1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 109 if (!vsi->af_xdp_zc_qps) 110 goto err_zc_qps; 111 112 return 0; 113 114 err_zc_qps: 115 devm_kfree(dev, vsi->q_vectors); 116 err_vectors: 117 devm_kfree(dev, vsi->rxq_map); 118 err_rxq_map: 119 devm_kfree(dev, vsi->txq_map); 120 err_txq_map: 121 devm_kfree(dev, vsi->rx_rings); 122 err_rings: 123 devm_kfree(dev, vsi->tx_rings); 124 return -ENOMEM; 125 } 126 127 /** 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 129 * @vsi: the VSI being configured 130 */ 131 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 132 { 133 switch (vsi->type) { 134 case ICE_VSI_PF: 135 case ICE_VSI_CTRL: 136 case ICE_VSI_LB: 137 /* a user could change the values of num_[tr]x_desc using 138 * ethtool -G so we should keep those values instead of 139 * overwriting them with the defaults. 140 */ 141 if (!vsi->num_rx_desc) 142 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 143 if (!vsi->num_tx_desc) 144 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 145 break; 146 default: 147 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 148 vsi->type); 149 break; 150 } 151 } 152 153 /** 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 155 * @vsi: the VSI being configured 156 * @vf_id: ID of the VF being configured 157 * 158 * Return 0 on success and a negative value on error 159 */ 160 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 161 { 162 struct ice_pf *pf = vsi->back; 163 struct ice_vf *vf = NULL; 164 165 if (vsi->type == ICE_VSI_VF) 166 vsi->vf_id = vf_id; 167 else 168 vsi->vf_id = ICE_INVAL_VFID; 169 170 switch (vsi->type) { 171 case ICE_VSI_PF: 172 if (vsi->req_txq) { 173 vsi->alloc_txq = vsi->req_txq; 174 vsi->num_txq = vsi->req_txq; 175 } else { 176 vsi->alloc_txq = min3(pf->num_lan_msix, 177 ice_get_avail_txq_count(pf), 178 (u16)num_online_cpus()); 179 } 180 181 pf->num_lan_tx = vsi->alloc_txq; 182 183 /* only 1 Rx queue unless RSS is enabled */ 184 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 185 vsi->alloc_rxq = 1; 186 } else { 187 if (vsi->req_rxq) { 188 vsi->alloc_rxq = vsi->req_rxq; 189 vsi->num_rxq = vsi->req_rxq; 190 } else { 191 vsi->alloc_rxq = min3(pf->num_lan_msix, 192 ice_get_avail_rxq_count(pf), 193 (u16)num_online_cpus()); 194 } 195 } 196 197 pf->num_lan_rx = vsi->alloc_rxq; 198 199 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 200 max_t(int, vsi->alloc_rxq, 201 vsi->alloc_txq)); 202 break; 203 case ICE_VSI_VF: 204 vf = &pf->vf[vsi->vf_id]; 205 if (vf->num_req_qs) 206 vf->num_vf_qs = vf->num_req_qs; 207 vsi->alloc_txq = vf->num_vf_qs; 208 vsi->alloc_rxq = vf->num_vf_qs; 209 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 210 * data queue interrupts). Since vsi->num_q_vectors is number 211 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 212 * original vector count 213 */ 214 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 215 break; 216 case ICE_VSI_CTRL: 217 vsi->alloc_txq = 1; 218 vsi->alloc_rxq = 1; 219 vsi->num_q_vectors = 1; 220 break; 221 case ICE_VSI_LB: 222 vsi->alloc_txq = 1; 223 vsi->alloc_rxq = 1; 224 break; 225 default: 226 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 227 break; 228 } 229 230 ice_vsi_set_num_desc(vsi); 231 } 232 233 /** 234 * ice_get_free_slot - get the next non-NULL location index in array 235 * @array: array to search 236 * @size: size of the array 237 * @curr: last known occupied index to be used as a search hint 238 * 239 * void * is being used to keep the functionality generic. This lets us use this 240 * function on any array of pointers. 241 */ 242 static int ice_get_free_slot(void *array, int size, int curr) 243 { 244 int **tmp_array = (int **)array; 245 int next; 246 247 if (curr < (size - 1) && !tmp_array[curr + 1]) { 248 next = curr + 1; 249 } else { 250 int i = 0; 251 252 while ((i < size) && (tmp_array[i])) 253 i++; 254 if (i == size) 255 next = ICE_NO_VSI; 256 else 257 next = i; 258 } 259 return next; 260 } 261 262 /** 263 * ice_vsi_delete - delete a VSI from the switch 264 * @vsi: pointer to VSI being removed 265 */ 266 static void ice_vsi_delete(struct ice_vsi *vsi) 267 { 268 struct ice_pf *pf = vsi->back; 269 struct ice_vsi_ctx *ctxt; 270 enum ice_status status; 271 272 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 273 if (!ctxt) 274 return; 275 276 if (vsi->type == ICE_VSI_VF) 277 ctxt->vf_num = vsi->vf_id; 278 ctxt->vsi_num = vsi->vsi_num; 279 280 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 281 282 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 283 if (status) 284 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 285 vsi->vsi_num, ice_stat_str(status)); 286 287 kfree(ctxt); 288 } 289 290 /** 291 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 292 * @vsi: pointer to VSI being cleared 293 */ 294 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 295 { 296 struct ice_pf *pf = vsi->back; 297 struct device *dev; 298 299 dev = ice_pf_to_dev(pf); 300 301 if (vsi->af_xdp_zc_qps) { 302 bitmap_free(vsi->af_xdp_zc_qps); 303 vsi->af_xdp_zc_qps = NULL; 304 } 305 /* free the ring and vector containers */ 306 if (vsi->q_vectors) { 307 devm_kfree(dev, vsi->q_vectors); 308 vsi->q_vectors = NULL; 309 } 310 if (vsi->tx_rings) { 311 devm_kfree(dev, vsi->tx_rings); 312 vsi->tx_rings = NULL; 313 } 314 if (vsi->rx_rings) { 315 devm_kfree(dev, vsi->rx_rings); 316 vsi->rx_rings = NULL; 317 } 318 if (vsi->txq_map) { 319 devm_kfree(dev, vsi->txq_map); 320 vsi->txq_map = NULL; 321 } 322 if (vsi->rxq_map) { 323 devm_kfree(dev, vsi->rxq_map); 324 vsi->rxq_map = NULL; 325 } 326 } 327 328 /** 329 * ice_vsi_clear - clean up and deallocate the provided VSI 330 * @vsi: pointer to VSI being cleared 331 * 332 * This deallocates the VSI's queue resources, removes it from the PF's 333 * VSI array if necessary, and deallocates the VSI 334 * 335 * Returns 0 on success, negative on failure 336 */ 337 static int ice_vsi_clear(struct ice_vsi *vsi) 338 { 339 struct ice_pf *pf = NULL; 340 struct device *dev; 341 342 if (!vsi) 343 return 0; 344 345 if (!vsi->back) 346 return -EINVAL; 347 348 pf = vsi->back; 349 dev = ice_pf_to_dev(pf); 350 351 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 352 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 353 return -EINVAL; 354 } 355 356 mutex_lock(&pf->sw_mutex); 357 /* updates the PF for this cleared VSI */ 358 359 pf->vsi[vsi->idx] = NULL; 360 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 361 pf->next_vsi = vsi->idx; 362 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 363 vsi->vf_id != ICE_INVAL_VFID) 364 pf->next_vsi = vsi->idx; 365 366 ice_vsi_free_arrays(vsi); 367 mutex_unlock(&pf->sw_mutex); 368 devm_kfree(dev, vsi); 369 370 return 0; 371 } 372 373 /** 374 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 375 * @irq: interrupt number 376 * @data: pointer to a q_vector 377 */ 378 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 379 { 380 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 381 382 if (!q_vector->tx.ring) 383 return IRQ_HANDLED; 384 385 #define FDIR_RX_DESC_CLEAN_BUDGET 64 386 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 387 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 388 389 return IRQ_HANDLED; 390 } 391 392 /** 393 * ice_msix_clean_rings - MSIX mode Interrupt Handler 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.ring && !q_vector->rx.ring) 402 return IRQ_HANDLED; 403 404 q_vector->total_events++; 405 406 napi_schedule(&q_vector->napi); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 413 * @pf: board private structure 414 * @vsi_type: type of VSI 415 * @vf_id: ID of the VF being configured 416 * 417 * returns a pointer to a VSI on success, NULL on failure. 418 */ 419 static struct ice_vsi * 420 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 421 { 422 struct device *dev = ice_pf_to_dev(pf); 423 struct ice_vsi *vsi = NULL; 424 425 /* Need to protect the allocation of the VSIs at the PF level */ 426 mutex_lock(&pf->sw_mutex); 427 428 /* If we have already allocated our maximum number of VSIs, 429 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 430 * is available to be populated 431 */ 432 if (pf->next_vsi == ICE_NO_VSI) { 433 dev_dbg(dev, "out of VSI slots!\n"); 434 goto unlock_pf; 435 } 436 437 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 438 if (!vsi) 439 goto unlock_pf; 440 441 vsi->type = vsi_type; 442 vsi->back = pf; 443 set_bit(ICE_VSI_DOWN, vsi->state); 444 445 if (vsi_type == ICE_VSI_VF) 446 ice_vsi_set_num_qs(vsi, vf_id); 447 else 448 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 449 450 switch (vsi->type) { 451 case ICE_VSI_PF: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 455 /* Setup default MSIX irq handler for VSI */ 456 vsi->irq_handler = ice_msix_clean_rings; 457 break; 458 case ICE_VSI_CTRL: 459 if (ice_vsi_alloc_arrays(vsi)) 460 goto err_rings; 461 462 /* Setup ctrl VSI MSIX irq handler */ 463 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 464 break; 465 case ICE_VSI_VF: 466 if (ice_vsi_alloc_arrays(vsi)) 467 goto err_rings; 468 break; 469 case ICE_VSI_LB: 470 if (ice_vsi_alloc_arrays(vsi)) 471 goto err_rings; 472 break; 473 default: 474 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 475 goto unlock_pf; 476 } 477 478 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 479 /* Use the last VSI slot as the index for PF control VSI */ 480 vsi->idx = pf->num_alloc_vsi - 1; 481 pf->ctrl_vsi_idx = vsi->idx; 482 pf->vsi[vsi->idx] = vsi; 483 } else { 484 /* fill slot and make note of the index */ 485 vsi->idx = pf->next_vsi; 486 pf->vsi[pf->next_vsi] = vsi; 487 488 /* prepare pf->next_vsi for next use */ 489 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 490 pf->next_vsi); 491 } 492 493 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 494 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 495 goto unlock_pf; 496 497 err_rings: 498 devm_kfree(dev, vsi); 499 vsi = NULL; 500 unlock_pf: 501 mutex_unlock(&pf->sw_mutex); 502 return vsi; 503 } 504 505 /** 506 * ice_alloc_fd_res - Allocate FD resource for a VSI 507 * @vsi: pointer to the ice_vsi 508 * 509 * This allocates the FD resources 510 * 511 * Returns 0 on success, -EPERM on no-op or -EIO on failure 512 */ 513 static int ice_alloc_fd_res(struct ice_vsi *vsi) 514 { 515 struct ice_pf *pf = vsi->back; 516 u32 g_val, b_val; 517 518 /* Flow Director filters are only allocated/assigned to the PF VSI which 519 * passes the traffic. The CTRL VSI is only used to add/delete filters 520 * so we don't allocate resources to it 521 */ 522 523 /* FD filters from guaranteed pool per VSI */ 524 g_val = pf->hw.func_caps.fd_fltr_guar; 525 if (!g_val) 526 return -EPERM; 527 528 /* FD filters from best effort pool */ 529 b_val = pf->hw.func_caps.fd_fltr_best_effort; 530 if (!b_val) 531 return -EPERM; 532 533 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 534 return -EPERM; 535 536 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 537 return -EPERM; 538 539 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 540 541 /* each VSI gets same "best_effort" quota */ 542 vsi->num_bfltr = b_val; 543 544 if (vsi->type == ICE_VSI_VF) { 545 vsi->num_gfltr = 0; 546 547 /* each VSI gets same "best_effort" quota */ 548 vsi->num_bfltr = b_val; 549 } 550 551 return 0; 552 } 553 554 /** 555 * ice_vsi_get_qs - Assign queues from PF to VSI 556 * @vsi: the VSI to assign queues to 557 * 558 * Returns 0 on success and a negative value on error 559 */ 560 static int ice_vsi_get_qs(struct ice_vsi *vsi) 561 { 562 struct ice_pf *pf = vsi->back; 563 struct ice_qs_cfg tx_qs_cfg = { 564 .qs_mutex = &pf->avail_q_mutex, 565 .pf_map = pf->avail_txqs, 566 .pf_map_size = pf->max_pf_txqs, 567 .q_count = vsi->alloc_txq, 568 .scatter_count = ICE_MAX_SCATTER_TXQS, 569 .vsi_map = vsi->txq_map, 570 .vsi_map_offset = 0, 571 .mapping_mode = ICE_VSI_MAP_CONTIG 572 }; 573 struct ice_qs_cfg rx_qs_cfg = { 574 .qs_mutex = &pf->avail_q_mutex, 575 .pf_map = pf->avail_rxqs, 576 .pf_map_size = pf->max_pf_rxqs, 577 .q_count = vsi->alloc_rxq, 578 .scatter_count = ICE_MAX_SCATTER_RXQS, 579 .vsi_map = vsi->rxq_map, 580 .vsi_map_offset = 0, 581 .mapping_mode = ICE_VSI_MAP_CONTIG 582 }; 583 int ret; 584 585 ret = __ice_vsi_get_qs(&tx_qs_cfg); 586 if (ret) 587 return ret; 588 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 589 590 ret = __ice_vsi_get_qs(&rx_qs_cfg); 591 if (ret) 592 return ret; 593 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 594 595 return 0; 596 } 