1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 18 * ice tracepoint functions. This must be done exactly once across the 19 * ice driver. 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "ice_trace.h" 23 #include "ice_eswitch.h" 24 #include "ice_tc_lib.h" 25 #include "ice_vsi_vlan_ops.h" 26 #include <net/xdp_sock_drv.h> 27 28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 29 static const char ice_driver_string[] = DRV_SUMMARY; 30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 31 32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 35 36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 37 MODULE_DESCRIPTION(DRV_SUMMARY); 38 MODULE_LICENSE("GPL v2"); 39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 40 41 static int debug = -1; 42 module_param(debug, int, 0644); 43 #ifndef CONFIG_DYNAMIC_DEBUG 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 45 #else 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 47 #endif /* !CONFIG_DYNAMIC_DEBUG */ 48 49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 50 EXPORT_SYMBOL(ice_xdp_locking_key); 51 52 /** 53 * ice_hw_to_dev - Get device pointer from the hardware structure 54 * @hw: pointer to the device HW structure 55 * 56 * Used to access the device pointer from compilation units which can't easily 57 * include the definition of struct ice_pf without leading to circular header 58 * dependencies. 59 */ 60 struct device *ice_hw_to_dev(struct ice_hw *hw) 61 { 62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 63 64 return &pf->pdev->dev; 65 } 66 67 static struct workqueue_struct *ice_wq; 68 struct workqueue_struct *ice_lag_wq; 69 static const struct net_device_ops ice_netdev_safe_mode_ops; 70 static const struct net_device_ops ice_netdev_ops; 71 72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 73 74 static void ice_vsi_release_all(struct ice_pf *pf); 75 76 static int ice_rebuild_channels(struct ice_pf *pf); 77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 78 79 static int 80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 81 void *cb_priv, enum tc_setup_type type, void *type_data, 82 void *data, 83 void (*cleanup)(struct flow_block_cb *block_cb)); 84 85 bool netif_is_ice(const struct net_device *dev) 86 { 87 return dev && (dev->netdev_ops == &ice_netdev_ops || 88 dev->netdev_ops == &ice_netdev_safe_mode_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_prepare_for_reset - prep for reset 523 * @pf: board private structure 524 * @reset_type: reset type requested 525 * 526 * Inform or close all dependent features in prep for reset. 527 */ 528 static void 529 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 530 { 531 struct ice_hw *hw = &pf->hw; 532 struct ice_vsi *vsi; 533 struct ice_vf *vf; 534 unsigned int bkt; 535 536 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 537 538 /* already prepared for reset */ 539 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 540 return; 541 542 synchronize_irq(pf->oicr_irq.virq); 543 544 ice_unplug_aux_dev(pf); 545 546 /* Notify VFs of impending reset */ 547 if (ice_check_sq_alive(hw, &hw->mailboxq)) 548 ice_vc_notify_reset(pf); 549 550 /* Disable VFs until reset is completed */ 551 mutex_lock(&pf->vfs.table_lock); 552 ice_for_each_vf(pf, bkt, vf) 553 ice_set_vf_state_dis(vf); 554 mutex_unlock(&pf->vfs.table_lock); 555 556 if (ice_is_eswitch_mode_switchdev(pf)) { 557 rtnl_lock(); 558 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 559 rtnl_unlock(); 560 } 561 562 /* release ADQ specific HW and SW resources */ 563 vsi = ice_get_main_vsi(pf); 564 if (!vsi) 565 goto skip; 566 567 /* to be on safe side, reset orig_rss_size so that normal flow 568 * of deciding rss_size can take precedence 569 */ 570 vsi->orig_rss_size = 0; 571 572 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 573 if (reset_type == ICE_RESET_PFR) { 574 vsi->old_ena_tc = vsi->all_enatc; 575 vsi->old_numtc = vsi->all_numtc; 576 } else { 577 ice_remove_q_channels(vsi, true); 578 579 /* for other reset type, do not support channel rebuild 580 * hence reset needed info 581 */ 582 vsi->old_ena_tc = 0; 583 vsi->all_enatc = 0; 584 vsi->old_numtc = 0; 585 vsi->all_numtc = 0; 586 vsi->req_txq = 0; 587 vsi->req_rxq = 0; 588 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 589 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 590 } 591 } 592 593 if (vsi->netdev) 594 netif_device_detach(vsi->netdev); 595 skip: 596 597 /* clear SW filtering DB */ 598 ice_clear_hw_tbls(hw); 599 /* disable the VSIs and their queues that are not already DOWN */ 600 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 601 ice_pf_dis_all_vsi(pf, false); 602 603 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 604 ice_ptp_prepare_for_reset(pf); 605 606 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 607 ice_gnss_exit(pf); 608 609 if (hw->port_info) 610 ice_sched_clear_port(hw->port_info); 611 612 ice_shutdown_all_ctrlq(hw); 613 614 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 615 } 616 617 /** 618 * ice_do_reset - Initiate one of many types of resets 619 * @pf: board private structure 620 * @reset_type: reset type requested before this function was called. 621 */ 622 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 623 { 624 struct device *dev = ice_pf_to_dev(pf); 625 struct ice_hw *hw = &pf->hw; 626 627 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 628 629 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 630 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 631 reset_type = ICE_RESET_CORER; 632 } 633 634 ice_prepare_for_reset(pf, reset_type); 635 636 /* trigger the reset */ 637 if (ice_reset(hw, reset_type)) { 638 dev_err(dev, "reset %d failed\n", reset_type); 639 set_bit(ICE_RESET_FAILED, pf->state); 640 clear_bit(ICE_RESET_OICR_RECV, pf->state); 641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 642 clear_bit(ICE_PFR_REQ, pf->state); 643 clear_bit(ICE_CORER_REQ, pf->state); 644 clear_bit(ICE_GLOBR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 return; 647 } 648 649 /* PFR is a bit of a special case because it doesn't result in an OICR 650 * interrupt. So for PFR, rebuild after the reset and clear the reset- 651 * associated state bits. 652 */ 653 if (reset_type == ICE_RESET_PFR) { 654 pf->pfr_count++; 655 ice_rebuild(pf, reset_type); 656 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 657 clear_bit(ICE_PFR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 ice_reset_all_vfs(pf); 660 } 661 } 662 663 /** 664 * ice_reset_subtask - Set up for resetting the device and driver 665 * @pf: board private structure 666 */ 667 static void ice_reset_subtask(struct ice_pf *pf) 668 { 669 enum ice_reset_req reset_type = ICE_RESET_INVAL; 670 671 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 672 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 673 * of reset is pending and sets bits in pf->state indicating the reset 674 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 675 * prepare for pending reset if not already (for PF software-initiated 676 * global resets the software should already be prepared for it as 677 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 678 * by firmware or software on other PFs, that bit is not set so prepare 679 * for the reset now), poll for reset done, rebuild and return. 680 */ 681 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 682 /* Perform the largest reset requested */ 683 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 684 reset_type = ICE_RESET_CORER; 685 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 686 reset_type = ICE_RESET_GLOBR; 687 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 688 reset_type = ICE_RESET_EMPR; 689 /* return if no valid reset type requested */ 690 if (reset_type == ICE_RESET_INVAL) 691 return; 692 ice_prepare_for_reset(pf, reset_type); 693 694 /* make sure we are ready to rebuild */ 695 if (ice_check_reset(&pf->hw)) { 696 set_bit(ICE_RESET_FAILED, pf->state); 697 } else { 698 /* done with reset. start rebuild */ 699 pf->hw.reset_ongoing = false; 700 ice_rebuild(pf, reset_type); 701 /* clear bit to resume normal operations, but 702 * ICE_NEEDS_RESTART bit is set in case rebuild failed 703 */ 704 clear_bit(ICE_RESET_OICR_RECV, pf->state); 705 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 706 clear_bit(ICE_PFR_REQ, pf->state); 707 clear_bit(ICE_CORER_REQ, pf->state); 708 clear_bit(ICE_GLOBR_REQ, pf->state); 709 wake_up(&pf->reset_wait_queue); 710 ice_reset_all_vfs(pf); 711 } 712 713 return; 714 } 715 716 /* No pending resets to finish processing. Check for new resets */ 717 if (test_bit(ICE_PFR_REQ, pf->state)) { 718 reset_type = ICE_RESET_PFR; 719 if (pf->lag && pf->lag->bonded) { 720 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 721 reset_type = ICE_RESET_CORER; 722 } 723 } 724 if (test_bit(ICE_CORER_REQ, pf->state)) 725 reset_type = ICE_RESET_CORER; 726 if (test_bit(ICE_GLOBR_REQ, pf->state)) 727 reset_type = ICE_RESET_GLOBR; 728 /* If no valid reset type requested just return */ 729 if (reset_type == ICE_RESET_INVAL) 730 return; 731 732 /* reset if not already down or busy */ 733 if (!test_bit(ICE_DOWN, pf->state) && 734 !test_bit(ICE_CFG_BUSY, pf->state)) { 735 ice_do_reset(pf, reset_type); 736 } 737 } 738 739 /** 740 * ice_print_topo_conflict - print topology conflict message 741 * @vsi: the VSI whose topology status is being checked 742 */ 743 static void ice_print_topo_conflict(struct ice_vsi *vsi) 744 { 745 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 746 case ICE_AQ_LINK_TOPO_CONFLICT: 747 case ICE_AQ_LINK_MEDIA_CONFLICT: 748 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 750 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 751 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 752 break; 753 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 755 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 756 else 757 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 758 break; 759 default: 760 break; 761 } 762 } 763 764 /** 765 * ice_print_link_msg - print link up or down message 766 * @vsi: the VSI whose link status is being queried 767 * @isup: boolean for if the link is now up or down 768 */ 769 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 770 { 771 struct ice_aqc_get_phy_caps_data *caps; 772 const char *an_advertised; 773 const char *fec_req; 774 const char *speed; 775 const char *fec; 776 const char *fc; 777 const char *an; 778 int status; 779 780 if (!vsi) 781 return; 782 783 if (vsi->current_isup == isup) 784 return; 785 786 vsi->current_isup = isup; 787 788 if (!isup) { 789 netdev_info(vsi->netdev, "NIC Link is Down\n"); 790 return; 791 } 792 793 switch (vsi->port_info->phy.link_info.link_speed) { 794 case ICE_AQ_LINK_SPEED_100GB: 795 speed = "100 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_50GB: 798 speed = "50 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_40GB: 801 speed = "40 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_25GB: 804 speed = "25 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_20GB: 807 speed = "20 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_10GB: 810 speed = "10 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_5GB: 813 speed = "5 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_2500MB: 816 speed = "2.5 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_1000MB: 819 speed = "1 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_100MB: 822 speed = "100 M"; 823 break; 824 default: 825 speed = "Unknown "; 826 break; 827 } 828 829 switch (vsi->port_info->fc.current_mode) { 830 case ICE_FC_FULL: 831 fc = "Rx/Tx"; 832 break; 833 case ICE_FC_TX_PAUSE: 834 fc = "Tx"; 835 break; 836 case ICE_FC_RX_PAUSE: 837 fc = "Rx"; 838 break; 839 case ICE_FC_NONE: 840 fc = "None"; 841 break; 842 default: 843 fc = "Unknown"; 844 break; 845 } 846 847 /* Get FEC mode based on negotiated link info */ 848 switch (vsi->port_info->phy.link_info.fec_info) { 849 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 850 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 851 fec = "RS-FEC"; 852 break; 853 case ICE_AQ_LINK_25G_KR_FEC_EN: 854 fec = "FC-FEC/BASE-R"; 855 break; 856 default: 857 fec = "NONE"; 858 break; 859 } 860 861 /* check if autoneg completed, might be false due to not supported */ 862 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 863 an = "True"; 864 else 865 an = "False"; 866 867 /* Get FEC mode requested based on PHY caps last SW configuration */ 868 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 869 if (!caps) { 870 fec_req = "Unknown"; 871 an_advertised = "Unknown"; 872 goto done; 873 } 874 875 status = ice_aq_get_phy_caps(vsi->port_info, false, 876 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 877 if (status) 878 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 879 880 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 881 882 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 883 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 884 fec_req = "RS-FEC"; 885 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 886 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 887 fec_req = "FC-FEC/BASE-R"; 888 else 889 fec_req = "NONE"; 890 891 kfree(caps); 892 893 done: 894 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 895 speed, fec_req, fec, an_advertised, an, fc); 896 ice_print_topo_conflict(vsi); 897 } 898 899 /** 900 * ice_vsi_link_event - update the VSI's netdev 901 * @vsi: the VSI on which the link event occurred 902 * @link_up: whether or not the VSI needs to be set up or down 903 */ 904 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 905 { 906 if (!vsi) 907 return; 908 909 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 910 return; 911 912 if (vsi->type == ICE_VSI_PF) { 913 if (link_up == netif_carrier_ok(vsi->netdev)) 914 return; 915 916 if (link_up) { 917 netif_carrier_on(vsi->netdev); 918 netif_tx_wake_all_queues(vsi->netdev); 919 } else { 920 netif_carrier_off(vsi->netdev); 921 netif_tx_stop_all_queues(vsi->netdev); 922 } 923 } 924 } 925 926 /** 927 * ice_set_dflt_mib - send a default config MIB to the FW 928 * @pf: private PF struct 929 * 930 * This function sends a default configuration MIB to the FW. 931 * 932 * If this function errors out at any point, the driver is still able to 933 * function. The main impact is that LFC may not operate as expected. 934 * Therefore an error state in this function should be treated with a DBG 935 * message and continue on with driver rebuild/reenable. 936 */ 937 static void ice_set_dflt_mib(struct ice_pf *pf) 938 { 939 struct device *dev = ice_pf_to_dev(pf); 940 u8 mib_type, *buf, *lldpmib = NULL; 941 u16 len, typelen, offset = 0; 942 struct ice_lldp_org_tlv *tlv; 943 struct ice_hw *hw = &pf->hw; 944 u32 ouisubtype; 945 946 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 947 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 948 if (!lldpmib) { 949 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 950 __func__); 951 return; 952 } 953 954 /* Add ETS CFG TLV */ 955 tlv = (struct ice_lldp_org_tlv *)lldpmib; 956 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 957 ICE_IEEE_ETS_TLV_LEN); 958 tlv->typelen = htons(typelen); 959 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 960 ICE_IEEE_SUBTYPE_ETS_CFG); 961 tlv->ouisubtype = htonl(ouisubtype); 962 963 buf = tlv->tlvinfo; 964 buf[0] = 0; 965 966 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 967 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 968 * Octets 13 - 20 are TSA values - leave as zeros 969 */ 970 buf[5] = 0x64; 971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add ETS REC TLV */ 977 buf = tlv->tlvinfo; 978 tlv->typelen = htons(typelen); 979 980 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 981 ICE_IEEE_SUBTYPE_ETS_REC); 982 tlv->ouisubtype = htonl(ouisubtype); 983 984 /* First octet of buf is reserved 985 * Octets 1 - 4 map UP to TC - all UPs map to zero 986 * Octets 5 - 12 are BW values - set TC 0 to 100%. 987 * Octets 13 - 20 are TSA value - leave as zeros 988 */ 989 buf[5] = 0x64; 990 offset += len + 2; 991 tlv = (struct ice_lldp_org_tlv *) 992 ((char *)tlv + sizeof(tlv->typelen) + len); 993 994 /* Add PFC CFG TLV */ 995 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 996 ICE_IEEE_PFC_TLV_LEN); 997 tlv->typelen = htons(typelen); 998 999 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1000 ICE_IEEE_SUBTYPE_PFC_CFG); 1001 tlv->ouisubtype = htonl(ouisubtype); 1002 1003 /* Octet 1 left as all zeros - PFC disabled */ 1004 buf[0] = 0x08; 1005 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1006 offset += len + 2; 1007 1008 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1009 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1010 1011 kfree(lldpmib); 1012 } 1013 1014 /** 1015 * ice_check_phy_fw_load - check if PHY FW load failed 1016 * @pf: pointer to PF struct 1017 * @link_cfg_err: bitmap from the link info structure 1018 * 1019 * check if external PHY FW load failed and print an error message if it did 1020 */ 1021 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1022 { 1023 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1024 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1025 return; 1026 } 1027 1028 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1029 return; 1030 1031 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1032 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1033 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1034 } 1035 } 1036 1037 /** 1038 * ice_check_module_power 1039 * @pf: pointer to PF struct 1040 * @link_cfg_err: bitmap from the link info structure 1041 * 1042 * check module power level returned by a previous call to aq_get_link_info 1043 * and print error messages if module power level is not supported 1044 */ 1045 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1046 { 1047 /* if module power level is supported, clear the flag */ 1048 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1049 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1050 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1051 return; 1052 } 1053 1054 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1055 * above block didn't clear this bit, there's nothing to do 1056 */ 1057 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1058 return; 1059 1060 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1061 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1062 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1064 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1065 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1066 } 1067 } 1068 1069 /** 1070 * ice_check_link_cfg_err - check if link configuration failed 1071 * @pf: pointer to the PF struct 1072 * @link_cfg_err: bitmap from the link info structure 1073 * 1074 * print if any link configuration failure happens due to the value in the 1075 * link_cfg_err parameter in the link info structure 1076 */ 1077 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1078 { 1079 ice_check_module_power(pf, link_cfg_err); 1080 ice_check_phy_fw_load(pf, link_cfg_err); 1081 } 1082 1083 /** 1084 * ice_link_event - process the link event 1085 * @pf: PF that the link event is associated with 1086 * @pi: port_info for the port that the link event is associated with 1087 * @link_up: true if the physical link is up and false if it is down 1088 * @link_speed: current link speed received from the link event 1089 * 1090 * Returns 0 on success and negative on failure 1091 */ 1092 static int 1093 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1094 u16 link_speed) 1095 { 1096 struct device *dev = ice_pf_to_dev(pf); 1097 struct ice_phy_info *phy_info; 1098 struct ice_vsi *vsi; 1099 u16 old_link_speed; 1100 bool old_link; 1101 int status; 1102 1103 phy_info = &pi->phy; 1104 phy_info->link_info_old = phy_info->link_info; 1105 1106 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1107 old_link_speed = phy_info->link_info_old.link_speed; 1108 1109 /* update the link info structures and re-enable link events, 1110 * don't bail on failure due to other book keeping needed 1111 */ 1112 status = ice_update_link_info(pi); 1113 if (status) 1114 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1115 pi->lport, status, 1116 ice_aq_str(pi->hw->adminq.sq_last_status)); 1117 1118 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1119 1120 /* Check if the link state is up after updating link info, and treat 1121 * this event as an UP event since the link is actually UP now. 1122 */ 1123 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1124 link_up = true; 1125 1126 vsi = ice_get_main_vsi(pf); 1127 if (!vsi || !vsi->port_info) 1128 return -EINVAL; 1129 1130 /* turn off PHY if media was removed */ 1131 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1132 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1133 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1134 ice_set_link(vsi, false); 1135 } 1136 1137 /* if the old link up/down and speed is the same as the new */ 1138 if (link_up == old_link && link_speed == old_link_speed) 1139 return 0; 1140 1141 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1142 1143 if (ice_is_dcb_active(pf)) { 1144 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1145 ice_dcb_rebuild(pf); 1146 } else { 1147 if (link_up) 1148 ice_set_dflt_mib(pf); 1149 } 1150 ice_vsi_link_event(vsi, link_up); 1151 ice_print_link_msg(vsi, link_up); 1152 1153 ice_vc_notify_link_state(pf); 1154 1155 return 0; 1156 } 1157 1158 /** 1159 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1160 * @pf: board private structure 1161 */ 1162 static void ice_watchdog_subtask(struct ice_pf *pf) 1163 { 1164 int i; 1165 1166 /* if interface is down do nothing */ 1167 if (test_bit(ICE_DOWN, pf->state) || 1168 test_bit(ICE_CFG_BUSY, pf->state)) 1169 return; 1170 1171 /* make sure we don't do these things too often */ 1172 if (time_before(jiffies, 1173 pf->serv_tmr_prev + pf->serv_tmr_period)) 1174 return; 1175 1176 pf->serv_tmr_prev = jiffies; 1177 1178 /* Update the stats for active netdevs so the network stack 1179 * can look at updated numbers whenever it cares to 1180 */ 1181 ice_update_pf_stats(pf); 1182 ice_for_each_vsi(pf, i) 1183 if (pf->vsi[i] && pf->vsi[i]->netdev) 1184 ice_update_vsi_stats(pf->vsi[i]); 1185 } 1186 1187 /** 1188 * ice_init_link_events - enable/initialize link events 1189 * @pi: pointer to the port_info instance 1190 * 1191 * Returns -EIO on failure, 0 on success 1192 */ 1193 static int ice_init_link_events(struct ice_port_info *pi) 1194 { 1195 u16 mask; 1196 1197 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1198 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1199 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1200 1201 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1202 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1203 pi->lport); 1204 return -EIO; 1205 } 1206 1207 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 return 0; 1214 } 1215 1216 /** 1217 * ice_handle_link_event - handle link event via ARQ 1218 * @pf: PF that the link event is associated with 1219 * @event: event structure containing link status info 1220 */ 1221 static int 1222 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1223 { 1224 struct ice_aqc_get_link_status_data *link_data; 1225 struct ice_port_info *port_info; 1226 int status; 1227 1228 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1229 port_info = pf->hw.port_info; 1230 if (!port_info) 1231 return -EINVAL; 1232 1233 status = ice_link_event(pf, port_info, 1234 !!(link_data->link_info & ICE_AQ_LINK_UP), 1235 le16_to_cpu(link_data->link_speed)); 1236 if (status) 1237 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1238 status); 1239 1240 return status; 1241 } 1242 1243 /** 1244 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1245 * @pf: pointer to the PF private structure 1246 * @task: intermediate helper storage and identifier for waiting 1247 * @opcode: the opcode to wait for 1248 * 1249 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1250 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1251 * 1252 * Calls are separated to allow caller registering for event before sending 1253 * the command, which mitigates a race between registering and FW responding. 1254 * 1255 * To obtain only the descriptor contents, pass an task->event with null 1256 * msg_buf. If the complete data buffer is desired, allocate the 1257 * task->event.msg_buf with enough space ahead of time. 1258 */ 1259 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1260 u16 opcode) 1261 { 1262 INIT_HLIST_NODE(&task->entry); 1263 task->opcode = opcode; 1264 task->state = ICE_AQ_TASK_WAITING; 1265 1266 spin_lock_bh(&pf->aq_wait_lock); 1267 hlist_add_head(&task->entry, &pf->aq_wait_list); 1268 spin_unlock_bh(&pf->aq_wait_lock); 1269 } 1270 1271 /** 1272 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1273 * @pf: pointer to the PF private structure 1274 * @task: ptr prepared by ice_aq_prep_for_event() 1275 * @timeout: how long to wait, in jiffies 1276 * 1277 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1278 * current thread will be put to sleep until the specified event occurs or 1279 * until the given timeout is reached. 1280 * 1281 * Returns: zero on success, or a negative error code on failure. 1282 */ 1283 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1284 unsigned long timeout) 1285 { 1286 enum ice_aq_task_state *state = &task->state; 1287 struct device *dev = ice_pf_to_dev(pf); 1288 unsigned long start = jiffies; 1289 long ret; 1290 int err; 1291 1292 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1293 *state != ICE_AQ_TASK_WAITING, 1294 timeout); 1295 switch (*state) { 1296 case ICE_AQ_TASK_NOT_PREPARED: 1297 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1298 err = -EINVAL; 1299 break; 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 task->opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 1324 return err; 1325 } 1326 1327 /** 1328 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1329 * @pf: pointer to the PF private structure 1330 * @opcode: the opcode of the event 1331 * @event: the event to check 1332 * 1333 * Loops over the current list of pending threads waiting for an AdminQ event. 1334 * For each matching task, copy the contents of the event into the task 1335 * structure and wake up the thread. 1336 * 1337 * If multiple threads wait for the same opcode, they will all be woken up. 1338 * 1339 * Note that event->msg_buf will only be duplicated if the event has a buffer 1340 * with enough space already allocated. Otherwise, only the descriptor and 1341 * message length will be copied. 1342 * 1343 * Returns: true if an event was found, false otherwise 1344 */ 1345 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1346 struct ice_rq_event_info *event) 1347 { 1348 struct ice_rq_event_info *task_ev; 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state != ICE_AQ_TASK_WAITING) 1355 continue; 1356 if (task->opcode != opcode) 1357 continue; 1358 1359 task_ev = &task->event; 1360 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1361 task_ev->msg_len = event->msg_len; 1362 1363 /* Only copy the data buffer if a destination was set */ 1364 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1365 memcpy(task_ev->msg_buf, event->msg_buf, 1366 event->buf_len); 1367 task_ev->buf_len = event->buf_len; 1368 } 1369 1370 task->state = ICE_AQ_TASK_COMPLETE; 1371 found = true; 1372 } 1373 spin_unlock_bh(&pf->aq_wait_lock); 1374 1375 if (found) 1376 wake_up(&pf->aq_wait_queue); 1377 } 1378 1379 /** 1380 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1381 * @pf: the PF private structure 1382 * 1383 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1384 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1385 */ 1386 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1387 { 1388 struct ice_aq_task *task; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1392 task->state = ICE_AQ_TASK_CANCELED; 1393 spin_unlock_bh(&pf->aq_wait_lock); 1394 1395 wake_up(&pf->aq_wait_queue); 1396 } 1397 1398 #define ICE_MBX_OVERFLOW_WATERMARK 64 1399 1400 /** 1401 * __ice_clean_ctrlq - helper function to clean controlq rings 1402 * @pf: ptr to struct ice_pf 1403 * @q_type: specific Control queue type 1404 */ 1405 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1406 { 1407 struct device *dev = ice_pf_to_dev(pf); 1408 struct ice_rq_event_info event; 1409 struct ice_hw *hw = &pf->hw; 1410 struct ice_ctl_q_info *cq; 1411 u16 pending, i = 0; 1412 const char *qtype; 1413 u32 oldval, val; 1414 1415 /* Do not clean control queue if/when PF reset fails */ 1416 if (test_bit(ICE_RESET_FAILED, pf->state)) 1417 return 0; 1418 1419 switch (q_type) { 1420 case ICE_CTL_Q_ADMIN: 1421 cq = &hw->adminq; 1422 qtype = "Admin"; 1423 break; 1424 case ICE_CTL_Q_SB: 1425 cq = &hw->sbq; 1426 qtype = "Sideband"; 1427 break; 1428 case ICE_CTL_Q_MAILBOX: 1429 cq = &hw->mailboxq; 1430 qtype = "Mailbox"; 1431 /* we are going to try to detect a malicious VF, so set the 1432 * state to begin detection 1433 */ 1434 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1435 break; 1436 default: 1437 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1438 return 0; 1439 } 1440 1441 /* check for error indications - PF_xx_AxQLEN register layout for 1442 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1443 */ 1444 val = rd32(hw, cq->rq.len); 1445 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1446 PF_FW_ARQLEN_ARQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ARQLEN_ARQVFE_M) 1449 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1452 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1456 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1459 PF_FW_ARQLEN_ARQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->rq.len, val); 1462 } 1463 1464 val = rd32(hw, cq->sq.len); 1465 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1466 PF_FW_ATQLEN_ATQCRIT_M)) { 1467 oldval = val; 1468 if (val & PF_FW_ATQLEN_ATQVFE_M) 1469 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1470 qtype); 1471 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1472 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1473 qtype); 1474 } 1475 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1476 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1477 qtype); 1478 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1479 PF_FW_ATQLEN_ATQCRIT_M); 1480 if (oldval != val) 1481 wr32(hw, cq->sq.len, val); 1482 } 1483 1484 event.buf_len = cq->rq_buf_size; 1485 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1486 if (!event.msg_buf) 1487 return 0; 1488 1489 do { 1490 struct ice_mbx_data data = {}; 1491 u16 opcode; 1492 int ret; 1493 1494 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1495 if (ret == -EALREADY) 1496 break; 1497 if (ret) { 1498 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1499 ret); 1500 break; 1501 } 1502 1503 opcode = le16_to_cpu(event.desc.opcode); 1504 1505 /* Notify any thread that might be waiting for this event */ 1506 ice_aq_check_events(pf, opcode, &event); 1507 1508 switch (opcode) { 1509 case ice_aqc_opc_get_link_status: 1510 if (ice_handle_link_event(pf, &event)) 1511 dev_err(dev, "Could not handle link event\n"); 1512 break; 1513 case ice_aqc_opc_event_lan_overflow: 1514 ice_vf_lan_overflow_event(pf, &event); 1515 break; 1516 case ice_mbx_opc_send_msg_to_pf: 1517 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1518 ice_vc_process_vf_msg(pf, &event, NULL); 1519 ice_mbx_vf_dec_trig_e830(hw, &event); 1520 } else { 1521 u16 val = hw->mailboxq.num_rq_entries; 1522 1523 data.max_num_msgs_mbx = val; 1524 val = ICE_MBX_OVERFLOW_WATERMARK; 1525 data.async_watermark_val = val; 1526 data.num_msg_proc = i; 1527 data.num_pending_arq = pending; 1528 1529 ice_vc_process_vf_msg(pf, &event, &data); 1530 } 1531 break; 1532 case ice_aqc_opc_fw_logging: 1533 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1534 break; 1535 case ice_aqc_opc_lldp_set_mib_change: 1536 ice_dcb_process_lldp_set_mib_change(pf, &event); 1537 break; 1538 default: 1539 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1540 qtype, opcode); 1541 break; 1542 } 1543 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1544 1545 kfree(event.msg_buf); 1546 1547 return pending && (i == ICE_DFLT_IRQ_WORK); 1548 } 1549 1550 /** 1551 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1552 * @hw: pointer to hardware info 1553 * @cq: control queue information 1554 * 1555 * returns true if there are pending messages in a queue, false if there aren't 1556 */ 1557 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1558 { 1559 u16 ntu; 1560 1561 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1562 return cq->rq.next_to_clean != ntu; 1563 } 1564 1565 /** 1566 * ice_clean_adminq_subtask - clean the AdminQ rings 1567 * @pf: board private structure 1568 */ 1569 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1570 { 1571 struct ice_hw *hw = &pf->hw; 1572 1573 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1574 return; 1575 1576 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1577 return; 1578 1579 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1580 1581 /* There might be a situation where new messages arrive to a control 1582 * queue between processing the last message and clearing the 1583 * EVENT_PENDING bit. So before exiting, check queue head again (using 1584 * ice_ctrlq_pending) and process new messages if any. 1585 */ 1586 if (ice_ctrlq_pending(hw, &hw->adminq)) 1587 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1588 1589 ice_flush(hw); 1590 } 1591 1592 /** 1593 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1594 * @pf: board private structure 1595 */ 1596 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1597 { 1598 struct ice_hw *hw = &pf->hw; 1599 1600 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1601 return; 1602 1603 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1604 return; 1605 1606 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1607 1608 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1609 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1610 1611 ice_flush(hw); 1612 } 1613 1614 /** 1615 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1616 * @pf: board private structure 1617 */ 1618 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1619 { 1620 struct ice_hw *hw = &pf->hw; 1621 1622 /* Nothing to do here if sideband queue is not supported */ 1623 if (!ice_is_sbq_supported(hw)) { 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 return; 1626 } 1627 1628 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1629 return; 1630 1631 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1632 return; 1633 1634 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1635 1636 if (ice_ctrlq_pending(hw, &hw->sbq)) 1637 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1638 1639 ice_flush(hw); 1640 } 1641 1642 /** 1643 * ice_service_task_schedule - schedule the service task to wake up 1644 * @pf: board private structure 1645 * 1646 * If not already scheduled, this puts the task into the work queue. 