1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  * @vf: the VF associated with this VSI, if any
170  *
171  * Return 0 on success and a negative value on error
172  */
173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174 {
175 	enum ice_vsi_type vsi_type = vsi->type;
176 	struct ice_pf *pf = vsi->back;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 void ice_vsi_delete(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 	if (!ctxt)
296 		return;
297 
298 	if (vsi->type == ICE_VSI_VF)
299 		ctxt->vf_num = vsi->vf->vf_id;
300 	ctxt->vsi_num = vsi->vsi_num;
301 
302 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303 
304 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 	if (status)
306 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 			vsi->vsi_num, status);
308 
309 	kfree(ctxt);
310 }
311 
312 /**
313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314  * @vsi: pointer to VSI being cleared
315  */
316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = vsi->back;
319 	struct device *dev;
320 
321 	dev = ice_pf_to_dev(pf);
322 
323 	if (vsi->af_xdp_zc_qps) {
324 		bitmap_free(vsi->af_xdp_zc_qps);
325 		vsi->af_xdp_zc_qps = NULL;
326 	}
327 	/* free the ring and vector containers */
328 	if (vsi->q_vectors) {
329 		devm_kfree(dev, vsi->q_vectors);
330 		vsi->q_vectors = NULL;
331 	}
332 	if (vsi->tx_rings) {
333 		devm_kfree(dev, vsi->tx_rings);
334 		vsi->tx_rings = NULL;
335 	}
336 	if (vsi->rx_rings) {
337 		devm_kfree(dev, vsi->rx_rings);
338 		vsi->rx_rings = NULL;
339 	}
340 	if (vsi->txq_map) {
341 		devm_kfree(dev, vsi->txq_map);
342 		vsi->txq_map = NULL;
343 	}
344 	if (vsi->rxq_map) {
345 		devm_kfree(dev, vsi->rxq_map);
346 		vsi->rxq_map = NULL;
347 	}
348 }
349 
350 /**
351  * ice_vsi_clear - clean up and deallocate the provided VSI
352  * @vsi: pointer to VSI being cleared
353  *
354  * This deallocates the VSI's queue resources, removes it from the PF's
355  * VSI array if necessary, and deallocates the VSI
356  *
357  * Returns 0 on success, negative on failure
358  */
359 int ice_vsi_clear(struct ice_vsi *vsi)
360 {
361 	struct ice_pf *pf = NULL;
362 	struct device *dev;
363 
364 	if (!vsi)
365 		return 0;
366 
367 	if (!vsi->back)
368 		return -EINVAL;
369 
370 	pf = vsi->back;
371 	dev = ice_pf_to_dev(pf);
372 
373 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 		return -EINVAL;
376 	}
377 
378 	mutex_lock(&pf->sw_mutex);
379 	/* updates the PF for this cleared VSI */
380 
381 	pf->vsi[vsi->idx] = NULL;
382 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 		pf->next_vsi = vsi->idx;
384 	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 		pf->next_vsi = vsi->idx;
386 
387 	ice_vsi_free_arrays(vsi);
388 	mutex_unlock(&pf->sw_mutex);
389 	devm_kfree(dev, vsi);
390 
391 	return 0;
392 }
393 
394 /**
395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396  * @irq: interrupt number
397  * @data: pointer to a q_vector
398  */
399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400 {
401 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402 
403 	if (!q_vector->tx.tx_ring)
404 		return IRQ_HANDLED;
405 
406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
407 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 /**
414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
415  * @irq: interrupt number
416  * @data: pointer to a q_vector
417  */
418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419 {
420 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421 
422 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 		return IRQ_HANDLED;
424 
425 	q_vector->total_events++;
426 
427 	napi_schedule(&q_vector->napi);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433 {
434 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 	struct ice_pf *pf = q_vector->vsi->back;
436 	struct ice_vf *vf;
437 	unsigned int bkt;
438 
439 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 		return IRQ_HANDLED;
441 
442 	rcu_read_lock();
443 	ice_for_each_vf_rcu(pf, bkt, vf)
444 		napi_schedule(&vf->repr->q_vector->napi);
445 	rcu_read_unlock();
446 
447 	return IRQ_HANDLED;
448 }
449 
450 /**
451  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
452  * @pf: board private structure
453  * @vsi_type: type of VSI
454  * @ch: ptr to channel
455  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
456  *
457  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
458  * it may be NULL in the case there is no association with a VF. For
459  * ICE_VSI_VF the VF pointer *must not* be NULL.
460  *
461  * returns a pointer to a VSI on success, NULL on failure.
462  */
463 static struct ice_vsi *
464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
465 	      struct ice_channel *ch, struct ice_vf *vf)
466 {
467 	struct device *dev = ice_pf_to_dev(pf);
468 	struct ice_vsi *vsi = NULL;
469 
470 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
471 		return NULL;
472 
473 	/* Need to protect the allocation of the VSIs at the PF level */
474 	mutex_lock(&pf->sw_mutex);
475 
476 	/* If we have already allocated our maximum number of VSIs,
477 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
478 	 * is available to be populated
479 	 */
480 	if (pf->next_vsi == ICE_NO_VSI) {
481 		dev_dbg(dev, "out of VSI slots!\n");
482 		goto unlock_pf;
483 	}
484 
485 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
486 	if (!vsi)
487 		goto unlock_pf;
488 
489 	vsi->type = vsi_type;
490 	vsi->back = pf;
491 	set_bit(ICE_VSI_DOWN, vsi->state);
492 
493 	if (vsi_type == ICE_VSI_VF)
494 		ice_vsi_set_num_qs(vsi, vf);
495 	else if (vsi_type != ICE_VSI_CHNL)
496 		ice_vsi_set_num_qs(vsi, NULL);
497 
498 	switch (vsi->type) {
499 	case ICE_VSI_SWITCHDEV_CTRL:
500 		if (ice_vsi_alloc_arrays(vsi))
501 			goto err_rings;
502 
503 		/* Setup eswitch MSIX irq handler for VSI */
504 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
505 		break;
506 	case ICE_VSI_PF:
507 		if (ice_vsi_alloc_arrays(vsi))
508 			goto err_rings;
509 
510 		/* Setup default MSIX irq handler for VSI */
511 		vsi->irq_handler = ice_msix_clean_rings;
512 		break;
513 	case ICE_VSI_CTRL:
514 		if (ice_vsi_alloc_arrays(vsi))
515 			goto err_rings;
516 
517 		/* Setup ctrl VSI MSIX irq handler */
518 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
519 
520 		/* For the PF control VSI this is NULL, for the VF control VSI
521 		 * this will be the first VF to allocate it.
522 		 */
523 		vsi->vf = vf;
524 		break;
525 	case ICE_VSI_VF:
526 		if (ice_vsi_alloc_arrays(vsi))
527 			goto err_rings;
528 		vsi->vf = vf;
529 		break;
530 	case ICE_VSI_CHNL:
531 		if (!ch)
532 			goto err_rings;
533 		vsi->num_rxq = ch->num_rxq;
534 		vsi->num_txq = ch->num_txq;
535 		vsi->next_base_q = ch->base_q;
536 		break;
537 	case ICE_VSI_LB:
538 		if (ice_vsi_alloc_arrays(vsi))
539 			goto err_rings;
540 		break;
541 	default:
542 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
543 		goto unlock_pf;
544 	}
545 
546 	if (vsi->type == ICE_VSI_CTRL && !vf) {
547 		/* Use the last VSI slot as the index for PF control VSI */
548 		vsi->idx = pf->num_alloc_vsi - 1;
549 		pf->ctrl_vsi_idx = vsi->idx;
550 		pf->vsi[vsi->idx] = vsi;
551 	} else {
552 		/* fill slot and make note of the index */
553 		vsi->idx = pf->next_vsi;
554 		pf->vsi[pf->next_vsi] = vsi;
555 
556 		/* prepare pf->next_vsi for next use */
557 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
558 						 pf->next_vsi);
559 	}
560 
561 	if (vsi->type == ICE_VSI_CTRL && vf)
562 		vf->ctrl_vsi_idx = vsi->idx;
563 	goto unlock_pf;
564 
565 err_rings:
566 	devm_kfree(dev, vsi);
567 	vsi = NULL;
568 unlock_pf:
569 	mutex_unlock(&pf->sw_mutex);
570 	return vsi;
571 }
572 
573 /**
574  * ice_alloc_fd_res - Allocate FD resource for a VSI
575  * @vsi: pointer to the ice_vsi
576  *
577  * This allocates the FD resources
578  *
579  * Returns 0 on success, -EPERM on no-op or -EIO on failure
580  */
581 static int ice_alloc_fd_res(struct ice_vsi *vsi)
582 {
583 	struct ice_pf *pf = vsi->back;
584 	u32 g_val, b_val;
585 
586 	/* Flow Director filters are only allocated/assigned to the PF VSI or
587 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
588 	 * add/delete filters so resources are not allocated to it
589 	 */
590 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
591 		return -EPERM;
592 
593 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
594 	      vsi->type == ICE_VSI_CHNL))
595 		return -EPERM;
596 
597 	/* FD filters from guaranteed pool per VSI */
598 	g_val = pf->hw.func_caps.fd_fltr_guar;
599 	if (!g_val)
600 		return -EPERM;
601 
602 	/* FD filters from best effort pool */
603 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
604 	if (!b_val)
605 		return -EPERM;
606 
607 	/* PF main VSI gets only 64 FD resources from guaranteed pool
608 	 * when ADQ is configured.
609 	 */
610 #define ICE_PF_VSI_GFLTR	64
611 
612 	/* determine FD filter resources per VSI from shared(best effort) and
613 	 * dedicated pool
614 	 */
615 	if (vsi->type == ICE_VSI_PF) {
616 		vsi->num_gfltr = g_val;
617 		/* if MQPRIO is configured, main VSI doesn't get all FD
618 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
619 		 */
620 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
621 			if (g_val < ICE_PF_VSI_GFLTR)
622 				return -EPERM;
623 			/* allow bare minimum entries for PF VSI */
624 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
625 		}
626 
627 		/* each VSI gets same "best_effort" quota */
628 		vsi->num_bfltr = b_val;
629 	} else if (vsi->type == ICE_VSI_VF) {
630 		vsi->num_gfltr = 0;
631 
632 		/* each VSI gets same "best_effort" quota */
633 		vsi->num_bfltr = b_val;
634 	} else {
635 		struct ice_vsi *main_vsi;
636 		int numtc;
637 
638 		main_vsi = ice_get_main_vsi(pf);
639 		if (!main_vsi)
640 			return -EPERM;
641 
642 		if (!main_vsi->all_numtc)
643 			return -EINVAL;
644 
645 		/* figure out ADQ numtc */
646 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
647 
648 		/* only one TC but still asking resources for channels,
649 		 * invalid config
650 		 */
651 		if (numtc < ICE_CHNL_START_TC)
652 			return -EPERM;
653 
654 		g_val -= ICE_PF_VSI_GFLTR;
655 		/* channel VSIs gets equal share from guaranteed pool */
656 		vsi->num_gfltr = g_val / numtc;
657 
658 		/* each VSI gets same "best_effort" quota */
659 		vsi->num_bfltr = b_val;
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * ice_vsi_get_qs - Assign queues from PF to VSI
667  * @vsi: the VSI to assign queues to
668  *
669  * Returns 0 on success and a negative value on error
670  */
671 static int ice_vsi_get_qs(struct ice_vsi *vsi)
672 {
673 	struct ice_pf *pf = vsi->back;
674 	struct ice_qs_cfg tx_qs_cfg = {
675 		.qs_mutex = &pf->avail_q_mutex,
676 		.pf_map = pf->avail_txqs,
677 		.pf_map_size = pf->max_pf_txqs,
678 		.q_count = vsi->alloc_txq,
679 		.scatter_count = ICE_MAX_SCATTER_TXQS,
680 		.vsi_map = vsi->txq_map,
681 		.vsi_map_offset = 0,
682 		.mapping_mode = ICE_VSI_MAP_CONTIG
683 	};
684 	struct ice_qs_cfg rx_qs_cfg = {
685 		.qs_mutex = &pf->avail_q_mutex,
686 		.pf_map = pf->avail_rxqs,
687 		.pf_map_size = pf->max_pf_rxqs,
688 		.q_count = vsi->alloc_rxq,
689 		.scatter_count = ICE_MAX_SCATTER_RXQS,
690 		.vsi_map = vsi->rxq_map,
691 		.vsi_map_offset = 0,
692 		.mapping_mode = ICE_VSI_MAP_CONTIG
693 	};
694 	int ret;
695 
696 	if (vsi->type == ICE_VSI_CHNL)
697 		return 0;
698 
699 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
700 	if (ret)
701 		return ret;
702 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
703 
704 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
705 	if (ret)
706 		return ret;
707 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
708 
709 	return 0;
710 }
711 
712 /**
713  * ice_vsi_put_qs - Release queues from VSI to PF
714  * @vsi: the VSI that is going to release queues
715  */
716 static void ice_vsi_put_qs(struct ice_vsi *vsi)
717 {
718 	struct ice_pf *pf = vsi->back;
719 	int i;
720 
721 	mutex_lock(&pf->avail_q_mutex);
722 
723 	ice_for_each_alloc_txq(vsi, i) {
724 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
725 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
726 	}
727 
728 	ice_for_each_alloc_rxq(vsi, i) {
729 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
730 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
731 	}
732 
733 	mutex_unlock(&pf->avail_q_mutex);
734 }
735 
736 /**
737  * ice_is_safe_mode
738  * @pf: pointer to the PF struct
739  *
740  * returns true if driver is in safe mode, false otherwise
741  */
742 bool ice_is_safe_mode(struct ice_pf *pf)
743 {
744 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
745 }
746 
747 /**
748  * ice_is_rdma_ena
749  * @pf: pointer to the PF struct
750  *
751  * returns true if RDMA is currently supported, false otherwise
752  */
753 bool ice_is_rdma_ena(struct ice_pf *pf)
754 {
755 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
756 }
757 
758 /**
759  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
760  * @vsi: the VSI being cleaned up
761  *
762  * This function deletes RSS input set for all flows that were configured
763  * for this VSI
764  */
765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
766 {
767 	struct ice_pf *pf = vsi->back;
768 	int status;
769 
770 	if (ice_is_safe_mode(pf))
771 		return;
772 
773 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
774 	if (status)
775 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
776 			vsi->vsi_num, status);
777 }
778 
779 /**
780  * ice_rss_clean - Delete RSS related VSI structures and configuration
781  * @vsi: the VSI being removed
782  */
783 static void ice_rss_clean(struct ice_vsi *vsi)
784 {
785 	struct ice_pf *pf = vsi->back;
786 	struct device *dev;
787 
788 	dev = ice_pf_to_dev(pf);
789 
790 	if (vsi->rss_hkey_user)
791 		devm_kfree(dev, vsi->rss_hkey_user);
792 	if (vsi->rss_lut_user)
793 		devm_kfree(dev, vsi->rss_lut_user);
794 
795 	ice_vsi_clean_rss_flow_fld(vsi);
796 	/* remove RSS replay list */
797 	if (!ice_is_safe_mode(pf))
798 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
799 }
800 
801 /**
802  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
803  * @vsi: the VSI being configured
804  */
805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
806 {
807 	struct ice_hw_common_caps *cap;
808 	struct ice_pf *pf = vsi->back;
809 
810 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
811 		vsi->rss_size = 1;
812 		return;
813 	}
814 
815 	cap = &pf->hw.func_caps.common_cap;
816 	switch (vsi->type) {
817 	case ICE_VSI_CHNL:
818 	case ICE_VSI_PF:
819 		/* PF VSI will inherit RSS instance of PF */
820 		vsi->rss_table_size = (u16)cap->rss_table_size;
821 		if (vsi->type == ICE_VSI_CHNL)
822 			vsi->rss_size = min_t(u16, vsi->num_rxq,
823 					      BIT(cap->rss_table_entry_width));
824 		else
825 			vsi->rss_size = min_t(u16, num_online_cpus(),
826 					      BIT(cap->rss_table_entry_width));
827 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
828 		break;
829 	case ICE_VSI_SWITCHDEV_CTRL:
830 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
831 		vsi->rss_size = min_t(u16, num_online_cpus(),
832 				      BIT(cap->rss_table_entry_width));
833 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
834 		break;
835 	case ICE_VSI_VF:
836 		/* VF VSI will get a small RSS table.