597 598 /** 599 * ice_vsi_put_qs - Release queues from VSI to PF 600 * @vsi: the VSI that is going to release queues 601 */ 602 static void ice_vsi_put_qs(struct ice_vsi *vsi) 603 { 604 struct ice_pf *pf = vsi->back; 605 int i; 606 607 mutex_lock(&pf->avail_q_mutex); 608 609 for (i = 0; i < vsi->alloc_txq; i++) { 610 clear_bit(vsi->txq_map[i], pf->avail_txqs); 611 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 612 } 613 614 for (i = 0; i < vsi->alloc_rxq; i++) { 615 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 616 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 617 } 618 619 mutex_unlock(&pf->avail_q_mutex); 620 } 621 622 /** 623 * ice_is_safe_mode 624 * @pf: pointer to the PF struct 625 * 626 * returns true if driver is in safe mode, false otherwise 627 */ 628 bool ice_is_safe_mode(struct ice_pf *pf) 629 { 630 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 631 } 632 633 /** 634 * ice_is_aux_ena 635 * @pf: pointer to the PF struct 636 * 637 * returns true if AUX devices/drivers are supported, false otherwise 638 */ 639 bool ice_is_aux_ena(struct ice_pf *pf) 640 { 641 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 642 } 643 644 /** 645 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 646 * @vsi: the VSI being cleaned up 647 * 648 * This function deletes RSS input set for all flows that were configured 649 * for this VSI 650 */ 651 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 652 { 653 struct ice_pf *pf = vsi->back; 654 enum ice_status status; 655 656 if (ice_is_safe_mode(pf)) 657 return; 658 659 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 660 if (status) 661 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 662 vsi->vsi_num, ice_stat_str(status)); 663 } 664 665 /** 666 * ice_rss_clean - Delete RSS related VSI structures and configuration 667 * @vsi: the VSI being removed 668 */ 669 static void ice_rss_clean(struct ice_vsi *vsi) 670 { 671 struct ice_pf *pf = vsi->back; 672 struct device *dev; 673 674 dev = ice_pf_to_dev(pf); 675 676 if (vsi->rss_hkey_user) 677 devm_kfree(dev, vsi->rss_hkey_user); 678 if (vsi->rss_lut_user) 679 devm_kfree(dev, vsi->rss_lut_user); 680 681 ice_vsi_clean_rss_flow_fld(vsi); 682 /* remove RSS replay list */ 683 if (!ice_is_safe_mode(pf)) 684 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 685 } 686 687 /** 688 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 689 * @vsi: the VSI being configured 690 */ 691 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 692 { 693 struct ice_hw_common_caps *cap; 694 struct ice_pf *pf = vsi->back; 695 696 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 697 vsi->rss_size = 1; 698 return; 699 } 700 701 cap = &pf->hw.func_caps.common_cap; 702 switch (vsi->type) { 703 case ICE_VSI_PF: 704 /* PF VSI will inherit RSS instance of PF */ 705 vsi->rss_table_size = (u16)cap->rss_table_size; 706 vsi->rss_size = min_t(u16, num_online_cpus(), 707 BIT(cap->rss_table_entry_width)); 708 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 709 break; 710 case ICE_VSI_VF: 711 /* VF VSI will get a small RSS table. 712 * For VSI_LUT, LUT size should be set to 64 bytes. 713 */ 714 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 715 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 716 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 717 break; 718 case ICE_VSI_LB: 719 break; 720 default: 721 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 722 ice_vsi_type_str(vsi->type)); 723 break; 724 } 725 } 726 727 /** 728 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 729 * @ctxt: the VSI context being set 730 * 731 * This initializes a default VSI context for all sections except the Queues. 732 */ 733 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 734 { 735 u32 table = 0; 736 737 memset(&ctxt->info, 0, sizeof(ctxt->info)); 738 /* VSI's should be allocated from shared pool */ 739 ctxt->alloc_from_pool = true; 740 /* Src pruning enabled by default */ 741 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 742 /* Traffic from VSI can be sent to LAN */ 743 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 744 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 745 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 746 * packets untagged/tagged. 747 */ 748 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 749 ICE_AQ_VSI_VLAN_MODE_M) >> 750 ICE_AQ_VSI_VLAN_MODE_S); 751 /* Have 1:1 UP mapping for both ingress/egress tables */ 752 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 753 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 754 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 755 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 756 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 757 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 758 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 759 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 760 ctxt->info.ingress_table = cpu_to_le32(table); 761 ctxt->info.egress_table = cpu_to_le32(table); 762 /* Have 1:1 UP mapping for outer to inner UP table */ 763 ctxt->info.outer_up_table = cpu_to_le32(table); 764 /* No Outer tag support outer_tag_flags remains to zero */ 765 } 766 767 /** 768 * ice_vsi_setup_q_map - Setup a VSI queue map 769 * @vsi: the VSI being configured 770 * @ctxt: VSI context structure 771 */ 772 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 773 { 774 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 775 u16 num_txq_per_tc, num_rxq_per_tc; 776 u16 qcount_tx = vsi->alloc_txq; 777 u16 qcount_rx = vsi->alloc_rxq; 778 bool ena_tc0 = false; 779 u8 netdev_tc = 0; 780 int i; 781 782 /* at least TC0 should be enabled by default */ 783 if (vsi->tc_cfg.numtc) { 784 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 785 ena_tc0 = true; 786 } else { 787 ena_tc0 = true; 788 } 789 790 if (ena_tc0) { 791 vsi->tc_cfg.numtc++; 792 vsi->tc_cfg.ena_tc |= 1; 793 } 794 795 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 796 if (!num_rxq_per_tc) 797 num_rxq_per_tc = 1; 798 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 799 if (!num_txq_per_tc) 800 num_txq_per_tc = 1; 801 802 /* find the (rounded up) power-of-2 of qcount */ 803 pow = (u16)order_base_2(num_rxq_per_tc); 804 805 /* TC mapping is a function of the number of Rx queues assigned to the 806 * VSI for each traffic class and the offset of these queues. 807 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 808 * queues allocated to TC0. No:of queues is a power-of-2. 809 * 810 * If TC is not enabled, the queue offset is set to 0, and allocate one 811 * queue, this way, traffic for the given TC will be sent to the default 812 * queue. 813 * 814 * Setup number and offset of Rx queues for all TCs for the VSI 815 */ 816 ice_for_each_traffic_class(i) { 817 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 818 /* TC is not enabled */ 819 vsi->tc_cfg.tc_info[i].qoffset = 0; 820 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 821 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 822 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 823 ctxt->info.tc_mapping[i] = 0; 824 continue; 825 } 826 827 /* TC is enabled */ 828 vsi->tc_cfg.tc_info[i].qoffset = offset; 829 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 830 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 831 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 832 833 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 834 ICE_AQ_VSI_TC_Q_OFFSET_M) | 835 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 836 ICE_AQ_VSI_TC_Q_NUM_M); 837 offset += num_rxq_per_tc; 838 tx_count += num_txq_per_tc; 839 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 840 } 841 842 /* if offset is non-zero, means it is calculated correctly based on 843 * enabled TCs for a given VSI otherwise qcount_rx will always 844 * be correct and non-zero because it is based off - VSI's 845 * allocated Rx queues which is at least 1 (hence qcount_tx will be 846 * at least 1) 847 */ 848 if (offset) 849 vsi->num_rxq = offset; 850 else 851 vsi->num_rxq = num_rxq_per_tc; 852 853 vsi->num_txq = tx_count; 854 855 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 856 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 857 /* since there is a chance that num_rxq could have been changed 858 * in the above for loop, make num_txq equal to num_rxq. 859 */ 860 vsi->num_txq = vsi->num_rxq; 861 } 862 863 /* Rx queue mapping */ 864 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 865 /* q_mapping buffer holds the info for the first queue allocated for 866 * this VSI in the PF space and also the number of queues associated 867 * with this VSI. 868 */ 869 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 870 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 871 } 872 873 /** 874 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 875 * @ctxt: the VSI context being set 876 * @vsi: the VSI being configured 877 */ 878 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 879 { 880 u8 dflt_q_group, dflt_q_prio; 881 u16 dflt_q, report_q, val; 882 883 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 884 vsi->type != ICE_VSI_VF) 885 return; 886 887 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 888 ctxt->info.valid_sections |= cpu_to_le16(val); 889 dflt_q = 0; 890 dflt_q_group = 0; 891 report_q = 0; 892 dflt_q_prio = 0; 893 894 /* enable flow director filtering/programming */ 895 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 896 ctxt->info.fd_options = cpu_to_le16(val); 897 /* max of allocated flow director filters */ 898 ctxt->info.max_fd_fltr_dedicated = 899 cpu_to_le16(vsi->num_gfltr); 900 /* max of shared flow director filters any VSI may program */ 901 ctxt->info.max_fd_fltr_shared = 902 cpu_to_le16(vsi->num_bfltr); 903 /* default queue index within the VSI of the default FD */ 904 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 905 ICE_AQ_VSI_FD_DEF_Q_M); 906 /* target queue or queue group to the FD filter */ 907 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 908 ICE_AQ_VSI_FD_DEF_GRP_M); 909 ctxt->info.fd_def_q = cpu_to_le16(val); 910 /* queue index on which FD filter completion is reported */ 911 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 912 ICE_AQ_VSI_FD_REPORT_Q_M); 913 /* priority of the default qindex action */ 914 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 915 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 916 ctxt->info.fd_report_opt = cpu_to_le16(val); 917 } 918 919 /** 920 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 921 * @ctxt: the VSI context being set 922 * @vsi: the VSI being configured 923 */ 924 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 925 { 926 u8 lut_type, hash_type; 927 struct device *dev; 928 struct ice_pf *pf; 929 930 pf = vsi->back; 931 dev = ice_pf_to_dev(pf); 932 933 switch (vsi->type) { 934 case ICE_VSI_PF: 935 /* PF VSI will inherit RSS instance of PF */ 936 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 937 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 938 break; 939 case ICE_VSI_VF: 940 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 941 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 942 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 943 break; 944 default: 945 dev_dbg(dev, "Unsupported VSI type %s\n", 946 ice_vsi_type_str(vsi->type)); 947 return; 948 } 949 950 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 951 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 952 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 953 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 954 } 955 956 /** 957 * ice_vsi_init - Create and initialize a VSI 958 * @vsi: the VSI being configured 959 * @init_vsi: is this call creating a VSI 960 * 961 * This initializes a VSI context depending on the VSI type to be added and 962 * passes it down to the add_vsi aq command to create a new VSI. 963 */ 964 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 965 { 966 struct ice_pf *pf = vsi->back; 967 struct ice_hw *hw = &pf->hw; 968 struct ice_vsi_ctx *ctxt; 969 struct device *dev; 970 int ret = 0; 971 972 dev = ice_pf_to_dev(pf); 973 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 974 if (!ctxt) 975 return -ENOMEM; 976 977 switch (vsi->type) { 978 case ICE_VSI_CTRL: 979 case ICE_VSI_LB: 980 case ICE_VSI_PF: 981 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 982 break; 983 case ICE_VSI_VF: 984 