1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_dcb_lib.h"
7 
8 /**
9  * ice_setup_rx_ctx - Configure a receive ring context
10  * @ring: The Rx ring to configure
11  *
12  * Configure the Rx descriptor ring in RLAN context.
13  */
14 static int ice_setup_rx_ctx(struct ice_ring *ring)
15 {
16 	struct ice_vsi *vsi = ring->vsi;
17 	struct ice_hw *hw = &vsi->back->hw;
18 	u32 rxdid = ICE_RXDID_FLEX_NIC;
19 	struct ice_rlan_ctx rlan_ctx;
20 	u32 regval;
21 	u16 pf_q;
22 	int err;
23 
24 	/* what is Rx queue number in global space of 2K Rx queues */
25 	pf_q = vsi->rxq_map[ring->q_index];
26 
27 	/* clear the context structure first */
28 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
29 
30 	rlan_ctx.base = ring->dma >> 7;
31 
32 	rlan_ctx.qlen = ring->count;
33 
34 	/* Receive Packet Data Buffer Size.
35 	 * The Packet Data Buffer Size is defined in 128 byte units.
36 	 */
37 	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
38 
39 	/* use 32 byte descriptors */
40 	rlan_ctx.dsize = 1;
41 
42 	/* Strip the Ethernet CRC bytes before the packet is posted to host
43 	 * memory.
44 	 */
45 	rlan_ctx.crcstrip = 1;
46 
47 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
48 	rlan_ctx.l2tsel = 1;
49 
50 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
51 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
52 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
53 
54 	/* This controls whether VLAN is stripped from inner headers
55 	 * The VLAN in the inner L2 header is stripped to the receive
56 	 * descriptor if enabled by this flag.
57 	 */
58 	rlan_ctx.showiv = 0;
59 
60 	/* Max packet size for this queue - must not be set to a larger value
61 	 * than 5 x DBUF
62 	 */
63 	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
64 			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
65 
66 	/* Rx queue threshold in units of 64 */
67 	rlan_ctx.lrxqthresh = 1;
68 
69 	 /* Enable Flexible Descriptors in the queue context which
70 	  * allows this driver to select a specific receive descriptor format
71 	  */
72 	if (vsi->type != ICE_VSI_VF) {
73 		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
74 		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
75 			QRXFLXP_CNTXT_RXDID_IDX_M;
76 
77 		/* increasing context priority to pick up profile ID;
78 		 * default is 0x01; setting to 0x03 to ensure profile
79 		 * is programming if prev context is of same priority
80 		 */
81 		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
82 			QRXFLXP_CNTXT_RXDID_PRIO_M;
83 
84 		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
85 	}
86 
87 	/* Absolute queue number out of 2K needs to be passed */
88 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
89 	if (err) {
90 		dev_err(&vsi->back->pdev->dev,
91 			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
92 			pf_q, err);
93 		return -EIO;
94 	}
95 
96 	if (vsi->type == ICE_VSI_VF)
97 		return 0;
98 
99 	/* init queue specific tail register */
100 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
101 	writel(0, ring->tail);
102 	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
109  * @ring: The Tx ring to configure
110  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
111  * @pf_q: queue index in the PF space
112  *
113  * Configure the Tx descriptor ring in TLAN context.
114  */
115 static void
116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
117 {
118 	struct ice_vsi *vsi = ring->vsi;
119 	struct ice_hw *hw = &vsi->back->hw;
120 
121 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
122 
123 	tlan_ctx->port_num = vsi->port_info->lport;
124 
125 	/* Transmit Queue Length */
126 	tlan_ctx->qlen = ring->count;
127 
128 	ice_set_cgd_num(tlan_ctx, ring);
129 
130 	/* PF number */
131 	tlan_ctx->pf_num = hw->pf_id;
132 
133 	/* queue belongs to a specific VSI type
134 	 * VF / VM index should be programmed per vmvf_type setting:
135 	 * for vmvf_type = VF, it is VF number between 0-256
136 	 * for vmvf_type = VM, it is VM number between 0-767
137 	 * for PF or EMP this field should be set to zero
138 	 */
139 	switch (vsi->type) {
140 	case ICE_VSI_LB:
141 		/* fall through */
142 	case ICE_VSI_PF:
143 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
144 		break;
145 	case ICE_VSI_VF:
146 		/* Firmware expects vmvf_num to be absolute VF ID */
147 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
148 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
149 		break;
150 	default:
151 		return;
152 	}
153 
154 	/* make sure the context is associated with the right VSI */
155 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
156 
157 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
158 	tlan_ctx->tso_qnum = pf_q;
159 
160 	/* Legacy or Advanced Host Interface:
161 	 * 0: Advanced Host Interface
162 	 * 1: Legacy Host Interface
163 	 */
164 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
165 }
166 
167 /**
168  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
169  * @pf: the PF being configured
170  * @pf_q: the PF queue
171  * @ena: enable or disable state of the queue
172  *
173  * This routine will wait for the given Rx queue of the PF to reach the
174  * enabled or disabled state.
175  * Returns -ETIMEDOUT in case of failing to reach the requested state after
176  * multiple retries; else will return 0 in case of success.
177  */
178 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
179 {
180 	int i;
181 
182 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
183 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
184 			      QRX_CTRL_QENA_STAT_M))
185 			return 0;
186 
187 		usleep_range(20, 40);
188 	}
189 
190 	return -ETIMEDOUT;
191 }
192 
193 /**
194  * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
195  * @vsi: the VSI being configured
196  * @ena: start or stop the Rx rings
197  */
198 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
199 {
200 	struct ice_pf *pf = vsi->back;
201 	struct ice_hw *hw = &pf->hw;
202 	int i, ret = 0;
203 
204 	for (i = 0; i < vsi->num_rxq; i++) {
205 		int pf_q = vsi->rxq_map[i];
206 		u32 rx_reg;
207 
208 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
209 
210 		/* Skip if the queue is already in the requested state */
211 		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
212 			continue;
213 
214 		/* turn on/off the queue */
215 		if (ena)
216 			rx_reg |= QRX_CTRL_QENA_REQ_M;
217 		else
218 			rx_reg &= ~QRX_CTRL_QENA_REQ_M;
219 		wr32(hw, QRX_CTRL(pf_q), rx_reg);
220 
221 		/* wait for the change to finish */
222 		ret = ice_pf_rxq_wait(pf, pf_q, ena);
223 		if (ret) {
224 			dev_err(&pf->pdev->dev,
225 				"VSI idx %d Rx ring %d %sable timeout\n",
226 				vsi->idx, pf_q, (ena ? "en" : "dis"));
227 			break;
228 		}
229 	}
230 
231 	return ret;
232 }
233 
234 /**
235  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
236  * @vsi: VSI pointer
237  *
238  * On error: returns error code (negative)
239  * On success: returns 0
240  */
241 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
242 {
243 	struct ice_pf *pf = vsi->back;
244 
245 	/* allocate memory for both Tx and Rx ring pointers */
246 	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
247 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
248 	if (!vsi->tx_rings)
249 		goto err_txrings;
250 
251 	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
252 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
253 	if (!vsi->rx_rings)
254 		goto err_rxrings;
255 
256 	/* There is no need to allocate q_vectors for a loopback VSI. */
257 	if (vsi->type == ICE_VSI_LB)
258 		return 0;
259 
260 	/* allocate memory for q_vector pointers */
261 	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
262 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
263 	if (!vsi->q_vectors)
264 		goto err_vectors;
265 
266 	return 0;
267 
268 err_vectors:
269 	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
270 err_rxrings:
271 	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
272 err_txrings:
273 	return -ENOMEM;
274 }
275 
276 /**
277  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
278  * @vsi: the VSI being configured
279  */
280 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
281 {
282 	switch (vsi->type) {
283 	case ICE_VSI_PF:
284 		/* fall through */
285 	case ICE_VSI_LB:
286 		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
287 		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
288 		break;
289 	default:
290 		dev_dbg(&vsi->back->pdev->dev,
291 			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
292 			vsi->type);
293 		break;
294 	}
295 }
296 
297 /**
298  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
299  * @vsi: the VSI being configured
300  * @vf_id: ID of the VF being configured
301  *
302  * Return 0 on success and a negative value on error
303  */
304 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
305 {
306 	struct ice_pf *pf = vsi->back;
307 	struct ice_vf *vf = NULL;
308 
309 	if (vsi->type == ICE_VSI_VF)
310 		vsi->vf_id = vf_id;
311 
312 	switch (vsi->type) {
313 	case ICE_VSI_PF:
314 		vsi->alloc_txq = pf->num_lan_tx;
315 		vsi->alloc_rxq = pf->num_lan_rx;
316 		vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
317 		break;
318 	case ICE_VSI_VF:
319 		vf = &pf->vf[vsi->vf_id];
320 		vsi->alloc_txq = vf->num_vf_qs;
321 		vsi->alloc_rxq = vf->num_vf_qs;
322 		/* pf->num_vf_msix includes (VF miscellaneous vector +
323 		 * data queue interrupts). Since vsi->num_q_vectors is number
324 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
325 		 * original vector count
326 		 */
327 		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
328 		break;
329 	case ICE_VSI_LB:
330 		vsi->alloc_txq = 1;
331 		vsi->alloc_rxq = 1;
332 		break;
333 	default:
334 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
335 		break;
336 	}
337 
338 	ice_vsi_set_num_desc(vsi);
339 }
340 
341 /**
342  * ice_get_free_slot - get the next non-NULL location index in array
343  * @array: array to search
344  * @size: size of the array
345  * @curr: last known occupied index to be used as a search hint
346  *
347  * void * is being used to keep the functionality generic. This lets us use this
348  * function on any array of pointers.
349  */
350 static int ice_get_free_slot(void *array, int size, int curr)
351 {
352 	int **tmp_array = (int **)array;
353 	int next;
354 
355 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
356 		next = curr + 1;
357 	} else {
358 		int i = 0;
359 
360 		while ((i < size) && (tmp_array[i]))
361 			i++;
362 		if (i == size)
363 			next = ICE_NO_VSI;
364 		else
365 			next = i;
366 	}
367 	return next;
368 }
369 
370 /**
371  * ice_vsi_delete - delete a VSI from the switch
372  * @vsi: pointer to VSI being removed
373  */
374 void ice_vsi_delete(struct ice_vsi *vsi)
375 {
376 	struct ice_pf *pf = vsi->back;
377 	struct ice_vsi_ctx *ctxt;
378 	enum ice_status status;
379 
380 	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
381 	if (!ctxt)
382 		return;
383 
384 	if (vsi->type == ICE_VSI_VF)
385 		ctxt->vf_num = vsi->vf_id;
386 	ctxt->vsi_num = vsi->vsi_num;
387 
388 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
389 
390 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
391 	if (status)
392 		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
393 			vsi->vsi_num);
394 
395 	devm_kfree(&pf->pdev->dev, ctxt);
396 }
397 
398 /**
399  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
400  * @vsi: pointer to VSI being cleared
401  */
402 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
403 {
404 	struct ice_pf *pf = vsi->back;
405 
406 	/* free the ring and vector containers */
407 	if (vsi->q_vectors) {
408 		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
409 		vsi->q_vectors = NULL;
410 	}
411 	if (vsi->tx_rings) {
412 		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
413 		vsi->tx_rings = NULL;
414 	}
415 	if (vsi->rx_rings) {
416 		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
417 		vsi->rx_rings = NULL;
418 	}
419 }
420 
421 /**
422  * ice_vsi_clear - clean up and deallocate the provided VSI
423  * @vsi: pointer to VSI being cleared
424  *
425  * This deallocates the VSI's queue resources, removes it from the PF's
426  * VSI array if necessary, and deallocates the VSI
427  *
428  * Returns 0 on success, negative on failure
429  */
430 int ice_vsi_clear(struct ice_vsi *vsi)
431 {
432 	struct ice_pf *pf = NULL;
433 
434 	if (!vsi)
435 		return 0;
436 
437 	if (!vsi->back)
438 		return -EINVAL;
439 
440 	pf = vsi->back;
441 
442 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
443 		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
444 			vsi->idx);
445 		return -EINVAL;
446 	}
447 
448 	mutex_lock(&pf->sw_mutex);
449 	/* updates the PF for this cleared VSI */
450 
451 	pf->vsi[vsi->idx] = NULL;
452 	if (vsi->idx < pf->next_vsi)
453 		pf->next_vsi = vsi->idx;
454 
455 	ice_vsi_free_arrays(vsi);
456 	mutex_unlock(&pf->sw_mutex);
457 	devm_kfree(&pf->pdev->dev, vsi);
458 
459 	return 0;
460 }
461 
462 /**
463  * ice_msix_clean_rings - MSIX mode Interrupt Handler
464  * @irq: interrupt number
465  * @data: pointer to a q_vector
466  */
467 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
468 {
469 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
470 
471 	if (!q_vector->tx.ring && !q_vector->rx.ring)
472 		return IRQ_HANDLED;
473 
474 	napi_schedule(&q_vector->napi);
475 
476 	return IRQ_HANDLED;
477 }
478 
479 /**
480  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
481  * @pf: board private structure
482  * @type: type of VSI
483  * @vf_id: ID of the VF being configured
484  *
485  * returns a pointer to a VSI on success, NULL on failure.
