->lport);
1127 		return -EIO;
1128 	}
1129 
1130 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1131 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1132 			pi->lport);
1133 		return -EIO;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 /**
1140  * ice_handle_link_event - handle link event via ARQ
1141  * @pf: PF that the link event is associated with
1142  * @event: event structure containing link status info
1143  */
1144 static int
1145 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1146 {
1147 	struct ice_aqc_get_link_status_data *link_data;
1148 	struct ice_port_info *port_info;
1149 	int status;
1150 
1151 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1152 	port_info = pf->hw.port_info;
1153 	if (!port_info)
1154 		return -EINVAL;
1155 
1156 	status = ice_link_event(pf, port_info,
1157 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1158 				le16_to_cpu(link_data->link_speed));
1159 	if (status)
1160 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1161 			status);
1162 
1163 	return status;
1164 }
1165 
1166 enum ice_aq_task_state {
1167 	ICE_AQ_TASK_WAITING = 0,
1168 	ICE_AQ_TASK_COMPLETE,
1169 	ICE_AQ_TASK_CANCELED,
1170 };
1171 
1172 struct ice_aq_task {
1173 	struct hlist_node entry;
1174 
1175 	u16 opcode;
1176 	struct ice_rq_event_info *event;
1177 	enum ice_aq_task_state state;
1178 };
1179 
1180 /**
1181  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1182  * @pf: pointer to the PF private structure
1183  * @opcode: the opcode to wait for
1184  * @timeout: how long to wait, in jiffies
1185  * @event: storage for the event info
1186  *
1187  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1188  * current thread will be put to sleep until the specified event occurs or
1189  * until the given timeout is reached.
1190  *
1191  * To obtain only the descriptor contents, pass an event without an allocated
1192  * msg_buf. If the complete data buffer is desired, allocate the
1193  * event->msg_buf with enough space ahead of time.
1194  *
1195  * Returns: zero on success, or a negative error code on failure.
1196  */
1197 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1198 			  struct ice_rq_event_info *event)
1199 {
1200 	struct device *dev = ice_pf_to_dev(pf);
1201 	struct ice_aq_task *task;
1202 	unsigned long start;
1203 	long ret;
1204 	int err;
1205 
1206 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1207 	if (!task)
1208 		return -ENOMEM;
1209 
1210 	INIT_HLIST_NODE(&task->entry);
1211 	task->opcode = opcode;
1212 	task->event = event;
1213 	task->state = ICE_AQ_TASK_WAITING;
1214 
1215 	spin_lock_bh(&pf->aq_wait_lock);
1216 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1217 	spin_unlock_bh(&pf->aq_wait_lock);
1218 
1219 	start = jiffies;
1220 
1221 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1222 					       timeout);
1223 	switch (task->state) {
1224 	case ICE_AQ_TASK_WAITING:
1225 		err = ret < 0 ? ret : -ETIMEDOUT;
1226 		break;
1227 	case ICE_AQ_TASK_CANCELED:
1228 		err = ret < 0 ? ret : -ECANCELED;
1229 		break;
1230 	case ICE_AQ_TASK_COMPLETE:
1231 		err = ret < 0 ? ret : 0;
1232 		break;
1233 	default:
1234 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1235 		err = -EINVAL;
1236 		break;
1237 	}
1238 
1239 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1240 		jiffies_to_msecs(jiffies - start),
1241 		jiffies_to_msecs(timeout),
1242 		opcode);
1243 
1244 	spin_lock_bh(&pf->aq_wait_lock);
1245 	hlist_del(&task->entry);
1246 	spin_unlock_bh(&pf->aq_wait_lock);
1247 	kfree(task);
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1254  * @pf: pointer to the PF private structure
1255  * @opcode: the opcode of the event
1256  * @event: the event to check
1257  *
1258  * Loops over the current list of pending threads waiting for an AdminQ event.
1259  * For each matching task, copy the contents of the event into the task
1260  * structure and wake up the thread.
1261  *
1262  * If multiple threads wait for the same opcode, they will all be woken up.
1263  *
1264  * Note that event->msg_buf will only be duplicated if the event has a buffer
1265  * with enough space already allocated. Otherwise, only the descriptor and
1266  * message length will be copied.
1267  *
1268  * Returns: true if an event was found, false otherwise
1269  */
1270 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1271 				struct ice_rq_event_info *event)
1272 {
1273 	struct ice_aq_task *task;
1274 	bool found = false;
1275 
1276 	spin_lock_bh(&pf->aq_wait_lock);
1277 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1278 		if (task->state || task->opcode != opcode)
1279 			continue;
1280 
1281 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1282 		task->event->msg_len = event->msg_len;
1283 
1284 		/* Only copy the data buffer if a destination was set */
1285 		if (task->event->msg_buf &&
1286 		    task->event->buf_len > event->buf_len) {
1287 			memcpy(task->event->msg_buf, event->msg_buf,
1288 			       event->buf_len);
1289 			task->event->buf_len = event->buf_len;
1290 		}
1291 
1292 		task->state = ICE_AQ_TASK_COMPLETE;
1293 		found = true;
1294 	}
1295 	spin_unlock_bh(&pf->aq_wait_lock);
1296 
1297 	if (found)
1298 		wake_up(&pf->aq_wait_queue);
1299 }
1300 
1301 /**
1302  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1303  * @pf: the PF private structure
1304  *
1305  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1306  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1307  */
1308 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1309 {
1310 	struct ice_aq_task *task;
1311 
1312 	spin_lock_bh(&pf->aq_wait_lock);
1313 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1314 		task->state = ICE_AQ_TASK_CANCELED;
1315 	spin_unlock_bh(&pf->aq_wait_lock);
1316 
1317 	wake_up(&pf->aq_wait_queue);
1318 }
1319 
1320 /**
1321  * __ice_clean_ctrlq - helper function to clean controlq rings
1322  * @pf: ptr to struct ice_pf
1323  * @q_type: specific Control queue type
1324  */
1325 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1326 {
1327 	struct device *dev = ice_pf_to_dev(pf);
1328 	struct ice_rq_event_info event;
1329 	struct ice_hw *hw = &pf->hw;
1330 	struct ice_ctl_q_info *cq;
1331 	u16 pending, i = 0;
1332 	const char *qtype;
1333 	u32 oldval, val;
1334 
1335 	/* Do not clean control queue if/when PF reset fails */
1336 	if (test_bit(ICE_RESET_FAILED, pf->state))
1337 		return 0;
1338 
1339 	switch (q_type) {
1340 	case ICE_CTL_Q_ADMIN:
1341 		cq = &hw->adminq;
1342 		qtype = "Admin";
1343 		break;
1344 	case ICE_CTL_Q_SB:
1345 		cq = &hw->sbq;
1346 		qtype = "Sideband";
1347 		break;
1348 	case ICE_CTL_Q_MAILBOX:
1349 		cq = &hw->mailboxq;
1350 		qtype = "Mailbox";
1351 		/* we are going to try to detect a malicious VF, so set the
1352 		 * state to begin detection
1353 		 */
1354 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1355 		break;
1356 	default:
1357 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1358 		return 0;
1359 	}
1360 
1361 	/* check for error indications - PF_xx_AxQLEN register layout for
1362 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1363 	 */
1364 	val = rd32(hw, cq->rq.len);
1365 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1366 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1367 		oldval = val;
1368 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1369 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1370 				qtype);
1371 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1372 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1373 				qtype);
1374 		}
1375 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1376 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1377 				qtype);
1378 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1379 			 PF_FW_ARQLEN_ARQCRIT_M);
1380 		if (oldval != val)
1381 			wr32(hw, cq->rq.len, val);
1382 	}
1383 
1384 	val = rd32(hw, cq->sq.len);
1385 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1386 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1387 		oldval = val;
1388 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1389 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1390 				qtype);
1391 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1392 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1393 				qtype);
1394 		}
1395 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1396 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1397 				qtype);
1398 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1399 			 PF_FW_ATQLEN_ATQCRIT_M);
1400 		if (oldval != val)
1401 			wr32(hw, cq->sq.len, val);
1402 	}
1403 
1404 	event.buf_len = cq->rq_buf_size;
1405 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1406 	if (!event.msg_buf)
1407 		return 0;
1408 
1409 	do {
1410 		enum ice_status ret;
1411 		u16 opcode;
1412 
1413 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1414 		if (ret == ICE_ERR_AQ_NO_WORK)
1415 			break;
1416 		if (ret) {
1417 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1418 				ice_stat_str(ret));
1419 			break;
1420 		}
1421 
1422 		opcode = le16_to_cpu(event.desc.opcode);
1423 
1424 		/* Notify any thread that might be waiting for this event */
1425 		ice_aq_check_events(pf, opcode, &event);
1426 
1427 		switch (opcode) {
1428 		case ice_aqc_opc_get_link_status:
1429 			if (ice_handle_link_event(pf, &event))
1430 				dev_err(dev, "Could not handle link event\n");
1431 			break;
1432 		case ice_aqc_opc_event_lan_overflow:
1433 			ice_vf_lan_overflow_event(pf, &event);
1434 			break;
1435 		case ice_mbx_opc_send_msg_to_pf:
1436 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1437 				ice_vc_process_vf_msg(pf, &event);
1438 			break;
1439 		case ice_aqc_opc_fw_logging:
1440 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1441 			break;
1442 		case ice_aqc_opc_lldp_set_mib_change:
1443 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1444 			break;
1445 		default:
1446 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1447 				qtype, opcode);
1448 			break;
1449 		}
1450 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1451 
1452 	kfree(event.msg_buf);
1453 
1454 	return pending && (i == ICE_DFLT_IRQ_WORK);
1455 }
1456 
1457 /**
1458  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1459  * @hw: pointer to hardware info
1460  * @cq: control queue information
1461  *
1462  * returns true if there are pending messages in a queue, false if there aren't
1463  */
1464 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1465 {
1466 	u16 ntu;
1467 
1468 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1469 	return cq->rq.next_to_clean != ntu;
1470 }
1471 
1472 /**
1473  * ice_clean_adminq_subtask - clean the AdminQ rings
1474  * @pf: board private structure
1475  */
1476 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1477 {
1478 	struct ice_hw *hw = &pf->hw;
1479 
1480 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1481 		return;
1482 
1483 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1484 		return;
1485 
1486 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1487 
1488 	/* There might be a situation where new messages arrive to a control
1489 	 * queue between processing the last message and clearing the
1490 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1491 	 * ice_ctrlq_pending) and process new messages if any.
1492 	 */
1493 	if (ice_ctrlq_pending(hw, &hw->adminq))
1494 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1495 
1496 	ice_flush(hw);
1497 }
1498 
1499 /**
1500  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1501  * @pf: board private structure
1502  */
1503 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1504 {
1505 	struct ice_hw *hw = &pf->hw;
1506 
1507 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1508 		return;
1509 
1510 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1511 		return;
1512 
1513 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1514 
1515 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1516 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1517 
1518 	ice_flush(hw);
1519 }
1520 
1521 /**
1522  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1523  * @pf: board private structure
1524  */
1525 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1526 {
1527 	struct ice_hw *hw = &pf->hw;
1528 
1529 	/* Nothing to do here if sideband queue is not supported */
1530 	if (!ice_is_sbq_supported(hw)) {
1531 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1532 		return;
1533 	}
1534 
1535 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1536 		return;
1537 
1538 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1539 		return;
1540 
1541 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1542 
1543 	if (ice_ctrlq_pending(hw, &hw->sbq))
1544 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1545 
1546 	ice_flush(hw);
1547 }
1548 
1549 /**
1550  * ice_service_task_schedule - schedule the service task to wake up
1551  * @pf: board private structure
1552  *
1553  * If not already scheduled, this puts the task into the work queue.
1554  */
1555 void ice_service_task_schedule(struct ice_pf *pf)
1556 {
1557 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1558 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1559 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1560 		queue_work(ice_wq, &pf->serv_task);
1561 }
1562 
1563 /**
1564  * ice_service_task_complete - finish up the service task
1565  * @pf: board private structure
1566  */
1567 static void ice_service_task_complete(struct ice_pf *pf)
1568 {
1569 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1570 
1571 	/* force memory (pf->state) to sync before next service task */
1572 	smp_mb__before_atomic();
1573 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1574 }
1575 
1576 /**
1577  * ice_service_task_stop - stop service task and cancel works
1578  * @pf: board private structure
1579  *
1580  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1581  * 1 otherwise.
1582  */
1583 static int ice_service_task_stop(struct ice_pf *pf)
1584 {
1585 	int ret;
1586 
1587 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1588 
1589 	if (pf->serv_tmr.function)
1590 		del_timer_sync(&pf->serv_tmr);
1591 	if (pf->serv_task.func)
1592 		cancel_work_sync(&pf->serv_task);
1593 
1594 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1595 	return ret;
1596 }
1597 
1598 /**
1599  * ice_service_task_restart - restart service task and schedule works
1600  * @pf: board private structure
1601  *
1602  * This function is needed for suspend and resume works (e.g WoL scenario)
1603  */
1604 static void ice_service_task_restart(struct ice_pf *pf)
1605 {
1606 	clear_bit(ICE_SERVICE_DIS, pf->state);
1607 	ice_service_task_schedule(pf);
1608 }
1609 
1610 /**
1611  * ice_service_timer - timer callback to schedule service task
1612  * @t: pointer to timer_list
1613  */
1614 static void ice_service_timer(struct timer_list *t)
1615 {
1616 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1617 
1618 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1619 	ice_service_task_schedule(pf);
1620 }
1621 
1622 /**
1623  * ice_handle_mdd_event - handle malicious driver detect event
1624  * @pf: pointer to the PF structure
1625  *
1626  * Called from service task. OICR interrupt handler indicates MDD event.
1627  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1628  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1629  * disable the queue, the PF can be configured to reset the VF using ethtool
1630  * private flag mdd-auto-reset-vf.
1631  */
1632 static void ice_handle_mdd_event(struct ice_pf *pf)
1633 {
1634 	struct device *dev = ice_pf_to_dev(pf);
1635 	struct ice_hw *hw = &pf->hw;
1636 	unsigned int i;
1637 	u32 reg;
1638 
1639 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1640 		/* Since the VF MDD event logging is rate limited, check if
1641 		 * there are pending MDD events.
1642 		 */
1643 		ice_print_vfs_mdd_events(pf);
1644 		return;
1645 	}
1646 
1647 	/* find what triggered an MDD event */
1648 	reg = rd32(hw, GL_MDET_TX_PQM);
1649 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1650 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1651 				GL_MDET_TX_PQM_PF_NUM_S;
1652 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1653 				GL_MDET_TX_PQM_VF_NUM_S;
1654 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1655 				GL_MDET_TX_PQM_MAL_TYPE_S;
1656 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1657 				GL_MDET_TX_PQM_QNUM_S);
1658 
1659 		if (netif_msg_tx_err(pf))
1660 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1661 				 event, queue, pf_num, vf_num);
1662 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1663 	}
1664 
1665 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1666 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1667 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1668 				GL_MDET_TX_TCLAN_PF_NUM_S;
1669 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1670 				GL_MDET_TX_TCLAN_VF_NUM_S;
1671 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1672 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1673 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1674 				GL_MDET_TX_TCLAN_QNUM_S);
1675 
1676 		if (netif_msg_tx_err(pf))
1677 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1678 				 event, queue, pf_num, vf_num);
1679 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1680 	}
1681 
1682 	reg = rd32(hw, GL_MDET_RX);
1683 	if (reg & GL_MDET_RX_VALID_M) {
1684 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1685 				GL_MDET_RX_PF_NUM_S;
1686 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1687 				GL_MDET_RX_VF_NUM_S;
1688 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1689 				GL_MDET_RX_MAL_TYPE_S;
1690 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1691 				GL_MDET_RX_QNUM_S);
1692 
1693 		if (netif_msg_rx_err(pf))
1694 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1695 				 event, queue, pf_num, vf_num);
1696 		wr32(hw, GL_MDET_RX, 0xffffffff);
1697 	}
1698 
1699 	/* check to see if this PF caused an MDD event */
1700 	reg = rd32(hw, PF_MDET_TX_PQM);
1701 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1702 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1703 		if (netif_msg_tx_err(pf))
1704 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1705 	}
1706 
1707 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1708 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1709 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1710 		if (netif_msg_tx_err(pf))
1711 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1712 	}
1713 
1714 	reg = rd32(hw, PF_MDET_RX);
1715 	if (reg & PF_MDET_RX_VALID_M) {
1716 		wr32(hw, PF_MDET_RX, 0xFFFF);
1717 		if (netif_msg_rx_err(pf))
1718 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1719 	}
1720 
1721 	/* Check to see if one of the VFs caused an MDD event, and then
1722 	 * increment counters and set print pending
1723 	 */
1724 	ice_for_each_vf(pf, i) {
1725 		struct ice_vf *vf = &pf->vf[i];
1726 
1727 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1728 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1729 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1730 			vf->mdd_tx_events.count++;
1731 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1732 			if (netif_msg_tx_err(pf))
1733 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1734 					 i);
1735 		}
1736 
1737 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1738 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1739 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1740 			vf->mdd_tx_events.count++;
1741 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1742 			if (netif_msg_tx_err(pf))
1743 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1744 					 i);
1745 		}
1746 
1747 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1748 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1749 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1750 			vf->mdd_tx_events.count++;
1751 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1752 			if (netif_msg_tx_err(pf))
1753 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1754 					 i);
1755 		}
1756 
1757 		reg = rd32(hw, VP_MDET_RX(i));
1758 		if (reg & VP_MDET_RX_VALID_M) {
1759 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1760 			vf->mdd_rx_events.count++;
1761 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1762 			if (netif_msg_rx_err(pf))
1763 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1764 					 i);
1765 
1766 			/* Since the queue is disabled on VF Rx MDD events, the
1767 			 * PF can be configured to reset the VF through ethtool
1768 			 * private flag mdd-auto-reset-vf.
1769 			 */
1770 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1771 				/* VF MDD event counters will be cleared by
1772 				 * reset, so print the event prior to reset.
1773 				 */
1774 				ice_print_vf_rx_mdd_event(vf);
1775 				ice_reset_vf(&pf->vf[i], false);
1776 			}
1777 		}
1778 	}
1779 
1780 	ice_print_vfs_mdd_events(pf);
1781 }
1782 
1783 /**
1784  * ice_force_phys_link_state - Force the physical link state
1785  * @vsi: VSI to force the physical link state to up/down
1786  * @link_up: true/false indicates to set the physical link to up/down
1787  *
1788  * Force the physical link state by getting the current PHY capabilities from
1789  * hardware and setting the PHY config based on the determined capabilities. If
1790  * link changes a link event will be triggered because both the Enable Automatic
1791  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1792  *
1793  * Returns 0 on success, negative on failure
1794  */
1795 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1796 {
1797 	struct ice_aqc_get_phy_caps_data *pcaps;
1798 	struct ice_aqc_set_phy_cfg_data *cfg;
1799 	struct ice_port_info *pi;
1800 	struct device *dev;
1801 	int retcode;
1802 
1803 	if (!vsi || !vsi->port_info || !vsi->back)
1804 		return -EINVAL;
1805 	if (vsi->type != ICE_VSI_PF)
1806 		return 0;
1807 
1808 	dev = ice_pf_to_dev(vsi->back);
1809 
1810 	pi = vsi->port_info;
1811 
1812 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1813 	if (!pcaps)
1814 		return -ENOMEM;
1815 
1816 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1817 				      NULL);
1818 	if (retcode) {
1819 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1820 			vsi->vsi_num, retcode);
1821 		retcode = -EIO;
1822 		goto out;
1823 	}
1824 
1825 	/* No change in link */
1826 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1827 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1828 		goto out;
1829 
1830 	/* Use the current user PHY configuration. The current user PHY
1831 	 * configuration is initialized during probe from PHY capabilities
1832 	 * software mode, and updated on set PHY configuration.
1833 	 */
1834 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1835 	if (!cfg) {
1836 		retcode = -ENOMEM;
1837 		goto out;
1838 	}
1839 
1840 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1841 	if (link_up)
1842 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1843 	else
1844 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1845 
1846 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1847 	if (retcode) {
1848 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1849 			vsi->vsi_num, retcode);
1850 		retcode = -EIO;
1851 	}
1852 
1853 	kfree(cfg);
1854 out:
1855 	kfree(pcaps);
1856 	return retcode;
1857 }
1858 
1859 /**
1860  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1861  * @pi: port info structure
1862  *
1863  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1864  */
1865 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1866 {
1867 	struct ice_aqc_get_phy_caps_data *pcaps;
1868 	struct ice_pf *pf = pi->hw->back;
1869 	enum ice_status status;
1870 	int err = 0;
1871 
1872 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1873 	if (!pcaps)
1874 		return -ENOMEM;
1875 
1876 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1877 				     NULL);
1878 
1879 	if (status) {
1880 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1881 		err = -EIO;
1882 		goto out;
1883 	}
1884 
1885 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1886 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1887 
1888 out:
1889 	kfree(pcaps);
1890 	return err;
1891 }
1892 
1893 /**
1894  * ice_init_link_dflt_override - Initialize link default override
1895  * @pi: port info structure
1896  *
1897  * Initialize link default override and PHY total port shutdown during probe
1898  */
1899 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1900 {
1901 	struct ice_link_default_override_tlv *ldo;
1902 	struct ice_pf *pf = pi->hw->back;
1903 
1904 	ldo = &pf->link_dflt_override;
1905 	if (ice_get_link_default_override(ldo, pi))
1906 		return;
1907 
1908 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1909 		return;
1910 
1911 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1912 	 * ethtool private flag) for ports with Port Disable bit set.
1913 	 */
1914 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1915 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1916 }
1917 
1918 /**
1919  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1920  * @pi: port info structure
1921  *
1922  * If default override is enabled, initialize the user PHY cfg speed and FEC
1923  * settings using the default override mask from the NVM.
1924  *
1925  * The PHY should only be configured with the default override settings the
1926  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1927  * is used to indicate that the user PHY cfg default override is initialized
1928  * and the PHY has not been configured with the default override settings. The
1929  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1930  * configured.
1931  *
1932  * This function should be called only if the FW doesn't support default
1933  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1934  */
1935 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1936 {
1937 	struct ice_link_default_override_tlv *ldo;
1938 	struct ice_aqc_set_phy_cfg_data *cfg;
1939 	struct ice_phy_info *phy = &pi->phy;
1940 	struct ice_pf *pf = pi->hw->back;
1941 
1942 	ldo = &pf->link_dflt_override;
1943 
1944 	/* If link default override is enabled, use to mask NVM PHY capabilities
1945 	 * for speed and FEC default configuration.
1946 	 */
1947 	cfg = &phy->curr_user_phy_cfg;
1948 
1949 	if (ldo->phy_type_low || ldo->phy_type_high) {
1950 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1951 				    cpu_to_le64(ldo->phy_type_low);
1952 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1953 				     cpu_to_le64(ldo->phy_type_high);
1954 	}
1955 	cfg->link_fec_opt = ldo->fec_options;
1956 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1957 
1958 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1959 }
1960 
1961 /**
1962  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1963  * @pi: port info structure
1964  *
1965  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1966  * mode to default. The PHY defaults are from get PHY capabilities topology
1967  * with media so call when media is first available. An error is returned if
1968  * called when media is not available. The PHY initialization completed state is
1969  * set here.
1970  *
1971  * These configurations are used when setting PHY
1972  * configuration. The user PHY configuration is updated on set PHY
1973  * configuration. Returns 0 on success, negative on failure
1974  */
1975 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1976 {
1977 	struct ice_aqc_get_phy_caps_data *pcaps;
1978 	struct ice_phy_info *phy = &pi->phy;
1979 	struct ice_pf *pf = pi->hw->back;
1980 	enum ice_status status;
1981 	int err = 0;
1982 
1983 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1984 		return -EIO;
1985 
1986 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1987 	if (!pcaps)
1988 		return -ENOMEM;
1989 
1990 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1991 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1992 					     pcaps, NULL);
1993 	else
1994 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1995 					     pcaps, NULL);
1996 	if (status) {
1997 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1998 		err = -EIO;
1999 		goto err_out;
2000 	}
2001 
2002 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2003 
2004 	/* check if lenient mode is supported and enabled */
2005 	if (ice_fw_supports_link_override(pi->hw) &&
2006 	    !(pcaps->module_compliance_enforcement &
2007 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2008 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2009 
2010 		/* if the FW supports default PHY configuration mode, then the driver
2011 		 * does not have to apply link override settings. If not,
2012 		 * initialize user PHY configuration with link override values
2013 		 */
2014 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2015 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2016 			ice_init_phy_cfg_dflt_override(pi);
2017 			goto out;
2018 		}
2019 	}
2020 
2021 	/* if link default override is not enabled, set user flow control and
2022 	 * FEC settings based on what get_phy_caps returned
2023 	 */
2024 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2025 						      pcaps->link_fec_options);
2026 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2027 
2028 out:
2029 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2030 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2031 err_out:
2032 	kfree(pcaps);
2033 	return err;
2034 }
2035 
2036 /**
2037  * ice_configure_phy - configure PHY
2038  * @vsi: VSI of PHY
2039  *
2040  * Set the PHY configuration. If the current PHY configuration is the same as
2041  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2042  * configure the based get PHY capabilities for topology with media.
2043  */
2044 static int ice_configure_phy(struct ice_vsi *vsi)
2045 {
2046 	struct device *dev = ice_pf_to_dev(vsi->back);
2047 	struct ice_port_info *pi = vsi->port_info;
2048 	struct ice_aqc_get_phy_caps_data *pcaps;
2049 	struct ice_aqc_set_phy_cfg_data *cfg;
2050 	struct ice_phy_info *phy = &pi->phy;
2051 	struct ice_pf *pf = vsi->back;
2052 	enum ice_status status;
2053 	int err = 0;
2054 
2055 	/* Ensure we have media as we cannot configure a medialess port */
2056 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2057 		return -EPERM;
2058 
2059 	ice_print_topo_conflict(vsi);
2060 
2061 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2062 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2063 		return -EPERM;
2064 
2065 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2066 		return ice_force_phys_link_state(vsi, true);
2067 
2068 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2069 	if (!pcaps)
2070 		return -ENOMEM;
2071 
2072 	/* Get current PHY config */
2073 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2074 				     NULL);
2075 	if (status) {
2076 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
2077 			vsi->vsi_num, ice_stat_str(status));
2078 		err = -EIO;
2079 		goto done;
2080 	}
2081 
2082 	/* If PHY enable link is configured and configuration has not changed,
2083 	 * there's nothing to do
2084 	 */
2085 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2086 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2087 		goto done;
2088 
2089 	/* Use PHY topology as baseline for configuration */
2090 	memset(pcaps, 0, sizeof(*pcaps));
2091 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2092 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2093 					     pcaps, NULL);
2094 	else
2095 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2096 					     pcaps, NULL);
2097 	if (status) {
2098 		dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2099 			vsi->vsi_num, ice_stat_str(status));
2100 		err = -EIO;
2101 		goto done;
2102 	}
2103 
2104 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2105 	if (!cfg) {
2106 		err = -ENOMEM;
2107 		goto done;
2108 	}
2109 
2110 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2111 
2112 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2113 	 * ice_init_phy_user_cfg_ldo.
