1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_dcb_lib.h" 7 8 /** 9 * ice_setup_rx_ctx - Configure a receive ring context 10 * @ring: The Rx ring to configure 11 * 12 * Configure the Rx descriptor ring in RLAN context. 13 */ 14 static int ice_setup_rx_ctx(struct ice_ring *ring) 15 { 16 struct ice_vsi *vsi = ring->vsi; 17 struct ice_hw *hw = &vsi->back->hw; 18 u32 rxdid = ICE_RXDID_FLEX_NIC; 19 struct ice_rlan_ctx rlan_ctx; 20 u32 regval; 21 u16 pf_q; 22 int err; 23 24 /* what is Rx queue number in global space of 2K Rx queues */ 25 pf_q = vsi->rxq_map[ring->q_index]; 26 27 /* clear the context structure first */ 28 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 29 30 rlan_ctx.base = ring->dma >> 7; 31 32 rlan_ctx.qlen = ring->count; 33 34 /* Receive Packet Data Buffer Size. 35 * The Packet Data Buffer Size is defined in 128 byte units. 36 */ 37 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 38 39 /* use 32 byte descriptors */ 40 rlan_ctx.dsize = 1; 41 42 /* Strip the Ethernet CRC bytes before the packet is posted to host 43 * memory. 44 */ 45 rlan_ctx.crcstrip = 1; 46 47 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 48 rlan_ctx.l2tsel = 1; 49 50 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 51 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 52 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 53 54 /* This controls whether VLAN is stripped from inner headers 55 * The VLAN in the inner L2 header is stripped to the receive 56 * descriptor if enabled by this flag. 57 */ 58 rlan_ctx.showiv = 0; 59 60 /* Max packet size for this queue - must not be set to a larger value 61 * than 5 x DBUF 62 */ 63 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 64 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 65 66 /* Rx queue threshold in units of 64 */ 67 rlan_ctx.lrxqthresh = 1; 68 69 /* Enable Flexible Descriptors in the queue context which 70 * allows this driver to select a specific receive descriptor format 71 */ 72 if (vsi->type != ICE_VSI_VF) { 73 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 74 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 75 QRXFLXP_CNTXT_RXDID_IDX_M; 76 77 /* increasing context priority to pick up profile ID; 78 * default is 0x01; setting to 0x03 to ensure profile 79 * is programming if prev context is of same priority 80 */ 81 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 82 QRXFLXP_CNTXT_RXDID_PRIO_M; 83 84 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 85 } 86 87 /* Absolute queue number out of 2K needs to be passed */ 88 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 89 if (err) { 90 dev_err(&vsi->back->pdev->dev, 91 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 92 pf_q, err); 93 return -EIO; 94 } 95 96 if (vsi->type == ICE_VSI_VF) 97 return 0; 98 99 /* init queue specific tail register */ 100 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 101 writel(0, ring->tail); 102 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 103 104 return 0; 105 } 106 107 /** 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 109 * @ring: The Tx ring to configure 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 111 * @pf_q: queue index in the PF space 112 * 113 * Configure the Tx descriptor ring in TLAN context. 114 */ 115 static void 116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 117 { 118 struct ice_vsi *vsi = ring->vsi; 119 struct ice_hw *hw = &vsi->back->hw; 120 121 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 122 123 tlan_ctx->port_num = vsi->port_info->lport; 124 125 /* Transmit Queue Length */ 126 tlan_ctx->qlen = ring->count; 127 128 ice_set_cgd_num(tlan_ctx, ring); 129 130 /* PF number */ 131 tlan_ctx->pf_num = hw->pf_id; 132 133 /* queue belongs to a specific VSI type 134 * VF / VM index should be programmed per vmvf_type setting: 135 * for vmvf_type = VF, it is VF number between 0-256 136 * for vmvf_type = VM, it is VM number between 0-767 137 * for PF or EMP this field should be set to zero 138 */ 139 switch (vsi->type) { 140 case ICE_VSI_LB: 141 /* fall through */ 142 case ICE_VSI_PF: 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 144 break; 145 case ICE_VSI_VF: 146 /* Firmware expects vmvf_num to be absolute VF ID */ 147 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 148 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 149 break; 150 default: 151 return; 152 } 153 154 /* make sure the context is associated with the right VSI */ 155 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 156 157 tlan_ctx->tso_ena = ICE_TX_LEGACY; 158 tlan_ctx->tso_qnum = pf_q; 159 160 /* Legacy or Advanced Host Interface: 161 * 0: Advanced Host Interface 162 * 1: Legacy Host Interface 163 */ 164 tlan_ctx->legacy_int = ICE_TX_LEGACY; 165 } 166 167 /** 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 169 * @pf: the PF being configured 170 * @pf_q: the PF queue 171 * @ena: enable or disable state of the queue 172 * 173 * This routine will wait for the given Rx queue of the PF to reach the 174 * enabled or disabled state. 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after 176 * multiple retries; else will return 0 in case of success. 177 */ 178 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 179 { 180 int i; 181 182 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 183 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 184 QRX_CTRL_QENA_STAT_M)) 185 return 0; 186 187 usleep_range(20, 40); 188 } 189 190 return -ETIMEDOUT; 191 } 192 193 /** 194 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 195 * @vsi: the VSI being configured 196 * @ena: start or stop the Rx rings 197 */ 198 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 199 { 200 struct ice_pf *pf = vsi->back; 201 struct ice_hw *hw = &pf->hw; 202 int i, ret = 0; 203 204 for (i = 0; i < vsi->num_rxq; i++) { 205 int pf_q = vsi->rxq_map[i]; 206 u32 rx_reg; 207 208 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 209 210 /* Skip if the queue is already in the requested state */ 211 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 212 continue; 213 214 /* turn on/off the queue */ 215 if (ena) 216 rx_reg |= QRX_CTRL_QENA_REQ_M; 217 else 218 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 219 wr32(hw, QRX_CTRL(pf_q), rx_reg); 220 221 /* wait for the change to finish */ 222 ret = ice_pf_rxq_wait(pf, pf_q, ena); 223 if (ret) { 224 dev_err(&pf->pdev->dev, 225 "VSI idx %d Rx ring %d %sable timeout\n", 226 vsi->idx, pf_q, (ena ? "en" : "dis")); 227 break; 228 } 229 } 230 231 return ret; 232 } 233 234 /** 235 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 236 * @vsi: VSI pointer 237 * 238 * On error: returns error code (negative) 239 * On success: returns 0 240 */ 241 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 242 { 243 struct ice_pf *pf = vsi->back; 244 245 /* allocate memory for both Tx and Rx ring pointers */ 246 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 247 sizeof(*vsi->tx_rings), GFP_KERNEL); 248 if (!vsi->tx_rings) 249 goto err_txrings; 250 251 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 252 sizeof(*vsi->rx_rings), GFP_KERNEL); 253 if (!vsi->rx_rings) 254 goto err_rxrings; 255 256 /* There is no need to allocate q_vectors for a loopback VSI. */ 257 if (vsi->type == ICE_VSI_LB) 258 return 0; 259 260 /* allocate memory for q_vector pointers */ 261 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors, 262 sizeof(*vsi->q_vectors), GFP_KERNEL); 263 if (!vsi->q_vectors) 264 goto err_vectors; 265 266 return 0; 267 268 err_vectors: 269 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 270 err_rxrings: 271 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 272 err_txrings: 273 return -ENOMEM; 274 } 275 276 /** 277 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 278 * @vsi: the VSI being configured 279 */ 280 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 281 { 282 switch (vsi->type) { 283 case ICE_VSI_PF: 284 /* fall through */ 285 case ICE_VSI_LB: 286 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 287 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 288 break; 289 default: 290 dev_dbg(&vsi->back->pdev->dev, 291 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 292 vsi->type); 293 break; 294 } 295 } 296 297 /** 298 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 299 * @vsi: the VSI being configured 300 * @vf_id: ID of the VF being configured 301 * 302 * Return 0 on success and a negative value on error 303 */ 304 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 305 { 306 struct ice_pf *pf = vsi->back; 307 struct ice_vf *vf = NULL; 308 309 if (vsi->type == ICE_VSI_VF) 310 vsi->vf_id = vf_id; 311 312 switch (vsi->type) { 313 case ICE_VSI_PF: 314 vsi->alloc_txq = pf->num_lan_tx; 315 vsi->alloc_rxq = pf->num_lan_rx; 316 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); 317 break; 318 case ICE_VSI_VF: 319 vf = &pf->vf[vsi->vf_id]; 320 vsi->alloc_txq = vf->num_vf_qs; 321 vsi->alloc_rxq = vf->num_vf_qs; 322 /* pf->num_vf_msix includes (VF miscellaneous vector + 323 * data queue interrupts). Since vsi->num_q_vectors is number 324 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 325 * original vector count 326 */ 327 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 328 break; 329 case ICE_VSI_LB: 330 vsi->alloc_txq = 1; 331 vsi->alloc_rxq = 1; 332 break; 333 default: 334 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 335 break; 336 } 337 338 ice_vsi_set_num_desc(vsi); 339 } 340 341 /** 342 * ice_get_free_slot - get the next non-NULL location index in array 343 * @array: array to search 344 * @size: size of the array 345 * @curr: last known occupied index to be used as a search hint 346 * 347 * void * is being used to keep the functionality generic. This lets us use this 348 * function on any array of pointers. 349 */ 350 static int ice_get_free_slot(void *array, int size, int curr) 351 { 352 int **tmp_array = (int **)array; 353 int next; 354 355 if (curr < (size - 1) && !tmp_array[curr + 1]) { 356 next = curr + 1; 357 } else { 358 int i = 0; 359 360 while ((i < size) && (tmp_array[i])) 361 i++; 362 if (i == size) 363 next = ICE_NO_VSI; 364 else 365 next = i; 366 } 367 return next; 368 } 369 370 /** 371 * ice_vsi_delete - delete a VSI from the switch 372 * @vsi: pointer to VSI being removed 373 */ 374 void ice_vsi_delete(struct ice_vsi *vsi) 375 { 376 struct ice_pf *pf = vsi->back; 377 struct ice_vsi_ctx *ctxt; 378 enum ice_status status; 379 380 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 381 if (!ctxt) 382 return; 383 384 if (vsi->type == ICE_VSI_VF) 385 ctxt->vf_num = vsi->vf_id; 386 ctxt->vsi_num = vsi->vsi_num; 387 388 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 389 390 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 391 if (status) 392 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 393 vsi->vsi_num); 394 395 devm_kfree(&pf->pdev->dev, ctxt); 396 } 397 398 /** 399 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 400 * @vsi: pointer to VSI being cleared 401 */ 402 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 403 { 404 struct ice_pf *pf = vsi->back; 405 406 /* free the ring and vector containers */ 407 if (vsi->q_vectors) { 408 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 409 vsi->q_vectors = NULL; 410 } 411 if (vsi->tx_rings) { 412 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 413 vsi->tx_rings = NULL; 414 } 415 if (vsi->rx_rings) { 416 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 417 vsi->rx_rings = NULL; 418 } 419 } 420 421 /** 422 * ice_vsi_clear - clean up and deallocate the provided VSI 423 * @vsi: pointer to VSI being cleared 424 * 425 * This deallocates the VSI's queue resources, removes it from the PF's 426 * VSI array if necessary, and deallocates the VSI 427 * 428 * Returns 0 on success, negative on failure 429 */ 430 int ice_vsi_clear(struct ice_vsi *vsi) 431 { 432 struct ice_pf *pf = NULL; 433 434 if (!vsi) 435 return 0; 436 437 if (!vsi->back) 438 return -EINVAL; 439 440 pf = vsi->back; 441 442 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 443 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 444 vsi->idx); 445 return -EINVAL; 446 } 447 448 mutex_lock(&pf->sw_mutex); 449 /* updates the PF for this cleared VSI */ 450 451 pf->vsi[vsi->idx] = NULL; 452 if (vsi->idx < pf->next_vsi) 453 pf->next_vsi = vsi->idx; 454 455 ice_vsi_free_arrays(vsi); 456 mutex_unlock(&pf->sw_mutex); 457 devm_kfree(&pf->pdev->dev, vsi); 458 459 return 0; 460 } 461 462 /** 463 * ice_msix_clean_rings - MSIX mode Interrupt Handler 464 * @irq: interrupt number 465 * @data: pointer to a q_vector 466 */ 467 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 468 { 469 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 470 471 if (!q_vector->tx.ring && !q_vector->rx.ring) 472 return IRQ_HANDLED; 473 474 napi_schedule(&q_vector->napi); 475 476 return IRQ_HANDLED; 477 } 478 479 /** 480 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 481 * @pf: board private structure 482 * @type: type of VSI 483 * @vf_id: ID of the VF being configured 484 * 485 * returns a pointer to a VSI on success, NULL on failure. 