1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 7 /** 8 * ice_setup_rx_ctx - Configure a receive ring context 9 * @ring: The Rx ring to configure 10 * 11 * Configure the Rx descriptor ring in RLAN context. 12 */ 13 static int ice_setup_rx_ctx(struct ice_ring *ring) 14 { 15 struct ice_vsi *vsi = ring->vsi; 16 struct ice_hw *hw = &vsi->back->hw; 17 u32 rxdid = ICE_RXDID_FLEX_NIC; 18 struct ice_rlan_ctx rlan_ctx; 19 u32 regval; 20 u16 pf_q; 21 int err; 22 23 /* what is Rx queue number in global space of 2K Rx queues */ 24 pf_q = vsi->rxq_map[ring->q_index]; 25 26 /* clear the context structure first */ 27 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 28 29 rlan_ctx.base = ring->dma >> 7; 30 31 rlan_ctx.qlen = ring->count; 32 33 /* Receive Packet Data Buffer Size. 34 * The Packet Data Buffer Size is defined in 128 byte units. 35 */ 36 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 37 38 /* use 32 byte descriptors */ 39 rlan_ctx.dsize = 1; 40 41 /* Strip the Ethernet CRC bytes before the packet is posted to host 42 * memory. 43 */ 44 rlan_ctx.crcstrip = 1; 45 46 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 47 rlan_ctx.l2tsel = 1; 48 49 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 50 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 51 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 52 53 /* This controls whether VLAN is stripped from inner headers 54 * The VLAN in the inner L2 header is stripped to the receive 55 * descriptor if enabled by this flag. 56 */ 57 rlan_ctx.showiv = 0; 58 59 /* Max packet size for this queue - must not be set to a larger value 60 * than 5 x DBUF 61 */ 62 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 63 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 64 65 /* Rx queue threshold in units of 64 */ 66 rlan_ctx.lrxqthresh = 1; 67 68 /* Enable Flexible Descriptors in the queue context which 69 * allows this driver to select a specific receive descriptor format 70 */ 71 if (vsi->type != ICE_VSI_VF) { 72 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 73 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 74 QRXFLXP_CNTXT_RXDID_IDX_M; 75 76 /* increasing context priority to pick up profile id; 77 * default is 0x01; setting to 0x03 to ensure profile 78 * is programming if prev context is of same priority 79 */ 80 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 81 QRXFLXP_CNTXT_RXDID_PRIO_M; 82 83 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 84 } 85 86 /* Absolute queue number out of 2K needs to be passed */ 87 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 88 if (err) { 89 dev_err(&vsi->back->pdev->dev, 90 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 91 pf_q, err); 92 return -EIO; 93 } 94 95 if (vsi->type == ICE_VSI_VF) 96 return 0; 97 98 /* init queue specific tail register */ 99 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 100 writel(0, ring->tail); 101 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 102 103 return 0; 104 } 105 106 /** 107 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 108 * @ring: The Tx ring to configure 109 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 110 * @pf_q: queue index in the PF space 111 * 112 * Configure the Tx descriptor ring in TLAN context. 113 */ 114 static void 115 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 116 { 117 struct ice_vsi *vsi = ring->vsi; 118 struct ice_hw *hw = &vsi->back->hw; 119 120 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 121 122 tlan_ctx->port_num = vsi->port_info->lport; 123 124 /* Transmit Queue Length */ 125 tlan_ctx->qlen = ring->count; 126 127 /* PF number */ 128 tlan_ctx->pf_num = hw->pf_id; 129 130 /* queue belongs to a specific VSI type 131 * VF / VM index should be programmed per vmvf_type setting: 132 * for vmvf_type = VF, it is VF number between 0-256 133 * for vmvf_type = VM, it is VM number between 0-767 134 * for PF or EMP this field should be set to zero 135 */ 136 switch (vsi->type) { 137 case ICE_VSI_PF: 138 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 139 break; 140 case ICE_VSI_VF: 141 /* Firmware expects vmvf_num to be absolute VF id */ 142 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 144 break; 145 default: 146 return; 147 } 148 149 /* make sure the context is associated with the right VSI */ 150 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 151 152 tlan_ctx->tso_ena = ICE_TX_LEGACY; 153 tlan_ctx->tso_qnum = pf_q; 154 155 /* Legacy or Advanced Host Interface: 156 * 0: Advanced Host Interface 157 * 1: Legacy Host Interface 158 */ 159 tlan_ctx->legacy_int = ICE_TX_LEGACY; 160 } 161 162 /** 163 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 164 * @pf: the PF being configured 165 * @pf_q: the PF queue 166 * @ena: enable or disable state of the queue 167 * 168 * This routine will wait for the given Rx queue of the PF to reach the 169 * enabled or disabled state. 170 * Returns -ETIMEDOUT in case of failing to reach the requested state after 171 * multiple retries; else will return 0 in case of success. 172 */ 173 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 174 { 175 int i; 176 177 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 178 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 179 QRX_CTRL_QENA_STAT_M)) 180 return 0; 181 182 usleep_range(20, 40); 183 } 184 185 return -ETIMEDOUT; 186 } 187 188 /** 189 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 190 * @vsi: the VSI being configured 191 * @ena: start or stop the Rx rings 192 */ 193 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 194 { 195 struct ice_pf *pf = vsi->back; 196 struct ice_hw *hw = &pf->hw; 197 int i, j, ret = 0; 198 199 for (i = 0; i < vsi->num_rxq; i++) { 200 int pf_q = vsi->rxq_map[i]; 201 u32 rx_reg; 202 203 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { 204 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 205 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == 206 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) 207 break; 208 usleep_range(1000, 2000); 209 } 210 211 /* Skip if the queue is already in the requested state */ 212 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 213 continue; 214 215 /* turn on/off the queue */ 216 if (ena) 217 rx_reg |= QRX_CTRL_QENA_REQ_M; 218 else 219 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 220 wr32(hw, QRX_CTRL(pf_q), rx_reg); 221 222 /* wait for the change to finish */ 223 ret = ice_pf_rxq_wait(pf, pf_q, ena); 224 if (ret) { 225 dev_err(&pf->pdev->dev, 226 "VSI idx %d Rx ring %d %sable timeout\n", 227 vsi->idx, pf_q, (ena ? "en" : "dis")); 228 break; 229 } 230 } 231 232 return ret; 233 } 234 235 /** 236 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 237 * @vsi: VSI pointer 238 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 239 * 240 * On error: returns error code (negative) 241 * On success: returns 0 242 */ 243 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) 244 { 245 struct ice_pf *pf = vsi->back; 246 247 /* allocate memory for both Tx and Rx ring pointers */ 248 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 249 sizeof(*vsi->tx_rings), GFP_KERNEL); 250 if (!vsi->tx_rings) 251 goto err_txrings; 252 253 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 254 sizeof(*vsi->rx_rings), GFP_KERNEL); 255 if (!vsi->rx_rings) 256 goto err_rxrings; 257 258 if (alloc_qvectors) { 259 /* allocate memory for q_vector pointers */ 260 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, 261 vsi->num_q_vectors, 262 sizeof(*vsi->q_vectors), 263 GFP_KERNEL); 264 if (!vsi->q_vectors) 265 goto err_vectors; 266 } 267 268 return 0; 269 270 err_vectors: 271 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 272 err_rxrings: 273 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 274 err_txrings: 275 return -ENOMEM; 276 } 277 278 /** 279 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 280 * @vsi: the VSI being configured 281 */ 282 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 283 { 284 switch (vsi->type) { 285 case ICE_VSI_PF: 286 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 287 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 288 break; 289 default: 290 dev_dbg(&vsi->back->pdev->dev, 291 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 292 vsi->type); 293 break; 294 } 295 } 296 297 /** 298 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 299 * @vsi: the VSI being configured 300 * @vf_id: Id of the VF being configured 301 * 302 * Return 0 on success and a negative value on error 303 */ 304 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 305 { 306 struct ice_pf *pf = vsi->back; 307 308 struct ice_vf *vf = NULL; 309 310 if (vsi->type == ICE_VSI_VF) 311 vsi->vf_id = vf_id; 312 313 switch (vsi->type) { 314 case ICE_VSI_PF: 315 vsi->alloc_txq = pf->num_lan_tx; 316 vsi->alloc_rxq = pf->num_lan_rx; 317 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); 318 break; 319 case ICE_VSI_VF: 320 vf = &pf->vf[vsi->vf_id]; 321 vsi->alloc_txq = vf->num_vf_qs; 322 vsi->alloc_rxq = vf->num_vf_qs; 323 /* pf->num_vf_msix includes (VF miscellaneous vector + 324 * data queue interrupts). Since vsi->num_q_vectors is number 325 * of queues vectors, subtract 1 from the original vector 326 * count 327 */ 328 vsi->num_q_vectors = pf->num_vf_msix - 1; 329 break; 330 default: 331 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 332 vsi->type); 333 break; 334 } 335 336 ice_vsi_set_num_desc(vsi); 337 } 338 339 /** 340 * ice_get_free_slot - get the next non-NULL location index in array 341 * @array: array to search 342 * @size: size of the array 343 * @curr: last known occupied index to be used as a search hint 344 * 345 * void * is being used to keep the functionality generic. This lets us use this 346 * function on any array of pointers. 