1647 */ 1648 void ice_service_task_schedule(struct ice_pf *pf) 1649 { 1650 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1651 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1652 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1653 queue_work(ice_wq, &pf->serv_task); 1654 } 1655 1656 /** 1657 * ice_service_task_complete - finish up the service task 1658 * @pf: board private structure 1659 */ 1660 static void ice_service_task_complete(struct ice_pf *pf) 1661 { 1662 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1663 1664 /* force memory (pf->state) to sync before next service task */ 1665 smp_mb__before_atomic(); 1666 clear_bit(ICE_SERVICE_SCHED, pf->state); 1667 } 1668 1669 /** 1670 * ice_service_task_stop - stop service task and cancel works 1671 * @pf: board private structure 1672 * 1673 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1674 * 1 otherwise. 1675 */ 1676 static int ice_service_task_stop(struct ice_pf *pf) 1677 { 1678 int ret; 1679 1680 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1681 1682 if (pf->serv_tmr.function) 1683 del_timer_sync(&pf->serv_tmr); 1684 if (pf->serv_task.func) 1685 cancel_work_sync(&pf->serv_task); 1686 1687 clear_bit(ICE_SERVICE_SCHED, pf->state); 1688 return ret; 1689 } 1690 1691 /** 1692 * ice_service_task_restart - restart service task and schedule works 1693 * @pf: board private structure 1694 * 1695 * This function is needed for suspend and resume works (e.g WoL scenario) 1696 */ 1697 static void ice_service_task_restart(struct ice_pf *pf) 1698 { 1699 clear_bit(ICE_SERVICE_DIS, pf->state); 1700 ice_service_task_schedule(pf); 1701 } 1702 1703 /** 1704 * ice_service_timer - timer callback to schedule service task 1705 * @t: pointer to timer_list 1706 */ 1707 static void ice_service_timer(struct timer_list *t) 1708 { 1709 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1710 1711 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1712 ice_service_task_schedule(pf); 1713 } 1714 1715 /** 1716 * ice_handle_mdd_event - handle malicious driver detect event 1717 * @pf: pointer to the PF structure 1718 * 1719 * Called from service task. OICR interrupt handler indicates MDD event. 1720 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1721 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1722 * disable the queue, the PF can be configured to reset the VF using ethtool 1723 * private flag mdd-auto-reset-vf. 1724 */ 1725 static void ice_handle_mdd_event(struct ice_pf *pf) 1726 { 1727 struct device *dev = ice_pf_to_dev(pf); 1728 struct ice_hw *hw = &pf->hw; 1729 struct ice_vf *vf; 1730 unsigned int bkt; 1731 u32 reg; 1732 1733 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1734 /* Since the VF MDD event logging is rate limited, check if 1735 * there are pending MDD events. 1736 */ 1737 ice_print_vfs_mdd_events(pf); 1738 return; 1739 } 1740 1741 /* find what triggered an MDD event */ 1742 reg = rd32(hw, GL_MDET_TX_PQM); 1743 if (reg & GL_MDET_TX_PQM_VALID_M) { 1744 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1745 GL_MDET_TX_PQM_PF_NUM_S; 1746 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1747 GL_MDET_TX_PQM_VF_NUM_S; 1748 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1749 GL_MDET_TX_PQM_MAL_TYPE_S; 1750 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1751 GL_MDET_TX_PQM_QNUM_S); 1752 1753 if (netif_msg_tx_err(pf)) 1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1755 event, queue, pf_num, vf_num); 1756 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1757 } 1758 1759 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1760 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1761 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1762 GL_MDET_TX_TCLAN_PF_NUM_S; 1763 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1764 GL_MDET_TX_TCLAN_VF_NUM_S; 1765 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1766 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1767 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1768 GL_MDET_TX_TCLAN_QNUM_S); 1769 1770 if (netif_msg_tx_err(pf)) 1771 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1772 event, queue, pf_num, vf_num); 1773 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1774 } 1775 1776 reg = rd32(hw, GL_MDET_RX); 1777 if (reg & GL_MDET_RX_VALID_M) { 1778 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1779 GL_MDET_RX_PF_NUM_S; 1780 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1781 GL_MDET_RX_VF_NUM_S; 1782 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1783 GL_MDET_RX_MAL_TYPE_S; 1784 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1785 GL_MDET_RX_QNUM_S); 1786 1787 if (netif_msg_rx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1789 event, queue, pf_num, vf_num); 1790 wr32(hw, GL_MDET_RX, 0xffffffff); 1791 } 1792 1793 /* check to see if this PF caused an MDD event */ 1794 reg = rd32(hw, PF_MDET_TX_PQM); 1795 if (reg & PF_MDET_TX_PQM_VALID_M) { 1796 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1797 if (netif_msg_tx_err(pf)) 1798 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1799 } 1800 1801 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1802 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1803 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1804 if (netif_msg_tx_err(pf)) 1805 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1806 } 1807 1808 reg = rd32(hw, PF_MDET_RX); 1809 if (reg & PF_MDET_RX_VALID_M) { 1810 wr32(hw, PF_MDET_RX, 0xFFFF); 1811 if (netif_msg_rx_err(pf)) 1812 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1813 } 1814 1815 /* Check to see if one of the VFs caused an MDD event, and then 1816 * increment counters and set print pending 1817 */ 1818 mutex_lock(&pf->vfs.table_lock); 1819 ice_for_each_vf(pf, bkt, vf) { 1820 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1821 if (reg & VP_MDET_TX_PQM_VALID_M) { 1822 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1841 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1842 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1843 vf->mdd_tx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_tx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1847 vf->vf_id); 1848 } 1849 1850 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1851 if (reg & VP_MDET_RX_VALID_M) { 1852 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1853 vf->mdd_rx_events.count++; 1854 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1855 if (netif_msg_rx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1857 vf->vf_id); 1858 1859 /* Since the queue is disabled on VF Rx MDD events, the 1860 * PF can be configured to reset the VF through ethtool 1861 * private flag mdd-auto-reset-vf. 1862 */ 1863 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1864 /* VF MDD event counters will be cleared by 1865 * reset, so print the event prior to reset. 1866 */ 1867 ice_print_vf_rx_mdd_event(vf); 1868 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1869 } 1870 } 1871 } 1872 mutex_unlock(&pf->vfs.table_lock); 1873 1874 ice_print_vfs_mdd_events(pf); 1875 } 1876 1877 /** 1878 * ice_force_phys_link_state - Force the physical link state 1879 * @vsi: VSI to force the physical link state to up/down 1880 * @link_up: true/false indicates to set the physical link to up/down 1881 * 1882 * Force the physical link state by getting the current PHY capabilities from 1883 * hardware and setting the PHY config based on the determined capabilities. If 1884 * link changes a link event will be triggered because both the Enable Automatic 1885 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1886 * 1887 * Returns 0 on success, negative on failure 1888 */ 1889 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1890 { 1891 struct ice_aqc_get_phy_caps_data *pcaps; 1892 struct ice_aqc_set_phy_cfg_data *cfg; 1893 struct ice_port_info *pi; 1894 struct device *dev; 1895 int retcode; 1896 1897 if (!vsi || !vsi->port_info || !vsi->back) 1898 return -EINVAL; 1899 if (vsi->type != ICE_VSI_PF) 1900 return 0; 1901 1902 dev = ice_pf_to_dev(vsi->back); 1903 1904 pi = vsi->port_info; 1905 1906 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1907 if (!pcaps) 1908 return -ENOMEM; 1909 1910 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1911 NULL); 1912 if (retcode) { 1913 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1914 vsi->vsi_num, retcode); 1915 retcode = -EIO; 1916 goto out; 1917 } 1918 1919 /* No change in link */ 1920 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1921 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1922 goto out; 1923 1924 /* Use the current user PHY configuration. The current user PHY 1925 * configuration is initialized during probe from PHY capabilities 1926 * software mode, and updated on set PHY configuration. 1927 */ 1928 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1929 if (!cfg) { 1930 retcode = -ENOMEM; 1931 goto out; 1932 } 1933 1934 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1935 if (link_up) 1936 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1937 else 1938 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1939 1940 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1941 if (retcode) { 1942 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1943 vsi->vsi_num, retcode); 1944 retcode = -EIO; 1945 } 1946 1947 kfree(cfg); 1948 out: 1949 kfree(pcaps); 1950 return retcode; 1951 } 1952 1953 /** 1954 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1955 * @pi: port info structure 1956 * 1957 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1958 */ 1959 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1960 { 1961 struct ice_aqc_get_phy_caps_data *pcaps; 1962 struct ice_pf *pf = pi->hw->back; 1963 int err; 1964 1965 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1966 if (!pcaps) 1967 return -ENOMEM; 1968 1969 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1970 pcaps, NULL); 1971 1972 if (err) { 1973 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1974 goto out; 1975 } 1976 1977 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1978 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1979 1980 out: 1981 kfree(pcaps); 1982 return err; 1983 } 1984 1985 /** 1986 * ice_init_link_dflt_override - Initialize link default override 1987 * @pi: port info structure 1988 * 1989 * Initialize link default override and PHY total port shutdown during probe 1990 */ 1991 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1992 { 1993 struct ice_link_default_override_tlv *ldo; 1994 struct ice_pf *pf = pi->hw->back; 1995 1996 ldo = &pf->link_dflt_override; 1997 if (ice_get_link_default_override(ldo, pi)) 1998 return; 1999 2000 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2001 return; 2002 2003 /* Enable Total Port Shutdown (override/replace link-down-on-close 2004 * ethtool private flag) for ports with Port Disable bit set. 2005 */ 2006 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2007 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2008 } 2009 2010 /** 2011 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2012 * @pi: port info structure 2013 * 2014 * If default override is enabled, initialize the user PHY cfg speed and FEC 2015 * settings using the default override mask from the NVM. 2016 * 2017 * The PHY should only be configured with the default override settings the 2018 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2019 * is used to indicate that the user PHY cfg default override is initialized 2020 * and the PHY has not been configured with the default override settings. The 2021 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2022 * configured. 2023 * 2024 * This function should be called only if the FW doesn't support default 2025 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2026 */ 2027 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2028 { 2029 struct ice_link_default_override_tlv *ldo; 2030 struct ice_aqc_set_phy_cfg_data *cfg; 2031 struct ice_phy_info *phy = &pi->phy; 2032 struct ice_pf *pf = pi->hw->back; 2033 2034 ldo = &pf->link_dflt_override; 2035 2036 /* If link default override is enabled, use to mask NVM PHY capabilities 2037 * for speed and FEC default configuration. 2038 */ 2039 cfg = &phy->curr_user_phy_cfg; 2040 2041 if (ldo->phy_type_low || ldo->phy_type_high) { 2042 cfg->phy_type_low = pf->nvm_phy_type_lo & 2043 cpu_to_le64(ldo->phy_type_low); 2044 cfg->phy_type_high = pf->nvm_phy_type_hi & 2045 cpu_to_le64(ldo->phy_type_high); 2046 } 2047 cfg->link_fec_opt = ldo->fec_options; 2048 phy->curr_user_fec_req = ICE_FEC_AUTO; 2049 2050 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2051 } 2052 2053 /** 2054 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2055 * @pi: port info structure 2056 * 2057 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2058 * mode to default. The PHY defaults are from get PHY capabilities topology 2059 * with media so call when media is first available. An error is returned if 2060 * called when media is not available. The PHY initialization completed state is 2061 * set here. 2062 * 2063 * These configurations are used when setting PHY 2064 * configuration. The user PHY configuration is updated on set PHY 2065 * configuration. Returns 0 on success, negative on failure 2066 */ 2067 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2068 { 2069 struct ice_aqc_get_phy_caps_data *pcaps; 2070 struct ice_phy_info *phy = &pi->phy; 2071 struct ice_pf *pf = pi->hw->back; 2072 int err; 2073 2074 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2075 return -EIO; 2076 2077 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2078 if (!pcaps) 2079 return -ENOMEM; 2080 2081 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2082 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2083 pcaps, NULL); 2084 else 2085 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2086 pcaps, NULL); 2087 if (err) { 2088 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2089 goto err_out; 2090 } 2091 2092 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2093 2094 /* check if lenient mode is supported and enabled */ 2095 if (ice_fw_supports_link_override(pi->hw) && 2096 !(pcaps->module_compliance_enforcement & 2097 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2098 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2099 2100 /* if the FW supports default PHY configuration mode, then the driver 2101 * does not have to apply link override settings. If not, 2102 * initialize user PHY configuration with link override values 2103 */ 2104 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2105 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2106 ice_init_phy_cfg_dflt_override(pi); 2107 goto out; 2108 } 2109 } 2110 2111 /* if link default override is not enabled, set user flow control and 2112 * FEC settings based on what get_phy_caps returned 2113 */ 2114 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2115 pcaps->link_fec_options); 2116 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2117 2118 out: 2119 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2120 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2121 err_out: 2122 kfree(pcaps); 2123 return err; 2124 } 2125 2126 /** 2127 * ice_configure_phy - configure PHY 2128 * @vsi: VSI of PHY 2129 * 2130 * Set the PHY configuration. If the current PHY configuration is the same as 2131 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2132 * configure the based get PHY capabilities for topology with media. 2133 */ 2134 static int ice_configure_phy(struct ice_vsi *vsi) 2135 { 2136 struct device *dev = ice_pf_to_dev(vsi->back); 2137 struct ice_port_info *pi = vsi->port_info; 2138 struct ice_aqc_get_phy_caps_data *pcaps; 2139 struct ice_aqc_set_phy_cfg_data *cfg; 2140 struct ice_phy_info *phy = &pi->phy; 2141 struct ice_pf *pf = vsi->back; 2142 int err; 2143 2144 /* Ensure we have media as we cannot configure a medialess port */ 2145 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2146 return -ENOMEDIUM; 2147 2148 ice_print_topo_conflict(vsi); 2149 2150 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2151 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2152 return -EPERM; 2153 2154 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2155 return ice_force_phys_link_state(vsi, true); 2156 2157 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2158 if (!pcaps) 2159 return -ENOMEM; 2160 2161 /* Get current PHY config */ 2162 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2163 NULL); 2164 if (err) { 2165 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2166 vsi->vsi_num, err); 2167 goto done; 2168 } 2169 2170 /* If PHY enable link is configured and configuration has not changed, 2171 * there's nothing to do 2172 */ 2173 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2174 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2175 goto done; 2176 2177 /* Use PHY topology as baseline for configuration */ 2178 memset(pcaps, 0, sizeof(*pcaps)); 2179 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2180 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2181 pcaps, NULL); 2182 else 2183 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2184 pcaps, NULL); 2185 if (err) { 2186 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2187 vsi->vsi_num, err); 2188 goto done; 2189 } 2190 2191 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2192 if (!cfg) { 2193 err = -ENOMEM; 2194 goto done; 2195 } 2196 2197 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2198 2199 /* Speed - If default override pending, use curr_user_phy_cfg set in 2200 * ice_init_phy_user_cfg_ldo. 2201 */ 2202 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2203 vsi->back->state)) { 2204 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2205 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2206 } else { 2207 u64 phy_low = 0, phy_high = 0; 2208 2209 ice_update_phy_type(&phy_low, &phy_high, 2210 pi->phy.curr_user_speed_req); 2211 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2212 cfg->phy_type_high = pcaps->phy_type_high & 2213 cpu_to_le64(phy_high); 2214 } 2215 2216 /* Can't provide what was requested; use PHY capabilities */ 2217 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2218 cfg->phy_type_low = pcaps->phy_type_low; 2219 cfg->phy_type_high = pcaps->phy_type_high; 2220 } 2221 2222 /* FEC */ 2223 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2224 2225 /* Can't provide what was requested; use PHY capabilities */ 2226 if (cfg->link_fec_opt != 2227 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2228 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2229 cfg->link_fec_opt = pcaps->link_fec_options; 2230 } 2231 2232 /* Flow Control - always supported; no need to check against 2233 * capabilities 2234 */ 2235 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2236 2237 /* Enable link and link update */ 2238 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2239 2240 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2241 if (err) 2242 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2243 vsi->vsi_num, err); 2244 2245 kfree(cfg); 2246 done: 2247 kfree(pcaps); 2248 return err; 2249 } 2250 2251 /** 2252 * ice_check_media_subtask - Check for media 2253 * @pf: pointer to PF struct 2254 * 2255 * If media is available, then initialize PHY user configuration if it is not 2256 * been, and configure the PHY if the interface is up. 2257 */ 2258 static void ice_check_media_subtask(struct ice_pf *pf) 2259 { 2260 struct ice_port_info *pi; 2261 struct ice_vsi *vsi; 2262 int err; 2263 2264 /* No need to check for media if it's already present */ 2265 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2266 return; 2267 2268 vsi = ice_get_main_vsi(pf); 2269 if (!vsi) 2270 return; 2271 2272 /* Refresh link info and check if media is present */ 2273 pi = vsi->port_info; 2274 err = ice_update_link_info(pi); 2275 if (err) 2276 return; 2277 2278 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2279 2280 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2281 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2282 ice_init_phy_user_cfg(pi); 2283 2284 /* PHY settings are reset on media insertion, reconfigure 2285 * PHY to preserve settings. 2286 */ 2287 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2288 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2289 return; 2290 2291 err = ice_configure_phy(vsi); 2292 if (!err) 2293 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2294 2295 /* A Link Status Event will be generated; the event handler 2296 * will complete bringing the interface up 2297 */ 2298 } 2299 } 2300 2301 /** 2302 * ice_service_task - manage and run subtasks 2303 * @work: pointer to work_struct contained by the PF struct 2304 */ 2305 static void ice_service_task(struct work_struct *work) 2306 { 2307 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2308 unsigned long start_time = jiffies; 2309 2310 /* subtasks */ 2311 2312 /* process reset requests first */ 2313 ice_reset_subtask(pf); 2314 2315 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2316 if (ice_is_reset_in_progress(pf->state) || 2317 test_bit(ICE_SUSPENDED, pf->state) || 2318 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2319 ice_service_task_complete(pf); 2320 return; 2321 } 2322 2323 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2324 struct iidc_event *event; 2325 2326 event = kzalloc(sizeof(*event), GFP_KERNEL); 2327 if (event) { 2328 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2329 /* report the entire OICR value to AUX driver */ 2330 swap(event->reg, pf->oicr_err_reg); 2331 ice_send_event_to_aux(pf, event); 2332 kfree(event); 2333 } 2334 } 2335 2336 /* unplug aux dev per request, if an unplug request came in 2337 * while processing a plug request, this will handle it 2338 */ 2339 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2340 ice_unplug_aux_dev(pf); 2341 2342 /* Plug aux device per request */ 2343 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2344 ice_plug_aux_dev(pf); 2345 2346 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2347 struct iidc_event *event; 2348 2349 event = kzalloc(sizeof(*event), GFP_KERNEL); 2350 if (event) { 2351 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2352 ice_send_event_to_aux(pf, event); 2353 kfree(event); 2354 } 2355 } 2356 2357 ice_clean_adminq_subtask(pf); 2358 ice_check_media_subtask(pf); 2359 ice_check_for_hang_subtask(pf); 2360 ice_sync_fltr_subtask(pf); 2361 ice_handle_mdd_event(pf); 2362 ice_watchdog_subtask(pf); 2363 2364 if (ice_is_safe_mode(pf)) { 2365 ice_service_task_complete(pf); 2366 return; 2367 } 2368 2369 ice_process_vflr_event(pf); 2370 ice_clean_mailboxq_subtask(pf); 2371 ice_clean_sbq_subtask(pf); 2372 ice_sync_arfs_fltrs(pf); 2373 ice_flush_fdir_ctx(pf); 2374 2375 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2376 ice_service_task_complete(pf); 2377 2378 /* If the tasks have taken longer than one service timer period 2379 * or there is more work to be done, reset the service timer to 2380 * schedule the service task now. 2381 */ 2382 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2383 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2384 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2385 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2386 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2387 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2388 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2389 mod_timer(&pf->serv_tmr, jiffies); 2390 } 2391 2392 /** 2393 * ice_set_ctrlq_len - helper function to set controlq length 2394 * @hw: pointer to the HW instance 2395 */ 2396 static void ice_set_ctrlq_len(struct ice_hw *hw) 2397 { 2398 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2399 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2400 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2401 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2402 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2403 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2404 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2405 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2406 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2407 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2408 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2409 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2410 } 2411 2412 /** 2413 * ice_schedule_reset - schedule a reset 2414 * @pf: board private structure 2415 * @reset: reset being requested 2416 */ 2417 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2418 { 2419 struct device *dev = ice_pf_to_dev(pf); 2420 2421 /* bail out if earlier reset has failed */ 2422 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2423 dev_dbg(dev, "earlier reset has failed\n"); 2424 return -EIO; 2425 } 2426 /* bail if reset/recovery already in progress */ 2427 if (ice_is_reset_in_progress(pf->state)) { 2428 dev_dbg(dev, "Reset already in progress\n"); 2429 return -EBUSY; 2430 } 2431 2432 switch (reset) { 2433 case ICE_RESET_PFR: 2434 set_bit(ICE_PFR_REQ, pf->state); 2435 break; 2436 case ICE_RESET_CORER: 2437 set_bit(ICE_CORER_REQ, pf->state); 2438 break; 2439 case ICE_RESET_GLOBR: 2440 set_bit(ICE_GLOBR_REQ, pf->state); 2441 break; 2442 default: 2443 return -EINVAL; 2444 } 2445 2446 ice_service_task_schedule(pf); 2447 return 0; 2448 } 2449 2450 /** 2451 * ice_irq_affinity_notify - Callback for affinity changes 2452 * @notify: context as to what irq was changed 2453 * @mask: the new affinity mask 2454 * 2455 * This is a callback function used by the irq_set_affinity_notifier function 2456 * so that we may register to receive changes to the irq affinity masks. 2457 */ 2458 static void 2459 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2460 const cpumask_t *mask) 2461 { 2462 struct ice_q_vector *q_vector = 2463 container_of(notify, struct ice_q_vector, affinity_notify); 2464 2465 cpumask_copy(&q_vector->affinity_mask, mask); 2466 } 2467 2468 /** 2469 * ice_irq_affinity_release - Callback for affinity notifier release 2470 * @ref: internal core kernel usage 2471 * 2472 * This is a callback function used by the irq_set_affinity_notifier function 2473 * to inform the current notification subscriber that they will no longer 2474 * receive notifications. 