1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_CHNL: 26 return "ICE_VSI_CHNL"; 27 case ICE_VSI_LB: 28 return "ICE_VSI_LB"; 29 case ICE_VSI_SWITCHDEV_CTRL: 30 return "ICE_VSI_SWITCHDEV_CTRL"; 31 default: 32 return "unknown"; 33 } 34 } 35 36 /** 37 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 38 * @vsi: the VSI being configured 39 * @ena: start or stop the Rx rings 40 * 41 * First enable/disable all of the Rx rings, flush any remaining writes, and 42 * then verify that they have all been enabled/disabled successfully. This will 43 * let all of the register writes complete when enabling/disabling the Rx rings 44 * before waiting for the change in hardware to complete. 45 */ 46 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 47 { 48 int ret = 0; 49 u16 i; 50 51 ice_for_each_rxq(vsi, i) 52 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 53 54 ice_flush(&vsi->back->hw); 55 56 ice_for_each_rxq(vsi, i) { 57 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 58 if (ret) 59 break; 60 } 61 62 return ret; 63 } 64 65 /** 66 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 67 * @vsi: VSI pointer 68 * 69 * On error: returns error code (negative) 70 * On success: returns 0 71 */ 72 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 73 { 74 struct ice_pf *pf = vsi->back; 75 struct device *dev; 76 77 dev = ice_pf_to_dev(pf); 78 if (vsi->type == ICE_VSI_CHNL) 79 return 0; 80 81 /* allocate memory for both Tx and Rx ring pointers */ 82 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 83 sizeof(*vsi->tx_rings), GFP_KERNEL); 84 if (!vsi->tx_rings) 85 return -ENOMEM; 86 87 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 88 sizeof(*vsi->rx_rings), GFP_KERNEL); 89 if (!vsi->rx_rings) 90 goto err_rings; 91 92 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 93 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 94 sizeof(*vsi->txq_map), GFP_KERNEL); 95 96 if (!vsi->txq_map) 97 goto err_txq_map; 98 99 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 100 sizeof(*vsi->rxq_map), GFP_KERNEL); 101 if (!vsi->rxq_map) 102 goto err_rxq_map; 103 104 /* There is no need to allocate q_vectors for a loopback VSI. */ 105 if (vsi->type == ICE_VSI_LB) 106 return 0; 107 108 /* allocate memory for q_vector pointers */ 109 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 110 sizeof(*vsi->q_vectors), GFP_KERNEL); 111 if (!vsi->q_vectors) 112 goto err_vectors; 113 114 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 115 if (!vsi->af_xdp_zc_qps) 116 goto err_zc_qps; 117 118 return 0; 119 120 err_zc_qps: 121 devm_kfree(dev, vsi->q_vectors); 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SWITCHDEV_CTRL: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 /** 161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 162 * @vsi: the VSI being configured 163 * @vf_id: ID of the VF being configured 164 * 165 * Return 0 on success and a negative value on error 166 */ 167 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 168 { 169 struct ice_pf *pf = vsi->back; 170 struct ice_vf *vf = NULL; 171 172 if (vsi->type == ICE_VSI_VF) 173 vsi->vf_id = vf_id; 174 else 175 vsi->vf_id = ICE_INVAL_VFID; 176 177 switch (vsi->type) { 178 case ICE_VSI_PF: 179 if (vsi->req_txq) { 180 vsi->alloc_txq = vsi->req_txq; 181 vsi->num_txq = vsi->req_txq; 182 } else { 183 vsi->alloc_txq = min3(pf->num_lan_msix, 184 ice_get_avail_txq_count(pf), 185 (u16)num_online_cpus()); 186 } 187 188 pf->num_lan_tx = vsi->alloc_txq; 189 190 /* only 1 Rx queue unless RSS is enabled */ 191 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 192 vsi->alloc_rxq = 1; 193 } else { 194 if (vsi->req_rxq) { 195 vsi->alloc_rxq = vsi->req_rxq; 196 vsi->num_rxq = vsi->req_rxq; 197 } else { 198 vsi->alloc_rxq = min3(pf->num_lan_msix, 199 ice_get_avail_rxq_count(pf), 200 (u16)num_online_cpus()); 201 } 202 } 203 204 pf->num_lan_rx = vsi->alloc_rxq; 205 206 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 207 max_t(int, vsi->alloc_rxq, 208 vsi->alloc_txq)); 209 break; 210 case ICE_VSI_SWITCHDEV_CTRL: 211 /* The number of queues for ctrl VSI is equal to number of VFs. 212 * Each ring is associated to the corresponding VF_PR netdev. 213 */ 214 vsi->alloc_txq = pf->num_alloc_vfs; 215 vsi->alloc_rxq = pf->num_alloc_vfs; 216 vsi->num_q_vectors = 1; 217 break; 218 case ICE_VSI_VF: 219 vf = &pf->vf[vsi->vf_id]; 220 if (vf->num_req_qs) 221 vf->num_vf_qs = vf->num_req_qs; 222 vsi->alloc_txq = vf->num_vf_qs; 223 vsi->alloc_rxq = vf->num_vf_qs; 224 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 225 * data queue interrupts). Since vsi->num_q_vectors is number 226 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 227 * original vector count 228 */ 229 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 230 break; 231 case ICE_VSI_CTRL: 232 vsi->alloc_txq = 1; 233 vsi->alloc_rxq = 1; 234 vsi->num_q_vectors = 1; 235 break; 236 case ICE_VSI_CHNL: 237 vsi->alloc_txq = 0; 238 vsi->alloc_rxq = 0; 239 break; 240 case ICE_VSI_LB: 241 vsi->alloc_txq = 1; 242 vsi->alloc_rxq = 1; 243 break; 244 default: 245 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 246 break; 247 } 248 249 ice_vsi_set_num_desc(vsi); 250 } 251 252 /** 253 * ice_get_free_slot - get the next non-NULL location index in array 254 * @array: array to search 255 * @size: size of the array 256 * @curr: last known occupied index to be used as a search hint 257 * 258 * void * is being used to keep the functionality generic. This lets us use this 259 * function on any array of pointers. 260 */ 261 static int ice_get_free_slot(void *array, int size, int curr) 262 { 263 int **tmp_array = (int **)array; 264 int next; 265 266 if (curr < (size - 1) && !tmp_array[curr + 1]) { 267 next = curr + 1; 268 } else { 269 int i = 0; 270 271 while ((i < size) && (tmp_array[i])) 272 i++; 273 if (i == size) 274 next = ICE_NO_VSI; 275 else 276 next = i; 277 } 278 return next; 279 } 280 281 /** 282 * ice_vsi_delete - delete a VSI from the switch 283 * @vsi: pointer to VSI being removed 284 */ 285 void ice_vsi_delete(struct ice_vsi *vsi) 286 { 287 struct ice_pf *pf = vsi->back; 288 struct ice_vsi_ctx *ctxt; 289 enum ice_status status; 290 291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 292 if (!ctxt) 293 return; 294 295 if (vsi->type == ICE_VSI_VF) 296 ctxt->vf_num = vsi->vf_id; 297 ctxt->vsi_num = vsi->vsi_num; 298 299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 300 301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 302 if (status) 303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 304 vsi->vsi_num, ice_stat_str(status)); 305 306 kfree(ctxt); 307 } 308 309 /** 310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 311 * @vsi: pointer to VSI being cleared 312 */ 313 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 314 { 315 struct ice_pf *pf = vsi->back; 316 struct device *dev; 317 318 dev = ice_pf_to_dev(pf); 319 320 if (vsi->af_xdp_zc_qps) { 321 bitmap_free(vsi->af_xdp_zc_qps); 322 vsi->af_xdp_zc_qps = NULL; 323 } 324 /* free the ring and vector containers */ 325 if (vsi->q_vectors) { 326 devm_kfree(dev, vsi->q_vectors); 327 vsi->q_vectors = NULL; 328 } 329 if (vsi->tx_rings) { 330 devm_kfree(dev, vsi->tx_rings); 331 vsi->tx_rings = NULL; 332 } 333 if (vsi->rx_rings) { 334 devm_kfree(dev, vsi->rx_rings); 335 vsi->rx_rings = NULL; 336 } 337 if (vsi->txq_map) { 338 devm_kfree(dev, vsi->txq_map); 339 vsi->txq_map = NULL; 340 } 341 if (vsi->rxq_map) { 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 } 346 347 /** 348 * ice_vsi_clear - clean up and deallocate the provided VSI 349 * @vsi: pointer to VSI being cleared 350 * 351 * This deallocates the VSI's queue resources, removes it from the PF's 352 * VSI array if necessary, and deallocates the VSI 353 * 354 * Returns 0 on success, negative on failure 355 */ 356 int ice_vsi_clear(struct ice_vsi *vsi) 357 { 358 struct ice_pf *pf = NULL; 359 struct device *dev; 360 361 if (!vsi) 362 return 0; 363 364 if (!vsi->back) 365 return -EINVAL; 366 367 pf = vsi->back; 368 dev = ice_pf_to_dev(pf); 369 370 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 371 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 372 return -EINVAL; 373 } 374 375 mutex_lock(&pf->sw_mutex); 376 /* updates the PF for this cleared VSI */ 377 378 pf->vsi[vsi->idx] = NULL; 379 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 380 pf->next_vsi = vsi->idx; 381 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 382 vsi->vf_id != ICE_INVAL_VFID) 383 pf->next_vsi = vsi->idx; 384 385 ice_vsi_free_arrays(vsi); 386 mutex_unlock(&pf->sw_mutex); 387 devm_kfree(dev, vsi); 388 389 return 0; 390 } 391 392 /** 393 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.tx_ring) 402 return IRQ_HANDLED; 403 404 #define FDIR_RX_DESC_CLEAN_BUDGET 64 405 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 406 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_msix_clean_rings - MSIX mode Interrupt Handler 413 * @irq: interrupt number 414 * @data: pointer to a q_vector 415 */ 416 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 417 { 418 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 419 420 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 421 return IRQ_HANDLED; 422 423 q_vector->total_events++; 424 425 napi_schedule(&q_vector->napi); 426 427 return IRQ_HANDLED; 428 } 429 430 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 431 { 432 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 433 struct ice_pf *pf = q_vector->vsi->back; 434 int i; 435 436 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 437 return IRQ_HANDLED; 438 439 ice_for_each_vf(pf, i) 440 napi_schedule(&pf->vf[i].repr->q_vector->napi); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 447 * @pf: board private structure 448 * @vsi_type: type of VSI 449 * @ch: ptr to channel 450 * @vf_id: ID of the VF being configured 451 * 452 * returns a pointer to a VSI on success, NULL on failure. 453 */ 454 static struct ice_vsi * 455 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 456 struct ice_channel *ch, u16 vf_id) 457 { 458 struct device *dev = ice_pf_to_dev(pf); 459 struct ice_vsi *vsi = NULL; 460 461 /* Need to protect the allocation of the VSIs at the PF level */ 462 mutex_lock(&pf->sw_mutex); 463 464 /* If we have already allocated our maximum number of VSIs, 465 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 466 * is available to be populated 467 */ 468 if (pf->next_vsi == ICE_NO_VSI) { 469 dev_dbg(dev, "out of VSI slots!\n"); 470 goto unlock_pf; 471 } 472 473 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 474 if (!vsi) 475 goto unlock_pf; 476 477 vsi->type = vsi_type; 478 vsi->back = pf; 479 set_bit(ICE_VSI_DOWN, vsi->state); 480 481 if (vsi_type == ICE_VSI_VF) 482 ice_vsi_set_num_qs(vsi, vf_id); 483 else if (vsi_type != ICE_VSI_CHNL) 484 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 485 486 switch (vsi->type) { 487 case ICE_VSI_SWITCHDEV_CTRL: 488 if (ice_vsi_alloc_arrays(vsi)) 489 goto err_rings; 490 491 /* Setup eswitch MSIX irq handler for VSI */ 492 vsi->irq_handler = ice_eswitch_msix_clean_rings; 493 break; 494 case ICE_VSI_PF: 495 if (ice_vsi_alloc_arrays(vsi)) 496 goto err_rings; 497 498 /* Setup default MSIX irq handler for VSI */ 499 vsi->irq_handler = ice_msix_clean_rings; 500 break; 501 case ICE_VSI_CTRL: 502 if (ice_vsi_alloc_arrays(vsi)) 503 goto err_rings; 504 505 /* Setup ctrl VSI MSIX irq handler */ 506 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 507 break; 508 case ICE_VSI_VF: 509 if (ice_vsi_alloc_arrays(vsi)) 510 goto err_rings; 511 break; 512 case ICE_VSI_CHNL: 513 if (!ch) 514 goto err_rings; 515 vsi->num_rxq = ch->num_rxq; 516 vsi->num_txq = ch->num_txq; 517 vsi->next_base_q = ch->base_q; 518 break; 519 case ICE_VSI_LB: 520 if (ice_vsi_alloc_arrays(vsi)) 521 goto err_rings; 522 break; 523 default: 524 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 525 goto unlock_pf; 526 } 527 528 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 529 /* Use the last VSI slot as the index for PF control VSI */ 530 vsi->idx = pf->num_alloc_vsi - 1; 531 pf->ctrl_vsi_idx = vsi->idx; 532 pf->vsi[vsi->idx] = vsi; 533 } else { 534 /* fill slot and make note of the index */ 535 vsi->idx = pf->next_vsi; 536 pf->vsi[pf->next_vsi] = vsi; 537 538 /* prepare pf->next_vsi for next use */ 539 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 540 pf->next_vsi); 541 } 542 543 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 544 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 545 goto unlock_pf; 546 547 err_rings: 548 devm_kfree(dev, vsi); 549 vsi = NULL; 550 unlock_pf: 551 mutex_unlock(&pf->sw_mutex); 552 return vsi; 553 } 554 555 /** 556 * ice_alloc_fd_res - Allocate FD resource for a VSI 557 * @vsi: pointer to the ice_vsi 558 * 559 * This allocates the FD resources 560 * 561 * Returns 0 on success, -EPERM on no-op or -EIO on failure 562 */ 563 static int ice_alloc_fd_res(struct ice_vsi *vsi) 564 { 565 struct ice_pf *pf = vsi->back; 566 u32 g_val, b_val; 567 568 /* Flow Director filters are only allocated/assigned to the PF VSI which 569 * passes the traffic. The CTRL VSI is only used to add/delete filters 570 * so we don't allocate resources to it 571 */ 572 573 /* FD filters from guaranteed pool per VSI */ 574 g_val = pf->hw.func_caps.fd_fltr_guar; 575 if (!g_val) 576 return -EPERM; 577 578 /* FD filters from best effort pool */ 579 b_val = pf->hw.func_caps.fd_fltr_best_effort; 580 if (!b_val) 581 return -EPERM; 582 583 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 584 return -EPERM; 585 586 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 587 return -EPERM; 588 589 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 590 591 /* each VSI gets same "best_effort" quota */ 592 vsi->num_bfltr = b_val; 593 594 if (vsi->type == ICE_VSI_VF) { 595 vsi->num_gfltr = 0; 596 597 /* each VSI gets same "best_effort" quota */ 598 vsi->num_bfltr = b_val; 599 } 600 601 return 0; 602 } 603 604 /** 605 * ice_vsi_get_qs - Assign queues from PF to VSI 606 * @vsi: the VSI to assign queues to 607 * 608 * Returns 0 on success and a negative value on error 609 */ 610 static int ice_vsi_get_qs(struct ice_vsi *vsi) 611 { 612 struct ice_pf *pf = vsi->back; 613 struct ice_qs_cfg tx_qs_cfg = { 614 .qs_mutex = &pf->avail_q_mutex, 615 .pf_map = pf->avail_txqs, 616 .pf_map_size = pf->max_pf_txqs, 617 .q_count = vsi->alloc_txq, 618 .scatter_count = ICE_MAX_SCATTER_TXQS, 619 .vsi_map = vsi->txq_map, 620 .vsi_map_offset = 0, 621 .mapping_mode = ICE_VSI_MAP_CONTIG 622 }; 623 struct ice_qs_cfg rx_qs_cfg = { 624 .qs_mutex = &pf->avail_q_mutex, 625 .pf_map = pf->avail_rxqs, 626 .pf_map_size = pf->max_pf_rxqs, 627 .q_count = vsi->alloc_rxq, 628 .scatter_count = ICE_MAX_SCATTER_RXQS, 629 .vsi_map = vsi->rxq_map, 630 .vsi_map_offset = 0, 631 .mapping_mode = ICE_VSI_MAP_CONTIG 632 }; 633 int ret; 634 635 if (vsi->type == ICE_VSI_CHNL) 636 return 0; 637 638 ret = __ice_vsi_get_qs(&tx_qs_cfg); 639 if (ret) 640 return ret; 641 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 642 643 ret = __ice_vsi_get_qs(&rx_qs_cfg); 644 if (ret) 645 return ret; 646 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 647 648 return 0; 649 } 650 651 /** 652 * ice_vsi_put_qs - Release queues from VSI to PF 