347 */ 348 static int ice_get_free_slot(void *array, int size, int curr) 349 { 350 int **tmp_array = (int **)array; 351 int next; 352 353 if (curr < (size - 1) && !tmp_array[curr + 1]) { 354 next = curr + 1; 355 } else { 356 int i = 0; 357 358 while ((i < size) && (tmp_array[i])) 359 i++; 360 if (i == size) 361 next = ICE_NO_VSI; 362 else 363 next = i; 364 } 365 return next; 366 } 367 368 /** 369 * ice_vsi_delete - delete a VSI from the switch 370 * @vsi: pointer to VSI being removed 371 */ 372 void ice_vsi_delete(struct ice_vsi *vsi) 373 { 374 struct ice_pf *pf = vsi->back; 375 struct ice_vsi_ctx *ctxt; 376 enum ice_status status; 377 378 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 379 if (!ctxt) 380 return; 381 382 if (vsi->type == ICE_VSI_VF) 383 ctxt->vf_num = vsi->vf_id; 384 ctxt->vsi_num = vsi->vsi_num; 385 386 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 387 388 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 389 if (status) 390 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 391 vsi->vsi_num); 392 393 devm_kfree(&pf->pdev->dev, ctxt); 394 } 395 396 /** 397 * ice_vsi_free_arrays - clean up VSI resources 398 * @vsi: pointer to VSI being cleared 399 * @free_qvectors: bool to specify if q_vectors should be deallocated 400 */ 401 static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) 402 { 403 struct ice_pf *pf = vsi->back; 404 405 /* free the ring and vector containers */ 406 if (free_qvectors && vsi->q_vectors) { 407 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 408 vsi->q_vectors = NULL; 409 } 410 if (vsi->tx_rings) { 411 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 412 vsi->tx_rings = NULL; 413 } 414 if (vsi->rx_rings) { 415 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 416 vsi->rx_rings = NULL; 417 } 418 } 419 420 /** 421 * ice_vsi_clear - clean up and deallocate the provided VSI 422 * @vsi: pointer to VSI being cleared 423 * 424 * This deallocates the VSI's queue resources, removes it from the PF's 425 * VSI array if necessary, and deallocates the VSI 426 * 427 * Returns 0 on success, negative on failure 428 */ 429 int ice_vsi_clear(struct ice_vsi *vsi) 430 { 431 struct ice_pf *pf = NULL; 432 433 if (!vsi) 434 return 0; 435 436 if (!vsi->back) 437 return -EINVAL; 438 439 pf = vsi->back; 440 441 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 442 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 443 vsi->idx); 444 return -EINVAL; 445 } 446 447 mutex_lock(&pf->sw_mutex); 448 /* updates the PF for this cleared VSI */ 449 450 pf->vsi[vsi->idx] = NULL; 451 if (vsi->idx < pf->next_vsi) 452 pf->next_vsi = vsi->idx; 453 454 ice_vsi_free_arrays(vsi, true); 455 mutex_unlock(&pf->sw_mutex); 456 devm_kfree(&pf->pdev->dev, vsi); 457 458 return 0; 459 } 460 461 /** 462 * ice_msix_clean_rings - MSIX mode Interrupt Handler 463 * @irq: interrupt number 464 * @data: pointer to a q_vector 465 */ 466 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 467 { 468 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 469 470 if (!q_vector->tx.ring && !q_vector->rx.ring) 471 return IRQ_HANDLED; 472 473 napi_schedule(&q_vector->napi); 474 475 return IRQ_HANDLED; 476 } 477 478 /** 479 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 480 * @pf: board private structure 481 * @type: type of VSI 482 * @vf_id: Id of the VF being configured 483 * 484 * returns a pointer to a VSI on success, NULL on failure. 485 */ 486 static struct ice_vsi * 487 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 488 { 489 struct ice_vsi *vsi = NULL; 490 491 /* Need to protect the allocation of the VSIs at the PF level */ 492 mutex_lock(&pf->sw_mutex); 493 494 /* If we have already allocated our maximum number of VSIs, 495 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 496 * is available to be populated 497 */ 498 if (pf->next_vsi == ICE_NO_VSI) { 499 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 500 goto unlock_pf; 501 } 502 503 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 504 if (!vsi) 505 goto unlock_pf; 506 507 vsi->type = type; 508 vsi->back = pf; 509 set_bit(__ICE_DOWN, vsi->state); 510 vsi->idx = pf->next_vsi; 511 vsi->work_lmt = ICE_DFLT_IRQ_WORK; 512 513 if (type == ICE_VSI_VF) 514 ice_vsi_set_num_qs(vsi, vf_id); 515 else 516 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 517 518 switch (vsi->type) { 519 case ICE_VSI_PF: 520 if (ice_vsi_alloc_arrays(vsi, true)) 521 goto err_rings; 522 523 /* Setup default MSIX irq handler for VSI */ 524 vsi->irq_handler = ice_msix_clean_rings; 525 break; 526 case ICE_VSI_VF: 527 if (ice_vsi_alloc_arrays(vsi, true)) 528 goto err_rings; 529 break; 530 default: 531 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 532 goto unlock_pf; 533 } 534 535 /* fill VSI slot in the PF struct */ 536 pf->vsi[pf->next_vsi] = vsi; 537 538 /* prepare pf->next_vsi for next use */ 539 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 540 pf->next_vsi); 541 goto unlock_pf; 542 543 err_rings: 544 devm_kfree(&pf->pdev->dev, vsi); 545 vsi = NULL; 546 unlock_pf: 547 mutex_unlock(&pf->sw_mutex); 548 return vsi; 549 } 550 551 /** 552 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 553 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 554 * 555 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 556 */ 557 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 558 { 559 int offset, i; 560 561 mutex_lock(qs_cfg->qs_mutex); 562 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 563 0, qs_cfg->q_count, 0); 564 if (offset >= qs_cfg->pf_map_size) { 565 mutex_unlock(qs_cfg->qs_mutex); 566 return -ENOMEM; 567 } 568 569 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 570 for (i = 0; i < qs_cfg->q_count; i++) 571 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset; 572 mutex_unlock(qs_cfg->qs_mutex); 573 574 return 0; 575 } 576 577 /** 578 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 579 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 580 * 581 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 582 */ 583 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 584 { 585 int i, index = 0; 586 587 mutex_lock(qs_cfg->qs_mutex); 588 for (i = 0; i < qs_cfg->q_count; i++) { 589 index = find_next_zero_bit(qs_cfg->pf_map, 590 qs_cfg->pf_map_size, index); 591 if (index >= qs_cfg->pf_map_size) 592 goto err_scatter; 593 set_bit(index, qs_cfg->pf_map); 594 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index; 595 } 596 mutex_unlock(qs_cfg->qs_mutex); 597 598 return 0; 599 err_scatter: 600 for (index = 0; index < i; index++) { 601 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 602 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 603 } 604 mutex_unlock(qs_cfg->qs_mutex); 605 606 return -ENOMEM; 607 } 608 609 /** 610 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 611 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 612 * 613 * This function first tries to find contiguous space. If it is not successful, 614 * it tries with the scatter approach. 615 * 616 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 617 */ 618 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 619 { 620 int ret = 0; 621 622 ret = __ice_vsi_get_qs_contig(qs_cfg); 623 if (ret) { 624 /* contig failed, so try with scatter approach */ 625 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 626 qs_cfg->q_count = min_t(u16, qs_cfg->q_count, 627 qs_cfg->scatter_count); 628 ret = __ice_vsi_get_qs_sc(qs_cfg); 629 } 630 return ret; 631 } 632 633 /** 634 * ice_vsi_get_qs - Assign queues from PF to VSI 635 * @vsi: the VSI to assign queues to 636 * 637 * Returns 0 on success and a negative value on error 638 */ 639 static int ice_vsi_get_qs(struct ice_vsi *vsi) 640 { 641 struct ice_pf *pf = vsi->back; 642 struct ice_qs_cfg tx_qs_cfg = { 643 .qs_mutex = &pf->avail_q_mutex, 644 .pf_map = pf->avail_txqs, 645 .pf_map_size = ICE_MAX_TXQS, 646 .q_count = vsi->alloc_txq, 647 .scatter_count = ICE_MAX_SCATTER_TXQS, 648 .vsi_map = vsi->txq_map, 649 .vsi_map_offset = 0, 650 .mapping_mode = vsi->tx_mapping_mode 651 }; 652 struct ice_qs_cfg rx_qs_cfg = { 653 .qs_mutex = &pf->avail_q_mutex, 654 .pf_map = pf->avail_rxqs, 655 .pf_map_size = ICE_MAX_RXQS, 656 .q_count = vsi->alloc_rxq, 657 .scatter_count = ICE_MAX_SCATTER_RXQS, 658 .vsi_map = vsi->rxq_map, 659 .vsi_map_offset = 0, 660 .mapping_mode = vsi->rx_mapping_mode 661 }; 662 int ret = 0; 663 664 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 665 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 666 667 ret = __ice_vsi_get_qs(&tx_qs_cfg); 668 if (!ret) 669 ret = __ice_vsi_get_qs(&rx_qs_cfg); 670 671 return ret; 672 } 673 674 /** 675 * ice_vsi_put_qs - Release queues from VSI to PF 676 * @vsi: the VSI that is going to release queues 677 */ 678 void ice_vsi_put_qs(struct ice_vsi *vsi) 679 { 680 struct ice_pf *pf = vsi->back; 681 int i; 682 683 mutex_lock(&pf->avail_q_mutex); 684 685 for (i = 0; i < vsi->alloc_txq; i++) { 686 clear_bit(vsi->txq_map[i], pf->avail_txqs); 687 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 688 } 689 690 for (i = 0; i < vsi->alloc_rxq; i++) { 691 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 692 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 693 } 694 695 mutex_unlock(&pf->avail_q_mutex); 696 } 697 698 /** 699 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 700 * @vsi: the VSI being removed 701 */ 702 static void ice_rss_clean(struct ice_vsi *vsi) 703 { 704 struct ice_pf *pf; 705 706 pf = vsi->back; 707 708 if (vsi->rss_hkey_user) 709 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 710 if (vsi->rss_lut_user) 711 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 712 } 713 714 /** 715 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 716 * @vsi: the VSI being configured 717 */ 718 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 719 { 720 struct ice_hw_common_caps *cap; 721 struct ice_pf *pf = vsi->back; 722 723 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 724 vsi->rss_size = 1; 725 return; 726 } 727 728 cap = &pf->hw.func_caps.common_cap; 729 switch (vsi->type) { 730 case ICE_VSI_PF: 731 /* PF VSI will inherit RSS instance of PF */ 732 vsi->rss_table_size = cap->rss_table_size; 733 vsi->rss_size = min_t(int, num_online_cpus(), 734 BIT(cap->rss_table_entry_width)); 735 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 736 break; 737 case ICE_VSI_VF: 738 /* VF VSI will gets a small RSS table 739 * For VSI_LUT, LUT size should be set to 64 bytes 740 */ 741 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 742 vsi->rss_size = min_t(int, num_online_cpus(), 743 BIT(cap->rss_table_entry_width)); 744 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 745 break; 746 default: 747 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 748 vsi->type); 749 break; 750 } 751 } 752 753 /** 754 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 755 * @ctxt: the VSI context being set 756 * 757 * This initializes a default VSI context for all sections except the Queues. 