2114 	 */
2115 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2116 			       vsi->back->state)) {
2117 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2118 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2119 	} else {
2120 		u64 phy_low = 0, phy_high = 0;
2121 
2122 		ice_update_phy_type(&phy_low, &phy_high,
2123 				    pi->phy.curr_user_speed_req);
2124 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2125 		cfg->phy_type_high = pcaps->phy_type_high &
2126 				     cpu_to_le64(phy_high);
2127 	}
2128 
2129 	/* Can't provide what was requested; use PHY capabilities */
2130 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2131 		cfg->phy_type_low = pcaps->phy_type_low;
2132 		cfg->phy_type_high = pcaps->phy_type_high;
2133 	}
2134 
2135 	/* FEC */
2136 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2137 
2138 	/* Can't provide what was requested; use PHY capabilities */
2139 	if (cfg->link_fec_opt !=
2140 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2141 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2142 		cfg->link_fec_opt = pcaps->link_fec_options;
2143 	}
2144 
2145 	/* Flow Control - always supported; no need to check against
2146 	 * capabilities
2147 	 */
2148 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2149 
2150 	/* Enable link and link update */
2151 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2152 
2153 	status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2154 	if (status) {
2155 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2156 			vsi->vsi_num, ice_stat_str(status));
2157 		err = -EIO;
2158 	}
2159 
2160 	kfree(cfg);
2161 done:
2162 	kfree(pcaps);
2163 	return err;
2164 }
2165 
2166 /**
2167  * ice_check_media_subtask - Check for media
2168  * @pf: pointer to PF struct
2169  *
2170  * If media is available, then initialize PHY user configuration if it is not
2171  * been, and configure the PHY if the interface is up.
2172  */
2173 static void ice_check_media_subtask(struct ice_pf *pf)
2174 {
2175 	struct ice_port_info *pi;
2176 	struct ice_vsi *vsi;
2177 	int err;
2178 
2179 	/* No need to check for media if it's already present */
2180 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2181 		return;
2182 
2183 	vsi = ice_get_main_vsi(pf);
2184 	if (!vsi)
2185 		return;
2186 
2187 	/* Refresh link info and check if media is present */
2188 	pi = vsi->port_info;
2189 	err = ice_update_link_info(pi);
2190 	if (err)
2191 		return;
2192 
2193 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2194 
2195 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2196 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2197 			ice_init_phy_user_cfg(pi);
2198 
2199 		/* PHY settings are reset on media insertion, reconfigure
2200 		 * PHY to preserve settings.
2201 		 */
2202 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2203 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2204 			return;
2205 
2206 		err = ice_configure_phy(vsi);
2207 		if (!err)
2208 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2209 
2210 		/* A Link Status Event will be generated; the event handler
2211 		 * will complete bringing the interface up
2212 		 */
2213 	}
2214 }
2215 
2216 /**
2217  * ice_service_task - manage and run subtasks
2218  * @work: pointer to work_struct contained by the PF struct
2219  */
2220 static void ice_service_task(struct work_struct *work)
2221 {
2222 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2223 	unsigned long start_time = jiffies;
2224 
2225 	/* subtasks */
2226 
2227 	/* process reset requests first */
2228 	ice_reset_subtask(pf);
2229 
2230 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2231 	if (ice_is_reset_in_progress(pf->state) ||
2232 	    test_bit(ICE_SUSPENDED, pf->state) ||
2233 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2234 		ice_service_task_complete(pf);
2235 		return;
2236 	}
2237 
2238 	ice_clean_adminq_subtask(pf);
2239 	ice_check_media_subtask(pf);
2240 	ice_check_for_hang_subtask(pf);
2241 	ice_sync_fltr_subtask(pf);
2242 	ice_handle_mdd_event(pf);
2243 	ice_watchdog_subtask(pf);
2244 
2245 	if (ice_is_safe_mode(pf)) {
2246 		ice_service_task_complete(pf);
2247 		return;
2248 	}
2249 
2250 	ice_process_vflr_event(pf);
2251 	ice_clean_mailboxq_subtask(pf);
2252 	ice_clean_sbq_subtask(pf);
2253 	ice_sync_arfs_fltrs(pf);
2254 	ice_flush_fdir_ctx(pf);
2255 
2256 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2257 	ice_service_task_complete(pf);
2258 
2259 	/* If the tasks have taken longer than one service timer period
2260 	 * or there is more work to be done, reset the service timer to
2261 	 * schedule the service task now.
2262 	 */
2263 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2264 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2265 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2266 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2267 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2268 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2269 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2270 		mod_timer(&pf->serv_tmr, jiffies);
2271 }
2272 
2273 /**
2274  * ice_set_ctrlq_len - helper function to set controlq length
2275  * @hw: pointer to the HW instance
2276  */
2277 static void ice_set_ctrlq_len(struct ice_hw *hw)
2278 {
2279 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2280 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2281 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2282 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2283 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2284 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2285 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2286 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2287 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2288 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2289 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2290 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2291 }
2292 
2293 /**
2294  * ice_schedule_reset - schedule a reset
2295  * @pf: board private structure
2296  * @reset: reset being requested
2297  */
2298 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2299 {
2300 	struct device *dev = ice_pf_to_dev(pf);
2301 
2302 	/* bail out if earlier reset has failed */
2303 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2304 		dev_dbg(dev, "earlier reset has failed\n");
2305 		return -EIO;
2306 	}
2307 	/* bail if reset/recovery already in progress */
2308 	if (ice_is_reset_in_progress(pf->state)) {
2309 		dev_dbg(dev, "Reset already in progress\n");
2310 		return -EBUSY;
2311 	}
2312 
2313 	ice_unplug_aux_dev(pf);
2314 
2315 	switch (reset) {
2316 	case ICE_RESET_PFR:
2317 		set_bit(ICE_PFR_REQ, pf->state);
2318 		break;
2319 	case ICE_RESET_CORER:
2320 		set_bit(ICE_CORER_REQ, pf->state);
2321 		break;
2322 	case ICE_RESET_GLOBR:
2323 		set_bit(ICE_GLOBR_REQ, pf->state);
2324 		break;
2325 	default:
2326 		return -EINVAL;
2327 	}
2328 
2329 	ice_service_task_schedule(pf);
2330 	return 0;
2331 }
2332 
2333 /**
2334  * ice_irq_affinity_notify - Callback for affinity changes
2335  * @notify: context as to what irq was changed
2336  * @mask: the new affinity mask
2337  *
2338  * This is a callback function used by the irq_set_affinity_notifier function
2339  * so that we may register to receive changes to the irq affinity masks.
2340  */
2341 static void
2342 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2343 			const cpumask_t *mask)
2344 {
2345 	struct ice_q_vector *q_vector =
2346 		container_of(notify, struct ice_q_vector, affinity_notify);
2347 
2348 	cpumask_copy(&q_vector->affinity_mask, mask);
2349 }
2350 
2351 /**
2352  * ice_irq_affinity_release - Callback for affinity notifier release
2353  * @ref: internal core kernel usage
2354  *
2355  * This is a callback function used by the irq_set_affinity_notifier function
2356  * to inform the current notification subscriber that they will no longer
2357  * receive notifications.
2358  */
2359 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2360 
2361 /**
2362  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2363  * @vsi: the VSI being configured
2364  */
2365 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2366 {
2367 	struct ice_hw *hw = &vsi->back->hw;
2368 	int i;
2369 
2370 	ice_for_each_q_vector(vsi, i)
2371 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2372 
2373 	ice_flush(hw);
2374 	return 0;
2375 }
2376 
2377 /**
2378  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2379  * @vsi: the VSI being configured
2380  * @basename: name for the vector
2381  */
2382 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2383 {
2384 	int q_vectors = vsi->num_q_vectors;
2385 	struct ice_pf *pf = vsi->back;
2386 	int base = vsi->base_vector;
2387 	struct device *dev;
2388 	int rx_int_idx = 0;
2389 	int tx_int_idx = 0;
2390 	int vector, err;
2391 	int irq_num;
2392 
2393 	dev = ice_pf_to_dev(pf);
2394 	for (vector = 0; vector < q_vectors; vector++) {
2395 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2396 
2397 		irq_num = pf->msix_entries[base + vector].vector;
2398 
2399 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2400 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2401 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2402 			tx_int_idx++;
2403 		} else if (q_vector->rx.rx_ring) {
2404 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2405 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2406 		} else if (q_vector->tx.tx_ring) {
2407 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2408 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2409 		} else {
2410 			/* skip this unused q_vector */
2411 			continue;
2412 		}
2413 		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2414 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2415 					       IRQF_SHARED, q_vector->name,
2416 					       q_vector);
2417 		else
2418 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2419 					       0, q_vector->name, q_vector);
2420 		if (err) {
2421 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2422 				   err);
2423 			goto free_q_irqs;
2424 		}
2425 
2426 		/* register for affinity change notifications */
2427 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2428 			struct irq_affinity_notify *affinity_notify;
2429 
2430 			affinity_notify = &q_vector->affinity_notify;
2431 			affinity_notify->notify = ice_irq_affinity_notify;
2432 			affinity_notify->release = ice_irq_affinity_release;
2433 			irq_set_affinity_notifier(irq_num, affinity_notify);
2434 		}
2435 
2436 		/* assign the mask for this irq */
2437 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2438 	}
2439 
2440 	vsi->irqs_ready = true;
2441 	return 0;
2442 
2443 free_q_irqs:
2444 	while (vector) {
2445 		vector--;
2446 		irq_num = pf->msix_entries[base + vector].vector;
2447 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2448 			irq_set_affinity_notifier(irq_num, NULL);
2449 		irq_set_affinity_hint(irq_num, NULL);
2450 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2451 	}
2452 	return err;
2453 }
2454 
2455 /**
2456  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2457  * @vsi: VSI to setup Tx rings used by XDP
2458  *
2459  * Return 0 on success and negative value on error
2460  */
2461 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2462 {
2463 	struct device *dev = ice_pf_to_dev(vsi->back);
2464 	struct ice_tx_desc *tx_desc;
2465 	int i, j;
2466 
2467 	ice_for_each_xdp_txq(vsi, i) {
2468 		u16 xdp_q_idx = vsi->alloc_txq + i;
2469 		struct ice_tx_ring *xdp_ring;
2470 
2471 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2472 
2473 		if (!xdp_ring)
2474 			goto free_xdp_rings;
2475 
2476 		xdp_ring->q_index = xdp_q_idx;
2477 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2478 		xdp_ring->vsi = vsi;
2479 		xdp_ring->netdev = NULL;
2480 		xdp_ring->next_dd = ICE_TX_THRESH - 1;
2481 		xdp_ring->next_rs = ICE_TX_THRESH - 1;
2482 		xdp_ring->dev = dev;
2483 		xdp_ring->count = vsi->num_tx_desc;
2484 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2485 		if (ice_setup_tx_ring(xdp_ring))
2486 			goto free_xdp_rings;
2487 		ice_set_ring_xdp(xdp_ring);
2488 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2489 		spin_lock_init(&xdp_ring->tx_lock);
2490 		for (j = 0; j < xdp_ring->count; j++) {
2491 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2492 			tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE);
2493 		}
2494 	}
2495 
2496 	ice_for_each_rxq(vsi, i) {
2497 		if (static_key_enabled(&ice_xdp_locking_key))
2498 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2499 		else
2500 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2501 	}
2502 
2503 	return 0;
2504 
2505 free_xdp_rings:
2506 	for (; i >= 0; i--)
2507 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2508 			ice_free_tx_ring(vsi->xdp_rings[i]);
2509 	return -ENOMEM;
2510 }
2511 
2512 /**
2513  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2514  * @vsi: VSI to set the bpf prog on
2515  * @prog: the bpf prog pointer
2516  */
2517 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2518 {
2519 	struct bpf_prog *old_prog;
2520 	int i;
2521 
2522 	old_prog = xchg(&vsi->xdp_prog, prog);
2523 	if (old_prog)
2524 		bpf_prog_put(old_prog);
2525 
2526 	ice_for_each_rxq(vsi, i)
2527 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2528 }
2529 
2530 /**
2531  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2532  * @vsi: VSI to bring up Tx rings used by XDP
2533  * @prog: bpf program that will be assigned to VSI
2534  *
2535  * Return 0 on success and negative value on error
2536  */
2537 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2538 {
2539 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2540 	int xdp_rings_rem = vsi->num_xdp_txq;
2541 	struct ice_pf *pf = vsi->back;
2542 	struct ice_qs_cfg xdp_qs_cfg = {
2543 		.qs_mutex = &pf->avail_q_mutex,
2544 		.pf_map = pf->avail_txqs,
2545 		.pf_map_size = pf->max_pf_txqs,
2546 		.q_count = vsi->num_xdp_txq,
2547 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2548 		.vsi_map = vsi->txq_map,
2549 		.vsi_map_offset = vsi->alloc_txq,
2550 		.mapping_mode = ICE_VSI_MAP_CONTIG
2551 	};
2552 	enum ice_status status;
2553 	struct device *dev;
2554 	int i, v_idx;
2555 
2556 	dev = ice_pf_to_dev(pf);
2557 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2558 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2559 	if (!vsi->xdp_rings)
2560 		return -ENOMEM;
2561 
2562 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2563 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2564 		goto err_map_xdp;
2565 
2566 	if (static_key_enabled(&ice_xdp_locking_key))
2567 		netdev_warn(vsi->netdev,
2568 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2569 
2570 	if (ice_xdp_alloc_setup_rings(vsi))
2571 		goto clear_xdp_rings;
2572 
2573 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2574 	ice_for_each_q_vector(vsi, v_idx) {
2575 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2576 		int xdp_rings_per_v, q_id, q_base;
2577 
2578 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2579 					       vsi->num_q_vectors - v_idx);
2580 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2581 
2582 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2583 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2584 
2585 			xdp_ring->q_vector = q_vector;
2586 			xdp_ring->next = q_vector->tx.tx_ring;
2587 			q_vector->tx.tx_ring = xdp_ring;
2588 		}
2589 		xdp_rings_rem -= xdp_rings_per_v;
2590 	}
2591 
2592 	/* omit the scheduler update if in reset path; XDP queues will be
2593 	 * taken into account at the end of ice_vsi_rebuild, where
2594 	 * ice_cfg_vsi_lan is being called
2595 	 */
2596 	if (ice_is_reset_in_progress(pf->state))
2597 		return 0;
2598 
2599 	/* tell the Tx scheduler that right now we have
2600 	 * additional queues
2601 	 */
2602 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2603 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2604 
2605 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2606 				 max_txqs);
2607 	if (status) {
2608 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2609 			ice_stat_str(status));
2610 		goto clear_xdp_rings;
2611 	}
2612 	ice_vsi_assign_bpf_prog(vsi, prog);
2613 
2614 	return 0;
2615 clear_xdp_rings:
2616 	ice_for_each_xdp_txq(vsi, i)
2617 		if (vsi->xdp_rings[i]) {
2618 			kfree_rcu(vsi->xdp_rings[i], rcu);
2619 			vsi->xdp_rings[i] = NULL;
2620 		}
2621 
2622 err_map_xdp:
2623 	mutex_lock(&pf->avail_q_mutex);
2624 	ice_for_each_xdp_txq(vsi, i) {
2625 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2626 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2627 	}
2628 	mutex_unlock(&pf->avail_q_mutex);
2629 
2630 	devm_kfree(dev, vsi->xdp_rings);
2631 	return -ENOMEM;
2632 }
2633 
2634 /**
2635  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2636  * @vsi: VSI to remove XDP rings
2637  *
2638  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2639  * resources
2640  */
2641 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2642 {
2643 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2644 	struct ice_pf *pf = vsi->back;
2645 	int i, v_idx;
2646 
2647 	/* q_vectors are freed in reset path so there's no point in detaching
2648 	 * rings; in case of rebuild being triggered not from reset bits
2649 	 * in pf->state won't be set, so additionally check first q_vector
2650 	 * against NULL
2651 	 */
2652 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2653 		goto free_qmap;
2654 
2655 	ice_for_each_q_vector(vsi, v_idx) {
2656 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2657 		struct ice_tx_ring *ring;
2658 
2659 		ice_for_each_tx_ring(ring, q_vector->tx)
2660 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2661 				break;
2662 
2663 		/* restore the value of last node prior to XDP setup */
2664 		q_vector->tx.tx_ring = ring;
2665 	}
2666 
2667 free_qmap:
2668 	mutex_lock(&pf->avail_q_mutex);
2669 	ice_for_each_xdp_txq(vsi, i) {
2670 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2671 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2672 	}
2673 	mutex_unlock(&pf->avail_q_mutex);
2674 
2675 	ice_for_each_xdp_txq(vsi, i)
2676 		if (vsi->xdp_rings[i]) {
2677 			if (vsi->xdp_rings[i]->desc)
2678 				ice_free_tx_ring(vsi->xdp_rings[i]);
2679 			kfree_rcu(vsi->xdp_rings[i], rcu);
2680 			vsi->xdp_rings[i] = NULL;
2681 		}
2682 
2683 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2684 	vsi->xdp_rings = NULL;
2685 
2686 	if (static_key_enabled(&ice_xdp_locking_key))
2687 		static_branch_dec(&ice_xdp_locking_key);
2688 
2689 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2690 		return 0;
2691 
2692 	ice_vsi_assign_bpf_prog(vsi, NULL);
2693 
2694 	/* notify Tx scheduler that we destroyed XDP queues and bring
2695 	 * back the old number of child nodes
2696 	 */
2697 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2698 		max_txqs[i] = vsi->num_txq;
2699 
2700 	/* change number of XDP Tx queues to 0 */
2701 	vsi->num_xdp_txq = 0;
2702 
2703 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2704 			       max_txqs);
2705 }
2706 
2707 /**
2708  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2709  * @vsi: VSI to schedule napi on
2710  */
2711 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2712 {
2713 	int i;
2714 
2715 	ice_for_each_rxq(vsi, i) {
2716 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2717 
2718 		if (rx_ring->xsk_pool)
2719 			napi_schedule(&rx_ring->q_vector->napi);
2720 	}
2721 }
2722 
2723 /**
2724  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2725  * @vsi: VSI to determine the count of XDP Tx qs
2726  *
2727  * returns 0 if Tx qs count is higher than at least half of CPU count,
2728  * -ENOMEM otherwise
2729  */
2730 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2731 {
2732 	u16 avail = ice_get_avail_txq_count(vsi->back);
2733 	u16 cpus = num_possible_cpus();
2734 
2735 	if (avail < cpus / 2)
2736 		return -ENOMEM;
2737 
2738 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2739 
2740 	if (vsi->num_xdp_txq < cpus)
2741 		static_branch_inc(&ice_xdp_locking_key);
2742 
2743 	return 0;
2744 }
2745 
2746 /**
2747  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2748  * @vsi: VSI to setup XDP for
2749  * @prog: XDP program
2750  * @extack: netlink extended ack
2751  */
2752 static int
2753 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2754 		   struct netlink_ext_ack *extack)
2755 {
2756 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2757 	bool if_running = netif_running(vsi->netdev);
2758 	int ret = 0, xdp_ring_err = 0;
2759 
2760 	if (frame_size > vsi->rx_buf_len) {
2761 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2762 		return -EOPNOTSUPP;
2763 	}
2764 
2765 	/* need to stop netdev while setting up the program for Rx rings */
2766 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2767 		ret = ice_down(vsi);
2768 		if (ret) {
2769 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2770 			return ret;
2771 		}
2772 	}
2773 
2774 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2775 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2776 		if (xdp_ring_err) {
2777 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2778 		} else {
2779 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2780 			if (xdp_ring_err)
2781 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2782 		}
2783 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2784 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2785 		if (xdp_ring_err)
2786 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2787 	} else {
2788 		ice_vsi_assign_bpf_prog(vsi, prog);
2789 	}
2790 
2791 	if (if_running)
2792 		ret = ice_up(vsi);
2793 
2794 	if (!ret && prog)
2795 		ice_vsi_rx_napi_schedule(vsi);
2796 
2797 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2798 }
2799 
2800 /**
2801  * ice_xdp_safe_mode - XDP handler for safe mode
2802  * @dev: netdevice
2803  * @xdp: XDP command
2804  */
2805 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2806 			     struct netdev_bpf *xdp)
2807 {
2808 	NL_SET_ERR_MSG_MOD(xdp->extack,
2809 			   "Please provide working DDP firmware package in order to use XDP\n"
2810 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2811 	return -EOPNOTSUPP;
2812 }
2813 
2814 /**
2815  * ice_xdp - implements XDP handler
2816  * @dev: netdevice
2817  * @xdp: XDP command
2818  */
2819 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2820 {
2821 	struct ice_netdev_priv *np = netdev_priv(dev);
2822 	struct ice_vsi *vsi = np->vsi;
2823 
2824 	if (vsi->type != ICE_VSI_PF) {
2825 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2826 		return -EINVAL;
2827 	}
2828 
2829 	switch (xdp->command) {
2830 	case XDP_SETUP_PROG:
2831 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2832 	case XDP_SETUP_XSK_POOL:
2833 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2834 					  xdp->xsk.queue_id);
2835 	default:
2836 		return -EINVAL;
2837 	}
2838 }
2839 
2840 /**
2841  * ice_ena_misc_vector - enable the non-queue interrupts
2842  * @pf: board private structure
2843  */
2844 static void ice_ena_misc_vector(struct ice_pf *pf)
2845 {
2846 	struct ice_hw *hw = &pf->hw;
2847 	u32 val;
2848 
2849 	/* Disable anti-spoof detection interrupt to prevent spurious event
2850 	 * interrupts during a function reset. Anti-spoof functionally is
2851 	 * still supported.
2852 	 */
2853 	val = rd32(hw, GL_MDCK_TX_TDPU);
2854 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2855 	wr32(hw, GL_MDCK_TX_TDPU, val);
2856 
2857 	/* clear things first */
2858 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2859 	rd32(hw, PFINT_OICR);		/* read to clear */
2860 
2861 	val = (PFINT_OICR_ECC_ERR_M |
2862 	       PFINT_OICR_MAL_DETECT_M |
2863 	       PFINT_OICR_GRST_M |
2864 	       PFINT_OICR_PCI_EXCEPTION_M |
2865 	       PFINT_OICR_VFLR_M |
2866 	       PFINT_OICR_HMC_ERR_M |
2867 	       PFINT_OICR_PE_PUSH_M |
2868 	       PFINT_OICR_PE_CRITERR_M);
2869 
2870 	wr32(hw, PFINT_OICR_ENA, val);
2871 
2872 	/* SW_ITR_IDX = 0, but don't change INTENA */
2873 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2874 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2875 }
2876 
2877 /**
2878  * ice_misc_intr - misc interrupt handler
2879  * @irq: interrupt number
2880  * @data: pointer to a q_vector
2881  */
2882 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2883 {
2884 	struct ice_pf *pf = (struct ice_pf *)data;
2885 	struct ice_hw *hw = &pf->hw;
2886 	irqreturn_t ret = IRQ_NONE;
2887 	struct device *dev;
2888 	u32 oicr, ena_mask;
2889 
2890 	dev = ice_pf_to_dev(pf);
2891 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2892 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2893 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2894 
2895 	oicr = rd32(hw, PFINT_OICR);
2896 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2897 
2898 	if (oicr & PFINT_OICR_SWINT_M) {
2899 		ena_mask &= ~PFINT_OICR_SWINT_M;
2900 		pf->sw_int_count++;
2901 	}
2902 
2903 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2904 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2905 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2906 	}
2907 	if (oicr & PFINT_OICR_VFLR_M) {
2908 		/* disable any further VFLR event notifications */
2909 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2910 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2911 
2912 			reg &= ~PFINT_OICR_VFLR_M;
2913 			wr32(hw, PFINT_OICR_ENA, reg);
2914 		} else {
2915 			ena_mask &= ~PFINT_OICR_VFLR_M;
2916 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2917 		}
2918 	}
2919 
2920 	if (oicr & PFINT_OICR_GRST_M) {
2921 		u32 reset;
2922 
2923 		/* we have a reset warning */
2924 		ena_mask &= ~PFINT_OICR_GRST_M;
2925 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2926 			GLGEN_RSTAT_RESET_TYPE_S;
2927 
2928 		if (reset == ICE_RESET_CORER)
2929 			pf->corer_count++;
2930 		else if (reset == ICE_RESET_GLOBR)
2931 			pf->globr_count++;
2932 		else if (reset == ICE_RESET_EMPR)
2933 			pf->empr_count++;
2934 		else
2935 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2936 
2937 		/* If a reset cycle isn't already in progress, we set a bit in
2938 		 * pf->state so that the service task can start a reset/rebuild.
2939 		 */
2940 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2941 			if (reset == ICE_RESET_CORER)
2942 				set_bit(ICE_CORER_RECV, pf->state);
2943 			else if (reset == ICE_RESET_GLOBR)
2944 				set_bit(ICE_GLOBR_RECV, pf->state);
2945 			else
2946 				set_bit(ICE_EMPR_RECV, pf->state);
2947 
2948 			/* There are couple of different bits at play here.
2949 			 * hw->reset_ongoing indicates whether the hardware is
2950 			 * in reset. This is set to true when a reset interrupt
2951 			 * is received and set back to false after the driver
2952 			 * has determined that the hardware is out of reset.
2953 			 *
2954 			 * ICE_RESET_OICR_RECV in pf->state indicates
2955 			 * that a post reset rebuild is required before the
2956 			 * driver is operational again. This is set above.
2957 			 *
2958 			 * As this is the start of the reset/rebuild cycle, set
2959 			 * both to indicate that.
2960 			 */
2961 			hw->reset_ongoing = true;
2962 		}
2963 	}
2964 
2965 	if (oicr & PFINT_OICR_TSYN_TX_M) {
2966 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2967 		ice_ptp_process_ts(pf);
2968 	}
2969 
2970 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2971 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2972 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2973 
2974 		/* Save EVENTs from GTSYN register */
2975 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2976 						     GLTSYN_STAT_EVENT1_M |
2977 						     GLTSYN_STAT_EVENT2_M);
2978 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2979 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2980 	}
2981 
2982 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2983 	if (oicr & ICE_AUX_CRIT_ERR) {
2984 		struct iidc_event *event;
2985 
2986 		ena_mask &= ~ICE_AUX_CRIT_ERR;
2987 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2988 		if (event) {
2989 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2990 			/* report the entire OICR value to AUX driver */
2991 			event->reg = oicr;
2992 			ice_send_event_to_aux(pf, event);
2993 			kfree(event);
2994 		}
2995 	}
2996 
2997 	/* Report any remaining unexpected interrupts */
2998 	oicr &= ena_mask;
2999 	if (oicr) {
3000 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3001 		/* If a critical error is pending there is no choice but to
3002 		 * reset the device.
3003 		 */
3004 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3005 			    PFINT_OICR_ECC_ERR_M)) {
3006 			set_bit(ICE_PFR_REQ, pf->state);
3007 			ice_service_task_schedule(pf);
3008 		}
3009 	}
3010 	ret = IRQ_HANDLED;
3011 
3012 	ice_service_task_schedule(pf);
3013 	ice_irq_dynamic_ena(hw, NULL, NULL);
3014 
3015 	return ret;
3016 }
3017 
3018 /**
3019  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3020  * @hw: pointer to HW structure
3021  */
3022 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3023 {
3024 	/* disable Admin queue Interrupt causes */
3025 	wr32(hw, PFINT_FW_CTL,
3026 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3027 
3028 	/* disable Mailbox queue Interrupt causes */
3029 	wr32(hw, PFINT_MBX_CTL,
3030 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3031 
3032 	wr32(hw, PFINT_SB_CTL,
3033 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3034 
3035 	/* disable Control queue Interrupt causes */
3036 	wr32(hw, PFINT_OICR_CTL,
3037 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3038 
3039 	ice_flush(hw);
3040 }
3041 
3042 /**
3043  * ice_free_irq_msix_misc - Unroll misc vector setup
3044  * @pf: board private structure
3045  */
3046 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3047 {
3048 	struct ice_hw *hw = &pf->hw;
3049 
3050 	ice_dis_ctrlq_interrupts(hw);
3051 
3052 	/* disable OICR interrupt */
3053 	wr32(hw, PFINT_OICR_ENA, 0);
3054 	ice_flush(hw);
3055 
3056 	if (pf->msix_entries) {
3057 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3058 		devm_free_irq(ice_pf_to_dev(pf),
3059 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3060 	}
3061 
3062 	pf->num_avail_sw_msix += 1;
3063 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3064 }
3065 
3066 /**
3067  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3068  * @hw: pointer to HW structure
3069  * @reg_idx: HW vector index to associate the control queue interrupts with
3070  */
3071 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3072 {
3073 	u32 val;
3074 
3075 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3076 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3077 	wr32(hw, PFINT_OICR_CTL, val);
3078 
3079 	/* enable Admin queue Interrupt causes */
3080 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3081 	       PFINT_FW_CTL_CAUSE_ENA_M);
3082 	wr32(hw, PFINT_FW_CTL, val);
3083 
3084 	/* enable Mailbox queue Interrupt causes */
3085 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3086 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3087 	wr32(hw, PFINT_MBX_CTL, val);
3088 
3089 	/* This enables Sideband queue Interrupt causes */
3090 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3091 	       PFINT_SB_CTL_CAUSE_ENA_M);
3092 	wr32(hw, PFINT_SB_CTL, val);
3093 
3094 	ice_flush(hw);
3095 }
3096 
3097 /**
3098  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3099  * @pf: board private structure
3100  *
3101  * This sets up the handler for MSIX 0, which is used to manage the
3102  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3103  * when in MSI or Legacy interrupt mode.