837 		 * For VSI_LUT, LUT size should be set to 64 bytes.
838 		 */
839 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
840 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
841 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
842 		break;
843 	case ICE_VSI_LB:
844 		break;
845 	default:
846 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
847 			ice_vsi_type_str(vsi->type));
848 		break;
849 	}
850 }
851 
852 /**
853  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
854  * @hw: HW structure used to determine the VLAN mode of the device
855  * @ctxt: the VSI context being set
856  *
857  * This initializes a default VSI context for all sections except the Queues.
858  */
859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
860 {
861 	u32 table = 0;
862 
863 	memset(&ctxt->info, 0, sizeof(ctxt->info));
864 	/* VSI's should be allocated from shared pool */
865 	ctxt->alloc_from_pool = true;
866 	/* Src pruning enabled by default */
867 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
868 	/* Traffic from VSI can be sent to LAN */
869 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
870 	/* allow all untagged/tagged packets by default on Tx */
871 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
872 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
873 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
874 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
875 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
876 	 *
877 	 * DVM - leave inner VLAN in packet by default
878 	 */
879 	if (ice_is_dvm_ena(hw)) {
880 		ctxt->info.inner_vlan_flags |=
881 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
882 		ctxt->info.outer_vlan_flags =
883 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
884 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
885 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
886 		ctxt->info.outer_vlan_flags |=
887 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
888 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
889 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
890 	}
891 	/* Have 1:1 UP mapping for both ingress/egress tables */
892 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
893 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
894 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
895 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
896 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
897 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
898 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
899 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
900 	ctxt->info.ingress_table = cpu_to_le32(table);
901 	ctxt->info.egress_table = cpu_to_le32(table);
902 	/* Have 1:1 UP mapping for outer to inner UP table */
903 	ctxt->info.outer_up_table = cpu_to_le32(table);
904 	/* No Outer tag support outer_tag_flags remains to zero */
905 }
906 
907 /**
908  * ice_vsi_setup_q_map - Setup a VSI queue map
909  * @vsi: the VSI being configured
910  * @ctxt: VSI context structure
911  */
912 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
913 {
914 	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
915 	u16 num_txq_per_tc, num_rxq_per_tc;
916 	u16 qcount_tx = vsi->alloc_txq;
917 	u16 qcount_rx = vsi->alloc_rxq;
918 	u8 netdev_tc = 0;
919 	int i;
920 
921 	if (!vsi->tc_cfg.numtc) {
922 		/* at least TC0 should be enabled by default */
923 		vsi->tc_cfg.numtc = 1;
924 		vsi->tc_cfg.ena_tc = 1;
925 	}
926 
927 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
928 	if (!num_rxq_per_tc)
929 		num_rxq_per_tc = 1;
930 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
931 	if (!num_txq_per_tc)
932 		num_txq_per_tc = 1;
933 
934 	/* find the (rounded up) power-of-2 of qcount */
935 	pow = (u16)order_base_2(num_rxq_per_tc);
936 
937 	/* TC mapping is a function of the number of Rx queues assigned to the
938 	 * VSI for each traffic class and the offset of these queues.
939 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
940 	 * queues allocated to TC0. No:of queues is a power-of-2.
941 	 *
942 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
943 	 * queue, this way, traffic for the given TC will be sent to the default
944 	 * queue.
945 	 *
946 	 * Setup number and offset of Rx queues for all TCs for the VSI
947 	 */
948 	ice_for_each_traffic_class(i) {
949 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
950 			/* TC is not enabled */
951 			vsi->tc_cfg.tc_info[i].qoffset = 0;
952 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
953 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
954 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
955 			ctxt->info.tc_mapping[i] = 0;
956 			continue;
957 		}
958 
959 		/* TC is enabled */
960 		vsi->tc_cfg.tc_info[i].qoffset = offset;
961 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
962 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
963 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
964 
965 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
966 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
967 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
968 			 ICE_AQ_VSI_TC_Q_NUM_M);
969 		offset += num_rxq_per_tc;
970 		tx_count += num_txq_per_tc;
971 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
972 	}
973 
974 	/* if offset is non-zero, means it is calculated correctly based on
975 	 * enabled TCs for a given VSI otherwise qcount_rx will always
976 	 * be correct and non-zero because it is based off - VSI's
977 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
978 	 * at least 1)
979 	 */
980 	if (offset)
981 		vsi->num_rxq = offset;
982 	else
983 		vsi->num_rxq = num_rxq_per_tc;
984 
985 	vsi->num_txq = tx_count;
986 
987 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
988 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
989 		/* since there is a chance that num_rxq could have been changed
990 		 * in the above for loop, make num_txq equal to num_rxq.
991 		 */
992 		vsi->num_txq = vsi->num_rxq;
993 	}
994 
995 	/* Rx queue mapping */
996 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
997 	/* q_mapping buffer holds the info for the first queue allocated for
998 	 * this VSI in the PF space and also the number of queues associated
999 	 * with this VSI.
1000 	 */
1001 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1002 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1003 }
1004 
1005 /**
1006  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1007  * @ctxt: the VSI context being set
1008  * @vsi: the VSI being configured
1009  */
1010 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1011 {
1012 	u8 dflt_q_group, dflt_q_prio;
1013 	u16 dflt_q, report_q, val;
1014 
1015 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1016 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1017 		return;
1018 
1019 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1020 	ctxt->info.valid_sections |= cpu_to_le16(val);
1021 	dflt_q = 0;
1022 	dflt_q_group = 0;
1023 	report_q = 0;
1024 	dflt_q_prio = 0;
1025 
1026 	/* enable flow director filtering/programming */
1027 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1028 	ctxt->info.fd_options = cpu_to_le16(val);
1029 	/* max of allocated flow director filters */
1030 	ctxt->info.max_fd_fltr_dedicated =
1031 			cpu_to_le16(vsi->num_gfltr);
1032 	/* max of shared flow director filters any VSI may program */
1033 	ctxt->info.max_fd_fltr_shared =
1034 			cpu_to_le16(vsi->num_bfltr);
1035 	/* default queue index within the VSI of the default FD */
1036 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1037 	       ICE_AQ_VSI_FD_DEF_Q_M);
1038 	/* target queue or queue group to the FD filter */
1039 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1040 		ICE_AQ_VSI_FD_DEF_GRP_M);
1041 	ctxt->info.fd_def_q = cpu_to_le16(val);
1042 	/* queue index on which FD filter completion is reported */
1043 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1044 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1045 	/* priority of the default qindex action */
1046 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1047 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1048 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1049 }
1050 
1051 /**
1052  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1053  * @ctxt: the VSI context being set
1054  * @vsi: the VSI being configured
1055  */
1056 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1057 {
1058 	u8 lut_type, hash_type;
1059 	struct device *dev;
1060 	struct ice_pf *pf;
1061 
1062 	pf = vsi->back;
1063 	dev = ice_pf_to_dev(pf);
1064 
1065 	switch (vsi->type) {
1066 	case ICE_VSI_CHNL:
1067 	case ICE_VSI_PF:
1068 		/* PF VSI will inherit RSS instance of PF */
1069 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1070 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1071 		break;
1072 	case ICE_VSI_VF:
1073 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1074 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1075 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1076 		break;
1077 	default:
1078 		dev_dbg(dev, "Unsupported VSI type %s\n",
1079 			ice_vsi_type_str(vsi->type));
1080 		return;
1081 	}
1082 
1083 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1084 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1085 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1086 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1087 }
1088 
1089 static void
1090 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1091 {
1092 	struct ice_pf *pf = vsi->back;
1093 	u16 qcount, qmap;
1094 	u8 offset = 0;
1095 	int pow;
1096 
1097 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1098 
1099 	pow = order_base_2(qcount);
1100 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1101 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1102 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1103 		   ICE_AQ_VSI_TC_Q_NUM_M);
1104 
1105 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1106 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1107 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1108 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1109 }
1110 
1111 /**
1112  * ice_vsi_init - Create and initialize a VSI
1113  * @vsi: the VSI being configured
1114  * @init_vsi: is this call creating a VSI
1115  *
1116  * This initializes a VSI context depending on the VSI type to be added and
1117  * passes it down to the add_vsi aq command to create a new VSI.
1118  */
1119 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1120 {
1121 	struct ice_pf *pf = vsi->back;
1122 	struct ice_hw *hw = &pf->hw;
1123 	struct ice_vsi_ctx *ctxt;
1124 	struct device *dev;
1125 	int ret = 0;
1126 
1127 	dev = ice_pf_to_dev(pf);
1128 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1129 	if (!ctxt)
1130 		return -ENOMEM;
1131 
1132 	switch (vsi->type) {
1133 	case ICE_VSI_CTRL:
1134 	case ICE_VSI_LB:
1135 	case ICE_VSI_PF:
1136 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1137 		break;
1138 	case ICE_VSI_SWITCHDEV_CTRL:
1139 	case ICE_VSI_CHNL:
1140 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1141 		break;
1142 	case ICE_VSI_VF:
1143 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1144 		/* VF number here is the absolute VF number (0-255) */
1145 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1146 		break;
1147 	default:
1148 		ret = -ENODEV;
1149 		goto out;
1150 	}
1151 
1152 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1153 	 * prune enabled
1154 	 */
1155 	if (vsi->type == ICE_VSI_CHNL) {
1156 		struct ice_vsi *main_vsi;
1157 
1158 		main_vsi = ice_get_main_vsi(pf);
1159 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1160 			ctxt->info.sw_flags2 |=
1161 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1162 		else
1163 			ctxt->info.sw_flags2 &=
1164 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1165 	}
1166 
1167 	ice_set_dflt_vsi_ctx(hw, ctxt);
1168 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1169 		ice_set_fd_vsi_ctx(ctxt, vsi);
1170 	/* if the switch is in VEB mode, allow VSI loopback */
1171 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1172 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1173 
1174 	/* Set LUT type and HASH type if RSS is enabled */
1175 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1176 	    vsi->type != ICE_VSI_CTRL) {
1177 		ice_set_rss_vsi_ctx(ctxt, vsi);
1178 		/* if updating VSI context, make sure to set valid_section:
1179 		 * to indicate which section of VSI context being updated
1180 		 */
1181 		if (!init_vsi)
1182 			ctxt->info.valid_sections |=
1183 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1184 	}
1185 
1186 	ctxt->info.sw_id = vsi->port_info->sw_id;
1187 	if (vsi->type == ICE_VSI_CHNL) {
1188 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1189 	} else {
1190 		ice_vsi_setup_q_map(vsi, ctxt);
1191 		if (!init_vsi) /* means VSI being updated */
1192 			/* must to indicate which section of VSI context are
1193 			 * being modified
1194 			 */
1195 			ctxt->info.valid_sections |=
1196 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1197 	}
1198 
1199 	/* Allow control frames out of main VSI */
1200 	if (vsi->type == ICE_VSI_PF) {
1201 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1202 		ctxt->info.valid_sections |=
1203 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1204 	}
1205 
1206 	if (init_vsi) {
1207 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1208 		if (ret) {
1209 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1210 			ret = -EIO;
1211 			goto out;
1212 		}
1213 	} else {
1214 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1215 		if (ret) {
1216 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1217 			ret = -EIO;
1218 			goto out;
1219 		}
1220 	}
1221 
1222 	/* keep context for update VSI operations */
1223 	vsi->info = ctxt->info;
1224 
1225 	/* record VSI number returned */
1226 	vsi->vsi_num = ctxt->vsi_num;
1227 
1228 out:
1229 	kfree(ctxt);
1230 	return ret;
1231 }
1232 
1233 /**
1234  * ice_free_res - free a block of resources
1235  * @res: pointer to the resource
1236  * @index: starting index previously returned by ice_get_res
1237  * @id: identifier to track owner
1238  *
1239  * Returns number of resources freed
1240  */
1241 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1242 {
1243 	int count = 0;
1244 	int i;
1245 
1246 	if (!res || index >= res->end)
1247 		return -EINVAL;
1248 
1249 	id |= ICE_RES_VALID_BIT;
1250 	for (i = index; i < res->end && res->list[i] == id; i++) {
1251 		res->list[i] = 0;
1252 		count++;
1253 	}
1254 
1255 	return count;
1256 }
1257 
1258 /**
1259  * ice_search_res - Search the tracker for a block of resources
1260  * @res: pointer to the resource
1261  * @needed: size of the block needed
1262  * @id: identifier to track owner
1263  *
1264  * Returns the base item index of the block, or -ENOMEM for error
1265  */
1266 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1267 {
1268 	u16 start = 0, end = 0;
1269 
1270 	if (needed > res->end)
1271 		return -ENOMEM;
1272 
1273 	id |= ICE_RES_VALID_BIT;
1274 
1275 	do {
1276 		/* skip already allocated entries */
1277 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1278 			start = end;
1279 			if ((start + needed) > res->end)
1280 				break;
1281 		}
1282 
1283 		if (end == (start + needed)) {
1284 			int i = start;
1285 
1286 			/* there was enough, so assign it to the requestor */
1287 			while (i != end)
1288 				res->list[i++] = id;
1289 
1290 			return start;
1291 		}
1292 	} while (end < res->end);
1293 
1294 	return -ENOMEM;
1295 }
1296 
1297 /**
1298  * ice_get_free_res_count - Get free count from a resource tracker
1299  * @res: Resource tracker instance
1300  */
1301 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1302 {
1303 	u16 i, count = 0;
1304 
1305 	for (i = 0; i < res->end; i++)
1306 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1307 			count++;
1308 
1309 	return count;
1310 }
1311 
1312 /**
1313  * ice_get_res - get a block of resources
1314  * @pf: board private structure
1315  * @res: pointer to the resource
1316  * @needed: size of the block needed
1317  * @id: identifier to track owner
1318  *
1319  * Returns the base item index of the block, or negative for error
1320  */
1321 int
1322 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1323 {
1324 	if (!res || !pf)
1325 		return -EINVAL;
1326 
1327 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1328 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1329 			needed, res->num_entries, id);
1330 		return -EINVAL;
1331 	}
1332 
1333 	return ice_search_res(res, needed, id);
1334 }
1335 
1336 /**
1337  * ice_get_vf_ctrl_res - Get VF control VSI resource
1338  * @pf: pointer to the PF structure
1339  * @vsi: the VSI to allocate a resource for
1340  *
1341  * Look up whether another VF has already allocated the control VSI resource.