2475 */ 2476 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2477 2478 /** 2479 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2480 * @vsi: the VSI being configured 2481 */ 2482 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2483 { 2484 struct ice_hw *hw = &vsi->back->hw; 2485 int i; 2486 2487 ice_for_each_q_vector(vsi, i) 2488 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2489 2490 ice_flush(hw); 2491 return 0; 2492 } 2493 2494 /** 2495 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2496 * @vsi: the VSI being configured 2497 * @basename: name for the vector 2498 */ 2499 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2500 { 2501 int q_vectors = vsi->num_q_vectors; 2502 struct ice_pf *pf = vsi->back; 2503 struct device *dev; 2504 int rx_int_idx = 0; 2505 int tx_int_idx = 0; 2506 int vector, err; 2507 int irq_num; 2508 2509 dev = ice_pf_to_dev(pf); 2510 for (vector = 0; vector < q_vectors; vector++) { 2511 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2512 2513 irq_num = q_vector->irq.virq; 2514 2515 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2516 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2517 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2518 tx_int_idx++; 2519 } else if (q_vector->rx.rx_ring) { 2520 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2521 "%s-%s-%d", basename, "rx", rx_int_idx++); 2522 } else if (q_vector->tx.tx_ring) { 2523 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2524 "%s-%s-%d", basename, "tx", tx_int_idx++); 2525 } else { 2526 /* skip this unused q_vector */ 2527 continue; 2528 } 2529 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2530 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2531 IRQF_SHARED, q_vector->name, 2532 q_vector); 2533 else 2534 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2535 0, q_vector->name, q_vector); 2536 if (err) { 2537 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2538 err); 2539 goto free_q_irqs; 2540 } 2541 2542 /* register for affinity change notifications */ 2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2544 struct irq_affinity_notify *affinity_notify; 2545 2546 affinity_notify = &q_vector->affinity_notify; 2547 affinity_notify->notify = ice_irq_affinity_notify; 2548 affinity_notify->release = ice_irq_affinity_release; 2549 irq_set_affinity_notifier(irq_num, affinity_notify); 2550 } 2551 2552 /* assign the mask for this irq */ 2553 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2554 } 2555 2556 err = ice_set_cpu_rx_rmap(vsi); 2557 if (err) { 2558 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2559 vsi->vsi_num, ERR_PTR(err)); 2560 goto free_q_irqs; 2561 } 2562 2563 vsi->irqs_ready = true; 2564 return 0; 2565 2566 free_q_irqs: 2567 while (vector--) { 2568 irq_num = vsi->q_vectors[vector]->irq.virq; 2569 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2570 irq_set_affinity_notifier(irq_num, NULL); 2571 irq_set_affinity_hint(irq_num, NULL); 2572 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2573 } 2574 return err; 2575 } 2576 2577 /** 2578 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2579 * @vsi: VSI to setup Tx rings used by XDP 2580 * 2581 * Return 0 on success and negative value on error 2582 */ 2583 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2584 { 2585 struct device *dev = ice_pf_to_dev(vsi->back); 2586 struct ice_tx_desc *tx_desc; 2587 int i, j; 2588 2589 ice_for_each_xdp_txq(vsi, i) { 2590 u16 xdp_q_idx = vsi->alloc_txq + i; 2591 struct ice_ring_stats *ring_stats; 2592 struct ice_tx_ring *xdp_ring; 2593 2594 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2595 if (!xdp_ring) 2596 goto free_xdp_rings; 2597 2598 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2599 if (!ring_stats) { 2600 ice_free_tx_ring(xdp_ring); 2601 goto free_xdp_rings; 2602 } 2603 2604 xdp_ring->ring_stats = ring_stats; 2605 xdp_ring->q_index = xdp_q_idx; 2606 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2607 xdp_ring->vsi = vsi; 2608 xdp_ring->netdev = NULL; 2609 xdp_ring->dev = dev; 2610 xdp_ring->count = vsi->num_tx_desc; 2611 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2612 if (ice_setup_tx_ring(xdp_ring)) 2613 goto free_xdp_rings; 2614 ice_set_ring_xdp(xdp_ring); 2615 spin_lock_init(&xdp_ring->tx_lock); 2616 for (j = 0; j < xdp_ring->count; j++) { 2617 tx_desc = ICE_TX_DESC(xdp_ring, j); 2618 tx_desc->cmd_type_offset_bsz = 0; 2619 } 2620 } 2621 2622 return 0; 2623 2624 free_xdp_rings: 2625 for (; i >= 0; i--) { 2626 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2627 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2628 vsi->xdp_rings[i]->ring_stats = NULL; 2629 ice_free_tx_ring(vsi->xdp_rings[i]); 2630 } 2631 } 2632 return -ENOMEM; 2633 } 2634 2635 /** 2636 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2637 * @vsi: VSI to set the bpf prog on 2638 * @prog: the bpf prog pointer 2639 */ 2640 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2641 { 2642 struct bpf_prog *old_prog; 2643 int i; 2644 2645 old_prog = xchg(&vsi->xdp_prog, prog); 2646 ice_for_each_rxq(vsi, i) 2647 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2648 2649 if (old_prog) 2650 bpf_prog_put(old_prog); 2651 } 2652 2653 /** 2654 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2655 * @vsi: VSI to bring up Tx rings used by XDP 2656 * @prog: bpf program that will be assigned to VSI 2657 * @cfg_type: create from scratch or restore the existing configuration 2658 * 2659 * Return 0 on success and negative value on error 2660 */ 2661 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2662 enum ice_xdp_cfg cfg_type) 2663 { 2664 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2665 int xdp_rings_rem = vsi->num_xdp_txq; 2666 struct ice_pf *pf = vsi->back; 2667 struct ice_qs_cfg xdp_qs_cfg = { 2668 .qs_mutex = &pf->avail_q_mutex, 2669 .pf_map = pf->avail_txqs, 2670 .pf_map_size = pf->max_pf_txqs, 2671 .q_count = vsi->num_xdp_txq, 2672 .scatter_count = ICE_MAX_SCATTER_TXQS, 2673 .vsi_map = vsi->txq_map, 2674 .vsi_map_offset = vsi->alloc_txq, 2675 .mapping_mode = ICE_VSI_MAP_CONTIG 2676 }; 2677 struct device *dev; 2678 int i, v_idx; 2679 int status; 2680 2681 dev = ice_pf_to_dev(pf); 2682 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2683 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2684 if (!vsi->xdp_rings) 2685 return -ENOMEM; 2686 2687 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2688 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2689 goto err_map_xdp; 2690 2691 if (static_key_enabled(&ice_xdp_locking_key)) 2692 netdev_warn(vsi->netdev, 2693 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2694 2695 if (ice_xdp_alloc_setup_rings(vsi)) 2696 goto clear_xdp_rings; 2697 2698 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2699 ice_for_each_q_vector(vsi, v_idx) { 2700 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2701 int xdp_rings_per_v, q_id, q_base; 2702 2703 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2704 vsi->num_q_vectors - v_idx); 2705 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2706 2707 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2708 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2709 2710 xdp_ring->q_vector = q_vector; 2711 xdp_ring->next = q_vector->tx.tx_ring; 2712 q_vector->tx.tx_ring = xdp_ring; 2713 } 2714 xdp_rings_rem -= xdp_rings_per_v; 2715 } 2716 2717 ice_for_each_rxq(vsi, i) { 2718 if (static_key_enabled(&ice_xdp_locking_key)) { 2719 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2720 } else { 2721 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2722 struct ice_tx_ring *ring; 2723 2724 ice_for_each_tx_ring(ring, q_vector->tx) { 2725 if (ice_ring_is_xdp(ring)) { 2726 vsi->rx_rings[i]->xdp_ring = ring; 2727 break; 2728 } 2729 } 2730 } 2731 ice_tx_xsk_pool(vsi, i); 2732 } 2733 2734 /* omit the scheduler update if in reset path; XDP queues will be 2735 * taken into account at the end of ice_vsi_rebuild, where 2736 * ice_cfg_vsi_lan is being called 2737 */ 2738 if (cfg_type == ICE_XDP_CFG_PART) 2739 return 0; 2740 2741 /* tell the Tx scheduler that right now we have 2742 * additional queues 2743 */ 2744 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2745 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2746 2747 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2748 max_txqs); 2749 if (status) { 2750 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2751 status); 2752 goto clear_xdp_rings; 2753 } 2754 2755 /* assign the prog only when it's not already present on VSI; 2756 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2757 * VSI rebuild that happens under ethtool -L can expose us to 2758 * the bpf_prog refcount issues as we would be swapping same 2759 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2760 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2761 * this is not harmful as dev_xdp_install bumps the refcount 2762 * before calling the op exposed by the driver; 2763 */ 2764 if (!ice_is_xdp_ena_vsi(vsi)) 2765 ice_vsi_assign_bpf_prog(vsi, prog); 2766 2767 return 0; 2768 clear_xdp_rings: 2769 ice_for_each_xdp_txq(vsi, i) 2770 if (vsi->xdp_rings[i]) { 2771 kfree_rcu(vsi->xdp_rings[i], rcu); 2772 vsi->xdp_rings[i] = NULL; 2773 } 2774 2775 err_map_xdp: 2776 mutex_lock(&pf->avail_q_mutex); 2777 ice_for_each_xdp_txq(vsi, i) { 2778 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2779 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2780 } 2781 mutex_unlock(&pf->avail_q_mutex); 2782 2783 devm_kfree(dev, vsi->xdp_rings); 2784 return -ENOMEM; 2785 } 2786 2787 /** 2788 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2789 * @vsi: VSI to remove XDP rings 2790 * @cfg_type: disable XDP permanently or allow it to be restored later 2791 * 2792 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2793 * resources 2794 */ 2795 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2796 { 2797 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2798 struct ice_pf *pf = vsi->back; 2799 int i, v_idx; 2800 2801 /* q_vectors are freed in reset path so there's no point in detaching 2802 * rings 2803 */ 2804 if (cfg_type == ICE_XDP_CFG_PART) 2805 goto free_qmap; 2806 2807 ice_for_each_q_vector(vsi, v_idx) { 2808 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2809 struct ice_tx_ring *ring; 2810 2811 ice_for_each_tx_ring(ring, q_vector->tx) 2812 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2813 break; 2814 2815 /* restore the value of last node prior to XDP setup */ 2816 q_vector->tx.tx_ring = ring; 2817 } 2818 2819 free_qmap: 2820 mutex_lock(&pf->avail_q_mutex); 2821 ice_for_each_xdp_txq(vsi, i) { 2822 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2823 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2824 } 2825 mutex_unlock(&pf->avail_q_mutex); 2826 2827 ice_for_each_xdp_txq(vsi, i) 2828 if (vsi->xdp_rings[i]) { 2829 if (vsi->xdp_rings[i]->desc) { 2830 synchronize_rcu(); 2831 ice_free_tx_ring(vsi->xdp_rings[i]); 2832 } 2833 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2834 vsi->xdp_rings[i]->ring_stats = NULL; 2835 kfree_rcu(vsi->xdp_rings[i], rcu); 2836 vsi->xdp_rings[i] = NULL; 2837 } 2838 2839 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2840 vsi->xdp_rings = NULL; 2841 2842 if (static_key_enabled(&ice_xdp_locking_key)) 2843 static_branch_dec(&ice_xdp_locking_key); 2844 2845 if (cfg_type == ICE_XDP_CFG_PART) 2846 return 0; 2847 2848 ice_vsi_assign_bpf_prog(vsi, NULL); 2849 2850 /* notify Tx scheduler that we destroyed XDP queues and bring 2851 * back the old number of child nodes 2852 */ 2853 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2854 max_txqs[i] = vsi->num_txq; 2855 2856 /* change number of XDP Tx queues to 0 */ 2857 vsi->num_xdp_txq = 0; 2858 2859 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2860 max_txqs); 2861 } 2862 2863 /** 2864 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2865 * @vsi: VSI to schedule napi on 2866 */ 2867 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2868 { 2869 int i; 2870 2871 ice_for_each_rxq(vsi, i) { 2872 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2873 2874 if (rx_ring->xsk_pool) 2875 napi_schedule(&rx_ring->q_vector->napi); 2876 } 2877 } 2878 2879 /** 2880 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2881 * @vsi: VSI to determine the count of XDP Tx qs 2882 * 2883 * returns 0 if Tx qs count is higher than at least half of CPU count, 2884 * -ENOMEM otherwise 2885 */ 2886 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2887 { 2888 u16 avail = ice_get_avail_txq_count(vsi->back); 2889 u16 cpus = num_possible_cpus(); 2890 2891 if (avail < cpus / 2) 2892 return -ENOMEM; 2893 2894 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2895 2896 if (vsi->num_xdp_txq < cpus) 2897 static_branch_inc(&ice_xdp_locking_key); 2898 2899 return 0; 2900 } 2901 2902 /** 2903 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2904 * @vsi: Pointer to VSI structure 2905 */ 2906 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2907 { 2908 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2909 return ICE_RXBUF_1664; 2910 else 2911 return ICE_RXBUF_3072; 2912 } 2913 2914 /** 2915 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2916 * @vsi: VSI to setup XDP for 2917 * @prog: XDP program 2918 * @extack: netlink extended ack 2919 */ 2920 static int 2921 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2922 struct netlink_ext_ack *extack) 2923 { 2924 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2925 int ret = 0, xdp_ring_err = 0; 2926 bool if_running; 2927 2928 if (prog && !prog->aux->xdp_has_frags) { 2929 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2930 NL_SET_ERR_MSG_MOD(extack, 2931 "MTU is too large for linear frames and XDP prog does not support frags"); 2932 return -EOPNOTSUPP; 2933 } 2934 } 2935 2936 /* hot swap progs and avoid toggling link */ 2937 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 2938 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 2939 ice_vsi_assign_bpf_prog(vsi, prog); 2940 return 0; 2941 } 2942 2943 if_running = netif_running(vsi->netdev) && 2944 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 2945 2946 /* need to stop netdev while setting up the program for Rx rings */ 2947 if (if_running) { 2948 ret = ice_down(vsi); 2949 if (ret) { 2950 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2951 return ret; 2952 } 2953 } 2954 2955 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2956 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2957 if (xdp_ring_err) { 2958 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2959 } else { 2960 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 2961 ICE_XDP_CFG_FULL); 2962 if (xdp_ring_err) 2963 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2964 } 2965 xdp_features_set_redirect_target(vsi->netdev, true); 2966 /* reallocate Rx queues that are used for zero-copy */ 2967 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2968 if (xdp_ring_err) 2969 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2970 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2971 xdp_features_clear_redirect_target(vsi->netdev); 2972 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 2973 if (xdp_ring_err) 2974 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2975 /* reallocate Rx queues that were used for zero-copy */ 2976 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2977 if (xdp_ring_err) 2978 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2979 } 2980 2981 if (if_running) 2982 ret = ice_up(vsi); 2983 2984 if (!ret && prog) 2985 ice_vsi_rx_napi_schedule(vsi); 2986 2987 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2988 } 2989 2990 /** 2991 * ice_xdp_safe_mode - XDP handler for safe mode 2992 * @dev: netdevice 2993 * @xdp: XDP command 2994 */ 2995 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2996 struct netdev_bpf *xdp) 2997 { 2998 NL_SET_ERR_MSG_MOD(xdp->extack, 2999 "Please provide working DDP firmware package in order to use XDP\n" 3000 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3001 return -EOPNOTSUPP; 3002 } 3003 3004 /** 3005 * ice_xdp - implements XDP handler 3006 * @dev: netdevice 3007 * @xdp: XDP command 3008 */ 3009 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3010 { 3011 struct ice_netdev_priv *np = netdev_priv(dev); 3012 struct ice_vsi *vsi = np->vsi; 3013 int ret; 3014 3015 if (vsi->type != ICE_VSI_PF) { 3016 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3017 return -EINVAL; 3018 } 3019 3020 mutex_lock(&vsi->xdp_state_lock); 3021 3022 switch (xdp->command) { 3023 case XDP_SETUP_PROG: 3024 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3025 break; 3026 case XDP_SETUP_XSK_POOL: 3027 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3028 break; 3029 default: 3030 ret = -EINVAL; 3031 } 3032 3033 mutex_unlock(&vsi->xdp_state_lock); 3034 return ret; 3035 } 3036 3037 /** 3038 * ice_ena_misc_vector - enable the non-queue interrupts 3039 * @pf: board private structure 3040 */ 3041 static void ice_ena_misc_vector(struct ice_pf *pf) 3042 { 3043 struct ice_hw *hw = &pf->hw; 3044 u32 val; 3045 3046 /* Disable anti-spoof detection interrupt to prevent spurious event 3047 * interrupts during a function reset. Anti-spoof functionally is 3048 * still supported. 3049 */ 3050 val = rd32(hw, GL_MDCK_TX_TDPU); 3051 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3052 wr32(hw, GL_MDCK_TX_TDPU, val); 3053 3054 /* clear things first */ 3055 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3056 rd32(hw, PFINT_OICR); /* read to clear */ 3057 3058 val = (PFINT_OICR_ECC_ERR_M | 3059 PFINT_OICR_MAL_DETECT_M | 3060 PFINT_OICR_GRST_M | 3061 PFINT_OICR_PCI_EXCEPTION_M | 3062 PFINT_OICR_VFLR_M | 3063 PFINT_OICR_HMC_ERR_M | 3064 PFINT_OICR_PE_PUSH_M | 3065 PFINT_OICR_PE_CRITERR_M); 3066 3067 wr32(hw, PFINT_OICR_ENA, val); 3068 3069 /* SW_ITR_IDX = 0, but don't change INTENA */ 3070 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3071 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3072 } 3073 3074 /** 3075 * ice_misc_intr - misc interrupt handler 3076 * @irq: interrupt number 3077 * @data: pointer to a q_vector 3078 */ 3079 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3080 { 3081 struct ice_pf *pf = (struct ice_pf *)data; 3082 struct ice_hw *hw = &pf->hw; 3083 struct device *dev; 3084 u32 oicr, ena_mask; 3085 3086 dev = ice_pf_to_dev(pf); 3087 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3088 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3089 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3090 3091 oicr = rd32(hw, PFINT_OICR); 3092 ena_mask = rd32(hw, PFINT_OICR_ENA); 3093 3094 if (oicr & PFINT_OICR_SWINT_M) { 3095 ena_mask &= ~PFINT_OICR_SWINT_M; 3096 pf->sw_int_count++; 3097 } 3098 3099 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3100 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3101 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3102 } 3103 if (oicr & PFINT_OICR_VFLR_M) { 3104 /* disable any further VFLR event notifications */ 3105 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3106 u32 reg = rd32(hw, PFINT_OICR_ENA); 3107 3108 reg &= ~PFINT_OICR_VFLR_M; 3109 wr32(hw, PFINT_OICR_ENA, reg); 3110 } else { 3111 ena_mask &= ~PFINT_OICR_VFLR_M; 3112 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3113 } 3114 } 3115 3116 if (oicr & PFINT_OICR_GRST_M) { 3117 u32 reset; 3118 3119 /* we have a reset warning */ 3120 ena_mask &= ~PFINT_OICR_GRST_M; 3121 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3122 GLGEN_RSTAT_RESET_TYPE_S; 3123 3124 if (reset == ICE_RESET_CORER) 3125 pf->corer_count++; 3126 else if (reset == ICE_RESET_GLOBR) 3127 pf->globr_count++; 3128 else if (reset == ICE_RESET_EMPR) 3129 pf->empr_count++; 3130 else 3131 dev_dbg(dev, "Invalid reset type %d\n", reset); 3132 3133 /* If a reset cycle isn't already in progress, we set a bit in 3134 * pf->state so that the service task can start a reset/rebuild. 3135 */ 3136 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3137 if (reset == ICE_RESET_CORER) 3138 set_bit(ICE_CORER_RECV, pf->state); 3139 else if (reset == ICE_RESET_GLOBR) 3140 set_bit(ICE_GLOBR_RECV, pf->state); 3141 else 3142 set_bit(ICE_EMPR_RECV, pf->state); 3143 3144 /* There are couple of different bits at play here. 3145 * hw->reset_ongoing indicates whether the hardware is 3146 * in reset. This is set to true when a reset interrupt 3147 * is received and set back to false after the driver 3148 * has determined that the hardware is out of reset. 3149 * 3150 * ICE_RESET_OICR_RECV in pf->state indicates 3151 * that a post reset rebuild is required before the 3152 * driver is operational again. This is set above. 3153 * 3154 * As this is the start of the reset/rebuild cycle, set 3155 * both to indicate that. 3156 */ 3157 hw->reset_ongoing = true; 3158 } 3159 } 3160 3161 if (oicr & PFINT_OICR_TSYN_TX_M) { 3162 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3163 if (!hw->reset_ongoing) 3164 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3165 } 3166 3167 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3168 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3169 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3170 3171 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3172 3173 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3174 /* Save EVENTs from GLTSYN register */ 3175 pf->ptp.ext_ts_irq |= gltsyn_stat & 3176 (GLTSYN_STAT_EVENT0_M | 3177 GLTSYN_STAT_EVENT1_M | 3178 GLTSYN_STAT_EVENT2_M); 3179 3180 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3181 } 3182 } 3183 3184 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3185 if (oicr & ICE_AUX_CRIT_ERR) { 3186 pf->oicr_err_reg |= oicr; 3187 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3188 ena_mask &= ~ICE_AUX_CRIT_ERR; 3189 } 3190 3191 /* Report any remaining unexpected interrupts */ 3192 oicr &= ena_mask; 3193 if (oicr) { 3194 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3195 /* If a critical error is pending there is no choice but to 3196 * reset the device. 3197 */ 3198 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3199 PFINT_OICR_ECC_ERR_M)) { 3200 set_bit(ICE_PFR_REQ, pf->state); 3201 } 3202 } 3203 3204 return IRQ_WAKE_THREAD; 3205 } 3206 3207 /** 3208 * ice_misc_intr_thread_fn - misc interrupt thread function 3209 * @irq: interrupt number 3210 * @data: pointer to a q_vector 3211 */ 3212 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3213 { 3214 struct ice_pf *pf = data; 3215 struct ice_hw *hw; 3216 3217 hw = &pf->hw; 3218 3219 if (ice_is_reset_in_progress(pf->state)) 3220 return IRQ_HANDLED; 3221 3222 ice_service_task_schedule(pf); 3223 3224 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3225 ice_ptp_extts_event(pf); 3226 3227 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3228 /* Process outstanding Tx timestamps. If there is more work, 3229 * re-arm the interrupt to trigger again. 3230 */ 3231 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3232 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3233 ice_flush(hw); 3234 } 3235 } 3236 3237 ice_irq_dynamic_ena(hw, NULL, NULL); 3238 3239 return IRQ_HANDLED; 3240 } 3241 3242 /** 3243 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3244 * @hw: pointer to HW structure 3245 */ 3246 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3247 { 3248 /* disable Admin queue Interrupt causes */ 3249 wr32(hw, PFINT_FW_CTL, 3250 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3251 3252 /* disable Mailbox queue Interrupt causes */ 3253 wr32(hw, PFINT_MBX_CTL, 3254 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3255 3256 wr32(hw, PFINT_SB_CTL, 3257 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3258 3259 /* disable Control queue Interrupt causes */ 3260 wr32(hw, PFINT_OICR_CTL, 3261 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3262 3263 ice_flush(hw); 3264 } 3265 3266 /** 3267 * ice_free_irq_msix_misc - Unroll misc vector setup 3268 * @pf: board private structure 3269 */ 3270 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3271 { 3272 int misc_irq_num = pf->oicr_irq.virq; 3273 struct ice_hw *hw = &pf->hw; 3274 3275 ice_dis_ctrlq_interrupts(hw); 3276 3277 /* disable OICR interrupt */ 3278 wr32(hw, PFINT_OICR_ENA, 0); 3279 ice_flush(hw); 3280 3281 synchronize_irq(misc_irq_num); 3282 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3283 3284 ice_free_irq(pf, pf->oicr_irq); 3285 } 3286 3287 /** 3288 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3289 * @hw: pointer to HW structure 3290 * @reg_idx: HW vector index to associate the control queue interrupts with 3291 */ 3292 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3293 { 3294 u32 val; 3295 3296 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3297 PFINT_OICR_CTL_CAUSE_ENA_M); 3298 wr32(hw, PFINT_OICR_CTL, val); 3299 3300 /* enable Admin queue Interrupt causes */ 3301 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3302 PFINT_FW_CTL_CAUSE_ENA_M); 3303 wr32(hw, PFINT_FW_CTL, val); 3304 3305 /* enable Mailbox queue Interrupt causes */ 3306 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3307 PFINT_MBX_CTL_CAUSE_ENA_M); 3308 wr32(hw, PFINT_MBX_CTL, val); 3309 3310 /* This enables Sideband queue Interrupt causes */ 3311 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3312 PFINT_SB_CTL_CAUSE_ENA_M); 3313 wr32(hw, PFINT_SB_CTL, val); 3314 3315 ice_flush(hw); 3316 } 3317 3318 /** 3319 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3320 * @pf: board private structure 3321 * 3322 * This sets up the handler for MSIX 0, which is used to manage the 3323 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3324 * when in MSI or Legacy interrupt mode. 3325 */ 3326 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3327 { 3328 struct device *dev = ice_pf_to_dev(pf); 3329 struct ice_hw *hw = &pf->hw; 3330 struct msi_map oicr_irq; 3331 int err = 0; 3332 3333 if (!pf->int_name[0]) 3334 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3335 dev_driver_string(dev), dev_name(dev)); 3336 3337 /* Do not request IRQ but do enable OICR interrupt since settings are 3338 * lost during reset. Note that this function is called only during 3339 * rebuild path and not while reset is in progress. 3340 */ 3341 if (ice_is_reset_in_progress(pf->state)) 3342 goto skip_req_irq; 3343 3344 /* reserve one vector in irq_tracker for misc interrupts */ 3345 oicr_irq = ice_alloc_irq(pf, false); 3346 if (oicr_irq.index < 0) 3347 return oicr_irq.index; 3348 3349 pf->oicr_irq = oicr_irq; 3350 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3351 ice_misc_intr_thread_fn, 0, 3352 pf->int_name, pf); 3353 if (err) { 3354 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3355 pf->int_name, err); 3356 ice_free_irq(pf, pf->oicr_irq); 3357 return err; 3358 } 3359 3360 skip_req_irq: 3361 ice_ena_misc_vector(pf); 3362 3363 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3364 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3365 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3366 3367 ice_flush(hw); 3368 ice_irq_dynamic_ena(hw, NULL, NULL); 3369 3370 return 0; 3371 } 3372 3373 /** 3374 * ice_napi_add - register NAPI handler for the VSI 3375 * @vsi: VSI for which NAPI handler is to be registered 3376 * 3377 * This function is only called in the driver's load path. Registering the NAPI 3378 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3379 * reset/rebuild, etc.) 3380 */ 3381 static void ice_napi_add(struct ice_vsi *vsi) 3382 { 3383 int v_idx; 3384 3385 if (!vsi->netdev) 3386 return; 3387 3388 ice_for_each_q_vector(vsi, v_idx) 3389 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3390 ice_napi_poll); 3391 } 3392 3393 /** 3394 * ice_set_ops - set netdev and ethtools ops for the given netdev 3395 * @vsi: the VSI associated with the new netdev 3396 */ 3397 static void ice_set_ops(struct ice_vsi *vsi) 3398 { 3399 struct net_device *netdev = vsi->netdev; 3400 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3401 3402 if (ice_is_safe_mode(pf)) { 3403 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3404 ice_set_ethtool_safe_mode_ops(netdev); 3405 return; 3406 } 3407 3408 netdev->netdev_ops = &ice_netdev_ops; 3409 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3410 ice_set_ethtool_ops(netdev); 3411 3412 if (vsi->type != ICE_VSI_PF) 3413 return; 3414 3415 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3416 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3417 NETDEV_XDP_ACT_RX_SG; 3418 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3419 } 3420 3421 /** 3422 * ice_set_netdev_features - set features for the given netdev 3423 * @netdev: netdev instance 3424 */ 3425 static void ice_set_netdev_features(struct net_device *netdev) 3426 { 3427 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3428 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3429 netdev_features_t csumo_features; 3430 netdev_features_t vlano_features; 3431 netdev_features_t dflt_features; 3432 netdev_features_t tso_features; 3433 3434 if (ice_is_safe_mode(pf)) { 3435 /* safe mode */ 3436 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3437 netdev->hw_features = netdev->features; 3438 return; 3439 } 3440 3441 dflt_features = NETIF_F_SG | 3442 NETIF_F_HIGHDMA | 3443 NETIF_F_NTUPLE | 3444 NETIF_F_RXHASH; 3445 3446 csumo_features = NETIF_F_RXCSUM | 3447 NETIF_F_IP_CSUM | 3448 NETIF_F_SCTP_CRC | 3449 NETIF_F_IPV6_CSUM; 3450 3451 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3452 NETIF_F_HW_VLAN_CTAG_TX | 3453 NETIF_F_HW_VLAN_CTAG_RX; 3454 3455 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3456 if (is_dvm_ena) 3457 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3458 3459 tso_features = NETIF_F_TSO | 3460 NETIF_F_TSO_ECN | 3461 NETIF_F_TSO6 | 3462 NETIF_F_GSO_GRE | 3463 NETIF_F_GSO_UDP_TUNNEL | 3464 NETIF_F_GSO_GRE_CSUM | 3465 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3466 NETIF_F_GSO_PARTIAL | 3467 NETIF_F_GSO_IPXIP4 | 3468 NETIF_F_GSO_IPXIP6 | 3469 NETIF_F_GSO_UDP_L4; 3470 3471 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3472 NETIF_F_GSO_GRE_CSUM; 3473 /* set features that user can change */ 3474 netdev->hw_features = dflt_features | csumo_features | 3475 vlano_features | tso_features; 3476 3477 /* add support for HW_CSUM on packets with MPLS header */ 3478 netdev->mpls_features = NETIF_F_HW_CSUM | 3479 NETIF_F_TSO | 3480 NETIF_F_TSO6; 3481 3482 /* enable features */ 3483 netdev->features |= netdev->hw_features; 3484 3485 netdev->hw_features |= NETIF_F_HW_TC; 3486 netdev->hw_features |= NETIF_F_LOOPBACK; 3487 3488 /* encap and VLAN devices inherit default, csumo and tso features */ 3489 netdev->hw_enc_features |= dflt_features | csumo_features | 3490 tso_features; 3491 netdev->vlan_features |= dflt_features | csumo_features | 3492 tso_features; 3493 3494 /* advertise support but don't enable by default since only one type of 3495 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3496 * type turns on the other has to be turned off. This is enforced by the 3497 * ice_fix_features() ndo callback. 3498 */ 3499 if (is_dvm_ena) 3500 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3501 NETIF_F_HW_VLAN_STAG_TX; 3502 3503 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3504 * be changed at runtime 3505 */ 3506 netdev->hw_features |= NETIF_F_RXFCS; 3507 3508 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3509 } 3510 3511 /** 3512 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3513 * @lut: Lookup table 3514 * @rss_table_size: Lookup table size 3515 * @rss_size: Range of queue number for hashing 3516 */ 3517 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3518 { 3519 u16 i; 3520 3521 for (i = 0; i < rss_table_size; i++) 3522 lut[i] = i % rss_size; 3523 } 3524 3525 /** 3526 * ice_pf_vsi_setup - Set up a PF VSI 3527 * @pf: board private structure 3528 * @pi: pointer to the port_info instance 3529 * 3530 * Returns pointer to the successfully allocated VSI software struct 3531 * on success, otherwise returns NULL on failure. 3532 */ 3533 static struct ice_vsi * 3534 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3535 { 3536 struct ice_vsi_cfg_params params = {}; 3537 3538 params.type = ICE_VSI_PF; 3539 params.pi = pi; 3540 params.flags = ICE_VSI_FLAG_INIT; 3541 3542 return ice_vsi_setup(pf, ¶ms); 3543 } 3544 3545 static struct ice_vsi * 3546 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3547 struct ice_channel *ch) 3548 { 3549 struct ice_vsi_cfg_params params = {}; 3550 3551 params.type = ICE_VSI_CHNL; 3552 params.pi = pi; 3553 params.ch = ch; 3554 params.flags = ICE_VSI_FLAG_INIT; 3555 3556 return ice_vsi_setup(pf, ¶ms); 3557 } 3558 3559 /** 3560 * ice_ctrl_vsi_setup - Set up a control VSI 3561 * @pf: board private structure 3562 * @pi: pointer to the port_info instance 3563 * 3564 * Returns pointer to the successfully allocated VSI software struct 3565 * on success, otherwise returns NULL on failure. 3566 */ 3567 static struct ice_vsi * 3568 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3569 { 3570 struct ice_vsi_cfg_params params = {}; 3571 3572 params.type = ICE_VSI_CTRL; 3573 params.pi = pi; 3574 params.flags = ICE_VSI_FLAG_INIT; 3575 3576 return ice_vsi_setup(pf, ¶ms); 3577 } 3578 3579 /** 3580 * ice_lb_vsi_setup - Set up a loopback VSI 3581 * @pf: board private structure 3582 * @pi: pointer to the port_info instance 3583 * 3584 * Returns pointer to the successfully allocated VSI software struct 3585 * on success, otherwise returns NULL on failure. 3586 */ 3587 struct ice_vsi * 3588 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3589 { 3590 struct ice_vsi_cfg_params params = {}; 3591 3592 params.type = ICE_VSI_LB; 3593 params.pi = pi; 3594 params.flags = ICE_VSI_FLAG_INIT; 3595 3596 return ice_vsi_setup(pf, ¶ms); 3597 } 3598 3599 /** 3600 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3601 * @netdev: network interface to be adjusted 3602 * @proto: VLAN TPID 3603 * @vid: VLAN ID to be added 3604 * 3605 * net_device_ops implementation for adding VLAN IDs 3606 */ 3607 static int 3608 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3609 { 3610 struct ice_netdev_priv *np = netdev_priv(netdev); 3611 struct ice_vsi_vlan_ops *vlan_ops; 3612 struct ice_vsi *vsi = np->vsi; 3613 struct ice_vlan vlan; 3614 int ret; 3615 3616 /* VLAN 0 is added by default during load/reset */ 3617 if (!vid) 3618 return 0; 3619 3620 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3621 usleep_range(1000, 2000); 3622 3623 /* Add multicast promisc rule for the VLAN ID to be added if 3624 * all-multicast is currently enabled. 3625 */ 3626 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3627 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3628 ICE_MCAST_VLAN_PROMISC_BITS, 3629 vid); 3630 if (ret) 3631 goto finish; 3632 } 3633 3634 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3635 3636 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3637 * packets aren't pruned by the device's internal switch on Rx 3638 */ 3639 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3640 ret = vlan_ops->add_vlan(vsi, &vlan); 3641 if (ret) 3642 goto finish; 3643 3644 /* If all-multicast is currently enabled and this VLAN ID is only one 3645 * besides VLAN-0 we have to update look-up type of multicast promisc 3646 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3647 */ 3648 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3649 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3650 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3651 ICE_MCAST_PROMISC_BITS, 0); 3652 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3653 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3654 } 3655 3656 finish: 3657 clear_bit(ICE_CFG_BUSY, vsi->state); 3658 3659 return ret; 3660 } 3661 3662 /** 3663 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3664 * @netdev: network interface to be adjusted 3665 * @proto: VLAN TPID 3666 * @vid: VLAN ID to be removed 3667 * 3668 * net_device_ops implementation for removing VLAN IDs 3669 */ 3670 static int 3671 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3672 { 3673 struct ice_netdev_priv *np = netdev_priv(netdev); 3674 struct ice_vsi_vlan_ops *vlan_ops; 3675 struct ice_vsi *vsi = np->vsi; 3676 struct ice_vlan vlan; 3677 int ret; 3678 3679 /* don't allow removal of VLAN 0 */ 3680 if (!vid) 3681 return 0; 3682 3683 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3684 usleep_range(1000, 2000); 3685 3686 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3687 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3688 if (ret) { 3689 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3690 vsi->vsi_num); 3691 vsi->current_netdev_flags |= IFF_ALLMULTI; 3692 } 3693 3694 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3695 3696 /* Make sure VLAN delete is successful before updating VLAN 3697 * information 3698 */ 3699 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3700 ret = vlan_ops->del_vlan(vsi, &vlan); 3701 if (ret) 3702 goto finish; 3703 3704 /* Remove multicast promisc rule for the removed VLAN ID if 3705 * all-multicast is enabled. 