3104  */
3105 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3106 {
3107 	struct device *dev = ice_pf_to_dev(pf);
3108 	struct ice_hw *hw = &pf->hw;
3109 	int oicr_idx, err = 0;
3110 
3111 	if (!pf->int_name[0])
3112 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3113 			 dev_driver_string(dev), dev_name(dev));
3114 
3115 	/* Do not request IRQ but do enable OICR interrupt since settings are
3116 	 * lost during reset. Note that this function is called only during
3117 	 * rebuild path and not while reset is in progress.
3118 	 */
3119 	if (ice_is_reset_in_progress(pf->state))
3120 		goto skip_req_irq;
3121 
3122 	/* reserve one vector in irq_tracker for misc interrupts */
3123 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3124 	if (oicr_idx < 0)
3125 		return oicr_idx;
3126 
3127 	pf->num_avail_sw_msix -= 1;
3128 	pf->oicr_idx = (u16)oicr_idx;
3129 
3130 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3131 			       ice_misc_intr, 0, pf->int_name, pf);
3132 	if (err) {
3133 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3134 			pf->int_name, err);
3135 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3136 		pf->num_avail_sw_msix += 1;
3137 		return err;
3138 	}
3139 
3140 skip_req_irq:
3141 	ice_ena_misc_vector(pf);
3142 
3143 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3144 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3145 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3146 
3147 	ice_flush(hw);
3148 	ice_irq_dynamic_ena(hw, NULL, NULL);
3149 
3150 	return 0;
3151 }
3152 
3153 /**
3154  * ice_napi_add - register NAPI handler for the VSI
3155  * @vsi: VSI for which NAPI handler is to be registered
3156  *
3157  * This function is only called in the driver's load path. Registering the NAPI
3158  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3159  * reset/rebuild, etc.)
3160  */
3161 static void ice_napi_add(struct ice_vsi *vsi)
3162 {
3163 	int v_idx;
3164 
3165 	if (!vsi->netdev)
3166 		return;
3167 
3168 	ice_for_each_q_vector(vsi, v_idx)
3169 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3170 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3171 }
3172 
3173 /**
3174  * ice_set_ops - set netdev and ethtools ops for the given netdev
3175  * @netdev: netdev instance
3176  */
3177 static void ice_set_ops(struct net_device *netdev)
3178 {
3179 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3180 
3181 	if (ice_is_safe_mode(pf)) {
3182 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3183 		ice_set_ethtool_safe_mode_ops(netdev);
3184 		return;
3185 	}
3186 
3187 	netdev->netdev_ops = &ice_netdev_ops;
3188 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3189 	ice_set_ethtool_ops(netdev);
3190 }
3191 
3192 /**
3193  * ice_set_netdev_features - set features for the given netdev
3194  * @netdev: netdev instance
3195  */
3196 static void ice_set_netdev_features(struct net_device *netdev)
3197 {
3198 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3199 	netdev_features_t csumo_features;
3200 	netdev_features_t vlano_features;
3201 	netdev_features_t dflt_features;
3202 	netdev_features_t tso_features;
3203 
3204 	if (ice_is_safe_mode(pf)) {
3205 		/* safe mode */
3206 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3207 		netdev->hw_features = netdev->features;
3208 		return;
3209 	}
3210 
3211 	dflt_features = NETIF_F_SG	|
3212 			NETIF_F_HIGHDMA	|
3213 			NETIF_F_NTUPLE	|
3214 			NETIF_F_RXHASH;
3215 
3216 	csumo_features = NETIF_F_RXCSUM	  |
3217 			 NETIF_F_IP_CSUM  |
3218 			 NETIF_F_SCTP_CRC |
3219 			 NETIF_F_IPV6_CSUM;
3220 
3221 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3222 			 NETIF_F_HW_VLAN_CTAG_TX     |
3223 			 NETIF_F_HW_VLAN_CTAG_RX;
3224 
3225 	tso_features = NETIF_F_TSO			|
3226 		       NETIF_F_TSO_ECN			|
3227 		       NETIF_F_TSO6			|
3228 		       NETIF_F_GSO_GRE			|
3229 		       NETIF_F_GSO_UDP_TUNNEL		|
3230 		       NETIF_F_GSO_GRE_CSUM		|
3231 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3232 		       NETIF_F_GSO_PARTIAL		|
3233 		       NETIF_F_GSO_IPXIP4		|
3234 		       NETIF_F_GSO_IPXIP6		|
3235 		       NETIF_F_GSO_UDP_L4;
3236 
3237 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3238 					NETIF_F_GSO_GRE_CSUM;
3239 	/* set features that user can change */
3240 	netdev->hw_features = dflt_features | csumo_features |
3241 			      vlano_features | tso_features;
3242 
3243 	/* add support for HW_CSUM on packets with MPLS header */
3244 	netdev->mpls_features =  NETIF_F_HW_CSUM;
3245 
3246 	/* enable features */
3247 	netdev->features |= netdev->hw_features;
3248 
3249 	netdev->hw_features |= NETIF_F_HW_TC;
3250 
3251 	/* encap and VLAN devices inherit default, csumo and tso features */
3252 	netdev->hw_enc_features |= dflt_features | csumo_features |
3253 				   tso_features;
3254 	netdev->vlan_features |= dflt_features | csumo_features |
3255 				 tso_features;
3256 }
3257 
3258 /**
3259  * ice_cfg_netdev - Allocate, configure and register a netdev
3260  * @vsi: the VSI associated with the new netdev
3261  *
3262  * Returns 0 on success, negative value on failure
3263  */
3264 static int ice_cfg_netdev(struct ice_vsi *vsi)
3265 {
3266 	struct ice_netdev_priv *np;
3267 	struct net_device *netdev;
3268 	u8 mac_addr[ETH_ALEN];
3269 
3270 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3271 				    vsi->alloc_rxq);
3272 	if (!netdev)
3273 		return -ENOMEM;
3274 
3275 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3276 	vsi->netdev = netdev;
3277 	np = netdev_priv(netdev);
3278 	np->vsi = vsi;
3279 
3280 	ice_set_netdev_features(netdev);
3281 
3282 	ice_set_ops(netdev);
3283 
3284 	if (vsi->type == ICE_VSI_PF) {
3285 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3286 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3287 		eth_hw_addr_set(netdev, mac_addr);
3288 		ether_addr_copy(netdev->perm_addr, mac_addr);
3289 	}
3290 
3291 	netdev->priv_flags |= IFF_UNICAST_FLT;
3292 
3293 	/* Setup netdev TC information */
3294 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3295 
3296 	/* setup watchdog timeout value to be 5 second */
3297 	netdev->watchdog_timeo = 5 * HZ;
3298 
3299 	netdev->min_mtu = ETH_MIN_MTU;
3300 	netdev->max_mtu = ICE_MAX_MTU;
3301 
3302 	return 0;
3303 }
3304 
3305 /**
3306  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3307  * @lut: Lookup table
3308  * @rss_table_size: Lookup table size
3309  * @rss_size: Range of queue number for hashing
3310  */
3311 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3312 {
3313 	u16 i;
3314 
3315 	for (i = 0; i < rss_table_size; i++)
3316 		lut[i] = i % rss_size;
3317 }
3318 
3319 /**
3320  * ice_pf_vsi_setup - Set up a PF VSI
3321  * @pf: board private structure
3322  * @pi: pointer to the port_info instance
3323  *
3324  * Returns pointer to the successfully allocated VSI software struct
3325  * on success, otherwise returns NULL on failure.
3326  */
3327 static struct ice_vsi *
3328 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3329 {
3330 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL);
3331 }
3332 
3333 static struct ice_vsi *
3334 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3335 		   struct ice_channel *ch)
3336 {
3337 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch);
3338 }
3339 
3340 /**
3341  * ice_ctrl_vsi_setup - Set up a control VSI
3342  * @pf: board private structure
3343  * @pi: pointer to the port_info instance
3344  *
3345  * Returns pointer to the successfully allocated VSI software struct
3346  * on success, otherwise returns NULL on failure.
3347  */
3348 static struct ice_vsi *
3349 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3350 {
3351 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL);
3352 }
3353 
3354 /**
3355  * ice_lb_vsi_setup - Set up a loopback VSI
3356  * @pf: board private structure
3357  * @pi: pointer to the port_info instance
3358  *
3359  * Returns pointer to the successfully allocated VSI software struct
3360  * on success, otherwise returns NULL on failure.
3361  */
3362 struct ice_vsi *
3363 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3364 {
3365 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL);
3366 }
3367 
3368 /**
3369  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3370  * @netdev: network interface to be adjusted
3371  * @proto: unused protocol
3372  * @vid: VLAN ID to be added
3373  *
3374  * net_device_ops implementation for adding VLAN IDs
3375  */
3376 static int
3377 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3378 		    u16 vid)
3379 {
3380 	struct ice_netdev_priv *np = netdev_priv(netdev);
3381 	struct ice_vsi *vsi = np->vsi;
3382 	int ret;
3383 
3384 	/* VLAN 0 is added by default during load/reset */
3385 	if (!vid)
3386 		return 0;
3387 
3388 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3389 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3390 		ret = ice_cfg_vlan_pruning(vsi, true);
3391 		if (ret)
3392 			return ret;
3393 	}
3394 
3395 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3396 	 * packets aren't pruned by the device's internal switch on Rx
3397 	 */
3398 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3399 	if (!ret)
3400 		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3401 
3402 	return ret;
3403 }
3404 
3405 /**
3406  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3407  * @netdev: network interface to be adjusted
3408  * @proto: unused protocol
3409  * @vid: VLAN ID to be removed
3410  *
3411  * net_device_ops implementation for removing VLAN IDs
3412  */
3413 static int
3414 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3415 		     u16 vid)
3416 {
3417 	struct ice_netdev_priv *np = netdev_priv(netdev);
3418 	struct ice_vsi *vsi = np->vsi;
3419 	int ret;
3420 
3421 	/* don't allow removal of VLAN 0 */
3422 	if (!vid)
3423 		return 0;
3424 
3425 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3426 	 * information
3427 	 */
3428 	ret = ice_vsi_kill_vlan(vsi, vid);
3429 	if (ret)
3430 		return ret;
3431 
3432 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3433 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3434 		ret = ice_cfg_vlan_pruning(vsi, false);
3435 
3436 	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3437 	return ret;
3438 }
3439 
3440 /**
3441  * ice_rep_indr_tc_block_unbind
3442  * @cb_priv: indirection block private data
3443  */
3444 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3445 {
3446 	struct ice_indr_block_priv *indr_priv = cb_priv;
3447 
3448 	list_del(&indr_priv->list);
3449 	kfree(indr_priv);
3450 }
3451 
3452 /**
3453  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3454  * @vsi: VSI struct which has the netdev
3455  */
3456 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3457 {
3458 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3459 
3460 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3461 				 ice_rep_indr_tc_block_unbind);
3462 }
3463 
3464 /**
3465  * ice_tc_indir_block_remove - clean indirect TC block notifications
3466  * @pf: PF structure
3467  */
3468 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3469 {
3470 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3471 
3472 	if (!pf_vsi)
3473 		return;
3474 
3475 	ice_tc_indir_block_unregister(pf_vsi);
3476 }
3477 
3478 /**
3479  * ice_tc_indir_block_register - Register TC indirect block notifications
3480  * @vsi: VSI struct which has the netdev
3481  *
3482  * Returns 0 on success, negative value on failure
3483  */
3484 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3485 {
3486 	struct ice_netdev_priv *np;
3487 
3488 	if (!vsi || !vsi->netdev)
3489 		return -EINVAL;
3490 
3491 	np = netdev_priv(vsi->netdev);
3492 
3493 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3494 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3495 }
3496 
3497 /**
3498  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3499  * @pf: board private structure
3500  *
3501  * Returns 0 on success, negative value on failure
3502  */
3503 static int ice_setup_pf_sw(struct ice_pf *pf)
3504 {
3505 	struct device *dev = ice_pf_to_dev(pf);
3506 	struct ice_vsi *vsi;
3507 	int status = 0;
3508 
3509 	if (ice_is_reset_in_progress(pf->state))
3510 		return -EBUSY;
3511 
3512 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3513 	if (!vsi)
3514 		return -ENOMEM;
3515 
3516 	/* init channel list */
3517 	INIT_LIST_HEAD(&vsi->ch_list);
3518 
3519 	status = ice_cfg_netdev(vsi);
3520 	if (status) {
3521 		status = -ENODEV;
3522 		goto unroll_vsi_setup;
3523 	}
3524 	/* netdev has to be configured before setting frame size */
3525 	ice_vsi_cfg_frame_size(vsi);
3526 
3527 	/* init indirect block notifications */
3528 	status = ice_tc_indir_block_register(vsi);
3529 	if (status) {
3530 		dev_err(dev, "Failed to register netdev notifier\n");
3531 		goto unroll_cfg_netdev;
3532 	}
3533 
3534 	/* Setup DCB netlink interface */
3535 	ice_dcbnl_setup(vsi);
3536 
3537 	/* registering the NAPI handler requires both the queues and
3538 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3539 	 * and ice_cfg_netdev() respectively
3540 	 */
3541 	ice_napi_add(vsi);
3542 
3543 	status = ice_set_cpu_rx_rmap(vsi);
3544 	if (status) {
3545 		dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n",
3546 			vsi->vsi_num, status);
3547 		status = -EINVAL;
3548 		goto unroll_napi_add;
3549 	}
3550 	status = ice_init_mac_fltr(pf);
3551 	if (status)
3552 		goto free_cpu_rx_map;
3553 
3554 	return status;
3555 
3556 free_cpu_rx_map:
3557 	ice_free_cpu_rx_rmap(vsi);
3558 unroll_napi_add:
3559 	ice_tc_indir_block_unregister(vsi);
3560 unroll_cfg_netdev:
3561 	if (vsi) {
3562 		ice_napi_del(vsi);
3563 		if (vsi->netdev) {
3564 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3565 			free_netdev(vsi->netdev);
3566 			vsi->netdev = NULL;
3567 		}
3568 	}
3569 
3570 unroll_vsi_setup:
3571 	ice_vsi_release(vsi);
3572 	return status;
3573 }
3574 
3575 /**
3576  * ice_get_avail_q_count - Get count of queues in use
3577  * @pf_qmap: bitmap to get queue use count from
3578  * @lock: pointer to a mutex that protects access to pf_qmap
3579  * @size: size of the bitmap
3580  */
3581 static u16
3582 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3583 {
3584 	unsigned long bit;
3585 	u16 count = 0;
3586 
3587 	mutex_lock(lock);
3588 	for_each_clear_bit(bit, pf_qmap, size)
3589 		count++;
3590 	mutex_unlock(lock);
3591 
3592 	return count;
3593 }
3594 
3595 /**
3596  * ice_get_avail_txq_count - Get count of Tx queues in use
3597  * @pf: pointer to an ice_pf instance
3598  */
3599 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3600 {
3601 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3602 				     pf->max_pf_txqs);
3603 }
3604 
3605 /**
3606  * ice_get_avail_rxq_count - Get count of Rx queues in use
3607  * @pf: pointer to an ice_pf instance
3608  */
3609 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3610 {
3611 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3612 				     pf->max_pf_rxqs);
3613 }
3614 
3615 /**
3616  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3617  * @pf: board private structure to initialize
3618  */
3619 static void ice_deinit_pf(struct ice_pf *pf)
3620 {
3621 	ice_service_task_stop(pf);
3622 	mutex_destroy(&pf->sw_mutex);
3623 	mutex_destroy(&pf->tc_mutex);
3624 	mutex_destroy(&pf->avail_q_mutex);
3625 
3626 	if (pf->avail_txqs) {
3627 		bitmap_free(pf->avail_txqs);
3628 		pf->avail_txqs = NULL;
3629 	}
3630 
3631 	if (pf->avail_rxqs) {
3632 		bitmap_free(pf->avail_rxqs);
3633 		pf->avail_rxqs = NULL;
3634 	}
3635 
3636 	if (pf->ptp.clock)
3637 		ptp_clock_unregister(pf->ptp.clock);
3638 }
3639 
3640 /**
3641  * ice_set_pf_caps - set PFs capability flags
3642  * @pf: pointer to the PF instance
3643  */
3644 static void ice_set_pf_caps(struct ice_pf *pf)
3645 {
3646 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3647 
3648 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3649 	clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3650 	if (func_caps->common_cap.rdma) {
3651 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3652 		set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3653 	}
3654 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3655 	if (func_caps->common_cap.dcb)
3656 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3657 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3658 	if (func_caps->common_cap.sr_iov_1_1) {
3659 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3660 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3661 					      ICE_MAX_VF_COUNT);
3662 	}
3663 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3664 	if (func_caps->common_cap.rss_table_size)
3665 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3666 
3667 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3668 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3669 		u16 unused;
3670 
3671 		/* ctrl_vsi_idx will be set to a valid value when flow director
3672 		 * is setup by ice_init_fdir
3673 		 */
3674 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3675 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3676 		/* force guaranteed filter pool for PF */
3677 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3678 				       func_caps->fd_fltr_guar);
3679 		/* force shared filter pool for PF */
3680 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3681 				       func_caps->fd_fltr_best_effort);
3682 	}
3683 
3684 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3685 	if (func_caps->common_cap.ieee_1588)
3686 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3687 
3688 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3689 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3690 }
3691 
3692 /**
3693  * ice_init_pf - Initialize general software structures (struct ice_pf)
3694  * @pf: board private structure to initialize
3695  */
3696 static int ice_init_pf(struct ice_pf *pf)
3697 {
3698 	ice_set_pf_caps(pf);
3699 
3700 	mutex_init(&pf->sw_mutex);
3701 	mutex_init(&pf->tc_mutex);
3702 
3703 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3704 	spin_lock_init(&pf->aq_wait_lock);
3705 	init_waitqueue_head(&pf->aq_wait_queue);
3706 
3707 	init_waitqueue_head(&pf->reset_wait_queue);
3708 
3709 	/* setup service timer and periodic service task */
3710 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3711 	pf->serv_tmr_period = HZ;
3712 	INIT_WORK(&pf->serv_task, ice_service_task);
3713 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3714 
3715 	mutex_init(&pf->avail_q_mutex);
3716 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3717 	if (!pf->avail_txqs)
3718 		return -ENOMEM;
3719 
3720 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3721 	if (!pf->avail_rxqs) {
3722 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3723 		pf->avail_txqs = NULL;
3724 		return -ENOMEM;
3725 	}
3726 
3727 	return 0;
3728 }
3729 
3730 /**
3731  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3732  * @pf: board private structure
3733  *
3734  * compute the number of MSIX vectors required (v_budget) and request from
3735  * the OS. Return the number of vectors reserved or negative on failure
3736  */
3737 static int ice_ena_msix_range(struct ice_pf *pf)
3738 {
3739 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3740 	struct device *dev = ice_pf_to_dev(pf);
3741 	int needed, err, i;
3742 
3743 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3744 	num_cpus = num_online_cpus();
3745 
3746 	/* reserve for LAN miscellaneous handler */
3747 	needed = ICE_MIN_LAN_OICR_MSIX;
3748 	if (v_left < needed)
3749 		goto no_hw_vecs_left_err;
3750 	v_budget += needed;
3751 	v_left -= needed;
3752 
3753 	/* reserve for flow director */
3754 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3755 		needed = ICE_FDIR_MSIX;
3756 		if (v_left < needed)
3757 			goto no_hw_vecs_left_err;
3758 		v_budget += needed;
3759 		v_left -= needed;
3760 	}
3761 
3762 	/* reserve for switchdev */
3763 	needed = ICE_ESWITCH_MSIX;
3764 	if (v_left < needed)
3765 		goto no_hw_vecs_left_err;
3766 	v_budget += needed;
3767 	v_left -= needed;
3768 
3769 	/* total used for non-traffic vectors */
3770 	v_other = v_budget;
3771 
3772 	/* reserve vectors for LAN traffic */
3773 	needed = num_cpus;
3774 	if (v_left < needed)
3775 		goto no_hw_vecs_left_err;
3776 	pf->num_lan_msix = needed;
3777 	v_budget += needed;
3778 	v_left -= needed;
3779 
3780 	/* reserve vectors for RDMA auxiliary driver */
3781 	if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3782 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3783 		if (v_left < needed)
3784 			goto no_hw_vecs_left_err;
3785 		pf->num_rdma_msix = needed;
3786 		v_budget += needed;
3787 		v_left -= needed;
3788 	}
3789 
3790 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3791 					sizeof(*pf->msix_entries), GFP_KERNEL);
3792 	if (!pf->msix_entries) {
3793 		err = -ENOMEM;
3794 		goto exit_err;
3795 	}
3796 
3797 	for (i = 0; i < v_budget; i++)
3798 		pf->msix_entries[i].entry = i;
3799 
3800 	/* actually reserve the vectors */
3801 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3802 					 ICE_MIN_MSIX, v_budget);
3803 	if (v_actual < 0) {
3804 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3805 		err = v_actual;
3806 		goto msix_err;
3807 	}
3808 
3809 	if (v_actual < v_budget) {
3810 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3811 			 v_budget, v_actual);
3812 
3813 		if (v_actual < ICE_MIN_MSIX) {
3814 			/* error if we can't get minimum vectors */
3815 			pci_disable_msix(pf->pdev);
3816 			err = -ERANGE;
3817 			goto msix_err;
3818 		} else {
3819 			int v_remain = v_actual - v_other;
3820 			int v_rdma = 0, v_min_rdma = 0;
3821 
3822 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3823 				/* Need at least 1 interrupt in addition to
3824 				 * AEQ MSIX
3825 				 */
3826 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3827 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3828 			}
3829 
3830 			if (v_actual == ICE_MIN_MSIX ||
3831 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3832 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3833 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3834 
3835 				pf->num_rdma_msix = 0;
3836 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3837 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3838 				   (v_remain - v_rdma < v_rdma)) {
3839 				/* Support minimum RDMA and give remaining
3840 				 * vectors to LAN MSIX
3841 				 */
3842 				pf->num_rdma_msix = v_min_rdma;
3843 				pf->num_lan_msix = v_remain - v_min_rdma;
3844 			} else {
3845 				/* Split remaining MSIX with RDMA after
3846 				 * accounting for AEQ MSIX
3847 				 */
3848 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3849 						    ICE_RDMA_NUM_AEQ_MSIX;
3850 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3851 			}
3852 
3853 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3854 				   pf->num_lan_msix);
3855 
3856 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3857 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3858 					   pf->num_rdma_msix);
3859 		}
3860 	}
3861 
3862 	return v_actual;
3863 
3864 msix_err:
3865 	devm_kfree(dev, pf->msix_entries);
3866 	goto exit_err;
3867 
3868 no_hw_vecs_left_err:
3869 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3870 		needed, v_left);
3871 	err = -ERANGE;
3872 exit_err:
3873 	pf->num_rdma_msix = 0;
3874 	pf->num_lan_msix = 0;
3875 	return err;
3876 }
3877 
3878 /**
3879  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3880  * @pf: board private structure
3881  */
3882 static void ice_dis_msix(struct ice_pf *pf)
3883 {
3884 	pci_disable_msix(pf->pdev);
3885 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3886 	pf->msix_entries = NULL;
3887 }
3888 
3889 /**
3890  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3891  * @pf: board private structure
3892  */
3893 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3894 {
3895 	ice_dis_msix(pf);
3896 
3897 	if (pf->irq_tracker) {
3898 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3899 		pf->irq_tracker = NULL;
3900 	}
3901 }
3902 
3903 /**
3904  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3905  * @pf: board private structure to initialize
3906  */
3907 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3908 {
3909 	int vectors;
3910 
3911 	vectors = ice_ena_msix_range(pf);
3912 
3913 	if (vectors < 0)
3914 		return vectors;
3915 
3916 	/* set up vector assignment tracking */
3917 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3918 				       struct_size(pf->irq_tracker, list, vectors),
3919 				       GFP_KERNEL);
3920 	if (!pf->irq_tracker) {
3921 		ice_dis_msix(pf);
3922 		return -ENOMEM;
3923 	}
3924 
3925 	/* populate SW interrupts pool with number of OS granted IRQs. */
3926 	pf->num_avail_sw_msix = (u16)vectors;
3927 	pf->irq_tracker->num_entries = (u16)vectors;
3928 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3929 
3930 	return 0;
3931 }
3932 
3933 /**
3934  * ice_is_wol_supported - check if WoL is supported
3935  * @hw: pointer to hardware info
3936  *
3937  * Check if WoL is supported based on the HW configuration.
3938  * Returns true if NVM supports and enables WoL for this port, false otherwise
3939  */
3940 bool ice_is_wol_supported(struct ice_hw *hw)
3941 {
3942 	u16 wol_ctrl;
3943 
3944 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3945 	 * word) indicates WoL is not supported on the corresponding PF ID.
3946 	 */
3947 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3948 		return false;
3949 
3950 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3951 }
3952 
3953 /**
3954  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3955  * @vsi: VSI being changed
3956  * @new_rx: new number of Rx queues
3957  * @new_tx: new number of Tx queues
3958  *
3959  * Only change the number of queues if new_tx, or new_rx is non-0.
3960  *
3961  * Returns 0 on success.
3962  */
3963 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3964 {
3965 	struct ice_pf *pf = vsi->back;
3966 	int err = 0, timeout = 50;
3967 
3968 	if (!new_rx && !new_tx)
3969 		return -EINVAL;
3970 
3971 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3972 		timeout--;
3973 		if (!timeout)
3974 			return -EBUSY;
3975 		usleep_range(1000, 2000);
3976 	}
3977 
3978 	if (new_tx)
3979 		vsi->req_txq = (u16)new_tx;
3980 	if (new_rx)
3981 		vsi->req_rxq = (u16)new_rx;
3982 
3983 	/* set for the next time the netdev is started */
3984 	if (!netif_running(vsi->netdev)) {
3985 		ice_vsi_rebuild(vsi, false);
3986 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3987 		goto done;
3988 	}
3989 
3990 	ice_vsi_close(vsi);
3991 	ice_vsi_rebuild(vsi, false);
3992 	ice_pf_dcb_recfg(pf);
3993 	ice_vsi_open(vsi);
3994 done:
3995 	clear_bit(ICE_CFG_BUSY, pf->state);
3996 	return err;
3997 }
3998 
3999 /**
4000  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4001  * @pf: PF to configure
4002  *
4003  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4004  * VSI can still Tx/Rx VLAN tagged packets.