486  */
487 static struct ice_vsi *
488 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
489 {
490 	struct ice_vsi *vsi = NULL;
491 
492 	/* Need to protect the allocation of the VSIs at the PF level */
493 	mutex_lock(&pf->sw_mutex);
494 
495 	/* If we have already allocated our maximum number of VSIs,
496 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
497 	 * is available to be populated
498 	 */
499 	if (pf->next_vsi == ICE_NO_VSI) {
500 		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
501 		goto unlock_pf;
502 	}
503 
504 	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
505 	if (!vsi)
506 		goto unlock_pf;
507 
508 	vsi->type = type;
509 	vsi->back = pf;
510 	set_bit(__ICE_DOWN, vsi->state);
511 	vsi->idx = pf->next_vsi;
512 	vsi->work_lmt = ICE_DFLT_IRQ_WORK;
513 
514 	if (type == ICE_VSI_VF)
515 		ice_vsi_set_num_qs(vsi, vf_id);
516 	else
517 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
518 
519 	switch (vsi->type) {
520 	case ICE_VSI_PF:
521 		if (ice_vsi_alloc_arrays(vsi))
522 			goto err_rings;
523 
524 		/* Setup default MSIX irq handler for VSI */
525 		vsi->irq_handler = ice_msix_clean_rings;
526 		break;
527 	case ICE_VSI_VF:
528 		if (ice_vsi_alloc_arrays(vsi))
529 			goto err_rings;
530 		break;
531 	case ICE_VSI_LB:
532 		if (ice_vsi_alloc_arrays(vsi))
533 			goto err_rings;
534 		break;
535 	default:
536 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
537 		goto unlock_pf;
538 	}
539 
540 	/* fill VSI slot in the PF struct */
541 	pf->vsi[pf->next_vsi] = vsi;
542 
543 	/* prepare pf->next_vsi for next use */
544 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
545 					 pf->next_vsi);
546 	goto unlock_pf;
547 
548 err_rings:
549 	devm_kfree(&pf->pdev->dev, vsi);
550 	vsi = NULL;
551 unlock_pf:
552 	mutex_unlock(&pf->sw_mutex);
553 	return vsi;
554 }
555 
556 /**
557  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
558  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
559  *
560  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
561  */
562 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
563 {
564 	int offset, i;
565 
566 	mutex_lock(qs_cfg->qs_mutex);
567 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
568 					    0, qs_cfg->q_count, 0);
569 	if (offset >= qs_cfg->pf_map_size) {
570 		mutex_unlock(qs_cfg->qs_mutex);
571 		return -ENOMEM;
572 	}
573 
574 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
575 	for (i = 0; i < qs_cfg->q_count; i++)
576 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
577 	mutex_unlock(qs_cfg->qs_mutex);
578 
579 	return 0;
580 }
581 
582 /**
583  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
584  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
585  *
586  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
587  */
588 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
589 {
590 	int i, index = 0;
591 
592 	mutex_lock(qs_cfg->qs_mutex);
593 	for (i = 0; i < qs_cfg->q_count; i++) {
594 		index = find_next_zero_bit(qs_cfg->pf_map,
595 					   qs_cfg->pf_map_size, index);
596 		if (index >= qs_cfg->pf_map_size)
597 			goto err_scatter;
598 		set_bit(index, qs_cfg->pf_map);
599 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
600 	}
601 	mutex_unlock(qs_cfg->qs_mutex);
602 
603 	return 0;
604 err_scatter:
605 	for (index = 0; index < i; index++) {
606 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
607 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
608 	}
609 	mutex_unlock(qs_cfg->qs_mutex);
610 
611 	return -ENOMEM;
612 }
613 
614 /**
615  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
616  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
617  *
618  * This function first tries to find contiguous space. If it is not successful,
619  * it tries with the scatter approach.
620  *
621  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
622  */
623 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
624 {
625 	int ret = 0;
626 
627 	ret = __ice_vsi_get_qs_contig(qs_cfg);
628 	if (ret) {
629 		/* contig failed, so try with scatter approach */
630 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
631 		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
632 					qs_cfg->scatter_count);
633 		ret = __ice_vsi_get_qs_sc(qs_cfg);
634 	}
635 	return ret;
636 }
637 
638 /**
639  * ice_vsi_get_qs - Assign queues from PF to VSI
640  * @vsi: the VSI to assign queues to
641  *
642  * Returns 0 on success and a negative value on error
643  */
644 static int ice_vsi_get_qs(struct ice_vsi *vsi)
645 {
646 	struct ice_pf *pf = vsi->back;
647 	struct ice_qs_cfg tx_qs_cfg = {
648 		.qs_mutex = &pf->avail_q_mutex,
649 		.pf_map = pf->avail_txqs,
650 		.pf_map_size = ICE_MAX_TXQS,
651 		.q_count = vsi->alloc_txq,
652 		.scatter_count = ICE_MAX_SCATTER_TXQS,
653 		.vsi_map = vsi->txq_map,
654 		.vsi_map_offset = 0,
655 		.mapping_mode = vsi->tx_mapping_mode
656 	};
657 	struct ice_qs_cfg rx_qs_cfg = {
658 		.qs_mutex = &pf->avail_q_mutex,
659 		.pf_map = pf->avail_rxqs,
660 		.pf_map_size = ICE_MAX_RXQS,
661 		.q_count = vsi->alloc_rxq,
662 		.scatter_count = ICE_MAX_SCATTER_RXQS,
663 		.vsi_map = vsi->rxq_map,
664 		.vsi_map_offset = 0,
665 		.mapping_mode = vsi->rx_mapping_mode
666 	};
667 	int ret = 0;
668 
669 	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
670 	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
671 
672 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
673 	if (!ret)
674 		ret = __ice_vsi_get_qs(&rx_qs_cfg);
675 
676 	return ret;
677 }
678 
679 /**
680  * ice_vsi_put_qs - Release queues from VSI to PF
681  * @vsi: the VSI that is going to release queues
682  */
683 void ice_vsi_put_qs(struct ice_vsi *vsi)
684 {
685 	struct ice_pf *pf = vsi->back;
686 	int i;
687 
688 	mutex_lock(&pf->avail_q_mutex);
689 
690 	for (i = 0; i < vsi->alloc_txq; i++) {
691 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
692 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
693 	}
694 
695 	for (i = 0; i < vsi->alloc_rxq; i++) {
696 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
697 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
698 	}
699 
700 	mutex_unlock(&pf->avail_q_mutex);
701 }
702 
703 /**
704  * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
705  * @vsi: the VSI being removed
706  */
707 static void ice_rss_clean(struct ice_vsi *vsi)
708 {
709 	struct ice_pf *pf;
710 
711 	pf = vsi->back;
712 
713 	if (vsi->rss_hkey_user)
714 		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
715 	if (vsi->rss_lut_user)
716 		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
717 }
718 
719 /**
720  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
721  * @vsi: the VSI being configured
722  */
723 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
724 {
725 	struct ice_hw_common_caps *cap;
726 	struct ice_pf *pf = vsi->back;
727 
728 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
729 		vsi->rss_size = 1;
730 		return;
731 	}
732 
733 	cap = &pf->hw.func_caps.common_cap;
734 	switch (vsi->type) {
735 	case ICE_VSI_PF:
736 		/* PF VSI will inherit RSS instance of PF */
737 		vsi->rss_table_size = cap->rss_table_size;
738 		vsi->rss_size = min_t(int, num_online_cpus(),
739 				      BIT(cap->rss_table_entry_width));
740 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
741 		break;
742 	case ICE_VSI_VF:
743 		/* VF VSI will gets a small RSS table
744 		 * For VSI_LUT, LUT size should be set to 64 bytes
745 		 */
746 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
747 		vsi->rss_size = min_t(int, num_online_cpus(),
748 				      BIT(cap->rss_table_entry_width));
749 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
750 		break;
751 	case ICE_VSI_LB:
752 		break;
753 	default:
754 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
755 			 vsi->type);
756 		break;
757 	}
758 }
759 
760 /**
761  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
762  * @ctxt: the VSI context being set
763  *
764  * This initializes a default VSI context for all sections except the Queues.
765  */
766 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
767 {
768 	u32 table = 0;
769 
770 	memset(&ctxt->info, 0, sizeof(ctxt->info));
771 	/* VSI's should be allocated from shared pool */
772 	ctxt->alloc_from_pool = true;
773 	/* Src pruning enabled by default */
774 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
775 	/* Traffic from VSI can be sent to LAN */
776 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
777 	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
778 	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
779 	 * packets untagged/tagged.
780 	 */
781 	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
782 				  ICE_AQ_VSI_VLAN_MODE_M) >>
783 				 ICE_AQ_VSI_VLAN_MODE_S);
784 	/* Have 1:1 UP mapping for both ingress/egress tables */
785 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
786 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
787 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
788 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
789 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
790 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
791 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
792 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
793 	ctxt->info.ingress_table = cpu_to_le32(table);
794 	ctxt->info.egress_table = cpu_to_le32(table);
795 	/* Have 1:1 UP mapping for outer to inner UP table */
796 	ctxt->info.outer_up_table = cpu_to_le32(table);
797 	/* No Outer tag support outer_tag_flags remains to zero */
798 }
799 
800 /**
801  * ice_vsi_setup_q_map - Setup a VSI queue map
802  * @vsi: the VSI being configured
803  * @ctxt: VSI context structure
804  */
805 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
806 {
807 	u16 offset = 0, qmap = 0, tx_count = 0;
808 	u16 qcount_tx = vsi->alloc_txq;
809 	u16 qcount_rx = vsi->alloc_rxq;
810 	u16 tx_numq_tc, rx_numq_tc;
811 	u16 pow = 0, max_rss = 0;
812 	bool ena_tc0 = false;
813 	u8 netdev_tc = 0;
814 	int i;
815 
816 	/* at least TC0 should be enabled by default */
817 	if (vsi->tc_cfg.numtc) {
818 		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
819 			ena_tc0 = true;
820 	} else {
821 		ena_tc0 = true;
822 	}
823 
824 	if (ena_tc0) {
825 		vsi->tc_cfg.numtc++;
826 		vsi->tc_cfg.ena_tc |= 1;
827 	}
828 
829 	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
830 	if (!rx_numq_tc)
831 		rx_numq_tc = 1;
832 	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
833 	if (!tx_numq_tc)
834 		tx_numq_tc = 1;
835 
836 	/* TC mapping is a function of the number of Rx queues assigned to the
837 	 * VSI for each traffic class and the offset of these queues.