653 * @vsi: the VSI that is going to release queues 654 */ 655 static void ice_vsi_put_qs(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 int i; 659 660 mutex_lock(&pf->avail_q_mutex); 661 662 ice_for_each_alloc_txq(vsi, i) { 663 clear_bit(vsi->txq_map[i], pf->avail_txqs); 664 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 665 } 666 667 ice_for_each_alloc_rxq(vsi, i) { 668 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 669 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 670 } 671 672 mutex_unlock(&pf->avail_q_mutex); 673 } 674 675 /** 676 * ice_is_safe_mode 677 * @pf: pointer to the PF struct 678 * 679 * returns true if driver is in safe mode, false otherwise 680 */ 681 bool ice_is_safe_mode(struct ice_pf *pf) 682 { 683 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 684 } 685 686 /** 687 * ice_is_aux_ena 688 * @pf: pointer to the PF struct 689 * 690 * returns true if AUX devices/drivers are supported, false otherwise 691 */ 692 bool ice_is_aux_ena(struct ice_pf *pf) 693 { 694 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 695 } 696 697 /** 698 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 699 * @vsi: the VSI being cleaned up 700 * 701 * This function deletes RSS input set for all flows that were configured 702 * for this VSI 703 */ 704 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 705 { 706 struct ice_pf *pf = vsi->back; 707 enum ice_status status; 708 709 if (ice_is_safe_mode(pf)) 710 return; 711 712 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 713 if (status) 714 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 715 vsi->vsi_num, ice_stat_str(status)); 716 } 717 718 /** 719 * ice_rss_clean - Delete RSS related VSI structures and configuration 720 * @vsi: the VSI being removed 721 */ 722 static void ice_rss_clean(struct ice_vsi *vsi) 723 { 724 struct ice_pf *pf = vsi->back; 725 struct device *dev; 726 727 dev = ice_pf_to_dev(pf); 728 729 if (vsi->rss_hkey_user) 730 devm_kfree(dev, vsi->rss_hkey_user); 731 if (vsi->rss_lut_user) 732 devm_kfree(dev, vsi->rss_lut_user); 733 734 ice_vsi_clean_rss_flow_fld(vsi); 735 /* remove RSS replay list */ 736 if (!ice_is_safe_mode(pf)) 737 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 738 } 739 740 /** 741 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 742 * @vsi: the VSI being configured 743 */ 744 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 745 { 746 struct ice_hw_common_caps *cap; 747 struct ice_pf *pf = vsi->back; 748 749 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 750 vsi->rss_size = 1; 751 return; 752 } 753 754 cap = &pf->hw.func_caps.common_cap; 755 switch (vsi->type) { 756 case ICE_VSI_CHNL: 757 case ICE_VSI_PF: 758 /* PF VSI will inherit RSS instance of PF */ 759 vsi->rss_table_size = (u16)cap->rss_table_size; 760 if (vsi->type == ICE_VSI_CHNL) 761 vsi->rss_size = min_t(u16, vsi->num_rxq, 762 BIT(cap->rss_table_entry_width)); 763 else 764 vsi->rss_size = min_t(u16, num_online_cpus(), 765 BIT(cap->rss_table_entry_width)); 766 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 767 break; 768 case ICE_VSI_SWITCHDEV_CTRL: 769 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 770 vsi->rss_size = min_t(u16, num_online_cpus(), 771 BIT(cap->rss_table_entry_width)); 772 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 773 break; 774 case ICE_VSI_VF: 775 /* VF VSI will get a small RSS table. 776 * For VSI_LUT, LUT size should be set to 64 bytes. 777 */ 778 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 779 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 780 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 781 break; 782 case ICE_VSI_LB: 783 break; 784 default: 785 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 786 ice_vsi_type_str(vsi->type)); 787 break; 788 } 789 } 790 791 /** 792 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 793 * @ctxt: the VSI context being set 794 * 795 * This initializes a default VSI context for all sections except the Queues. 796 */ 797 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 798 { 799 u32 table = 0; 800 801 memset(&ctxt->info, 0, sizeof(ctxt->info)); 802 /* VSI's should be allocated from shared pool */ 803 ctxt->alloc_from_pool = true; 804 /* Src pruning enabled by default */ 805 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 806 /* Traffic from VSI can be sent to LAN */ 807 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 808 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 809 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 810 * packets untagged/tagged. 811 */ 812 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 813 ICE_AQ_VSI_VLAN_MODE_M) >> 814 ICE_AQ_VSI_VLAN_MODE_S); 815 /* Have 1:1 UP mapping for both ingress/egress tables */ 816 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 817 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 818 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 819 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 820 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 821 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 822 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 823 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 824 ctxt->info.ingress_table = cpu_to_le32(table); 825 ctxt->info.egress_table = cpu_to_le32(table); 826 /* Have 1:1 UP mapping for outer to inner UP table */ 827 ctxt->info.outer_up_table = cpu_to_le32(table); 828 /* No Outer tag support outer_tag_flags remains to zero */ 829 } 830 831 /** 832 * ice_vsi_setup_q_map - Setup a VSI queue map 833 * @vsi: the VSI being configured 834 * @ctxt: VSI context structure 835 */ 836 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 837 { 838 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 839 u16 num_txq_per_tc, num_rxq_per_tc; 840 u16 qcount_tx = vsi->alloc_txq; 841 u16 qcount_rx = vsi->alloc_rxq; 842 u8 netdev_tc = 0; 843 int i; 844 845 if (!vsi->tc_cfg.numtc) { 846 /* at least TC0 should be enabled by default */ 847 vsi->tc_cfg.numtc = 1; 848 vsi->tc_cfg.ena_tc = 1; 849 } 850 851 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 852 if (!num_rxq_per_tc) 853 num_rxq_per_tc = 1; 854 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 855 if (!num_txq_per_tc) 856 num_txq_per_tc = 1; 857 858 /* find the (rounded up) power-of-2 of qcount */ 859 pow = (u16)order_base_2(num_rxq_per_tc); 860 861 /* TC mapping is a function of the number of Rx queues assigned to the 862 * VSI for each traffic class and the offset of these queues. 863 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 864 * queues allocated to TC0. No:of queues is a power-of-2. 865 * 866 * If TC is not enabled, the queue offset is set to 0, and allocate one 867 * queue, this way, traffic for the given TC will be sent to the default 868 * queue. 869 * 870 * Setup number and offset of Rx queues for all TCs for the VSI 871 */ 872 ice_for_each_traffic_class(i) { 873 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 874 /* TC is not enabled */ 875 vsi->tc_cfg.tc_info[i].qoffset = 0; 876 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 877 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 878 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 879 ctxt->info.tc_mapping[i] = 0; 880 continue; 881 } 882 883 /* TC is enabled */ 884 vsi->tc_cfg.tc_info[i].qoffset = offset; 885 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 886 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 887 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 888 889 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 890 ICE_AQ_VSI_TC_Q_OFFSET_M) | 891 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 892 ICE_AQ_VSI_TC_Q_NUM_M); 893 offset += num_rxq_per_tc; 894 tx_count += num_txq_per_tc; 895 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 896 } 897 898 /* if offset is non-zero, means it is calculated correctly based on 899 * enabled TCs for a given VSI otherwise qcount_rx will always 900 * be correct and non-zero because it is based off - VSI's 901 * allocated Rx queues which is at least 1 (hence qcount_tx will be 902 * at least 1) 903 */ 904 if (offset) 905 vsi->num_rxq = offset; 906 else 907 vsi->num_rxq = num_rxq_per_tc; 908 909 vsi->num_txq = tx_count; 910 911 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 912 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 913 /* since there is a chance that num_rxq could have been changed 914 * in the above for loop, make num_txq equal to num_rxq. 915 */ 916 vsi->num_txq = vsi->num_rxq; 917 } 918 919 /* Rx queue mapping */ 920 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 921 /* q_mapping buffer holds the info for the first queue allocated for 922 * this VSI in the PF space and also the number of queues associated 923 * with this VSI. 924 */ 925 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 926 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 927 } 928 929 /** 930 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 931 * @ctxt: the VSI context being set 932 * @vsi: the VSI being configured 933 */ 934 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 935 { 936 u8 dflt_q_group, dflt_q_prio; 937 u16 dflt_q, report_q, val; 938 939 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 940 vsi->type != ICE_VSI_VF) 941 return; 942 943 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 944 ctxt->info.valid_sections |= cpu_to_le16(val); 945 dflt_q = 0; 946 dflt_q_group = 0; 947 report_q = 0; 948 dflt_q_prio = 0; 949 950 /* enable flow director filtering/programming */ 951 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 952 ctxt->info.fd_options = cpu_to_le16(val); 953 /* max of allocated flow director filters */ 954 ctxt->info.max_fd_fltr_dedicated = 955 cpu_to_le16(vsi->num_gfltr); 956 /* max of shared flow director filters any VSI may program */ 957 ctxt->info.max_fd_fltr_shared = 958 cpu_to_le16(vsi->num_bfltr); 959 /* default queue index within the VSI of the default FD */ 960 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 961 ICE_AQ_VSI_FD_DEF_Q_M); 962 /* target queue or queue group to the FD filter */ 963 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 964 ICE_AQ_VSI_FD_DEF_GRP_M); 965 ctxt->info.fd_def_q = cpu_to_le16(val); 966 /* queue index on which FD filter completion is reported */ 967 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 968 ICE_AQ_VSI_FD_REPORT_Q_M); 969 /* priority of the default qindex action */ 970 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 971 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 972 ctxt->info.fd_report_opt = cpu_to_le16(val); 973 } 974 975 /** 976 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 977 * @ctxt: the VSI context being set 978 * @vsi: the VSI being configured 979 */ 980 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 981 { 982 u8 lut_type, hash_type; 983 struct device *dev; 984 struct ice_pf *pf; 985 986 pf = vsi->back; 987 dev = ice_pf_to_dev(pf); 988 989 switch (vsi->type) { 990 case ICE_VSI_CHNL: 991 case ICE_VSI_PF: 992 /* PF VSI will inherit RSS instance of PF */ 993 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 994 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 995 break; 996 case ICE_VSI_VF: 997 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 998 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 999 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1000 break; 1001 default: 1002 dev_dbg(dev, "Unsupported VSI type %s\n", 1003 ice_vsi_type_str(vsi->type)); 1004 return; 1005 } 1006 1007 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1008 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1009 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1010 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1011 } 1012 1013 static void 1014 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1015 { 1016 struct ice_pf *pf = vsi->back; 1017 u16 qcount, qmap; 1018 u8 offset = 0; 1019 int pow; 1020 1021 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1022 1023 pow = order_base_2(qcount); 1024 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1025 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1026 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1027 ICE_AQ_VSI_TC_Q_NUM_M); 1028 1029 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1030 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1031 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1032 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1033 } 1034 1035 /** 1036 * ice_vsi_init - Create and initialize a VSI 1037 * @vsi: the VSI being configured 1038 * @init_vsi: is this call creating a VSI 1039 * 1040 * This initializes a VSI context depending on the VSI type to be added and 1041 * passes it down to the add_vsi aq command to create a new VSI. 1042 */ 1043 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1044 { 1045 struct ice_pf *pf = vsi->back; 1046 struct ice_hw *hw = &pf->hw; 1047 struct ice_vsi_ctx *ctxt; 1048 struct device *dev; 1049 int ret = 0; 1050 1051 dev = ice_pf_to_dev(pf); 1052 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1053 if (!ctxt) 1054 return -ENOMEM; 1055 1056 switch (vsi->type) { 1057 case ICE_VSI_CTRL: 1058 case ICE_VSI_LB: 1059 case ICE_VSI_PF: 1060 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1061 break; 1062 case ICE_VSI_SWITCHDEV_CTRL: 1063 case ICE_VSI_CHNL: 1064 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1065 break; 1066 case ICE_VSI_VF: 1067 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1068 /* VF number here is the absolute VF number (0-255) */ 1069 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1070 break; 1071 default: 1072 ret = -ENODEV; 1073 goto out; 1074 } 1075 1076 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1077 * prune enabled 1078 */ 1079 if (vsi->type == ICE_VSI_CHNL) { 1080 struct ice_vsi *main_vsi; 1081 1082 main_vsi = ice_get_main_vsi(pf); 1083 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1084 ctxt->info.sw_flags2 |= 1085 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1086 else 1087 ctxt->info.sw_flags2 &= 1088 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1089 } 1090 1091 ice_set_dflt_vsi_ctx(ctxt); 1092 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1093 ice_set_fd_vsi_ctx(ctxt, vsi); 1094 /* if the switch is in VEB mode, allow VSI loopback */ 1095 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1096 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1097 1098 /* Set LUT type and HASH type if RSS is enabled */ 1099 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1100 vsi->type != ICE_VSI_CTRL) { 1101 ice_set_rss_vsi_ctx(ctxt, vsi); 1102 /* if updating VSI context, make sure to set valid_section: 1103 * to indicate which section of VSI context being updated 1104 */ 1105 if (!init_vsi) 1106 ctxt->info.valid_sections |= 1107 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1108 } 1109 1110 ctxt->info.sw_id = vsi->port_info->sw_id; 1111 if (vsi->type == ICE_VSI_CHNL) { 1112 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1113 } else { 1114 ice_vsi_setup_q_map(vsi, ctxt); 1115 if (!init_vsi) /* means VSI being updated */ 1116 /* must to indicate which section of VSI context are 1117 * being