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 985 /* VF number here is the absolute VF number (0-255) */ 986 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 987 break; 988 default: 989 ret = -ENODEV; 990 goto out; 991 } 992 993 ice_set_dflt_vsi_ctx(ctxt); 994 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 995 ice_set_fd_vsi_ctx(ctxt, vsi); 996 /* if the switch is in VEB mode, allow VSI loopback */ 997 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 998 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 999 1000 /* Set LUT type and HASH type if RSS is enabled */ 1001 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1002 vsi->type != ICE_VSI_CTRL) { 1003 ice_set_rss_vsi_ctx(ctxt, vsi); 1004 /* if updating VSI context, make sure to set valid_section: 1005 * to indicate which section of VSI context being updated 1006 */ 1007 if (!init_vsi) 1008 ctxt->info.valid_sections |= 1009 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1010 } 1011 1012 ctxt->info.sw_id = vsi->port_info->sw_id; 1013 ice_vsi_setup_q_map(vsi, ctxt); 1014 if (!init_vsi) /* means VSI being updated */ 1015 /* must to indicate which section of VSI context are 1016 * being modified 1017 */ 1018 ctxt->info.valid_sections |= 1019 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1020 1021 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1022 * respectively 1023 */ 1024 if (vsi->type == ICE_VSI_VF) { 1025 ctxt->info.valid_sections |= 1026 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1027 if (pf->vf[vsi->vf_id].spoofchk) { 1028 ctxt->info.sec_flags |= 1029 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1030 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1031 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1032 } else { 1033 ctxt->info.sec_flags &= 1034 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1035 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1036 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1037 } 1038 } 1039 1040 /* Allow control frames out of main VSI */ 1041 if (vsi->type == ICE_VSI_PF) { 1042 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1043 ctxt->info.valid_sections |= 1044 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1045 } 1046 1047 if (init_vsi) { 1048 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1049 if (ret) { 1050 dev_err(dev, "Add VSI failed, err %d\n", ret); 1051 ret = -EIO; 1052 goto out; 1053 } 1054 } else { 1055 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1056 if (ret) { 1057 dev_err(dev, "Update VSI failed, err %d\n", ret); 1058 ret = -EIO; 1059 goto out; 1060 } 1061 } 1062 1063 /* keep context for update VSI operations */ 1064 vsi->info = ctxt->info; 1065 1066 /* record VSI number returned */ 1067 vsi->vsi_num = ctxt->vsi_num; 1068 1069 out: 1070 kfree(ctxt); 1071 return ret; 1072 } 1073 1074 /** 1075 * ice_free_res - free a block of resources 1076 * @res: pointer to the resource 1077 * @index: starting index previously returned by ice_get_res 1078 * @id: identifier to track owner 1079 * 1080 * Returns number of resources freed 1081 */ 1082 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1083 { 1084 int count = 0; 1085 int i; 1086 1087 if (!res || index >= res->end) 1088 return -EINVAL; 1089 1090 id |= ICE_RES_VALID_BIT; 1091 for (i = index; i < res->end && res->list[i] == id; i++) { 1092 res->list[i] = 0; 1093 count++; 1094 } 1095 1096 return count; 1097 } 1098 1099 /** 1100 * ice_search_res - Search the tracker for a block of resources 1101 * @res: pointer to the resource 1102 * @needed: size of the block needed 1103 * @id: identifier to track owner 1104 * 1105 * Returns the base item index of the block, or -ENOMEM for error 1106 */ 1107 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1108 { 1109 u16 start = 0, end = 0; 1110 1111 if (needed > res->end) 1112 return -ENOMEM; 1113 1114 id |= ICE_RES_VALID_BIT; 1115 1116 do { 1117 /* skip already allocated entries */ 1118 if (res->list[end++] & ICE_RES_VALID_BIT) { 1119 start = end; 1120 if ((start + needed) > res->end) 1121 break; 1122 } 1123 1124 if (end == (start + needed)) { 1125 int i = start; 1126 1127 /* there was enough, so assign it to the requestor */ 1128 while (i != end) 1129 res->list[i++] = id; 1130 1131 return start; 1132 } 1133 } while (end < res->end); 1134 1135 return -ENOMEM; 1136 } 1137 1138 /** 1139 * ice_get_free_res_count - Get free count from a resource tracker 1140 * @res: Resource tracker instance 1141 */ 1142 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1143 { 1144 u16 i, count = 0; 1145 1146 for (i = 0; i < res->end; i++) 1147 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1148 count++; 1149 1150 return count; 1151 } 1152 1153 /** 1154 * ice_get_res - get a block of resources 1155 * @pf: board private structure 1156 * @res: pointer to the resource 1157 * @needed: size of the block needed 1158 * @id: identifier to track owner 1159 * 1160 * Returns the base item index of the block, or negative for error 1161 */ 1162 int 1163 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1164 { 1165 if (!res || !pf) 1166 return -EINVAL; 1167 1168 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1169 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1170 needed, res->num_entries, id); 1171 return -EINVAL; 1172 } 1173 1174 return ice_search_res(res, needed, id); 1175 } 1176 1177 /** 1178 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1179 * @vsi: ptr to the VSI 1180 * 1181 * This should only be called after ice_vsi_alloc() which allocates the 1182 * corresponding SW VSI structure and initializes num_queue_pairs for the 1183 * newly allocated VSI. 1184 * 1185 * Returns 0 on success or negative on failure 1186 */ 1187 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1188 { 1189 struct ice_pf *pf = vsi->back; 1190 struct device *dev; 1191 u16 num_q_vectors; 1192 int base; 1193 1194 dev = ice_pf_to_dev(pf); 1195 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1196 if (vsi->type == ICE_VSI_VF) 1197 return 0; 1198 1199 if (vsi->base_vector) { 1200 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1201 vsi->vsi_num, vsi->base_vector); 1202 return -EEXIST; 1203 } 1204 1205 num_q_vectors = vsi->num_q_vectors; 1206 /* reserve slots from OS requested IRQs */ 1207 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1208 int i; 1209 1210 ice_for_each_vf(pf, i) { 1211 struct ice_vf *vf = &pf->vf[i]; 1212 1213 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1214 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1215 break; 1216 } 1217 } 1218 if (i == pf->num_alloc_vfs) 1219 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1220 ICE_RES_VF_CTRL_VEC_ID); 1221 } else { 1222 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1223 vsi->idx); 1224 } 1225 1226 if (base < 0) { 1227 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1228 ice_get_free_res_count(pf->irq_tracker), 1229 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1230 return -ENOENT; 1231 } 1232 vsi->base_vector = (u16)base; 1233 pf->num_avail_sw_msix -= num_q_vectors; 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1240 * @vsi: the VSI having rings deallocated 1241 */ 1242 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1243 { 1244 int i; 1245 1246 /* Avoid stale references by clearing map from vector to ring */ 1247 if (vsi->q_vectors) { 1248 ice_for_each_q_vector(vsi, i) { 1249 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1250 1251 if (q_vector) { 1252 q_vector->tx.ring = NULL; 1253 q_vector->rx.ring = NULL; 1254 } 1255 } 1256 } 1257 1258 if (vsi->tx_rings) { 1259 for (i = 0; i < vsi->alloc_txq; i++) { 1260 if (vsi->tx_rings[i]) { 1261 kfree_rcu(vsi->tx_rings[i], rcu); 1262 WRITE_ONCE(vsi->tx_rings[i], NULL); 1263 } 1264 } 1265 } 1266 if (vsi->rx_rings) { 1267 for (i = 0; i < vsi->alloc_rxq; i++) { 1268 if (vsi->rx_rings[i]) { 1269 kfree_rcu(vsi->rx_rings[i], rcu); 1270 WRITE_ONCE(vsi->rx_rings[i], NULL); 1271 } 1272 } 1273 } 1274 } 1275 1276 /** 1277 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1278 * @vsi: VSI which is having rings allocated 1279 */ 1280 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1281 { 1282 struct ice_pf *pf = vsi->back; 1283 struct device *dev; 1284 u16 i; 1285 1286 dev = ice_pf_to_dev(pf); 1287 /* Allocate Tx rings */ 1288 for (i = 0; i < vsi->alloc_txq; i++) { 1289 struct ice_ring *ring; 1290 1291 /* allocate with kzalloc(), free with kfree_rcu() */ 1292 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1293 1294 if (!ring) 1295 goto err_out; 1296 1297 ring->q_index = i; 1298 ring->reg_idx = vsi->txq_map[i]; 1299 ring->ring_active = false; 1300 ring->vsi = vsi; 1301 ring->tx_tstamps = &pf->ptp.port.tx; 1302 ring->dev = dev; 1303 ring->count = vsi->num_tx_desc; 1304 WRITE_ONCE(vsi->tx_rings[i], ring); 1305 } 1306 1307 /* Allocate Rx rings */ 1308 for (i = 0; i < vsi->alloc_rxq; i++) { 1309 struct ice_ring *ring; 1310 1311 /* allocate with kzalloc(), free with kfree_rcu() */ 1312 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1313 if (!ring) 1314 goto err_out; 1315 1316 ring->q_index = i; 1317 ring->reg_idx = vsi->rxq_map[i]; 1318 ring->ring_active = false; 1319 ring->vsi = vsi; 1320 ring->netdev = vsi->netdev; 1321 ring->dev = dev; 1322 ring->count = vsi->num_rx_desc; 1323 WRITE_ONCE(vsi->rx_rings[i], ring); 1324 } 1325 1326 return 0; 1327 1328 err_out: 1329 ice_vsi_clear_rings(vsi); 1330 return -ENOMEM; 1331 } 1332 1333 /** 1334 * ice_vsi_manage_rss_lut - disable/enable RSS 1335 * @vsi: the VSI being changed 1336 * @ena: boolean value indicating if this is an enable or disable request 1337 * 1338 * In the event of disable request for RSS, this function will zero out RSS 1339 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1340 * LUT. 1341 */ 1342 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1343 { 1344 u8 *lut; 1345 1346 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1347 if (!lut) 1348 return; 1349 1350 if (ena) { 1351 if (vsi->rss_lut_user) 1352 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1353 else 1354 ice_fill_rss_lut(lut, vsi->rss_table_size, 1355 vsi->rss_size); 1356 } 1357 1358 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1359 kfree(lut); 1360 } 1361 1362 /** 1363 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1364 * @vsi: VSI to be configured 1365 */ 1366 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1367 { 1368 struct ice_pf *pf = vsi->back; 1369 struct device *dev; 1370 u8 *lut, *key; 1371 int err; 1372 1373 dev = ice_pf_to_dev(pf); 1374 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1375 1376 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1377 if (!lut) 1378 return -ENOMEM; 1379 1380 if (vsi->rss_lut_user) 1381 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1382 else 1383 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1384 1385 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1386 if (err) { 1387 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1388 goto ice_vsi_cfg_rss_exit; 1389 } 1390 1391 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1392 if (!key) { 1393 err = -ENOMEM; 1394 goto ice_vsi_cfg_rss_exit; 1395 } 1396 1397 if (vsi->rss_hkey_user) 1398 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1399 else 1400 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1401 1402 err = ice_set_rss_key(vsi, key); 1403 if (err) 1404 dev_err(dev, "set_rss_key failed, error %d\n", err); 1405 1406 kfree(key); 1407 ice_vsi_cfg_rss_exit: 1408 kfree(lut); 1409 return err; 1410 } 1411 1412 /** 1413 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1414 * @vsi: VSI to be configured 1415 * 1416 * This function will only be called during the VF VSI setup. Upon successful 1417 * completion of package download, this function will configure default RSS 1418 * input sets for VF VSI. 1419 */ 1420 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1421 { 1422 struct ice_pf *pf = vsi->back; 1423 enum ice_status status; 1424 struct device *dev; 1425 1426 dev = ice_pf_to_dev(pf); 1427 if (ice_is_safe_mode(pf)) { 1428 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1429 vsi->vsi_num); 1430 return; 1431 } 1432 1433 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1434 if (status) 1435 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1436 vsi->vsi_num, ice_stat_str(status)); 1437 } 1438 1439 /** 1440 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1441 * @vsi: VSI to be configured 1442 * 1443 * This function will only be called after successful download package call 1444 * during initialization of PF. Since the downloaded package will erase the 1445 * RSS section, this function will configure RSS input sets for different 1446 * flow types. The last profile added has the highest priority, therefore 2 1447 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1448 * (i.e. IPv4 src/dst TCP src/dst port). 