1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 11 /** 12 * ice_vsi_type_str - maps VSI type enum to string equivalents 13 * @vsi_type: VSI type enum 14 */ 15 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 16 { 17 switch (vsi_type) { 18 case ICE_VSI_PF: 19 return "ICE_VSI_PF"; 20 case ICE_VSI_VF: 21 return "ICE_VSI_VF"; 22 case ICE_VSI_CTRL: 23 return "ICE_VSI_CTRL"; 24 case ICE_VSI_LB: 25 return "ICE_VSI_LB"; 26 default: 27 return "unknown"; 28 } 29 } 30 31 /** 32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 33 * @vsi: the VSI being configured 34 * @ena: start or stop the Rx rings 35 * 36 * First enable/disable all of the Rx rings, flush any remaining writes, and 37 * then verify that they have all been enabled/disabled successfully. This will 38 * let all of the register writes complete when enabling/disabling the Rx rings 39 * before waiting for the change in hardware to complete. 40 */ 41 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 42 { 43 int ret = 0; 44 u16 i; 45 46 for (i = 0; i < vsi->num_rxq; i++) 47 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 48 49 ice_flush(&vsi->back->hw); 50 51 for (i = 0; i < vsi->num_rxq; i++) { 52 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 53 if (ret) 54 break; 55 } 56 57 return ret; 58 } 59 60 /** 61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 62 * @vsi: VSI pointer 63 * 64 * On error: returns error code (negative) 65 * On success: returns 0 66 */ 67 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 68 { 69 struct ice_pf *pf = vsi->back; 70 struct device *dev; 71 72 dev = ice_pf_to_dev(pf); 73 74 /* allocate memory for both Tx and Rx ring pointers */ 75 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 76 sizeof(*vsi->tx_rings), GFP_KERNEL); 77 if (!vsi->tx_rings) 78 return -ENOMEM; 79 80 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 81 sizeof(*vsi->rx_rings), GFP_KERNEL); 82 if (!vsi->rx_rings) 83 goto err_rings; 84 85 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 86 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 87 sizeof(*vsi->txq_map), GFP_KERNEL); 88 89 if (!vsi->txq_map) 90 goto err_txq_map; 91 92 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 93 sizeof(*vsi->rxq_map), GFP_KERNEL); 94 if (!vsi->rxq_map) 95 goto err_rxq_map; 96 97 /* There is no need to allocate q_vectors for a loopback VSI. */ 98 if (vsi->type == ICE_VSI_LB) 99 return 0; 100 101 /* allocate memory for q_vector pointers */ 102 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 103 sizeof(*vsi->q_vectors), GFP_KERNEL); 104 if (!vsi->q_vectors) 105 goto err_vectors; 106 107 return 0; 108 109 err_vectors: 110 devm_kfree(dev, vsi->rxq_map); 111 err_rxq_map: 112 devm_kfree(dev, vsi->txq_map); 113 err_txq_map: 114 devm_kfree(dev, vsi->rx_rings); 115 err_rings: 116 devm_kfree(dev, vsi->tx_rings); 117 return -ENOMEM; 118 } 119 120 /** 121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 122 * @vsi: the VSI being configured 123 */ 124 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 125 { 126 switch (vsi->type) { 127 case ICE_VSI_PF: 128 case ICE_VSI_CTRL: 129 case ICE_VSI_LB: 130 /* a user could change the values of num_[tr]x_desc using 131 * ethtool -G so we should keep those values instead of 132 * overwriting them with the defaults. 133 */ 134 if (!vsi->num_rx_desc) 135 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 136 if (!vsi->num_tx_desc) 137 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 138 break; 139 default: 140 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 141 vsi->type); 142 break; 143 } 144 } 145 146 /** 147 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 148 * @vsi: the VSI being configured 149 * @vf_id: ID of the VF being configured 150 * 151 * Return 0 on success and a negative value on error 152 */ 153 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 154 { 155 struct ice_pf *pf = vsi->back; 156 struct ice_vf *vf = NULL; 157 158 if (vsi->type == ICE_VSI_VF) 159 vsi->vf_id = vf_id; 160 161 switch (vsi->type) { 162 case ICE_VSI_PF: 163 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 164 num_online_cpus()); 165 if (vsi->req_txq) { 166 vsi->alloc_txq = vsi->req_txq; 167 vsi->num_txq = vsi->req_txq; 168 } 169 170 pf->num_lan_tx = vsi->alloc_txq; 171 172 /* only 1 Rx queue unless RSS is enabled */ 173 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 174 vsi->alloc_rxq = 1; 175 } else { 176 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 177 num_online_cpus()); 178 if (vsi->req_rxq) { 179 vsi->alloc_rxq = vsi->req_rxq; 180 vsi->num_rxq = vsi->req_rxq; 181 } 182 } 183 184 pf->num_lan_rx = vsi->alloc_rxq; 185 186 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 187 break; 188 case ICE_VSI_VF: 189 vf = &pf->vf[vsi->vf_id]; 190 vsi->alloc_txq = vf->num_vf_qs; 191 vsi->alloc_rxq = vf->num_vf_qs; 192 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 193 * data queue interrupts). Since vsi->num_q_vectors is number 194 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 195 * original vector count 196 */ 197 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 198 break; 199 case ICE_VSI_CTRL: 200 vsi->alloc_txq = 1; 201 vsi->alloc_rxq = 1; 202 vsi->num_q_vectors = 1; 203 break; 204 case ICE_VSI_LB: 205 vsi->alloc_txq = 1; 206 vsi->alloc_rxq = 1; 207 break; 208 default: 209 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 210 break; 211 } 212 213 ice_vsi_set_num_desc(vsi); 214 } 215 216 /** 217 * ice_get_free_slot - get the next non-NULL location index in array 218 * @array: array to search 219 * @size: size of the array 220 * @curr: last known occupied index to be used as a search hint 221 * 222 * void * is being used to keep the functionality generic. This lets us use this 223 * function on any array of pointers. 224 */ 225 static int ice_get_free_slot(void *array, int size, int curr) 226 { 227 int **tmp_array = (int **)array; 228 int next; 229 230 if (curr < (size - 1) && !tmp_array[curr + 1]) { 231 next = curr + 1; 232 } else { 233 int i = 0; 234 235 while ((i < size) && (tmp_array[i])) 236 i++; 237 if (i == size) 238 next = ICE_NO_VSI; 239 else 240 next = i; 241 } 242 return next; 243 } 244 245 /** 246 * ice_vsi_delete - delete a VSI from the switch 247 * @vsi: pointer to VSI being removed 248 */ 249 void ice_vsi_delete(struct ice_vsi *vsi) 250 { 251 struct ice_pf *pf = vsi->back; 252 struct ice_vsi_ctx *ctxt; 253 enum ice_status status; 254 255 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 256 if (!ctxt) 257 return; 258 259 if (vsi->type == ICE_VSI_VF) 260 ctxt->vf_num = vsi->vf_id; 261 ctxt->vsi_num = vsi->vsi_num; 262 263 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 264 265 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 266 if (status) 267 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 268 vsi->vsi_num, ice_stat_str(status)); 269 270 kfree(ctxt); 271 } 272 273 /** 274 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 275 * @vsi: pointer to VSI being cleared 276 */ 277 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 278 { 279 struct ice_pf *pf = vsi->back; 280 struct device *dev; 281 282 dev = ice_pf_to_dev(pf); 283 284 /* free the ring and vector containers */ 285 if (vsi->q_vectors) { 286 devm_kfree(dev, vsi->q_vectors); 287 vsi->q_vectors = NULL; 288 } 289 if (vsi->tx_rings) { 290 devm_kfree(dev, vsi->tx_rings); 291 vsi->tx_rings = NULL; 292 } 293 if (vsi->rx_rings) { 294 devm_kfree(dev, vsi->rx_rings); 295 vsi->rx_rings = NULL; 296 } 297 if (vsi->txq_map) { 298 devm_kfree(dev, vsi->txq_map); 299 vsi->txq_map = NULL; 300 } 301 if (vsi->rxq_map) { 302 devm_kfree(dev, vsi->rxq_map); 303 vsi->rxq_map = NULL; 304 } 305 } 306 307 /** 308 * ice_vsi_clear - clean up and deallocate the provided VSI 309 * @vsi: pointer to VSI being cleared 310 * 311 * This deallocates the VSI's queue resources, removes it from the PF's 312 * VSI array if necessary, and deallocates the VSI 313 * 314 * Returns 0 on success, negative on failure 315 */ 316 int ice_vsi_clear(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = NULL; 319 struct device *dev; 320 321 if (!vsi) 322 return 0; 323 324 if (!vsi->back) 325 return -EINVAL; 326 327 pf = vsi->back; 328 dev = ice_pf_to_dev(pf); 329 330 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 331 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 332 return -EINVAL; 333 } 334 335 mutex_lock(&pf->sw_mutex); 336 /* updates the PF for this cleared VSI */ 337 338 pf->vsi[vsi->idx] = NULL; 339 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 340 pf->next_vsi = vsi->idx; 341 342 ice_vsi_free_arrays(vsi); 343 mutex_unlock(&pf->sw_mutex); 344 devm_kfree(dev, vsi); 345 346 return 0; 347 } 348 349 /** 350 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 351 * @irq: interrupt number 352 * @data: pointer to a q_vector 353 */ 354 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 355 { 356 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 357 358 if (!q_vector->tx.ring) 359 return IRQ_HANDLED; 360 361 #define FDIR_RX_DESC_CLEAN_BUDGET 64 362 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 363 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 364 365 return IRQ_HANDLED; 366 } 367 368 /** 369 * ice_msix_clean_rings - MSIX mode Interrupt Handler 370 * @irq: interrupt number 371 * @data: pointer to a q_vector 372 */ 373 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 374 { 375 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 376 377 if (!q_vector->tx.ring && !q_vector->rx.ring) 378 return IRQ_HANDLED; 379 380 napi_schedule(&q_vector->napi); 381 382 return IRQ_HANDLED; 383 } 384 385 /** 386 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 387 * @pf: board private structure 388 * @vsi_type: type of VSI 389 * @vf_id: ID of the VF being configured 390 * 391 * returns a pointer to a VSI on success, NULL on failure. 392 */ 393 static struct ice_vsi * 394 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 395 { 396 struct device *dev = ice_pf_to_dev(pf); 397 struct ice_vsi *vsi = NULL; 398 399 /* Need to protect the allocation of the VSIs at the PF level */ 400 mutex_lock(&pf->sw_mutex); 401 402 /* If we have already allocated our maximum number of VSIs, 403 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 404 * is available to be populated 405 */ 406 if (pf->next_vsi == ICE_NO_VSI) { 407 dev_dbg(dev, "out of VSI slots!