1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 109 if (!vsi->af_xdp_zc_qps) 110 goto err_zc_qps; 111 112 return 0; 113 114 err_zc_qps: 115 devm_kfree(dev, vsi->q_vectors); 116 err_vectors: 117 devm_kfree(dev, vsi->rxq_map); 118 err_rxq_map: 119 devm_kfree(dev, vsi->txq_map); 120 err_txq_map: 121 devm_kfree(dev, vsi->rx_rings); 122 err_rings: 123 devm_kfree(dev, vsi->tx_rings); 124 return -ENOMEM; 125 } 126 127 /** 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 129 * @vsi: the VSI being configured 130 */ 131 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 132 { 133 switch (vsi->type) { 134 case ICE_VSI_PF: 135 case ICE_VSI_CTRL: 136 case ICE_VSI_LB: 137 /* a user could change the values of num_[tr]x_desc using 138 * ethtool -G so we should keep those values instead of 139 * overwriting them with the defaults. 140 */ 141 if (!vsi->num_rx_desc) 142 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 143 if (!vsi->num_tx_desc) 144 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 145 break; 146 default: 147 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 148 vsi->type); 149 break; 150 } 151 } 152 153 /** 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 155 * @vsi: the VSI being configured 156 * @vf_id: ID of the VF being configured 157 * 158 * Return 0 on success and a negative value on error 159 */ 160 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 161 { 162 struct ice_pf *pf = vsi->back; 163 struct ice_vf *vf = NULL; 164 165 if (vsi->type == ICE_VSI_VF) 166 vsi->vf_id = vf_id; 167 else 168 vsi->vf_id = ICE_INVAL_VFID; 169 170 switch (vsi->type) { 171 case ICE_VSI_PF: 172 if (vsi->req_txq) { 173 vsi->alloc_txq = vsi->req_txq; 174 vsi->num_txq = vsi->req_txq; 175 } else { 176 vsi->alloc_txq = min3(pf->num_lan_msix, 177 ice_get_avail_txq_count(pf), 178 (u16)num_online_cpus()); 179 } 180 181 pf->num_lan_tx = vsi->alloc_txq; 182 183 /* only 1 Rx queue unless RSS is enabled */ 184 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 185 vsi->alloc_rxq = 1; 186 } else { 187 if (vsi->req_rxq) { 188 vsi->alloc_rxq = vsi->req_rxq; 189 vsi->num_rxq = vsi->req_rxq; 190 } else { 191 vsi->alloc_rxq = min3(pf->num_lan_msix, 192 ice_get_avail_rxq_count(pf), 193 (u16)num_online_cpus()); 194 } 195 } 196 197 pf->num_lan_rx = vsi->alloc_rxq; 198 199 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 200 max_t(int, vsi->alloc_rxq, 201 vsi->alloc_txq)); 202 break; 203 case ICE_VSI_VF: 204 vf = &pf->vf[vsi->vf_id]; 205 if (vf->num_req_qs) 206 vf->num_vf_qs = vf->num_req_qs; 207 vsi->alloc_txq = vf->num_vf_qs; 208 vsi->alloc_rxq = vf->num_vf_qs; 209 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 210 * data queue interrupts). Since vsi->num_q_vectors is number 211 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 212 * original vector count 213 */ 214 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 215 break; 216 case ICE_VSI_CTRL: 217 vsi->alloc_txq = 1; 218 vsi->alloc_rxq = 1; 219 vsi->num_q_vectors = 1; 220 break; 221 case ICE_VSI_LB: 222 vsi->alloc_txq = 1; 223 vsi->alloc_rxq = 1; 224 break; 225 default: 226 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 227 break; 228 } 229 230 ice_vsi_set_num_desc(vsi); 231 } 232 233 /** 234 * ice_get_free_slot - get the next non-NULL location index in array 235 * @array: array to search 236 * @size: size of the array 237 * @curr: last known occupied index to be used as a search hint 238 * 239 * void * is being used to keep the functionality generic. This lets us use this 240 * function on any array of pointers. 241 */ 242 static int ice_get_free_slot(void *array, int size, int curr) 243 { 244 int **tmp_array = (int **)array; 245 int next; 246 247 if (curr < (size - 1) && !tmp_array[curr + 1]) { 248 next = curr + 1; 249 } else { 250 int i = 0; 251 252 while ((i < size) && (tmp_array[i])) 253 i++; 254 if (i == size) 255 next = ICE_NO_VSI; 256 else 257 next = i; 258 } 259 return next; 260 } 261 262 /** 263 * ice_vsi_delete - delete a VSI from the switch 264 * @vsi: pointer to VSI being removed 265 */ 266 static void ice_vsi_delete(struct ice_vsi *vsi) 267 { 268 struct ice_pf *pf = vsi->back; 269 struct ice_vsi_ctx *ctxt; 270 enum ice_status status; 271 272 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 273 if (!ctxt) 274 return; 275 276 if (vsi->type == ICE_VSI_VF) 277 ctxt->vf_num = vsi->vf_id; 278 ctxt->vsi_num = vsi->vsi_num; 279 280 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 281 282 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 283 if (status) 284 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 285 vsi->vsi_num, ice_stat_str(status)); 286 287 kfree(ctxt); 288 } 289 290 /** 291 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 292 * @vsi: pointer to VSI being cleared 293 */ 294 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 295 { 296 struct ice_pf *pf = vsi->back; 297 struct device *dev; 298 299 dev = ice_pf_to_dev(pf); 300 301 if (vsi->af_xdp_zc_qps) { 302 bitmap_free(vsi->af_xdp_zc_qps); 303 vsi->af_xdp_zc_qps = NULL; 304 } 305 /* free the ring and vector containers */ 306 if (vsi->q_vectors) { 307 devm_kfree(dev, vsi->q_vectors); 308 vsi->q_vectors = NULL; 309 } 310 if (vsi->tx_rings) { 311 devm_kfree(dev, vsi->tx_rings); 312 vsi->tx_rings = NULL; 313 } 314 if (vsi->rx_rings) { 315 devm_kfree(dev, vsi->rx_rings); 316 vsi->rx_rings = NULL; 317 } 318 if (vsi->txq_map) { 319 devm_kfree(dev, vsi->txq_map); 320 vsi->txq_map = NULL; 321 } 322 if (vsi->rxq_map) { 323 devm_kfree(dev, vsi->rxq_map); 324 vsi->rxq_map = NULL; 325 } 326 } 327 328 /** 329 * ice_vsi_clear - clean up and deallocate the provided VSI 330 * @vsi: pointer to VSI being cleared 331 * 332 * This deallocates the VSI's queue resources, removes it from the PF's 333 * VSI array if necessary, and deallocates the VSI 334 * 335 * Returns 0 on success, negative on failure 336 */ 337 static int ice_vsi_clear(struct ice_vsi *vsi) 338 { 339 struct ice_pf *pf = NULL; 340 struct device *dev; 341 342 if (!vsi) 343 return 0; 344 345 if (!vsi->back) 346 return -EINVAL; 347 348 pf = vsi->back; 349 dev = ice_pf_to_dev(pf); 350 351 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 352 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 353 return -EINVAL; 354 } 355 356 mutex_lock(&pf->sw_mutex); 357 /* updates the PF for this cleared VSI */ 358 359 pf->vsi[vsi->idx] = NULL; 360 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 361 pf->next_vsi = vsi->idx; 362 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 363 vsi->vf_id != ICE_INVAL_VFID) 364 pf->next_vsi = vsi->idx; 365 366 ice_vsi_free_arrays(vsi); 367 mutex_unlock(&pf->sw_mutex); 368 devm_kfree(dev, vsi); 369 370 return 0; 371 } 372 373 /** 374 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 375 * @irq: interrupt number 376 * @data: pointer to a q_vector 377 */ 378 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 379 { 380 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 381 382 if (!q_vector->tx.ring) 383 return IRQ_HANDLED; 384 385 #define FDIR_RX_DESC_CLEAN_BUDGET 64 386 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 387 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 388 389 return IRQ_HANDLED; 390 } 391 392 /** 393 * ice_msix_clean_rings - MSIX mode Interrupt Handler 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.ring && !q_vector->rx.ring) 402 return IRQ_HANDLED; 403 404 q_vector->total_events++; 405 406 napi_schedule(&q_vector->napi); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 413 * @pf: board private structure 414 * @vsi_type: type of VSI 415 * @vf_id: ID of the VF being configured 416 * 417 * returns a pointer to a VSI on success, NULL on failure. 418 */ 419 static struct ice_vsi * 420 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 421 { 422 struct device *dev = ice_pf_to_dev(pf); 423 struct ice_vsi *vsi = NULL; 424 425 /* Need to protect the allocation of the VSIs at the PF level */ 426 mutex_lock(&pf->sw_mutex); 427 428 /* If we have already allocated our maximum number of VSIs, 429 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 430 * is available to be populated 431 */ 432 if (pf->next_vsi == ICE_NO_VSI) { 433 dev_dbg(dev, "out of VSI slots!\n"); 434 goto unlock_pf; 435 } 436 437 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 438 if (!vsi) 439 goto unlock_pf; 440 441 vsi->type = vsi_type; 442 vsi->back = pf; 443 set_bit(ICE_VSI_DOWN, vsi->state); 444 445 if (vsi_type == ICE_VSI_VF) 446 ice_vsi_set_num_qs(vsi, vf_id); 447 else 448 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 449 450 switch (vsi->type) { 451 case ICE_VSI_PF: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 455 /* Setup default MSIX irq handler for VSI */ 456 vsi->irq_handler = ice_msix_clean_rings; 457 break; 458 case ICE_VSI_CTRL: 459 if (ice_vsi_alloc_arrays(vsi)) 460 goto err_rings; 461 462 /* Setup ctrl VSI MSIX irq handler */ 463 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 464 break; 465 case ICE_VSI_VF: 466 if (ice_vsi_alloc_arrays(vsi)) 467 goto err_rings; 468 break; 469 case ICE_VSI_LB: 470 if (ice_vsi_alloc_arrays(vsi)) 471 goto err_rings; 472 break; 473 default: 474 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 475 goto unlock_pf; 476 } 477 478 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 479 /* Use the last VSI slot as the index for PF control VSI */ 480 vsi->idx = pf->num_alloc_vsi - 1; 481 pf->ctrl_vsi_idx = vsi->idx; 482 pf->vsi[vsi->idx] = vsi; 483 } else { 484 /* fill slot and make note of the index */ 485 vsi->idx = pf->next_vsi; 486 pf->vsi[pf->next_vsi] = vsi; 487 488 /* prepare pf->next_vsi for next use */ 489 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 490 pf->next_vsi); 491 } 492 493 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 494 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 495 goto unlock_pf; 496 497 err_rings: 498 devm_kfree(dev, vsi); 499 vsi = NULL; 500 unlock_pf: 501 mutex_unlock(&pf->sw_mutex); 502 return vsi; 503 } 504 505 /** 506 * ice_alloc_fd_res - Allocate FD resource for a VSI 507 * @vsi: pointer to the ice_vsi 508 * 509 * This allocates the FD resources 510 * 511 * Returns 0 on success, -EPERM on no-op or -EIO on failure 512 */ 513 static int ice_alloc_fd_res(struct ice_vsi *vsi) 514 { 515 struct ice_pf *pf = vsi->back; 516 u32 g_val, b_val; 517 518 /* Flow Director filters are only allocated/assigned to the PF VSI which 519 * passes the traffic. The CTRL VSI is only used to add/delete filters 520 * so we don't allocate resources to it 521 */ 522 523 /* FD filters from guaranteed pool per VSI */ 524 g_val = pf->hw.func_caps.fd_fltr_guar; 525 if (!g_val) 526 return -EPERM; 527 528 /* FD filters from best effort pool */ 529 b_val = pf->hw.func_caps.fd_fltr_best_effort; 530 if (!b_val) 531 return -EPERM; 532 533 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 534 return -EPERM; 535 536 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 537 return -EPERM; 538 539 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 540 541 /* each VSI gets same "best_effort" quota */ 542 vsi->num_bfltr = b_val; 543 544 if (vsi->type == ICE_VSI_VF) { 545 vsi->num_gfltr = 0; 546 547 /* each VSI gets same "best_effort" quota */ 548 vsi->num_bfltr = b_val; 549 } 550 551 return 0; 552 } 553 554 /** 555 * ice_vsi_get_qs - Assign queues from PF to VSI 556 * @vsi: the VSI to assign queues to 557 * 558 * Returns 0 on success and a negative value on error 559 */ 560 static int ice_vsi_get_qs(struct ice_vsi *vsi) 561 { 562 struct ice_pf *pf = vsi->back; 563 struct ice_qs_cfg tx_qs_cfg = { 564 .qs_mutex = &pf->avail_q_mutex, 565 .pf_map = pf->avail_txqs, 566 .pf_map_size = pf->max_pf_txqs, 567 .q_count = vsi->alloc_txq, 568 .scatter_count = ICE_MAX_SCATTER_TXQS, 569 .vsi_map = vsi->txq_map, 570 .vsi_map_offset = 0, 571 .mapping_mode = ICE_VSI_MAP_CONTIG 572 }; 573 struct ice_qs_cfg rx_qs_cfg = { 574 .qs_mutex = &pf->avail_q_mutex, 575 .pf_map = pf->avail_rxqs, 576 .pf_map_size = pf->max_pf_rxqs, 577 .q_count = vsi->alloc_rxq, 578 .scatter_count = ICE_MAX_SCATTER_RXQS, 579 .vsi_map = vsi->rxq_map, 580 .vsi_map_offset = 0, 581 .mapping_mode = ICE_VSI_MAP_CONTIG 582 }; 583 int ret; 584 585 ret = __ice_vsi_get_qs(&tx_qs_cfg); 586 if (ret) 587 return ret; 588 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 589 590 ret = __ice_vsi_get_qs(&rx_qs_cfg); 591 if (ret) 592 return ret; 593 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 594 595 return 0; 596 } 597 598 /** 599 * ice_vsi_put_qs - Release queues from VSI to PF 600 * @vsi: the VSI that is going to release queues 601 */ 602 static void ice_vsi_put_qs(struct ice_vsi *vsi) 603 { 604 struct ice_pf *pf = vsi->back; 605 int i; 606 607 mutex_lock(&pf->avail_q_mutex); 608 609 for (i = 0; i < vsi->alloc_txq; i++) { 610 clear_bit(vsi->txq_map[i], pf->avail_txqs); 611 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 612 } 613 614 for (i = 0; i < vsi->alloc_rxq; i++) { 615 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 616 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 617 } 618 619 mutex_unlock(&pf->avail_q_mutex); 620 } 621 622 /** 623 * ice_is_safe_mode 624 * @pf: pointer to the PF struct 625 * 626 * returns true if driver is in safe mode, false otherwise 627 */ 628 bool ice_is_safe_mode(struct ice_pf *pf) 629 { 630 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 631 } 632 633 /** 634 * ice_is_aux_ena 635 * @pf: pointer to the PF struct 636 * 637 * returns true if AUX devices/drivers are supported, false otherwise 638 */ 639 bool ice_is_aux_ena(struct ice_pf *pf) 640 { 641 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 642 } 643 644 /** 645 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 646 * @vsi: the VSI being cleaned up 647 * 648 * This function deletes RSS input set for all flows that were configured 649 * for this VSI 650 */ 651 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 652 { 653 struct ice_pf *pf = vsi->back; 654 enum ice_status status; 655 656 if (ice_is_safe_mode(pf)) 657 return; 658 659 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 660 if (status) 661 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 662 vsi->vsi_num, ice_stat_str(status)); 663 } 664 665 /** 666 * ice_rss_clean - Delete RSS related VSI structures and configuration 667 * @vsi: the VSI being removed 668 */ 669 static void ice_rss_clean(struct ice_vsi *vsi) 670 { 671 struct ice_pf *pf = vsi->back; 672 struct device *dev; 673 674 dev = ice_pf_to_dev(pf); 675 676 if (vsi->rss_hkey_user) 677 devm_kfree(dev, vsi->rss_hkey_user); 678 if (vsi->rss_lut_user) 679 devm_kfree(dev, vsi->rss_lut_user); 680 681 ice_vsi_clean_rss_flow_fld(vsi); 682 /* remove RSS replay list */ 683 if (!ice_is_safe_mode(pf)) 684 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 685 } 686 687 /** 688 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 689 * @vsi: the VSI being configured 690 */ 691 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 692 { 693 struct ice_hw_common_caps *cap; 694 struct ice_pf *pf = vsi->back; 695 696 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 697 vsi->rss_size = 1; 698 return; 699 } 700 701 cap = &pf->hw.func_caps.common_cap; 702 switch (vsi->type) { 703 case ICE_VSI_PF: 704 /* PF VSI will inherit RSS instance of PF */ 705 vsi->rss_table_size = (u16)cap->rss_table_size; 706 vsi->rss_size = min_t(u16, num_online_cpus(), 707 BIT(cap->rss_table_entry_width)); 708 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 709 break; 710 case ICE_VSI_VF: 711 /* VF VSI will get a small RSS table. 712 * For VSI_LUT, LUT size should be set to 64 bytes. 713 */ 714 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 715 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 716 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 717 break; 718 case ICE_VSI_LB: 719 break; 720 default: 721 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 722 ice_vsi_type_str(vsi->type)); 723 break; 724 } 725 } 726 727 /** 728 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 729 * @ctxt: the VSI context being set 730 * 731 * This initializes a default VSI context for all sections except the Queues. 732 */ 733 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 734 { 735 u32 table = 0; 736 737 memset(&ctxt->info, 0, sizeof(ctxt->info)); 738 /* VSI's should be allocated from shared pool */ 739 ctxt->alloc_from_pool = true; 740 /* Src pruning enabled by default */ 741 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 742 /* Traffic from VSI can be sent to LAN */ 743 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 744 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 745 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 746 * packets untagged/tagged. 747 */ 748 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 749 ICE_AQ_VSI_VLAN_MODE_M) >> 750 ICE_AQ_VSI_VLAN_MODE_S); 751 /* Have 1:1 UP mapping for both ingress/egress tables */ 752 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 753 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 754 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 755 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 756 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 757 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 758 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 759 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 760 ctxt->info.ingress_table = cpu_to_le32(table); 761 ctxt->info.egress_table = cpu_to_le32(table); 762 /* Have 1:1 UP mapping for outer to inner UP table */ 763 ctxt->info.outer_up_table = cpu_to_le32(table); 764 /* No Outer tag support outer_tag_flags remains to zero */ 765 } 766 767 /** 768 * ice_vsi_setup_q_map - Setup a VSI queue map 769 * @vsi: the VSI being configured 770 * @ctxt: VSI context structure 771 */ 772 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 773 { 774 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 775 u16 num_txq_per_tc, num_rxq_per_tc; 776 u16 qcount_tx = vsi->alloc_txq; 777 u16 qcount_rx = vsi->alloc_rxq; 778 bool ena_tc0 = false; 779 u8 netdev_tc = 0; 780 int i; 781 782 /* at least TC0 should be enabled by default */ 783 if (vsi->tc_cfg.numtc) { 784 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 785 ena_tc0 = true; 786 } else { 787 ena_tc0 = true; 788 } 789 790 if (ena_tc0) { 791 vsi->tc_cfg.numtc++; 792 vsi->tc_cfg.ena_tc |= 1; 793 } 794 795 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 796 if (!num_rxq_per_tc) 797 num_rxq_per_tc = 1; 798 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 799 if (!num_txq_per_tc) 800 num_txq_per_tc = 1; 801 802 /* find the (rounded up) power-of-2 of qcount */ 803 pow = (u16)order_base_2(num_rxq_per_tc); 804 805 /* TC mapping is a function of the number of Rx queues assigned to the 806 * VSI for each traffic class and the offset of these queues. 807 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 808 * queues allocated to TC0. No:of queues is a power-of-2. 809 * 810 * If TC is not enabled, the queue offset is set to 0, and allocate one 811 * queue, this way, traffic for the given TC will be sent to the default 812 * queue. 813 * 814 * Setup number and offset of Rx queues for all TCs for the VSI 815 */ 816 ice_for_each_traffic_class(i) { 817 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 818 /* TC is not enabled */ 819 vsi->tc_cfg.tc_info[i].qoffset = 0; 820 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 821 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 822 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 823 ctxt->info.tc_mapping[i] = 0; 824 continue; 825 } 826 827 /* TC is enabled */ 828 vsi->tc_cfg.tc_info[i].qoffset = offset; 829 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 830 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 831 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 832 833 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 834 ICE_AQ_VSI_TC_Q_OFFSET_M) | 835 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 836 ICE_AQ_VSI_TC_Q_NUM_M); 837 offset += num_rxq_per_tc; 838 tx_count += num_txq_per_tc; 839 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 840 } 841 842 /* if offset is non-zero, means it is calculated correctly based on 843 * enabled TCs for a given VSI otherwise qcount_rx will always 844 * be correct and non-zero because it is based off - VSI's 845 * allocated Rx queues which is at least 1 (hence qcount_tx will be 846 * at least 1) 847 */ 848 if (offset) 849 vsi->num_rxq = offset; 850 else 851 vsi->num_rxq = num_rxq_per_tc; 852 853 vsi->num_txq = tx_count; 854 855 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 856 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 857 /* since there is a chance that num_rxq could have been changed 858 * in the above for loop, make num_txq equal to num_rxq. 859 */ 860 vsi->num_txq = vsi->num_rxq; 861 } 862 863 /* Rx queue mapping */ 864 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 865 /* q_mapping buffer holds the info for the first queue allocated for 866 * this VSI in the PF space and also the number of queues associated 867 * with this VSI. 868 */ 869 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 870 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 871 } 872 873 /** 874 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 875 * @ctxt: the VSI context being set 876 * @vsi: the VSI being configured 877 */ 878 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 879 { 880 u8 dflt_q_group, dflt_q_prio; 881 u16 dflt_q, report_q, val; 882 883 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 884 vsi->type != ICE_VSI_VF) 885 return; 886 887 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 888 ctxt->info.valid_sections |= cpu_to_le16(val); 889 dflt_q = 0; 890 dflt_q_group = 0; 891 report_q = 0; 892 dflt_q_prio = 0; 893 894 /* enable flow director filtering/programming */ 895 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 896 ctxt->info.fd_options = cpu_to_le16(val); 897 /* max of allocated flow director filters */ 898 ctxt->info.max_fd_fltr_dedicated = 899 cpu_to_le16(vsi->num_gfltr); 900 /* max of shared flow director filters any VSI may program */ 901 ctxt->info.max_fd_fltr_shared = 902 cpu_to_le16(vsi->num_bfltr); 903 /* default queue index within the VSI of the default FD */ 904 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 905 ICE_AQ_VSI_FD_DEF_Q_M); 906 /* target queue or queue group to the FD filter */ 907 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 908 ICE_AQ_VSI_FD_DEF_GRP_M); 909 ctxt->info.fd_def_q = cpu_to_le16(val); 910 /* queue index on which FD filter completion is reported */ 911 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 912 ICE_AQ_VSI_FD_REPORT_Q_M); 913 /* priority of the default qindex action */ 914 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 915 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 916 ctxt->info.fd_report_opt = cpu_to_le16(val); 917 } 918 919 /** 920 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 921 * @ctxt: the VSI context being set 922 * @vsi: the VSI being configured 923 */ 924 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 925 { 926 u8 lut_type, hash_type; 927 struct device *dev; 928 struct ice_pf *pf; 929 930 pf = vsi->back; 931 dev = ice_pf_to_dev(pf); 932 933 switch (vsi->type) { 934 case ICE_VSI_PF: 935 /* PF VSI will inherit RSS instance of PF */ 936 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 937 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 938 break; 939 case ICE_VSI_VF: 940 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 941 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 942 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 943 break; 944 default: 945 dev_dbg(dev, "Unsupported VSI type %s\n", 946 ice_vsi_type_str(vsi->type)); 947 return; 948 } 949 950 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 951 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 952 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 953 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 954 } 955 956 /** 957 * ice_vsi_init - Create and initialize a VSI 958 * @vsi: the VSI being configured 959 * @init_vsi: is this call creating a VSI 960 * 961 * This initializes a VSI context depending on the VSI type to be added and 962 * passes it down to the add_vsi aq command to create a new VSI. 963 */ 964 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 965 { 966 struct ice_pf *pf = vsi->back; 967 struct ice_hw *hw = &pf->hw; 968 struct ice_vsi_ctx *ctxt; 969 struct device *dev; 970 int ret = 0; 971 972 dev = ice_pf_to_dev(pf); 973 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 974 if (!ctxt) 975 return -ENOMEM; 976 977 switch (vsi->type) { 978 case ICE_VSI_CTRL: 979 case ICE_VSI_LB: 980 case ICE_VSI_PF: 981 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 982 break; 983 case ICE_VSI_VF: 984 