4005  */
4006 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4007 {
4008 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4009 	struct ice_vsi_ctx *ctxt;
4010 	enum ice_status status;
4011 	struct ice_hw *hw;
4012 
4013 	if (!vsi)
4014 		return;
4015 
4016 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4017 	if (!ctxt)
4018 		return;
4019 
4020 	hw = &pf->hw;
4021 	ctxt->info = vsi->info;
4022 
4023 	ctxt->info.valid_sections =
4024 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4025 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4026 			    ICE_AQ_VSI_PROP_SW_VALID);
4027 
4028 	/* disable VLAN anti-spoof */
4029 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4030 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4031 
4032 	/* disable VLAN pruning and keep all other settings */
4033 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4034 
4035 	/* allow all VLANs on Tx and don't strip on Rx */
4036 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
4037 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
4038 
4039 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4040 	if (status) {
4041 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
4042 			ice_stat_str(status),
4043 			ice_aq_str(hw->adminq.sq_last_status));
4044 	} else {
4045 		vsi->info.sec_flags = ctxt->info.sec_flags;
4046 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4047 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
4048 	}
4049 
4050 	kfree(ctxt);
4051 }
4052 
4053 /**
4054  * ice_log_pkg_init - log result of DDP package load
4055  * @hw: pointer to hardware info
4056  * @status: status of package load
4057  */
4058 static void
4059 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
4060 {
4061 	struct ice_pf *pf = (struct ice_pf *)hw->back;
4062 	struct device *dev = ice_pf_to_dev(pf);
4063 
4064 	switch (*status) {
4065 	case ICE_SUCCESS:
4066 		/* The package download AdminQ command returned success because
4067 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
4068 		 * already a package loaded on the device.
4069 		 */
4070 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
4071 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
4072 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
4073 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
4074 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
4075 			    sizeof(hw->pkg_name))) {
4076 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
4077 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4078 					 hw->active_pkg_name,
4079 					 hw->active_pkg_ver.major,
4080 					 hw->active_pkg_ver.minor,
4081 					 hw->active_pkg_ver.update,
4082 					 hw->active_pkg_ver.draft);
4083 			else
4084 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4085 					 hw->active_pkg_name,
4086 					 hw->active_pkg_ver.major,
4087 					 hw->active_pkg_ver.minor,
4088 					 hw->active_pkg_ver.update,
4089 					 hw->active_pkg_ver.draft);
4090 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
4091 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
4092 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4093 				hw->active_pkg_name,
4094 				hw->active_pkg_ver.major,
4095 				hw->active_pkg_ver.minor,
4096 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4097 			*status = ICE_ERR_NOT_SUPPORTED;
4098 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
4099 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
4100 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4101 				 hw->active_pkg_name,
4102 				 hw->active_pkg_ver.major,
4103 				 hw->active_pkg_ver.minor,
4104 				 hw->active_pkg_ver.update,
4105 				 hw->active_pkg_ver.draft,
4106 				 hw->pkg_name,
4107 				 hw->pkg_ver.major,
4108 				 hw->pkg_ver.minor,
4109 				 hw->pkg_ver.update,
4110 				 hw->pkg_ver.draft);
4111 		} else {
4112 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
4113 			*status = ICE_ERR_NOT_SUPPORTED;
4114 		}
4115 		break;
4116 	case ICE_ERR_FW_DDP_MISMATCH:
4117 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4118 		break;
4119 	case ICE_ERR_BUF_TOO_SHORT:
4120 	case ICE_ERR_CFG:
4121 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4122 		break;
4123 	case ICE_ERR_NOT_SUPPORTED:
4124 		/* Package File version not supported */
4125 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
4126 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
4127 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
4128 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4129 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
4130 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
4131 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
4132 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4133 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4134 		break;
4135 	case ICE_ERR_AQ_ERROR:
4136 		switch (hw->pkg_dwnld_status) {
4137 		case ICE_AQ_RC_ENOSEC:
4138 		case ICE_AQ_RC_EBADSIG:
4139 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4140 			return;
4141 		case ICE_AQ_RC_ESVN:
4142 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4143 			return;
4144 		case ICE_AQ_RC_EBADMAN:
4145 		case ICE_AQ_RC_EBADBUF:
4146 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4147 			/* poll for reset to complete */
4148 			if (ice_check_reset(hw))
4149 				dev_err(dev, "Error resetting device. Please reload the driver\n");
4150 			return;
4151 		default:
4152 			break;
4153 		}
4154 		fallthrough;
4155 	default:
4156 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
4157 			*status);
4158 		break;
4159 	}
4160 }
4161 
4162 /**
4163  * ice_load_pkg - load/reload the DDP Package file
4164  * @firmware: firmware structure when firmware requested or NULL for reload
4165  * @pf: pointer to the PF instance
4166  *
4167  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4168  * initialize HW tables.
4169  */
4170 static void
4171 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4172 {
4173 	enum ice_status status = ICE_ERR_PARAM;
4174 	struct device *dev = ice_pf_to_dev(pf);
4175 	struct ice_hw *hw = &pf->hw;
4176 
4177 	/* Load DDP Package */
4178 	if (firmware && !hw->pkg_copy) {
4179 		status = ice_copy_and_init_pkg(hw, firmware->data,
4180 					       firmware->size);
4181 		ice_log_pkg_init(hw, &status);
4182 	} else if (!firmware && hw->pkg_copy) {
4183 		/* Reload package during rebuild after CORER/GLOBR reset */
4184 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4185 		ice_log_pkg_init(hw, &status);
4186 	} else {
4187 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4188 	}
4189 
4190 	if (status) {
4191 		/* Safe Mode */
4192 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4193 		return;
4194 	}
4195 
4196 	/* Successful download package is the precondition for advanced
4197 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4198 	 */
4199 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4200 }
4201 
4202 /**
4203  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4204  * @pf: pointer to the PF structure
4205  *
4206  * There is no error returned here because the driver should be able to handle
4207  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4208  * specifically with Tx.
4209  */
4210 static void ice_verify_cacheline_size(struct ice_pf *pf)
4211 {
4212 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4213 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4214 			 ICE_CACHE_LINE_BYTES);
4215 }
4216 
4217 /**
4218  * ice_send_version - update firmware with driver version
4219  * @pf: PF struct
4220  *
4221  * Returns ICE_SUCCESS on success, else error code
4222  */
4223 static enum ice_status ice_send_version(struct ice_pf *pf)
4224 {
4225 	struct ice_driver_ver dv;
4226 
4227 	dv.major_ver = 0xff;
4228 	dv.minor_ver = 0xff;
4229 	dv.build_ver = 0xff;
4230 	dv.subbuild_ver = 0;
4231 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4232 		sizeof(dv.driver_string));
4233 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4234 }
4235 
4236 /**
4237  * ice_init_fdir - Initialize flow director VSI and configuration
4238  * @pf: pointer to the PF instance
4239  *
4240  * returns 0 on success, negative on error
4241  */
4242 static int ice_init_fdir(struct ice_pf *pf)
4243 {
4244 	struct device *dev = ice_pf_to_dev(pf);
4245 	struct ice_vsi *ctrl_vsi;
4246 	int err;
4247 
4248 	/* Side Band Flow Director needs to have a control VSI.
4249 	 * Allocate it and store it in the PF.
4250 	 */
4251 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4252 	if (!ctrl_vsi) {
4253 		dev_dbg(dev, "could not create control VSI\n");
4254 		return -ENOMEM;
4255 	}
4256 
4257 	err = ice_vsi_open_ctrl(ctrl_vsi);
4258 	if (err) {
4259 		dev_dbg(dev, "could not open control VSI\n");
4260 		goto err_vsi_open;
4261 	}
4262 
4263 	mutex_init(&pf->hw.fdir_fltr_lock);
4264 
4265 	err = ice_fdir_create_dflt_rules(pf);
4266 	if (err)
4267 		goto err_fdir_rule;
4268 
4269 	return 0;
4270 
4271 err_fdir_rule:
4272 	ice_fdir_release_flows(&pf->hw);
4273 	ice_vsi_close(ctrl_vsi);
4274 err_vsi_open:
4275 	ice_vsi_release(ctrl_vsi);
4276 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4277 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4278 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4279 	}
4280 	return err;
4281 }
4282 
4283 /**
4284  * ice_get_opt_fw_name - return optional firmware file name or NULL
4285  * @pf: pointer to the PF instance
4286  */
4287 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4288 {
4289 	/* Optional firmware name same as default with additional dash
4290 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4291 	 */
4292 	struct pci_dev *pdev = pf->pdev;
4293 	char *opt_fw_filename;
4294 	u64 dsn;
4295 
4296 	/* Determine the name of the optional file using the DSN (two
4297 	 * dwords following the start of the DSN Capability).
4298 	 */
4299 	dsn = pci_get_dsn(pdev);
4300 	if (!dsn)
4301 		return NULL;
4302 
4303 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4304 	if (!opt_fw_filename)
4305 		return NULL;
4306 
4307 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4308 		 ICE_DDP_PKG_PATH, dsn);
4309 
4310 	return opt_fw_filename;
4311 }
4312 
4313 /**
4314  * ice_request_fw - Device initialization routine
4315  * @pf: pointer to the PF instance
4316  */
4317 static void ice_request_fw(struct ice_pf *pf)
4318 {
4319 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4320 	const struct firmware *firmware = NULL;
4321 	struct device *dev = ice_pf_to_dev(pf);
4322 	int err = 0;
4323 
4324 	/* optional device-specific DDP (if present) overrides the default DDP
4325 	 * package file. kernel logs a debug message if the file doesn't exist,
4326 	 * and warning messages for other errors.
4327 	 */
4328 	if (opt_fw_filename) {
4329 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4330 		if (err) {
4331 			kfree(opt_fw_filename);
4332 			goto dflt_pkg_load;
4333 		}
4334 
4335 		/* request for firmware was successful. Download to device */
4336 		ice_load_pkg(firmware, pf);
4337 		kfree(opt_fw_filename);
4338 		release_firmware(firmware);
4339 		return;
4340 	}
4341 
4342 dflt_pkg_load:
4343 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4344 	if (err) {
4345 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4346 		return;
4347 	}
4348 
4349 	/* request for firmware was successful. Download to device */
4350 	ice_load_pkg(firmware, pf);
4351 	release_firmware(firmware);
4352 }
4353 
4354 /**
4355  * ice_print_wake_reason - show the wake up cause in the log
4356  * @pf: pointer to the PF struct
4357  */
4358 static void ice_print_wake_reason(struct ice_pf *pf)
4359 {
4360 	u32 wus = pf->wakeup_reason;
4361 	const char *wake_str;
4362 
4363 	/* if no wake event, nothing to print */
4364 	if (!wus)
4365 		return;
4366 
4367 	if (wus & PFPM_WUS_LNKC_M)
4368 		wake_str = "Link\n";
4369 	else if (wus & PFPM_WUS_MAG_M)
4370 		wake_str = "Magic Packet\n";
4371 	else if (wus & PFPM_WUS_MNG_M)
4372 		wake_str = "Management\n";
4373 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4374 		wake_str = "Firmware Reset\n";
4375 	else
4376 		wake_str = "Unknown\n";
4377 
4378 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4379 }
4380 
4381 /**
4382  * ice_register_netdev - register netdev and devlink port
4383  * @pf: pointer to the PF struct
4384  */
4385 static int ice_register_netdev(struct ice_pf *pf)
4386 {
4387 	struct ice_vsi *vsi;
4388 	int err = 0;
4389 
4390 	vsi = ice_get_main_vsi(pf);
4391 	if (!vsi || !vsi->netdev)
4392 		return -EIO;
4393 
4394 	err = register_netdev(vsi->netdev);
4395 	if (err)
4396 		goto err_register_netdev;
4397 
4398 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4399 	netif_carrier_off(vsi->netdev);
4400 	netif_tx_stop_all_queues(vsi->netdev);
4401 	err = ice_devlink_create_pf_port(pf);
4402 	if (err)
4403 		goto err_devlink_create;
4404 
4405 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4406 
4407 	return 0;
4408 err_devlink_create:
4409 	unregister_netdev(vsi->netdev);
4410 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4411 err_register_netdev:
4412 	free_netdev(vsi->netdev);
4413 	vsi->netdev = NULL;
4414 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4415 	return err;
4416 }
4417 
4418 /**
4419  * ice_probe - Device initialization routine
4420  * @pdev: PCI device information struct
4421  * @ent: entry in ice_pci_tbl
4422  *
4423  * Returns 0 on success, negative on failure
4424  */
4425 static int
4426 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4427 {
4428 	struct device *dev = &pdev->dev;
4429 	struct ice_pf *pf;
4430 	struct ice_hw *hw;
4431 	int i, err;
4432 
4433 	if (pdev->is_virtfn) {
4434 		dev_err(dev, "can't probe a virtual function\n");
4435 		return -EINVAL;
4436 	}
4437 
4438 	/* this driver uses devres, see
4439 	 * Documentation/driver-api/driver-model/devres.rst
4440 	 */
4441 	err = pcim_enable_device(pdev);
4442 	if (err)
4443 		return err;
4444 
4445 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4446 	if (err) {
4447 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4448 		return err;
4449 	}
4450 
4451 	pf = ice_allocate_pf(dev);
4452 	if (!pf)
4453 		return -ENOMEM;
4454 
4455 	/* initialize Auxiliary index to invalid value */
4456 	pf->aux_idx = -1;
4457 
4458 	/* set up for high or low DMA */
4459 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4460 	if (err)
4461 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4462 	if (err) {
4463 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4464 		return err;
4465 	}
4466 
4467 	pci_enable_pcie_error_reporting(pdev);
4468 	pci_set_master(pdev);
4469 
4470 	pf->pdev = pdev;
4471 	pci_set_drvdata(pdev, pf);
4472 	set_bit(ICE_DOWN, pf->state);
4473 	/* Disable service task until DOWN bit is cleared */
4474 	set_bit(ICE_SERVICE_DIS, pf->state);
4475 
4476 	hw = &pf->hw;
4477 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4478 	pci_save_state(pdev);
4479 
4480 	hw->back = pf;
4481 	hw->vendor_id = pdev->vendor;
4482 	hw->device_id = pdev->device;
4483 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4484 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4485 	hw->subsystem_device_id = pdev->subsystem_device;
4486 	hw->bus.device = PCI_SLOT(pdev->devfn);
4487 	hw->bus.func = PCI_FUNC(pdev->devfn);
4488 	ice_set_ctrlq_len(hw);
4489 
4490 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4491 
4492 #ifndef CONFIG_DYNAMIC_DEBUG
4493 	if (debug < -1)
4494 		hw->debug_mask = debug;
4495 #endif
4496 
4497 	err = ice_init_hw(hw);
4498 	if (err) {
4499 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4500 		err = -EIO;
4501 		goto err_exit_unroll;
4502 	}
4503 
4504 	ice_init_feature_support(pf);
4505 
4506 	ice_request_fw(pf);
4507 
4508 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4509 	 * set in pf->state, which will cause ice_is_safe_mode to return
4510 	 * true
4511 	 */
4512 	if (ice_is_safe_mode(pf)) {
4513 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4514 		/* we already got function/device capabilities but these don't
4515 		 * reflect what the driver needs to do in safe mode. Instead of
4516 		 * adding conditional logic everywhere to ignore these
4517 		 * device/function capabilities, override them.
4518 		 */
4519 		ice_set_safe_mode_caps(hw);
4520 	}
4521 
4522 	err = ice_init_pf(pf);
4523 	if (err) {
4524 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4525 		goto err_init_pf_unroll;
4526 	}
4527 
4528 	ice_devlink_init_regions(pf);
4529 
4530 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4531 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4532 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4533 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4534 	i = 0;
4535 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4536 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4537 			pf->hw.tnl.valid_count[TNL_VXLAN];
4538 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4539 			UDP_TUNNEL_TYPE_VXLAN;
4540 		i++;
4541 	}
4542 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4543 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4544 			pf->hw.tnl.valid_count[TNL_GENEVE];
4545 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4546 			UDP_TUNNEL_TYPE_GENEVE;
4547 		i++;
4548 	}
4549 
4550 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4551 	if (!pf->num_alloc_vsi) {
4552 		err = -EIO;
4553 		goto err_init_pf_unroll;
4554 	}
4555 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4556 		dev_warn(&pf->pdev->dev,
4557 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4558 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4559 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4560 	}
4561 
4562 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4563 			       GFP_KERNEL);
4564 	if (!pf->vsi) {
4565 		err = -ENOMEM;
4566 		goto err_init_pf_unroll;
4567 	}
4568 
4569 	err = ice_init_interrupt_scheme(pf);
4570 	if (err) {
4571 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4572 		err = -EIO;
4573 		goto err_init_vsi_unroll;
4574 	}
4575 
4576 	/* In case of MSIX we are going to setup the misc vector right here
4577 	 * to handle admin queue events etc. In case of legacy and MSI
4578 	 * the misc functionality and queue processing is combined in
4579 	 * the same vector and that gets setup at open.
4580 	 */
4581 	err = ice_req_irq_msix_misc(pf);
4582 	if (err) {
4583 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4584 		goto err_init_interrupt_unroll;
4585 	}
4586 
4587 	/* create switch struct for the switch element created by FW on boot */
4588 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4589 	if (!pf->first_sw) {
4590 		err = -ENOMEM;
4591 		goto err_msix_misc_unroll;
4592 	}
4593 
4594 	if (hw->evb_veb)
4595 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4596 	else
4597 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4598 
4599 	pf->first_sw->pf = pf;
4600 
4601 	/* record the sw_id available for later use */
4602 	pf->first_sw->sw_id = hw->port_info->sw_id;
4603 
4604 	err = ice_setup_pf_sw(pf);
4605 	if (err) {
4606 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4607 		goto err_alloc_sw_unroll;
4608 	}
4609 
4610 	clear_bit(ICE_SERVICE_DIS, pf->state);
4611 
4612 	/* tell the firmware we are up */
4613 	err = ice_send_version(pf);
4614 	if (err) {
4615 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4616 			UTS_RELEASE, err);
4617 		goto err_send_version_unroll;
4618 	}
4619 
4620 	/* since everything is good, start the service timer */
4621 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4622 
4623 	err = ice_init_link_events(pf->hw.port_info);
4624 	if (err) {
4625 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4626 		goto err_send_version_unroll;
4627 	}
4628 
4629 	/* not a fatal error if this fails */
4630 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4631 	if (err)
4632 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4633 
4634 	/* not a fatal error if this fails */
4635 	err = ice_update_link_info(pf->hw.port_info);
4636 	if (err)
4637 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4638 
4639 	ice_init_link_dflt_override(pf->hw.port_info);
4640 
4641 	ice_check_link_cfg_err(pf,
4642 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4643 
4644 	/* if media available, initialize PHY settings */
4645 	if (pf->hw.port_info->phy.link_info.link_info &
4646 	    ICE_AQ_MEDIA_AVAILABLE) {
4647 		/* not a fatal error if this fails */
4648 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4649 		if (err)
4650 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4651 
4652 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4653 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4654 
4655 			if (vsi)
4656 				ice_configure_phy(vsi);
4657 		}
4658 	} else {
4659 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4660 	}
4661 
4662 	ice_verify_cacheline_size(pf);
4663 
4664 	/* Save wakeup reason register for later use */
4665 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4666 
4667 	/* check for a power management event */
4668 	ice_print_wake_reason(pf);
4669 
4670 	/* clear wake status, all bits */
4671 	wr32(hw, PFPM_WUS, U32_MAX);
4672 
4673 	/* Disable WoL at init, wait for user to enable */
4674 	device_set_wakeup_enable(dev, false);
4675 
4676 	if (ice_is_safe_mode(pf)) {
4677 		ice_set_safe_mode_vlan_cfg(pf);
4678 		goto probe_done;
4679 	}
4680 
4681 	/* initialize DDP driven features */
4682 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4683 		ice_ptp_init(pf);
4684 
4685 	/* Note: Flow director init failure is non-fatal to load */
4686 	if (ice_init_fdir(pf))
4687 		dev_err(dev, "could not initialize flow director\n");
4688 
4689 	/* Note: DCB init failure is non-fatal to load */
4690 	if (ice_init_pf_dcb(pf, false)) {
4691 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4692 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4693 	} else {
4694 		ice_cfg_lldp_mib_change(&pf->hw, true);
4695 	}
4696 
4697 	if (ice_init_lag(pf))
4698 		dev_warn(dev, "Failed to init link aggregation support\n");
4699 
4700 	/* print PCI link speed and width */
4701 	pcie_print_link_status(pf->pdev);
4702 
4703 probe_done:
4704 	err = ice_register_netdev(pf);
4705 	if (err)
4706 		goto err_netdev_reg;
4707 
4708 	/* ready to go, so clear down state bit */
4709 	clear_bit(ICE_DOWN, pf->state);
4710 	if (ice_is_aux_ena(pf)) {
4711 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4712 		if (pf->aux_idx < 0) {
4713 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4714 			err = -ENOMEM;
4715 			goto err_netdev_reg;
4716 		}
4717 
4718 		err = ice_init_rdma(pf);
4719 		if (err) {
4720 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4721 			err = -EIO;
4722 			goto err_init_aux_unroll;
4723 		}
4724 	} else {
4725 		dev_warn(dev, "RDMA is not supported on this device\n");
4726 	}
4727 
4728 	ice_devlink_register(pf);
4729 	return 0;
4730 
4731 err_init_aux_unroll:
4732 	pf->adev = NULL;
4733 	ida_free(&ice_aux_ida, pf->aux_idx);
4734 err_netdev_reg:
4735 err_send_version_unroll:
4736 	ice_vsi_release_all(pf);
4737 err_alloc_sw_unroll:
4738 	set_bit(ICE_SERVICE_DIS, pf->state);
4739 	set_bit(ICE_DOWN, pf->state);
4740 	devm_kfree(dev, pf->first_sw);
4741 err_msix_misc_unroll:
4742 	ice_free_irq_msix_misc(pf);
4743 err_init_interrupt_unroll:
4744 	ice_clear_interrupt_scheme(pf);
4745 err_init_vsi_unroll:
4746 	devm_kfree(dev, pf->vsi);
4747 err_init_pf_unroll:
4748 	ice_deinit_pf(pf);
4749 	ice_devlink_destroy_regions(pf);
4750 	ice_deinit_hw(hw);
4751 err_exit_unroll:
4752 	pci_disable_pcie_error_reporting(pdev);
4753 	pci_disable_device(pdev);
4754 	return err;
4755 }
4756 
4757 /**
4758  * ice_set_wake - enable or disable Wake on LAN
4759  * @pf: pointer to the PF struct
4760  *
4761  * Simple helper for WoL control
4762  */
4763 static void ice_set_wake(struct ice_pf *pf)
4764 {
4765 	struct ice_hw *hw = &pf->hw;
4766 	bool wol = pf->wol_ena;
4767 
4768 	/* clear wake state, otherwise new wake events won't fire */
4769 	wr32(hw, PFPM_WUS, U32_MAX);
4770 
4771 	/* enable / disable APM wake up, no RMW needed */
4772 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4773 
4774 	/* set magic packet filter enabled */
4775 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4776 }
4777 
4778 /**
4779  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4780  * @pf: pointer to the PF struct
4781  *
4782  * Issue firmware command to enable multicast magic wake, making
4783  * sure that any locally administered address (LAA) is used for
4784  * wake, and that PF reset doesn't undo the LAA.
4785  */
4786 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4787 {
4788 	struct device *dev = ice_pf_to_dev(pf);
4789 	struct ice_hw *hw = &pf->hw;
4790 	enum ice_status status;
4791 	u8 mac_addr[ETH_ALEN];
4792 	struct ice_vsi *vsi;
4793 	u8 flags;
4794 
4795 	if (!pf->wol_ena)
4796 		return;
4797 
4798 	vsi = ice_get_main_vsi(pf);
4799 	if (!vsi)
4800 		return;
4801 
4802 	/* Get current MAC address in case it's an LAA */
4803 	if (vsi->netdev)
4804 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4805 	else
4806 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4807 
4808 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4809 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4810 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4811 
4812 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4813 	if (status)
4814 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4815 			ice_stat_str(status),
4816 			ice_aq_str(hw->adminq.sq_last_status));
4817 }
4818 
4819 /**
4820  * ice_remove - Device removal routine
4821  * @pdev: PCI device information struct
4822  */
4823 static void ice_remove(struct pci_dev *pdev)
4824 {
4825 	struct ice_pf *pf = pci_get_drvdata(pdev);
4826 	int i;
4827 
4828 	ice_devlink_unregister(pf);
4829 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4830 		if (!ice_is_reset_in_progress(pf->state))
4831 			break;
4832 		msleep(100);
4833 	}
4834 
4835 	ice_tc_indir_block_remove(pf);
4836 
4837 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4838 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4839 		ice_free_vfs(pf);
4840 	}
4841 
4842 	ice_service_task_stop(pf);
4843 
4844 	ice_aq_cancel_waiting_tasks(pf);
4845 	ice_unplug_aux_dev(pf);
4846 	if (pf->aux_idx >= 0)
4847 		ida_free(&ice_aux_ida, pf->aux_idx);
4848 	set_bit(ICE_DOWN, pf->state);
4849 
4850 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4851 	ice_deinit_lag(pf);
4852 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4853 		ice_ptp_release(pf);
4854 	if (!ice_is_safe_mode(pf))
4855 		ice_remove_arfs(pf);
4856 	ice_setup_mc_magic_wake(pf);
4857 	ice_vsi_release_all(pf);
4858 	ice_set_wake(pf);
4859 	ice_free_irq_msix_misc(pf);
4860 	ice_for_each_vsi(pf, i) {
4861 		if (!pf->vsi[i])
4862 			continue;
4863 		ice_vsi_free_q_vectors(pf->vsi[i]);
4864 	}
4865 	ice_deinit_pf(pf);
4866 	ice_devlink_destroy_regions(pf);
4867 	ice_deinit_hw(&pf->hw);
4868 
4869 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4870 	 * do it via ice_schedule_reset() since there is no need to rebuild
4871 	 * and the service task is already stopped.
4872 	 */
4873 	ice_reset(&pf->hw, ICE_RESET_PFR);
4874 	pci_wait_for_pending_transaction(pdev);
4875 	ice_clear_interrupt_scheme(pf);
4876 	pci_disable_pcie_error_reporting(pdev);
4877 	pci_disable_device(pdev);
4878 }
4879 
4880 /**
4881  * ice_shutdown - PCI callback for shutting down device
4882  * @pdev: PCI device information struct
4883  */
4884 static void ice_shutdown(struct pci_dev *pdev)
4885 {
4886 	struct ice_pf *pf = pci_get_drvdata(pdev);
4887 
4888 	ice_remove(pdev);
4889 
4890 	if (system_state == SYSTEM_POWER_OFF) {
4891 		pci_wake_from_d3(pdev, pf->wol_ena);
4892 		pci_set_power_state(pdev, PCI_D3hot);
4893 	}
4894 }
4895 
4896 #ifdef CONFIG_PM
4897 /**
4898  * ice_prepare_for_shutdown - prep for PCI shutdown
4899  * @pf: board private structure
4900  *
4901  * Inform or close all dependent features in prep for PCI device shutdown
4902  */
4903 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4904 {
4905 	struct ice_hw *hw = &pf->hw;
4906 	u32 v;
4907 
4908 	/* Notify VFs of impending reset */
4909 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4910 		ice_vc_notify_reset(pf);
4911 
4912 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4913 
4914 	/* disable the VSIs and their queues that are not already DOWN */
4915 	ice_pf_dis_all_vsi(pf, false);
4916 
4917 	ice_for_each_vsi(pf, v)
4918 		if (pf->vsi[v])
4919 			pf->vsi[v]->vsi_num = 0;
4920 
4921 	ice_shutdown_all_ctrlq(hw);
4922 }
4923 
4924 /**
4925  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4926  * @pf: board private structure to reinitialize
4927  *
4928  * This routine reinitialize interrupt scheme that was cleared during
4929  * power management suspend callback.
4930  *
4931  * This should be called during resume routine to re-allocate the q_vectors
4932  * and reacquire interrupts.
4933  */
4934 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4935 {
4936 	struct device *dev = ice_pf_to_dev(pf);
4937 	int ret, v;
4938 
4939 	/* Since we clear MSIX flag during suspend, we need to
4940 	 * set it back during resume...
