1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 rx_count = offset; 985 else 986 rx_count = num_rxq_per_tc; 987 988 if (rx_count > vsi->alloc_rxq) { 989 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 990 rx_count, vsi->alloc_rxq); 991 return -EINVAL; 992 } 993 994 if (tx_count > vsi->alloc_txq) { 995 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 996 tx_count, vsi->alloc_txq); 997 return -EINVAL; 998 } 999 1000 vsi->num_txq = tx_count; 1001 vsi->num_rxq = rx_count; 1002 1003 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1004 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1005 /* since there is a chance that num_rxq could have been changed 1006 * in the above for loop, make num_txq equal to num_rxq. 1007 */ 1008 vsi->num_txq = vsi->num_rxq; 1009 } 1010 1011 /* Rx queue mapping */ 1012 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1013 /* q_mapping buffer holds the info for the first queue allocated for 1014 * this VSI in the PF space and also the number of queues associated 1015 * with this VSI. 1016 */ 1017 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1018 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1019 1020 return 0; 1021 } 1022 1023 /** 1024 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1025 * @ctxt: the VSI context being set 1026 * @vsi: the VSI being configured 1027 */ 1028 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1029 { 1030 u8 dflt_q_group, dflt_q_prio; 1031 u16 dflt_q, report_q, val; 1032 1033 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1034 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1035 return; 1036 1037 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1038 ctxt->info.valid_sections |= cpu_to_le16(val); 1039 dflt_q = 0; 1040 dflt_q_group = 0; 1041 report_q = 0; 1042 dflt_q_prio = 0; 1043 1044 /* enable flow director filtering/programming */ 1045 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1046 ctxt->info.fd_options = cpu_to_le16(val); 1047 /* max of allocated flow director filters */ 1048 ctxt->info.max_fd_fltr_dedicated = 1049 cpu_to_le16(vsi->num_gfltr); 1050 /* max of shared flow director filters any VSI may program */ 1051 ctxt->info.max_fd_fltr_shared = 1052 cpu_to_le16(vsi->num_bfltr); 1053 /* default queue index within the VSI of the default FD */ 1054 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1055 ICE_AQ_VSI_FD_DEF_Q_M); 1056 /* target queue or queue group to the FD filter */ 1057 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1058 ICE_AQ_VSI_FD_DEF_GRP_M); 1059 ctxt->info.fd_def_q = cpu_to_le16(val); 1060 /* queue index on which FD filter completion is reported */ 1061 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1062 ICE_AQ_VSI_FD_REPORT_Q_M); 1063 /* priority of the default qindex action */ 1064 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1065 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1066 ctxt->info.fd_report_opt = cpu_to_le16(val); 1067 } 1068 1069 /** 1070 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1071 * @ctxt: the VSI context being set 1072 * @vsi: the VSI being configured 1073 */ 1074 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1075 { 1076 u8 lut_type, hash_type; 1077 struct device *dev; 1078 struct ice_pf *pf; 1079 1080 pf = vsi->back; 1081 dev = ice_pf_to_dev(pf); 1082 1083 switch (vsi->type) { 1084 case ICE_VSI_CHNL: 1085 case ICE_VSI_PF: 1086 /* PF VSI will inherit RSS instance of PF */ 1087 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1088 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1089 break; 1090 case ICE_VSI_VF: 1091 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1092 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1093 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1094 break; 1095 default: 1096 dev_dbg(dev, "Unsupported VSI type %s\n", 1097 ice_vsi_type_str(vsi->type)); 1098 return; 1099 } 1100 1101 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1102 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1103 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1104 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1105 } 1106 1107 static void 1108 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1109 { 1110 struct ice_pf *pf = vsi->back; 1111 u16 qcount, qmap; 1112 u8 offset = 0; 1113 int pow; 1114 1115 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1116 1117 pow = order_base_2(qcount); 1118 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1119 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1120 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1121 ICE_AQ_VSI_TC_Q_NUM_M); 1122 1123 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1124 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1125 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1126 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1127 } 1128 1129 /** 1130 * ice_vsi_init - Create and initialize a VSI 1131 * @vsi: the VSI being configured 1132 * @init_vsi: is this call creating a VSI 1133 * 1134 * This initializes a VSI context depending on the VSI type to be added and 1135 * passes it down to the add_vsi aq command to create a new VSI. 1136 */ 1137 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1138 { 1139 struct ice_pf *pf = vsi->back; 1140 struct ice_hw *hw = &pf->hw; 1141 struct ice_vsi_ctx *ctxt; 1142 struct device *dev; 1143 int ret = 0; 1144 1145 dev = ice_pf_to_dev(pf); 1146 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1147 if (!ctxt) 1148 return -ENOMEM; 1149 1150 switch (vsi->type) { 1151 case ICE_VSI_CTRL: 1152 case ICE_VSI_LB: 1153 case ICE_VSI_PF: 1154 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1155 break; 1156 case ICE_VSI_SWITCHDEV_CTRL: 1157 case ICE_VSI_CHNL: 1158 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1159 break; 1160 case ICE_VSI_VF: 1161 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1162 /* VF number here is the absolute VF number (0-255) */ 1163 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1164 break; 1165 default: 1166 ret = -ENODEV; 1167 goto out; 1168 } 1169 1170 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1171 * prune enabled 1172 */ 1173 if (vsi->type == ICE_VSI_CHNL) { 1174 struct ice_vsi *main_vsi; 1175 1176 main_vsi = ice_get_main_vsi(pf); 1177 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1178 ctxt->info.sw_flags2 |= 1179 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1180 else 1181 ctxt->info.sw_flags2 &= 1182 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1183 } 1184 1185 ice_set_dflt_vsi_ctx(hw, ctxt); 1186 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1187 ice_set_fd_vsi_ctx(ctxt, vsi); 1188 /* if the switch is in VEB mode, allow VSI loopback */ 1189 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1190 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1191 1192 /* Set LUT type and HASH type if RSS is enabled */ 1193 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1194 vsi->type != ICE_VSI_CTRL) { 1195 ice_set_rss_vsi_ctx(ctxt, vsi); 1196 /* if updating VSI context, make sure to set valid_section: 1197 * to indicate which section of VSI context being updated 1198 */ 1199 if (!init_vsi) 1200 ctxt->info.valid_sections |= 1201 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1202 } 1203 1204 ctxt->info.sw_id = vsi->port_info->sw_id; 1205 if (vsi->type == ICE_VSI_CHNL) { 1206 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1207 } else { 1208 ret = ice_vsi_setup_q_map(vsi, ctxt); 1209 if (ret) 1210 goto out; 1211 1212 if (!init_vsi) /* means VSI being updated */ 1213 /* must to indicate which section of VSI context are 1214 * being modified 1215 */ 1216 ctxt->info.valid_sections |= 1217 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1218 } 1219 1220 /* Allow control frames out of main VSI */ 1221 if (vsi->type == ICE_VSI_PF) { 1222 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1223 ctxt->info.valid_sections |= 1224 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1225 } 1226 1227 if (init_vsi) { 1228 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1229 if (ret) { 1230 dev_err(dev, "Add VSI failed, err %d\n", ret); 1231 ret = -EIO; 1232 goto out; 1233 } 1234 } else { 1235 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1236 if (ret) { 1237 dev_err(dev, "Update VSI failed, err %d\n", ret); 1238 ret = -EIO; 1239 goto out; 1240 } 1241 } 1242 1243 /* keep context for update VSI operations */ 1244 vsi->info = ctxt->info; 1245 1246 /* record VSI number returned */ 1247 vsi->vsi_num = ctxt->vsi_num; 1248 1249 out: 1250 kfree(ctxt); 1251 return ret; 1252 } 1253 1254 /** 1255 * ice_free_res - free a block of resources 1256 * @res: pointer to the resource 1257 * @index: starting index previously returned by ice_get_res 1258 * @id: identifier to track owner 1259 * 1260 * Returns number of resources freed 1261 */ 1262 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1263 { 1264 int count = 0; 1265 int i; 1266 1267 if (!res || index >= res->end) 1268 return -EINVAL; 1269 1270 id |= ICE_RES_VALID_BIT; 1271 for (i = index; i < res->end && res->list[i] == id; i++) { 1272 res->list[i] = 0; 1273 count++; 1274 } 1275 1276 return count; 1277 } 1278 1279 /** 1280 * ice_search_res - Search the tracker for a block of resources 1281 * @res: pointer to the resource 1282 * @needed: size of the block needed 1283 * @id: identifier to track owner 1284 * 1285 * Returns the base item index of the block, or -ENOMEM for error 1286 */ 1287 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1288 { 1289 u16 start = 0, end = 0; 1290 1291 if (needed > res->end) 1292 return -ENOMEM; 1293 1294 id |= ICE_RES_VALID_BIT; 1295 1296 do { 1297 /* skip already allocated entries */ 1298 if (res->list[end++] & ICE_RES_VALID_BIT) { 1299 start = end; 1300 if ((start + needed) > res->end) 1301 break; 1302 } 1303 1304 if (end == (start + needed)) { 1305 int i = start; 1306 1307 /* there was enough, so assign it to the requestor */ 1308 while (i != end) 1309 res->list[i++] = id; 1310 1311 return start; 1312 } 1313 } while (end < res->end); 1314 1315 return -ENOMEM; 1316 } 1317 1318 /** 1319 * ice_get_free_res_count - Get free count from a resource tracker 1320 * @res: Resource tracker instance 1321 */ 1322 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1323 { 1324 u16 i, count = 0; 1325 1326 for (i = 0; i < res->end; i++) 1327 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1328 count++; 1329 1330 return count; 1331 } 1332 1333 /** 1334 * ice_get_res - get a block of resources 1335 * @pf: board private structure 1336 * @res: pointer to the resource 1337 * @needed: size of the block needed 1338 * @id: identifier to track owner 1339 * 1340 * Returns the base item index of the block, or negative for error 1341 */ 1342 int 1343 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1344 { 1345 if (!res || !pf) 1346 return -EINVAL; 1347 1348 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1349 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1350 needed, res->num_entries, id); 1351 return -EINVAL; 1352 } 1353 1354 return ice_search_res(res, needed, id); 1355 } 1356 1357 /** 1358 * ice_get_vf_ctrl_res - Get VF control VSI resource 1359 * @pf: pointer to the PF structure 1360 * @vsi: the VSI to allocate a resource for 1361 * 1362 * Look up whether another VF has already allocated the control VSI resource. 