1342  * If so, re-use this resource so that we share it among all VFs.
1343  *
1344  * Otherwise, allocate the resource and return it.
1345  */
1346 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1347 {
1348 	struct ice_vf *vf;
1349 	unsigned int bkt;
1350 	int base;
1351 
1352 	rcu_read_lock();
1353 	ice_for_each_vf_rcu(pf, bkt, vf) {
1354 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1355 			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1356 			rcu_read_unlock();
1357 			return base;
1358 		}
1359 	}
1360 	rcu_read_unlock();
1361 
1362 	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1363 			   ICE_RES_VF_CTRL_VEC_ID);
1364 }
1365 
1366 /**
1367  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1368  * @vsi: ptr to the VSI
1369  *
1370  * This should only be called after ice_vsi_alloc() which allocates the
1371  * corresponding SW VSI structure and initializes num_queue_pairs for the
1372  * newly allocated VSI.
1373  *
1374  * Returns 0 on success or negative on failure
1375  */
1376 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1377 {
1378 	struct ice_pf *pf = vsi->back;
1379 	struct device *dev;
1380 	u16 num_q_vectors;
1381 	int base;
1382 
1383 	dev = ice_pf_to_dev(pf);
1384 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1385 	if (vsi->type == ICE_VSI_VF)
1386 		return 0;
1387 	if (vsi->type == ICE_VSI_CHNL)
1388 		return 0;
1389 
1390 	if (vsi->base_vector) {
1391 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1392 			vsi->vsi_num, vsi->base_vector);
1393 		return -EEXIST;
1394 	}
1395 
1396 	num_q_vectors = vsi->num_q_vectors;
1397 	/* reserve slots from OS requested IRQs */
1398 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1399 		base = ice_get_vf_ctrl_res(pf, vsi);
1400 	} else {
1401 		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1402 				   vsi->idx);
1403 	}
1404 
1405 	if (base < 0) {
1406 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1407 			ice_get_free_res_count(pf->irq_tracker),
1408 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1409 		return -ENOENT;
1410 	}
1411 	vsi->base_vector = (u16)base;
1412 	pf->num_avail_sw_msix -= num_q_vectors;
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1419  * @vsi: the VSI having rings deallocated
1420  */
1421 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1422 {
1423 	int i;
1424 
1425 	/* Avoid stale references by clearing map from vector to ring */
1426 	if (vsi->q_vectors) {
1427 		ice_for_each_q_vector(vsi, i) {
1428 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1429 
1430 			if (q_vector) {
1431 				q_vector->tx.tx_ring = NULL;
1432 				q_vector->rx.rx_ring = NULL;
1433 			}
1434 		}
1435 	}
1436 
1437 	if (vsi->tx_rings) {
1438 		ice_for_each_alloc_txq(vsi, i) {
1439 			if (vsi->tx_rings[i]) {
1440 				kfree_rcu(vsi->tx_rings[i], rcu);
1441 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1442 			}
1443 		}
1444 	}
1445 	if (vsi->rx_rings) {
1446 		ice_for_each_alloc_rxq(vsi, i) {
1447 			if (vsi->rx_rings[i]) {
1448 				kfree_rcu(vsi->rx_rings[i], rcu);
1449 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1450 			}
1451 		}
1452 	}
1453 }
1454 
1455 /**
1456  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1457  * @vsi: VSI which is having rings allocated
1458  */
1459 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1460 {
1461 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1462 	struct ice_pf *pf = vsi->back;
1463 	struct device *dev;
1464 	u16 i;
1465 
1466 	dev = ice_pf_to_dev(pf);
1467 	/* Allocate Tx rings */
1468 	ice_for_each_alloc_txq(vsi, i) {
1469 		struct ice_tx_ring *ring;
1470 
1471 		/* allocate with kzalloc(), free with kfree_rcu() */
1472 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1473 
1474 		if (!ring)
1475 			goto err_out;
1476 
1477 		ring->q_index = i;
1478 		ring->reg_idx = vsi->txq_map[i];
1479 		ring->vsi = vsi;
1480 		ring->tx_tstamps = &pf->ptp.port.tx;
1481 		ring->dev = dev;
1482 		ring->count = vsi->num_tx_desc;
1483 		ring->txq_teid = ICE_INVAL_TEID;
1484 		if (dvm_ena)
1485 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1486 		else
1487 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1488 		WRITE_ONCE(vsi->tx_rings[i], ring);
1489 	}
1490 
1491 	/* Allocate Rx rings */
1492 	ice_for_each_alloc_rxq(vsi, i) {
1493 		struct ice_rx_ring *ring;
1494 
1495 		/* allocate with kzalloc(), free with kfree_rcu() */
1496 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1497 		if (!ring)
1498 			goto err_out;
1499 
1500 		ring->q_index = i;
1501 		ring->reg_idx = vsi->rxq_map[i];
1502 		ring->vsi = vsi;
1503 		ring->netdev = vsi->netdev;
1504 		ring->dev = dev;
1505 		ring->count = vsi->num_rx_desc;
1506 		WRITE_ONCE(vsi->rx_rings[i], ring);
1507 	}
1508 
1509 	return 0;
1510 
1511 err_out:
1512 	ice_vsi_clear_rings(vsi);
1513 	return -ENOMEM;
1514 }
1515 
1516 /**
1517  * ice_vsi_manage_rss_lut - disable/enable RSS
1518  * @vsi: the VSI being changed
1519  * @ena: boolean value indicating if this is an enable or disable request
1520  *
1521  * In the event of disable request for RSS, this function will zero out RSS
1522  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1523  * LUT.
1524  */
1525 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1526 {
1527 	u8 *lut;
1528 
1529 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1530 	if (!lut)
1531 		return;
1532 
1533 	if (ena) {
1534 		if (vsi->rss_lut_user)
1535 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1536 		else
1537 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1538 					 vsi->rss_size);
1539 	}
1540 
1541 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1542 	kfree(lut);
1543 }
1544 
1545 /**
1546  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1547  * @vsi: VSI to be configured
1548  */
1549 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1550 {
1551 	struct ice_pf *pf = vsi->back;
1552 	struct device *dev;
1553 	u8 *lut, *key;
1554 	int err;
1555 
1556 	dev = ice_pf_to_dev(pf);
1557 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1558 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1559 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1560 	} else {
1561 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1562 
1563 		/* If orig_rss_size is valid and it is less than determined
1564 		 * main VSI's rss_size, update main VSI's rss_size to be
1565 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1566 		 * RSS table gets programmed to be correct (whatever it was
1567 		 * to begin with (prior to setup-tc for ADQ config)
1568 		 */
1569 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1570 		    vsi->orig_rss_size <= vsi->num_rxq) {
1571 			vsi->rss_size = vsi->orig_rss_size;
1572 			/* now orig_rss_size is used, reset it to zero */
1573 			vsi->orig_rss_size = 0;
1574 		}
1575 	}
1576 
1577 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1578 	if (!lut)
1579 		return -ENOMEM;
1580 
1581 	if (vsi->rss_lut_user)
1582 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1583 	else
1584 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1585 
1586 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1587 	if (err) {
1588 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1589 		goto ice_vsi_cfg_rss_exit;
1590 	}
1591 
1592 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1593 	if (!key) {
1594 		err = -ENOMEM;
1595 		goto ice_vsi_cfg_rss_exit;
1596 	}
1597 
1598 	if (vsi->rss_hkey_user)
1599 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1600 	else
1601 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1602 
1603 	err = ice_set_rss_key(vsi, key);
1604 	if (err)
1605 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1606 
1607 	kfree(key);
1608 ice_vsi_cfg_rss_exit:
1609 	kfree(lut);
1610 	return err;
1611 }
1612 
1613 /**
1614  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1615  * @vsi: VSI to be configured
1616  *
1617  * This function will only be called during the VF VSI setup. Upon successful
1618  * completion of package download, this function will configure default RSS
1619  * input sets for VF VSI.
1620  */
1621 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1622 {
1623 	struct ice_pf *pf = vsi->back;
1624 	struct device *dev;
1625 	int status;
1626 
1627 	dev = ice_pf_to_dev(pf);
1628 	if (ice_is_safe_mode(pf)) {
1629 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1630 			vsi->vsi_num);
1631 		return;
1632 	}
1633 
1634 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1635 	if (status)
1636 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1637 			vsi->vsi_num, status);
1638 }
1639 
1640 /**
1641  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1642  * @vsi: VSI to be configured
1643  *
1644  * This function will only be called after successful download package call
1645  * during initialization of PF. Since the downloaded package will erase the
1646  * RSS section, this function will configure RSS input sets for different
1647  * flow types. The last profile added has the highest priority, therefore 2
1648  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1649  * (i.e. IPv4 src/dst TCP src/dst port).
1650  */
1651 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1652 {
1653 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1654 	struct ice_pf *pf = vsi->back;
1655 	struct ice_hw *hw = &pf->hw;
1656 	struct device *dev;
1657 	int status;
1658 
1659 	dev = ice_pf_to_dev(pf);
1660 	if (ice_is_safe_mode(pf)) {
1661 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1662 			vsi_num);
1663 		return;
1664 	}
1665 	/* configure RSS for IPv4 with input set IP src/dst */
1666 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1667 				 ICE_FLOW_SEG_HDR_IPV4);
1668 	if (status)
1669 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1670 			vsi_num, status);
1671 
1672 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1673 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1674 				 ICE_FLOW_SEG_HDR_IPV6);
1675 	if (status)
1676 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1677 			vsi_num, status);
1678 
1679 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1680 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1681 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1682 	if (status)
1683 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1684 			vsi_num, status);
1685 
1686 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1687 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1688 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1689 	if (status)
1690 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1691 			vsi_num, status);
1692 
1693 	/* configure RSS for sctp4 with input set IP src/dst */
1694 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1695 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1696 	if (status)
1697 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1698 			vsi_num, status);
1699 
1700 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1701 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1702 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1703 	if (status)
1704 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1705 			vsi_num, status);
1706 
1707 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1708 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1709 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1710 	if (status)
1711 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1712 			vsi_num, status);
1713 
1714 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1715 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1716 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1717 	if (status)
1718 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1719 			vsi_num, status);
1720 
1721 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1722 				 ICE_FLOW_SEG_HDR_ESP);
1723 	if (status)
1724 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1725 			vsi_num, status);
1726 }
1727 
1728 /**
1729  * ice_pf_state_is_nominal - checks the PF for nominal state
1730  * @pf: pointer to PF to check
1731  *
1732  * Check the PF's state for a collection of bits that would indicate
1733  * the PF is in a state that would inhibit normal operation for
1734  * driver functionality.
