1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_dcb_lib.h" 9 10 /** 11 * ice_vsi_type_str - maps VSI type enum to string equivalents 12 * @type: VSI type enum 13 */ 14 const char *ice_vsi_type_str(enum ice_vsi_type type) 15 { 16 switch (type) { 17 case ICE_VSI_PF: 18 return "ICE_VSI_PF"; 19 case ICE_VSI_VF: 20 return "ICE_VSI_VF"; 21 case ICE_VSI_LB: 22 return "ICE_VSI_LB"; 23 default: 24 return "unknown"; 25 } 26 } 27 28 /** 29 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 30 * @vsi: the VSI being configured 31 * @ena: start or stop the Rx rings 32 */ 33 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 34 { 35 int i, ret = 0; 36 37 for (i = 0; i < vsi->num_rxq; i++) { 38 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i); 39 if (ret) 40 break; 41 } 42 43 return ret; 44 } 45 46 /** 47 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 48 * @vsi: VSI pointer 49 * 50 * On error: returns error code (negative) 51 * On success: returns 0 52 */ 53 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 54 { 55 struct ice_pf *pf = vsi->back; 56 struct device *dev; 57 58 dev = ice_pf_to_dev(pf); 59 60 /* allocate memory for both Tx and Rx ring pointers */ 61 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 62 sizeof(*vsi->tx_rings), GFP_KERNEL); 63 if (!vsi->tx_rings) 64 return -ENOMEM; 65 66 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 67 sizeof(*vsi->rx_rings), GFP_KERNEL); 68 if (!vsi->rx_rings) 69 goto err_rings; 70 71 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 72 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 73 sizeof(*vsi->txq_map), GFP_KERNEL); 74 75 if (!vsi->txq_map) 76 goto err_txq_map; 77 78 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 79 sizeof(*vsi->rxq_map), GFP_KERNEL); 80 if (!vsi->rxq_map) 81 goto err_rxq_map; 82 83 /* There is no need to allocate q_vectors for a loopback VSI. */ 84 if (vsi->type == ICE_VSI_LB) 85 return 0; 86 87 /* allocate memory for q_vector pointers */ 88 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 89 sizeof(*vsi->q_vectors), GFP_KERNEL); 90 if (!vsi->q_vectors) 91 goto err_vectors; 92 93 return 0; 94 95 err_vectors: 96 devm_kfree(dev, vsi->rxq_map); 97 err_rxq_map: 98 devm_kfree(dev, vsi->txq_map); 99 err_txq_map: 100 devm_kfree(dev, vsi->rx_rings); 101 err_rings: 102 devm_kfree(dev, vsi->tx_rings); 103 return -ENOMEM; 104 } 105 106 /** 107 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 108 * @vsi: the VSI being configured 109 */ 110 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 111 { 112 switch (vsi->type) { 113 case ICE_VSI_PF: 114 /* fall through */ 115 case ICE_VSI_LB: 116 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 117 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 118 break; 119 default: 120 dev_dbg(&vsi->back->pdev->dev, 121 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 122 vsi->type); 123 break; 124 } 125 } 126 127 /** 128 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 129 * @vsi: the VSI being configured 130 * @vf_id: ID of the VF being configured 131 * 132 * Return 0 on success and a negative value on error 133 */ 134 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 135 { 136 struct ice_pf *pf = vsi->back; 137 struct ice_vf *vf = NULL; 138 139 if (vsi->type == ICE_VSI_VF) 140 vsi->vf_id = vf_id; 141 142 switch (vsi->type) { 143 case ICE_VSI_PF: 144 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 145 num_online_cpus()); 146 if (vsi->req_txq) { 147 vsi->alloc_txq = vsi->req_txq; 148 vsi->num_txq = vsi->req_txq; 149 } 150 151 pf->num_lan_tx = vsi->alloc_txq; 152 153 /* only 1 Rx queue unless RSS is enabled */ 154 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 155 vsi->alloc_rxq = 1; 156 } else { 157 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 158 num_online_cpus()); 159 if (vsi->req_rxq) { 160 vsi->alloc_rxq = vsi->req_rxq; 161 vsi->num_rxq = vsi->req_rxq; 162 } 163 } 164 165 pf->num_lan_rx = vsi->alloc_rxq; 166 167 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 168 break; 169 case ICE_VSI_VF: 170 vf = &pf->vf[vsi->vf_id]; 171 vsi->alloc_txq = vf->num_vf_qs; 172 vsi->alloc_rxq = vf->num_vf_qs; 173 /* pf->num_vf_msix includes (VF miscellaneous vector + 174 * data queue interrupts). Since vsi->num_q_vectors is number 175 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 176 * original vector count 177 */ 178 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 179 break; 180 case ICE_VSI_LB: 181 vsi->alloc_txq = 1; 182 vsi->alloc_rxq = 1; 183 break; 184 default: 185 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 186 break; 187 } 188 189 ice_vsi_set_num_desc(vsi); 190 } 191 192 /** 193 * ice_get_free_slot - get the next non-NULL location index in array 194 * @array: array to search 195 * @size: size of the array 196 * @curr: last known occupied index to be used as a search hint 197 * 198 * void * is being used to keep the functionality generic. This lets us use this 199 * function on any array of pointers. 200 */ 201 static int ice_get_free_slot(void *array, int size, int curr) 202 { 203 int **tmp_array = (int **)array; 204 int next; 205 206 if (curr < (size - 1) && !tmp_array[curr + 1]) { 207 next = curr + 1; 208 } else { 209 int i = 0; 210 211 while ((i < size) && (tmp_array[i])) 212 i++; 213 if (i == size) 214 next = ICE_NO_VSI; 215 else 216 next = i; 217 } 218 return next; 219 } 220 221 /** 222 * ice_vsi_delete - delete a VSI from the switch 223 * @vsi: pointer to VSI being removed 224 */ 225 void ice_vsi_delete(struct ice_vsi *vsi) 226 { 227 struct ice_pf *pf = vsi->back; 228 struct ice_vsi_ctx *ctxt; 229 enum ice_status status; 230 231 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 232 if (!ctxt) 233 return; 234 235 if (vsi->type == ICE_VSI_VF) 236 ctxt->vf_num = vsi->vf_id; 237 ctxt->vsi_num = vsi->vsi_num; 238 239 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 240 241 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 242 if (status) 243 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 244 vsi->vsi_num, status); 245 246 kfree(ctxt); 247 } 248 249 /** 250 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 251 * @vsi: pointer to VSI being cleared 252 */ 253 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 254 { 255 struct ice_pf *pf = vsi->back; 256 struct device *dev; 257 258 dev = ice_pf_to_dev(pf); 259 260 /* free the ring and vector containers */ 261 if (vsi->q_vectors) { 262 devm_kfree(dev, vsi->q_vectors); 263 vsi->q_vectors = NULL; 264 } 265 if (vsi->tx_rings) { 266 devm_kfree(dev, vsi->tx_rings); 267 vsi->tx_rings = NULL; 268 } 269 if (vsi->rx_rings) { 270 devm_kfree(dev, vsi->rx_rings); 271 vsi->rx_rings = NULL; 272 } 273 if (vsi->txq_map) { 274 devm_kfree(dev, vsi->txq_map); 275 vsi->txq_map = NULL; 276 } 277 if (vsi->rxq_map) { 278 devm_kfree(dev, vsi->rxq_map); 279 vsi->rxq_map = NULL; 280 } 281 } 282 283 /** 284 * ice_vsi_clear - clean up and deallocate the provided VSI 285 * @vsi: pointer to VSI being cleared 286 * 287 * This deallocates the VSI's queue resources, removes it from the PF's 288 * VSI array if necessary, and deallocates the VSI 289 * 290 * Returns 0 on success, negative on failure 291 */ 292 int ice_vsi_clear(struct ice_vsi *vsi) 293 { 294 struct ice_pf *pf = NULL; 295 struct device *dev; 296 297 if (!vsi) 298 return 0; 299 300 if (!vsi->back) 301 return -EINVAL; 302 303 pf = vsi->back; 304 dev = ice_pf_to_dev(pf); 305 306 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 307 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 308 return -EINVAL; 309 } 310 311 mutex_lock(&pf->sw_mutex); 312 /* updates the PF for this cleared VSI */ 313 314 pf->vsi[vsi->idx] = NULL; 315 if (vsi->idx < pf->next_vsi) 316 pf->next_vsi = vsi->idx; 317 318 ice_vsi_free_arrays(vsi); 319 mutex_unlock(&pf->sw_mutex); 320 devm_kfree(dev, vsi); 321 322 return 0; 323 } 324 325 /** 326 * ice_msix_clean_rings - MSIX mode Interrupt Handler 327 * @irq: interrupt number 328 * @data: pointer to a q_vector 329 */ 330 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 331 { 332 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 333 334 if (!q_vector->tx.ring && !q_vector->rx.ring) 335 return IRQ_HANDLED; 336 337 napi_schedule(&q_vector->napi); 338 339 return IRQ_HANDLED; 340 } 341 342 /** 343 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 344 * @pf: board private structure 345 * @type: type of VSI 346 * @vf_id: ID of the VF being configured 347 * 348 * returns a pointer to a VSI on success, NULL on failure. 349 */ 350 static struct ice_vsi * 351 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 352 { 353 struct device *dev = ice_pf_to_dev(pf); 354 struct ice_vsi *vsi = NULL; 355 356 /* Need to protect the allocation of the VSIs at the PF level */ 357 mutex_lock(&pf->sw_mutex); 358 359 /* If we have already allocated our maximum number of VSIs, 360 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 361 * is available to be populated 362 */ 363 if (pf->next_vsi == ICE_NO_VSI) { 364 dev_dbg(dev, "out of VSI slots!\n"); 365 goto unlock_pf; 366 } 367 368 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 369 if (!vsi) 370 goto unlock_pf; 371 372 vsi->type = type; 373 vsi->back = pf; 374 set_bit(__ICE_DOWN, vsi->state); 375 376 vsi->idx = pf->next_vsi; 377 378 if (type == ICE_VSI_VF) 379 ice_vsi_set_num_qs(vsi, vf_id); 380 else 381 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 382 383 switch (vsi->type) { 384 case ICE_VSI_PF: 385 if (ice_vsi_alloc_arrays(vsi)) 386 goto err_rings; 387 388 /* Setup default MSIX irq handler for VSI */ 389 vsi->irq_handler = ice_msix_clean_rings; 390 break; 391 case ICE_VSI_VF: 392 if (ice_vsi_alloc_arrays(vsi)) 393 goto err_rings; 394 break; 395 case ICE_VSI_LB: 396 if (ice_vsi_alloc_arrays(vsi)) 397 goto err_rings; 398 break; 399 default: 400 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 401 goto unlock_pf; 402 } 403 404 /* fill VSI slot in the PF struct */ 405 pf->vsi[pf->next_vsi] = vsi; 406 407 /* prepare pf->next_vsi for next use */ 408 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 409 pf->next_vsi); 410 goto unlock_pf; 411 412 err_rings: 413 devm_kfree(dev, vsi); 414 vsi = NULL; 415 unlock_pf: 416 mutex_unlock(&pf->sw_mutex); 417 return vsi; 418 } 419 420 /** 421 * ice_vsi_get_qs - Assign queues from PF to VSI 422 * @vsi: the VSI to assign queues to 423 * 424 * Returns 0 on success and a negative value on error 425 */ 426 static int ice_vsi_get_qs(struct ice_vsi *vsi) 427 { 428 struct ice_pf *pf = vsi->back; 429 struct ice_qs_cfg tx_qs_cfg = { 430 .qs_mutex = &pf->avail_q_mutex, 431 .pf_map = pf->avail_txqs, 432 .pf_map_size = pf->max_pf_txqs, 433 .q_count = vsi->alloc_txq, 434 .scatter_count = ICE_MAX_SCATTER_TXQS, 435 .vsi_map = vsi->txq_map, 436 .vsi_map_offset = 0, 437 .mapping_mode = vsi->tx_mapping_mode 438 }; 439 struct ice_qs_cfg rx_qs_cfg = { 440 .qs_mutex = &pf->avail_q_mutex, 441 .pf_map = pf->avail_rxqs, 442 .pf_map_size = pf->max_pf_rxqs, 443 .q_count = vsi->alloc_rxq, 444 .scatter_count = ICE_MAX_SCATTER_RXQS, 445 .vsi_map = vsi->rxq_map, 446 .vsi_map_offset = 0, 447 .mapping_mode = vsi->rx_mapping_mode 448 }; 449 int ret = 0; 450 451 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 452 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 453 454 ret = __ice_vsi_get_qs(&tx_qs_cfg); 455 if (!ret) 456 ret = __ice_vsi_get_qs(&rx_qs_cfg); 457 458 return ret; 459 } 460 461 /** 462 * ice_vsi_put_qs - Release queues from VSI to PF 463 * @vsi: the VSI that is going to release queues 464 */ 465 void ice_vsi_put_qs(struct ice_vsi *vsi) 466 { 467 struct ice_pf *pf = vsi->back; 468 int i; 469 470 mutex_lock(&pf->avail_q_mutex); 471 472 for (i = 0; i < vsi->alloc_txq; i++) { 473 clear_bit(vsi->txq_map[i], pf->avail_txqs); 474 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 475 } 476 477 for (i = 0; i < vsi->alloc_rxq; i++) { 478 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 479 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 480 } 481 482 mutex_unlock(&pf->avail_q_mutex); 483 } 484 485 /** 486 * ice_is_safe_mode 487 * @pf: pointer to the PF struct 488 * 489 * returns true if driver is in safe mode, false otherwise 490 */ 491 bool ice_is_safe_mode(struct ice_pf *pf) 492 { 493 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 494 } 495 496 /** 497 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 498 * @vsi: the VSI being cleaned up 499 * 500 * This function deletes RSS input set for all flows that were configured 501 * for this VSI 502 */ 503 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 504 { 505 struct ice_pf *pf = vsi->back; 506 enum ice_status status; 507 508 if (ice_is_safe_mode(pf)) 509 return; 510 511 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 512 if (status) 513 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 514 vsi->vsi_num, status); 515 } 516 517 /** 518 * ice_rss_clean - Delete RSS related VSI structures and configuration 519 * @vsi: the VSI being removed 520 */ 521 static void ice_rss_clean(struct ice_vsi *vsi) 522 { 523 struct ice_pf *pf = vsi->back; 524 struct device *dev; 525 526 dev = ice_pf_to_dev(pf); 527 528 if (vsi->rss_hkey_user) 529 devm_kfree(dev, vsi->rss_hkey_user); 530 if (vsi->rss_lut_user) 531 devm_kfree(dev, vsi->rss_lut_user); 532 533 ice_vsi_clean_rss_flow_fld(vsi); 534 /* remove RSS replay list */ 535 if (!ice_is_safe_mode(pf)) 536 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 537 } 538 539 /** 540 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 541 * @vsi: the VSI being configured 542 */ 543 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 544 { 545 struct ice_hw_common_caps *cap; 546 struct ice_pf *pf = vsi->back; 547 548 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 549 vsi->rss_size = 1; 550 return; 551 } 552 553 cap = &pf->hw.func_caps.common_cap; 554 switch (vsi->type) { 555 case ICE_VSI_PF: 556 /* PF VSI will inherit RSS instance of PF */ 557 vsi->rss_table_size = cap->rss_table_size; 558 vsi->rss_size = min_t(int, num_online_cpus(), 559 BIT(cap->rss_table_entry_width)); 560 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 561 break; 562 case ICE_VSI_VF: 563 /* VF VSI will gets a small RSS table 564 * For VSI_LUT, LUT size should be set to 64 bytes 565 */ 566 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 567 vsi->rss_size = min_t(int, num_online_cpus(), 568 BIT(cap->rss_table_entry_width)); 569 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 570 break; 571 case ICE_VSI_LB: 572 break; 573 default: 574 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", 575 vsi->type); 576 break; 577 } 578 } 579 580 /** 581 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 582 * @ctxt: the VSI context being set 583 * 584 * This initializes a default VSI context for all sections except the Queues. 585 */ 586 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 587 { 588 u32 table = 0; 589 590 memset(&ctxt->info, 0, sizeof(ctxt->info)); 591 /* VSI's should be allocated from shared pool */ 592 ctxt->alloc_from_pool = true; 593 /* Src pruning enabled by default */ 594 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 595 /* Traffic from VSI can be sent to LAN */ 596 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 597 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 598 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 599 * packets untagged/tagged. 600 */ 601 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 602 ICE_AQ_VSI_VLAN_MODE_M) >> 603 ICE_AQ_VSI_VLAN_MODE_S); 604 /* Have 1:1 UP mapping for both ingress/egress tables */ 605 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 606 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 607 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 608 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 609 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 610 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 611 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 612 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 613 ctxt->info.ingress_table = cpu_to_le32(table); 614 ctxt->info.egress_table = cpu_to_le32(table); 615 /* Have 1:1 UP mapping for outer to inner UP table */ 616 ctxt->info.outer_up_table = cpu_to_le32(table); 617 /* No Outer tag support outer_tag_flags remains to zero */ 618 } 619 620 /** 621 * ice_vsi_setup_q_map - Setup a VSI queue map 622 * @vsi: the VSI being configured 623 * @ctxt: VSI context structure 624 */ 625 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 626 { 627 u16 offset = 0, qmap = 0, tx_count = 0; 628 u16 qcount_tx = vsi->alloc_txq; 629 u16 qcount_rx = vsi->alloc_rxq; 630 u16 tx_numq_tc, rx_numq_tc; 631 u16 pow = 0, max_rss = 0; 632 bool ena_tc0 = false; 633 u8 netdev_tc = 0; 634 int i; 635 636 /* at least TC0 should be enabled by default */ 637 if (vsi->tc_cfg.numtc) { 638 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 639 ena_tc0 = true; 640 } else { 641 ena_tc0 = true; 642 } 643 644 if (ena_tc0) { 645 vsi->tc_cfg.numtc++; 646 vsi->tc_cfg.ena_tc |= 1; 647 } 648 649 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 650 if (!rx_numq_tc) 651 rx_numq_tc = 1; 652 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 653 if (!tx_numq_tc) 654 tx_numq_tc = 1; 655 656 /* TC mapping is a function of the number of Rx queues assigned to the 657 * VSI for each traffic class and the offset of these queues. 658 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 659 * queues allocated to TC0. No:of queues is a power-of-2. 660 * 661 * If TC is not enabled, the queue offset is set to 0, and allocate one 662 * queue, this way, traffic for the given TC will be sent to the default 663 * queue. 664 * 665 * Setup number and offset of Rx queues for all TCs for the VSI 666 */ 667 668 qcount_rx = rx_numq_tc; 669 670 /* qcount will change if RSS is enabled */ 671 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 672 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 673 if (vsi->type == ICE_VSI_PF) 674 max_rss = ICE_MAX_LG_RSS_QS; 675 else 676 max_rss = ICE_MAX_SMALL_RSS_QS; 677 qcount_rx = min_t(int, rx_numq_tc, max_rss); 678 if (!vsi->req_rxq) 679 qcount_rx = min_t(int, qcount_rx, 680 vsi->rss_size); 681 } 682 } 683 684 /* find the (rounded up) power-of-2 of qcount */ 685 pow = order_base_2(qcount_rx); 686 687 ice_for_each_traffic_class(i) { 688 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 689 /* TC is not enabled */ 690 vsi->tc_cfg.tc_info[i].qoffset = 0; 691 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 692 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 693 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 694 ctxt->info.tc_mapping[i] = 0; 695 continue; 696 } 697 698 /* TC is enabled */ 699 vsi->tc_cfg.tc_info[i].qoffset = offset; 700 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 701 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 702 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 703 704 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 705 ICE_AQ_VSI_TC_Q_OFFSET_M) | 706 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 707 ICE_AQ_VSI_TC_Q_NUM_M); 708 offset += qcount_rx; 709 tx_count += tx_numq_tc; 710 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 711 } 712 713 /* if offset is non-zero, means it is calculated correctly based on 714 * enabled TCs for a given VSI otherwise qcount_rx will always 715 * be correct and non-zero because it is based off - VSI's 716 * allocated Rx queues which is at least 1 (hence qcount_tx will be 717 * at least 1) 718 */ 719 if (offset) 720 vsi->num_rxq = offset; 721 else 722 vsi->num_rxq = qcount_rx; 723 724 vsi->num_txq = tx_count; 725 726 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 727 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 728 /* since there is a chance that num_rxq could have been changed 729 * in the above for loop, make num_txq equal to num_rxq. 730 */ 731 vsi->num_txq = vsi->num_rxq; 732 } 733 734 /* Rx queue mapping */ 735 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 736 /* q_mapping buffer holds the info for the first queue allocated for 737 * this VSI in the PF space and also the number of queues associated 738 * with this VSI. 739 */ 740 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 741 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 742 } 743 744 /** 745 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 746 * @ctxt: the VSI context being set 747 * @vsi: the VSI being configured 748 */ 749 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 750 { 751 u8 lut_type, hash_type; 752 struct device *dev; 753 struct ice_pf *pf; 754 755 pf = vsi->back; 756 dev = ice_pf_to_dev(pf); 757 758 switch (vsi->type) { 759 case ICE_VSI_PF: 760 /* PF VSI will inherit RSS instance of PF */ 761 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 762 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 763 break; 764 case ICE_VSI_VF: 765 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 766 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 767 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 768 break; 769 case ICE_VSI_LB: 770 dev_dbg(dev, "Unsupported VSI type %s\n", 771 ice_vsi_type_str(vsi->type)); 772 return; 773 default: 774 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 775 return; 776 } 777 778 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 779 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 780 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 781 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 782 } 783 784 /** 785 * ice_vsi_init - Create and initialize a VSI 786 * @vsi: the VSI being configured 787 * @init_vsi: is this call creating a VSI 788 * 789 * This initializes a VSI context depending on the VSI type to be added and 790 * passes it down to the add_vsi aq command to create a new VSI. 791 */ 792 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 793 { 794 struct ice_pf *pf = vsi->back; 795 struct ice_hw *hw = &pf->hw; 796 struct