1449 */ 1450 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1451 { 1452 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1453 struct ice_pf *pf = vsi->back; 1454 struct ice_hw *hw = &pf->hw; 1455 enum ice_status status; 1456 struct device *dev; 1457 1458 dev = ice_pf_to_dev(pf); 1459 if (ice_is_safe_mode(pf)) { 1460 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1461 vsi_num); 1462 return; 1463 } 1464 /* configure RSS for IPv4 with input set IP src/dst */ 1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1466 ICE_FLOW_SEG_HDR_IPV4); 1467 if (status) 1468 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1469 vsi_num, ice_stat_str(status)); 1470 1471 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1473 ICE_FLOW_SEG_HDR_IPV6); 1474 if (status) 1475 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1476 vsi_num, ice_stat_str(status)); 1477 1478 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1480 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1481 if (status) 1482 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1483 vsi_num, ice_stat_str(status)); 1484 1485 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1487 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1488 if (status) 1489 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1490 vsi_num, ice_stat_str(status)); 1491 1492 /* configure RSS for sctp4 with input set IP src/dst */ 1493 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1494 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1495 if (status) 1496 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1497 vsi_num, ice_stat_str(status)); 1498 1499 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1500 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1501 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1502 if (status) 1503 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1504 vsi_num, ice_stat_str(status)); 1505 1506 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1507 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1508 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1509 if (status) 1510 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1511 vsi_num, ice_stat_str(status)); 1512 1513 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1514 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1515 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1516 if (status) 1517 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1518 vsi_num, ice_stat_str(status)); 1519 } 1520 1521 /** 1522 * ice_pf_state_is_nominal - checks the PF for nominal state 1523 * @pf: pointer to PF to check 1524 * 1525 * Check the PF's state for a collection of bits that would indicate 1526 * the PF is in a state that would inhibit normal operation for 1527 * driver functionality. 1528 * 1529 * Returns true if PF is in a nominal state, false otherwise 1530 */ 1531 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1532 { 1533 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1534 1535 if (!pf) 1536 return false; 1537 1538 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1539 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1540 return false; 1541 1542 return true; 1543 } 1544 1545 /** 1546 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1547 * @vsi: the VSI to be updated 1548 */ 1549 void ice_update_eth_stats(struct ice_vsi *vsi) 1550 { 1551 struct ice_eth_stats *prev_es, *cur_es; 1552 struct ice_hw *hw = &vsi->back->hw; 1553 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1554 1555 prev_es = &vsi->eth_stats_prev; 1556 cur_es = &vsi->eth_stats; 1557 1558 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1559 &prev_es->rx_bytes, &cur_es->rx_bytes); 1560 1561 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1562 &prev_es->rx_unicast, &cur_es->rx_unicast); 1563 1564 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1565 &prev_es->rx_multicast, &cur_es->rx_multicast); 1566 1567 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1568 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1569 1570 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1571 &prev_es->rx_discards, &cur_es->rx_discards); 1572 1573 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1574 &prev_es->tx_bytes, &cur_es->tx_bytes); 1575 1576 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1577 &prev_es->tx_unicast, &cur_es->tx_unicast); 1578 1579 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1580 &prev_es->tx_multicast, &cur_es->tx_multicast); 1581 1582 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1583 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1584 1585 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1586 &prev_es->tx_errors, &cur_es->tx_errors); 1587 1588 vsi->stat_offsets_loaded = true; 1589 } 1590 1591 /** 1592 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1593 * @vsi: the VSI being configured 1594 * @vid: VLAN ID to be added 1595 * @action: filter action to be performed on match 1596 */ 1597 int 1598 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1599 { 1600 struct ice_pf *pf = vsi->back; 1601 struct device *dev; 1602 int err = 0; 1603 1604 dev = ice_pf_to_dev(pf); 1605 1606 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1607 vsi->num_vlan++; 1608 } else { 1609 err = -ENODEV; 1610 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1611 vsi->vsi_num); 1612 } 1613 1614 return err; 1615 } 1616 1617 /** 1618 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1619 * @vsi: the VSI being configured 1620 * @vid: VLAN ID to be removed 1621 * 1622 * Returns 0 on success and negative on failure 1623 */ 1624 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1625 { 1626 struct ice_pf *pf = vsi->back; 1627 enum ice_status status; 1628 struct device *dev; 1629 int err = 0; 1630 1631 dev = ice_pf_to_dev(pf); 1632 1633 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1634 if (!status) { 1635 vsi->num_vlan--; 1636 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1637 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1638 vid, vsi->vsi_num, ice_stat_str(status)); 1639 } else { 1640 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1641 vid, vsi->vsi_num, ice_stat_str(status)); 1642 err = -EIO; 1643 } 1644 1645 return err; 1646 } 1647 1648 /** 1649 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1650 * @vsi: VSI 1651 */ 1652 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1653 { 1654 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1655 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1656 vsi->rx_buf_len = ICE_RXBUF_2048; 1657 #if (PAGE_SIZE < 8192) 1658 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1659 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1660 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1661 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1662 #endif 1663 } else { 1664 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1665 #if (PAGE_SIZE < 8192) 1666 vsi->rx_buf_len = ICE_RXBUF_3072; 1667 #else 1668 vsi->rx_buf_len = ICE_RXBUF_2048; 1669 #endif 1670 } 1671 } 1672 1673 /** 1674 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1675 * @hw: HW pointer 1676 * @pf_q: index of the Rx queue in the PF's queue space 1677 * @rxdid: flexible descriptor RXDID 1678 * @prio: priority for the RXDID for this queue 1679 * @ena_ts: true to enable timestamp and false to disable timestamp 1680 */ 1681 void 1682 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1683 bool ena_ts) 1684 { 1685 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1686 1687 /* clear any previous values */ 1688 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1689 QRXFLXP_CNTXT_RXDID_PRIO_M | 1690 QRXFLXP_CNTXT_TS_M); 1691 1692 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1693 QRXFLXP_CNTXT_RXDID_IDX_M; 1694 1695 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1696 QRXFLXP_CNTXT_RXDID_PRIO_M; 1697 1698 if (ena_ts) 1699 /* Enable TimeSync on this queue */ 1700 regval |= QRXFLXP_CNTXT_TS_M; 1701 1702 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1703 } 1704 1705 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1706 { 1707 if (q_idx >= vsi->num_rxq) 1708 return -EINVAL; 1709 1710 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1711 } 1712 1713 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx) 1714 { 1715 struct ice_aqc_add_tx_qgrp *qg_buf; 1716 int err; 1717 1718 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1719 return -EINVAL; 1720 1721 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1722 if (!qg_buf) 1723 return -ENOMEM; 1724 1725 qg_buf->num_txqs = 1; 1726 1727 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1728 kfree(qg_buf); 1729 return err; 1730 } 1731 1732 /** 1733 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1734 * @vsi: the VSI being configured 1735 * 1736 * Return 0 on success and a negative value on error 1737 * Configure the Rx VSI for operation. 1738 */ 1739 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1740 { 1741 u16 i; 1742 1743 if (vsi->type == ICE_VSI_VF) 1744 goto setup_rings; 1745 1746 ice_vsi_cfg_frame_size(vsi); 1747 setup_rings: 1748 /* set up individual rings */ 1749 ice_for_each_rxq(vsi, i) { 1750 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1751 1752 if (err) 1753 return err; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1761 * @vsi: the VSI being configured 1762 * @rings: Tx ring array to be configured 1763 * @count: number of Tx ring array elements 1764 * 1765 * Return 0 on success and a negative value on error 1766 * Configure the Tx VSI for operation. 1767 */ 1768 static int 1769 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count) 1770 { 1771 struct ice_aqc_add_tx_qgrp *qg_buf; 1772 u16 q_idx = 0; 1773 int err = 0; 1774 1775 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1776 if (!qg_buf) 1777 return -ENOMEM; 1778 1779 qg_buf->num_txqs = 1; 1780 1781 for (q_idx = 0; q_idx < count; q_idx++) { 1782 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1783 if (err) 1784 goto err_cfg_txqs; 1785 } 1786 1787 err_cfg_txqs: 1788 kfree(qg_buf); 1789 return err; 1790 } 1791 1792 /** 1793 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1794 * @vsi: the VSI being configured 1795 * 1796 * Return 0 on success and a negative value on error 1797 * Configure the Tx VSI for operation. 1798 */ 1799 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1800 { 1801 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1802 } 1803 1804 /** 1805 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1806 * @vsi: the VSI being configured 1807 * 1808 * Return 0 on success and a negative value on error 1809 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1810 */ 1811 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1812 { 1813 int ret; 1814 int i; 1815 1816 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1817 if (ret) 1818 return ret; 1819 1820 for (i = 0; i < vsi->num_xdp_txq; i++) 1821 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1822 1823 return ret; 1824 } 1825 1826 /** 1827 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1828 * @intrl: interrupt rate limit in usecs 1829 * @gran: interrupt rate limit granularity in usecs 1830 * 1831 * This function converts a decimal interrupt rate limit in usecs to the format 1832 * expected by firmware. 