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 985 /* VF number here is the absolute VF number (0-255) */ 986 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 987 break; 988 default: 989 ret = -ENODEV; 990 goto out; 991 } 992 993 ice_set_dflt_vsi_ctx(ctxt); 994 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 995 ice_set_fd_vsi_ctx(ctxt, vsi); 996 /* if the switch is in VEB mode, allow VSI loopback */ 997 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 998 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 999 1000 /* Set LUT type and HASH type if RSS is enabled */ 1001 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1002 vsi->type != ICE_VSI_CTRL) { 1003 ice_set_rss_vsi_ctx(ctxt, vsi); 1004 /* if updating VSI context, make sure to set valid_section: 1005 * to indicate which section of VSI context being updated 1006 */ 1007 if (!init_vsi) 1008 ctxt->info.valid_sections |= 1009 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1010 } 1011 1012 ctxt->info.sw_id = vsi->port_info->sw_id; 1013 ice_vsi_setup_q_map(vsi, ctxt); 1014 if (!init_vsi) /* means VSI being updated */ 1015 /* must to indicate which section of VSI context are 1016 * being modified 1017 */ 1018 ctxt->info.valid_sections |= 1019 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1020 1021 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1022 * respectively 1023 */ 1024 if (vsi->type == ICE_VSI_VF) { 1025 ctxt->info.valid_sections |= 1026 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1027 if (pf->vf[vsi->vf_id].spoofchk) { 1028 ctxt->info.sec_flags |= 1029 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1030 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1031 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1032 } else { 1033 ctxt->info.sec_flags &= 1034 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1035 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1036 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1037 } 1038 } 1039 1040 /* Allow control frames out of main VSI */ 1041 if (vsi->type == ICE_VSI_PF) { 1042 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1043 ctxt->info.valid_sections |= 1044 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1045 } 1046 1047 if (init_vsi) { 1048 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1049 if (ret) { 1050 dev_err(dev, "Add VSI failed, err %d\n", ret); 1051 ret = -EIO; 1052 goto out; 1053 } 1054 } else { 1055 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1056 if (ret) { 1057 dev_err(dev, "Update VSI failed, err %d\n", ret); 1058 ret = -EIO; 1059 goto out; 1060 } 1061 } 1062 1063 /* keep context for update VSI operations */ 1064 vsi->info = ctxt->info; 1065 1066 /* record VSI number returned */ 1067 vsi->vsi_num = ctxt->vsi_num; 1068 1069 out: 1070 kfree(ctxt); 1071 return ret; 1072 } 1073 1074 /** 1075 * ice_free_res - free a block of resources 1076 * @res: pointer to the resource 1077 * @index: starting index previously returned by ice_get_res 1078 * @id: identifier to track owner 1079 * 1080 * Returns number of resources freed 1081 */ 1082 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1083 { 1084 int count = 0; 1085 int i; 1086 1087 if (!res || index >= res->end) 1088 return -EINVAL; 1089 1090 id |= ICE_RES_VALID_BIT; 1091 for (i = index; i < res->end && res->list[i] == id; i++) { 1092 res->list[i] = 0; 1093 count++; 1094 } 1095 1096 return count; 1097 } 1098 1099 /** 1100 * ice_search_res - Search the tracker for a block of resources 1101 * @res: pointer to the resource 1102 * @needed: size of the block needed 1103 * @id: identifier to track owner 1104 * 1105 * Returns the base item index of the block, or -ENOMEM for error 1106 */ 1107 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1108 { 1109 u16 start = 0, end = 0; 1110 1111 if (needed > res->end) 1112 return -ENOMEM; 1113 1114 id |= ICE_RES_VALID_BIT; 1115 1116 do { 1117 /* skip already allocated entries */ 1118 if (res->list[end++] & ICE_RES_VALID_BIT) { 1119 start = end; 1120 if ((start + needed) > res->end) 1121 break; 1122 } 1123 1124 if (end == (start + needed)) { 1125 int i = start; 1126 1127 /* there was enough, so assign it to the requestor */ 1128 while (i != end) 1129 res->list[i++] = id; 1130 1131 return start; 1132 } 1133 } while (end < res->end); 1134 1135 return -ENOMEM; 1136 } 1137 1138 /** 1139 * ice_get_free_res_count - Get free count from a resource tracker 1140 * @res: Resource tracker instance 1141 */ 1142 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1143 { 1144 u16 i, count = 0; 1145 1146 for (i = 0; i < res->end; i++) 1147 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1148 count++; 1149 1150 return count; 1151 } 1152 1153 /** 1154 * ice_get_res - get a block of resources 1155 * @pf: board private structure 1156 * @res: pointer to the resource 1157 * @needed: size of the block needed 1158 * @id: identifier to track owner 1159 * 1160 * Returns the base item index of the block, or negative for error 1161 */ 1162 int 1163 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1164 { 1165 if (!res || !pf) 1166 return -EINVAL; 1167 1168 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1169 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1170 needed, res->num_entries, id); 1171 return -EINVAL; 1172 } 1173 1174 return ice_search_res(res, needed, id); 1175 } 1176 1177 /** 1178 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1179 * @vsi: ptr to the VSI 1180 * 1181 * This should only be called after ice_vsi_alloc() which allocates the 1182 * corresponding SW VSI structure and initializes num_queue_pairs for the 1183 * newly allocated VSI. 1184 * 1185 * Returns 0 on success or negative on failure 1186 */ 1187 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1188 { 1189 struct ice_pf *pf = vsi->back; 1190 struct device *dev; 1191 u16 num_q_vectors; 1192 int base; 1193 1194 dev = ice_pf_to_dev(pf); 1195 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1196 if (vsi->type == ICE_VSI_VF) 1197 return 0; 1198 1199 if (vsi->base_vector) { 1200 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1201 vsi->vsi_num, vsi->base_vector); 1202 return -EEXIST; 1203 } 1204 1205 num_q_vectors = vsi->num_q_vectors; 1206 /* reserve slots from OS requested IRQs */ 1207 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1208 struct ice_vf *vf; 1209 int i; 1210 1211 ice_for_each_vf(pf, i) { 1212 vf = &pf->vf[i]; 1213 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1214 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1215 break; 1216 } 1217 } 1218 if (i == pf->num_alloc_vfs) 1219 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1220 ICE_RES_VF_CTRL_VEC_ID); 1221 } else { 1222 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1223 vsi->idx); 1224 } 1225 1226 if (base < 0) { 1227 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1228 ice_get_free_res_count(pf->irq_tracker), 1229 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1230 return -ENOENT; 1231 } 1232 vsi->base_vector = (u16)base; 1233 pf->num_avail_sw_msix -= num_q_vectors; 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1240 * @vsi: the VSI having rings deallocated 1241 */ 1242 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1243 { 1244 int i; 1245 1246 /* Avoid stale references by clearing map from vector to ring */ 1247 if (vsi->q_vectors) { 1248 ice_for_each_q_vector(vsi, i) { 1249 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1250 1251 if (q_vector) { 1252 q_vector->tx.ring = NULL; 1253 q_vector->rx.ring = NULL; 1254 } 1255 } 1256 } 1257 1258 if (vsi->tx_rings) { 1259 for (i = 0; i < vsi->alloc_txq; i++) { 1260 if (vsi->tx_rings[i]) { 1261 kfree_rcu(vsi->tx_rings[i], rcu); 1262 WRITE_ONCE(vsi->tx_rings[i], NULL); 1263 } 1264 } 1265 } 1266 if (vsi->rx_rings) { 1267 for (i = 0; i < vsi->alloc_rxq; i++) { 1268 if (vsi->rx_rings[i]) { 1269 kfree_rcu(vsi->rx_rings[i], rcu); 1270 WRITE_ONCE(vsi->rx_rings[i], NULL); 1271 } 1272 } 1273 } 1274 } 1275 1276 /** 1277 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1278 * @vsi: VSI which is having rings allocated 1279 */ 1280 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1281 { 1282 struct ice_pf *pf = vsi->back; 1283 struct device *dev; 1284 u16 i; 1285 1286 dev = ice_pf_to_dev(pf); 1287 /* Allocate Tx rings */ 1288 for (i = 0; i < vsi->alloc_txq; i++) { 1289 struct ice_ring *ring; 1290 1291 /* allocate with kzalloc(), free with kfree_rcu() */ 1292 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1293 1294 if (!ring) 1295 goto err_out; 1296 1297 ring->q_index = i; 1298 ring->reg_idx = vsi->txq_map[i]; 1299 ring->ring_active = false; 1300 ring->vsi = vsi; 1301 ring->tx_tstamps = &pf->ptp.port.tx; 1302 ring->dev = dev; 1303 ring->count = vsi->num_tx_desc; 1304 WRITE_ONCE(vsi->tx_rings[i], ring); 1305 } 1306 1307 /* Allocate Rx rings */ 1308 for (i = 0; i < vsi->alloc_rxq; i++) { 1309 struct ice_ring *ring; 1310 1311 /* allocate with kzalloc(), free with kfree_rcu() */ 1312 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1313 if (!ring) 1314 goto err_out; 1315 1316 ring->q_index = i; 1317 ring->reg_idx = vsi->rxq_map[i]; 1318 ring->ring_active = false; 1319 ring->vsi = vsi; 1320 ring->netdev = vsi->netdev; 1321 ring->dev = dev; 1322 ring->count = vsi->num_rx_desc; 1323 WRITE_ONCE(vsi->rx_rings[i], ring); 1324 } 1325 1326 return 0; 1327 1328 err_out: 1329 ice_vsi_clear_rings(vsi); 1330 return -ENOMEM; 1331 } 1332 1333 /** 1334 * ice_vsi_manage_rss_lut - disable/enable RSS 1335 * @vsi: the VSI being changed 1336 * @ena: boolean value indicating if this is an enable or disable request 1337 * 1338 * In the event of disable request for RSS, this function will zero out RSS 1339 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1340 * LUT. 1341 */ 1342 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1343 { 1344 u8 *lut; 1345 1346 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1347 if (!lut) 1348 return; 1349 1350 if (ena) { 1351 if (vsi->rss_lut_user) 1352 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1353 else 1354 ice_fill_rss_lut(lut, vsi->rss_table_size, 1355 vsi->rss_size); 1356 } 1357 1358 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1359 kfree(lut); 1360 } 1361 1362 /** 1363 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1364 * @vsi: VSI to be configured 1365 */ 1366 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1367 { 1368 struct ice_pf *pf = vsi->back; 1369 struct device *dev; 1370 u8 *lut, *key; 1371 int err; 1372 1373 dev = ice_pf_to_dev(pf); 1374 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1375 1376 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1377 if (!lut) 1378 return -ENOMEM; 1379 1380 if (vsi->rss_lut_user) 1381 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1382 else 1383 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1384 1385 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1386 if (err) { 1387 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1388 goto ice_vsi_cfg_rss_exit; 1389 } 1390 1391 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1392 if (!key) { 1393 err = -ENOMEM; 1394 goto ice_vsi_cfg_rss_exit; 1395 } 1396 1397 if (vsi->rss_hkey_user) 1398 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1399 else 1400 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1401 1402 err = ice_set_rss_key(vsi, key); 1403 if (err) 1404 dev_err(dev, "set_rss_key failed, error %d\n", err); 1405 1406 kfree(key); 1407 ice_vsi_cfg_rss_exit: 1408 kfree(lut); 1409 return err; 1410 } 1411 1412 /** 1413 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1414 * @vsi: VSI to be configured 1415 * 1416 * This function will only be called during the VF VSI setup. Upon successful 1417 * completion of package download, this function will configure default RSS 1418 * input sets for VF VSI. 1419 */ 1420 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1421 { 1422 struct ice_pf *pf = vsi->back; 1423 enum ice_status status; 1424 struct device *dev; 1425 1426 dev = ice_pf_to_dev(pf); 1427 if (ice_is_safe_mode(pf)) { 1428 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1429 vsi->vsi_num); 1430 return; 1431 } 1432 1433 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1434 if (status) 1435 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1436 vsi->vsi_num, ice_stat_str(status)); 1437 } 1438 1439 /** 1440 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1441 * @vsi: VSI to be configured 1442 * 1443 * This function will only be called after successful download package call 1444 * during initialization of PF. Since the downloaded package will erase the 1445 * RSS section, this function will configure RSS input sets for different 1446 * flow types. The last profile added has the highest priority, therefore 2 1447 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1448 * (i.e. IPv4 src/dst TCP src/dst port). 