modified 1118 */ 1119 ctxt->info.valid_sections |= 1120 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1121 } 1122 1123 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1124 * respectively 1125 */ 1126 if (vsi->type == ICE_VSI_VF) { 1127 ctxt->info.valid_sections |= 1128 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1129 if (pf->vf[vsi->vf_id].spoofchk) { 1130 ctxt->info.sec_flags |= 1131 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1132 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1133 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1134 } else { 1135 ctxt->info.sec_flags &= 1136 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1137 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1138 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1139 } 1140 } 1141 1142 /* Allow control frames out of main VSI */ 1143 if (vsi->type == ICE_VSI_PF) { 1144 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1145 ctxt->info.valid_sections |= 1146 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1147 } 1148 1149 if (init_vsi) { 1150 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1151 if (ret) { 1152 dev_err(dev, "Add VSI failed, err %d\n", ret); 1153 ret = -EIO; 1154 goto out; 1155 } 1156 } else { 1157 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1158 if (ret) { 1159 dev_err(dev, "Update VSI failed, err %d\n", ret); 1160 ret = -EIO; 1161 goto out; 1162 } 1163 } 1164 1165 /* keep context for update VSI operations */ 1166 vsi->info = ctxt->info; 1167 1168 /* record VSI number returned */ 1169 vsi->vsi_num = ctxt->vsi_num; 1170 1171 out: 1172 kfree(ctxt); 1173 return ret; 1174 } 1175 1176 /** 1177 * ice_free_res - free a block of resources 1178 * @res: pointer to the resource 1179 * @index: starting index previously returned by ice_get_res 1180 * @id: identifier to track owner 1181 * 1182 * Returns number of resources freed 1183 */ 1184 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1185 { 1186 int count = 0; 1187 int i; 1188 1189 if (!res || index >= res->end) 1190 return -EINVAL; 1191 1192 id |= ICE_RES_VALID_BIT; 1193 for (i = index; i < res->end && res->list[i] == id; i++) { 1194 res->list[i] = 0; 1195 count++; 1196 } 1197 1198 return count; 1199 } 1200 1201 /** 1202 * ice_search_res - Search the tracker for a block of resources 1203 * @res: pointer to the resource 1204 * @needed: size of the block needed 1205 * @id: identifier to track owner 1206 * 1207 * Returns the base item index of the block, or -ENOMEM for error 1208 */ 1209 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1210 { 1211 u16 start = 0, end = 0; 1212 1213 if (needed > res->end) 1214 return -ENOMEM; 1215 1216 id |= ICE_RES_VALID_BIT; 1217 1218 do { 1219 /* skip already allocated entries */ 1220 if (res->list[end++] & ICE_RES_VALID_BIT) { 1221 start = end; 1222 if ((start + needed) > res->end) 1223 break; 1224 } 1225 1226 if (end == (start + needed)) { 1227 int i = start; 1228 1229 /* there was enough, so assign it to the requestor */ 1230 while (i != end) 1231 res->list[i++] = id; 1232 1233 return start; 1234 } 1235 } while (end < res->end); 1236 1237 return -ENOMEM; 1238 } 1239 1240 /** 1241 * ice_get_free_res_count - Get free count from a resource tracker 1242 * @res: Resource tracker instance 1243 */ 1244 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1245 { 1246 u16 i, count = 0; 1247 1248 for (i = 0; i < res->end; i++) 1249 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1250 count++; 1251 1252 return count; 1253 } 1254 1255 /** 1256 * ice_get_res - get a block of resources 1257 * @pf: board private structure 1258 * @res: pointer to the resource 1259 * @needed: size of the block needed 1260 * @id: identifier to track owner 1261 * 1262 * Returns the base item index of the block, or negative for error 1263 */ 1264 int 1265 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1266 { 1267 if (!res || !pf) 1268 return -EINVAL; 1269 1270 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1271 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1272 needed, res->num_entries, id); 1273 return -EINVAL; 1274 } 1275 1276 return ice_search_res(res, needed, id); 1277 } 1278 1279 /** 1280 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1281 * @vsi: ptr to the VSI 1282 * 1283 * This should only be called after ice_vsi_alloc() which allocates the 1284 * corresponding SW VSI structure and initializes num_queue_pairs for the 1285 * newly allocated VSI. 1286 * 1287 * Returns 0 on success or negative on failure 1288 */ 1289 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1290 { 1291 struct ice_pf *pf = vsi->back; 1292 struct device *dev; 1293 u16 num_q_vectors; 1294 int base; 1295 1296 dev = ice_pf_to_dev(pf); 1297 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1298 if (vsi->type == ICE_VSI_VF) 1299 return 0; 1300 if (vsi->type == ICE_VSI_CHNL) 1301 return 0; 1302 1303 if (vsi->base_vector) { 1304 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1305 vsi->vsi_num, vsi->base_vector); 1306 return -EEXIST; 1307 } 1308 1309 num_q_vectors = vsi->num_q_vectors; 1310 /* reserve slots from OS requested IRQs */ 1311 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1312 int i; 1313 1314 ice_for_each_vf(pf, i) { 1315 struct ice_vf *vf = &pf->vf[i]; 1316 1317 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1318 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1319 break; 1320 } 1321 } 1322 if (i == pf->num_alloc_vfs) 1323 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1324 ICE_RES_VF_CTRL_VEC_ID); 1325 } else { 1326 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1327 vsi->idx); 1328 } 1329 1330 if (base < 0) { 1331 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1332 ice_get_free_res_count(pf->irq_tracker), 1333 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1334 return -ENOENT; 1335 } 1336 vsi->base_vector = (u16)base; 1337 pf->num_avail_sw_msix -= num_q_vectors; 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1344 * @vsi: the VSI having rings deallocated 1345 */ 1346 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1347 { 1348 int i; 1349 1350 /* Avoid stale references by clearing map from vector to ring */ 1351 if (vsi->q_vectors) { 1352 ice_for_each_q_vector(vsi, i) { 1353 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1354 1355 if (q_vector) { 1356 q_vector->tx.tx_ring = NULL; 1357 q_vector->rx.rx_ring = NULL; 1358 } 1359 } 1360 } 1361 1362 if (vsi->tx_rings) { 1363 ice_for_each_alloc_txq(vsi, i) { 1364 if (vsi->tx_rings[i]) { 1365 kfree_rcu(vsi->tx_rings[i], rcu); 1366 WRITE_ONCE(vsi->tx_rings[i], NULL); 1367 } 1368 } 1369 } 1370 if (vsi->rx_rings) { 1371 ice_for_each_alloc_rxq(vsi, i) { 1372 if (vsi->rx_rings[i]) { 1373 kfree_rcu(vsi->rx_rings[i], rcu); 1374 WRITE_ONCE(vsi->rx_rings[i], NULL); 1375 } 1376 } 1377 } 1378 } 1379 1380 /** 1381 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1382 * @vsi: VSI which is having rings allocated 1383 */ 1384 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1385 { 1386 struct ice_pf *pf = vsi->back; 1387 struct device *dev; 1388 u16 i; 1389 1390 dev = ice_pf_to_dev(pf); 1391 /* Allocate Tx rings */ 1392 ice_for_each_alloc_txq(vsi, i) { 1393 struct ice_tx_ring *ring; 1394 1395 /* allocate with kzalloc(), free with kfree_rcu() */ 1396 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1397 1398 if (!ring) 1399 goto err_out; 1400 1401 ring->q_index = i; 1402 ring->reg_idx = vsi->txq_map[i]; 1403 ring->vsi = vsi; 1404 ring->tx_tstamps = &pf->ptp.port.tx; 1405 ring->dev = dev; 1406 ring->count = vsi->num_tx_desc; 1407 WRITE_ONCE(vsi->tx_rings[i], ring); 1408 } 1409 1410 /* Allocate Rx rings */ 1411 ice_for_each_alloc_rxq(vsi, i) { 1412 struct ice_rx_ring *ring; 1413 1414 /* allocate with kzalloc(), free with kfree_rcu() */ 1415 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1416 if (!ring) 1417 goto err_out; 1418 1419 ring->q_index = i; 1420 ring->reg_idx = vsi->rxq_map[i]; 1421 ring->vsi = vsi; 1422 ring->netdev = vsi->netdev; 1423 ring->dev = dev; 1424 ring->count = vsi->num_rx_desc; 1425 WRITE_ONCE(vsi->rx_rings[i], ring); 1426 } 1427 1428 return 0; 1429 1430 err_out: 1431 ice_vsi_clear_rings(vsi); 1432 return -ENOMEM; 1433 } 1434 1435 /** 1436 * ice_vsi_manage_rss_lut - disable/enable RSS 1437 * @vsi: the VSI being changed 1438 * @ena: boolean value indicating if this is an enable or disable request 1439 * 1440 * In the event of disable request for RSS, this function will zero out RSS 1441 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1442 * LUT. 1443 */ 1444 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1445 { 1446 u8 *lut; 1447 1448 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1449 if (!lut) 1450 return; 1451 1452 if (ena) { 1453 if (vsi->rss_lut_user) 1454 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1455 else 1456 ice_fill_rss_lut(lut, vsi->rss_table_size, 1457 vsi->rss_size); 1458 } 1459 1460 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1461 kfree(lut); 1462 } 1463 1464 /** 1465 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1466 * @vsi: VSI to be configured 1467 */ 1468 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1469 { 1470 struct ice_pf *pf = vsi->back; 1471 struct device *dev; 1472 u8 *lut, *key; 1473 int err; 1474 1475 dev = ice_pf_to_dev(pf); 1476 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1477 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1478 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1479 } else { 1480 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1481 1482 /* If orig_rss_size is valid and it is less than determined 1483 * main VSI's rss_size, update main VSI's rss_size to be 1484 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1485 * RSS table gets programmed to be correct (whatever it was 1486 * to begin with (prior to setup-tc for ADQ config) 1487 */ 1488 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1489 vsi->orig_rss_size <= vsi->num_rxq) { 1490 vsi->rss_size = vsi->orig_rss_size; 1491 /* now orig_rss_size is used, reset it to zero */ 1492 vsi->orig_rss_size = 0; 1493 } 1494 } 1495 1496 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1497 if (!lut) 1498 return -ENOMEM; 1499 1500 if (vsi->rss_lut_user) 1501 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1502 else 1503 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1504 1505 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1506 if (err) { 1507 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1508 goto ice_vsi_cfg_rss_exit; 1509 } 1510 1511 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1512 if (!key) { 1513 err = -ENOMEM; 1514 goto ice_vsi_cfg_rss_exit; 1515 } 1516 1517 if (vsi->rss_hkey_user) 1518 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1519 else 1520 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1521 1522 err = ice_set_rss_key(vsi, key); 1523 if (err) 1524 dev_err(dev, "set_rss_key failed, error %d\n", err); 1525 1526 kfree(key); 1527 ice_vsi_cfg_rss_exit: 1528 kfree(lut); 1529 return err; 1530 } 1531 1532 /** 1533 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1534 * @vsi: VSI to be configured 1535 * 1536 * This function will only be called during the VF VSI setup. Upon successful 1537 * completion of package download, this function will configure default RSS 1538 * input sets for VF VSI. 1539 */ 1540 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1541 { 1542 struct ice_pf *pf = vsi->back; 1543 enum ice_status status; 1544 struct device *dev; 1545 1546 dev = ice_pf_to_dev(pf); 1547 if (ice_is_safe_mode(pf)) { 1548 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1549 vsi->vsi_num); 1550 return; 1551 } 1552 1553 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1554 if (status) 1555 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1556 vsi->vsi_num, ice_stat_str(status)); 1557 } 1558 1559 /** 1560 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1561 * @vsi: VSI to be configured 1562 * 1563 * This function will only be called after successful download package call 1564 * during initialization of PF. Since the downloaded package will erase the 1565 * RSS section, this function will configure RSS input sets for different 1566 * flow types. The last profile added has the highest priority, therefore 2 1567 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1568 * (i.e. IPv4 src/dst TCP src/dst port). 1569 */ 1570 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1571 { 1572 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1573 struct ice_pf *pf = vsi->back; 1574 struct ice_hw *hw = &pf->hw; 1575 enum ice_status status; 1576 struct device *dev; 1577 1578 dev = ice_pf_to_dev(pf); 1579 if (ice_is_safe_mode(pf)) { 1580 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1581 vsi_num); 1582 return; 1583 } 1584 /* configure RSS for IPv4 with input set IP src/dst */ 1585 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1586 ICE_FLOW_SEG_HDR_IPV4); 1587 if (status) 1588 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1589 vsi_num, ice_stat_str(status)); 1590 1591 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1592 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1593 ICE_FLOW_SEG_HDR_IPV6); 1594 if (status) 1595 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1596 vsi_num, ice_stat_str(status)); 1597 1598 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1599 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1600 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1601 if (status) 1602 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1603 vsi_num, ice_stat_str(status)); 1604 1605 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1606 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1607 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1608 if (status) 1609 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1610 vsi_num, ice_stat_str(status)); 1611 1612 /* configure RSS for sctp4 with input set IP src/dst */ 1613 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1614 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1615 if (status) 1616 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1617 vsi_num, ice_stat_str(status)); 1618 1619 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1620 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1621 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1622 if (status) 1623 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1624 vsi_num, ice_stat_str(status)); 1625 1626 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1627 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1628 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1629 if (status) 1630 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1631 vsi_num, ice_stat_str(status)); 1632 1633 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1634 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1635 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1636 if (status) 1637 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1638 vsi_num, ice_stat_str(status)); 1639 } 1640 1641 /** 1642 * ice_pf_state_is_nominal - checks the PF for nominal state 1643 * @pf: pointer to PF to check 1644 * 1645 * Check the PF's state for a collection of bits that would indicate 1646 * the PF is in a state that would inhibit normal operation for 1647 * driver functionality. 