486 */ 487 static struct ice_vsi * 488 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 489 { 490 struct ice_vsi *vsi = NULL; 491 492 /* Need to protect the allocation of the VSIs at the PF level */ 493 mutex_lock(&pf->sw_mutex); 494 495 /* If we have already allocated our maximum number of VSIs, 496 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 497 * is available to be populated 498 */ 499 if (pf->next_vsi == ICE_NO_VSI) { 500 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 501 goto unlock_pf; 502 } 503 504 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 505 if (!vsi) 506 goto unlock_pf; 507 508 vsi->type = type; 509 vsi->back = pf; 510 set_bit(__ICE_DOWN, vsi->state); 511 vsi->idx = pf->next_vsi; 512 vsi->work_lmt = ICE_DFLT_IRQ_WORK; 513 514 if (type == ICE_VSI_VF) 515 ice_vsi_set_num_qs(vsi, vf_id); 516 else 517 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 518 519 switch (vsi->type) { 520 case ICE_VSI_PF: 521 if (ice_vsi_alloc_arrays(vsi)) 522 goto err_rings; 523 524 /* Setup default MSIX irq handler for VSI */ 525 vsi->irq_handler = ice_msix_clean_rings; 526 break; 527 case ICE_VSI_VF: 528 if (ice_vsi_alloc_arrays(vsi)) 529 goto err_rings; 530 break; 531 case ICE_VSI_LB: 532 if (ice_vsi_alloc_arrays(vsi)) 533 goto err_rings; 534 break; 535 default: 536 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 537 goto unlock_pf; 538 } 539 540 /* fill VSI slot in the PF struct */ 541 pf->vsi[pf->next_vsi] = vsi; 542 543 /* prepare pf->next_vsi for next use */ 544 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 545 pf->next_vsi); 546 goto unlock_pf; 547 548 err_rings: 549 devm_kfree(&pf->pdev->dev, vsi); 550 vsi = NULL; 551 unlock_pf: 552 mutex_unlock(&pf->sw_mutex); 553 return vsi; 554 } 555 556 /** 557 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 558 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 559 * 560 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 561 */ 562 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 563 { 564 int offset, i; 565 566 mutex_lock(qs_cfg->qs_mutex); 567 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 568 0, qs_cfg->q_count, 0); 569 if (offset >= qs_cfg->pf_map_size) { 570 mutex_unlock(qs_cfg->qs_mutex); 571 return -ENOMEM; 572 } 573 574 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 575 for (i = 0; i < qs_cfg->q_count; i++) 576 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset; 577 mutex_unlock(qs_cfg->qs_mutex); 578 579 return 0; 580 } 581 582 /** 583 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 584 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 585 * 586 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 587 */ 588 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 589 { 590 int i, index = 0; 591 592 mutex_lock(qs_cfg->qs_mutex); 593 for (i = 0; i < qs_cfg->q_count; i++) { 594 index = find_next_zero_bit(qs_cfg->pf_map, 595 qs_cfg->pf_map_size, index); 596 if (index >= qs_cfg->pf_map_size) 597 goto err_scatter; 598 set_bit(index, qs_cfg->pf_map); 599 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index; 600 } 601 mutex_unlock(qs_cfg->qs_mutex); 602 603 return 0; 604 err_scatter: 605 for (index = 0; index < i; index++) { 606 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 607 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 608 } 609 mutex_unlock(qs_cfg->qs_mutex); 610 611 return -ENOMEM; 612 } 613 614 /** 615 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 616 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 617 * 618 * This function first tries to find contiguous space. If it is not successful, 619 * it tries with the scatter approach. 620 * 621 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 622 */ 623 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 624 { 625 int ret = 0; 626 627 ret = __ice_vsi_get_qs_contig(qs_cfg); 628 if (ret) { 629 /* contig failed, so try with scatter approach */ 630 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 631 qs_cfg->q_count = min_t(u16, qs_cfg->q_count, 632 qs_cfg->scatter_count); 633 ret = __ice_vsi_get_qs_sc(qs_cfg); 634 } 635 return ret; 636 } 637 638 /** 639 * ice_vsi_get_qs - Assign queues from PF to VSI 640 * @vsi: the VSI to assign queues to 641 * 642 * Returns 0 on success and a negative value on error 643 */ 644 static int ice_vsi_get_qs(struct ice_vsi *vsi) 645 { 646 struct ice_pf *pf = vsi->back; 647 struct ice_qs_cfg tx_qs_cfg = { 648 .qs_mutex = &pf->avail_q_mutex, 649 .pf_map = pf->avail_txqs, 650 .pf_map_size = ICE_MAX_TXQS, 651 .q_count = vsi->alloc_txq, 652 .scatter_count = ICE_MAX_SCATTER_TXQS, 653 .vsi_map = vsi->txq_map, 654 .vsi_map_offset = 0, 655 .mapping_mode = vsi->tx_mapping_mode 656 }; 657 struct ice_qs_cfg rx_qs_cfg = { 658 .qs_mutex = &pf->avail_q_mutex, 659 .pf_map = pf->avail_rxqs, 660 .pf_map_size = ICE_MAX_RXQS, 661 .q_count = vsi->alloc_rxq, 662 .scatter_count = ICE_MAX_SCATTER_RXQS, 663 .vsi_map = vsi->rxq_map, 664 .vsi_map_offset = 0, 665 .mapping_mode = vsi->rx_mapping_mode 666 }; 667 int ret = 0; 668 669 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 670 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 671 672 ret = __ice_vsi_get_qs(&tx_qs_cfg); 673 if (!ret) 674 ret = __ice_vsi_get_qs(&rx_qs_cfg); 675 676 return ret; 677 } 678 679 /** 680 * ice_vsi_put_qs - Release queues from VSI to PF 681 * @vsi: the VSI that is going to release queues 682 */ 683 void ice_vsi_put_qs(struct ice_vsi *vsi) 684 { 685 struct ice_pf *pf = vsi->back; 686 int i; 687 688 mutex_lock(&pf->avail_q_mutex); 689 690 for (i = 0; i < vsi->alloc_txq; i++) { 691 clear_bit(vsi->txq_map[i], pf->avail_txqs); 692 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 693 } 694 695 for (i = 0; i < vsi->alloc_rxq; i++) { 696 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 697 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 698 } 699 700 mutex_unlock(&pf->avail_q_mutex); 701 } 702 703 /** 704 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 705 * @vsi: the VSI being removed 706 */ 707 static void ice_rss_clean(struct ice_vsi *vsi) 708 { 709 struct ice_pf *pf; 710 711 pf = vsi->back; 712 713 if (vsi->rss_hkey_user) 714 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 715 if (vsi->rss_lut_user) 716 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 717 } 718 719 /** 720 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 721 * @vsi: the VSI being configured 722 */ 723 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 724 { 725 struct ice_hw_common_caps *cap; 726 struct ice_pf *pf = vsi->back; 727 728 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 729 vsi->rss_size = 1; 730 return; 731 } 732 733 cap = &pf->hw.func_caps.common_cap; 734 switch (vsi->type) { 735 case ICE_VSI_PF: 736 /* PF VSI will inherit RSS instance of PF */ 737 vsi->rss_table_size = cap->rss_table_size; 738 vsi->rss_size = min_t(int, num_online_cpus(), 739 BIT(cap->rss_table_entry_width)); 740 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 741 break; 742 case ICE_VSI_VF: 743 /* VF VSI will gets a small RSS table 744 * For VSI_LUT, LUT size should be set to 64 bytes 745 */ 746 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 747 vsi->rss_size = min_t(int, num_online_cpus(), 748 BIT(cap->rss_table_entry_width)); 749 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 750 break; 751 case ICE_VSI_LB: 752 break; 753 default: 754 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 755 vsi->type); 756 break; 757 } 758 } 759 760 /** 761 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 762 * @ctxt: the VSI context being set 763 * 764 * This initializes a default VSI context for all sections except the Queues. 765 */ 766 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 767 { 768 u32 table = 0; 769 770 memset(&ctxt->info, 0, sizeof(ctxt->info)); 771 /* VSI's should be allocated from shared pool */ 772 ctxt->alloc_from_pool = true; 773 /* Src pruning enabled by default */ 774 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 775 /* Traffic from VSI can be sent to LAN */ 776 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 777 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 778 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 779 * packets untagged/tagged. 780 */ 781 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 782 ICE_AQ_VSI_VLAN_MODE_M) >> 783 ICE_AQ_VSI_VLAN_MODE_S); 784 /* Have 1:1 UP mapping for both ingress/egress tables */ 785 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 786 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 787 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 788 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 789 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 790 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 791 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 792 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 793 ctxt->info.ingress_table = cpu_to_le32(table); 794 ctxt->info.egress_table = cpu_to_le32(table); 795 /* Have 1:1 UP mapping for outer to inner UP table */ 796 ctxt->info.outer_up_table = cpu_to_le32(table); 797 /* No Outer tag support outer_tag_flags remains to zero */ 798 } 799 800 /** 801 * ice_vsi_setup_q_map - Setup a VSI queue map 802 * @vsi: the VSI being configured 803 * @ctxt: VSI context structure 804 */ 805 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 806 { 807 u16 offset = 0, qmap = 0, tx_count = 0; 808 u16 qcount_tx = vsi->alloc_txq; 809 u16 qcount_rx = vsi->alloc_rxq; 810 u16 tx_numq_tc, rx_numq_tc; 811 u16 pow = 0, max_rss = 0; 812 bool ena_tc0 = false; 813 u8 netdev_tc = 0; 814 int i; 815 816 /* at least TC0 should be enabled by default */ 817 if (vsi->tc_cfg.numtc) { 818 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 819 ena_tc0 = true; 820 } else { 821 ena_tc0 = true; 822 } 823 824 if (ena_tc0) { 825 vsi->tc_cfg.numtc++; 826 vsi->tc_cfg.ena_tc |= 1; 827 } 828 829 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 830 if (!rx_numq_tc) 831 rx_numq_tc = 1; 832 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 833 if (!tx_numq_tc) 834 tx_numq_tc = 1; 835 836 /* TC mapping is a function of the number of Rx queues assigned to the 837 * VSI for each traffic class and the offset of these queues. 