3706 */ 3707 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3708 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3709 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3710 3711 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3712 /* Update look-up type of multicast promisc rule for VLAN 0 3713 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3714 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3715 */ 3716 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3717 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3718 ICE_MCAST_VLAN_PROMISC_BITS, 3719 0); 3720 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3721 ICE_MCAST_PROMISC_BITS, 0); 3722 } 3723 } 3724 3725 finish: 3726 clear_bit(ICE_CFG_BUSY, vsi->state); 3727 3728 return ret; 3729 } 3730 3731 /** 3732 * ice_rep_indr_tc_block_unbind 3733 * @cb_priv: indirection block private data 3734 */ 3735 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3736 { 3737 struct ice_indr_block_priv *indr_priv = cb_priv; 3738 3739 list_del(&indr_priv->list); 3740 kfree(indr_priv); 3741 } 3742 3743 /** 3744 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3745 * @vsi: VSI struct which has the netdev 3746 */ 3747 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3748 { 3749 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3750 3751 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3752 ice_rep_indr_tc_block_unbind); 3753 } 3754 3755 /** 3756 * ice_tc_indir_block_register - Register TC indirect block notifications 3757 * @vsi: VSI struct which has the netdev 3758 * 3759 * Returns 0 on success, negative value on failure 3760 */ 3761 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3762 { 3763 struct ice_netdev_priv *np; 3764 3765 if (!vsi || !vsi->netdev) 3766 return -EINVAL; 3767 3768 np = netdev_priv(vsi->netdev); 3769 3770 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3771 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3772 } 3773 3774 /** 3775 * ice_get_avail_q_count - Get count of queues in use 3776 * @pf_qmap: bitmap to get queue use count from 3777 * @lock: pointer to a mutex that protects access to pf_qmap 3778 * @size: size of the bitmap 3779 */ 3780 static u16 3781 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3782 { 3783 unsigned long bit; 3784 u16 count = 0; 3785 3786 mutex_lock(lock); 3787 for_each_clear_bit(bit, pf_qmap, size) 3788 count++; 3789 mutex_unlock(lock); 3790 3791 return count; 3792 } 3793 3794 /** 3795 * ice_get_avail_txq_count - Get count of Tx queues in use 3796 * @pf: pointer to an ice_pf instance 3797 */ 3798 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3799 { 3800 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3801 pf->max_pf_txqs); 3802 } 3803 3804 /** 3805 * ice_get_avail_rxq_count - Get count of Rx queues in use 3806 * @pf: pointer to an ice_pf instance 3807 */ 3808 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3809 { 3810 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3811 pf->max_pf_rxqs); 3812 } 3813 3814 /** 3815 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3816 * @pf: board private structure to initialize 3817 */ 3818 static void ice_deinit_pf(struct ice_pf *pf) 3819 { 3820 ice_service_task_stop(pf); 3821 mutex_destroy(&pf->lag_mutex); 3822 mutex_destroy(&pf->adev_mutex); 3823 mutex_destroy(&pf->sw_mutex); 3824 mutex_destroy(&pf->tc_mutex); 3825 mutex_destroy(&pf->avail_q_mutex); 3826 mutex_destroy(&pf->vfs.table_lock); 3827 3828 if (pf->avail_txqs) { 3829 bitmap_free(pf->avail_txqs); 3830 pf->avail_txqs = NULL; 3831 } 3832 3833 if (pf->avail_rxqs) { 3834 bitmap_free(pf->avail_rxqs); 3835 pf->avail_rxqs = NULL; 3836 } 3837 3838 if (pf->ptp.clock) 3839 ptp_clock_unregister(pf->ptp.clock); 3840 } 3841 3842 /** 3843 * ice_set_pf_caps - set PFs capability flags 3844 * @pf: pointer to the PF instance 3845 */ 3846 static void ice_set_pf_caps(struct ice_pf *pf) 3847 { 3848 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3849 3850 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3851 if (func_caps->common_cap.rdma) 3852 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3853 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3854 if (func_caps->common_cap.dcb) 3855 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3856 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3857 if (func_caps->common_cap.sr_iov_1_1) { 3858 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3859 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3860 ICE_MAX_SRIOV_VFS); 3861 } 3862 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3863 if (func_caps->common_cap.rss_table_size) 3864 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3865 3866 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3867 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3868 u16 unused; 3869 3870 /* ctrl_vsi_idx will be set to a valid value when flow director 3871 * is setup by ice_init_fdir 3872 */ 3873 pf->ctrl_vsi_idx = ICE_NO_VSI; 3874 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3875 /* force guaranteed filter pool for PF */ 3876 ice_alloc_fd_guar_item(&pf->hw, &unused, 3877 func_caps->fd_fltr_guar); 3878 /* force shared filter pool for PF */ 3879 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3880 func_caps->fd_fltr_best_effort); 3881 } 3882 3883 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3884 if (func_caps->common_cap.ieee_1588 && 3885 !(pf->hw.mac_type == ICE_MAC_E830)) 3886 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3887 3888 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3889 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3890 } 3891 3892 /** 3893 * ice_init_pf - Initialize general software structures (struct ice_pf) 3894 * @pf: board private structure to initialize 3895 */ 3896 static int ice_init_pf(struct ice_pf *pf) 3897 { 3898 ice_set_pf_caps(pf); 3899 3900 mutex_init(&pf->sw_mutex); 3901 mutex_init(&pf->tc_mutex); 3902 mutex_init(&pf->adev_mutex); 3903 mutex_init(&pf->lag_mutex); 3904 3905 INIT_HLIST_HEAD(&pf->aq_wait_list); 3906 spin_lock_init(&pf->aq_wait_lock); 3907 init_waitqueue_head(&pf->aq_wait_queue); 3908 3909 init_waitqueue_head(&pf->reset_wait_queue); 3910 3911 /* setup service timer and periodic service task */ 3912 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3913 pf->serv_tmr_period = HZ; 3914 INIT_WORK(&pf->serv_task, ice_service_task); 3915 clear_bit(ICE_SERVICE_SCHED, pf->state); 3916 3917 mutex_init(&pf->avail_q_mutex); 3918 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3919 if (!pf->avail_txqs) 3920 return -ENOMEM; 3921 3922 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3923 if (!pf->avail_rxqs) { 3924 bitmap_free(pf->avail_txqs); 3925 pf->avail_txqs = NULL; 3926 return -ENOMEM; 3927 } 3928 3929 mutex_init(&pf->vfs.table_lock); 3930 hash_init(pf->vfs.table); 3931 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 3932 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 3933 ICE_MBX_OVERFLOW_WATERMARK); 3934 else 3935 ice_mbx_init_snapshot(&pf->hw); 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * ice_is_wol_supported - check if WoL is supported 3942 * @hw: pointer to hardware info 3943 * 3944 * Check if WoL is supported based on the HW configuration. 3945 * Returns true if NVM supports and enables WoL for this port, false otherwise 3946 */ 3947 bool ice_is_wol_supported(struct ice_hw *hw) 3948 { 3949 u16 wol_ctrl; 3950 3951 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3952 * word) indicates WoL is not supported on the corresponding PF ID. 3953 */ 3954 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3955 return false; 3956 3957 return !(BIT(hw->port_info->lport) & wol_ctrl); 3958 } 3959 3960 /** 3961 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3962 * @vsi: VSI being changed 3963 * @new_rx: new number of Rx queues 3964 * @new_tx: new number of Tx queues 3965 * @locked: is adev device_lock held 3966 * 3967 * Only change the number of queues if new_tx, or new_rx is non-0. 3968 * 3969 * Returns 0 on success. 3970 */ 3971 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3972 { 3973 struct ice_pf *pf = vsi->back; 3974 int i, err = 0, timeout = 50; 3975 3976 if (!new_rx && !new_tx) 3977 return -EINVAL; 3978 3979 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3980 timeout--; 3981 if (!timeout) 3982 return -EBUSY; 3983 usleep_range(1000, 2000); 3984 } 3985 3986 if (new_tx) 3987 vsi->req_txq = (u16)new_tx; 3988 if (new_rx) 3989 vsi->req_rxq = (u16)new_rx; 3990 3991 /* set for the next time the netdev is started */ 3992 if (!netif_running(vsi->netdev)) { 3993 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3994 if (err) 3995 goto rebuild_err; 3996 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3997 goto done; 3998 } 3999 4000 ice_vsi_close(vsi); 4001 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4002 if (err) 4003 goto rebuild_err; 4004 4005 ice_for_each_traffic_class(i) { 4006 if (vsi->tc_cfg.ena_tc & BIT(i)) 4007 netdev_set_tc_queue(vsi->netdev, 4008 vsi->tc_cfg.tc_info[i].netdev_tc, 4009 vsi->tc_cfg.tc_info[i].qcount_tx, 4010 vsi->tc_cfg.tc_info[i].qoffset); 4011 } 4012 ice_pf_dcb_recfg(pf, locked); 4013 ice_vsi_open(vsi); 4014 goto done; 4015 4016 rebuild_err: 4017 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4018 err); 4019 done: 4020 clear_bit(ICE_CFG_BUSY, pf->state); 4021 return err; 4022 } 4023 4024 /** 4025 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4026 * @pf: PF to configure 4027 * 4028 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4029 * VSI can still Tx/Rx VLAN tagged packets. 4030 */ 4031 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4032 { 4033 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4034 struct ice_vsi_ctx *ctxt; 4035 struct ice_hw *hw; 4036 int status; 4037 4038 if (!vsi) 4039 return; 4040 4041 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4042 if (!ctxt) 4043 return; 4044 4045 hw = &pf->hw; 4046 ctxt->info = vsi->info; 4047 4048 ctxt->info.valid_sections = 4049 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4050 ICE_AQ_VSI_PROP_SECURITY_VALID | 4051 ICE_AQ_VSI_PROP_SW_VALID); 4052 4053 /* disable VLAN anti-spoof */ 4054 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4055 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4056 4057 /* disable VLAN pruning and keep all other settings */ 4058 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4059 4060 /* allow all VLANs on Tx and don't strip on Rx */ 4061 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4062 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4063 4064 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4065 if (status) { 4066 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4067 status, ice_aq_str(hw->adminq.sq_last_status)); 4068 } else { 4069 vsi->info.sec_flags = ctxt->info.sec_flags; 4070 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4071 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4072 } 4073 4074 kfree(ctxt); 4075 } 4076 4077 /** 4078 * ice_log_pkg_init - log result of DDP package load 4079 * @hw: pointer to hardware info 4080 * @state: state of package load 4081 */ 4082 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4083 { 4084 struct ice_pf *pf = hw->back; 4085 struct device *dev; 4086 4087 dev = ice_pf_to_dev(pf); 4088 4089 switch (state) { 4090 case ICE_DDP_PKG_SUCCESS: 4091 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4092 hw->active_pkg_name, 4093 hw->active_pkg_ver.major, 4094 hw->active_pkg_ver.minor, 4095 hw->active_pkg_ver.update, 4096 hw->active_pkg_ver.draft); 4097 break; 4098 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4099 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4100 hw->active_pkg_name, 4101 hw->active_pkg_ver.major, 4102 hw->active_pkg_ver.minor, 4103 hw->active_pkg_ver.update, 4104 hw->active_pkg_ver.draft); 4105 break; 4106 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4107 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4108 hw->active_pkg_name, 4109 hw->active_pkg_ver.major, 4110 hw->active_pkg_ver.minor, 4111 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4112 break; 4113 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4114 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4115 hw->active_pkg_name, 4116 hw->active_pkg_ver.major, 4117 hw->active_pkg_ver.minor, 4118 hw->active_pkg_ver.update, 4119 hw->active_pkg_ver.draft, 4120 hw->pkg_name, 4121 hw->pkg_ver.major, 4122 hw->pkg_ver.minor, 4123 hw->pkg_ver.update, 4124 hw->pkg_ver.draft); 4125 break; 4126 case ICE_DDP_PKG_FW_MISMATCH: 4127 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4128 break; 4129 case ICE_DDP_PKG_INVALID_FILE: 4130 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4131 break; 4132 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4133 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4134 break; 4135 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4136 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4137 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4138 break; 4139 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4140 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4141 break; 4142 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4143 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4144 break; 4145 case ICE_DDP_PKG_LOAD_ERROR: 4146 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4147 /* poll for reset to complete */ 4148 if (ice_check_reset(hw)) 4149 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4150 break; 4151 case ICE_DDP_PKG_ERR: 4152 default: 4153 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4154 break; 4155 } 4156 } 4157 4158 /** 4159 * ice_load_pkg - load/reload the DDP Package file 4160 * @firmware: firmware structure when firmware requested or NULL for reload 4161 * @pf: pointer to the PF instance 4162 * 4163 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4164 * initialize HW tables. 4165 */ 4166 static void 4167 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4168 { 4169 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4170 struct device *dev = ice_pf_to_dev(pf); 4171 struct ice_hw *hw = &pf->hw; 4172 4173 /* Load DDP Package */ 4174 if (firmware && !hw->pkg_copy) { 4175 state = ice_copy_and_init_pkg(hw, firmware->data, 4176 firmware->size); 4177 ice_log_pkg_init(hw, state); 4178 } else if (!firmware && hw->pkg_copy) { 4179 /* Reload package during rebuild after CORER/GLOBR reset */ 4180 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4181 ice_log_pkg_init(hw, state); 4182 } else { 4183 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4184 } 4185 4186 if (!ice_is_init_pkg_successful(state)) { 4187 /* Safe Mode */ 4188 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4189 return; 4190 } 4191 4192 /* Successful download package is the precondition for advanced 4193 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4194 */ 4195 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4196 } 4197 4198 /** 4199 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4200 * @pf: pointer to the PF structure 4201 * 4202 * There is no error returned here because the driver should be able to handle 4203 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4204 * specifically with Tx. 4205 */ 4206 static void ice_verify_cacheline_size(struct ice_pf *pf) 4207 { 4208 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4209 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4210 ICE_CACHE_LINE_BYTES); 4211 } 4212 4213 /** 4214 * ice_send_version - update firmware with driver version 4215 * @pf: PF struct 4216 * 4217 * Returns 0 on success, else error code 4218 */ 4219 static int ice_send_version(struct ice_pf *pf) 4220 { 4221 struct ice_driver_ver dv; 4222 4223 dv.major_ver = 0xff; 4224 dv.minor_ver = 0xff; 4225 dv.build_ver = 0xff; 4226 dv.subbuild_ver = 0; 4227 strscpy((char *)dv.driver_string, UTS_RELEASE, 4228 sizeof(dv.driver_string)); 4229 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4230 } 4231 4232 /** 4233 * ice_init_fdir - Initialize flow director VSI and configuration 4234 * @pf: pointer to the PF instance 4235 * 4236 * returns 0 on success, negative on error 4237 */ 4238 static int ice_init_fdir(struct ice_pf *pf) 4239 { 4240 struct device *dev = ice_pf_to_dev(pf); 4241 struct ice_vsi *ctrl_vsi; 4242 int err; 4243 4244 /* Side Band Flow Director needs to have a control VSI. 4245 * Allocate it and store it in the PF. 4246 */ 4247 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4248 if (!ctrl_vsi) { 4249 dev_dbg(dev, "could not create control VSI\n"); 4250 return -ENOMEM; 4251 } 4252 4253 err = ice_vsi_open_ctrl(ctrl_vsi); 4254 if (err) { 4255 dev_dbg(dev, "could not open control VSI\n"); 4256 goto err_vsi_open; 4257 } 4258 4259 mutex_init(&pf->hw.fdir_fltr_lock); 4260 4261 err = ice_fdir_create_dflt_rules(pf); 4262 if (err) 4263 goto err_fdir_rule; 4264 4265 return 0; 4266 4267 err_fdir_rule: 4268 ice_fdir_release_flows(&pf->hw); 4269 ice_vsi_close(ctrl_vsi); 4270 err_vsi_open: 4271 ice_vsi_release(ctrl_vsi); 4272 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4273 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4274 pf->ctrl_vsi_idx = ICE_NO_VSI; 4275 } 4276 return err; 4277 } 4278 4279 static void ice_deinit_fdir(struct ice_pf *pf) 4280 { 4281 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4282 4283 if (!vsi) 4284 return; 4285 4286 ice_vsi_manage_fdir(vsi, false); 4287 ice_vsi_release(vsi); 4288 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4289 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4290 pf->ctrl_vsi_idx = ICE_NO_VSI; 4291 } 4292 4293 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4294 } 4295 4296 /** 4297 * ice_get_opt_fw_name - return optional firmware file name or NULL 4298 * @pf: pointer to the PF instance 4299 */ 4300 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4301 { 4302 /* Optional firmware name same as default with additional dash 4303 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4304 */ 4305 struct pci_dev *pdev = pf->pdev; 4306 char *opt_fw_filename; 4307 u64 dsn; 4308 4309 /* Determine the name of the optional file using the DSN (two 4310 * dwords following the start of the DSN Capability). 4311 */ 4312 dsn = pci_get_dsn(pdev); 4313 if (!dsn) 4314 return NULL; 4315 4316 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4317 if (!opt_fw_filename) 4318 return NULL; 4319 4320 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4321 ICE_DDP_PKG_PATH, dsn); 4322 4323 return opt_fw_filename; 4324 } 4325 4326 /** 4327 * ice_request_fw - Device initialization routine 4328 * @pf: pointer to the PF instance 4329 */ 4330 static void ice_request_fw(struct ice_pf *pf) 4331 { 4332 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4333 const struct firmware *firmware = NULL; 4334 struct device *dev = ice_pf_to_dev(pf); 4335 int err = 0; 4336 4337 /* optional device-specific DDP (if present) overrides the default DDP 4338 * package file. kernel logs a debug message if the file doesn't exist, 4339 * and warning messages for other errors. 4340 */ 4341 if (opt_fw_filename) { 4342 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4343 if (err) { 4344 kfree(opt_fw_filename); 4345 goto dflt_pkg_load; 4346 } 4347 4348 /* request for firmware was successful. Download to device */ 4349 ice_load_pkg(firmware, pf); 4350 kfree(opt_fw_filename); 4351 release_firmware(firmware); 4352 return; 4353 } 4354 4355 dflt_pkg_load: 4356 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4357 if (err) { 4358 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4359 return; 4360 } 4361 4362 /* request for firmware was successful. Download to device */ 4363 ice_load_pkg(firmware, pf); 4364 release_firmware(firmware); 4365 } 4366 4367 /** 4368 * ice_print_wake_reason - show the wake up cause in the log 4369 * @pf: pointer to the PF struct 4370 */ 4371 static void ice_print_wake_reason(struct ice_pf *pf) 4372 { 4373 u32 wus = pf->wakeup_reason; 4374 const char *wake_str; 4375 4376 /* if no wake event, nothing to print */ 4377 if (!wus) 4378 return; 4379 4380 if (wus & PFPM_WUS_LNKC_M) 4381 wake_str = "Link\n"; 4382 else if (wus & PFPM_WUS_MAG_M) 4383 wake_str = "Magic Packet\n"; 4384 else if (wus & PFPM_WUS_MNG_M) 4385 wake_str = "Management\n"; 4386 else if (wus & PFPM_WUS_FW_RST_WK_M) 4387 wake_str = "Firmware Reset\n"; 4388 else 4389 wake_str = "Unknown\n"; 4390 4391 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4392 } 4393 4394 /** 4395 * ice_register_netdev - register netdev 4396 * @vsi: pointer to the VSI struct 4397 */ 4398 static int ice_register_netdev(struct ice_vsi *vsi) 4399 { 4400 int err; 4401 4402 if (!vsi || !vsi->netdev) 4403 return -EIO; 4404 4405 err = register_netdev(vsi->netdev); 4406 if (err) 4407 return err; 4408 4409 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4410 netif_carrier_off(vsi->netdev); 4411 netif_tx_stop_all_queues(vsi->netdev); 4412 4413 return 0; 4414 } 4415 4416 static void ice_unregister_netdev(struct ice_vsi *vsi) 4417 { 4418 if (!vsi || !vsi->netdev) 4419 return; 4420 4421 unregister_netdev(vsi->netdev); 4422 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4423 } 4424 4425 /** 4426 * ice_cfg_netdev - Allocate, configure and register a netdev 4427 * @vsi: the VSI associated with the new netdev 4428 * 4429 * Returns 0 on success, negative value on failure 4430 */ 4431 static int ice_cfg_netdev(struct ice_vsi *vsi) 4432 { 4433 struct ice_netdev_priv *np; 4434 struct net_device *netdev; 4435 u8 mac_addr[ETH_ALEN]; 4436 4437 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4438 vsi->alloc_rxq); 4439 if (!netdev) 4440 return -ENOMEM; 4441 4442 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4443 vsi->netdev = netdev; 4444 np = netdev_priv(netdev); 4445 np->vsi = vsi; 4446 4447 ice_set_netdev_features(netdev); 4448 ice_set_ops(vsi); 4449 4450 if (vsi->type == ICE_VSI_PF) { 4451 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4452 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4453 eth_hw_addr_set(netdev, mac_addr); 4454 } 4455 4456 netdev->priv_flags |= IFF_UNICAST_FLT; 4457 4458 /* Setup netdev TC information */ 4459 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4460 4461 netdev->max_mtu = ICE_MAX_MTU; 4462 4463 return 0; 4464 } 4465 4466 static void ice_decfg_netdev(struct ice_vsi *vsi) 4467 { 4468 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4469 free_netdev(vsi->netdev); 4470 vsi->netdev = NULL; 4471 } 4472 4473 static int ice_start_eth(struct ice_vsi *vsi) 4474 { 4475 int err; 4476 4477 err = ice_init_mac_fltr(vsi->back); 4478 if (err) 4479 return err; 4480 4481 err = ice_vsi_open(vsi); 4482 if (err) 4483 ice_fltr_remove_all(vsi); 4484 4485 return err; 4486 } 4487 4488 static void ice_stop_eth(struct ice_vsi *vsi) 4489 { 4490 ice_fltr_remove_all(vsi); 4491 ice_vsi_close(vsi); 4492 } 4493 4494 static int ice_init_eth(struct ice_pf *pf) 4495 { 4496 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4497 int err; 4498 4499 if (!vsi) 4500 return -EINVAL; 4501 4502 /* init channel list */ 4503 INIT_LIST_HEAD(&vsi->ch_list); 4504 4505 err = ice_cfg_netdev(vsi); 4506 if (err) 4507 return err; 4508 /* Setup DCB netlink interface */ 4509 ice_dcbnl_setup(vsi); 4510 4511 err = ice_init_mac_fltr(pf); 4512 if (err) 4513 goto err_init_mac_fltr; 4514 4515 err = ice_devlink_create_pf_port(pf); 4516 if (err) 4517 goto err_devlink_create_pf_port; 4518 4519 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4520 4521 err = ice_register_netdev(vsi); 4522 if (err) 4523 goto err_register_netdev; 4524 4525 err = ice_tc_indir_block_register(vsi); 4526 if (err) 4527 goto err_tc_indir_block_register; 4528 4529 ice_napi_add(vsi); 4530 4531 return 0; 4532 4533 err_tc_indir_block_register: 4534 ice_unregister_netdev(vsi); 4535 err_register_netdev: 4536 ice_devlink_destroy_pf_port(pf); 4537 err_devlink_create_pf_port: 4538 err_init_mac_fltr: 4539 ice_decfg_netdev(vsi); 4540 return err; 4541 } 4542 4543 static void ice_deinit_eth(struct ice_pf *pf) 4544 { 4545 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4546 4547 if (!vsi) 4548 return; 4549 4550 ice_vsi_close(vsi); 4551 ice_unregister_netdev(vsi); 4552 ice_devlink_destroy_pf_port(pf); 4553 ice_tc_indir_block_unregister(vsi); 4554 ice_decfg_netdev(vsi); 4555 } 4556 4557 /** 4558 * ice_wait_for_fw - wait for full FW readiness 4559 * @hw: pointer to the hardware structure 4560 * @timeout: milliseconds that can elapse before timing out 4561 */ 4562 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4563 { 4564 int fw_loading; 4565 u32 elapsed = 0; 4566 4567 while (elapsed <= timeout) { 4568 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4569 4570 /* firmware was not yet loaded, we have to wait more */ 4571 if (fw_loading) { 4572 elapsed += 100; 4573 msleep(100); 4574 continue; 4575 } 4576 return 0; 4577 } 4578 4579 return -ETIMEDOUT; 4580 } 4581 4582 static int ice_init_dev(struct ice_pf *pf) 4583 { 4584 struct device *dev = ice_pf_to_dev(pf); 4585 struct ice_hw *hw = &pf->hw; 4586 int err; 4587 4588 err = ice_init_hw(hw); 4589 if (err) { 4590 dev_err(dev, "ice_init_hw failed: %d\n", err); 4591 return err; 4592 } 4593 4594 /* Some cards require longer initialization times 4595 * due to necessity of loading FW from an external source. 4596 * This can take even half a minute. 4597 */ 4598 if (ice_is_pf_c827(hw)) { 4599 err = ice_wait_for_fw(hw, 30000); 4600 if (err) { 4601 dev_err(dev, "ice_wait_for_fw timed out"); 4602 return err; 4603 } 4604 } 4605 4606 ice_init_feature_support(pf); 4607 4608 ice_request_fw(pf); 4609 4610 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4611 * set in pf->state, which will cause ice_is_safe_mode to return 4612 * true 4613 */ 4614 if (ice_is_safe_mode(pf)) { 4615 /* we already got function/device capabilities but these don't 4616 * reflect what the driver needs to do in safe mode. Instead of 4617 * adding conditional logic everywhere to ignore these 4618 * device/function capabilities, override them. 4619 */ 4620 ice_set_safe_mode_caps(hw); 4621 } 4622 4623 err = ice_init_pf(pf); 4624 if (err) { 4625 dev_err(dev, "ice_init_pf failed: %d\n", err); 4626 goto err_init_pf; 4627 } 4628 4629 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4630 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4631 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4632 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4633 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4634 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4635 pf->hw.tnl.valid_count[TNL_VXLAN]; 4636 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4637 UDP_TUNNEL_TYPE_VXLAN; 4638 } 4639 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4640 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4641 pf->hw.tnl.valid_count[TNL_GENEVE]; 4642 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4643 UDP_TUNNEL_TYPE_GENEVE; 4644 } 4645 4646 err = ice_init_interrupt_scheme(pf); 4647 if (err) { 4648 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4649 err = -EIO; 4650 goto err_init_interrupt_scheme; 4651 } 4652 4653 /* In case of MSIX we are going to setup the misc vector right here 4654 * to handle admin queue events etc. In case of legacy and MSI 4655 * the misc functionality and queue processing is combined in 4656 * the same vector and that gets setup at open. 4657 */ 4658 err = ice_req_irq_msix_misc(pf); 4659 if (err) { 4660 dev_err(dev, "setup of misc vector failed: %d\n", err); 4661 goto err_req_irq_msix_misc; 4662 } 4663 4664 return 0; 4665 4666 err_req_irq_msix_misc: 4667 ice_clear_interrupt_scheme(pf); 4668 err_init_interrupt_scheme: 4669 ice_deinit_pf(pf); 4670 err_init_pf: 4671 ice_deinit_hw(hw); 4672 return err; 4673 } 4674 4675 static void ice_deinit_dev(struct ice_pf *pf) 4676 { 4677 ice_free_irq_msix_misc(pf); 4678 ice_deinit_pf(pf); 4679 ice_deinit_hw(&pf->hw); 4680 4681 /* Service task is already stopped, so call reset directly. */ 4682 ice_reset(&pf->hw, ICE_RESET_PFR); 4683 pci_wait_for_pending_transaction(pf->pdev); 4684 ice_clear_interrupt_scheme(pf); 4685 } 4686 4687 static void ice_init_features(struct ice_pf *pf) 4688 { 4689 struct device *dev = ice_pf_to_dev(pf); 4690 4691 if (ice_is_safe_mode(pf)) 4692 return; 4693 4694 /* initialize DDP driven features */ 4695 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4696 ice_ptp_init(pf); 4697 4698 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4699 ice_gnss_init(pf); 4700 4701 /* Note: Flow director init failure is non-fatal to load */ 4702 if (ice_init_fdir(pf)) 4703 dev_err(dev, "could not initialize flow director\n"); 4704 4705 /* Note: DCB init failure is non-fatal to load */ 4706 if (ice_init_pf_dcb(pf, false)) { 4707 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4708 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4709 } else { 4710 ice_cfg_lldp_mib_change(&pf->hw, true); 4711 } 4712 4713 if (ice_init_lag(pf)) 4714 dev_warn(dev, "Failed to init link aggregation support\n"); 4715 } 4716 4717 static void ice_deinit_features(struct ice_pf *pf) 4718 { 4719 if (ice_is_safe_mode(pf)) 4720 return; 4721 4722 ice_deinit_lag(pf); 4723 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4724 ice_cfg_lldp_mib_change(&pf->hw, false); 4725 ice_deinit_fdir(pf); 4726 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4727 ice_gnss_exit(pf); 4728 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4729 ice_ptp_release(pf); 4730 } 4731 4732 static void ice_init_wakeup(struct ice_pf *pf) 4733 { 4734 /* Save wakeup reason register for later use */ 4735 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4736 4737 /* check for a power management event */ 4738 ice_print_wake_reason(pf); 4739 4740 /* clear wake status, all bits */ 4741 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4742 4743 /* Disable WoL at init, wait for user to enable */ 4744 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4745 } 4746 4747 static int ice_init_link(struct ice_pf *pf) 4748 { 4749 struct device *dev = ice_pf_to_dev(pf); 4750 int err; 4751 4752 err = ice_init_link_events(pf->hw.port_info); 4753 if (err) { 4754 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4755 return err; 4756 } 4757 4758 /* not a fatal error if this fails */ 4759 err = ice_init_nvm_phy_type(pf->hw.port_info); 4760 if (err) 4761 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4762 4763 /* not a fatal error if this fails */ 4764 err = ice_update_link_info(pf->hw.port_info); 4765 if (err) 4766 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4767 4768 ice_init_link_dflt_override(pf->hw.port_info); 4769 4770 ice_check_link_cfg_err(pf, 4771 pf->hw.port_info->phy.link_info.link_cfg_err); 4772 4773 /* if media available, initialize PHY settings */ 4774 if (pf->hw.port_info->phy.link_info.link_info & 4775 ICE_AQ_MEDIA_AVAILABLE) { 4776 /* not a fatal error if this fails */ 4777 err = ice_init_phy_user_cfg(pf->hw.port_info); 4778 if (err) 4779 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4780 4781 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4782 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4783 4784 if (vsi) 4785 ice_configure_phy(vsi); 4786 } 4787 } else { 4788 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4789 } 4790 4791 return err; 4792 } 4793 4794 static int ice_init_pf_sw(struct ice_pf *pf) 4795 { 4796 bool dvm = ice_is_dvm_ena(&pf->hw); 4797 struct ice_vsi *vsi; 4798 int err; 4799 4800 /* create switch struct for the switch element created by FW on boot */ 4801 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4802 if (!pf->first_sw) 4803 return -ENOMEM; 4804 4805 if (pf->hw.evb_veb) 4806 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4807 else 4808 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4809 4810 pf->first_sw->pf = pf; 4811 4812 /* record the sw_id available for later use */ 4813 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4814 4815 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4816 if (err) 4817 goto err_aq_set_port_params; 4818 4819 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4820 