1648 * 1649 * Returns true if PF is in a nominal state, false otherwise 1650 */ 1651 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1652 { 1653 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1654 1655 if (!pf) 1656 return false; 1657 1658 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1659 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1660 return false; 1661 1662 return true; 1663 } 1664 1665 /** 1666 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1667 * @vsi: the VSI to be updated 1668 */ 1669 void ice_update_eth_stats(struct ice_vsi *vsi) 1670 { 1671 struct ice_eth_stats *prev_es, *cur_es; 1672 struct ice_hw *hw = &vsi->back->hw; 1673 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1674 1675 prev_es = &vsi->eth_stats_prev; 1676 cur_es = &vsi->eth_stats; 1677 1678 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1679 &prev_es->rx_bytes, &cur_es->rx_bytes); 1680 1681 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1682 &prev_es->rx_unicast, &cur_es->rx_unicast); 1683 1684 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1685 &prev_es->rx_multicast, &cur_es->rx_multicast); 1686 1687 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1688 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1689 1690 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1691 &prev_es->rx_discards, &cur_es->rx_discards); 1692 1693 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1694 &prev_es->tx_bytes, &cur_es->tx_bytes); 1695 1696 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1697 &prev_es->tx_unicast, &cur_es->tx_unicast); 1698 1699 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1700 &prev_es->tx_multicast, &cur_es->tx_multicast); 1701 1702 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1703 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1704 1705 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1706 &prev_es->tx_errors, &cur_es->tx_errors); 1707 1708 vsi->stat_offsets_loaded = true; 1709 } 1710 1711 /** 1712 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1713 * @vsi: the VSI being configured 1714 * @vid: VLAN ID to be added 1715 * @action: filter action to be performed on match 1716 */ 1717 int 1718 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1719 { 1720 struct ice_pf *pf = vsi->back; 1721 struct device *dev; 1722 int err = 0; 1723 1724 dev = ice_pf_to_dev(pf); 1725 1726 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1727 vsi->num_vlan++; 1728 } else { 1729 err = -ENODEV; 1730 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1731 vsi->vsi_num); 1732 } 1733 1734 return err; 1735 } 1736 1737 /** 1738 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1739 * @vsi: the VSI being configured 1740 * @vid: VLAN ID to be removed 1741 * 1742 * Returns 0 on success and negative on failure 1743 */ 1744 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1745 { 1746 struct ice_pf *pf = vsi->back; 1747 enum ice_status status; 1748 struct device *dev; 1749 int err = 0; 1750 1751 dev = ice_pf_to_dev(pf); 1752 1753 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1754 if (!status) { 1755 vsi->num_vlan--; 1756 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1757 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1758 vid, vsi->vsi_num, ice_stat_str(status)); 1759 } else { 1760 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1761 vid, vsi->vsi_num, ice_stat_str(status)); 1762 err = -EIO; 1763 } 1764 1765 return err; 1766 } 1767 1768 /** 1769 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1770 * @vsi: VSI 1771 */ 1772 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1773 { 1774 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1775 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1776 vsi->rx_buf_len = ICE_RXBUF_2048; 1777 #if (PAGE_SIZE < 8192) 1778 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1779 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1780 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1781 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1782 #endif 1783 } else { 1784 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1785 #if (PAGE_SIZE < 8192) 1786 vsi->rx_buf_len = ICE_RXBUF_3072; 1787 #else 1788 vsi->rx_buf_len = ICE_RXBUF_2048; 1789 #endif 1790 } 1791 } 1792 1793 /** 1794 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1795 * @hw: HW pointer 1796 * @pf_q: index of the Rx queue in the PF's queue space 1797 * @rxdid: flexible descriptor RXDID 1798 * @prio: priority for the RXDID for this queue 1799 * @ena_ts: true to enable timestamp and false to disable timestamp 1800 */ 1801 void 1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1803 bool ena_ts) 1804 { 1805 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1806 1807 /* clear any previous values */ 1808 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1809 QRXFLXP_CNTXT_RXDID_PRIO_M | 1810 QRXFLXP_CNTXT_TS_M); 1811 1812 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1813 QRXFLXP_CNTXT_RXDID_IDX_M; 1814 1815 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1816 QRXFLXP_CNTXT_RXDID_PRIO_M; 1817 1818 if (ena_ts) 1819 /* Enable TimeSync on this queue */ 1820 regval |= QRXFLXP_CNTXT_TS_M; 1821 1822 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1823 } 1824 1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1826 { 1827 if (q_idx >= vsi->num_rxq) 1828 return -EINVAL; 1829 1830 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1831 } 1832 1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1834 { 1835 struct ice_aqc_add_tx_qgrp *qg_buf; 1836 int err; 1837 1838 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1839 return -EINVAL; 1840 1841 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1842 if (!qg_buf) 1843 return -ENOMEM; 1844 1845 qg_buf->num_txqs = 1; 1846 1847 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1848 kfree(qg_buf); 1849 return err; 1850 } 1851 1852 /** 1853 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1854 * @vsi: the VSI being configured 1855 * 1856 * Return 0 on success and a negative value on error 1857 * Configure the Rx VSI for operation. 1858 */ 1859 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1860 { 1861 u16 i; 1862 1863 if (vsi->type == ICE_VSI_VF) 1864 goto setup_rings; 1865 1866 ice_vsi_cfg_frame_size(vsi); 1867 setup_rings: 1868 /* set up individual rings */ 1869 ice_for_each_rxq(vsi, i) { 1870 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1871 1872 if (err) 1873 return err; 1874 } 1875 1876 return 0; 1877 } 1878 1879 /** 1880 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1881 * @vsi: the VSI being configured 1882 * @rings: Tx ring array to be configured 1883 * @count: number of Tx ring array elements 1884 * 1885 * Return 0 on success and a negative value on error 1886 * Configure the Tx VSI for operation. 1887 */ 1888 static int 1889 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1890 { 1891 struct ice_aqc_add_tx_qgrp *qg_buf; 1892 u16 q_idx = 0; 1893 int err = 0; 1894 1895 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1896 if (!qg_buf) 1897 return -ENOMEM; 1898 1899 qg_buf->num_txqs = 1; 1900 1901 for (q_idx = 0; q_idx < count; q_idx++) { 1902 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1903 if (err) 1904 goto err_cfg_txqs; 1905 } 1906 1907 err_cfg_txqs: 1908 kfree(qg_buf); 1909 return err; 1910 } 1911 1912 /** 1913 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1914 * @vsi: the VSI being configured 1915 * 1916 * Return 0 on success and a negative value on error 1917 * Configure the Tx VSI for operation. 1918 */ 1919 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1920 { 1921 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1922 } 1923 1924 /** 1925 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1926 * @vsi: the VSI being configured 1927 * 1928 * Return 0 on success and a negative value on error 1929 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1930 */ 1931 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1932 { 1933 int ret; 1934 int i; 1935 1936 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1937 if (ret) 1938 return ret; 1939 1940 ice_for_each_xdp_txq(vsi, i) 1941 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1942 1943 return ret; 1944 } 1945 1946 /** 1947 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1948 * @intrl: interrupt rate limit in usecs 1949 * @gran: interrupt rate limit granularity in usecs 1950 * 1951 * This function converts a decimal interrupt rate limit in usecs to the format 1952 * expected by firmware. 1953 */ 1954 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1955 { 1956 u32 val = intrl / gran; 1957 1958 if (val) 1959 return val | GLINT_RATE_INTRL_ENA_M; 1960 return 0; 1961 } 1962 1963 /** 1964 * ice_write_intrl - write throttle rate limit to interrupt specific register 1965 * @q_vector: pointer to interrupt specific structure 1966 * @intrl: throttle rate limit in microseconds to write 1967 */ 1968 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1969 { 1970 struct ice_hw *hw = &q_vector->vsi->back->hw; 1971 1972 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1973 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1974 } 1975 1976 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1977 { 1978 switch (rc->type) { 1979 case ICE_RX_CONTAINER: 1980 if (rc->rx_ring) 1981 return rc->rx_ring->q_vector; 1982 break; 1983 case ICE_TX_CONTAINER: 1984 if (rc->tx_ring) 1985 return rc->tx_ring->q_vector; 1986 break; 1987 default: 1988 break; 1989 } 1990 1991 return NULL; 1992 } 1993 1994 /** 1995 * __ice_write_itr - write throttle rate to register 1996 * @q_vector: pointer to interrupt data structure 1997 * @rc: pointer to ring container 1998 * @itr: throttle rate in microseconds to write 1999 */ 2000 static void __ice_write_itr(struct ice_q_vector *q_vector, 2001 struct ice_ring_container *rc, u16 itr) 2002 { 2003 struct ice_hw *hw = &q_vector->vsi->back->hw; 2004 2005 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2006 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2007 } 2008 2009 /** 2010 * ice_write_itr - write throttle rate to queue specific register 2011 * @rc: pointer to ring container 2012 * @itr: throttle rate in microseconds to write 2013 */ 2014 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2015 { 2016 struct ice_q_vector *q_vector; 2017 2018 q_vector = ice_pull_qvec_from_rc(rc); 2019 if (!q_vector) 2020 return; 2021 2022 __ice_write_itr(q_vector, rc, itr); 2023 } 2024 2025 /** 2026 * ice_set_q_vector_intrl - set up interrupt rate limiting 2027 * @q_vector: the vector to be configured 2028 * 2029 * Interrupt rate limiting is local to the vector, not per-queue so we must 2030 * detect if either ring container has dynamic moderation enabled to decide 2031 * what to set the interrupt rate limit to via INTRL settings. In the case that 2032 * dynamic moderation is disabled on both, write the value with the cached 2033 * setting to make sure INTRL register matches the user visible value. 2034 */ 2035 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2036 { 2037 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2038 /* in the case of dynamic enabled, cap each vector to no more 2039 * than (4 us) 250,000 ints/sec, which allows low latency 2040 * but still less than 500,000 interrupts per second, which 2041 * reduces CPU a bit in the case of the lowest latency 2042 * setting. The 4 here is a value in microseconds. 2043 */ 2044 ice_write_intrl(q_vector, 4); 2045 } else { 2046 ice_write_intrl(q_vector, q_vector->intrl); 2047 } 2048 } 2049 2050 /** 2051 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2052 * @vsi: the VSI being configured 2053 * 2054 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2055 * for the VF VSI. 2056 */ 2057 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2058 { 2059 struct ice_pf *pf = vsi->back; 2060 struct ice_hw *hw = &pf->hw; 2061 u16 txq = 0, rxq = 0; 2062 int i, q; 2063 2064 ice_for_each_q_vector(vsi, i) { 2065 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2066 u16 reg_idx = q_vector->reg_idx; 2067 2068 ice_cfg_itr(hw, q_vector); 2069 2070 /* Both Transmit Queue Interrupt Cause Control register 2071 * and Receive Queue Interrupt Cause control register 2072 * expects MSIX_INDX field to be the vector index 2073 * within the function space and not the absolute 2074 * vector index across PF or across device. 2075 * For SR-IOV VF VSIs queue vector index always starts 2076 * with 1 since first vector index(0) is used for OICR 2077 * in VF space. Since VMDq and other PF VSIs are within 2078 * the PF function space, use the vector index that is 2079 * tracked for this PF. 2080 */ 2081 for (q = 0; q < q_vector->num_ring_tx; q++) { 2082 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2083 q_vector->tx.itr_idx); 2084 txq++; 2085 } 2086 2087 for (q = 0; q < q_vector->num_ring_rx; q++) { 2088 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2089 q_vector->rx.itr_idx); 2090 rxq++; 2091 } 2092 } 2093 } 2094 2095 /** 2096 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 2097 * @vsi: the VSI being changed 2098 */ 2099 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 2100 { 2101 struct ice_hw *hw = &vsi->back->hw; 2102 struct ice_vsi_ctx *ctxt; 2103 enum ice_status status; 2104 int ret = 0; 2105 2106 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2107 if (!ctxt) 2108 return -ENOMEM; 2109 2110 /* Here we are configuring the VSI to let the driver add VLAN tags by 2111 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 2112 * insertion happens in the Tx hot path, in ice_tx_map. 2113 */ 2114 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 2115 2116 /* Preserve existing VLAN strip setting */ 2117 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 2118 ICE_AQ_VSI_VLAN_EMOD_M); 2119 2120 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2121 2122 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2123 if (status) { 2124 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 2125 ice_stat_str(status), 2126 ice_aq_str(hw->adminq.sq_last_status)); 2127 ret = -EIO; 2128 goto out; 2129 } 2130 2131 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2132 out: 2133 kfree(ctxt); 2134 return ret; 2135 } 2136 2137 /** 2138 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2139 * @vsi: the VSI being changed 2140 * @ena: boolean value indicating if this is a enable or disable request 2141 */ 2142 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2143 { 2144 struct ice_hw *hw = &vsi->back->hw; 2145 struct ice_vsi_ctx *ctxt; 2146 enum ice_status status; 2147 int ret = 0; 2148 2149 /* do not allow modifying VLAN stripping when a port VLAN is configured 2150 * on this VSI 2151 */ 2152 if (vsi->info.pvid) 2153 return 0; 2154 2155 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2156 if (!ctxt) 2157 return -ENOMEM; 2158 2159 /* Here we are configuring what the VSI should do with the VLAN tag in 2160 * the Rx packet. We can either leave the tag in the packet or put it in 2161 * the Rx descriptor. 