838 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
839 	 * queues allocated to TC0. No:of queues is a power-of-2.
840 	 *
841 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
842 	 * queue, this way, traffic for the given TC will be sent to the default
843 	 * queue.
844 	 *
845 	 * Setup number and offset of Rx queues for all TCs for the VSI
846 	 */
847 
848 	qcount_rx = rx_numq_tc;
849 
850 	/* qcount will change if RSS is enabled */
851 	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
852 		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
853 			if (vsi->type == ICE_VSI_PF)
854 				max_rss = ICE_MAX_LG_RSS_QS;
855 			else
856 				max_rss = ICE_MAX_SMALL_RSS_QS;
857 			qcount_rx = min_t(int, rx_numq_tc, max_rss);
858 			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
859 		}
860 	}
861 
862 	/* find the (rounded up) power-of-2 of qcount */
863 	pow = order_base_2(qcount_rx);
864 
865 	ice_for_each_traffic_class(i) {
866 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
867 			/* TC is not enabled */
868 			vsi->tc_cfg.tc_info[i].qoffset = 0;
869 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
870 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
871 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
872 			ctxt->info.tc_mapping[i] = 0;
873 			continue;
874 		}
875 
876 		/* TC is enabled */
877 		vsi->tc_cfg.tc_info[i].qoffset = offset;
878 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
879 		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
880 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
881 
882 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
883 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
884 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
885 			 ICE_AQ_VSI_TC_Q_NUM_M);
886 		offset += qcount_rx;
887 		tx_count += tx_numq_tc;
888 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
889 	}
890 
891 	/* if offset is non-zero, means it is calculated correctly based on
892 	 * enabled TCs for a given VSI otherwise qcount_rx will always
893 	 * be correct and non-zero because it is based off - VSI's
894 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
895 	 * at least 1)
896 	 */
897 	if (offset)
898 		vsi->num_rxq = offset;
899 	else
900 		vsi->num_rxq = qcount_rx;
901 
902 	vsi->num_txq = tx_count;
903 
904 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
905 		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
906 		/* since there is a chance that num_rxq could have been changed
907 		 * in the above for loop, make num_txq equal to num_rxq.
908 		 */
909 		vsi->num_txq = vsi->num_rxq;
910 	}
911 
912 	/* Rx queue mapping */
913 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
914 	/* q_mapping buffer holds the info for the first queue allocated for
915 	 * this VSI in the PF space and also the number of queues associated
916 	 * with this VSI.
917 	 */
918 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
919 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
920 }
921 
922 /**
923  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
924  * @ctxt: the VSI context being set
925  * @vsi: the VSI being configured
926  */
927 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
928 {
929 	u8 lut_type, hash_type;
930 	struct ice_pf *pf;
931 
932 	pf = vsi->back;
933 
934 	switch (vsi->type) {
935 	case ICE_VSI_PF:
936 		/* PF VSI will inherit RSS instance of PF */
937 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
938 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
939 		break;
940 	case ICE_VSI_VF:
941 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
942 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
943 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
944 		break;
945 	case ICE_VSI_LB:
946 		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
947 		return;
948 	default:
949 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
950 		return;
951 	}
952 
953 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
954 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
955 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
956 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
957 }
958 
959 /**
960  * ice_vsi_init - Create and initialize a VSI
961  * @vsi: the VSI being configured
962  *
963  * This initializes a VSI context depending on the VSI type to be added and
964  * passes it down to the add_vsi aq command to create a new VSI.
965  */
966 static int ice_vsi_init(struct ice_vsi *vsi)
967 {
968 	struct ice_pf *pf = vsi->back;
969 	struct ice_hw *hw = &pf->hw;
970 	struct ice_vsi_ctx *ctxt;
971 	int ret = 0;
972 
973 	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
974 	if (!ctxt)
975 		return -ENOMEM;
976 
977 	ctxt->info = vsi->info;
978 	switch (vsi->type) {
979 	case ICE_VSI_LB:
980 		/* fall through */
981 	case ICE_VSI_PF:
982 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
983 		break;
984 	case ICE_VSI_VF:
985 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
986 		/* VF number here is the absolute VF number (0-255) */
987 		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
988 		break;
989 	default:
990 		return -ENODEV;
991 	}
992 
993 	ice_set_dflt_vsi_ctx(ctxt);
994 	/* if the switch is in VEB mode, allow VSI loopback */
995 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
996 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
997 
998 	/* Set LUT type and HASH type if RSS is enabled */
999 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1000 		ice_set_rss_vsi_ctx(ctxt, vsi);
1001 
1002 	ctxt->info.sw_id = vsi->port_info->sw_id;
1003 	ice_vsi_setup_q_map(vsi, ctxt);
1004 
1005 	/* Enable MAC Antispoof with new VSI being initialized or updated */
1006 	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1007 		ctxt->info.valid_sections |=
1008 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1009 		ctxt->info.sec_flags |=
1010 			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1011 	}
1012 
1013 	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1014 	if (ret) {
1015 		dev_err(&pf->pdev->dev,
1016 			"Add VSI failed, err %d\n", ret);
1017 		return -EIO;
1018 	}
1019 
1020 	/* keep context for update VSI operations */
1021 	vsi->info = ctxt->info;
1022 
1023 	/* record VSI number returned */
1024 	vsi->vsi_num = ctxt->vsi_num;
1025 
1026 	devm_kfree(&pf->pdev->dev, ctxt);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1032  * @vsi: VSI having the memory freed
1033  * @v_idx: index of the vector to be freed
1034  */
1035 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1036 {
1037 	struct ice_q_vector *q_vector;
1038 	struct ice_pf *pf = vsi->back;
1039 	struct ice_ring *ring;
1040 
1041 	if (!vsi->q_vectors[v_idx]) {
1042 		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1043 			v_idx);
1044 		return;
1045 	}
1046 	q_vector = vsi->q_vectors[v_idx];
1047 
1048 	ice_for_each_ring(ring, q_vector->tx)
1049 		ring->q_vector = NULL;
1050 	ice_for_each_ring(ring, q_vector->rx)
1051 		ring->q_vector = NULL;
1052 
1053 	/* only VSI with an associated netdev is set up with NAPI */
1054 	if (vsi->netdev)
1055 		netif_napi_del(&q_vector->napi);
1056 
1057 	devm_kfree(&pf->pdev->dev, q_vector);
1058 	vsi->q_vectors[v_idx] = NULL;
1059 }
1060 
1061 /**
1062  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1063  * @vsi: the VSI having memory freed
1064  */
1065 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1066 {
1067 	int v_idx;
1068 
1069 	ice_for_each_q_vector(vsi, v_idx)
1070 		ice_free_q_vector(vsi, v_idx);
1071 }
1072 
1073 /**
1074  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1075  * @vsi: the VSI being configured
1076  * @v_idx: index of the vector in the VSI struct
1077  *
1078  * We allocate one q_vector. If allocation fails we return -ENOMEM.
1079  */
1080 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1081 {
1082 	struct ice_pf *pf = vsi->back;
1083 	struct ice_q_vector *q_vector;
1084 
1085 	/* allocate q_vector */
1086 	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1087 	if (!q_vector)
1088 		return -ENOMEM;
1089 
1090 	q_vector->vsi = vsi;
1091 	q_vector->v_idx = v_idx;
1092 	if (vsi->type == ICE_VSI_VF)
1093 		goto out;
1094 	/* only set affinity_mask if the CPU is online */
1095 	if (cpu_online(v_idx))
1096 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1097 
1098 	/* This will not be called in the driver load path because the netdev
1099 	 * will not be created yet. All other cases with register the NAPI
1100 	 * handler here (i.e. resume, reset/rebuild, etc.)
1101 	 */
1102 	if (vsi->netdev)
1103 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1104 			       NAPI_POLL_WEIGHT);
1105 
1106 out:
1107 	/* tie q_vector and VSI together */
1108 	vsi->q_vectors[v_idx] = q_vector;
1109 
1110 	return 0;
1111 }
1112 
1113 /**
1114  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1115  * @vsi: the VSI being configured
1116  *
1117  * We allocate one q_vector per queue interrupt. If allocation fails we
1118  * return -ENOMEM.
1119  */
1120 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1121 {
1122 	struct ice_pf *pf = vsi->back;
1123 	int v_idx = 0, num_q_vectors;
1124 	int err;
1125 
1126 	if (vsi->q_vectors[0]) {
1127 		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1128 			vsi->vsi_num);
1129 		return -EEXIST;
1130 	}
1131 
1132 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1133 		num_q_vectors = vsi->num_q_vectors;
1134 	} else {
1135 		err = -EINVAL;
1136 		goto err_out;
1137 	}
1138 
1139 	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1140 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1141 		if (err)
1142 			goto err_out;
1143 	}
1144 
1145 	return 0;
1146 
1147 err_out:
1148 	while (v_idx--)
1149 		ice_free_q_vector(vsi, v_idx);
1150 
1151 	dev_err(&pf->pdev->dev,
1152 		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1153 		vsi->num_q_vectors, vsi->vsi_num, err);
1154 	vsi->num_q_vectors = 0;
1155 	return err;
1156 }
1157 
1158 /**
1159  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1160  * @vsi: ptr to the VSI
1161  *
1162  * This should only be called after ice_vsi_alloc() which allocates the
1163  * corresponding SW VSI structure and initializes num_queue_pairs for the
1164  * newly allocated VSI.
1165  *
1166  * Returns 0 on success or negative on failure
1167  */
1168 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1169 {
1170 	struct ice_pf *pf = vsi->back;
1171 	u16 num_q_vectors;
1172 
1173 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1174 	if (vsi->type == ICE_VSI_VF)
1175 		return 0;
1176 
1177 	if (vsi->base_vector) {
1178 		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1179 			vsi->vsi_num, vsi->base_vector);
1180 		return -EEXIST;
1181 	}
1182 
1183 	if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1184 		return -ENOENT;
1185 
1186 	num_q_vectors = vsi->num_q_vectors;
1187 	/* reserve slots from OS requested IRQs */
1188 	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1189 				       vsi->idx);
1190 	if (vsi->base_vector < 0) {
1191 		dev_err(&pf->pdev->dev,
1192 			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1193 			num_q_vectors, vsi->vsi_num, vsi->base_vector);
1194 		return -ENOENT;
1195 	}
1196 	pf->num_avail_sw_msix -= num_q_vectors;
1197 
1198 	return 0;
1199 }
1200 
1201 /**
1202  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1203  * @vsi: the VSI having rings deallocated
1204  */
1205 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1206 {
1207 	int i;
1208 
1209 	if (vsi->tx_rings) {
1210 		for (i = 0; i < vsi->alloc_txq; i++) {
1211 			if (vsi->tx_rings[i]) {
1212 				kfree_rcu(vsi->tx_rings[i], rcu);
1213 				vsi->tx_rings[i] = NULL;
1214 			}
1215 		}
1216 	}
1217 	if (vsi->rx_rings) {
1218 		for (i = 0; i < vsi->alloc_rxq; i++) {
1219 			if (vsi->rx_rings[i]) {
1220 				kfree_rcu(vsi->rx_rings[i], rcu);
1221 				vsi->rx_rings[i] = NULL;
1222 			}
1223 		}
1224 	}
1225 }
1226 
1227 /**
1228  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1229  * @vsi: VSI which is having rings allocated
1230  */
1231 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1232 {
1233 	struct ice_pf *pf = vsi->back;
1234 	int i;
1235 
1236 	/* Allocate Tx rings */
1237 	for (i = 0; i < vsi->alloc_txq; i++) {
1238 		struct ice_ring *ring;
1239 
1240 		/* allocate with kzalloc(), free with kfree_rcu() */
1241 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1242 
1243 		if (!ring)
1244 			goto err_out;
1245 
1246 		ring->q_index = i;
1247 		ring->reg_idx = vsi->txq_map[i];
1248 		ring->ring_active = false;
1249 		ring->vsi = vsi;
1250 		ring->dev = &pf->pdev->dev;
1251 		ring->count = vsi->num_tx_desc;
1252 		vsi->tx_rings[i] = ring;
1253 	}
1254 
1255 	/* Allocate Rx rings */
1256 	for (i = 0; i < vsi->alloc_rxq; i++) {
1257 		struct ice_ring *ring;
1258 
1259 		/* allocate with kzalloc(), free with kfree_rcu() */
1260 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1261 		if (!ring)
1262 			goto err_out;
1263 
1264 		ring->q_index = i;
1265 		ring->reg_idx = vsi->rxq_map[i];
1266 		ring->ring_active = false;
1267 		ring->vsi = vsi;
1268 		ring->netdev = vsi->netdev;
1269 		ring->dev = &pf->pdev->dev;
1270 		ring->count = vsi->num_rx_desc;
1271 		vsi->rx_rings[i] = ring;
1272 	}
1273 
1274 	return 0;
1275 
1276 err_out:
1277 	ice_vsi_clear_rings(vsi);
1278 	return -ENOMEM;
1279 }
1280 
1281 /**
1282  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1283  * @vsi: the VSI being configured
1284  *
1285  * This function maps descriptor rings to the queue-specific vectors allotted
1286  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1287  * and Rx rings to the vector as "efficiently" as possible.