1449 */ 1450 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1451 { 1452 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1453 struct ice_pf *pf = vsi->back; 1454 struct ice_hw *hw = &pf->hw; 1455 enum ice_status status; 1456 struct device *dev; 1457 1458 dev = ice_pf_to_dev(pf); 1459 if (ice_is_safe_mode(pf)) { 1460 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1461 vsi_num); 1462 return; 1463 } 1464 /* configure RSS for IPv4 with input set IP src/dst */ 1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1466 ICE_FLOW_SEG_HDR_IPV4); 1467 if (status) 1468 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1469 vsi_num, ice_stat_str(status)); 1470 1471 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1473 ICE_FLOW_SEG_HDR_IPV6); 1474 if (status) 1475 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1476 vsi_num, ice_stat_str(status)); 1477 1478 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1480 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1481 if (status) 1482 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1483 vsi_num, ice_stat_str(status)); 1484 1485 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1487 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1488 if (status) 1489 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1490 vsi_num, ice_stat_str(status)); 1491 1492 /* configure RSS for sctp4 with input set IP src/dst */ 1493 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1494 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1495 if (status) 1496 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1497 vsi_num, ice_stat_str(status)); 1498 1499 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1500 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1501 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1502 if (status) 1503 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1504 vsi_num, ice_stat_str(status)); 1505 1506 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1507 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1508 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1509 if (status) 1510 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1511 vsi_num, ice_stat_str(status)); 1512 1513 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1514 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1515 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1516 if (status) 1517 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1518 vsi_num, ice_stat_str(status)); 1519 } 1520 1521 /** 1522 * ice_pf_state_is_nominal - checks the PF for nominal state 1523 * @pf: pointer to PF to check 1524 * 1525 * Check the PF's state for a collection of bits that would indicate 1526 * the PF is in a state that would inhibit normal operation for 1527 * driver functionality. 1528 * 1529 * Returns true if PF is in a nominal state, false otherwise 1530 */ 1531 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1532 { 1533 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1534 1535 if (!pf) 1536 return false; 1537 1538 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1539 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1540 return false; 1541 1542 return true; 1543 } 1544 1545 /** 1546 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1547 * @vsi: the VSI to be updated 1548 */ 1549 void ice_update_eth_stats(struct ice_vsi *vsi) 1550 { 1551 struct ice_eth_stats *prev_es, *cur_es; 1552 struct ice_hw *hw = &vsi->back->hw; 1553 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1554 1555 prev_es = &vsi->eth_stats_prev; 1556 cur_es = &vsi->eth_stats; 1557 1558 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1559 &prev_es->rx_bytes, &cur_es->rx_bytes); 1560 1561 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1562 &prev_es->rx_unicast, &cur_es->rx_unicast); 1563 1564 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1565 &prev_es->rx_multicast, &cur_es->rx_multicast); 1566 1567 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1568 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1569 1570 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1571 &prev_es->rx_discards, &cur_es->rx_discards); 1572 1573 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1574 &prev_es->tx_bytes, &cur_es->tx_bytes); 1575 1576 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1577 &prev_es->tx_unicast, &cur_es->tx_unicast); 1578 1579 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1580 &prev_es->tx_multicast, &cur_es->tx_multicast); 1581 1582 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1583 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1584 1585 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1586 &prev_es->tx_errors, &cur_es->tx_errors); 1587 1588 vsi->stat_offsets_loaded = true; 1589 } 1590 1591 /** 1592 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1593 * @vsi: the VSI being configured 1594 * @vid: VLAN ID to be added 1595 * @action: filter action to be performed on match 1596 */ 1597 int 1598 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1599 { 1600 struct ice_pf *pf = vsi->back; 1601 struct device *dev; 1602 int err = 0; 1603 1604 dev = ice_pf_to_dev(pf); 1605 1606 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1607 vsi->num_vlan++; 1608 } else { 1609 err = -ENODEV; 1610 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1611 vsi->vsi_num); 1612 } 1613 1614 return err; 1615 } 1616 1617 /** 1618 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1619 * @vsi: the VSI being configured 1620 * @vid: VLAN ID to be removed 1621 * 1622 * Returns 0 on success and negative on failure 1623 */ 1624 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1625 { 1626 struct ice_pf *pf = vsi->back; 1627 enum ice_status status; 1628 struct device *dev; 1629 int err = 0; 1630 1631 dev = ice_pf_to_dev(pf); 1632 1633 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1634 if (!status) { 1635 vsi->num_vlan--; 1636 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1637 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1638 vid, vsi->vsi_num, ice_stat_str(status)); 1639 } else { 1640 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1641 vid, vsi->vsi_num, ice_stat_str(status)); 1642 err = -EIO; 1643 } 1644 1645 return err; 1646 } 1647 1648 /** 1649 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1650 * @vsi: VSI 1651 */ 1652 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1653 { 1654 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1655 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1656 vsi->rx_buf_len = ICE_RXBUF_2048; 1657 #if (PAGE_SIZE < 8192) 1658 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1659 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1660 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1661 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1662 #endif 1663 } else { 1664 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1665 #if (PAGE_SIZE < 8192) 1666 vsi->rx_buf_len = ICE_RXBUF_3072; 1667 #else 1668 vsi->rx_buf_len = ICE_RXBUF_2048; 1669 #endif 1670 } 1671 } 1672 1673 /** 1674 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1675 * @hw: HW pointer 1676 * @pf_q: index of the Rx queue in the PF's queue space 1677 * @rxdid: flexible descriptor RXDID 1678 * @prio: priority for the RXDID for this queue 1679 * @ena_ts: true to enable timestamp and false to disable timestamp 1680 */ 1681 void 1682 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1683 bool ena_ts) 1684 { 1685 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1686 1687 /* clear any previous values */ 1688 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1689 QRXFLXP_CNTXT_RXDID_PRIO_M | 1690 QRXFLXP_CNTXT_TS_M); 1691 1692 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1693 QRXFLXP_CNTXT_RXDID_IDX_M; 1694 1695 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1696 QRXFLXP_CNTXT_RXDID_PRIO_M; 1697 1698 if (ena_ts) 1699 /* Enable TimeSync on this queue */ 1700 regval |= QRXFLXP_CNTXT_TS_M; 1701 1702 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1703 } 1704 1705 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1706 { 1707 if (q_idx >= vsi->num_rxq) 1708 return -EINVAL; 1709 1710 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1711 } 1712 1713 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx) 1714 { 1715 struct ice_aqc_add_tx_qgrp *qg_buf; 1716 int err; 1717 1718 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1719 return -EINVAL; 1720 1721 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1722 if (!qg_buf) 1723 return -ENOMEM; 1724 1725 qg_buf->num_txqs = 1; 1726 1727 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1728 kfree(qg_buf); 1729 return err; 1730 } 1731 1732 /** 1733 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1734 * @vsi: the VSI being configured 1735 * 1736 * Return 0 on success and a negative value on error 1737 * Configure the Rx VSI for operation. 1738 */ 1739 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1740 { 1741 u16 i; 1742 1743 if (vsi->type == ICE_VSI_VF) 1744 goto setup_rings; 1745 1746 ice_vsi_cfg_frame_size(vsi); 1747 setup_rings: 1748 /* set up individual rings */ 1749 ice_for_each_rxq(vsi, i) { 1750 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1751 1752 if (err) 1753 return err; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1761 * @vsi: the VSI being configured 1762 * @rings: Tx ring array to be configured 1763 * 1764 * Return 0 on success and a negative value on error 1765 * Configure the Tx VSI for operation. 1766 */ 1767 static int 1768 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1769 { 1770 struct ice_aqc_add_tx_qgrp *qg_buf; 1771 u16 q_idx = 0; 1772 int err = 0; 1773 1774 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1775 if (!qg_buf) 1776 return -ENOMEM; 1777 1778 qg_buf->num_txqs = 1; 1779 1780 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1781 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1782 if (err) 1783 goto err_cfg_txqs; 1784 } 1785 1786 err_cfg_txqs: 1787 kfree(qg_buf); 1788 return err; 1789 } 1790 1791 /** 1792 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1793 * @vsi: the VSI being configured 1794 * 1795 * Return 0 on success and a negative value on error 1796 * Configure the Tx VSI for operation. 1797 */ 1798 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1799 { 1800 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1801 } 1802 1803 /** 1804 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1805 * @vsi: the VSI being configured 1806 * 1807 * Return 0 on success and a negative value on error 1808 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1809 */ 1810 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1811 { 1812 int ret; 1813 int i; 1814 1815 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1816 if (ret) 1817 return ret; 1818 1819 for (i = 0; i < vsi->num_xdp_txq; i++) 1820 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1821 1822 return ret; 1823 } 1824 1825 /** 1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1827 * @intrl: interrupt rate limit in usecs 1828 * @gran: interrupt rate limit granularity in usecs 1829 * 1830 * This function converts a decimal interrupt rate limit in usecs to the format 1831 * expected by firmware. 