\n"); 408 goto unlock_pf; 409 } 410 411 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 412 if (!vsi) 413 goto unlock_pf; 414 415 vsi->type = vsi_type; 416 vsi->back = pf; 417 set_bit(__ICE_DOWN, vsi->state); 418 419 if (vsi_type == ICE_VSI_VF) 420 ice_vsi_set_num_qs(vsi, vf_id); 421 else 422 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 423 424 switch (vsi->type) { 425 case ICE_VSI_PF: 426 if (ice_vsi_alloc_arrays(vsi)) 427 goto err_rings; 428 429 /* Setup default MSIX irq handler for VSI */ 430 vsi->irq_handler = ice_msix_clean_rings; 431 break; 432 case ICE_VSI_CTRL: 433 if (ice_vsi_alloc_arrays(vsi)) 434 goto err_rings; 435 436 /* Setup ctrl VSI MSIX irq handler */ 437 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 438 break; 439 case ICE_VSI_VF: 440 if (ice_vsi_alloc_arrays(vsi)) 441 goto err_rings; 442 break; 443 case ICE_VSI_LB: 444 if (ice_vsi_alloc_arrays(vsi)) 445 goto err_rings; 446 break; 447 default: 448 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 449 goto unlock_pf; 450 } 451 452 if (vsi->type == ICE_VSI_CTRL) { 453 /* Use the last VSI slot as the index for the control VSI */ 454 vsi->idx = pf->num_alloc_vsi - 1; 455 pf->ctrl_vsi_idx = vsi->idx; 456 pf->vsi[vsi->idx] = vsi; 457 } else { 458 /* fill slot and make note of the index */ 459 vsi->idx = pf->next_vsi; 460 pf->vsi[pf->next_vsi] = vsi; 461 462 /* prepare pf->next_vsi for next use */ 463 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 464 pf->next_vsi); 465 } 466 goto unlock_pf; 467 468 err_rings: 469 devm_kfree(dev, vsi); 470 vsi = NULL; 471 unlock_pf: 472 mutex_unlock(&pf->sw_mutex); 473 return vsi; 474 } 475 476 /** 477 * ice_alloc_fd_res - Allocate FD resource for a VSI 478 * @vsi: pointer to the ice_vsi 479 * 480 * This allocates the FD resources 481 * 482 * Returns 0 on success, -EPERM on no-op or -EIO on failure 483 */ 484 static int ice_alloc_fd_res(struct ice_vsi *vsi) 485 { 486 struct ice_pf *pf = vsi->back; 487 u32 g_val, b_val; 488 489 /* Flow Director filters are only allocated/assigned to the PF VSI which 490 * passes the traffic. The CTRL VSI is only used to add/delete filters 491 * so we don't allocate resources to it 492 */ 493 494 /* FD filters from guaranteed pool per VSI */ 495 g_val = pf->hw.func_caps.fd_fltr_guar; 496 if (!g_val) 497 return -EPERM; 498 499 /* FD filters from best effort pool */ 500 b_val = pf->hw.func_caps.fd_fltr_best_effort; 501 if (!b_val) 502 return -EPERM; 503 504 if (vsi->type != ICE_VSI_PF) 505 return -EPERM; 506 507 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 508 return -EPERM; 509 510 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 511 512 /* each VSI gets same "best_effort" quota */ 513 vsi->num_bfltr = b_val; 514 515 return 0; 516 } 517 518 /** 519 * ice_vsi_get_qs - Assign queues from PF to VSI 520 * @vsi: the VSI to assign queues to 521 * 522 * Returns 0 on success and a negative value on error 523 */ 524 static int ice_vsi_get_qs(struct ice_vsi *vsi) 525 { 526 struct ice_pf *pf = vsi->back; 527 struct ice_qs_cfg tx_qs_cfg = { 528 .qs_mutex = &pf->avail_q_mutex, 529 .pf_map = pf->avail_txqs, 530 .pf_map_size = pf->max_pf_txqs, 531 .q_count = vsi->alloc_txq, 532 .scatter_count = ICE_MAX_SCATTER_TXQS, 533 .vsi_map = vsi->txq_map, 534 .vsi_map_offset = 0, 535 .mapping_mode = ICE_VSI_MAP_CONTIG 536 }; 537 struct ice_qs_cfg rx_qs_cfg = { 538 .qs_mutex = &pf->avail_q_mutex, 539 .pf_map = pf->avail_rxqs, 540 .pf_map_size = pf->max_pf_rxqs, 541 .q_count = vsi->alloc_rxq, 542 .scatter_count = ICE_MAX_SCATTER_RXQS, 543 .vsi_map = vsi->rxq_map, 544 .vsi_map_offset = 0, 545 .mapping_mode = ICE_VSI_MAP_CONTIG 546 }; 547 int ret; 548 549 ret = __ice_vsi_get_qs(&tx_qs_cfg); 550 if (ret) 551 return ret; 552 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 553 554 ret = __ice_vsi_get_qs(&rx_qs_cfg); 555 if (ret) 556 return ret; 557 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 558 559 return 0; 560 } 561 562 /** 563 * ice_vsi_put_qs - Release queues from VSI to PF 564 * @vsi: the VSI that is going to release queues 565 */ 566 void ice_vsi_put_qs(struct ice_vsi *vsi) 567 { 568 struct ice_pf *pf = vsi->back; 569 int i; 570 571 mutex_lock(&pf->avail_q_mutex); 572 573 for (i = 0; i < vsi->alloc_txq; i++) { 574 clear_bit(vsi->txq_map[i], pf->avail_txqs); 575 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 576 } 577 578 for (i = 0; i < vsi->alloc_rxq; i++) { 579 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 580 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 581 } 582 583 mutex_unlock(&pf->avail_q_mutex); 584 } 585 586 /** 587 * ice_is_safe_mode 588 * @pf: pointer to the PF struct 589 * 590 * returns true if driver is in safe mode, false otherwise 591 */ 592 bool ice_is_safe_mode(struct ice_pf *pf) 593 { 594 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 595 } 596 597 /** 598 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 599 * @vsi: the VSI being cleaned up 600 * 601 * This function deletes RSS input set for all flows that were configured 602 * for this VSI 603 */ 604 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 605 { 606 struct ice_pf *pf = vsi->back; 607 enum ice_status status; 608 609 if (ice_is_safe_mode(pf)) 610 return; 611 612 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 613 if (status) 614 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 615 vsi->vsi_num, ice_stat_str(status)); 616 } 617 618 /** 619 * ice_rss_clean - Delete RSS related VSI structures and configuration 620 * @vsi: the VSI being removed 621 */ 622 static void ice_rss_clean(struct ice_vsi *vsi) 623 { 624 struct ice_pf *pf = vsi->back; 625 struct device *dev; 626 627 dev = ice_pf_to_dev(pf); 628 629 if (vsi->rss_hkey_user) 630 devm_kfree(dev, vsi->rss_hkey_user); 631 if (vsi->rss_lut_user) 632 devm_kfree(dev, vsi->rss_lut_user); 633 634 ice_vsi_clean_rss_flow_fld(vsi); 635 /* remove RSS replay list */ 636 if (!ice_is_safe_mode(pf)) 637 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 638 } 639 640 /** 641 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 642 * @vsi: the VSI being configured 643 */ 644 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 645 { 646 struct ice_hw_common_caps *cap; 647 struct ice_pf *pf = vsi->back; 648 649 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 650 vsi->rss_size = 1; 651 return; 652 } 653 654 cap = &pf->hw.func_caps.common_cap; 655 switch (vsi->type) { 656 case ICE_VSI_PF: 657 /* PF VSI will inherit RSS instance of PF */ 658 vsi->rss_table_size = (u16)cap->rss_table_size; 659 vsi->rss_size = min_t(u16, num_online_cpus(), 660 BIT(cap->rss_table_entry_width)); 661 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 662 break; 663 case ICE_VSI_VF: 664 /* VF VSI will get a small RSS table. 665 * For VSI_LUT, LUT size should be set to 64 bytes. 666 */ 667 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 668 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 669 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 670 break; 671 case ICE_VSI_LB: 672 break; 673 default: 674 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 675 ice_vsi_type_str(vsi->type)); 676 break; 677 } 678 } 679 680 /** 681 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 682 * @ctxt: the VSI context being set 683 * 684 * This initializes a default VSI context for all sections except the Queues. 685 */ 686 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 687 { 688 u32 table = 0; 689 690 memset(&ctxt->info, 0, sizeof(ctxt->info)); 691 /* VSI's should be allocated from shared pool */ 692 ctxt->alloc_from_pool = true; 693 /* Src pruning enabled by default */ 694 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 695 /* Traffic from VSI can be sent to LAN */ 696 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 697 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 698 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 699 * packets untagged/tagged. 700 */ 701 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 702 ICE_AQ_VSI_VLAN_MODE_M) >> 703 ICE_AQ_VSI_VLAN_MODE_S); 704 /* Have 1:1 UP mapping for both ingress/egress tables */ 705 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 706 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 707 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 708 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 709 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 710 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 711 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 712 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 713 ctxt->info.ingress_table = cpu_to_le32(table); 714 ctxt->info.egress_table = cpu_to_le32(table); 715 /* Have 1:1 UP mapping for outer to inner UP table */ 716 ctxt->info.outer_up_table = cpu_to_le32(table); 717 /* No Outer tag support outer_tag_flags remains to zero */ 718 } 719 720 /** 721 * ice_vsi_setup_q_map - Setup a VSI queue map 722 * @vsi: the VSI being configured 723 * @ctxt: VSI context structure 724 */ 725 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 726 { 727 u16 offset = 0, qmap = 0, tx_count = 0; 728 u16 qcount_tx = vsi->alloc_txq; 729 u16 qcount_rx = vsi->alloc_rxq; 730 u16 tx_numq_tc, rx_numq_tc; 731 u16 pow = 0, max_rss = 0; 732 bool ena_tc0 = false; 733 u8 netdev_tc = 0; 734 int i; 735 736 /* at least TC0 should be enabled by default */ 737 if (vsi->tc_cfg.numtc) { 738 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 739 ena_tc0 = true; 740 } else { 741 ena_tc0 = true; 742 } 743 744 if (ena_tc0) { 745 vsi->tc_cfg.numtc++; 746 vsi->tc_cfg.ena_tc |= 1; 747 } 748 749 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 750 if (!rx_numq_tc) 751 rx_numq_tc = 1; 752 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 753 if (!tx_numq_tc) 754 tx_numq_tc = 1; 755 756 /* TC mapping is a function of the number of Rx queues assigned to the 757 * VSI for each traffic class and the offset of these queues. 758 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 759 * queues allocated to TC0. No:of queues is a power-of-2. 760 * 761 * If TC is not enabled, the queue offset is set to 0, and allocate one 762 * queue, this way, traffic for the given TC will be sent to the default 763 * queue. 764 * 765 * Setup number and offset of Rx queues for all TCs for the VSI 766 */ 767 768 qcount_rx = rx_numq_tc; 769 770 /* qcount will change if RSS is enabled */ 771 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 772 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 773 if (vsi->type == ICE_VSI_PF) 774 max_rss = ICE_MAX_LG_RSS_QS; 775 else 776 max_rss = ICE_MAX_RSS_QS_PER_VF; 777 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 778 if (!vsi->req_rxq) 779 qcount_rx = min_t(u16, qcount_rx, 780 vsi->rss_size); 781 } 782 } 783 784 /* find the (rounded up) power-of-2 of qcount */ 785 pow = (u16)order_base_2(qcount_rx); 786 787 ice_for_each_traffic_class(i) { 788 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 789 /* TC is not enabled */ 790 vsi->tc_cfg.tc_info[i].qoffset = 0; 791 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 792 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 793 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 794 ctxt->info.tc_mapping[i] = 0; 795 continue; 796 } 797 798 /* TC is enabled */ 799 vsi->tc_cfg.tc_info[i].qoffset = offset; 800 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 801 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 802 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 803 804 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 805 ICE_AQ_VSI_TC_Q_OFFSET_M) | 806 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 807 ICE_AQ_VSI_TC_Q_NUM_M); 808 offset += qcount_rx; 809 tx_count += tx_numq_tc; 810 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 811 } 812 813 /* if offset is non-zero, means it is calculated correctly based on 814 * enabled TCs for a given VSI otherwise qcount_rx will always 815 * be correct and non-zero because it is based off - VSI's 816 * allocated Rx queues which is at least 1 (hence qcount_tx will be 817 * at least 1) 818 */ 819 if (offset) 820 vsi->num_rxq = offset; 821 else 822 vsi->num_rxq = qcount_rx; 823 824 vsi->num_txq = tx_count; 825 826 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 827 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 828 /* since there is a chance that num_rxq could have been changed 