838 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 839 * queues allocated to TC0. No:of queues is a power-of-2. 840 * 841 * If TC is not enabled, the queue offset is set to 0, and allocate one 842 * queue, this way, traffic for the given TC will be sent to the default 843 * queue. 844 * 845 * Setup number and offset of Rx queues for all TCs for the VSI 846 */ 847 848 qcount_rx = rx_numq_tc; 849 850 /* qcount will change if RSS is enabled */ 851 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 852 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 853 if (vsi->type == ICE_VSI_PF) 854 max_rss = ICE_MAX_LG_RSS_QS; 855 else 856 max_rss = ICE_MAX_SMALL_RSS_QS; 857 qcount_rx = min_t(int, rx_numq_tc, max_rss); 858 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 859 } 860 } 861 862 /* find the (rounded up) power-of-2 of qcount */ 863 pow = order_base_2(qcount_rx); 864 865 ice_for_each_traffic_class(i) { 866 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 867 /* TC is not enabled */ 868 vsi->tc_cfg.tc_info[i].qoffset = 0; 869 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 870 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 871 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 872 ctxt->info.tc_mapping[i] = 0; 873 continue; 874 } 875 876 /* TC is enabled */ 877 vsi->tc_cfg.tc_info[i].qoffset = offset; 878 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 879 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 880 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 881 882 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 883 ICE_AQ_VSI_TC_Q_OFFSET_M) | 884 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 885 ICE_AQ_VSI_TC_Q_NUM_M); 886 offset += qcount_rx; 887 tx_count += tx_numq_tc; 888 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 889 } 890 891 /* if offset is non-zero, means it is calculated correctly based on 892 * enabled TCs for a given VSI otherwise qcount_rx will always 893 * be correct and non-zero because it is based off - VSI's 894 * allocated Rx queues which is at least 1 (hence qcount_tx will be 895 * at least 1) 896 */ 897 if (offset) 898 vsi->num_rxq = offset; 899 else 900 vsi->num_rxq = qcount_rx; 901 902 vsi->num_txq = tx_count; 903 904 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 905 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 906 /* since there is a chance that num_rxq could have been changed 907 * in the above for loop, make num_txq equal to num_rxq. 908 */ 909 vsi->num_txq = vsi->num_rxq; 910 } 911 912 /* Rx queue mapping */ 913 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 914 /* q_mapping buffer holds the info for the first queue allocated for 915 * this VSI in the PF space and also the number of queues associated 916 * with this VSI. 917 */ 918 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 919 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 920 } 921 922 /** 923 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 924 * @ctxt: the VSI context being set 925 * @vsi: the VSI being configured 926 */ 927 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 928 { 929 u8 lut_type, hash_type; 930 struct ice_pf *pf; 931 932 pf = vsi->back; 933 934 switch (vsi->type) { 935 case ICE_VSI_PF: 936 /* PF VSI will inherit RSS instance of PF */ 937 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 938 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 939 break; 940 case ICE_VSI_VF: 941 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 942 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 943 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 944 break; 945 case ICE_VSI_LB: 946 dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type); 947 return; 948 default: 949 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 950 return; 951 } 952 953 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 954 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 955 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 956 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 957 } 958 959 /** 960 * ice_vsi_init - Create and initialize a VSI 961 * @vsi: the VSI being configured 962 * 963 * This initializes a VSI context depending on the VSI type to be added and 964 * passes it down to the add_vsi aq command to create a new VSI. 965 */ 966 static int ice_vsi_init(struct ice_vsi *vsi) 967 { 968 struct ice_pf *pf = vsi->back; 969 struct ice_hw *hw = &pf->hw; 970 struct ice_vsi_ctx *ctxt; 971 int ret = 0; 972 973 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 974 if (!ctxt) 975 return -ENOMEM; 976 977 ctxt->info = vsi->info; 978 switch (vsi->type) { 979 case ICE_VSI_LB: 980 /* fall through */ 981 case ICE_VSI_PF: 982 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 983 break; 984 case ICE_VSI_VF: 985 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 986 /* VF number here is the absolute VF number (0-255) */ 987 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 988 break; 989 default: 990 return -ENODEV; 991 } 992 993 ice_set_dflt_vsi_ctx(ctxt); 994 /* if the switch is in VEB mode, allow VSI loopback */ 995 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 996 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 997 998 /* Set LUT type and HASH type if RSS is enabled */ 999 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1000 ice_set_rss_vsi_ctx(ctxt, vsi); 1001 1002 ctxt->info.sw_id = vsi->port_info->sw_id; 1003 ice_vsi_setup_q_map(vsi, ctxt); 1004 1005 /* Enable MAC Antispoof with new VSI being initialized or updated */ 1006 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) { 1007 ctxt->info.valid_sections |= 1008 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1009 ctxt->info.sec_flags |= 1010 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; 1011 } 1012 1013 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1014 if (ret) { 1015 dev_err(&pf->pdev->dev, 1016 "Add VSI failed, err %d\n", ret); 1017 return -EIO; 1018 } 1019 1020 /* keep context for update VSI operations */ 1021 vsi->info = ctxt->info; 1022 1023 /* record VSI number returned */ 1024 vsi->vsi_num = ctxt->vsi_num; 1025 1026 devm_kfree(&pf->pdev->dev, ctxt); 1027 return ret; 1028 } 1029 1030 /** 1031 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 1032 * @vsi: VSI having the memory freed 1033 * @v_idx: index of the vector to be freed 1034 */ 1035 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 1036 { 1037 struct ice_q_vector *q_vector; 1038 struct ice_pf *pf = vsi->back; 1039 struct ice_ring *ring; 1040 1041 if (!vsi->q_vectors[v_idx]) { 1042 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n", 1043 v_idx); 1044 return; 1045 } 1046 q_vector = vsi->q_vectors[v_idx]; 1047 1048 ice_for_each_ring(ring, q_vector->tx) 1049 ring->q_vector = NULL; 1050 ice_for_each_ring(ring, q_vector->rx) 1051 ring->q_vector = NULL; 1052 1053 /* only VSI with an associated netdev is set up with NAPI */ 1054 if (vsi->netdev) 1055 netif_napi_del(&q_vector->napi); 1056 1057 devm_kfree(&pf->pdev->dev, q_vector); 1058 vsi->q_vectors[v_idx] = NULL; 1059 } 1060 1061 /** 1062 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 1063 * @vsi: the VSI having memory freed 1064 */ 1065 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 1066 { 1067 int v_idx; 1068 1069 ice_for_each_q_vector(vsi, v_idx) 1070 ice_free_q_vector(vsi, v_idx); 1071 } 1072 1073 /** 1074 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1075 * @vsi: the VSI being configured 1076 * @v_idx: index of the vector in the VSI struct 1077 * 1078 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1079 */ 1080 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1081 { 1082 struct ice_pf *pf = vsi->back; 1083 struct ice_q_vector *q_vector; 1084 1085 /* allocate q_vector */ 1086 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1087 if (!q_vector) 1088 return -ENOMEM; 1089 1090 q_vector->vsi = vsi; 1091 q_vector->v_idx = v_idx; 1092 if (vsi->type == ICE_VSI_VF) 1093 goto out; 1094 /* only set affinity_mask if the CPU is online */ 1095 if (cpu_online(v_idx)) 1096 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1097 1098 /* This will not be called in the driver load path because the netdev 1099 * will not be created yet. All other cases with register the NAPI 1100 * handler here (i.e. resume, reset/rebuild, etc.) 1101 */ 1102 if (vsi->netdev) 1103 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1104 NAPI_POLL_WEIGHT); 1105 1106 out: 1107 /* tie q_vector and VSI together */ 1108 vsi->q_vectors[v_idx] = q_vector; 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1115 * @vsi: the VSI being configured 1116 * 1117 * We allocate one q_vector per queue interrupt. If allocation fails we 1118 * return -ENOMEM. 1119 */ 1120 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1121 { 1122 struct ice_pf *pf = vsi->back; 1123 int v_idx = 0, num_q_vectors; 1124 int err; 1125 1126 if (vsi->q_vectors[0]) { 1127 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1128 vsi->vsi_num); 1129 return -EEXIST; 1130 } 1131 1132 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1133 num_q_vectors = vsi->num_q_vectors; 1134 } else { 1135 err = -EINVAL; 1136 goto err_out; 1137 } 1138 1139 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1140 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1141 if (err) 1142 goto err_out; 1143 } 1144 1145 return 0; 1146 1147 err_out: 1148 while (v_idx--) 1149 ice_free_q_vector(vsi, v_idx); 1150 1151 dev_err(&pf->pdev->dev, 1152 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1153 vsi->num_q_vectors, vsi->vsi_num, err); 1154 vsi->num_q_vectors = 0; 1155 return err; 1156 } 1157 1158 /** 1159 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1160 * @vsi: ptr to the VSI 1161 * 1162 * This should only be called after ice_vsi_alloc() which allocates the 1163 * corresponding SW VSI structure and initializes num_queue_pairs for the 1164 * newly allocated VSI. 1165 * 1166 * Returns 0 on success or negative on failure 1167 */ 1168 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1169 { 1170 struct ice_pf *pf = vsi->back; 1171 u16 num_q_vectors; 1172 1173 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1174 if (vsi->type == ICE_VSI_VF) 1175 return 0; 1176 1177 if (vsi->base_vector) { 1178 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 1179 vsi->vsi_num, vsi->base_vector); 1180 return -EEXIST; 1181 } 1182 1183 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1184 return -ENOENT; 1185 1186 num_q_vectors = vsi->num_q_vectors; 1187 /* reserve slots from OS requested IRQs */ 1188 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1189 vsi->idx); 1190 if (vsi->base_vector < 0) { 1191 dev_err(&pf->pdev->dev, 1192 "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 1193 num_q_vectors, vsi->vsi_num, vsi->base_vector); 1194 return -ENOENT; 1195 } 1196 pf->num_avail_sw_msix -= num_q_vectors; 1197 1198 return 0; 1199 } 1200 1201 /** 1202 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1203 * @vsi: the VSI having rings deallocated 1204 */ 1205 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1206 { 1207 int i; 1208 1209 if (vsi->tx_rings) { 1210 