1288  */
1289 #ifdef CONFIG_DCB
1290 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1291 #else
1292 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1293 #endif /* CONFIG_DCB */
1294 {
1295 	int q_vectors = vsi->num_q_vectors;
1296 	int tx_rings_rem, rx_rings_rem;
1297 	int v_id;
1298 
1299 	/* initially assigning remaining rings count to VSIs num queue value */
1300 	tx_rings_rem = vsi->num_txq;
1301 	rx_rings_rem = vsi->num_rxq;
1302 
1303 	for (v_id = 0; v_id < q_vectors; v_id++) {
1304 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1305 		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1306 
1307 		/* Tx rings mapping to vector */
1308 		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1309 		q_vector->num_ring_tx = tx_rings_per_v;
1310 		q_vector->tx.ring = NULL;
1311 		q_vector->tx.itr_idx = ICE_TX_ITR;
1312 		q_base = vsi->num_txq - tx_rings_rem;
1313 
1314 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1315 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1316 
1317 			tx_ring->q_vector = q_vector;
1318 			tx_ring->next = q_vector->tx.ring;
1319 			q_vector->tx.ring = tx_ring;
1320 		}
1321 		tx_rings_rem -= tx_rings_per_v;
1322 
1323 		/* Rx rings mapping to vector */
1324 		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1325 		q_vector->num_ring_rx = rx_rings_per_v;
1326 		q_vector->rx.ring = NULL;
1327 		q_vector->rx.itr_idx = ICE_RX_ITR;
1328 		q_base = vsi->num_rxq - rx_rings_rem;
1329 
1330 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1331 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1332 
1333 			rx_ring->q_vector = q_vector;
1334 			rx_ring->next = q_vector->rx.ring;
1335 			q_vector->rx.ring = rx_ring;
1336 		}
1337 		rx_rings_rem -= rx_rings_per_v;
1338 	}
1339 }
1340 
1341 /**
1342  * ice_vsi_manage_rss_lut - disable/enable RSS
1343  * @vsi: the VSI being changed
1344  * @ena: boolean value indicating if this is an enable or disable request
1345  *
1346  * In the event of disable request for RSS, this function will zero out RSS
1347  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1348  * LUT.
1349  */
1350 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1351 {
1352 	int err = 0;
1353 	u8 *lut;
1354 
1355 	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1356 			   GFP_KERNEL);
1357 	if (!lut)
1358 		return -ENOMEM;
1359 
1360 	if (ena) {
1361 		if (vsi->rss_lut_user)
1362 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1363 		else
1364 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1365 					 vsi->rss_size);
1366 	}
1367 
1368 	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1369 	devm_kfree(&vsi->back->pdev->dev, lut);
1370 	return err;
1371 }
1372 
1373 /**
1374  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1375  * @vsi: VSI to be configured
1376  */
1377 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1378 {
1379 	struct ice_aqc_get_set_rss_keys *key;
1380 	struct ice_pf *pf = vsi->back;
1381 	enum ice_status status;
1382 	int err = 0;
1383 	u8 *lut;
1384 
1385 	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1386 
1387 	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1388 	if (!lut)
1389 		return -ENOMEM;
1390 
1391 	if (vsi->rss_lut_user)
1392 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1393 	else
1394 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1395 
1396 	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1397 				    vsi->rss_table_size);
1398 
1399 	if (status) {
1400 		dev_err(&pf->pdev->dev,
1401 			"set_rss_lut failed, error %d\n", status);
1402 		err = -EIO;
1403 		goto ice_vsi_cfg_rss_exit;
1404 	}
1405 
1406 	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1407 	if (!key) {
1408 		err = -ENOMEM;
1409 		goto ice_vsi_cfg_rss_exit;
1410 	}
1411 
1412 	if (vsi->rss_hkey_user)
1413 		memcpy(key,
1414 		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1415 		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1416 	else
1417 		netdev_rss_key_fill((void *)key,
1418 				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1419 
1420 	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1421 
1422 	if (status) {
1423 		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1424 			status);
1425 		err = -EIO;
1426 	}
1427 
1428 	devm_kfree(&pf->pdev->dev, key);
1429 ice_vsi_cfg_rss_exit:
1430 	devm_kfree(&pf->pdev->dev, lut);
1431 	return err;
1432 }
1433 
1434 /**
1435  * ice_add_mac_to_list - Add a MAC address filter entry to the list
1436  * @vsi: the VSI to be forwarded to
1437  * @add_list: pointer to the list which contains MAC filter entries
1438  * @macaddr: the MAC address to be added.
1439  *
1440  * Adds MAC address filter entry to the temp list
1441  *
1442  * Returns 0 on success or ENOMEM on failure.
1443  */
1444 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1445 			const u8 *macaddr)
1446 {
1447 	struct ice_fltr_list_entry *tmp;
1448 	struct ice_pf *pf = vsi->back;
1449 
1450 	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1451 	if (!tmp)
1452 		return -ENOMEM;
1453 
1454 	tmp->fltr_info.flag = ICE_FLTR_TX;
1455 	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1456 	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1457 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1458 	tmp->fltr_info.vsi_handle = vsi->idx;
1459 	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1460 
1461 	INIT_LIST_HEAD(&tmp->list_entry);
1462 	list_add(&tmp->list_entry, add_list);
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1469  * @vsi: the VSI to be updated
1470  */
1471 void ice_update_eth_stats(struct ice_vsi *vsi)
1472 {
1473 	struct ice_eth_stats *prev_es, *cur_es;
1474 	struct ice_hw *hw = &vsi->back->hw;
1475 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1476 
1477 	prev_es = &vsi->eth_stats_prev;
1478 	cur_es = &vsi->eth_stats;
1479 
1480 	ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
1481 			  vsi->stat_offsets_loaded, &prev_es->rx_bytes,
1482 			  &cur_es->rx_bytes);
1483 
1484 	ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
1485 			  vsi->stat_offsets_loaded, &prev_es->rx_unicast,
1486 			  &cur_es->rx_unicast);
1487 
1488 	ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
1489 			  vsi->stat_offsets_loaded, &prev_es->rx_multicast,
1490 			  &cur_es->rx_multicast);
1491 
1492 	ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
1493 			  vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
1494 			  &cur_es->rx_broadcast);
1495 
1496 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1497 			  &prev_es->rx_discards, &cur_es->rx_discards);
1498 
1499 	ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
1500 			  vsi->stat_offsets_loaded, &prev_es->tx_bytes,
1501 			  &cur_es->tx_bytes);
1502 
1503 	ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
1504 			  vsi->stat_offsets_loaded, &prev_es->tx_unicast,
1505 			  &cur_es->tx_unicast);
1506 
1507 	ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
1508 			  vsi->stat_offsets_loaded, &prev_es->tx_multicast,
1509 			  &cur_es->tx_multicast);
1510 
1511 	ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
1512 			  vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
1513 			  &cur_es->tx_broadcast);
1514 
1515 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1516 			  &prev_es->tx_errors, &cur_es->tx_errors);
1517 
1518 	vsi->stat_offsets_loaded = true;
1519 }
1520 
1521 /**
1522  * ice_free_fltr_list - free filter lists helper
1523  * @dev: pointer to the device struct
1524  * @h: pointer to the list head to be freed
1525  *
1526  * Helper function to free filter lists previously created using
1527  * ice_add_mac_to_list
1528  */
1529 void ice_free_fltr_list(struct device *dev, struct list_head *h)
1530 {
1531 	struct ice_fltr_list_entry *e, *tmp;
1532 
1533 	list_for_each_entry_safe(e, tmp, h, list_entry) {
1534 		list_del(&e->list_entry);
1535 		devm_kfree(dev, e);
1536 	}
1537 }
1538 
1539 /**
1540  * ice_vsi_add_vlan - Add VSI membership for given VLAN
1541  * @vsi: the VSI being configured
1542  * @vid: VLAN ID to be added
1543  */
1544 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1545 {
1546 	struct ice_fltr_list_entry *tmp;
1547 	struct ice_pf *pf = vsi->back;
1548 	LIST_HEAD(tmp_add_list);
1549 	enum ice_status status;
1550 	int err = 0;
1551 
1552 	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1553 	if (!tmp)
1554 		return -ENOMEM;
1555 
1556 	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1557 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1558 	tmp->fltr_info.flag = ICE_FLTR_TX;
1559 	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1560 	tmp->fltr_info.vsi_handle = vsi->idx;
1561 	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1562 
1563 	INIT_LIST_HEAD(&tmp->list_entry);
1564 	list_add(&tmp->list_entry, &tmp_add_list);
1565 
1566 	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1567 	if (status) {
1568 		err = -ENODEV;
1569 		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1570 			vid, vsi->vsi_num);
1571 	}
1572 
1573 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1574 	return err;
1575 }
1576 
1577 /**
1578  * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1579  * @vsi: the VSI being configured
1580  * @vid: VLAN ID to be removed
1581  *
1582  * Returns 0 on success and negative on failure
1583  */
1584 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1585 {
1586 	struct ice_fltr_list_entry *list;
1587 	struct ice_pf *pf = vsi->back;
1588 	LIST_HEAD(tmp_add_list);
1589 	enum ice_status status;
1590 	int err = 0;
1591 
1592 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1593 	if (!list)
1594 		return -ENOMEM;
1595 
1596 	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1597 	list->fltr_info.vsi_handle = vsi->idx;
1598 	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1599 	list->fltr_info.l_data.vlan.vlan_id = vid;
1600 	list->fltr_info.flag = ICE_FLTR_TX;
1601 	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1602 
1603 	INIT_LIST_HEAD(&list->list_entry);
1604 	list_add(&list->list_entry, &tmp_add_list);
1605 
1606 	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1607 	if (status == ICE_ERR_DOES_NOT_EXIST) {
1608 		dev_dbg(&pf->pdev->dev,
1609 			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1610 			vid, vsi->vsi_num, status);
1611 	} else if (status) {
1612 		dev_err(&pf->pdev->dev,
1613 			"Error removing VLAN %d on vsi %i error: %d\n",
1614 			vid, vsi->vsi_num, status);
1615 		err = -EIO;
1616 	}
1617 
1618 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1619 	return err;
1620 }
1621 
1622 /**
1623  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1624  * @vsi: the VSI being configured
1625  *
1626  * Return 0 on success and a negative value on error
1627  * Configure the Rx VSI for operation.