829 * in the above for loop, make num_txq equal to num_rxq. 830 */ 831 vsi->num_txq = vsi->num_rxq; 832 } 833 834 /* Rx queue mapping */ 835 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 836 /* q_mapping buffer holds the info for the first queue allocated for 837 * this VSI in the PF space and also the number of queues associated 838 * with this VSI. 839 */ 840 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 841 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 842 } 843 844 /** 845 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 846 * @ctxt: the VSI context being set 847 * @vsi: the VSI being configured 848 */ 849 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 850 { 851 u8 dflt_q_group, dflt_q_prio; 852 u16 dflt_q, report_q, val; 853 854 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 855 return; 856 857 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 858 ctxt->info.valid_sections |= cpu_to_le16(val); 859 dflt_q = 0; 860 dflt_q_group = 0; 861 report_q = 0; 862 dflt_q_prio = 0; 863 864 /* enable flow director filtering/programming */ 865 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 866 ctxt->info.fd_options = cpu_to_le16(val); 867 /* max of allocated flow director filters */ 868 ctxt->info.max_fd_fltr_dedicated = 869 cpu_to_le16(vsi->num_gfltr); 870 /* max of shared flow director filters any VSI may program */ 871 ctxt->info.max_fd_fltr_shared = 872 cpu_to_le16(vsi->num_bfltr); 873 /* default queue index within the VSI of the default FD */ 874 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 875 ICE_AQ_VSI_FD_DEF_Q_M); 876 /* target queue or queue group to the FD filter */ 877 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 878 ICE_AQ_VSI_FD_DEF_GRP_M); 879 ctxt->info.fd_def_q = cpu_to_le16(val); 880 /* queue index on which FD filter completion is reported */ 881 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 882 ICE_AQ_VSI_FD_REPORT_Q_M); 883 /* priority of the default qindex action */ 884 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 885 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 886 ctxt->info.fd_report_opt = cpu_to_le16(val); 887 } 888 889 /** 890 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 891 * @ctxt: the VSI context being set 892 * @vsi: the VSI being configured 893 */ 894 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 895 { 896 u8 lut_type, hash_type; 897 struct device *dev; 898 struct ice_pf *pf; 899 900 pf = vsi->back; 901 dev = ice_pf_to_dev(pf); 902 903 switch (vsi->type) { 904 case ICE_VSI_PF: 905 /* PF VSI will inherit RSS instance of PF */ 906 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 907 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 908 break; 909 case ICE_VSI_VF: 910 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 911 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 912 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 913 break; 914 default: 915 dev_dbg(dev, "Unsupported VSI type %s\n", 916 ice_vsi_type_str(vsi->type)); 917 return; 918 } 919 920 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 921 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 922 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 923 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 924 } 925 926 /** 927 * ice_vsi_init - Create and initialize a VSI 928 * @vsi: the VSI being configured 929 * @init_vsi: is this call creating a VSI 930 * 931 * This initializes a VSI context depending on the VSI type to be added and 932 * passes it down to the add_vsi aq command to create a new VSI. 933 */ 934 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 935 { 936 struct ice_pf *pf = vsi->back; 937 struct ice_hw *hw = &pf->hw; 938 struct ice_vsi_ctx *ctxt; 939 struct device *dev; 940 int ret = 0; 941 942 dev = ice_pf_to_dev(pf); 943 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 944 if (!ctxt) 945 return -ENOMEM; 946 947 switch (vsi->type) { 948 case ICE_VSI_CTRL: 949 case ICE_VSI_LB: 950 case ICE_VSI_PF: 951 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 952 break; 953 case ICE_VSI_VF: 954 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 955 /* VF number here is the absolute VF number (0-255) */ 956 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 957 break; 958 default: 959 ret = -ENODEV; 960 goto out; 961 } 962 963 ice_set_dflt_vsi_ctx(ctxt); 964 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 965 ice_set_fd_vsi_ctx(ctxt, vsi); 966 /* if the switch is in VEB mode, allow VSI loopback */ 967 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 969 970 /* Set LUT type and HASH type if RSS is enabled */ 971 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 972 vsi->type != ICE_VSI_CTRL) { 973 ice_set_rss_vsi_ctx(ctxt, vsi); 974 /* if updating VSI context, make sure to set valid_section: 975 * to indicate which section of VSI context being updated 976 */ 977 if (!init_vsi) 978 ctxt->info.valid_sections |= 979 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 980 } 981 982 ctxt->info.sw_id = vsi->port_info->sw_id; 983 ice_vsi_setup_q_map(vsi, ctxt); 984 if (!init_vsi) /* means VSI being updated */ 985 /* must to indicate which section of VSI context are 986 * being modified 987 */ 988 ctxt->info.valid_sections |= 989 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 990 991 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 992 * respectively 993 */ 994 if (vsi->type == ICE_VSI_VF) { 995 ctxt->info.valid_sections |= 996 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 997 if (pf->vf[vsi->vf_id].spoofchk) { 998 ctxt->info.sec_flags |= 999 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1000 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1001 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1002 } else { 1003 ctxt->info.sec_flags &= 1004 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1005 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1006 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1007 } 1008 } 1009 1010 /* Allow control frames out of main VSI */ 1011 if (vsi->type == ICE_VSI_PF) { 1012 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1013 ctxt->info.valid_sections |= 1014 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1015 } 1016 1017 if (init_vsi) { 1018 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1019 if (ret) { 1020 dev_err(dev, "Add VSI failed, err %d\n", ret); 1021 ret = -EIO; 1022 goto out; 1023 } 1024 } else { 1025 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1026 if (ret) { 1027 dev_err(dev, "Update VSI failed, err %d\n", ret); 1028 ret = -EIO; 1029 goto out; 1030 } 1031 } 1032 1033 /* keep context for update VSI operations */ 1034 vsi->info = ctxt->info; 1035 1036 /* record VSI number returned */ 1037 vsi->vsi_num = ctxt->vsi_num; 1038 1039 out: 1040 kfree(ctxt); 1041 return ret; 1042 } 1043 1044 /** 1045 * ice_free_res - free a block of resources 1046 * @res: pointer to the resource 1047 * @index: starting index previously returned by ice_get_res 1048 * @id: identifier to track owner 1049 * 1050 * Returns number of resources freed 1051 */ 1052 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1053 { 1054 int count = 0; 1055 int i; 1056 1057 if (!res || index >= res->end) 1058 return -EINVAL; 1059 1060 id |= ICE_RES_VALID_BIT; 1061 for (i = index; i < res->end && res->list[i] == id; i++) { 1062 res->list[i] = 0; 1063 count++; 1064 } 1065 1066 return count; 1067 } 1068 1069 /** 1070 * ice_search_res - Search the tracker for a block of resources 1071 * @res: pointer to the resource 1072 * @needed: size of the block needed 1073 * @id: identifier to track owner 1074 * 1075 * Returns the base item index of the block, or -ENOMEM for error 1076 */ 1077 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1078 { 1079 u16 start = 0, end = 0; 1080 1081 if (needed > res->end) 1082 return -ENOMEM; 1083 1084 id |= ICE_RES_VALID_BIT; 1085 1086 do { 1087 /* skip already allocated entries */ 1088 if (res->list[end++] & ICE_RES_VALID_BIT) { 1089 start = end; 1090 if ((start + needed) > res->end) 1091 break; 1092 } 1093 1094 if (end == (start + needed)) { 1095 int i = start; 1096 1097 /* there was enough, so assign it to the requestor */ 1098 while (i != end) 1099 res->list[i++] = id; 1100 1101 return start; 1102 } 1103 } while (end < res->end); 1104 1105 return -ENOMEM; 1106 } 1107 1108 /** 1109 * ice_get_free_res_count - Get free count from a resource tracker 1110 * @res: Resource tracker instance 1111 */ 1112 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1113 { 1114 u16 i, count = 0; 1115 1116 for (i = 0; i < res->end; i++) 1117 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1118 count++; 1119 1120 return count; 1121 } 1122 1123 /** 1124 * ice_get_res - get a block of resources 1125 * @pf: board private structure 1126 * @res: pointer to the resource 1127 * @needed: size of the block needed 1128 * @id: identifier to track owner 1129 * 1130 * Returns the base item index of the block, or negative for error 1131 */ 1132 int 1133 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1134 { 1135 if (!res || !pf) 1136 return -EINVAL; 1137 1138 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1139 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1140 needed, res->num_entries, id); 1141 return -EINVAL; 1142 } 1143 1144 return ice_search_res(res, needed, id); 1145 } 1146 1147 /** 1148 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1149 * @vsi: ptr to the VSI 1150 * 1151 * This should only be called after ice_vsi_alloc() which allocates the 1152 * corresponding SW VSI structure and initializes num_queue_pairs for the 1153 * newly allocated VSI. 1154 * 1155 * Returns 0 on success or negative on failure 1156 */ 1157 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1158 { 1159 struct ice_pf *pf = vsi->back; 1160 struct device *dev; 1161 u16 num_q_vectors; 1162 int base; 1163 1164 dev = ice_pf_to_dev(pf); 1165 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1166 if (vsi->type == ICE_VSI_VF) 1167 return 0; 1168 1169 if (vsi->base_vector) { 1170 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1171 vsi->vsi_num, vsi->base_vector); 1172 return -EEXIST; 1173 } 1174 1175 num_q_vectors = vsi->num_q_vectors; 1176 /* reserve slots from OS requested IRQs */ 1177 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1178 1179 if (base < 0) { 1180 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1181 ice_get_free_res_count(pf->irq_tracker), 1182 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1183 return -ENOENT; 1184 } 1185 vsi->base_vector = (u16)base; 1186 pf->num_avail_sw_msix -= num_q_vectors; 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1193 * @vsi: the VSI having rings deallocated 1194 */ 1195 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1196 { 1197 int i; 1198 1199 if (vsi->tx_rings) { 1200 for (i = 0; i < vsi->alloc_txq; i++) { 1201 if (vsi->tx_rings[i]) { 1202 kfree_rcu(vsi->tx_rings[i], rcu); 1203 WRITE_ONCE(vsi->tx_rings[i], NULL); 1204 } 1205 } 1206 } 1207 if (vsi->rx_rings) { 1208 for (i = 0; i < vsi->alloc_rxq; i++) { 1209 if (vsi->rx_rings[i]) { 1210 kfree_rcu(vsi->rx_rings[i], rcu); 1211 WRITE_ONCE(vsi->rx_rings[i], NULL); 1212 } 1213 } 1214 } 1215 } 1216 1217 /** 1218 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1219 * @vsi: VSI which is having rings allocated 1220 */ 1221 