1363 * If so, re-use this resource so that we share it among all VFs. 1364 * 1365 * Otherwise, allocate the resource and return it. 1366 */ 1367 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1368 { 1369 struct ice_vf *vf; 1370 unsigned int bkt; 1371 int base; 1372 1373 rcu_read_lock(); 1374 ice_for_each_vf_rcu(pf, bkt, vf) { 1375 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1376 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1377 rcu_read_unlock(); 1378 return base; 1379 } 1380 } 1381 rcu_read_unlock(); 1382 1383 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1384 ICE_RES_VF_CTRL_VEC_ID); 1385 } 1386 1387 /** 1388 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1389 * @vsi: ptr to the VSI 1390 * 1391 * This should only be called after ice_vsi_alloc() which allocates the 1392 * corresponding SW VSI structure and initializes num_queue_pairs for the 1393 * newly allocated VSI. 1394 * 1395 * Returns 0 on success or negative on failure 1396 */ 1397 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1398 { 1399 struct ice_pf *pf = vsi->back; 1400 struct device *dev; 1401 u16 num_q_vectors; 1402 int base; 1403 1404 dev = ice_pf_to_dev(pf); 1405 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1406 if (vsi->type == ICE_VSI_VF) 1407 return 0; 1408 if (vsi->type == ICE_VSI_CHNL) 1409 return 0; 1410 1411 if (vsi->base_vector) { 1412 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1413 vsi->vsi_num, vsi->base_vector); 1414 return -EEXIST; 1415 } 1416 1417 num_q_vectors = vsi->num_q_vectors; 1418 /* reserve slots from OS requested IRQs */ 1419 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1420 base = ice_get_vf_ctrl_res(pf, vsi); 1421 } else { 1422 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1423 vsi->idx); 1424 } 1425 1426 if (base < 0) { 1427 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1428 ice_get_free_res_count(pf->irq_tracker), 1429 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1430 return -ENOENT; 1431 } 1432 vsi->base_vector = (u16)base; 1433 pf->num_avail_sw_msix -= num_q_vectors; 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1440 * @vsi: the VSI having rings deallocated 1441 */ 1442 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1443 { 1444 int i; 1445 1446 /* Avoid stale references by clearing map from vector to ring */ 1447 if (vsi->q_vectors) { 1448 ice_for_each_q_vector(vsi, i) { 1449 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1450 1451 if (q_vector) { 1452 q_vector->tx.tx_ring = NULL; 1453 q_vector->rx.rx_ring = NULL; 1454 } 1455 } 1456 } 1457 1458 if (vsi->tx_rings) { 1459 ice_for_each_alloc_txq(vsi, i) { 1460 if (vsi->tx_rings[i]) { 1461 kfree_rcu(vsi->tx_rings[i], rcu); 1462 WRITE_ONCE(vsi->tx_rings[i], NULL); 1463 } 1464 } 1465 } 1466 if (vsi->rx_rings) { 1467 ice_for_each_alloc_rxq(vsi, i) { 1468 if (vsi->rx_rings[i]) { 1469 kfree_rcu(vsi->rx_rings[i], rcu); 1470 WRITE_ONCE(vsi->rx_rings[i], NULL); 1471 } 1472 } 1473 } 1474 } 1475 1476 /** 1477 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1478 * @vsi: VSI which is having rings allocated 1479 */ 1480 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1481 { 1482 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1483 struct ice_pf *pf = vsi->back; 1484 struct device *dev; 1485 u16 i; 1486 1487 dev = ice_pf_to_dev(pf); 1488 /* Allocate Tx rings */ 1489 ice_for_each_alloc_txq(vsi, i) { 1490 struct ice_tx_ring *ring; 1491 1492 /* allocate with kzalloc(), free with kfree_rcu() */ 1493 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1494 1495 if (!ring) 1496 goto err_out; 1497 1498 ring->q_index = i; 1499 ring->reg_idx = vsi->txq_map[i]; 1500 ring->vsi = vsi; 1501 ring->tx_tstamps = &pf->ptp.port.tx; 1502 ring->dev = dev; 1503 ring->count = vsi->num_tx_desc; 1504 ring->txq_teid = ICE_INVAL_TEID; 1505 if (dvm_ena) 1506 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1507 else 1508 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1509 WRITE_ONCE(vsi->tx_rings[i], ring); 1510 } 1511 1512 /* Allocate Rx rings */ 1513 ice_for_each_alloc_rxq(vsi, i) { 1514 struct ice_rx_ring *ring; 1515 1516 /* allocate with kzalloc(), free with kfree_rcu() */ 1517 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1518 if (!ring) 1519 goto err_out; 1520 1521 ring->q_index = i; 1522 ring->reg_idx = vsi->rxq_map[i]; 1523 ring->vsi = vsi; 1524 ring->netdev = vsi->netdev; 1525 ring->dev = dev; 1526 ring->count = vsi->num_rx_desc; 1527 ring->cached_phctime = pf->ptp.cached_phc_time; 1528 WRITE_ONCE(vsi->rx_rings[i], ring); 1529 } 1530 1531 return 0; 1532 1533 err_out: 1534 ice_vsi_clear_rings(vsi); 1535 return -ENOMEM; 1536 } 1537 1538 /** 1539 * ice_vsi_manage_rss_lut - disable/enable RSS 1540 * @vsi: the VSI being changed 1541 * @ena: boolean value indicating if this is an enable or disable request 1542 * 1543 * In the event of disable request for RSS, this function will zero out RSS 1544 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1545 * LUT. 1546 */ 1547 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1548 { 1549 u8 *lut; 1550 1551 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1552 if (!lut) 1553 return; 1554 1555 if (ena) { 1556 if (vsi->rss_lut_user) 1557 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1558 else 1559 ice_fill_rss_lut(lut, vsi->rss_table_size, 1560 vsi->rss_size); 1561 } 1562 1563 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1564 kfree(lut); 1565 } 1566 1567 /** 1568 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1569 * @vsi: VSI to be configured 1570 * @disable: set to true to have FCS / CRC in the frame data 1571 */ 1572 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1573 { 1574 int i; 1575 1576 ice_for_each_rxq(vsi, i) 1577 if (disable) 1578 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1579 else 1580 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1581 } 1582 1583 /** 1584 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1585 * @vsi: VSI to be configured 1586 */ 1587 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1588 { 1589 struct ice_pf *pf = vsi->back; 1590 struct device *dev; 1591 u8 *lut, *key; 1592 int err; 1593 1594 dev = ice_pf_to_dev(pf); 1595 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1596 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1597 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1598 } else { 1599 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1600 1601 /* If orig_rss_size is valid and it is less than determined 1602 * main VSI's rss_size, update main VSI's rss_size to be 1603 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1604 * RSS table gets programmed to be correct (whatever it was 1605 * to begin with (prior to setup-tc for ADQ config) 1606 */ 1607 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1608 vsi->orig_rss_size <= vsi->num_rxq) { 1609 vsi->rss_size = vsi->orig_rss_size; 1610 /* now orig_rss_size is used, reset it to zero */ 1611 vsi->orig_rss_size = 0; 1612 } 1613 } 1614 1615 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1616 if (!lut) 1617 return -ENOMEM; 1618 1619 if (vsi->rss_lut_user) 1620 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1621 else 1622 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1623 1624 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1625 if (err) { 1626 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1627 goto ice_vsi_cfg_rss_exit; 1628 } 1629 1630 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1631 if (!key) { 1632 err = -ENOMEM; 1633 goto ice_vsi_cfg_rss_exit; 1634 } 1635 1636 if (vsi->rss_hkey_user) 1637 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1638 else 1639 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1640 1641 err = ice_set_rss_key(vsi, key); 1642 if (err) 1643 dev_err(dev, "set_rss_key failed, error %d\n", err); 1644 1645 kfree(key); 1646 ice_vsi_cfg_rss_exit: 1647 kfree(lut); 1648 return err; 1649 } 1650 1651 /** 1652 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1653 * @vsi: VSI to be configured 1654 * 1655 * This function will only be called during the VF VSI setup. Upon successful 1656 * completion of package download, this function will configure default RSS 1657 * input sets for VF VSI. 1658 */ 1659 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1660 { 1661 struct ice_pf *pf = vsi->back; 1662 struct device *dev; 1663 int status; 1664 1665 dev = ice_pf_to_dev(pf); 1666 if (ice_is_safe_mode(pf)) { 1667 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1668 vsi->vsi_num); 1669 return; 1670 } 1671 1672 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1673 if (status) 1674 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1675 vsi->vsi_num, status); 1676 } 1677 1678 /** 1679 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1680 * @vsi: VSI to be configured 1681 * 1682 * This function will only be called after successful download package call 1683 * during initialization of PF. Since the downloaded package will erase the 1684 * RSS section, this function will configure RSS input sets for different 1685 * flow types. The last profile added has the highest priority, therefore 2 1686 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1687 * (i.e. IPv4 src/dst TCP src/dst port). 1688 */ 1689 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1690 { 1691 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1692 struct ice_pf *pf = vsi->back; 1693 struct ice_hw *hw = &pf->hw; 1694 struct device *dev; 1695 int status; 1696 1697 dev = ice_pf_to_dev(pf); 1698 if (ice_is_safe_mode(pf)) { 1699 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1700 vsi_num); 1701 return; 1702 } 1703 /* configure RSS for IPv4 with input set IP src/dst */ 1704 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1705 ICE_FLOW_SEG_HDR_IPV4); 1706 if (status) 1707 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1708 vsi_num, status); 1709 1710 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1711 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1712 ICE_FLOW_SEG_HDR_IPV6); 1713 if (status) 1714 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1715 vsi_num, status); 1716 1717 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1718 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1719 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1720 if (status) 1721 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1722 vsi_num, status); 1723 1724 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1725 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1726 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1727 if (status) 1728 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1729 vsi_num, status); 1730 1731 /* configure RSS for sctp4 with input set IP src/dst */ 1732 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1733 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1734 if (status) 1735 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1736 vsi_num, status); 1737 1738 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1739 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1740 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1741 if (status) 1742 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1743 vsi_num, status); 1744 1745 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1746 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1747 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1748 if (status) 1749 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1750 vsi_num, status); 1751 1752 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1753 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1754 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1755 if (status) 1756 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1757 vsi_num, status); 1758 1759 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1760 ICE_FLOW_SEG_HDR_ESP); 1761 if (status) 1762 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1763 vsi_num, status); 1764 } 1765 1766 /** 1767 * ice_pf_state_is_nominal - checks the PF for nominal state 1768 * @pf: pointer to PF to check 1769 * 1770 * Check the PF's state for a collection of bits that would indicate 1771 * the PF is in a state that would inhibit normal operation for 1772 * driver functionality. 