4941 	 */
4942 
4943 	ret = ice_init_interrupt_scheme(pf);
4944 	if (ret) {
4945 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4946 		return ret;
4947 	}
4948 
4949 	/* Remap vectors and rings, after successful re-init interrupts */
4950 	ice_for_each_vsi(pf, v) {
4951 		if (!pf->vsi[v])
4952 			continue;
4953 
4954 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4955 		if (ret)
4956 			goto err_reinit;
4957 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4958 	}
4959 
4960 	ret = ice_req_irq_msix_misc(pf);
4961 	if (ret) {
4962 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4963 			ret);
4964 		goto err_reinit;
4965 	}
4966 
4967 	return 0;
4968 
4969 err_reinit:
4970 	while (v--)
4971 		if (pf->vsi[v])
4972 			ice_vsi_free_q_vectors(pf->vsi[v]);
4973 
4974 	return ret;
4975 }
4976 
4977 /**
4978  * ice_suspend
4979  * @dev: generic device information structure
4980  *
4981  * Power Management callback to quiesce the device and prepare
4982  * for D3 transition.
4983  */
4984 static int __maybe_unused ice_suspend(struct device *dev)
4985 {
4986 	struct pci_dev *pdev = to_pci_dev(dev);
4987 	struct ice_pf *pf;
4988 	int disabled, v;
4989 
4990 	pf = pci_get_drvdata(pdev);
4991 
4992 	if (!ice_pf_state_is_nominal(pf)) {
4993 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4994 		return -EBUSY;
4995 	}
4996 
4997 	/* Stop watchdog tasks until resume completion.
4998 	 * Even though it is most likely that the service task is
4999 	 * disabled if the device is suspended or down, the service task's
5000 	 * state is controlled by a different state bit, and we should
5001 	 * store and honor whatever state that bit is in at this point.
5002 	 */
5003 	disabled = ice_service_task_stop(pf);
5004 
5005 	ice_unplug_aux_dev(pf);
5006 
5007 	/* Already suspended?, then there is nothing to do */
5008 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5009 		if (!disabled)
5010 			ice_service_task_restart(pf);
5011 		return 0;
5012 	}
5013 
5014 	if (test_bit(ICE_DOWN, pf->state) ||
5015 	    ice_is_reset_in_progress(pf->state)) {
5016 		dev_err(dev, "can't suspend device in reset or already down\n");
5017 		if (!disabled)
5018 			ice_service_task_restart(pf);
5019 		return 0;
5020 	}
5021 
5022 	ice_setup_mc_magic_wake(pf);
5023 
5024 	ice_prepare_for_shutdown(pf);
5025 
5026 	ice_set_wake(pf);
5027 
5028 	/* Free vectors, clear the interrupt scheme and release IRQs
5029 	 * for proper hibernation, especially with large number of CPUs.
5030 	 * Otherwise hibernation might fail when mapping all the vectors back
5031 	 * to CPU0.
5032 	 */
5033 	ice_free_irq_msix_misc(pf);
5034 	ice_for_each_vsi(pf, v) {
5035 		if (!pf->vsi[v])
5036 			continue;
5037 		ice_vsi_free_q_vectors(pf->vsi[v]);
5038 	}
5039 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
5040 	ice_clear_interrupt_scheme(pf);
5041 
5042 	pci_save_state(pdev);
5043 	pci_wake_from_d3(pdev, pf->wol_ena);
5044 	pci_set_power_state(pdev, PCI_D3hot);
5045 	return 0;
5046 }
5047 
5048 /**
5049  * ice_resume - PM callback for waking up from D3
5050  * @dev: generic device information structure
5051  */
5052 static int __maybe_unused ice_resume(struct device *dev)
5053 {
5054 	struct pci_dev *pdev = to_pci_dev(dev);
5055 	enum ice_reset_req reset_type;
5056 	struct ice_pf *pf;
5057 	struct ice_hw *hw;
5058 	int ret;
5059 
5060 	pci_set_power_state(pdev, PCI_D0);
5061 	pci_restore_state(pdev);
5062 	pci_save_state(pdev);
5063 
5064 	if (!pci_device_is_present(pdev))
5065 		return -ENODEV;
5066 
5067 	ret = pci_enable_device_mem(pdev);
5068 	if (ret) {
5069 		dev_err(dev, "Cannot enable device after suspend\n");
5070 		return ret;
5071 	}
5072 
5073 	pf = pci_get_drvdata(pdev);
5074 	hw = &pf->hw;
5075 
5076 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5077 	ice_print_wake_reason(pf);
5078 
5079 	/* We cleared the interrupt scheme when we suspended, so we need to
5080 	 * restore it now to resume device functionality.
5081 	 */
5082 	ret = ice_reinit_interrupt_scheme(pf);
5083 	if (ret)
5084 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5085 
5086 	clear_bit(ICE_DOWN, pf->state);
5087 	/* Now perform PF reset and rebuild */
5088 	reset_type = ICE_RESET_PFR;
5089 	/* re-enable service task for reset, but allow reset to schedule it */
5090 	clear_bit(ICE_SERVICE_DIS, pf->state);
5091 
5092 	if (ice_schedule_reset(pf, reset_type))
5093 		dev_err(dev, "Reset during resume failed.\n");
5094 
5095 	clear_bit(ICE_SUSPENDED, pf->state);
5096 	ice_service_task_restart(pf);
5097 
5098 	/* Restart the service task */
5099 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5100 
5101 	return 0;
5102 }
5103 #endif /* CONFIG_PM */
5104 
5105 /**
5106  * ice_pci_err_detected - warning that PCI error has been detected
5107  * @pdev: PCI device information struct
5108  * @err: the type of PCI error
5109  *
5110  * Called to warn that something happened on the PCI bus and the error handling
5111  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5112  */
5113 static pci_ers_result_t
5114 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5115 {
5116 	struct ice_pf *pf = pci_get_drvdata(pdev);
5117 
5118 	if (!pf) {
5119 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5120 			__func__, err);
5121 		return PCI_ERS_RESULT_DISCONNECT;
5122 	}
5123 
5124 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5125 		ice_service_task_stop(pf);
5126 
5127 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5128 			set_bit(ICE_PFR_REQ, pf->state);
5129 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5130 		}
5131 	}
5132 
5133 	return PCI_ERS_RESULT_NEED_RESET;
5134 }
5135 
5136 /**
5137  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5138  * @pdev: PCI device information struct
5139  *
5140  * Called to determine if the driver can recover from the PCI slot reset by
5141  * using a register read to determine if the device is recoverable.
5142  */
5143 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5144 {
5145 	struct ice_pf *pf = pci_get_drvdata(pdev);
5146 	pci_ers_result_t result;
5147 	int err;
5148 	u32 reg;
5149 
5150 	err = pci_enable_device_mem(pdev);
5151 	if (err) {
5152 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5153 			err);
5154 		result = PCI_ERS_RESULT_DISCONNECT;
5155 	} else {
5156 		pci_set_master(pdev);
5157 		pci_restore_state(pdev);
5158 		pci_save_state(pdev);
5159 		pci_wake_from_d3(pdev, false);
5160 
5161 		/* Check for life */
5162 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5163 		if (!reg)
5164 			result = PCI_ERS_RESULT_RECOVERED;
5165 		else
5166 			result = PCI_ERS_RESULT_DISCONNECT;
5167 	}
5168 
5169 	err = pci_aer_clear_nonfatal_status(pdev);
5170 	if (err)
5171 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5172 			err);
5173 		/* non-fatal, continue */
5174 
5175 	return result;
5176 }
5177 
5178 /**
5179  * ice_pci_err_resume - restart operations after PCI error recovery
5180  * @pdev: PCI device information struct
5181  *
5182  * Called to allow the driver to bring things back up after PCI error and/or
5183  * reset recovery have finished
5184  */
5185 static void ice_pci_err_resume(struct pci_dev *pdev)
5186 {
5187 	struct ice_pf *pf = pci_get_drvdata(pdev);
5188 
5189 	if (!pf) {
5190 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5191 			__func__);
5192 		return;
5193 	}
5194 
5195 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5196 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5197 			__func__);
5198 		return;
5199 	}
5200 
5201 	ice_restore_all_vfs_msi_state(pdev);
5202 
5203 	ice_do_reset(pf, ICE_RESET_PFR);
5204 	ice_service_task_restart(pf);
5205 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5206 }
5207 
5208 /**
5209  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5210  * @pdev: PCI device information struct
5211  */
5212 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5213 {
5214 	struct ice_pf *pf = pci_get_drvdata(pdev);
5215 
5216 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5217 		ice_service_task_stop(pf);
5218 
5219 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5220 			set_bit(ICE_PFR_REQ, pf->state);
5221 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5222 		}
5223 	}
5224 }
5225 
5226 /**
5227  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5228  * @pdev: PCI device information struct
5229  */
5230 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5231 {
5232 	ice_pci_err_resume(pdev);
5233 }
5234 
5235 /* ice_pci_tbl - PCI Device ID Table
5236  *
5237  * Wildcard entries (PCI_ANY_ID) should come last
5238  * Last entry must be all 0s
5239  *
5240  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5241  *   Class, Class Mask, private data (not used) }
5242  */
5243 static const struct pci_device_id ice_pci_tbl[] = {
5244 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5245 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5246 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5247 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5248 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5249 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5250 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5251 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5252 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5253 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5254 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5255 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5256 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5257 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5258 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5259 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5260 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5261 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5262 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5263 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5264 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5265 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5266 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5267 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5268 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5269 	/* required last entry */
5270 	{ 0, }
5271 };
5272 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5273 
5274 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5275 
5276 static const struct pci_error_handlers ice_pci_err_handler = {
5277 	.error_detected = ice_pci_err_detected,
5278 	.slot_reset = ice_pci_err_slot_reset,
5279 	.reset_prepare = ice_pci_err_reset_prepare,
5280 	.reset_done = ice_pci_err_reset_done,
5281 	.resume = ice_pci_err_resume
5282 };
5283 
5284 static struct pci_driver ice_driver = {
5285 	.name = KBUILD_MODNAME,
5286 	.id_table = ice_pci_tbl,
5287 	.probe = ice_probe,
5288 	.remove = ice_remove,
5289 #ifdef CONFIG_PM
5290 	.driver.pm = &ice_pm_ops,
5291 #endif /* CONFIG_PM */
5292 	.shutdown = ice_shutdown,
5293 	.sriov_configure = ice_sriov_configure,
5294 	.err_handler = &ice_pci_err_handler
5295 };
5296 
5297 /**
5298  * ice_module_init - Driver registration routine
5299  *
5300  * ice_module_init is the first routine called when the driver is
5301  * loaded. All it does is register with the PCI subsystem.
5302  */
5303 static int __init ice_module_init(void)
5304 {
5305 	int status;
5306 
5307 	pr_info("%s\n", ice_driver_string);
5308 	pr_info("%s\n", ice_copyright);
5309 
5310 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5311 	if (!ice_wq) {
5312 		pr_err("Failed to create workqueue\n");
5313 		return -ENOMEM;
5314 	}
5315 
5316 	status = pci_register_driver(&ice_driver);
5317 	if (status) {
5318 		pr_err("failed to register PCI driver, err %d\n", status);
5319 		destroy_workqueue(ice_wq);
5320 	}
5321 
5322 	return status;
5323 }
5324 module_init(ice_module_init);
5325 
5326 /**
5327  * ice_module_exit - Driver exit cleanup routine
5328  *
5329  * ice_module_exit is called just before the driver is removed
5330  * from memory.
5331  */
5332 static void __exit ice_module_exit(void)
5333 {
5334 	pci_unregister_driver(&ice_driver);
5335 	destroy_workqueue(ice_wq);
5336 	pr_info("module unloaded\n");
5337 }
5338 module_exit(ice_module_exit);
5339 
5340 /**
5341  * ice_set_mac_address - NDO callback to set MAC address
5342  * @netdev: network interface device structure
5343  * @pi: pointer to an address structure
5344  *
5345  * Returns 0 on success, negative on failure
5346  */
5347 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5348 {
5349 	struct ice_netdev_priv *np = netdev_priv(netdev);
5350 	struct ice_vsi *vsi = np->vsi;
5351 	struct ice_pf *pf = vsi->back;
5352 	struct ice_hw *hw = &pf->hw;
5353 	struct sockaddr *addr = pi;
5354 	enum ice_status status;
5355 	u8 old_mac[ETH_ALEN];
5356 	u8 flags = 0;
5357 	int err = 0;
5358 	u8 *mac;
5359 
5360 	mac = (u8 *)addr->sa_data;
5361 
5362 	if (!is_valid_ether_addr(mac))
5363 		return -EADDRNOTAVAIL;
5364 
5365 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5366 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5367 		return 0;
5368 	}
5369 
5370 	if (test_bit(ICE_DOWN, pf->state) ||
5371 	    ice_is_reset_in_progress(pf->state)) {
5372 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5373 			   mac);
5374 		return -EBUSY;
5375 	}
5376 
5377 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5378 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5379 			   mac);
5380 		return -EAGAIN;
5381 	}
5382 
5383 	netif_addr_lock_bh(netdev);
5384 	ether_addr_copy(old_mac, netdev->dev_addr);
5385 	/* change the netdev's MAC address */
5386 	eth_hw_addr_set(netdev, mac);
5387 	netif_addr_unlock_bh(netdev);
5388 
5389 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5390 	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5391 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5392 		err = -EADDRNOTAVAIL;
5393 		goto err_update_filters;
5394 	}
5395 
5396 	/* Add filter for new MAC. If filter exists, return success */
5397 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5398 	if (status == ICE_ERR_ALREADY_EXISTS)
5399 		/* Although this MAC filter is already present in hardware it's
5400 		 * possible in some cases (e.g. bonding) that dev_addr was
5401 		 * modified outside of the driver and needs to be restored back
5402 		 * to this value.
5403 		 */
5404 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5405 	else if (status)
5406 		/* error if the new filter addition failed */
5407 		err = -EADDRNOTAVAIL;
5408 
5409 err_update_filters:
5410 	if (err) {
5411 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5412 			   mac);
5413 		netif_addr_lock_bh(netdev);
5414 		eth_hw_addr_set(netdev, old_mac);
5415 		netif_addr_unlock_bh(netdev);
5416 		return err;
5417 	}
5418 
5419 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5420 		   netdev->dev_addr);
5421 
5422 	/* write new MAC address to the firmware */
5423 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5424 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5425 	if (status) {
5426 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5427 			   mac, ice_stat_str(status));
5428 	}
5429 	return 0;
5430 }
5431 
5432 /**
5433  * ice_set_rx_mode - NDO callback to set the netdev filters
5434  * @netdev: network interface device structure
5435  */
5436 static void ice_set_rx_mode(struct net_device *netdev)
5437 {
5438 	struct ice_netdev_priv *np = netdev_priv(netdev);
5439 	struct ice_vsi *vsi = np->vsi;
5440 
5441 	if (!vsi)
5442 		return;
5443 
5444 	/* Set the flags to synchronize filters
5445 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5446 	 * flags
5447 	 */
5448 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5449 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5450 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5451 
5452 	/* schedule our worker thread which will take care of
5453 	 * applying the new filter changes
5454 	 */
5455 	ice_service_task_schedule(vsi->back);
5456 }
5457 
5458 /**
5459  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5460  * @netdev: network interface device structure
5461  * @queue_index: Queue ID
5462  * @maxrate: maximum bandwidth in Mbps
5463  */
5464 static int
5465 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5466 {
5467 	struct ice_netdev_priv *np = netdev_priv(netdev);
5468 	struct ice_vsi *vsi = np->vsi;
5469 	enum ice_status status;
5470 	u16 q_handle;
5471 	u8 tc;
5472 
5473 	/* Validate maxrate requested is within permitted range */
5474 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5475 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5476 			   maxrate, queue_index);
5477 		return -EINVAL;
5478 	}
5479 
5480 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5481 	tc = ice_dcb_get_tc(vsi, queue_index);
5482 
5483 	/* Set BW back to default, when user set maxrate to 0 */
5484 	if (!maxrate)
5485 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5486 					       q_handle, ICE_MAX_BW);
5487 	else
5488 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5489 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5490 	if (status) {
5491 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5492 			   ice_stat_str(status));
5493 		return -EIO;
5494 	}
5495 
5496 	return 0;
5497 }
5498 
5499 /**
5500  * ice_fdb_add - add an entry to the hardware database
5501  * @ndm: the input from the stack
5502  * @tb: pointer to array of nladdr (unused)
5503  * @dev: the net device pointer
5504  * @addr: the MAC address entry being added
5505  * @vid: VLAN ID
5506  * @flags: instructions from stack about fdb operation
5507  * @extack: netlink extended ack
5508  */
5509 static int
5510 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5511 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5512 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5513 {
5514 	int err;
5515 
5516 	if (vid) {
5517 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5518 		return -EINVAL;
5519 	}
5520 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5521 		netdev_err(dev, "FDB only supports static addresses\n");
5522 		return -EINVAL;
5523 	}
5524 
5525 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5526 		err = dev_uc_add_excl(dev, addr);
5527 	else if (is_multicast_ether_addr(addr))
5528 		err = dev_mc_add_excl(dev, addr);
5529 	else
5530 		err = -EINVAL;
5531 
5532 	/* Only return duplicate errors if NLM_F_EXCL is set */
5533 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5534 		err = 0;
5535 
5536 	return err;
5537 }
5538 
5539 /**
5540  * ice_fdb_del - delete an entry from the hardware database
5541  * @ndm: the input from the stack
5542  * @tb: pointer to array of nladdr (unused)
5543  * @dev: the net device pointer
5544  * @addr: the MAC address entry being added
5545  * @vid: VLAN ID
5546  */
5547 static int
5548 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5549 	    struct net_device *dev, const unsigned char *addr,
5550 	    __always_unused u16 vid)
5551 {
5552 	int err;
5553 
5554 	if (ndm->ndm_state & NUD_PERMANENT) {
5555 		netdev_err(dev, "FDB only supports static addresses\n");
5556 		return -EINVAL;
5557 	}
5558 
5559 	if (is_unicast_ether_addr(addr))
5560 		err = dev_uc_del(dev, addr);
5561 	else if (is_multicast_ether_addr(addr))
5562 		err = dev_mc_del(dev, addr);
5563 	else
5564 		err = -EINVAL;
5565 
5566 	return err;
5567 }
5568 
5569 /**
5570  * ice_set_features - set the netdev feature flags
5571  * @netdev: ptr to the netdev being adjusted
5572  * @features: the feature set that the stack is suggesting
5573  */
5574 static int
5575 ice_set_features(struct net_device *netdev, netdev_features_t features)
5576 {
5577 	struct ice_netdev_priv *np = netdev_priv(netdev);
5578 	struct ice_vsi *vsi = np->vsi;
5579 	struct ice_pf *pf = vsi->back;
5580 	int ret = 0;
5581 
5582 	/* Don't set any netdev advanced features with device in Safe Mode */
5583 	if (ice_is_safe_mode(vsi->back)) {
5584 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5585 		return ret;
5586 	}
5587 
5588 	/* Do not change setting during reset */
5589 	if (ice_is_reset_in_progress(pf->state)) {
5590 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5591 		return -EBUSY;
5592 	}
5593 
5594 	/* Multiple features can be changed in one call so keep features in
5595 	 * separate if/else statements to guarantee each feature is checked
5596 	 */
5597 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5598 		ice_vsi_manage_rss_lut(vsi, true);
5599 	else if (!(features & NETIF_F_RXHASH) &&
5600 		 netdev->features & NETIF_F_RXHASH)
5601 		ice_vsi_manage_rss_lut(vsi, false);
5602 
5603 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5604 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5605 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5606 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5607 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5608 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5609 
5610 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5611 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5612 		ret = ice_vsi_manage_vlan_insertion(vsi);
5613 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5614 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5615 		ret = ice_vsi_manage_vlan_insertion(vsi);
5616 
5617 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5618 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5619 		ret = ice_cfg_vlan_pruning(vsi, true);
5620 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5621 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5622 		ret = ice_cfg_vlan_pruning(vsi, false);
5623 
5624 	if ((features & NETIF_F_NTUPLE) &&
5625 	    !(netdev->features & NETIF_F_NTUPLE)) {
5626 		ice_vsi_manage_fdir(vsi, true);
5627 		ice_init_arfs(vsi);
5628 	} else if (!(features & NETIF_F_NTUPLE) &&
5629 		 (netdev->features & NETIF_F_NTUPLE)) {
5630 		ice_vsi_manage_fdir(vsi, false);
5631 		ice_clear_arfs(vsi);
5632 	}
5633 
5634 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5635 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5636 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5637 		return -EACCES;
5638 	}
5639 
5640 	if ((features & NETIF_F_HW_TC) &&
5641 	    !(netdev->features & NETIF_F_HW_TC))
5642 		set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5643 	else
5644 		clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5645 
5646 	return ret;
5647 }
5648 
5649 /**
5650  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5651  * @vsi: VSI to setup VLAN properties for
5652  */
5653 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5654 {
5655 	int ret = 0;
5656 
5657 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5658 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5659 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5660 		ret = ice_vsi_manage_vlan_insertion(vsi);
5661 
5662 	return ret;
5663 }
5664 
5665 /**
5666  * ice_vsi_cfg - Setup the VSI
5667  * @vsi: the VSI being configured
5668  *
5669  * Return 0 on success and negative value on error
5670  */
5671 int ice_vsi_cfg(struct ice_vsi *vsi)
5672 {
5673 	int err;
5674 
5675 	if (vsi->netdev) {
5676 		ice_set_rx_mode(vsi->netdev);
5677 
5678 		err = ice_vsi_vlan_setup(vsi);
5679 
5680 		if (err)
5681 			return err;
5682 	}
5683 	ice_vsi_cfg_dcb_rings(vsi);
5684 
5685 	err = ice_vsi_cfg_lan_txqs(vsi);
5686 	if (!err && ice_is_xdp_ena_vsi(vsi))
5687 		err = ice_vsi_cfg_xdp_txqs(vsi);
5688 	if (!err)
5689 		err = ice_vsi_cfg_rxqs(vsi);
5690 
5691 	return err;
5692 }
5693 
5694 /* THEORY OF MODERATION:
5695  * The ice driver hardware works differently than the hardware that DIMLIB was
5696  * originally made for. ice hardware doesn't have packet count limits that
5697  * can trigger an interrupt, but it *does* have interrupt rate limit support,
5698  * which is hard-coded to a limit of 250,000 ints/second.
5699  * If not using dynamic moderation, the INTRL value can be modified
5700  * by ethtool rx-usecs-high.
5701  */
5702 struct ice_dim {
5703 	/* the throttle rate for interrupts, basically worst case delay before
5704 	 * an initial interrupt fires, value is stored in microseconds.
5705 	 */
5706 	u16 itr;
5707 };
5708 
5709 /* Make a different profile for Rx that doesn't allow quite so aggressive
5710  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
5711  * second.
5712  */
5713 static const struct ice_dim rx_profile[] = {
5714 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5715 	{8},    /* 125,000 ints/s */
5716 	{16},   /*  62,500 ints/s */
5717 	{62},   /*  16,129 ints/s */
5718 	{126}   /*   7,936 ints/s */
5719 };
5720 
5721 /* The transmit profile, which has the same sorts of values
5722  * as the previous struct
5723  */
5724 static const struct ice_dim tx_profile[] = {
5725 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5726 	{8},    /* 125,000 ints/s */
5727 	{40},   /*  16,125 ints/s */
5728 	{128},  /*   7,812 ints/s */
5729 	{256}   /*   3,906 ints/s */
5730 };
5731 
5732 static void ice_tx_dim_work(struct work_struct *work)
5733 {
5734 	struct ice_ring_container *rc;
5735 	struct dim *dim;
5736 	u16 itr;
5737 
5738 	dim = container_of(work, struct dim, work);
5739 	rc = (struct ice_ring_container *)dim->priv;
5740 
5741 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
5742 
5743 	/* look up the values in our local table */
5744 	itr = tx_profile[dim->profile_ix].itr;
5745 
5746 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
5747 	ice_write_itr(rc, itr);
5748 
5749 	dim->state = DIM_START_MEASURE;
5750 }
5751 
5752 static void ice_rx_dim_work(struct work_struct *work)
5753 {
5754 	struct ice_ring_container *rc;
5755 	struct dim *dim;
5756 	u16 itr;
5757 
5758 	dim = container_of(work, struct dim, work);
5759 	rc = (struct ice_ring_container *)dim->priv;
5760 
5761 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
5762 
5763 	/* look up the values in our local table */
5764 	itr = rx_profile[dim->profile_ix].itr;
5765 
5766 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
5767 	ice_write_itr(rc, itr);
5768 
5769 	dim->state = DIM_START_MEASURE;
5770 }
5771 
5772 #define ICE_DIM_DEFAULT_PROFILE_IX 1
5773 
5774 /**
5775  * ice_init_moderation - set up interrupt moderation
5776  * @q_vector: the vector containing rings to be configured
5777  *
5778  * Set up interrupt moderation registers, with the intent to do the right thing
5779  * when called from reset or from probe, and whether or not dynamic moderation
5780  * is enabled or not. Take special care to write all the registers in both
5781  * dynamic moderation mode or not in order to make sure hardware is in a known
5782  * state.
5783  */
5784 static void ice_init_moderation(struct ice_q_vector *q_vector)
5785 {
5786 	struct ice_ring_container *rc;
5787 	bool tx_dynamic, rx_dynamic;
5788 
5789 	rc = &q_vector->tx;
5790 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
5791 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5792 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5793 	rc->dim.priv = rc;
5794 	tx_dynamic = ITR_IS_DYNAMIC(rc);
5795 
5796 	/* set the initial TX ITR to match the above */
5797 	ice_write_itr(rc, tx_dynamic ?
5798 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
5799 
5800 	rc = &q_vector->rx;
5801 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
5802 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5803 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5804 	rc->dim.priv = rc;
5805 	rx_dynamic = ITR_IS_DYNAMIC(rc);
5806 
5807 	/* set the initial RX ITR to match the above */
5808 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
5809 				       rc->itr_setting);
5810 
5811 	ice_set_q_vector_intrl(q_vector);
5812 }
5813 
5814 /**
5815  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5816  * @vsi: the VSI being configured
5817  */
5818 static void ice_napi_enable_all(struct ice_vsi *vsi)
5819 {
5820 	int q_idx;
5821 
5822 	if (!vsi->netdev)
5823 		return;
5824 
5825 	ice_for_each_q_vector(vsi, q_idx) {
5826 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5827 
5828 		ice_init_moderation(q_vector);
5829 
5830 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
5831 			napi_enable(&q_vector->napi);
5832 	}
5833 }
5834 
5835 /**
5836  * ice_up_complete - Finish the last steps of bringing up a connection
5837  * @vsi: The VSI being configured
5838  *
5839  * Return 0 on success and negative value on error
5840  */
5841 static int ice_up_complete(struct ice_vsi *vsi)
5842 {
5843 	struct ice_pf *pf = vsi->back;
5844 	int err;
5845 
5846 	ice_vsi_cfg_msix(vsi);
5847 
5848 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5849 	 * Tx queue group list was configured and the context bits were
5850 	 * programmed using ice_vsi_cfg_txqs
5851 	 */
5852 	err = ice_vsi_start_all_rx_rings(vsi);
5853 	if (err)
5854 		return err;
5855 
5856 	clear_bit(ICE_VSI_DOWN, vsi->state);
5857 	ice_napi_enable_all(vsi);
5858 	ice_vsi_ena_irq(vsi);
5859 
5860 	if (vsi->port_info &&
5861 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5862 	    vsi->netdev) {
5863 		ice_print_link_msg(vsi, true);
5864 		netif_tx_start_all_queues(vsi->netdev);
5865 		netif_carrier_on(vsi->netdev);
5866 	}
5867 
5868 	ice_service_task_schedule(pf);
5869 
5870 	return 0;
5871 }
5872 
5873 /**
5874  * ice_up - Bring the connection back up after being down
5875  * @vsi: VSI being configured
5876  */
5877 int ice_up(struct ice_vsi *vsi)
5878 {
5879 	int err;
5880 
5881 	err = ice_vsi_cfg(vsi);
5882 	if (!err)
5883 		err = ice_up_complete(vsi);
5884 
5885 	return err;
5886 }
5887 
5888 /**
5889  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5890  * @syncp: pointer to u64_stats_sync
5891  * @stats: stats that pkts and bytes count will be taken from
5892  * @pkts: packets stats counter
5893  * @bytes: bytes stats counter
5894  *
5895  * This function fetches stats from the ring considering the atomic operations
5896  * that needs to be performed to read u64 values in 32 bit machine.