2162 */ 2163 if (ena) 2164 /* Strip VLAN tag from Rx packet and put it in the desc */ 2165 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2166 else 2167 /* Disable stripping. Leave tag in packet */ 2168 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2169 2170 /* Allow all packets untagged/tagged */ 2171 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2172 2173 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2174 2175 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2176 if (status) { 2177 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2178 ena, ice_stat_str(status), 2179 ice_aq_str(hw->adminq.sq_last_status)); 2180 ret = -EIO; 2181 goto out; 2182 } 2183 2184 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2185 out: 2186 kfree(ctxt); 2187 return ret; 2188 } 2189 2190 /** 2191 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2192 * @vsi: the VSI whose rings are to be enabled 2193 * 2194 * Returns 0 on success and a negative value on error 2195 */ 2196 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2197 { 2198 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2199 } 2200 2201 /** 2202 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2203 * @vsi: the VSI whose rings are to be disabled 2204 * 2205 * Returns 0 on success and a negative value on error 2206 */ 2207 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2208 { 2209 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2210 } 2211 2212 /** 2213 * ice_vsi_stop_tx_rings - Disable Tx rings 2214 * @vsi: the VSI being configured 2215 * @rst_src: reset source 2216 * @rel_vmvf_num: Relative ID of VF/VM 2217 * @rings: Tx ring array to be stopped 2218 * @count: number of Tx ring array elements 2219 */ 2220 static int 2221 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2222 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2223 { 2224 u16 q_idx; 2225 2226 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2227 return -EINVAL; 2228 2229 for (q_idx = 0; q_idx < count; q_idx++) { 2230 struct ice_txq_meta txq_meta = { }; 2231 int status; 2232 2233 if (!rings || !rings[q_idx]) 2234 return -EINVAL; 2235 2236 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2237 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2238 rings[q_idx], &txq_meta); 2239 2240 if (status) 2241 return status; 2242 } 2243 2244 return 0; 2245 } 2246 2247 /** 2248 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2249 * @vsi: the VSI being configured 2250 * @rst_src: reset source 2251 * @rel_vmvf_num: Relative ID of VF/VM 2252 */ 2253 int 2254 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2255 u16 rel_vmvf_num) 2256 { 2257 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2258 } 2259 2260 /** 2261 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2262 * @vsi: the VSI being configured 2263 */ 2264 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2265 { 2266 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2267 } 2268 2269 /** 2270 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2271 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2272 * 2273 * returns true if Rx VLAN pruning is enabled and false otherwise. 2274 */ 2275 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2276 { 2277 if (!vsi) 2278 return false; 2279 2280 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2281 } 2282 2283 /** 2284 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2285 * @vsi: VSI to enable or disable VLAN pruning on 2286 * @ena: set to true to enable VLAN pruning and false to disable it 2287 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2288 * 2289 * returns 0 if VSI is updated, negative otherwise 2290 */ 2291 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2292 { 2293 struct ice_vsi_ctx *ctxt; 2294 struct ice_pf *pf; 2295 int status; 2296 2297 if (!vsi) 2298 return -EINVAL; 2299 2300 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2301 * mode. VLAN pruning will be enabled when the interface exits 2302 * promiscuous mode if any VLAN filters are active. 2303 */ 2304 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2305 return 0; 2306 2307 pf = vsi->back; 2308 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2309 if (!ctxt) 2310 return -ENOMEM; 2311 2312 ctxt->info = vsi->info; 2313 2314 if (ena) 2315 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2316 else 2317 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2318 2319 if (!vlan_promisc) 2320 ctxt->info.valid_sections = 2321 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2322 2323 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2324 if (status) { 2325 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2326 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2327 ice_stat_str(status), 2328 ice_aq_str(pf->hw.adminq.sq_last_status)); 2329 goto err_out; 2330 } 2331 2332 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2333 2334 kfree(ctxt); 2335 return 0; 2336 2337 err_out: 2338 kfree(ctxt); 2339 return -EIO; 2340 } 2341 2342 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2343 { 2344 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2345 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2346 vsi->tc_cfg.numtc = 1; 2347 return; 2348 } 2349 2350 /* set VSI TC information based on DCB config */ 2351 ice_vsi_set_dcb_tc_cfg(vsi); 2352 } 2353 2354 /** 2355 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2356 * @vsi: VSI to set the q_vectors register index on 2357 */ 2358 static int 2359 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2360 { 2361 u16 i; 2362 2363 if (!vsi || !vsi->q_vectors) 2364 return -EINVAL; 2365 2366 ice_for_each_q_vector(vsi, i) { 2367 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2368 2369 if (!q_vector) { 2370 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2371 i, vsi->vsi_num); 2372 goto clear_reg_idx; 2373 } 2374 2375 if (vsi->type == ICE_VSI_VF) { 2376 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2377 2378 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2379 } else { 2380 q_vector->reg_idx = 2381 q_vector->v_idx + vsi->base_vector; 2382 } 2383 } 2384 2385 return 0; 2386 2387 clear_reg_idx: 2388 ice_for_each_q_vector(vsi, i) { 2389 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2390 2391 if (q_vector) 2392 q_vector->reg_idx = 0; 2393 } 2394 2395 return -EINVAL; 2396 } 2397 2398 /** 2399 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2400 * @vsi: the VSI being configured 2401 * @tx: bool to determine Tx or Rx rule 2402 * @create: bool to determine create or remove Rule 2403 */ 2404 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2405 { 2406 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2407 enum ice_sw_fwd_act_type act); 2408 struct ice_pf *pf = vsi->back; 2409 enum ice_status status; 2410 struct device *dev; 2411 2412 dev = ice_pf_to_dev(pf); 2413 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2414 2415 if (tx) { 2416 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2417 ICE_DROP_PACKET); 2418 } else { 2419 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2420 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2421 create); 2422 } else { 2423 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2424 ICE_FWD_TO_VSI); 2425 } 2426 } 2427 2428 if (status) 2429 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2430 create ? "adding" : "removing", tx ? "TX" : "RX", 2431 vsi->vsi_num, ice_stat_str(status)); 2432 } 2433 2434 /** 2435 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2436 * @vsi: pointer to the VSI 2437 * 2438 * This function will allocate new scheduler aggregator now if needed and will 2439 * move specified VSI into it. 2440 */ 2441 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2442 { 2443 struct device *dev = ice_pf_to_dev(vsi->back); 2444 struct ice_agg_node *agg_node_iter = NULL; 2445 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2446 struct ice_agg_node *agg_node = NULL; 2447 int node_offset, max_agg_nodes = 0; 2448 struct ice_port_info *port_info; 2449 struct ice_pf *pf = vsi->back; 2450 u32 agg_node_id_start = 0; 2451 enum ice_status status; 2452 2453 /* create (as needed) scheduler aggregator node and move VSI into 2454 * corresponding aggregator node 2455 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2456 * - VF aggregator nodes will contain VF VSI 2457 */ 2458 port_info = pf->hw.port_info; 2459 if (!port_info) 2460 return; 2461 2462 switch (vsi->type) { 2463 case ICE_VSI_CTRL: 2464 case ICE_VSI_CHNL: 2465 case ICE_VSI_LB: 2466 case ICE_VSI_PF: 2467 case ICE_VSI_SWITCHDEV_CTRL: 2468 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2469 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2470 agg_node_iter = &pf->pf_agg_node[0]; 2471 break; 2472 case ICE_VSI_VF: 2473 /* user can create 'n' VFs on a given PF, but since max children 2474 * per aggregator node can be only 64. Following code handles 2475 * aggregator(s) for VF VSIs, either selects a agg_node which 2476 * was already created provided num_vsis < 64, otherwise 2477 * select next available node, which will be created 2478 */ 2479 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2480 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2481 agg_node_iter = &pf->vf_agg_node[0]; 2482 break; 2483 default: 2484 /* other VSI type, handle later if needed */ 2485 dev_dbg(dev, "unexpected VSI type %s\n", 2486 ice_vsi_type_str(vsi->type)); 2487 return; 2488 } 2489 2490 /* find the appropriate aggregator node */ 2491 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2492 /* see if we can find space in previously created 2493 * node if num_vsis < 64, otherwise skip 2494 */ 2495 if (agg_node_iter->num_vsis && 2496 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2497 agg_node_iter++; 2498 continue; 2499 } 2500 2501 if (agg_node_iter->valid && 2502 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2503 agg_id = agg_node_iter->agg_id; 2504 agg_node = agg_node_iter; 2505 break; 2506 } 2507 2508 /* find unclaimed agg_id */ 2509 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2510 agg_id = node_offset + agg_node_id_start; 2511 agg_node = agg_node_iter; 2512 break; 2513 } 2514 /* move to next agg_node */ 2515 agg_node_iter++; 2516 } 2517 2518 if (!agg_node) 2519 return; 2520 2521 /* if selected aggregator node was not created, create it */ 2522 if (!agg_node->valid) { 2523 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2524 (u8)vsi->tc_cfg.ena_tc); 2525 if (status) { 2526 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2527 agg_id); 2528 return; 2529 } 2530 /* aggregator node is created, store the neeeded info */ 2531 agg_node->valid = true; 2532 agg_node->agg_id = agg_id; 2533 } 2534 2535 /* move VSI to corresponding aggregator node */ 2536 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2537 (u8)vsi->tc_cfg.ena_tc); 2538 if (status) { 2539 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2540 vsi->idx, agg_id); 2541 return; 2542 } 2543 2544 /* keep active children count for aggregator node */ 2545 agg_node->num_vsis++; 2546 2547 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2548 * to aggregator node 2549 */ 2550 vsi->agg_node = agg_node; 2551 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2552 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2553 vsi->agg_node->num_vsis); 2554 } 2555 2556 /** 2557 * ice_vsi_setup - Set up a VSI by a given type 2558 * @pf: board private structure 2559 * @pi: pointer to the port_info instance 2560 * @vsi_type: VSI type 2561 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2562 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2563 * fill-in ICE_INVAL_VFID as input. 2564 * @ch: ptr to channel 2565 * 2566 * This allocates the sw VSI structure and its queue resources. 2567 * 2568 * Returns pointer to the successfully allocated and configured VSI sw struct on 2569 * success, NULL on failure. 2570 */ 2571 struct ice_vsi * 2572 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2573 enum ice_vsi_type vsi_type, u16 vf_id, struct ice_channel *ch) 2574 { 2575 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2576 struct device *dev = ice_pf_to_dev(pf); 2577 enum ice_status status; 2578 struct ice_vsi *vsi; 2579 int ret, i; 2580 2581 if (vsi_type == ICE_VSI_CHNL) 2582 vsi = ice_vsi_alloc(pf, vsi_type, ch, ICE_INVAL_VFID); 2583 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2584 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf_id); 2585 else 2586 vsi = ice_vsi_alloc(pf, vsi_type, NULL, ICE_INVAL_VFID); 2587 2588 if (!vsi) { 2589 dev_err(dev, "could not allocate VSI\n"); 2590 return NULL; 2591 } 2592 2593 vsi->port_info = pi; 2594 vsi->vsw = pf->first_sw; 2595 if (vsi->type == ICE_VSI_PF) 2596 vsi->ethtype = ETH_P_PAUSE; 2597 2598 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2599 vsi->vf_id = vf_id; 2600 2601 ice_alloc_fd_res(vsi); 2602 2603 if (vsi_type != ICE_VSI_CHNL) { 2604 if (ice_vsi_get_qs(vsi)) { 2605 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2606 vsi->idx); 2607 goto unroll_vsi_alloc; 2608 } 2609 } 2610 2611 /* set RSS capabilities */ 2612 ice_vsi_set_rss_params(vsi); 2613 2614 /* set TC configuration */ 2615 ice_vsi_set_tc_cfg(vsi); 2616 2617 /* create the VSI */ 2618 ret = ice_vsi_init(vsi, true); 2619 if (ret) 2620 goto unroll_get_qs; 2621 2622 switch (vsi->type) { 2623 case ICE_VSI_CTRL: 2624 case ICE_VSI_SWITCHDEV_CTRL: 2625 case ICE_VSI_PF: 2626 ret = ice_vsi_alloc_q_vectors(vsi); 2627 if (ret) 2628 goto unroll_vsi_init; 2629 2630 ret = ice_vsi_setup_vector_base(vsi); 2631 if (ret) 2632 goto unroll_alloc_q_vector; 2633 2634 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2635 if (ret) 2636 goto unroll_vector_base; 2637 2638 ret = ice_vsi_alloc_rings(vsi); 2639 if (ret) 2640 goto unroll_vector_base; 2641 2642 /* Always add VLAN ID 0 switch rule by default. This is needed 2643 * in order to allow all untagged and 0 tagged priority traffic 2644 * if Rx VLAN pruning is enabled. Also there are cases where we 2645 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2646 * so this handles those cases (i.e. adding the PF to a bridge 2647 * without the 8021q module loaded). 