1735  *
1736  * Returns true if PF is in a nominal state, false otherwise
1737  */
1738 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1739 {
1740 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1741 
1742 	if (!pf)
1743 		return false;
1744 
1745 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1746 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1747 		return false;
1748 
1749 	return true;
1750 }
1751 
1752 /**
1753  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1754  * @vsi: the VSI to be updated
1755  */
1756 void ice_update_eth_stats(struct ice_vsi *vsi)
1757 {
1758 	struct ice_eth_stats *prev_es, *cur_es;
1759 	struct ice_hw *hw = &vsi->back->hw;
1760 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1761 
1762 	prev_es = &vsi->eth_stats_prev;
1763 	cur_es = &vsi->eth_stats;
1764 
1765 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1766 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1767 
1768 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1769 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1770 
1771 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1772 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1773 
1774 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1775 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1776 
1777 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1778 			  &prev_es->rx_discards, &cur_es->rx_discards);
1779 
1780 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1781 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1782 
1783 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1784 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1785 
1786 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1787 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1788 
1789 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1790 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1791 
1792 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1793 			  &prev_es->tx_errors, &cur_es->tx_errors);
1794 
1795 	vsi->stat_offsets_loaded = true;
1796 }
1797 
1798 /**
1799  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1800  * @vsi: VSI
1801  */
1802 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1803 {
1804 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1805 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1806 		vsi->rx_buf_len = ICE_RXBUF_2048;
1807 #if (PAGE_SIZE < 8192)
1808 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1809 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1810 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1811 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1812 #endif
1813 	} else {
1814 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1815 #if (PAGE_SIZE < 8192)
1816 		vsi->rx_buf_len = ICE_RXBUF_3072;
1817 #else
1818 		vsi->rx_buf_len = ICE_RXBUF_2048;
1819 #endif
1820 	}
1821 }
1822 
1823 /**
1824  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1825  * @hw: HW pointer
1826  * @pf_q: index of the Rx queue in the PF's queue space
1827  * @rxdid: flexible descriptor RXDID
1828  * @prio: priority for the RXDID for this queue
1829  * @ena_ts: true to enable timestamp and false to disable timestamp
1830  */
1831 void
1832 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1833 			bool ena_ts)
1834 {
1835 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1836 
1837 	/* clear any previous values */
1838 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1839 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1840 		    QRXFLXP_CNTXT_TS_M);
1841 
1842 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1843 		QRXFLXP_CNTXT_RXDID_IDX_M;
1844 
1845 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1846 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1847 
1848 	if (ena_ts)
1849 		/* Enable TimeSync on this queue */
1850 		regval |= QRXFLXP_CNTXT_TS_M;
1851 
1852 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1853 }
1854 
1855 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1856 {
1857 	if (q_idx >= vsi->num_rxq)
1858 		return -EINVAL;
1859 
1860 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1861 }
1862 
1863 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1864 {
1865 	struct ice_aqc_add_tx_qgrp *qg_buf;
1866 	int err;
1867 
1868 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1869 		return -EINVAL;
1870 
1871 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1872 	if (!qg_buf)
1873 		return -ENOMEM;
1874 
1875 	qg_buf->num_txqs = 1;
1876 
1877 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1878 	kfree(qg_buf);
1879 	return err;
1880 }
1881 
1882 /**
1883  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1884  * @vsi: the VSI being configured
1885  *
1886  * Return 0 on success and a negative value on error
1887  * Configure the Rx VSI for operation.
1888  */
1889 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1890 {
1891 	u16 i;
1892 
1893 	if (vsi->type == ICE_VSI_VF)
1894 		goto setup_rings;
1895 
1896 	ice_vsi_cfg_frame_size(vsi);
1897 setup_rings:
1898 	/* set up individual rings */
1899 	ice_for_each_rxq(vsi, i) {
1900 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1901 
1902 		if (err)
1903 			return err;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 /**
1910  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1911  * @vsi: the VSI being configured
1912  * @rings: Tx ring array to be configured
1913  * @count: number of Tx ring array elements
1914  *
1915  * Return 0 on success and a negative value on error
1916  * Configure the Tx VSI for operation.
1917  */
1918 static int
1919 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1920 {
1921 	struct ice_aqc_add_tx_qgrp *qg_buf;
1922 	u16 q_idx = 0;
1923 	int err = 0;
1924 
1925 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1926 	if (!qg_buf)
1927 		return -ENOMEM;
1928 
1929 	qg_buf->num_txqs = 1;
1930 
1931 	for (q_idx = 0; q_idx < count; q_idx++) {
1932 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1933 		if (err)
1934 			goto err_cfg_txqs;
1935 	}
1936 
1937 err_cfg_txqs:
1938 	kfree(qg_buf);
1939 	return err;
1940 }
1941 
1942 /**
1943  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1944  * @vsi: the VSI being configured
1945  *
1946  * Return 0 on success and a negative value on error
1947  * Configure the Tx VSI for operation.
1948  */
1949 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1950 {
1951 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1952 }
1953 
1954 /**
1955  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1956  * @vsi: the VSI being configured
1957  *
1958  * Return 0 on success and a negative value on error
1959  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1960  */
1961 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1962 {
1963 	int ret;
1964 	int i;
1965 
1966 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1967 	if (ret)
1968 		return ret;
1969 
1970 	ice_for_each_xdp_txq(vsi, i)
1971 		vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]);
1972 
1973 	return ret;
1974 }
1975 
1976 /**
1977  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1978  * @intrl: interrupt rate limit in usecs
1979  * @gran: interrupt rate limit granularity in usecs
1980  *
1981  * This function converts a decimal interrupt rate limit in usecs to the format
1982  * expected by firmware.
1983  */
1984 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1985 {
1986 	u32 val = intrl / gran;
1987 
1988 	if (val)
1989 		return val | GLINT_RATE_INTRL_ENA_M;
1990 	return 0;
1991 }
1992 
1993 /**
1994  * ice_write_intrl - write throttle rate limit to interrupt specific register
1995  * @q_vector: pointer to interrupt specific structure
1996  * @intrl: throttle rate limit in microseconds to write
1997  */
1998 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1999 {
2000 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2001 
2002 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2003 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2004 }
2005 
2006 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2007 {
2008 	switch (rc->type) {
2009 	case ICE_RX_CONTAINER:
2010 		if (rc->rx_ring)
2011 			return rc->rx_ring->q_vector;
2012 		break;
2013 	case ICE_TX_CONTAINER:
2014 		if (rc->tx_ring)
2015 			return rc->tx_ring->q_vector;
2016 		break;
2017 	default:
2018 		break;
2019 	}
2020 
2021 	return NULL;
2022 }
2023 
2024 /**
2025  * __ice_write_itr - write throttle rate to register
2026  * @q_vector: pointer to interrupt data structure
2027  * @rc: pointer to ring container
2028  * @itr: throttle rate in microseconds to write
2029  */
2030 static void __ice_write_itr(struct ice_q_vector *q_vector,
2031 			    struct ice_ring_container *rc, u16 itr)
2032 {
2033 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2034 
2035 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2036 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2037 }
2038 
2039 /**
2040  * ice_write_itr - write throttle rate to queue specific register
2041  * @rc: pointer to ring container
2042  * @itr: throttle rate in microseconds to write
2043  */
2044 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2045 {
2046 	struct ice_q_vector *q_vector;
2047 
2048 	q_vector = ice_pull_qvec_from_rc(rc);
2049 	if (!q_vector)
2050 		return;
2051 
2052 	__ice_write_itr(q_vector, rc, itr);
2053 }
2054 
2055 /**
2056  * ice_set_q_vector_intrl - set up interrupt rate limiting
2057  * @q_vector: the vector to be configured
2058  *
2059  * Interrupt rate limiting is local to the vector, not per-queue so we must
2060  * detect if either ring container has dynamic moderation enabled to decide
2061  * what to set the interrupt rate limit to via INTRL settings. In the case that
2062  * dynamic moderation is disabled on both, write the value with the cached
2063  * setting to make sure INTRL register matches the user visible value.
2064  */
2065 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2066 {
2067 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2068 		/* in the case of dynamic enabled, cap each vector to no more
2069 		 * than (4 us) 250,000 ints/sec, which allows low latency
2070 		 * but still less than 500,000 interrupts per second, which
2071 		 * reduces CPU a bit in the case of the lowest latency
2072 		 * setting. The 4 here is a value in microseconds.
2073 		 */
2074 		ice_write_intrl(q_vector, 4);
2075 	} else {
2076 		ice_write_intrl(q_vector, q_vector->intrl);
2077 	}
2078 }
2079 
2080 /**
2081  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2082  * @vsi: the VSI being configured
2083  *
2084  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2085  * for the VF VSI.
2086  */
2087 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2088 {
2089 	struct ice_pf *pf = vsi->back;
2090 	struct ice_hw *hw = &pf->hw;
2091 	u16 txq = 0, rxq = 0;
2092 	int i, q;
2093 
2094 	ice_for_each_q_vector(vsi, i) {
2095 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2096 		u16 reg_idx = q_vector->reg_idx;
2097 
2098 		ice_cfg_itr(hw, q_vector);
2099 
2100 		/* Both Transmit Queue Interrupt Cause Control register
2101 		 * and Receive Queue Interrupt Cause control register
2102 		 * expects MSIX_INDX field to be the vector index
2103 		 * within the function space and not the absolute
2104 		 * vector index across PF or across device.
2105 		 * For SR-IOV VF VSIs queue vector index always starts
2106 		 * with 1 since first vector index(0) is used for OICR
2107 		 * in VF space. Since VMDq and other PF VSIs are within
2108 		 * the PF function space, use the vector index that is
2109 		 * tracked for this PF.
2110 		 */
2111 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2112 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2113 					      q_vector->tx.itr_idx);
2114 			txq++;
2115 		}
2116 
2117 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2118 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2119 					      q_vector->rx.itr_idx);
2120 			rxq++;
2121 		}
2122 	}
2123 }
2124 
2125 /**
2126  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2127  * @vsi: the VSI whose rings are to be enabled
2128  *
2129  * Returns 0 on success and a negative value on error
2130  */
2131 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2132 {
2133 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2134 }
2135 
2136 /**
2137  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2138  * @vsi: the VSI whose rings are to be disabled
2139  *
2140  * Returns 0 on success and a negative value on error
2141  */
2142 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2143 {
2144 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2145 }
2146 
2147 /**
2148  * ice_vsi_stop_tx_rings - Disable Tx rings
2149  * @vsi: the VSI being configured
2150  * @rst_src: reset source
2151  * @rel_vmvf_num: Relative ID of VF/VM
2152  * @rings: Tx ring array to be stopped
2153  * @count: number of Tx ring array elements
2154  */
2155 static int
2156 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2157 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2158 {
2159 	u16 q_idx;
2160 
2161 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2162 		return -EINVAL;
2163 
2164 	for (q_idx = 0; q_idx < count; q_idx++) {
2165 		struct ice_txq_meta txq_meta = { };
2166 		int status;
2167 
2168 		if (!rings || !rings[q_idx])
2169 			return -EINVAL;
2170 
2171 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2172 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2173 					      rings[q_idx], &txq_meta);
2174 
2175 		if (status)
2176 			return status;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 /**
2183  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2184  * @vsi: the VSI being configured
2185  * @rst_src: reset source
2186  * @rel_vmvf_num: Relative ID of VF/VM
2187  */
2188 int
2189 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2190 			  u16 rel_vmvf_num)
2191 {
2192 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2193 }
2194 
2195 /**
2196  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2197  * @vsi: the VSI being configured
2198  */
2199 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2200 {
2201 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2202 }
2203 
2204 /**
2205  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2206  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2207  *
2208  * returns true if Rx VLAN pruning is enabled and false otherwise.
2209  */
2210 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2211 {
2212 	if (!vsi)
2213 		return false;
2214 
2215 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2216 }
2217 
2218 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2219 {
2220 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2221 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2222 		vsi->tc_cfg.numtc = 1;
2223 		return;
2224 	}
2225 
2226 	/* set VSI TC information based on DCB config */
2227 	ice_vsi_set_dcb_tc_cfg(vsi);
2228 }
2229 
2230 /**
2231  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2232  * @vsi: VSI to set the q_vectors register index on
2233  */
2234 static int
2235 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2236 {
2237 	u16 i;
2238 
2239 	if (!vsi || !vsi->q_vectors)
2240 		return -EINVAL;
2241 
2242 	ice_for_each_q_vector(vsi, i) {
2243 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2244 
2245 		if (!q_vector) {
2246 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2247 				i, vsi->vsi_num);
2248 			goto clear_reg_idx;
2249 		}
2250 
2251 		if (vsi->type == ICE_VSI_VF) {
2252 			struct ice_vf *vf = vsi->vf;
2253 
2254 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2255 		} else {
2256 			q_vector->reg_idx =
2257 				q_vector->v_idx + vsi->base_vector;
2258 		}
2259 	}
2260 
2261 	return 0;
2262 
2263 clear_reg_idx:
2264 	ice_for_each_q_vector(vsi, i) {
2265 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2266 
2267 		if (q_vector)
2268 			q_vector->reg_idx = 0;
2269 	}
2270 
2271 	return -EINVAL;
2272 }
2273 
2274 /**
2275  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2276  * @vsi: the VSI being configured
2277  * @tx: bool to determine Tx or Rx rule
2278  * @create: bool to determine create or remove Rule
2279  */
2280 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2281 {
2282 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2283 			enum ice_sw_fwd_act_type act);
2284 	struct ice_pf *pf = vsi->back;
2285 	struct device *dev;
2286 	int status;
2287 
2288 	dev = ice_pf_to_dev(pf);
2289 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2290 
2291 	if (tx) {
2292 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2293 				  ICE_DROP_PACKET);
2294 	} else {
2295 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2296 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2297 							  create);
2298 		} else {
2299 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2300 					  ICE_FWD_TO_VSI);
2301 		}
2302 	}
2303 
2304 	if (status)
2305 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2306 			create ? "adding" : "removing", tx ? "TX" : "RX",
2307 			vsi->vsi_num, status);
2308 }
2309 
2310 /**
2311  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2312  * @vsi: pointer to the VSI
2313  *
2314  * This function will allocate new scheduler aggregator now if needed and will
2315  * move specified VSI into it.