1833 */ 1834 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1835 { 1836 u32 val = intrl / gran; 1837 1838 if (val) 1839 return val | GLINT_RATE_INTRL_ENA_M; 1840 return 0; 1841 } 1842 1843 /** 1844 * ice_write_intrl - write throttle rate limit to interrupt specific register 1845 * @q_vector: pointer to interrupt specific structure 1846 * @intrl: throttle rate limit in microseconds to write 1847 */ 1848 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1849 { 1850 struct ice_hw *hw = &q_vector->vsi->back->hw; 1851 1852 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1853 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1854 } 1855 1856 /** 1857 * __ice_write_itr - write throttle rate to register 1858 * @q_vector: pointer to interrupt data structure 1859 * @rc: pointer to ring container 1860 * @itr: throttle rate in microseconds to write 1861 */ 1862 static void __ice_write_itr(struct ice_q_vector *q_vector, 1863 struct ice_ring_container *rc, u16 itr) 1864 { 1865 struct ice_hw *hw = &q_vector->vsi->back->hw; 1866 1867 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1868 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1869 } 1870 1871 /** 1872 * ice_write_itr - write throttle rate to queue specific register 1873 * @rc: pointer to ring container 1874 * @itr: throttle rate in microseconds to write 1875 */ 1876 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1877 { 1878 struct ice_q_vector *q_vector; 1879 1880 if (!rc->ring) 1881 return; 1882 1883 q_vector = rc->ring->q_vector; 1884 1885 __ice_write_itr(q_vector, rc, itr); 1886 } 1887 1888 /** 1889 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1890 * @vsi: the VSI being configured 1891 * 1892 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1893 * for the VF VSI. 1894 */ 1895 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1896 { 1897 struct ice_pf *pf = vsi->back; 1898 struct ice_hw *hw = &pf->hw; 1899 u16 txq = 0, rxq = 0; 1900 int i, q; 1901 1902 for (i = 0; i < vsi->num_q_vectors; i++) { 1903 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1904 u16 reg_idx = q_vector->reg_idx; 1905 1906 ice_cfg_itr(hw, q_vector); 1907 1908 /* Both Transmit Queue Interrupt Cause Control register 1909 * and Receive Queue Interrupt Cause control register 1910 * expects MSIX_INDX field to be the vector index 1911 * within the function space and not the absolute 1912 * vector index across PF or across device. 1913 * For SR-IOV VF VSIs queue vector index always starts 1914 * with 1 since first vector index(0) is used for OICR 1915 * in VF space. Since VMDq and other PF VSIs are within 1916 * the PF function space, use the vector index that is 1917 * tracked for this PF. 1918 */ 1919 for (q = 0; q < q_vector->num_ring_tx; q++) { 1920 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1921 q_vector->tx.itr_idx); 1922 txq++; 1923 } 1924 1925 for (q = 0; q < q_vector->num_ring_rx; q++) { 1926 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1927 q_vector->rx.itr_idx); 1928 rxq++; 1929 } 1930 } 1931 } 1932 1933 /** 1934 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1935 * @vsi: the VSI being changed 1936 */ 1937 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1938 { 1939 struct ice_hw *hw = &vsi->back->hw; 1940 struct ice_vsi_ctx *ctxt; 1941 enum ice_status status; 1942 int ret = 0; 1943 1944 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1945 if (!ctxt) 1946 return -ENOMEM; 1947 1948 /* Here we are configuring the VSI to let the driver add VLAN tags by 1949 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1950 * insertion happens in the Tx hot path, in ice_tx_map. 1951 */ 1952 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1953 1954 /* Preserve existing VLAN strip setting */ 1955 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1956 ICE_AQ_VSI_VLAN_EMOD_M); 1957 1958 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1959 1960 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1961 if (status) { 1962 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1963 ice_stat_str(status), 1964 ice_aq_str(hw->adminq.sq_last_status)); 1965 ret = -EIO; 1966 goto out; 1967 } 1968 1969 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1970 out: 1971 kfree(ctxt); 1972 return ret; 1973 } 1974 1975 /** 1976 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1977 * @vsi: the VSI being changed 1978 * @ena: boolean value indicating if this is a enable or disable request 1979 */ 1980 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1981 { 1982 struct ice_hw *hw = &vsi->back->hw; 1983 struct ice_vsi_ctx *ctxt; 1984 enum ice_status status; 1985 int ret = 0; 1986 1987 /* do not allow modifying VLAN stripping when a port VLAN is configured 1988 * on this VSI 1989 */ 1990 if (vsi->info.pvid) 1991 return 0; 1992 1993 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1994 if (!ctxt) 1995 return -ENOMEM; 1996 1997 /* Here we are configuring what the VSI should do with the VLAN tag in 1998 * the Rx packet. We can either leave the tag in the packet or put it in 1999 * the Rx descriptor. 2000 */ 2001 if (ena) 2002 /* Strip VLAN tag from Rx packet and put it in the desc */ 2003 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2004 else 2005 /* Disable stripping. Leave tag in packet */ 2006 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2007 2008 /* Allow all packets untagged/tagged */ 2009 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2010 2011 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2012 2013 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2014 if (status) { 2015 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2016 ena, ice_stat_str(status), 2017 ice_aq_str(hw->adminq.sq_last_status)); 2018 ret = -EIO; 2019 goto out; 2020 } 2021 2022 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2023 out: 2024 kfree(ctxt); 2025 return ret; 2026 } 2027 2028 /** 2029 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2030 * @vsi: the VSI whose rings are to be enabled 2031 * 2032 * Returns 0 on success and a negative value on error 2033 */ 2034 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2035 { 2036 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2037 } 2038 2039 /** 2040 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2041 * @vsi: the VSI whose rings are to be disabled 2042 * 2043 * Returns 0 on success and a negative value on error 2044 */ 2045 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2046 { 2047 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2048 } 2049 2050 /** 2051 * ice_vsi_stop_tx_rings - Disable Tx rings 2052 * @vsi: the VSI being configured 2053 * @rst_src: reset source 2054 * @rel_vmvf_num: Relative ID of VF/VM 2055 * @rings: Tx ring array to be stopped 2056 * @count: number of Tx ring array elements 2057 */ 2058 static int 2059 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2060 u16 rel_vmvf_num, struct ice_ring **rings, u16 count) 2061 { 2062 u16 q_idx; 2063 2064 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2065 return -EINVAL; 2066 2067 for (q_idx = 0; q_idx < count; q_idx++) { 2068 struct ice_txq_meta txq_meta = { }; 2069 int status; 2070 2071 if (!rings || !rings[q_idx]) 2072 return -EINVAL; 2073 2074 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2075 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2076 rings[q_idx], &txq_meta); 2077 2078 if (status) 2079 return status; 2080 } 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2087 * @vsi: the VSI being configured 2088 * @rst_src: reset source 2089 * @rel_vmvf_num: Relative ID of VF/VM 2090 */ 2091 int 2092 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2093 u16 rel_vmvf_num) 2094 { 2095 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2096 } 2097 2098 /** 2099 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2100 * @vsi: the VSI being configured 2101 */ 2102 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2103 { 2104 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2105 } 2106 2107 /** 2108 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2109 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2110 * 2111 * returns true if Rx VLAN pruning is enabled and false otherwise. 2112 */ 2113 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2114 { 2115 if (!vsi) 2116 return false; 2117 2118 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2119 } 2120 2121 /** 2122 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2123 * @vsi: VSI to enable or disable VLAN pruning on 2124 * @ena: set to true to enable VLAN pruning and false to disable it 2125 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2126 * 2127 * returns 0 if VSI is updated, negative otherwise 2128 */ 2129 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2130 { 2131 struct ice_vsi_ctx *ctxt; 2132 struct ice_pf *pf; 2133 int status; 2134 2135 if (!vsi) 2136 return -EINVAL; 2137 2138 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2139 * mode. VLAN pruning will be enabled when the interface exits 2140 * promiscuous mode if any VLAN filters are active. 2141 */ 2142 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2143 return 0; 2144 2145 pf = vsi->back; 2146 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2147 if (!ctxt) 2148 return -ENOMEM; 2149 2150 ctxt->info = vsi->info; 2151 2152 if (ena) 2153 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2154 else 2155 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2156 2157 if (!vlan_promisc) 2158 ctxt->info.valid_sections = 2159 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2160 2161 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2162 if (status) { 2163 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2164 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2165 ice_stat_str(status), 2166 ice_aq_str(pf->hw.adminq.sq_last_status)); 2167 goto err_out; 2168 } 2169 2170 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2171 2172 kfree(ctxt); 2173 return 0; 2174 2175 err_out: 2176 kfree(ctxt); 2177 return -EIO; 2178 } 2179 2180 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2181 { 2182 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2183 2184 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2185 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2186 } 2187 2188 /** 2189 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2190 * @vsi: VSI to set the q_vectors register index on 2191 */ 2192 static int 2193 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2194 { 2195 u16 i; 2196 2197 if (!vsi || !vsi->q_vectors) 2198 return -EINVAL; 2199 2200 ice_for_each_q_vector(vsi, i) { 2201 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2202 2203 if (!q_vector) { 2204 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2205 i, vsi->vsi_num); 2206 goto clear_reg_idx; 2207 } 2208 2209 if (vsi->type == ICE_VSI_VF) { 2210 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2211 2212 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2213 } else { 2214 q_vector->reg_idx = 2215 q_vector->v_idx + vsi->base_vector; 2216 } 2217 } 2218 2219 return 0; 2220 2221 clear_reg_idx: 2222 ice_for_each_q_vector(vsi, i) { 2223 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2224 2225 if (q_vector) 2226 q_vector->reg_idx = 0; 2227 } 2228 2229 return -EINVAL; 2230 } 2231 2232 /** 2233 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2234 * @vsi: the VSI being configured 2235 * @tx: bool to determine Tx or Rx rule 2236 * @create: bool to determine create or remove Rule 2237 */ 2238 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2239 { 2240 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2241 enum ice_sw_fwd_act_type act); 2242 struct ice_pf *pf = vsi->back; 2243 enum ice_status status; 2244 struct device *dev; 2245 2246 dev = ice_pf_to_dev(pf); 2247 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2248 2249 if (tx) { 2250 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2251 ICE_DROP_PACKET); 2252 } else { 2253 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2254 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2255 create); 2256 } else { 2257 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2258 ICE_FWD_TO_VSI); 2259 } 2260 } 2261 2262 if (status) 2263 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2264 create ? "adding" : "removing", tx ? "TX" : "RX", 2265 vsi->vsi_num, ice_stat_str(status)); 2266 } 2267 2268 /** 2269 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2270 * @vsi: pointer to the VSI 2271 * 2272 * This function will allocate new scheduler aggregator now if needed and will 2273 * move specified VSI into it. 2274 */ 2275 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2276 { 2277 struct device *dev = ice_pf_to_dev(vsi->back); 2278 struct ice_agg_node *agg_node_iter = NULL; 2279 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2280 struct ice_agg_node *agg_node = NULL; 2281 int node_offset, max_agg_nodes = 0; 2282 struct ice_port_info *port_info; 2283 struct ice_pf *pf = vsi->back; 2284 u32 agg_node_id_start = 0; 2285 enum ice_status status; 2286 2287 /* create (as needed) scheduler aggregator node and move VSI into 2288 * corresponding