1773 * 1774 * Returns true if PF is in a nominal state, false otherwise 1775 */ 1776 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1777 { 1778 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1779 1780 if (!pf) 1781 return false; 1782 1783 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1784 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1785 return false; 1786 1787 return true; 1788 } 1789 1790 /** 1791 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1792 * @vsi: the VSI to be updated 1793 */ 1794 void ice_update_eth_stats(struct ice_vsi *vsi) 1795 { 1796 struct ice_eth_stats *prev_es, *cur_es; 1797 struct ice_hw *hw = &vsi->back->hw; 1798 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1799 1800 prev_es = &vsi->eth_stats_prev; 1801 cur_es = &vsi->eth_stats; 1802 1803 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1804 &prev_es->rx_bytes, &cur_es->rx_bytes); 1805 1806 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1807 &prev_es->rx_unicast, &cur_es->rx_unicast); 1808 1809 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1810 &prev_es->rx_multicast, &cur_es->rx_multicast); 1811 1812 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1813 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1814 1815 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1816 &prev_es->rx_discards, &cur_es->rx_discards); 1817 1818 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1819 &prev_es->tx_bytes, &cur_es->tx_bytes); 1820 1821 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1822 &prev_es->tx_unicast, &cur_es->tx_unicast); 1823 1824 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1825 &prev_es->tx_multicast, &cur_es->tx_multicast); 1826 1827 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1828 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1829 1830 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1831 &prev_es->tx_errors, &cur_es->tx_errors); 1832 1833 vsi->stat_offsets_loaded = true; 1834 } 1835 1836 /** 1837 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1838 * @vsi: VSI 1839 */ 1840 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1841 { 1842 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1843 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1844 vsi->rx_buf_len = ICE_RXBUF_2048; 1845 #if (PAGE_SIZE < 8192) 1846 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1847 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1848 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1849 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1850 #endif 1851 } else { 1852 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1853 #if (PAGE_SIZE < 8192) 1854 vsi->rx_buf_len = ICE_RXBUF_3072; 1855 #else 1856 vsi->rx_buf_len = ICE_RXBUF_2048; 1857 #endif 1858 } 1859 } 1860 1861 /** 1862 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1863 * @hw: HW pointer 1864 * @pf_q: index of the Rx queue in the PF's queue space 1865 * @rxdid: flexible descriptor RXDID 1866 * @prio: priority for the RXDID for this queue 1867 * @ena_ts: true to enable timestamp and false to disable timestamp 1868 */ 1869 void 1870 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1871 bool ena_ts) 1872 { 1873 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1874 1875 /* clear any previous values */ 1876 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1877 QRXFLXP_CNTXT_RXDID_PRIO_M | 1878 QRXFLXP_CNTXT_TS_M); 1879 1880 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1881 QRXFLXP_CNTXT_RXDID_IDX_M; 1882 1883 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1884 QRXFLXP_CNTXT_RXDID_PRIO_M; 1885 1886 if (ena_ts) 1887 /* Enable TimeSync on this queue */ 1888 regval |= QRXFLXP_CNTXT_TS_M; 1889 1890 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1891 } 1892 1893 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1894 { 1895 if (q_idx >= vsi->num_rxq) 1896 return -EINVAL; 1897 1898 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1899 } 1900 1901 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1902 { 1903 struct ice_aqc_add_tx_qgrp *qg_buf; 1904 int err; 1905 1906 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1907 return -EINVAL; 1908 1909 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1910 if (!qg_buf) 1911 return -ENOMEM; 1912 1913 qg_buf->num_txqs = 1; 1914 1915 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1916 kfree(qg_buf); 1917 return err; 1918 } 1919 1920 /** 1921 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1922 * @vsi: the VSI being configured 1923 * 1924 * Return 0 on success and a negative value on error 1925 * Configure the Rx VSI for operation. 1926 */ 1927 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1928 { 1929 u16 i; 1930 1931 if (vsi->type == ICE_VSI_VF) 1932 goto setup_rings; 1933 1934 ice_vsi_cfg_frame_size(vsi); 1935 setup_rings: 1936 /* set up individual rings */ 1937 ice_for_each_rxq(vsi, i) { 1938 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1939 1940 if (err) 1941 return err; 1942 } 1943 1944 return 0; 1945 } 1946 1947 /** 1948 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1949 * @vsi: the VSI being configured 1950 * @rings: Tx ring array to be configured 1951 * @count: number of Tx ring array elements 1952 * 1953 * Return 0 on success and a negative value on error 1954 * Configure the Tx VSI for operation. 1955 */ 1956 static int 1957 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1958 { 1959 struct ice_aqc_add_tx_qgrp *qg_buf; 1960 u16 q_idx = 0; 1961 int err = 0; 1962 1963 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1964 if (!qg_buf) 1965 return -ENOMEM; 1966 1967 qg_buf->num_txqs = 1; 1968 1969 for (q_idx = 0; q_idx < count; q_idx++) { 1970 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1971 if (err) 1972 goto err_cfg_txqs; 1973 } 1974 1975 err_cfg_txqs: 1976 kfree(qg_buf); 1977 return err; 1978 } 1979 1980 /** 1981 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1982 * @vsi: the VSI being configured 1983 * 1984 * Return 0 on success and a negative value on error 1985 * Configure the Tx VSI for operation. 1986 */ 1987 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1988 { 1989 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1990 } 1991 1992 /** 1993 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1994 * @vsi: the VSI being configured 1995 * 1996 * Return 0 on success and a negative value on error 1997 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1998 */ 1999 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 2000 { 2001 int ret; 2002 int i; 2003 2004 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 2005 if (ret) 2006 return ret; 2007 2008 ice_for_each_rxq(vsi, i) 2009 ice_tx_xsk_pool(vsi, i); 2010 2011 return ret; 2012 } 2013 2014 /** 2015 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 2016 * @intrl: interrupt rate limit in usecs 2017 * @gran: interrupt rate limit granularity in usecs 2018 * 2019 * This function converts a decimal interrupt rate limit in usecs to the format 2020 * expected by firmware. 2021 */ 2022 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2023 { 2024 u32 val = intrl / gran; 2025 2026 if (val) 2027 return val | GLINT_RATE_INTRL_ENA_M; 2028 return 0; 2029 } 2030 2031 /** 2032 * ice_write_intrl - write throttle rate limit to interrupt specific register 2033 * @q_vector: pointer to interrupt specific structure 2034 * @intrl: throttle rate limit in microseconds to write 2035 */ 2036 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2037 { 2038 struct ice_hw *hw = &q_vector->vsi->back->hw; 2039 2040 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2041 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2042 } 2043 2044 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2045 { 2046 switch (rc->type) { 2047 case ICE_RX_CONTAINER: 2048 if (rc->rx_ring) 2049 return rc->rx_ring->q_vector; 2050 break; 2051 case ICE_TX_CONTAINER: 2052 if (rc->tx_ring) 2053 return rc->tx_ring->q_vector; 2054 break; 2055 default: 2056 break; 2057 } 2058 2059 return NULL; 2060 } 2061 2062 /** 2063 * __ice_write_itr - write throttle rate to register 2064 * @q_vector: pointer to interrupt data structure 2065 * @rc: pointer to ring container 2066 * @itr: throttle rate in microseconds to write 2067 */ 2068 static void __ice_write_itr(struct ice_q_vector *q_vector, 2069 struct ice_ring_container *rc, u16 itr) 2070 { 2071 struct ice_hw *hw = &q_vector->vsi->back->hw; 2072 2073 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2074 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2075 } 2076 2077 /** 2078 * ice_write_itr - write throttle rate to queue specific register 2079 * @rc: pointer to ring container 2080 * @itr: throttle rate in microseconds to write 2081 */ 2082 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2083 { 2084 struct ice_q_vector *q_vector; 2085 2086 q_vector = ice_pull_qvec_from_rc(rc); 2087 if (!q_vector) 2088 return; 2089 2090 __ice_write_itr(q_vector, rc, itr); 2091 } 2092 2093 /** 2094 * ice_set_q_vector_intrl - set up interrupt rate limiting 2095 * @q_vector: the vector to be configured 2096 * 2097 * Interrupt rate limiting is local to the vector, not per-queue so we must 2098 * detect if either ring container has dynamic moderation enabled to decide 2099 * what to set the interrupt rate limit to via INTRL settings. In the case that 2100 * dynamic moderation is disabled on both, write the value with the cached 2101 * setting to make sure INTRL register matches the user visible value. 2102 */ 2103 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2104 { 2105 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2106 /* in the case of dynamic enabled, cap each vector to no more 2107 * than (4 us) 250,000 ints/sec, which allows low latency 2108 * but still less than 500,000 interrupts per second, which 2109 * reduces CPU a bit in the case of the lowest latency 2110 * setting. The 4 here is a value in microseconds. 2111 */ 2112 ice_write_intrl(q_vector, 4); 2113 } else { 2114 ice_write_intrl(q_vector, q_vector->intrl); 2115 } 2116 } 2117 2118 /** 2119 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2120 * @vsi: the VSI being configured 2121 * 2122 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2123 * for the VF VSI. 2124 */ 2125 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2126 { 2127 struct ice_pf *pf = vsi->back; 2128 struct ice_hw *hw = &pf->hw; 2129 u16 txq = 0, rxq = 0; 2130 int i, q; 2131 2132 ice_for_each_q_vector(vsi, i) { 2133 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2134 u16 reg_idx = q_vector->reg_idx; 2135 2136 ice_cfg_itr(hw, q_vector); 2137 2138 /* Both Transmit Queue Interrupt Cause Control register 2139 * and Receive Queue Interrupt Cause control register 2140 * expects MSIX_INDX field to be the vector index 2141 * within the function space and not the absolute 2142 * vector index across PF or across device. 2143 * For SR-IOV VF VSIs queue vector index always starts 2144 * with 1 since first vector index(0) is used for OICR 2145 * in VF space. Since VMDq and other PF VSIs are within 2146 * the PF function space, use the vector index that is 2147 * tracked for this PF. 2148 */ 2149 for (q = 0; q < q_vector->num_ring_tx; q++) { 2150 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2151 q_vector->tx.itr_idx); 2152 txq++; 2153 } 2154 2155 for (q = 0; q < q_vector->num_ring_rx; q++) { 2156 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2157 q_vector->rx.itr_idx); 2158 rxq++; 2159 } 2160 } 2161 } 2162 2163 /** 2164 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2165 * @vsi: the VSI whose rings are to be enabled 2166 * 2167 * Returns 0 on success and a negative value on error 2168 */ 2169 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2170 { 2171 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2172 } 2173 2174 /** 2175 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2176 * @vsi: the VSI whose rings are to be disabled 2177 * 2178 * Returns 0 on success and a negative value on error 2179 */ 2180 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2181 { 2182 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2183 } 2184 2185 /** 2186 * ice_vsi_stop_tx_rings - Disable Tx rings 2187 * @vsi: the VSI being configured 2188 * @rst_src: reset source 2189 * @rel_vmvf_num: Relative ID of VF/VM 2190 * @rings: Tx ring array to be stopped 2191 * @count: number of Tx ring array elements 2192 */ 2193 static int 2194 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2195 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2196 { 2197 u16 q_idx; 2198 2199 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2200 return -EINVAL; 2201 2202 for (q_idx = 0; q_idx < count; q_idx++) { 2203 struct ice_txq_meta txq_meta = { }; 2204 int status; 2205 2206 if (!rings || !rings[q_idx]) 2207 return -EINVAL; 2208 2209 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2210 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2211 rings[q_idx], &txq_meta); 2212 2213 if (status) 2214 return status; 2215 } 2216 2217 return 0; 2218 } 2219 2220 /** 2221 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2222 * @vsi: the VSI being configured 2223 * @rst_src: reset source 2224 * @rel_vmvf_num: Relative ID of VF/VM 2225 */ 2226 int 2227 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2228 u16 rel_vmvf_num) 2229 { 2230 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2231 } 2232 2233 /** 2234 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2235 * @vsi: the VSI being configured 2236 */ 2237 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2238 { 2239 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2240 } 2241 2242 /** 2243 * ice_vsi_is_rx_queue_active 2244 * @vsi: the VSI being configured 2245 * 2246 * Return true if at least one queue is active. 