2316  */
2317 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2318 {
2319 	struct device *dev = ice_pf_to_dev(vsi->back);
2320 	struct ice_agg_node *agg_node_iter = NULL;
2321 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2322 	struct ice_agg_node *agg_node = NULL;
2323 	int node_offset, max_agg_nodes = 0;
2324 	struct ice_port_info *port_info;
2325 	struct ice_pf *pf = vsi->back;
2326 	u32 agg_node_id_start = 0;
2327 	int status;
2328 
2329 	/* create (as needed) scheduler aggregator node and move VSI into
2330 	 * corresponding aggregator node
2331 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2332 	 * - VF aggregator nodes will contain VF VSI
2333 	 */
2334 	port_info = pf->hw.port_info;
2335 	if (!port_info)
2336 		return;
2337 
2338 	switch (vsi->type) {
2339 	case ICE_VSI_CTRL:
2340 	case ICE_VSI_CHNL:
2341 	case ICE_VSI_LB:
2342 	case ICE_VSI_PF:
2343 	case ICE_VSI_SWITCHDEV_CTRL:
2344 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2345 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2346 		agg_node_iter = &pf->pf_agg_node[0];
2347 		break;
2348 	case ICE_VSI_VF:
2349 		/* user can create 'n' VFs on a given PF, but since max children
2350 		 * per aggregator node can be only 64. Following code handles
2351 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2352 		 * was already created provided num_vsis < 64, otherwise
2353 		 * select next available node, which will be created
2354 		 */
2355 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2356 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2357 		agg_node_iter = &pf->vf_agg_node[0];
2358 		break;
2359 	default:
2360 		/* other VSI type, handle later if needed */
2361 		dev_dbg(dev, "unexpected VSI type %s\n",
2362 			ice_vsi_type_str(vsi->type));
2363 		return;
2364 	}
2365 
2366 	/* find the appropriate aggregator node */
2367 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2368 		/* see if we can find space in previously created
2369 		 * node if num_vsis < 64, otherwise skip
2370 		 */
2371 		if (agg_node_iter->num_vsis &&
2372 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2373 			agg_node_iter++;
2374 			continue;
2375 		}
2376 
2377 		if (agg_node_iter->valid &&
2378 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2379 			agg_id = agg_node_iter->agg_id;
2380 			agg_node = agg_node_iter;
2381 			break;
2382 		}
2383 
2384 		/* find unclaimed agg_id */
2385 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2386 			agg_id = node_offset + agg_node_id_start;
2387 			agg_node = agg_node_iter;
2388 			break;
2389 		}
2390 		/* move to next agg_node */
2391 		agg_node_iter++;
2392 	}
2393 
2394 	if (!agg_node)
2395 		return;
2396 
2397 	/* if selected aggregator node was not created, create it */
2398 	if (!agg_node->valid) {
2399 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2400 				     (u8)vsi->tc_cfg.ena_tc);
2401 		if (status) {
2402 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2403 				agg_id);
2404 			return;
2405 		}
2406 		/* aggregator node is created, store the neeeded info */
2407 		agg_node->valid = true;
2408 		agg_node->agg_id = agg_id;
2409 	}
2410 
2411 	/* move VSI to corresponding aggregator node */
2412 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2413 				     (u8)vsi->tc_cfg.ena_tc);
2414 	if (status) {
2415 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2416 			vsi->idx, agg_id);
2417 		return;
2418 	}
2419 
2420 	/* keep active children count for aggregator node */
2421 	agg_node->num_vsis++;
2422 
2423 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2424 	 * to aggregator node
2425 	 */
2426 	vsi->agg_node = agg_node;
2427 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2428 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2429 		vsi->agg_node->num_vsis);
2430 }
2431 
2432 /**
2433  * ice_vsi_setup - Set up a VSI by a given type
2434  * @pf: board private structure
2435  * @pi: pointer to the port_info instance
2436  * @vsi_type: VSI type
2437  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2438  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2439  * @ch: ptr to channel
2440  *
2441  * This allocates the sw VSI structure and its queue resources.
2442  *
2443  * Returns pointer to the successfully allocated and configured VSI sw struct on
2444  * success, NULL on failure.
2445  */
2446 struct ice_vsi *
2447 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2448 	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2449 	      struct ice_channel *ch)
2450 {
2451 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2452 	struct device *dev = ice_pf_to_dev(pf);
2453 	struct ice_vsi *vsi;
2454 	int ret, i;
2455 
2456 	if (vsi_type == ICE_VSI_CHNL)
2457 		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2458 	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2459 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2460 	else
2461 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2462 
2463 	if (!vsi) {
2464 		dev_err(dev, "could not allocate VSI\n");
2465 		return NULL;
2466 	}
2467 
2468 	vsi->port_info = pi;
2469 	vsi->vsw = pf->first_sw;
2470 	if (vsi->type == ICE_VSI_PF)
2471 		vsi->ethtype = ETH_P_PAUSE;
2472 
2473 	ice_alloc_fd_res(vsi);
2474 
2475 	if (vsi_type != ICE_VSI_CHNL) {
2476 		if (ice_vsi_get_qs(vsi)) {
2477 			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2478 				vsi->idx);
2479 			goto unroll_vsi_alloc;
2480 		}
2481 	}
2482 
2483 	/* set RSS capabilities */
2484 	ice_vsi_set_rss_params(vsi);
2485 
2486 	/* set TC configuration */
2487 	ice_vsi_set_tc_cfg(vsi);
2488 
2489 	/* create the VSI */
2490 	ret = ice_vsi_init(vsi, true);
2491 	if (ret)
2492 		goto unroll_get_qs;
2493 
2494 	ice_vsi_init_vlan_ops(vsi);
2495 
2496 	switch (vsi->type) {
2497 	case ICE_VSI_CTRL:
2498 	case ICE_VSI_SWITCHDEV_CTRL:
2499 	case ICE_VSI_PF:
2500 		ret = ice_vsi_alloc_q_vectors(vsi);
2501 		if (ret)
2502 			goto unroll_vsi_init;
2503 
2504 		ret = ice_vsi_setup_vector_base(vsi);
2505 		if (ret)
2506 			goto unroll_alloc_q_vector;
2507 
2508 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2509 		if (ret)
2510 			goto unroll_vector_base;
2511 
2512 		ret = ice_vsi_alloc_rings(vsi);
2513 		if (ret)
2514 			goto unroll_vector_base;
2515 
2516 		ice_vsi_map_rings_to_vectors(vsi);
2517 
2518 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2519 		if (vsi->type != ICE_VSI_CTRL)
2520 			/* Do not exit if configuring RSS had an issue, at
2521 			 * least receive traffic on first queue. Hence no
2522 			 * need to capture return value
2523 			 */
2524 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2525 				ice_vsi_cfg_rss_lut_key(vsi);
2526 				ice_vsi_set_rss_flow_fld(vsi);
2527 			}
2528 		ice_init_arfs(vsi);
2529 		break;
2530 	case ICE_VSI_CHNL:
2531 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2532 			ice_vsi_cfg_rss_lut_key(vsi);
2533 			ice_vsi_set_rss_flow_fld(vsi);
2534 		}
2535 		break;
2536 	case ICE_VSI_VF:
2537 		/* VF driver will take care of creating netdev for this type and
2538 		 * map queues to vectors through Virtchnl, PF driver only
2539 		 * creates a VSI and corresponding structures for bookkeeping
2540 		 * purpose
2541 		 */
2542 		ret = ice_vsi_alloc_q_vectors(vsi);
2543 		if (ret)
2544 			goto unroll_vsi_init;
2545 
2546 		ret = ice_vsi_alloc_rings(vsi);
2547 		if (ret)
2548 			goto unroll_alloc_q_vector;
2549 
2550 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2551 		if (ret)
2552 			goto unroll_vector_base;
2553 
2554 		/* Do not exit if configuring RSS had an issue, at least
2555 		 * receive traffic on first queue. Hence no need to capture
2556 		 * return value
2557 		 */
2558 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2559 			ice_vsi_cfg_rss_lut_key(vsi);
2560 			ice_vsi_set_vf_rss_flow_fld(vsi);
2561 		}
2562 		break;
2563 	case ICE_VSI_LB:
2564 		ret = ice_vsi_alloc_rings(vsi);
2565 		if (ret)
2566 			goto unroll_vsi_init;
2567 		break;
2568 	default:
2569 		/* clean up the resources and exit */
2570 		goto unroll_vsi_init;
2571 	}
2572 
2573 	/* configure VSI nodes based on number of queues and TC's */
2574 	ice_for_each_traffic_class(i) {
2575 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2576 			continue;
2577 
2578 		if (vsi->type == ICE_VSI_CHNL) {
2579 			if (!vsi->alloc_txq && vsi->num_txq)
2580 				max_txqs[i] = vsi->num_txq;
2581 			else
2582 				max_txqs[i] = pf->num_lan_tx;
2583 		} else {
2584 			max_txqs[i] = vsi->alloc_txq;
2585 		}
2586 	}
2587 
2588 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2589 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2590 			      max_txqs);
2591 	if (ret) {
2592 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2593 			vsi->vsi_num, ret);
2594 		goto unroll_clear_rings;
2595 	}
2596 
2597 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2598 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2599 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2600 	 * The rule is added once for PF VSI in order to create appropriate
2601 	 * recipe, since VSI/VSI list is ignored with drop action...
2602 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2603 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2604 	 * settings in the HW.
2605 	 */
2606 	if (!ice_is_safe_mode(pf))
2607 		if (vsi->type == ICE_VSI_PF) {
2608 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2609 					 ICE_DROP_PACKET);
2610 			ice_cfg_sw_lldp(vsi, true, true);
2611 		}
2612 
2613 	if (!vsi->agg_node)
2614 		ice_set_agg_vsi(vsi);
2615 	return vsi;
2616 
2617 unroll_clear_rings:
2618 	ice_vsi_clear_rings(vsi);
2619 unroll_vector_base:
2620 	/* reclaim SW interrupts back to the common pool */
2621 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2622 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2623 unroll_alloc_q_vector:
2624 	ice_vsi_free_q_vectors(vsi);
2625 unroll_vsi_init:
2626 	ice_vsi_delete(vsi);
2627 unroll_get_qs:
2628 	ice_vsi_put_qs(vsi);
2629 unroll_vsi_alloc:
2630 	if (vsi_type == ICE_VSI_VF)
2631 		ice_enable_lag(pf->lag);
2632 	ice_vsi_clear(vsi);
2633 
2634 	return NULL;
2635 }
2636 
2637 /**
2638  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2639  * @vsi: the VSI being cleaned up
2640  */
2641 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2642 {
2643 	struct ice_pf *pf = vsi->back;
2644 	struct ice_hw *hw = &pf->hw;
2645 	u32 txq = 0;
2646 	u32 rxq = 0;
2647 	int i, q;
2648 
2649 	ice_for_each_q_vector(vsi, i) {
2650 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2651 
2652 		ice_write_intrl(q_vector, 0);
2653 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2654 			ice_write_itr(&q_vector->tx, 0);
2655 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2656 			if (ice_is_xdp_ena_vsi(vsi)) {
2657 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2658 
2659 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2660 			}
2661 			txq++;
2662 		}
2663 
2664 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2665 			ice_write_itr(&q_vector->rx, 0);
2666 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2667 			rxq++;
2668 		}
2669 	}
2670 
2671 	ice_flush(hw);
2672 }
2673 
2674 /**
2675  * ice_vsi_free_irq - Free the IRQ association with the OS
2676  * @vsi: the VSI being configured
2677  */
2678 void ice_vsi_free_irq(struct ice_vsi *vsi)
2679 {
2680 	struct ice_pf *pf = vsi->back;
2681 	int base = vsi->base_vector;
2682 	int i;
2683 
2684 	if (!vsi->q_vectors || !vsi->irqs_ready)
2685 		return;
2686 
2687 	ice_vsi_release_msix(vsi);
2688 	if (vsi->type == ICE_VSI_VF)
2689 		return;
2690 
2691 	vsi->irqs_ready = false;
2692 	ice_free_cpu_rx_rmap(vsi);
2693 
2694 	ice_for_each_q_vector(vsi, i) {
2695 		u16 vector = i + base;
2696 		int irq_num;
2697 
2698 		irq_num = pf->msix_entries[vector].vector;
2699 
2700 		/* free only the irqs that were actually requested */
2701 		if (!vsi->q_vectors[i] ||
2702 		    !(vsi->q_vectors[i]->num_ring_tx ||
2703 		      vsi->q_vectors[i]->num_ring_rx))
2704 			continue;
2705 
2706 		/* clear the affinity notifier in the IRQ descriptor */
2707 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2708 			irq_set_affinity_notifier(irq_num, NULL);
2709 
2710 		/* clear the affinity_mask in the IRQ descriptor */
2711 		irq_set_affinity_hint(irq_num, NULL);
2712 		synchronize_irq(irq_num);
2713 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2714 	}
2715 }
2716 
2717 /**
2718  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2719  * @vsi: the VSI having resources freed
2720  */
2721 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2722 {
2723 	int i;
2724 
2725 	if (!vsi->tx_rings)
2726 		return;
2727 
2728 	ice_for_each_txq(vsi, i)
2729 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2730 			ice_free_tx_ring(vsi->tx_rings[i]);
2731 }
2732 
2733 /**
2734  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2735  * @vsi: the VSI having resources freed
2736  */
2737 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2738 {
2739 	int i;
2740 
2741 	if (!vsi->rx_rings)
2742 		return;
2743 
2744 	ice_for_each_rxq(vsi, i)
2745 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2746 			ice_free_rx_ring(vsi->rx_rings[i]);
2747 }
2748 
2749 /**
2750  * ice_vsi_close - Shut down a VSI
2751  * @vsi: the VSI being shut down
2752  */
2753 void ice_vsi_close(struct ice_vsi *vsi)
2754 {
2755 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2756 		ice_down(vsi);
2757 
2758 	ice_vsi_free_irq(vsi);
2759 	ice_vsi_free_tx_rings(vsi);
2760 	ice_vsi_free_rx_rings(vsi);
2761 }
2762 
2763 /**
2764  * ice_ena_vsi - resume a VSI
2765  * @vsi: the VSI being resume
2766  * @locked: is the rtnl_lock already held
2767  */
2768 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2769 {
2770 	int err = 0;
2771 
2772 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2773 		return 0;
2774 
2775 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2776 
2777 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2778 		if (netif_running(vsi->netdev)) {
2779 			if (!locked)
2780 				rtnl_lock();
2781 
2782 			err = ice_open_internal(vsi->netdev);
2783 
2784 			if (!locked)
2785 				rtnl_unlock();
2786 		}
2787 	} else if (vsi->type == ICE_VSI_CTRL) {
2788 		err = ice_vsi_open_ctrl(vsi);
2789 	}
2790 
2791 	return err;
2792 }
2793 
2794 /**
2795  * ice_dis_vsi - pause a VSI
2796  * @vsi: the VSI being paused
2797  * @locked: is the rtnl_lock already held
2798  */
2799 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2800 {
2801 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2802 		return;
2803 
2804 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2805 
2806 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2807 		if (netif_running(vsi->netdev)) {
2808 			if (!locked)
2809 				rtnl_lock();
2810 
2811 			ice_vsi_close(vsi);
2812 
2813 			if (!locked)
2814 				rtnl_unlock();
2815 		} else {
2816 			ice_vsi_close(vsi);
2817 		}
2818 	} else if (vsi->type == ICE_VSI_CTRL ||
2819 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2820 		ice_vsi_close(vsi);
2821 	}
2822 }
2823 
2824 /**
2825  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2826  * @vsi: the VSI being un-configured
2827  */
2828 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2829 {
2830 	int base = vsi->base_vector;
2831 	struct ice_pf *pf = vsi->back;
2832 	struct ice_hw *hw = &pf->hw;
2833 	u32 val;
2834 	int i;
2835 
2836 	/* disable interrupt causation from each queue */
2837 	if (vsi->tx_rings) {
2838 		ice_for_each_txq(vsi, i) {
2839 			if (vsi->tx_rings[i]) {
2840 				u16 reg;
2841 
2842 				reg = vsi->tx_rings[i]->reg_idx;
2843 				val = rd32(hw, QINT_TQCTL(reg));
2844 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2845 				wr32(hw, QINT_TQCTL(reg), val);
2846 			}
2847 		}
2848 	}
2849 
2850 	if (vsi->rx_rings) {
2851 		ice_for_each_rxq(vsi, i) {
2852 			if (vsi->rx_rings[i]) {
2853 				u16 reg;
2854 
2855 				reg = vsi->rx_rings[i]->reg_idx;
2856 				val = rd32(hw, QINT_RQCTL(reg));
2857 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2858 				wr32(hw, QINT_RQCTL(reg), val);
2859 			}
2860 		}
2861 	}
2862 
2863 	/* disable each interrupt */
2864 	ice_for_each_q_vector(vsi, i) {
2865 		if (!vsi->q_vectors[i])
2866 			continue;
2867 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2868 	}
2869 
2870 	ice_flush(hw);
2871 
2872 	/* don't call synchronize_irq() for VF's from the host */
2873 	if (vsi->type == ICE_VSI_VF)
2874 		return;
2875 
2876 	ice_for_each_q_vector(vsi, i)
2877 		synchronize_irq(pf->msix_entries[i + base].vector);
2878 }
2879 
2880 /**
2881  * ice_napi_del - Remove NAPI handler for the VSI
2882  * @vsi: VSI for which NAPI handler is to be removed
2883  */
2884 void ice_napi_del(struct ice_vsi *vsi)
2885 {
2886 	int v_idx;
2887 
2888 	if (!vsi->netdev)
2889 		return;
2890 
2891 	ice_for_each_q_vector(vsi, v_idx)
2892 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2893 }
2894 
2895 /**
2896  * ice_free_vf_ctrl_res - Free the VF control VSI resource
2897  * @pf: pointer to PF structure
2898  * @vsi: the VSI to free resources for
2899  *
2900  * Check if the VF control VSI resource is still in use. If no VF is using it
2901  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
2902  * once no other VF uses it.