ice_vsi_ctx *ctxt; 797 struct device *dev; 798 int ret = 0; 799 800 dev = ice_pf_to_dev(pf); 801 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 802 if (!ctxt) 803 return -ENOMEM; 804 805 ctxt->info = vsi->info; 806 switch (vsi->type) { 807 case ICE_VSI_LB: 808 /* fall through */ 809 case ICE_VSI_PF: 810 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 811 break; 812 case ICE_VSI_VF: 813 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 814 /* VF number here is the absolute VF number (0-255) */ 815 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 816 break; 817 default: 818 ret = -ENODEV; 819 goto out; 820 } 821 822 ice_set_dflt_vsi_ctx(ctxt); 823 /* if the switch is in VEB mode, allow VSI loopback */ 824 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 825 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 826 827 /* Set LUT type and HASH type if RSS is enabled */ 828 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 829 ice_set_rss_vsi_ctx(ctxt, vsi); 830 /* if updating VSI context, make sure to set valid_section: 831 * to indicate which section of VSI context being updated 832 */ 833 if (!init_vsi) 834 ctxt->info.valid_sections |= 835 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 836 } 837 838 ctxt->info.sw_id = vsi->port_info->sw_id; 839 ice_vsi_setup_q_map(vsi, ctxt); 840 if (!init_vsi) /* means VSI being updated */ 841 /* must to indicate which section of VSI context are 842 * being modified 843 */ 844 ctxt->info.valid_sections |= 845 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 846 847 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 848 * respectively 849 */ 850 if (vsi->type == ICE_VSI_VF) { 851 ctxt->info.valid_sections |= 852 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 853 if (pf->vf[vsi->vf_id].spoofchk) { 854 ctxt->info.sec_flags |= 855 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 856 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 857 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 858 } else { 859 ctxt->info.sec_flags &= 860 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 861 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 862 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 863 } 864 } 865 866 /* Allow control frames out of main VSI */ 867 if (vsi->type == ICE_VSI_PF) { 868 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 869 ctxt->info.valid_sections |= 870 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 871 } 872 873 if (init_vsi) { 874 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 875 if (ret) { 876 dev_err(dev, "Add VSI failed, err %d\n", ret); 877 ret = -EIO; 878 goto out; 879 } 880 } else { 881 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 882 if (ret) { 883 dev_err(dev, "Update VSI failed, err %d\n", ret); 884 ret = -EIO; 885 goto out; 886 } 887 } 888 889 /* keep context for update VSI operations */ 890 vsi->info = ctxt->info; 891 892 /* record VSI number returned */ 893 vsi->vsi_num = ctxt->vsi_num; 894 895 out: 896 kfree(ctxt); 897 return ret; 898 } 899 900 /** 901 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 902 * @vsi: ptr to the VSI 903 * 904 * This should only be called after ice_vsi_alloc() which allocates the 905 * corresponding SW VSI structure and initializes num_queue_pairs for the 906 * newly allocated VSI. 907 * 908 * Returns 0 on success or negative on failure 909 */ 910 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 911 { 912 struct ice_pf *pf = vsi->back; 913 struct device *dev; 914 u16 num_q_vectors; 915 916 dev = ice_pf_to_dev(pf); 917 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 918 if (vsi->type == ICE_VSI_VF) 919 return 0; 920 921 if (vsi->base_vector) { 922 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 923 vsi->vsi_num, vsi->base_vector); 924 return -EEXIST; 925 } 926 927 num_q_vectors = vsi->num_q_vectors; 928 /* reserve slots from OS requested IRQs */ 929 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 930 vsi->idx); 931 if (vsi->base_vector < 0) { 932 dev_err(dev, 933 "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 934 num_q_vectors, vsi->vsi_num, vsi->base_vector); 935 return -ENOENT; 936 } 937 pf->num_avail_sw_msix -= num_q_vectors; 938 939 return 0; 940 } 941 942 /** 943 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 944 * @vsi: the VSI having rings deallocated 945 */ 946 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 947 { 948 int i; 949 950 if (vsi->tx_rings) { 951 for (i = 0; i < vsi->alloc_txq; i++) { 952 if (vsi->tx_rings[i]) { 953 kfree_rcu(vsi->tx_rings[i], rcu); 954 vsi->tx_rings[i] = NULL; 955 } 956 } 957 } 958 if (vsi->rx_rings) { 959 for (i = 0; i < vsi->alloc_rxq; i++) { 960 if (vsi->rx_rings[i]) { 961 kfree_rcu(vsi->rx_rings[i], rcu); 962 vsi->rx_rings[i] = NULL; 963 } 964 } 965 } 966 } 967 968 /** 969 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 970 * @vsi: VSI which is having rings allocated 971 */ 972 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 973 { 974 struct ice_pf *pf = vsi->back; 975 struct device *dev; 976 int i; 977 978 dev = ice_pf_to_dev(pf); 979 /* Allocate Tx rings */ 980 for (i = 0; i < vsi->alloc_txq; i++) { 981 struct ice_ring *ring; 982 983 /* allocate with kzalloc(), free with kfree_rcu() */ 984 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 985 986 if (!ring) 987 goto err_out; 988 989 ring->q_index = i; 990 ring->reg_idx = vsi->txq_map[i]; 991 ring->ring_active = false; 992 ring->vsi = vsi; 993 ring->dev = dev; 994 ring->count = vsi->num_tx_desc; 995 vsi->tx_rings[i] = ring; 996 } 997 998 /* Allocate Rx rings */ 999 for (i = 0; i < vsi->alloc_rxq; i++) { 1000 struct ice_ring *ring; 1001 1002 /* allocate with kzalloc(), free with kfree_rcu() */ 1003 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1004 if (!ring) 1005 goto err_out; 1006 1007 ring->q_index = i; 1008 ring->reg_idx = vsi->rxq_map[i]; 1009 ring->ring_active = false; 1010 ring->vsi = vsi; 1011 ring->netdev = vsi->netdev; 1012 ring->dev = dev; 1013 ring->count = vsi->num_rx_desc; 1014 vsi->rx_rings[i] = ring; 1015 } 1016 1017 return 0; 1018 1019 err_out: 1020 ice_vsi_clear_rings(vsi); 1021 return -ENOMEM; 1022 } 1023 1024 /** 1025 * ice_vsi_manage_rss_lut - disable/enable RSS 1026 * @vsi: the VSI being changed 1027 * @ena: boolean value indicating if this is an enable or disable request 1028 * 1029 * In the event of disable request for RSS, this function will zero out RSS 1030 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1031 * LUT. 1032 */ 1033 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1034 { 1035 int err = 0; 1036 u8 *lut; 1037 1038 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1039 if (!lut) 1040 return -ENOMEM; 1041 1042 if (ena) { 1043 if (vsi->rss_lut_user) 1044 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1045 else 1046 ice_fill_rss_lut(lut, vsi->rss_table_size, 1047 vsi->rss_size); 1048 } 1049 1050 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1051 kfree(lut); 1052 return err; 1053 } 1054 1055 /** 1056 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1057 * @vsi: VSI to be configured 1058 */ 1059 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1060 { 1061 struct ice_aqc_get_set_rss_keys *key; 1062 struct ice_pf *pf = vsi->back; 1063 enum ice_status status; 1064 struct device *dev; 1065 int err = 0; 1066 u8 *lut; 1067 1068 dev = ice_pf_to_dev(pf); 1069 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1070 1071 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1072 if (!lut) 1073 return -ENOMEM; 1074 1075 if (vsi->rss_lut_user) 1076 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1077 else 1078 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1079 1080 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1081 vsi->rss_table_size); 1082 1083 if (status) { 1084 dev_err(dev, "set_rss_lut failed, error %d\n", status); 1085 err = -EIO; 1086 goto ice_vsi_cfg_rss_exit; 1087 } 1088 1089 key = kzalloc(sizeof(*key), GFP_KERNEL); 1090 if (!key) { 1091 err = -ENOMEM; 1092 goto ice_vsi_cfg_rss_exit; 1093 } 1094 1095 if (vsi->rss_hkey_user) 1096 memcpy(key, 1097 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1098 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1099 else 1100 netdev_rss_key_fill((void *)key, 1101 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1102 1103 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1104 1105 if (status) { 1106 dev_err(dev, "set_rss_key failed, error %d\n", status); 1107 err = -EIO; 1108 } 1109 1110 kfree(key); 1111 ice_vsi_cfg_rss_exit: 1112 kfree(lut); 1113 return err; 1114 } 1115 1116 /** 1117 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1118 * @vsi: VSI to be configured 1119 * 1120 * This function will only be called during the VF VSI setup. Upon successful 1121 * completion of package download, this function will configure default RSS 1122 * input sets for VF VSI. 1123 */ 1124 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1125 { 1126 struct ice_pf *pf = vsi->back; 1127 enum ice_status status; 1128 struct device *dev; 1129 1130 dev = ice_pf_to_dev(pf); 1131 if (ice_is_safe_mode(pf)) { 1132 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1133 vsi->vsi_num); 1134 return; 1135 } 1136 1137 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1138 if (status) 1139 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1140 vsi->vsi_num, status); 1141 } 1142 1143 /** 1144 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1145 * @vsi: VSI to be configured 1146 * 1147 * This function will only be called after successful download package call 1148 * during initialization of PF. Since the downloaded package will erase the 1149 * RSS section, this function will configure RSS input sets for different 1150 * flow types. The last profile added has the highest priority, therefore 2 1151 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1152 * (i.e. IPv4 src/dst TCP src/dst port). 