1628  */
1629 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1630 {
1631 	u16 i;
1632 
1633 	if (vsi->type == ICE_VSI_VF)
1634 		goto setup_rings;
1635 
1636 	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1637 		vsi->max_frame = vsi->netdev->mtu +
1638 			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1639 	else
1640 		vsi->max_frame = ICE_RXBUF_2048;
1641 
1642 	vsi->rx_buf_len = ICE_RXBUF_2048;
1643 setup_rings:
1644 	/* set up individual rings */
1645 	for (i = 0; i < vsi->num_rxq; i++) {
1646 		int err;
1647 
1648 		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1649 		if (err) {
1650 			dev_err(&vsi->back->pdev->dev,
1651 				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1652 				i, err);
1653 			return err;
1654 		}
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 /**
1661  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1662  * @vsi: the VSI being configured
1663  * @rings: Tx ring array to be configured
1664  * @offset: offset within vsi->txq_map
1665  *
1666  * Return 0 on success and a negative value on error
1667  * Configure the Tx VSI for operation.
1668  */
1669 static int
1670 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1671 {
1672 	struct ice_aqc_add_tx_qgrp *qg_buf;
1673 	struct ice_aqc_add_txqs_perq *txq;
1674 	struct ice_pf *pf = vsi->back;
1675 	u8 num_q_grps, q_idx = 0;
1676 	enum ice_status status;
1677 	u16 buf_len, i, pf_q;
1678 	int err = 0, tc;
1679 
1680 	buf_len = sizeof(*qg_buf);
1681 	qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
1682 	if (!qg_buf)
1683 		return -ENOMEM;
1684 
1685 	qg_buf->num_txqs = 1;
1686 	num_q_grps = 1;
1687 
1688 	/* set up and configure the Tx queues for each enabled TC */
1689 	ice_for_each_traffic_class(tc) {
1690 		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1691 			break;
1692 
1693 		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1694 			struct ice_tlan_ctx tlan_ctx = { 0 };
1695 
1696 			pf_q = vsi->txq_map[q_idx + offset];
1697 			ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q);
1698 			/* copy context contents into the qg_buf */
1699 			qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1700 			ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1701 				    ice_tlan_ctx_info);
1702 
1703 			/* init queue specific tail reg. It is referred as
1704 			 * transmit comm scheduler queue doorbell.
1705 			 */
1706 			rings[q_idx]->tail =
1707 				pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1708 			status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
1709 						 i, num_q_grps, qg_buf,
1710 						 buf_len, NULL);
1711 			if (status) {
1712 				dev_err(&pf->pdev->dev,
1713 					"Failed to set LAN Tx queue context, error: %d\n",
1714 					status);
1715 				err = -ENODEV;
1716 				goto err_cfg_txqs;
1717 			}
1718 
1719 			/* Add Tx Queue TEID into the VSI Tx ring from the
1720 			 * response. This will complete configuring and
1721 			 * enabling the queue.
1722 			 */
1723 			txq = &qg_buf->txqs[0];
1724 			if (pf_q == le16_to_cpu(txq->txq_id))
1725 				rings[q_idx]->txq_teid =
1726 					le32_to_cpu(txq->q_teid);
1727 
1728 			q_idx++;
1729 		}
1730 	}
1731 err_cfg_txqs:
1732 	devm_kfree(&pf->pdev->dev, qg_buf);
1733 	return err;
1734 }
1735 
1736 /**
1737  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1738  * @vsi: the VSI being configured
1739  *
1740  * Return 0 on success and a negative value on error
1741  * Configure the Tx VSI for operation.
1742  */
1743 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1744 {
1745 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1746 }
1747 
1748 /**
1749  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1750  * @intrl: interrupt rate limit in usecs
1751  * @gran: interrupt rate limit granularity in usecs
1752  *
1753  * This function converts a decimal interrupt rate limit in usecs to the format
1754  * expected by firmware.
1755  */
1756 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1757 {
1758 	u32 val = intrl / gran;
1759 
1760 	if (val)
1761 		return val | GLINT_RATE_INTRL_ENA_M;
1762 	return 0;
1763 }
1764 
1765 /**
1766  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1767  * @hw: board specific structure
1768  */
1769 static void ice_cfg_itr_gran(struct ice_hw *hw)
1770 {
1771 	u32 regval = rd32(hw, GLINT_CTL);
1772 
1773 	/* no need to update global register if ITR gran is already set */
1774 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1775 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1776 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1777 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1778 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1779 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1780 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1781 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1782 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1783 		return;
1784 
1785 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1786 		  GLINT_CTL_ITR_GRAN_200_M) |
1787 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1788 		  GLINT_CTL_ITR_GRAN_100_M) |
1789 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1790 		  GLINT_CTL_ITR_GRAN_50_M) |
1791 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1792 		  GLINT_CTL_ITR_GRAN_25_M);
1793 	wr32(hw, GLINT_CTL, regval);
1794 }
1795 
1796 /**
1797  * ice_cfg_itr - configure the initial interrupt throttle values
1798  * @hw: pointer to the HW structure
1799  * @q_vector: interrupt vector that's being configured
1800  *
1801  * Configure interrupt throttling values for the ring containers that are
1802  * associated with the interrupt vector passed in.
1803  */
1804 static void
1805 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1806 {
1807 	ice_cfg_itr_gran(hw);
1808 
1809 	if (q_vector->num_ring_rx) {
1810 		struct ice_ring_container *rc = &q_vector->rx;
1811 
1812 		/* if this value is set then don't overwrite with default */
1813 		if (!rc->itr_setting)
1814 			rc->itr_setting = ICE_DFLT_RX_ITR;
1815 
1816 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1817 		rc->next_update = jiffies + 1;
1818 		rc->current_itr = rc->target_itr;
1819 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1820 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1821 	}
1822 
1823 	if (q_vector->num_ring_tx) {
1824 		struct ice_ring_container *rc = &q_vector->tx;
1825 
1826 		/* if this value is set then don't overwrite with default */
1827 		if (!rc->itr_setting)
1828 			rc->itr_setting = ICE_DFLT_TX_ITR;
1829 
1830 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1831 		rc->next_update = jiffies + 1;
1832 		rc->current_itr = rc->target_itr;
1833 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1834 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1835 	}
1836 }
1837 
1838 /**
1839  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1840  * @vsi: the VSI being configured
1841  * @txq: Tx queue being mapped to MSI-X vector
1842  * @msix_idx: MSI-X vector index within the function
1843  * @itr_idx: ITR index of the interrupt cause
1844  *
1845  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1846  * within the function space.
1847  */
1848 #ifdef CONFIG_PCI_IOV
1849 void
1850 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1851 #else
1852 static void
1853 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1854 #endif /* CONFIG_PCI_IOV */
1855 {
1856 	struct ice_pf *pf = vsi->back;
1857 	struct ice_hw *hw = &pf->hw;
1858 	u32 val;
1859 
1860 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1861 
1862 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1863 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1864 
1865 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1866 }
1867 
1868 /**
1869  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1870  * @vsi: the VSI being configured
1871  * @rxq: Rx queue being mapped to MSI-X vector
1872  * @msix_idx: MSI-X vector index within the function
1873  * @itr_idx: ITR index of the interrupt cause
1874  *
1875  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1876  * within the function space.
1877  */
1878 #ifdef CONFIG_PCI_IOV
1879 void
1880 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1881 #else
1882 static void
1883 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1884 #endif /* CONFIG_PCI_IOV */
1885 {
1886 	struct ice_pf *pf = vsi->back;
1887 	struct ice_hw *hw = &pf->hw;
1888 	u32 val;
1889 
1890 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1891 
1892 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1893 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1894 
1895 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1896 
1897 	ice_flush(hw);
1898 }
1899 
1900 /**
1901  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1902  * @vsi: the VSI being configured
1903  *
1904  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1905  * for the VF VSI.
1906  */
1907 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1908 {
1909 	struct ice_pf *pf = vsi->back;
1910 	struct ice_hw *hw = &pf->hw;
1911 	u32 txq = 0, rxq = 0;
1912 	int i, q;
1913 
1914 	for (i = 0; i < vsi->num_q_vectors; i++) {
1915 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1916 		u16 reg_idx = q_vector->reg_idx;
1917 
1918 		ice_cfg_itr(hw, q_vector);
1919 
1920 		wr32(hw, GLINT_RATE(reg_idx),
1921 		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1922 
1923 		/* Both Transmit Queue Interrupt Cause Control register
1924 		 * and Receive Queue Interrupt Cause control register
1925 		 * expects MSIX_INDX field to be the vector index
1926 		 * within the function space and not the absolute
1927 		 * vector index across PF or across device.
1928 		 * For SR-IOV VF VSIs queue vector index always starts
1929 		 * with 1 since first vector index(0) is used for OICR
1930 		 * in VF space. Since VMDq and other PF VSIs are within
1931 		 * the PF function space, use the vector index that is
1932 		 * tracked for this PF.
1933 		 */
1934 		for (q = 0; q < q_vector->num_ring_tx; q++) {
1935 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1936 					      q_vector->tx.itr_idx);
1937 			txq++;
1938 		}
1939 
1940 		for (q = 0; q < q_vector->num_ring_rx; q++) {
1941 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1942 					      q_vector->rx.itr_idx);
1943 			rxq++;
1944 		}
1945 	}
1946 }
1947 
1948 /**
1949  * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1950  * @vsi: the VSI being changed
1951  */
1952 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1953 {
1954 	struct device *dev = &vsi->back->pdev->dev;
1955 	struct ice_hw *hw = &vsi->back->hw;
1956 	struct ice_vsi_ctx *ctxt;
1957 	enum ice_status status;
1958 	int ret = 0;
1959 
1960 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
1961 	if (!ctxt)
1962 		return -ENOMEM;
1963 
1964 	/* Here we are configuring the VSI to let the driver add VLAN tags by
1965 	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1966 	 * insertion happens in the Tx hot path, in ice_tx_map.
1967 	 */
1968 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1969 
1970 	/* Preserve existing VLAN strip setting */
1971 	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1972 				  ICE_AQ_VSI_VLAN_EMOD_M);
1973 
1974 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1975 
1976 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1977 	if (status) {
1978 		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
1979 			status, hw->adminq.sq_last_status);
1980 		ret = -EIO;
1981 		goto out;
1982 	}
1983 
1984 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1985 out:
1986 	devm_kfree(dev, ctxt);
1987 	return ret;
1988 }
1989 
1990 /**
1991  * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1992  * @vsi: the VSI being changed
1993  * @ena: boolean value indicating if this is a enable or disable request
1994  */
1995 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1996 {
1997 	struct device *dev = &vsi->back->pdev->dev;
1998 	struct ice_hw *hw = &vsi->back->hw;
1999 	struct ice_vsi_ctx *ctxt;
2000 	enum ice_status status;
2001 	int ret = 0;
2002 
2003 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2004 	if (!ctxt)
2005 		return -ENOMEM;
2006 
2007 	/* Here we are configuring what the VSI should do with the VLAN tag in
2008 	 * the Rx packet. We can either leave the tag in the packet or put it in
2009 	 * the Rx descriptor.