2903  */
2904 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
2905 {
2906 	struct ice_vf *vf;
2907 	unsigned int bkt;
2908 
2909 	rcu_read_lock();
2910 	ice_for_each_vf_rcu(pf, bkt, vf) {
2911 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
2912 			rcu_read_unlock();
2913 			return;
2914 		}
2915 	}
2916 	rcu_read_unlock();
2917 
2918 	/* No other VFs left that have control VSI. It is now safe to reclaim
2919 	 * SW interrupts back to the common pool.
2920 	 */
2921 	ice_free_res(pf->irq_tracker, vsi->base_vector,
2922 		     ICE_RES_VF_CTRL_VEC_ID);
2923 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2924 }
2925 
2926 /**
2927  * ice_vsi_release - Delete a VSI and free its resources
2928  * @vsi: the VSI being removed
2929  *
2930  * Returns 0 on success or < 0 on error
2931  */
2932 int ice_vsi_release(struct ice_vsi *vsi)
2933 {
2934 	struct ice_pf *pf;
2935 	int err;
2936 
2937 	if (!vsi->back)
2938 		return -ENODEV;
2939 	pf = vsi->back;
2940 
2941 	/* do not unregister while driver is in the reset recovery pending
2942 	 * state. Since reset/rebuild happens through PF service task workqueue,
2943 	 * it's not a good idea to unregister netdev that is associated to the
2944 	 * PF that is running the work queue items currently. This is done to
2945 	 * avoid check_flush_dependency() warning on this wq
2946 	 */
2947 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2948 	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2949 		unregister_netdev(vsi->netdev);
2950 		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2951 	}
2952 
2953 	if (vsi->type == ICE_VSI_PF)
2954 		ice_devlink_destroy_pf_port(pf);
2955 
2956 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2957 		ice_rss_clean(vsi);
2958 
2959 	/* Disable VSI and free resources */
2960 	if (vsi->type != ICE_VSI_LB)
2961 		ice_vsi_dis_irq(vsi);
2962 	ice_vsi_close(vsi);
2963 
2964 	/* SR-IOV determines needed MSIX resources all at once instead of per
2965 	 * VSI since when VFs are spawned we know how many VFs there are and how
2966 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2967 	 * cleared in the same manner.
2968 	 */
2969 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
2970 		ice_free_vf_ctrl_res(pf, vsi);
2971 	} else if (vsi->type != ICE_VSI_VF) {
2972 		/* reclaim SW interrupts back to the common pool */
2973 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2974 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2975 	}
2976 
2977 	if (!ice_is_safe_mode(pf)) {
2978 		if (vsi->type == ICE_VSI_PF) {
2979 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2980 					    ICE_DROP_PACKET);
2981 			ice_cfg_sw_lldp(vsi, true, false);
2982 			/* The Rx rule will only exist to remove if the LLDP FW
2983 			 * engine is currently stopped
2984 			 */
2985 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2986 				ice_cfg_sw_lldp(vsi, false, false);
2987 		}
2988 	}
2989 
2990 	if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2991 		ice_clear_dflt_vsi(pf->first_sw);
2992 	ice_fltr_remove_all(vsi);
2993 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2994 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2995 	if (err)
2996 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2997 			vsi->vsi_num, err);
2998 	ice_vsi_delete(vsi);
2999 	ice_vsi_free_q_vectors(vsi);
3000 
3001 	if (vsi->netdev) {
3002 		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3003 			unregister_netdev(vsi->netdev);
3004 			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3005 		}
3006 		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3007 			free_netdev(vsi->netdev);
3008 			vsi->netdev = NULL;
3009 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3010 		}
3011 	}
3012 
3013 	if (vsi->type == ICE_VSI_VF &&
3014 	    vsi->agg_node && vsi->agg_node->valid)
3015 		vsi->agg_node->num_vsis--;
3016 	ice_vsi_clear_rings(vsi);
3017 
3018 	ice_vsi_put_qs(vsi);
3019 
3020 	/* retain SW VSI data structure since it is needed to unregister and
3021 	 * free VSI netdev when PF is not in reset recovery pending state,\
3022 	 * for ex: during rmmod.
3023 	 */
3024 	if (!ice_is_reset_in_progress(pf->state))
3025 		ice_vsi_clear(vsi);
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3032  * @vsi: VSI connected with q_vectors
3033  * @coalesce: array of struct with stored coalesce
3034  *
3035  * Returns array size.
3036  */
3037 static int
3038 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3039 			     struct ice_coalesce_stored *coalesce)
3040 {
3041 	int i;
3042 
3043 	ice_for_each_q_vector(vsi, i) {
3044 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3045 
3046 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3047 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3048 		coalesce[i].intrl = q_vector->intrl;
3049 
3050 		if (i < vsi->num_txq)
3051 			coalesce[i].tx_valid = true;
3052 		if (i < vsi->num_rxq)
3053 			coalesce[i].rx_valid = true;
3054 	}
3055 
3056 	return vsi->num_q_vectors;
3057 }
3058 
3059 /**
3060  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3061  * @vsi: VSI connected with q_vectors
3062  * @coalesce: pointer to array of struct with stored coalesce
3063  * @size: size of coalesce array
3064  *
3065  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3066  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3067  * to default value.
3068  */
3069 static void
3070 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3071 			     struct ice_coalesce_stored *coalesce, int size)
3072 {
3073 	struct ice_ring_container *rc;
3074 	int i;
3075 
3076 	if ((size && !coalesce) || !vsi)
3077 		return;
3078 
3079 	/* There are a couple of cases that have to be handled here:
3080 	 *   1. The case where the number of queue vectors stays the same, but
3081 	 *      the number of Tx or Rx rings changes (the first for loop)
3082 	 *   2. The case where the number of queue vectors increased (the
3083 	 *      second for loop)
3084 	 */
3085 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3086 		/* There are 2 cases to handle here and they are the same for
3087 		 * both Tx and Rx:
3088 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3089 		 *   and the loop variable is less than the number of rings
3090 		 *   allocated, then write the previous values
3091 		 *
3092 		 *   if the entry was not valid previously, but the number of
3093 		 *   rings is less than are allocated (this means the number of
3094 		 *   rings increased from previously), then write out the
3095 		 *   values in the first element
3096 		 *
3097 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3098 		 *   as there is no harm because the dynamic algorithm
3099 		 *   will just overwrite.
3100 		 */
3101 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3102 			rc = &vsi->q_vectors[i]->rx;
3103 			rc->itr_settings = coalesce[i].itr_rx;
3104 			ice_write_itr(rc, rc->itr_setting);
3105 		} else if (i < vsi->alloc_rxq) {
3106 			rc = &vsi->q_vectors[i]->rx;
3107 			rc->itr_settings = coalesce[0].itr_rx;
3108 			ice_write_itr(rc, rc->itr_setting);
3109 		}
3110 
3111 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3112 			rc = &vsi->q_vectors[i]->tx;
3113 			rc->itr_settings = coalesce[i].itr_tx;
3114 			ice_write_itr(rc, rc->itr_setting);
3115 		} else if (i < vsi->alloc_txq) {
3116 			rc = &vsi->q_vectors[i]->tx;
3117 			rc->itr_settings = coalesce[0].itr_tx;
3118 			ice_write_itr(rc, rc->itr_setting);
3119 		}
3120 
3121 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3122 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3123 	}
3124 
3125 	/* the number of queue vectors increased so write whatever is in
3126 	 * the first element
3127 	 */
3128 	for (; i < vsi->num_q_vectors; i++) {
3129 		/* transmit */
3130 		rc = &vsi->q_vectors[i]->tx;
3131 		rc->itr_settings = coalesce[0].itr_tx;
3132 		ice_write_itr(rc, rc->itr_setting);
3133 
3134 		/* receive */
3135 		rc = &vsi->q_vectors[i]->rx;
3136 		rc->itr_settings = coalesce[0].itr_rx;
3137 		ice_write_itr(rc, rc->itr_setting);
3138 
3139 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3140 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3141 	}
3142 }
3143 
3144 /**
3145  * ice_vsi_rebuild - Rebuild VSI after reset
3146  * @vsi: VSI to be rebuild
3147  * @init_vsi: is this an initialization or a reconfigure of the VSI
3148  *
3149  * Returns 0 on success and negative value on failure
3150  */
3151 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3152 {
3153 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3154 	struct ice_coalesce_stored *coalesce;
3155 	int prev_num_q_vectors = 0;
3156 	enum ice_vsi_type vtype;
3157 	struct ice_pf *pf;
3158 	int ret, i;
3159 
3160 	if (!vsi)
3161 		return -EINVAL;
3162 
3163 	pf = vsi->back;
3164 	vtype = vsi->type;
3165 	if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf)
3166 		return -EINVAL;
3167 
3168 	ice_vsi_init_vlan_ops(vsi);
3169 
3170 	coalesce = kcalloc(vsi->num_q_vectors,
3171 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3172 	if (!coalesce)
3173 		return -ENOMEM;
3174 
3175 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3176 
3177 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3178 	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3179 	if (ret)
3180 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3181 			vsi->vsi_num, ret);
3182 	ice_vsi_free_q_vectors(vsi);
3183 
3184 	/* SR-IOV determines needed MSIX resources all at once instead of per
3185 	 * VSI since when VFs are spawned we know how many VFs there are and how
3186 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3187 	 * cleared in the same manner.