aggregator node 2289 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2290 * - VF aggregator nodes will contain VF VSI 2291 */ 2292 port_info = pf->hw.port_info; 2293 if (!port_info) 2294 return; 2295 2296 switch (vsi->type) { 2297 case ICE_VSI_CTRL: 2298 case ICE_VSI_LB: 2299 case ICE_VSI_PF: 2300 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2301 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2302 agg_node_iter = &pf->pf_agg_node[0]; 2303 break; 2304 case ICE_VSI_VF: 2305 /* user can create 'n' VFs on a given PF, but since max children 2306 * per aggregator node can be only 64. Following code handles 2307 * aggregator(s) for VF VSIs, either selects a agg_node which 2308 * was already created provided num_vsis < 64, otherwise 2309 * select next available node, which will be created 2310 */ 2311 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2312 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2313 agg_node_iter = &pf->vf_agg_node[0]; 2314 break; 2315 default: 2316 /* other VSI type, handle later if needed */ 2317 dev_dbg(dev, "unexpected VSI type %s\n", 2318 ice_vsi_type_str(vsi->type)); 2319 return; 2320 } 2321 2322 /* find the appropriate aggregator node */ 2323 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2324 /* see if we can find space in previously created 2325 * node if num_vsis < 64, otherwise skip 2326 */ 2327 if (agg_node_iter->num_vsis && 2328 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2329 agg_node_iter++; 2330 continue; 2331 } 2332 2333 if (agg_node_iter->valid && 2334 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2335 agg_id = agg_node_iter->agg_id; 2336 agg_node = agg_node_iter; 2337 break; 2338 } 2339 2340 /* find unclaimed agg_id */ 2341 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2342 agg_id = node_offset + agg_node_id_start; 2343 agg_node = agg_node_iter; 2344 break; 2345 } 2346 /* move to next agg_node */ 2347 agg_node_iter++; 2348 } 2349 2350 if (!agg_node) 2351 return; 2352 2353 /* if selected aggregator node was not created, create it */ 2354 if (!agg_node->valid) { 2355 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2356 (u8)vsi->tc_cfg.ena_tc); 2357 if (status) { 2358 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2359 agg_id); 2360 return; 2361 } 2362 /* aggregator node is created, store the neeeded info */ 2363 agg_node->valid = true; 2364 agg_node->agg_id = agg_id; 2365 } 2366 2367 /* move VSI to corresponding aggregator node */ 2368 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2369 (u8)vsi->tc_cfg.ena_tc); 2370 if (status) { 2371 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2372 vsi->idx, agg_id); 2373 return; 2374 } 2375 2376 /* keep active children count for aggregator node */ 2377 agg_node->num_vsis++; 2378 2379 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2380 * to aggregator node 2381 */ 2382 vsi->agg_node = agg_node; 2383 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2384 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2385 vsi->agg_node->num_vsis); 2386 } 2387 2388 /** 2389 * ice_vsi_setup - Set up a VSI by a given type 2390 * @pf: board private structure 2391 * @pi: pointer to the port_info instance 2392 * @vsi_type: VSI type 2393 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2394 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2395 * fill-in ICE_INVAL_VFID as input. 2396 * 2397 * This allocates the sw VSI structure and its queue resources. 2398 * 2399 * Returns pointer to the successfully allocated and configured VSI sw struct on 2400 * success, NULL on failure. 2401 */ 2402 struct ice_vsi * 2403 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2404 enum ice_vsi_type vsi_type, u16 vf_id) 2405 { 2406 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2407 struct device *dev = ice_pf_to_dev(pf); 2408 enum ice_status status; 2409 struct ice_vsi *vsi; 2410 int ret, i; 2411 2412 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2413 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2414 else 2415 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2416 2417 if (!vsi) { 2418 dev_err(dev, "could not allocate VSI\n"); 2419 return NULL; 2420 } 2421 2422 vsi->port_info = pi; 2423 vsi->vsw = pf->first_sw; 2424 if (vsi->type == ICE_VSI_PF) 2425 vsi->ethtype = ETH_P_PAUSE; 2426 2427 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2428 vsi->vf_id = vf_id; 2429 2430 ice_alloc_fd_res(vsi); 2431 2432 if (ice_vsi_get_qs(vsi)) { 2433 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2434 vsi->idx); 2435 goto unroll_vsi_alloc; 2436 } 2437 2438 /* set RSS capabilities */ 2439 ice_vsi_set_rss_params(vsi); 2440 2441 /* set TC configuration */ 2442 ice_vsi_set_tc_cfg(vsi); 2443 2444 /* create the VSI */ 2445 ret = ice_vsi_init(vsi, true); 2446 if (ret) 2447 goto unroll_get_qs; 2448 2449 switch (vsi->type) { 2450 case ICE_VSI_CTRL: 2451 case ICE_VSI_PF: 2452 ret = ice_vsi_alloc_q_vectors(vsi); 2453 if (ret) 2454 goto unroll_vsi_init; 2455 2456 ret = ice_vsi_setup_vector_base(vsi); 2457 if (ret) 2458 goto unroll_alloc_q_vector; 2459 2460 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2461 if (ret) 2462 goto unroll_vector_base; 2463 2464 ret = ice_vsi_alloc_rings(vsi); 2465 if (ret) 2466 goto unroll_vector_base; 2467 2468 /* Always add VLAN ID 0 switch rule by default. This is needed 2469 * in order to allow all untagged and 0 tagged priority traffic 2470 * if Rx VLAN pruning is enabled. Also there are cases where we 2471 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2472 * so this handles those cases (i.e. adding the PF to a bridge 2473 * without the 8021q module loaded). 2474 */ 2475 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2476 if (ret) 2477 goto unroll_clear_rings; 2478 2479 ice_vsi_map_rings_to_vectors(vsi); 2480 2481 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2482 if (vsi->type != ICE_VSI_CTRL) 2483 /* Do not exit if configuring RSS had an issue, at 2484 * least receive traffic on first queue. Hence no 2485 * need to capture return value 2486 */ 2487 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2488 ice_vsi_cfg_rss_lut_key(vsi); 2489 ice_vsi_set_rss_flow_fld(vsi); 2490 } 2491 ice_init_arfs(vsi); 2492 break; 2493 case ICE_VSI_VF: 2494 /* VF driver will take care of creating netdev for this type and 2495 * map queues to vectors through Virtchnl, PF driver only 2496 * creates a VSI and corresponding structures for bookkeeping 2497 * purpose 2498 */ 2499 ret = ice_vsi_alloc_q_vectors(vsi); 2500 if (ret) 2501 goto unroll_vsi_init; 2502 2503 ret = ice_vsi_alloc_rings(vsi); 2504 if (ret) 2505 goto unroll_alloc_q_vector; 2506 2507 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2508 if (ret) 2509 goto unroll_vector_base; 2510 2511 /* Do not exit if configuring RSS had an issue, at least 2512 * receive traffic on first queue. Hence no need to capture 2513 * return value 2514 */ 2515 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2516 ice_vsi_cfg_rss_lut_key(vsi); 2517 ice_vsi_set_vf_rss_flow_fld(vsi); 2518 } 2519 break; 2520 case ICE_VSI_LB: 2521 ret = ice_vsi_alloc_rings(vsi); 2522 if (ret) 2523 goto unroll_vsi_init; 2524 break; 2525 default: 2526 /* clean up the resources and exit */ 2527 goto unroll_vsi_init; 2528 } 2529 2530 /* configure VSI nodes based on number of queues and TC's */ 2531 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2532 max_txqs[i] = vsi->alloc_txq; 2533 2534 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2535 max_txqs); 2536 if (status) { 2537 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2538 vsi->vsi_num, ice_stat_str(status)); 2539 goto unroll_clear_rings; 2540 } 2541 2542 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2543 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2544 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2545 * The rule is added once for PF VSI in order to create appropriate 2546 * recipe, since VSI/VSI list is ignored with drop action... 2547 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2548 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2549 * settings in the HW. 2550 */ 2551 if (!ice_is_safe_mode(pf)) 2552 if (vsi->type == ICE_VSI_PF) { 2553 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2554 ICE_DROP_PACKET); 2555 ice_cfg_sw_lldp(vsi, true, true); 2556 } 2557 2558 if (!vsi->agg_node) 2559 ice_set_agg_vsi(vsi); 2560 return vsi; 2561 2562 unroll_clear_rings: 2563 ice_vsi_clear_rings(vsi); 2564 unroll_vector_base: 2565 /* reclaim SW interrupts back to the common pool */ 2566 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2567 pf->num_avail_sw_msix += vsi->num_q_vectors; 2568 unroll_alloc_q_vector: 2569 ice_vsi_free_q_vectors(vsi); 2570 unroll_vsi_init: 2571 ice_vsi_delete(vsi); 2572 unroll_get_qs: 2573 ice_vsi_put_qs(vsi); 2574 unroll_vsi_alloc: 2575 if (vsi_type == ICE_VSI_VF) 2576 ice_enable_lag(pf->lag); 2577 ice_vsi_clear(vsi); 2578 2579 return NULL; 2580 } 2581 2582 /** 2583 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2584 * @vsi: the VSI being cleaned up 2585 */ 2586 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2587 { 2588 struct ice_pf *pf = vsi->back; 2589 struct ice_hw *hw = &pf->hw; 2590 u32 txq = 0; 2591 u32 rxq = 0; 2592 int i, q; 2593 2594 for (i = 0; i < vsi->num_q_vectors; i++) { 2595 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2596 2597 ice_write_intrl(q_vector, 0); 2598 for (q = 0; q < q_vector->num_ring_tx; q++) { 2599 ice_write_itr(&q_vector->tx, 0); 2600 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2601 if (ice_is_xdp_ena_vsi(vsi)) { 2602 u32 xdp_txq = txq + vsi->num_xdp_txq; 2603 2604 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2605 } 2606 txq++; 2607 } 2608 2609 for (q = 0; q < q_vector->num_ring_rx; q++) { 2610 ice_write_itr(&q_vector->rx, 0); 2611 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2612 rxq++; 2613 } 2614 } 2615 2616 ice_flush(hw); 2617 } 2618 2619 /** 2620 * ice_vsi_free_irq - Free the IRQ association with the OS 2621 * @vsi: the VSI being configured 2622 */ 2623 void ice_vsi_free_irq(struct ice_vsi *vsi) 2624 { 2625 struct ice_pf *pf = vsi->back; 2626 int base = vsi->base_vector; 2627 int i; 2628 2629 if (!vsi->q_vectors || !vsi->irqs_ready) 2630 return; 2631 2632 ice_vsi_release_msix(vsi); 2633 if (vsi->type == ICE_VSI_VF) 2634 return; 2635 2636 vsi->irqs_ready = false; 2637 ice_for_each_q_vector(vsi, i) { 2638 u16 vector = i + base; 2639 int irq_num; 2640 2641 irq_num = pf->msix_entries[vector].vector; 2642 2643 /* free only the irqs that were actually requested */ 2644 if (!vsi->q_vectors[i] || 2645 !