1153 */ 1154 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1155 { 1156 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1157 struct ice_pf *pf = vsi->back; 1158 struct ice_hw *hw = &pf->hw; 1159 enum ice_status status; 1160 struct device *dev; 1161 1162 dev = ice_pf_to_dev(pf); 1163 if (ice_is_safe_mode(pf)) { 1164 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1165 vsi_num); 1166 return; 1167 } 1168 /* configure RSS for IPv4 with input set IP src/dst */ 1169 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1170 ICE_FLOW_SEG_HDR_IPV4); 1171 if (status) 1172 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1173 vsi_num, status); 1174 1175 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1176 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1177 ICE_FLOW_SEG_HDR_IPV6); 1178 if (status) 1179 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1180 vsi_num, status); 1181 1182 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1183 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1184 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1185 if (status) 1186 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1187 vsi_num, status); 1188 1189 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1190 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1191 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1192 if (status) 1193 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1194 vsi_num, status); 1195 1196 /* configure RSS for sctp4 with input set IP src/dst */ 1197 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1198 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1199 if (status) 1200 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1201 vsi_num, status); 1202 1203 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1204 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1205 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1206 if (status) 1207 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1208 vsi_num, status); 1209 1210 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1211 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1212 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1213 if (status) 1214 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1215 vsi_num, status); 1216 1217 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1218 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1219 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1220 if (status) 1221 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1222 vsi_num, status); 1223 } 1224 1225 /** 1226 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1227 * @vsi: the VSI to be forwarded to 1228 * @add_list: pointer to the list which contains MAC filter entries 1229 * @macaddr: the MAC address to be added. 1230 * 1231 * Adds MAC address filter entry to the temp list 1232 * 1233 * Returns 0 on success or ENOMEM on failure. 1234 */ 1235 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1236 const u8 *macaddr) 1237 { 1238 struct ice_fltr_list_entry *tmp; 1239 struct ice_pf *pf = vsi->back; 1240 1241 tmp = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*tmp), GFP_ATOMIC); 1242 if (!tmp) 1243 return -ENOMEM; 1244 1245 tmp->fltr_info.flag = ICE_FLTR_TX; 1246 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1247 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1248 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1249 tmp->fltr_info.vsi_handle = vsi->idx; 1250 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1251 1252 INIT_LIST_HEAD(&tmp->list_entry); 1253 list_add(&tmp->list_entry, add_list); 1254 1255 return 0; 1256 } 1257 1258 /** 1259 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1260 * @vsi: the VSI to be updated 1261 */ 1262 void ice_update_eth_stats(struct ice_vsi *vsi) 1263 { 1264 struct ice_eth_stats *prev_es, *cur_es; 1265 struct ice_hw *hw = &vsi->back->hw; 1266 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1267 1268 prev_es = &vsi->eth_stats_prev; 1269 cur_es = &vsi->eth_stats; 1270 1271 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1272 &prev_es->rx_bytes, &cur_es->rx_bytes); 1273 1274 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1275 &prev_es->rx_unicast, &cur_es->rx_unicast); 1276 1277 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1278 &prev_es->rx_multicast, &cur_es->rx_multicast); 1279 1280 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1281 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1282 1283 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1284 &prev_es->rx_discards, &cur_es->rx_discards); 1285 1286 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1287 &prev_es->tx_bytes, &cur_es->tx_bytes); 1288 1289 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1290 &prev_es->tx_unicast, &cur_es->tx_unicast); 1291 1292 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1293 &prev_es->tx_multicast, &cur_es->tx_multicast); 1294 1295 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1296 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1297 1298 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1299 &prev_es->tx_errors, &cur_es->tx_errors); 1300 1301 vsi->stat_offsets_loaded = true; 1302 } 1303 1304 /** 1305 * ice_free_fltr_list - free filter lists helper 1306 * @dev: pointer to the device struct 1307 * @h: pointer to the list head to be freed 1308 * 1309 * Helper function to free filter lists previously created using 1310 * ice_add_mac_to_list 1311 */ 1312 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1313 { 1314 struct ice_fltr_list_entry *e, *tmp; 1315 1316 list_for_each_entry_safe(e, tmp, h, list_entry) { 1317 list_del(&e->list_entry); 1318 devm_kfree(dev, e); 1319 } 1320 } 1321 1322 /** 1323 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1324 * @vsi: the VSI being configured 1325 * @vid: VLAN ID to be added 1326 */ 1327 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1328 { 1329 struct ice_fltr_list_entry *tmp; 1330 struct ice_pf *pf = vsi->back; 1331 LIST_HEAD(tmp_add_list); 1332 enum ice_status status; 1333 struct device *dev; 1334 int err = 0; 1335 1336 dev = ice_pf_to_dev(pf); 1337 tmp = devm_kzalloc(dev, sizeof(*tmp), GFP_KERNEL); 1338 if (!tmp) 1339 return -ENOMEM; 1340 1341 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1342 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1343 tmp->fltr_info.flag = ICE_FLTR_TX; 1344 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1345 tmp->fltr_info.vsi_handle = vsi->idx; 1346 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1347 1348 INIT_LIST_HEAD(&tmp->list_entry); 1349 list_add(&tmp->list_entry, &tmp_add_list); 1350 1351 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1352 if (status) { 1353 err = -ENODEV; 1354 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1355 vsi->vsi_num); 1356 } 1357 1358 ice_free_fltr_list(dev, &tmp_add_list); 1359 return err; 1360 } 1361 1362 /** 1363 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1364 * @vsi: the VSI being configured 1365 * @vid: VLAN ID to be removed 1366 * 1367 * Returns 0 on success and negative on failure 1368 */ 1369 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1370 { 1371 struct ice_fltr_list_entry *list; 1372 struct ice_pf *pf = vsi->back; 1373 LIST_HEAD(tmp_add_list); 1374 enum ice_status status; 1375 struct device *dev; 1376 int err = 0; 1377 1378 dev = ice_pf_to_dev(pf); 1379 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1380 if (!list) 1381 return -ENOMEM; 1382 1383 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1384 list->fltr_info.vsi_handle = vsi->idx; 1385 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1386 list->fltr_info.l_data.vlan.vlan_id = vid; 1387 list->fltr_info.flag = ICE_FLTR_TX; 1388 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1389 1390 INIT_LIST_HEAD(&list->list_entry); 1391 list_add(&list->list_entry, &tmp_add_list); 1392 1393 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1394 if (status == ICE_ERR_DOES_NOT_EXIST) { 1395 dev_dbg(dev, 1396 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1397 vid, vsi->vsi_num, status); 1398 } else if (status) { 1399 dev_err(dev, 1400 "Error removing VLAN %d on vsi %i error: %d\n", 1401 vid, vsi->vsi_num, status); 1402 err = -EIO; 1403 } 1404 1405 ice_free_fltr_list(dev, &tmp_add_list); 1406 return err; 1407 } 1408 1409 /** 1410 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1411 * @vsi: VSI 1412 */ 1413 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1414 { 1415 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1416 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1417 vsi->rx_buf_len = ICE_RXBUF_2048; 1418 #if (PAGE_SIZE < 8192) 1419 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1420 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1421 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1422 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1423 #endif 1424 } else { 1425 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1426 #if (PAGE_SIZE < 8192) 1427 vsi->rx_buf_len = ICE_RXBUF_3072; 1428 #else 1429 vsi->rx_buf_len = ICE_RXBUF_2048; 1430 #endif 1431 } 1432 } 1433 1434 /** 1435 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1436 * @vsi: the VSI being configured 1437 * 1438 * Return 0 on success and a negative value on error 1439 * Configure the Rx VSI for operation. 1440 */ 1441 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1442 { 1443 u16 i; 1444 1445 if (vsi->type == ICE_VSI_VF) 1446 goto setup_rings; 1447 1448 ice_vsi_cfg_frame_size(vsi); 1449 setup_rings: 1450 /* set up individual rings */ 1451 for (i = 0; i < vsi->num_rxq; i++) { 1452 int err; 1453 1454 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1455 if (err) { 1456 dev_err(&vsi->back->pdev->dev, 1457 "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1458 i, err); 1459 return err; 1460 } 1461 } 1462 1463 return 0; 1464 } 1465 1466 /** 1467 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1468 * @vsi: the VSI being configured 1469 * @rings: Tx ring array to be configured 1470 * 1471 * Return 0 on success and a negative value on error 1472 * Configure the Tx VSI for operation. 1473 */ 1474 static int 1475 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1476 { 1477 struct ice_aqc_add_tx_qgrp *qg_buf; 1478 u16 q_idx = 0; 1479 int err = 0; 1480 1481 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1482 if (!qg_buf) 1483 return -ENOMEM; 1484 1485 qg_buf->num_txqs = 1; 1486 1487 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1488 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1489 if (err) 1490 goto err_cfg_txqs; 1491 } 1492 1493 err_cfg_txqs: 1494 kfree(qg_buf); 1495 return err; 1496 } 1497 1498 /** 1499 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1500 * @vsi: the VSI being configured 1501 * 1502 * Return 0 on success and a negative value on error 1503 * Configure the Tx VSI for operation. 1504 */ 1505 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1506 { 1507 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1508 } 1509 1510 /** 1511 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1512 * @vsi: the VSI being configured 1513 * 1514 * Return 0 on success and a negative value on error 1515 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1516 */ 1517 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1518 { 1519 int ret; 1520 int i; 1521 1522 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1523 if (ret) 1524 return ret; 1525 1526 for (i = 0; i < vsi->num_xdp_txq; i++) 1527 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1528 1529 return ret; 1530 } 1531 1532 /** 1533 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1534 * @intrl: interrupt rate limit in usecs 1535 * @gran: interrupt rate limit granularity in usecs 1536 * 1537 * This function converts a decimal interrupt rate limit in usecs to the format 1538 * expected by firmware. 