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1222 { 1223 struct ice_pf *pf = vsi->back; 1224 struct device *dev; 1225 u16 i; 1226 1227 dev = ice_pf_to_dev(pf); 1228 /* Allocate Tx rings */ 1229 for (i = 0; i < vsi->alloc_txq; i++) { 1230 struct ice_ring *ring; 1231 1232 /* allocate with kzalloc(), free with kfree_rcu() */ 1233 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1234 1235 if (!ring) 1236 goto err_out; 1237 1238 ring->q_index = i; 1239 ring->reg_idx = vsi->txq_map[i]; 1240 ring->ring_active = false; 1241 ring->vsi = vsi; 1242 ring->dev = dev; 1243 ring->count = vsi->num_tx_desc; 1244 WRITE_ONCE(vsi->tx_rings[i], ring); 1245 } 1246 1247 /* Allocate Rx rings */ 1248 for (i = 0; i < vsi->alloc_rxq; i++) { 1249 struct ice_ring *ring; 1250 1251 /* allocate with kzalloc(), free with kfree_rcu() */ 1252 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1253 if (!ring) 1254 goto err_out; 1255 1256 ring->q_index = i; 1257 ring->reg_idx = vsi->rxq_map[i]; 1258 ring->ring_active = false; 1259 ring->vsi = vsi; 1260 ring->netdev = vsi->netdev; 1261 ring->dev = dev; 1262 ring->count = vsi->num_rx_desc; 1263 WRITE_ONCE(vsi->rx_rings[i], ring); 1264 } 1265 1266 return 0; 1267 1268 err_out: 1269 ice_vsi_clear_rings(vsi); 1270 return -ENOMEM; 1271 } 1272 1273 /** 1274 * ice_vsi_manage_rss_lut - disable/enable RSS 1275 * @vsi: the VSI being changed 1276 * @ena: boolean value indicating if this is an enable or disable request 1277 * 1278 * In the event of disable request for RSS, this function will zero out RSS 1279 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1280 * LUT. 1281 */ 1282 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1283 { 1284 int err = 0; 1285 u8 *lut; 1286 1287 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1288 if (!lut) 1289 return -ENOMEM; 1290 1291 if (ena) { 1292 if (vsi->rss_lut_user) 1293 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1294 else 1295 ice_fill_rss_lut(lut, vsi->rss_table_size, 1296 vsi->rss_size); 1297 } 1298 1299 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1300 kfree(lut); 1301 return err; 1302 } 1303 1304 /** 1305 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1306 * @vsi: VSI to be configured 1307 */ 1308 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1309 { 1310 struct ice_aqc_get_set_rss_keys *key; 1311 struct ice_pf *pf = vsi->back; 1312 enum ice_status status; 1313 struct device *dev; 1314 int err = 0; 1315 u8 *lut; 1316 1317 dev = ice_pf_to_dev(pf); 1318 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1319 1320 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1321 if (!lut) 1322 return -ENOMEM; 1323 1324 if (vsi->rss_lut_user) 1325 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1326 else 1327 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1328 1329 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1330 vsi->rss_table_size); 1331 1332 if (status) { 1333 dev_err(dev, "set_rss_lut failed, error %s\n", 1334 ice_stat_str(status)); 1335 err = -EIO; 1336 goto ice_vsi_cfg_rss_exit; 1337 } 1338 1339 key = kzalloc(sizeof(*key), GFP_KERNEL); 1340 if (!key) { 1341 err = -ENOMEM; 1342 goto ice_vsi_cfg_rss_exit; 1343 } 1344 1345 if (vsi->rss_hkey_user) 1346 memcpy(key, 1347 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1348 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1349 else 1350 netdev_rss_key_fill((void *)key, 1351 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1352 1353 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1354 1355 if (status) { 1356 dev_err(dev, "set_rss_key failed, error %s\n", 1357 ice_stat_str(status)); 1358 err = -EIO; 1359 } 1360 1361 kfree(key); 1362 ice_vsi_cfg_rss_exit: 1363 kfree(lut); 1364 return err; 1365 } 1366 1367 /** 1368 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1369 * @vsi: VSI to be configured 1370 * 1371 * This function will only be called during the VF VSI setup. Upon successful 1372 * completion of package download, this function will configure default RSS 1373 * input sets for VF VSI. 1374 */ 1375 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1376 { 1377 struct ice_pf *pf = vsi->back; 1378 enum ice_status status; 1379 struct device *dev; 1380 1381 dev = ice_pf_to_dev(pf); 1382 if (ice_is_safe_mode(pf)) { 1383 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1384 vsi->vsi_num); 1385 return; 1386 } 1387 1388 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1389 if (status) 1390 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1391 vsi->vsi_num, ice_stat_str(status)); 1392 } 1393 1394 /** 1395 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1396 * @vsi: VSI to be configured 1397 * 1398 * This function will only be called after successful download package call 1399 * during initialization of PF. Since the downloaded package will erase the 1400 * RSS section, this function will configure RSS input sets for different 1401 * flow types. The last profile added has the highest priority, therefore 2 1402 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1403 * (i.e. IPv4 src/dst TCP src/dst port). 1404 */ 1405 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1406 { 1407 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1408 struct ice_pf *pf = vsi->back; 1409 struct ice_hw *hw = &pf->hw; 1410 enum ice_status status; 1411 struct device *dev; 1412 1413 dev = ice_pf_to_dev(pf); 1414 if (ice_is_safe_mode(pf)) { 1415 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1416 vsi_num); 1417 return; 1418 } 1419 /* configure RSS for IPv4 with input set IP src/dst */ 1420 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1421 ICE_FLOW_SEG_HDR_IPV4); 1422 if (status) 1423 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1424 vsi_num, ice_stat_str(status)); 1425 1426 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1427 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1428 ICE_FLOW_SEG_HDR_IPV6); 1429 if (status) 1430 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1431 vsi_num, ice_stat_str(status)); 1432 1433 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1434 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1435 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1436 if (status) 1437 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1438 vsi_num, ice_stat_str(status)); 1439 1440 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1441 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1442 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1443 if (status) 1444 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1445 vsi_num, ice_stat_str(status)); 1446 1447 /* configure RSS for sctp4 with input set IP src/dst */ 1448 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1449 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1450 if (status) 1451 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1452 vsi_num, ice_stat_str(status)); 1453 1454 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1455 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1456 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1457 if (status) 1458 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1459 vsi_num, ice_stat_str(status)); 1460 1461 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1462 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1463 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1464 if (status) 1465 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1466 vsi_num, ice_stat_str(status)); 1467 1468 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1469 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1470 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1471 if (status) 1472 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1473 vsi_num, ice_stat_str(status)); 1474 } 1475 1476 /** 1477 * ice_pf_state_is_nominal - checks the PF for nominal state 1478 * @pf: pointer to PF to check 1479 * 1480 * Check the PF's state for a collection of bits that would indicate 1481 * the PF is in a state that would inhibit normal operation for 1482 * driver functionality. 1483 * 1484 * Returns true if PF is in a nominal state, false otherwise 1485 */ 1486 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1487 { 1488 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1489 1490 if (!pf) 1491 return false; 1492 1493 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1494 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1495 return false; 1496 1497 return true; 1498 } 1499 1500 /** 1501 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1502 * @vsi: the VSI to be updated 1503 */ 1504 void ice_update_eth_stats(struct ice_vsi *vsi) 1505 { 1506 struct ice_eth_stats *prev_es, *cur_es; 1507 struct ice_hw *hw = &vsi->back->hw; 1508 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1509 1510 prev_es = &vsi->eth_stats_prev; 1511 cur_es = &vsi->eth_stats; 1512 1513 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1514 &prev_es->rx_bytes, &cur_es->rx_bytes); 1515 1516 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1517 &prev_es->rx_unicast, &cur_es->rx_unicast); 1518 1519 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1520 &prev_es->rx_multicast, &cur_es->rx_multicast); 1521 1522 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1523 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1524 1525 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1526 &prev_es->rx_discards, &cur_es->rx_discards); 1527 1528 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1529 &prev_es->tx_bytes, &cur_es->tx_bytes); 1530 1531 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1532 &prev_es->tx_unicast, &cur_es->tx_unicast); 1533 1534 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1535 &prev_es->tx_multicast, &cur_es->tx_multicast); 1536 1537 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1538 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1539 1540 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1541 &prev_es->tx_errors, &cur_es->tx_errors); 1542 1543 vsi->stat_offsets_loaded = true; 1544 } 1545 1546 /** 1547 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1548 * @vsi: the VSI being configured 1549 * @vid: VLAN ID to be added 1550 * @action: filter action to be performed on match 1551 */ 1552 int 1553 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1554 { 1555 struct ice_pf *pf = vsi->back; 1556 struct device *dev; 1557 int err = 0; 1558 1559 dev = ice_pf_to_dev(pf); 1560 1561 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1562 vsi->num_vlan++; 1563 } else { 1564 err = -ENODEV; 1565 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1566 vsi->vsi_num); 1567 } 1568 1569 return err; 1570 } 1571 1572 /** 1573 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1574 * @vsi: the VSI being configured 1575 * @vid: VLAN ID to be removed 1576 * 1577 * Returns 0 on success and negative on failure 1578 */ 1579 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1580 { 1581 struct ice_pf *pf = vsi->back; 1582 enum ice_status status; 1583 struct device *dev; 1584 int err = 0; 1585 1586 dev = ice_pf_to_dev(pf); 1587 1588 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1589 if (!status) { 1590 vsi->num_vlan--; 1591 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1592 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1593 vid, vsi->vsi_num, ice_stat_str(status)); 1594 } else { 1595 