758 */ 759 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 760 { 761 u32 table = 0; 762 763 memset(&ctxt->info, 0, sizeof(ctxt->info)); 764 /* VSI's should be allocated from shared pool */ 765 ctxt->alloc_from_pool = true; 766 /* Src pruning enabled by default */ 767 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 768 /* Traffic from VSI can be sent to LAN */ 769 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 770 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 771 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 772 * packets untagged/tagged. 773 */ 774 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 775 ICE_AQ_VSI_VLAN_MODE_M) >> 776 ICE_AQ_VSI_VLAN_MODE_S); 777 /* Have 1:1 UP mapping for both ingress/egress tables */ 778 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 779 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 780 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 781 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 782 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 783 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 784 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 785 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 786 ctxt->info.ingress_table = cpu_to_le32(table); 787 ctxt->info.egress_table = cpu_to_le32(table); 788 /* Have 1:1 UP mapping for outer to inner UP table */ 789 ctxt->info.outer_up_table = cpu_to_le32(table); 790 /* No Outer tag support outer_tag_flags remains to zero */ 791 } 792 793 /** 794 * ice_vsi_setup_q_map - Setup a VSI queue map 795 * @vsi: the VSI being configured 796 * @ctxt: VSI context structure 797 */ 798 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 799 { 800 u16 offset = 0, qmap = 0, tx_count = 0; 801 u16 qcount_tx = vsi->alloc_txq; 802 u16 qcount_rx = vsi->alloc_rxq; 803 u16 tx_numq_tc, rx_numq_tc; 804 u16 pow = 0, max_rss = 0; 805 bool ena_tc0 = false; 806 u8 netdev_tc = 0; 807 int i; 808 809 /* at least TC0 should be enabled by default */ 810 if (vsi->tc_cfg.numtc) { 811 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 812 ena_tc0 = true; 813 } else { 814 ena_tc0 = true; 815 } 816 817 if (ena_tc0) { 818 vsi->tc_cfg.numtc++; 819 vsi->tc_cfg.ena_tc |= 1; 820 } 821 822 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 823 if (!rx_numq_tc) 824 rx_numq_tc = 1; 825 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 826 if (!tx_numq_tc) 827 tx_numq_tc = 1; 828 829 /* TC mapping is a function of the number of Rx queues assigned to the 830 * VSI for each traffic class and the offset of these queues. 831 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 832 * queues allocated to TC0. No:of queues is a power-of-2. 833 * 834 * If TC is not enabled, the queue offset is set to 0, and allocate one 835 * queue, this way, traffic for the given TC will be sent to the default 836 * queue. 837 * 838 * Setup number and offset of Rx queues for all TCs for the VSI 839 */ 840 841 qcount_rx = rx_numq_tc; 842 843 /* qcount will change if RSS is enabled */ 844 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 845 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 846 if (vsi->type == ICE_VSI_PF) 847 max_rss = ICE_MAX_LG_RSS_QS; 848 else 849 max_rss = ICE_MAX_SMALL_RSS_QS; 850 qcount_rx = min_t(int, rx_numq_tc, max_rss); 851 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 852 } 853 } 854 855 /* find the (rounded up) power-of-2 of qcount */ 856 pow = order_base_2(qcount_rx); 857 858 ice_for_each_traffic_class(i) { 859 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 860 /* TC is not enabled */ 861 vsi->tc_cfg.tc_info[i].qoffset = 0; 862 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 863 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 864 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 865 ctxt->info.tc_mapping[i] = 0; 866 continue; 867 } 868 869 /* TC is enabled */ 870 vsi->tc_cfg.tc_info[i].qoffset = offset; 871 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 872 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 873 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 874 875 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 876 ICE_AQ_VSI_TC_Q_OFFSET_M) | 877 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 878 ICE_AQ_VSI_TC_Q_NUM_M); 879 offset += qcount_rx; 880 tx_count += tx_numq_tc; 881 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 882 } 883 884 /* if offset is non-zero, means it is calculated correctly based on 885 * enabled TCs for a given VSI otherwise qcount_rx will always 886 * be correct and non-zero because it is based off - VSI's 887 * allocated Rx queues which is at least 1 (hence qcount_tx will be 888 * at least 1) 889 */ 890 if (offset) 891 vsi->num_rxq = offset; 892 else 893 vsi->num_rxq = qcount_rx; 894 895 vsi->num_txq = tx_count; 896 897 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 898 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 899 /* since there is a chance that num_rxq could have been changed 900 * in the above for loop, make num_txq equal to num_rxq. 901 */ 902 vsi->num_txq = vsi->num_rxq; 903 } 904 905 /* Rx queue mapping */ 906 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 907 /* q_mapping buffer holds the info for the first queue allocated for 908 * this VSI in the PF space and also the number of queues associated 909 * with this VSI. 910 */ 911 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 912 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 913 } 914 915 /** 916 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 917 * @ctxt: the VSI context being set 918 * @vsi: the VSI being configured 919 */ 920 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 921 { 922 u8 lut_type, hash_type; 923 924 switch (vsi->type) { 925 case ICE_VSI_PF: 926 /* PF VSI will inherit RSS instance of PF */ 927 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 928 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 929 break; 930 case ICE_VSI_VF: 931 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 932 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 933 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 934 break; 935 default: 936 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 937 vsi->type); 938 return; 939 } 940 941 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 942 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 943 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 944 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 945 } 946 947 /** 948 * ice_vsi_init - Create and initialize a VSI 949 * @vsi: the VSI being configured 950 * 951 * This initializes a VSI context depending on the VSI type to be added and 952 * passes it down to the add_vsi aq command to create a new VSI. 953 */ 954 static int ice_vsi_init(struct ice_vsi *vsi) 955 { 956 struct ice_pf *pf = vsi->back; 957 struct ice_hw *hw = &pf->hw; 958 struct ice_vsi_ctx *ctxt; 959 int ret = 0; 960 961 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 962 if (!ctxt) 963 return -ENOMEM; 964 965 ctxt->info = vsi->info; 966 switch (vsi->type) { 967 case ICE_VSI_PF: 968 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 969 break; 970 case ICE_VSI_VF: 971 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 972 /* VF number here is the absolute VF number (0-255) */ 973 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 974 break; 975 default: 976 return -ENODEV; 977 } 978 979 ice_set_dflt_vsi_ctx(ctxt); 980 /* if the switch is in VEB mode, allow VSI loopback */ 981 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 982 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 983 984 /* Set LUT type and HASH type if RSS is enabled */ 985 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 986 ice_set_rss_vsi_ctx(ctxt, vsi); 987 988 ctxt->info.sw_id = vsi->port_info->sw_id; 989 ice_vsi_setup_q_map(vsi, ctxt); 990 991 /* Enable MAC Antispoof with new VSI being initialized or updated */ 992 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) { 993 ctxt->info.valid_sections |= 994 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 995 ctxt->info.sec_flags |= 996 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; 997 } 998 999 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1000 if (ret) { 1001 dev_err(&pf->pdev->dev, 1002 "Add VSI failed, err %d\n", ret); 1003 return -EIO; 1004 } 1005 1006 /* keep context for update VSI operations */ 1007 vsi->info = ctxt->info; 1008 1009 /* record VSI number returned */ 1010 vsi->vsi_num = ctxt->vsi_num; 1011 1012 devm_kfree(&pf->pdev->dev, ctxt); 1013 return ret; 1014 } 1015 1016 /** 1017 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 1018 * @vsi: VSI having the memory freed 1019 * @v_idx: index of the vector to be freed 1020 */ 1021 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 1022 { 1023 struct ice_q_vector *q_vector; 1024 struct ice_ring *ring; 1025 1026 if (!vsi->q_vectors[v_idx]) { 1027 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", 1028 v_idx); 1029 return; 1030 } 1031 q_vector = vsi->q_vectors[v_idx]; 1032 1033 ice_for_each_ring(ring, q_vector->tx) 1034 ring->q_vector = NULL; 1035 ice_for_each_ring(ring, q_vector->rx) 1036 ring->q_vector = NULL; 1037 1038 /* only VSI with an associated netdev is set up with NAPI */ 1039 if (vsi->netdev) 1040 netif_napi_del(&q_vector->napi); 1041 1042 devm_kfree(&vsi->back->pdev->dev, q_vector); 1043 vsi->q_vectors[v_idx] = NULL; 1044 } 1045 1046 /** 1047 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 1048 * @vsi: the VSI having memory freed 1049 */ 1050 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 1051 { 1052 int v_idx; 1053 1054 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1055 ice_free_q_vector(vsi, v_idx); 1056 } 1057 1058 /** 1059 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1060 * @vsi: the VSI being configured 1061 * @v_idx: index of the vector in the VSI struct 1062 * 1063 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1064 */ 1065 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1066 { 1067 struct ice_pf *pf = vsi->back; 1068 struct ice_q_vector *q_vector; 1069 1070 /* allocate q_vector */ 1071 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1072 if (!q_vector) 1073 return -ENOMEM; 1074 1075 q_vector->vsi = vsi; 1076 q_vector->v_idx = v_idx; 1077 if (vsi->type == ICE_VSI_VF) 1078 goto out; 1079 /* only set affinity_mask if the CPU is online */ 1080 if (cpu_online(v_idx)) 1081 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1082 1083 /* This will not be called in the driver load path because the netdev 1084 * will not be created yet. All other cases with register the NAPI 1085 * handler here (i.e. resume, reset/rebuild, etc.) 1086 */ 1087 if (vsi->netdev) 1088 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1089 NAPI_POLL_WEIGHT); 1090 1091 out: 1092 /* tie q_vector and VSI together */ 1093 vsi->q_vectors[v_idx] = q_vector; 1094 1095 return 0; 1096 } 1097 1098 /** 1099 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1100 * @vsi: the VSI being configured 1101 * 1102 * We allocate one q_vector per queue interrupt. If allocation fails we 1103 * return -ENOMEM. 