1539 */ 1540 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1541 { 1542 u32 val = intrl / gran; 1543 1544 if (val) 1545 return val | GLINT_RATE_INTRL_ENA_M; 1546 return 0; 1547 } 1548 1549 /** 1550 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1551 * @vsi: the VSI being configured 1552 * 1553 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1554 * for the VF VSI. 1555 */ 1556 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1557 { 1558 struct ice_pf *pf = vsi->back; 1559 struct ice_hw *hw = &pf->hw; 1560 u32 txq = 0, rxq = 0; 1561 int i, q; 1562 1563 for (i = 0; i < vsi->num_q_vectors; i++) { 1564 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1565 u16 reg_idx = q_vector->reg_idx; 1566 1567 ice_cfg_itr(hw, q_vector); 1568 1569 wr32(hw, GLINT_RATE(reg_idx), 1570 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1571 1572 /* Both Transmit Queue Interrupt Cause Control register 1573 * and Receive Queue Interrupt Cause control register 1574 * expects MSIX_INDX field to be the vector index 1575 * within the function space and not the absolute 1576 * vector index across PF or across device. 1577 * For SR-IOV VF VSIs queue vector index always starts 1578 * with 1 since first vector index(0) is used for OICR 1579 * in VF space. Since VMDq and other PF VSIs are within 1580 * the PF function space, use the vector index that is 1581 * tracked for this PF. 1582 */ 1583 for (q = 0; q < q_vector->num_ring_tx; q++) { 1584 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1585 q_vector->tx.itr_idx); 1586 txq++; 1587 } 1588 1589 for (q = 0; q < q_vector->num_ring_rx; q++) { 1590 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1591 q_vector->rx.itr_idx); 1592 rxq++; 1593 } 1594 } 1595 } 1596 1597 /** 1598 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1599 * @vsi: the VSI being changed 1600 */ 1601 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1602 { 1603 struct ice_hw *hw = &vsi->back->hw; 1604 struct ice_vsi_ctx *ctxt; 1605 enum ice_status status; 1606 int ret = 0; 1607 1608 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1609 if (!ctxt) 1610 return -ENOMEM; 1611 1612 /* Here we are configuring the VSI to let the driver add VLAN tags by 1613 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1614 * insertion happens in the Tx hot path, in ice_tx_map. 1615 */ 1616 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1617 1618 /* Preserve existing VLAN strip setting */ 1619 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1620 ICE_AQ_VSI_VLAN_EMOD_M); 1621 1622 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1623 1624 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1625 if (status) { 1626 dev_err(&vsi->back->pdev->dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1627 status, hw->adminq.sq_last_status); 1628 ret = -EIO; 1629 goto out; 1630 } 1631 1632 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1633 out: 1634 kfree(ctxt); 1635 return ret; 1636 } 1637 1638 /** 1639 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1640 * @vsi: the VSI being changed 1641 * @ena: boolean value indicating if this is a enable or disable request 1642 */ 1643 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1644 { 1645 struct ice_hw *hw = &vsi->back->hw; 1646 struct ice_vsi_ctx *ctxt; 1647 enum ice_status status; 1648 int ret = 0; 1649 1650 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1651 if (!ctxt) 1652 return -ENOMEM; 1653 1654 /* Here we are configuring what the VSI should do with the VLAN tag in 1655 * the Rx packet. We can either leave the tag in the packet or put it in 1656 * the Rx descriptor. 1657 */ 1658 if (ena) 1659 /* Strip VLAN tag from Rx packet and put it in the desc */ 1660 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1661 else 1662 /* Disable stripping. Leave tag in packet */ 1663 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1664 1665 /* Allow all packets untagged/tagged */ 1666 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1667 1668 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1669 1670 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1671 if (status) { 1672 dev_err(&vsi->back->pdev->dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1673 ena, status, hw->adminq.sq_last_status); 1674 ret = -EIO; 1675 goto out; 1676 } 1677 1678 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1679 out: 1680 kfree(ctxt); 1681 return ret; 1682 } 1683 1684 /** 1685 * ice_vsi_start_rx_rings - start VSI's Rx rings 1686 * @vsi: the VSI whose rings are to be started 1687 * 1688 * Returns 0 on success and a negative value on error 1689 */ 1690 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1691 { 1692 return ice_vsi_ctrl_rx_rings(vsi, true); 1693 } 1694 1695 /** 1696 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1697 * @vsi: the VSI 1698 * 1699 * Returns 0 on success and a negative value on error 1700 */ 1701 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1702 { 1703 return ice_vsi_ctrl_rx_rings(vsi, false); 1704 } 1705 1706 /** 1707 * ice_vsi_stop_tx_rings - Disable Tx rings 1708 * @vsi: the VSI being configured 1709 * @rst_src: reset source 1710 * @rel_vmvf_num: Relative ID of VF/VM 1711 * @rings: Tx ring array to be stopped 1712 */ 1713 static int 1714 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1715 u16 rel_vmvf_num, struct ice_ring **rings) 1716 { 1717 u16 q_idx; 1718 1719 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1720 return -EINVAL; 1721 1722 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1723 struct ice_txq_meta txq_meta = { }; 1724 int status; 1725 1726 if (!rings || !rings[q_idx]) 1727 return -EINVAL; 1728 1729 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1730 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1731 rings[q_idx], &txq_meta); 1732 1733 if (status) 1734 return status; 1735 } 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1742 * @vsi: the VSI being configured 1743 * @rst_src: reset source 1744 * @rel_vmvf_num: Relative ID of VF/VM 1745 */ 1746 int 1747 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1748 u16 rel_vmvf_num) 1749 { 1750 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1751 } 1752 1753 /** 1754 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1755 * @vsi: the VSI being configured 1756 */ 1757 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1758 { 1759 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1760 } 1761 1762 /** 1763 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1764 * @vsi: VSI to enable or disable VLAN pruning on 1765 * @ena: set to true to enable VLAN pruning and false to disable it 1766 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1767 * 1768 * returns 0 if VSI is updated, negative otherwise 1769 */ 1770 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1771 { 1772 struct ice_vsi_ctx *ctxt; 1773 struct ice_pf *pf; 1774 int status; 1775 1776 if (!vsi) 1777 return -EINVAL; 1778 1779 pf = vsi->back; 1780 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1781 if (!ctxt) 1782 return -ENOMEM; 1783 1784 ctxt->info = vsi->info; 1785 1786 if (ena) 1787 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1788 else 1789 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1790 1791 if (!vlan_promisc) 1792 ctxt->info.valid_sections = 1793 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 1794 1795 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1796 if (status) { 1797 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1798 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1799 pf->hw.adminq.sq_last_status); 1800 goto err_out; 1801 } 1802 1803 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1804 1805 kfree(ctxt); 1806 return 0; 1807 1808 err_out: 1809 kfree(ctxt); 1810 return -EIO; 1811 } 1812 1813 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1814 { 1815 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1816 1817 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1818 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1819 } 1820 1821 /** 1822 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1823 * @vsi: VSI to set the q_vectors register index on 1824 */ 1825 static int 1826 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1827 { 1828 u16 i; 1829 1830 if (!vsi || !vsi->q_vectors) 1831 return -EINVAL; 1832 1833 ice_for_each_q_vector(vsi, i) { 1834 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1835 1836 if (!q_vector) { 1837 dev_err(&vsi->back->pdev->dev, 1838 "Failed to set reg_idx on q_vector %d VSI %d\n", 1839 i, vsi->vsi_num); 1840 goto clear_reg_idx; 1841 } 1842 1843 if (vsi->type == ICE_VSI_VF) { 1844 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1845 1846 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1847 } else { 1848 q_vector->reg_idx = 1849 q_vector->v_idx + vsi->base_vector; 1850 } 1851 } 1852 1853 return 0; 1854 1855 clear_reg_idx: 1856 ice_for_each_q_vector(vsi, i) { 1857 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1858 1859 if (q_vector) 1860 q_vector->reg_idx = 0; 1861 } 1862 1863 return -EINVAL; 1864 } 1865 1866 /** 1867 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1868 * @vsi: the VSI being configured 1869 * @add_rule: boolean value to add or remove ethertype filter rule 1870 */ 1871 static void 1872 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 1873 { 1874 struct ice_fltr_list_entry *list; 1875 struct ice_pf *pf = vsi->back; 1876 LIST_HEAD(tmp_add_list); 1877 enum ice_status status; 1878 struct device *dev; 1879 1880 dev = ice_pf_to_dev(pf); 1881 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1882 if (!list) 1883 return; 1884 1885 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1886 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1887 list->fltr_info.flag = ICE_FLTR_TX; 1888 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1889 list->fltr_info.vsi_handle = vsi->idx; 1890 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 1891 1892 INIT_LIST_HEAD(&list->list_entry); 1893 list_add(&list->list_entry, &tmp_add_list); 1894 1895 if (add_rule) 1896 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1897 else 1898 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1899 1900 if (status) 1901 dev_err(dev, 1902 "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 1903 vsi->vsi_num, status); 1904 1905 ice_free_fltr_list(dev, &tmp_add_list); 1906 } 1907 1908 /** 1909 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 1910 * @vsi: the VSI being configured 1911 * @tx: bool to determine Tx or Rx rule 1912 * @create: bool to determine create or remove Rule 1913 */ 1914 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 1915 { 1916 struct ice_fltr_list_entry *list; 1917 struct ice_pf *pf = vsi->back; 1918 LIST_HEAD(tmp_add_list); 1919 enum ice_status status; 1920 struct device *dev; 1921 1922 dev = ice_pf_to_dev(pf); 1923 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1924 if (!list) 1925 return; 1926 1927 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1928 list->fltr_info.vsi_handle = vsi->idx; 1929 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 1930 1931 if (tx) { 1932 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1933 list->fltr_info.flag = ICE_FLTR_TX; 1934 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1935 } else { 1936 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1937 list->fltr_info.flag = ICE_FLTR_RX; 1938 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 1939 } 1940 1941 INIT_LIST_HEAD(&list->list_entry); 1942 list_add(&list->list_entry, &tmp_add_list); 1943 1944 if (create) 1945 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1946 else 1947 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1948 1949 if (status) 1950 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 1951 create ? "adding" : "removing", tx ? "TX" : "RX", 1952 vsi->vsi_num, status); 1953 1954 ice_free_fltr_list(dev, &tmp_add_list); 1955 } 1956 1957 /** 1958 * ice_vsi_setup - Set up a VSI by a given type 1959 * @pf: board private structure 1960 * @pi: pointer to the port_info instance 1961 * @type: VSI type 1962 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 1963 * used only for ICE_VSI_VF VSI type. For other VSI types, should 1964 * fill-in ICE_INVAL_VFID as input. 