for (i = 0; i < vsi->alloc_txq; i++) { 1211 if (vsi->tx_rings[i]) { 1212 kfree_rcu(vsi->tx_rings[i], rcu); 1213 vsi->tx_rings[i] = NULL; 1214 } 1215 } 1216 } 1217 if (vsi->rx_rings) { 1218 for (i = 0; i < vsi->alloc_rxq; i++) { 1219 if (vsi->rx_rings[i]) { 1220 kfree_rcu(vsi->rx_rings[i], rcu); 1221 vsi->rx_rings[i] = NULL; 1222 } 1223 } 1224 } 1225 } 1226 1227 /** 1228 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1229 * @vsi: VSI which is having rings allocated 1230 */ 1231 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1232 { 1233 struct ice_pf *pf = vsi->back; 1234 int i; 1235 1236 /* Allocate Tx rings */ 1237 for (i = 0; i < vsi->alloc_txq; i++) { 1238 struct ice_ring *ring; 1239 1240 /* allocate with kzalloc(), free with kfree_rcu() */ 1241 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1242 1243 if (!ring) 1244 goto err_out; 1245 1246 ring->q_index = i; 1247 ring->reg_idx = vsi->txq_map[i]; 1248 ring->ring_active = false; 1249 ring->vsi = vsi; 1250 ring->dev = &pf->pdev->dev; 1251 ring->count = vsi->num_tx_desc; 1252 vsi->tx_rings[i] = ring; 1253 } 1254 1255 /* Allocate Rx rings */ 1256 for (i = 0; i < vsi->alloc_rxq; i++) { 1257 struct ice_ring *ring; 1258 1259 /* allocate with kzalloc(), free with kfree_rcu() */ 1260 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1261 if (!ring) 1262 goto err_out; 1263 1264 ring->q_index = i; 1265 ring->reg_idx = vsi->rxq_map[i]; 1266 ring->ring_active = false; 1267 ring->vsi = vsi; 1268 ring->netdev = vsi->netdev; 1269 ring->dev = &pf->pdev->dev; 1270 ring->count = vsi->num_rx_desc; 1271 vsi->rx_rings[i] = ring; 1272 } 1273 1274 return 0; 1275 1276 err_out: 1277 ice_vsi_clear_rings(vsi); 1278 return -ENOMEM; 1279 } 1280 1281 /** 1282 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1283 * @vsi: the VSI being configured 1284 * 1285 * This function maps descriptor rings to the queue-specific vectors allotted 1286 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1287 * and Rx rings to the vector as "efficiently" as possible. 1288 */ 1289 #ifdef CONFIG_DCB 1290 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1291 #else 1292 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1293 #endif /* CONFIG_DCB */ 1294 { 1295 int q_vectors = vsi->num_q_vectors; 1296 int tx_rings_rem, rx_rings_rem; 1297 int v_id; 1298 1299 /* initially assigning remaining rings count to VSIs num queue value */ 1300 tx_rings_rem = vsi->num_txq; 1301 rx_rings_rem = vsi->num_rxq; 1302 1303 for (v_id = 0; v_id < q_vectors; v_id++) { 1304 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1305 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1306 1307 /* Tx rings mapping to vector */ 1308 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1309 q_vector->num_ring_tx = tx_rings_per_v; 1310 q_vector->tx.ring = NULL; 1311 q_vector->tx.itr_idx = ICE_TX_ITR; 1312 q_base = vsi->num_txq - tx_rings_rem; 1313 1314 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1315 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1316 1317 tx_ring->q_vector = q_vector; 1318 tx_ring->next = q_vector->tx.ring; 1319 q_vector->tx.ring = tx_ring; 1320 } 1321 tx_rings_rem -= tx_rings_per_v; 1322 1323 /* Rx rings mapping to vector */ 1324 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1325 q_vector->num_ring_rx = rx_rings_per_v; 1326 q_vector->rx.ring = NULL; 1327 q_vector->rx.itr_idx = ICE_RX_ITR; 1328 q_base = vsi->num_rxq - rx_rings_rem; 1329 1330 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1331 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1332 1333 rx_ring->q_vector = q_vector; 1334 rx_ring->next = q_vector->rx.ring; 1335 q_vector->rx.ring = rx_ring; 1336 } 1337 rx_rings_rem -= rx_rings_per_v; 1338 } 1339 } 1340 1341 /** 1342 * ice_vsi_manage_rss_lut - disable/enable RSS 1343 * @vsi: the VSI being changed 1344 * @ena: boolean value indicating if this is an enable or disable request 1345 * 1346 * In the event of disable request for RSS, this function will zero out RSS 1347 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1348 * LUT. 1349 */ 1350 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1351 { 1352 int err = 0; 1353 u8 *lut; 1354 1355 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1356 GFP_KERNEL); 1357 if (!lut) 1358 return -ENOMEM; 1359 1360 if (ena) { 1361 if (vsi->rss_lut_user) 1362 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1363 else 1364 ice_fill_rss_lut(lut, vsi->rss_table_size, 1365 vsi->rss_size); 1366 } 1367 1368 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1369 devm_kfree(&vsi->back->pdev->dev, lut); 1370 return err; 1371 } 1372 1373 /** 1374 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1375 * @vsi: VSI to be configured 1376 */ 1377 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1378 { 1379 struct ice_aqc_get_set_rss_keys *key; 1380 struct ice_pf *pf = vsi->back; 1381 enum ice_status status; 1382 int err = 0; 1383 u8 *lut; 1384 1385 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1386 1387 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1388 if (!lut) 1389 return -ENOMEM; 1390 1391 if (vsi->rss_lut_user) 1392 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1393 else 1394 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1395 1396 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1397 vsi->rss_table_size); 1398 1399 if (status) { 1400 dev_err(&pf->pdev->dev, 1401 "set_rss_lut failed, error %d\n", status); 1402 err = -EIO; 1403 goto ice_vsi_cfg_rss_exit; 1404 } 1405 1406 key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL); 1407 if (!key) { 1408 err = -ENOMEM; 1409 goto ice_vsi_cfg_rss_exit; 1410 } 1411 1412 if (vsi->rss_hkey_user) 1413 memcpy(key, 1414 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1415 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1416 else 1417 netdev_rss_key_fill((void *)key, 1418 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1419 1420 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1421 1422 if (status) { 1423 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n", 1424 status); 1425 err = -EIO; 1426 } 1427 1428 devm_kfree(&pf->pdev->dev, key); 1429 ice_vsi_cfg_rss_exit: 1430 devm_kfree(&pf->pdev->dev, lut); 1431 return err; 1432 } 1433 1434 /** 1435 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1436 * @vsi: the VSI to be forwarded to 1437 * @add_list: pointer to the list which contains MAC filter entries 1438 * @macaddr: the MAC address to be added. 1439 * 1440 * Adds MAC address filter entry to the temp list 1441 * 1442 * Returns 0 on success or ENOMEM on failure. 1443 */ 1444 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1445 const u8 *macaddr) 1446 { 1447 struct ice_fltr_list_entry *tmp; 1448 struct ice_pf *pf = vsi->back; 1449 1450 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1451 if (!tmp) 1452 return -ENOMEM; 1453 1454 tmp->fltr_info.flag = ICE_FLTR_TX; 1455 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1456 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1457 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1458 tmp->fltr_info.vsi_handle = vsi->idx; 1459 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1460 1461 INIT_LIST_HEAD(&tmp->list_entry); 1462 list_add(&tmp->list_entry, add_list); 1463 1464 return 0; 1465 } 1466 1467 /** 1468 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1469 * @vsi: the VSI to be updated 1470 */ 1471 void ice_update_eth_stats(struct ice_vsi *vsi) 1472 { 1473 struct ice_eth_stats *prev_es, *cur_es; 1474 struct ice_hw *hw = &vsi->back->hw; 1475 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1476 1477 prev_es = &vsi->eth_stats_prev; 1478 cur_es = &vsi->eth_stats; 1479 1480 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), 1481 vsi->stat_offsets_loaded, &prev_es->rx_bytes, 1482 &cur_es->rx_bytes); 1483 1484 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), 1485 vsi->stat_offsets_loaded, &prev_es->rx_unicast, 1486 &cur_es->rx_unicast); 1487 1488 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), 1489 vsi->stat_offsets_loaded, &prev_es->rx_multicast, 1490 &cur_es->rx_multicast); 1491 1492 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), 1493 vsi->stat_offsets_loaded, &prev_es->rx_broadcast, 1494 &cur_es->rx_broadcast); 1495 1496 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1497 &prev_es->rx_discards, &cur_es->rx_discards); 1498 1499 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), 1500 vsi->stat_offsets_loaded, &prev_es->tx_bytes, 1501 &cur_es->tx_bytes); 1502 1503 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), 1504 vsi->stat_offsets_loaded, &prev_es->tx_unicast, 1505 &cur_es->tx_unicast); 1506 1507 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), 1508 vsi->stat_offsets_loaded, &prev_es->tx_multicast, 1509 &cur_es->tx_multicast); 1510 1511 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), 1512 vsi->stat_offsets_loaded, &prev_es->tx_broadcast, 1513 &cur_es->tx_broadcast); 1514 1515 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1516 &prev_es->tx_errors, &cur_es->tx_errors); 1517 1518 vsi->stat_offsets_loaded = true; 1519 } 1520 1521 /** 1522 * ice_free_fltr_list - free filter lists helper 1523 * @dev: pointer to the device struct 1524 * @h: pointer to the list head to be freed 1525 * 1526 * Helper function to free filter lists previously created using 1527 * ice_add_mac_to_list 1528 */ 1529 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1530 { 1531 struct ice_fltr_list_entry *e, *tmp; 1532 1533 list_for_each_entry_safe(e, tmp, h, list_entry) { 1534 list_del(&e->list_entry); 1535 devm_kfree(dev, e); 1536 } 1537 } 1538 1539 /** 1540 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1541 * @vsi: the VSI being configured 1542 * @vid: VLAN ID to be added 1543 */ 1544 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1545 { 1546 struct ice_fltr_list_entry *tmp; 1547 struct ice_pf *pf = vsi->back; 1548 LIST_HEAD(tmp_add_list); 1549 enum ice_status status; 1550 int err = 0; 1551 1552 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1553 if (!tmp) 1554 return -ENOMEM; 1555 1556 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1557 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1558 tmp->fltr_info.flag = ICE_FLTR_TX; 1559 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1560 tmp->fltr_info.vsi_handle = vsi->idx; 1561 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1562 1563 INIT_LIST_HEAD(&tmp->list_entry); 1564 list_add(&tmp->list_entry, &tmp_add_list); 1565 1566 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1567 if (status) { 1568 err = -ENODEV; 1569 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1570 vid, vsi->vsi_num); 1571 } 1572 1573 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1574 return err; 1575 } 1576 1577 /** 1578 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1579 * @vsi: the VSI being configured 1580 * @vid: VLAN ID to be removed 1581 * 1582 * Returns 0 on success and negative on failure 1583 */ 1584 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1585 { 1586 struct ice_fltr_list_entry *list; 1587 struct ice_pf *pf = vsi->back; 1588 LIST_HEAD(tmp_add_list); 1589 enum ice_status status; 1590 int err = 0; 1591 1592 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1593 if (!list) 1594 return -ENOMEM; 1595 1596 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1597 list->fltr_info.vsi_handle = vsi->idx; 1598 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1599 list->fltr_info.l_data.vlan.vlan_id = vid; 1600 list->fltr_info.flag = ICE_FLTR_TX; 1601 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1602 1603 INIT_LIST_HEAD(&list->list_entry); 1604 list_add(&list->list_entry, &tmp_add_list); 1605 1606 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1607 if (status == ICE_ERR_DOES_NOT_EXIST) { 1608 dev_dbg(&pf->pdev->dev, 1609 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1610 vid, vsi->vsi_num, status); 1611 } else if (status) { 1612 dev_err(&pf->pdev->dev, 1613 "Error removing VLAN %d on vsi %i error: %d\n", 1614 vid, vsi->vsi_num, status); 1615 err = -EIO; 1616 } 1617 1618 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1619 return err; 1620 } 1621 1622 /** 1623 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1624 * @vsi: the VSI being configured 1625 * 1626 * Return 0 on success and a negative value on error 1627 * Configure the Rx VSI for operation. 