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1596 vid, vsi->vsi_num, ice_stat_str(status)); 1597 err = -EIO; 1598 } 1599 1600 return err; 1601 } 1602 1603 /** 1604 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1605 * @vsi: VSI 1606 */ 1607 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1608 { 1609 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1610 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1611 vsi->rx_buf_len = ICE_RXBUF_2048; 1612 #if (PAGE_SIZE < 8192) 1613 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1614 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1615 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1616 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1617 #endif 1618 } else { 1619 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1620 #if (PAGE_SIZE < 8192) 1621 vsi->rx_buf_len = ICE_RXBUF_3072; 1622 #else 1623 vsi->rx_buf_len = ICE_RXBUF_2048; 1624 #endif 1625 } 1626 } 1627 1628 /** 1629 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1630 * @hw: HW pointer 1631 * @pf_q: index of the Rx queue in the PF's queue space 1632 * @rxdid: flexible descriptor RXDID 1633 * @prio: priority for the RXDID for this queue 1634 */ 1635 void 1636 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1637 { 1638 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1639 1640 /* clear any previous values */ 1641 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1642 QRXFLXP_CNTXT_RXDID_PRIO_M | 1643 QRXFLXP_CNTXT_TS_M); 1644 1645 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1646 QRXFLXP_CNTXT_RXDID_IDX_M; 1647 1648 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1649 QRXFLXP_CNTXT_RXDID_PRIO_M; 1650 1651 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1652 } 1653 1654 /** 1655 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1656 * @vsi: the VSI being configured 1657 * 1658 * Return 0 on success and a negative value on error 1659 * Configure the Rx VSI for operation. 1660 */ 1661 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1662 { 1663 u16 i; 1664 1665 if (vsi->type == ICE_VSI_VF) 1666 goto setup_rings; 1667 1668 ice_vsi_cfg_frame_size(vsi); 1669 setup_rings: 1670 /* set up individual rings */ 1671 for (i = 0; i < vsi->num_rxq; i++) { 1672 int err; 1673 1674 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1675 if (err) { 1676 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1677 i, err); 1678 return err; 1679 } 1680 } 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1687 * @vsi: the VSI being configured 1688 * @rings: Tx ring array to be configured 1689 * 1690 * Return 0 on success and a negative value on error 1691 * Configure the Tx VSI for operation. 1692 */ 1693 static int 1694 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1695 { 1696 struct ice_aqc_add_tx_qgrp *qg_buf; 1697 u16 q_idx = 0; 1698 int err = 0; 1699 1700 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1701 if (!qg_buf) 1702 return -ENOMEM; 1703 1704 qg_buf->num_txqs = 1; 1705 1706 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1707 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1708 if (err) 1709 goto err_cfg_txqs; 1710 } 1711 1712 err_cfg_txqs: 1713 kfree(qg_buf); 1714 return err; 1715 } 1716 1717 /** 1718 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1719 * @vsi: the VSI being configured 1720 * 1721 * Return 0 on success and a negative value on error 1722 * Configure the Tx VSI for operation. 1723 */ 1724 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1725 { 1726 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1727 } 1728 1729 /** 1730 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1731 * @vsi: the VSI being configured 1732 * 1733 * Return 0 on success and a negative value on error 1734 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1735 */ 1736 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1737 { 1738 int ret; 1739 int i; 1740 1741 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1742 if (ret) 1743 return ret; 1744 1745 for (i = 0; i < vsi->num_xdp_txq; i++) 1746 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1747 1748 return ret; 1749 } 1750 1751 /** 1752 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1753 * @intrl: interrupt rate limit in usecs 1754 * @gran: interrupt rate limit granularity in usecs 1755 * 1756 * This function converts a decimal interrupt rate limit in usecs to the format 1757 * expected by firmware. 1758 */ 1759 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1760 { 1761 u32 val = intrl / gran; 1762 1763 if (val) 1764 return val | GLINT_RATE_INTRL_ENA_M; 1765 return 0; 1766 } 1767 1768 /** 1769 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1770 * @vsi: the VSI being configured 1771 * 1772 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1773 * for the VF VSI. 1774 */ 1775 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1776 { 1777 struct ice_pf *pf = vsi->back; 1778 struct ice_hw *hw = &pf->hw; 1779 u16 txq = 0, rxq = 0; 1780 int i, q; 1781 1782 for (i = 0; i < vsi->num_q_vectors; i++) { 1783 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1784 u16 reg_idx = q_vector->reg_idx; 1785 1786 ice_cfg_itr(hw, q_vector); 1787 1788 wr32(hw, GLINT_RATE(reg_idx), 1789 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1790 1791 /* Both Transmit Queue Interrupt Cause Control register 1792 * and Receive Queue Interrupt Cause control register 1793 * expects MSIX_INDX field to be the vector index 1794 * within the function space and not the absolute 1795 * vector index across PF or across device. 1796 * For SR-IOV VF VSIs queue vector index always starts 1797 * with 1 since first vector index(0) is used for OICR 1798 * in VF space. Since VMDq and other PF VSIs are within 1799 * the PF function space, use the vector index that is 1800 * tracked for this PF. 1801 */ 1802 for (q = 0; q < q_vector->num_ring_tx; q++) { 1803 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1804 q_vector->tx.itr_idx); 1805 txq++; 1806 } 1807 1808 for (q = 0; q < q_vector->num_ring_rx; q++) { 1809 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1810 q_vector->rx.itr_idx); 1811 rxq++; 1812 } 1813 } 1814 } 1815 1816 /** 1817 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1818 * @vsi: the VSI being changed 1819 */ 1820 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1821 { 1822 struct ice_hw *hw = &vsi->back->hw; 1823 struct ice_vsi_ctx *ctxt; 1824 enum ice_status status; 1825 int ret = 0; 1826 1827 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1828 if (!ctxt) 1829 return -ENOMEM; 1830 1831 /* Here we are configuring the VSI to let the driver add VLAN tags by 1832 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1833 * insertion happens in the Tx hot path, in ice_tx_map. 1834 */ 1835 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1836 1837 /* Preserve existing VLAN strip setting */ 1838 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1839 ICE_AQ_VSI_VLAN_EMOD_M); 1840 1841 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1842 1843 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1844 if (status) { 1845 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1846 ice_stat_str(status), 1847 ice_aq_str(hw->adminq.sq_last_status)); 1848 ret = -EIO; 1849 goto out; 1850 } 1851 1852 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1853 out: 1854 kfree(ctxt); 1855 return ret; 1856 } 1857 1858 /** 1859 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1860 * @vsi: the VSI being changed 1861 * @ena: boolean value indicating if this is a enable or disable request 1862 */ 1863 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1864 { 1865 struct ice_hw *hw = &vsi->back->hw; 1866 struct ice_vsi_ctx *ctxt; 1867 enum ice_status status; 1868 int ret = 0; 1869 1870 /* do not allow modifying VLAN stripping when a port VLAN is configured 1871 * on this VSI 1872 */ 1873 if (vsi->info.pvid) 1874 return 0; 1875 1876 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1877 if (!ctxt) 1878 return -ENOMEM; 1879 1880 /* Here we are configuring what the VSI should do with the VLAN tag in 1881 * the Rx packet. We can either leave the tag in the packet or put it in 1882 * the Rx descriptor. 1883 */ 1884 if (ena) 1885 /* Strip VLAN tag from Rx packet and put it in the desc */ 1886 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1887 else 1888 /* Disable stripping. Leave tag in packet */ 1889 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1890 1891 /* Allow all packets untagged/tagged */ 1892 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1893 1894 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1895 1896 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1897 if (status) { 1898 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1899 ena, ice_stat_str(status), 1900 ice_aq_str(hw->adminq.sq_last_status)); 1901 ret = -EIO; 1902 goto out; 1903 } 1904 1905 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1906 out: 1907 kfree(ctxt); 1908 return ret; 1909 } 1910 1911 /** 1912 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1913 * @vsi: the VSI whose rings are to be enabled 1914 * 1915 * Returns 0 on success and a negative value on error 1916 */ 1917 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1918 { 1919 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1920 } 1921 1922 /** 1923 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1924 * @vsi: the VSI whose rings are to be disabled 1925 * 1926 * Returns 0 on success and a negative value on error 1927 */ 1928 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1929 { 1930 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1931 } 1932 1933 /** 1934 * ice_vsi_stop_tx_rings - Disable Tx rings 1935 * @vsi: the VSI being configured 1936 * @rst_src: reset source 1937 * @rel_vmvf_num: Relative ID of VF/VM 1938 * @rings: Tx ring array to be stopped 1939 */ 1940 static int 1941 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1942 u16 rel_vmvf_num, struct ice_ring **rings) 1943 { 1944 u16 q_idx; 1945 1946 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1947 return -EINVAL; 1948 1949 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1950 struct ice_txq_meta txq_meta = { }; 1951 int status; 1952 1953 if (!rings || !rings[q_idx]) 1954 return -EINVAL; 1955 1956 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1957 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1958 rings[q_idx], &txq_meta); 1959 1960 if (status) 1961 return status; 1962 } 1963 1964 return 0; 1965 } 1966 1967 /** 1968 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1969 * @vsi: the VSI being configured 1970 * @rst_src: reset source 1971 * @rel_vmvf_num: Relative ID of VF/VM 1972 */ 1973 int 1974 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1975 u16 rel_vmvf_num) 1976 { 1977 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1978 } 1979 1980 /** 1981 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1982 * @vsi: the VSI being configured 1983 */ 1984 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1985 { 1986 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1987 } 1988 1989 /** 1990 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1991 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1992 * 1993 * returns true if Rx VLAN pruning is enabled and false otherwise. 