2247 */ 2248 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2249 { 2250 struct ice_pf *pf = vsi->back; 2251 struct ice_hw *hw = &pf->hw; 2252 int i; 2253 2254 ice_for_each_rxq(vsi, i) { 2255 u32 rx_reg; 2256 int pf_q; 2257 2258 pf_q = vsi->rxq_map[i]; 2259 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2260 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2261 return true; 2262 } 2263 2264 return false; 2265 } 2266 2267 /** 2268 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2269 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2270 * 2271 * returns true if Rx VLAN pruning is enabled and false otherwise. 2272 */ 2273 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2274 { 2275 if (!vsi) 2276 return false; 2277 2278 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2279 } 2280 2281 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2282 { 2283 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2284 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2285 vsi->tc_cfg.numtc = 1; 2286 return; 2287 } 2288 2289 /* set VSI TC information based on DCB config */ 2290 ice_vsi_set_dcb_tc_cfg(vsi); 2291 } 2292 2293 /** 2294 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2295 * @vsi: VSI to set the q_vectors register index on 2296 */ 2297 static int 2298 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2299 { 2300 u16 i; 2301 2302 if (!vsi || !vsi->q_vectors) 2303 return -EINVAL; 2304 2305 ice_for_each_q_vector(vsi, i) { 2306 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2307 2308 if (!q_vector) { 2309 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2310 i, vsi->vsi_num); 2311 goto clear_reg_idx; 2312 } 2313 2314 if (vsi->type == ICE_VSI_VF) { 2315 struct ice_vf *vf = vsi->vf; 2316 2317 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2318 } else { 2319 q_vector->reg_idx = 2320 q_vector->v_idx + vsi->base_vector; 2321 } 2322 } 2323 2324 return 0; 2325 2326 clear_reg_idx: 2327 ice_for_each_q_vector(vsi, i) { 2328 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2329 2330 if (q_vector) 2331 q_vector->reg_idx = 0; 2332 } 2333 2334 return -EINVAL; 2335 } 2336 2337 /** 2338 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2339 * @vsi: the VSI being configured 2340 * @tx: bool to determine Tx or Rx rule 2341 * @create: bool to determine create or remove Rule 2342 */ 2343 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2344 { 2345 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2346 enum ice_sw_fwd_act_type act); 2347 struct ice_pf *pf = vsi->back; 2348 struct device *dev; 2349 int status; 2350 2351 dev = ice_pf_to_dev(pf); 2352 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2353 2354 if (tx) { 2355 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2356 ICE_DROP_PACKET); 2357 } else { 2358 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2359 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2360 create); 2361 } else { 2362 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2363 ICE_FWD_TO_VSI); 2364 } 2365 } 2366 2367 if (status) 2368 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2369 create ? "adding" : "removing", tx ? "TX" : "RX", 2370 vsi->vsi_num, status); 2371 } 2372 2373 /** 2374 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2375 * @vsi: pointer to the VSI 2376 * 2377 * This function will allocate new scheduler aggregator now if needed and will 2378 * move specified VSI into it. 2379 */ 2380 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2381 { 2382 struct device *dev = ice_pf_to_dev(vsi->back); 2383 struct ice_agg_node *agg_node_iter = NULL; 2384 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2385 struct ice_agg_node *agg_node = NULL; 2386 int node_offset, max_agg_nodes = 0; 2387 struct ice_port_info *port_info; 2388 struct ice_pf *pf = vsi->back; 2389 u32 agg_node_id_start = 0; 2390 int status; 2391 2392 /* create (as needed) scheduler aggregator node and move VSI into 2393 * corresponding aggregator node 2394 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2395 * - VF aggregator nodes will contain VF VSI 2396 */ 2397 port_info = pf->hw.port_info; 2398 if (!port_info) 2399 return; 2400 2401 switch (vsi->type) { 2402 case ICE_VSI_CTRL: 2403 case ICE_VSI_CHNL: 2404 case ICE_VSI_LB: 2405 case ICE_VSI_PF: 2406 case ICE_VSI_SWITCHDEV_CTRL: 2407 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2408 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2409 agg_node_iter = &pf->pf_agg_node[0]; 2410 break; 2411 case ICE_VSI_VF: 2412 /* user can create 'n' VFs on a given PF, but since max children 2413 * per aggregator node can be only 64. Following code handles 2414 * aggregator(s) for VF VSIs, either selects a agg_node which 2415 * was already created provided num_vsis < 64, otherwise 2416 * select next available node, which will be created 2417 */ 2418 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2419 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2420 agg_node_iter = &pf->vf_agg_node[0]; 2421 break; 2422 default: 2423 /* other VSI type, handle later if needed */ 2424 dev_dbg(dev, "unexpected VSI type %s\n", 2425 ice_vsi_type_str(vsi->type)); 2426 return; 2427 } 2428 2429 /* find the appropriate aggregator node */ 2430 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2431 /* see if we can find space in previously created 2432 * node if num_vsis < 64, otherwise skip 2433 */ 2434 if (agg_node_iter->num_vsis && 2435 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2436 agg_node_iter++; 2437 continue; 2438 } 2439 2440 if (agg_node_iter->valid && 2441 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2442 agg_id = agg_node_iter->agg_id; 2443 agg_node = agg_node_iter; 2444 break; 2445 } 2446 2447 /* find unclaimed agg_id */ 2448 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2449 agg_id = node_offset + agg_node_id_start; 2450 agg_node = agg_node_iter; 2451 break; 2452 } 2453 /* move to next agg_node */ 2454 agg_node_iter++; 2455 } 2456 2457 if (!agg_node) 2458 return; 2459 2460 /* if selected aggregator node was not created, create it */ 2461 if (!agg_node->valid) { 2462 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2463 (u8)vsi->tc_cfg.ena_tc); 2464 if (status) { 2465 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2466 agg_id); 2467 return; 2468 } 2469 /* aggregator node is created, store the needed info */ 2470 agg_node->valid = true; 2471 agg_node->agg_id = agg_id; 2472 } 2473 2474 /* move VSI to corresponding aggregator node */ 2475 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2476 (u8)vsi->tc_cfg.ena_tc); 2477 if (status) { 2478 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2479 vsi->idx, agg_id); 2480 return; 2481 } 2482 2483 /* keep active children count for aggregator node */ 2484 agg_node->num_vsis++; 2485 2486 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2487 * to aggregator node 2488 */ 2489 vsi->agg_node = agg_node; 2490 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2491 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2492 vsi->agg_node->num_vsis); 2493 } 2494 2495 /** 2496 * ice_vsi_setup - Set up a VSI by a given type 2497 * @pf: board private structure 2498 * @pi: pointer to the port_info instance 2499 * @vsi_type: VSI type 2500 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2501 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2502 * @ch: ptr to channel 2503 * 2504 * This allocates the sw VSI structure and its queue resources. 2505 * 2506 * Returns pointer to the successfully allocated and configured VSI sw struct on 2507 * success, NULL on failure. 2508 */ 2509 struct ice_vsi * 2510 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2511 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2512 struct ice_channel *ch) 2513 { 2514 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2515 struct device *dev = ice_pf_to_dev(pf); 2516 struct ice_vsi *vsi; 2517 int ret, i; 2518 2519 if (vsi_type == ICE_VSI_CHNL) 2520 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2521 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2522 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2523 else 2524 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2525 2526 if (!vsi) { 2527 dev_err(dev, "could not allocate VSI\n"); 2528 return NULL; 2529 } 2530 2531 vsi->port_info = pi; 2532 vsi->vsw = pf->first_sw; 2533 if (vsi->type == ICE_VSI_PF) 2534 vsi->ethtype = ETH_P_PAUSE; 2535 2536 ice_alloc_fd_res(vsi); 2537 2538 if (vsi_type != ICE_VSI_CHNL) { 2539 if (ice_vsi_get_qs(vsi)) { 2540 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2541 vsi->idx); 2542 goto unroll_vsi_alloc; 2543 } 2544 } 2545 2546 /* set RSS capabilities */ 2547 ice_vsi_set_rss_params(vsi); 2548 2549 /* set TC configuration */ 2550 ice_vsi_set_tc_cfg(vsi); 2551 2552 /* create the VSI */ 2553 ret = ice_vsi_init(vsi, true); 2554 if (ret) 2555 goto unroll_get_qs; 2556 2557 ice_vsi_init_vlan_ops(vsi); 2558 2559 switch (vsi->type) { 2560 case ICE_VSI_CTRL: 2561 case ICE_VSI_SWITCHDEV_CTRL: 2562 case ICE_VSI_PF: 2563 ret = ice_vsi_alloc_q_vectors(vsi); 2564 if (ret) 2565 goto unroll_vsi_init; 2566 2567 ret = ice_vsi_setup_vector_base(vsi); 2568 if (ret) 2569 goto unroll_alloc_q_vector; 2570 2571 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2572 if (ret) 2573 goto unroll_vector_base; 2574 2575 ret = ice_vsi_alloc_rings(vsi); 2576 if (ret) 2577 goto unroll_vector_base; 2578 2579 ice_vsi_map_rings_to_vectors(vsi); 2580 2581 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2582 if (vsi->type != ICE_VSI_CTRL) 2583 /* Do not exit if configuring RSS had an issue, at 2584 * least receive traffic on first queue. Hence no 2585 * need to capture return value 2586 */ 2587 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2588 ice_vsi_cfg_rss_lut_key(vsi); 2589 ice_vsi_set_rss_flow_fld(vsi); 2590 } 2591 ice_init_arfs(vsi); 2592 break; 2593 case ICE_VSI_CHNL: 2594 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2595 ice_vsi_cfg_rss_lut_key(vsi); 2596 ice_vsi_set_rss_flow_fld(vsi); 2597 } 2598 break; 2599 case ICE_VSI_VF: 2600 /* VF driver will take care of creating netdev for this type and 2601 * map queues to vectors through Virtchnl, PF driver only 2602 * creates a VSI and corresponding structures for bookkeeping 2603 * purpose 2604 */ 2605 ret = ice_vsi_alloc_q_vectors(vsi); 2606 if (ret) 2607 goto unroll_vsi_init; 2608 2609 ret = ice_vsi_alloc_rings(vsi); 2610 if (ret) 2611 goto unroll_alloc_q_vector; 2612 2613 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2614 if (ret) 2615 goto unroll_vector_base; 2616 2617 /* Do not exit if configuring RSS had an issue, at least 2618 * receive traffic on first queue. Hence no need to capture 2619 * return value 2620 */ 2621 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2622 ice_vsi_cfg_rss_lut_key(vsi); 2623 ice_vsi_set_vf_rss_flow_fld(vsi); 2624 } 2625 break; 2626 case ICE_VSI_LB: 2627 ret = ice_vsi_alloc_rings(vsi); 2628 if (ret) 2629 goto unroll_vsi_init; 2630 break; 2631 default: 2632 /* clean up the resources and exit */ 2633 goto unroll_vsi_init; 2634 } 2635 2636 /* configure VSI nodes based on number of queues and TC's */ 2637 ice_for_each_traffic_class(i) { 2638 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2639 continue; 2640 2641 if (vsi->type == ICE_VSI_CHNL) { 2642 if (!vsi->alloc_txq && vsi->num_txq) 2643 max_txqs[i] = vsi->num_txq; 2644 else 2645 max_txqs[i] = pf->num_lan_tx; 2646 } else { 2647 max_txqs[i] = vsi->alloc_txq; 2648 } 2649 } 2650 2651 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2652 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2653 max_txqs); 2654 if (ret) { 2655 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2656 vsi->vsi_num, ret); 2657 goto unroll_clear_rings; 2658 } 2659 2660 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2661 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2662 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2663 * The rule is added once for PF VSI in order to create appropriate 2664 * recipe, since VSI/VSI list is ignored with drop action... 