2010 	 */
2011 	if (ena)
2012 		/* Strip VLAN tag from Rx packet and put it in the desc */
2013 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2014 	else
2015 		/* Disable stripping. Leave tag in packet */
2016 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2017 
2018 	/* Allow all packets untagged/tagged */
2019 	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2020 
2021 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2022 
2023 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2024 	if (status) {
2025 		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2026 			ena, status, hw->adminq.sq_last_status);
2027 		ret = -EIO;
2028 		goto out;
2029 	}
2030 
2031 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2032 out:
2033 	devm_kfree(dev, ctxt);
2034 	return ret;
2035 }
2036 
2037 /**
2038  * ice_vsi_start_rx_rings - start VSI's Rx rings
2039  * @vsi: the VSI whose rings are to be started
2040  *
2041  * Returns 0 on success and a negative value on error
2042  */
2043 int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2044 {
2045 	return ice_vsi_ctrl_rx_rings(vsi, true);
2046 }
2047 
2048 /**
2049  * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2050  * @vsi: the VSI
2051  *
2052  * Returns 0 on success and a negative value on error
2053  */
2054 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2055 {
2056 	return ice_vsi_ctrl_rx_rings(vsi, false);
2057 }
2058 
2059 /**
2060  * ice_trigger_sw_intr - trigger a software interrupt
2061  * @hw: pointer to the HW structure
2062  * @q_vector: interrupt vector to trigger the software interrupt for
2063  */
2064 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2065 {
2066 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2067 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2068 	     GLINT_DYN_CTL_SWINT_TRIG_M |
2069 	     GLINT_DYN_CTL_INTENA_M);
2070 }
2071 
2072 /**
2073  * ice_vsi_stop_tx_rings - Disable Tx rings
2074  * @vsi: the VSI being configured
2075  * @rst_src: reset source
2076  * @rel_vmvf_num: Relative ID of VF/VM
2077  * @rings: Tx ring array to be stopped
2078  * @offset: offset within vsi->txq_map
2079  */
2080 static int
2081 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2082 		      u16 rel_vmvf_num, struct ice_ring **rings, int offset)
2083 {
2084 	struct ice_pf *pf = vsi->back;
2085 	struct ice_hw *hw = &pf->hw;
2086 	int tc, q_idx = 0, err = 0;
2087 	u16 *q_ids, *q_handles, i;
2088 	enum ice_status status;
2089 	u32 *q_teids, val;
2090 
2091 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2092 		return -EINVAL;
2093 
2094 	q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
2095 			       GFP_KERNEL);
2096 	if (!q_teids)
2097 		return -ENOMEM;
2098 
2099 	q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
2100 			     GFP_KERNEL);
2101 	if (!q_ids) {
2102 		err = -ENOMEM;
2103 		goto err_alloc_q_ids;
2104 	}
2105 
2106 	q_handles = devm_kcalloc(&pf->pdev->dev, vsi->num_txq,
2107 				 sizeof(*q_handles), GFP_KERNEL);
2108 	if (!q_handles) {
2109 		err = -ENOMEM;
2110 		goto err_alloc_q_handles;
2111 	}
2112 
2113 	/* set up the Tx queue list to be disabled for each enabled TC */
2114 	ice_for_each_traffic_class(tc) {
2115 		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2116 			break;
2117 
2118 		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2119 			struct ice_q_vector *q_vector;
2120 
2121 			if (!rings || !rings[q_idx]) {
2122 				err = -EINVAL;
2123 				goto err_out;
2124 			}
2125 
2126 			q_ids[i] = vsi->txq_map[q_idx + offset];
2127 			q_teids[i] = rings[q_idx]->txq_teid;
2128 			q_handles[i] = i;
2129 
2130 			/* clear cause_ena bit for disabled queues */
2131 			val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx));
2132 			val &= ~QINT_TQCTL_CAUSE_ENA_M;
2133 			wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val);
2134 
2135 			/* software is expected to wait for 100 ns */
2136 			ndelay(100);
2137 
2138 			/* trigger a software interrupt for the vector
2139 			 * associated to the queue to schedule NAPI handler
2140 			 */
2141 			q_vector = rings[i]->q_vector;
2142 			if (q_vector)
2143 				ice_trigger_sw_intr(hw, q_vector);
2144 
2145 			q_idx++;
2146 		}
2147 		status = ice_dis_vsi_txq(vsi->port_info, vsi->idx, tc,
2148 					 vsi->num_txq, q_handles, q_ids,
2149 					 q_teids, rst_src, rel_vmvf_num, NULL);
2150 
2151 		/* if the disable queue command was exercised during an active
2152 		 * reset flow, ICE_ERR_RESET_ONGOING is returned. This is not
2153 		 * an error as the reset operation disables queues at the
2154 		 * hardware level anyway.
2155 		 */
2156 		if (status == ICE_ERR_RESET_ONGOING) {
2157 			dev_dbg(&pf->pdev->dev,
2158 				"Reset in progress. LAN Tx queues already disabled\n");
2159 		} else if (status) {
2160 			dev_err(&pf->pdev->dev,
2161 				"Failed to disable LAN Tx queues, error: %d\n",
2162 				status);
2163 			err = -ENODEV;
2164 		}
2165 	}
2166 
2167 err_out:
2168 	devm_kfree(&pf->pdev->dev, q_handles);
2169 
2170 err_alloc_q_handles:
2171 	devm_kfree(&pf->pdev->dev, q_ids);
2172 
2173 err_alloc_q_ids:
2174 	devm_kfree(&pf->pdev->dev, q_teids);
2175 
2176 	return err;
2177 }
2178 
2179 /**
2180  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2181  * @vsi: the VSI being configured
2182  * @rst_src: reset source
2183  * @rel_vmvf_num: Relative ID of VF/VM
2184  */
2185 int
2186 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2187 			  u16 rel_vmvf_num)
2188 {
2189 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings,
2190 				     0);
2191 }
2192 
2193 /**
2194  * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2195  * @vsi: VSI to enable or disable VLAN pruning on
2196  * @ena: set to true to enable VLAN pruning and false to disable it
2197  * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2198  *
2199  * returns 0 if VSI is updated, negative otherwise
2200  */
2201 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2202 {
2203 	struct ice_vsi_ctx *ctxt;
2204 	struct device *dev;
2205 	struct ice_pf *pf;
2206 	int status;
2207 
2208 	if (!vsi)
2209 		return -EINVAL;
2210 
2211 	pf = vsi->back;
2212 	dev = &pf->pdev->dev;
2213 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2214 	if (!ctxt)
2215 		return -ENOMEM;
2216 
2217 	ctxt->info = vsi->info;
2218 
2219 	if (ena) {
2220 		ctxt->info.sec_flags |=
2221 			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2222 			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2223 		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2224 	} else {
2225 		ctxt->info.sec_flags &=
2226 			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2227 			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2228 		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2229 	}
2230 
2231 	if (!vlan_promisc)
2232 		ctxt->info.valid_sections =
2233 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2234 				    ICE_AQ_VSI_PROP_SW_VALID);
2235 
2236 	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2237 	if (status) {
2238 		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2239 			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2240 			   pf->hw.adminq.sq_last_status);
2241 		goto err_out;
2242 	}
2243 
2244 	vsi->info.sec_flags = ctxt->info.sec_flags;
2245 	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2246 
2247 	devm_kfree(dev, ctxt);
2248 	return 0;
2249 
2250 err_out:
2251 	devm_kfree(dev, ctxt);
2252 	return -EIO;
2253 }
2254 
2255 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2256 {
2257 	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2258 
2259 	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2260 	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2261 }
2262 
2263 /**
2264  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2265  * @vsi: VSI to set the q_vectors register index on
2266  */
2267 static int
2268 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2269 {
2270 	u16 i;
2271 
2272 	if (!vsi || !vsi->q_vectors)
2273 		return -EINVAL;
2274 
2275 	ice_for_each_q_vector(vsi, i) {
2276 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2277 
2278 		if (!q_vector) {
2279 			dev_err(&vsi->back->pdev->dev,
2280 				"Failed to set reg_idx on q_vector %d VSI %d\n",
2281 				i, vsi->vsi_num);
2282 			goto clear_reg_idx;
2283 		}
2284 
2285 		if (vsi->type == ICE_VSI_VF) {
2286 			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2287 
2288 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2289 		} else {
2290 			q_vector->reg_idx =
2291 				q_vector->v_idx + vsi->base_vector;
2292 		}
2293 	}
2294 
2295 	return 0;
2296 
2297 clear_reg_idx:
2298 	ice_for_each_q_vector(vsi, i) {
2299 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2300 
2301 		if (q_vector)
2302 			q_vector->reg_idx = 0;
2303 	}
2304 
2305 	return -EINVAL;
2306 }
2307 
2308 /**
2309  * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2310  * @vsi: the VSI being configured
2311  * @add_rule: boolean value to add or remove ethertype filter rule
2312  */
2313 static void
2314 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2315 {
2316 	struct ice_fltr_list_entry *list;
2317 	struct ice_pf *pf = vsi->back;
2318 	LIST_HEAD(tmp_add_list);
2319 	enum ice_status status;
2320 
2321 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2322 	if (!list)
2323 		return;
2324 
2325 	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2326 	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2327 	list->fltr_info.flag = ICE_FLTR_TX;
2328 	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2329 	list->fltr_info.vsi_handle = vsi->idx;
2330 	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2331 
2332 	INIT_LIST_HEAD(&list->list_entry);
2333 	list_add(&list->list_entry, &tmp_add_list);
2334 
2335 	if (add_rule)
2336 		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2337 	else
2338 		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2339 
2340 	if (status)
2341 		dev_err(&pf->pdev->dev,
2342 			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2343 			vsi->vsi_num, status);
2344 
2345 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2346 }
2347 
2348 /**
2349  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2350  * @vsi: the VSI being configured
2351  * @tx: bool to determine Tx or Rx rule
2352  * @create: bool to determine create or remove Rule
2353  */
2354 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2355 {
2356 	struct ice_fltr_list_entry *list;
2357 	struct ice_pf *pf = vsi->back;
2358 	LIST_HEAD(tmp_add_list);
2359 	enum ice_status status;
2360 
2361 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2362 	if (!list)
2363 		return;
2364 
2365 	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2366 	list->fltr_info.vsi_handle = vsi->idx;
2367 	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2368 
2369 	if (tx) {
2370 		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2371 		list->fltr_info.flag = ICE_FLTR_TX;
2372 		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2373 	} else {
2374 		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2375 		list->fltr_info.flag = ICE_FLTR_RX;
2376 		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2377 	}
2378 
2379 	INIT_LIST_HEAD(&list->list_entry);
2380 	list_add(&list->list_entry, &tmp_add_list);
2381 
2382 	if (create)
2383 		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2384 	else
2385 		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2386 
2387 	if (status)
2388 		dev_err(&pf->pdev->dev,
2389 			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2390 			create ? "adding" : "removing", tx ? "TX" : "RX",
2391 			vsi->vsi_num, status);
2392 
2393 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2394 }
2395 
2396 /**
2397  * ice_vsi_setup - Set up a VSI by a given type
2398  * @pf: board private structure
2399  * @pi: pointer to the port_info instance
2400  * @type: VSI type
2401  * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2402  *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2403  *         fill-in ICE_INVAL_VFID as input.
2404  *
2405  * This allocates the sw VSI structure and its queue resources.
2406  *
2407  * Returns pointer to the successfully allocated and configured VSI sw struct on
2408  * success, NULL on failure.