1104 */ 1105 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1106 { 1107 struct ice_pf *pf = vsi->back; 1108 int v_idx = 0, num_q_vectors; 1109 int err; 1110 1111 if (vsi->q_vectors[0]) { 1112 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1113 vsi->vsi_num); 1114 return -EEXIST; 1115 } 1116 1117 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1118 num_q_vectors = vsi->num_q_vectors; 1119 } else { 1120 err = -EINVAL; 1121 goto err_out; 1122 } 1123 1124 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1125 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1126 if (err) 1127 goto err_out; 1128 } 1129 1130 return 0; 1131 1132 err_out: 1133 while (v_idx--) 1134 ice_free_q_vector(vsi, v_idx); 1135 1136 dev_err(&pf->pdev->dev, 1137 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1138 vsi->num_q_vectors, vsi->vsi_num, err); 1139 vsi->num_q_vectors = 0; 1140 return err; 1141 } 1142 1143 /** 1144 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1145 * @vsi: ptr to the VSI 1146 * 1147 * This should only be called after ice_vsi_alloc() which allocates the 1148 * corresponding SW VSI structure and initializes num_queue_pairs for the 1149 * newly allocated VSI. 1150 * 1151 * Returns 0 on success or negative on failure 1152 */ 1153 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1154 { 1155 struct ice_pf *pf = vsi->back; 1156 int num_q_vectors = 0; 1157 1158 if (vsi->sw_base_vector || vsi->hw_base_vector) { 1159 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n", 1160 vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector); 1161 return -EEXIST; 1162 } 1163 1164 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1165 return -ENOENT; 1166 1167 switch (vsi->type) { 1168 case ICE_VSI_PF: 1169 num_q_vectors = vsi->num_q_vectors; 1170 /* reserve slots from OS requested IRQs */ 1171 vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker, 1172 num_q_vectors, vsi->idx); 1173 if (vsi->sw_base_vector < 0) { 1174 dev_err(&pf->pdev->dev, 1175 "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n", 1176 num_q_vectors, vsi->vsi_num, 1177 vsi->sw_base_vector); 1178 return -ENOENT; 1179 } 1180 pf->num_avail_sw_msix -= num_q_vectors; 1181 1182 /* reserve slots from HW interrupts */ 1183 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1184 num_q_vectors, vsi->idx); 1185 break; 1186 case ICE_VSI_VF: 1187 /* take VF misc vector and data vectors into account */ 1188 num_q_vectors = pf->num_vf_msix; 1189 /* For VF VSI, reserve slots only from HW interrupts */ 1190 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1191 num_q_vectors, vsi->idx); 1192 break; 1193 default: 1194 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 1195 vsi->type); 1196 break; 1197 } 1198 1199 if (vsi->hw_base_vector < 0) { 1200 dev_err(&pf->pdev->dev, 1201 "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n", 1202 num_q_vectors, vsi->vsi_num, vsi->hw_base_vector); 1203 if (vsi->type != ICE_VSI_VF) { 1204 ice_free_res(vsi->back->sw_irq_tracker, 1205 vsi->sw_base_vector, vsi->idx); 1206 pf->num_avail_sw_msix += num_q_vectors; 1207 } 1208 return -ENOENT; 1209 } 1210 1211 pf->num_avail_hw_msix -= num_q_vectors; 1212 1213 return 0; 1214 } 1215 1216 /** 1217 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1218 * @vsi: the VSI having rings deallocated 1219 */ 1220 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1221 { 1222 int i; 1223 1224 if (vsi->tx_rings) { 1225 for (i = 0; i < vsi->alloc_txq; i++) { 1226 if (vsi->tx_rings[i]) { 1227 kfree_rcu(vsi->tx_rings[i], rcu); 1228 vsi->tx_rings[i] = NULL; 1229 } 1230 } 1231 } 1232 if (vsi->rx_rings) { 1233 for (i = 0; i < vsi->alloc_rxq; i++) { 1234 if (vsi->rx_rings[i]) { 1235 kfree_rcu(vsi->rx_rings[i], rcu); 1236 vsi->rx_rings[i] = NULL; 1237 } 1238 } 1239 } 1240 } 1241 1242 /** 1243 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1244 * @vsi: VSI which is having rings allocated 1245 */ 1246 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1247 { 1248 struct ice_pf *pf = vsi->back; 1249 int i; 1250 1251 /* Allocate Tx rings */ 1252 for (i = 0; i < vsi->alloc_txq; i++) { 1253 struct ice_ring *ring; 1254 1255 /* allocate with kzalloc(), free with kfree_rcu() */ 1256 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1257 1258 if (!ring) 1259 goto err_out; 1260 1261 ring->q_index = i; 1262 ring->reg_idx = vsi->txq_map[i]; 1263 ring->ring_active = false; 1264 ring->vsi = vsi; 1265 ring->dev = &pf->pdev->dev; 1266 ring->count = vsi->num_tx_desc; 1267 vsi->tx_rings[i] = ring; 1268 } 1269 1270 /* Allocate Rx rings */ 1271 for (i = 0; i < vsi->alloc_rxq; i++) { 1272 struct ice_ring *ring; 1273 1274 /* allocate with kzalloc(), free with kfree_rcu() */ 1275 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1276 if (!ring) 1277 goto err_out; 1278 1279 ring->q_index = i; 1280 ring->reg_idx = vsi->rxq_map[i]; 1281 ring->ring_active = false; 1282 ring->vsi = vsi; 1283 ring->netdev = vsi->netdev; 1284 ring->dev = &pf->pdev->dev; 1285 ring->count = vsi->num_rx_desc; 1286 vsi->rx_rings[i] = ring; 1287 } 1288 1289 return 0; 1290 1291 err_out: 1292 ice_vsi_clear_rings(vsi); 1293 return -ENOMEM; 1294 } 1295 1296 /** 1297 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1298 * @vsi: the VSI being configured 1299 * 1300 * This function maps descriptor rings to the queue-specific vectors allotted 1301 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1302 * and Rx rings to the vector as "efficiently" as possible. 1303 */ 1304 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1305 { 1306 int q_vectors = vsi->num_q_vectors; 1307 int tx_rings_rem, rx_rings_rem; 1308 int v_id; 1309 1310 /* initially assigning remaining rings count to VSIs num queue value */ 1311 tx_rings_rem = vsi->num_txq; 1312 rx_rings_rem = vsi->num_rxq; 1313 1314 for (v_id = 0; v_id < q_vectors; v_id++) { 1315 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1316 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1317 1318 /* Tx rings mapping to vector */ 1319 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1320 q_vector->num_ring_tx = tx_rings_per_v; 1321 q_vector->tx.ring = NULL; 1322 q_vector->tx.itr_idx = ICE_TX_ITR; 1323 q_base = vsi->num_txq - tx_rings_rem; 1324 1325 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1326 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1327 1328 tx_ring->q_vector = q_vector; 1329 tx_ring->next = q_vector->tx.ring; 1330 q_vector->tx.ring = tx_ring; 1331 } 1332 tx_rings_rem -= tx_rings_per_v; 1333 1334 /* Rx rings mapping to vector */ 1335 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1336 q_vector->num_ring_rx = rx_rings_per_v; 1337 q_vector->rx.ring = NULL; 1338 q_vector->rx.itr_idx = ICE_RX_ITR; 1339 q_base = vsi->num_rxq - rx_rings_rem; 1340 1341 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1342 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1343 1344 rx_ring->q_vector = q_vector; 1345 rx_ring->next = q_vector->rx.ring; 1346 q_vector->rx.ring = rx_ring; 1347 } 1348 rx_rings_rem -= rx_rings_per_v; 1349 } 1350 } 1351 1352 /** 1353 * ice_vsi_manage_rss_lut - disable/enable RSS 1354 * @vsi: the VSI being changed 1355 * @ena: boolean value indicating if this is an enable or disable request 1356 * 1357 * In the event of disable request for RSS, this function will zero out RSS 1358 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1359 * LUT. 1360 */ 1361 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1362 { 1363 int err = 0; 1364 u8 *lut; 1365 1366 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1367 GFP_KERNEL); 1368 if (!lut) 1369 return -ENOMEM; 1370 1371 if (ena) { 1372 if (vsi->rss_lut_user) 1373 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1374 else 1375 ice_fill_rss_lut(lut, vsi->rss_table_size, 1376 vsi->rss_size); 1377 } 1378 1379 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1380 devm_kfree(&vsi->back->pdev->dev, lut); 1381 return err; 1382 } 1383 1384 /** 1385 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1386 * @vsi: VSI to be configured 1387 */ 1388 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1389 { 1390 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; 1391 struct ice_aqc_get_set_rss_keys *key; 1392 struct ice_pf *pf = vsi->back; 1393 enum ice_status status; 1394 int err = 0; 1395 u8 *lut; 1396 1397 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1398 1399 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1400 if (!lut) 1401 return -ENOMEM; 1402 1403 if (vsi->rss_lut_user) 1404 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1405 else 1406 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1407 1408 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1409 vsi->rss_table_size); 1410 1411 if (status) { 1412 dev_err(&vsi->back->pdev->dev, 1413 "set_rss_lut failed, error %d\n", status); 1414 err = -EIO; 1415 goto ice_vsi_cfg_rss_exit; 1416 } 1417 1418 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); 1419 if (!key) { 1420 err = -ENOMEM; 1421 goto ice_vsi_cfg_rss_exit; 1422 } 1423 1424 if (vsi->rss_hkey_user) 1425 memcpy(seed, vsi->rss_hkey_user, 1426 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1427 else 1428 netdev_rss_key_fill((void *)seed, 1429 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1430 memcpy(&key->standard_rss_key, seed, 1431 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1432 1433 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1434 1435 if (status) { 1436 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", 1437 status); 1438 err = -EIO; 1439 } 1440 1441 devm_kfree(&pf->pdev->dev, key); 1442 ice_vsi_cfg_rss_exit: 1443 devm_kfree(&pf->pdev->dev, lut); 1444 return err; 1445 } 1446 1447 /** 1448 * ice_add_mac_to_list - Add a mac address filter entry to the list 1449 * @vsi: the VSI to be forwarded to 1450 * @add_list: pointer to the list which contains MAC filter entries 1451 * @macaddr: the MAC address to be added. 