2665 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2666 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2667 * settings in the HW. 2668 */ 2669 if (!ice_is_safe_mode(pf)) 2670 if (vsi->type == ICE_VSI_PF) { 2671 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2672 ICE_DROP_PACKET); 2673 ice_cfg_sw_lldp(vsi, true, true); 2674 } 2675 2676 if (!vsi->agg_node) 2677 ice_set_agg_vsi(vsi); 2678 return vsi; 2679 2680 unroll_clear_rings: 2681 ice_vsi_clear_rings(vsi); 2682 unroll_vector_base: 2683 /* reclaim SW interrupts back to the common pool */ 2684 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2685 pf->num_avail_sw_msix += vsi->num_q_vectors; 2686 unroll_alloc_q_vector: 2687 ice_vsi_free_q_vectors(vsi); 2688 unroll_vsi_init: 2689 ice_vsi_delete(vsi); 2690 unroll_get_qs: 2691 ice_vsi_put_qs(vsi); 2692 unroll_vsi_alloc: 2693 if (vsi_type == ICE_VSI_VF) 2694 ice_enable_lag(pf->lag); 2695 ice_vsi_clear(vsi); 2696 2697 return NULL; 2698 } 2699 2700 /** 2701 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2702 * @vsi: the VSI being cleaned up 2703 */ 2704 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2705 { 2706 struct ice_pf *pf = vsi->back; 2707 struct ice_hw *hw = &pf->hw; 2708 u32 txq = 0; 2709 u32 rxq = 0; 2710 int i, q; 2711 2712 ice_for_each_q_vector(vsi, i) { 2713 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2714 2715 ice_write_intrl(q_vector, 0); 2716 for (q = 0; q < q_vector->num_ring_tx; q++) { 2717 ice_write_itr(&q_vector->tx, 0); 2718 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2719 if (ice_is_xdp_ena_vsi(vsi)) { 2720 u32 xdp_txq = txq + vsi->num_xdp_txq; 2721 2722 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2723 } 2724 txq++; 2725 } 2726 2727 for (q = 0; q < q_vector->num_ring_rx; q++) { 2728 ice_write_itr(&q_vector->rx, 0); 2729 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2730 rxq++; 2731 } 2732 } 2733 2734 ice_flush(hw); 2735 } 2736 2737 /** 2738 * ice_vsi_free_irq - Free the IRQ association with the OS 2739 * @vsi: the VSI being configured 2740 */ 2741 void ice_vsi_free_irq(struct ice_vsi *vsi) 2742 { 2743 struct ice_pf *pf = vsi->back; 2744 int base = vsi->base_vector; 2745 int i; 2746 2747 if (!vsi->q_vectors || !vsi->irqs_ready) 2748 return; 2749 2750 ice_vsi_release_msix(vsi); 2751 if (vsi->type == ICE_VSI_VF) 2752 return; 2753 2754 vsi->irqs_ready = false; 2755 ice_free_cpu_rx_rmap(vsi); 2756 2757 ice_for_each_q_vector(vsi, i) { 2758 u16 vector = i + base; 2759 int irq_num; 2760 2761 irq_num = pf->msix_entries[vector].vector; 2762 2763 /* free only the irqs that were actually requested */ 2764 if (!vsi->q_vectors[i] || 2765 !(vsi->q_vectors[i]->num_ring_tx || 2766 vsi->q_vectors[i]->num_ring_rx)) 2767 continue; 2768 2769 /* clear the affinity notifier in the IRQ descriptor */ 2770 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2771 irq_set_affinity_notifier(irq_num, NULL); 2772 2773 /* clear the affinity_mask in the IRQ descriptor */ 2774 irq_set_affinity_hint(irq_num, NULL); 2775 synchronize_irq(irq_num); 2776 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2777 } 2778 } 2779 2780 /** 2781 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2782 * @vsi: the VSI having resources freed 2783 */ 2784 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2785 { 2786 int i; 2787 2788 if (!vsi->tx_rings) 2789 return; 2790 2791 ice_for_each_txq(vsi, i) 2792 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2793 ice_free_tx_ring(vsi->tx_rings[i]); 2794 } 2795 2796 /** 2797 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2798 * @vsi: the VSI having resources freed 2799 */ 2800 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2801 { 2802 int i; 2803 2804 if (!vsi->rx_rings) 2805 return; 2806 2807 ice_for_each_rxq(vsi, i) 2808 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2809 ice_free_rx_ring(vsi->rx_rings[i]); 2810 } 2811 2812 /** 2813 * ice_vsi_close - Shut down a VSI 2814 * @vsi: the VSI being shut down 2815 */ 2816 void ice_vsi_close(struct ice_vsi *vsi) 2817 { 2818 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2819 ice_down(vsi); 2820 2821 ice_vsi_free_irq(vsi); 2822 ice_vsi_free_tx_rings(vsi); 2823 ice_vsi_free_rx_rings(vsi); 2824 } 2825 2826 /** 2827 * ice_ena_vsi - resume a VSI 2828 * @vsi: the VSI being resume 2829 * @locked: is the rtnl_lock already held 2830 */ 2831 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2832 { 2833 int err = 0; 2834 2835 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2836 return 0; 2837 2838 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2839 2840 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2841 if (netif_running(vsi->netdev)) { 2842 if (!locked) 2843 rtnl_lock(); 2844 2845 err = ice_open_internal(vsi->netdev); 2846 2847 if (!locked) 2848 rtnl_unlock(); 2849 } 2850 } else if (vsi->type == ICE_VSI_CTRL) { 2851 err = ice_vsi_open_ctrl(vsi); 2852 } 2853 2854 return err; 2855 } 2856 2857 /** 2858 * ice_dis_vsi - pause a VSI 2859 * @vsi: the VSI being paused 2860 * @locked: is the rtnl_lock already held 2861 */ 2862 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2863 { 2864 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2865 return; 2866 2867 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2868 2869 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2870 if (netif_running(vsi->netdev)) { 2871 if (!locked) 2872 rtnl_lock(); 2873 2874 ice_vsi_close(vsi); 2875 2876 if (!locked) 2877 rtnl_unlock(); 2878 } else { 2879 ice_vsi_close(vsi); 2880 } 2881 } else if (vsi->type == ICE_VSI_CTRL || 2882 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2883 ice_vsi_close(vsi); 2884 } 2885 } 2886 2887 /** 2888 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2889 * @vsi: the VSI being un-configured 2890 */ 2891 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2892 { 2893 int base = vsi->base_vector; 2894 struct ice_pf *pf = vsi->back; 2895 struct ice_hw *hw = &pf->hw; 2896 u32 val; 2897 int i; 2898 2899 /* disable interrupt causation from each queue */ 2900 if (vsi->tx_rings) { 2901 ice_for_each_txq(vsi, i) { 2902 if (vsi->tx_rings[i]) { 2903 u16 reg; 2904 2905 reg = vsi->tx_rings[i]->reg_idx; 2906 val = rd32(hw, QINT_TQCTL(reg)); 2907 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2908 wr32(hw, QINT_TQCTL(reg), val); 2909 } 2910 } 2911 } 2912 2913 if (vsi->rx_rings) { 2914 ice_for_each_rxq(vsi, i) { 2915 if (vsi->rx_rings[i]) { 2916 u16 reg; 2917 2918 reg = vsi->rx_rings[i]->reg_idx; 2919 val = rd32(hw, QINT_RQCTL(reg)); 2920 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2921 wr32(hw, QINT_RQCTL(reg), val); 2922 } 2923 } 2924 } 2925 2926 /* disable each interrupt */ 2927 ice_for_each_q_vector(vsi, i) { 2928 if (!vsi->q_vectors[i]) 2929 continue; 2930 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2931 } 2932 2933 ice_flush(hw); 2934 2935 /* don't call synchronize_irq() for VF's from the host */ 2936 if (vsi->type == ICE_VSI_VF) 2937 return; 2938 2939 ice_for_each_q_vector(vsi, i) 2940 synchronize_irq(pf->msix_entries[i + base].vector); 2941 } 2942 2943 /** 2944 * ice_napi_del - Remove NAPI handler for the VSI 2945 * @vsi: VSI for which NAPI handler is to be removed 2946 */ 2947 void ice_napi_del(struct ice_vsi *vsi) 2948 { 2949 int v_idx; 2950 2951 if (!vsi->netdev) 2952 return; 2953 2954 ice_for_each_q_vector(vsi, v_idx) 2955 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2956 } 2957 2958 /** 2959 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2960 * @pf: pointer to PF structure 2961 * @vsi: the VSI to free resources for 2962 * 2963 * Check if the VF control VSI resource is still in use. If no VF is using it 2964 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2965 * once no other VF uses it. 2966 */ 2967 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2968 { 2969 struct ice_vf *vf; 2970 unsigned int bkt; 2971 2972 rcu_read_lock(); 2973 ice_for_each_vf_rcu(pf, bkt, vf) { 2974 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2975 rcu_read_unlock(); 2976 return; 2977 } 2978 } 2979 rcu_read_unlock(); 2980 2981 /* No other VFs left that have control VSI. It is now safe to reclaim 2982 * SW interrupts back to the common pool. 2983 */ 2984 ice_free_res(pf->irq_tracker, vsi->base_vector, 2985 ICE_RES_VF_CTRL_VEC_ID); 2986 pf->num_avail_sw_msix += vsi->num_q_vectors; 2987 } 2988 2989 /** 2990 * ice_vsi_release - Delete a VSI and free its resources 2991 * @vsi: the VSI being removed 2992 * 2993 * Returns 0 on success or < 0 on error 2994 */ 2995 int ice_vsi_release(struct ice_vsi *vsi) 2996 { 2997 struct ice_pf *pf; 2998 int err; 2999 3000 if (!vsi->back) 3001 return -ENODEV; 3002 pf = vsi->back; 3003 3004 /* do not unregister while driver is in the reset recovery pending 3005 * state. Since reset/rebuild happens through PF service task workqueue, 3006 * it's not a good idea to unregister netdev that is associated to the 3007 * PF that is running the work queue items currently. This is done to 3008 * avoid check_flush_dependency() warning on this wq 3009 */ 3010 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3011 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3012 unregister_netdev(vsi->netdev); 3013 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3014 } 3015 3016 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3017 ice_rss_clean(vsi); 3018 3019 /* Disable VSI and free resources */ 3020 if (vsi->type != ICE_VSI_LB) 3021 ice_vsi_dis_irq(vsi); 3022 ice_vsi_close(vsi); 3023 3024 /* SR-IOV determines needed MSIX resources all at once instead of per 3025 * VSI since when VFs are spawned we know how many VFs there are and how 3026 * many interrupts each VF needs. SR-IOV MSIX resources are also 3027 * cleared in the same manner. 3028 */ 3029 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 3030 ice_free_vf_ctrl_res(pf, vsi); 3031 } else if (vsi->type != ICE_VSI_VF) { 3032 /* reclaim SW interrupts back to the common pool */ 3033 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3034 pf->num_avail_sw_msix += vsi->num_q_vectors; 3035 } 3036 3037 if (!ice_is_safe_mode(pf)) { 3038 if (vsi->type == ICE_VSI_PF) { 3039 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3040 ICE_DROP_PACKET); 3041 ice_cfg_sw_lldp(vsi, true, false); 3042 /* The Rx rule will only exist to remove if the LLDP FW 3043 * engine is currently stopped 3044 */ 3045 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3046 ice_cfg_sw_lldp(vsi, false, false); 3047 } 3048 } 3049 3050 if (ice_is_vsi_dflt_vsi(vsi)) 3051 ice_clear_dflt_vsi(vsi); 3052 ice_fltr_remove_all(vsi); 3053 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3054 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3055 if (err) 3056 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3057 vsi->vsi_num, err); 3058 ice_vsi_delete(vsi); 3059 ice_vsi_free_q_vectors(vsi); 3060 3061 if (vsi->netdev) { 3062 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3063 unregister_netdev(vsi->netdev); 3064 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3065 } 3066 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3067 free_netdev(vsi->netdev); 3068 vsi->netdev = NULL; 3069 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3070 } 3071 } 3072 3073 if (vsi->type == ICE_VSI_PF) 3074 ice_devlink_destroy_pf_port(pf); 3075 3076 if (vsi->type == ICE_VSI_VF && 3077 vsi->agg_node && vsi->agg_node->valid) 3078 vsi->agg_node->num_vsis--; 3079 ice_vsi_clear_rings(vsi); 3080 3081 ice_vsi_put_qs(vsi); 3082 3083 /* retain SW VSI data structure since it is needed to unregister and 3084 * free VSI netdev when PF is not in reset recovery pending state,\ 3085 * for ex: during rmmod. 