(vsi->q_vectors[i]->num_ring_tx || 2646 vsi->q_vectors[i]->num_ring_rx)) 2647 continue; 2648 2649 /* clear the affinity notifier in the IRQ descriptor */ 2650 irq_set_affinity_notifier(irq_num, NULL); 2651 2652 /* clear the affinity_mask in the IRQ descriptor */ 2653 irq_set_affinity_hint(irq_num, NULL); 2654 synchronize_irq(irq_num); 2655 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2656 } 2657 } 2658 2659 /** 2660 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2661 * @vsi: the VSI having resources freed 2662 */ 2663 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2664 { 2665 int i; 2666 2667 if (!vsi->tx_rings) 2668 return; 2669 2670 ice_for_each_txq(vsi, i) 2671 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2672 ice_free_tx_ring(vsi->tx_rings[i]); 2673 } 2674 2675 /** 2676 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2677 * @vsi: the VSI having resources freed 2678 */ 2679 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2680 { 2681 int i; 2682 2683 if (!vsi->rx_rings) 2684 return; 2685 2686 ice_for_each_rxq(vsi, i) 2687 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2688 ice_free_rx_ring(vsi->rx_rings[i]); 2689 } 2690 2691 /** 2692 * ice_vsi_close - Shut down a VSI 2693 * @vsi: the VSI being shut down 2694 */ 2695 void ice_vsi_close(struct ice_vsi *vsi) 2696 { 2697 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2698 ice_down(vsi); 2699 2700 ice_vsi_free_irq(vsi); 2701 ice_vsi_free_tx_rings(vsi); 2702 ice_vsi_free_rx_rings(vsi); 2703 } 2704 2705 /** 2706 * ice_ena_vsi - resume a VSI 2707 * @vsi: the VSI being resume 2708 * @locked: is the rtnl_lock already held 2709 */ 2710 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2711 { 2712 int err = 0; 2713 2714 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2715 return 0; 2716 2717 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2718 2719 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2720 if (netif_running(vsi->netdev)) { 2721 if (!locked) 2722 rtnl_lock(); 2723 2724 err = ice_open_internal(vsi->netdev); 2725 2726 if (!locked) 2727 rtnl_unlock(); 2728 } 2729 } else if (vsi->type == ICE_VSI_CTRL) { 2730 err = ice_vsi_open_ctrl(vsi); 2731 } 2732 2733 return err; 2734 } 2735 2736 /** 2737 * ice_dis_vsi - pause a VSI 2738 * @vsi: the VSI being paused 2739 * @locked: is the rtnl_lock already held 2740 */ 2741 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2742 { 2743 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2744 return; 2745 2746 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2747 2748 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2749 if (netif_running(vsi->netdev)) { 2750 if (!locked) 2751 rtnl_lock(); 2752 2753 ice_vsi_close(vsi); 2754 2755 if (!locked) 2756 rtnl_unlock(); 2757 } else { 2758 ice_vsi_close(vsi); 2759 } 2760 } else if (vsi->type == ICE_VSI_CTRL) { 2761 ice_vsi_close(vsi); 2762 } 2763 } 2764 2765 /** 2766 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2767 * @vsi: the VSI being un-configured 2768 */ 2769 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2770 { 2771 int base = vsi->base_vector; 2772 struct ice_pf *pf = vsi->back; 2773 struct ice_hw *hw = &pf->hw; 2774 u32 val; 2775 int i; 2776 2777 /* disable interrupt causation from each queue */ 2778 if (vsi->tx_rings) { 2779 ice_for_each_txq(vsi, i) { 2780 if (vsi->tx_rings[i]) { 2781 u16 reg; 2782 2783 reg = vsi->tx_rings[i]->reg_idx; 2784 val = rd32(hw, QINT_TQCTL(reg)); 2785 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2786 wr32(hw, QINT_TQCTL(reg), val); 2787 } 2788 } 2789 } 2790 2791 if (vsi->rx_rings) { 2792 ice_for_each_rxq(vsi, i) { 2793 if (vsi->rx_rings[i]) { 2794 u16 reg; 2795 2796 reg = vsi->rx_rings[i]->reg_idx; 2797 val = rd32(hw, QINT_RQCTL(reg)); 2798 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2799 wr32(hw, QINT_RQCTL(reg), val); 2800 } 2801 } 2802 } 2803 2804 /* disable each interrupt */ 2805 ice_for_each_q_vector(vsi, i) { 2806 if (!vsi->q_vectors[i]) 2807 continue; 2808 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2809 } 2810 2811 ice_flush(hw); 2812 2813 /* don't call synchronize_irq() for VF's from the host */ 2814 if (vsi->type == ICE_VSI_VF) 2815 return; 2816 2817 ice_for_each_q_vector(vsi, i) 2818 synchronize_irq(pf->msix_entries[i + base].vector); 2819 } 2820 2821 /** 2822 * ice_napi_del - Remove NAPI handler for the VSI 2823 * @vsi: VSI for which NAPI handler is to be removed 2824 */ 2825 void ice_napi_del(struct ice_vsi *vsi) 2826 { 2827 int v_idx; 2828 2829 if (!vsi->netdev) 2830 return; 2831 2832 ice_for_each_q_vector(vsi, v_idx) 2833 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2834 } 2835 2836 /** 2837 * ice_vsi_release - Delete a VSI and free its resources 2838 * @vsi: the VSI being removed 2839 * 2840 * Returns 0 on success or < 0 on error 2841 */ 2842 int ice_vsi_release(struct ice_vsi *vsi) 2843 { 2844 struct ice_pf *pf; 2845 2846 if (!vsi->back) 2847 return -ENODEV; 2848 pf = vsi->back; 2849 2850 /* do not unregister while driver is in the reset recovery pending 2851 * state. Since reset/rebuild happens through PF service task workqueue, 2852 * it's not a good idea to unregister netdev that is associated to the 2853 * PF that is running the work queue items currently. This is done to 2854 * avoid check_flush_dependency() warning on this wq 2855 */ 2856 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2857 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2858 unregister_netdev(vsi->netdev); 2859 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2860 } 2861 2862 ice_devlink_destroy_port(vsi); 2863 2864 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2865 ice_rss_clean(vsi); 2866 2867 /* Disable VSI and free resources */ 2868 if (vsi->type != ICE_VSI_LB) 2869 ice_vsi_dis_irq(vsi); 2870 ice_vsi_close(vsi); 2871 2872 /* SR-IOV determines needed MSIX resources all at once instead of per 2873 * VSI since when VFs are spawned we know how many VFs there are and how 2874 * many interrupts each VF needs. SR-IOV MSIX resources are also 2875 * cleared in the same manner. 2876 */ 2877 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2878 int i; 2879 2880 ice_for_each_vf(pf, i) { 2881 struct ice_vf *vf = &pf->vf[i]; 2882 2883 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2884 break; 2885 } 2886 if (i == pf->num_alloc_vfs) { 2887 /* No other VFs left that have control VSI, reclaim SW 2888 * interrupts back to the common pool 2889 */ 2890 ice_free_res(pf->irq_tracker, vsi->base_vector, 2891 ICE_RES_VF_CTRL_VEC_ID); 2892 pf->num_avail_sw_msix += vsi->num_q_vectors; 2893 } 2894 } else if (vsi->type != ICE_VSI_VF) { 2895 /* reclaim SW interrupts back to the common pool */ 2896 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2897 pf->num_avail_sw_msix += vsi->num_q_vectors; 2898 } 2899 2900 if (!ice_is_safe_mode(pf)) { 2901 if (vsi->type == ICE_VSI_PF) { 2902 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2903 ICE_DROP_PACKET); 2904 ice_cfg_sw_lldp(vsi, true, false); 2905 /* The Rx rule will only exist to remove if the LLDP FW 2906 * engine is currently stopped 2907 */ 2908 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2909 ice_cfg_sw_lldp(vsi, false, false); 2910 } 2911 } 2912 2913 ice_fltr_remove_all(vsi); 2914 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2915 ice_vsi_delete(vsi); 2916 ice_vsi_free_q_vectors(vsi); 2917 2918 if (vsi->netdev) { 2919 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2920 unregister_netdev(vsi->netdev); 2921 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2922 } 2923 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2924 free_netdev(vsi->netdev); 2925 vsi->netdev = NULL; 2926 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2927 } 2928 } 2929 2930 if (vsi->type == ICE_VSI_VF && 2931 vsi->agg_node && vsi->agg_node->valid) 2932 vsi->agg_node->num_vsis--; 2933 ice_vsi_clear_rings(vsi); 2934 2935 ice_vsi_put_qs(vsi); 2936 2937 /* retain SW VSI data structure since it is needed to unregister and 2938 * free VSI netdev when PF is not in reset recovery pending state,\ 2939 * for ex: during rmmod. 2940 */ 2941 if (!ice_is_reset_in_progress(pf->state)) 2942 ice_vsi_clear(vsi); 2943 2944 return 0; 2945 } 2946 2947 /** 2948 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2949 * @vsi: VSI connected with q_vectors 2950 * @coalesce: array of struct with stored coalesce 2951 * 2952 * Returns array size. 2953 */ 2954 static int 2955 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2956 struct ice_coalesce_stored *coalesce) 2957 { 2958 int i; 2959 2960 ice_for_each_q_vector(vsi, i) { 2961 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2962 2963 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2964 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2965 coalesce[i].intrl = q_vector->intrl; 2966 2967 if (i < vsi->num_txq) 2968 coalesce[i].tx_valid = true; 2969 if (i < vsi->num_rxq) 2970 coalesce[i].rx_valid = true; 2971 } 2972 2973 return vsi->num_q_vectors; 2974 } 2975 2976 /** 2977 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2978 * @vsi: VSI connected with q_vectors 2979 * @coalesce: pointer to array of struct with stored coalesce 2980 * @size: size of coalesce array 2981 * 2982 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2983 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2984 * to default value. 2985 */ 2986 static void 2987 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2988 struct ice_coalesce_stored *coalesce, int size) 2989 { 2990 struct ice_ring_container *rc; 2991 int i; 2992 2993 if ((size && !coalesce) || !vsi) 2994 return; 2995 2996 /* There are a couple of cases that have to be handled here: 2997 * 1. The case where the number of queue vectors stays the same, but 2998 * the number of Tx or Rx rings changes (the first for loop) 2999 * 2. The case where the number of queue vectors increased (the 3000 * second for loop) 3001 */ 3002 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3003 /* There are 2 cases to handle here and they are the same for 3004 * both Tx and Rx: 3005 * if the entry was valid previously (coalesce[i].[tr]x_valid 3006 * and the loop variable is less than the number of rings 3007 * allocated, then write the previous values 3008 * 3009 * if the entry was not valid previously, but the number of 3010 * rings is less than are allocated (this means the number of 3011 * rings increased from previously), then write out the 3012 * values in the first element 3013 * 3014 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3015 * as there is no harm because the dynamic algorithm 3016 * will just overwrite. 3017 */ 3018 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3019 rc = &vsi->q_vectors[i]->rx; 3020 rc->itr_setting = coalesce[i].itr_rx; 3021 ice_write_itr(rc, rc->itr_setting); 3022 } else if (i < vsi->alloc_rxq) { 3023 rc = &vsi->q_vectors[i]->rx; 3024 rc->itr_setting = coalesce[0].itr_rx; 3025 ice_write_itr(rc, rc->itr_setting); 3026 } 3027 3028 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3029 rc = &vsi->q_vectors[i]->tx; 3030 rc->itr_setting = coalesce[i].itr_tx; 3031 ice_write_itr(rc, rc->itr_setting); 3032 } else if (i < vsi->alloc_txq) { 3033 rc = &vsi->q_vectors[i]->tx; 3034 rc->itr_setting = coalesce[0].itr_tx; 3035 ice_write_itr(rc, rc->itr_setting); 3036 } 3037 3038 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3039 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 3040 } 3041 3042 /* the number of queue vectors increased so write whatever is in 3043 * the first element 3044 */ 3045 for (; i < vsi->num_q_vectors; i++) { 3046 /* transmit */ 3047 rc = &vsi->q_vectors[i]->tx; 3048 rc->itr_setting = coalesce[0].itr_tx; 3049 ice_write_itr(rc, rc->itr_setting); 3050 3051 /* receive */ 3052 rc = &vsi->q_vectors[i]->rx; 3053 rc->itr_setting = coalesce[0].itr_rx; 3054 ice_write_itr(rc, rc->itr_setting); 3055 3056 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3057 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3058 } 3059 } 3060 3061 /** 3062 * ice_vsi_rebuild - Rebuild VSI after reset 3063 * @vsi: VSI to be rebuild 3064 * @init_vsi: is this an initialization or a reconfigure of the VSI 3065 * 3066 * Returns 0 on success and negative value on failure 3067 */ 3068 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3069 { 3070 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3071 struct ice_coalesce_stored *coalesce; 3072 int prev_num_q_vectors = 0; 3073 struct ice_vf *vf = NULL; 3074 enum ice_vsi_type vtype; 3075 enum ice_status status; 3076 struct ice_pf *pf; 3077 int ret, i; 3078 3079 if (!vsi) 3080 return -EINVAL; 3081 3082 pf = vsi->back; 3083 vtype = vsi->type; 3084 if (vtype == ICE_VSI_VF) 3085 vf = &pf->vf[vsi->vf_id]; 3086 3087 coalesce = kcalloc(vsi->num_q_vectors, 3088 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3089 if (!coalesce) 3090 return -ENOMEM; 3091 3092 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3093 3094 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3095 ice_vsi_free_q_vectors(vsi); 3096 3097 /* SR-IOV determines needed MSIX resources all at once instead of per 3098 * VSI since when VFs are spawned we know how many VFs there are and how 3099 * many interrupts each VF needs. SR-IOV MSIX resources are also 3100 * cleared in the same manner. 