1452 * 1453 * Adds mac address filter entry to the temp list 1454 * 1455 * Returns 0 on success or ENOMEM on failure. 1456 */ 1457 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1458 const u8 *macaddr) 1459 { 1460 struct ice_fltr_list_entry *tmp; 1461 struct ice_pf *pf = vsi->back; 1462 1463 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1464 if (!tmp) 1465 return -ENOMEM; 1466 1467 tmp->fltr_info.flag = ICE_FLTR_TX; 1468 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1469 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1470 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1471 tmp->fltr_info.vsi_handle = vsi->idx; 1472 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1473 1474 INIT_LIST_HEAD(&tmp->list_entry); 1475 list_add(&tmp->list_entry, add_list); 1476 1477 return 0; 1478 } 1479 1480 /** 1481 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1482 * @vsi: the VSI to be updated 1483 */ 1484 void ice_update_eth_stats(struct ice_vsi *vsi) 1485 { 1486 struct ice_eth_stats *prev_es, *cur_es; 1487 struct ice_hw *hw = &vsi->back->hw; 1488 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1489 1490 prev_es = &vsi->eth_stats_prev; 1491 cur_es = &vsi->eth_stats; 1492 1493 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), 1494 vsi->stat_offsets_loaded, &prev_es->rx_bytes, 1495 &cur_es->rx_bytes); 1496 1497 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), 1498 vsi->stat_offsets_loaded, &prev_es->rx_unicast, 1499 &cur_es->rx_unicast); 1500 1501 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), 1502 vsi->stat_offsets_loaded, &prev_es->rx_multicast, 1503 &cur_es->rx_multicast); 1504 1505 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), 1506 vsi->stat_offsets_loaded, &prev_es->rx_broadcast, 1507 &cur_es->rx_broadcast); 1508 1509 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1510 &prev_es->rx_discards, &cur_es->rx_discards); 1511 1512 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), 1513 vsi->stat_offsets_loaded, &prev_es->tx_bytes, 1514 &cur_es->tx_bytes); 1515 1516 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), 1517 vsi->stat_offsets_loaded, &prev_es->tx_unicast, 1518 &cur_es->tx_unicast); 1519 1520 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), 1521 vsi->stat_offsets_loaded, &prev_es->tx_multicast, 1522 &cur_es->tx_multicast); 1523 1524 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), 1525 vsi->stat_offsets_loaded, &prev_es->tx_broadcast, 1526 &cur_es->tx_broadcast); 1527 1528 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1529 &prev_es->tx_errors, &cur_es->tx_errors); 1530 1531 vsi->stat_offsets_loaded = true; 1532 } 1533 1534 /** 1535 * ice_free_fltr_list - free filter lists helper 1536 * @dev: pointer to the device struct 1537 * @h: pointer to the list head to be freed 1538 * 1539 * Helper function to free filter lists previously created using 1540 * ice_add_mac_to_list 1541 */ 1542 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1543 { 1544 struct ice_fltr_list_entry *e, *tmp; 1545 1546 list_for_each_entry_safe(e, tmp, h, list_entry) { 1547 list_del(&e->list_entry); 1548 devm_kfree(dev, e); 1549 } 1550 } 1551 1552 /** 1553 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1554 * @vsi: the VSI being configured 1555 * @vid: VLAN id to be added 1556 */ 1557 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1558 { 1559 struct ice_fltr_list_entry *tmp; 1560 struct ice_pf *pf = vsi->back; 1561 LIST_HEAD(tmp_add_list); 1562 enum ice_status status; 1563 int err = 0; 1564 1565 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1566 if (!tmp) 1567 return -ENOMEM; 1568 1569 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1570 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1571 tmp->fltr_info.flag = ICE_FLTR_TX; 1572 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1573 tmp->fltr_info.vsi_handle = vsi->idx; 1574 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1575 1576 INIT_LIST_HEAD(&tmp->list_entry); 1577 list_add(&tmp->list_entry, &tmp_add_list); 1578 1579 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1580 if (status) { 1581 err = -ENODEV; 1582 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1583 vid, vsi->vsi_num); 1584 } 1585 1586 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1587 return err; 1588 } 1589 1590 /** 1591 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1592 * @vsi: the VSI being configured 1593 * @vid: VLAN id to be removed 1594 * 1595 * Returns 0 on success and negative on failure 1596 */ 1597 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1598 { 1599 struct ice_fltr_list_entry *list; 1600 struct ice_pf *pf = vsi->back; 1601 LIST_HEAD(tmp_add_list); 1602 int status = 0; 1603 1604 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1605 if (!list) 1606 return -ENOMEM; 1607 1608 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1609 list->fltr_info.vsi_handle = vsi->idx; 1610 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1611 list->fltr_info.l_data.vlan.vlan_id = vid; 1612 list->fltr_info.flag = ICE_FLTR_TX; 1613 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1614 1615 INIT_LIST_HEAD(&list->list_entry); 1616 list_add(&list->list_entry, &tmp_add_list); 1617 1618 if (ice_remove_vlan(&pf->hw, &tmp_add_list)) { 1619 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", 1620 vid, vsi->vsi_num); 1621 status = -EIO; 1622 } 1623 1624 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1625 return status; 1626 } 1627 1628 /** 1629 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1630 * @vsi: the VSI being configured 1631 * 1632 * Return 0 on success and a negative value on error 1633 * Configure the Rx VSI for operation. 1634 */ 1635 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1636 { 1637 int err = 0; 1638 u16 i; 1639 1640 if (vsi->type == ICE_VSI_VF) 1641 goto setup_rings; 1642 1643 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1644 vsi->max_frame = vsi->netdev->mtu + 1645 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1646 else 1647 vsi->max_frame = ICE_RXBUF_2048; 1648 1649 vsi->rx_buf_len = ICE_RXBUF_2048; 1650 setup_rings: 1651 /* set up individual rings */ 1652 for (i = 0; i < vsi->num_rxq && !err; i++) 1653 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1654 1655 if (err) { 1656 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); 1657 return -EIO; 1658 } 1659 return err; 1660 } 1661 1662 /** 1663 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1664 * @vsi: the VSI being configured 1665 * @rings: Tx ring array to be configured 1666 * @offset: offset within vsi->txq_map 1667 * 1668 * Return 0 on success and a negative value on error 1669 * Configure the Tx VSI for operation. 1670 */ 1671 static int 1672 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset) 1673 { 1674 struct ice_aqc_add_tx_qgrp *qg_buf; 1675 struct ice_aqc_add_txqs_perq *txq; 1676 struct ice_pf *pf = vsi->back; 1677 u8 num_q_grps, q_idx = 0; 1678 enum ice_status status; 1679 u16 buf_len, i, pf_q; 1680 int err = 0, tc; 1681 1682 buf_len = sizeof(*qg_buf); 1683 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); 1684 if (!qg_buf) 1685 return -ENOMEM; 1686 1687 qg_buf->num_txqs = 1; 1688 num_q_grps = 1; 1689 1690 /* set up and configure the Tx queues for each enabled TC */ 1691 ice_for_each_traffic_class(tc) { 1692 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 1693 break; 1694 1695 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 1696 struct ice_tlan_ctx tlan_ctx = { 0 }; 1697 1698 pf_q = vsi->txq_map[q_idx + offset]; 1699 ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q); 1700 /* copy context contents into the qg_buf */ 1701 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1702 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1703 ice_tlan_ctx_info); 1704 1705 /* init queue specific tail reg. It is referred as 1706 * transmit comm scheduler queue doorbell. 1707 */ 1708 rings[q_idx]->tail = 1709 pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1710 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 1711 num_q_grps, qg_buf, buf_len, 1712 NULL); 1713 if (status) { 1714 dev_err(&vsi->back->pdev->dev, 1715 "Failed to set LAN Tx queue context, error: %d\n", 1716 status); 1717 err = -ENODEV; 1718 goto err_cfg_txqs; 1719 } 1720 1721 /* Add Tx Queue TEID into the VSI Tx ring from the 1722 * response. This will complete configuring and 1723 * enabling the queue. 1724 */ 1725 txq = &qg_buf->txqs[0]; 1726 if (pf_q == le16_to_cpu(txq->txq_id)) 1727 rings[q_idx]->txq_teid = 1728 le32_to_cpu(txq->q_teid); 1729 1730 q_idx++; 1731 } 1732 } 1733 err_cfg_txqs: 1734 devm_kfree(&pf->pdev->dev, qg_buf); 1735 return err; 1736 } 1737 1738 /** 1739 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1740 * @vsi: the VSI being configured 1741 * 1742 * Return 0 on success and a negative value on error 1743 * Configure the Tx VSI for operation. 1744 */ 1745 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1746 { 1747 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0); 1748 } 1749 1750 /** 1751 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1752 * @intrl: interrupt rate limit in usecs 1753 * @gran: interrupt rate limit granularity in usecs 1754 * 1755 * This function converts a decimal interrupt rate limit in usecs to the format 1756 * expected by firmware. 