3086 */ 3087 if (!ice_is_reset_in_progress(pf->state)) 3088 ice_vsi_clear(vsi); 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3095 * @vsi: VSI connected with q_vectors 3096 * @coalesce: array of struct with stored coalesce 3097 * 3098 * Returns array size. 3099 */ 3100 static int 3101 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3102 struct ice_coalesce_stored *coalesce) 3103 { 3104 int i; 3105 3106 ice_for_each_q_vector(vsi, i) { 3107 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3108 3109 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3110 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3111 coalesce[i].intrl = q_vector->intrl; 3112 3113 if (i < vsi->num_txq) 3114 coalesce[i].tx_valid = true; 3115 if (i < vsi->num_rxq) 3116 coalesce[i].rx_valid = true; 3117 } 3118 3119 return vsi->num_q_vectors; 3120 } 3121 3122 /** 3123 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3124 * @vsi: VSI connected with q_vectors 3125 * @coalesce: pointer to array of struct with stored coalesce 3126 * @size: size of coalesce array 3127 * 3128 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3129 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3130 * to default value. 3131 */ 3132 static void 3133 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3134 struct ice_coalesce_stored *coalesce, int size) 3135 { 3136 struct ice_ring_container *rc; 3137 int i; 3138 3139 if ((size && !coalesce) || !vsi) 3140 return; 3141 3142 /* There are a couple of cases that have to be handled here: 3143 * 1. The case where the number of queue vectors stays the same, but 3144 * the number of Tx or Rx rings changes (the first for loop) 3145 * 2. The case where the number of queue vectors increased (the 3146 * second for loop) 3147 */ 3148 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3149 /* There are 2 cases to handle here and they are the same for 3150 * both Tx and Rx: 3151 * if the entry was valid previously (coalesce[i].[tr]x_valid 3152 * and the loop variable is less than the number of rings 3153 * allocated, then write the previous values 3154 * 3155 * if the entry was not valid previously, but the number of 3156 * rings is less than are allocated (this means the number of 3157 * rings increased from previously), then write out the 3158 * values in the first element 3159 * 3160 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3161 * as there is no harm because the dynamic algorithm 3162 * will just overwrite. 3163 */ 3164 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3165 rc = &vsi->q_vectors[i]->rx; 3166 rc->itr_settings = coalesce[i].itr_rx; 3167 ice_write_itr(rc, rc->itr_setting); 3168 } else if (i < vsi->alloc_rxq) { 3169 rc = &vsi->q_vectors[i]->rx; 3170 rc->itr_settings = coalesce[0].itr_rx; 3171 ice_write_itr(rc, rc->itr_setting); 3172 } 3173 3174 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3175 rc = &vsi->q_vectors[i]->tx; 3176 rc->itr_settings = coalesce[i].itr_tx; 3177 ice_write_itr(rc, rc->itr_setting); 3178 } else if (i < vsi->alloc_txq) { 3179 rc = &vsi->q_vectors[i]->tx; 3180 rc->itr_settings = coalesce[0].itr_tx; 3181 ice_write_itr(rc, rc->itr_setting); 3182 } 3183 3184 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3185 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3186 } 3187 3188 /* the number of queue vectors increased so write whatever is in 3189 * the first element 3190 */ 3191 for (; i < vsi->num_q_vectors; i++) { 3192 /* transmit */ 3193 rc = &vsi->q_vectors[i]->tx; 3194 rc->itr_settings = coalesce[0].itr_tx; 3195 ice_write_itr(rc, rc->itr_setting); 3196 3197 /* receive */ 3198 rc = &vsi->q_vectors[i]->rx; 3199 rc->itr_settings = coalesce[0].itr_rx; 3200 ice_write_itr(rc, rc->itr_setting); 3201 3202 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3203 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3204 } 3205 } 3206 3207 /** 3208 * ice_vsi_rebuild - Rebuild VSI after reset 3209 * @vsi: VSI to be rebuild 3210 * @init_vsi: is this an initialization or a reconfigure of the VSI 3211 * 3212 * Returns 0 on success and negative value on failure 3213 */ 3214 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3215 { 3216 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3217 struct ice_coalesce_stored *coalesce; 3218 int prev_num_q_vectors = 0; 3219 enum ice_vsi_type vtype; 3220 struct ice_pf *pf; 3221 int ret, i; 3222 3223 if (!vsi) 3224 return -EINVAL; 3225 3226 pf = vsi->back; 3227 vtype = vsi->type; 3228 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf)) 3229 return -EINVAL; 3230 3231 ice_vsi_init_vlan_ops(vsi); 3232 3233 coalesce = kcalloc(vsi->num_q_vectors, 3234 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3235 if (!coalesce) 3236 return -ENOMEM; 3237 3238 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3239 3240 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3241 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3242 if (ret) 3243 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3244 vsi->vsi_num, ret); 3245 ice_vsi_free_q_vectors(vsi); 3246 3247 /* SR-IOV determines needed MSIX resources all at once instead of per 3248 * VSI since when VFs are spawned we know how many VFs there are and how 3249 * many interrupts each VF needs. SR-IOV MSIX resources are also 3250 * cleared in the same manner. 3251 */ 3252 if (vtype != ICE_VSI_VF) { 3253 /* reclaim SW interrupts back to the common pool */ 3254 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3255 pf->num_avail_sw_msix += vsi->num_q_vectors; 3256 vsi->base_vector = 0; 3257 } 3258 3259 if (ice_is_xdp_ena_vsi(vsi)) 3260 /* return value check can be skipped here, it always returns 3261 * 0 if reset is in progress 3262 */ 3263 ice_destroy_xdp_rings(vsi); 3264 ice_vsi_put_qs(vsi); 3265 ice_vsi_clear_rings(vsi); 3266 ice_vsi_free_arrays(vsi); 3267 if (vtype == ICE_VSI_VF) 3268 ice_vsi_set_num_qs(vsi, vsi->vf); 3269 else 3270 ice_vsi_set_num_qs(vsi, NULL); 3271 3272 ret = ice_vsi_alloc_arrays(vsi); 3273 if (ret < 0) 3274 goto err_vsi; 3275 3276 ice_vsi_get_qs(vsi); 3277 3278 ice_alloc_fd_res(vsi); 3279 ice_vsi_set_tc_cfg(vsi); 3280 3281 /* Initialize VSI struct elements and create VSI in FW */ 3282 ret = ice_vsi_init(vsi, init_vsi); 3283 if (ret < 0) 3284 goto err_vsi; 3285 3286 switch (vtype) { 3287 case ICE_VSI_CTRL: 3288 case ICE_VSI_SWITCHDEV_CTRL: 3289 case ICE_VSI_PF: 3290 ret = ice_vsi_alloc_q_vectors(vsi); 3291 if (ret) 3292 goto err_rings; 3293 3294 ret = ice_vsi_setup_vector_base(vsi); 3295 if (ret) 3296 goto err_vectors; 3297 3298 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3299 if (ret) 3300 goto err_vectors; 3301 3302 ret = ice_vsi_alloc_rings(vsi); 3303 if (ret) 3304 goto err_vectors; 3305 3306 ice_vsi_map_rings_to_vectors(vsi); 3307 if (ice_is_xdp_ena_vsi(vsi)) { 3308 ret = ice_vsi_determine_xdp_res(vsi); 3309 if (ret) 3310 goto err_vectors; 3311 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3312 if (ret) 3313 goto err_vectors; 3314 } 3315 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3316 if (vtype != ICE_VSI_CTRL) 3317 /* Do not exit if configuring RSS had an issue, at 3318 * least receive traffic on first queue. Hence no 3319 * need to capture return value 3320 */ 3321 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3322 ice_vsi_cfg_rss_lut_key(vsi); 3323 3324 /* disable or enable CRC stripping */ 3325 if (vsi->netdev) 3326 ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features & 3327 NETIF_F_RXFCS)); 3328 3329 break; 3330 case ICE_VSI_VF: 3331 ret = ice_vsi_alloc_q_vectors(vsi); 3332 if (ret) 3333 goto err_rings; 3334 3335 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3336 if (ret) 3337 goto err_vectors; 3338 3339 ret = ice_vsi_alloc_rings(vsi); 3340 if (ret) 3341 goto err_vectors; 3342 3343 break; 3344 case ICE_VSI_CHNL: 3345 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3346 ice_vsi_cfg_rss_lut_key(vsi); 3347 ice_vsi_set_rss_flow_fld(vsi); 3348 } 3349 break; 3350 default: 3351 break; 3352 } 3353 3354 /* configure VSI nodes based on number of queues and TC's */ 3355 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3356 /* configure VSI nodes based on number of queues and TC's. 3357 * ADQ creates VSIs for each TC/Channel but doesn't 3358 * allocate queues instead it reconfigures the PF queues 3359 * as per the TC command. So max_txqs should point to the 3360 * PF Tx queues. 3361 */ 3362 if (vtype == ICE_VSI_CHNL) 3363 max_txqs[i] = pf->num_lan_tx; 3364 else 3365 max_txqs[i] = vsi->alloc_txq; 3366 3367 if (ice_is_xdp_ena_vsi(vsi)) 3368 max_txqs[i] += vsi->num_xdp_txq; 3369 } 3370 3371 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3372 /* If MQPRIO is set, means channel code path, hence for main 3373 * VSI's, use TC as 1 3374 */ 3375 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3376 else 3377 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3378 vsi->tc_cfg.ena_tc, max_txqs); 3379 3380 if (ret) { 3381 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3382 vsi->vsi_num, ret); 3383 if (init_vsi) { 3384 ret = -EIO; 3385 goto err_vectors; 3386 } else { 3387 return ice_schedule_reset(pf, ICE_RESET_PFR); 3388 } 3389 } 3390 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3391 kfree(coalesce); 3392 3393 return 0; 3394 3395 err_vectors: 3396 ice_vsi_free_q_vectors(vsi); 3397 err_rings: 3398 if (vsi->netdev) { 3399 vsi->current_netdev_flags = 0; 3400 unregister_netdev(vsi->netdev); 3401 free_netdev(vsi->netdev); 3402 vsi->netdev = NULL; 3403 } 3404 err_vsi: 3405 ice_vsi_clear(vsi); 3406 set_bit(ICE_RESET_FAILED, pf->state); 3407 kfree(coalesce); 3408 return ret; 3409 } 3410 3411 /** 3412 * ice_is_reset_in_progress - check for a reset in progress 3413 * @state: PF state field 3414 */ 3415 bool ice_is_reset_in_progress(unsigned long *state) 3416 { 3417 return test_bit(ICE_RESET_OICR_RECV, state) || 3418 test_bit(ICE_PFR_REQ, state) || 3419 test_bit(ICE_CORER_REQ, state) || 3420 test_bit(ICE_GLOBR_REQ, state); 3421 } 3422 3423 /** 3424 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3425 * @pf: pointer to the PF structure 3426 * @timeout: length of time to wait, in jiffies 3427 * 3428 * Wait (sleep) for a short time until the driver finishes cleaning up from 3429 * a device reset. The caller must be able to sleep. Use this to delay 3430 * operations that could fail while the driver is cleaning up after a device 3431 * reset. 3432 * 3433 * Returns 0 on success, -EBUSY if the reset is not finished within the 3434 * timeout, and -ERESTARTSYS if the thread was interrupted. 3435 */ 3436 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3437 { 3438 long ret; 3439 3440 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3441 !ice_is_reset_in_progress(pf->state), 3442 timeout); 3443 if (ret < 0) 3444 return ret; 3445 else if (!ret) 3446 return -EBUSY; 3447 else 3448 return 0; 3449 } 3450 3451 /** 3452 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3453 * @vsi: VSI being configured 3454 * @ctx: the context buffer returned from AQ VSI update command 3455 */ 3456 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3457 { 3458 vsi->info.mapping_flags = ctx->info.mapping_flags; 3459 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3460 sizeof(vsi->info.q_mapping)); 3461 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3462 sizeof(vsi->info.tc_mapping)); 3463 } 3464 3465 /** 3466 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3467 * @vsi: the VSI being configured 3468 * @ena_tc: TC map to be enabled 3469 */ 3470 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3471 { 3472 struct net_device *netdev = vsi->netdev; 3473 struct ice_pf *pf = vsi->back; 3474 int numtc = vsi->tc_cfg.numtc; 3475 struct ice_dcbx_cfg *dcbcfg; 3476 u8 netdev_tc; 3477 int i; 3478 3479 if (!netdev) 3480 return; 3481 3482 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3483 if (vsi->type == ICE_VSI_CHNL) 3484 return; 3485 3486 if (!ena_tc) { 3487 netdev_reset_tc(netdev); 3488 return; 3489 } 3490 3491 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3492 numtc = vsi->all_numtc; 3493 3494 if (netdev_set_num_tc(netdev, numtc)) 3495 return; 3496 3497 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3498 3499 ice_for_each_traffic_class(i) 3500 if (vsi->tc_cfg.ena_tc & BIT(i)) 3501 netdev_set_tc_queue(netdev, 3502 vsi->tc_cfg.tc_info[i].netdev_tc, 3503 vsi->tc_cfg.tc_info[i].qcount_tx, 3504 vsi->tc_cfg.tc_info[i].qoffset); 3505 /* setup TC queue map for CHNL TCs */ 3506 ice_for_each_chnl_tc(i) { 3507 if (!