1832 */ 1833 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1834 { 1835 u32 val = intrl / gran; 1836 1837 if (val) 1838 return val | GLINT_RATE_INTRL_ENA_M; 1839 return 0; 1840 } 1841 1842 /** 1843 * ice_write_intrl - write throttle rate limit to interrupt specific register 1844 * @q_vector: pointer to interrupt specific structure 1845 * @intrl: throttle rate limit in microseconds to write 1846 */ 1847 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1848 { 1849 struct ice_hw *hw = &q_vector->vsi->back->hw; 1850 1851 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1852 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1853 } 1854 1855 /** 1856 * __ice_write_itr - write throttle rate to register 1857 * @q_vector: pointer to interrupt data structure 1858 * @rc: pointer to ring container 1859 * @itr: throttle rate in microseconds to write 1860 */ 1861 static void __ice_write_itr(struct ice_q_vector *q_vector, 1862 struct ice_ring_container *rc, u16 itr) 1863 { 1864 struct ice_hw *hw = &q_vector->vsi->back->hw; 1865 1866 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1867 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1868 } 1869 1870 /** 1871 * ice_write_itr - write throttle rate to queue specific register 1872 * @rc: pointer to ring container 1873 * @itr: throttle rate in microseconds to write 1874 */ 1875 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1876 { 1877 struct ice_q_vector *q_vector; 1878 1879 if (!rc->ring) 1880 return; 1881 1882 q_vector = rc->ring->q_vector; 1883 1884 __ice_write_itr(q_vector, rc, itr); 1885 } 1886 1887 /** 1888 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1889 * @vsi: the VSI being configured 1890 * 1891 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1892 * for the VF VSI. 1893 */ 1894 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1895 { 1896 struct ice_pf *pf = vsi->back; 1897 struct ice_hw *hw = &pf->hw; 1898 u16 txq = 0, rxq = 0; 1899 int i, q; 1900 1901 for (i = 0; i < vsi->num_q_vectors; i++) { 1902 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1903 u16 reg_idx = q_vector->reg_idx; 1904 1905 ice_cfg_itr(hw, q_vector); 1906 1907 /* Both Transmit Queue Interrupt Cause Control register 1908 * and Receive Queue Interrupt Cause control register 1909 * expects MSIX_INDX field to be the vector index 1910 * within the function space and not the absolute 1911 * vector index across PF or across device. 1912 * For SR-IOV VF VSIs queue vector index always starts 1913 * with 1 since first vector index(0) is used for OICR 1914 * in VF space. Since VMDq and other PF VSIs are within 1915 * the PF function space, use the vector index that is 1916 * tracked for this PF. 1917 */ 1918 for (q = 0; q < q_vector->num_ring_tx; q++) { 1919 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1920 q_vector->tx.itr_idx); 1921 txq++; 1922 } 1923 1924 for (q = 0; q < q_vector->num_ring_rx; q++) { 1925 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1926 q_vector->rx.itr_idx); 1927 rxq++; 1928 } 1929 } 1930 } 1931 1932 /** 1933 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1934 * @vsi: the VSI being changed 1935 */ 1936 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1937 { 1938 struct ice_hw *hw = &vsi->back->hw; 1939 struct ice_vsi_ctx *ctxt; 1940 enum ice_status status; 1941 int ret = 0; 1942 1943 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1944 if (!ctxt) 1945 return -ENOMEM; 1946 1947 /* Here we are configuring the VSI to let the driver add VLAN tags by 1948 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1949 * insertion happens in the Tx hot path, in ice_tx_map. 1950 */ 1951 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1952 1953 /* Preserve existing VLAN strip setting */ 1954 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1955 ICE_AQ_VSI_VLAN_EMOD_M); 1956 1957 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1958 1959 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1960 if (status) { 1961 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1962 ice_stat_str(status), 1963 ice_aq_str(hw->adminq.sq_last_status)); 1964 ret = -EIO; 1965 goto out; 1966 } 1967 1968 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1969 out: 1970 kfree(ctxt); 1971 return ret; 1972 } 1973 1974 /** 1975 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1976 * @vsi: the VSI being changed 1977 * @ena: boolean value indicating if this is a enable or disable request 1978 */ 1979 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1980 { 1981 struct ice_hw *hw = &vsi->back->hw; 1982 struct ice_vsi_ctx *ctxt; 1983 enum ice_status status; 1984 int ret = 0; 1985 1986 /* do not allow modifying VLAN stripping when a port VLAN is configured 1987 * on this VSI 1988 */ 1989 if (vsi->info.pvid) 1990 return 0; 1991 1992 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1993 if (!ctxt) 1994 return -ENOMEM; 1995 1996 /* Here we are configuring what the VSI should do with the VLAN tag in 1997 * the Rx packet. We can either leave the tag in the packet or put it in 1998 * the Rx descriptor. 1999 */ 2000 if (ena) 2001 /* Strip VLAN tag from Rx packet and put it in the desc */ 2002 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2003 else 2004 /* Disable stripping. Leave tag in packet */ 2005 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2006 2007 /* Allow all packets untagged/tagged */ 2008 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2009 2010 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2011 2012 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2013 if (status) { 2014 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2015 ena, ice_stat_str(status), 2016 ice_aq_str(hw->adminq.sq_last_status)); 2017 ret = -EIO; 2018 goto out; 2019 } 2020 2021 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2022 out: 2023 kfree(ctxt); 2024 return ret; 2025 } 2026 2027 /** 2028 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2029 * @vsi: the VSI whose rings are to be enabled 2030 * 2031 * Returns 0 on success and a negative value on error 2032 */ 2033 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2034 { 2035 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2036 } 2037 2038 /** 2039 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2040 * @vsi: the VSI whose rings are to be disabled 2041 * 2042 * Returns 0 on success and a negative value on error 2043 */ 2044 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2045 { 2046 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2047 } 2048 2049 /** 2050 * ice_vsi_stop_tx_rings - Disable Tx rings 2051 * @vsi: the VSI being configured 2052 * @rst_src: reset source 2053 * @rel_vmvf_num: Relative ID of VF/VM 2054 * @rings: Tx ring array to be stopped 2055 */ 2056 static int 2057 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2058 u16 rel_vmvf_num, struct ice_ring **rings) 2059 { 2060 u16 q_idx; 2061 2062 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2063 return -EINVAL; 2064 2065 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 2066 struct ice_txq_meta txq_meta = { }; 2067 int status; 2068 2069 if (!rings || !rings[q_idx]) 2070 return -EINVAL; 2071 2072 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2073 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2074 rings[q_idx], &txq_meta); 2075 2076 if (status) 2077 return status; 2078 } 2079 2080 return 0; 2081 } 2082 2083 /** 2084 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2085 * @vsi: the VSI being configured 2086 * @rst_src: reset source 2087 * @rel_vmvf_num: Relative ID of VF/VM 2088 */ 2089 int 2090 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2091 u16 rel_vmvf_num) 2092 { 2093 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2094 } 2095 2096 /** 2097 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2098 * @vsi: the VSI being configured 2099 */ 2100 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2101 { 2102 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2103 } 2104 2105 /** 2106 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2107 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2108 * 2109 * returns true if Rx VLAN pruning is enabled and false otherwise. 2110 */ 2111 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2112 { 2113 if (!vsi) 2114 return false; 2115 2116 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2117 } 2118 2119 /** 2120 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2121 * @vsi: VSI to enable or disable VLAN pruning on 2122 * @ena: set to true to enable VLAN pruning and false to disable it 2123 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2124 * 2125 * returns 0 if VSI is updated, negative otherwise 2126 */ 2127 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2128 { 2129 struct ice_vsi_ctx *ctxt; 2130 struct ice_pf *pf; 2131 int status; 2132 2133 if (!vsi) 2134 return -EINVAL; 2135 2136 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2137 * mode. VLAN pruning will be enabled when the interface exits 2138 * promiscuous mode if any VLAN filters are active. 2139 */ 2140 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2141 return 0; 2142 2143 pf = vsi->back; 2144 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2145 if (!ctxt) 2146 return -ENOMEM; 2147 2148 ctxt->info = vsi->info; 2149 2150 if (ena) 2151 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2152 else 2153 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2154 2155 if (!vlan_promisc) 2156 ctxt->info.valid_sections = 2157 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2158 2159 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2160 if (status) { 2161 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2162 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2163 ice_stat_str(status), 2164 ice_aq_str(pf->hw.adminq.sq_last_status)); 2165 goto err_out; 2166 } 2167 2168 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2169 2170 kfree(ctxt); 2171 return 0; 2172 2173 err_out: 2174 kfree(ctxt); 2175 return -EIO; 2176 } 2177 2178 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2179 { 2180 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2181 2182 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2183 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2184 } 2185 2186 /** 2187 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2188 * @vsi: VSI to set the q_vectors register index on 2189 */ 2190 static int 2191 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2192 { 2193 u16 i; 2194 2195 if (!vsi || !vsi->q_vectors) 2196 return -EINVAL; 2197 2198 ice_for_each_q_vector(vsi, i) { 2199 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2200 2201 if (!q_vector) { 2202 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2203 i, vsi->vsi_num); 2204 goto clear_reg_idx; 2205 } 2206 2207 if (vsi->type == ICE_VSI_VF) { 2208 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2209 2210 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2211 } else { 2212 q_vector->reg_idx = 2213 q_vector->v_idx + vsi->base_vector; 2214 } 2215 } 2216 2217 return 0; 2218 2219 clear_reg_idx: 2220 ice_for_each_q_vector(vsi, i) { 2221 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2222 2223 if (q_vector) 2224 q_vector->reg_idx = 0; 2225 } 2226 2227 return -EINVAL; 2228 } 2229 2230 /** 2231 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2232 * @vsi: the VSI being configured 2233 * @tx: bool to determine Tx or Rx rule 2234 * @create: bool to determine create or remove Rule 2235 */ 2236 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2237 { 2238 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2239 enum ice_sw_fwd_act_type act); 2240 struct ice_pf *pf = vsi->back; 2241 enum ice_status status; 2242 struct device *dev; 2243 2244 dev = ice_pf_to_dev(pf); 2245 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2246 2247 if (tx) { 2248 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2249 ICE_DROP_PACKET); 2250 } else { 2251 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2252 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2253 create); 2254 } else { 2255 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2256 ICE_FWD_TO_VSI); 2257 } 2258 } 2259 2260 if (status) 2261 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2262 create ? "adding" : "removing", tx ? "TX" : "RX", 2263 vsi->vsi_num, ice_stat_str(status)); 2264 } 2265 2266 /** 2267 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2268 * @vsi: pointer to the VSI 2269 * 2270 * This function will allocate new scheduler aggregator now if needed and will 2271 * move specified VSI into it. 2272 */ 2273 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2274 { 2275 struct device *dev = ice_pf_to_dev(vsi->back); 2276 struct ice_agg_node *agg_node_iter = NULL; 2277 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2278 struct ice_agg_node *agg_node = NULL; 2279 int node_offset, max_agg_nodes = 0; 2280 struct ice_port_info *port_info; 2281 struct ice_pf *pf = vsi->back; 2282 u32 agg_node_id_start = 0; 2283 enum ice_status status; 2284 2285 /* create (as needed) scheduler aggregator node and move VSI into 2286 * corresponding aggregator node 