3101 */ 3102 if (vtype != ICE_VSI_VF) { 3103 /* reclaim SW interrupts back to the common pool */ 3104 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3105 pf->num_avail_sw_msix += vsi->num_q_vectors; 3106 vsi->base_vector = 0; 3107 } 3108 3109 if (ice_is_xdp_ena_vsi(vsi)) 3110 /* return value check can be skipped here, it always returns 3111 * 0 if reset is in progress 3112 */ 3113 ice_destroy_xdp_rings(vsi); 3114 ice_vsi_put_qs(vsi); 3115 ice_vsi_clear_rings(vsi); 3116 ice_vsi_free_arrays(vsi); 3117 if (vtype == ICE_VSI_VF) 3118 ice_vsi_set_num_qs(vsi, vf->vf_id); 3119 else 3120 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3121 3122 ret = ice_vsi_alloc_arrays(vsi); 3123 if (ret < 0) 3124 goto err_vsi; 3125 3126 ice_vsi_get_qs(vsi); 3127 3128 ice_alloc_fd_res(vsi); 3129 ice_vsi_set_tc_cfg(vsi); 3130 3131 /* Initialize VSI struct elements and create VSI in FW */ 3132 ret = ice_vsi_init(vsi, init_vsi); 3133 if (ret < 0) 3134 goto err_vsi; 3135 3136 switch (vtype) { 3137 case ICE_VSI_CTRL: 3138 case ICE_VSI_PF: 3139 ret = ice_vsi_alloc_q_vectors(vsi); 3140 if (ret) 3141 goto err_rings; 3142 3143 ret = ice_vsi_setup_vector_base(vsi); 3144 if (ret) 3145 goto err_vectors; 3146 3147 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3148 if (ret) 3149 goto err_vectors; 3150 3151 ret = ice_vsi_alloc_rings(vsi); 3152 if (ret) 3153 goto err_vectors; 3154 3155 ice_vsi_map_rings_to_vectors(vsi); 3156 if (ice_is_xdp_ena_vsi(vsi)) { 3157 vsi->num_xdp_txq = vsi->alloc_rxq; 3158 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3159 if (ret) 3160 goto err_vectors; 3161 } 3162 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3163 if (vtype != ICE_VSI_CTRL) 3164 /* Do not exit if configuring RSS had an issue, at 3165 * least receive traffic on first queue. Hence no 3166 * need to capture return value 3167 */ 3168 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3169 ice_vsi_cfg_rss_lut_key(vsi); 3170 break; 3171 case ICE_VSI_VF: 3172 ret = ice_vsi_alloc_q_vectors(vsi); 3173 if (ret) 3174 goto err_rings; 3175 3176 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3177 if (ret) 3178 goto err_vectors; 3179 3180 ret = ice_vsi_alloc_rings(vsi); 3181 if (ret) 3182 goto err_vectors; 3183 3184 break; 3185 default: 3186 break; 3187 } 3188 3189 /* configure VSI nodes based on number of queues and TC's */ 3190 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3191 max_txqs[i] = vsi->alloc_txq; 3192 3193 if (ice_is_xdp_ena_vsi(vsi)) 3194 max_txqs[i] += vsi->num_xdp_txq; 3195 } 3196 3197 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3198 max_txqs); 3199 if (status) { 3200 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3201 vsi->vsi_num, ice_stat_str(status)); 3202 if (init_vsi) { 3203 ret = -EIO; 3204 goto err_vectors; 3205 } else { 3206 return ice_schedule_reset(pf, ICE_RESET_PFR); 3207 } 3208 } 3209 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3210 kfree(coalesce); 3211 3212 return 0; 3213 3214 err_vectors: 3215 ice_vsi_free_q_vectors(vsi); 3216 err_rings: 3217 if (vsi->netdev) { 3218 vsi->current_netdev_flags = 0; 3219 unregister_netdev(vsi->netdev); 3220 free_netdev(vsi->netdev); 3221 vsi->netdev = NULL; 3222 } 3223 err_vsi: 3224 ice_vsi_clear(vsi); 3225 set_bit(ICE_RESET_FAILED, pf->state); 3226 kfree(coalesce); 3227 return ret; 3228 } 3229 3230 /** 3231 * ice_is_reset_in_progress - check for a reset in progress 3232 * @state: PF state field 3233 */ 3234 bool ice_is_reset_in_progress(unsigned long *state) 3235 { 3236 return test_bit(ICE_RESET_OICR_RECV, state) || 3237 test_bit(ICE_PFR_REQ, state) || 3238 test_bit(ICE_CORER_REQ, state) || 3239 test_bit(ICE_GLOBR_REQ, state); 3240 } 3241 3242 /** 3243 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3244 * @pf: pointer to the PF structure 3245 * @timeout: length of time to wait, in jiffies 3246 * 3247 * Wait (sleep) for a short time until the driver finishes cleaning up from 3248 * a device reset. The caller must be able to sleep. Use this to delay 3249 * operations that could fail while the driver is cleaning up after a device 3250 * reset. 3251 * 3252 * Returns 0 on success, -EBUSY if the reset is not finished within the 3253 * timeout, and -ERESTARTSYS if the thread was interrupted. 3254 */ 3255 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3256 { 3257 long ret; 3258 3259 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3260 !ice_is_reset_in_progress(pf->state), 3261 timeout); 3262 if (ret < 0) 3263 return ret; 3264 else if (!ret) 3265 return -EBUSY; 3266 else 3267 return 0; 3268 } 3269 3270 #ifdef CONFIG_DCB 3271 /** 3272 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3273 * @vsi: VSI being configured 3274 * @ctx: the context buffer returned from AQ VSI update command 3275 */ 3276 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3277 { 3278 vsi->info.mapping_flags = ctx->info.mapping_flags; 3279 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3280 sizeof(vsi->info.q_mapping)); 3281 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3282 sizeof(vsi->info.tc_mapping)); 3283 } 3284 3285 /** 3286 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3287 * @vsi: VSI to be configured 3288 * @ena_tc: TC bitmap 3289 * 3290 * VSI queues expected to be quiesced before calling this function 3291 */ 3292 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3293 { 3294 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3295 struct ice_pf *pf = vsi->back; 3296 struct ice_vsi_ctx *ctx; 3297 enum ice_status status; 3298 struct device *dev; 3299 int i, ret = 0; 3300 u8 num_tc = 0; 3301 3302 dev = ice_pf_to_dev(pf); 3303 3304 ice_for_each_traffic_class(i) { 3305 /* build bitmap of enabled TCs */ 3306 if (ena_tc & BIT(i)) 3307 num_tc++; 3308 /* populate max_txqs per TC */ 3309 max_txqs[i] = vsi->alloc_txq; 3310 } 3311 3312 vsi->tc_cfg.ena_tc = ena_tc; 3313 vsi->tc_cfg.numtc = num_tc; 3314 3315 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3316 if (!ctx) 3317 return -ENOMEM; 3318 3319 ctx->vf_num = 0; 3320 ctx->info = vsi->info; 3321 3322 ice_vsi_setup_q_map(vsi, ctx); 3323 3324 /* must to indicate which section of VSI context are being modified */ 3325 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3326 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3327 if (status) { 3328 dev_info(dev, "Failed VSI Update\n"); 3329 ret = -EIO; 3330 goto out; 3331 } 3332 3333 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3334 max_txqs); 3335 3336 if (status) { 3337 dev_err(dev, "VSI %d failed TC config, error %s\n", 3338 vsi->vsi_num, ice_stat_str(status)); 3339 ret = -EIO; 3340 goto out; 3341 } 3342 ice_vsi_update_q_map(vsi, ctx); 3343 vsi->info.valid_sections = 0; 3344 3345 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3346 out: 3347 kfree(ctx); 3348 return ret; 3349 } 3350 #endif /* CONFIG_DCB */ 3351 3352 /** 3353 * ice_update_ring_stats - Update ring statistics 3354 * @ring: ring to update 3355 * @pkts: number of processed packets 3356 * @bytes: number of processed bytes 3357 * 3358 * This function assumes that caller has acquired a u64_stats_sync lock. 3359 */ 3360 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3361 { 3362 ring->stats.bytes += bytes; 3363 ring->stats.pkts += pkts; 3364 } 3365 3366 /** 3367 * ice_update_tx_ring_stats - Update Tx ring specific counters 3368 * @tx_ring: ring to update 3369 * @pkts: number of processed packets 3370 * @bytes: number of processed bytes 3371 */ 3372 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3373 { 3374 u64_stats_update_begin(&tx_ring->syncp); 3375 ice_update_ring_stats(tx_ring, pkts, bytes); 3376 u64_stats_update_end(&tx_ring->syncp); 3377 } 3378 3379 /** 3380 * ice_update_rx_ring_stats - Update Rx ring specific counters 3381 * @rx_ring: ring to update 3382 * @pkts: number of processed packets 3383 * @bytes: number of processed bytes 3384 */ 3385 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3386 { 3387 u64_stats_update_begin(&rx_ring->syncp); 3388 ice_update_ring_stats(rx_ring, pkts, bytes); 3389 u64_stats_update_end(&rx_ring->syncp); 3390 } 3391 3392 /** 3393 * ice_status_to_errno - convert from enum ice_status to Linux errno 3394 * @err: ice_status value to convert 3395 */ 3396 int ice_status_to_errno(enum ice_status err) 3397 { 3398 switch (err) { 3399 case ICE_SUCCESS: 3400 return 0; 3401 case ICE_ERR_DOES_NOT_EXIST: 3402 return -ENOENT; 3403 case ICE_ERR_OUT_OF_RANGE: 3404 case ICE_ERR_AQ_ERROR: 3405 case ICE_ERR_AQ_TIMEOUT: 3406 case ICE_ERR_AQ_EMPTY: 3407 case ICE_ERR_AQ_FW_CRITICAL: 3408 return -EIO; 3409 case ICE_ERR_PARAM: 3410 case ICE_ERR_INVAL_SIZE: 3411 return -EINVAL; 3412 case ICE_ERR_NO_MEMORY: 3413 return -ENOMEM; 3414 case ICE_ERR_MAX_LIMIT: 3415 return -EAGAIN; 3416 case ICE_ERR_RESET_ONGOING: 3417 return -EBUSY; 3418 case ICE_ERR_AQ_FULL: 3419 return -ENOSPC; 3420 default: 3421 return -EINVAL; 3422 } 3423 } 3424 3425 /** 3426 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3427 * @sw: switch to check if its default forwarding VSI is free 3428 * 3429 * Return true if the default forwarding VSI is already being used, else returns 3430 * false signalling that it's available to use. 3431 */ 3432 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3433 { 3434 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3435 } 3436 3437 /** 3438 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3439 * @sw: switch for the default forwarding VSI to compare against 3440 * @vsi: VSI to compare against default forwarding VSI 3441 * 3442 * If this VSI passed in is the default forwarding VSI then return true, else 3443 * return false 3444 */ 3445 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3446 { 3447 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3448 } 3449 3450 /** 3451 * ice_set_dflt_vsi - set the default forwarding VSI 3452 * @sw: switch used to assign the default forwarding VSI 3453 * @vsi: VSI getting set as the default forwarding VSI on the switch 3454 * 3455 * If the VSI passed in is already the default VSI and it's enabled just return 3456 * success. 3457 * 3458 * If there is already a default VSI on the switch and it's enabled then return 3459 * -EEXIST since there can only be one default VSI per switch. 3460 * 3461 * Otherwise try to set the VSI passed in as the switch's default VSI and 3462 * return the result. 3463 */ 3464 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3465 { 3466 enum ice_status status; 3467 struct device *dev; 3468 3469 if (!sw || !vsi) 3470 return -EINVAL; 3471 3472 dev = ice_pf_to_dev(vsi->back); 3473 3474 /* the VSI passed in is already the default VSI */ 3475 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3476 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3477 vsi->vsi_num); 3478 return 0; 3479 } 3480 3481 /* another VSI is already the default VSI for this switch */ 3482 if (ice_is_dflt_vsi_in_use(sw)) { 3483 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3484 sw->dflt_vsi->vsi_num); 3485 return -EEXIST; 3486 } 3487 3488 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3489 if (status) { 3490 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3491 vsi->vsi_num, ice_stat_str(status)); 3492 return -EIO; 3493 } 3494 3495 sw->dflt_vsi = vsi; 3496 sw->dflt_vsi_ena = true; 3497 3498 return 0; 3499 } 3500 3501 /** 3502 * ice_clear_dflt_vsi - clear the default forwarding VSI 3503 * @sw: switch used to clear the default VSI 3504 * 3505 * If the switch has no default VSI or it's not enabled then return error. 3506 * 3507 * Otherwise try to clear the default VSI and return the result. 3508 */ 3509 int ice_clear_dflt_vsi(struct ice_sw *sw) 3510 { 3511 struct ice_vsi *dflt_vsi; 3512 enum ice_status status; 3513 struct device *dev; 3514 3515 if (!sw) 3516 return -EINVAL; 3517 3518 dev = ice_pf_to_dev(sw->pf); 3519 3520 dflt_vsi = sw->dflt_vsi; 3521 3522 /* there is no default VSI configured */ 3523 if (!ice_is_dflt_vsi_in_use(sw)) 3524 return -ENODEV; 3525 3526 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3527 ICE_FLTR_RX); 3528 if (status) { 3529 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3530 dflt_vsi->vsi_num, ice_stat_str(status)); 3531 return -EIO; 3532 } 3533 3534 sw->dflt_vsi = NULL; 3535 sw->dflt_vsi_ena = false; 3536 3537 return 0; 3538 } 3539 3540 /** 3541 * ice_set_link - turn on/off physical link 3542 * @vsi: VSI to modify physical link on 3543 * @ena: turn on/off physical link 3544 */ 3545 int ice_set_link(struct ice_vsi *vsi, bool ena) 3546 { 3547 struct device *dev = ice_pf_to_dev(vsi->back); 3548 struct ice_port_info *pi = vsi->port_info; 3549 struct ice_hw *hw = pi->hw; 3550 enum ice_status status; 3551 3552 if (vsi->type != ICE_VSI_PF) 3553 return -EINVAL; 3554 3555 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3556 3557 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3558 * this is not a fatal error, so print a warning message and return 3559 * a success code. Return an error if FW returns an error code other 3560 * than ICE_AQ_RC_EMODE 3561 */ 3562 if (status == ICE_ERR_AQ_ERROR) { 3563 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3564 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3565 (ena ? "ON" : "OFF"), ice_stat_str(status), 3566 ice_aq_str(hw->adminq.sq_last_status)); 3567 } else if (status) { 3568 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3569 (ena ? "ON" : "OFF"), ice_stat_str(status), 3570 ice_aq_str(hw->adminq.sq_last_status)); 3571 return -EIO; 3572 } 3573 3574 return 0; 3575 } 3576