(vsi->all_enatc & BIT(i))) 3508 break; 3509 if (!vsi->mqprio_qopt.qopt.count[i]) 3510 break; 3511 netdev_set_tc_queue(netdev, i, 3512 vsi->mqprio_qopt.qopt.count[i], 3513 vsi->mqprio_qopt.qopt.offset[i]); 3514 } 3515 3516 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3517 return; 3518 3519 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3520 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3521 3522 /* Get the mapped netdev TC# for the UP */ 3523 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3524 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3525 } 3526 } 3527 3528 /** 3529 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3530 * @vsi: the VSI being configured, 3531 * @ctxt: VSI context structure 3532 * @ena_tc: number of traffic classes to enable 3533 * 3534 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3535 */ 3536 static int 3537 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3538 u8 ena_tc) 3539 { 3540 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3541 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3542 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3543 u16 new_txq, new_rxq; 3544 u8 netdev_tc = 0; 3545 int i; 3546 3547 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3548 3549 pow = order_base_2(tc0_qcount); 3550 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3551 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3552 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3553 3554 ice_for_each_traffic_class(i) { 3555 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3556 /* TC is not enabled */ 3557 vsi->tc_cfg.tc_info[i].qoffset = 0; 3558 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3559 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3560 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3561 ctxt->info.tc_mapping[i] = 0; 3562 continue; 3563 } 3564 3565 offset = vsi->mqprio_qopt.qopt.offset[i]; 3566 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3567 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3568 vsi->tc_cfg.tc_info[i].qoffset = offset; 3569 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3570 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3571 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3572 } 3573 3574 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3575 ice_for_each_chnl_tc(i) { 3576 if (!(vsi->all_enatc & BIT(i))) 3577 continue; 3578 offset = vsi->mqprio_qopt.qopt.offset[i]; 3579 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3580 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3581 } 3582 } 3583 3584 new_txq = offset + qcount_tx; 3585 if (new_txq > vsi->alloc_txq) { 3586 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3587 new_txq, vsi->alloc_txq); 3588 return -EINVAL; 3589 } 3590 3591 new_rxq = offset + qcount_rx; 3592 if (new_rxq > vsi->alloc_rxq) { 3593 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3594 new_rxq, vsi->alloc_rxq); 3595 return -EINVAL; 3596 } 3597 3598 /* Set actual Tx/Rx queue pairs */ 3599 vsi->num_txq = new_txq; 3600 vsi->num_rxq = new_rxq; 3601 3602 /* Setup queue TC[0].qmap for given VSI context */ 3603 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3604 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3605 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3606 3607 /* Find queue count available for channel VSIs and starting offset 3608 * for channel VSIs 3609 */ 3610 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3611 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3612 vsi->next_base_q = tc0_qcount; 3613 } 3614 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3615 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3616 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3617 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3618 3619 return 0; 3620 } 3621 3622 /** 3623 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3624 * @vsi: VSI to be configured 3625 * @ena_tc: TC bitmap 3626 * 3627 * VSI queues expected to be quiesced before calling this function 3628 */ 3629 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3630 { 3631 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3632 struct ice_pf *pf = vsi->back; 3633 struct ice_tc_cfg old_tc_cfg; 3634 struct ice_vsi_ctx *ctx; 3635 struct device *dev; 3636 int i, ret = 0; 3637 u8 num_tc = 0; 3638 3639 dev = ice_pf_to_dev(pf); 3640 if (vsi->tc_cfg.ena_tc == ena_tc && 3641 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3642 return ret; 3643 3644 ice_for_each_traffic_class(i) { 3645 /* build bitmap of enabled TCs */ 3646 if (ena_tc & BIT(i)) 3647 num_tc++; 3648 /* populate max_txqs per TC */ 3649 max_txqs[i] = vsi->alloc_txq; 3650 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3651 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3652 */ 3653 if (vsi->type == ICE_VSI_CHNL && 3654 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3655 max_txqs[i] = vsi->num_txq; 3656 } 3657 3658 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3659 vsi->tc_cfg.ena_tc = ena_tc; 3660 vsi->tc_cfg.numtc = num_tc; 3661 3662 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3663 if (!ctx) 3664 return -ENOMEM; 3665 3666 ctx->vf_num = 0; 3667 ctx->info = vsi->info; 3668 3669 if (vsi->type == ICE_VSI_PF && 3670 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3671 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3672 else 3673 ret = ice_vsi_setup_q_map(vsi, ctx); 3674 3675 if (ret) { 3676 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3677 goto out; 3678 } 3679 3680 /* must to indicate which section of VSI context are being modified */ 3681 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3682 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3683 if (ret) { 3684 dev_info(dev, "Failed VSI Update\n"); 3685 goto out; 3686 } 3687 3688 if (vsi->type == ICE_VSI_PF && 3689 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3690 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3691 else 3692 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3693 vsi->tc_cfg.ena_tc, max_txqs); 3694 3695 if (ret) { 3696 dev_err(dev, "VSI %d failed TC config, error %d\n", 3697 vsi->vsi_num, ret); 3698 goto out; 3699 } 3700 ice_vsi_update_q_map(vsi, ctx); 3701 vsi->info.valid_sections = 0; 3702 3703 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3704 out: 3705 kfree(ctx); 3706 return ret; 3707 } 3708 3709 /** 3710 * ice_update_ring_stats - Update ring statistics 3711 * @stats: stats to be updated 3712 * @pkts: number of processed packets 3713 * @bytes: number of processed bytes 3714 * 3715 * This function assumes that caller has acquired a u64_stats_sync lock. 3716 */ 3717 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3718 { 3719 stats->bytes += bytes; 3720 stats->pkts += pkts; 3721 } 3722 3723 /** 3724 * ice_update_tx_ring_stats - Update Tx ring specific counters 3725 * @tx_ring: ring to update 3726 * @pkts: number of processed packets 3727 * @bytes: number of processed bytes 3728 */ 3729 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3730 { 3731 u64_stats_update_begin(&tx_ring->syncp); 3732 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3733 u64_stats_update_end(&tx_ring->syncp); 3734 } 3735 3736 /** 3737 * ice_update_rx_ring_stats - Update Rx ring specific counters 3738 * @rx_ring: ring to update 3739 * @pkts: number of processed packets 3740 * @bytes: number of processed bytes 3741 */ 3742 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3743 { 3744 u64_stats_update_begin(&rx_ring->syncp); 3745 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3746 u64_stats_update_end(&rx_ring->syncp); 3747 } 3748 3749 /** 3750 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3751 * @pi: port info of the switch with default VSI 3752 * 3753 * Return true if the there is a single VSI in default forwarding VSI list 3754 */ 3755 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3756 { 3757 bool exists = false; 3758 3759 ice_check_if_dflt_vsi(pi, 0, &exists); 3760 return exists; 3761 } 3762 3763 /** 3764 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3765 * @vsi: VSI to compare against default forwarding VSI 3766 * 3767 * If this VSI passed in is the default forwarding VSI then return true, else 3768 * return false 3769 */ 3770 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3771 { 3772 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3773 } 3774 3775 /** 3776 * ice_set_dflt_vsi - set the default forwarding VSI 3777 * @vsi: VSI getting set as the default forwarding VSI on the switch 3778 * 3779 * If the VSI passed in is already the default VSI and it's enabled just return 3780 * success. 3781 * 3782 * Otherwise try to set the VSI passed in as the switch's default VSI and 3783 * return the result. 3784 */ 3785 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3786 { 3787 struct device *dev; 3788 int status; 3789 3790 if (!vsi) 3791 return -EINVAL; 3792 3793 dev = ice_pf_to_dev(vsi->back); 3794 3795 /* the VSI passed in is already the default VSI */ 3796 if (ice_is_vsi_dflt_vsi(vsi)) { 3797 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3798 vsi->vsi_num); 3799 return 0; 3800 } 3801 3802 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3803 if (status) { 3804 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3805 vsi->vsi_num, status); 3806 return status; 3807 } 3808 3809 return 0; 3810 } 3811 3812 /** 3813 * ice_clear_dflt_vsi - clear the default forwarding VSI 3814 * @vsi: VSI to remove from filter list 3815 * 3816 * If the switch has no default VSI or it's not enabled then return error. 3817 * 3818 * Otherwise try to clear the default VSI and return the result. 3819 */ 3820 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3821 { 3822 struct device *dev; 3823 int status; 3824 3825 if (!vsi) 3826 return -EINVAL; 3827 3828 dev = ice_pf_to_dev(vsi->back); 3829 3830 /* there is no default VSI configured */ 3831 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3832 return -ENODEV; 3833 3834 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3835 ICE_FLTR_RX); 3836 if (status) { 3837 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3838 vsi->vsi_num, status); 3839 return -EIO; 3840 } 3841 3842 return 0; 3843 } 3844 3845 /** 3846 * ice_get_link_speed_mbps - get link speed in Mbps 3847 * @vsi: the VSI whose link speed is being queried 3848 * 3849 * Return current VSI link speed and 0 if the speed is unknown. 3850 */ 3851 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3852 { 3853 switch (vsi->port_info->phy.link_info.link_speed) { 3854 case ICE_AQ_LINK_SPEED_100GB: 3855 return SPEED_100000; 3856 case ICE_AQ_LINK_SPEED_50GB: 3857 return SPEED_50000; 3858 case ICE_AQ_LINK_SPEED_40GB: 3859 return SPEED_40000; 3860 case ICE_AQ_LINK_SPEED_25GB: 3861 return SPEED_25000; 3862 case ICE_AQ_LINK_SPEED_20GB: 3863 return SPEED_20000; 3864 case ICE_AQ_LINK_SPEED_10GB: 3865 return SPEED_10000; 3866 case ICE_AQ_LINK_SPEED_5GB: 3867 return SPEED_5000; 3868 case ICE_AQ_LINK_SPEED_2500MB: 3869 return SPEED_2500; 3870 case ICE_AQ_LINK_SPEED_1000MB: 3871 return SPEED_1000; 3872 case ICE_AQ_LINK_SPEED_100MB: 3873 return SPEED_100; 3874 case ICE_AQ_LINK_SPEED_10MB: 3875 return SPEED_10; 3876 case ICE_AQ_LINK_SPEED_UNKNOWN: 3877 default: 3878 return 0; 3879 } 3880 } 3881 3882 /** 3883 * ice_get_link_speed_kbps - get link speed in Kbps 3884 * @vsi: the VSI whose link speed is being queried 3885 * 3886 * Return current VSI link speed and 0 if the speed is unknown. 