1965 * 1966 * This allocates the sw VSI structure and its queue resources. 1967 * 1968 * Returns pointer to the successfully allocated and configured VSI sw struct on 1969 * success, NULL on failure. 1970 */ 1971 struct ice_vsi * 1972 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 1973 enum ice_vsi_type type, u16 vf_id) 1974 { 1975 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1976 struct device *dev = ice_pf_to_dev(pf); 1977 enum ice_status status; 1978 struct ice_vsi *vsi; 1979 int ret, i; 1980 1981 if (type == ICE_VSI_VF) 1982 vsi = ice_vsi_alloc(pf, type, vf_id); 1983 else 1984 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 1985 1986 if (!vsi) { 1987 dev_err(dev, "could not allocate VSI\n"); 1988 return NULL; 1989 } 1990 1991 vsi->port_info = pi; 1992 vsi->vsw = pf->first_sw; 1993 if (vsi->type == ICE_VSI_PF) 1994 vsi->ethtype = ETH_P_PAUSE; 1995 1996 if (vsi->type == ICE_VSI_VF) 1997 vsi->vf_id = vf_id; 1998 1999 if (ice_vsi_get_qs(vsi)) { 2000 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2001 vsi->idx); 2002 goto unroll_get_qs; 2003 } 2004 2005 /* set RSS capabilities */ 2006 ice_vsi_set_rss_params(vsi); 2007 2008 /* set TC configuration */ 2009 ice_vsi_set_tc_cfg(vsi); 2010 2011 /* create the VSI */ 2012 ret = ice_vsi_init(vsi, true); 2013 if (ret) 2014 goto unroll_get_qs; 2015 2016 switch (vsi->type) { 2017 case ICE_VSI_PF: 2018 ret = ice_vsi_alloc_q_vectors(vsi); 2019 if (ret) 2020 goto unroll_vsi_init; 2021 2022 ret = ice_vsi_setup_vector_base(vsi); 2023 if (ret) 2024 goto unroll_alloc_q_vector; 2025 2026 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2027 if (ret) 2028 goto unroll_vector_base; 2029 2030 ret = ice_vsi_alloc_rings(vsi); 2031 if (ret) 2032 goto unroll_vector_base; 2033 2034 ice_vsi_map_rings_to_vectors(vsi); 2035 2036 /* Do not exit if configuring RSS had an issue, at least 2037 * receive traffic on first queue. Hence no need to capture 2038 * return value 2039 */ 2040 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2041 ice_vsi_cfg_rss_lut_key(vsi); 2042 ice_vsi_set_rss_flow_fld(vsi); 2043 } 2044 break; 2045 case ICE_VSI_VF: 2046 /* VF driver will take care of creating netdev for this type and 2047 * map queues to vectors through Virtchnl, PF driver only 2048 * creates a VSI and corresponding structures for bookkeeping 2049 * purpose 2050 */ 2051 ret = ice_vsi_alloc_q_vectors(vsi); 2052 if (ret) 2053 goto unroll_vsi_init; 2054 2055 ret = ice_vsi_alloc_rings(vsi); 2056 if (ret) 2057 goto unroll_alloc_q_vector; 2058 2059 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2060 if (ret) 2061 goto unroll_vector_base; 2062 2063 /* Do not exit if configuring RSS had an issue, at least 2064 * receive traffic on first queue. Hence no need to capture 2065 * return value 2066 */ 2067 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2068 ice_vsi_cfg_rss_lut_key(vsi); 2069 ice_vsi_set_vf_rss_flow_fld(vsi); 2070 } 2071 break; 2072 case ICE_VSI_LB: 2073 ret = ice_vsi_alloc_rings(vsi); 2074 if (ret) 2075 goto unroll_vsi_init; 2076 break; 2077 default: 2078 /* clean up the resources and exit */ 2079 goto unroll_vsi_init; 2080 } 2081 2082 /* configure VSI nodes based on number of queues and TC's */ 2083 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2084 max_txqs[i] = vsi->alloc_txq; 2085 2086 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2087 max_txqs); 2088 if (status) { 2089 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2090 vsi->vsi_num, status); 2091 goto unroll_vector_base; 2092 } 2093 2094 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2095 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2096 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2097 * The rule is added once for PF VSI in order to create appropriate 2098 * recipe, since VSI/VSI list is ignored with drop action... 2099 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2100 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2101 * settings in the HW. 2102 */ 2103 if (!ice_is_safe_mode(pf)) 2104 if (vsi->type == ICE_VSI_PF) { 2105 ice_vsi_add_rem_eth_mac(vsi, true); 2106 2107 /* Tx LLDP packets */ 2108 ice_cfg_sw_lldp(vsi, true, true); 2109 } 2110 2111 return vsi; 2112 2113 unroll_vector_base: 2114 /* reclaim SW interrupts back to the common pool */ 2115 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2116 pf->num_avail_sw_msix += vsi->num_q_vectors; 2117 unroll_alloc_q_vector: 2118 ice_vsi_free_q_vectors(vsi); 2119 unroll_vsi_init: 2120 ice_vsi_delete(vsi); 2121 unroll_get_qs: 2122 ice_vsi_put_qs(vsi); 2123 ice_vsi_clear(vsi); 2124 2125 return NULL; 2126 } 2127 2128 /** 2129 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2130 * @vsi: the VSI being cleaned up 2131 */ 2132 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2133 { 2134 struct ice_pf *pf = vsi->back; 2135 struct ice_hw *hw = &pf->hw; 2136 u32 txq = 0; 2137 u32 rxq = 0; 2138 int i, q; 2139 2140 for (i = 0; i < vsi->num_q_vectors; i++) { 2141 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2142 u16 reg_idx = q_vector->reg_idx; 2143 2144 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2145 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2146 for (q = 0; q < q_vector->num_ring_tx; q++) { 2147 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2148 if (ice_is_xdp_ena_vsi(vsi)) { 2149 u32 xdp_txq = txq + vsi->num_xdp_txq; 2150 2151 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2152 } 2153 txq++; 2154 } 2155 2156 for (q = 0; q < q_vector->num_ring_rx; q++) { 2157 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2158 rxq++; 2159 } 2160 } 2161 2162 ice_flush(hw); 2163 } 2164 2165 /** 2166 * ice_vsi_free_irq - Free the IRQ association with the OS 2167 * @vsi: the VSI being configured 2168 */ 2169 void ice_vsi_free_irq(struct ice_vsi *vsi) 2170 { 2171 struct ice_pf *pf = vsi->back; 2172 int base = vsi->base_vector; 2173 int i; 2174 2175 if (!vsi->q_vectors || !vsi->irqs_ready) 2176 return; 2177 2178 ice_vsi_release_msix(vsi); 2179 if (vsi->type == ICE_VSI_VF) 2180 return; 2181 2182 vsi->irqs_ready = false; 2183 ice_for_each_q_vector(vsi, i) { 2184 u16 vector = i + base; 2185 int irq_num; 2186 2187 irq_num = pf->msix_entries[vector].vector; 2188 2189 /* free only the irqs that were actually requested */ 2190 if (!vsi->q_vectors[i] || 2191 !(vsi->q_vectors[i]->num_ring_tx || 2192 vsi->q_vectors[i]->num_ring_rx)) 2193 continue; 2194 2195 /* clear the affinity notifier in the IRQ descriptor */ 2196 irq_set_affinity_notifier(irq_num, NULL); 2197 2198 /* clear the affinity_mask in the IRQ descriptor */ 2199 irq_set_affinity_hint(irq_num, NULL); 2200 synchronize_irq(irq_num); 2201 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2202 } 2203 } 2204 2205 /** 2206 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2207 * @vsi: the VSI having resources freed 2208 */ 2209 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2210 { 2211 int i; 2212 2213 if (!vsi->tx_rings) 2214 return; 2215 2216 ice_for_each_txq(vsi, i) 2217 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2218 ice_free_tx_ring(vsi->tx_rings[i]); 2219 } 2220 2221 /** 2222 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2223 * @vsi: the VSI having resources freed 2224 */ 2225 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2226 { 2227 int i; 2228 2229 if (!vsi->rx_rings) 2230 return; 2231 2232 ice_for_each_rxq(vsi, i) 2233 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2234 ice_free_rx_ring(vsi->rx_rings[i]); 2235 } 2236 2237 /** 2238 * ice_vsi_close - Shut down a VSI 2239 * @vsi: the VSI being shut down 2240 */ 2241 void ice_vsi_close(struct ice_vsi *vsi) 2242 { 2243 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2244 ice_down(vsi); 2245 2246 ice_vsi_free_irq(vsi); 2247 ice_vsi_free_tx_rings(vsi); 2248 ice_vsi_free_rx_rings(vsi); 2249 } 2250 2251 /** 2252 * ice_ena_vsi - resume a VSI 2253 * @vsi: the VSI being resume 2254 * @locked: is the rtnl_lock already held 2255 */ 2256 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2257 { 2258 int err = 0; 2259 2260 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2261 return 0; 2262 2263 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2264 2265 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2266 if (netif_running(vsi->netdev)) { 2267 if (!locked) 2268 rtnl_lock(); 2269 2270 err = ice_open(vsi->netdev); 2271 2272 if (!locked) 2273 rtnl_unlock(); 2274 } 2275 } 2276 2277 return err; 2278 } 2279 2280 /** 2281 * ice_dis_vsi - pause a VSI 2282 * @vsi: the VSI being paused 2283 * @locked: is the rtnl_lock already held 2284 */ 2285 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2286 { 2287 if (test_bit(__ICE_DOWN, vsi->state)) 2288 return; 2289 2290 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2291 2292 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2293 if (netif_running(vsi->netdev)) { 2294 if (!locked) 2295 rtnl_lock(); 2296 2297 ice_stop(vsi->netdev); 2298 2299 if (!locked) 2300 rtnl_unlock(); 2301 } else { 2302 ice_vsi_close(vsi); 2303 } 2304 } 2305 } 2306 2307 /** 2308 * ice_free_res - free a block of resources 2309 * @res: pointer to the resource 2310 * @index: starting index previously returned by ice_get_res 2311 * @id: identifier to track owner 2312 * 2313 * Returns number of resources freed 2314 */ 2315 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2316 { 2317 int count = 0; 2318 int i; 2319 2320 if (!res || index >= res->end) 2321 return -EINVAL; 2322 2323 id |= ICE_RES_VALID_BIT; 2324 for (i = index; i < res->end && res->list[i] == id; i++) { 2325 res->list[i] = 0; 2326 count++; 2327 } 2328 2329 return count; 2330 } 2331 2332 /** 2333 * ice_search_res - Search the tracker for a block of resources 2334 * @res: pointer to the resource 2335 * @needed: size of the block needed 2336 * @id: identifier to track owner 2337 * 2338 * Returns the base item index of