2287 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2288 * - VF aggregator nodes will contain VF VSI 2289 */ 2290 port_info = pf->hw.port_info; 2291 if (!port_info) 2292 return; 2293 2294 switch (vsi->type) { 2295 case ICE_VSI_CTRL: 2296 case ICE_VSI_LB: 2297 case ICE_VSI_PF: 2298 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2299 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2300 agg_node_iter = &pf->pf_agg_node[0]; 2301 break; 2302 case ICE_VSI_VF: 2303 /* user can create 'n' VFs on a given PF, but since max children 2304 * per aggregator node can be only 64. Following code handles 2305 * aggregator(s) for VF VSIs, either selects a agg_node which 2306 * was already created provided num_vsis < 64, otherwise 2307 * select next available node, which will be created 2308 */ 2309 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2310 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2311 agg_node_iter = &pf->vf_agg_node[0]; 2312 break; 2313 default: 2314 /* other VSI type, handle later if needed */ 2315 dev_dbg(dev, "unexpected VSI type %s\n", 2316 ice_vsi_type_str(vsi->type)); 2317 return; 2318 } 2319 2320 /* find the appropriate aggregator node */ 2321 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2322 /* see if we can find space in previously created 2323 * node if num_vsis < 64, otherwise skip 2324 */ 2325 if (agg_node_iter->num_vsis && 2326 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2327 agg_node_iter++; 2328 continue; 2329 } 2330 2331 if (agg_node_iter->valid && 2332 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2333 agg_id = agg_node_iter->agg_id; 2334 agg_node = agg_node_iter; 2335 break; 2336 } 2337 2338 /* find unclaimed agg_id */ 2339 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2340 agg_id = node_offset + agg_node_id_start; 2341 agg_node = agg_node_iter; 2342 break; 2343 } 2344 /* move to next agg_node */ 2345 agg_node_iter++; 2346 } 2347 2348 if (!agg_node) 2349 return; 2350 2351 /* if selected aggregator node was not created, create it */ 2352 if (!agg_node->valid) { 2353 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2354 (u8)vsi->tc_cfg.ena_tc); 2355 if (status) { 2356 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2357 agg_id); 2358 return; 2359 } 2360 /* aggregator node is created, store the neeeded info */ 2361 agg_node->valid = true; 2362 agg_node->agg_id = agg_id; 2363 } 2364 2365 /* move VSI to corresponding aggregator node */ 2366 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2367 (u8)vsi->tc_cfg.ena_tc); 2368 if (status) { 2369 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2370 vsi->idx, agg_id); 2371 return; 2372 } 2373 2374 /* keep active children count for aggregator node */ 2375 agg_node->num_vsis++; 2376 2377 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2378 * to aggregator node 2379 */ 2380 vsi->agg_node = agg_node; 2381 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2382 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2383 vsi->agg_node->num_vsis); 2384 } 2385 2386 /** 2387 * ice_vsi_setup - Set up a VSI by a given type 2388 * @pf: board private structure 2389 * @pi: pointer to the port_info instance 2390 * @vsi_type: VSI type 2391 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2392 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2393 * fill-in ICE_INVAL_VFID as input. 2394 * 2395 * This allocates the sw VSI structure and its queue resources. 2396 * 2397 * Returns pointer to the successfully allocated and configured VSI sw struct on 2398 * success, NULL on failure. 2399 */ 2400 struct ice_vsi * 2401 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2402 enum ice_vsi_type vsi_type, u16 vf_id) 2403 { 2404 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2405 struct device *dev = ice_pf_to_dev(pf); 2406 enum ice_status status; 2407 struct ice_vsi *vsi; 2408 int ret, i; 2409 2410 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2411 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2412 else 2413 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2414 2415 if (!vsi) { 2416 dev_err(dev, "could not allocate VSI\n"); 2417 return NULL; 2418 } 2419 2420 vsi->port_info = pi; 2421 vsi->vsw = pf->first_sw; 2422 if (vsi->type == ICE_VSI_PF) 2423 vsi->ethtype = ETH_P_PAUSE; 2424 2425 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2426 vsi->vf_id = vf_id; 2427 2428 ice_alloc_fd_res(vsi); 2429 2430 if (ice_vsi_get_qs(vsi)) { 2431 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2432 vsi->idx); 2433 goto unroll_vsi_alloc; 2434 } 2435 2436 /* set RSS capabilities */ 2437 ice_vsi_set_rss_params(vsi); 2438 2439 /* set TC configuration */ 2440 ice_vsi_set_tc_cfg(vsi); 2441 2442 /* create the VSI */ 2443 ret = ice_vsi_init(vsi, true); 2444 if (ret) 2445 goto unroll_get_qs; 2446 2447 switch (vsi->type) { 2448 case ICE_VSI_CTRL: 2449 case ICE_VSI_PF: 2450 ret = ice_vsi_alloc_q_vectors(vsi); 2451 if (ret) 2452 goto unroll_vsi_init; 2453 2454 ret = ice_vsi_setup_vector_base(vsi); 2455 if (ret) 2456 goto unroll_alloc_q_vector; 2457 2458 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2459 if (ret) 2460 goto unroll_vector_base; 2461 2462 ret = ice_vsi_alloc_rings(vsi); 2463 if (ret) 2464 goto unroll_vector_base; 2465 2466 /* Always add VLAN ID 0 switch rule by default. This is needed 2467 * in order to allow all untagged and 0 tagged priority traffic 2468 * if Rx VLAN pruning is enabled. Also there are cases where we 2469 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2470 * so this handles those cases (i.e. adding the PF to a bridge 2471 * without the 8021q module loaded). 2472 */ 2473 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2474 if (ret) 2475 goto unroll_clear_rings; 2476 2477 ice_vsi_map_rings_to_vectors(vsi); 2478 2479 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2480 if (vsi->type != ICE_VSI_CTRL) 2481 /* Do not exit if configuring RSS had an issue, at 2482 * least receive traffic on first queue. Hence no 2483 * need to capture return value 2484 */ 2485 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2486 ice_vsi_cfg_rss_lut_key(vsi); 2487 ice_vsi_set_rss_flow_fld(vsi); 2488 } 2489 ice_init_arfs(vsi); 2490 break; 2491 case ICE_VSI_VF: 2492 /* VF driver will take care of creating netdev for this type and 2493 * map queues to vectors through Virtchnl, PF driver only 2494 * creates a VSI and corresponding structures for bookkeeping 2495 * purpose 2496 */ 2497 ret = ice_vsi_alloc_q_vectors(vsi); 2498 if (ret) 2499 goto unroll_vsi_init; 2500 2501 ret = ice_vsi_alloc_rings(vsi); 2502 if (ret) 2503 goto unroll_alloc_q_vector; 2504 2505 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2506 if (ret) 2507 goto unroll_vector_base; 2508 2509 /* Do not exit if configuring RSS had an issue, at least 2510 * receive traffic on first queue. Hence no need to capture 2511 * return value 2512 */ 2513 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2514 ice_vsi_cfg_rss_lut_key(vsi); 2515 ice_vsi_set_vf_rss_flow_fld(vsi); 2516 } 2517 break; 2518 case ICE_VSI_LB: 2519 ret = ice_vsi_alloc_rings(vsi); 2520 if (ret) 2521 goto unroll_vsi_init; 2522 break; 2523 default: 2524 /* clean up the resources and exit */ 2525 goto unroll_vsi_init; 2526 } 2527 2528 /* configure VSI nodes based on number of queues and TC's */ 2529 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2530 max_txqs[i] = vsi->alloc_txq; 2531 2532 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2533 max_txqs); 2534 if (status) { 2535 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2536 vsi->vsi_num, ice_stat_str(status)); 2537 goto unroll_clear_rings; 2538 } 2539 2540 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2541 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2542 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2543 * The rule is added once for PF VSI in order to create appropriate 2544 * recipe, since VSI/VSI list is ignored with drop action... 2545 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2546 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2547 * settings in the HW. 2548 */ 2549 if (!ice_is_safe_mode(pf)) 2550 if (vsi->type == ICE_VSI_PF) { 2551 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2552 ICE_DROP_PACKET); 2553 ice_cfg_sw_lldp(vsi, true, true); 2554 } 2555 2556 if (!vsi->agg_node) 2557 ice_set_agg_vsi(vsi); 2558 return vsi; 2559 2560 unroll_clear_rings: 2561 ice_vsi_clear_rings(vsi); 2562 unroll_vector_base: 2563 /* reclaim SW interrupts back to the common pool */ 2564 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2565 pf->num_avail_sw_msix += vsi->num_q_vectors; 2566 unroll_alloc_q_vector: 2567 ice_vsi_free_q_vectors(vsi); 2568 unroll_vsi_init: 2569 ice_vsi_delete(vsi); 2570 unroll_get_qs: 2571 ice_vsi_put_qs(vsi); 2572 unroll_vsi_alloc: 2573 if (vsi_type == ICE_VSI_VF) 2574 ice_enable_lag(pf->lag); 2575 ice_vsi_clear(vsi); 2576 2577 return NULL; 2578 } 2579 2580 /** 2581 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2582 * @vsi: the VSI being cleaned up 2583 */ 2584 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2585 { 2586 struct ice_pf *pf = vsi->back; 2587 struct ice_hw *hw = &pf->hw; 2588 u32 txq = 0; 2589 u32 rxq = 0; 2590 int i, q; 2591 2592 for (i = 0; i < vsi->num_q_vectors; i++) { 2593 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2594 2595 ice_write_intrl(q_vector, 0); 2596 for (q = 0; q < q_vector->num_ring_tx; q++) { 2597 ice_write_itr(&q_vector->tx, 0); 2598 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2599 if (ice_is_xdp_ena_vsi(vsi)) { 2600 u32 xdp_txq = txq + vsi->num_xdp_txq; 2601 2602 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2603 } 2604 txq++; 2605 } 2606 2607 for (q = 0; q < q_vector->num_ring_rx; q++) { 2608 ice_write_itr(&q_vector->rx, 0); 2609 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2610 rxq++; 2611 } 2612 } 2613 2614 ice_flush(hw); 2615 } 2616 2617 /** 2618 * ice_vsi_free_irq - Free the IRQ association with the OS 2619 * @vsi: the VSI being configured 2620 */ 2621 void ice_vsi_free_irq(struct ice_vsi *vsi) 2622 { 2623 struct ice_pf *pf = vsi->back; 2624 int base = vsi->base_vector; 2625 int i; 2626 2627 if (!vsi->q_vectors || !vsi->irqs_ready) 2628 return; 2629 2630 ice_vsi_release_msix(vsi); 2631 if (vsi->type == ICE_VSI_VF) 2632 return; 2633 2634 vsi->irqs_ready = false; 2635 ice_for_each_q_vector(vsi, i) { 2636 u16 vector = i + base; 2637 int irq_num; 2638 2639 irq_num = pf->msix_entries[vector].vector; 2640 2641 /* free only the irqs that were actually requested */ 2642 if (!vsi->q_vectors[i] || 2643 !(vsi->q_vectors[i]->num_ring_tx || 2644 vsi->q_vectors[i]->num_ring_rx)) 2645 continue; 2646 2647 /* clear the affinity notifier in the IRQ descriptor */ 2648 irq_set_affinity_notifier(irq_num, NULL); 2649 2650 /* clear the affinity_mask in the IRQ descriptor */ 2651 irq_set_affinity_hint(irq_num, NULL); 2652 synchronize_irq(irq_num); 2653 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2654 } 2655 } 2656 2657 /** 2658 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2659 * @vsi: the VSI having resources freed 2660 */ 2661 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2662 { 2663 int i; 2664 2665 if (!vsi->tx_rings) 2666 return; 2667 2668 ice_for_each_txq(vsi, i) 2669 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2670 ice_free_tx_ring(vsi->tx_rings[i]); 2671 } 2672 2673 /** 2674 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2675 * @vsi: the VSI having resources freed 2676 */ 2677 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2678 { 2679 int i; 2680 2681 if (!vsi->rx_rings) 2682 return; 2683 2684 ice_for_each_rxq(vsi, i) 2685 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2686 ice_free_rx_ring(vsi->rx_rings[i]); 2687 } 2688 2689 /** 2690 * ice_vsi_close - Shut down a VSI 2691 * @vsi: the VSI being shut down 2692 */ 2693 void ice_vsi_close(struct ice_vsi *vsi) 2694 { 2695 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2696 ice_down(vsi); 2697 2698 ice_vsi_free_irq(vsi); 2699 ice_vsi_free_tx_rings(vsi); 2700 ice_vsi_free_rx_rings(vsi); 2701 } 2702 2703 /** 2704 * ice_ena_vsi - resume a VSI 2705 * @vsi: the VSI being resume 2706 * @locked: is the rtnl_lock already held 2707 */ 2708 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2709 { 2710 int err = 0; 2711 2712 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2713 return 0; 2714 2715 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2716 