2409  */
2410 struct ice_vsi *
2411 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2412 	      enum ice_vsi_type type, u16 vf_id)
2413 {
2414 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2415 	struct device *dev = &pf->pdev->dev;
2416 	enum ice_status status;
2417 	struct ice_vsi *vsi;
2418 	int ret, i;
2419 
2420 	if (type == ICE_VSI_VF)
2421 		vsi = ice_vsi_alloc(pf, type, vf_id);
2422 	else
2423 		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2424 
2425 	if (!vsi) {
2426 		dev_err(dev, "could not allocate VSI\n");
2427 		return NULL;
2428 	}
2429 
2430 	vsi->port_info = pi;
2431 	vsi->vsw = pf->first_sw;
2432 	if (vsi->type == ICE_VSI_PF)
2433 		vsi->ethtype = ETH_P_PAUSE;
2434 
2435 	if (vsi->type == ICE_VSI_VF)
2436 		vsi->vf_id = vf_id;
2437 
2438 	if (ice_vsi_get_qs(vsi)) {
2439 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2440 			vsi->idx);
2441 		goto unroll_get_qs;
2442 	}
2443 
2444 	/* set RSS capabilities */
2445 	ice_vsi_set_rss_params(vsi);
2446 
2447 	/* set TC configuration */
2448 	ice_vsi_set_tc_cfg(vsi);
2449 
2450 	/* create the VSI */
2451 	ret = ice_vsi_init(vsi);
2452 	if (ret)
2453 		goto unroll_get_qs;
2454 
2455 	switch (vsi->type) {
2456 	case ICE_VSI_PF:
2457 		ret = ice_vsi_alloc_q_vectors(vsi);
2458 		if (ret)
2459 			goto unroll_vsi_init;
2460 
2461 		ret = ice_vsi_setup_vector_base(vsi);
2462 		if (ret)
2463 			goto unroll_alloc_q_vector;
2464 
2465 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2466 		if (ret)
2467 			goto unroll_vector_base;
2468 
2469 		ret = ice_vsi_alloc_rings(vsi);
2470 		if (ret)
2471 			goto unroll_vector_base;
2472 
2473 		ice_vsi_map_rings_to_vectors(vsi);
2474 
2475 		/* Do not exit if configuring RSS had an issue, at least
2476 		 * receive traffic on first queue. Hence no need to capture
2477 		 * return value
2478 		 */
2479 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2480 			ice_vsi_cfg_rss_lut_key(vsi);
2481 		break;
2482 	case ICE_VSI_VF:
2483 		/* VF driver will take care of creating netdev for this type and
2484 		 * map queues to vectors through Virtchnl, PF driver only
2485 		 * creates a VSI and corresponding structures for bookkeeping
2486 		 * purpose
2487 		 */
2488 		ret = ice_vsi_alloc_q_vectors(vsi);
2489 		if (ret)
2490 			goto unroll_vsi_init;
2491 
2492 		ret = ice_vsi_alloc_rings(vsi);
2493 		if (ret)
2494 			goto unroll_alloc_q_vector;
2495 
2496 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2497 		if (ret)
2498 			goto unroll_vector_base;
2499 
2500 		pf->q_left_tx -= vsi->alloc_txq;
2501 		pf->q_left_rx -= vsi->alloc_rxq;
2502 
2503 		/* Do not exit if configuring RSS had an issue, at least
2504 		 * receive traffic on first queue. Hence no need to capture
2505 		 * return value
2506 		 */
2507 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2508 			ice_vsi_cfg_rss_lut_key(vsi);
2509 		break;
2510 	case ICE_VSI_LB:
2511 		ret = ice_vsi_alloc_rings(vsi);
2512 		if (ret)
2513 			goto unroll_vsi_init;
2514 		break;
2515 	default:
2516 		/* clean up the resources and exit */
2517 		goto unroll_vsi_init;
2518 	}
2519 
2520 	/* configure VSI nodes based on number of queues and TC's */
2521 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2522 		max_txqs[i] = pf->num_lan_tx;
2523 
2524 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2525 				 max_txqs);
2526 	if (status) {
2527 		dev_err(&pf->pdev->dev,
2528 			"VSI %d failed lan queue config, error %d\n",
2529 			vsi->vsi_num, status);
2530 		goto unroll_vector_base;
2531 	}
2532 
2533 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2534 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2535 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2536 	 * The rule is added once for PF VSI in order to create appropriate
2537 	 * recipe, since VSI/VSI list is ignored with drop action...
2538 	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2539 	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2540 	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2541 	 * then Rx LLDP packets need to be redirected up the stack.
2542 	 */
2543 	if (vsi->type == ICE_VSI_PF) {
2544 		ice_vsi_add_rem_eth_mac(vsi, true);
2545 
2546 		/* Tx LLDP packets */
2547 		ice_cfg_sw_lldp(vsi, true, true);
2548 
2549 		/* Rx LLDP packets */
2550 		if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags))
2551 			ice_cfg_sw_lldp(vsi, false, true);
2552 	}
2553 
2554 	return vsi;
2555 
2556 unroll_vector_base:
2557 	/* reclaim SW interrupts back to the common pool */
2558 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2559 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2560 unroll_alloc_q_vector:
2561 	ice_vsi_free_q_vectors(vsi);
2562 unroll_vsi_init:
2563 	ice_vsi_delete(vsi);
2564 unroll_get_qs:
2565 	ice_vsi_put_qs(vsi);
2566 	pf->q_left_tx += vsi->alloc_txq;
2567 	pf->q_left_rx += vsi->alloc_rxq;
2568 	ice_vsi_clear(vsi);
2569 
2570 	return NULL;
2571 }
2572 
2573 /**
2574  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2575  * @vsi: the VSI being cleaned up
2576  */
2577 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2578 {
2579 	struct ice_pf *pf = vsi->back;
2580 	struct ice_hw *hw = &pf->hw;
2581 	u32 txq = 0;
2582 	u32 rxq = 0;
2583 	int i, q;
2584 
2585 	for (i = 0; i < vsi->num_q_vectors; i++) {
2586 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2587 		u16 reg_idx = q_vector->reg_idx;
2588 
2589 		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2590 		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2591 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2592 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593 			txq++;
2594 		}
2595 
2596 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2597 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2598 			rxq++;
2599 		}
2600 	}
2601 
2602 	ice_flush(hw);
2603 }
2604 
2605 /**
2606  * ice_vsi_free_irq - Free the IRQ association with the OS
2607  * @vsi: the VSI being configured
2608  */
2609 void ice_vsi_free_irq(struct ice_vsi *vsi)
2610 {
2611 	struct ice_pf *pf = vsi->back;
2612 	int base = vsi->base_vector;
2613 
2614 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2615 		int i;
2616 
2617 		if (!vsi->q_vectors || !vsi->irqs_ready)
2618 			return;
2619 
2620 		ice_vsi_release_msix(vsi);
2621 		if (vsi->type == ICE_VSI_VF)
2622 			return;
2623 
2624 		vsi->irqs_ready = false;
2625 		ice_for_each_q_vector(vsi, i) {
2626 			u16 vector = i + base;
2627 			int irq_num;
2628 
2629 			irq_num = pf->msix_entries[vector].vector;
2630 
2631 			/* free only the irqs that were actually requested */
2632 			if (!vsi->q_vectors[i] ||
2633 			    !(vsi->q_vectors[i]->num_ring_tx ||
2634 			      vsi->q_vectors[i]->num_ring_rx))
2635 				continue;
2636 
2637 			/* clear the affinity notifier in the IRQ descriptor */
2638 			irq_set_affinity_notifier(irq_num, NULL);
2639 
2640 			/* clear the affinity_mask in the IRQ descriptor */
2641 			irq_set_affinity_hint(irq_num, NULL);
2642 			synchronize_irq(irq_num);
2643 			devm_free_irq(&pf->pdev->dev, irq_num,
2644 				      vsi->q_vectors[i]);
2645 		}
2646 	}
2647 }
2648 
2649 /**
2650  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2651  * @vsi: the VSI having resources freed
2652  */
2653 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2654 {
2655 	int i;
2656 
2657 	if (!vsi->tx_rings)
2658 		return;
2659 
2660 	ice_for_each_txq(vsi, i)
2661 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2662 			ice_free_tx_ring(vsi->tx_rings[i]);
2663 }
2664 
2665 /**
2666  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2667  * @vsi: the VSI having resources freed
2668  */
2669 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2670 {
2671 	int i;
2672 
2673 	if (!vsi->rx_rings)
2674 		return;
2675 
2676 	ice_for_each_rxq(vsi, i)
2677 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2678 			ice_free_rx_ring(vsi->rx_rings[i]);
2679 }
2680 
2681 /**
2682  * ice_vsi_close - Shut down a VSI
2683  * @vsi: the VSI being shut down
2684  */
2685 void ice_vsi_close(struct ice_vsi *vsi)
2686 {
2687 	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2688 		ice_down(vsi);
2689 
2690 	ice_vsi_free_irq(vsi);
2691 	ice_vsi_free_tx_rings(vsi);
2692 	ice_vsi_free_rx_rings(vsi);
2693 }
2694 
2695 /**
2696  * ice_free_res - free a block of resources
2697  * @res: pointer to the resource
2698  * @index: starting index previously returned by ice_get_res
2699  * @id: identifier to track owner
2700  *
2701  * Returns number of resources freed
2702  */
2703 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2704 {
2705 	int count = 0;
2706 	int i;
2707 
2708 	if (!res || index >= res->end)
2709 		return -EINVAL;
2710 
2711 	id |= ICE_RES_VALID_BIT;
2712 	for (i = index; i < res->end && res->list[i] == id; i++) {
2713 		res->list[i] = 0;
2714 		count++;
2715 	}
2716 
2717 	return count;
2718 }
2719 
2720 /**
2721  * ice_search_res - Search the tracker for a block of resources
2722  * @res: pointer to the resource
2723  * @needed: size of the block needed
2724  * @id: identifier to track owner
2725  *
2726  * Returns the base item index of the block, or -ENOMEM for error
2727  */
2728 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2729 {
2730 	int start = 0, end = 0;
2731 
2732 	if (needed > res->end)
2733 		return -ENOMEM;
2734 
2735 	id |= ICE_RES_VALID_BIT;
2736 
2737 	do {
2738 		/* skip already allocated entries */
2739 		if (res->list[end++] & ICE_RES_VALID_BIT) {
2740 			start = end;
2741 			if ((start + needed) > res->end)
2742 				break;
2743 		}
2744 
2745 		if (end == (start + needed)) {
2746 			int i = start;
2747 
2748 			/* there was enough, so assign it to the requestor */
2749 			while (i != end)
2750 				res->list[i++] = id;
2751 
2752 			return start;
2753 		}
2754 	} while (end < res->end);
2755 
2756 	return -ENOMEM;
2757 }
2758 
2759 /**
2760  * ice_get_res - get a block of resources
2761  * @pf: board private structure
2762  * @res: pointer to the resource
2763  * @needed: size of the block needed
2764  * @id: identifier to track owner
2765  *
2766  * Returns the base item index of the block, or negative for error
2767  */
2768 int
2769 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2770 {
2771 	if (!res || !pf)
2772 		return -EINVAL;
2773 
2774 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2775 		dev_err(&pf->pdev->dev,
2776 			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2777 			needed, res->num_entries, id);
2778 		return -EINVAL;
2779 	}
2780 
2781 	return ice_search_res(res, needed, id);
2782 }
2783 
2784 /**
2785  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2786  * @vsi: the VSI being un-configured
2787  */
2788 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2789 {
2790 	int base = vsi->base_vector;
2791 	struct ice_pf *pf = vsi->back;
2792 	struct ice_hw *hw = &pf->hw;
2793 	u32 val;
2794 	int i;
2795 
2796 	/* disable interrupt causation from each queue */
2797 	if (vsi->tx_rings) {
2798 		ice_for_each_txq(vsi, i) {
2799 			if (vsi->tx_rings[i]) {
2800 				u16 reg;
2801 
2802 				reg = vsi->tx_rings[i]->reg_idx;
2803 				val = rd32(hw, QINT_TQCTL(reg));
2804 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2805 				wr32(hw, QINT_TQCTL(reg), val);
2806 			}
2807 		}
2808 	}
2809 
2810 	if (vsi->rx_rings) {
2811 		ice_for_each_rxq(vsi, i) {
2812 			if (vsi->rx_rings[i]) {
2813 				u16 reg;
2814 
2815 				reg = vsi->rx_rings[i]->reg_idx;
2816 				val = rd32(hw, QINT_RQCTL(reg));
2817 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2818 				wr32(hw, QINT_RQCTL(reg), val);
2819 			}
2820 		}
2821 	}
2822 
2823 	/* disable each interrupt */
2824 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2825 		ice_for_each_q_vector(vsi, i)
2826 			wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2827 
2828 		ice_flush(hw);
2829 
2830 		ice_for_each_q_vector(vsi, i)
2831 			synchronize_irq(pf->msix_entries[i + base].vector);
2832 	}
2833 }
2834 
2835 /**
2836  * ice_napi_del - Remove NAPI handler for the VSI
2837  * @vsi: VSI for which NAPI handler is to be removed
2838  */
2839 void ice_napi_del(struct ice_vsi *vsi)
2840 {
2841 	int v_idx;
2842 
2843 	if (!vsi->netdev)
2844 		return;
2845 
2846 	ice_for_each_q_vector(vsi, v_idx)
2847 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2848 }
2849 
2850 /**
2851  * ice_vsi_release - Delete a VSI and free its resources
2852  * @vsi: the VSI being removed
2853  *
2854  * Returns 0 on success or < 0 on error
2855  */
2856 int ice_vsi_release(struct ice_vsi *vsi)
2857 {
2858 	struct ice_pf *pf;
2859 
2860 	if (!vsi->back)
2861 		return -ENODEV;
2862 	pf = vsi->back;
2863 
2864 	/* do not unregister while driver is in the reset recovery pending
2865 	 * state. Since reset/rebuild happens through PF service task workqueue,
2866 	 * it's not a good idea to unregister netdev that is associated to the
2867 	 * PF that is running the work queue items currently. This is done to
2868 	 * avoid check_flush_dependency() warning on this wq
2869 	 */
2870 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2871 		unregister_netdev(vsi->netdev);
2872 
2873 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2874 		ice_rss_clean(vsi);
2875 
2876 	/* Disable VSI and free resources */
2877 	if (vsi->type != ICE_VSI_LB)
2878 		ice_vsi_dis_irq(vsi);
2879 	ice_vsi_close(vsi);
2880 
2881 	/* SR-IOV determines needed MSIX resources all at once instead of per
2882 	 * VSI since when VFs are spawned we know how many VFs there are and how
2883 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2884 	 * cleared in the same manner.