1628 */ 1629 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1630 { 1631 u16 i; 1632 1633 if (vsi->type == ICE_VSI_VF) 1634 goto setup_rings; 1635 1636 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1637 vsi->max_frame = vsi->netdev->mtu + 1638 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1639 else 1640 vsi->max_frame = ICE_RXBUF_2048; 1641 1642 vsi->rx_buf_len = ICE_RXBUF_2048; 1643 setup_rings: 1644 /* set up individual rings */ 1645 for (i = 0; i < vsi->num_rxq; i++) { 1646 int err; 1647 1648 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1649 if (err) { 1650 dev_err(&vsi->back->pdev->dev, 1651 "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1652 i, err); 1653 return err; 1654 } 1655 } 1656 1657 return 0; 1658 } 1659 1660 /** 1661 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1662 * @vsi: the VSI being configured 1663 * @rings: Tx ring array to be configured 1664 * @offset: offset within vsi->txq_map 1665 * 1666 * Return 0 on success and a negative value on error 1667 * Configure the Tx VSI for operation. 1668 */ 1669 static int 1670 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset) 1671 { 1672 struct ice_aqc_add_tx_qgrp *qg_buf; 1673 struct ice_aqc_add_txqs_perq *txq; 1674 struct ice_pf *pf = vsi->back; 1675 u8 num_q_grps, q_idx = 0; 1676 enum ice_status status; 1677 u16 buf_len, i, pf_q; 1678 int err = 0, tc; 1679 1680 buf_len = sizeof(*qg_buf); 1681 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); 1682 if (!qg_buf) 1683 return -ENOMEM; 1684 1685 qg_buf->num_txqs = 1; 1686 num_q_grps = 1; 1687 1688 /* set up and configure the Tx queues for each enabled TC */ 1689 ice_for_each_traffic_class(tc) { 1690 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 1691 break; 1692 1693 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 1694 struct ice_tlan_ctx tlan_ctx = { 0 }; 1695 1696 pf_q = vsi->txq_map[q_idx + offset]; 1697 ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q); 1698 /* copy context contents into the qg_buf */ 1699 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1700 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1701 ice_tlan_ctx_info); 1702 1703 /* init queue specific tail reg. It is referred as 1704 * transmit comm scheduler queue doorbell. 1705 */ 1706 rings[q_idx]->tail = 1707 pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1708 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 1709 i, num_q_grps, qg_buf, 1710 buf_len, NULL); 1711 if (status) { 1712 dev_err(&pf->pdev->dev, 1713 "Failed to set LAN Tx queue context, error: %d\n", 1714 status); 1715 err = -ENODEV; 1716 goto err_cfg_txqs; 1717 } 1718 1719 /* Add Tx Queue TEID into the VSI Tx ring from the 1720 * response. This will complete configuring and 1721 * enabling the queue. 1722 */ 1723 txq = &qg_buf->txqs[0]; 1724 if (pf_q == le16_to_cpu(txq->txq_id)) 1725 rings[q_idx]->txq_teid = 1726 le32_to_cpu(txq->q_teid); 1727 1728 q_idx++; 1729 } 1730 } 1731 err_cfg_txqs: 1732 devm_kfree(&pf->pdev->dev, qg_buf); 1733 return err; 1734 } 1735 1736 /** 1737 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1738 * @vsi: the VSI being configured 1739 * 1740 * Return 0 on success and a negative value on error 1741 * Configure the Tx VSI for operation. 1742 */ 1743 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1744 { 1745 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0); 1746 } 1747 1748 /** 1749 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1750 * @intrl: interrupt rate limit in usecs 1751 * @gran: interrupt rate limit granularity in usecs 1752 * 1753 * This function converts a decimal interrupt rate limit in usecs to the format 1754 * expected by firmware. 1755 */ 1756 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1757 { 1758 u32 val = intrl / gran; 1759 1760 if (val) 1761 return val | GLINT_RATE_INTRL_ENA_M; 1762 return 0; 1763 } 1764 1765 /** 1766 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 1767 * @hw: board specific structure 1768 */ 1769 static void ice_cfg_itr_gran(struct ice_hw *hw) 1770 { 1771 u32 regval = rd32(hw, GLINT_CTL); 1772 1773 /* no need to update global register if ITR gran is already set */ 1774 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 1775 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 1776 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 1777 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 1778 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 1779 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 1780 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 1781 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 1782 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 1783 return; 1784 1785 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 1786 GLINT_CTL_ITR_GRAN_200_M) | 1787 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 1788 GLINT_CTL_ITR_GRAN_100_M) | 1789 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 1790 GLINT_CTL_ITR_GRAN_50_M) | 1791 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 1792 GLINT_CTL_ITR_GRAN_25_M); 1793 wr32(hw, GLINT_CTL, regval); 1794 } 1795 1796 /** 1797 * ice_cfg_itr - configure the initial interrupt throttle values 1798 * @hw: pointer to the HW structure 1799 * @q_vector: interrupt vector that's being configured 1800 * 1801 * Configure interrupt throttling values for the ring containers that are 1802 * associated with the interrupt vector passed in. 1803 */ 1804 static void 1805 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1806 { 1807 ice_cfg_itr_gran(hw); 1808 1809 if (q_vector->num_ring_rx) { 1810 struct ice_ring_container *rc = &q_vector->rx; 1811 1812 /* if this value is set then don't overwrite with default */ 1813 if (!rc->itr_setting) 1814 rc->itr_setting = ICE_DFLT_RX_ITR; 1815 1816 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1817 rc->next_update = jiffies + 1; 1818 rc->current_itr = rc->target_itr; 1819 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1820 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1821 } 1822 1823 if (q_vector->num_ring_tx) { 1824 struct ice_ring_container *rc = &q_vector->tx; 1825 1826 /* if this value is set then don't overwrite with default */ 1827 if (!rc->itr_setting) 1828 rc->itr_setting = ICE_DFLT_TX_ITR; 1829 1830 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1831 rc->next_update = jiffies + 1; 1832 rc->current_itr = rc->target_itr; 1833 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1834 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1835 } 1836 } 1837 1838 /** 1839 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1840 * @vsi: the VSI being configured 1841 * @txq: Tx queue being mapped to MSI-X vector 1842 * @msix_idx: MSI-X vector index within the function 1843 * @itr_idx: ITR index of the interrupt cause 1844 * 1845 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1846 * within the function space. 1847 */ 1848 #ifdef CONFIG_PCI_IOV 1849 void 1850 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1851 #else 1852 static void 1853 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1854 #endif /* CONFIG_PCI_IOV */ 1855 { 1856 struct ice_pf *pf = vsi->back; 1857 struct ice_hw *hw = &pf->hw; 1858 u32 val; 1859 1860 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 1861 1862 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1863 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 1864 1865 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1866 } 1867 1868 /** 1869 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1870 * @vsi: the VSI being configured 1871 * @rxq: Rx queue being mapped to MSI-X vector 1872 * @msix_idx: MSI-X vector index within the function 1873 * @itr_idx: ITR index of the interrupt cause 1874 * 1875 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1876 * within the function space. 1877 */ 1878 #ifdef CONFIG_PCI_IOV 1879 void 1880 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1881 #else 1882 static void 1883 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1884 #endif /* CONFIG_PCI_IOV */ 1885 { 1886 struct ice_pf *pf = vsi->back; 1887 struct ice_hw *hw = &pf->hw; 1888 u32 val; 1889 1890 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 1891 1892 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1893 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 1894 1895 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1896 1897 ice_flush(hw); 1898 } 1899 1900 /** 1901 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1902 * @vsi: the VSI being configured 1903 * 1904 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1905 * for the VF VSI. 1906 */ 1907 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1908 { 1909 struct ice_pf *pf = vsi->back; 1910 struct ice_hw *hw = &pf->hw; 1911 u32 txq = 0, rxq = 0; 1912 int i, q; 1913 1914 for (i = 0; i < vsi->num_q_vectors; i++) { 1915 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1916 u16 reg_idx = q_vector->reg_idx; 1917 1918 ice_cfg_itr(hw, q_vector); 1919 1920 wr32(hw, GLINT_RATE(reg_idx), 1921 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1922 1923 /* Both Transmit Queue Interrupt Cause Control register 1924 * and Receive Queue Interrupt Cause control register 1925 * expects MSIX_INDX field to be the vector index 1926 * within the function space and not the absolute 1927 * vector index across PF or across device. 