2648 */ 2649 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2650 if (ret) 2651 goto unroll_clear_rings; 2652 2653 ice_vsi_map_rings_to_vectors(vsi); 2654 2655 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2656 if (vsi->type != ICE_VSI_CTRL) 2657 /* Do not exit if configuring RSS had an issue, at 2658 * least receive traffic on first queue. Hence no 2659 * need to capture return value 2660 */ 2661 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2662 ice_vsi_cfg_rss_lut_key(vsi); 2663 ice_vsi_set_rss_flow_fld(vsi); 2664 } 2665 ice_init_arfs(vsi); 2666 break; 2667 case ICE_VSI_CHNL: 2668 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2669 ice_vsi_cfg_rss_lut_key(vsi); 2670 ice_vsi_set_rss_flow_fld(vsi); 2671 } 2672 break; 2673 case ICE_VSI_VF: 2674 /* VF driver will take care of creating netdev for this type and 2675 * map queues to vectors through Virtchnl, PF driver only 2676 * creates a VSI and corresponding structures for bookkeeping 2677 * purpose 2678 */ 2679 ret = ice_vsi_alloc_q_vectors(vsi); 2680 if (ret) 2681 goto unroll_vsi_init; 2682 2683 ret = ice_vsi_alloc_rings(vsi); 2684 if (ret) 2685 goto unroll_alloc_q_vector; 2686 2687 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2688 if (ret) 2689 goto unroll_vector_base; 2690 2691 /* Do not exit if configuring RSS had an issue, at least 2692 * receive traffic on first queue. Hence no need to capture 2693 * return value 2694 */ 2695 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2696 ice_vsi_cfg_rss_lut_key(vsi); 2697 ice_vsi_set_vf_rss_flow_fld(vsi); 2698 } 2699 break; 2700 case ICE_VSI_LB: 2701 ret = ice_vsi_alloc_rings(vsi); 2702 if (ret) 2703 goto unroll_vsi_init; 2704 break; 2705 default: 2706 /* clean up the resources and exit */ 2707 goto unroll_vsi_init; 2708 } 2709 2710 /* configure VSI nodes based on number of queues and TC's */ 2711 ice_for_each_traffic_class(i) { 2712 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2713 continue; 2714 2715 if (vsi->type == ICE_VSI_CHNL) { 2716 if (!vsi->alloc_txq && vsi->num_txq) 2717 max_txqs[i] = vsi->num_txq; 2718 else 2719 max_txqs[i] = pf->num_lan_tx; 2720 } else { 2721 max_txqs[i] = vsi->alloc_txq; 2722 } 2723 } 2724 2725 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2726 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2727 max_txqs); 2728 if (status) { 2729 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2730 vsi->vsi_num, ice_stat_str(status)); 2731 goto unroll_clear_rings; 2732 } 2733 2734 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2735 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2736 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2737 * The rule is added once for PF VSI in order to create appropriate 2738 * recipe, since VSI/VSI list is ignored with drop action... 2739 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2740 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2741 * settings in the HW. 2742 */ 2743 if (!ice_is_safe_mode(pf)) 2744 if (vsi->type == ICE_VSI_PF) { 2745 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2746 ICE_DROP_PACKET); 2747 ice_cfg_sw_lldp(vsi, true, true); 2748 } 2749 2750 if (!vsi->agg_node) 2751 ice_set_agg_vsi(vsi); 2752 return vsi; 2753 2754 unroll_clear_rings: 2755 ice_vsi_clear_rings(vsi); 2756 unroll_vector_base: 2757 /* reclaim SW interrupts back to the common pool */ 2758 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2759 pf->num_avail_sw_msix += vsi->num_q_vectors; 2760 unroll_alloc_q_vector: 2761 ice_vsi_free_q_vectors(vsi); 2762 unroll_vsi_init: 2763 ice_vsi_delete(vsi); 2764 unroll_get_qs: 2765 ice_vsi_put_qs(vsi); 2766 unroll_vsi_alloc: 2767 if (vsi_type == ICE_VSI_VF) 2768 ice_enable_lag(pf->lag); 2769 ice_vsi_clear(vsi); 2770 2771 return NULL; 2772 } 2773 2774 /** 2775 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2776 * @vsi: the VSI being cleaned up 2777 */ 2778 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2779 { 2780 struct ice_pf *pf = vsi->back; 2781 struct ice_hw *hw = &pf->hw; 2782 u32 txq = 0; 2783 u32 rxq = 0; 2784 int i, q; 2785 2786 ice_for_each_q_vector(vsi, i) { 2787 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2788 2789 ice_write_intrl(q_vector, 0); 2790 for (q = 0; q < q_vector->num_ring_tx; q++) { 2791 ice_write_itr(&q_vector->tx, 0); 2792 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2793 if (ice_is_xdp_ena_vsi(vsi)) { 2794 u32 xdp_txq = txq + vsi->num_xdp_txq; 2795 2796 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2797 } 2798 txq++; 2799 } 2800 2801 for (q = 0; q < q_vector->num_ring_rx; q++) { 2802 ice_write_itr(&q_vector->rx, 0); 2803 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2804 rxq++; 2805 } 2806 } 2807 2808 ice_flush(hw); 2809 } 2810 2811 /** 2812 * ice_vsi_free_irq - Free the IRQ association with the OS 2813 * @vsi: the VSI being configured 2814 */ 2815 void ice_vsi_free_irq(struct ice_vsi *vsi) 2816 { 2817 struct ice_pf *pf = vsi->back; 2818 int base = vsi->base_vector; 2819 int i; 2820 2821 if (!vsi->q_vectors || !vsi->irqs_ready) 2822 return; 2823 2824 ice_vsi_release_msix(vsi); 2825 if (vsi->type == ICE_VSI_VF) 2826 return; 2827 2828 vsi->irqs_ready = false; 2829 ice_for_each_q_vector(vsi, i) { 2830 u16 vector = i + base; 2831 int irq_num; 2832 2833 irq_num = pf->msix_entries[vector].vector; 2834 2835 /* free only the irqs that were actually requested */ 2836 if (!vsi->q_vectors[i] || 2837 !(vsi->q_vectors[i]->num_ring_tx || 2838 vsi->q_vectors[i]->num_ring_rx)) 2839 continue; 2840 2841 /* clear the affinity notifier in the IRQ descriptor */ 2842 irq_set_affinity_notifier(irq_num, NULL); 2843 2844 /* clear the affinity_mask in the IRQ descriptor */ 2845 irq_set_affinity_hint(irq_num, NULL); 2846 synchronize_irq(irq_num); 2847 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2848 } 2849 } 2850 2851 /** 2852 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2853 * @vsi: the VSI having resources freed 2854 */ 2855 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2856 { 2857 int i; 2858 2859 if (!vsi->tx_rings) 2860 return; 2861 2862 ice_for_each_txq(vsi, i) 2863 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2864 ice_free_tx_ring(vsi->tx_rings[i]); 2865 } 2866 2867 /** 2868 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2869 * @vsi: the VSI having resources freed 2870 */ 2871 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2872 { 2873 int i; 2874 2875 if (!vsi->rx_rings) 2876 return; 2877 2878 ice_for_each_rxq(vsi, i) 2879 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2880 ice_free_rx_ring(vsi->rx_rings[i]); 2881 } 2882 2883 /** 2884 * ice_vsi_close - Shut down a VSI 2885 * @vsi: the VSI being shut down 2886 */ 2887 void ice_vsi_close(struct ice_vsi *vsi) 2888 { 2889 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2890 ice_down(vsi); 2891 2892 ice_vsi_free_irq(vsi); 2893 ice_vsi_free_tx_rings(vsi); 2894 ice_vsi_free_rx_rings(vsi); 2895 } 2896 2897 /** 2898 * ice_ena_vsi - resume a VSI 2899 * @vsi: the VSI being resume 2900 * @locked: is the rtnl_lock already held 2901 */ 2902 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2903 { 2904 int err = 0; 2905 2906 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2907 return 0; 2908 2909 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2910 2911 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2912 if (netif_running(vsi->netdev)) { 2913 if (!locked) 2914 rtnl_lock(); 2915 2916 err = ice_open_internal(vsi->netdev); 2917 2918 if (!locked) 2919 rtnl_unlock(); 2920 } 2921 } else if (vsi->type == ICE_VSI_CTRL) { 2922 err = ice_vsi_open_ctrl(vsi); 2923 } 2924 2925 return err; 2926 } 2927 2928 /** 2929 * ice_dis_vsi - pause a VSI 2930 * @vsi: the VSI being paused 2931 * @locked: is the rtnl_lock already held 2932 */ 2933 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2934 { 2935 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2936 return; 2937 2938 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2939 2940 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2941 if (netif_running(vsi->netdev)) { 2942 if (!locked) 2943 rtnl_lock(); 2944 2945 ice_vsi_close(vsi); 2946 2947 if (!locked) 2948 rtnl_unlock(); 2949 } else { 2950 ice_vsi_close(vsi); 2951 } 2952 } else if (vsi->type == ICE_VSI_CTRL || 2953 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2954 ice_vsi_close(vsi); 2955 } 2956 } 2957 2958 /** 2959 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2960 * @vsi: the VSI being un-configured 2961 */ 2962 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2963 { 2964 int base = vsi->base_vector; 2965 struct ice_pf *pf = vsi->back; 2966 struct ice_hw *hw = &pf->hw; 2967 u32 val; 2968 int i; 2969 2970 /* disable interrupt causation from each queue */ 2971 if (vsi->tx_rings) { 2972 ice_for_each_txq(vsi, i) { 2973 if (vsi->tx_rings[i]) { 2974 u16 reg; 2975 2976 reg = vsi->tx_rings[i]->reg_idx; 2977 val = rd32(hw, QINT_TQCTL(reg)); 2978 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2979 wr32(hw, QINT_TQCTL(reg), val); 2980 } 2981 } 2982 } 2983 2984 if (vsi->rx_rings) { 2985 ice_for_each_rxq(vsi, i) { 2986 if (vsi->rx_rings[i]) { 2987 u16 reg; 2988 2989 reg = vsi->rx_rings[i]->reg_idx; 2990 val = rd32(hw, QINT_RQCTL(reg)); 2991 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2992 wr32(hw, QINT_RQCTL(reg), val); 2993 } 2994 } 2995 } 2996 2997 /* disable each interrupt */ 2998 ice_for_each_q_vector(vsi, i) { 2999 if (!vsi->q_vectors[i]) 3000 continue; 3001 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3002 } 3003 3004 ice_flush(hw); 3005 3006 /* don't call synchronize_irq() for VF's from the host */ 3007 if (vsi->type == ICE_VSI_VF) 3008 return; 3009 3010 ice_for_each_q_vector(vsi, i) 3011 synchronize_irq(pf->msix_entries[i + base].vector); 3012 } 3013 3014 /** 3015 * ice_napi_del - Remove NAPI handler for the VSI 3016 * @vsi: VSI for which NAPI handler is to be removed 3017 */ 3018 void ice_napi_del(struct ice_vsi *vsi) 3019 { 3020 int v_idx; 3021 3022 if (!vsi->netdev) 3023 return; 3024 3025 ice_for_each_q_vector(vsi, v_idx) 3026 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3027 } 3028 3029 /** 3030 * ice_vsi_release - Delete a VSI and free its resources 3031 * @vsi: the VSI being removed 3032 * 3033 * Returns 0 on success or < 0 on error 3034 */ 3035 int ice_vsi_release(struct ice_vsi *vsi) 3036 { 3037 enum ice_status err; 3038 struct ice_pf *pf; 3039 3040 if (!vsi->back) 3041 return -ENODEV; 3042 pf = vsi->back; 3043 3044 /* do not unregister while driver is in the reset recovery pending 3045 * state. Since reset/rebuild happens through PF service task workqueue, 3046 * it's not a good idea to unregister netdev that is associated to the 3047 * PF that is running the work queue items currently. This is done to 3048 * avoid check_flush_dependency() warning on this wq 3049 */ 3050 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3051 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3052 unregister_netdev(vsi->netdev); 3053 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3054 } 3055 3056 if (vsi->type == ICE_VSI_PF) 3057 ice_devlink_destroy_pf_port(pf); 3058 3059 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3060 ice_rss_clean(vsi); 3061 3062 /* Disable VSI and free resources */ 3063 if (vsi->type != ICE_VSI_LB) 3064 ice_vsi_dis_irq(vsi); 3065 ice_vsi_close(vsi); 3066 3067 /* SR-IOV determines needed MSIX resources all at once instead of per 3068 * VSI since when VFs are spawned we know how many VFs there are and how 3069 * many interrupts each VF needs. SR-IOV MSIX resources are also 3070 * cleared in the same manner. 3071 */ 3072 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 3073 int i; 3074 3075 ice_for_each_vf(pf, i) { 3076 struct ice_vf *vf = &pf->vf[i]; 3077 3078 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 3079 break; 3080 } 3081 if (i == pf->num_alloc_vfs) { 3082 /* No other VFs left that have control VSI, reclaim SW 3083 * interrupts back to the common pool 3084 */ 3085 ice_free_res(pf->irq_tracker, vsi->base_vector, 3086 ICE_RES_VF_CTRL_VEC_ID); 3087 pf->num_avail_sw_msix += vsi->num_q_vectors; 3088 } 3089 } else if (vsi->type != ICE_VSI_VF) { 3090 /* reclaim SW interrupts back to the common pool */ 3091 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3092 pf->num_avail_sw_msix += vsi->num_q_vectors; 3093 } 3094 3095 if (!ice_is_safe_mode(pf)) { 3096 if (vsi->type == ICE_VSI_PF) { 3097 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3098 ICE_DROP_PACKET); 3099 ice_cfg_sw_lldp(vsi, true, false); 3100 /* The Rx rule will only exist to remove if the LLDP FW 3101 * engine is currently stopped 3102 */ 3103 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3104 ice_cfg_sw_lldp(vsi, false, false); 3105 } 3106 } 3107 3108 ice_fltr_remove_all(vsi); 3109 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3110 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3111 if (err) 3112 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3113 vsi->vsi_num, err); 3114 ice_vsi_delete(vsi); 3115 ice_vsi_free_q_vectors(vsi); 3116 3117 if (vsi->netdev) { 3118 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3119 unregister_netdev(vsi->netdev); 3120 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3121 } 3122 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3123 free_netdev(vsi->netdev); 3124 vsi->netdev = NULL; 3125 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3126 } 3127 } 3128 3129 if (vsi->type == ICE_VSI_VF && 3130 vsi->agg_node && vsi->agg_node->valid) 3131 vsi->agg_node->num_vsis--; 3132 ice_vsi_clear_rings(vsi); 3133 3134 ice_vsi_put_qs(vsi); 3135 3136 /* retain SW VSI data structure since it is needed to unregister and 3137 * free VSI netdev when PF is not in reset recovery pending state,\ 3138 * for ex: during rmmod. 3139 */ 3140 if (!ice_is_reset_in_progress(pf->state)) 3141 ice_vsi_clear(vsi); 3142 3143 return 0; 3144 } 3145 3146 /** 3147 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3148 * @vsi: VSI connected with q_vectors 3149 * @coalesce: array of struct with stored coalesce 3150 * 3151 * Returns array size. 3152 */ 3153 static int 3154 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3155 struct ice_coalesce_stored *coalesce) 3156 { 3157 int i; 3158 3159 ice_for_each_q_vector(vsi, i) { 3160 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3161 3162 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3163 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3164 coalesce[i].intrl = q_vector->intrl; 3165 3166 if (i < vsi->num_txq) 3167 coalesce[i].tx_valid = true; 3168 if (i < vsi->num_rxq) 3169 coalesce[i].rx_valid = true; 3170 } 3171 3172 return vsi->num_q_vectors; 3173 } 3174 3175 /** 3176 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3177 * @vsi: VSI connected with q_vectors 3178 * @coalesce: pointer to array of struct with stored coalesce 3179 * @size: size of coalesce array 3180 * 3181 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3182 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3183 * to default value. 3184 */ 3185 static void 3186 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3187 struct ice_coalesce_stored *coalesce, int size) 3188 { 3189 struct ice_ring_container *rc; 3190 int i; 3191 3192 if ((size && !coalesce) || !vsi) 3193 return; 3194 3195 /* There are a couple of cases that have to be handled here: 3196 * 1. The case where the number of queue vectors stays the same, but 3197 * the number of Tx or Rx rings changes (the first for loop) 3198 * 2. The case where the number of queue vectors increased (the 3199 * second for loop) 3200 */ 3201 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3202 /* There are 2 cases to handle here and they are the same for 3203 * both Tx and Rx: 3204 * if the entry was valid previously (coalesce[i].[tr]x_valid 3205 * and the loop variable is less than the number of rings 3206 * allocated, then write the previous values 3207 * 3208 * if the entry was not valid previously, but the number of 3209 * rings is less than are allocated (this means the number of 3210 * rings increased from previously), then write out the 3211 * values in the first element 3212 * 3213 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3214 * as there is no harm because the dynamic algorithm 3215 * will just overwrite. 