3188 	 */
3189 	if (vtype != ICE_VSI_VF) {
3190 		/* reclaim SW interrupts back to the common pool */
3191 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3192 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3193 		vsi->base_vector = 0;
3194 	}
3195 
3196 	if (ice_is_xdp_ena_vsi(vsi))
3197 		/* return value check can be skipped here, it always returns
3198 		 * 0 if reset is in progress
3199 		 */
3200 		ice_destroy_xdp_rings(vsi);
3201 	ice_vsi_put_qs(vsi);
3202 	ice_vsi_clear_rings(vsi);
3203 	ice_vsi_free_arrays(vsi);
3204 	if (vtype == ICE_VSI_VF)
3205 		ice_vsi_set_num_qs(vsi, vsi->vf);
3206 	else
3207 		ice_vsi_set_num_qs(vsi, NULL);
3208 
3209 	ret = ice_vsi_alloc_arrays(vsi);
3210 	if (ret < 0)
3211 		goto err_vsi;
3212 
3213 	ice_vsi_get_qs(vsi);
3214 
3215 	ice_alloc_fd_res(vsi);
3216 	ice_vsi_set_tc_cfg(vsi);
3217 
3218 	/* Initialize VSI struct elements and create VSI in FW */
3219 	ret = ice_vsi_init(vsi, init_vsi);
3220 	if (ret < 0)
3221 		goto err_vsi;
3222 
3223 	switch (vtype) {
3224 	case ICE_VSI_CTRL:
3225 	case ICE_VSI_SWITCHDEV_CTRL:
3226 	case ICE_VSI_PF:
3227 		ret = ice_vsi_alloc_q_vectors(vsi);
3228 		if (ret)
3229 			goto err_rings;
3230 
3231 		ret = ice_vsi_setup_vector_base(vsi);
3232 		if (ret)
3233 			goto err_vectors;
3234 
3235 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3236 		if (ret)
3237 			goto err_vectors;
3238 
3239 		ret = ice_vsi_alloc_rings(vsi);
3240 		if (ret)
3241 			goto err_vectors;
3242 
3243 		ice_vsi_map_rings_to_vectors(vsi);
3244 		if (ice_is_xdp_ena_vsi(vsi)) {
3245 			ret = ice_vsi_determine_xdp_res(vsi);
3246 			if (ret)
3247 				goto err_vectors;
3248 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3249 			if (ret)
3250 				goto err_vectors;
3251 		}
3252 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3253 		if (vtype != ICE_VSI_CTRL)
3254 			/* Do not exit if configuring RSS had an issue, at
3255 			 * least receive traffic on first queue. Hence no
3256 			 * need to capture return value
3257 			 */
3258 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3259 				ice_vsi_cfg_rss_lut_key(vsi);
3260 		break;
3261 	case ICE_VSI_VF:
3262 		ret = ice_vsi_alloc_q_vectors(vsi);
3263 		if (ret)
3264 			goto err_rings;
3265 
3266 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3267 		if (ret)
3268 			goto err_vectors;
3269 
3270 		ret = ice_vsi_alloc_rings(vsi);
3271 		if (ret)
3272 			goto err_vectors;
3273 
3274 		break;
3275 	case ICE_VSI_CHNL:
3276 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3277 			ice_vsi_cfg_rss_lut_key(vsi);
3278 			ice_vsi_set_rss_flow_fld(vsi);
3279 		}
3280 		break;
3281 	default:
3282 		break;
3283 	}
3284 
3285 	/* configure VSI nodes based on number of queues and TC's */
3286 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3287 		/* configure VSI nodes based on number of queues and TC's.
3288 		 * ADQ creates VSIs for each TC/Channel but doesn't
3289 		 * allocate queues instead it reconfigures the PF queues
3290 		 * as per the TC command. So max_txqs should point to the
3291 		 * PF Tx queues.
3292 		 */
3293 		if (vtype == ICE_VSI_CHNL)
3294 			max_txqs[i] = pf->num_lan_tx;
3295 		else
3296 			max_txqs[i] = vsi->alloc_txq;
3297 
3298 		if (ice_is_xdp_ena_vsi(vsi))
3299 			max_txqs[i] += vsi->num_xdp_txq;
3300 	}
3301 
3302 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3303 		/* If MQPRIO is set, means channel code path, hence for main
3304 		 * VSI's, use TC as 1
3305 		 */
3306 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3307 	else
3308 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3309 				      vsi->tc_cfg.ena_tc, max_txqs);
3310 
3311 	if (ret) {
3312 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3313 			vsi->vsi_num, ret);
3314 		if (init_vsi) {
3315 			ret = -EIO;
3316 			goto err_vectors;
3317 		} else {
3318 			return ice_schedule_reset(pf, ICE_RESET_PFR);
3319 		}
3320 	}
3321 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3322 	kfree(coalesce);
3323 
3324 	return 0;
3325 
3326 err_vectors:
3327 	ice_vsi_free_q_vectors(vsi);
3328 err_rings:
3329 	if (vsi->netdev) {
3330 		vsi->current_netdev_flags = 0;
3331 		unregister_netdev(vsi->netdev);
3332 		free_netdev(vsi->netdev);
3333 		vsi->netdev = NULL;
3334 	}
3335 err_vsi:
3336 	ice_vsi_clear(vsi);
3337 	set_bit(ICE_RESET_FAILED, pf->state);
3338 	kfree(coalesce);
3339 	return ret;
3340 }
3341 
3342 /**
3343  * ice_is_reset_in_progress - check for a reset in progress
3344  * @state: PF state field
3345  */
3346 bool ice_is_reset_in_progress(unsigned long *state)
3347 {
3348 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3349 	       test_bit(ICE_PFR_REQ, state) ||
3350 	       test_bit(ICE_CORER_REQ, state) ||
3351 	       test_bit(ICE_GLOBR_REQ, state);
3352 }
3353 
3354 /**
3355  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3356  * @pf: pointer to the PF structure
3357  * @timeout: length of time to wait, in jiffies
3358  *
3359  * Wait (sleep) for a short time until the driver finishes cleaning up from
3360  * a device reset. The caller must be able to sleep. Use this to delay
3361  * operations that could fail while the driver is cleaning up after a device
3362  * reset.
3363  *
3364  * Returns 0 on success, -EBUSY if the reset is not finished within the
3365  * timeout, and -ERESTARTSYS if the thread was interrupted.
3366  */
3367 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3368 {
3369 	long ret;
3370 
3371 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3372 					       !ice_is_reset_in_progress(pf->state),
3373 					       timeout);
3374 	if (ret < 0)
3375 		return ret;
3376 	else if (!ret)
3377 		return -EBUSY;
3378 	else
3379 		return 0;
3380 }
3381 
3382 /**
3383  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3384  * @vsi: VSI being configured
3385  * @ctx: the context buffer returned from AQ VSI update command
3386  */
3387 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3388 {
3389 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3390 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3391 	       sizeof(vsi->info.q_mapping));
3392 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3393 	       sizeof(vsi->info.tc_mapping));
3394 }
3395 
3396 /**
3397  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3398  * @vsi: the VSI being configured
3399  * @ena_tc: TC map to be enabled
3400  */
3401 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3402 {
3403 	struct net_device *netdev = vsi->netdev;
3404 	struct ice_pf *pf = vsi->back;
3405 	int numtc = vsi->tc_cfg.numtc;
3406 	struct ice_dcbx_cfg *dcbcfg;
3407 	u8 netdev_tc;
3408 	int i;
3409 
3410 	if (!netdev)
3411 		return;
3412 
3413 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3414 	if (vsi->type == ICE_VSI_CHNL)
3415 		return;
3416 
3417 	if (!ena_tc) {
3418 		netdev_reset_tc(netdev);
3419 		return;
3420 	}
3421 
3422 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3423 		numtc = vsi->all_numtc;
3424 
3425 	if (netdev_set_num_tc(netdev, numtc))
3426 		return;
3427 
3428 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3429 
3430 	ice_for_each_traffic_class(i)
3431 		if (vsi->tc_cfg.ena_tc & BIT(i))
3432 			netdev_set_tc_queue(netdev,
3433 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3434 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3435 					    vsi->tc_cfg.tc_info[i].qoffset);
3436 	/* setup TC queue map for CHNL TCs */
3437 	ice_for_each_chnl_tc(i) {
3438 		if (!(vsi->all_enatc & BIT(i)))
3439 			break;
3440 		if (!vsi->mqprio_qopt.qopt.count[i])
3441 			break;
3442 		netdev_set_tc_queue(netdev, i,
3443 				    vsi->mqprio_qopt.qopt.count[i],
3444 				    vsi->mqprio_qopt.qopt.offset[i]);
3445 	}
3446 
3447 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3448 		return;
3449 
3450 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3451 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3452 
3453 		/* Get the mapped netdev TC# for the UP */
3454 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3455 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3456 	}
3457 }
3458 
3459 /**
3460  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3461  * @vsi: the VSI being configured,
3462  * @ctxt: VSI context structure
3463  * @ena_tc: number of traffic classes to enable
3464  *
3465  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3466  */
3467 static void
3468 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3469 			   u8 ena_tc)
3470 {
3471 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3472 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3473 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3474 	u8 netdev_tc = 0;
3475 	int i;
3476 
3477 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3478 
3479 	pow = order_base_2(tc0_qcount);
3480 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3481 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3482 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3483 
3484 	ice_for_each_traffic_class(i) {
3485 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3486 			/* TC is not enabled */
3487 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3488 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3489 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3490 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3491 			ctxt->info.tc_mapping[i] = 0;
3492 			continue;
3493 		}
3494 
3495 		offset = vsi->mqprio_qopt.qopt.offset[i];
3496 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3497 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3498 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3499 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3500 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3501 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3502 	}
3503 
3504 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3505 		ice_for_each_chnl_tc(i) {
3506 			if (!(vsi->all_enatc & BIT(i)))
3507 				continue;
3508 			offset = vsi->mqprio_qopt.qopt.offset[i];
3509 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3510 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3511 		}
3512 	}
3513 
3514 	/* Set actual Tx/Rx queue pairs */
3515 	vsi->num_txq = offset + qcount_tx;
3516 	vsi->num_rxq = offset + qcount_rx;
3517 
3518 	/* Setup queue TC[0].qmap for given VSI context */
3519 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3520 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3521 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3522 
3523 	/* Find queue count available for channel VSIs and starting offset
3524 	 * for channel VSIs
3525 	 */
3526 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3527 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3528 		vsi->next_base_q = tc0_qcount;
3529 	}
3530 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3531 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3532 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3533 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3534 }
3535 
3536 /**
3537  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3538  * @vsi: VSI to be configured
3539  * @ena_tc: TC bitmap
3540  *
3541  * VSI queues expected to be quiesced before calling this function
3542  */
3543 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3544 {
3545 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3546 	struct ice_pf *pf = vsi->back;
3547 	struct ice_vsi_ctx *ctx;
3548 	struct device *dev;
3549 	int i, ret = 0;
3550 	u8 num_tc = 0;
3551 
3552 	dev = ice_pf_to_dev(pf);
3553 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3554 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3555 		return ret;
3556 
3557 	ice_for_each_traffic_class(i) {
3558 		/* build bitmap of enabled TCs */
3559 		if (ena_tc & BIT(i))
3560 			num_tc++;
3561 		/* populate max_txqs per TC */
3562 		max_txqs[i] = vsi->alloc_txq;
3563 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3564 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3565 		 */
3566 		if (vsi->type == ICE_VSI_CHNL &&
3567 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3568 			max_txqs[i] = vsi->num_txq;
3569 	}
3570 
3571 	vsi->tc_cfg.ena_tc = ena_tc;
3572 	vsi->tc_cfg.numtc = num_tc;
3573 
3574 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3575 	if (!ctx)
3576 		return -ENOMEM;
3577 
3578 	ctx->vf_num = 0;
3579 	ctx->info = vsi->info;
3580 
3581 	if (vsi->type == ICE_VSI_PF &&
3582 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3583 		ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3584 	else
3585 		ice_vsi_setup_q_map(vsi, ctx);
3586 
3587 	/* must to indicate which section of VSI context are being modified */
3588 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3589 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3590 	if (ret) {
3591 		dev_info(dev, "Failed VSI Update\n");
3592 		goto out;
3593 	}
3594 
3595 	if (vsi->type == ICE_VSI_PF &&
3596 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3597 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3598 	else
3599 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3600 				      vsi->tc_cfg.ena_tc, max_txqs);
3601 
3602 	if (ret) {
3603 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3604 			vsi->vsi_num, ret);
3605 		goto out;
3606 	}
3607 	ice_vsi_update_q_map(vsi, ctx);
3608 	vsi->info.valid_sections = 0;
3609 
3610 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3611 out:
3612 	kfree(ctx);
3613 	return ret;
3614 }
3615 
3616 /**
3617  * ice_update_ring_stats - Update ring statistics
3618  * @stats: stats to be updated
3619  * @pkts: number of processed packets
3620  * @bytes: number of processed bytes
3621  *
3622  * This function assumes that caller has acquired a u64_stats_sync lock.
3623  */
3624 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3625 {
3626 	stats->bytes += bytes;
3627 	stats->pkts += pkts;
3628 }
3629 
3630 /**
3631  * ice_update_tx_ring_stats - Update Tx ring specific counters
3632  * @tx_ring: ring to update
3633  * @pkts: number of processed packets
3634  * @bytes: number of processed bytes
3635  */
3636 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3637 {
3638 	u64_stats_update_begin(&tx_ring->syncp);
3639 	ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
3640 	u64_stats_update_end(&tx_ring->syncp);
3641 }
3642 
3643 /**
3644  * ice_update_rx_ring_stats - Update Rx ring specific counters
3645  * @rx_ring: ring to update
3646  * @pkts: number of processed packets
3647  * @bytes: number of processed bytes
3648  */
3649 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3650 {
3651 	u64_stats_update_begin(&rx_ring->syncp);
3652 	ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
3653 	u64_stats_update_end(&rx_ring->syncp);
3654 }
3655 
3656 /**
3657  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3658  * @sw: switch to check if its default forwarding VSI is free
3659  *
3660  * Return true if the default forwarding VSI is already being used, else returns
3661  * false signalling that it's available to use.
3662  */
3663 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3664 {
3665 	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3666 }
3667 
3668 /**
3669  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3670  * @sw: switch for the default forwarding VSI to compare against
3671  * @vsi: VSI to compare against default forwarding VSI
3672  *
3673  * If this VSI passed in is the default forwarding VSI then return true, else
3674  * return false
3675  */
3676 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3677 {
3678 	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3679 }
3680 
3681 /**
3682  * ice_set_dflt_vsi - set the default forwarding VSI
3683  * @sw: switch used to assign the default forwarding VSI
3684  * @vsi: VSI getting set as the default forwarding VSI on the switch
3685  *
3686  * If the VSI passed in is already the default VSI and it's enabled just return
3687  * success.
3688  *
3689  * If there is already a default VSI on the switch and it's enabled then return
3690  * -EEXIST since there can only be one default VSI per switch.
3691  *
3692  *  Otherwise try to set the VSI passed in as the switch's default VSI and
3693  *  return the result.