5897  */
5898 static void
5899 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats,
5900 			     u64 *pkts, u64 *bytes)
5901 {
5902 	unsigned int start;
5903 
5904 	do {
5905 		start = u64_stats_fetch_begin_irq(syncp);
5906 		*pkts = stats.pkts;
5907 		*bytes = stats.bytes;
5908 	} while (u64_stats_fetch_retry_irq(syncp, start));
5909 }
5910 
5911 /**
5912  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5913  * @vsi: the VSI to be updated
5914  * @rings: rings to work on
5915  * @count: number of rings
5916  */
5917 static void
5918 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_tx_ring **rings,
5919 			     u16 count)
5920 {
5921 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5922 	u16 i;
5923 
5924 	for (i = 0; i < count; i++) {
5925 		struct ice_tx_ring *ring;
5926 		u64 pkts = 0, bytes = 0;
5927 
5928 		ring = READ_ONCE(rings[i]);
5929 		if (ring)
5930 			ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
5931 		vsi_stats->tx_packets += pkts;
5932 		vsi_stats->tx_bytes += bytes;
5933 		vsi->tx_restart += ring->tx_stats.restart_q;
5934 		vsi->tx_busy += ring->tx_stats.tx_busy;
5935 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5936 	}
5937 }
5938 
5939 /**
5940  * ice_update_vsi_ring_stats - Update VSI stats counters
5941  * @vsi: the VSI to be updated
5942  */
5943 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5944 {
5945 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5946 	u64 pkts, bytes;
5947 	int i;
5948 
5949 	/* reset netdev stats */
5950 	vsi_stats->tx_packets = 0;
5951 	vsi_stats->tx_bytes = 0;
5952 	vsi_stats->rx_packets = 0;
5953 	vsi_stats->rx_bytes = 0;
5954 
5955 	/* reset non-netdev (extended) stats */
5956 	vsi->tx_restart = 0;
5957 	vsi->tx_busy = 0;
5958 	vsi->tx_linearize = 0;
5959 	vsi->rx_buf_failed = 0;
5960 	vsi->rx_page_failed = 0;
5961 
5962 	rcu_read_lock();
5963 
5964 	/* update Tx rings counters */
5965 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5966 
5967 	/* update Rx rings counters */
5968 	ice_for_each_rxq(vsi, i) {
5969 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5970 
5971 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
5972 		vsi_stats->rx_packets += pkts;
5973 		vsi_stats->rx_bytes += bytes;
5974 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5975 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5976 	}
5977 
5978 	/* update XDP Tx rings counters */
5979 	if (ice_is_xdp_ena_vsi(vsi))
5980 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5981 					     vsi->num_xdp_txq);
5982 
5983 	rcu_read_unlock();
5984 }
5985 
5986 /**
5987  * ice_update_vsi_stats - Update VSI stats counters
5988  * @vsi: the VSI to be updated
5989  */
5990 void ice_update_vsi_stats(struct ice_vsi *vsi)
5991 {
5992 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5993 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5994 	struct ice_pf *pf = vsi->back;
5995 
5996 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5997 	    test_bit(ICE_CFG_BUSY, pf->state))
5998 		return;
5999 
6000 	/* get stats as recorded by Tx/Rx rings */
6001 	ice_update_vsi_ring_stats(vsi);
6002 
6003 	/* get VSI stats as recorded by the hardware */
6004 	ice_update_eth_stats(vsi);
6005 
6006 	cur_ns->tx_errors = cur_es->tx_errors;
6007 	cur_ns->rx_dropped = cur_es->rx_discards;
6008 	cur_ns->tx_dropped = cur_es->tx_discards;
6009 	cur_ns->multicast = cur_es->rx_multicast;
6010 
6011 	/* update some more netdev stats if this is main VSI */
6012 	if (vsi->type == ICE_VSI_PF) {
6013 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6014 		cur_ns->rx_errors = pf->stats.crc_errors +
6015 				    pf->stats.illegal_bytes +
6016 				    pf->stats.rx_len_errors +
6017 				    pf->stats.rx_undersize +
6018 				    pf->hw_csum_rx_error +
6019 				    pf->stats.rx_jabber +
6020 				    pf->stats.rx_fragments +
6021 				    pf->stats.rx_oversize;
6022 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6023 		/* record drops from the port level */
6024 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6025 	}
6026 }
6027 
6028 /**
6029  * ice_update_pf_stats - Update PF port stats counters
6030  * @pf: PF whose stats needs to be updated
6031  */
6032 void ice_update_pf_stats(struct ice_pf *pf)
6033 {
6034 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6035 	struct ice_hw *hw = &pf->hw;
6036 	u16 fd_ctr_base;
6037 	u8 port;
6038 
6039 	port = hw->port_info->lport;
6040 	prev_ps = &pf->stats_prev;
6041 	cur_ps = &pf->stats;
6042 
6043 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6044 			  &prev_ps->eth.rx_bytes,
6045 			  &cur_ps->eth.rx_bytes);
6046 
6047 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6048 			  &prev_ps->eth.rx_unicast,
6049 			  &cur_ps->eth.rx_unicast);
6050 
6051 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6052 			  &prev_ps->eth.rx_multicast,
6053 			  &cur_ps->eth.rx_multicast);
6054 
6055 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6056 			  &prev_ps->eth.rx_broadcast,
6057 			  &cur_ps->eth.rx_broadcast);
6058 
6059 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6060 			  &prev_ps->eth.rx_discards,
6061 			  &cur_ps->eth.rx_discards);
6062 
6063 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6064 			  &prev_ps->eth.tx_bytes,
6065 			  &cur_ps->eth.tx_bytes);
6066 
6067 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6068 			  &prev_ps->eth.tx_unicast,
6069 			  &cur_ps->eth.tx_unicast);
6070 
6071 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6072 			  &prev_ps->eth.tx_multicast,
6073 			  &cur_ps->eth.tx_multicast);
6074 
6075 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6076 			  &prev_ps->eth.tx_broadcast,
6077 			  &cur_ps->eth.tx_broadcast);
6078 
6079 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6080 			  &prev_ps->tx_dropped_link_down,
6081 			  &cur_ps->tx_dropped_link_down);
6082 
6083 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6084 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6085 
6086 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6087 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6088 
6089 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6090 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6091 
6092 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6093 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6094 
6095 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6096 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6097 
6098 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6099 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6100 
6101 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6102 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6103 
6104 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6105 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6106 
6107 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6108 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6109 
6110 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6111 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6112 
6113 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6114 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6115 
6116 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6117 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6118 
6119 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6120 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6121 
6122 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6123 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6124 
6125 	fd_ctr_base = hw->fd_ctr_base;
6126 
6127 	ice_stat_update40(hw,
6128 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6129 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6130 			  &cur_ps->fd_sb_match);
6131 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6132 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6133 
6134 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6135 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6136 
6137 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6138 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6139 
6140 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6141 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6142 
6143 	ice_update_dcb_stats(pf);
6144 
6145 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6146 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6147 
6148 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6149 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6150 
6151 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6152 			  &prev_ps->mac_local_faults,
6153 			  &cur_ps->mac_local_faults);
6154 
6155 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6156 			  &prev_ps->mac_remote_faults,
6157 			  &cur_ps->mac_remote_faults);
6158 
6159 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6160 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6161 
6162 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6163 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6164 
6165 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6166 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6167 
6168 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6169 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6170 
6171 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6172 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6173 
6174 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6175 
6176 	pf->stat_prev_loaded = true;
6177 }
6178 
6179 /**
6180  * ice_get_stats64 - get statistics for network device structure
6181  * @netdev: network interface device structure
6182  * @stats: main device statistics structure
6183  */
6184 static
6185 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6186 {
6187 	struct ice_netdev_priv *np = netdev_priv(netdev);
6188 	struct rtnl_link_stats64 *vsi_stats;
6189 	struct ice_vsi *vsi = np->vsi;
6190 
6191 	vsi_stats = &vsi->net_stats;
6192 
6193 	if (!vsi->num_txq || !vsi->num_rxq)
6194 		return;
6195 
6196 	/* netdev packet/byte stats come from ring counter. These are obtained
6197 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6198 	 * But, only call the update routine and read the registers if VSI is
6199 	 * not down.
6200 	 */
6201 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6202 		ice_update_vsi_ring_stats(vsi);
6203 	stats->tx_packets = vsi_stats->tx_packets;
6204 	stats->tx_bytes = vsi_stats->tx_bytes;
6205 	stats->rx_packets = vsi_stats->rx_packets;
6206 	stats->rx_bytes = vsi_stats->rx_bytes;
6207 
6208 	/* The rest of the stats can be read from the hardware but instead we
6209 	 * just return values that the watchdog task has already obtained from
6210 	 * the hardware.
6211 	 */
6212 	stats->multicast = vsi_stats->multicast;
6213 	stats->tx_errors = vsi_stats->tx_errors;
6214 	stats->tx_dropped = vsi_stats->tx_dropped;
6215 	stats->rx_errors = vsi_stats->rx_errors;
6216 	stats->rx_dropped = vsi_stats->rx_dropped;
6217 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6218 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6219 }
6220 
6221 /**
6222  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6223  * @vsi: VSI having NAPI disabled
6224  */
6225 static void ice_napi_disable_all(struct ice_vsi *vsi)
6226 {
6227 	int q_idx;
6228 
6229 	if (!vsi->netdev)
6230 		return;
6231 
6232 	ice_for_each_q_vector(vsi, q_idx) {
6233 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6234 
6235 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6236 			napi_disable(&q_vector->napi);
6237 
6238 		cancel_work_sync(&q_vector->tx.dim.work);
6239 		cancel_work_sync(&q_vector->rx.dim.work);
6240 	}
6241 }
6242 
6243 /**
6244  * ice_down - Shutdown the connection
6245  * @vsi: The VSI being stopped
6246  */
6247 int ice_down(struct ice_vsi *vsi)
6248 {
6249 	int i, tx_err, rx_err, link_err = 0;
6250 
6251 	/* Caller of this function is expected to set the
6252 	 * vsi->state ICE_DOWN bit
6253 	 */
6254 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6255 		netif_carrier_off(vsi->netdev);
6256 		netif_tx_disable(vsi->netdev);
6257 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6258 		ice_eswitch_stop_all_tx_queues(vsi->back);
6259 	}
6260 
6261 	ice_vsi_dis_irq(vsi);
6262 
6263 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6264 	if (tx_err)
6265 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6266 			   vsi->vsi_num, tx_err);
6267 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6268 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6269 		if (tx_err)
6270 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6271 				   vsi->vsi_num, tx_err);
6272 	}
6273 
6274 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6275 	if (rx_err)
6276 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6277 			   vsi->vsi_num, rx_err);
6278 
6279 	ice_napi_disable_all(vsi);
6280 
6281 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6282 		link_err = ice_force_phys_link_state(vsi, false);
6283 		if (link_err)
6284 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6285 				   vsi->vsi_num, link_err);
6286 	}
6287 
6288 	ice_for_each_txq(vsi, i)
6289 		ice_clean_tx_ring(vsi->tx_rings[i]);
6290 
6291 	ice_for_each_rxq(vsi, i)
6292 		ice_clean_rx_ring(vsi->rx_rings[i]);
6293 
6294 	if (tx_err || rx_err || link_err) {
6295 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6296 			   vsi->vsi_num, vsi->vsw->sw_id);
6297 		return -EIO;
6298 	}
6299 
6300 	return 0;
6301 }
6302 
6303 /**
6304  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6305  * @vsi: VSI having resources allocated
6306  *
6307  * Return 0 on success, negative on failure
6308  */
6309 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6310 {
6311 	int i, err = 0;
6312 
6313 	if (!vsi->num_txq) {
6314 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6315 			vsi->vsi_num);
6316 		return -EINVAL;
6317 	}
6318 
6319 	ice_for_each_txq(vsi, i) {
6320 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6321 
6322 		if (!ring)
6323 			return -EINVAL;
6324 
6325 		if (vsi->netdev)
6326 			ring->netdev = vsi->netdev;
6327 		err = ice_setup_tx_ring(ring);
6328 		if (err)
6329 			break;
6330 	}
6331 
6332 	return err;
6333 }
6334 
6335 /**
6336  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6337  * @vsi: VSI having resources allocated
6338  *
6339  * Return 0 on success, negative on failure
6340  */
6341 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6342 {
6343 	int i, err = 0;
6344 
6345 	if (!vsi->num_rxq) {
6346 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6347 			vsi->vsi_num);
6348 		return -EINVAL;
6349 	}
6350 
6351 	ice_for_each_rxq(vsi, i) {
6352 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6353 
6354 		if (!ring)
6355 			return -EINVAL;
6356 
6357 		if (vsi->netdev)
6358 			ring->netdev = vsi->netdev;
6359 		err = ice_setup_rx_ring(ring);
6360 		if (err)
6361 			break;
6362 	}
6363 
6364 	return err;
6365 }
6366 
6367 /**
6368  * ice_vsi_open_ctrl - open control VSI for use
6369  * @vsi: the VSI to open
6370  *
6371  * Initialization of the Control VSI
6372  *
6373  * Returns 0 on success, negative value on error
6374  */
6375 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6376 {
6377 	char int_name[ICE_INT_NAME_STR_LEN];
6378 	struct ice_pf *pf = vsi->back;
6379 	struct device *dev;
6380 	int err;
6381 
6382 	dev = ice_pf_to_dev(pf);
6383 	/* allocate descriptors */
6384 	err = ice_vsi_setup_tx_rings(vsi);
6385 	if (err)
6386 		goto err_setup_tx;
6387 
6388 	err = ice_vsi_setup_rx_rings(vsi);
6389 	if (err)
6390 		goto err_setup_rx;
6391 
6392 	err = ice_vsi_cfg(vsi);
6393 	if (err)
6394 		goto err_setup_rx;
6395 
6396 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6397 		 dev_driver_string(dev), dev_name(dev));
6398 	err = ice_vsi_req_irq_msix(vsi, int_name);
6399 	if (err)
6400 		goto err_setup_rx;
6401 
6402 	ice_vsi_cfg_msix(vsi);
6403 
6404 	err = ice_vsi_start_all_rx_rings(vsi);
6405 	if (err)
6406 		goto err_up_complete;
6407 
6408 	clear_bit(ICE_VSI_DOWN, vsi->state);
6409 	ice_vsi_ena_irq(vsi);
6410 
6411 	return 0;
6412 
6413 err_up_complete:
6414 	ice_down(vsi);
6415 err_setup_rx:
6416 	ice_vsi_free_rx_rings(vsi);
6417 err_setup_tx:
6418 	ice_vsi_free_tx_rings(vsi);
6419 
6420 	return err;
6421 }
6422 
6423 /**
6424  * ice_vsi_open - Called when a network interface is made active
6425  * @vsi: the VSI to open
6426  *
6427  * Initialization of the VSI
6428  *
6429  * Returns 0 on success, negative value on error
6430  */
6431 int ice_vsi_open(struct ice_vsi *vsi)
6432 {
6433 	char int_name[ICE_INT_NAME_STR_LEN];
6434 	struct ice_pf *pf = vsi->back;
6435 	int err;
6436 
6437 	/* allocate descriptors */
6438 	err = ice_vsi_setup_tx_rings(vsi);
6439 	if (err)
6440 		goto err_setup_tx;
6441 
6442 	err = ice_vsi_setup_rx_rings(vsi);
6443 	if (err)
6444 		goto err_setup_rx;
6445 
6446 	err = ice_vsi_cfg(vsi);
6447 	if (err)
6448 		goto err_setup_rx;
6449 
6450 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6451 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6452 	err = ice_vsi_req_irq_msix(vsi, int_name);
6453 	if (err)
6454 		goto err_setup_rx;
6455 
6456 	if (vsi->type == ICE_VSI_PF) {
6457 		/* Notify the stack of the actual queue counts. */
6458 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6459 		if (err)
6460 			goto err_set_qs;
6461 
6462 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6463 		if (err)
6464 			goto err_set_qs;
6465 	}
6466 
6467 	err = ice_up_complete(vsi);
6468 	if (err)
6469 		goto err_up_complete;
6470 
6471 	return 0;
6472 
6473 err_up_complete:
6474 	ice_down(vsi);
6475 err_set_qs:
6476 	ice_vsi_free_irq(vsi);
6477 err_setup_rx:
6478 	ice_vsi_free_rx_rings(vsi);
6479 err_setup_tx:
6480 	ice_vsi_free_tx_rings(vsi);
6481 
6482 	return err;
6483 }
6484 
6485 /**
6486  * ice_vsi_release_all - Delete all VSIs
6487  * @pf: PF from which all VSIs are being removed
6488  */
6489 static void ice_vsi_release_all(struct ice_pf *pf)
6490 {
6491 	int err, i;
6492 
6493 	if (!pf->vsi)
6494 		return;
6495 
6496 	ice_for_each_vsi(pf, i) {
6497 		if (!pf->vsi[i])
6498 			continue;
6499 
6500 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6501 			continue;
6502 
6503 		err = ice_vsi_release(pf->vsi[i]);
6504 		if (err)
6505 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6506 				i, err, pf->vsi[i]->vsi_num);
6507 	}
6508 }
6509 
6510 /**
6511  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6512  * @pf: pointer to the PF instance
6513  * @type: VSI type to rebuild
6514  *
6515  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6516  */
6517 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6518 {
6519 	struct device *dev = ice_pf_to_dev(pf);
6520 	enum ice_status status;
6521 	int i, err;
6522 
6523 	ice_for_each_vsi(pf, i) {
6524 		struct ice_vsi *vsi = pf->vsi[i];
6525 
6526 		if (!vsi || vsi->type != type)
6527 			continue;
6528 
6529 		/* rebuild the VSI */
6530 		err = ice_vsi_rebuild(vsi, true);
6531 		if (err) {
6532 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6533 				err, vsi->idx, ice_vsi_type_str(type));
6534 			return err;
6535 		}
6536 
6537 		/* replay filters for the VSI */
6538 		status = ice_replay_vsi(&pf->hw, vsi->idx);
6539 		if (status) {
6540 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6541 				ice_stat_str(status), vsi->idx,
6542 				ice_vsi_type_str(type));
6543 			return -EIO;
6544 		}
6545 
6546 		/* Re-map HW VSI number, using VSI handle that has been
6547 		 * previously validated in ice_replay_vsi() call above
6548 		 */
6549 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6550 
6551 		/* enable the VSI */
6552 		err = ice_ena_vsi(vsi, false);
6553 		if (err) {
6554 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6555 				err, vsi->idx, ice_vsi_type_str(type));
6556 			return err;
6557 		}
6558 
6559 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6560 			 ice_vsi_type_str(type));
6561 	}
6562 
6563 	return 0;
6564 }
6565 
6566 /**
6567  * ice_update_pf_netdev_link - Update PF netdev link status
6568  * @pf: pointer to the PF instance
6569  */
6570 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6571 {
6572 	bool link_up;
6573 	int i;
6574 
6575 	ice_for_each_vsi(pf, i) {
6576 		struct ice_vsi *vsi = pf->vsi[i];
6577 
6578 		if (!vsi || vsi->type != ICE_VSI_PF)
6579 			return;
6580 
6581 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6582 		if (link_up) {
6583 			netif_carrier_on(pf->vsi[i]->netdev);
6584 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6585 		} else {
6586 			netif_carrier_off(pf->vsi[i]->netdev);
6587 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6588 		}
6589 	}
6590 }
6591 
6592 /**
6593  * ice_rebuild - rebuild after reset
6594  * @pf: PF to rebuild
6595  * @reset_type: type of reset
6596  *
6597  * Do not rebuild VF VSI in this flow because that is already handled via
6598  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6599  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6600  * to reset/rebuild all the VF VSI twice.
6601  */
6602 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6603 {
6604 	struct device *dev = ice_pf_to_dev(pf);
6605 	struct ice_hw *hw = &pf->hw;
6606 	enum ice_status ret;
6607 	int err;
6608 
6609 	if (test_bit(ICE_DOWN, pf->state))
6610 		goto clear_recovery;
6611 
6612 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6613 
6614 	ret = ice_init_all_ctrlq(hw);
6615 	if (ret) {
6616 		dev_err(dev, "control queues init failed %s\n",
6617 			ice_stat_str(ret));
6618 		goto err_init_ctrlq;
6619 	}
6620 
6621 	/* if DDP was previously loaded successfully */
6622 	if (!ice_is_safe_mode(pf)) {
6623 		/* reload the SW DB of filter tables */
6624 		if (reset_type == ICE_RESET_PFR)
6625 			ice_fill_blk_tbls(hw);
6626 		else
6627 			/* Reload DDP Package after CORER/GLOBR reset */
6628 			ice_load_pkg(NULL, pf);
6629 	}
6630 
6631 	ret = ice_clear_pf_cfg(hw);
6632 	if (ret) {
6633 		dev_err(dev, "clear PF configuration failed %s\n",
6634 			ice_stat_str(ret));
6635 		goto err_init_ctrlq;
6636 	}
6637 
6638 	if (pf->first_sw->dflt_vsi_ena)
6639 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6640 	/* clear the default VSI configuration if it exists */
6641 	pf->first_sw->dflt_vsi = NULL;
6642 	pf->first_sw->dflt_vsi_ena = false;
6643 
6644 	ice_clear_pxe_mode(hw);
6645 
6646 	ret = ice_init_nvm(hw);
6647 	if (ret) {
6648 		dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6649 		goto err_init_ctrlq;
6650 	}
6651 
6652 	ret = ice_get_caps(hw);
6653 	if (ret) {
6654 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6655 		goto err_init_ctrlq;
6656 	}
6657 
6658 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6659 	if (ret) {
6660 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6661 		goto err_init_ctrlq;
6662 	}
6663 
6664 	err = ice_sched_init_port(hw->port_info);
6665 	if (err)
6666 		goto err_sched_init_port;
6667 
6668 	/* start misc vector */
6669 	err = ice_req_irq_msix_misc(pf);
6670 	if (err) {
6671 		dev_err(dev, "misc vector setup failed: %d\n", err);
6672 		goto err_sched_init_port;
6673 	}
6674 
6675 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6676 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6677 		if (!rd32(hw, PFQF_FD_SIZE)) {
6678 			u16 unused, guar, b_effort;
6679 
6680 			guar = hw->func_caps.fd_fltr_guar;
6681 			b_effort = hw->func_caps.fd_fltr_best_effort;
6682 
6683 			/* force guaranteed filter pool for PF */
6684 			ice_alloc_fd_guar_item(hw, &unused, guar);
6685 			/* force shared filter pool for PF */
6686 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6687 		}
6688 	}
6689 
6690 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6691 		ice_dcb_rebuild(pf);
6692 
6693 	/* If the PF previously had enabled PTP, PTP init needs to happen before
6694 	 * the VSI rebuild. If not, this causes the PTP link status events to
6695 	 * fail.