the block, or -ENOMEM for error 2339 */ 2340 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2341 { 2342 int start = 0, end = 0; 2343 2344 if (needed > res->end) 2345 return -ENOMEM; 2346 2347 id |= ICE_RES_VALID_BIT; 2348 2349 do { 2350 /* skip already allocated entries */ 2351 if (res->list[end++] & ICE_RES_VALID_BIT) { 2352 start = end; 2353 if ((start + needed) > res->end) 2354 break; 2355 } 2356 2357 if (end == (start + needed)) { 2358 int i = start; 2359 2360 /* there was enough, so assign it to the requestor */ 2361 while (i != end) 2362 res->list[i++] = id; 2363 2364 return start; 2365 } 2366 } while (end < res->end); 2367 2368 return -ENOMEM; 2369 } 2370 2371 /** 2372 * ice_get_res - get a block of resources 2373 * @pf: board private structure 2374 * @res: pointer to the resource 2375 * @needed: size of the block needed 2376 * @id: identifier to track owner 2377 * 2378 * Returns the base item index of the block, or negative for error 2379 */ 2380 int 2381 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2382 { 2383 if (!res || !pf) 2384 return -EINVAL; 2385 2386 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2387 dev_err(ice_pf_to_dev(pf), 2388 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2389 needed, res->num_entries, id); 2390 return -EINVAL; 2391 } 2392 2393 return ice_search_res(res, needed, id); 2394 } 2395 2396 /** 2397 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2398 * @vsi: the VSI being un-configured 2399 */ 2400 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2401 { 2402 int base = vsi->base_vector; 2403 struct ice_pf *pf = vsi->back; 2404 struct ice_hw *hw = &pf->hw; 2405 u32 val; 2406 int i; 2407 2408 /* disable interrupt causation from each queue */ 2409 if (vsi->tx_rings) { 2410 ice_for_each_txq(vsi, i) { 2411 if (vsi->tx_rings[i]) { 2412 u16 reg; 2413 2414 reg = vsi->tx_rings[i]->reg_idx; 2415 val = rd32(hw, QINT_TQCTL(reg)); 2416 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2417 wr32(hw, QINT_TQCTL(reg), val); 2418 } 2419 } 2420 } 2421 2422 if (vsi->rx_rings) { 2423 ice_for_each_rxq(vsi, i) { 2424 if (vsi->rx_rings[i]) { 2425 u16 reg; 2426 2427 reg = vsi->rx_rings[i]->reg_idx; 2428 val = rd32(hw, QINT_RQCTL(reg)); 2429 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2430 wr32(hw, QINT_RQCTL(reg), val); 2431 } 2432 } 2433 } 2434 2435 /* disable each interrupt */ 2436 ice_for_each_q_vector(vsi, i) { 2437 if (!vsi->q_vectors[i]) 2438 continue; 2439 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2440 } 2441 2442 ice_flush(hw); 2443 2444 /* don't call synchronize_irq() for VF's from the host */ 2445 if (vsi->type == ICE_VSI_VF) 2446 return; 2447 2448 ice_for_each_q_vector(vsi, i) 2449 synchronize_irq(pf->msix_entries[i + base].vector); 2450 } 2451 2452 /** 2453 * ice_napi_del - Remove NAPI handler for the VSI 2454 * @vsi: VSI for which NAPI handler is to be removed 2455 */ 2456 void ice_napi_del(struct ice_vsi *vsi) 2457 { 2458 int v_idx; 2459 2460 if (!vsi->netdev) 2461 return; 2462 2463 ice_for_each_q_vector(vsi, v_idx) 2464 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2465 } 2466 2467 /** 2468 * ice_vsi_release - Delete a VSI and free its resources 2469 * @vsi: the VSI being removed 2470 * 2471 * Returns 0 on success or < 0 on error 2472 */ 2473 int ice_vsi_release(struct ice_vsi *vsi) 2474 { 2475 struct ice_pf *pf; 2476 2477 if (!vsi->back) 2478 return -ENODEV; 2479 pf = vsi->back; 2480 2481 /* do not unregister while driver is in the reset recovery pending 2482 * state. Since reset/rebuild happens through PF service task workqueue, 2483 * it's not a good idea to unregister netdev that is associated to the 2484 * PF that is running the work queue items currently. This is done to 2485 * avoid check_flush_dependency() warning on this wq 2486 */ 2487 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2488 unregister_netdev(vsi->netdev); 2489 2490 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2491 ice_rss_clean(vsi); 2492 2493 /* Disable VSI and free resources */ 2494 if (vsi->type != ICE_VSI_LB) 2495 ice_vsi_dis_irq(vsi); 2496 ice_vsi_close(vsi); 2497 2498 /* SR-IOV determines needed MSIX resources all at once instead of per 2499 * VSI since when VFs are spawned we know how many VFs there are and how 2500 * many interrupts each VF needs. SR-IOV MSIX resources are also 2501 * cleared in the same manner. 2502 */ 2503 if (vsi->type != ICE_VSI_VF) { 2504 /* reclaim SW interrupts back to the common pool */ 2505 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2506 pf->num_avail_sw_msix += vsi->num_q_vectors; 2507 } 2508 2509 if (!ice_is_safe_mode(pf)) { 2510 if (vsi->type == ICE_VSI_PF) { 2511 ice_vsi_add_rem_eth_mac(vsi, false); 2512 ice_cfg_sw_lldp(vsi, true, false); 2513 /* The Rx rule will only exist to remove if the LLDP FW 2514 * engine is currently stopped 2515 */ 2516 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2517 ice_cfg_sw_lldp(vsi, false, false); 2518 } 2519 } 2520 2521 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2522 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2523 ice_vsi_delete(vsi); 2524 ice_vsi_free_q_vectors(vsi); 2525 2526 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2527 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2528 free_netdev(vsi->netdev); 2529 vsi->netdev = NULL; 2530 } 2531 2532 ice_vsi_clear_rings(vsi); 2533 2534 ice_vsi_put_qs(vsi); 2535 2536 /* retain SW VSI data structure since it is needed to unregister and 2537 * free VSI netdev when PF is not in reset recovery pending state,\ 2538 * for ex: during rmmod. 2539 */ 2540 if (!ice_is_reset_in_progress(pf->state)) 2541 ice_vsi_clear(vsi); 2542 2543 return 0; 2544 } 2545 2546 /** 2547 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2548 * @q_vector: pointer to q_vector which is being updated 2549 * @coalesce: pointer to array of struct with stored coalesce 2550 * 2551 * Set coalesce param in q_vector and update these parameters in HW. 2552 */ 2553 static void 2554 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2555 struct ice_coalesce_stored *coalesce) 2556 { 2557 struct ice_ring_container *rx_rc = &q_vector->rx; 2558 struct ice_ring_container *tx_rc = &q_vector->tx; 2559 struct ice_hw *hw = &q_vector->vsi->back->hw; 2560 2561 tx_rc->itr_setting = coalesce->itr_tx; 2562 rx_rc->itr_setting = coalesce->itr_rx; 2563 2564 /* dynamic ITR values will be updated during Tx/Rx */ 2565 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2566 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2567 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2568 ICE_ITR_GRAN_S); 2569 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2570 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2571 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2572 ICE_ITR_GRAN_S); 2573 2574 q_vector->intrl = coalesce->intrl; 2575 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2576 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2577 } 2578 2579 /** 2580 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2581 * @vsi: VSI connected with q_vectors 2582 * @coalesce: array of struct with stored coalesce 2583 * 2584 * Returns array size. 2585 */ 2586 static int 2587 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2588 struct ice_coalesce_stored *coalesce) 2589 { 2590 int i; 2591 2592 ice_for_each_q_vector(vsi, i) { 2593 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2594 2595 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2596 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2597 coalesce[i].intrl = q_vector->intrl; 2598 } 2599 2600 return vsi->num_q_vectors; 2601 } 2602 2603 /** 2604 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2605 * @vsi: VSI connected with q_vectors 2606 * @coalesce: pointer to array of struct with stored coalesce 2607 * @size: size of coalesce array 2608 * 2609 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2610 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2611 * to default value. 2612 */ 2613 static void 2614 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2615 struct ice_coalesce_stored *coalesce, int size) 2616 { 2617 int i; 2618 2619 if ((size && !coalesce) || !vsi) 2620 return; 2621 2622 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2623 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2624 &coalesce[i]); 2625 2626 for (; i < vsi->num_q_vectors; i++) { 2627 struct ice_coalesce_stored coalesce_dflt = { 2628 .itr_tx = ICE_DFLT_TX_ITR, 2629 .itr_rx = ICE_DFLT_RX_ITR, 2630 .intrl = 0 2631 }; 2632 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2633 &coalesce_dflt); 2634 } 2635 } 2636 2637 /** 2638 * ice_vsi_rebuild - Rebuild VSI after reset 2639 * @vsi: VSI to be rebuild 2640 * @init_vsi: is this an initialization or a reconfigure of the VSI 2641 * 2642 * Returns 0 on success and negative value on failure 2643 */ 2644 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2645 { 2646 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2647 struct ice_coalesce_stored *coalesce; 2648 int prev_num_q_vectors = 0; 2649 struct ice_vf *vf = NULL; 2650 enum ice_status status; 2651 struct ice_pf *pf; 2652 int ret, i; 2653 2654 if (!vsi) 2655 return -EINVAL; 2656 2657 pf = vsi->back; 2658 if (vsi->type == ICE_VSI_VF) 2659 vf = &pf->vf[vsi->vf_id]; 2660 2661 coalesce = kcalloc(vsi->num_q_vectors, 2662 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2663 if (coalesce) 2664 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2665 coalesce); 2666 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2667 ice_vsi_free_q_vectors(vsi); 2668 2669 /* SR-IOV determines needed MSIX resources all at once instead of per 2670 * VSI since when VFs are spawned we know how many VFs there are and how 2671 * many interrupts each VF needs. SR-IOV MSIX resources are also 2672 * cleared in the same manner. 