1757 */ 1758 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1759 { 1760 u32 val = intrl / gran; 1761 1762 if (val) 1763 return val | GLINT_RATE_INTRL_ENA_M; 1764 return 0; 1765 } 1766 1767 /** 1768 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 1769 * @hw: board specific structure 1770 */ 1771 static void ice_cfg_itr_gran(struct ice_hw *hw) 1772 { 1773 u32 regval = rd32(hw, GLINT_CTL); 1774 1775 /* no need to update global register if ITR gran is already set */ 1776 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 1777 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 1778 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 1779 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 1780 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 1781 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 1782 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 1783 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 1784 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 1785 return; 1786 1787 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 1788 GLINT_CTL_ITR_GRAN_200_M) | 1789 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 1790 GLINT_CTL_ITR_GRAN_100_M) | 1791 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 1792 GLINT_CTL_ITR_GRAN_50_M) | 1793 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 1794 GLINT_CTL_ITR_GRAN_25_M); 1795 wr32(hw, GLINT_CTL, regval); 1796 } 1797 1798 /** 1799 * ice_cfg_itr - configure the initial interrupt throttle values 1800 * @hw: pointer to the HW structure 1801 * @q_vector: interrupt vector that's being configured 1802 * @vector: HW vector index to apply the interrupt throttling to 1803 * 1804 * Configure interrupt throttling values for the ring containers that are 1805 * associated with the interrupt vector passed in. 1806 */ 1807 static void 1808 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector) 1809 { 1810 ice_cfg_itr_gran(hw); 1811 1812 if (q_vector->num_ring_rx) { 1813 struct ice_ring_container *rc = &q_vector->rx; 1814 1815 /* if this value is set then don't overwrite with default */ 1816 if (!rc->itr_setting) 1817 rc->itr_setting = ICE_DFLT_RX_ITR; 1818 1819 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1820 rc->next_update = jiffies + 1; 1821 rc->current_itr = rc->target_itr; 1822 wr32(hw, GLINT_ITR(rc->itr_idx, vector), 1823 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1824 } 1825 1826 if (q_vector->num_ring_tx) { 1827 struct ice_ring_container *rc = &q_vector->tx; 1828 1829 /* if this value is set then don't overwrite with default */ 1830 if (!rc->itr_setting) 1831 rc->itr_setting = ICE_DFLT_TX_ITR; 1832 1833 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1834 rc->next_update = jiffies + 1; 1835 rc->current_itr = rc->target_itr; 1836 wr32(hw, GLINT_ITR(rc->itr_idx, vector), 1837 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1838 } 1839 } 1840 1841 /** 1842 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1843 * @vsi: the VSI being configured 1844 */ 1845 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1846 { 1847 struct ice_pf *pf = vsi->back; 1848 u16 vector = vsi->hw_base_vector; 1849 struct ice_hw *hw = &pf->hw; 1850 u32 txq = 0, rxq = 0; 1851 int i, q; 1852 1853 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 1854 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1855 1856 ice_cfg_itr(hw, q_vector, vector); 1857 1858 wr32(hw, GLINT_RATE(vector), 1859 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1860 1861 /* Both Transmit Queue Interrupt Cause Control register 1862 * and Receive Queue Interrupt Cause control register 1863 * expects MSIX_INDX field to be the vector index 1864 * within the function space and not the absolute 1865 * vector index across PF or across device. 1866 * For SR-IOV VF VSIs queue vector index always starts 1867 * with 1 since first vector index(0) is used for OICR 1868 * in VF space. Since VMDq and other PF VSIs are within 1869 * the PF function space, use the vector index that is 1870 * tracked for this PF. 1871 */ 1872 for (q = 0; q < q_vector->num_ring_tx; q++) { 1873 int itr_idx = q_vector->tx.itr_idx; 1874 u32 val; 1875 1876 if (vsi->type == ICE_VSI_VF) 1877 val = QINT_TQCTL_CAUSE_ENA_M | 1878 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1879 ((i + 1) << QINT_TQCTL_MSIX_INDX_S); 1880 else 1881 val = QINT_TQCTL_CAUSE_ENA_M | 1882 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1883 (vector << QINT_TQCTL_MSIX_INDX_S); 1884 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1885 txq++; 1886 } 1887 1888 for (q = 0; q < q_vector->num_ring_rx; q++) { 1889 int itr_idx = q_vector->rx.itr_idx; 1890 u32 val; 1891 1892 if (vsi->type == ICE_VSI_VF) 1893 val = QINT_RQCTL_CAUSE_ENA_M | 1894 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1895 ((i + 1) << QINT_RQCTL_MSIX_INDX_S); 1896 else 1897 val = QINT_RQCTL_CAUSE_ENA_M | 1898 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1899 (vector << QINT_RQCTL_MSIX_INDX_S); 1900 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1901 rxq++; 1902 } 1903 } 1904 1905 ice_flush(hw); 1906 } 1907 1908 /** 1909 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1910 * @vsi: the VSI being changed 1911 */ 1912 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1913 { 1914 struct device *dev = &vsi->back->pdev->dev; 1915 struct ice_hw *hw = &vsi->back->hw; 1916 struct ice_vsi_ctx *ctxt; 1917 enum ice_status status; 1918 int ret = 0; 1919 1920 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1921 if (!ctxt) 1922 return -ENOMEM; 1923 1924 /* Here we are configuring the VSI to let the driver add VLAN tags by 1925 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1926 * insertion happens in the Tx hot path, in ice_tx_map. 1927 */ 1928 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1929 1930 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1931 1932 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1933 if (status) { 1934 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1935 status, hw->adminq.sq_last_status); 1936 ret = -EIO; 1937 goto out; 1938 } 1939 1940 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1941 out: 1942 devm_kfree(dev, ctxt); 1943 return ret; 1944 } 1945 1946 /** 1947 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1948 * @vsi: the VSI being changed 1949 * @ena: boolean value indicating if this is a enable or disable request 1950 */ 1951 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1952 { 1953 struct device *dev = &vsi->back->pdev->dev; 1954 struct ice_hw *hw = &vsi->back->hw; 1955 struct ice_vsi_ctx *ctxt; 1956 enum ice_status status; 1957 int ret = 0; 1958 1959 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1960 if (!ctxt) 1961 return -ENOMEM; 1962 1963 /* Here we are configuring what the VSI should do with the VLAN tag in 1964 * the Rx packet. We can either leave the tag in the packet or put it in 1965 * the Rx descriptor. 1966 */ 1967 if (ena) 1968 /* Strip VLAN tag from Rx packet and put it in the desc */ 1969 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1970 else 1971 /* Disable stripping. Leave tag in packet */ 1972 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1973 1974 /* Allow all packets untagged/tagged */ 1975 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1976 1977 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1978 1979 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1980 if (status) { 1981 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1982 ena, status, hw->adminq.sq_last_status); 1983 ret = -EIO; 1984 goto out; 1985 } 1986 1987 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1988 out: 1989 devm_kfree(dev, ctxt); 1990 return ret; 1991 } 1992 1993 /** 1994 * ice_vsi_start_rx_rings - start VSI's Rx rings 1995 * @vsi: the VSI whose rings are to be started 1996 * 1997 * Returns 0 on success and a negative value on error 1998 */ 1999 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 2000 { 2001 return ice_vsi_ctrl_rx_rings(vsi, true); 2002 } 2003 2004 /** 2005 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 2006 * @vsi: the VSI 2007 * 2008 * Returns 0 on success and a negative value on error 2009 */ 2010 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 2011 { 2012 return ice_vsi_ctrl_rx_rings(vsi, false); 2013 } 2014 2015 /** 2016 * ice_vsi_stop_tx_rings - Disable Tx rings 2017 * @vsi: the VSI being configured 2018 * @rst_src: reset source 2019 * @rel_vmvf_num: Relative id of VF/VM 2020 * @rings: Tx ring array to be stopped 2021 * @offset: offset within vsi->txq_map 2022 */ 2023 static int 2024 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2025 u16 rel_vmvf_num, struct ice_ring **rings, int offset) 2026 { 2027 struct ice_pf *pf = vsi->back; 2028 struct ice_hw *hw = &pf->hw; 2029 enum ice_status status; 2030 u32 *q_teids, val; 2031 u16 *q_ids, i; 2032 int err = 0; 2033 2034 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2035 return -EINVAL; 2036 2037 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), 2038 GFP_KERNEL); 2039 if (!q_teids) 2040 return -ENOMEM; 2041 2042 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), 2043 GFP_KERNEL); 2044 if (!q_ids) { 2045 err = -ENOMEM; 2046 goto err_alloc_q_ids; 2047 } 2048 2049 /* set up the Tx queue list to be disabled */ 2050 ice_for_each_txq(vsi, i) { 2051 u16 v_idx; 2052 2053 if (!rings || !rings[i] || !rings[i]->q_vector) { 2054 err = -EINVAL; 2055 goto err_out; 2056 } 2057 2058 q_ids[i] = vsi->txq_map[i + offset]; 2059 q_teids[i] = rings[i]->txq_teid; 2060 2061 /* clear cause_ena bit for disabled queues */ 2062 val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx)); 2063 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2064 wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val); 2065 2066 /* software is expected to wait for 100 ns */ 2067 ndelay(100); 2068 2069 /* trigger a software interrupt for the vector associated to 2070 * the queue to schedule NAPI handler 2071 */ 2072 v_idx = rings[i]->q_vector->v_idx; 2073 wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 2074 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); 2075 } 2076 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, 2077 rst_src, rel_vmvf_num, NULL); 2078 /* if the disable queue command was exercised during an active reset 2079 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as 2080 * the reset operation disables queues at the hardware level anyway. 