if (!vsi) { 4821 err = -ENOMEM; 4822 goto err_pf_vsi_setup; 4823 } 4824 4825 return 0; 4826 4827 err_pf_vsi_setup: 4828 err_aq_set_port_params: 4829 kfree(pf->first_sw); 4830 return err; 4831 } 4832 4833 static void ice_deinit_pf_sw(struct ice_pf *pf) 4834 { 4835 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4836 4837 if (!vsi) 4838 return; 4839 4840 ice_vsi_release(vsi); 4841 kfree(pf->first_sw); 4842 } 4843 4844 static int ice_alloc_vsis(struct ice_pf *pf) 4845 { 4846 struct device *dev = ice_pf_to_dev(pf); 4847 4848 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4849 if (!pf->num_alloc_vsi) 4850 return -EIO; 4851 4852 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4853 dev_warn(dev, 4854 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4855 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4856 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4857 } 4858 4859 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4860 GFP_KERNEL); 4861 if (!pf->vsi) 4862 return -ENOMEM; 4863 4864 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4865 sizeof(*pf->vsi_stats), GFP_KERNEL); 4866 if (!pf->vsi_stats) { 4867 devm_kfree(dev, pf->vsi); 4868 return -ENOMEM; 4869 } 4870 4871 return 0; 4872 } 4873 4874 static void ice_dealloc_vsis(struct ice_pf *pf) 4875 { 4876 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4877 pf->vsi_stats = NULL; 4878 4879 pf->num_alloc_vsi = 0; 4880 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4881 pf->vsi = NULL; 4882 } 4883 4884 static int ice_init_devlink(struct ice_pf *pf) 4885 { 4886 int err; 4887 4888 err = ice_devlink_register_params(pf); 4889 if (err) 4890 return err; 4891 4892 ice_devlink_init_regions(pf); 4893 ice_devlink_register(pf); 4894 4895 return 0; 4896 } 4897 4898 static void ice_deinit_devlink(struct ice_pf *pf) 4899 { 4900 ice_devlink_unregister(pf); 4901 ice_devlink_destroy_regions(pf); 4902 ice_devlink_unregister_params(pf); 4903 } 4904 4905 static int ice_init(struct ice_pf *pf) 4906 { 4907 int err; 4908 4909 err = ice_init_dev(pf); 4910 if (err) 4911 return err; 4912 4913 err = ice_alloc_vsis(pf); 4914 if (err) 4915 goto err_alloc_vsis; 4916 4917 err = ice_init_pf_sw(pf); 4918 if (err) 4919 goto err_init_pf_sw; 4920 4921 ice_init_wakeup(pf); 4922 4923 err = ice_init_link(pf); 4924 if (err) 4925 goto err_init_link; 4926 4927 err = ice_send_version(pf); 4928 if (err) 4929 goto err_init_link; 4930 4931 ice_verify_cacheline_size(pf); 4932 4933 if (ice_is_safe_mode(pf)) 4934 ice_set_safe_mode_vlan_cfg(pf); 4935 else 4936 /* print PCI link speed and width */ 4937 pcie_print_link_status(pf->pdev); 4938 4939 /* ready to go, so clear down state bit */ 4940 clear_bit(ICE_DOWN, pf->state); 4941 clear_bit(ICE_SERVICE_DIS, pf->state); 4942 4943 /* since everything is good, start the service timer */ 4944 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4945 4946 return 0; 4947 4948 err_init_link: 4949 ice_deinit_pf_sw(pf); 4950 err_init_pf_sw: 4951 ice_dealloc_vsis(pf); 4952 err_alloc_vsis: 4953 ice_deinit_dev(pf); 4954 return err; 4955 } 4956 4957 static void ice_deinit(struct ice_pf *pf) 4958 { 4959 set_bit(ICE_SERVICE_DIS, pf->state); 4960 set_bit(ICE_DOWN, pf->state); 4961 4962 ice_deinit_pf_sw(pf); 4963 ice_dealloc_vsis(pf); 4964 ice_deinit_dev(pf); 4965 } 4966 4967 /** 4968 * ice_load - load pf by init hw and starting VSI 4969 * @pf: pointer to the pf instance 4970 */ 4971 int ice_load(struct ice_pf *pf) 4972 { 4973 struct ice_vsi_cfg_params params = {}; 4974 struct ice_vsi *vsi; 4975 int err; 4976 4977 err = ice_init_dev(pf); 4978 if (err) 4979 return err; 4980 4981 vsi = ice_get_main_vsi(pf); 4982 4983 params = ice_vsi_to_params(vsi); 4984 params.flags = ICE_VSI_FLAG_INIT; 4985 4986 rtnl_lock(); 4987 err = ice_vsi_cfg(vsi, ¶ms); 4988 if (err) 4989 goto err_vsi_cfg; 4990 4991 err = ice_start_eth(ice_get_main_vsi(pf)); 4992 if (err) 4993 goto err_start_eth; 4994 rtnl_unlock(); 4995 4996 err = ice_init_rdma(pf); 4997 if (err) 4998 goto err_init_rdma; 4999 5000 ice_init_features(pf); 5001 ice_service_task_restart(pf); 5002 5003 clear_bit(ICE_DOWN, pf->state); 5004 5005 return 0; 5006 5007 err_init_rdma: 5008 ice_vsi_close(ice_get_main_vsi(pf)); 5009 rtnl_lock(); 5010 err_start_eth: 5011 ice_vsi_decfg(ice_get_main_vsi(pf)); 5012 err_vsi_cfg: 5013 rtnl_unlock(); 5014 ice_deinit_dev(pf); 5015 return err; 5016 } 5017 5018 /** 5019 * ice_unload - unload pf by stopping VSI and deinit hw 5020 * @pf: pointer to the pf instance 5021 */ 5022 void ice_unload(struct ice_pf *pf) 5023 { 5024 ice_deinit_features(pf); 5025 ice_deinit_rdma(pf); 5026 rtnl_lock(); 5027 ice_stop_eth(ice_get_main_vsi(pf)); 5028 ice_vsi_decfg(ice_get_main_vsi(pf)); 5029 rtnl_unlock(); 5030 ice_deinit_dev(pf); 5031 } 5032 5033 /** 5034 * ice_probe - Device initialization routine 5035 * @pdev: PCI device information struct 5036 * @ent: entry in ice_pci_tbl 5037 * 5038 * Returns 0 on success, negative on failure 5039 */ 5040 static int 5041 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5042 { 5043 struct device *dev = &pdev->dev; 5044 struct ice_pf *pf; 5045 struct ice_hw *hw; 5046 int err; 5047 5048 if (pdev->is_virtfn) { 5049 dev_err(dev, "can't probe a virtual function\n"); 5050 return -EINVAL; 5051 } 5052 5053 /* when under a kdump kernel initiate a reset before enabling the 5054 * device in order to clear out any pending DMA transactions. These 5055 * transactions can cause some systems to machine check when doing 5056 * the pcim_enable_device() below. 5057 */ 5058 if (is_kdump_kernel()) { 5059 pci_save_state(pdev); 5060 pci_clear_master(pdev); 5061 err = pcie_flr(pdev); 5062 if (err) 5063 return err; 5064 pci_restore_state(pdev); 5065 } 5066 5067 /* this driver uses devres, see 5068 * Documentation/driver-api/driver-model/devres.rst 5069 */ 5070 err = pcim_enable_device(pdev); 5071 if (err) 5072 return err; 5073 5074 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5075 if (err) { 5076 dev_err(dev, "BAR0 I/O map error %d\n", err); 5077 return err; 5078 } 5079 5080 pf = ice_allocate_pf(dev); 5081 if (!pf) 5082 return -ENOMEM; 5083 5084 /* initialize Auxiliary index to invalid value */ 5085 pf->aux_idx = -1; 5086 5087 /* set up for high or low DMA */ 5088 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5089 if (err) { 5090 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5091 return err; 5092 } 5093 5094 pci_set_master(pdev); 5095 5096 pf->pdev = pdev; 5097 pci_set_drvdata(pdev, pf); 5098 set_bit(ICE_DOWN, pf->state); 5099 /* Disable service task until DOWN bit is cleared */ 5100 set_bit(ICE_SERVICE_DIS, pf->state); 5101 5102 hw = &pf->hw; 5103 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5104 pci_save_state(pdev); 5105 5106 hw->back = pf; 5107 hw->port_info = NULL; 5108 hw->vendor_id = pdev->vendor; 5109 hw->device_id = pdev->device; 5110 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5111 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5112 hw->subsystem_device_id = pdev->subsystem_device; 5113 hw->bus.device = PCI_SLOT(pdev->devfn); 5114 hw->bus.func = PCI_FUNC(pdev->devfn); 5115 ice_set_ctrlq_len(hw); 5116 5117 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5118 5119 #ifndef CONFIG_DYNAMIC_DEBUG 5120 if (debug < -1) 5121 hw->debug_mask = debug; 5122 #endif 5123 5124 err = ice_init(pf); 5125 if (err) 5126 goto err_init; 5127 5128 err = ice_init_eth(pf); 5129 if (err) 5130 goto err_init_eth; 5131 5132 err = ice_init_rdma(pf); 5133 if (err) 5134 goto err_init_rdma; 5135 5136 err = ice_init_devlink(pf); 5137 if (err) 5138 goto err_init_devlink; 5139 5140 ice_init_features(pf); 5141 5142 return 0; 5143 5144 err_init_devlink: 5145 ice_deinit_rdma(pf); 5146 err_init_rdma: 5147 ice_deinit_eth(pf); 5148 err_init_eth: 5149 ice_deinit(pf); 5150 err_init: 5151 pci_disable_device(pdev); 5152 return err; 5153 } 5154 5155 /** 5156 * ice_set_wake - enable or disable Wake on LAN 5157 * @pf: pointer to the PF struct 5158 * 5159 * Simple helper for WoL control 5160 */ 5161 static void ice_set_wake(struct ice_pf *pf) 5162 { 5163 struct ice_hw *hw = &pf->hw; 5164 bool wol = pf->wol_ena; 5165 5166 /* clear wake state, otherwise new wake events won't fire */ 5167 wr32(hw, PFPM_WUS, U32_MAX); 5168 5169 /* enable / disable APM wake up, no RMW needed */ 5170 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5171 5172 /* set magic packet filter enabled */ 5173 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5174 } 5175 5176 /** 5177 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5178 * @pf: pointer to the PF struct 5179 * 5180 * Issue firmware command to enable multicast magic wake, making 5181 * sure that any locally administered address (LAA) is used for 5182 * wake, and that PF reset doesn't undo the LAA. 5183 */ 5184 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5185 { 5186 struct device *dev = ice_pf_to_dev(pf); 5187 struct ice_hw *hw = &pf->hw; 5188 u8 mac_addr[ETH_ALEN]; 5189 struct ice_vsi *vsi; 5190 int status; 5191 u8 flags; 5192 5193 if (!pf->wol_ena) 5194 return; 5195 5196 vsi = ice_get_main_vsi(pf); 5197 if (!vsi) 5198 return; 5199 5200 /* Get current MAC address in case it's an LAA */ 5201 if (vsi->netdev) 5202 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5203 else 5204 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5205 5206 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5207 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5208 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5209 5210 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5211 if (status) 5212 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5213 status, ice_aq_str(hw->adminq.sq_last_status)); 5214 } 5215 5216 /** 5217 * ice_remove - Device removal routine 5218 * @pdev: PCI device information struct 5219 */ 5220 static void ice_remove(struct pci_dev *pdev) 5221 { 5222 struct ice_pf *pf = pci_get_drvdata(pdev); 5223 int i; 5224 5225 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5226 if (!ice_is_reset_in_progress(pf->state)) 5227 break; 5228 msleep(100); 5229 } 5230 5231 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5232 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5233 ice_free_vfs(pf); 5234 } 5235 5236 ice_service_task_stop(pf); 5237 ice_aq_cancel_waiting_tasks(pf); 5238 set_bit(ICE_DOWN, pf->state); 5239 5240 if (!ice_is_safe_mode(pf)) 5241 ice_remove_arfs(pf); 5242 ice_deinit_features(pf); 5243 ice_deinit_devlink(pf); 5244 ice_deinit_rdma(pf); 5245 ice_deinit_eth(pf); 5246 ice_deinit(pf); 5247 5248 ice_vsi_release_all(pf); 5249 5250 ice_setup_mc_magic_wake(pf); 5251 ice_set_wake(pf); 5252 5253 pci_disable_device(pdev); 5254 } 5255 5256 /** 5257 * ice_shutdown - PCI callback for shutting down device 5258 * @pdev: PCI device information struct 5259 */ 5260 static void ice_shutdown(struct pci_dev *pdev) 5261 { 5262 struct ice_pf *pf = pci_get_drvdata(pdev); 5263 5264 ice_remove(pdev); 5265 5266 if (system_state == SYSTEM_POWER_OFF) { 5267 pci_wake_from_d3(pdev, pf->wol_ena); 5268 pci_set_power_state(pdev, PCI_D3hot); 5269 } 5270 } 5271 5272 #ifdef CONFIG_PM 5273 /** 5274 * ice_prepare_for_shutdown - prep for PCI shutdown 5275 * @pf: board private structure 5276 * 5277 * Inform or close all dependent features in prep for PCI device shutdown 5278 */ 5279 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5280 { 5281 struct ice_hw *hw = &pf->hw; 5282 u32 v; 5283 5284 /* Notify VFs of impending reset */ 5285 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5286 ice_vc_notify_reset(pf); 5287 5288 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5289 5290 /* disable the VSIs and their queues that are not already DOWN */ 5291 ice_pf_dis_all_vsi(pf, false); 5292 5293 ice_for_each_vsi(pf, v) 5294 if (pf->vsi[v]) 5295 pf->vsi[v]->vsi_num = 0; 5296 5297 ice_shutdown_all_ctrlq(hw); 5298 } 5299 5300 /** 5301 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5302 * @pf: board private structure to reinitialize 5303 * 5304 * This routine reinitialize interrupt scheme that was cleared during 5305 * power management suspend callback. 5306 * 5307 * This should be called during resume routine to re-allocate the q_vectors 5308 * and reacquire interrupts. 5309 */ 5310 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5311 { 5312 struct device *dev = ice_pf_to_dev(pf); 5313 int ret, v; 5314 5315 /* Since we clear MSIX flag during suspend, we need to 5316 * set it back during resume... 5317 */ 5318 5319 ret = ice_init_interrupt_scheme(pf); 5320 if (ret) { 5321 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5322 return ret; 5323 } 5324 5325 /* Remap vectors and rings, after successful re-init interrupts */ 5326 ice_for_each_vsi(pf, v) { 5327 if (!pf->vsi[v]) 5328 continue; 5329 5330 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5331 if (ret) 5332 goto err_reinit; 5333 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5334 } 5335 5336 ret = ice_req_irq_msix_misc(pf); 5337 if (ret) { 5338 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5339 ret); 5340 goto err_reinit; 5341 } 5342 5343 return 0; 5344 5345 err_reinit: 5346 while (v--) 5347 if (pf->vsi[v]) 5348 ice_vsi_free_q_vectors(pf->vsi[v]); 5349 5350 return ret; 5351 } 5352 5353 /** 5354 * ice_suspend 5355 * @dev: generic device information structure 5356 * 5357 * Power Management callback to quiesce the device and prepare 5358 * for D3 transition. 5359 */ 5360 static int __maybe_unused ice_suspend(struct device *dev) 5361 { 5362 struct pci_dev *pdev = to_pci_dev(dev); 5363 struct ice_pf *pf; 5364 int disabled, v; 5365 5366 pf = pci_get_drvdata(pdev); 5367 5368 if (!ice_pf_state_is_nominal(pf)) { 5369 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5370 return -EBUSY; 5371 } 5372 5373 /* Stop watchdog tasks until resume completion. 5374 * Even though it is most likely that the service task is 5375 * disabled if the device is suspended or down, the service task's 5376 * state is controlled by a different state bit, and we should 5377 * store and honor whatever state that bit is in at this point. 5378 */ 5379 disabled = ice_service_task_stop(pf); 5380 5381 ice_deinit_rdma(pf); 5382 5383 /* Already suspended?, then there is nothing to do */ 5384 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5385 if (!disabled) 5386 ice_service_task_restart(pf); 5387 return 0; 5388 } 5389 5390 if (test_bit(ICE_DOWN, pf->state) || 5391 ice_is_reset_in_progress(pf->state)) { 5392 dev_err(dev, "can't suspend device in reset or already down\n"); 5393 if (!disabled) 5394 ice_service_task_restart(pf); 5395 return 0; 5396 } 5397 5398 ice_setup_mc_magic_wake(pf); 5399 5400 ice_prepare_for_shutdown(pf); 5401 5402 ice_set_wake(pf); 5403 5404 /* Free vectors, clear the interrupt scheme and release IRQs 5405 * for proper hibernation, especially with large number of CPUs. 5406 * Otherwise hibernation might fail when mapping all the vectors back 5407 * to CPU0. 5408 */ 5409 ice_free_irq_msix_misc(pf); 5410 ice_for_each_vsi(pf, v) { 5411 if (!pf->vsi[v]) 5412 continue; 5413 ice_vsi_free_q_vectors(pf->vsi[v]); 5414 } 5415 ice_clear_interrupt_scheme(pf); 5416 5417 pci_save_state(pdev); 5418 pci_wake_from_d3(pdev, pf->wol_ena); 5419 pci_set_power_state(pdev, PCI_D3hot); 5420 return 0; 5421 } 5422 5423 /** 5424 * ice_resume - PM callback for waking up from D3 5425 * @dev: generic device information structure 5426 */ 5427 static int __maybe_unused ice_resume(struct device *dev) 5428 { 5429 struct pci_dev *pdev = to_pci_dev(dev); 5430 enum ice_reset_req reset_type; 5431 struct ice_pf *pf; 5432 struct ice_hw *hw; 5433 int ret; 5434 5435 pci_set_power_state(pdev, PCI_D0); 5436 pci_restore_state(pdev); 5437 pci_save_state(pdev); 5438 5439 if (!pci_device_is_present(pdev)) 5440 return -ENODEV; 5441 5442 ret = pci_enable_device_mem(pdev); 5443 if (ret) { 5444 dev_err(dev, "Cannot enable device after suspend\n"); 5445 return ret; 5446 } 5447 5448 pf = pci_get_drvdata(pdev); 5449 hw = &pf->hw; 5450 5451 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5452 ice_print_wake_reason(pf); 5453 5454 /* We cleared the interrupt scheme when we suspended, so we need to 5455 * restore it now to resume device functionality. 5456 */ 5457 ret = ice_reinit_interrupt_scheme(pf); 5458 if (ret) 5459 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5460 5461 ret = ice_init_rdma(pf); 5462 if (ret) 5463 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5464 ret); 5465 5466 clear_bit(ICE_DOWN, pf->state); 5467 /* Now perform PF reset and rebuild */ 5468 reset_type = ICE_RESET_PFR; 5469 /* re-enable service task for reset, but allow reset to schedule it */ 5470 clear_bit(ICE_SERVICE_DIS, pf->state); 5471 5472 if (ice_schedule_reset(pf, reset_type)) 5473 dev_err(dev, "Reset during resume failed.\n"); 5474 5475 clear_bit(ICE_SUSPENDED, pf->state); 5476 ice_service_task_restart(pf); 5477 5478 /* Restart the service task */ 5479 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5480 5481 return 0; 5482 } 5483 #endif /* CONFIG_PM */ 5484 5485 /** 5486 * ice_pci_err_detected - warning that PCI error has been detected 5487 * @pdev: PCI device information struct 5488 * @err: the type of PCI error 5489 * 5490 * Called to warn that something happened on the PCI bus and the error handling 5491 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5492 */ 5493 static pci_ers_result_t 5494 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5495 { 5496 struct ice_pf *pf = pci_get_drvdata(pdev); 5497 5498 if (!pf) { 5499 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5500 __func__, err); 5501 return PCI_ERS_RESULT_DISCONNECT; 5502 } 5503 5504 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5505 ice_service_task_stop(pf); 5506 5507 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5508 set_bit(ICE_PFR_REQ, pf->state); 5509 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5510 } 5511 } 5512 5513 return PCI_ERS_RESULT_NEED_RESET; 5514 } 5515 5516 /** 5517 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5518 * @pdev: PCI device information struct 5519 * 5520 * Called to determine if the driver can recover from the PCI slot reset by 5521 * using a register read to determine if the device is recoverable. 5522 */ 5523 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5524 { 5525 struct ice_pf *pf = pci_get_drvdata(pdev); 5526 pci_ers_result_t result; 5527 int err; 5528 u32 reg; 5529 5530 err = pci_enable_device_mem(pdev); 5531 if (err) { 5532 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5533 err); 5534 result = PCI_ERS_RESULT_DISCONNECT; 5535 } else { 5536 pci_set_master(pdev); 5537 pci_restore_state(pdev); 5538 pci_save_state(pdev); 5539 pci_wake_from_d3(pdev, false); 5540 5541 /* Check for life */ 5542 reg = rd32(&pf->hw, GLGEN_RTRIG); 5543 if (!reg) 5544 result = PCI_ERS_RESULT_RECOVERED; 5545 else 5546 result = PCI_ERS_RESULT_DISCONNECT; 5547 } 5548 5549 return result; 5550 } 5551 5552 /** 5553 * ice_pci_err_resume - restart operations after PCI error recovery 5554 * @pdev: PCI device information struct 5555 * 5556 * Called to allow the driver to bring things back up after PCI error and/or 5557 * reset recovery have finished 5558 */ 5559 static void ice_pci_err_resume(struct pci_dev *pdev) 5560 { 5561 struct ice_pf *pf = pci_get_drvdata(pdev); 5562 5563 if (!pf) { 5564 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5565 __func__); 5566 return; 5567 } 5568 5569 if (test_bit(ICE_SUSPENDED, pf->state)) { 5570 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5571 __func__); 5572 return; 5573 } 5574 5575 ice_restore_all_vfs_msi_state(pdev); 5576 5577 ice_do_reset(pf, ICE_RESET_PFR); 5578 ice_service_task_restart(pf); 5579 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5580 } 5581 5582 /** 5583 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5584 * @pdev: PCI device information struct 5585 */ 5586 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5587 { 5588 struct ice_pf *pf = pci_get_drvdata(pdev); 5589 5590 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5591 ice_service_task_stop(pf); 5592 5593 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5594 set_bit(ICE_PFR_REQ, pf->state); 5595 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5596 } 5597 } 5598 } 5599 5600 /** 5601 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5602 * @pdev: PCI device information struct 5603 */ 5604 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5605 { 5606 ice_pci_err_resume(pdev); 5607 } 5608 5609 /* ice_pci_tbl - PCI Device ID Table 5610 * 5611 * Wildcard entries (PCI_ANY_ID) should come last 5612 * Last entry must be all 0s 5613 * 5614 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5615 * Class, Class Mask, private data (not used) } 5616 */ 5617 static const struct pci_device_id ice_pci_tbl[] = { 5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5624 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5625 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5626 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5627 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5628 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5629 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5630 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5631 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5632 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5633 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5634 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5635 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5636 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5637 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5638 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5639 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5640 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5641 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5642 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5643 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5644 /* required last entry */ 5645 { 0, } 5646 }; 5647 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5648 5649 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5650 5651 static const struct pci_error_handlers ice_pci_err_handler = { 5652 .error_detected = ice_pci_err_detected, 5653 .slot_reset = ice_pci_err_slot_reset, 5654 .reset_prepare = ice_pci_err_reset_prepare, 5655 .reset_done = ice_pci_err_reset_done, 5656 .resume = ice_pci_err_resume 5657 }; 5658 5659 static struct pci_driver ice_driver = { 5660 .name = KBUILD_MODNAME, 5661 .id_table = ice_pci_tbl, 5662 .probe = ice_probe, 5663 .remove = ice_remove, 5664 #ifdef CONFIG_PM 5665 .driver.pm = &ice_pm_ops, 5666 #endif /* CONFIG_PM */ 5667 .shutdown = ice_shutdown, 5668 .sriov_configure = ice_sriov_configure, 5669 .err_handler = &ice_pci_err_handler 5670 }; 5671 5672 /** 5673 * ice_module_init - Driver registration routine 5674 * 5675 * ice_module_init is the first routine called when the driver is 5676 * loaded. All it does is register with the PCI subsystem. 5677 */ 5678 static int __init ice_module_init(void) 5679 { 5680 int status = -ENOMEM; 5681 5682 pr_info("%s\n", ice_driver_string); 5683 pr_info("%s\n", ice_copyright); 5684 5685 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5686 if (!ice_wq) { 5687 pr_err("Failed to create workqueue\n"); 5688 return status; 5689 } 5690 5691 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5692 if (!ice_lag_wq) { 5693 pr_err("Failed to create LAG workqueue\n"); 5694 goto err_dest_wq; 5695 } 5696 5697 status = pci_register_driver(&ice_driver); 5698 if (status) { 5699 pr_err("failed to register PCI driver, err %d\n", status); 5700 goto err_dest_lag_wq; 5701 } 5702 5703 return 0; 5704 5705 err_dest_lag_wq: 5706 destroy_workqueue(ice_lag_wq); 5707 err_dest_wq: 5708 destroy_workqueue(ice_wq); 5709 return status; 5710 } 5711 module_init(ice_module_init); 5712 5713 /** 5714 * ice_module_exit - Driver exit cleanup routine 5715 * 5716 * ice_module_exit is called just before the driver is removed 5717 * from memory. 5718 */ 5719 static void __exit ice_module_exit(void) 5720 { 5721 pci_unregister_driver(&ice_driver); 5722 destroy_workqueue(ice_wq); 5723 destroy_workqueue(ice_lag_wq); 5724 pr_info("module unloaded\n"); 5725 } 5726 module_exit(ice_module_exit); 5727 5728 /** 5729 * ice_set_mac_address - NDO callback to set MAC address 5730 * @netdev: network interface device structure 5731 * @pi: pointer to an address structure 5732 * 5733 * Returns 0 on success, negative on failure 5734 */ 5735 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5736 { 5737 struct ice_netdev_priv *np = netdev_priv(netdev); 5738 struct ice_vsi *vsi = np->vsi; 5739 struct ice_pf *pf = vsi->back; 5740 struct ice_hw *hw = &pf->hw; 5741 struct sockaddr *addr = pi; 5742 u8 old_mac[ETH_ALEN]; 5743 u8 flags = 0; 5744 u8 *mac; 5745 int err; 5746 5747 mac = (u8 *)addr->sa_data; 5748 5749 if (!is_valid_ether_addr(mac)) 5750 return -EADDRNOTAVAIL; 5751 5752 if (test_bit(ICE_DOWN, pf->state) || 5753 ice_is_reset_in_progress(pf->state)) { 5754 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5755 mac); 5756 return -EBUSY; 5757 } 5758 5759 if (ice_chnl_dmac_fltr_cnt(pf)) { 5760 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5761 mac); 5762 return -EAGAIN; 5763 } 5764 5765 netif_addr_lock_bh(netdev); 5766 ether_addr_copy(old_mac, netdev->dev_addr); 5767 /* change the netdev's MAC address */ 5768 eth_hw_addr_set(netdev, mac); 5769 netif_addr_unlock_bh(netdev); 5770 5771 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5772 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5773 if (err && err != -ENOENT) { 5774 err = -EADDRNOTAVAIL; 5775 goto err_update_filters; 5776 } 5777 5778 /* Add filter for new MAC. If filter exists, return success */ 5779 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5780 if (err == -EEXIST) { 5781 /* Although this MAC filter is already present in hardware it's 5782 * possible in some cases (e.g. bonding) that dev_addr was 5783 * modified outside of the driver and needs to be restored back 5784 * to this value. 5785 */ 5786 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5787 5788 return 0; 5789 } else if (err) { 5790 /* error if the new filter addition failed */ 5791 err = -EADDRNOTAVAIL; 5792 } 5793 5794 err_update_filters: 5795 if (err) { 5796 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5797 mac); 5798 netif_addr_lock_bh(netdev); 5799 eth_hw_addr_set(netdev, old_mac); 5800 netif_addr_unlock_bh(netdev); 5801 return err; 5802 } 5803 5804 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5805 netdev->dev_addr); 5806 5807 /* write new MAC address to the firmware */ 5808 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5809 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5810 if (err) { 5811 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5812 mac, err); 5813 } 5814 return 0; 5815 } 5816 5817 /** 5818 * ice_set_rx_mode - NDO callback to set the netdev filters 5819 * @netdev: network interface device structure 5820 */ 5821 static void ice_set_rx_mode(struct net_device *netdev) 5822 { 5823 struct ice_netdev_priv *np = netdev_priv(netdev); 5824 struct ice_vsi *vsi = np->vsi; 5825 5826 if (!vsi || ice_is_switchdev_running(vsi->back)) 5827 return; 5828 5829 /* Set the flags to synchronize filters 5830 * ndo_set_rx_mode may be triggered even without a change in netdev 5831 * flags 5832 */ 5833 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5834 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5835 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5836 5837 /* schedule our worker thread which will take care of 5838 * applying the new filter changes 5839 */ 5840 ice_service_task_schedule(vsi->back); 5841 } 5842 5843 /** 5844 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5845 * @netdev: network interface device structure 5846 * @queue_index: Queue ID 5847 * @maxrate: maximum bandwidth in Mbps 5848 */ 5849 static int 5850 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5851 { 5852 struct ice_netdev_priv *np = netdev_priv(netdev); 5853 struct ice_vsi *vsi = np->vsi; 5854 u16 q_handle; 5855 int status; 5856 u8 tc; 5857 5858 /* Validate maxrate requested is within permitted range */ 5859 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5860 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5861 maxrate, queue_index); 5862 return -EINVAL; 5863 } 5864 5865 q_handle = vsi->tx_rings[queue_index]->q_handle; 5866 tc = ice_dcb_get_tc(vsi, queue_index); 5867 5868 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5869 if (!vsi) { 5870 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5871 queue_index); 5872 return -EINVAL; 5873 } 5874 5875 /* Set BW back to default, when user set maxrate to 0 */ 5876 if (!maxrate) 5877 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5878 q_handle, ICE_MAX_BW); 5879 else 5880 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5881 q_handle, ICE_MAX_BW, maxrate * 1000); 5882 if (status) 5883 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5884 status); 5885 5886 return status; 5887 } 5888 5889 /** 5890 * ice_fdb_add - add an entry to the hardware database 5891 * @ndm: the input from the stack 5892 * @tb: pointer to array of nladdr (unused) 5893 * @dev: the net device pointer 5894 * @addr: the MAC address entry being added 5895 * @vid: VLAN ID 5896 * @flags: instructions from stack about fdb operation 5897 * @extack: netlink extended ack 5898 */ 5899 static int 5900 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5901 struct net_device *dev, const unsigned char *addr, u16 vid, 5902 u16 flags, struct netlink_ext_ack __always_unused *extack) 5903 { 5904 int err; 5905 5906 if (vid) { 5907 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5908 return -EINVAL; 5909 } 5910 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5911 netdev_err(dev, "FDB only supports static addresses\n"); 5912 return -EINVAL; 5913 } 5914 5915 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5916 err = dev_uc_add_excl(dev, addr); 5917 else if (is_multicast_ether_addr(addr)) 5918 err = dev_mc_add_excl(dev, addr); 5919 else 5920 err = -EINVAL; 5921 5922 /* Only return duplicate errors if NLM_F_EXCL is set */ 5923 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5924 err = 0; 5925 5926 return err; 5927 } 5928 5929 /** 5930 * ice_fdb_del - delete an entry from the hardware database 5931 * @ndm: the input from the stack 5932 * @tb: pointer to array of nladdr (unused) 5933 * @dev: the net device pointer 5934 * @addr: the MAC address entry being added 5935 * @vid: VLAN ID 5936 * @extack: netlink extended ack 5937 */ 5938 static int 5939 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5940 struct net_device *dev, const unsigned char *addr, 5941 __always_unused u16 vid, struct netlink_ext_ack *extack) 5942 { 5943 int err; 5944 5945 if (ndm->ndm_state & NUD_PERMANENT) { 5946 netdev_err(dev, "FDB only supports static addresses\n"); 5947 return -EINVAL; 5948 } 5949 5950 if (is_unicast_ether_addr(addr)) 5951 err = dev_uc_del(dev, addr); 5952 else if (is_multicast_ether_addr(addr)) 5953 err = dev_mc_del(dev, addr); 5954 else 5955 err = -EINVAL; 5956 5957 return err; 5958 } 5959 5960 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5961 NETIF_F_HW_VLAN_CTAG_TX | \ 5962 NETIF_F_HW_VLAN_STAG_RX | \ 5963 NETIF_F_HW_VLAN_STAG_TX) 5964 5965 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5966 NETIF_F_HW_VLAN_STAG_RX) 5967 5968 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5969 NETIF_F_HW_VLAN_STAG_FILTER) 5970 5971 /** 5972 * ice_fix_features - fix the netdev features flags based on device limitations 5973 * @netdev: ptr to the netdev that flags are being fixed on 5974 * @features: features that need to be checked and possibly fixed 5975 * 5976 * Make sure any fixups are made to features in this callback. This enables the 5977 * driver to not have to check unsupported configurations throughout the driver 5978 * because that's the responsiblity of this callback. 5979 * 5980 * Single VLAN Mode (SVM) Supported Features: 5981 * NETIF_F_HW_VLAN_CTAG_FILTER 5982 * NETIF_F_HW_VLAN_CTAG_RX 5983 * NETIF_F_HW_VLAN_CTAG_TX 5984 * 5985 * Double VLAN Mode (DVM) Supported Features: 5986 * NETIF_F_HW_VLAN_CTAG_FILTER 5987 * NETIF_F_HW_VLAN_CTAG_RX 5988 * NETIF_F_HW_VLAN_CTAG_TX 5989 * 5990 * NETIF_F_HW_VLAN_STAG_FILTER 5991 * NETIF_HW_VLAN_STAG_RX 5992 * NETIF_HW_VLAN_STAG_TX 5993 * 5994 * Features that need fixing: 5995 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5996 * These are mutually exlusive as the VSI context cannot support multiple 5997 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5998 * is not done, then default to clearing the requested STAG offload 5999 * settings. 