1928 * For SR-IOV VF VSIs queue vector index always starts 1929 * with 1 since first vector index(0) is used for OICR 1930 * in VF space. Since VMDq and other PF VSIs are within 1931 * the PF function space, use the vector index that is 1932 * tracked for this PF. 1933 */ 1934 for (q = 0; q < q_vector->num_ring_tx; q++) { 1935 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1936 q_vector->tx.itr_idx); 1937 txq++; 1938 } 1939 1940 for (q = 0; q < q_vector->num_ring_rx; q++) { 1941 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1942 q_vector->rx.itr_idx); 1943 rxq++; 1944 } 1945 } 1946 } 1947 1948 /** 1949 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1950 * @vsi: the VSI being changed 1951 */ 1952 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1953 { 1954 struct device *dev = &vsi->back->pdev->dev; 1955 struct ice_hw *hw = &vsi->back->hw; 1956 struct ice_vsi_ctx *ctxt; 1957 enum ice_status status; 1958 int ret = 0; 1959 1960 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1961 if (!ctxt) 1962 return -ENOMEM; 1963 1964 /* Here we are configuring the VSI to let the driver add VLAN tags by 1965 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1966 * insertion happens in the Tx hot path, in ice_tx_map. 1967 */ 1968 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1969 1970 /* Preserve existing VLAN strip setting */ 1971 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1972 ICE_AQ_VSI_VLAN_EMOD_M); 1973 1974 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1975 1976 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1977 if (status) { 1978 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1979 status, hw->adminq.sq_last_status); 1980 ret = -EIO; 1981 goto out; 1982 } 1983 1984 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1985 out: 1986 devm_kfree(dev, ctxt); 1987 return ret; 1988 } 1989 1990 /** 1991 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1992 * @vsi: the VSI being changed 1993 * @ena: boolean value indicating if this is a enable or disable request 1994 */ 1995 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1996 { 1997 struct device *dev = &vsi->back->pdev->dev; 1998 struct ice_hw *hw = &vsi->back->hw; 1999 struct ice_vsi_ctx *ctxt; 2000 enum ice_status status; 2001 int ret = 0; 2002 2003 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2004 if (!ctxt) 2005 return -ENOMEM; 2006 2007 /* Here we are configuring what the VSI should do with the VLAN tag in 2008 * the Rx packet. We can either leave the tag in the packet or put it in 2009 * the Rx descriptor. 2010 */ 2011 if (ena) 2012 /* Strip VLAN tag from Rx packet and put it in the desc */ 2013 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2014 else 2015 /* Disable stripping. Leave tag in packet */ 2016 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2017 2018 /* Allow all packets untagged/tagged */ 2019 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2020 2021 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2022 2023 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2024 if (status) { 2025 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 2026 ena, status, hw->adminq.sq_last_status); 2027 ret = -EIO; 2028 goto out; 2029 } 2030 2031 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2032 out: 2033 devm_kfree(dev, ctxt); 2034 return ret; 2035 } 2036 2037 /** 2038 * ice_vsi_start_rx_rings - start VSI's Rx rings 2039 * @vsi: the VSI whose rings are to be started 2040 * 2041 * Returns 0 on success and a negative value on error 2042 */ 2043 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 2044 { 2045 return ice_vsi_ctrl_rx_rings(vsi, true); 2046 } 2047 2048 /** 2049 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 2050 * @vsi: the VSI 2051 * 2052 * Returns 0 on success and a negative value on error 2053 */ 2054 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 2055 { 2056 return ice_vsi_ctrl_rx_rings(vsi, false); 2057 } 2058 2059 /** 2060 * ice_trigger_sw_intr - trigger a software interrupt 2061 * @hw: pointer to the HW structure 2062 * @q_vector: interrupt vector to trigger the software interrupt for 2063 */ 2064 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 2065 { 2066 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 2067 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 2068 GLINT_DYN_CTL_SWINT_TRIG_M | 2069 GLINT_DYN_CTL_INTENA_M); 2070 } 2071 2072 /** 2073 * ice_vsi_stop_tx_rings - Disable Tx rings 2074 * @vsi: the VSI being configured 2075 * @rst_src: reset source 2076 * @rel_vmvf_num: Relative ID of VF/VM 2077 * @rings: Tx ring array to be stopped 2078 * @offset: offset within vsi->txq_map 2079 */ 2080 static int 2081 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2082 u16 rel_vmvf_num, struct ice_ring **rings, int offset) 2083 { 2084 struct ice_pf *pf = vsi->back; 2085 struct ice_hw *hw = &pf->hw; 2086 int tc, q_idx = 0, err = 0; 2087 u16 *q_ids, *q_handles, i; 2088 enum ice_status status; 2089 u32 *q_teids, val; 2090 2091 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2092 return -EINVAL; 2093 2094 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), 2095 GFP_KERNEL); 2096 if (!q_teids) 2097 return -ENOMEM; 2098 2099 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), 2100 GFP_KERNEL); 2101 if (!q_ids) { 2102 err = -ENOMEM; 2103 goto err_alloc_q_ids; 2104 } 2105 2106 q_handles = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, 2107 sizeof(*q_handles), GFP_KERNEL); 2108 if (!q_handles) { 2109 err = -ENOMEM; 2110 goto err_alloc_q_handles; 2111 } 2112 2113 /* set up the Tx queue list to be disabled for each enabled TC */ 2114 ice_for_each_traffic_class(tc) { 2115 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 2116 break; 2117 2118 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 2119 struct ice_q_vector *q_vector; 2120 2121 if (!rings || !rings[q_idx]) { 2122 err = -EINVAL; 2123 goto err_out; 2124 } 2125 2126 q_ids[i] = vsi->txq_map[q_idx + offset]; 2127 q_teids[i] = rings[q_idx]->txq_teid; 2128 q_handles[i] = i; 2129 2130 /* clear cause_ena bit for disabled queues */ 2131 val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx)); 2132 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2133 wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val); 2134 2135 /* software is expected to wait for 100 ns */ 2136 ndelay(100); 2137 2138 /* trigger a software interrupt for the vector 2139 * associated to the queue to schedule NAPI handler 2140 */ 2141 q_vector = rings[i]->q_vector; 2142 if (q_vector) 2143 ice_trigger_sw_intr(hw, q_vector); 2144 2145 q_idx++; 2146 } 2147 status = ice_dis_vsi_txq(vsi->port_info, vsi->idx, tc, 2148 vsi->num_txq, q_handles, q_ids, 2149 q_teids, rst_src, rel_vmvf_num, NULL); 2150 2151 /* if the disable queue command was exercised during an active 2152 * reset flow, ICE_ERR_RESET_ONGOING is returned. This is not 2153 * an error as the reset operation disables queues at the 2154 * hardware level anyway. 2155 */ 2156 if (status == ICE_ERR_RESET_ONGOING) { 2157 dev_dbg(&pf->pdev->dev, 2158 "Reset in progress. LAN Tx queues already disabled\n"); 2159 } else if (status) { 2160 dev_err(&pf->pdev->dev, 2161 "Failed to disable LAN Tx queues, error: %d\n", 2162 status); 2163 err = -ENODEV; 2164 } 2165 } 2166 2167 err_out: 2168 devm_kfree(&pf->pdev->dev, q_handles); 2169 2170 err_alloc_q_handles: 2171 devm_kfree(&pf->pdev->dev, q_ids); 2172 2173 err_alloc_q_ids: 2174 devm_kfree(&pf->pdev->dev, q_teids); 2175 2176 return err; 2177 } 2178 2179 /** 2180 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2181 * @vsi: the VSI being configured 2182 * @rst_src: reset source 2183 * @rel_vmvf_num: Relative ID of VF/VM 2184 */ 2185 int 2186 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2187 u16 rel_vmvf_num) 2188 { 2189 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, 2190 0); 2191 } 2192 2193 /** 2194 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2195 * @vsi: VSI to enable or disable VLAN pruning on 2196 * @ena: set to true to enable VLAN pruning and false to disable it 2197 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2198 * 2199 * returns 0 if VSI is updated, negative otherwise 2200 */ 2201 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2202 { 2203 struct ice_vsi_ctx *ctxt; 2204 struct device *dev; 2205 struct ice_pf *pf; 2206 int status; 2207 2208 if (!vsi) 2209 return -EINVAL; 2210 2211 pf = vsi->back; 2212 dev = &pf->pdev->dev; 2213 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2214 if (!ctxt) 2215 return -ENOMEM; 2216 2217 ctxt->info = vsi->info; 2218 2219 if (ena) { 2220 ctxt->info.sec_flags |= 2221 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2222 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 2223 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2224 } else { 2225 ctxt->info.sec_flags &= 2226 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2227 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 2228 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2229 } 2230 2231 if (!vlan_promisc) 2232 ctxt->info.valid_sections = 2233 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 2234 ICE_AQ_VSI_PROP_SW_VALID); 2235 2236 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2237 if (status) { 2238 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2239 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 2240 pf->hw.adminq.sq_last_status); 2241 goto err_out; 2242 } 2243 2244 vsi->info.sec_flags = ctxt->info.sec_flags; 2245 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2246 2247 devm_kfree(dev, ctxt); 2248 return 0; 2249 2250 err_out: 2251 devm_kfree(dev, ctxt); 2252 return -EIO; 2253 } 2254 2255 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2256 { 2257 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2258 2259 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2260 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2261 } 2262 2263 /** 2264 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2265 * @vsi: VSI to set the q_vectors register index on 2266 */ 2267 static int 2268 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2269 { 2270 u16 i; 2271 2272 if (!vsi || !vsi->q_vectors) 2273 return -EINVAL; 2274 2275 ice_for_each_q_vector(vsi, i) { 2276 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2277 2278 if (!q_vector) { 2279 dev_err(&vsi->back->pdev->dev, 2280 "Failed to set reg_idx on q_vector %d VSI %d\n", 2281 i, vsi->vsi_num); 2282 goto clear_reg_idx; 2283 } 2284 2285 if (vsi->type == ICE_VSI_VF) { 2286 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2287 2288 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2289 } else { 2290 q_vector->reg_idx = 2291 q_vector->v_idx + vsi->base_vector; 2292 } 2293 } 2294 2295 return 0; 2296 2297 clear_reg_idx: 2298 ice_for_each_q_vector(vsi, i) { 2299 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2300 2301 if (q_vector) 2302 q_vector->reg_idx = 0; 2303 } 2304 2305 return -EINVAL; 2306 } 2307 2308 /** 2309 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 2310 * @vsi: the VSI being configured 2311 * @add_rule: boolean value to add or remove ethertype filter rule 2312 */ 2313 static void 2314 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 2315 { 2316 struct ice_fltr_list_entry *list; 2317 struct ice_pf *pf = vsi->back; 2318 LIST_HEAD(tmp_add_list); 2319 enum ice_status status; 2320 2321 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 2322 if (!list) 2323 return; 2324 2325 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2326 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2327 list->fltr_info.flag = ICE_FLTR_TX; 2328 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2329 list->fltr_info.vsi_handle = vsi->idx; 2330 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 2331 2332 INIT_LIST_HEAD(&list->list_entry); 2333 list_add(&list->list_entry, &tmp_add_list); 2334 2335 if (add_rule) 2336 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2337 else 2338 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2339 2340 if (status) 2341 dev_err(&pf->pdev->dev, 2342 "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 2343 vsi->vsi_num, status); 2344 2345 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 2346 } 2347 2348 /** 2349 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2350 * @vsi: the VSI being configured 2351 * @tx: bool to determine Tx or Rx rule 2352 * @create: bool to determine create or remove Rule 2353 */ 2354 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2355 { 2356 struct ice_fltr_list_entry *list; 2357 struct ice_pf *pf = vsi->back; 2358 LIST_HEAD(tmp_add_list); 2359 enum ice_status status; 2360 2361 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 2362 if (!list) 2363 return; 2364 2365 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2366 list->fltr_info.vsi_handle = vsi->idx; 2367 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 2368 2369 if (tx) { 2370 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2371 list->fltr_info.flag = ICE_FLTR_TX; 2372 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2373 } else { 2374 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2375 list->fltr_info.flag = ICE_FLTR_RX; 2376 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 2377 } 2378 2379 INIT_LIST_HEAD(&list->list_entry); 2380 list_add(&list->list_entry, &tmp_add_list); 2381 2382 if (create) 2383 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2384 else 2385 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2386 2387 if (status) 2388 dev_err(&pf->pdev->dev, 2389 "Fail %s %s LLDP rule on VSI %i error: %d\n", 2390 create ? "adding" : "removing", tx ? "TX" : "RX", 2391 vsi->vsi_num, status); 2392 2393 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 2394 } 2395 2396 /** 2397 * ice_vsi_setup - Set up a VSI by a given type 2398 * @pf: board private structure 2399 * @pi: pointer to the port_info instance 2400 * @type: VSI type 2401 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2402 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2403 * fill-in ICE_INVAL_VFID as input. 