1994 */ 1995 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1996 { 1997 if (!vsi) 1998 return false; 1999 2000 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2001 } 2002 2003 /** 2004 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2005 * @vsi: VSI to enable or disable VLAN pruning on 2006 * @ena: set to true to enable VLAN pruning and false to disable it 2007 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2008 * 2009 * returns 0 if VSI is updated, negative otherwise 2010 */ 2011 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2012 { 2013 struct ice_vsi_ctx *ctxt; 2014 struct ice_pf *pf; 2015 int status; 2016 2017 if (!vsi) 2018 return -EINVAL; 2019 2020 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2021 * mode. VLAN pruning will be enabled when the interface exits 2022 * promiscuous mode if any VLAN filters are active. 2023 */ 2024 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2025 return 0; 2026 2027 pf = vsi->back; 2028 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2029 if (!ctxt) 2030 return -ENOMEM; 2031 2032 ctxt->info = vsi->info; 2033 2034 if (ena) 2035 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2036 else 2037 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2038 2039 if (!vlan_promisc) 2040 ctxt->info.valid_sections = 2041 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2042 2043 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2044 if (status) { 2045 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2046 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2047 ice_stat_str(status), 2048 ice_aq_str(pf->hw.adminq.sq_last_status)); 2049 goto err_out; 2050 } 2051 2052 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2053 2054 kfree(ctxt); 2055 return 0; 2056 2057 err_out: 2058 kfree(ctxt); 2059 return -EIO; 2060 } 2061 2062 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2063 { 2064 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2065 2066 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2067 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2068 } 2069 2070 /** 2071 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2072 * @vsi: VSI to set the q_vectors register index on 2073 */ 2074 static int 2075 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2076 { 2077 u16 i; 2078 2079 if (!vsi || !vsi->q_vectors) 2080 return -EINVAL; 2081 2082 ice_for_each_q_vector(vsi, i) { 2083 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2084 2085 if (!q_vector) { 2086 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2087 i, vsi->vsi_num); 2088 goto clear_reg_idx; 2089 } 2090 2091 if (vsi->type == ICE_VSI_VF) { 2092 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2093 2094 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2095 } else { 2096 q_vector->reg_idx = 2097 q_vector->v_idx + vsi->base_vector; 2098 } 2099 } 2100 2101 return 0; 2102 2103 clear_reg_idx: 2104 ice_for_each_q_vector(vsi, i) { 2105 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2106 2107 if (q_vector) 2108 q_vector->reg_idx = 0; 2109 } 2110 2111 return -EINVAL; 2112 } 2113 2114 /** 2115 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2116 * @vsi: the VSI being configured 2117 * @tx: bool to determine Tx or Rx rule 2118 * @create: bool to determine create or remove Rule 2119 */ 2120 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2121 { 2122 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2123 enum ice_sw_fwd_act_type act); 2124 struct ice_pf *pf = vsi->back; 2125 enum ice_status status; 2126 struct device *dev; 2127 2128 dev = ice_pf_to_dev(pf); 2129 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2130 2131 if (tx) 2132 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2133 ICE_DROP_PACKET); 2134 else 2135 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); 2136 2137 if (status) 2138 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2139 create ? "adding" : "removing", tx ? "TX" : "RX", 2140 vsi->vsi_num, ice_stat_str(status)); 2141 } 2142 2143 /** 2144 * ice_vsi_setup - Set up a VSI by a given type 2145 * @pf: board private structure 2146 * @pi: pointer to the port_info instance 2147 * @vsi_type: VSI type 2148 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2149 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2150 * fill-in ICE_INVAL_VFID as input. 2151 * 2152 * This allocates the sw VSI structure and its queue resources. 2153 * 2154 * Returns pointer to the successfully allocated and configured VSI sw struct on 2155 * success, NULL on failure. 2156 */ 2157 struct ice_vsi * 2158 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2159 enum ice_vsi_type vsi_type, u16 vf_id) 2160 { 2161 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2162 struct device *dev = ice_pf_to_dev(pf); 2163 enum ice_status status; 2164 struct ice_vsi *vsi; 2165 int ret, i; 2166 2167 if (vsi_type == ICE_VSI_VF) 2168 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2169 else 2170 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2171 2172 if (!vsi) { 2173 dev_err(dev, "could not allocate VSI\n"); 2174 return NULL; 2175 } 2176 2177 vsi->port_info = pi; 2178 vsi->vsw = pf->first_sw; 2179 if (vsi->type == ICE_VSI_PF) 2180 vsi->ethtype = ETH_P_PAUSE; 2181 2182 if (vsi->type == ICE_VSI_VF) 2183 vsi->vf_id = vf_id; 2184 2185 ice_alloc_fd_res(vsi); 2186 2187 if (ice_vsi_get_qs(vsi)) { 2188 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2189 vsi->idx); 2190 goto unroll_vsi_alloc; 2191 } 2192 2193 /* set RSS capabilities */ 2194 ice_vsi_set_rss_params(vsi); 2195 2196 /* set TC configuration */ 2197 ice_vsi_set_tc_cfg(vsi); 2198 2199 /* create the VSI */ 2200 ret = ice_vsi_init(vsi, true); 2201 if (ret) 2202 goto unroll_get_qs; 2203 2204 switch (vsi->type) { 2205 case ICE_VSI_CTRL: 2206 case ICE_VSI_PF: 2207 ret = ice_vsi_alloc_q_vectors(vsi); 2208 if (ret) 2209 goto unroll_vsi_init; 2210 2211 ret = ice_vsi_setup_vector_base(vsi); 2212 if (ret) 2213 goto unroll_alloc_q_vector; 2214 2215 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2216 if (ret) 2217 goto unroll_vector_base; 2218 2219 ret = ice_vsi_alloc_rings(vsi); 2220 if (ret) 2221 goto unroll_vector_base; 2222 2223 /* Always add VLAN ID 0 switch rule by default. This is needed 2224 * in order to allow all untagged and 0 tagged priority traffic 2225 * if Rx VLAN pruning is enabled. Also there are cases where we 2226 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2227 * so this handles those cases (i.e. adding the PF to a bridge 2228 * without the 8021q module loaded). 2229 */ 2230 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2231 if (ret) 2232 goto unroll_clear_rings; 2233 2234 ice_vsi_map_rings_to_vectors(vsi); 2235 2236 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2237 if (vsi->type != ICE_VSI_CTRL) 2238 /* Do not exit if configuring RSS had an issue, at 2239 * least receive traffic on first queue. Hence no 2240 * need to capture return value 2241 */ 2242 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2243 ice_vsi_cfg_rss_lut_key(vsi); 2244 ice_vsi_set_rss_flow_fld(vsi); 2245 } 2246 ice_init_arfs(vsi); 2247 break; 2248 case ICE_VSI_VF: 2249 /* VF driver will take care of creating netdev for this type and 2250 * map queues to vectors through Virtchnl, PF driver only 2251 * creates a VSI and corresponding structures for bookkeeping 2252 * purpose 2253 */ 2254 ret = ice_vsi_alloc_q_vectors(vsi); 2255 if (ret) 2256 goto unroll_vsi_init; 2257 2258 ret = ice_vsi_alloc_rings(vsi); 2259 if (ret) 2260 goto unroll_alloc_q_vector; 2261 2262 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2263 if (ret) 2264 goto unroll_vector_base; 2265 2266 /* Do not exit if configuring RSS had an issue, at least 2267 * receive traffic on first queue. Hence no need to capture 2268 * return value 2269 */ 2270 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2271 ice_vsi_cfg_rss_lut_key(vsi); 2272 ice_vsi_set_vf_rss_flow_fld(vsi); 2273 } 2274 break; 2275 case ICE_VSI_LB: 2276 ret = ice_vsi_alloc_rings(vsi); 2277 if (ret) 2278 goto unroll_vsi_init; 2279 break; 2280 default: 2281 /* clean up the resources and exit */ 2282 goto unroll_vsi_init; 2283 } 2284 2285 /* configure VSI nodes based on number of queues and TC's */ 2286 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2287 max_txqs[i] = vsi->alloc_txq; 2288 2289 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2290 max_txqs); 2291 if (status) { 2292 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2293 vsi->vsi_num, ice_stat_str(status)); 2294 goto unroll_vector_base; 2295 } 2296 2297 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2298 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2299 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2300 * The rule is added once for PF VSI in order to create appropriate 2301 * recipe, since VSI/VSI list is ignored with drop action... 2302 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2303 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2304 * settings in the HW. 2305 */ 2306 if (!ice_is_safe_mode(pf)) 2307 if (vsi->type == ICE_VSI_PF) { 2308 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2309 ICE_DROP_PACKET); 2310 ice_cfg_sw_lldp(vsi, true, true); 2311 } 2312 2313 return vsi; 2314 2315 unroll_clear_rings: 2316 ice_vsi_clear_rings(vsi); 2317 unroll_vector_base: 2318 /* reclaim SW interrupts back to the common pool */ 2319 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2320 pf->num_avail_sw_msix += vsi->num_q_vectors; 2321 unroll_alloc_q_vector: 2322 ice_vsi_free_q_vectors(vsi); 2323 unroll_vsi_init: 2324 ice_vsi_delete(vsi); 2325 unroll_get_qs: 2326 ice_vsi_put_qs(vsi); 2327 unroll_vsi_alloc: 2328 ice_vsi_clear(vsi); 2329 2330 return NULL; 2331 } 2332 2333 /** 2334 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2335 * @vsi: the VSI being cleaned up 2336 */ 2337 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2338 { 2339 struct ice_pf *pf = vsi->back; 2340 struct ice_hw *hw = &pf->hw; 2341 u32 txq = 0; 2342 u32 rxq = 0; 2343 int i, q; 2344 2345 for (i = 0; i < vsi->num_q_vectors; i++) { 2346 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2347 u16 reg_idx = q_vector->reg_idx; 2348 2349 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2350 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2351 for (q = 0; q < q_vector->num_ring_tx; q++) { 2352 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2353 if (ice_is_xdp_ena_vsi(vsi)) { 2354 u32 xdp_txq = txq + vsi->num_xdp_txq; 2355 2356 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2357 } 2358 txq++; 2359 } 2360 2361 for (q = 0; q < q_vector->num_ring_rx; q++) { 2362 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2363 rxq++; 2364 } 2365 } 2366 2367 ice_flush(hw); 2368 } 2369 2370 /** 2371 * ice_vsi_free_irq - Free the IRQ association with the OS 2372 * @vsi: the VSI being configured 2373 */ 2374 void ice_vsi_free_irq(struct ice_vsi *vsi) 2375 { 2376 struct ice_pf *pf = vsi->back; 2377 int base = vsi->base_vector; 2378 int i; 2379 2380 if (!vsi->q_vectors || !vsi->irqs_ready) 2381 return; 2382 2383 ice_vsi_release_msix(vsi); 2384 if (vsi->type == ICE_VSI_VF) 2385 return; 2386 2387 vsi->irqs_ready = false; 2388 ice_for_each_q_vector(vsi, i) { 2389 u16 vector = i + base; 2390 int irq_num; 2391 2392 irq_num = pf->msix_entries[vector].vector; 2393 2394 /* free only the irqs that were actually requested */ 2395 if (!vsi->q_vectors[i] || 2396 !