6000 * 6001 * All supported filtering has to be enabled or disabled together. For 6002 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6003 * together. If this is not done, then default to VLAN filtering disabled. 6004 * These are mutually exclusive as there is currently no way to 6005 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6006 * prune rules. 6007 */ 6008 static netdev_features_t 6009 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6010 { 6011 struct ice_netdev_priv *np = netdev_priv(netdev); 6012 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6013 bool cur_ctag, cur_stag, req_ctag, req_stag; 6014 6015 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6016 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6017 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6018 6019 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6020 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6021 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6022 6023 if (req_vlan_fltr != cur_vlan_fltr) { 6024 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6025 if (req_ctag && req_stag) { 6026 features |= NETIF_VLAN_FILTERING_FEATURES; 6027 } else if (!req_ctag && !req_stag) { 6028 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6029 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6030 (!cur_stag && req_stag && !cur_ctag)) { 6031 features |= NETIF_VLAN_FILTERING_FEATURES; 6032 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6033 } else if ((cur_ctag && !req_ctag && cur_stag) || 6034 (cur_stag && !req_stag && cur_ctag)) { 6035 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6036 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6037 } 6038 } else { 6039 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6040 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6041 6042 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6043 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6044 } 6045 } 6046 6047 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6048 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6049 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6050 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6051 NETIF_F_HW_VLAN_STAG_TX); 6052 } 6053 6054 if (!(netdev->features & NETIF_F_RXFCS) && 6055 (features & NETIF_F_RXFCS) && 6056 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6057 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6058 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6059 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6060 } 6061 6062 return features; 6063 } 6064 6065 /** 6066 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6067 * @vsi: PF's VSI 6068 * @features: features used to determine VLAN offload settings 6069 * 6070 * First, determine the vlan_ethertype based on the VLAN offload bits in 6071 * features. Then determine if stripping and insertion should be enabled or 6072 * disabled. Finally enable or disable VLAN stripping and insertion. 6073 */ 6074 static int 6075 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6076 { 6077 bool enable_stripping = true, enable_insertion = true; 6078 struct ice_vsi_vlan_ops *vlan_ops; 6079 int strip_err = 0, insert_err = 0; 6080 u16 vlan_ethertype = 0; 6081 6082 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6083 6084 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6085 vlan_ethertype = ETH_P_8021AD; 6086 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6087 vlan_ethertype = ETH_P_8021Q; 6088 6089 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6090 enable_stripping = false; 6091 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6092 enable_insertion = false; 6093 6094 if (enable_stripping) 6095 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6096 else 6097 strip_err = vlan_ops->dis_stripping(vsi); 6098 6099 if (enable_insertion) 6100 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6101 else 6102 insert_err = vlan_ops->dis_insertion(vsi); 6103 6104 if (strip_err || insert_err) 6105 return -EIO; 6106 6107 return 0; 6108 } 6109 6110 /** 6111 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6112 * @vsi: PF's VSI 6113 * @features: features used to determine VLAN filtering settings 6114 * 6115 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6116 * features. 6117 */ 6118 static int 6119 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6120 { 6121 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6122 int err = 0; 6123 6124 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6125 * if either bit is set 6126 */ 6127 if (features & 6128 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6129 err = vlan_ops->ena_rx_filtering(vsi); 6130 else 6131 err = vlan_ops->dis_rx_filtering(vsi); 6132 6133 return err; 6134 } 6135 6136 /** 6137 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6138 * @netdev: ptr to the netdev being adjusted 6139 * @features: the feature set that the stack is suggesting 6140 * 6141 * Only update VLAN settings if the requested_vlan_features are different than 6142 * the current_vlan_features. 6143 */ 6144 static int 6145 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6146 { 6147 netdev_features_t current_vlan_features, requested_vlan_features; 6148 struct ice_netdev_priv *np = netdev_priv(netdev); 6149 struct ice_vsi *vsi = np->vsi; 6150 int err; 6151 6152 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6153 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6154 if (current_vlan_features ^ requested_vlan_features) { 6155 if ((features & NETIF_F_RXFCS) && 6156 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6157 dev_err(ice_pf_to_dev(vsi->back), 6158 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6159 return -EIO; 6160 } 6161 6162 err = ice_set_vlan_offload_features(vsi, features); 6163 if (err) 6164 return err; 6165 } 6166 6167 current_vlan_features = netdev->features & 6168 NETIF_VLAN_FILTERING_FEATURES; 6169 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6170 if (current_vlan_features ^ requested_vlan_features) { 6171 err = ice_set_vlan_filtering_features(vsi, features); 6172 if (err) 6173 return err; 6174 } 6175 6176 return 0; 6177 } 6178 6179 /** 6180 * ice_set_loopback - turn on/off loopback mode on underlying PF 6181 * @vsi: ptr to VSI 6182 * @ena: flag to indicate the on/off setting 6183 */ 6184 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6185 { 6186 bool if_running = netif_running(vsi->netdev); 6187 int ret; 6188 6189 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6190 ret = ice_down(vsi); 6191 if (ret) { 6192 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6193 return ret; 6194 } 6195 } 6196 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6197 if (ret) 6198 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6199 if (if_running) 6200 ret = ice_up(vsi); 6201 6202 return ret; 6203 } 6204 6205 /** 6206 * ice_set_features - set the netdev feature flags 6207 * @netdev: ptr to the netdev being adjusted 6208 * @features: the feature set that the stack is suggesting 6209 */ 6210 static int 6211 ice_set_features(struct net_device *netdev, netdev_features_t features) 6212 { 6213 netdev_features_t changed = netdev->features ^ features; 6214 struct ice_netdev_priv *np = netdev_priv(netdev); 6215 struct ice_vsi *vsi = np->vsi; 6216 struct ice_pf *pf = vsi->back; 6217 int ret = 0; 6218 6219 /* Don't set any netdev advanced features with device in Safe Mode */ 6220 if (ice_is_safe_mode(pf)) { 6221 dev_err(ice_pf_to_dev(pf), 6222 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6223 return ret; 6224 } 6225 6226 /* Do not change setting during reset */ 6227 if (ice_is_reset_in_progress(pf->state)) { 6228 dev_err(ice_pf_to_dev(pf), 6229 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6230 return -EBUSY; 6231 } 6232 6233 /* Multiple features can be changed in one call so keep features in 6234 * separate if/else statements to guarantee each feature is checked 6235 */ 6236 if (changed & NETIF_F_RXHASH) 6237 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6238 6239 ret = ice_set_vlan_features(netdev, features); 6240 if (ret) 6241 return ret; 6242 6243 /* Turn on receive of FCS aka CRC, and after setting this 6244 * flag the packet data will have the 4 byte CRC appended 6245 */ 6246 if (changed & NETIF_F_RXFCS) { 6247 if ((features & NETIF_F_RXFCS) && 6248 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6249 dev_err(ice_pf_to_dev(vsi->back), 6250 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6251 return -EIO; 6252 } 6253 6254 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6255 ret = ice_down_up(vsi); 6256 if (ret) 6257 return ret; 6258 } 6259 6260 if (changed & NETIF_F_NTUPLE) { 6261 bool ena = !!(features & NETIF_F_NTUPLE); 6262 6263 ice_vsi_manage_fdir(vsi, ena); 6264 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6265 } 6266 6267 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6268 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6269 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6270 return -EACCES; 6271 } 6272 6273 if (changed & NETIF_F_HW_TC) { 6274 bool ena = !!(features & NETIF_F_HW_TC); 6275 6276 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6277 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6278 } 6279 6280 if (changed & NETIF_F_LOOPBACK) 6281 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6282 6283 return ret; 6284 } 6285 6286 /** 6287 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6288 * @vsi: VSI to setup VLAN properties for 6289 */ 6290 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6291 { 6292 int err; 6293 6294 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6295 if (err) 6296 return err; 6297 6298 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6299 if (err) 6300 return err; 6301 6302 return ice_vsi_add_vlan_zero(vsi); 6303 } 6304 6305 /** 6306 * ice_vsi_cfg_lan - Setup the VSI lan related config 6307 * @vsi: the VSI being configured 6308 * 6309 * Return 0 on success and negative value on error 6310 */ 6311 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6312 { 6313 int err; 6314 6315 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6316 ice_set_rx_mode(vsi->netdev); 6317 6318 err = ice_vsi_vlan_setup(vsi); 6319 if (err) 6320 return err; 6321 } 6322 ice_vsi_cfg_dcb_rings(vsi); 6323 6324 err = ice_vsi_cfg_lan_txqs(vsi); 6325 if (!err && ice_is_xdp_ena_vsi(vsi)) 6326 err = ice_vsi_cfg_xdp_txqs(vsi); 6327 if (!err) 6328 err = ice_vsi_cfg_rxqs(vsi); 6329 6330 return err; 6331 } 6332 6333 /* THEORY OF MODERATION: 6334 * The ice driver hardware works differently than the hardware that DIMLIB was 6335 * originally made for. ice hardware doesn't have packet count limits that 6336 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6337 * which is hard-coded to a limit of 250,000 ints/second. 6338 * If not using dynamic moderation, the INTRL value can be modified 6339 * by ethtool rx-usecs-high. 6340 */ 6341 struct ice_dim { 6342 /* the throttle rate for interrupts, basically worst case delay before 6343 * an initial interrupt fires, value is stored in microseconds. 6344 */ 6345 u16 itr; 6346 }; 6347 6348 /* Make a different profile for Rx that doesn't allow quite so aggressive 6349 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6350 * second. 6351 */ 6352 static const struct ice_dim rx_profile[] = { 6353 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6354 {8}, /* 125,000 ints/s */ 6355 {16}, /* 62,500 ints/s */ 6356 {62}, /* 16,129 ints/s */ 6357 {126} /* 7,936 ints/s */ 6358 }; 6359 6360 /* The transmit profile, which has the same sorts of values 6361 * as the previous struct 6362 */ 6363 static const struct ice_dim tx_profile[] = { 6364 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6365 {8}, /* 125,000 ints/s */ 6366 {40}, /* 16,125 ints/s */ 6367 {128}, /* 7,812 ints/s */ 6368 {256} /* 3,906 ints/s */ 6369 }; 6370 6371 static void ice_tx_dim_work(struct work_struct *work) 6372 { 6373 struct ice_ring_container *rc; 6374 struct dim *dim; 6375 u16 itr; 6376 6377 dim = container_of(work, struct dim, work); 6378 rc = dim->priv; 6379 6380 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6381 6382 /* look up the values in our local table */ 6383 itr = tx_profile[dim->profile_ix].itr; 6384 6385 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6386 ice_write_itr(rc, itr); 6387 6388 dim->state = DIM_START_MEASURE; 6389 } 6390 6391 static void ice_rx_dim_work(struct work_struct *work) 6392 { 6393 struct ice_ring_container *rc; 6394 struct dim *dim; 6395 u16 itr; 6396 6397 dim = container_of(work, struct dim, work); 6398 rc = dim->priv; 6399 6400 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6401 6402 /* look up the values in our local table */ 6403 itr = rx_profile[dim->profile_ix].itr; 6404 6405 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6406 ice_write_itr(rc, itr); 6407 6408 dim->state = DIM_START_MEASURE; 6409 } 6410 6411 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6412 6413 /** 6414 * ice_init_moderation - set up interrupt moderation 6415 * @q_vector: the vector containing rings to be configured 6416 * 6417 * Set up interrupt moderation registers, with the intent to do the right thing 6418 * when called from reset or from probe, and whether or not dynamic moderation 6419 * is enabled or not. Take special care to write all the registers in both 6420 * dynamic moderation mode or not in order to make sure hardware is in a known 6421 * state. 6422 */ 6423 static void ice_init_moderation(struct ice_q_vector *q_vector) 6424 { 6425 struct ice_ring_container *rc; 6426 bool tx_dynamic, rx_dynamic; 6427 6428 rc = &q_vector->tx; 6429 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6430 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6431 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6432 rc->dim.priv = rc; 6433 tx_dynamic = ITR_IS_DYNAMIC(rc); 6434 6435 /* set the initial TX ITR to match the above */ 6436 ice_write_itr(rc, tx_dynamic ? 6437 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6438 6439 rc = &q_vector->rx; 6440 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6441 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6442 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6443 rc->dim.priv = rc; 6444 rx_dynamic = ITR_IS_DYNAMIC(rc); 6445 6446 /* set the initial RX ITR to match the above */ 6447 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6448 rc->itr_setting); 6449 6450 ice_set_q_vector_intrl(q_vector); 6451 } 6452 6453 /** 6454 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6455 * @vsi: the VSI being configured 6456 */ 6457 static void ice_napi_enable_all(struct ice_vsi *vsi) 6458 { 6459 int q_idx; 6460 6461 if (!vsi->netdev) 6462 return; 6463 6464 ice_for_each_q_vector(vsi, q_idx) { 6465 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6466 6467 ice_init_moderation(q_vector); 6468 6469 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6470 napi_enable(&q_vector->napi); 6471 } 6472 } 6473 6474 /** 6475 * ice_up_complete - Finish the last steps of bringing up a connection 6476 * @vsi: The VSI being configured 6477 * 6478 * Return 0 on success and negative value on error 6479 */ 6480 static int ice_up_complete(struct ice_vsi *vsi) 6481 { 6482 struct ice_pf *pf = vsi->back; 6483 int err; 6484 6485 ice_vsi_cfg_msix(vsi); 6486 6487 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6488 * Tx queue group list was configured and the context bits were 6489 * programmed using ice_vsi_cfg_txqs 6490 */ 6491 err = ice_vsi_start_all_rx_rings(vsi); 6492 if (err) 6493 return err; 6494 6495 clear_bit(ICE_VSI_DOWN, vsi->state); 6496 ice_napi_enable_all(vsi); 6497 ice_vsi_ena_irq(vsi); 6498 6499 if (vsi->port_info && 6500 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6501 vsi->netdev && vsi->type == ICE_VSI_PF) { 6502 ice_print_link_msg(vsi, true); 6503 netif_tx_start_all_queues(vsi->netdev); 6504 netif_carrier_on(vsi->netdev); 6505 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6506 } 6507 6508 /* Perform an initial read of the statistics registers now to 6509 * set the baseline so counters are ready when interface is up 6510 */ 6511 ice_update_eth_stats(vsi); 6512 6513 if (vsi->type == ICE_VSI_PF) 6514 ice_service_task_schedule(pf); 6515 6516 return 0; 6517 } 6518 6519 /** 6520 * ice_up - Bring the connection back up after being down 6521 * @vsi: VSI being configured 6522 */ 6523 int ice_up(struct ice_vsi *vsi) 6524 { 6525 int err; 6526 6527 err = ice_vsi_cfg_lan(vsi); 6528 if (!err) 6529 err = ice_up_complete(vsi); 6530 6531 return err; 6532 } 6533 6534 /** 6535 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6536 * @syncp: pointer to u64_stats_sync 6537 * @stats: stats that pkts and bytes count will be taken from 6538 * @pkts: packets stats counter 6539 * @bytes: bytes stats counter 6540 * 6541 * This function fetches stats from the ring considering the atomic operations 6542 * that needs to be performed to read u64 values in 32 bit machine. 6543 */ 6544 void 6545 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6546 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6547 { 6548 unsigned int start; 6549 6550 do { 6551 start = u64_stats_fetch_begin(syncp); 6552 *pkts = stats.pkts; 6553 *bytes = stats.bytes; 6554 } while (u64_stats_fetch_retry(syncp, start)); 6555 } 6556 6557 /** 6558 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6559 * @vsi: the VSI to be updated 6560 * @vsi_stats: the stats struct to be updated 6561 * @rings: rings to work on 6562 * @count: number of rings 6563 */ 6564 static void 6565 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6566 struct rtnl_link_stats64 *vsi_stats, 6567 struct ice_tx_ring **rings, u16 count) 6568 { 6569 u16 i; 6570 6571 for (i = 0; i < count; i++) { 6572 struct ice_tx_ring *ring; 6573 u64 pkts = 0, bytes = 0; 6574 6575 ring = READ_ONCE(rings[i]); 6576 if (!ring || !ring->ring_stats) 6577 continue; 6578 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6579 ring->ring_stats->stats, &pkts, 6580 &bytes); 6581 vsi_stats->tx_packets += pkts; 6582 vsi_stats->tx_bytes += bytes; 6583 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6584 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6585 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6586 } 6587 } 6588 6589 /** 6590 * ice_update_vsi_ring_stats - Update VSI stats counters 6591 * @vsi: the VSI to be updated 6592 */ 6593 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6594 { 6595 struct rtnl_link_stats64 *net_stats, *stats_prev; 6596 struct rtnl_link_stats64 *vsi_stats; 6597 struct ice_pf *pf = vsi->back; 6598 u64 pkts, bytes; 6599 int i; 6600 6601 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6602 if (!vsi_stats) 6603 return; 6604 6605 /* reset non-netdev (extended) stats */ 6606 vsi->tx_restart = 0; 6607 vsi->tx_busy = 0; 6608 vsi->tx_linearize = 0; 6609 vsi->rx_buf_failed = 0; 6610 vsi->rx_page_failed = 0; 6611 6612 rcu_read_lock(); 6613 6614 /* update Tx rings counters */ 6615 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6616 vsi->num_txq); 6617 6618 /* update Rx rings counters */ 6619 ice_for_each_rxq(vsi, i) { 6620 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6621 struct ice_ring_stats *ring_stats; 6622 6623 ring_stats = ring->ring_stats; 6624 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6625 ring_stats->stats, &pkts, 6626 &bytes); 6627 vsi_stats->rx_packets += pkts; 6628 vsi_stats->rx_bytes += bytes; 6629 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6630 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6631 } 6632 6633 /* update XDP Tx rings counters */ 6634 if (ice_is_xdp_ena_vsi(vsi)) 6635 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6636 vsi->num_xdp_txq); 6637 6638 rcu_read_unlock(); 6639 6640 net_stats = &vsi->net_stats; 6641 stats_prev = &vsi->net_stats_prev; 6642 6643 /* Update netdev counters, but keep in mind that values could start at 6644 * random value after PF reset. And as we increase the reported stat by 6645 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6646 * let's skip this round. 6647 */ 6648 if (likely(pf->stat_prev_loaded)) { 6649 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6650 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6651 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6652 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6653 } 6654 6655 stats_prev->tx_packets = vsi_stats->tx_packets; 6656 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6657 stats_prev->rx_packets = vsi_stats->rx_packets; 6658 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6659 6660 kfree(vsi_stats); 6661 } 6662 6663 /** 6664 * ice_update_vsi_stats - Update VSI stats counters 6665 * @vsi: the VSI to be updated 6666 */ 6667 void ice_update_vsi_stats(struct ice_vsi *vsi) 6668 { 6669 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6670 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6671 struct ice_pf *pf = vsi->back; 6672 6673 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6674 test_bit(ICE_CFG_BUSY, pf->state)) 6675 return; 6676 6677 /* get stats as recorded by Tx/Rx rings */ 6678 ice_update_vsi_ring_stats(vsi); 6679 6680 /* get VSI stats as recorded by the hardware */ 6681 ice_update_eth_stats(vsi); 6682 6683 cur_ns->tx_errors = cur_es->tx_errors; 6684 cur_ns->rx_dropped = cur_es->rx_discards; 6685 cur_ns->tx_dropped = cur_es->tx_discards; 6686 cur_ns->multicast = cur_es->rx_multicast; 6687 6688 /* update some more netdev stats if this is main VSI */ 6689 if (vsi->type == ICE_VSI_PF) { 6690 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6691 cur_ns->rx_errors = pf->stats.crc_errors + 6692 pf->stats.illegal_bytes + 6693 pf->stats.rx_len_errors + 6694 pf->stats.rx_undersize + 6695 pf->hw_csum_rx_error + 6696 pf->stats.rx_jabber + 6697 pf->stats.rx_fragments + 6698 pf->stats.rx_oversize; 6699 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6700 /* record drops from the port level */ 6701 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6702 } 6703 } 6704 6705 /** 6706 * ice_update_pf_stats - Update PF port stats counters 6707 * @pf: PF whose stats needs to be updated 6708 */ 6709 void ice_update_pf_stats(struct ice_pf *pf) 6710 { 6711 struct ice_hw_port_stats *prev_ps, *cur_ps; 6712 struct ice_hw *hw = &pf->hw; 6713 u16 fd_ctr_base; 6714 u8 port; 6715 6716 port = hw->port_info->lport; 6717 prev_ps = &pf->stats_prev; 6718 cur_ps = &pf->stats; 6719 6720 if (ice_is_reset_in_progress(pf->state)) 6721 pf->stat_prev_loaded = false; 6722 6723 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6724 &prev_ps->eth.rx_bytes, 6725 &cur_ps->eth.rx_bytes); 6726 6727 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6728 &prev_ps->eth.rx_unicast, 6729 &cur_ps->eth.rx_unicast); 6730 6731 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6732 &prev_ps->eth.rx_multicast, 6733 &cur_ps->eth.rx_multicast); 6734 6735 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6736 &prev_ps->eth.rx_broadcast, 6737 &cur_ps->eth.rx_broadcast); 6738 6739 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6740 &prev_ps->eth.rx_discards, 6741 &cur_ps->eth.rx_discards); 6742 6743 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6744 &prev_ps->eth.tx_bytes, 6745 &cur_ps->eth.tx_bytes); 6746 6747 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6748 &prev_ps->eth.tx_unicast, 6749 &cur_ps->eth.tx_unicast); 6750 6751 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6752 &prev_ps->eth.tx_multicast, 6753 &cur_ps->eth.tx_multicast); 6754 6755 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6756 &prev_ps->eth.tx_broadcast, 6757 &cur_ps->eth.tx_broadcast); 6758 6759 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6760 &prev_ps->tx_dropped_link_down, 6761 &cur_ps->tx_dropped_link_down); 6762 6763 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6764 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6765 6766 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6767 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6768 6769 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6770 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6771 6772 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6773 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6774 6775 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6776 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6777 6778 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6779 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6780 6781 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6782 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6783 6784 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6785 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6786 6787 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6788 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6789 6790 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6791 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6792 6793 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6794 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6795 6796 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6797 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6798 6799 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6800 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6801 6802 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6803 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6804 6805 fd_ctr_base = hw->fd_ctr_base; 6806 6807 ice_stat_update40(hw, 6808 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6809 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6810 &cur_ps->fd_sb_match); 6811 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6812 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6813 6814 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6815 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6816 6817 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6818 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6819 6820 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6821 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6822 6823 ice_update_dcb_stats(pf); 6824 6825 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6826 &prev_ps->crc_errors, &cur_ps->crc_errors); 6827 6828 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6829 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6830 6831 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6832 &prev_ps->mac_local_faults, 6833 &cur_ps->mac_local_faults); 6834 6835 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6836 &prev_ps->mac_remote_faults, 6837 &cur_ps->mac_remote_faults); 6838 6839 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6840 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6841 6842 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6843 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6844 6845 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6846 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6847 6848 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6849 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6850 6851 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6852 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6853 6854 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6855 6856 pf->stat_prev_loaded = true; 6857 } 6858 6859 /** 6860 * ice_get_stats64 - get statistics for network device structure 6861 * @netdev: network interface device structure 6862 * @stats: main device statistics structure 6863 */ 6864 static 6865 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6866 { 6867 struct ice_netdev_priv *np = netdev_priv(netdev); 6868 struct rtnl_link_stats64 *vsi_stats; 6869 struct ice_vsi *vsi = np->vsi; 6870 6871 vsi_stats = &vsi->net_stats; 6872 6873 if (!vsi->num_txq || !vsi->num_rxq) 6874 return; 6875 6876 /* netdev packet/byte stats come from ring counter. These are obtained 6877 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6878 * But, only call the update routine and read the registers if VSI is 6879 * not down. 6880 */ 6881 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6882 ice_update_vsi_ring_stats(vsi); 6883 stats->tx_packets = vsi_stats->tx_packets; 6884 stats->tx_bytes = vsi_stats->tx_bytes; 6885 stats->rx_packets = vsi_stats->rx_packets; 6886 stats->rx_bytes = vsi_stats->rx_bytes; 6887 6888 /* The rest of the stats can be read from the hardware but instead we 6889 * just return values that the watchdog task has already obtained from 6890 * the hardware. 