3887 */ 3888 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3889 { 3890 int speed_mbps; 3891 3892 speed_mbps = ice_get_link_speed_mbps(vsi); 3893 3894 return speed_mbps * 1000; 3895 } 3896 3897 /** 3898 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3899 * @vsi: VSI to be configured 3900 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3901 * 3902 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3903 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3904 * on TC 0. 3905 */ 3906 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3907 { 3908 struct ice_pf *pf = vsi->back; 3909 struct device *dev; 3910 int status; 3911 int speed; 3912 3913 dev = ice_pf_to_dev(pf); 3914 if (!vsi->port_info) { 3915 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3916 vsi->idx, vsi->type); 3917 return -EINVAL; 3918 } 3919 3920 speed = ice_get_link_speed_kbps(vsi); 3921 if (min_tx_rate > (u64)speed) { 3922 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3923 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3924 speed); 3925 return -EINVAL; 3926 } 3927 3928 /* Configure min BW for VSI limit */ 3929 if (min_tx_rate) { 3930 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3931 ICE_MIN_BW, min_tx_rate); 3932 if (status) { 3933 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3934 min_tx_rate, ice_vsi_type_str(vsi->type), 3935 vsi->idx); 3936 return status; 3937 } 3938 3939 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3940 min_tx_rate, ice_vsi_type_str(vsi->type)); 3941 } else { 3942 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3943 vsi->idx, 0, 3944 ICE_MIN_BW); 3945 if (status) { 3946 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3947 ice_vsi_type_str(vsi->type), vsi->idx); 3948 return status; 3949 } 3950 3951 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3952 ice_vsi_type_str(vsi->type), vsi->idx); 3953 } 3954 3955 return 0; 3956 } 3957 3958 /** 3959 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3960 * @vsi: VSI to be configured 3961 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3962 * 3963 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3964 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3965 * on TC 0. 3966 */ 3967 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3968 { 3969 struct ice_pf *pf = vsi->back; 3970 struct device *dev; 3971 int status; 3972 int speed; 3973 3974 dev = ice_pf_to_dev(pf); 3975 if (!vsi->port_info) { 3976 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3977 vsi->idx, vsi->type); 3978 return -EINVAL; 3979 } 3980 3981 speed = ice_get_link_speed_kbps(vsi); 3982 if (max_tx_rate > (u64)speed) { 3983 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3984 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3985 speed); 3986 return -EINVAL; 3987 } 3988 3989 /* Configure max BW for VSI limit */ 3990 if (max_tx_rate) { 3991 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3992 ICE_MAX_BW, max_tx_rate); 3993 if (status) { 3994 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3995 max_tx_rate, ice_vsi_type_str(vsi->type), 3996 vsi->idx); 3997 return status; 3998 } 3999 4000 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4001 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4002 } else { 4003 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4004 vsi->idx, 0, 4005 ICE_MAX_BW); 4006 if (status) { 4007 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4008 ice_vsi_type_str(vsi->type), vsi->idx); 4009 return status; 4010 } 4011 4012 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4013 ice_vsi_type_str(vsi->type), vsi->idx); 4014 } 4015 4016 return 0; 4017 } 4018 4019 /** 4020 * ice_set_link - turn on/off physical link 4021 * @vsi: VSI to modify physical link on 4022 * @ena: turn on/off physical link 4023 */ 4024 int ice_set_link(struct ice_vsi *vsi, bool ena) 4025 { 4026 struct device *dev = ice_pf_to_dev(vsi->back); 4027 struct ice_port_info *pi = vsi->port_info; 4028 struct ice_hw *hw = pi->hw; 4029 int status; 4030 4031 if (vsi->type != ICE_VSI_PF) 4032 return -EINVAL; 4033 4034 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4035 4036 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4037 * this is not a fatal error, so print a warning message and return 4038 * a success code. Return an error if FW returns an error code other 4039 * than ICE_AQ_RC_EMODE 4040 */ 4041 if (status == -EIO) { 4042 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4043 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4044 (ena ? "ON" : "OFF"), status, 4045 ice_aq_str(hw->adminq.sq_last_status)); 4046 } else if (status) { 4047 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4048 (ena ? "ON" : "OFF"), status, 4049 ice_aq_str(hw->adminq.sq_last_status)); 4050 return status; 4051 } 4052 4053 return 0; 4054 } 4055 4056 /** 4057 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4058 * @vsi: VSI used to add VLAN filters 4059 * 4060 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4061 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4062 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4063 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4064 * 4065 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4066 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4067 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4068 * 4069 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4070 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4071 * part of filtering. 4072 */ 4073 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4074 { 4075 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4076 struct ice_vlan vlan; 4077 int err; 4078 4079 vlan = ICE_VLAN(0, 0, 0); 4080 err = vlan_ops->add_vlan(vsi, &vlan); 4081 if (err && err != -EEXIST) 4082 return err; 4083 4084 /* in SVM both VLAN 0 filters are identical */ 4085 if (!ice_is_dvm_ena(&vsi->back->hw)) 4086 return 0; 4087 4088 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4089 err = vlan_ops->add_vlan(vsi, &vlan); 4090 if (err && err != -EEXIST) 4091 return err; 4092 4093 return 0; 4094 } 4095 4096 /** 4097 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4098 * @vsi: VSI used to add VLAN filters 4099 * 4100 * Delete the VLAN 0 filters in the same manner that they were added in 4101 * ice_vsi_add_vlan_zero. 4102 */ 4103 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4104 { 4105 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4106 struct ice_vlan vlan; 4107 int err; 4108 4109 vlan = ICE_VLAN(0, 0, 0); 4110 err = vlan_ops->del_vlan(vsi, &vlan); 4111 if (err && err != -EEXIST) 4112 return err; 4113 4114 /* in SVM both VLAN 0 filters are identical */ 4115 if (!ice_is_dvm_ena(&vsi->back->hw)) 4116 return 0; 4117 4118 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4119 err = vlan_ops->del_vlan(vsi, &vlan); 4120 if (err && err != -EEXIST) 4121 return err; 4122 4123 /* when deleting the last VLAN filter, make sure to disable the VLAN 4124 * promisc mode so the filter isn't left by accident 4125 */ 4126 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4127 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4128 } 4129 4130 /** 4131 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4132 * @vsi: VSI used to get the VLAN mode 4133 * 4134 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4135 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4136 */ 4137 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4138 { 4139 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4140 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4141 /* no VLAN 0 filter is created when a port VLAN is active */ 4142 if (vsi->type == ICE_VSI_VF) { 4143 if (WARN_ON(!vsi->vf)) 4144 return 0; 4145 4146 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4147 return 0; 4148 } 4149 4150 if (ice_is_dvm_ena(&vsi->back->hw)) 4151 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4152 else 4153 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4154 } 4155 4156 /** 4157 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4158 * @vsi: VSI used to determine if any non-zero VLANs have been added 4159 */ 4160 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4161 { 4162 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4163 } 4164 4165 /** 4166 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4167 * @vsi: VSI used to get the number of non-zero VLANs added 4168 */ 4169 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4170 { 4171 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4172 } 4173 4174 /** 4175 * ice_is_feature_supported 4176 * @pf: pointer to the struct ice_pf instance 4177 * @f: feature enum to be checked 4178 * 4179 * returns true if feature is supported, false otherwise 4180 */ 4181 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4182 { 4183 if (f < 0 || f >= ICE_F_MAX) 4184 return false; 4185 4186 return test_bit(f, pf->features); 4187 } 4188 4189 /** 4190 * ice_set_feature_support 4191 * @pf: pointer to the struct ice_pf instance 4192 * @f: feature enum to set 4193 */ 4194 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4195 { 4196 if (f < 0 || f >= ICE_F_MAX) 4197 return; 4198 4199 set_bit(f, pf->features); 4200 } 4201 4202 /** 4203 * ice_clear_feature_support 4204 * @pf: pointer to the struct ice_pf instance 4205 * @f: feature enum to clear 4206 */ 4207 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4208 { 4209 if (f < 0 || f >= ICE_F_MAX) 4210 return; 4211 4212 clear_bit(f, pf->features); 4213 } 4214 4215 /** 4216 * ice_init_feature_support 4217 * @pf: pointer to the struct ice_pf instance 4218 * 4219 * called during init to setup supported feature 4220 */ 4221 void ice_init_feature_support(struct ice_pf *pf) 4222 { 4223 switch (pf->hw.device_id) { 4224 case ICE_DEV_ID_E810C_BACKPLANE: 4225 case ICE_DEV_ID_E810C_QSFP: 4226 case ICE_DEV_ID_E810C_SFP: 4227 ice_set_feature_support(pf, ICE_F_DSCP); 4228 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4229 if (ice_is_e810t(&pf->hw)) { 4230 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4231 if (ice_gnss_is_gps_present(&pf->hw)) 4232 ice_set_feature_support(pf, ICE_F_GNSS); 4233 } 4234 break; 4235 default: 4236 break; 4237 } 4238 } 4239 4240 /** 4241 * ice_vsi_update_security - update security block in VSI 4242 * @vsi: pointer to VSI structure 4243 * @fill: function pointer to fill ctx 4244 */ 4245 int 4246 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4247 { 4248 struct ice_vsi_ctx ctx = { 0 }; 4249 4250 ctx.info = vsi->info; 4251 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4252 fill(&ctx); 4253 4254 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4255 return -ENODEV; 4256 4257 vsi->info = ctx.info; 4258 return 0; 4259 } 4260 4261 /** 4262 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4263 * @ctx: pointer to VSI ctx structure 4264 */ 4265 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4266 { 4267 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4268 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4269 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4270 } 4271 4272 /** 4273 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4274 * @ctx: pointer to VSI ctx structure 4275 */ 4276 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4277 { 4278 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4279 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4280 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4281 } 4282 4283 /** 4284 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4285 * @ctx: pointer to VSI ctx structure 4286 */ 4287 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4288 { 4289 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4290 } 4291 4292 /** 4293 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4294 * @ctx: pointer to VSI ctx structure 4295 */ 4296 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4297 { 4298 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4299 } 4300