2717 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2718 if (netif_running(vsi->netdev)) { 2719 if (!locked) 2720 rtnl_lock(); 2721 2722 err = ice_open_internal(vsi->netdev); 2723 2724 if (!locked) 2725 rtnl_unlock(); 2726 } 2727 } else if (vsi->type == ICE_VSI_CTRL) { 2728 err = ice_vsi_open_ctrl(vsi); 2729 } 2730 2731 return err; 2732 } 2733 2734 /** 2735 * ice_dis_vsi - pause a VSI 2736 * @vsi: the VSI being paused 2737 * @locked: is the rtnl_lock already held 2738 */ 2739 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2740 { 2741 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2742 return; 2743 2744 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2745 2746 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2747 if (netif_running(vsi->netdev)) { 2748 if (!locked) 2749 rtnl_lock(); 2750 2751 ice_vsi_close(vsi); 2752 2753 if (!locked) 2754 rtnl_unlock(); 2755 } else { 2756 ice_vsi_close(vsi); 2757 } 2758 } else if (vsi->type == ICE_VSI_CTRL) { 2759 ice_vsi_close(vsi); 2760 } 2761 } 2762 2763 /** 2764 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2765 * @vsi: the VSI being un-configured 2766 */ 2767 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2768 { 2769 int base = vsi->base_vector; 2770 struct ice_pf *pf = vsi->back; 2771 struct ice_hw *hw = &pf->hw; 2772 u32 val; 2773 int i; 2774 2775 /* disable interrupt causation from each queue */ 2776 if (vsi->tx_rings) { 2777 ice_for_each_txq(vsi, i) { 2778 if (vsi->tx_rings[i]) { 2779 u16 reg; 2780 2781 reg = vsi->tx_rings[i]->reg_idx; 2782 val = rd32(hw, QINT_TQCTL(reg)); 2783 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2784 wr32(hw, QINT_TQCTL(reg), val); 2785 } 2786 } 2787 } 2788 2789 if (vsi->rx_rings) { 2790 ice_for_each_rxq(vsi, i) { 2791 if (vsi->rx_rings[i]) { 2792 u16 reg; 2793 2794 reg = vsi->rx_rings[i]->reg_idx; 2795 val = rd32(hw, QINT_RQCTL(reg)); 2796 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2797 wr32(hw, QINT_RQCTL(reg), val); 2798 } 2799 } 2800 } 2801 2802 /* disable each interrupt */ 2803 ice_for_each_q_vector(vsi, i) { 2804 if (!vsi->q_vectors[i]) 2805 continue; 2806 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2807 } 2808 2809 ice_flush(hw); 2810 2811 /* don't call synchronize_irq() for VF's from the host */ 2812 if (vsi->type == ICE_VSI_VF) 2813 return; 2814 2815 ice_for_each_q_vector(vsi, i) 2816 synchronize_irq(pf->msix_entries[i + base].vector); 2817 } 2818 2819 /** 2820 * ice_napi_del - Remove NAPI handler for the VSI 2821 * @vsi: VSI for which NAPI handler is to be removed 2822 */ 2823 void ice_napi_del(struct ice_vsi *vsi) 2824 { 2825 int v_idx; 2826 2827 if (!vsi->netdev) 2828 return; 2829 2830 ice_for_each_q_vector(vsi, v_idx) 2831 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2832 } 2833 2834 /** 2835 * ice_vsi_release - Delete a VSI and free its resources 2836 * @vsi: the VSI being removed 2837 * 2838 * Returns 0 on success or < 0 on error 2839 */ 2840 int ice_vsi_release(struct ice_vsi *vsi) 2841 { 2842 struct ice_pf *pf; 2843 2844 if (!vsi->back) 2845 return -ENODEV; 2846 pf = vsi->back; 2847 2848 /* do not unregister while driver is in the reset recovery pending 2849 * state. Since reset/rebuild happens through PF service task workqueue, 2850 * it's not a good idea to unregister netdev that is associated to the 2851 * PF that is running the work queue items currently. This is done to 2852 * avoid check_flush_dependency() warning on this wq 2853 */ 2854 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2855 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2856 unregister_netdev(vsi->netdev); 2857 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2858 } 2859 2860 ice_devlink_destroy_port(vsi); 2861 2862 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2863 ice_rss_clean(vsi); 2864 2865 /* Disable VSI and free resources */ 2866 if (vsi->type != ICE_VSI_LB) 2867 ice_vsi_dis_irq(vsi); 2868 ice_vsi_close(vsi); 2869 2870 /* SR-IOV determines needed MSIX resources all at once instead of per 2871 * VSI since when VFs are spawned we know how many VFs there are and how 2872 * many interrupts each VF needs. SR-IOV MSIX resources are also 2873 * cleared in the same manner. 2874 */ 2875 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2876 struct ice_vf *vf; 2877 int i; 2878 2879 ice_for_each_vf(pf, i) { 2880 vf = &pf->vf[i]; 2881 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2882 break; 2883 } 2884 if (i == pf->num_alloc_vfs) { 2885 /* No other VFs left that have control VSI, reclaim SW 2886 * interrupts back to the common pool 2887 */ 2888 ice_free_res(pf->irq_tracker, vsi->base_vector, 2889 ICE_RES_VF_CTRL_VEC_ID); 2890 pf->num_avail_sw_msix += vsi->num_q_vectors; 2891 } 2892 } else if (vsi->type != ICE_VSI_VF) { 2893 /* reclaim SW interrupts back to the common pool */ 2894 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2895 pf->num_avail_sw_msix += vsi->num_q_vectors; 2896 } 2897 2898 if (!ice_is_safe_mode(pf)) { 2899 if (vsi->type == ICE_VSI_PF) { 2900 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2901 ICE_DROP_PACKET); 2902 ice_cfg_sw_lldp(vsi, true, false); 2903 /* The Rx rule will only exist to remove if the LLDP FW 2904 * engine is currently stopped 2905 */ 2906 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2907 ice_cfg_sw_lldp(vsi, false, false); 2908 } 2909 } 2910 2911 ice_fltr_remove_all(vsi); 2912 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2913 ice_vsi_delete(vsi); 2914 ice_vsi_free_q_vectors(vsi); 2915 2916 if (vsi->netdev) { 2917 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2918 unregister_netdev(vsi->netdev); 2919 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2920 } 2921 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2922 free_netdev(vsi->netdev); 2923 vsi->netdev = NULL; 2924 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2925 } 2926 } 2927 2928 if (vsi->type == ICE_VSI_VF && 2929 vsi->agg_node && vsi->agg_node->valid) 2930 vsi->agg_node->num_vsis--; 2931 ice_vsi_clear_rings(vsi); 2932 2933 ice_vsi_put_qs(vsi); 2934 2935 /* retain SW VSI data structure since it is needed to unregister and 2936 * free VSI netdev when PF is not in reset recovery pending state,\ 2937 * for ex: during rmmod. 2938 */ 2939 if (!ice_is_reset_in_progress(pf->state)) 2940 ice_vsi_clear(vsi); 2941 2942 return 0; 2943 } 2944 2945 /** 2946 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2947 * @vsi: VSI connected with q_vectors 2948 * @coalesce: array of struct with stored coalesce 2949 * 2950 * Returns array size. 2951 */ 2952 static int 2953 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2954 struct ice_coalesce_stored *coalesce) 2955 { 2956 int i; 2957 2958 ice_for_each_q_vector(vsi, i) { 2959 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2960 2961 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2962 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2963 coalesce[i].intrl = q_vector->intrl; 2964 2965 if (i < vsi->num_txq) 2966 coalesce[i].tx_valid = true; 2967 if (i < vsi->num_rxq) 2968 coalesce[i].rx_valid = true; 2969 } 2970 2971 return vsi->num_q_vectors; 2972 } 2973 2974 /** 2975 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2976 * @vsi: VSI connected with q_vectors 2977 * @coalesce: pointer to array of struct with stored coalesce 2978 * @size: size of coalesce array 2979 * 2980 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2981 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2982 * to default value. 2983 */ 2984 static void 2985 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2986 struct ice_coalesce_stored *coalesce, int size) 2987 { 2988 struct ice_ring_container *rc; 2989 int i; 2990 2991 if ((size && !coalesce) || !vsi) 2992 return; 2993 2994 /* There are a couple of cases that have to be handled here: 2995 * 1. The case where the number of queue vectors stays the same, but 2996 * the number of Tx or Rx rings changes (the first for loop) 2997 * 2. The case where the number of queue vectors increased (the 2998 * second for loop) 2999 */ 3000 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3001 /* There are 2 cases to handle here and they are the same for 3002 * both Tx and Rx: 3003 * if the entry was valid previously (coalesce[i].[tr]x_valid 3004 * and the loop variable is less than the number of rings 3005 * allocated, then write the previous values 3006 * 3007 * if the entry was not valid previously, but the number of 3008 * rings is less than are allocated (this means the number of 3009 * rings increased from previously), then write out the 3010 * values in the first element 3011 * 3012 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3013 * as there is no harm because the dynamic algorithm 3014 * will just overwrite. 3015 */ 3016 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3017 rc = &vsi->q_vectors[i]->rx; 3018 rc->itr_setting = coalesce[i].itr_rx; 3019 ice_write_itr(rc, rc->itr_setting); 3020 } else if (i < vsi->alloc_rxq) { 3021 rc = &vsi->q_vectors[i]->rx; 3022 rc->itr_setting = coalesce[0].itr_rx; 3023 ice_write_itr(rc, rc->itr_setting); 3024 } 3025 3026 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3027 rc = &vsi->q_vectors[i]->tx; 3028 rc->itr_setting = coalesce[i].itr_tx; 3029 ice_write_itr(rc, rc->itr_setting); 3030 } else if (i < vsi->alloc_txq) { 3031 rc = &vsi->q_vectors[i]->tx; 3032 rc->itr_setting = coalesce[0].itr_tx; 3033 ice_write_itr(rc, rc->itr_setting); 3034 } 3035 3036 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3037 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 3038 } 3039 3040 /* the number of queue vectors increased so write whatever is in 3041 * the first element 3042 */ 3043 for (; i < vsi->num_q_vectors; i++) { 3044 /* transmit */ 3045 rc = &vsi->q_vectors[i]->tx; 3046 rc->itr_setting = coalesce[0].itr_tx; 3047 ice_write_itr(rc, rc->itr_setting); 3048 3049 /* receive */ 3050 rc = &vsi->q_vectors[i]->rx; 3051 rc->itr_setting = coalesce[0].itr_rx; 3052 ice_write_itr(rc, rc->itr_setting); 3053 3054 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3055 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3056 } 3057 } 3058 3059 /** 3060 * ice_vsi_rebuild - Rebuild VSI after reset 3061 * @vsi: VSI to be rebuild 3062 * @init_vsi: is this an initialization or a reconfigure of the VSI 3063 * 3064 * Returns 0 on success and negative value on failure 3065 */ 3066 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3067 { 3068 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3069 struct ice_coalesce_stored *coalesce; 3070 int prev_num_q_vectors = 0; 3071 struct ice_vf *vf = NULL; 3072 enum ice_vsi_type vtype; 3073 enum ice_status status; 3074 struct ice_pf *pf; 3075 int ret, i; 3076 3077 if (!vsi) 3078 return -EINVAL; 3079 3080 pf = vsi->back; 3081 vtype = vsi->type; 3082 if (vtype == ICE_VSI_VF) 3083 vf = &pf->vf[vsi->vf_id]; 3084 3085 coalesce = kcalloc(vsi->num_q_vectors, 3086 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3087 if (!coalesce) 3088 return -ENOMEM; 3089 3090 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3091 3092 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3093 ice_vsi_free_q_vectors(vsi); 3094 3095 /* SR-IOV determines needed MSIX resources all at once instead of per 3096 * VSI since when VFs are spawned we know how many VFs there are and how 3097 * many interrupts each VF needs. SR-IOV MSIX resources are also 3098 * cleared in the same manner. 