(vsi->q_vectors[i]->num_ring_tx || 2397 vsi->q_vectors[i]->num_ring_rx)) 2398 continue; 2399 2400 /* clear the affinity notifier in the IRQ descriptor */ 2401 irq_set_affinity_notifier(irq_num, NULL); 2402 2403 /* clear the affinity_mask in the IRQ descriptor */ 2404 irq_set_affinity_hint(irq_num, NULL); 2405 synchronize_irq(irq_num); 2406 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2407 } 2408 } 2409 2410 /** 2411 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2412 * @vsi: the VSI having resources freed 2413 */ 2414 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2415 { 2416 int i; 2417 2418 if (!vsi->tx_rings) 2419 return; 2420 2421 ice_for_each_txq(vsi, i) 2422 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2423 ice_free_tx_ring(vsi->tx_rings[i]); 2424 } 2425 2426 /** 2427 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2428 * @vsi: the VSI having resources freed 2429 */ 2430 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2431 { 2432 int i; 2433 2434 if (!vsi->rx_rings) 2435 return; 2436 2437 ice_for_each_rxq(vsi, i) 2438 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2439 ice_free_rx_ring(vsi->rx_rings[i]); 2440 } 2441 2442 /** 2443 * ice_vsi_close - Shut down a VSI 2444 * @vsi: the VSI being shut down 2445 */ 2446 void ice_vsi_close(struct ice_vsi *vsi) 2447 { 2448 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2449 ice_down(vsi); 2450 2451 ice_vsi_free_irq(vsi); 2452 ice_vsi_free_tx_rings(vsi); 2453 ice_vsi_free_rx_rings(vsi); 2454 } 2455 2456 /** 2457 * ice_ena_vsi - resume a VSI 2458 * @vsi: the VSI being resume 2459 * @locked: is the rtnl_lock already held 2460 */ 2461 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2462 { 2463 int err = 0; 2464 2465 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2466 return 0; 2467 2468 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2469 2470 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2471 if (netif_running(vsi->netdev)) { 2472 if (!locked) 2473 rtnl_lock(); 2474 2475 err = ice_open(vsi->netdev); 2476 2477 if (!locked) 2478 rtnl_unlock(); 2479 } 2480 } else if (vsi->type == ICE_VSI_CTRL) { 2481 err = ice_vsi_open_ctrl(vsi); 2482 } 2483 2484 return err; 2485 } 2486 2487 /** 2488 * ice_dis_vsi - pause a VSI 2489 * @vsi: the VSI being paused 2490 * @locked: is the rtnl_lock already held 2491 */ 2492 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2493 { 2494 if (test_bit(__ICE_DOWN, vsi->state)) 2495 return; 2496 2497 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2498 2499 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2500 if (netif_running(vsi->netdev)) { 2501 if (!locked) 2502 rtnl_lock(); 2503 2504 ice_stop(vsi->netdev); 2505 2506 if (!locked) 2507 rtnl_unlock(); 2508 } else { 2509 ice_vsi_close(vsi); 2510 } 2511 } else if (vsi->type == ICE_VSI_CTRL) { 2512 ice_vsi_close(vsi); 2513 } 2514 } 2515 2516 /** 2517 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2518 * @vsi: the VSI being un-configured 2519 */ 2520 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2521 { 2522 int base = vsi->base_vector; 2523 struct ice_pf *pf = vsi->back; 2524 struct ice_hw *hw = &pf->hw; 2525 u32 val; 2526 int i; 2527 2528 /* disable interrupt causation from each queue */ 2529 if (vsi->tx_rings) { 2530 ice_for_each_txq(vsi, i) { 2531 if (vsi->tx_rings[i]) { 2532 u16 reg; 2533 2534 reg = vsi->tx_rings[i]->reg_idx; 2535 val = rd32(hw, QINT_TQCTL(reg)); 2536 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2537 wr32(hw, QINT_TQCTL(reg), val); 2538 } 2539 } 2540 } 2541 2542 if (vsi->rx_rings) { 2543 ice_for_each_rxq(vsi, i) { 2544 if (vsi->rx_rings[i]) { 2545 u16 reg; 2546 2547 reg = vsi->rx_rings[i]->reg_idx; 2548 val = rd32(hw, QINT_RQCTL(reg)); 2549 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2550 wr32(hw, QINT_RQCTL(reg), val); 2551 } 2552 } 2553 } 2554 2555 /* disable each interrupt */ 2556 ice_for_each_q_vector(vsi, i) { 2557 if (!vsi->q_vectors[i]) 2558 continue; 2559 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2560 } 2561 2562 ice_flush(hw); 2563 2564 /* don't call synchronize_irq() for VF's from the host */ 2565 if (vsi->type == ICE_VSI_VF) 2566 return; 2567 2568 ice_for_each_q_vector(vsi, i) 2569 synchronize_irq(pf->msix_entries[i + base].vector); 2570 } 2571 2572 /** 2573 * ice_napi_del - Remove NAPI handler for the VSI 2574 * @vsi: VSI for which NAPI handler is to be removed 2575 */ 2576 void ice_napi_del(struct ice_vsi *vsi) 2577 { 2578 int v_idx; 2579 2580 if (!vsi->netdev) 2581 return; 2582 2583 ice_for_each_q_vector(vsi, v_idx) 2584 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2585 } 2586 2587 /** 2588 * ice_vsi_release - Delete a VSI and free its resources 2589 * @vsi: the VSI being removed 2590 * 2591 * Returns 0 on success or < 0 on error 2592 */ 2593 int ice_vsi_release(struct ice_vsi *vsi) 2594 { 2595 struct ice_pf *pf; 2596 2597 if (!vsi->back) 2598 return -ENODEV; 2599 pf = vsi->back; 2600 2601 /* do not unregister while driver is in the reset recovery pending 2602 * state. Since reset/rebuild happens through PF service task workqueue, 2603 * it's not a good idea to unregister netdev that is associated to the 2604 * PF that is running the work queue items currently. This is done to 2605 * avoid check_flush_dependency() warning on this wq 2606 */ 2607 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2608 unregister_netdev(vsi->netdev); 2609 2610 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2611 ice_rss_clean(vsi); 2612 2613 /* Disable VSI and free resources */ 2614 if (vsi->type != ICE_VSI_LB) 2615 ice_vsi_dis_irq(vsi); 2616 ice_vsi_close(vsi); 2617 2618 /* SR-IOV determines needed MSIX resources all at once instead of per 2619 * VSI since when VFs are spawned we know how many VFs there are and how 2620 * many interrupts each VF needs. SR-IOV MSIX resources are also 2621 * cleared in the same manner. 2622 */ 2623 if (vsi->type != ICE_VSI_VF) { 2624 /* reclaim SW interrupts back to the common pool */ 2625 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2626 pf->num_avail_sw_msix += vsi->num_q_vectors; 2627 } 2628 2629 if (!ice_is_safe_mode(pf)) { 2630 if (vsi->type == ICE_VSI_PF) { 2631 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2632 ICE_DROP_PACKET); 2633 ice_cfg_sw_lldp(vsi, true, false); 2634 /* The Rx rule will only exist to remove if the LLDP FW 2635 * engine is currently stopped 2636 */ 2637 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2638 ice_cfg_sw_lldp(vsi, false, false); 2639 } 2640 } 2641 2642 ice_fltr_remove_all(vsi); 2643 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2644 ice_vsi_delete(vsi); 2645 ice_vsi_free_q_vectors(vsi); 2646 2647 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2648 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2649 free_netdev(vsi->netdev); 2650 vsi->netdev = NULL; 2651 } 2652 2653 ice_vsi_clear_rings(vsi); 2654 2655 ice_vsi_put_qs(vsi); 2656 2657 /* retain SW VSI data structure since it is needed to unregister and 2658 * free VSI netdev when PF is not in reset recovery pending state,\ 2659 * for ex: during rmmod. 2660 */ 2661 if (!ice_is_reset_in_progress(pf->state)) 2662 ice_vsi_clear(vsi); 2663 2664 return 0; 2665 } 2666 2667 /** 2668 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2669 * @q_vector: pointer to q_vector which is being updated 2670 * @coalesce: pointer to array of struct with stored coalesce 2671 * 2672 * Set coalesce param in q_vector and update these parameters in HW. 2673 */ 2674 static void 2675 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2676 struct ice_coalesce_stored *coalesce) 2677 { 2678 struct ice_ring_container *rx_rc = &q_vector->rx; 2679 struct ice_ring_container *tx_rc = &q_vector->tx; 2680 struct ice_hw *hw = &q_vector->vsi->back->hw; 2681 2682 tx_rc->itr_setting = coalesce->itr_tx; 2683 rx_rc->itr_setting = coalesce->itr_rx; 2684 2685 /* dynamic ITR values will be updated during Tx/Rx */ 2686 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2687 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2688 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2689 ICE_ITR_GRAN_S); 2690 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2691 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2692 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2693 ICE_ITR_GRAN_S); 2694 2695 q_vector->intrl = coalesce->intrl; 2696 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2697 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2698 } 2699 2700 /** 2701 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2702 * @vsi: VSI connected with q_vectors 2703 * @coalesce: array of struct with stored coalesce 2704 * 2705 * Returns array size. 2706 */ 2707 static int 2708 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2709 struct ice_coalesce_stored *coalesce) 2710 { 2711 int i; 2712 2713 ice_for_each_q_vector(vsi, i) { 2714 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2715 2716 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2717 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2718 coalesce[i].intrl = q_vector->intrl; 2719 } 2720 2721 return vsi->num_q_vectors; 2722 } 2723 2724 /** 2725 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2726 * @vsi: VSI connected with q_vectors 2727 * @coalesce: pointer to array of struct with stored coalesce 2728 * @size: size of coalesce array 2729 * 2730 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2731 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2732 * to default value. 2733 */ 2734 static void 2735 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2736 struct ice_coalesce_stored *coalesce, int size) 2737 { 2738 int i; 2739 2740 if ((size && !coalesce) || !vsi) 2741 return; 2742 2743 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2744 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2745 &coalesce[i]); 2746 2747 /* number of q_vectors increased, so assume coalesce settings were 2748 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2749 * the previous settings from q_vector 0 for all of the new q_vectors 2750 */ 2751 for (; i < vsi->num_q_vectors; i++) 2752 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2753 &coalesce[0]); 2754 } 2755 2756 /** 2757 * ice_vsi_rebuild - Rebuild VSI after reset 2758 * @vsi: VSI to be rebuild 2759 * @init_vsi: is this an initialization or a reconfigure of the VSI 2760 * 2761 * Returns 0 on success and negative value on failure 2762 */ 2763 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2764 { 2765 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2766 struct ice_coalesce_stored *coalesce; 2767 int prev_num_q_vectors = 0; 2768 struct ice_vf *vf = NULL; 2769 enum ice_status status; 2770 struct ice_pf *pf; 2771 int ret, i; 2772 2773 if (!vsi) 2774 return -EINVAL; 2775 2776 pf = vsi->back; 2777 if (vsi->type == ICE_VSI_VF) 2778 vf = &pf->vf[vsi->vf_id]; 2779 2780 coalesce = kcalloc(vsi->num_q_vectors, 2781 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2782 if (coalesce) 2783 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2784 coalesce); 2785 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2786 ice_vsi_free_q_vectors(vsi); 2787 2788 /* SR-IOV determines needed MSIX resources all at once instead of per 2789 * VSI since when VFs are spawned we know how many VFs there are and how 2790 * many interrupts each VF needs. SR-IOV MSIX resources are also 2791 * cleared in the same manner. 