3216 */ 3217 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3218 rc = &vsi->q_vectors[i]->rx; 3219 rc->itr_setting = coalesce[i].itr_rx; 3220 ice_write_itr(rc, rc->itr_setting); 3221 } else if (i < vsi->alloc_rxq) { 3222 rc = &vsi->q_vectors[i]->rx; 3223 rc->itr_setting = coalesce[0].itr_rx; 3224 ice_write_itr(rc, rc->itr_setting); 3225 } 3226 3227 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3228 rc = &vsi->q_vectors[i]->tx; 3229 rc->itr_setting = coalesce[i].itr_tx; 3230 ice_write_itr(rc, rc->itr_setting); 3231 } else if (i < vsi->alloc_txq) { 3232 rc = &vsi->q_vectors[i]->tx; 3233 rc->itr_setting = coalesce[0].itr_tx; 3234 ice_write_itr(rc, rc->itr_setting); 3235 } 3236 3237 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3238 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3239 } 3240 3241 /* the number of queue vectors increased so write whatever is in 3242 * the first element 3243 */ 3244 for (; i < vsi->num_q_vectors; i++) { 3245 /* transmit */ 3246 rc = &vsi->q_vectors[i]->tx; 3247 rc->itr_setting = coalesce[0].itr_tx; 3248 ice_write_itr(rc, rc->itr_setting); 3249 3250 /* receive */ 3251 rc = &vsi->q_vectors[i]->rx; 3252 rc->itr_setting = coalesce[0].itr_rx; 3253 ice_write_itr(rc, rc->itr_setting); 3254 3255 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3256 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3257 } 3258 } 3259 3260 /** 3261 * ice_vsi_rebuild - Rebuild VSI after reset 3262 * @vsi: VSI to be rebuild 3263 * @init_vsi: is this an initialization or a reconfigure of the VSI 3264 * 3265 * Returns 0 on success and negative value on failure 3266 */ 3267 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3268 { 3269 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3270 struct ice_coalesce_stored *coalesce; 3271 int prev_num_q_vectors = 0; 3272 struct ice_vf *vf = NULL; 3273 enum ice_vsi_type vtype; 3274 enum ice_status status; 3275 struct ice_pf *pf; 3276 int ret, i; 3277 3278 if (!vsi) 3279 return -EINVAL; 3280 3281 pf = vsi->back; 3282 vtype = vsi->type; 3283 if (vtype == ICE_VSI_VF) 3284 vf = &pf->vf[vsi->vf_id]; 3285 3286 coalesce = kcalloc(vsi->num_q_vectors, 3287 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3288 if (!coalesce) 3289 return -ENOMEM; 3290 3291 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3292 3293 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3294 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3295 if (ret) 3296 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3297 vsi->vsi_num, ret); 3298 ice_vsi_free_q_vectors(vsi); 3299 3300 /* SR-IOV determines needed MSIX resources all at once instead of per 3301 * VSI since when VFs are spawned we know how many VFs there are and how 3302 * many interrupts each VF needs. SR-IOV MSIX resources are also 3303 * cleared in the same manner. 3304 */ 3305 if (vtype != ICE_VSI_VF) { 3306 /* reclaim SW interrupts back to the common pool */ 3307 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3308 pf->num_avail_sw_msix += vsi->num_q_vectors; 3309 vsi->base_vector = 0; 3310 } 3311 3312 if (ice_is_xdp_ena_vsi(vsi)) 3313 /* return value check can be skipped here, it always returns 3314 * 0 if reset is in progress 3315 */ 3316 ice_destroy_xdp_rings(vsi); 3317 ice_vsi_put_qs(vsi); 3318 ice_vsi_clear_rings(vsi); 3319 ice_vsi_free_arrays(vsi); 3320 if (vtype == ICE_VSI_VF) 3321 ice_vsi_set_num_qs(vsi, vf->vf_id); 3322 else 3323 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3324 3325 ret = ice_vsi_alloc_arrays(vsi); 3326 if (ret < 0) 3327 goto err_vsi; 3328 3329 ice_vsi_get_qs(vsi); 3330 3331 ice_alloc_fd_res(vsi); 3332 ice_vsi_set_tc_cfg(vsi); 3333 3334 /* Initialize VSI struct elements and create VSI in FW */ 3335 ret = ice_vsi_init(vsi, init_vsi); 3336 if (ret < 0) 3337 goto err_vsi; 3338 3339 switch (vtype) { 3340 case ICE_VSI_CTRL: 3341 case ICE_VSI_SWITCHDEV_CTRL: 3342 case ICE_VSI_PF: 3343 ret = ice_vsi_alloc_q_vectors(vsi); 3344 if (ret) 3345 goto err_rings; 3346 3347 ret = ice_vsi_setup_vector_base(vsi); 3348 if (ret) 3349 goto err_vectors; 3350 3351 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3352 if (ret) 3353 goto err_vectors; 3354 3355 ret = ice_vsi_alloc_rings(vsi); 3356 if (ret) 3357 goto err_vectors; 3358 3359 ice_vsi_map_rings_to_vectors(vsi); 3360 if (ice_is_xdp_ena_vsi(vsi)) { 3361 ret = ice_vsi_determine_xdp_res(vsi); 3362 if (ret) 3363 goto err_vectors; 3364 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3365 if (ret) 3366 goto err_vectors; 3367 } 3368 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3369 if (vtype != ICE_VSI_CTRL) 3370 /* Do not exit if configuring RSS had an issue, at 3371 * least receive traffic on first queue. Hence no 3372 * need to capture return value 3373 */ 3374 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3375 ice_vsi_cfg_rss_lut_key(vsi); 3376 break; 3377 case ICE_VSI_VF: 3378 ret = ice_vsi_alloc_q_vectors(vsi); 3379 if (ret) 3380 goto err_rings; 3381 3382 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3383 if (ret) 3384 goto err_vectors; 3385 3386 ret = ice_vsi_alloc_rings(vsi); 3387 if (ret) 3388 goto err_vectors; 3389 3390 break; 3391 case ICE_VSI_CHNL: 3392 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3393 ice_vsi_cfg_rss_lut_key(vsi); 3394 ice_vsi_set_rss_flow_fld(vsi); 3395 } 3396 break; 3397 default: 3398 break; 3399 } 3400 3401 /* configure VSI nodes based on number of queues and TC's */ 3402 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3403 /* configure VSI nodes based on number of queues and TC's. 3404 * ADQ creates VSIs for each TC/Channel but doesn't 3405 * allocate queues instead it reconfigures the PF queues 3406 * as per the TC command. So max_txqs should point to the 3407 * PF Tx queues. 3408 */ 3409 if (vtype == ICE_VSI_CHNL) 3410 max_txqs[i] = pf->num_lan_tx; 3411 else 3412 max_txqs[i] = vsi->alloc_txq; 3413 3414 if (ice_is_xdp_ena_vsi(vsi)) 3415 max_txqs[i] += vsi->num_xdp_txq; 3416 } 3417 3418 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3419 /* If MQPRIO is set, means channel code path, hence for main 3420 * VSI's, use TC as 1 3421 */ 3422 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3423 else 3424 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3425 vsi->tc_cfg.ena_tc, max_txqs); 3426 3427 if (status) { 3428 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3429 vsi->vsi_num, ice_stat_str(status)); 3430 if (init_vsi) { 3431 ret = -EIO; 3432 goto err_vectors; 3433 } else { 3434 return ice_schedule_reset(pf, ICE_RESET_PFR); 3435 } 3436 } 3437 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3438 kfree(coalesce); 3439 3440 return 0; 3441 3442 err_vectors: 3443 ice_vsi_free_q_vectors(vsi); 3444 err_rings: 3445 if (vsi->netdev) { 3446 vsi->current_netdev_flags = 0; 3447 unregister_netdev(vsi->netdev); 3448 free_netdev(vsi->netdev); 3449 vsi->netdev = NULL; 3450 } 3451 err_vsi: 3452 ice_vsi_clear(vsi); 3453 set_bit(ICE_RESET_FAILED, pf->state); 3454 kfree(coalesce); 3455 return ret; 3456 } 3457 3458 /** 3459 * ice_is_reset_in_progress - check for a reset in progress 3460 * @state: PF state field 3461 */ 3462 bool ice_is_reset_in_progress(unsigned long *state) 3463 { 3464 return test_bit(ICE_RESET_OICR_RECV, state) || 3465 test_bit(ICE_PFR_REQ, state) || 3466 test_bit(ICE_CORER_REQ, state) || 3467 test_bit(ICE_GLOBR_REQ, state); 3468 } 3469 3470 /** 3471 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3472 * @pf: pointer to the PF structure 3473 * @timeout: length of time to wait, in jiffies 3474 * 3475 * Wait (sleep) for a short time until the driver finishes cleaning up from 3476 * a device reset. The caller must be able to sleep. Use this to delay 3477 * operations that could fail while the driver is cleaning up after a device 3478 * reset. 3479 * 3480 * Returns 0 on success, -EBUSY if the reset is not finished within the 3481 * timeout, and -ERESTARTSYS if the thread was interrupted. 3482 */ 3483 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3484 { 3485 long ret; 3486 3487 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3488 !ice_is_reset_in_progress(pf->state), 3489 timeout); 3490 if (ret < 0) 3491 return ret; 3492 else if (!ret) 3493 return -EBUSY; 3494 else 3495 return 0; 3496 } 3497 3498 /** 3499 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3500 * @vsi: VSI being configured 3501 * @ctx: the context buffer returned from AQ VSI update command 3502 */ 3503 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3504 { 3505 vsi->info.mapping_flags = ctx->info.mapping_flags; 3506 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3507 sizeof(vsi->info.q_mapping)); 3508 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3509 sizeof(vsi->info.tc_mapping)); 3510 } 3511 3512 /** 3513 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3514 * @vsi: the VSI being configured 3515 * @ena_tc: TC map to be enabled 3516 */ 3517 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3518 { 3519 struct net_device *netdev = vsi->netdev; 3520 struct ice_pf *pf = vsi->back; 3521 int numtc = vsi->tc_cfg.numtc; 3522 struct ice_dcbx_cfg *dcbcfg; 3523 u8 netdev_tc; 3524 int i; 3525 3526 if (!netdev) 3527 return; 3528 3529 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3530 if (vsi->type == ICE_VSI_CHNL) 3531 return; 3532 3533 if (!ena_tc) { 3534 netdev_reset_tc(netdev); 3535 return; 3536 } 3537 3538 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3539 numtc = vsi->all_numtc; 3540 3541 if (netdev_set_num_tc(netdev, numtc)) 3542 return; 3543 3544 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3545 3546 ice_for_each_traffic_class(i) 3547 if (vsi->tc_cfg.ena_tc & BIT(i)) 3548 netdev_set_tc_queue(netdev, 3549 vsi->tc_cfg.tc_info[i].netdev_tc, 3550 vsi->tc_cfg.tc_info[i].qcount_tx, 3551 vsi->tc_cfg.tc_info[i].qoffset); 3552 /* setup TC queue map for CHNL TCs */ 3553 ice_for_each_chnl_tc(i) { 3554 if (!(vsi->all_enatc & BIT(i))) 3555 break; 3556 if (!vsi->mqprio_qopt.qopt.count[i]) 3557 break; 3558 netdev_set_tc_queue(netdev, i, 3559 vsi->mqprio_qopt.qopt.count[i], 3560 vsi->mqprio_qopt.qopt.offset[i]); 3561 } 3562 3563 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3564 return; 3565 3566 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3567 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3568 3569 /* Get the mapped netdev TC# for the UP */ 3570 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3571 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3572 } 3573 } 3574 3575 /** 3576 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3577 * @vsi: the VSI being configured, 3578 * @ctxt: VSI context structure 3579 * @ena_tc: number of traffic classes to enable 3580 * 3581 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3582 */ 3583 static void 3584 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3585 u8 ena_tc) 3586 { 3587 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3588 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3589 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3590 u8 netdev_tc = 0; 3591 int i; 3592 3593 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3594 3595 pow = order_base_2(tc0_qcount); 3596 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3597 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3598 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3599 3600 ice_for_each_traffic_class(i) { 3601 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3602 /* TC is not enabled */ 3603 vsi->tc_cfg.tc_info[i].qoffset = 0; 3604 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3605 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3606 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3607 ctxt->info.tc_mapping[i] = 0; 3608 continue; 3609 } 3610 3611 offset = vsi->mqprio_qopt.qopt.offset[i]; 3612 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3613 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3614 vsi->tc_cfg.tc_info[i].qoffset = offset; 3615 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3616 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3617 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3618 } 3619 3620 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3621 ice_for_each_chnl_tc(i) { 3622 if (!(vsi->all_enatc & BIT(i))) 3623 continue; 3624 offset = vsi->mqprio_qopt.qopt.offset[i]; 3625 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3626 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3627 } 3628 } 3629 3630 /* Set actual Tx/Rx queue pairs */ 3631 vsi->num_txq = offset + qcount_tx; 3632 vsi->num_rxq = offset + qcount_rx; 3633 3634 /* Setup queue TC[0].qmap for given VSI context */ 3635 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3636 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3637 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3638 3639 /* Find queue count available for channel VSIs and starting offset 3640 * for channel VSIs 3641 */ 3642 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3643 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3644 vsi->next_base_q = tc0_qcount; 3645 } 3646 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3647 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3648 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3649 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3650 } 3651 3652 /** 3653 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3654 * @vsi: VSI to be configured 3655 * @ena_tc: TC bitmap 3656 * 3657 * VSI queues expected to be quiesced before calling this function 3658 */ 3659 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3660 { 3661 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3662 struct ice_pf *pf = vsi->back; 3663 struct ice_vsi_ctx *ctx; 3664 enum ice_status status; 3665 struct device *dev; 3666 int i, ret = 0; 3667 u8 num_tc = 0; 3668 3669 dev = ice_pf_to_dev(pf); 3670 if (vsi->tc_cfg.ena_tc == ena_tc && 3671 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3672 return ret; 3673 3674 ice_for_each_traffic_class(i) { 3675 /* build bitmap of enabled TCs */ 3676 if (ena_tc & BIT(i)) 3677 num_tc++; 3678 /* populate max_txqs per TC */ 3679 max_txqs[i] = vsi->alloc_txq; 3680 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3681 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3682 */ 3683 if (vsi->type == ICE_VSI_CHNL && 3684 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3685 max_txqs[i] = vsi->num_txq; 3686 } 3687 3688 vsi->tc_cfg.ena_tc = ena_tc; 3689 vsi->tc_cfg.numtc = num_tc; 3690 3691 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3692 if (!ctx) 3693 return -ENOMEM; 3694 3695 ctx->vf_num = 0; 3696 ctx->info = vsi->info; 3697 3698 if (vsi->type == ICE_VSI_PF && 3699 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3700 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3701 else 3702 ice_vsi_setup_q_map(vsi, ctx); 3703 3704 /* must to indicate which section of VSI context are being modified */ 3705 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3706 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3707 if (status) { 3708 dev_info(dev, "Failed VSI Update\n"); 3709 ret = -EIO; 3710 goto out; 3711 } 3712 3713 if (vsi->type == ICE_VSI_PF && 3714 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3715 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, 3716 max_txqs); 3717 else 3718 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3719 