2673 */ 2674 if (vsi->type != ICE_VSI_VF) { 2675 /* reclaim SW interrupts back to the common pool */ 2676 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2677 pf->num_avail_sw_msix += vsi->num_q_vectors; 2678 vsi->base_vector = 0; 2679 } 2680 2681 if (ice_is_xdp_ena_vsi(vsi)) 2682 /* return value check can be skipped here, it always returns 2683 * 0 if reset is in progress 2684 */ 2685 ice_destroy_xdp_rings(vsi); 2686 ice_vsi_put_qs(vsi); 2687 ice_vsi_clear_rings(vsi); 2688 ice_vsi_free_arrays(vsi); 2689 ice_dev_onetime_setup(&pf->hw); 2690 if (vsi->type == ICE_VSI_VF) 2691 ice_vsi_set_num_qs(vsi, vf->vf_id); 2692 else 2693 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2694 2695 ret = ice_vsi_alloc_arrays(vsi); 2696 if (ret < 0) 2697 goto err_vsi; 2698 2699 ice_vsi_get_qs(vsi); 2700 ice_vsi_set_tc_cfg(vsi); 2701 2702 /* Initialize VSI struct elements and create VSI in FW */ 2703 ret = ice_vsi_init(vsi, init_vsi); 2704 if (ret < 0) 2705 goto err_vsi; 2706 2707 switch (vsi->type) { 2708 case ICE_VSI_PF: 2709 ret = ice_vsi_alloc_q_vectors(vsi); 2710 if (ret) 2711 goto err_rings; 2712 2713 ret = ice_vsi_setup_vector_base(vsi); 2714 if (ret) 2715 goto err_vectors; 2716 2717 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2718 if (ret) 2719 goto err_vectors; 2720 2721 ret = ice_vsi_alloc_rings(vsi); 2722 if (ret) 2723 goto err_vectors; 2724 2725 ice_vsi_map_rings_to_vectors(vsi); 2726 if (ice_is_xdp_ena_vsi(vsi)) { 2727 vsi->num_xdp_txq = vsi->alloc_txq; 2728 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2729 if (ret) 2730 goto err_vectors; 2731 } 2732 /* Do not exit if configuring RSS had an issue, at least 2733 * receive traffic on first queue. Hence no need to capture 2734 * return value 2735 */ 2736 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2737 ice_vsi_cfg_rss_lut_key(vsi); 2738 break; 2739 case ICE_VSI_VF: 2740 ret = ice_vsi_alloc_q_vectors(vsi); 2741 if (ret) 2742 goto err_rings; 2743 2744 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2745 if (ret) 2746 goto err_vectors; 2747 2748 ret = ice_vsi_alloc_rings(vsi); 2749 if (ret) 2750 goto err_vectors; 2751 2752 break; 2753 default: 2754 break; 2755 } 2756 2757 /* configure VSI nodes based on number of queues and TC's */ 2758 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2759 max_txqs[i] = vsi->alloc_txq; 2760 2761 if (ice_is_xdp_ena_vsi(vsi)) 2762 max_txqs[i] += vsi->num_xdp_txq; 2763 } 2764 2765 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2766 max_txqs); 2767 if (status) { 2768 dev_err(ice_pf_to_dev(pf), 2769 "VSI %d failed lan queue config, error %d\n", 2770 vsi->vsi_num, status); 2771 if (init_vsi) { 2772 ret = -EIO; 2773 goto err_vectors; 2774 } else { 2775 return ice_schedule_reset(pf, ICE_RESET_PFR); 2776 } 2777 } 2778 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2779 kfree(coalesce); 2780 2781 return 0; 2782 2783 err_vectors: 2784 ice_vsi_free_q_vectors(vsi); 2785 err_rings: 2786 if (vsi->netdev) { 2787 vsi->current_netdev_flags = 0; 2788 unregister_netdev(vsi->netdev); 2789 free_netdev(vsi->netdev); 2790 vsi->netdev = NULL; 2791 } 2792 err_vsi: 2793 ice_vsi_clear(vsi); 2794 set_bit(__ICE_RESET_FAILED, pf->state); 2795 kfree(coalesce); 2796 return ret; 2797 } 2798 2799 /** 2800 * ice_is_reset_in_progress - check for a reset in progress 2801 * @state: PF state field 2802 */ 2803 bool ice_is_reset_in_progress(unsigned long *state) 2804 { 2805 return test_bit(__ICE_RESET_OICR_RECV, state) || 2806 test_bit(__ICE_DCBNL_DEVRESET, state) || 2807 test_bit(__ICE_PFR_REQ, state) || 2808 test_bit(__ICE_CORER_REQ, state) || 2809 test_bit(__ICE_GLOBR_REQ, state); 2810 } 2811 2812 #ifdef CONFIG_DCB 2813 /** 2814 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2815 * @vsi: VSI being configured 2816 * @ctx: the context buffer returned from AQ VSI update command 2817 */ 2818 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2819 { 2820 vsi->info.mapping_flags = ctx->info.mapping_flags; 2821 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2822 sizeof(vsi->info.q_mapping)); 2823 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2824 sizeof(vsi->info.tc_mapping)); 2825 } 2826 2827 /** 2828 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2829 * @vsi: VSI to be configured 2830 * @ena_tc: TC bitmap 2831 * 2832 * VSI queues expected to be quiesced before calling this function 2833 */ 2834 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2835 { 2836 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2837 struct ice_vsi_ctx *ctx; 2838 struct ice_pf *pf = vsi->back; 2839 enum ice_status status; 2840 struct device *dev; 2841 int i, ret = 0; 2842 u8 num_tc = 0; 2843 2844 dev = ice_pf_to_dev(pf); 2845 2846 ice_for_each_traffic_class(i) { 2847 /* build bitmap of enabled TCs */ 2848 if (ena_tc & BIT(i)) 2849 num_tc++; 2850 /* populate max_txqs per TC */ 2851 max_txqs[i] = vsi->alloc_txq; 2852 } 2853 2854 vsi->tc_cfg.ena_tc = ena_tc; 2855 vsi->tc_cfg.numtc = num_tc; 2856 2857 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2858 if (!ctx) 2859 return -ENOMEM; 2860 2861 ctx->vf_num = 0; 2862 ctx->info = vsi->info; 2863 2864 ice_vsi_setup_q_map(vsi, ctx); 2865 2866 /* must to indicate which section of VSI context are being modified */ 2867 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2868 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2869 if (status) { 2870 dev_info(dev, "Failed VSI Update\n"); 2871 ret = -EIO; 2872 goto out; 2873 } 2874 2875 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2876 max_txqs); 2877 2878 if (status) { 2879 dev_err(dev, "VSI %d failed TC config, error %d\n", 2880 vsi->vsi_num, status); 2881 ret = -EIO; 2882 goto out; 2883 } 2884 ice_vsi_update_q_map(vsi, ctx); 2885 vsi->info.valid_sections = 0; 2886 2887 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2888 out: 2889 kfree(ctx); 2890 return ret; 2891 } 2892 #endif /* CONFIG_DCB */ 2893 2894 /** 2895 * ice_nvm_version_str - format the NVM version strings 2896 * @hw: ptr to the hardware info 2897 */ 2898 char *ice_nvm_version_str(struct ice_hw *hw) 2899 { 2900 u8 oem_ver, oem_patch, ver_hi, ver_lo; 2901 static char buf[ICE_NVM_VER_LEN]; 2902 u16 oem_build; 2903 2904 ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi, 2905 &ver_lo); 2906 2907 snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo, 2908 hw->nvm.eetrack, oem_ver, oem_build, oem_patch); 2909 2910 return buf; 2911 } 2912 2913 /** 2914 * ice_update_ring_stats - Update ring statistics 2915 * @ring: ring to update 2916 * @cont: used to increment per-vector counters 2917 * @pkts: number of processed packets 2918 * @bytes: number of processed bytes 2919 * 2920 * This function assumes that caller has acquired a u64_stats_sync lock. 2921 */ 2922 static void 2923 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2924 u64 pkts, u64 bytes) 2925 { 2926 ring->stats.bytes += bytes; 2927 ring->stats.pkts += pkts; 2928 cont->total_bytes += bytes; 2929 cont->total_pkts += pkts; 2930 } 2931 2932 /** 2933 * ice_update_tx_ring_stats - Update Tx ring specific counters 2934 * @tx_ring: ring to update 2935 * @pkts: number of processed packets 2936 * @bytes: number of processed bytes 2937 */ 2938 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2939 { 2940 u64_stats_update_begin(&tx_ring->syncp); 2941 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2942 u64_stats_update_end(&tx_ring->syncp); 2943 } 2944 2945 /** 2946 * ice_update_rx_ring_stats - Update Rx ring specific counters 2947 * @rx_ring: ring to update 2948 * @pkts: number of processed packets 2949 * @bytes: number of processed bytes 2950 */ 2951 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2952 { 2953 u64_stats_update_begin(&rx_ring->syncp); 2954 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2955 u64_stats_update_end(&rx_ring->syncp); 2956 } 2957 2958 /** 2959 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2960 * @vsi: the VSI being configured MAC filter 2961 * @macaddr: the MAC address to be added. 2962 * @set: Add or delete a MAC filter 2963 * 2964 * Adds or removes MAC address filter entry for VF VSI 2965 */ 2966 enum ice_status 2967 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2968 { 2969 LIST_HEAD(tmp_add_list); 2970 enum ice_status status; 2971 2972 /* Update MAC filter list to be added or removed for a VSI */ 2973 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 2974 status = ICE_ERR_NO_MEMORY; 2975 goto cfg_mac_fltr_exit; 2976 } 2977 2978 if (set) 2979 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 2980 else 2981 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 2982 2983 cfg_mac_fltr_exit: 2984 ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list); 2985 return status; 2986 } 2987 2988 /** 2989 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 2990 * @sw: switch to check if its default forwarding VSI is free 2991 * 2992 * Return true if the default forwarding VSI is already being used, else returns 2993 * false signalling that it's available to use. 2994 */ 2995 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 2996 { 2997 return (sw->dflt_vsi && sw->dflt_vsi_ena); 2998 } 2999 3000 /** 3001 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3002 * @sw: switch for the default forwarding VSI to compare against 3003 * @vsi: VSI to compare against default forwarding VSI 3004 * 3005 * If this VSI passed in is the default forwarding VSI then return true, else 3006 * return false 3007 */ 3008 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3009 { 3010 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3011 } 3012 3013 /** 3014 * ice_set_dflt_vsi - set the default forwarding VSI 3015 * @sw: switch used to assign the default forwarding VSI 3016 * @vsi: VSI getting set as the default forwarding VSI on the switch 3017 * 3018 * If the VSI passed in is already the default VSI and it's enabled just return 3019 * success. 3020 * 3021 * If there is already a default VSI on the switch and it's enabled then return 3022 * -EEXIST since there can only be one default VSI per switch. 3023 * 3024 * Otherwise try to set the VSI passed in as the switch's default VSI and 3025 * return the result. 3026 */ 3027 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3028 { 3029 enum ice_status status; 3030 struct device *dev; 3031 3032 if (!sw || !vsi) 3033 return -EINVAL; 3034 3035 dev = ice_pf_to_dev(vsi->back); 3036 3037 /* the VSI passed in is already the default VSI */ 3038 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3039 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3040 vsi->vsi_num); 3041 return 0; 3042 } 3043 3044 /* another VSI is already the default VSI for this switch */ 3045 if (ice_is_dflt_vsi_in_use(sw)) { 3046 dev_err(dev, 3047 "Default forwarding VSI %d already in use, disable it and try again\n", 3048 sw->dflt_vsi->vsi_num); 3049 return -EEXIST; 3050 } 3051 3052 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3053 if (status) { 3054 dev_err(dev, 3055 "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3056 vsi->vsi_num, status); 3057 return -EIO; 3058 } 3059 3060 sw->dflt_vsi = vsi; 3061 sw->dflt_vsi_ena = true; 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * ice_clear_dflt_vsi - clear the default forwarding VSI 3068 * @sw: switch used to clear the default VSI 3069 * 3070 * If the switch has no default VSI or it's not enabled then return error. 3071 * 3072 * Otherwise try to clear the default VSI and return the result. 3073 */ 3074 int ice_clear_dflt_vsi(struct ice_sw *sw) 3075 { 3076 struct ice_vsi *dflt_vsi; 3077 enum ice_status status; 3078 struct device *dev; 3079 3080 if (!sw) 3081 return -EINVAL; 3082 3083 dev = ice_pf_to_dev(sw->pf); 3084 3085 dflt_vsi = sw->dflt_vsi; 3086 3087 /* there is no default VSI configured */ 3088 if (!ice_is_dflt_vsi_in_use(sw)) 3089 return -ENODEV; 3090 3091 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3092 ICE_FLTR_RX); 3093 if (status) { 3094 dev_err(dev, 3095 "Failed to clear the default forwarding VSI %d, error %d\n", 3096 dflt_vsi->vsi_num, status); 3097 return -EIO; 3098 } 3099 3100 sw->dflt_vsi = NULL; 3101 sw->dflt_vsi_ena = false; 3102 3103 return 0; 3104 } 3105