2081 */ 2082 if (status == ICE_ERR_RESET_ONGOING) { 2083 dev_info(&pf->pdev->dev, 2084 "Reset in progress. LAN Tx queues already disabled\n"); 2085 } else if (status) { 2086 dev_err(&pf->pdev->dev, 2087 "Failed to disable LAN Tx queues, error: %d\n", 2088 status); 2089 err = -ENODEV; 2090 } 2091 2092 err_out: 2093 devm_kfree(&pf->pdev->dev, q_ids); 2094 2095 err_alloc_q_ids: 2096 devm_kfree(&pf->pdev->dev, q_teids); 2097 2098 return err; 2099 } 2100 2101 /** 2102 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2103 * @vsi: the VSI being configured 2104 * @rst_src: reset source 2105 * @rel_vmvf_num: Relative id of VF/VM 2106 */ 2107 int 2108 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2109 u16 rel_vmvf_num) 2110 { 2111 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, 2112 0); 2113 } 2114 2115 /** 2116 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2117 * @vsi: VSI to enable or disable VLAN pruning on 2118 * @ena: set to true to enable VLAN pruning and false to disable it 2119 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2120 * 2121 * returns 0 if VSI is updated, negative otherwise 2122 */ 2123 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2124 { 2125 struct ice_vsi_ctx *ctxt; 2126 struct device *dev; 2127 int status; 2128 2129 if (!vsi) 2130 return -EINVAL; 2131 2132 dev = &vsi->back->pdev->dev; 2133 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2134 if (!ctxt) 2135 return -ENOMEM; 2136 2137 ctxt->info = vsi->info; 2138 2139 if (ena) { 2140 ctxt->info.sec_flags |= 2141 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2142 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 2143 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2144 } else { 2145 ctxt->info.sec_flags &= 2146 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2147 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 2148 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2149 } 2150 2151 if (!vlan_promisc) 2152 ctxt->info.valid_sections = 2153 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 2154 ICE_AQ_VSI_PROP_SW_VALID); 2155 2156 status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL); 2157 if (status) { 2158 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2159 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 2160 vsi->back->hw.adminq.sq_last_status); 2161 goto err_out; 2162 } 2163 2164 vsi->info.sec_flags = ctxt->info.sec_flags; 2165 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2166 2167 devm_kfree(dev, ctxt); 2168 return 0; 2169 2170 err_out: 2171 devm_kfree(dev, ctxt); 2172 return -EIO; 2173 } 2174 2175 /** 2176 * ice_vsi_setup - Set up a VSI by a given type 2177 * @pf: board private structure 2178 * @pi: pointer to the port_info instance 2179 * @type: VSI type 2180 * @vf_id: defines VF id to which this VSI connects. This field is meant to be 2181 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2182 * fill-in ICE_INVAL_VFID as input. 2183 * 2184 * This allocates the sw VSI structure and its queue resources. 2185 * 2186 * Returns pointer to the successfully allocated and configured VSI sw struct on 2187 * success, NULL on failure. 2188 */ 2189 struct ice_vsi * 2190 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2191 enum ice_vsi_type type, u16 vf_id) 2192 { 2193 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2194 struct device *dev = &pf->pdev->dev; 2195 struct ice_vsi *vsi; 2196 int ret, i; 2197 2198 if (type == ICE_VSI_VF) 2199 vsi = ice_vsi_alloc(pf, type, vf_id); 2200 else 2201 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 2202 2203 if (!vsi) { 2204 dev_err(dev, "could not allocate VSI\n"); 2205 return NULL; 2206 } 2207 2208 vsi->port_info = pi; 2209 vsi->vsw = pf->first_sw; 2210 if (vsi->type == ICE_VSI_VF) 2211 vsi->vf_id = vf_id; 2212 2213 if (ice_vsi_get_qs(vsi)) { 2214 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2215 vsi->idx); 2216 goto unroll_get_qs; 2217 } 2218 2219 /* set RSS capabilities */ 2220 ice_vsi_set_rss_params(vsi); 2221 2222 /* set tc configuration */ 2223 ice_vsi_set_tc_cfg(vsi); 2224 2225 /* create the VSI */ 2226 ret = ice_vsi_init(vsi); 2227 if (ret) 2228 goto unroll_get_qs; 2229 2230 switch (vsi->type) { 2231 case ICE_VSI_PF: 2232 ret = ice_vsi_alloc_q_vectors(vsi); 2233 if (ret) 2234 goto unroll_vsi_init; 2235 2236 ret = ice_vsi_setup_vector_base(vsi); 2237 if (ret) 2238 goto unroll_alloc_q_vector; 2239 2240 ret = ice_vsi_alloc_rings(vsi); 2241 if (ret) 2242 goto unroll_vector_base; 2243 2244 ice_vsi_map_rings_to_vectors(vsi); 2245 2246 /* Do not exit if configuring RSS had an issue, at least 2247 * receive traffic on first queue. Hence no need to capture 2248 * return value 2249 */ 2250 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2251 ice_vsi_cfg_rss_lut_key(vsi); 2252 break; 2253 case ICE_VSI_VF: 2254 /* VF driver will take care of creating netdev for this type and 2255 * map queues to vectors through Virtchnl, PF driver only 2256 * creates a VSI and corresponding structures for bookkeeping 2257 * purpose 2258 */ 2259 ret = ice_vsi_alloc_q_vectors(vsi); 2260 if (ret) 2261 goto unroll_vsi_init; 2262 2263 ret = ice_vsi_alloc_rings(vsi); 2264 if (ret) 2265 goto unroll_alloc_q_vector; 2266 2267 /* Setup Vector base only during VF init phase or when VF asks 2268 * for more vectors than assigned number. In all other cases, 2269 * assign hw_base_vector to the value given earlier. 2270 */ 2271 if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) { 2272 ret = ice_vsi_setup_vector_base(vsi); 2273 if (ret) 2274 goto unroll_vector_base; 2275 } else { 2276 vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx; 2277 } 2278 pf->q_left_tx -= vsi->alloc_txq; 2279 pf->q_left_rx -= vsi->alloc_rxq; 2280 break; 2281 default: 2282 /* clean up the resources and exit */ 2283 goto unroll_vsi_init; 2284 } 2285 2286 /* configure VSI nodes based on number of queues and TC's */ 2287 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2288 max_txqs[i] = pf->num_lan_tx; 2289 2290 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2291 max_txqs); 2292 if (ret) { 2293 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); 2294 goto unroll_vector_base; 2295 } 2296 2297 return vsi; 2298 2299 unroll_vector_base: 2300 /* reclaim SW interrupts back to the common pool */ 2301 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2302 pf->num_avail_sw_msix += vsi->num_q_vectors; 2303 /* reclaim HW interrupt back to the common pool */ 2304 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2305 pf->num_avail_hw_msix += vsi->num_q_vectors; 2306 unroll_alloc_q_vector: 2307 ice_vsi_free_q_vectors(vsi); 2308 unroll_vsi_init: 2309 ice_vsi_delete(vsi); 2310 unroll_get_qs: 2311 ice_vsi_put_qs(vsi); 2312 pf->q_left_tx += vsi->alloc_txq; 2313 pf->q_left_rx += vsi->alloc_rxq; 2314 ice_vsi_clear(vsi); 2315 2316 return NULL; 2317 } 2318 2319 /** 2320 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2321 * @vsi: the VSI being cleaned up 2322 */ 2323 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2324 { 2325 struct ice_pf *pf = vsi->back; 2326 u16 vector = vsi->hw_base_vector; 2327 struct ice_hw *hw = &pf->hw; 2328 u32 txq = 0; 2329 u32 rxq = 0; 2330 int i, q; 2331 2332 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 2333 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2334 2335 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0); 2336 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0); 2337 for (q = 0; q < q_vector->num_ring_tx; q++) { 2338 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2339 txq++; 2340 } 2341 2342 for (q = 0; q < q_vector->num_ring_rx; q++) { 2343 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2344 rxq++; 2345 } 2346 } 2347 2348 ice_flush(hw); 2349 } 2350 2351 /** 2352 * ice_vsi_free_irq - Free the IRQ association with the OS 2353 * @vsi: the VSI being configured 2354 */ 2355 void ice_vsi_free_irq(struct ice_vsi *vsi) 2356 { 2357 struct ice_pf *pf = vsi->back; 2358 int base = vsi->sw_base_vector; 2359 2360 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2361 int i; 2362 2363 if (!vsi->q_vectors || !vsi->irqs_ready) 2364 return; 2365 2366 ice_vsi_release_msix(vsi); 2367 if (vsi->type == ICE_VSI_VF) 2368 return; 2369 2370 vsi->irqs_ready = false; 2371 for (i = 0; i < vsi->num_q_vectors; i++) { 2372 u16 vector = i + base; 2373 int irq_num; 2374 2375 irq_num = pf->msix_entries[vector].vector; 2376 2377 /* free only the irqs that were actually requested */ 2378 if (!vsi->q_vectors[i] || 2379 !(vsi->q_vectors[i]->num_ring_tx || 2380 vsi->q_vectors[i]->num_ring_rx)) 2381 continue; 2382 2383 /* clear the affinity notifier in the IRQ descriptor */ 2384 irq_set_affinity_notifier(irq_num, NULL); 2385 2386 /* clear the affinity_mask in the IRQ descriptor */ 2387 irq_set_affinity_hint(irq_num, NULL); 2388 synchronize_irq(irq_num); 2389 devm_free_irq(&pf->pdev->dev, irq_num, 2390 vsi->q_vectors[i]); 2391 } 2392 } 2393 } 2394 2395 /** 2396 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2397 * @vsi: the VSI having resources freed 2398 */ 2399 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2400 { 2401 int i; 2402 2403 if (!vsi->tx_rings) 2404 return; 2405 2406 ice_for_each_txq(vsi, i) 2407 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2408 ice_free_tx_ring(vsi->tx_rings[i]); 2409 } 2410 2411 /** 2412 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2413 * @vsi: the VSI having resources freed 2414 */ 2415 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2416 { 2417 int i; 2418 2419 if (!vsi->rx_rings) 2420 return; 2421 2422 ice_for_each_rxq(vsi, i) 2423 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2424 ice_free_rx_ring(vsi->rx_rings[i]); 2425 } 2426 2427 /** 2428 * ice_vsi_close - Shut down a VSI 2429 * @vsi: the VSI being shut down 2430 */ 2431 void ice_vsi_close(struct ice_vsi *vsi) 2432 { 2433 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2434 ice_down(vsi); 2435 2436 ice_vsi_free_irq(vsi); 2437 ice_vsi_free_tx_rings(vsi); 2438 ice_vsi_free_rx_rings(vsi); 2439 } 2440 2441 /** 2442 * ice_free_res - free a block of resources 2443 * @res: pointer to the resource 2444 * @index: starting index previously returned by ice_get_res 2445 * @id: identifier to track owner 2446 * 2447 * Returns number of resources freed 2448 */ 2449 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2450 { 2451 int count = 0; 2452 int i; 2453 2454 if (!res || index >= res->num_entries) 2455 return -EINVAL; 2456 2457 id |= ICE_RES_VALID_BIT; 2458 for (i = index; i < res->num_entries && res->list[i] == id; i++) { 2459 res->list[i] = 0; 2460 count++; 2461 } 2462 2463 return count; 2464 } 2465 2466 /** 2467 * ice_search_res - Search the tracker for a block of resources 2468 * @res: pointer to the resource 2469 * @needed: size of the block needed 2470 * @id: identifier to track owner 2471 * 2472 * Returns the base item index of the block, or -ENOMEM for error 2473 */ 2474 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2475 { 2476 int start = res->search_hint; 2477 int end = start; 2478 2479 if ((start + needed) > res->num_entries) 2480 return -ENOMEM; 2481 2482 id |= ICE_RES_VALID_BIT; 2483 2484 do { 2485 /* skip already allocated entries */ 2486 if (res->list[end++] & ICE_RES_VALID_BIT) { 2487 start = end; 2488 if ((start + needed) > res->num_entries) 2489 break; 2490 } 2491 2492 if (end == (start + needed)) { 2493 int i = start; 2494 2495 /* there was enough, so assign it to the requestor */ 2496 while (i != end) 2497 res->list[i++] = id; 2498 2499 if (end == res->num_entries) 2500 end = 0; 2501 2502 res->search_hint = end; 2503 return start; 2504 } 2505 } while (1); 2506 2507 return -ENOMEM; 2508 } 2509 2510 /** 2511 * ice_get_res - get a block of resources 2512 * @pf: board private structure 2513 * @res: pointer to the resource 2514 * @needed: size of the block needed 2515 * @id: identifier to track owner 2516 * 2517 * Returns the base item index of the block, or -ENOMEM for error 2518 * The search_hint trick and lack of advanced fit-finding only works 2519 * because we're highly likely to have all the same sized requests. 2520 * Linear search time and any fragmentation should be minimal. 2521 */ 2522 int 2523 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2524 { 2525 int ret; 2526 2527 if (!res || !pf) 2528 return -EINVAL; 2529 2530 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2531 dev_err(&pf->pdev->dev, 2532 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2533 needed, res->num_entries, id); 2534 return -EINVAL; 2535 } 2536 2537 /* search based on search_hint */ 2538 ret = ice_search_res(res, needed, id); 2539 2540 if (ret < 0) { 2541 /* previous search failed. Reset search hint and try again */ 2542 res->search_hint = 0; 2543 ret = ice_search_res(res, needed, id); 2544 } 2545 2546 return ret; 2547 } 2548 2549 /** 2550 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2551 * @vsi: the VSI being un-configured 2552 */ 2553 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2554 { 2555 int base = vsi->sw_base_vector; 2556 struct ice_pf *pf = vsi->back; 2557 struct ice_hw *hw = &pf->hw; 2558 u32 val; 2559 int i; 2560 2561 /* disable interrupt causation from each queue */ 2562 if (vsi->tx_rings) { 2563 ice_for_each_txq(vsi, i) { 2564 if (vsi->tx_rings[i]) { 2565 u16 reg; 2566 2567 reg = vsi->tx_rings[i]->reg_idx; 2568 val = rd32(hw, QINT_TQCTL(reg)); 2569 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2570 wr32(hw, QINT_TQCTL(reg), val); 2571 } 2572 } 2573 } 2574 2575 if (vsi->rx_rings) { 2576 ice_for_each_rxq(vsi, i) { 2577 if (vsi->rx_rings[i]) { 2578 u16 reg; 2579 2580 reg = vsi->rx_rings[i]->reg_idx; 2581 val = rd32(hw, QINT_RQCTL(reg)); 2582 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2583 wr32(hw, QINT_RQCTL(reg), val); 2584 } 2585 } 2586 } 2587 2588 /* disable each interrupt */ 2589 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2590 for (i = vsi->hw_base_vector; 2591 i < (vsi->num_q_vectors + vsi->hw_base_vector); i++) 2592 wr32(hw, GLINT_DYN_CTL(i), 0); 2593 2594 ice_flush(hw); 2595 for (i = 0; i < vsi->num_q_vectors; i++) 2596 synchronize_irq(pf->msix_entries[i + base].vector); 2597 } 2598 } 2599 2600 /** 2601 * ice_vsi_release - Delete a VSI and free its resources 2602 * @vsi: the VSI being removed 2603 * 2604 * Returns 0 on success or < 0 on error 2605 */ 2606 int ice_vsi_release(struct ice_vsi *vsi) 2607 { 2608 struct ice_vf *vf = NULL; 2609 struct ice_pf *pf; 2610 2611 if (!vsi->back) 2612 return -ENODEV; 2613 pf = vsi->back; 2614 2615 if (vsi->type == ICE_VSI_VF) 2616 vf = &pf->vf[vsi->vf_id]; 2617 /* do not unregister and free netdevs while driver is in the reset 2618 * recovery pending state. Since reset/rebuild happens through PF 2619 * service task workqueue, its not a good idea to unregister netdev 2620 * that is associated to the PF that is running the work queue items 2621 * currently. This is done to avoid check_flush_dependency() warning 2622 * on this wq 2623 */ 2624 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2625 ice_napi_del(vsi); 2626 unregister_netdev(vsi->netdev); 2627 free_netdev(vsi->netdev); 2628 vsi->netdev = NULL; 2629 } 2630 2631 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2632 ice_rss_clean(vsi); 2633 2634 /* Disable VSI and free resources */ 2635 ice_vsi_dis_irq(vsi); 2636 ice_vsi_close(vsi); 2637 2638 /* reclaim interrupt vectors back to PF */ 2639 if (vsi->type != ICE_VSI_VF) { 2640 /* reclaim SW interrupts back to the common pool */ 2641 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, 2642 vsi->idx); 2643 pf->num_avail_sw_msix += vsi->num_q_vectors; 2644 /* reclaim HW interrupts back to the common pool */ 2645 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, 2646 vsi->idx); 2647 pf->num_avail_hw_msix += vsi->num_q_vectors; 2648 } else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) { 2649 /* Reclaim VF resources back only while freeing all VFs or 2650 * vector reassignment is requested 2651 */ 2652 ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx, 2653 vsi->idx); 2654 pf->num_avail_hw_msix += pf->num_vf_msix; 2655 } 2656 2657 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2658 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2659 ice_vsi_delete(vsi); 2660 ice_vsi_free_q_vectors(vsi); 2661 ice_vsi_clear_rings(vsi); 2662 2663 ice_vsi_put_qs(vsi); 2664 pf->q_left_tx += vsi->alloc_txq; 2665 pf->q_left_rx += vsi->alloc_rxq; 2666 2667 /* retain SW VSI data structure since it is needed to unregister and 2668 * free VSI netdev when PF is not in reset recovery pending state,\ 2669 * for ex: during rmmod. 2670 */ 2671 if (!ice_is_reset_in_progress(pf->state)) 2672 ice_vsi_clear(vsi); 2673 2674 return 0; 2675 } 2676 2677 /** 2678 * ice_vsi_rebuild - Rebuild VSI after reset 2679 * @vsi: VSI to be rebuild 2680 * 2681 * Returns 0 on success and negative value on failure 2682 */ 2683 int ice_vsi_rebuild(struct ice_vsi *vsi) 2684 { 2685 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2686 struct ice_vf *vf = NULL; 2687 struct ice_pf *pf; 2688 int ret, i; 2689 2690 if (!vsi) 2691 return -EINVAL; 2692 2693 pf = vsi->back; 2694 if (vsi->type == ICE_VSI_VF) 2695 vf = &pf->vf[vsi->vf_id]; 2696 2697 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2698 ice_vsi_free_q_vectors(vsi); 2699 2700 if (vsi->type != ICE_VSI_VF) { 2701 /* reclaim SW interrupts back to the common pool */ 2702 ice_free_res(pf->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2703 pf->num_avail_sw_msix += vsi->num_q_vectors; 2704 vsi->sw_base_vector = 0; 2705 /* reclaim HW interrupts back to the common pool */ 2706 ice_free_res(pf->hw_irq_tracker, vsi->hw_base_vector, 2707 vsi->idx); 2708 pf->num_avail_hw_msix += vsi->num_q_vectors; 2709 } else { 2710 /* Reclaim VF resources back to the common pool for reset and 2711 * and rebuild, with vector reassignment 2712 */ 2713 ice_free_res(pf->hw_irq_tracker, vf->first_vector_idx, 2714 vsi->idx); 2715 pf->num_avail_hw_msix += pf->num_vf_msix; 2716 } 2717 vsi->hw_base_vector = 0; 2718 2719 ice_vsi_clear_rings(vsi); 2720 ice_vsi_free_arrays(vsi, false); 2721 ice_dev_onetime_setup(&vsi->back->hw); 2722 if (vsi->type == ICE_VSI_VF) 2723 ice_vsi_set_num_qs(vsi, vf->vf_id); 2724 else 2725 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2726 ice_vsi_set_tc_cfg(vsi); 2727 2728 /* Initialize VSI struct elements and create VSI in FW */ 2729 ret = ice_vsi_init(vsi); 2730 if (ret < 0) 2731 goto err_vsi; 2732 2733 ret = ice_vsi_alloc_arrays(vsi, false); 2734 if (ret < 0) 2735 goto err_vsi; 2736 2737 switch (vsi->type) { 2738 case ICE_VSI_PF: 2739 ret = ice_vsi_alloc_q_vectors(vsi); 2740 if (ret) 2741 goto err_rings; 2742 2743 ret = ice_vsi_setup_vector_base(vsi); 2744 if (ret) 2745 goto err_vectors; 2746 2747 ret = ice_vsi_alloc_rings(vsi); 2748 if (ret) 2749 goto err_vectors; 2750 2751 ice_vsi_map_rings_to_vectors(vsi); 2752 /* Do not exit if configuring RSS had an issue, at least 2753 * receive traffic on first queue. Hence no need to capture 2754 * return value 2755 */ 2756 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) 2757 ice_vsi_cfg_rss_lut_key(vsi); 2758 break; 2759 case ICE_VSI_VF: 2760 ret = ice_vsi_alloc_q_vectors(vsi); 2761 if (ret) 2762 goto err_rings; 2763 2764 ret = ice_vsi_setup_vector_base(vsi); 2765 if (ret) 2766 goto err_vectors; 2767 2768 ret = ice_vsi_alloc_rings(vsi); 2769 if (ret) 2770 goto err_vectors; 2771 2772 vsi->back->q_left_tx -= vsi->alloc_txq; 2773 vsi->back->q_left_rx -= vsi->alloc_rxq; 2774 break; 2775 default: 2776 break; 2777 } 2778 2779 /* configure VSI nodes based on number of queues and TC's */ 2780 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2781 max_txqs[i] = pf->num_lan_tx; 2782 2783 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2784 max_txqs); 2785 if (ret) { 2786 dev_info(&vsi->back->pdev->dev, 2787 "Failed VSI lan queue config\n"); 2788 goto err_vectors; 2789 } 2790 return 0; 2791 2792 err_vectors: 2793 ice_vsi_free_q_vectors(vsi); 2794 err_rings: 2795 if (vsi->netdev) { 2796 vsi->current_netdev_flags = 0; 2797 unregister_netdev(vsi->netdev); 2798 free_netdev(vsi->netdev); 2799 vsi->netdev = NULL; 2800 } 2801 err_vsi: 2802 ice_vsi_clear(vsi); 2803 set_bit(__ICE_RESET_FAILED, vsi->back->state); 2804 return ret; 2805 } 2806 2807 /** 2808 * ice_is_reset_in_progress - check for a reset in progress 2809 * @state: pf state field 2810 */ 2811 bool ice_is_reset_in_progress(unsigned long *state) 2812 { 2813 return test_bit(__ICE_RESET_OICR_RECV, state) || 2814 test_bit(__ICE_PFR_REQ, state) || 2815 test_bit(__ICE_CORER_REQ, state) || 2816 test_bit(__ICE_GLOBR_REQ, state); 2817 } 2818