vsi->tc_cfg.ena_tc, max_txqs); 3720 3721 if (status) { 3722 dev_err(dev, "VSI %d failed TC config, error %s\n", 3723 vsi->vsi_num, ice_stat_str(status)); 3724 ret = -EIO; 3725 goto out; 3726 } 3727 ice_vsi_update_q_map(vsi, ctx); 3728 vsi->info.valid_sections = 0; 3729 3730 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3731 out: 3732 kfree(ctx); 3733 return ret; 3734 } 3735 3736 /** 3737 * ice_update_ring_stats - Update ring statistics 3738 * @stats: stats to be updated 3739 * @pkts: number of processed packets 3740 * @bytes: number of processed bytes 3741 * 3742 * This function assumes that caller has acquired a u64_stats_sync lock. 3743 */ 3744 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3745 { 3746 stats->bytes += bytes; 3747 stats->pkts += pkts; 3748 } 3749 3750 /** 3751 * ice_update_tx_ring_stats - Update Tx ring specific counters 3752 * @tx_ring: ring to update 3753 * @pkts: number of processed packets 3754 * @bytes: number of processed bytes 3755 */ 3756 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3757 { 3758 u64_stats_update_begin(&tx_ring->syncp); 3759 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3760 u64_stats_update_end(&tx_ring->syncp); 3761 } 3762 3763 /** 3764 * ice_update_rx_ring_stats - Update Rx ring specific counters 3765 * @rx_ring: ring to update 3766 * @pkts: number of processed packets 3767 * @bytes: number of processed bytes 3768 */ 3769 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3770 { 3771 u64_stats_update_begin(&rx_ring->syncp); 3772 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3773 u64_stats_update_end(&rx_ring->syncp); 3774 } 3775 3776 /** 3777 * ice_status_to_errno - convert from enum ice_status to Linux errno 3778 * @err: ice_status value to convert 3779 */ 3780 int ice_status_to_errno(enum ice_status err) 3781 { 3782 switch (err) { 3783 case ICE_SUCCESS: 3784 return 0; 3785 case ICE_ERR_DOES_NOT_EXIST: 3786 return -ENOENT; 3787 case ICE_ERR_OUT_OF_RANGE: 3788 case ICE_ERR_AQ_ERROR: 3789 case ICE_ERR_AQ_TIMEOUT: 3790 case ICE_ERR_AQ_EMPTY: 3791 case ICE_ERR_AQ_FW_CRITICAL: 3792 return -EIO; 3793 case ICE_ERR_PARAM: 3794 case ICE_ERR_INVAL_SIZE: 3795 return -EINVAL; 3796 case ICE_ERR_NO_MEMORY: 3797 return -ENOMEM; 3798 case ICE_ERR_MAX_LIMIT: 3799 return -EAGAIN; 3800 case ICE_ERR_RESET_ONGOING: 3801 return -EBUSY; 3802 case ICE_ERR_AQ_FULL: 3803 return -ENOSPC; 3804 default: 3805 return -EINVAL; 3806 } 3807 } 3808 3809 /** 3810 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3811 * @sw: switch to check if its default forwarding VSI is free 3812 * 3813 * Return true if the default forwarding VSI is already being used, else returns 3814 * false signalling that it's available to use. 3815 */ 3816 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3817 { 3818 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3819 } 3820 3821 /** 3822 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3823 * @sw: switch for the default forwarding VSI to compare against 3824 * @vsi: VSI to compare against default forwarding VSI 3825 * 3826 * If this VSI passed in is the default forwarding VSI then return true, else 3827 * return false 3828 */ 3829 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3830 { 3831 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3832 } 3833 3834 /** 3835 * ice_set_dflt_vsi - set the default forwarding VSI 3836 * @sw: switch used to assign the default forwarding VSI 3837 * @vsi: VSI getting set as the default forwarding VSI on the switch 3838 * 3839 * If the VSI passed in is already the default VSI and it's enabled just return 3840 * success. 3841 * 3842 * If there is already a default VSI on the switch and it's enabled then return 3843 * -EEXIST since there can only be one default VSI per switch. 3844 * 3845 * Otherwise try to set the VSI passed in as the switch's default VSI and 3846 * return the result. 3847 */ 3848 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3849 { 3850 enum ice_status status; 3851 struct device *dev; 3852 3853 if (!sw || !vsi) 3854 return -EINVAL; 3855 3856 dev = ice_pf_to_dev(vsi->back); 3857 3858 /* the VSI passed in is already the default VSI */ 3859 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3860 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3861 vsi->vsi_num); 3862 return 0; 3863 } 3864 3865 /* another VSI is already the default VSI for this switch */ 3866 if (ice_is_dflt_vsi_in_use(sw)) { 3867 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3868 sw->dflt_vsi->vsi_num); 3869 return -EEXIST; 3870 } 3871 3872 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3873 if (status) { 3874 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3875 vsi->vsi_num, ice_stat_str(status)); 3876 return -EIO; 3877 } 3878 3879 sw->dflt_vsi = vsi; 3880 sw->dflt_vsi_ena = true; 3881 3882 return 0; 3883 } 3884 3885 /** 3886 * ice_clear_dflt_vsi - clear the default forwarding VSI 3887 * @sw: switch used to clear the default VSI 3888 * 3889 * If the switch has no default VSI or it's not enabled then return error. 3890 * 3891 * Otherwise try to clear the default VSI and return the result. 3892 */ 3893 int ice_clear_dflt_vsi(struct ice_sw *sw) 3894 { 3895 struct ice_vsi *dflt_vsi; 3896 enum ice_status status; 3897 struct device *dev; 3898 3899 if (!sw) 3900 return -EINVAL; 3901 3902 dev = ice_pf_to_dev(sw->pf); 3903 3904 dflt_vsi = sw->dflt_vsi; 3905 3906 /* there is no default VSI configured */ 3907 if (!ice_is_dflt_vsi_in_use(sw)) 3908 return -ENODEV; 3909 3910 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3911 ICE_FLTR_RX); 3912 if (status) { 3913 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3914 dflt_vsi->vsi_num, ice_stat_str(status)); 3915 return -EIO; 3916 } 3917 3918 sw->dflt_vsi = NULL; 3919 sw->dflt_vsi_ena = false; 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * ice_get_link_speed_mbps - get link speed in Mbps 3926 * @vsi: the VSI whose link speed is being queried 3927 * 3928 * Return current VSI link speed and 0 if the speed is unknown. 3929 */ 3930 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3931 { 3932 switch (vsi->port_info->phy.link_info.link_speed) { 3933 case ICE_AQ_LINK_SPEED_100GB: 3934 return SPEED_100000; 3935 case ICE_AQ_LINK_SPEED_50GB: 3936 return SPEED_50000; 3937 case ICE_AQ_LINK_SPEED_40GB: 3938 return SPEED_40000; 3939 case ICE_AQ_LINK_SPEED_25GB: 3940 return SPEED_25000; 3941 case ICE_AQ_LINK_SPEED_20GB: 3942 return SPEED_20000; 3943 case ICE_AQ_LINK_SPEED_10GB: 3944 return SPEED_10000; 3945 case ICE_AQ_LINK_SPEED_5GB: 3946 return SPEED_5000; 3947 case ICE_AQ_LINK_SPEED_2500MB: 3948 return SPEED_2500; 3949 case ICE_AQ_LINK_SPEED_1000MB: 3950 return SPEED_1000; 3951 case ICE_AQ_LINK_SPEED_100MB: 3952 return SPEED_100; 3953 case ICE_AQ_LINK_SPEED_10MB: 3954 return SPEED_10; 3955 case ICE_AQ_LINK_SPEED_UNKNOWN: 3956 default: 3957 return 0; 3958 } 3959 } 3960 3961 /** 3962 * ice_get_link_speed_kbps - get link speed in Kbps 3963 * @vsi: the VSI whose link speed is being queried 3964 * 3965 * Return current VSI link speed and 0 if the speed is unknown. 3966 */ 3967 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3968 { 3969 int speed_mbps; 3970 3971 speed_mbps = ice_get_link_speed_mbps(vsi); 3972 3973 return speed_mbps * 1000; 3974 } 3975 3976 /** 3977 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3978 * @vsi: VSI to be configured 3979 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3980 * 3981 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3982 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3983 * on TC 0. 3984 */ 3985 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3986 { 3987 struct ice_pf *pf = vsi->back; 3988 enum ice_status status; 3989 struct device *dev; 3990 int speed; 3991 3992 dev = ice_pf_to_dev(pf); 3993 if (!vsi->port_info) { 3994 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3995 vsi->idx, vsi->type); 3996 return -EINVAL; 3997 } 3998 3999 speed = ice_get_link_speed_kbps(vsi); 4000 if (min_tx_rate > (u64)speed) { 4001 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4002 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4003 speed); 4004 return -EINVAL; 4005 } 4006 4007 /* Configure min BW for VSI limit */ 4008 if (min_tx_rate) { 4009 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4010 ICE_MIN_BW, min_tx_rate); 4011 if (status) { 4012 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4013 min_tx_rate, ice_vsi_type_str(vsi->type), 4014 vsi->idx); 4015 return -EIO; 4016 } 4017 4018 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4019 min_tx_rate, ice_vsi_type_str(vsi->type)); 4020 } else { 4021 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4022 vsi->idx, 0, 4023 ICE_MIN_BW); 4024 if (status) { 4025 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4026 ice_vsi_type_str(vsi->type), vsi->idx); 4027 return -EIO; 4028 } 4029 4030 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4031 ice_vsi_type_str(vsi->type), vsi->idx); 4032 } 4033 4034 return 0; 4035 } 4036 4037 /** 4038 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4039 * @vsi: VSI to be configured 4040 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4041 * 4042 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4043 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4044 * on TC 0. 4045 */ 4046 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4047 { 4048 struct ice_pf *pf = vsi->back; 4049 enum ice_status status; 4050 struct device *dev; 4051 int speed; 4052 4053 dev = ice_pf_to_dev(pf); 4054 if (!vsi->port_info) { 4055 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4056 vsi->idx, vsi->type); 4057 return -EINVAL; 4058 } 4059 4060 speed = ice_get_link_speed_kbps(vsi); 4061 if (max_tx_rate > (u64)speed) { 4062 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4063 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4064 speed); 4065 return -EINVAL; 4066 } 4067 4068 /* Configure max BW for VSI limit */ 4069 if (max_tx_rate) { 4070 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4071 ICE_MAX_BW, max_tx_rate); 4072 if (status) { 4073 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4074 max_tx_rate, ice_vsi_type_str(vsi->type), 4075 vsi->idx); 4076 return -EIO; 4077 } 4078 4079 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4080 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4081 } else { 4082 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4083 vsi->idx, 0, 4084 ICE_MAX_BW); 4085 if (status) { 4086 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4087 ice_vsi_type_str(vsi->type), vsi->idx); 4088 return -EIO; 4089 } 4090 4091 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4092 ice_vsi_type_str(vsi->type), vsi->idx); 4093 } 4094 4095 return 0; 4096 } 4097 4098 /** 4099 * ice_set_link - turn on/off physical link 4100 * @vsi: VSI to modify physical link on 4101 * @ena: turn on/off physical link 4102 */ 4103 int ice_set_link(struct ice_vsi *vsi, bool ena) 4104 { 4105 struct device *dev = ice_pf_to_dev(vsi->back); 4106 struct ice_port_info *pi = vsi->port_info; 4107 struct ice_hw *hw = pi->hw; 4108 enum ice_status status; 4109 4110 if (vsi->type != ICE_VSI_PF) 4111 return -EINVAL; 4112 4113 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4114 4115 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4116 * this is not a fatal error, so print a warning message and return 4117 * a success code. Return an error if FW returns an error code other 4118 * than ICE_AQ_RC_EMODE 4119 */ 4120 if (status == ICE_ERR_AQ_ERROR) { 4121 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4122 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 4123 (ena ? "ON" : "OFF"), ice_stat_str(status), 4124 ice_aq_str(hw->adminq.sq_last_status)); 4125 } else if (status) { 4126 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 4127 (ena ? "ON" : "OFF"), ice_stat_str(status), 4128 ice_aq_str(hw->adminq.sq_last_status)); 4129 return -EIO; 4130 } 4131 4132 return 0; 4133 } 4134 4135 /** 4136 * ice_is_feature_supported 4137 * @pf: pointer to the struct ice_pf instance 4138 * @f: feature enum to be checked 4139 * 4140 * returns true if feature is supported, false otherwise 4141 */ 4142 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4143 { 4144 if (f < 0 || f >= ICE_F_MAX) 4145 return false; 4146 4147 return test_bit(f, pf->features); 4148 } 4149 4150 /** 4151 * ice_set_feature_support 4152 * @pf: pointer to the struct ice_pf instance 4153 * @f: feature enum to set 4154 */ 4155 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4156 { 4157 if (f < 0 || f >= ICE_F_MAX) 4158 return; 4159 4160 set_bit(f, pf->features); 4161 } 4162 4163 /** 4164 * ice_clear_feature_support 4165 * @pf: pointer to the struct ice_pf instance 4166 * @f: feature enum to clear 4167 */ 4168 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4169 { 4170 if (f < 0 || f >= ICE_F_MAX) 4171 return; 4172 4173 clear_bit(f, pf->features); 4174 } 4175 4176 /** 4177 * ice_init_feature_support 4178 * @pf: pointer to the struct ice_pf instance 4179 * 4180 * called during init to setup supported feature 4181 */ 4182 void ice_init_feature_support(struct ice_pf *pf) 4183 { 4184 switch (pf->hw.device_id) { 4185 case ICE_DEV_ID_E810C_BACKPLANE: 4186 case ICE_DEV_ID_E810C_QSFP: 4187 case ICE_DEV_ID_E810C_SFP: 4188 ice_set_feature_support(pf, ICE_F_DSCP); 4189 if (ice_is_e810t(&pf->hw)) 4190 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4191 break; 4192 default: 4193 break; 4194 } 4195 } 4196 4197 /** 4198 * ice_vsi_update_security - update security block in VSI 4199 * @vsi: pointer to VSI structure 4200 * @fill: function pointer to fill ctx 4201 */ 4202 int 4203 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4204 { 4205 struct ice_vsi_ctx ctx = { 0 }; 4206 4207 ctx.info = vsi->info; 4208 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4209 fill(&ctx); 4210 4211 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4212 return -ENODEV; 4213 4214 vsi->info = ctx.info; 4215 return 0; 4216 } 4217 4218 /** 4219 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4220 * @ctx: pointer to VSI ctx structure 4221 */ 4222 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4223 { 4224 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4225 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4226 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4227 } 4228 4229 /** 4230 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4231 * @ctx: pointer to VSI ctx structure 4232 */ 4233 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4234 { 4235 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4236 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4237 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4238 } 4239 4240 /** 4241 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4242 * @ctx: pointer to VSI ctx structure 4243 */ 4244 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4245 { 4246 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4247 } 4248 4249 /** 4250 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4251 * @ctx: pointer to VSI ctx structure 4252 */ 4253 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4254 { 4255 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4256 } 4257