2885 	 */
2886 	if (vsi->type != ICE_VSI_VF) {
2887 		/* reclaim SW interrupts back to the common pool */
2888 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2889 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2890 	}
2891 
2892 	if (vsi->type == ICE_VSI_PF) {
2893 		ice_vsi_add_rem_eth_mac(vsi, false);
2894 		ice_cfg_sw_lldp(vsi, true, false);
2895 		/* The Rx rule will only exist to remove if the LLDP FW
2896 		 * engine is currently stopped
2897 		 */
2898 		if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags))
2899 			ice_cfg_sw_lldp(vsi, false, false);
2900 	}
2901 
2902 	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
2903 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2904 	ice_vsi_delete(vsi);
2905 	ice_vsi_free_q_vectors(vsi);
2906 
2907 	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
2908 	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2909 		free_netdev(vsi->netdev);
2910 		vsi->netdev = NULL;
2911 	}
2912 
2913 	ice_vsi_clear_rings(vsi);
2914 
2915 	ice_vsi_put_qs(vsi);
2916 	pf->q_left_tx += vsi->alloc_txq;
2917 	pf->q_left_rx += vsi->alloc_rxq;
2918 
2919 	/* retain SW VSI data structure since it is needed to unregister and
2920 	 * free VSI netdev when PF is not in reset recovery pending state,\
2921 	 * for ex: during rmmod.
2922 	 */
2923 	if (!ice_is_reset_in_progress(pf->state))
2924 		ice_vsi_clear(vsi);
2925 
2926 	return 0;
2927 }
2928 
2929 /**
2930  * ice_vsi_rebuild - Rebuild VSI after reset
2931  * @vsi: VSI to be rebuild
2932  *
2933  * Returns 0 on success and negative value on failure
2934  */
2935 int ice_vsi_rebuild(struct ice_vsi *vsi)
2936 {
2937 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2938 	struct ice_vf *vf = NULL;
2939 	enum ice_status status;
2940 	struct ice_pf *pf;
2941 	int ret, i;
2942 
2943 	if (!vsi)
2944 		return -EINVAL;
2945 
2946 	pf = vsi->back;
2947 	if (vsi->type == ICE_VSI_VF)
2948 		vf = &pf->vf[vsi->vf_id];
2949 
2950 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2951 	ice_vsi_free_q_vectors(vsi);
2952 
2953 	/* SR-IOV determines needed MSIX resources all at once instead of per
2954 	 * VSI since when VFs are spawned we know how many VFs there are and how
2955 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2956 	 * cleared in the same manner.
2957 	 */
2958 	if (vsi->type != ICE_VSI_VF) {
2959 		/* reclaim SW interrupts back to the common pool */
2960 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2961 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2962 		vsi->base_vector = 0;
2963 	}
2964 
2965 	ice_vsi_clear_rings(vsi);
2966 	ice_vsi_free_arrays(vsi);
2967 	ice_dev_onetime_setup(&pf->hw);
2968 	if (vsi->type == ICE_VSI_VF)
2969 		ice_vsi_set_num_qs(vsi, vf->vf_id);
2970 	else
2971 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2972 	ice_vsi_set_tc_cfg(vsi);
2973 
2974 	/* Initialize VSI struct elements and create VSI in FW */
2975 	ret = ice_vsi_init(vsi);
2976 	if (ret < 0)
2977 		goto err_vsi;
2978 
2979 	ret = ice_vsi_alloc_arrays(vsi);
2980 	if (ret < 0)
2981 		goto err_vsi;
2982 
2983 	switch (vsi->type) {
2984 	case ICE_VSI_PF:
2985 		ret = ice_vsi_alloc_q_vectors(vsi);
2986 		if (ret)
2987 			goto err_rings;
2988 
2989 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2990 		if (ret)
2991 			goto err_vectors;
2992 
2993 		ret = ice_vsi_alloc_rings(vsi);
2994 		if (ret)
2995 			goto err_vectors;
2996 
2997 		ice_vsi_map_rings_to_vectors(vsi);
2998 		/* Do not exit if configuring RSS had an issue, at least
2999 		 * receive traffic on first queue. Hence no need to capture
3000 		 * return value
3001 		 */
3002 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3003 			ice_vsi_cfg_rss_lut_key(vsi);
3004 		break;
3005 	case ICE_VSI_VF:
3006 		ret = ice_vsi_alloc_q_vectors(vsi);
3007 		if (ret)
3008 			goto err_rings;
3009 
3010 		ret = ice_vsi_setup_vector_base(vsi);
3011 		if (ret)
3012 			goto err_vectors;
3013 
3014 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3015 		if (ret)
3016 			goto err_vectors;
3017 
3018 		ret = ice_vsi_alloc_rings(vsi);
3019 		if (ret)
3020 			goto err_vectors;
3021 
3022 		pf->q_left_tx -= vsi->alloc_txq;
3023 		pf->q_left_rx -= vsi->alloc_rxq;
3024 		break;
3025 	default:
3026 		break;
3027 	}
3028 
3029 	/* configure VSI nodes based on number of queues and TC's */
3030 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3031 		max_txqs[i] = pf->num_lan_tx;
3032 
3033 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3034 				 max_txqs);
3035 	if (status) {
3036 		dev_err(&pf->pdev->dev,
3037 			"VSI %d failed lan queue config, error %d\n",
3038 			vsi->vsi_num, status);
3039 		goto err_vectors;
3040 	}
3041 	return 0;
3042 
3043 err_vectors:
3044 	ice_vsi_free_q_vectors(vsi);
3045 err_rings:
3046 	if (vsi->netdev) {
3047 		vsi->current_netdev_flags = 0;
3048 		unregister_netdev(vsi->netdev);
3049 		free_netdev(vsi->netdev);
3050 		vsi->netdev = NULL;
3051 	}
3052 err_vsi:
3053 	ice_vsi_clear(vsi);
3054 	set_bit(__ICE_RESET_FAILED, pf->state);
3055 	return ret;
3056 }
3057 
3058 /**
3059  * ice_is_reset_in_progress - check for a reset in progress
3060  * @state: PF state field
3061  */
3062 bool ice_is_reset_in_progress(unsigned long *state)
3063 {
3064 	return test_bit(__ICE_RESET_OICR_RECV, state) ||
3065 	       test_bit(__ICE_PFR_REQ, state) ||
3066 	       test_bit(__ICE_CORER_REQ, state) ||
3067 	       test_bit(__ICE_GLOBR_REQ, state);
3068 }
3069 
3070 #ifdef CONFIG_DCB
3071 /**
3072  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3073  * @vsi: VSI being configured
3074  * @ctx: the context buffer returned from AQ VSI update command
3075  */
3076 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3077 {
3078 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3079 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3080 	       sizeof(vsi->info.q_mapping));
3081 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3082 	       sizeof(vsi->info.tc_mapping));
3083 }
3084 
3085 /**
3086  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3087  * @vsi: the VSI being configured
3088  * @ena_tc: TC map to be enabled
3089  */
3090 static void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3091 {
3092 	struct net_device *netdev = vsi->netdev;
3093 	struct ice_pf *pf = vsi->back;
3094 	struct ice_dcbx_cfg *dcbcfg;
3095 	u8 netdev_tc;
3096 	int i;
3097 
3098 	if (!netdev)
3099 		return;
3100 
3101 	if (!ena_tc) {
3102 		netdev_reset_tc(netdev);
3103 		return;
3104 	}
3105 
3106 	if (netdev_set_num_tc(netdev, vsi->tc_cfg.numtc))
3107 		return;
3108 
3109 	dcbcfg = &pf->hw.port_info->local_dcbx_cfg;
3110 
3111 	ice_for_each_traffic_class(i)
3112 		if (vsi->tc_cfg.ena_tc & BIT(i))
3113 			netdev_set_tc_queue(netdev,
3114 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3115 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3116 					    vsi->tc_cfg.tc_info[i].qoffset);
3117 
3118 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3119 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3120 
3121 		/* Get the mapped netdev TC# for the UP */
3122 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3123 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3124 	}
3125 }
3126 
3127 /**
3128  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3129  * @vsi: VSI to be configured
3130  * @ena_tc: TC bitmap
3131  *
3132  * VSI queues expected to be quiesced before calling this function
3133  */
3134 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3135 {
3136 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3137 	struct ice_vsi_ctx *ctx;
3138 	struct ice_pf *pf = vsi->back;
3139 	enum ice_status status;
3140 	int i, ret = 0;
3141 	u8 num_tc = 0;
3142 
3143 	ice_for_each_traffic_class(i) {
3144 		/* build bitmap of enabled TCs */
3145 		if (ena_tc & BIT(i))
3146 			num_tc++;
3147 		/* populate max_txqs per TC */
3148 		max_txqs[i] = pf->num_lan_tx;
3149 	}
3150 
3151 	vsi->tc_cfg.ena_tc = ena_tc;
3152 	vsi->tc_cfg.numtc = num_tc;
3153 
3154 	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3155 	if (!ctx)
3156 		return -ENOMEM;
3157 
3158 	ctx->vf_num = 0;
3159 	ctx->info = vsi->info;
3160 
3161 	ice_vsi_setup_q_map(vsi, ctx);
3162 
3163 	/* must to indicate which section of VSI context are being modified */
3164 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3165 	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3166 	if (status) {
3167 		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3168 		ret = -EIO;
3169 		goto out;
3170 	}
3171 
3172 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3173 				 max_txqs);
3174 
3175 	if (status) {
3176 		dev_err(&pf->pdev->dev,
3177 			"VSI %d failed TC config, error %d\n",
3178 			vsi->vsi_num, status);
3179 		ret = -EIO;
3180 		goto out;
3181 	}
3182 	ice_vsi_update_q_map(vsi, ctx);
3183 	vsi->info.valid_sections = 0;
3184 
3185 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3186 out:
3187 	devm_kfree(&pf->pdev->dev, ctx);
3188 	return ret;
3189 }
3190 #endif /* CONFIG_DCB */
3191