6891 */ 6892 stats->multicast = vsi_stats->multicast; 6893 stats->tx_errors = vsi_stats->tx_errors; 6894 stats->tx_dropped = vsi_stats->tx_dropped; 6895 stats->rx_errors = vsi_stats->rx_errors; 6896 stats->rx_dropped = vsi_stats->rx_dropped; 6897 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6898 stats->rx_length_errors = vsi_stats->rx_length_errors; 6899 } 6900 6901 /** 6902 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6903 * @vsi: VSI having NAPI disabled 6904 */ 6905 static void ice_napi_disable_all(struct ice_vsi *vsi) 6906 { 6907 int q_idx; 6908 6909 if (!vsi->netdev) 6910 return; 6911 6912 ice_for_each_q_vector(vsi, q_idx) { 6913 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6914 6915 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6916 napi_disable(&q_vector->napi); 6917 6918 cancel_work_sync(&q_vector->tx.dim.work); 6919 cancel_work_sync(&q_vector->rx.dim.work); 6920 } 6921 } 6922 6923 /** 6924 * ice_down - Shutdown the connection 6925 * @vsi: The VSI being stopped 6926 * 6927 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6928 */ 6929 int ice_down(struct ice_vsi *vsi) 6930 { 6931 int i, tx_err, rx_err, vlan_err = 0; 6932 6933 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6934 6935 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6936 vlan_err = ice_vsi_del_vlan_zero(vsi); 6937 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6938 netif_carrier_off(vsi->netdev); 6939 netif_tx_disable(vsi->netdev); 6940 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6941 ice_eswitch_stop_all_tx_queues(vsi->back); 6942 } 6943 6944 ice_vsi_dis_irq(vsi); 6945 6946 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6947 if (tx_err) 6948 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6949 vsi->vsi_num, tx_err); 6950 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6951 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6952 if (tx_err) 6953 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6954 vsi->vsi_num, tx_err); 6955 } 6956 6957 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6958 if (rx_err) 6959 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6960 vsi->vsi_num, rx_err); 6961 6962 ice_napi_disable_all(vsi); 6963 6964 ice_for_each_txq(vsi, i) 6965 ice_clean_tx_ring(vsi->tx_rings[i]); 6966 6967 if (ice_is_xdp_ena_vsi(vsi)) 6968 ice_for_each_xdp_txq(vsi, i) 6969 ice_clean_tx_ring(vsi->xdp_rings[i]); 6970 6971 ice_for_each_rxq(vsi, i) 6972 ice_clean_rx_ring(vsi->rx_rings[i]); 6973 6974 if (tx_err || rx_err || vlan_err) { 6975 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6976 vsi->vsi_num, vsi->vsw->sw_id); 6977 return -EIO; 6978 } 6979 6980 return 0; 6981 } 6982 6983 /** 6984 * ice_down_up - shutdown the VSI connection and bring it up 6985 * @vsi: the VSI to be reconnected 6986 */ 6987 int ice_down_up(struct ice_vsi *vsi) 6988 { 6989 int ret; 6990 6991 /* if DOWN already set, nothing to do */ 6992 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6993 return 0; 6994 6995 ret = ice_down(vsi); 6996 if (ret) 6997 return ret; 6998 6999 ret = ice_up(vsi); 7000 if (ret) { 7001 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7002 return ret; 7003 } 7004 7005 return 0; 7006 } 7007 7008 /** 7009 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7010 * @vsi: VSI having resources allocated 7011 * 7012 * Return 0 on success, negative on failure 7013 */ 7014 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7015 { 7016 int i, err = 0; 7017 7018 if (!vsi->num_txq) { 7019 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7020 vsi->vsi_num); 7021 return -EINVAL; 7022 } 7023 7024 ice_for_each_txq(vsi, i) { 7025 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7026 7027 if (!ring) 7028 return -EINVAL; 7029 7030 if (vsi->netdev) 7031 ring->netdev = vsi->netdev; 7032 err = ice_setup_tx_ring(ring); 7033 if (err) 7034 break; 7035 } 7036 7037 return err; 7038 } 7039 7040 /** 7041 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7042 * @vsi: VSI having resources allocated 7043 * 7044 * Return 0 on success, negative on failure 7045 */ 7046 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7047 { 7048 int i, err = 0; 7049 7050 if (!vsi->num_rxq) { 7051 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7052 vsi->vsi_num); 7053 return -EINVAL; 7054 } 7055 7056 ice_for_each_rxq(vsi, i) { 7057 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7058 7059 if (!ring) 7060 return -EINVAL; 7061 7062 if (vsi->netdev) 7063 ring->netdev = vsi->netdev; 7064 err = ice_setup_rx_ring(ring); 7065 if (err) 7066 break; 7067 } 7068 7069 return err; 7070 } 7071 7072 /** 7073 * ice_vsi_open_ctrl - open control VSI for use 7074 * @vsi: the VSI to open 7075 * 7076 * Initialization of the Control VSI 7077 * 7078 * Returns 0 on success, negative value on error 7079 */ 7080 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7081 { 7082 char int_name[ICE_INT_NAME_STR_LEN]; 7083 struct ice_pf *pf = vsi->back; 7084 struct device *dev; 7085 int err; 7086 7087 dev = ice_pf_to_dev(pf); 7088 /* allocate descriptors */ 7089 err = ice_vsi_setup_tx_rings(vsi); 7090 if (err) 7091 goto err_setup_tx; 7092 7093 err = ice_vsi_setup_rx_rings(vsi); 7094 if (err) 7095 goto err_setup_rx; 7096 7097 err = ice_vsi_cfg_lan(vsi); 7098 if (err) 7099 goto err_setup_rx; 7100 7101 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7102 dev_driver_string(dev), dev_name(dev)); 7103 err = ice_vsi_req_irq_msix(vsi, int_name); 7104 if (err) 7105 goto err_setup_rx; 7106 7107 ice_vsi_cfg_msix(vsi); 7108 7109 err = ice_vsi_start_all_rx_rings(vsi); 7110 if (err) 7111 goto err_up_complete; 7112 7113 clear_bit(ICE_VSI_DOWN, vsi->state); 7114 ice_vsi_ena_irq(vsi); 7115 7116 return 0; 7117 7118 err_up_complete: 7119 ice_down(vsi); 7120 err_setup_rx: 7121 ice_vsi_free_rx_rings(vsi); 7122 err_setup_tx: 7123 ice_vsi_free_tx_rings(vsi); 7124 7125 return err; 7126 } 7127 7128 /** 7129 * ice_vsi_open - Called when a network interface is made active 7130 * @vsi: the VSI to open 7131 * 7132 * Initialization of the VSI 7133 * 7134 * Returns 0 on success, negative value on error 7135 */ 7136 int ice_vsi_open(struct ice_vsi *vsi) 7137 { 7138 char int_name[ICE_INT_NAME_STR_LEN]; 7139 struct ice_pf *pf = vsi->back; 7140 int err; 7141 7142 /* allocate descriptors */ 7143 err = ice_vsi_setup_tx_rings(vsi); 7144 if (err) 7145 goto err_setup_tx; 7146 7147 err = ice_vsi_setup_rx_rings(vsi); 7148 if (err) 7149 goto err_setup_rx; 7150 7151 err = ice_vsi_cfg_lan(vsi); 7152 if (err) 7153 goto err_setup_rx; 7154 7155 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7156 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7157 err = ice_vsi_req_irq_msix(vsi, int_name); 7158 if (err) 7159 goto err_setup_rx; 7160 7161 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7162 7163 if (vsi->type == ICE_VSI_PF) { 7164 /* Notify the stack of the actual queue counts. */ 7165 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7166 if (err) 7167 goto err_set_qs; 7168 7169 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7170 if (err) 7171 goto err_set_qs; 7172 } 7173 7174 err = ice_up_complete(vsi); 7175 if (err) 7176 goto err_up_complete; 7177 7178 return 0; 7179 7180 err_up_complete: 7181 ice_down(vsi); 7182 err_set_qs: 7183 ice_vsi_free_irq(vsi); 7184 err_setup_rx: 7185 ice_vsi_free_rx_rings(vsi); 7186 err_setup_tx: 7187 ice_vsi_free_tx_rings(vsi); 7188 7189 return err; 7190 } 7191 7192 /** 7193 * ice_vsi_release_all - Delete all VSIs 7194 * @pf: PF from which all VSIs are being removed 7195 */ 7196 static void ice_vsi_release_all(struct ice_pf *pf) 7197 { 7198 int err, i; 7199 7200 if (!pf->vsi) 7201 return; 7202 7203 ice_for_each_vsi(pf, i) { 7204 if (!pf->vsi[i]) 7205 continue; 7206 7207 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7208 continue; 7209 7210 err = ice_vsi_release(pf->vsi[i]); 7211 if (err) 7212 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7213 i, err, pf->vsi[i]->vsi_num); 7214 } 7215 } 7216 7217 /** 7218 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7219 * @pf: pointer to the PF instance 7220 * @type: VSI type to rebuild 7221 * 7222 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7223 */ 7224 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7225 { 7226 struct device *dev = ice_pf_to_dev(pf); 7227 int i, err; 7228 7229 ice_for_each_vsi(pf, i) { 7230 struct ice_vsi *vsi = pf->vsi[i]; 7231 7232 if (!vsi || vsi->type != type) 7233 continue; 7234 7235 /* rebuild the VSI */ 7236 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7237 if (err) { 7238 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7239 err, vsi->idx, ice_vsi_type_str(type)); 7240 return err; 7241 } 7242 7243 /* replay filters for the VSI */ 7244 err = ice_replay_vsi(&pf->hw, vsi->idx); 7245 if (err) { 7246 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7247 err, vsi->idx, ice_vsi_type_str(type)); 7248 return err; 7249 } 7250 7251 /* Re-map HW VSI number, using VSI handle that has been 7252 * previously validated in ice_replay_vsi() call above 7253 */ 7254 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7255 7256 /* enable the VSI */ 7257 err = ice_ena_vsi(vsi, false); 7258 if (err) { 7259 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7260 err, vsi->idx, ice_vsi_type_str(type)); 7261 return err; 7262 } 7263 7264 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7265 ice_vsi_type_str(type)); 7266 } 7267 7268 return 0; 7269 } 7270 7271 /** 7272 * ice_update_pf_netdev_link - Update PF netdev link status 7273 * @pf: pointer to the PF instance 7274 */ 7275 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7276 { 7277 bool link_up; 7278 int i; 7279 7280 ice_for_each_vsi(pf, i) { 7281 struct ice_vsi *vsi = pf->vsi[i]; 7282 7283 if (!vsi || vsi->type != ICE_VSI_PF) 7284 return; 7285 7286 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7287 if (link_up) { 7288 netif_carrier_on(pf->vsi[i]->netdev); 7289 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7290 } else { 7291 netif_carrier_off(pf->vsi[i]->netdev); 7292 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7293 } 7294 } 7295 } 7296 7297 /** 7298 * ice_rebuild - rebuild after reset 7299 * @pf: PF to rebuild 7300 * @reset_type: type of reset 7301 * 7302 * Do not rebuild VF VSI in this flow because that is already handled via 7303 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7304 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7305 * to reset/rebuild all the VF VSI twice. 7306 */ 7307 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7308 { 7309 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7310 struct device *dev = ice_pf_to_dev(pf); 7311 struct ice_hw *hw = &pf->hw; 7312 bool dvm; 7313 int err; 7314 7315 if (test_bit(ICE_DOWN, pf->state)) 7316 goto clear_recovery; 7317 7318 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7319 7320 #define ICE_EMP_RESET_SLEEP_MS 5000 7321 if (reset_type == ICE_RESET_EMPR) { 7322 /* If an EMP reset has occurred, any previously pending flash 7323 * update will have completed. We no longer know whether or 7324 * not the NVM update EMP reset is restricted. 7325 */ 7326 pf->fw_emp_reset_disabled = false; 7327 7328 msleep(ICE_EMP_RESET_SLEEP_MS); 7329 } 7330 7331 err = ice_init_all_ctrlq(hw); 7332 if (err) { 7333 dev_err(dev, "control queues init failed %d\n", err); 7334 goto err_init_ctrlq; 7335 } 7336 7337 /* if DDP was previously loaded successfully */ 7338 if (!ice_is_safe_mode(pf)) { 7339 /* reload the SW DB of filter tables */ 7340 if (reset_type == ICE_RESET_PFR) 7341 ice_fill_blk_tbls(hw); 7342 else 7343 /* Reload DDP Package after CORER/GLOBR reset */ 7344 ice_load_pkg(NULL, pf); 7345 } 7346 7347 err = ice_clear_pf_cfg(hw); 7348 if (err) { 7349 dev_err(dev, "clear PF configuration failed %d\n", err); 7350 goto err_init_ctrlq; 7351 } 7352 7353 ice_clear_pxe_mode(hw); 7354 7355 err = ice_init_nvm(hw); 7356 if (err) { 7357 dev_err(dev, "ice_init_nvm failed %d\n", err); 7358 goto err_init_ctrlq; 7359 } 7360 7361 err = ice_get_caps(hw); 7362 if (err) { 7363 dev_err(dev, "ice_get_caps failed %d\n", err); 7364 goto err_init_ctrlq; 7365 } 7366 7367 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7368 if (err) { 7369 dev_err(dev, "set_mac_cfg failed %d\n", err); 7370 goto err_init_ctrlq; 7371 } 7372 7373 dvm = ice_is_dvm_ena(hw); 7374 7375 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7376 if (err) 7377 goto err_init_ctrlq; 7378 7379 err = ice_sched_init_port(hw->port_info); 7380 if (err) 7381 goto err_sched_init_port; 7382 7383 /* start misc vector */ 7384 err = ice_req_irq_msix_misc(pf); 7385 if (err) { 7386 dev_err(dev, "misc vector setup failed: %d\n", err); 7387 goto err_sched_init_port; 7388 } 7389 7390 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7391 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7392 if (!rd32(hw, PFQF_FD_SIZE)) { 7393 u16 unused, guar, b_effort; 7394 7395 guar = hw->func_caps.fd_fltr_guar; 7396 b_effort = hw->func_caps.fd_fltr_best_effort; 7397 7398 /* force guaranteed filter pool for PF */ 7399 ice_alloc_fd_guar_item(hw, &unused, guar); 7400 /* force shared filter pool for PF */ 7401 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7402 } 7403 } 7404 7405 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7406 ice_dcb_rebuild(pf); 7407 7408 /* If the PF previously had enabled PTP, PTP init needs to happen before 7409 * the VSI rebuild. If not, this causes the PTP link status events to 7410 * fail. 7411 */ 7412 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7413 ice_ptp_reset(pf); 7414 7415 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7416 ice_gnss_init(pf); 7417 7418 /* rebuild PF VSI */ 7419 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7420 if (err) { 7421 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7422 goto err_vsi_rebuild; 7423 } 7424 7425 /* configure PTP timestamping after VSI rebuild */ 7426 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7427 ice_ptp_cfg_timestamp(pf, false); 7428 7429 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7430 if (err) { 7431 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7432 goto err_vsi_rebuild; 7433 } 7434 7435 if (reset_type == ICE_RESET_PFR) { 7436 err = ice_rebuild_channels(pf); 7437 if (err) { 7438 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7439 err); 7440 goto err_vsi_rebuild; 7441 } 7442 } 7443 7444 /* If Flow Director is active */ 7445 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7446 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7447 if (err) { 7448 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7449 goto err_vsi_rebuild; 7450 } 7451 7452 /* replay HW Flow Director recipes */ 7453 if (hw->fdir_prof) 7454 ice_fdir_replay_flows(hw); 7455 7456 /* replay Flow Director filters */ 7457 ice_fdir_replay_fltrs(pf); 7458 7459 ice_rebuild_arfs(pf); 7460 } 7461 7462 if (vsi && vsi->netdev) 7463 netif_device_attach(vsi->netdev); 7464 7465 ice_update_pf_netdev_link(pf); 7466 7467 /* tell the firmware we are up */ 7468 err = ice_send_version(pf); 7469 if (err) { 7470 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7471 err); 7472 goto err_vsi_rebuild; 7473 } 7474 7475 ice_replay_post(hw); 7476 7477 /* if we get here, reset flow is successful */ 7478 clear_bit(ICE_RESET_FAILED, pf->state); 7479 7480 ice_plug_aux_dev(pf); 7481 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7482 ice_lag_rebuild(pf); 7483 return; 7484 7485 err_vsi_rebuild: 7486 err_sched_init_port: 7487 ice_sched_cleanup_all(hw); 7488 err_init_ctrlq: 7489 ice_shutdown_all_ctrlq(hw); 7490 set_bit(ICE_RESET_FAILED, pf->state); 7491 clear_recovery: 7492 /* set this bit in PF state to control service task scheduling */ 7493 set_bit(ICE_NEEDS_RESTART, pf->state); 7494 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7495 } 7496 7497 /** 7498 * ice_change_mtu - NDO callback to change the MTU 7499 * @netdev: network interface device structure 7500 * @new_mtu: new value for maximum frame size 7501 * 7502 * Returns 0 on success, negative on failure 7503 */ 7504 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7505 { 7506 struct ice_netdev_priv *np = netdev_priv(netdev); 7507 struct ice_vsi *vsi = np->vsi; 7508 struct ice_pf *pf = vsi->back; 7509 struct bpf_prog *prog; 7510 u8 count = 0; 7511 int err = 0; 7512 7513 if (new_mtu == (int)netdev->mtu) { 7514 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7515 return 0; 7516 } 7517 7518 prog = vsi->xdp_prog; 7519 if (prog && !prog->aux->xdp_has_frags) { 7520 int frame_size = ice_max_xdp_frame_size(vsi); 7521 7522 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7523 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7524 frame_size - ICE_ETH_PKT_HDR_PAD); 7525 return -EINVAL; 7526 } 7527 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7528 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7529 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7530 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7531 return -EINVAL; 7532 } 7533 } 7534 7535 /* if a reset is in progress, wait for some time for it to complete */ 7536 do { 7537 if (ice_is_reset_in_progress(pf->state)) { 7538 count++; 7539 usleep_range(1000, 2000); 7540 } else { 7541 break; 7542 } 7543 7544 } while (count < 100); 7545 7546 if (count == 100) { 7547 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7548 return -EBUSY; 7549 } 7550 7551 netdev->mtu = (unsigned int)new_mtu; 7552 err = ice_down_up(vsi); 7553 if (err) 7554 return err; 7555 7556 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7557 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7558 7559 return err; 7560 } 7561 7562 /** 7563 * ice_eth_ioctl - Access the hwtstamp interface 7564 * @netdev: network interface device structure 7565 * @ifr: interface request data 7566 * @cmd: ioctl command 7567 */ 7568 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7569 { 7570 struct ice_netdev_priv *np = netdev_priv(netdev); 7571 struct ice_pf *pf = np->vsi->back; 7572 7573 switch (cmd) { 7574 case SIOCGHWTSTAMP: 7575 return ice_ptp_get_ts_config(pf, ifr); 7576 case SIOCSHWTSTAMP: 7577 return ice_ptp_set_ts_config(pf, ifr); 7578 default: 7579 return -EOPNOTSUPP; 7580 } 7581 } 7582 7583 /** 7584 * ice_aq_str - convert AQ err code to a string 7585 * @aq_err: the AQ error code to convert 7586 */ 7587 const char *ice_aq_str(enum ice_aq_err aq_err) 7588 { 7589 switch (aq_err) { 7590 case ICE_AQ_RC_OK: 7591 return "OK"; 7592 case ICE_AQ_RC_EPERM: 7593 return "ICE_AQ_RC_EPERM"; 7594 case ICE_AQ_RC_ENOENT: 7595 return "ICE_AQ_RC_ENOENT"; 7596 case ICE_AQ_RC_ENOMEM: 7597 return "ICE_AQ_RC_ENOMEM"; 7598 case ICE_AQ_RC_EBUSY: 7599 return "ICE_AQ_RC_EBUSY"; 7600 case ICE_AQ_RC_EEXIST: 7601 return "ICE_AQ_RC_EEXIST"; 7602 case ICE_AQ_RC_EINVAL: 7603 return "ICE_AQ_RC_EINVAL"; 7604 case ICE_AQ_RC_ENOSPC: 7605 return "ICE_AQ_RC_ENOSPC"; 7606 case ICE_AQ_RC_ENOSYS: 7607 return "ICE_AQ_RC_ENOSYS"; 7608 case ICE_AQ_RC_EMODE: 7609 return "ICE_AQ_RC_EMODE"; 7610 case ICE_AQ_RC_ENOSEC: 7611 return "ICE_AQ_RC_ENOSEC"; 7612 case ICE_AQ_RC_EBADSIG: 7613 return "ICE_AQ_RC_EBADSIG"; 7614 case ICE_AQ_RC_ESVN: 7615 return "ICE_AQ_RC_ESVN"; 7616 case ICE_AQ_RC_EBADMAN: 7617 return "ICE_AQ_RC_EBADMAN"; 7618 case ICE_AQ_RC_EBADBUF: 7619 return "ICE_AQ_RC_EBADBUF"; 7620 } 7621 7622 return "ICE_AQ_RC_UNKNOWN"; 7623 } 7624 7625 /** 7626 * ice_set_rss_lut - Set RSS LUT 7627 * @vsi: Pointer to VSI structure 7628 * @lut: Lookup table 7629 * @lut_size: Lookup table size 7630 * 7631 * Returns 0 on success, negative on failure 7632 */ 7633 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7634 { 7635 struct ice_aq_get_set_rss_lut_params params = {}; 7636 struct ice_hw *hw = &vsi->back->hw; 7637 int status; 7638 7639 if (!lut) 7640 return -EINVAL; 7641 7642 params.vsi_handle = vsi->idx; 7643 params.lut_size = lut_size; 7644 params.lut_type = vsi->rss_lut_type; 7645 params.lut = lut; 7646 7647 status = ice_aq_set_rss_lut(hw, ¶ms); 7648 if (status) 7649 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7650 status, ice_aq_str(hw->adminq.sq_last_status)); 7651 7652 return status; 7653 } 7654 7655 /** 7656 * ice_set_rss_key - Set RSS key 7657 * @vsi: Pointer to the VSI structure 7658 * @seed: RSS hash seed 7659 * 7660 * Returns 0 on success, negative on failure 7661 */ 7662 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7663 { 7664 struct ice_hw *hw = &vsi->back->hw; 7665 int status; 7666 7667 if (!seed) 7668 return -EINVAL; 7669 7670 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7671 if (status) 7672 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7673 status, ice_aq_str(hw->adminq.sq_last_status)); 7674 7675 return status; 7676 } 7677 7678 /** 7679 * ice_get_rss_lut - Get RSS LUT 7680 * @vsi: Pointer to VSI structure 7681 * @lut: Buffer to store the lookup table entries 7682 * @lut_size: Size of buffer to store the lookup table entries 7683 * 7684 * Returns 0 on success, negative on failure 7685 */ 7686 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7687 { 7688 struct ice_aq_get_set_rss_lut_params params = {}; 7689 struct ice_hw *hw = &vsi->back->hw; 7690 int status; 7691 7692 if (!lut) 7693 return -EINVAL; 7694 7695 params.vsi_handle = vsi->idx; 7696 params.lut_size = lut_size; 7697 params.lut_type = vsi->rss_lut_type; 7698 params.lut = lut; 7699 7700 status = ice_aq_get_rss_lut(hw, ¶ms); 7701 if (status) 7702 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7703 status, ice_aq_str(hw->adminq.sq_last_status)); 7704 7705 return status; 7706 } 7707 7708 /** 7709 * ice_get_rss_key - Get RSS key 7710 * @vsi: Pointer to VSI structure 7711 * @seed: Buffer to store the key in 7712 * 7713 * Returns 0 on success, negative on failure 7714 */ 7715 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7716 { 7717 struct ice_hw *hw = &vsi->back->hw; 7718 int status; 7719 7720 if (!seed) 7721 return -EINVAL; 7722 7723 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7724 if (status) 7725 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7726 status, ice_aq_str(hw->adminq.sq_last_status)); 7727 7728 return status; 7729 } 7730 7731 /** 7732 * ice_bridge_getlink - Get the hardware bridge mode 7733 * @skb: skb buff 7734 * @pid: process ID 7735 * @seq: RTNL message seq 7736 * @dev: the netdev being configured 7737 * @filter_mask: filter mask passed in 7738 * @nlflags: netlink flags passed in 7739 * 7740 * Return the bridge mode (VEB/VEPA) 7741 */ 7742 static int 7743 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7744 struct net_device *dev, u32 filter_mask, int nlflags) 7745 { 7746 struct ice_netdev_priv *np = netdev_priv(dev); 7747 struct ice_vsi *vsi = np->vsi; 7748 struct ice_pf *pf = vsi->back; 7749 u16 bmode; 7750 7751 bmode = pf->first_sw->bridge_mode; 7752 7753 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7754 filter_mask, NULL); 7755 } 7756 7757 /** 7758 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7759 * @vsi: Pointer to VSI structure 7760 * @bmode: Hardware bridge mode (VEB/VEPA) 7761 * 7762 * Returns 0 on success, negative on failure 7763 */ 7764 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7765 { 7766 struct ice_aqc_vsi_props *vsi_props; 7767 struct ice_hw *hw = &vsi->back->hw; 7768 struct ice_vsi_ctx *ctxt; 7769 int ret; 7770 7771 vsi_props = &vsi->info; 7772 7773 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7774 if (!ctxt) 7775 return -ENOMEM; 7776 7777 ctxt->info = vsi->info; 7778 7779 if (bmode == BRIDGE_MODE_VEB) 7780 /* change from VEPA to VEB mode */ 7781 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7782 else 7783 /* change from VEB to VEPA mode */ 7784 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7785 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7786 7787 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7788 if (ret) { 7789 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7790 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7791 goto out; 7792 } 7793 /* Update sw flags for book keeping */ 7794 vsi_props->sw_flags = ctxt->info.sw_flags; 7795 7796 out: 7797 kfree(ctxt); 7798 return ret; 7799 } 7800 7801 /** 7802 * ice_bridge_setlink - Set the hardware bridge mode 7803 * @dev: the netdev being configured 7804 * @nlh: RTNL message 7805 * @flags: bridge setlink flags 7806 * @extack: netlink extended ack 7807 * 7808 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7809 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7810 * not already set for all VSIs connected to this switch. And also update the 7811 * unicast switch filter rules for the corresponding switch of the netdev. 7812 */ 7813 static int 7814 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7815 u16 __always_unused flags, 7816 struct netlink_ext_ack __always_unused *extack) 7817 { 7818 struct ice_netdev_priv *np = netdev_priv(dev); 7819 struct ice_pf *pf = np->vsi->back; 7820 struct nlattr *attr, *br_spec; 7821 struct ice_hw *hw = &pf->hw; 7822 struct ice_sw *pf_sw; 7823 int rem, v, err = 0; 7824 7825 pf_sw = pf->first_sw; 7826 /* find the attribute in the netlink message */ 7827 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7828 if (!br_spec) 7829 return -EINVAL; 7830 7831 nla_for_each_nested(attr, br_spec, rem) { 7832 __u16 mode; 7833 7834 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7835 continue; 7836 mode = nla_get_u16(attr); 7837 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7838 return -EINVAL; 7839 /* Continue if bridge mode is not being flipped */ 7840 if (mode == pf_sw->bridge_mode) 7841 continue; 7842 /* Iterates through the PF VSI list and update the loopback 7843 * mode of the VSI 7844 */ 7845 ice_for_each_vsi(pf, v) { 7846 if (!pf->vsi[v]) 7847 continue; 7848 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7849 if (err) 7850 return err; 7851 } 7852 7853 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7854 /* Update the unicast switch filter rules for the corresponding 7855 * switch of the netdev 7856 */ 7857 err = ice_update_sw_rule_bridge_mode(hw); 7858 if (err) { 7859 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7860 mode, err, 7861 ice_aq_str(hw->adminq.sq_last_status)); 7862 /* revert hw->evb_veb */ 7863 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7864 return err; 7865 } 7866 7867 pf_sw->bridge_mode = mode; 7868 } 7869 7870 return 0; 7871 } 7872 7873 /** 7874 * ice_tx_timeout - Respond to a Tx Hang 7875 * @netdev: network interface device structure 7876 * @txqueue: Tx queue 7877 */ 7878 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7879 { 7880 struct ice_netdev_priv *np = netdev_priv(netdev); 7881 struct ice_tx_ring *tx_ring = NULL; 7882 struct ice_vsi *vsi = np->vsi; 7883 struct ice_pf *pf = vsi->back; 7884 u32 i; 7885 7886 pf->tx_timeout_count++; 7887 7888 /* Check if PFC is enabled for the TC to which the queue belongs 7889 * to. If yes then Tx timeout is not caused by a hung queue, no 7890 * need to reset and rebuild 7891 */ 7892 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7893 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7894 txqueue); 7895 return; 7896 } 7897 7898 /* now that we have an index, find the tx_ring struct */ 7899 ice_for_each_txq(vsi, i) 7900 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7901 if (txqueue == vsi->tx_rings[i]->q_index) { 7902 tx_ring = vsi->tx_rings[i]; 7903 break; 7904 } 7905 7906 /* Reset recovery level if enough time has elapsed after last timeout. 7907 * Also ensure no new reset action happens before next timeout period. 7908 */ 7909 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7910 pf->tx_timeout_recovery_level = 1; 7911 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7912 netdev->watchdog_timeo))) 7913 return; 7914 7915 if (tx_ring) { 7916 struct ice_hw *hw = &pf->hw; 7917 u32 head, val = 0; 7918 7919 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7920 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7921 /* Read interrupt register */ 7922 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7923 7924 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7925 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7926 head, tx_ring->next_to_use, val); 7927 } 7928 7929 pf->tx_timeout_last_recovery = jiffies; 7930 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7931 pf->tx_timeout_recovery_level, txqueue); 7932 7933 switch (pf->tx_timeout_recovery_level) { 7934 case 1: 7935 set_bit(ICE_PFR_REQ, pf->state); 7936 break; 7937 case 2: 7938 set_bit(ICE_CORER_REQ, pf->state); 7939 break; 7940 case 3: 7941 set_bit(ICE_GLOBR_REQ, pf->state); 7942 break; 7943 default: 7944 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7945 set_bit(ICE_DOWN, pf->state); 7946 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7947 set_bit(ICE_SERVICE_DIS, pf->state); 7948 break; 7949 } 7950 7951 ice_service_task_schedule(pf); 7952 pf->tx_timeout_recovery_level++; 7953 } 7954 7955 /** 7956 * ice_setup_tc_cls_flower - flower classifier offloads 7957 * @np: net device to configure 7958 * @filter_dev: device on which filter is added 7959 * @cls_flower: offload data 7960 */ 7961 static int 7962 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7963 struct net_device *filter_dev, 7964 struct flow_cls_offload *cls_flower) 7965 { 7966 struct ice_vsi *vsi = np->vsi; 7967 7968 if (cls_flower->common.chain_index) 7969 return -EOPNOTSUPP; 7970 7971 switch (cls_flower->command) { 7972 case FLOW_CLS_REPLACE: 7973 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7974 case FLOW_CLS_DESTROY: 7975 return ice_del_cls_flower(vsi, cls_flower); 7976 default: 7977 return -EINVAL; 7978 } 7979 } 7980 7981 /** 7982 * ice_setup_tc_block_cb - callback handler registered for TC block 7983 * @type: TC SETUP type 7984 * @type_data: TC flower offload data that contains user input 7985 * @cb_priv: netdev private data 7986 */ 7987 static int 7988 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7989 { 7990 struct ice_netdev_priv *np = cb_priv; 7991 7992 switch (type) { 7993 case TC_SETUP_CLSFLOWER: 7994 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7995 type_data); 7996 default: 7997 return -EOPNOTSUPP; 7998 } 7999 } 8000 8001 /** 8002 * ice_validate_mqprio_qopt - Validate TCF input parameters 8003 * @vsi: Pointer to VSI 8004 * @mqprio_qopt: input parameters for mqprio queue configuration 8005 * 8006 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8007 * needed), and make sure user doesn't specify qcount and BW rate limit 8008 * for TCs, which are more than "num_tc" 8009 */ 8010 static int 8011 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8012 struct tc_mqprio_qopt_offload *mqprio_qopt) 8013 { 8014 int non_power_of_2_qcount = 0; 8015 struct ice_pf *pf = vsi->back; 8016 int max_rss_q_cnt = 0; 8017 u64 sum_min_rate = 0; 8018 struct device *dev; 8019 int i, speed; 8020 u8 num_tc; 8021 8022 if (vsi->type != ICE_VSI_PF) 8023 return -EINVAL; 8024 8025 if (mqprio_qopt->qopt.offset[0] != 0 || 8026 mqprio_qopt->qopt.num_tc < 1 || 8027 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8028 return -EINVAL; 8029 8030 dev = ice_pf_to_dev(pf); 8031 vsi->ch_rss_size = 0; 8032 num_tc = mqprio_qopt->qopt.num_tc; 8033 speed = ice_get_link_speed_kbps(vsi); 8034 8035 for (i = 0; num_tc; i++) { 8036 int qcount = mqprio_qopt->qopt.count[i]; 8037 u64 max_rate, min_rate, rem; 8038 8039 if (!qcount) 8040 return -EINVAL; 8041 8042 if (is_power_of_2(qcount)) { 8043 if (non_power_of_2_qcount && 8044 qcount > non_power_of_2_qcount) { 8045 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8046 qcount, non_power_of_2_qcount); 8047 return -EINVAL; 8048 } 8049 if (qcount > max_rss_q_cnt) 8050 max_rss_q_cnt = qcount; 8051 } else { 8052 if (non_power_of_2_qcount && 8053 qcount != non_power_of_2_qcount) { 8054 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8055 qcount, non_power_of_2_qcount); 8056 return -EINVAL; 8057 } 8058 if (qcount < max_rss_q_cnt) { 8059 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8060 qcount, max_rss_q_cnt); 8061 return -EINVAL; 8062 } 8063 max_rss_q_cnt = qcount; 8064 non_power_of_2_qcount = qcount; 8065 } 8066 8067 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8068 * converts the bandwidth rate limit into Bytes/s when 8069 * passing it down to the driver. So convert input bandwidth 8070 * from Bytes/s to Kbps 8071 */ 8072 max_rate = mqprio_qopt->max_rate[i]; 8073 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8074 8075 /* min_rate is minimum guaranteed rate and it can't be zero */ 8076 min_rate = mqprio_qopt->min_rate[i]; 8077 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8078 sum_min_rate += min_rate; 8079 8080 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8081 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8082 min_rate, ICE_MIN_BW_LIMIT); 8083 return -EINVAL; 8084 } 8085 8086 if (max_rate && max_rate > speed) { 8087 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8088 i, max_rate, speed); 8089 return -EINVAL; 8090 } 8091 8092 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8093 if (rem) { 8094 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8095 i, ICE_MIN_BW_LIMIT); 8096 return -EINVAL; 8097 } 8098 8099 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8100 if (rem) { 8101 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8102 i, ICE_MIN_BW_LIMIT); 8103 return -EINVAL; 8104 } 8105 8106 /* min_rate can't be more than max_rate, except when max_rate 8107 * is zero (implies max_rate sought is max line rate). In such 8108 * a case min_rate can be more than max. 8109 */ 8110 if (max_rate && min_rate > max_rate) { 8111 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8112 min_rate, max_rate); 8113 return -EINVAL; 8114 } 8115 8116 if (i >= mqprio_qopt->qopt.num_tc - 1) 8117 break; 8118 if (mqprio_qopt->qopt.offset[i + 1] != 8119 (mqprio_qopt->qopt.offset[i] + qcount)) 8120 return -EINVAL; 8121 } 8122 if (vsi->num_rxq < 8123 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8124 return -EINVAL; 8125 if (vsi->num_txq < 8126 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8127 return -EINVAL; 8128 8129 if (sum_min_rate && sum_min_rate > (u64)speed) { 8130 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8131 sum_min_rate, speed); 8132 return -EINVAL; 8133 } 8134 8135 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8136 vsi->ch_rss_size = max_rss_q_cnt; 8137 8138 return 0; 8139 } 8140 8141 /** 8142 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8143 * @pf: ptr to PF device 8144 * @vsi: ptr to VSI 8145 */ 8146 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8147 { 8148 struct device *dev = ice_pf_to_dev(pf); 8149 bool added = false; 8150 struct ice_hw *hw; 8151 int flow; 8152 8153 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8154 return -EINVAL; 8155 8156 hw = &pf->hw; 8157 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8158 struct ice_fd_hw_prof *prof; 8159 int tun, status; 8160 u64 entry_h; 8161 8162 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8163 hw->fdir_prof[flow]->cnt)) 8164 continue; 8165 8166 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8167 enum ice_flow_priority prio; 8168 u64 prof_id; 8169 8170 /* add this VSI to FDir profile for this flow */ 8171 prio = ICE_FLOW_PRIO_NORMAL; 8172 prof = hw->fdir_prof[flow]; 8173 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8174 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8175 prof->vsi_h[0], vsi->idx, 8176 prio, prof->fdir_seg[tun], 8177 &entry_h); 8178 if (status) { 8179 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8180 vsi->idx, flow); 8181 continue; 8182 } 8183 8184 prof->entry_h[prof->cnt][tun] = entry_h; 8185 } 8186 8187 /* store VSI for filter replay and delete */ 8188 prof->vsi_h[prof->cnt] = vsi->idx; 8189 prof->cnt++; 8190 8191 added = true; 8192 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8193 flow); 8194 } 8195 8196 if (!added) 8197 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8198 8199 return 0; 8200 } 8201 8202 /** 8203 * ice_add_channel - add a channel by adding VSI 8204 * @pf: ptr to PF device 8205 * @sw_id: underlying HW switching element ID 8206 * @ch: ptr to channel structure 8207 * 8208 * Add a channel (VSI) using add_vsi and queue_map 8209 */ 8210 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8211 { 8212 struct device *dev = ice_pf_to_dev(pf); 8213 struct ice_vsi *vsi; 8214 8215 if (ch->type != ICE_VSI_CHNL) { 8216 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8217 return -EINVAL; 8218 } 8219 8220 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8221 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8222 dev_err(dev, "create chnl VSI failure\n"); 8223 return -EINVAL; 8224 } 8225 8226 ice_add_vsi_to_fdir(pf, vsi); 8227 8228 ch->sw_id = sw_id; 8229 ch->vsi_num = vsi->vsi_num; 8230 ch->info.mapping_flags = vsi->info.mapping_flags; 8231 ch->ch_vsi = vsi; 8232 /* set the back pointer of channel for newly created VSI */ 8233 vsi->ch = ch; 8234 8235 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8236 sizeof(vsi->info.q_mapping)); 8237 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8238 sizeof(vsi->info.tc_mapping)); 8239 8240 return 0; 8241 } 8242 8243 /** 8244 * ice_chnl_cfg_res 8245 * @vsi: the VSI being setup 8246 * @ch: ptr to channel structure 8247 * 8248 * Configure channel specific resources such as rings, vector. 