3099 */ 3100 if (vtype != ICE_VSI_VF) { 3101 /* reclaim SW interrupts back to the common pool */ 3102 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3103 pf->num_avail_sw_msix += vsi->num_q_vectors; 3104 vsi->base_vector = 0; 3105 } 3106 3107 if (ice_is_xdp_ena_vsi(vsi)) 3108 /* return value check can be skipped here, it always returns 3109 * 0 if reset is in progress 3110 */ 3111 ice_destroy_xdp_rings(vsi); 3112 ice_vsi_put_qs(vsi); 3113 ice_vsi_clear_rings(vsi); 3114 ice_vsi_free_arrays(vsi); 3115 if (vtype == ICE_VSI_VF) 3116 ice_vsi_set_num_qs(vsi, vf->vf_id); 3117 else 3118 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3119 3120 ret = ice_vsi_alloc_arrays(vsi); 3121 if (ret < 0) 3122 goto err_vsi; 3123 3124 ice_vsi_get_qs(vsi); 3125 3126 ice_alloc_fd_res(vsi); 3127 ice_vsi_set_tc_cfg(vsi); 3128 3129 /* Initialize VSI struct elements and create VSI in FW */ 3130 ret = ice_vsi_init(vsi, init_vsi); 3131 if (ret < 0) 3132 goto err_vsi; 3133 3134 switch (vtype) { 3135 case ICE_VSI_CTRL: 3136 case ICE_VSI_PF: 3137 ret = ice_vsi_alloc_q_vectors(vsi); 3138 if (ret) 3139 goto err_rings; 3140 3141 ret = ice_vsi_setup_vector_base(vsi); 3142 if (ret) 3143 goto err_vectors; 3144 3145 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3146 if (ret) 3147 goto err_vectors; 3148 3149 ret = ice_vsi_alloc_rings(vsi); 3150 if (ret) 3151 goto err_vectors; 3152 3153 ice_vsi_map_rings_to_vectors(vsi); 3154 if (ice_is_xdp_ena_vsi(vsi)) { 3155 vsi->num_xdp_txq = vsi->alloc_rxq; 3156 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3157 if (ret) 3158 goto err_vectors; 3159 } 3160 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3161 if (vtype != ICE_VSI_CTRL) 3162 /* Do not exit if configuring RSS had an issue, at 3163 * least receive traffic on first queue. Hence no 3164 * need to capture return value 3165 */ 3166 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3167 ice_vsi_cfg_rss_lut_key(vsi); 3168 break; 3169 case ICE_VSI_VF: 3170 ret = ice_vsi_alloc_q_vectors(vsi); 3171 if (ret) 3172 goto err_rings; 3173 3174 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3175 if (ret) 3176 goto err_vectors; 3177 3178 ret = ice_vsi_alloc_rings(vsi); 3179 if (ret) 3180 goto err_vectors; 3181 3182 break; 3183 default: 3184 break; 3185 } 3186 3187 /* configure VSI nodes based on number of queues and TC's */ 3188 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3189 max_txqs[i] = vsi->alloc_txq; 3190 3191 if (ice_is_xdp_ena_vsi(vsi)) 3192 max_txqs[i] += vsi->num_xdp_txq; 3193 } 3194 3195 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3196 max_txqs); 3197 if (status) { 3198 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3199 vsi->vsi_num, ice_stat_str(status)); 3200 if (init_vsi) { 3201 ret = -EIO; 3202 goto err_vectors; 3203 } else { 3204 return ice_schedule_reset(pf, ICE_RESET_PFR); 3205 } 3206 } 3207 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3208 kfree(coalesce); 3209 3210 return 0; 3211 3212 err_vectors: 3213 ice_vsi_free_q_vectors(vsi); 3214 err_rings: 3215 if (vsi->netdev) { 3216 vsi->current_netdev_flags = 0; 3217 unregister_netdev(vsi->netdev); 3218 free_netdev(vsi->netdev); 3219 vsi->netdev = NULL; 3220 } 3221 err_vsi: 3222 ice_vsi_clear(vsi); 3223 set_bit(ICE_RESET_FAILED, pf->state); 3224 kfree(coalesce); 3225 return ret; 3226 } 3227 3228 /** 3229 * ice_is_reset_in_progress - check for a reset in progress 3230 * @state: PF state field 3231 */ 3232 bool ice_is_reset_in_progress(unsigned long *state) 3233 { 3234 return test_bit(ICE_RESET_OICR_RECV, state) || 3235 test_bit(ICE_PFR_REQ, state) || 3236 test_bit(ICE_CORER_REQ, state) || 3237 test_bit(ICE_GLOBR_REQ, state); 3238 } 3239 3240 /** 3241 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3242 * @pf: pointer to the PF structure 3243 * @timeout: length of time to wait, in jiffies 3244 * 3245 * Wait (sleep) for a short time until the driver finishes cleaning up from 3246 * a device reset. The caller must be able to sleep. Use this to delay 3247 * operations that could fail while the driver is cleaning up after a device 3248 * reset. 3249 * 3250 * Returns 0 on success, -EBUSY if the reset is not finished within the 3251 * timeout, and -ERESTARTSYS if the thread was interrupted. 3252 */ 3253 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3254 { 3255 long ret; 3256 3257 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3258 !ice_is_reset_in_progress(pf->state), 3259 timeout); 3260 if (ret < 0) 3261 return ret; 3262 else if (!ret) 3263 return -EBUSY; 3264 else 3265 return 0; 3266 } 3267 3268 #ifdef CONFIG_DCB 3269 /** 3270 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3271 * @vsi: VSI being configured 3272 * @ctx: the context buffer returned from AQ VSI update command 3273 */ 3274 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3275 { 3276 vsi->info.mapping_flags = ctx->info.mapping_flags; 3277 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3278 sizeof(vsi->info.q_mapping)); 3279 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3280 sizeof(vsi->info.tc_mapping)); 3281 } 3282 3283 /** 3284 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3285 * @vsi: VSI to be configured 3286 * @ena_tc: TC bitmap 3287 * 3288 * VSI queues expected to be quiesced before calling this function 3289 */ 3290 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3291 { 3292 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3293 struct ice_pf *pf = vsi->back; 3294 struct ice_vsi_ctx *ctx; 3295 enum ice_status status; 3296 struct device *dev; 3297 int i, ret = 0; 3298 u8 num_tc = 0; 3299 3300 dev = ice_pf_to_dev(pf); 3301 3302 ice_for_each_traffic_class(i) { 3303 /* build bitmap of enabled TCs */ 3304 if (ena_tc & BIT(i)) 3305 num_tc++; 3306 /* populate max_txqs per TC */ 3307 max_txqs[i] = vsi->alloc_txq; 3308 } 3309 3310 vsi->tc_cfg.ena_tc = ena_tc; 3311 vsi->tc_cfg.numtc = num_tc; 3312 3313 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3314 if (!ctx) 3315 return -ENOMEM; 3316 3317 ctx->vf_num = 0; 3318 ctx->info = vsi->info; 3319 3320 ice_vsi_setup_q_map(vsi, ctx); 3321 3322 /* must to indicate which section of VSI context are being modified */ 3323 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3324 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3325 if (status) { 3326 dev_info(dev, "Failed VSI Update\n"); 3327 ret = -EIO; 3328 goto out; 3329 } 3330 3331 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3332 max_txqs); 3333 3334 if (status) { 3335 dev_err(dev, "VSI %d failed TC config, error %s\n", 3336 vsi->vsi_num, ice_stat_str(status)); 3337 ret = -EIO; 3338 goto out; 3339 } 3340 ice_vsi_update_q_map(vsi, ctx); 3341 vsi->info.valid_sections = 0; 3342 3343 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3344 out: 3345 kfree(ctx); 3346 return ret; 3347 } 3348 #endif /* CONFIG_DCB */ 3349 3350 /** 3351 * ice_update_ring_stats - Update ring statistics 3352 * @ring: ring to update 3353 * @pkts: number of processed packets 3354 * @bytes: number of processed bytes 3355 * 3356 * This function assumes that caller has acquired a u64_stats_sync lock. 3357 */ 3358 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3359 { 3360 ring->stats.bytes += bytes; 3361 ring->stats.pkts += pkts; 3362 } 3363 3364 /** 3365 * ice_update_tx_ring_stats - Update Tx ring specific counters 3366 * @tx_ring: ring to update 3367 * @pkts: number of processed packets 3368 * @bytes: number of processed bytes 3369 */ 3370 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3371 { 3372 u64_stats_update_begin(&tx_ring->syncp); 3373 ice_update_ring_stats(tx_ring, pkts, bytes); 3374 u64_stats_update_end(&tx_ring->syncp); 3375 } 3376 3377 /** 3378 * ice_update_rx_ring_stats - Update Rx ring specific counters 3379 * @rx_ring: ring to update 3380 * @pkts: number of processed packets 3381 * @bytes: number of processed bytes 3382 */ 3383 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3384 { 3385 u64_stats_update_begin(&rx_ring->syncp); 3386 ice_update_ring_stats(rx_ring, pkts, bytes); 3387 u64_stats_update_end(&rx_ring->syncp); 3388 } 3389 3390 /** 3391 * ice_status_to_errno - convert from enum ice_status to Linux errno 3392 * @err: ice_status value to convert 3393 */ 3394 int ice_status_to_errno(enum ice_status err) 3395 { 3396 switch (err) { 3397 case ICE_SUCCESS: 3398 return 0; 3399 case ICE_ERR_DOES_NOT_EXIST: 3400 return -ENOENT; 3401 case ICE_ERR_OUT_OF_RANGE: 3402 case ICE_ERR_AQ_ERROR: 3403 case ICE_ERR_AQ_TIMEOUT: 3404 case ICE_ERR_AQ_EMPTY: 3405 case ICE_ERR_AQ_FW_CRITICAL: 3406 return -EIO; 3407 case ICE_ERR_PARAM: 3408 case ICE_ERR_INVAL_SIZE: 3409 return -EINVAL; 3410 case ICE_ERR_NO_MEMORY: 3411 return -ENOMEM; 3412 case ICE_ERR_MAX_LIMIT: 3413 return -EAGAIN; 3414 case ICE_ERR_RESET_ONGOING: 3415 return -EBUSY; 3416 case ICE_ERR_AQ_FULL: 3417 return -ENOSPC; 3418 default: 3419 return -EINVAL; 3420 } 3421 } 3422 3423 /** 3424 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3425 * @sw: switch to check if its default forwarding VSI is free 3426 * 3427 * Return true if the default forwarding VSI is already being used, else returns 3428 * false signalling that it's available to use. 3429 */ 3430 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3431 { 3432 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3433 } 3434 3435 /** 3436 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3437 * @sw: switch for the default forwarding VSI to compare against 3438 * @vsi: VSI to compare against default forwarding VSI 3439 * 3440 * If this VSI passed in is the default forwarding VSI then return true, else 3441 * return false 3442 */ 3443 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3444 { 3445 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3446 } 3447 3448 /** 3449 * ice_set_dflt_vsi - set the default forwarding VSI 3450 * @sw: switch used to assign the default forwarding VSI 3451 * @vsi: VSI getting set as the default forwarding VSI on the switch 3452 * 3453 * If the VSI passed in is already the default VSI and it's enabled just return 3454 * success. 3455 * 3456 * If there is already a default VSI on the switch and it's enabled then return 3457 * -EEXIST since there can only be one default VSI per switch. 3458 * 3459 * Otherwise try to set the VSI passed in as the switch's default VSI and 3460 * return the result. 3461 */ 3462 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3463 { 3464 enum ice_status status; 3465 struct device *dev; 3466 3467 if (!sw || !vsi) 3468 return -EINVAL; 3469 3470 dev = ice_pf_to_dev(vsi->back); 3471 3472 /* the VSI passed in is already the default VSI */ 3473 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3474 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3475 vsi->vsi_num); 3476 return 0; 3477 } 3478 3479 /* another VSI is already the default VSI for this switch */ 3480 if (ice_is_dflt_vsi_in_use(sw)) { 3481 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3482 sw->dflt_vsi->vsi_num); 3483 return -EEXIST; 3484 } 3485 3486 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3487 if (status) { 3488 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3489 vsi->vsi_num, ice_stat_str(status)); 3490 return -EIO; 3491 } 3492 3493 sw->dflt_vsi = vsi; 3494 sw->dflt_vsi_ena = true; 3495 3496 return 0; 3497 } 3498 3499 /** 3500 * ice_clear_dflt_vsi - clear the default forwarding VSI 3501 * @sw: switch used to clear the default VSI 3502 * 3503 * If the switch has no default VSI or it's not enabled then return error. 3504 * 3505 * Otherwise try to clear the default VSI and return the result. 3506 */ 3507 int ice_clear_dflt_vsi(struct ice_sw *sw) 3508 { 3509 struct ice_vsi *dflt_vsi; 3510 enum ice_status status; 3511 struct device *dev; 3512 3513 if (!sw) 3514 return -EINVAL; 3515 3516 dev = ice_pf_to_dev(sw->pf); 3517 3518 dflt_vsi = sw->dflt_vsi; 3519 3520 /* there is no default VSI configured */ 3521 if (!ice_is_dflt_vsi_in_use(sw)) 3522 return -ENODEV; 3523 3524 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3525 ICE_FLTR_RX); 3526 if (status) { 3527 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3528 dflt_vsi->vsi_num, ice_stat_str(status)); 3529 return -EIO; 3530 } 3531 3532 sw->dflt_vsi = NULL; 3533 sw->dflt_vsi_ena = false; 3534 3535 return 0; 3536 } 3537 3538 /** 3539 * ice_set_link - turn on/off physical link 3540 * @vsi: VSI to modify physical link on 3541 * @ena: turn on/off physical link 3542 */ 3543 int ice_set_link(struct ice_vsi *vsi, bool ena) 3544 { 3545 struct device *dev = ice_pf_to_dev(vsi->back); 3546 struct ice_port_info *pi = vsi->port_info; 3547 struct ice_hw *hw = pi->hw; 3548 enum ice_status status; 3549 3550 if (vsi->type != ICE_VSI_PF) 3551 return -EINVAL; 3552 3553 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3554 3555 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3556 * this is not a fatal error, so print a warning message and return 3557 * a success code. Return an error if FW returns an error code other 3558 * than ICE_AQ_RC_EMODE 3559 */ 3560 if (status == ICE_ERR_AQ_ERROR) { 3561 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3562 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3563 (ena ? "ON" : "OFF"), ice_stat_str(status), 3564 ice_aq_str(hw->adminq.sq_last_status)); 3565 } else if (status) { 3566 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3567 (ena ? "ON" : "OFF"), ice_stat_str(status), 3568 ice_aq_str(hw->adminq.sq_last_status)); 3569 return -EIO; 3570 } 3571 3572 return 0; 3573 } 3574