6696 	 */
6697 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6698 		ice_ptp_init(pf);
6699 
6700 	/* rebuild PF VSI */
6701 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6702 	if (err) {
6703 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6704 		goto err_vsi_rebuild;
6705 	}
6706 
6707 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
6708 	if (err) {
6709 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
6710 		goto err_vsi_rebuild;
6711 	}
6712 
6713 	if (reset_type == ICE_RESET_PFR) {
6714 		err = ice_rebuild_channels(pf);
6715 		if (err) {
6716 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
6717 				err);
6718 			goto err_vsi_rebuild;
6719 		}
6720 	}
6721 
6722 	/* If Flow Director is active */
6723 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6724 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6725 		if (err) {
6726 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6727 			goto err_vsi_rebuild;
6728 		}
6729 
6730 		/* replay HW Flow Director recipes */
6731 		if (hw->fdir_prof)
6732 			ice_fdir_replay_flows(hw);
6733 
6734 		/* replay Flow Director filters */
6735 		ice_fdir_replay_fltrs(pf);
6736 
6737 		ice_rebuild_arfs(pf);
6738 	}
6739 
6740 	ice_update_pf_netdev_link(pf);
6741 
6742 	/* tell the firmware we are up */
6743 	ret = ice_send_version(pf);
6744 	if (ret) {
6745 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6746 			ice_stat_str(ret));
6747 		goto err_vsi_rebuild;
6748 	}
6749 
6750 	ice_replay_post(hw);
6751 
6752 	/* if we get here, reset flow is successful */
6753 	clear_bit(ICE_RESET_FAILED, pf->state);
6754 
6755 	ice_plug_aux_dev(pf);
6756 	return;
6757 
6758 err_vsi_rebuild:
6759 err_sched_init_port:
6760 	ice_sched_cleanup_all(hw);
6761 err_init_ctrlq:
6762 	ice_shutdown_all_ctrlq(hw);
6763 	set_bit(ICE_RESET_FAILED, pf->state);
6764 clear_recovery:
6765 	/* set this bit in PF state to control service task scheduling */
6766 	set_bit(ICE_NEEDS_RESTART, pf->state);
6767 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6768 }
6769 
6770 /**
6771  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6772  * @vsi: Pointer to VSI structure
6773  */
6774 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6775 {
6776 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6777 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6778 	else
6779 		return ICE_RXBUF_3072;
6780 }
6781 
6782 /**
6783  * ice_change_mtu - NDO callback to change the MTU
6784  * @netdev: network interface device structure
6785  * @new_mtu: new value for maximum frame size
6786  *
6787  * Returns 0 on success, negative on failure
6788  */
6789 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6790 {
6791 	struct ice_netdev_priv *np = netdev_priv(netdev);
6792 	struct ice_vsi *vsi = np->vsi;
6793 	struct ice_pf *pf = vsi->back;
6794 	struct iidc_event *event;
6795 	u8 count = 0;
6796 	int err = 0;
6797 
6798 	if (new_mtu == (int)netdev->mtu) {
6799 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6800 		return 0;
6801 	}
6802 
6803 	if (ice_is_xdp_ena_vsi(vsi)) {
6804 		int frame_size = ice_max_xdp_frame_size(vsi);
6805 
6806 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6807 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6808 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6809 			return -EINVAL;
6810 		}
6811 	}
6812 
6813 	/* if a reset is in progress, wait for some time for it to complete */
6814 	do {
6815 		if (ice_is_reset_in_progress(pf->state)) {
6816 			count++;
6817 			usleep_range(1000, 2000);
6818 		} else {
6819 			break;
6820 		}
6821 
6822 	} while (count < 100);
6823 
6824 	if (count == 100) {
6825 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6826 		return -EBUSY;
6827 	}
6828 
6829 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6830 	if (!event)
6831 		return -ENOMEM;
6832 
6833 	set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6834 	ice_send_event_to_aux(pf, event);
6835 	clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6836 
6837 	netdev->mtu = (unsigned int)new_mtu;
6838 
6839 	/* if VSI is up, bring it down and then back up */
6840 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6841 		err = ice_down(vsi);
6842 		if (err) {
6843 			netdev_err(netdev, "change MTU if_down err %d\n", err);
6844 			goto event_after;
6845 		}
6846 
6847 		err = ice_up(vsi);
6848 		if (err) {
6849 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6850 			goto event_after;
6851 		}
6852 	}
6853 
6854 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6855 event_after:
6856 	set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6857 	ice_send_event_to_aux(pf, event);
6858 	kfree(event);
6859 
6860 	return err;
6861 }
6862 
6863 /**
6864  * ice_eth_ioctl - Access the hwtstamp interface
6865  * @netdev: network interface device structure
6866  * @ifr: interface request data
6867  * @cmd: ioctl command
6868  */
6869 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6870 {
6871 	struct ice_netdev_priv *np = netdev_priv(netdev);
6872 	struct ice_pf *pf = np->vsi->back;
6873 
6874 	switch (cmd) {
6875 	case SIOCGHWTSTAMP:
6876 		return ice_ptp_get_ts_config(pf, ifr);
6877 	case SIOCSHWTSTAMP:
6878 		return ice_ptp_set_ts_config(pf, ifr);
6879 	default:
6880 		return -EOPNOTSUPP;
6881 	}
6882 }
6883 
6884 /**
6885  * ice_aq_str - convert AQ err code to a string
6886  * @aq_err: the AQ error code to convert
6887  */
6888 const char *ice_aq_str(enum ice_aq_err aq_err)
6889 {
6890 	switch (aq_err) {
6891 	case ICE_AQ_RC_OK:
6892 		return "OK";
6893 	case ICE_AQ_RC_EPERM:
6894 		return "ICE_AQ_RC_EPERM";
6895 	case ICE_AQ_RC_ENOENT:
6896 		return "ICE_AQ_RC_ENOENT";
6897 	case ICE_AQ_RC_ENOMEM:
6898 		return "ICE_AQ_RC_ENOMEM";
6899 	case ICE_AQ_RC_EBUSY:
6900 		return "ICE_AQ_RC_EBUSY";
6901 	case ICE_AQ_RC_EEXIST:
6902 		return "ICE_AQ_RC_EEXIST";
6903 	case ICE_AQ_RC_EINVAL:
6904 		return "ICE_AQ_RC_EINVAL";
6905 	case ICE_AQ_RC_ENOSPC:
6906 		return "ICE_AQ_RC_ENOSPC";
6907 	case ICE_AQ_RC_ENOSYS:
6908 		return "ICE_AQ_RC_ENOSYS";
6909 	case ICE_AQ_RC_EMODE:
6910 		return "ICE_AQ_RC_EMODE";
6911 	case ICE_AQ_RC_ENOSEC:
6912 		return "ICE_AQ_RC_ENOSEC";
6913 	case ICE_AQ_RC_EBADSIG:
6914 		return "ICE_AQ_RC_EBADSIG";
6915 	case ICE_AQ_RC_ESVN:
6916 		return "ICE_AQ_RC_ESVN";
6917 	case ICE_AQ_RC_EBADMAN:
6918 		return "ICE_AQ_RC_EBADMAN";
6919 	case ICE_AQ_RC_EBADBUF:
6920 		return "ICE_AQ_RC_EBADBUF";
6921 	}
6922 
6923 	return "ICE_AQ_RC_UNKNOWN";
6924 }
6925 
6926 /**
6927  * ice_stat_str - convert status err code to a string
6928  * @stat_err: the status error code to convert
6929  */
6930 const char *ice_stat_str(enum ice_status stat_err)
6931 {
6932 	switch (stat_err) {
6933 	case ICE_SUCCESS:
6934 		return "OK";
6935 	case ICE_ERR_PARAM:
6936 		return "ICE_ERR_PARAM";
6937 	case ICE_ERR_NOT_IMPL:
6938 		return "ICE_ERR_NOT_IMPL";
6939 	case ICE_ERR_NOT_READY:
6940 		return "ICE_ERR_NOT_READY";
6941 	case ICE_ERR_NOT_SUPPORTED:
6942 		return "ICE_ERR_NOT_SUPPORTED";
6943 	case ICE_ERR_BAD_PTR:
6944 		return "ICE_ERR_BAD_PTR";
6945 	case ICE_ERR_INVAL_SIZE:
6946 		return "ICE_ERR_INVAL_SIZE";
6947 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6948 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6949 	case ICE_ERR_RESET_FAILED:
6950 		return "ICE_ERR_RESET_FAILED";
6951 	case ICE_ERR_FW_API_VER:
6952 		return "ICE_ERR_FW_API_VER";
6953 	case ICE_ERR_NO_MEMORY:
6954 		return "ICE_ERR_NO_MEMORY";
6955 	case ICE_ERR_CFG:
6956 		return "ICE_ERR_CFG";
6957 	case ICE_ERR_OUT_OF_RANGE:
6958 		return "ICE_ERR_OUT_OF_RANGE";
6959 	case ICE_ERR_ALREADY_EXISTS:
6960 		return "ICE_ERR_ALREADY_EXISTS";
6961 	case ICE_ERR_NVM:
6962 		return "ICE_ERR_NVM";
6963 	case ICE_ERR_NVM_CHECKSUM:
6964 		return "ICE_ERR_NVM_CHECKSUM";
6965 	case ICE_ERR_BUF_TOO_SHORT:
6966 		return "ICE_ERR_BUF_TOO_SHORT";
6967 	case ICE_ERR_NVM_BLANK_MODE:
6968 		return "ICE_ERR_NVM_BLANK_MODE";
6969 	case ICE_ERR_IN_USE:
6970 		return "ICE_ERR_IN_USE";
6971 	case ICE_ERR_MAX_LIMIT:
6972 		return "ICE_ERR_MAX_LIMIT";
6973 	case ICE_ERR_RESET_ONGOING:
6974 		return "ICE_ERR_RESET_ONGOING";
6975 	case ICE_ERR_HW_TABLE:
6976 		return "ICE_ERR_HW_TABLE";
6977 	case ICE_ERR_DOES_NOT_EXIST:
6978 		return "ICE_ERR_DOES_NOT_EXIST";
6979 	case ICE_ERR_FW_DDP_MISMATCH:
6980 		return "ICE_ERR_FW_DDP_MISMATCH";
6981 	case ICE_ERR_AQ_ERROR:
6982 		return "ICE_ERR_AQ_ERROR";
6983 	case ICE_ERR_AQ_TIMEOUT:
6984 		return "ICE_ERR_AQ_TIMEOUT";
6985 	case ICE_ERR_AQ_FULL:
6986 		return "ICE_ERR_AQ_FULL";
6987 	case ICE_ERR_AQ_NO_WORK:
6988 		return "ICE_ERR_AQ_NO_WORK";
6989 	case ICE_ERR_AQ_EMPTY:
6990 		return "ICE_ERR_AQ_EMPTY";
6991 	case ICE_ERR_AQ_FW_CRITICAL:
6992 		return "ICE_ERR_AQ_FW_CRITICAL";
6993 	}
6994 
6995 	return "ICE_ERR_UNKNOWN";
6996 }
6997 
6998 /**
6999  * ice_set_rss_lut - Set RSS LUT
7000  * @vsi: Pointer to VSI structure
7001  * @lut: Lookup table
7002  * @lut_size: Lookup table size
7003  *
7004  * Returns 0 on success, negative on failure
7005  */
7006 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7007 {
7008 	struct ice_aq_get_set_rss_lut_params params = {};
7009 	struct ice_hw *hw = &vsi->back->hw;
7010 	enum ice_status status;
7011 
7012 	if (!lut)
7013 		return -EINVAL;
7014 
7015 	params.vsi_handle = vsi->idx;
7016 	params.lut_size = lut_size;
7017 	params.lut_type = vsi->rss_lut_type;
7018 	params.lut = lut;
7019 
7020 	status = ice_aq_set_rss_lut(hw, &params);
7021 	if (status) {
7022 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
7023 			ice_stat_str(status),
7024 			ice_aq_str(hw->adminq.sq_last_status));
7025 		return -EIO;
7026 	}
7027 
7028 	return 0;
7029 }
7030 
7031 /**
7032  * ice_set_rss_key - Set RSS key
7033  * @vsi: Pointer to the VSI structure
7034  * @seed: RSS hash seed
7035  *
7036  * Returns 0 on success, negative on failure
7037  */
7038 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7039 {
7040 	struct ice_hw *hw = &vsi->back->hw;
7041 	enum ice_status status;
7042 
7043 	if (!seed)
7044 		return -EINVAL;
7045 
7046 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7047 	if (status) {
7048 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
7049 			ice_stat_str(status),
7050 			ice_aq_str(hw->adminq.sq_last_status));
7051 		return -EIO;
7052 	}
7053 
7054 	return 0;
7055 }
7056 
7057 /**
7058  * ice_get_rss_lut - Get RSS LUT
7059  * @vsi: Pointer to VSI structure
7060  * @lut: Buffer to store the lookup table entries
7061  * @lut_size: Size of buffer to store the lookup table entries
7062  *
7063  * Returns 0 on success, negative on failure
7064  */
7065 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7066 {
7067 	struct ice_aq_get_set_rss_lut_params params = {};
7068 	struct ice_hw *hw = &vsi->back->hw;
7069 	enum ice_status status;
7070 
7071 	if (!lut)
7072 		return -EINVAL;
7073 
7074 	params.vsi_handle = vsi->idx;
7075 	params.lut_size = lut_size;
7076 	params.lut_type = vsi->rss_lut_type;
7077 	params.lut = lut;
7078 
7079 	status = ice_aq_get_rss_lut(hw, &params);
7080 	if (status) {
7081 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
7082 			ice_stat_str(status),
7083 			ice_aq_str(hw->adminq.sq_last_status));
7084 		return -EIO;
7085 	}
7086 
7087 	return 0;
7088 }
7089 
7090 /**
7091  * ice_get_rss_key - Get RSS key
7092  * @vsi: Pointer to VSI structure
7093  * @seed: Buffer to store the key in
7094  *
7095  * Returns 0 on success, negative on failure
7096  */
7097 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7098 {
7099 	struct ice_hw *hw = &vsi->back->hw;
7100 	enum ice_status status;
7101 
7102 	if (!seed)
7103 		return -EINVAL;
7104 
7105 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7106 	if (status) {
7107 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
7108 			ice_stat_str(status),
7109 			ice_aq_str(hw->adminq.sq_last_status));
7110 		return -EIO;
7111 	}
7112 
7113 	return 0;
7114 }
7115 
7116 /**
7117  * ice_bridge_getlink - Get the hardware bridge mode
7118  * @skb: skb buff
7119  * @pid: process ID
7120  * @seq: RTNL message seq
7121  * @dev: the netdev being configured
7122  * @filter_mask: filter mask passed in
7123  * @nlflags: netlink flags passed in
7124  *
7125  * Return the bridge mode (VEB/VEPA)
7126  */
7127 static int
7128 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7129 		   struct net_device *dev, u32 filter_mask, int nlflags)
7130 {
7131 	struct ice_netdev_priv *np = netdev_priv(dev);
7132 	struct ice_vsi *vsi = np->vsi;
7133 	struct ice_pf *pf = vsi->back;
7134 	u16 bmode;
7135 
7136 	bmode = pf->first_sw->bridge_mode;
7137 
7138 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7139 				       filter_mask, NULL);
7140 }
7141 
7142 /**
7143  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7144  * @vsi: Pointer to VSI structure
7145  * @bmode: Hardware bridge mode (VEB/VEPA)
7146  *
7147  * Returns 0 on success, negative on failure
7148  */
7149 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7150 {
7151 	struct ice_aqc_vsi_props *vsi_props;
7152 	struct ice_hw *hw = &vsi->back->hw;
7153 	struct ice_vsi_ctx *ctxt;
7154 	enum ice_status status;
7155 	int ret = 0;
7156 
7157 	vsi_props = &vsi->info;
7158 
7159 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7160 	if (!ctxt)
7161 		return -ENOMEM;
7162 
7163 	ctxt->info = vsi->info;
7164 
7165 	if (bmode == BRIDGE_MODE_VEB)
7166 		/* change from VEPA to VEB mode */
7167 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7168 	else
7169 		/* change from VEB to VEPA mode */
7170 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7171 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7172 
7173 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7174 	if (status) {
7175 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
7176 			bmode, ice_stat_str(status),
7177 			ice_aq_str(hw->adminq.sq_last_status));
7178 		ret = -EIO;
7179 		goto out;
7180 	}
7181 	/* Update sw flags for book keeping */
7182 	vsi_props->sw_flags = ctxt->info.sw_flags;
7183 
7184 out:
7185 	kfree(ctxt);
7186 	return ret;
7187 }
7188 
7189 /**
7190  * ice_bridge_setlink - Set the hardware bridge mode
7191  * @dev: the netdev being configured
7192  * @nlh: RTNL message
7193  * @flags: bridge setlink flags
7194  * @extack: netlink extended ack
7195  *
7196  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7197  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7198  * not already set for all VSIs connected to this switch. And also update the
7199  * unicast switch filter rules for the corresponding switch of the netdev.
7200  */
7201 static int
7202 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7203 		   u16 __always_unused flags,
7204 		   struct netlink_ext_ack __always_unused *extack)
7205 {
7206 	struct ice_netdev_priv *np = netdev_priv(dev);
7207 	struct ice_pf *pf = np->vsi->back;
7208 	struct nlattr *attr, *br_spec;
7209 	struct ice_hw *hw = &pf->hw;
7210 	enum ice_status status;
7211 	struct ice_sw *pf_sw;
7212 	int rem, v, err = 0;
7213 
7214 	pf_sw = pf->first_sw;
7215 	/* find the attribute in the netlink message */
7216 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7217 
7218 	nla_for_each_nested(attr, br_spec, rem) {
7219 		__u16 mode;
7220 
7221 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7222 			continue;
7223 		mode = nla_get_u16(attr);
7224 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7225 			return -EINVAL;
7226 		/* Continue  if bridge mode is not being flipped */
7227 		if (mode == pf_sw->bridge_mode)
7228 			continue;
7229 		/* Iterates through the PF VSI list and update the loopback
7230 		 * mode of the VSI
7231 		 */
7232 		ice_for_each_vsi(pf, v) {
7233 			if (!pf->vsi[v])
7234 				continue;
7235 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7236 			if (err)
7237 				return err;
7238 		}
7239 
7240 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7241 		/* Update the unicast switch filter rules for the corresponding
7242 		 * switch of the netdev
7243 		 */
7244 		status = ice_update_sw_rule_bridge_mode(hw);
7245 		if (status) {
7246 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
7247 				   mode, ice_stat_str(status),
7248 				   ice_aq_str(hw->adminq.sq_last_status));
7249 			/* revert hw->evb_veb */
7250 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7251 			return -EIO;
7252 		}
7253 
7254 		pf_sw->bridge_mode = mode;
7255 	}
7256 
7257 	return 0;
7258 }
7259 
7260 /**
7261  * ice_tx_timeout - Respond to a Tx Hang
7262  * @netdev: network interface device structure
7263  * @txqueue: Tx queue
7264  */
7265 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7266 {
7267 	struct ice_netdev_priv *np = netdev_priv(netdev);
7268 	struct ice_tx_ring *tx_ring = NULL;
7269 	struct ice_vsi *vsi = np->vsi;
7270 	struct ice_pf *pf = vsi->back;
7271 	u32 i;
7272 
7273 	pf->tx_timeout_count++;
7274 
7275 	/* Check if PFC is enabled for the TC to which the queue belongs
7276 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7277 	 * need to reset and rebuild
7278 	 */
7279 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7280 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7281 			 txqueue);
7282 		return;
7283 	}
7284 
7285 	/* now that we have an index, find the tx_ring struct */
7286 	ice_for_each_txq(vsi, i)
7287 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7288 			if (txqueue == vsi->tx_rings[i]->q_index) {
7289 				tx_ring = vsi->tx_rings[i];
7290 				break;
7291 			}
7292 
7293 	/* Reset recovery level if enough time has elapsed after last timeout.
7294 	 * Also ensure no new reset action happens before next timeout period.
7295 	 */
7296 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7297 		pf->tx_timeout_recovery_level = 1;
7298 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7299 				       netdev->watchdog_timeo)))
7300 		return;
7301 
7302 	if (tx_ring) {
7303 		struct ice_hw *hw = &pf->hw;
7304 		u32 head, val = 0;
7305 
7306 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7307 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7308 		/* Read interrupt register */
7309 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7310 
7311 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7312 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7313 			    head, tx_ring->next_to_use, val);
7314 	}
7315 
7316 	pf->tx_timeout_last_recovery = jiffies;
7317 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7318 		    pf->tx_timeout_recovery_level, txqueue);
7319 
7320 	switch (pf->tx_timeout_recovery_level) {
7321 	case 1:
7322 		set_bit(ICE_PFR_REQ, pf->state);
7323 		break;
7324 	case 2:
7325 		set_bit(ICE_CORER_REQ, pf->state);
7326 		break;
7327 	case 3:
7328 		set_bit(ICE_GLOBR_REQ, pf->state);
7329 		break;
7330 	default:
7331 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7332 		set_bit(ICE_DOWN, pf->state);
7333 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7334 		set_bit(ICE_SERVICE_DIS, pf->state);
7335 		break;
7336 	}
7337 
7338 	ice_service_task_schedule(pf);
7339 	pf->tx_timeout_recovery_level++;
7340 }
7341 
7342 /**
7343  * ice_setup_tc_cls_flower - flower classifier offloads
7344  * @np: net device to configure
7345  * @filter_dev: device on which filter is added
7346  * @cls_flower: offload data
7347  */
7348 static int
7349 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7350 			struct net_device *filter_dev,
7351 			struct flow_cls_offload *cls_flower)
7352 {
7353 	struct ice_vsi *vsi = np->vsi;
7354 
7355 	if (cls_flower->common.chain_index)
7356 		return -EOPNOTSUPP;
7357 
7358 	switch (cls_flower->command) {
7359 	case FLOW_CLS_REPLACE:
7360 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7361 	case FLOW_CLS_DESTROY:
7362 		return ice_del_cls_flower(vsi, cls_flower);
7363 	default:
7364 		return -EINVAL;
7365 	}
7366 }
7367 
7368 /**
7369  * ice_setup_tc_block_cb - callback handler registered for TC block
7370  * @type: TC SETUP type
7371  * @type_data: TC flower offload data that contains user input
7372  * @cb_priv: netdev private data
7373  */
7374 static int
7375 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7376 {
7377 	struct ice_netdev_priv *np = cb_priv;
7378 
7379 	switch (type) {
7380 	case TC_SETUP_CLSFLOWER:
7381 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7382 					       type_data);
7383 	default:
7384 		return -EOPNOTSUPP;
7385 	}
7386 }
7387 
7388 /**
7389  * ice_validate_mqprio_qopt - Validate TCF input parameters
7390  * @vsi: Pointer to VSI
7391  * @mqprio_qopt: input parameters for mqprio queue configuration
7392  *
7393  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7394  * needed), and make sure user doesn't specify qcount and BW rate limit
7395  * for TCs, which are more than "num_tc"
7396  */
7397 static int
7398 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7399 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7400 {
7401 	u64 sum_max_rate = 0, sum_min_rate = 0;
7402 	int non_power_of_2_qcount = 0;
7403 	struct ice_pf *pf = vsi->back;
7404 	int max_rss_q_cnt = 0;
7405 	struct device *dev;
7406 	int i, speed;
7407 	u8 num_tc;
7408 
7409 	if (vsi->type != ICE_VSI_PF)
7410 		return -EINVAL;
7411 
7412 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7413 	    mqprio_qopt->qopt.num_tc < 1 ||
7414 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7415 		return -EINVAL;
7416 
7417 	dev = ice_pf_to_dev(pf);
7418 	vsi->ch_rss_size = 0;
7419 	num_tc = mqprio_qopt->qopt.num_tc;
7420 
7421 	for (i = 0; num_tc; i++) {
7422 		int qcount = mqprio_qopt->qopt.count[i];
7423 		u64 max_rate, min_rate, rem;
7424 
7425 		if (!qcount)
7426 			return -EINVAL;
7427 
7428 		if (is_power_of_2(qcount)) {
7429 			if (non_power_of_2_qcount &&
7430 			    qcount > non_power_of_2_qcount) {
7431 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7432 					qcount, non_power_of_2_qcount);
7433 				return -EINVAL;
7434 			}
7435 			if (qcount > max_rss_q_cnt)
7436 				max_rss_q_cnt = qcount;
7437 		} else {
7438 			if (non_power_of_2_qcount &&
7439 			    qcount != non_power_of_2_qcount) {
7440 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7441 					qcount, non_power_of_2_qcount);
7442 				return -EINVAL;
7443 			}
7444 			if (qcount < max_rss_q_cnt) {
7445 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7446 					qcount, max_rss_q_cnt);
7447 				return -EINVAL;
7448 			}
7449 			max_rss_q_cnt = qcount;
7450 			non_power_of_2_qcount = qcount;
7451 		}
7452 
7453 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7454 		 * converts the bandwidth rate limit into Bytes/s when
7455 		 * passing it down to the driver. So convert input bandwidth
7456 		 * from Bytes/s to Kbps
7457 		 */
7458 		max_rate = mqprio_qopt->max_rate[i];
7459 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7460 		sum_max_rate += max_rate;
7461 
7462 		/* min_rate is minimum guaranteed rate and it can't be zero */
7463 		min_rate = mqprio_qopt->min_rate[i];
7464 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7465 		sum_min_rate += min_rate;
7466 
7467 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7468 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7469 				min_rate, ICE_MIN_BW_LIMIT);
7470 			return -EINVAL;
7471 		}
7472 
7473 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7474 		if (rem) {
7475 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7476 				i, ICE_MIN_BW_LIMIT);
7477 			return -EINVAL;
7478 		}
7479 
7480 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7481 		if (rem) {
7482 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7483 				i, ICE_MIN_BW_LIMIT);
7484 			return -EINVAL;
7485 		}
7486 
7487 		/* min_rate can't be more than max_rate, except when max_rate
7488 		 * is zero (implies max_rate sought is max line rate). In such
7489 		 * a case min_rate can be more than max.
7490 		 */
7491 		if (max_rate && min_rate > max_rate) {
7492 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7493 				min_rate, max_rate);
7494 			return -EINVAL;
7495 		}
7496 
7497 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7498 			break;
7499 		if (mqprio_qopt->qopt.offset[i + 1] !=
7500 		    (mqprio_qopt->qopt.offset[i] + qcount))
7501 			return -EINVAL;
7502 	}
7503 	if (vsi->num_rxq <
7504 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7505 		return -EINVAL;
7506 	if (vsi->num_txq <
7507 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7508 		return -EINVAL;
7509 
7510 	speed = ice_get_link_speed_kbps(vsi);
7511 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7512 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7513 			sum_max_rate, speed);
7514 		return -EINVAL;
7515 	}
7516 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7517 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7518 			sum_min_rate, speed);
7519 		return -EINVAL;
7520 	}
7521 
7522 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7523 	vsi->ch_rss_size = max_rss_q_cnt;
7524 
7525 	return 0;
7526 }
7527 
7528 /**
7529  * ice_add_channel - add a channel by adding VSI
7530  * @pf: ptr to PF device
7531  * @sw_id: underlying HW switching element ID
7532  * @ch: ptr to channel structure
7533  *
7534  * Add a channel (VSI) using add_vsi and queue_map
7535  */
7536 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7537 {
7538 	struct device *dev = ice_pf_to_dev(pf);
7539 	struct ice_vsi *vsi;
7540 
7541 	if (ch->type != ICE_VSI_CHNL) {
7542 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7543 		return -EINVAL;
7544 	}
7545 
7546 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7547 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7548 		dev_err(dev, "create chnl VSI failure\n");
7549 		return -EINVAL;
7550 	}
7551 
7552 	ch->sw_id = sw_id;
7553 	ch->vsi_num = vsi->vsi_num;
7554 	ch->info.mapping_flags = vsi->info.mapping_flags;
7555 	ch->ch_vsi = vsi;
7556 	/* set the back pointer of channel for newly created VSI */
7557 	vsi->ch = ch;
7558 
7559 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7560 	       sizeof(vsi->info.q_mapping));
7561 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7562 	       sizeof(vsi->info.tc_mapping));
7563 
7564 	return 0;
7565 }
7566 
7567 /**
7568  * ice_chnl_cfg_res
7569  * @vsi: the VSI being setup
7570  * @ch: ptr to channel structure
7571  *
7572  * Configure channel specific resources such as rings, vector.
7573  */
7574 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7575 {
7576 	int i;
7577 
7578 	for (i = 0; i < ch->num_txq; i++) {
7579 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7580 		struct ice_ring_container *rc;
7581 		struct ice_tx_ring *tx_ring;
7582 		struct ice_rx_ring *rx_ring;
7583 
7584 		tx_ring = vsi->tx_rings[ch->base_q + i];
7585 		rx_ring = vsi->rx_rings[ch->base_q + i];
7586 		if (!tx_ring || !rx_ring)
7587 			continue;
7588 
7589 		/* setup ring being channel enabled */
7590 		tx_ring->ch = ch;
7591 		rx_ring->ch = ch;
7592 
7593 		/* following code block sets up vector specific attributes */
7594 		tx_q_vector = tx_ring->q_vector;
7595 		rx_q_vector = rx_ring->q_vector;
7596 		if (!tx_q_vector && !rx_q_vector)
7597 			continue;
7598 
7599 		if (tx_q_vector) {
7600 			tx_q_vector->ch = ch;
7601 			/* setup Tx and Rx ITR setting if DIM is off */
7602 			rc = &tx_q_vector->tx;
7603 			if (!ITR_IS_DYNAMIC(rc))
7604 				ice_write_itr(rc, rc->itr_setting);
7605 		}
7606 		if (rx_q_vector) {
7607 			rx_q_vector->ch = ch;
7608 			/* setup Tx and Rx ITR setting if DIM is off */
7609 			rc = &rx_q_vector->rx;
7610 			if (!ITR_IS_DYNAMIC(rc))
7611 				ice_write_itr(rc, rc->itr_setting);
7612 		}
7613 	}
7614 
7615 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7616 	 * GLINT_ITR register would have written to perform in-context
7617 	 * update, hence perform flush
7618 	 */
7619 	if (ch->num_txq || ch->num_rxq)
7620 		ice_flush(&vsi->back->hw);
7621 }
7622 
7623 /**
7624  * ice_cfg_chnl_all_res - configure channel resources
7625  * @vsi: pte to main_vsi
7626  * @ch: ptr to channel structure
7627  *
7628  * This function configures channel specific resources such as flow-director
7629  * counter index, and other resources such as queues, vectors, ITR settings
7630  */
7631 static void
7632 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7633 {
7634 	/* configure channel (aka ADQ) resources such as queues, vectors,
7635 	 * ITR settings for channel specific vectors and anything else
7636 	 */
7637 	ice_chnl_cfg_res(vsi, ch);
7638 }
7639 
7640 /**
7641  * ice_setup_hw_channel - setup new channel
7642  * @pf: ptr to PF device
7643  * @vsi: the VSI being setup
7644  * @ch: ptr to channel structure
7645  * @sw_id: underlying HW switching element ID
7646  * @type: type of channel to be created (VMDq2/VF)
7647  *
7648  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7649  * and configures Tx rings accordingly
7650  */
7651 static int
7652 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7653 		     struct ice_channel *ch, u16 sw_id, u8 type)
7654 {
7655 	struct device *dev = ice_pf_to_dev(pf);
7656 	int ret;
7657 
7658 	ch->base_q = vsi->next_base_q;
7659 	ch->type = type;
7660 
7661 	ret = ice_add_channel(pf, sw_id, ch);
7662 	if (ret) {
7663 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
7664 		return ret;
7665 	}
7666 
7667 	/* configure/setup ADQ specific resources */
7668 	ice_cfg_chnl_all_res(vsi, ch);
7669 
7670 	/* make sure to update the next_base_q so that subsequent channel's
7671 	 * (aka ADQ) VSI queue map is correct
7672 	 */
7673 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
7674 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
7675 		ch->num_rxq);
7676 
7677 	return 0;
7678 }
7679 
7680 /**
7681  * ice_setup_channel - setup new channel using uplink element
7682  * @pf: ptr to PF device
7683  * @vsi: the VSI being setup
7684  * @ch: ptr to channel structure
7685  *
7686  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7687  * and uplink switching element
7688  */
7689 static bool
7690 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7691 		  struct ice_channel *ch)
7692 {
7693 	struct device *dev = ice_pf_to_dev(pf);
7694 	u16 sw_id;
7695 	int ret;
7696 
7697 	if (vsi->type != ICE_VSI_PF) {
7698 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
7699 		return false;
7700 	}
7701 
7702 	sw_id = pf->first_sw->sw_id;
7703 
7704 	/* create channel (VSI) */
7705 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
7706 	if (ret) {
7707 		dev_err(dev, "failed to setup hw_channel\n");
7708 		return false;
7709 	}
7710 	dev_dbg(dev, "successfully created channel()\n");
7711 
7712 	return ch->ch_vsi ? true : false;
7713 }
7714 
7715 /**
7716  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
7717  * @vsi: VSI to be configured
7718  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
7719  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
7720  */
7721 static int
7722 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
7723 {
7724 	int err;
7725 
7726 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
7727 	if (err)
7728 		return err;
7729 
7730 	return ice_set_max_bw_limit(vsi, max_tx_rate);
7731 }
7732 
7733 /**
7734  * ice_create_q_channel - function to create channel
7735  * @vsi: VSI to be configured
7736  * @ch: ptr to channel (it contains channel specific params)
7737  *
7738  * This function creates channel (VSI) using num_queues specified by user,
7739  * reconfigs RSS if needed.