8249 */ 8250 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8251 { 8252 int i; 8253 8254 for (i = 0; i < ch->num_txq; i++) { 8255 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8256 struct ice_ring_container *rc; 8257 struct ice_tx_ring *tx_ring; 8258 struct ice_rx_ring *rx_ring; 8259 8260 tx_ring = vsi->tx_rings[ch->base_q + i]; 8261 rx_ring = vsi->rx_rings[ch->base_q + i]; 8262 if (!tx_ring || !rx_ring) 8263 continue; 8264 8265 /* setup ring being channel enabled */ 8266 tx_ring->ch = ch; 8267 rx_ring->ch = ch; 8268 8269 /* following code block sets up vector specific attributes */ 8270 tx_q_vector = tx_ring->q_vector; 8271 rx_q_vector = rx_ring->q_vector; 8272 if (!tx_q_vector && !rx_q_vector) 8273 continue; 8274 8275 if (tx_q_vector) { 8276 tx_q_vector->ch = ch; 8277 /* setup Tx and Rx ITR setting if DIM is off */ 8278 rc = &tx_q_vector->tx; 8279 if (!ITR_IS_DYNAMIC(rc)) 8280 ice_write_itr(rc, rc->itr_setting); 8281 } 8282 if (rx_q_vector) { 8283 rx_q_vector->ch = ch; 8284 /* setup Tx and Rx ITR setting if DIM is off */ 8285 rc = &rx_q_vector->rx; 8286 if (!ITR_IS_DYNAMIC(rc)) 8287 ice_write_itr(rc, rc->itr_setting); 8288 } 8289 } 8290 8291 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8292 * GLINT_ITR register would have written to perform in-context 8293 * update, hence perform flush 8294 */ 8295 if (ch->num_txq || ch->num_rxq) 8296 ice_flush(&vsi->back->hw); 8297 } 8298 8299 /** 8300 * ice_cfg_chnl_all_res - configure channel resources 8301 * @vsi: pte to main_vsi 8302 * @ch: ptr to channel structure 8303 * 8304 * This function configures channel specific resources such as flow-director 8305 * counter index, and other resources such as queues, vectors, ITR settings 8306 */ 8307 static void 8308 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8309 { 8310 /* configure channel (aka ADQ) resources such as queues, vectors, 8311 * ITR settings for channel specific vectors and anything else 8312 */ 8313 ice_chnl_cfg_res(vsi, ch); 8314 } 8315 8316 /** 8317 * ice_setup_hw_channel - setup new channel 8318 * @pf: ptr to PF device 8319 * @vsi: the VSI being setup 8320 * @ch: ptr to channel structure 8321 * @sw_id: underlying HW switching element ID 8322 * @type: type of channel to be created (VMDq2/VF) 8323 * 8324 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8325 * and configures Tx rings accordingly 8326 */ 8327 static int 8328 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8329 struct ice_channel *ch, u16 sw_id, u8 type) 8330 { 8331 struct device *dev = ice_pf_to_dev(pf); 8332 int ret; 8333 8334 ch->base_q = vsi->next_base_q; 8335 ch->type = type; 8336 8337 ret = ice_add_channel(pf, sw_id, ch); 8338 if (ret) { 8339 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8340 return ret; 8341 } 8342 8343 /* configure/setup ADQ specific resources */ 8344 ice_cfg_chnl_all_res(vsi, ch); 8345 8346 /* make sure to update the next_base_q so that subsequent channel's 8347 * (aka ADQ) VSI queue map is correct 8348 */ 8349 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8350 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8351 ch->num_rxq); 8352 8353 return 0; 8354 } 8355 8356 /** 8357 * ice_setup_channel - setup new channel using uplink element 8358 * @pf: ptr to PF device 8359 * @vsi: the VSI being setup 8360 * @ch: ptr to channel structure 8361 * 8362 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8363 * and uplink switching element 8364 */ 8365 static bool 8366 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8367 struct ice_channel *ch) 8368 { 8369 struct device *dev = ice_pf_to_dev(pf); 8370 u16 sw_id; 8371 int ret; 8372 8373 if (vsi->type != ICE_VSI_PF) { 8374 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8375 return false; 8376 } 8377 8378 sw_id = pf->first_sw->sw_id; 8379 8380 /* create channel (VSI) */ 8381 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8382 if (ret) { 8383 dev_err(dev, "failed to setup hw_channel\n"); 8384 return false; 8385 } 8386 dev_dbg(dev, "successfully created channel()\n"); 8387 8388 return ch->ch_vsi ? true : false; 8389 } 8390 8391 /** 8392 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8393 * @vsi: VSI to be configured 8394 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8395 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8396 */ 8397 static int 8398 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8399 { 8400 int err; 8401 8402 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8403 if (err) 8404 return err; 8405 8406 return ice_set_max_bw_limit(vsi, max_tx_rate); 8407 } 8408 8409 /** 8410 * ice_create_q_channel - function to create channel 8411 * @vsi: VSI to be configured 8412 * @ch: ptr to channel (it contains channel specific params) 8413 * 8414 * This function creates channel (VSI) using num_queues specified by user, 8415 * reconfigs RSS if needed. 8416 */ 8417 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8418 { 8419 struct ice_pf *pf = vsi->back; 8420 struct device *dev; 8421 8422 if (!ch) 8423 return -EINVAL; 8424 8425 dev = ice_pf_to_dev(pf); 8426 if (!ch->num_txq || !ch->num_rxq) { 8427 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8428 return -EINVAL; 8429 } 8430 8431 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8432 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8433 vsi->cnt_q_avail, ch->num_txq); 8434 return -EINVAL; 8435 } 8436 8437 if (!ice_setup_channel(pf, vsi, ch)) { 8438 dev_info(dev, "Failed to setup channel\n"); 8439 return -EINVAL; 8440 } 8441 /* configure BW rate limit */ 8442 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8443 int ret; 8444 8445 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8446 ch->min_tx_rate); 8447 if (ret) 8448 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8449 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8450 else 8451 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8452 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8453 } 8454 8455 vsi->cnt_q_avail -= ch->num_txq; 8456 8457 return 0; 8458 } 8459 8460 /** 8461 * ice_rem_all_chnl_fltrs - removes all channel filters 8462 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8463 * 8464 * Remove all advanced switch filters only if they are channel specific 8465 * tc-flower based filter 8466 */ 8467 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8468 { 8469 struct ice_tc_flower_fltr *fltr; 8470 struct hlist_node *node; 8471 8472 /* to remove all channel filters, iterate an ordered list of filters */ 8473 hlist_for_each_entry_safe(fltr, node, 8474 &pf->tc_flower_fltr_list, 8475 tc_flower_node) { 8476 struct ice_rule_query_data rule; 8477 int status; 8478 8479 /* for now process only channel specific filters */ 8480 if (!ice_is_chnl_fltr(fltr)) 8481 continue; 8482 8483 rule.rid = fltr->rid; 8484 rule.rule_id = fltr->rule_id; 8485 rule.vsi_handle = fltr->dest_vsi_handle; 8486 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8487 if (status) { 8488 if (status == -ENOENT) 8489 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8490 rule.rule_id); 8491 else 8492 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8493 status); 8494 } else if (fltr->dest_vsi) { 8495 /* update advanced switch filter count */ 8496 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8497 u32 flags = fltr->flags; 8498 8499 fltr->dest_vsi->num_chnl_fltr--; 8500 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8501 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8502 pf->num_dmac_chnl_fltrs--; 8503 } 8504 } 8505 8506 hlist_del(&fltr->tc_flower_node); 8507 kfree(fltr); 8508 } 8509 } 8510 8511 /** 8512 * ice_remove_q_channels - Remove queue channels for the TCs 8513 * @vsi: VSI to be configured 8514 * @rem_fltr: delete advanced switch filter or not 8515 * 8516 * Remove queue channels for the TCs 8517 */ 8518 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8519 { 8520 struct ice_channel *ch, *ch_tmp; 8521 struct ice_pf *pf = vsi->back; 8522 int i; 8523 8524 /* remove all tc-flower based filter if they are channel filters only */ 8525 if (rem_fltr) 8526 ice_rem_all_chnl_fltrs(pf); 8527 8528 /* remove ntuple filters since queue configuration is being changed */ 8529 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8530 struct ice_hw *hw = &pf->hw; 8531 8532 mutex_lock(&hw->fdir_fltr_lock); 8533 ice_fdir_del_all_fltrs(vsi); 8534 mutex_unlock(&hw->fdir_fltr_lock); 8535 } 8536 8537 /* perform cleanup for channels if they exist */ 8538 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8539 struct ice_vsi *ch_vsi; 8540 8541 list_del(&ch->list); 8542 ch_vsi = ch->ch_vsi; 8543 if (!ch_vsi) { 8544 kfree(ch); 8545 continue; 8546 } 8547 8548 /* Reset queue contexts */ 8549 for (i = 0; i < ch->num_rxq; i++) { 8550 struct ice_tx_ring *tx_ring; 8551 struct ice_rx_ring *rx_ring; 8552 8553 tx_ring = vsi->tx_rings[ch->base_q + i]; 8554 rx_ring = vsi->rx_rings[ch->base_q + i]; 8555 if (tx_ring) { 8556 tx_ring->ch = NULL; 8557 if (tx_ring->q_vector) 8558 tx_ring->q_vector->ch = NULL; 8559 } 8560 if (rx_ring) { 8561 rx_ring->ch = NULL; 8562 if (rx_ring->q_vector) 8563 rx_ring->q_vector->ch = NULL; 8564 } 8565 } 8566 8567 /* Release FD resources for the channel VSI */ 8568 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8569 8570 /* clear the VSI from scheduler tree */ 8571 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8572 8573 /* Delete VSI from FW, PF and HW VSI arrays */ 8574 ice_vsi_delete(ch->ch_vsi); 8575 8576 /* free the channel */ 8577 kfree(ch); 8578 } 8579 8580 /* clear the channel VSI map which is stored in main VSI */ 8581 ice_for_each_chnl_tc(i) 8582 vsi->tc_map_vsi[i] = NULL; 8583 8584 /* reset main VSI's all TC information */ 8585 vsi->all_enatc = 0; 8586 vsi->all_numtc = 0; 8587 } 8588 8589 /** 8590 * ice_rebuild_channels - rebuild channel 8591 * @pf: ptr to PF 8592 * 8593 * Recreate channel VSIs and replay filters 8594 */ 8595 static int ice_rebuild_channels(struct ice_pf *pf) 8596 { 8597 struct device *dev = ice_pf_to_dev(pf); 8598 struct ice_vsi *main_vsi; 8599 bool rem_adv_fltr = true; 8600 struct ice_channel *ch; 8601 struct ice_vsi *vsi; 8602 int tc_idx = 1; 8603 int i, err; 8604 8605 main_vsi = ice_get_main_vsi(pf); 8606 if (!main_vsi) 8607 return 0; 8608 8609 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8610 main_vsi->old_numtc == 1) 8611 return 0; /* nothing to be done */ 8612 8613 /* reconfigure main VSI based on old value of TC and cached values 8614 * for MQPRIO opts 8615 */ 8616 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8617 if (err) { 8618 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8619 main_vsi->old_ena_tc, main_vsi->vsi_num); 8620 return err; 8621 } 8622 8623 /* rebuild ADQ VSIs */ 8624 ice_for_each_vsi(pf, i) { 8625 enum ice_vsi_type type; 8626 8627 vsi = pf->vsi[i]; 8628 if (!vsi || vsi->type != ICE_VSI_CHNL) 8629 continue; 8630 8631 type = vsi->type; 8632 8633 /* rebuild ADQ VSI */ 8634 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8635 if (err) { 8636 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8637 ice_vsi_type_str(type), vsi->idx, err); 8638 goto cleanup; 8639 } 8640 8641 /* Re-map HW VSI number, using VSI handle that has been 8642 * previously validated in ice_replay_vsi() call above 8643 */ 8644 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8645 8646 /* replay filters for the VSI */ 8647 err = ice_replay_vsi(&pf->hw, vsi->idx); 8648 if (err) { 8649 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8650 ice_vsi_type_str(type), err, vsi->idx); 8651 rem_adv_fltr = false; 8652 goto cleanup; 8653 } 8654 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8655 ice_vsi_type_str(type), vsi->idx); 8656 8657 /* store ADQ VSI at correct TC index in main VSI's 8658 * map of TC to VSI 8659 */ 8660 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8661 } 8662 8663 /* ADQ VSI(s) has been rebuilt successfully, so setup 8664 * channel for main VSI's Tx and Rx rings 8665 */ 8666 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8667 struct ice_vsi *ch_vsi; 8668 8669 ch_vsi = ch->ch_vsi; 8670 if (!ch_vsi) 8671 continue; 8672 8673 /* reconfig channel resources */ 8674 ice_cfg_chnl_all_res(main_vsi, ch); 8675 8676 /* replay BW rate limit if it is non-zero */ 8677 if (!ch->max_tx_rate && !ch->min_tx_rate) 8678 continue; 8679 8680 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8681 ch->min_tx_rate); 8682 if (err) 8683 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8684 err, ch->max_tx_rate, ch->min_tx_rate, 8685 ch_vsi->vsi_num); 8686 else 8687 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8688 ch->max_tx_rate, ch->min_tx_rate, 8689 ch_vsi->vsi_num); 8690 } 8691 8692 /* reconfig RSS for main VSI */ 8693 if (main_vsi->ch_rss_size) 8694 ice_vsi_cfg_rss_lut_key(main_vsi); 8695 8696 return 0; 8697 8698 cleanup: 8699 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8700 return err; 8701 } 8702 8703 /** 8704 * ice_create_q_channels - Add queue channel for the given TCs 8705 * @vsi: VSI to be configured 8706 * 8707 * Configures queue channel mapping to the given TCs 8708 */ 8709 static int ice_create_q_channels(struct ice_vsi *vsi) 8710 { 8711 struct ice_pf *pf = vsi->back; 8712 struct ice_channel *ch; 8713 int ret = 0, i; 8714 8715 ice_for_each_chnl_tc(i) { 8716 if (!(vsi->all_enatc & BIT(i))) 8717 continue; 8718 8719 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8720 if (!ch) { 8721 ret = -ENOMEM; 8722 goto err_free; 8723 } 8724 INIT_LIST_HEAD(&ch->list); 8725 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8726 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8727 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8728 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8729 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8730 8731 /* convert to Kbits/s */ 8732 if (ch->max_tx_rate) 8733 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8734 ICE_BW_KBPS_DIVISOR); 8735 if (ch->min_tx_rate) 8736 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8737 ICE_BW_KBPS_DIVISOR); 8738 8739 ret = ice_create_q_channel(vsi, ch); 8740 if (ret) { 8741 dev_err(ice_pf_to_dev(pf), 8742 "failed creating channel TC:%d\n", i); 8743 kfree(ch); 8744 goto err_free; 8745 } 8746 list_add_tail(&ch->list, &vsi->ch_list); 8747 vsi->tc_map_vsi[i] = ch->ch_vsi; 8748 dev_dbg(ice_pf_to_dev(pf), 8749 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8750 } 8751 return 0; 8752 8753 err_free: 8754 ice_remove_q_channels(vsi, false); 8755 8756 return ret; 8757 } 8758 8759 /** 8760 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8761 * @netdev: net device to configure 8762 * @type_data: TC offload data 8763 */ 8764 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8765 { 8766 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8767 struct ice_netdev_priv *np = netdev_priv(netdev); 8768 struct ice_vsi *vsi = np->vsi; 8769 struct ice_pf *pf = vsi->back; 8770 u16 mode, ena_tc_qdisc = 0; 8771 int cur_txq, cur_rxq; 8772 u8 hw = 0, num_tcf; 8773 struct device *dev; 8774 int ret, i; 8775 8776 dev = ice_pf_to_dev(pf); 8777 num_tcf = mqprio_qopt->qopt.num_tc; 8778 hw = mqprio_qopt->qopt.hw; 8779 mode = mqprio_qopt->mode; 8780 if (!hw) { 8781 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8782 vsi->ch_rss_size = 0; 8783 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8784 goto config_tcf; 8785 } 8786 8787 /* Generate queue region map for number of TCF requested */ 8788 for (i = 0; i < num_tcf; i++) 8789 ena_tc_qdisc |= BIT(i); 8790 8791 switch (mode) { 8792 case TC_MQPRIO_MODE_CHANNEL: 8793 8794 if (pf->hw.port_info->is_custom_tx_enabled) { 8795 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8796 return -EBUSY; 8797 } 8798 ice_tear_down_devlink_rate_tree(pf); 8799 8800 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8801 if (ret) { 8802 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8803 ret); 8804 return ret; 8805 } 8806 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8807 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8808 /* don't assume state of hw_tc_offload during driver load 8809 * and set the flag for TC flower filter if hw_tc_offload 8810 * already ON 8811 */ 8812 if (vsi->netdev->features & NETIF_F_HW_TC) 8813 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8814 break; 8815 default: 8816 return -EINVAL; 8817 } 8818 8819 config_tcf: 8820 8821 /* Requesting same TCF configuration as already enabled */ 8822 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8823 mode != TC_MQPRIO_MODE_CHANNEL) 8824 return 0; 8825 8826 /* Pause VSI queues */ 8827 ice_dis_vsi(vsi, true); 8828 8829 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8830 ice_remove_q_channels(vsi, true); 8831 8832 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8833 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8834 num_online_cpus()); 8835 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8836 num_online_cpus()); 8837 } else { 8838 /* logic to rebuild VSI, same like ethtool -L */ 8839 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8840 8841 for (i = 0; i < num_tcf; i++) { 8842 if (!(ena_tc_qdisc & BIT(i))) 8843 continue; 8844 8845 offset = vsi->mqprio_qopt.qopt.offset[i]; 8846 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8847 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8848 } 8849 vsi->req_txq = offset + qcount_tx; 8850 vsi->req_rxq = offset + qcount_rx; 8851 8852 /* store away original rss_size info, so that it gets reused 8853 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8854 * determine, what should be the rss_sizefor main VSI 8855 */ 8856 vsi->orig_rss_size = vsi->rss_size; 8857 } 8858 8859 /* save current values of Tx and Rx queues before calling VSI rebuild 8860 * for fallback option 8861 */ 8862 cur_txq = vsi->num_txq; 8863 cur_rxq = vsi->num_rxq; 8864 8865 /* proceed with rebuild main VSI using correct number of queues */ 8866 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8867 if (ret) { 8868 /* fallback to current number of queues */ 8869 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8870 vsi->req_txq = cur_txq; 8871 vsi->req_rxq = cur_rxq; 8872 clear_bit(ICE_RESET_FAILED, pf->state); 8873 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8874 dev_err(dev, "Rebuild of main VSI failed again\n"); 8875 return ret; 8876 } 8877 } 8878 8879 vsi->all_numtc = num_tcf; 8880 vsi->all_enatc = ena_tc_qdisc; 8881 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8882 if (ret) { 8883 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8884 vsi->vsi_num); 8885 goto exit; 8886 } 8887 8888 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8889 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8890 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8891 8892 /* set TC0 rate limit if specified */ 8893 if (max_tx_rate || min_tx_rate) { 8894 /* convert to Kbits/s */ 8895 if (max_tx_rate) 8896 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8897 if (min_tx_rate) 8898 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8899 8900 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8901 if (!ret) { 8902 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8903 max_tx_rate, min_tx_rate, vsi->vsi_num); 8904 } else { 8905 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8906 max_tx_rate, min_tx_rate, vsi->vsi_num); 8907 goto exit; 8908 } 8909 } 8910 ret = ice_create_q_channels(vsi); 8911 if (ret) { 8912 netdev_err(netdev, "failed configuring queue channels\n"); 8913 goto exit; 8914 } else { 8915 netdev_dbg(netdev, "successfully configured channels\n"); 8916 } 8917 } 8918 8919 if (vsi->ch_rss_size) 8920 ice_vsi_cfg_rss_lut_key(vsi); 8921 8922 exit: 8923 /* if error, reset the all_numtc and all_enatc */ 8924 if (ret) { 8925 vsi->all_numtc = 0; 8926 vsi->all_enatc = 0; 8927 } 8928 /* resume VSI */ 8929 ice_ena_vsi(vsi, true); 8930 8931 return ret; 8932 } 8933 8934 static LIST_HEAD(ice_block_cb_list); 8935 8936 static int 8937 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8938 void *type_data) 8939 { 8940 struct ice_netdev_priv *np = netdev_priv(netdev); 8941 struct ice_pf *pf = np->vsi->back; 8942 bool locked = false; 8943 int err; 8944 8945 switch (type) { 8946 case TC_SETUP_BLOCK: 8947 return flow_block_cb_setup_simple(type_data, 8948 &ice_block_cb_list, 8949 ice_setup_tc_block_cb, 8950 np, np, true); 8951 case TC_SETUP_QDISC_MQPRIO: 8952 if (ice_is_eswitch_mode_switchdev(pf)) { 8953 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8954 return -EOPNOTSUPP; 8955 } 8956 8957 if (pf->adev) { 8958 mutex_lock(&pf->adev_mutex); 8959 device_lock(&pf->adev->dev); 8960 locked = true; 8961 if (pf->adev->dev.driver) { 8962 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8963 err = -EBUSY; 8964 goto adev_unlock; 8965 } 8966 } 8967 8968 /* setup traffic classifier for receive side */ 8969 mutex_lock(&pf->tc_mutex); 8970 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8971 mutex_unlock(&pf->tc_mutex); 8972 8973 adev_unlock: 8974 if (locked) { 8975 device_unlock(&pf->adev->dev); 8976 mutex_unlock(&pf->adev_mutex); 8977 } 8978 return err; 8979 default: 8980 return -EOPNOTSUPP; 8981 } 8982 return -EOPNOTSUPP; 8983 } 8984 8985 static struct ice_indr_block_priv * 8986 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8987 struct net_device *netdev) 8988 { 8989 struct ice_indr_block_priv *cb_priv; 8990 8991 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8992 if (!cb_priv->netdev) 8993 return NULL; 8994 if (cb_priv->netdev == netdev) 8995 return cb_priv; 8996 } 8997 return NULL; 8998 } 8999 9000 static int 9001 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9002 void *indr_priv) 9003 { 9004 struct ice_indr_block_priv *priv = indr_priv; 9005 struct ice_netdev_priv *np = priv->np; 9006 9007 switch (type) { 9008 case TC_SETUP_CLSFLOWER: 9009 return ice_setup_tc_cls_flower(np, priv->netdev, 9010 (struct flow_cls_offload *) 9011 type_data); 9012 default: 9013 return -EOPNOTSUPP; 9014 } 9015 } 9016 9017 static int 9018 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9019 struct ice_netdev_priv *np, 9020 struct flow_block_offload *f, void *data, 9021 void (*cleanup)(struct flow_block_cb *block_cb)) 9022 { 9023 struct ice_indr_block_priv *indr_priv; 9024 struct flow_block_cb *block_cb; 9025 9026 if (!ice_is_tunnel_supported(netdev) && 9027 !(is_vlan_dev(netdev) && 9028 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9029 return -EOPNOTSUPP; 9030 9031 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9032 return -EOPNOTSUPP; 9033 9034 switch (f->command) { 9035 case FLOW_BLOCK_BIND: 9036 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9037 if (indr_priv) 9038 return -EEXIST; 9039 9040 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9041 if (!indr_priv) 9042 return -ENOMEM; 9043 9044 indr_priv->netdev = netdev; 9045 indr_priv->np = np; 9046 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9047 9048 block_cb = 9049 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9050 indr_priv, indr_priv, 9051 ice_rep_indr_tc_block_unbind, 9052 f, netdev, sch, data, np, 9053 cleanup); 9054 9055 if (IS_ERR(block_cb)) { 9056 list_del(&indr_priv->list); 9057 kfree(indr_priv); 9058 return PTR_ERR(block_cb); 9059 } 9060 flow_block_cb_add(block_cb, f); 9061 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9062 break; 9063 case FLOW_BLOCK_UNBIND: 9064 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9065 if (!indr_priv) 9066 return -ENOENT; 9067 9068 block_cb = flow_block_cb_lookup(f->block, 9069 ice_indr_setup_block_cb, 9070 indr_priv); 9071 if (!block_cb) 9072 return -ENOENT; 9073 9074 flow_indr_block_cb_remove(block_cb, f); 9075 9076 list_del(&block_cb->driver_list); 9077 break; 9078 default: 9079 return -EOPNOTSUPP; 9080 } 9081 return 0; 9082 } 9083 9084 static int 9085 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9086 void *cb_priv, enum tc_setup_type type, void *type_data, 9087 void *data, 9088 void (*cleanup)(struct flow_block_cb *block_cb)) 9089 { 9090 switch (type) { 9091 case TC_SETUP_BLOCK: 9092 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9093 data, cleanup); 9094 9095 default: 9096 return -EOPNOTSUPP; 9097 } 9098 } 9099 9100 /** 9101 * ice_open - Called when a network interface becomes active 9102 * @netdev: network interface device structure 9103 * 9104 * The open entry point is called when a network interface is made 9105 * active by the system (IFF_UP). At this point all resources needed 9106 * for transmit and receive operations are allocated, the interrupt 9107 * handler is registered with the OS, the netdev watchdog is enabled, 9108 * and the stack is notified that the interface is ready. 9109 * 9110 * Returns 0 on success, negative value on failure 9111 */ 9112 int ice_open(struct net_device *netdev) 9113 { 9114 struct ice_netdev_priv *np = netdev_priv(netdev); 9115 struct ice_pf *pf = np->vsi->back; 9116 9117 if (ice_is_reset_in_progress(pf->state)) { 9118 netdev_err(netdev, "can't open net device while reset is in progress"); 9119 return -EBUSY; 9120 } 9121 9122 return ice_open_internal(netdev); 9123 } 9124 9125 /** 9126 * ice_open_internal - Called when a network interface becomes active 9127 * @netdev: network interface device structure 9128 * 9129 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9130 * handling routine 9131 * 9132 * Returns 0 on success, negative value on failure 9133 */ 9134 int ice_open_internal(struct net_device *netdev) 9135 { 9136 struct ice_netdev_priv *np = netdev_priv(netdev); 9137 struct ice_vsi *vsi = np->vsi; 9138 struct ice_pf *pf = vsi->back; 9139 struct ice_port_info *pi; 9140 int err; 9141 9142 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9143 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9144 return -EIO; 9145 } 9146 9147 netif_carrier_off(netdev); 9148 9149 pi = vsi->port_info; 9150 err = ice_update_link_info(pi); 9151 if (err) { 9152 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9153 return err; 9154 } 9155 9156 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9157 9158 /* Set PHY if there is media, otherwise, turn off PHY */ 9159 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9160 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9161 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9162 err = ice_init_phy_user_cfg(pi); 9163 if (err) { 9164 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9165 err); 9166 return err; 9167 } 9168 } 9169 9170 err = ice_configure_phy(vsi); 9171 if (err) { 9172 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9173 err); 9174 return err; 9175 } 9176 } else { 9177 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9178 ice_set_link(vsi, false); 9179 } 9180 9181 err = ice_vsi_open(vsi); 9182 if (err) 9183 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9184 vsi->vsi_num, vsi->vsw->sw_id); 9185 9186 /* Update existing tunnels information */ 9187 udp_tunnel_get_rx_info(netdev); 9188 9189 return err; 9190 } 9191 9192 /** 9193 * ice_stop - Disables a network interface 9194 * @netdev: network interface device structure 9195 * 9196 * The stop entry point is called when an interface is de-activated by the OS, 9197 * and the netdevice enters the DOWN state. The hardware is still under the 9198 * driver's control, but the netdev interface is disabled. 9199 * 9200 * Returns success only - not allowed to fail 9201 */ 9202 int ice_stop(struct net_device *netdev) 9203 { 9204 struct ice_netdev_priv *np = netdev_priv(netdev); 9205 struct ice_vsi *vsi = np->vsi; 9206 struct ice_pf *pf = vsi->back; 9207 9208 if (ice_is_reset_in_progress(pf->state)) { 9209 netdev_err(netdev, "can't stop net device while reset is in progress"); 9210 return -EBUSY; 9211 } 9212 9213 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9214 int link_err = ice_force_phys_link_state(vsi, false); 9215 9216 if (link_err) { 9217 if (link_err == -ENOMEDIUM) 9218 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9219 vsi->vsi_num); 9220 else 9221 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9222 vsi->vsi_num, link_err); 9223 9224 ice_vsi_close(vsi); 9225 return -EIO; 9226 } 9227 } 9228 9229 ice_vsi_close(vsi); 9230 9231 return 0; 9232 } 9233 9234 /** 9235 * ice_features_check - Validate encapsulated packet conforms to limits 9236 * @skb: skb buffer 9237 * @netdev: This port's netdev 9238 * @features: Offload features that the stack believes apply 9239 */ 9240 static netdev_features_t 9241 ice_features_check(struct sk_buff *skb, 9242 struct net_device __always_unused *netdev, 9243 netdev_features_t features) 9244 { 9245 bool gso = skb_is_gso(skb); 9246 size_t len; 9247 9248 /* No point in doing any of this if neither checksum nor GSO are 9249 * being requested for this frame. We can rule out both by just 9250 * checking for CHECKSUM_PARTIAL 9251 */ 9252 if (skb->ip_summed != CHECKSUM_PARTIAL) 9253 return features; 9254 9255 /* We cannot support GSO if the MSS is going to be less than 9256 * 64 bytes. If it is then we need to drop support for GSO. 9257 */ 9258 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9259 features &= ~NETIF_F_GSO_MASK; 9260 9261 len = skb_network_offset(skb); 9262 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9263 goto out_rm_features; 9264 9265 len = skb_network_header_len(skb); 9266 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9267 goto out_rm_features; 9268 9269 if (skb->encapsulation) { 9270 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9271 * the case of IPIP frames, the transport header pointer is 9272 * after the inner header! So check to make sure that this 9273 * is a GRE or UDP_TUNNEL frame before doing that math. 9274 */ 9275 if (gso && (skb_shinfo(skb)->gso_type & 9276 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9277 len = skb_inner_network_header(skb) - 9278 skb_transport_header(skb); 9279 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9280 goto out_rm_features; 9281 } 9282 9283 len = skb_inner_network_header_len(skb); 9284 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9285 goto out_rm_features; 9286 } 9287 9288 return features; 9289 out_rm_features: 9290 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9291 } 9292 9293 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9294 .ndo_open = ice_open, 9295 .ndo_stop = ice_stop, 9296 .ndo_start_xmit = ice_start_xmit, 9297 .ndo_set_mac_address = ice_set_mac_address, 9298 .ndo_validate_addr = eth_validate_addr, 9299 .ndo_change_mtu = ice_change_mtu, 9300 .ndo_get_stats64 = ice_get_stats64, 9301 .ndo_tx_timeout = ice_tx_timeout, 9302 .ndo_bpf = ice_xdp_safe_mode, 9303 }; 9304 9305 static const struct net_device_ops ice_netdev_ops = { 9306 .ndo_open = ice_open, 9307 .ndo_stop = ice_stop, 9308 .ndo_start_xmit = ice_start_xmit, 9309 .ndo_select_queue = ice_select_queue, 9310 .ndo_features_check = ice_features_check, 9311 .ndo_fix_features = ice_fix_features, 9312 .ndo_set_rx_mode = ice_set_rx_mode, 9313 .ndo_set_mac_address = ice_set_mac_address, 9314 .ndo_validate_addr = eth_validate_addr, 9315 .ndo_change_mtu = ice_change_mtu, 9316 .ndo_get_stats64 = ice_get_stats64, 9317 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9318 .ndo_eth_ioctl = ice_eth_ioctl, 9319 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9320 .ndo_set_vf_mac = ice_set_vf_mac, 9321 .ndo_get_vf_config = ice_get_vf_cfg, 9322 .ndo_set_vf_trust = ice_set_vf_trust, 9323 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9324 .ndo_set_vf_link_state = ice_set_vf_link_state, 9325 .ndo_get_vf_stats = ice_get_vf_stats, 9326 .ndo_set_vf_rate = ice_set_vf_bw, 9327 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9328 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9329 .ndo_setup_tc = ice_setup_tc, 9330 .ndo_set_features = ice_set_features, 9331 .ndo_bridge_getlink = ice_bridge_getlink, 9332 .ndo_bridge_setlink = ice_bridge_setlink, 9333 .ndo_fdb_add = ice_fdb_add, 9334 .ndo_fdb_del = ice_fdb_del, 9335 #ifdef CONFIG_RFS_ACCEL 9336 .ndo_rx_flow_steer = ice_rx_flow_steer, 9337 #endif 9338 .ndo_tx_timeout = ice_tx_timeout, 9339 .ndo_bpf = ice_xdp, 9340 .ndo_xdp_xmit = ice_xdp_xmit, 9341 .ndo_xsk_wakeup = ice_xsk_wakeup, 9342 }; 9343