2404 * 2405 * This allocates the sw VSI structure and its queue resources. 2406 * 2407 * Returns pointer to the successfully allocated and configured VSI sw struct on 2408 * success, NULL on failure. 2409 */ 2410 struct ice_vsi * 2411 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2412 enum ice_vsi_type type, u16 vf_id) 2413 { 2414 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2415 struct device *dev = &pf->pdev->dev; 2416 enum ice_status status; 2417 struct ice_vsi *vsi; 2418 int ret, i; 2419 2420 if (type == ICE_VSI_VF) 2421 vsi = ice_vsi_alloc(pf, type, vf_id); 2422 else 2423 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 2424 2425 if (!vsi) { 2426 dev_err(dev, "could not allocate VSI\n"); 2427 return NULL; 2428 } 2429 2430 vsi->port_info = pi; 2431 vsi->vsw = pf->first_sw; 2432 if (vsi->type == ICE_VSI_PF) 2433 vsi->ethtype = ETH_P_PAUSE; 2434 2435 if (vsi->type == ICE_VSI_VF) 2436 vsi->vf_id = vf_id; 2437 2438 if (ice_vsi_get_qs(vsi)) { 2439 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2440 vsi->idx); 2441 goto unroll_get_qs; 2442 } 2443 2444 /* set RSS capabilities */ 2445 ice_vsi_set_rss_params(vsi); 2446 2447 /* set TC configuration */ 2448 ice_vsi_set_tc_cfg(vsi); 2449 2450 /* create the VSI */ 2451 ret = ice_vsi_init(vsi); 2452 if (ret) 2453 goto unroll_get_qs; 2454 2455 switch (vsi->type) { 2456 case ICE_VSI_PF: 2457 ret = ice_vsi_alloc_q_vectors(vsi); 2458 if (ret) 2459 goto unroll_vsi_init; 2460 2461 ret = ice_vsi_setup_vector_base(vsi); 2462 if (ret) 2463 goto unroll_alloc_q_vector; 2464 2465 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2466 if (ret) 2467 goto unroll_vector_base; 2468 2469 ret = ice_vsi_alloc_rings(vsi); 2470 if (ret) 2471 goto unroll_vector_base; 2472 2473 ice_vsi_map_rings_to_vectors(vsi); 2474 2475 /* Do not exit if configuring RSS had an issue, at least 2476 * receive traffic on first queue. Hence no need to capture 2477 * return value 2478 */ 2479 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2480 ice_vsi_cfg_rss_lut_key(vsi); 2481 break; 2482 case ICE_VSI_VF: 2483 /* VF driver will take care of creating netdev for this type and 2484 * map queues to vectors through Virtchnl, PF driver only 2485 * creates a VSI and corresponding structures for bookkeeping 2486 * purpose 2487 */ 2488 ret = ice_vsi_alloc_q_vectors(vsi); 2489 if (ret) 2490 goto unroll_vsi_init; 2491 2492 ret = ice_vsi_alloc_rings(vsi); 2493 if (ret) 2494 goto unroll_alloc_q_vector; 2495 2496 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2497 if (ret) 2498 goto unroll_vector_base; 2499 2500 pf->q_left_tx -= vsi->alloc_txq; 2501 pf->q_left_rx -= vsi->alloc_rxq; 2502 2503 /* Do not exit if configuring RSS had an issue, at least 2504 * receive traffic on first queue. Hence no need to capture 2505 * return value 2506 */ 2507 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2508 ice_vsi_cfg_rss_lut_key(vsi); 2509 break; 2510 case ICE_VSI_LB: 2511 ret = ice_vsi_alloc_rings(vsi); 2512 if (ret) 2513 goto unroll_vsi_init; 2514 break; 2515 default: 2516 /* clean up the resources and exit */ 2517 goto unroll_vsi_init; 2518 } 2519 2520 /* configure VSI nodes based on number of queues and TC's */ 2521 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2522 max_txqs[i] = pf->num_lan_tx; 2523 2524 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2525 max_txqs); 2526 if (status) { 2527 dev_err(&pf->pdev->dev, 2528 "VSI %d failed lan queue config, error %d\n", 2529 vsi->vsi_num, status); 2530 goto unroll_vector_base; 2531 } 2532 2533 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2534 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2535 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2536 * The rule is added once for PF VSI in order to create appropriate 2537 * recipe, since VSI/VSI list is ignored with drop action... 2538 * Also add rules to handle LLDP Tx and Rx packets. Tx LLDP packets 2539 * need to be dropped so that VFs cannot send LLDP packets to reconfig 2540 * DCB settings in the HW. Also, if the FW DCBX engine is not running 2541 * then Rx LLDP packets need to be redirected up the stack. 2542 */ 2543 if (vsi->type == ICE_VSI_PF) { 2544 ice_vsi_add_rem_eth_mac(vsi, true); 2545 2546 /* Tx LLDP packets */ 2547 ice_cfg_sw_lldp(vsi, true, true); 2548 2549 /* Rx LLDP packets */ 2550 if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags)) 2551 ice_cfg_sw_lldp(vsi, false, true); 2552 } 2553 2554 return vsi; 2555 2556 unroll_vector_base: 2557 /* reclaim SW interrupts back to the common pool */ 2558 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2559 pf->num_avail_sw_msix += vsi->num_q_vectors; 2560 unroll_alloc_q_vector: 2561 ice_vsi_free_q_vectors(vsi); 2562 unroll_vsi_init: 2563 ice_vsi_delete(vsi); 2564 unroll_get_qs: 2565 ice_vsi_put_qs(vsi); 2566 pf->q_left_tx += vsi->alloc_txq; 2567 pf->q_left_rx += vsi->alloc_rxq; 2568 ice_vsi_clear(vsi); 2569 2570 return NULL; 2571 } 2572 2573 /** 2574 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2575 * @vsi: the VSI being cleaned up 2576 */ 2577 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2578 { 2579 struct ice_pf *pf = vsi->back; 2580 struct ice_hw *hw = &pf->hw; 2581 u32 txq = 0; 2582 u32 rxq = 0; 2583 int i, q; 2584 2585 for (i = 0; i < vsi->num_q_vectors; i++) { 2586 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2587 u16 reg_idx = q_vector->reg_idx; 2588 2589 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2590 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2591 for (q = 0; q < q_vector->num_ring_tx; q++) { 2592 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2593 txq++; 2594 } 2595 2596 for (q = 0; q < q_vector->num_ring_rx; q++) { 2597 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2598 rxq++; 2599 } 2600 } 2601 2602 ice_flush(hw); 2603 } 2604 2605 /** 2606 * ice_vsi_free_irq - Free the IRQ association with the OS 2607 * @vsi: the VSI being configured 2608 */ 2609 void ice_vsi_free_irq(struct ice_vsi *vsi) 2610 { 2611 struct ice_pf *pf = vsi->back; 2612 int base = vsi->base_vector; 2613 2614 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2615 int i; 2616 2617 if (!vsi->q_vectors || !vsi->irqs_ready) 2618 return; 2619 2620 ice_vsi_release_msix(vsi); 2621 if (vsi->type == ICE_VSI_VF) 2622 return; 2623 2624 vsi->irqs_ready = false; 2625 ice_for_each_q_vector(vsi, i) { 2626 u16 vector = i + base; 2627 int irq_num; 2628 2629 irq_num = pf->msix_entries[vector].vector; 2630 2631 /* free only the irqs that were actually requested */ 2632 if (!vsi->q_vectors[i] || 2633 !(vsi->q_vectors[i]->num_ring_tx || 2634 vsi->q_vectors[i]->num_ring_rx)) 2635 continue; 2636 2637 /* clear the affinity notifier in the IRQ descriptor */ 2638 irq_set_affinity_notifier(irq_num, NULL); 2639 2640 /* clear the affinity_mask in the IRQ descriptor */ 2641 irq_set_affinity_hint(irq_num, NULL); 2642 synchronize_irq(irq_num); 2643 devm_free_irq(&pf->pdev->dev, irq_num, 2644 vsi->q_vectors[i]); 2645 } 2646 } 2647 } 2648 2649 /** 2650 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2651 * @vsi: the VSI having resources freed 2652 */ 2653 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2654 { 2655 int i; 2656 2657 if (!vsi->tx_rings) 2658 return; 2659 2660 ice_for_each_txq(vsi, i) 2661 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2662 ice_free_tx_ring(vsi->tx_rings[i]); 2663 } 2664 2665 /** 2666 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2667 * @vsi: the VSI having resources freed 2668 */ 2669 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2670 { 2671 int i; 2672 2673 if (!vsi->rx_rings) 2674 return; 2675 2676 ice_for_each_rxq(vsi, i) 2677 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2678 ice_free_rx_ring(vsi->rx_rings[i]); 2679 } 2680 2681 /** 2682 * ice_vsi_close - Shut down a VSI 2683 * @vsi: the VSI being shut down 2684 */ 2685 void ice_vsi_close(struct ice_vsi *vsi) 2686 { 2687 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2688 ice_down(vsi); 2689 2690 ice_vsi_free_irq(vsi); 2691 ice_vsi_free_tx_rings(vsi); 2692 ice_vsi_free_rx_rings(vsi); 2693 } 2694 2695 /** 2696 * ice_free_res - free a block of resources 2697 * @res: pointer to the resource 2698 * @index: starting index previously returned by ice_get_res 2699 * @id: identifier to track owner 2700 * 2701 * Returns number of resources freed 2702 */ 2703 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2704 { 2705 int count = 0; 2706 int i; 2707 2708 if (!res || index >= res->end) 2709 return -EINVAL; 2710 2711 id |= ICE_RES_VALID_BIT; 2712 for (i = index; i < res->end && res->list[i] == id; i++) { 2713 res->list[i] = 0; 2714 count++; 2715 } 2716 2717 return count; 2718 } 2719 2720 /** 2721 * ice_search_res - Search the tracker for a block of resources 2722 * @res: pointer to the resource 2723 * @needed: size of the block needed 2724 * @id: identifier to track owner 2725 * 2726 * Returns the base item index of the block, or -ENOMEM for error 2727 */ 2728 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2729 { 2730 int start = 0, end = 0; 2731 2732 if (needed > res->end) 2733 return -ENOMEM; 2734 2735 id |= ICE_RES_VALID_BIT; 2736 2737 do { 2738 /* skip already allocated entries */ 2739 if (res->list[end++] & ICE_RES_VALID_BIT) { 2740 start = end; 2741 if ((start + needed) > res->end) 2742 break; 2743 } 2744 2745 if (end == (start + needed)) { 2746 int i = start; 2747 2748 /* there was enough, so assign it to the requestor */ 2749 while (i != end) 2750 res->list[i++] = id; 2751 2752 return start; 2753 } 2754 } while (end < res->end); 2755 2756 return -ENOMEM; 2757 } 2758 2759 /** 2760 * ice_get_res - get a block of resources 2761 * @pf: board private structure 2762 * @res: pointer to the resource 2763 * @needed: size of the block needed 2764 * @id: identifier to track owner 2765 * 2766 * Returns the base item index of the block, or negative for error 2767 */ 2768 int 2769 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2770 { 2771 if (!res || !pf) 2772 return -EINVAL; 2773 2774 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2775 dev_err(&pf->pdev->dev, 2776 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2777 needed, res->num_entries, id); 2778 return -EINVAL; 2779 } 2780 2781 return ice_search_res(res, needed, id); 2782 } 2783 2784 /** 2785 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2786 * @vsi: the VSI being un-configured 2787 */ 2788 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2789 { 2790 int base = vsi->base_vector; 2791 struct ice_pf *pf = vsi->back; 2792 struct ice_hw *hw = &pf->hw; 2793 u32 val; 2794 int i; 2795 2796 /* disable interrupt causation from each queue */ 2797 if (vsi->tx_rings) { 2798 ice_for_each_txq(vsi, i) { 2799 if (vsi->tx_rings[i]) { 2800 u16 reg; 2801 2802 reg = vsi->tx_rings[i]->reg_idx; 2803 val = rd32(hw, QINT_TQCTL(reg)); 2804 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2805 wr32(hw, QINT_TQCTL(reg), val); 2806 } 2807 } 2808 } 2809 2810 if (vsi->rx_rings) { 2811 ice_for_each_rxq(vsi, i) { 2812 if (vsi->rx_rings[i]) { 2813 u16 reg; 2814 2815 reg = vsi->rx_rings[i]->reg_idx; 2816 val = rd32(hw, QINT_RQCTL(reg)); 2817 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2818 wr32(hw, QINT_RQCTL(reg), val); 2819 } 2820 } 2821 } 2822 2823 /* disable each interrupt */ 2824 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2825 ice_for_each_q_vector(vsi, i) 2826 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2827 2828 ice_flush(hw); 2829 2830 ice_for_each_q_vector(vsi, i) 2831 synchronize_irq(pf->msix_entries[i + base].vector); 2832 } 2833 } 2834 2835 /** 2836 * ice_napi_del - Remove NAPI handler for the VSI 2837 * @vsi: VSI for which NAPI handler is to be removed 2838 */ 2839 void ice_napi_del(struct ice_vsi *vsi) 2840 { 2841 int v_idx; 2842 2843 if (!vsi->netdev) 2844 return; 2845 2846 ice_for_each_q_vector(vsi, v_idx) 2847 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2848 } 2849 2850 /** 2851 * ice_vsi_release - Delete a VSI and free its resources 2852 * @vsi: the VSI being removed 2853 * 2854 * Returns 0 on success or < 0 on error 2855 */ 2856 int ice_vsi_release(struct ice_vsi *vsi) 2857 { 2858 struct ice_pf *pf; 2859 2860 if (!vsi->back) 2861 return -ENODEV; 2862 pf = vsi->back; 2863 2864 /* do not unregister while driver is in the reset recovery pending 2865 * state. Since reset/rebuild happens through PF service task workqueue, 2866 * it's not a good idea to unregister netdev that is associated to the 2867 * PF that is running the work queue items currently. This is done to 2868 * avoid check_flush_dependency() warning on this wq 2869 */ 2870 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2871 unregister_netdev(vsi->netdev); 2872 2873 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2874 ice_rss_clean(vsi); 2875 2876 /* Disable VSI and free resources */ 2877 if (vsi->type != ICE_VSI_LB) 2878 ice_vsi_dis_irq(vsi); 2879 ice_vsi_close(vsi); 2880 2881 /* SR-IOV determines needed MSIX resources all at once instead of per 2882 * VSI since when VFs are spawned we know how many VFs there are and how 2883 * many interrupts each VF needs. SR-IOV MSIX resources are also 2884 * cleared in the same manner. 2885 */ 2886 if (vsi->type != ICE_VSI_VF) { 2887 /* reclaim SW interrupts back to the common pool */ 2888 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2889 pf->num_avail_sw_msix += vsi->num_q_vectors; 2890 } 2891 2892 if (vsi->type == ICE_VSI_PF) { 2893 ice_vsi_add_rem_eth_mac(vsi, false); 2894 ice_cfg_sw_lldp(vsi, true, false); 2895 /* The Rx rule will only exist to remove if the LLDP FW 2896 * engine is currently stopped 2897 */ 2898 if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags)) 2899 ice_cfg_sw_lldp(vsi, false, false); 2900 } 2901 2902 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2903 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2904 ice_vsi_delete(vsi); 2905 ice_vsi_free_q_vectors(vsi); 2906 2907 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2908 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2909 free_netdev(vsi->netdev); 2910 vsi->netdev = NULL; 2911 } 2912 2913 ice_vsi_clear_rings(vsi); 2914 2915 ice_vsi_put_qs(vsi); 2916 pf->q_left_tx += vsi->alloc_txq; 2917 pf->q_left_rx += vsi->alloc_rxq; 2918 2919 /* retain SW VSI data structure since it is needed to unregister and 2920 * free VSI netdev when PF is not in reset recovery pending state,\ 2921 * for ex: during rmmod. 2922 */ 2923 if (!ice_is_reset_in_progress(pf->state)) 2924 ice_vsi_clear(vsi); 2925 2926 return 0; 2927 } 2928 2929 /** 2930 * ice_vsi_rebuild - Rebuild VSI after reset 2931 * @vsi: VSI to be rebuild 2932 * 2933 * Returns 0 on success and negative value on failure 2934 */ 2935 int ice_vsi_rebuild(struct ice_vsi *vsi) 2936 { 2937 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2938 struct ice_vf *vf = NULL; 2939 enum ice_status status; 2940 struct ice_pf *pf; 2941 int ret, i; 2942 2943 if (!vsi) 2944 return -EINVAL; 2945 2946 pf = vsi->back; 2947 if (vsi->type == ICE_VSI_VF) 2948 vf = &pf->vf[vsi->vf_id]; 2949 2950 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2951 ice_vsi_free_q_vectors(vsi); 2952 2953 /* SR-IOV determines needed MSIX resources all at once instead of per 2954 * VSI since when VFs are spawned we know how many VFs there are and how 2955 * many interrupts each VF needs. SR-IOV MSIX resources are also 2956 * cleared in the same manner. 2957 */ 2958 if (vsi->type != ICE_VSI_VF) { 2959 /* reclaim SW interrupts back to the common pool */ 2960 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2961 pf->num_avail_sw_msix += vsi->num_q_vectors; 2962 vsi->base_vector = 0; 2963 } 2964 2965 ice_vsi_clear_rings(vsi); 2966 ice_vsi_free_arrays(vsi); 2967 ice_dev_onetime_setup(&pf->hw); 2968 if (vsi->type == ICE_VSI_VF) 2969 ice_vsi_set_num_qs(vsi, vf->vf_id); 2970 else 2971 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2972 ice_vsi_set_tc_cfg(vsi); 2973 2974 /* Initialize VSI struct elements and create VSI in FW */ 2975 ret = ice_vsi_init(vsi); 2976 if (ret < 0) 2977 goto err_vsi; 2978 2979 ret = ice_vsi_alloc_arrays(vsi); 2980 if (ret < 0) 2981 goto err_vsi; 2982 2983 switch (vsi->type) { 2984 case ICE_VSI_PF: 2985 ret = ice_vsi_alloc_q_vectors(vsi); 2986 if (ret) 2987 goto err_rings; 2988 2989 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2990 if (ret) 2991 goto err_vectors; 2992 2993 ret = ice_vsi_alloc_rings(vsi); 2994 if (ret) 2995 goto err_vectors; 2996 2997 ice_vsi_map_rings_to_vectors(vsi); 2998 /* Do not exit if configuring RSS had an issue, at least 2999 * receive traffic on first queue. Hence no need to capture 3000 * return value 3001 */ 3002 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3003 ice_vsi_cfg_rss_lut_key(vsi); 3004 break; 3005 case ICE_VSI_VF: 3006 ret = ice_vsi_alloc_q_vectors(vsi); 3007 if (ret) 3008 goto err_rings; 3009 3010 ret = ice_vsi_setup_vector_base(vsi); 3011 if (ret) 3012 goto err_vectors; 3013 3014 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3015 if (ret) 3016 goto err_vectors; 3017 3018 ret = ice_vsi_alloc_rings(vsi); 3019 if (ret) 3020 goto err_vectors; 3021 3022 pf->q_left_tx -= vsi->alloc_txq; 3023 pf->q_left_rx -= vsi->alloc_rxq; 3024 break; 3025 default: 3026 break; 3027 } 3028 3029 /* configure VSI nodes based on number of queues and TC's */ 3030 for (i = 0; i < vsi->tc_cfg.numtc; i++) 3031 max_txqs[i] = pf->num_lan_tx; 3032 3033 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3034 max_txqs); 3035 if (status) { 3036 dev_err(&pf->pdev->dev, 3037 "VSI %d failed lan queue config, error %d\n", 3038 vsi->vsi_num, status); 3039 goto err_vectors; 3040 } 3041 return 0; 3042 3043 err_vectors: 3044 ice_vsi_free_q_vectors(vsi); 3045 err_rings: 3046 if (vsi->netdev) { 3047 vsi->current_netdev_flags = 0; 3048 unregister_netdev(vsi->netdev); 3049 free_netdev(vsi->netdev); 3050 vsi->netdev = NULL; 3051 } 3052 err_vsi: 3053 ice_vsi_clear(vsi); 3054 set_bit(__ICE_RESET_FAILED, pf->state); 3055 return ret; 3056 } 3057 3058 /** 3059 * ice_is_reset_in_progress - check for a reset in progress 3060 * @state: PF state field 3061 */ 3062 bool ice_is_reset_in_progress(unsigned long *state) 3063 { 3064 return test_bit(__ICE_RESET_OICR_RECV, state) || 3065 test_bit(__ICE_PFR_REQ, state) || 3066 test_bit(__ICE_CORER_REQ, state) || 3067 test_bit(__ICE_GLOBR_REQ, state); 3068 } 3069 3070 #ifdef CONFIG_DCB 3071 /** 3072 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3073 * @vsi: VSI being configured 3074 * @ctx: the context buffer returned from AQ VSI update command 3075 */ 3076 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3077 { 3078 vsi->info.mapping_flags = ctx->info.mapping_flags; 3079 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3080 sizeof(vsi->info.q_mapping)); 3081 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3082 sizeof(vsi->info.tc_mapping)); 3083 } 3084 3085 /** 3086 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3087 * @vsi: the VSI being configured 3088 * @ena_tc: TC map to be enabled 3089 */ 3090 static void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3091 { 3092 struct net_device *netdev = vsi->netdev; 3093 struct ice_pf *pf = vsi->back; 3094 struct ice_dcbx_cfg *dcbcfg; 3095 u8 netdev_tc; 3096 int i; 3097 3098 if (!netdev) 3099 return; 3100 3101 if (!ena_tc) { 3102 netdev_reset_tc(netdev); 3103 return; 3104 } 3105 3106 if (netdev_set_num_tc(netdev, vsi->tc_cfg.numtc)) 3107 return; 3108 3109 dcbcfg = &pf->hw.port_info->local_dcbx_cfg; 3110 3111 ice_for_each_traffic_class(i) 3112 if (vsi->tc_cfg.ena_tc & BIT(i)) 3113 netdev_set_tc_queue(netdev, 3114 vsi->tc_cfg.tc_info[i].netdev_tc, 3115 vsi->tc_cfg.tc_info[i].qcount_tx, 3116 vsi->tc_cfg.tc_info[i].qoffset); 3117 3118 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3119 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3120 3121 /* Get the mapped netdev TC# for the UP */ 3122 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3123 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3124 } 3125 } 3126 3127 /** 3128 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3129 * @vsi: VSI to be configured 3130 * @ena_tc: TC bitmap 3131 * 3132 * VSI queues expected to be quiesced before calling this function 3133 */ 3134 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3135 { 3136 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3137 struct ice_vsi_ctx *ctx; 3138 struct ice_pf *pf = vsi->back; 3139 enum ice_status status; 3140 int i, ret = 0; 3141 u8 num_tc = 0; 3142 3143 ice_for_each_traffic_class(i) { 3144 /* build bitmap of enabled TCs */ 3145 if (ena_tc & BIT(i)) 3146 num_tc++; 3147 /* populate max_txqs per TC */ 3148 max_txqs[i] = pf->num_lan_tx; 3149 } 3150 3151 vsi->tc_cfg.ena_tc = ena_tc; 3152 vsi->tc_cfg.numtc = num_tc; 3153 3154 ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL); 3155 if (!ctx) 3156 return -ENOMEM; 3157 3158 ctx->vf_num = 0; 3159 ctx->info = vsi->info; 3160 3161 ice_vsi_setup_q_map(vsi, ctx); 3162 3163 /* must to indicate which section of VSI context are being modified */ 3164 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3165 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3166 if (status) { 3167 dev_info(&pf->pdev->dev, "Failed VSI Update\n"); 3168 ret = -EIO; 3169 goto out; 3170 } 3171 3172 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3173 max_txqs); 3174 3175 if (status) { 3176 dev_err(&pf->pdev->dev, 3177 "VSI %d failed TC config, error %d\n", 3178 vsi->vsi_num, status); 3179 ret = -EIO; 3180 goto out; 3181 } 3182 ice_vsi_update_q_map(vsi, ctx); 3183 vsi->info.valid_sections = 0; 3184 3185 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3186 out: 3187 devm_kfree(&pf->pdev->dev, ctx); 3188 return ret; 3189 } 3190 #endif /* CONFIG_DCB */ 3191