7740  */
7741 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
7742 {
7743 	struct ice_pf *pf = vsi->back;
7744 	struct device *dev;
7745 
7746 	if (!ch)
7747 		return -EINVAL;
7748 
7749 	dev = ice_pf_to_dev(pf);
7750 	if (!ch->num_txq || !ch->num_rxq) {
7751 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
7752 		return -EINVAL;
7753 	}
7754 
7755 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
7756 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
7757 			vsi->cnt_q_avail, ch->num_txq);
7758 		return -EINVAL;
7759 	}
7760 
7761 	if (!ice_setup_channel(pf, vsi, ch)) {
7762 		dev_info(dev, "Failed to setup channel\n");
7763 		return -EINVAL;
7764 	}
7765 	/* configure BW rate limit */
7766 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
7767 		int ret;
7768 
7769 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
7770 				       ch->min_tx_rate);
7771 		if (ret)
7772 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
7773 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7774 		else
7775 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
7776 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7777 	}
7778 
7779 	vsi->cnt_q_avail -= ch->num_txq;
7780 
7781 	return 0;
7782 }
7783 
7784 /**
7785  * ice_rem_all_chnl_fltrs - removes all channel filters
7786  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
7787  *
7788  * Remove all advanced switch filters only if they are channel specific
7789  * tc-flower based filter
7790  */
7791 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
7792 {
7793 	struct ice_tc_flower_fltr *fltr;
7794 	struct hlist_node *node;
7795 
7796 	/* to remove all channel filters, iterate an ordered list of filters */
7797 	hlist_for_each_entry_safe(fltr, node,
7798 				  &pf->tc_flower_fltr_list,
7799 				  tc_flower_node) {
7800 		struct ice_rule_query_data rule;
7801 		int status;
7802 
7803 		/* for now process only channel specific filters */
7804 		if (!ice_is_chnl_fltr(fltr))
7805 			continue;
7806 
7807 		rule.rid = fltr->rid;
7808 		rule.rule_id = fltr->rule_id;
7809 		rule.vsi_handle = fltr->dest_id;
7810 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
7811 		if (status) {
7812 			if (status == -ENOENT)
7813 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
7814 					rule.rule_id);
7815 			else
7816 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
7817 					status);
7818 		} else if (fltr->dest_vsi) {
7819 			/* update advanced switch filter count */
7820 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
7821 				u32 flags = fltr->flags;
7822 
7823 				fltr->dest_vsi->num_chnl_fltr--;
7824 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
7825 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
7826 					pf->num_dmac_chnl_fltrs--;
7827 			}
7828 		}
7829 
7830 		hlist_del(&fltr->tc_flower_node);
7831 		kfree(fltr);
7832 	}
7833 }
7834 
7835 /**
7836  * ice_remove_q_channels - Remove queue channels for the TCs
7837  * @vsi: VSI to be configured
7838  * @rem_fltr: delete advanced switch filter or not
7839  *
7840  * Remove queue channels for the TCs
7841  */
7842 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
7843 {
7844 	struct ice_channel *ch, *ch_tmp;
7845 	struct ice_pf *pf = vsi->back;
7846 	int i;
7847 
7848 	/* remove all tc-flower based filter if they are channel filters only */
7849 	if (rem_fltr)
7850 		ice_rem_all_chnl_fltrs(pf);
7851 
7852 	/* perform cleanup for channels if they exist */
7853 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
7854 		struct ice_vsi *ch_vsi;
7855 
7856 		list_del(&ch->list);
7857 		ch_vsi = ch->ch_vsi;
7858 		if (!ch_vsi) {
7859 			kfree(ch);
7860 			continue;
7861 		}
7862 
7863 		/* Reset queue contexts */
7864 		for (i = 0; i < ch->num_rxq; i++) {
7865 			struct ice_tx_ring *tx_ring;
7866 			struct ice_rx_ring *rx_ring;
7867 
7868 			tx_ring = vsi->tx_rings[ch->base_q + i];
7869 			rx_ring = vsi->rx_rings[ch->base_q + i];
7870 			if (tx_ring) {
7871 				tx_ring->ch = NULL;
7872 				if (tx_ring->q_vector)
7873 					tx_ring->q_vector->ch = NULL;
7874 			}
7875 			if (rx_ring) {
7876 				rx_ring->ch = NULL;
7877 				if (rx_ring->q_vector)
7878 					rx_ring->q_vector->ch = NULL;
7879 			}
7880 		}
7881 
7882 		/* clear the VSI from scheduler tree */
7883 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
7884 
7885 		/* Delete VSI from FW */
7886 		ice_vsi_delete(ch->ch_vsi);
7887 
7888 		/* Delete VSI from PF and HW VSI arrays */
7889 		ice_vsi_clear(ch->ch_vsi);
7890 
7891 		/* free the channel */
7892 		kfree(ch);
7893 	}
7894 
7895 	/* clear the channel VSI map which is stored in main VSI */
7896 	ice_for_each_chnl_tc(i)
7897 		vsi->tc_map_vsi[i] = NULL;
7898 
7899 	/* reset main VSI's all TC information */
7900 	vsi->all_enatc = 0;
7901 	vsi->all_numtc = 0;
7902 }
7903 
7904 /**
7905  * ice_rebuild_channels - rebuild channel
7906  * @pf: ptr to PF
7907  *
7908  * Recreate channel VSIs and replay filters
7909  */
7910 static int ice_rebuild_channels(struct ice_pf *pf)
7911 {
7912 	struct device *dev = ice_pf_to_dev(pf);
7913 	struct ice_vsi *main_vsi;
7914 	bool rem_adv_fltr = true;
7915 	struct ice_channel *ch;
7916 	struct ice_vsi *vsi;
7917 	int tc_idx = 1;
7918 	int i, err;
7919 
7920 	main_vsi = ice_get_main_vsi(pf);
7921 	if (!main_vsi)
7922 		return 0;
7923 
7924 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
7925 	    main_vsi->old_numtc == 1)
7926 		return 0; /* nothing to be done */
7927 
7928 	/* reconfigure main VSI based on old value of TC and cached values
7929 	 * for MQPRIO opts
7930 	 */
7931 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
7932 	if (err) {
7933 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
7934 			main_vsi->old_ena_tc, main_vsi->vsi_num);
7935 		return err;
7936 	}
7937 
7938 	/* rebuild ADQ VSIs */
7939 	ice_for_each_vsi(pf, i) {
7940 		enum ice_vsi_type type;
7941 
7942 		vsi = pf->vsi[i];
7943 		if (!vsi || vsi->type != ICE_VSI_CHNL)
7944 			continue;
7945 
7946 		type = vsi->type;
7947 
7948 		/* rebuild ADQ VSI */
7949 		err = ice_vsi_rebuild(vsi, true);
7950 		if (err) {
7951 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
7952 				ice_vsi_type_str(type), vsi->idx, err);
7953 			goto cleanup;
7954 		}
7955 
7956 		/* Re-map HW VSI number, using VSI handle that has been
7957 		 * previously validated in ice_replay_vsi() call above
7958 		 */
7959 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7960 
7961 		/* replay filters for the VSI */
7962 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7963 		if (err) {
7964 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
7965 				ice_vsi_type_str(type), err, vsi->idx);
7966 			rem_adv_fltr = false;
7967 			goto cleanup;
7968 		}
7969 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
7970 			 ice_vsi_type_str(type), vsi->idx);
7971 
7972 		/* store ADQ VSI at correct TC index in main VSI's
7973 		 * map of TC to VSI
7974 		 */
7975 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
7976 	}
7977 
7978 	/* ADQ VSI(s) has been rebuilt successfully, so setup
7979 	 * channel for main VSI's Tx and Rx rings
7980 	 */
7981 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
7982 		struct ice_vsi *ch_vsi;
7983 
7984 		ch_vsi = ch->ch_vsi;
7985 		if (!ch_vsi)
7986 			continue;
7987 
7988 		/* reconfig channel resources */
7989 		ice_cfg_chnl_all_res(main_vsi, ch);
7990 
7991 		/* replay BW rate limit if it is non-zero */
7992 		if (!ch->max_tx_rate && !ch->min_tx_rate)
7993 			continue;
7994 
7995 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
7996 				       ch->min_tx_rate);
7997 		if (err)
7998 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
7999 				err, ch->max_tx_rate, ch->min_tx_rate,
8000 				ch_vsi->vsi_num);
8001 		else
8002 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8003 				ch->max_tx_rate, ch->min_tx_rate,
8004 				ch_vsi->vsi_num);
8005 	}
8006 
8007 	/* reconfig RSS for main VSI */
8008 	if (main_vsi->ch_rss_size)
8009 		ice_vsi_cfg_rss_lut_key(main_vsi);
8010 
8011 	return 0;
8012 
8013 cleanup:
8014 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8015 	return err;
8016 }
8017 
8018 /**
8019  * ice_create_q_channels - Add queue channel for the given TCs
8020  * @vsi: VSI to be configured
8021  *
8022  * Configures queue channel mapping to the given TCs
8023  */
8024 static int ice_create_q_channels(struct ice_vsi *vsi)
8025 {
8026 	struct ice_pf *pf = vsi->back;
8027 	struct ice_channel *ch;
8028 	int ret = 0, i;
8029 
8030 	ice_for_each_chnl_tc(i) {
8031 		if (!(vsi->all_enatc & BIT(i)))
8032 			continue;
8033 
8034 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8035 		if (!ch) {
8036 			ret = -ENOMEM;
8037 			goto err_free;
8038 		}
8039 		INIT_LIST_HEAD(&ch->list);
8040 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8041 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8042 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8043 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8044 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8045 
8046 		/* convert to Kbits/s */
8047 		if (ch->max_tx_rate)
8048 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8049 						  ICE_BW_KBPS_DIVISOR);
8050 		if (ch->min_tx_rate)
8051 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8052 						  ICE_BW_KBPS_DIVISOR);
8053 
8054 		ret = ice_create_q_channel(vsi, ch);
8055 		if (ret) {
8056 			dev_err(ice_pf_to_dev(pf),
8057 				"failed creating channel TC:%d\n", i);
8058 			kfree(ch);
8059 			goto err_free;
8060 		}
8061 		list_add_tail(&ch->list, &vsi->ch_list);
8062 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8063 		dev_dbg(ice_pf_to_dev(pf),
8064 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8065 	}
8066 	return 0;
8067 
8068 err_free:
8069 	ice_remove_q_channels(vsi, false);
8070 
8071 	return ret;
8072 }
8073 
8074 /**
8075  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8076  * @netdev: net device to configure
8077  * @type_data: TC offload data
8078  */
8079 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8080 {
8081 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8082 	struct ice_netdev_priv *np = netdev_priv(netdev);
8083 	struct ice_vsi *vsi = np->vsi;
8084 	struct ice_pf *pf = vsi->back;
8085 	u16 mode, ena_tc_qdisc = 0;
8086 	int cur_txq, cur_rxq;
8087 	u8 hw = 0, num_tcf;
8088 	struct device *dev;
8089 	int ret, i;
8090 
8091 	dev = ice_pf_to_dev(pf);
8092 	num_tcf = mqprio_qopt->qopt.num_tc;
8093 	hw = mqprio_qopt->qopt.hw;
8094 	mode = mqprio_qopt->mode;
8095 	if (!hw) {
8096 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8097 		vsi->ch_rss_size = 0;
8098 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8099 		goto config_tcf;
8100 	}
8101 
8102 	/* Generate queue region map for number of TCF requested */
8103 	for (i = 0; i < num_tcf; i++)
8104 		ena_tc_qdisc |= BIT(i);
8105 
8106 	switch (mode) {
8107 	case TC_MQPRIO_MODE_CHANNEL:
8108 
8109 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8110 		if (ret) {
8111 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8112 				   ret);
8113 			return ret;
8114 		}
8115 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8116 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8117 		/* don't assume state of hw_tc_offload during driver load
8118 		 * and set the flag for TC flower filter if hw_tc_offload
8119 		 * already ON
8120 		 */
8121 		if (vsi->netdev->features & NETIF_F_HW_TC)
8122 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8123 		break;
8124 	default:
8125 		return -EINVAL;
8126 	}
8127 
8128 config_tcf:
8129 
8130 	/* Requesting same TCF configuration as already enabled */
8131 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8132 	    mode != TC_MQPRIO_MODE_CHANNEL)
8133 		return 0;
8134 
8135 	/* Pause VSI queues */
8136 	ice_dis_vsi(vsi, true);
8137 
8138 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8139 		ice_remove_q_channels(vsi, true);
8140 
8141 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8142 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8143 				     num_online_cpus());
8144 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8145 				     num_online_cpus());
8146 	} else {
8147 		/* logic to rebuild VSI, same like ethtool -L */
8148 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8149 
8150 		for (i = 0; i < num_tcf; i++) {
8151 			if (!(ena_tc_qdisc & BIT(i)))
8152 				continue;
8153 
8154 			offset = vsi->mqprio_qopt.qopt.offset[i];
8155 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8156 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8157 		}
8158 		vsi->req_txq = offset + qcount_tx;
8159 		vsi->req_rxq = offset + qcount_rx;
8160 
8161 		/* store away original rss_size info, so that it gets reused
8162 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8163 		 * determine, what should be the rss_sizefor main VSI
8164 		 */
8165 		vsi->orig_rss_size = vsi->rss_size;
8166 	}
8167 
8168 	/* save current values of Tx and Rx queues before calling VSI rebuild
8169 	 * for fallback option
8170 	 */
8171 	cur_txq = vsi->num_txq;
8172 	cur_rxq = vsi->num_rxq;
8173 
8174 	/* proceed with rebuild main VSI using correct number of queues */
8175 	ret = ice_vsi_rebuild(vsi, false);
8176 	if (ret) {
8177 		/* fallback to current number of queues */
8178 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8179 		vsi->req_txq = cur_txq;
8180 		vsi->req_rxq = cur_rxq;
8181 		clear_bit(ICE_RESET_FAILED, pf->state);
8182 		if (ice_vsi_rebuild(vsi, false)) {
8183 			dev_err(dev, "Rebuild of main VSI failed again\n");
8184 			return ret;
8185 		}
8186 	}
8187 
8188 	vsi->all_numtc = num_tcf;
8189 	vsi->all_enatc = ena_tc_qdisc;
8190 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8191 	if (ret) {
8192 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8193 			   vsi->vsi_num);
8194 		goto exit;
8195 	}
8196 
8197 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8198 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8199 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8200 
8201 		/* set TC0 rate limit if specified */
8202 		if (max_tx_rate || min_tx_rate) {
8203 			/* convert to Kbits/s */
8204 			if (max_tx_rate)
8205 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8206 			if (min_tx_rate)
8207 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8208 
8209 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8210 			if (!ret) {
8211 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8212 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8213 			} else {
8214 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8215 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8216 				goto exit;
8217 			}
8218 		}
8219 		ret = ice_create_q_channels(vsi);
8220 		if (ret) {
8221 			netdev_err(netdev, "failed configuring queue channels\n");
8222 			goto exit;
8223 		} else {
8224 			netdev_dbg(netdev, "successfully configured channels\n");
8225 		}
8226 	}
8227 
8228 	if (vsi->ch_rss_size)
8229 		ice_vsi_cfg_rss_lut_key(vsi);
8230 
8231 exit:
8232 	/* if error, reset the all_numtc and all_enatc */
8233 	if (ret) {
8234 		vsi->all_numtc = 0;
8235 		vsi->all_enatc = 0;
8236 	}
8237 	/* resume VSI */
8238 	ice_ena_vsi(vsi, true);
8239 
8240 	return ret;
8241 }
8242 
8243 static LIST_HEAD(ice_block_cb_list);
8244 
8245 static int
8246 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8247 	     void *type_data)
8248 {
8249 	struct ice_netdev_priv *np = netdev_priv(netdev);
8250 	struct ice_pf *pf = np->vsi->back;
8251 	int err;
8252 
8253 	switch (type) {
8254 	case TC_SETUP_BLOCK:
8255 		return flow_block_cb_setup_simple(type_data,
8256 						  &ice_block_cb_list,
8257 						  ice_setup_tc_block_cb,
8258 						  np, np, true);
8259 	case TC_SETUP_QDISC_MQPRIO:
8260 		/* setup traffic classifier for receive side */
8261 		mutex_lock(&pf->tc_mutex);
8262 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8263 		mutex_unlock(&pf->tc_mutex);
8264 		return err;
8265 	default:
8266 		return -EOPNOTSUPP;
8267 	}
8268 	return -EOPNOTSUPP;
8269 }
8270 
8271 static struct ice_indr_block_priv *
8272 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8273 			   struct net_device *netdev)
8274 {
8275 	struct ice_indr_block_priv *cb_priv;
8276 
8277 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8278 		if (!cb_priv->netdev)
8279 			return NULL;
8280 		if (cb_priv->netdev == netdev)
8281 			return cb_priv;
8282 	}
8283 	return NULL;
8284 }
8285 
8286 static int
8287 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8288 			void *indr_priv)
8289 {
8290 	struct ice_indr_block_priv *priv = indr_priv;
8291 	struct ice_netdev_priv *np = priv->np;
8292 
8293 	switch (type) {
8294 	case TC_SETUP_CLSFLOWER:
8295 		return ice_setup_tc_cls_flower(np, priv->netdev,
8296 					       (struct flow_cls_offload *)
8297 					       type_data);
8298 	default:
8299 		return -EOPNOTSUPP;
8300 	}
8301 }
8302 
8303 static int
8304 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8305 			struct ice_netdev_priv *np,
8306 			struct flow_block_offload *f, void *data,
8307 			void (*cleanup)(struct flow_block_cb *block_cb))
8308 {
8309 	struct ice_indr_block_priv *indr_priv;
8310 	struct flow_block_cb *block_cb;
8311 
8312 	if (!ice_is_tunnel_supported(netdev) &&
8313 	    !(is_vlan_dev(netdev) &&
8314 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8315 		return -EOPNOTSUPP;
8316 
8317 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8318 		return -EOPNOTSUPP;
8319 
8320 	switch (f->command) {
8321 	case FLOW_BLOCK_BIND:
8322 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8323 		if (indr_priv)
8324 			return -EEXIST;
8325 
8326 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8327 		if (!indr_priv)
8328 			return -ENOMEM;
8329 
8330 		indr_priv->netdev = netdev;
8331 		indr_priv->np = np;
8332 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8333 
8334 		block_cb =
8335 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8336 						 indr_priv, indr_priv,
8337 						 ice_rep_indr_tc_block_unbind,
8338 						 f, netdev, sch, data, np,
8339 						 cleanup);
8340 
8341 		if (IS_ERR(block_cb)) {
8342 			list_del(&indr_priv->list);
8343 			kfree(indr_priv);
8344 			return PTR_ERR(block_cb);
8345 		}
8346 		flow_block_cb_add(block_cb, f);
8347 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8348 		break;
8349 	case FLOW_BLOCK_UNBIND:
8350 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8351 		if (!indr_priv)
8352 			return -ENOENT;
8353 
8354 		block_cb = flow_block_cb_lookup(f->block,
8355 						ice_indr_setup_block_cb,
8356 						indr_priv);
8357 		if (!block_cb)
8358 			return -ENOENT;
8359 
8360 		flow_indr_block_cb_remove(block_cb, f);
8361 
8362 		list_del(&block_cb->driver_list);
8363 		break;
8364 	default:
8365 		return -EOPNOTSUPP;
8366 	}
8367 	return 0;
8368 }
8369 
8370 static int
8371 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8372 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8373 		     void *data,
8374 		     void (*cleanup)(struct flow_block_cb *block_cb))
8375 {
8376 	switch (type) {
8377 	case TC_SETUP_BLOCK:
8378 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8379 					       data, cleanup);
8380 
8381 	default:
8382 		return -EOPNOTSUPP;
8383 	}
8384 }
8385 
8386 /**
8387  * ice_open - Called when a network interface becomes active
8388  * @netdev: network interface device structure
8389  *
8390  * The open entry point is called when a network interface is made
8391  * active by the system (IFF_UP). At this point all resources needed
8392  * for transmit and receive operations are allocated, the interrupt
8393  * handler is registered with the OS, the netdev watchdog is enabled,
8394  * and the stack is notified that the interface is ready.
8395  *
8396  * Returns 0 on success, negative value on failure
8397  */
8398 int ice_open(struct net_device *netdev)
8399 {
8400 	struct ice_netdev_priv *np = netdev_priv(netdev);
8401 	struct ice_pf *pf = np->vsi->back;
8402 
8403 	if (ice_is_reset_in_progress(pf->state)) {
8404 		netdev_err(netdev, "can't open net device while reset is in progress");
8405 		return -EBUSY;
8406 	}
8407 
8408 	return ice_open_internal(netdev);
8409 }
8410 
8411 /**
8412  * ice_open_internal - Called when a network interface becomes active
8413  * @netdev: network interface device structure
8414  *
8415  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8416  * handling routine
8417  *
8418  * Returns 0 on success, negative value on failure
8419  */
8420 int ice_open_internal(struct net_device *netdev)
8421 {
8422 	struct ice_netdev_priv *np = netdev_priv(netdev);
8423 	struct ice_vsi *vsi = np->vsi;
8424 	struct ice_pf *pf = vsi->back;
8425 	struct ice_port_info *pi;
8426 	enum ice_status status;
8427 	int err;
8428 
8429 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8430 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8431 		return -EIO;
8432 	}
8433 
8434 	netif_carrier_off(netdev);
8435 
8436 	pi = vsi->port_info;
8437 	status = ice_update_link_info(pi);
8438 	if (status) {
8439 		netdev_err(netdev, "Failed to get link info, error %s\n",
8440 			   ice_stat_str(status));
8441 		return -EIO;
8442 	}
8443 
8444 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8445 
8446 	/* Set PHY if there is media, otherwise, turn off PHY */
8447 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8448 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8449 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8450 			err = ice_init_phy_user_cfg(pi);
8451 			if (err) {
8452 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8453 					   err);
8454 				return err;
8455 			}
8456 		}
8457 
8458 		err = ice_configure_phy(vsi);
8459 		if (err) {
8460 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8461 				   err);
8462 			return err;
8463 		}
8464 	} else {
8465 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8466 		ice_set_link(vsi, false);
8467 	}
8468 
8469 	err = ice_vsi_open(vsi);
8470 	if (err)
8471 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8472 			   vsi->vsi_num, vsi->vsw->sw_id);
8473 
8474 	/* Update existing tunnels information */
8475 	udp_tunnel_get_rx_info(netdev);
8476 
8477 	return err;
8478 }
8479 
8480 /**
8481  * ice_stop - Disables a network interface
8482  * @netdev: network interface device structure
8483  *
8484  * The stop entry point is called when an interface is de-activated by the OS,
8485  * and the netdevice enters the DOWN state. The hardware is still under the
8486  * driver's control, but the netdev interface is disabled.
8487  *
8488  * Returns success only - not allowed to fail
8489  */
8490 int ice_stop(struct net_device *netdev)
8491 {
8492 	struct ice_netdev_priv *np = netdev_priv(netdev);
8493 	struct ice_vsi *vsi = np->vsi;
8494 	struct ice_pf *pf = vsi->back;
8495 
8496 	if (ice_is_reset_in_progress(pf->state)) {
8497 		netdev_err(netdev, "can't stop net device while reset is in progress");
8498 		return -EBUSY;
8499 	}
8500 
8501 	ice_vsi_close(vsi);
8502 
8503 	return 0;
8504 }
8505 
8506 /**
8507  * ice_features_check - Validate encapsulated packet conforms to limits
8508  * @skb: skb buffer
8509  * @netdev: This port's netdev
8510  * @features: Offload features that the stack believes apply
8511  */
8512 static netdev_features_t
8513 ice_features_check(struct sk_buff *skb,
8514 		   struct net_device __always_unused *netdev,
8515 		   netdev_features_t features)
8516 {
8517 	size_t len;
8518 
8519 	/* No point in doing any of this if neither checksum nor GSO are
8520 	 * being requested for this frame. We can rule out both by just
8521 	 * checking for CHECKSUM_PARTIAL
8522 	 */
8523 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8524 		return features;
8525 
8526 	/* We cannot support GSO if the MSS is going to be less than
8527 	 * 64 bytes. If it is then we need to drop support for GSO.
8528 	 */
8529 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
8530 		features &= ~NETIF_F_GSO_MASK;
8531 
8532 	len = skb_network_header(skb) - skb->data;
8533 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8534 		goto out_rm_features;
8535 
8536 	len = skb_transport_header(skb) - skb_network_header(skb);
8537 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8538 		goto out_rm_features;
8539 
8540 	if (skb->encapsulation) {
8541 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
8542 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8543 			goto out_rm_features;
8544 
8545 		len = skb_inner_transport_header(skb) -
8546 		      skb_inner_network_header(skb);
8547 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8548 			goto out_rm_features;
8549 	}
8550 
8551 	return features;
8552 out_rm_features:
8553 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8554 }
8555 
8556 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8557 	.ndo_open = ice_open,
8558 	.ndo_stop = ice_stop,
8559 	.ndo_start_xmit = ice_start_xmit,
8560 	.ndo_set_mac_address = ice_set_mac_address,
8561 	.ndo_validate_addr = eth_validate_addr,
8562 	.ndo_change_mtu = ice_change_mtu,
8563 	.ndo_get_stats64 = ice_get_stats64,
8564 	.ndo_tx_timeout = ice_tx_timeout,
8565 	.ndo_bpf = ice_xdp_safe_mode,
8566 };
8567 
8568 static const struct net_device_ops ice_netdev_ops = {
8569 	.ndo_open = ice_open,
8570 	.ndo_stop = ice_stop,
8571 	.ndo_start_xmit = ice_start_xmit,
8572 	.ndo_select_queue = ice_select_queue,
8573 	.ndo_features_check = ice_features_check,
8574 	.ndo_set_rx_mode = ice_set_rx_mode,
8575 	.ndo_set_mac_address = ice_set_mac_address,
8576 	.ndo_validate_addr = eth_validate_addr,
8577 	.ndo_change_mtu = ice_change_mtu,
8578 	.ndo_get_stats64 = ice_get_stats64,
8579 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8580 	.ndo_eth_ioctl = ice_eth_ioctl,
8581 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8582 	.ndo_set_vf_mac = ice_set_vf_mac,
8583 	.ndo_get_vf_config = ice_get_vf_cfg,
8584 	.ndo_set_vf_trust = ice_set_vf_trust,
8585 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8586 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8587 	.ndo_get_vf_stats = ice_get_vf_stats,
8588 	.ndo_set_vf_rate = ice_set_vf_bw,
8589 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8590 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8591 	.ndo_setup_tc = ice_setup_tc,
8592 	.ndo_set_features = ice_set_features,
8593 	.ndo_bridge_getlink = ice_bridge_getlink,
8594 	.ndo_bridge_setlink = ice_bridge_setlink,
8595 	.ndo_fdb_add = ice_fdb_add,
8596 	.ndo_fdb_del = ice_fdb_del,
8597 #ifdef CONFIG_RFS_ACCEL
8598 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8599 #endif
8600 	.ndo_tx_timeout = ice_tx_timeout,
8601 	.ndo_bpf = ice_xdp,
8602 	.ndo_xdp_xmit = ice_xdp_xmit,
8603 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8604 };
8605