3694  */
3695 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3696 {
3697 	struct device *dev;
3698 	int status;
3699 
3700 	if (!sw || !vsi)
3701 		return -EINVAL;
3702 
3703 	dev = ice_pf_to_dev(vsi->back);
3704 
3705 	/* the VSI passed in is already the default VSI */
3706 	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3707 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3708 			vsi->vsi_num);
3709 		return 0;
3710 	}
3711 
3712 	/* another VSI is already the default VSI for this switch */
3713 	if (ice_is_dflt_vsi_in_use(sw)) {
3714 		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3715 			sw->dflt_vsi->vsi_num);
3716 		return -EEXIST;
3717 	}
3718 
3719 	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3720 	if (status) {
3721 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3722 			vsi->vsi_num, status);
3723 		return status;
3724 	}
3725 
3726 	sw->dflt_vsi = vsi;
3727 	sw->dflt_vsi_ena = true;
3728 
3729 	return 0;
3730 }
3731 
3732 /**
3733  * ice_clear_dflt_vsi - clear the default forwarding VSI
3734  * @sw: switch used to clear the default VSI
3735  *
3736  * If the switch has no default VSI or it's not enabled then return error.
3737  *
3738  * Otherwise try to clear the default VSI and return the result.
3739  */
3740 int ice_clear_dflt_vsi(struct ice_sw *sw)
3741 {
3742 	struct ice_vsi *dflt_vsi;
3743 	struct device *dev;
3744 	int status;
3745 
3746 	if (!sw)
3747 		return -EINVAL;
3748 
3749 	dev = ice_pf_to_dev(sw->pf);
3750 
3751 	dflt_vsi = sw->dflt_vsi;
3752 
3753 	/* there is no default VSI configured */
3754 	if (!ice_is_dflt_vsi_in_use(sw))
3755 		return -ENODEV;
3756 
3757 	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3758 				  ICE_FLTR_RX);
3759 	if (status) {
3760 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3761 			dflt_vsi->vsi_num, status);
3762 		return -EIO;
3763 	}
3764 
3765 	sw->dflt_vsi = NULL;
3766 	sw->dflt_vsi_ena = false;
3767 
3768 	return 0;
3769 }
3770 
3771 /**
3772  * ice_get_link_speed_mbps - get link speed in Mbps
3773  * @vsi: the VSI whose link speed is being queried
3774  *
3775  * Return current VSI link speed and 0 if the speed is unknown.
3776  */
3777 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3778 {
3779 	switch (vsi->port_info->phy.link_info.link_speed) {
3780 	case ICE_AQ_LINK_SPEED_100GB:
3781 		return SPEED_100000;
3782 	case ICE_AQ_LINK_SPEED_50GB:
3783 		return SPEED_50000;
3784 	case ICE_AQ_LINK_SPEED_40GB:
3785 		return SPEED_40000;
3786 	case ICE_AQ_LINK_SPEED_25GB:
3787 		return SPEED_25000;
3788 	case ICE_AQ_LINK_SPEED_20GB:
3789 		return SPEED_20000;
3790 	case ICE_AQ_LINK_SPEED_10GB:
3791 		return SPEED_10000;
3792 	case ICE_AQ_LINK_SPEED_5GB:
3793 		return SPEED_5000;
3794 	case ICE_AQ_LINK_SPEED_2500MB:
3795 		return SPEED_2500;
3796 	case ICE_AQ_LINK_SPEED_1000MB:
3797 		return SPEED_1000;
3798 	case ICE_AQ_LINK_SPEED_100MB:
3799 		return SPEED_100;
3800 	case ICE_AQ_LINK_SPEED_10MB:
3801 		return SPEED_10;
3802 	case ICE_AQ_LINK_SPEED_UNKNOWN:
3803 	default:
3804 		return 0;
3805 	}
3806 }
3807 
3808 /**
3809  * ice_get_link_speed_kbps - get link speed in Kbps
3810  * @vsi: the VSI whose link speed is being queried
3811  *
3812  * Return current VSI link speed and 0 if the speed is unknown.
3813  */
3814 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3815 {
3816 	int speed_mbps;
3817 
3818 	speed_mbps = ice_get_link_speed_mbps(vsi);
3819 
3820 	return speed_mbps * 1000;
3821 }
3822 
3823 /**
3824  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3825  * @vsi: VSI to be configured
3826  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3827  *
3828  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3829  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3830  * on TC 0.
3831  */
3832 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3833 {
3834 	struct ice_pf *pf = vsi->back;
3835 	struct device *dev;
3836 	int status;
3837 	int speed;
3838 
3839 	dev = ice_pf_to_dev(pf);
3840 	if (!vsi->port_info) {
3841 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3842 			vsi->idx, vsi->type);
3843 		return -EINVAL;
3844 	}
3845 
3846 	speed = ice_get_link_speed_kbps(vsi);
3847 	if (min_tx_rate > (u64)speed) {
3848 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3849 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3850 			speed);
3851 		return -EINVAL;
3852 	}
3853 
3854 	/* Configure min BW for VSI limit */
3855 	if (min_tx_rate) {
3856 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3857 						   ICE_MIN_BW, min_tx_rate);
3858 		if (status) {
3859 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3860 				min_tx_rate, ice_vsi_type_str(vsi->type),
3861 				vsi->idx);
3862 			return status;
3863 		}
3864 
3865 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3866 			min_tx_rate, ice_vsi_type_str(vsi->type));
3867 	} else {
3868 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3869 							vsi->idx, 0,
3870 							ICE_MIN_BW);
3871 		if (status) {
3872 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3873 				ice_vsi_type_str(vsi->type), vsi->idx);
3874 			return status;
3875 		}
3876 
3877 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3878 			ice_vsi_type_str(vsi->type), vsi->idx);
3879 	}
3880 
3881 	return 0;
3882 }
3883 
3884 /**
3885  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3886  * @vsi: VSI to be configured
3887  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3888  *
3889  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3890  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3891  * on TC 0.
3892  */
3893 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3894 {
3895 	struct ice_pf *pf = vsi->back;
3896 	struct device *dev;
3897 	int status;
3898 	int speed;
3899 
3900 	dev = ice_pf_to_dev(pf);
3901 	if (!vsi->port_info) {
3902 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3903 			vsi->idx, vsi->type);
3904 		return -EINVAL;
3905 	}
3906 
3907 	speed = ice_get_link_speed_kbps(vsi);
3908 	if (max_tx_rate > (u64)speed) {
3909 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3910 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3911 			speed);
3912 		return -EINVAL;
3913 	}
3914 
3915 	/* Configure max BW for VSI limit */
3916 	if (max_tx_rate) {
3917 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3918 						   ICE_MAX_BW, max_tx_rate);
3919 		if (status) {
3920 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3921 				max_tx_rate, ice_vsi_type_str(vsi->type),
3922 				vsi->idx);
3923 			return status;
3924 		}
3925 
3926 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3927 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3928 	} else {
3929 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3930 							vsi->idx, 0,
3931 							ICE_MAX_BW);
3932 		if (status) {
3933 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3934 				ice_vsi_type_str(vsi->type), vsi->idx);
3935 			return status;
3936 		}
3937 
3938 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3939 			ice_vsi_type_str(vsi->type), vsi->idx);
3940 	}
3941 
3942 	return 0;
3943 }
3944 
3945 /**
3946  * ice_set_link - turn on/off physical link
3947  * @vsi: VSI to modify physical link on
3948  * @ena: turn on/off physical link
3949  */
3950 int ice_set_link(struct ice_vsi *vsi, bool ena)
3951 {
3952 	struct device *dev = ice_pf_to_dev(vsi->back);
3953 	struct ice_port_info *pi = vsi->port_info;
3954 	struct ice_hw *hw = pi->hw;
3955 	int status;
3956 
3957 	if (vsi->type != ICE_VSI_PF)
3958 		return -EINVAL;
3959 
3960 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3961 
3962 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3963 	 * this is not a fatal error, so print a warning message and return
3964 	 * a success code. Return an error if FW returns an error code other
3965 	 * than ICE_AQ_RC_EMODE
3966 	 */
3967 	if (status == -EIO) {
3968 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3969 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3970 				(ena ? "ON" : "OFF"), status,
3971 				ice_aq_str(hw->adminq.sq_last_status));
3972 	} else if (status) {
3973 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3974 			(ena ? "ON" : "OFF"), status,
3975 			ice_aq_str(hw->adminq.sq_last_status));
3976 		return status;
3977 	}
3978 
3979 	return 0;
3980 }
3981 
3982 /**
3983  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3984  * @vsi: VSI used to add VLAN filters
3985  *
3986  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3987  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3988  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3989  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3990  *
3991  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3992  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3993  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3994  *
3995  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3996  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3997  * part of filtering.
3998  */
3999 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4000 {
4001 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4002 	struct ice_vlan vlan;
4003 	int err;
4004 
4005 	vlan = ICE_VLAN(0, 0, 0);
4006 	err = vlan_ops->add_vlan(vsi, &vlan);
4007 	if (err && err != -EEXIST)
4008 		return err;
4009 
4010 	/* in SVM both VLAN 0 filters are identical */
4011 	if (!ice_is_dvm_ena(&vsi->back->hw))
4012 		return 0;
4013 
4014 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4015 	err = vlan_ops->add_vlan(vsi, &vlan);
4016 	if (err && err != -EEXIST)
4017 		return err;
4018 
4019 	return 0;
4020 }
4021 
4022 /**
4023  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4024  * @vsi: VSI used to add VLAN filters
4025  *
4026  * Delete the VLAN 0 filters in the same manner that they were added in
4027  * ice_vsi_add_vlan_zero.
4028  */
4029 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4030 {
4031 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4032 	struct ice_vlan vlan;
4033 	int err;
4034 
4035 	vlan = ICE_VLAN(0, 0, 0);
4036 	err = vlan_ops->del_vlan(vsi, &vlan);
4037 	if (err && err != -EEXIST)
4038 		return err;
4039 
4040 	/* in SVM both VLAN 0 filters are identical */
4041 	if (!ice_is_dvm_ena(&vsi->back->hw))
4042 		return 0;
4043 
4044 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4045 	err = vlan_ops->del_vlan(vsi, &vlan);
4046 	if (err && err != -EEXIST)
4047 		return err;
4048 
4049 	return 0;
4050 }
4051 
4052 /**
4053  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4054  * @vsi: VSI used to get the VLAN mode
4055  *
4056  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4057  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4058  */
4059 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4060 {
4061 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4062 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4063 	/* no VLAN 0 filter is created when a port VLAN is active */
4064 	if (vsi->type == ICE_VSI_VF) {
4065 		if (WARN_ON(!vsi->vf))
4066 			return 0;
4067 
4068 		if (ice_vf_is_port_vlan_ena(vsi->vf))
4069 			return 0;
4070 	}
4071 
4072 	if (ice_is_dvm_ena(&vsi->back->hw))
4073 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4074 	else
4075 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4076 }
4077 
4078 /**
4079  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4080  * @vsi: VSI used to determine if any non-zero VLANs have been added
4081  */
4082 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4083 {
4084 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4085 }
4086 
4087 /**
4088  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4089  * @vsi: VSI used to get the number of non-zero VLANs added
4090  */
4091 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4092 {
4093 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4094 }
4095 
4096 /**
4097  * ice_is_feature_supported
4098  * @pf: pointer to the struct ice_pf instance
4099  * @f: feature enum to be checked
4100  *
4101  * returns true if feature is supported, false otherwise
4102  */
4103 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4104 {
4105 	if (f < 0 || f >= ICE_F_MAX)
4106 		return false;
4107 
4108 	return test_bit(f, pf->features);
4109 }
4110 
4111 /**
4112  * ice_set_feature_support
4113  * @pf: pointer to the struct ice_pf instance
4114  * @f: feature enum to set
4115  */
4116 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4117 {
4118 	if (f < 0 || f >= ICE_F_MAX)
4119 		return;
4120 
4121 	set_bit(f, pf->features);
4122 }
4123 
4124 /**
4125  * ice_clear_feature_support
4126  * @pf: pointer to the struct ice_pf instance
4127  * @f: feature enum to clear
4128  */
4129 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4130 {
4131 	if (f < 0 || f >= ICE_F_MAX)
4132 		return;
4133 
4134 	clear_bit(f, pf->features);
4135 }
4136 
4137 /**
4138  * ice_init_feature_support
4139  * @pf: pointer to the struct ice_pf instance
4140  *
4141  * called during init to setup supported feature
4142  */
4143 void ice_init_feature_support(struct ice_pf *pf)
4144 {
4145 	switch (pf->hw.device_id) {
4146 	case ICE_DEV_ID_E810C_BACKPLANE:
4147 	case ICE_DEV_ID_E810C_QSFP:
4148 	case ICE_DEV_ID_E810C_SFP:
4149 		ice_set_feature_support(pf, ICE_F_DSCP);
4150 		if (ice_is_e810t(&pf->hw)) {
4151 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4152 			if (ice_gnss_is_gps_present(&pf->hw))
4153 				ice_set_feature_support(pf, ICE_F_GNSS);
4154 		}
4155 		break;
4156 	default:
4157 		break;
4158 	}
4159 }
4160 
4161 /**
4162  * ice_vsi_update_security - update security block in VSI
4163  * @vsi: pointer to VSI structure
4164  * @fill: function pointer to fill ctx
4165  */
4166 int
4167 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4168 {
4169 	struct ice_vsi_ctx ctx = { 0 };
4170 
4171 	ctx.info = vsi->info;
4172 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4173 	fill(&ctx);
4174 
4175 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4176 		return -ENODEV;
4177 
4178 	vsi->info = ctx.info;
4179 	return 0;
4180 }
4181 
4182 /**
4183  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4184  * @ctx: pointer to VSI ctx structure
4185  */
4186 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4187 {
4188 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4189 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4190 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4191 }
4192 
4193 /**
4194  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4195  * @ctx: pointer to VSI ctx structure
4196  */
4197 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4198 {
4199 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4200 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4201 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4202 }
4203 
4204 /**
4205  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4206  * @ctx: pointer to VSI ctx structure
4207  */
4208 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4209 {
4210 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4211 }
4212 
4213 /**
4214  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4215  * @ctx: pointer to VSI ctx structure
4216  */
4217 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4218 {
4219 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4220 }
4221