2792 */ 2793 if (vsi->type != ICE_VSI_VF) { 2794 /* reclaim SW interrupts back to the common pool */ 2795 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2796 pf->num_avail_sw_msix += vsi->num_q_vectors; 2797 vsi->base_vector = 0; 2798 } 2799 2800 if (ice_is_xdp_ena_vsi(vsi)) 2801 /* return value check can be skipped here, it always returns 2802 * 0 if reset is in progress 2803 */ 2804 ice_destroy_xdp_rings(vsi); 2805 ice_vsi_put_qs(vsi); 2806 ice_vsi_clear_rings(vsi); 2807 ice_vsi_free_arrays(vsi); 2808 if (vsi->type == ICE_VSI_VF) 2809 ice_vsi_set_num_qs(vsi, vf->vf_id); 2810 else 2811 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2812 2813 ret = ice_vsi_alloc_arrays(vsi); 2814 if (ret < 0) 2815 goto err_vsi; 2816 2817 ice_vsi_get_qs(vsi); 2818 2819 ice_alloc_fd_res(vsi); 2820 ice_vsi_set_tc_cfg(vsi); 2821 2822 /* Initialize VSI struct elements and create VSI in FW */ 2823 ret = ice_vsi_init(vsi, init_vsi); 2824 if (ret < 0) 2825 goto err_vsi; 2826 2827 switch (vsi->type) { 2828 case ICE_VSI_CTRL: 2829 case ICE_VSI_PF: 2830 ret = ice_vsi_alloc_q_vectors(vsi); 2831 if (ret) 2832 goto err_rings; 2833 2834 ret = ice_vsi_setup_vector_base(vsi); 2835 if (ret) 2836 goto err_vectors; 2837 2838 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2839 if (ret) 2840 goto err_vectors; 2841 2842 ret = ice_vsi_alloc_rings(vsi); 2843 if (ret) 2844 goto err_vectors; 2845 2846 ice_vsi_map_rings_to_vectors(vsi); 2847 if (ice_is_xdp_ena_vsi(vsi)) { 2848 vsi->num_xdp_txq = vsi->alloc_rxq; 2849 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2850 if (ret) 2851 goto err_vectors; 2852 } 2853 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2854 if (vsi->type != ICE_VSI_CTRL) 2855 /* Do not exit if configuring RSS had an issue, at 2856 * least receive traffic on first queue. Hence no 2857 * need to capture return value 2858 */ 2859 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2860 ice_vsi_cfg_rss_lut_key(vsi); 2861 break; 2862 case ICE_VSI_VF: 2863 ret = ice_vsi_alloc_q_vectors(vsi); 2864 if (ret) 2865 goto err_rings; 2866 2867 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2868 if (ret) 2869 goto err_vectors; 2870 2871 ret = ice_vsi_alloc_rings(vsi); 2872 if (ret) 2873 goto err_vectors; 2874 2875 break; 2876 default: 2877 break; 2878 } 2879 2880 /* configure VSI nodes based on number of queues and TC's */ 2881 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2882 max_txqs[i] = vsi->alloc_txq; 2883 2884 if (ice_is_xdp_ena_vsi(vsi)) 2885 max_txqs[i] += vsi->num_xdp_txq; 2886 } 2887 2888 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2889 max_txqs); 2890 if (status) { 2891 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 2892 vsi->vsi_num, ice_stat_str(status)); 2893 if (init_vsi) { 2894 ret = -EIO; 2895 goto err_vectors; 2896 } else { 2897 return ice_schedule_reset(pf, ICE_RESET_PFR); 2898 } 2899 } 2900 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2901 kfree(coalesce); 2902 2903 return 0; 2904 2905 err_vectors: 2906 ice_vsi_free_q_vectors(vsi); 2907 err_rings: 2908 if (vsi->netdev) { 2909 vsi->current_netdev_flags = 0; 2910 unregister_netdev(vsi->netdev); 2911 free_netdev(vsi->netdev); 2912 vsi->netdev = NULL; 2913 } 2914 err_vsi: 2915 ice_vsi_clear(vsi); 2916 set_bit(__ICE_RESET_FAILED, pf->state); 2917 kfree(coalesce); 2918 return ret; 2919 } 2920 2921 /** 2922 * ice_is_reset_in_progress - check for a reset in progress 2923 * @state: PF state field 2924 */ 2925 bool ice_is_reset_in_progress(unsigned long *state) 2926 { 2927 return test_bit(__ICE_RESET_OICR_RECV, state) || 2928 test_bit(__ICE_DCBNL_DEVRESET, state) || 2929 test_bit(__ICE_PFR_REQ, state) || 2930 test_bit(__ICE_CORER_REQ, state) || 2931 test_bit(__ICE_GLOBR_REQ, state); 2932 } 2933 2934 #ifdef CONFIG_DCB 2935 /** 2936 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2937 * @vsi: VSI being configured 2938 * @ctx: the context buffer returned from AQ VSI update command 2939 */ 2940 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2941 { 2942 vsi->info.mapping_flags = ctx->info.mapping_flags; 2943 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2944 sizeof(vsi->info.q_mapping)); 2945 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2946 sizeof(vsi->info.tc_mapping)); 2947 } 2948 2949 /** 2950 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2951 * @vsi: VSI to be configured 2952 * @ena_tc: TC bitmap 2953 * 2954 * VSI queues expected to be quiesced before calling this function 2955 */ 2956 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2957 { 2958 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2959 struct ice_pf *pf = vsi->back; 2960 struct ice_vsi_ctx *ctx; 2961 enum ice_status status; 2962 struct device *dev; 2963 int i, ret = 0; 2964 u8 num_tc = 0; 2965 2966 dev = ice_pf_to_dev(pf); 2967 2968 ice_for_each_traffic_class(i) { 2969 /* build bitmap of enabled TCs */ 2970 if (ena_tc & BIT(i)) 2971 num_tc++; 2972 /* populate max_txqs per TC */ 2973 max_txqs[i] = vsi->alloc_txq; 2974 } 2975 2976 vsi->tc_cfg.ena_tc = ena_tc; 2977 vsi->tc_cfg.numtc = num_tc; 2978 2979 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2980 if (!ctx) 2981 return -ENOMEM; 2982 2983 ctx->vf_num = 0; 2984 ctx->info = vsi->info; 2985 2986 ice_vsi_setup_q_map(vsi, ctx); 2987 2988 /* must to indicate which section of VSI context are being modified */ 2989 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2990 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2991 if (status) { 2992 dev_info(dev, "Failed VSI Update\n"); 2993 ret = -EIO; 2994 goto out; 2995 } 2996 2997 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2998 max_txqs); 2999 3000 if (status) { 3001 dev_err(dev, "VSI %d failed TC config, error %s\n", 3002 vsi->vsi_num, ice_stat_str(status)); 3003 ret = -EIO; 3004 goto out; 3005 } 3006 ice_vsi_update_q_map(vsi, ctx); 3007 vsi->info.valid_sections = 0; 3008 3009 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3010 out: 3011 kfree(ctx); 3012 return ret; 3013 } 3014 #endif /* CONFIG_DCB */ 3015 3016 /** 3017 * ice_update_ring_stats - Update ring statistics 3018 * @ring: ring to update 3019 * @cont: used to increment per-vector counters 3020 * @pkts: number of processed packets 3021 * @bytes: number of processed bytes 3022 * 3023 * This function assumes that caller has acquired a u64_stats_sync lock. 3024 */ 3025 static void 3026 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3027 u64 pkts, u64 bytes) 3028 { 3029 ring->stats.bytes += bytes; 3030 ring->stats.pkts += pkts; 3031 cont->total_bytes += bytes; 3032 cont->total_pkts += pkts; 3033 } 3034 3035 /** 3036 * ice_update_tx_ring_stats - Update Tx ring specific counters 3037 * @tx_ring: ring to update 3038 * @pkts: number of processed packets 3039 * @bytes: number of processed bytes 3040 */ 3041 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3042 { 3043 u64_stats_update_begin(&tx_ring->syncp); 3044 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3045 u64_stats_update_end(&tx_ring->syncp); 3046 } 3047 3048 /** 3049 * ice_update_rx_ring_stats - Update Rx ring specific counters 3050 * @rx_ring: ring to update 3051 * @pkts: number of processed packets 3052 * @bytes: number of processed bytes 3053 */ 3054 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3055 { 3056 u64_stats_update_begin(&rx_ring->syncp); 3057 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3058 u64_stats_update_end(&rx_ring->syncp); 3059 } 3060 3061 /** 3062 * ice_status_to_errno - convert from enum ice_status to Linux errno 3063 * @err: ice_status value to convert 3064 */ 3065 int ice_status_to_errno(enum ice_status err) 3066 { 3067 switch (err) { 3068 case ICE_SUCCESS: 3069 return 0; 3070 case ICE_ERR_DOES_NOT_EXIST: 3071 return -ENOENT; 3072 case ICE_ERR_OUT_OF_RANGE: 3073 return -ENOTTY; 3074 case ICE_ERR_PARAM: 3075 return -EINVAL; 3076 case ICE_ERR_NO_MEMORY: 3077 return -ENOMEM; 3078 case ICE_ERR_MAX_LIMIT: 3079 return -EAGAIN; 3080 default: 3081 return -EINVAL; 3082 } 3083 } 3084 3085 /** 3086 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3087 * @sw: switch to check if its default forwarding VSI is free 3088 * 3089 * Return true if the default forwarding VSI is already being used, else returns 3090 * false signalling that it's available to use. 3091 */ 3092 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3093 { 3094 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3095 } 3096 3097 /** 3098 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3099 * @sw: switch for the default forwarding VSI to compare against 3100 * @vsi: VSI to compare against default forwarding VSI 3101 * 3102 * If this VSI passed in is the default forwarding VSI then return true, else 3103 * return false 3104 */ 3105 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3106 { 3107 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3108 } 3109 3110 /** 3111 * ice_set_dflt_vsi - set the default forwarding VSI 3112 * @sw: switch used to assign the default forwarding VSI 3113 * @vsi: VSI getting set as the default forwarding VSI on the switch 3114 * 3115 * If the VSI passed in is already the default VSI and it's enabled just return 3116 * success. 3117 * 3118 * If there is already a default VSI on the switch and it's enabled then return 3119 * -EEXIST since there can only be one default VSI per switch. 3120 * 3121 * Otherwise try to set the VSI passed in as the switch's default VSI and 3122 * return the result. 3123 */ 3124 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3125 { 3126 enum ice_status status; 3127 struct device *dev; 3128 3129 if (!sw || !vsi) 3130 return -EINVAL; 3131 3132 dev = ice_pf_to_dev(vsi->back); 3133 3134 /* the VSI passed in is already the default VSI */ 3135 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3136 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3137 vsi->vsi_num); 3138 return 0; 3139 } 3140 3141 /* another VSI is already the default VSI for this switch */ 3142 if (ice_is_dflt_vsi_in_use(sw)) { 3143 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3144 sw->dflt_vsi->vsi_num); 3145 return -EEXIST; 3146 } 3147 3148 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3149 if (status) { 3150 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3151 vsi->vsi_num, ice_stat_str(status)); 3152 return -EIO; 3153 } 3154 3155 sw->dflt_vsi = vsi; 3156 sw->dflt_vsi_ena = true; 3157 3158 return 0; 3159 } 3160 3161 /** 3162 * ice_clear_dflt_vsi - clear the default forwarding VSI 3163 * @sw: switch used to clear the default VSI 3164 * 3165 * If the switch has no default VSI or it's not enabled then return error. 3166 * 3167 * Otherwise try to clear the default VSI and return the result. 3168 */ 3169 int ice_clear_dflt_vsi(struct ice_sw *sw) 3170 { 3171 struct ice_vsi *dflt_vsi; 3172 enum ice_status status; 3173 struct device *dev; 3174 3175 if (!sw) 3176 return -EINVAL; 3177 3178 dev = ice_pf_to_dev(sw->pf); 3179 3180 dflt_vsi = sw->dflt_vsi; 3181 3182 /* there is no default VSI configured */ 3183 if (!ice_is_dflt_vsi_in_use(sw)) 3184 return -ENODEV; 3185 3186 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3187 ICE_FLTR_RX); 3188 if (status) { 3189 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3190 dflt_vsi->vsi_num, ice_stat_str(status)); 3191 return -EIO; 3192 } 3193 3194 sw->dflt_vsi = NULL; 3195 sw->dflt_vsi_ena = false; 3196 3197 return 0; 3198 } 3199