1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 11 /** 12 * ice_vsi_type_str - maps VSI type enum to string equivalents 13 * @vsi_type: VSI type enum 14 */ 15 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 16 { 17 switch (vsi_type) { 18 case ICE_VSI_PF: 19 return "ICE_VSI_PF"; 20 case ICE_VSI_VF: 21 return "ICE_VSI_VF"; 22 case ICE_VSI_CTRL: 23 return "ICE_VSI_CTRL"; 24 case ICE_VSI_LB: 25 return "ICE_VSI_LB"; 26 default: 27 return "unknown"; 28 } 29 } 30 31 /** 32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 33 * @vsi: the VSI being configured 34 * @ena: start or stop the Rx rings 35 * 36 * First enable/disable all of the Rx rings, flush any remaining writes, and 37 * then verify that they have all been enabled/disabled successfully. This will 38 * let all of the register writes complete when enabling/disabling the Rx rings 39 * before waiting for the change in hardware to complete. 40 */ 41 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 42 { 43 int ret = 0; 44 u16 i; 45 46 for (i = 0; i < vsi->num_rxq; i++) 47 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 48 49 ice_flush(&vsi->back->hw); 50 51 for (i = 0; i < vsi->num_rxq; i++) { 52 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 53 if (ret) 54 break; 55 } 56 57 return ret; 58 } 59 60 /** 61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 62 * @vsi: VSI pointer 63 * 64 * On error: returns error code (negative) 65 * On success: returns 0 66 */ 67 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 68 { 69 struct ice_pf *pf = vsi->back; 70 struct device *dev; 71 72 dev = ice_pf_to_dev(pf); 73 74 /* allocate memory for both Tx and Rx ring pointers */ 75 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 76 sizeof(*vsi->tx_rings), GFP_KERNEL); 77 if (!vsi->tx_rings) 78 return -ENOMEM; 79 80 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 81 sizeof(*vsi->rx_rings), GFP_KERNEL); 82 if (!vsi->rx_rings) 83 goto err_rings; 84 85 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 86 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 87 sizeof(*vsi->txq_map), GFP_KERNEL); 88 89 if (!vsi->txq_map) 90 goto err_txq_map; 91 92 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 93 sizeof(*vsi->rxq_map), GFP_KERNEL); 94 if (!vsi->rxq_map) 95 goto err_rxq_map; 96 97 /* There is no need to allocate q_vectors for a loopback VSI. */ 98 if (vsi->type == ICE_VSI_LB) 99 return 0; 100 101 /* allocate memory for q_vector pointers */ 102 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 103 sizeof(*vsi->q_vectors), GFP_KERNEL); 104 if (!vsi->q_vectors) 105 goto err_vectors; 106 107 return 0; 108 109 err_vectors: 110 devm_kfree(dev, vsi->rxq_map); 111 err_rxq_map: 112 devm_kfree(dev, vsi->txq_map); 113 err_txq_map: 114 devm_kfree(dev, vsi->rx_rings); 115 err_rings: 116 devm_kfree(dev, vsi->tx_rings); 117 return -ENOMEM; 118 } 119 120 /** 121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 122 * @vsi: the VSI being configured 123 */ 124 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 125 { 126 switch (vsi->type) { 127 case ICE_VSI_PF: 128 case ICE_VSI_CTRL: 129 case ICE_VSI_LB: 130 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 131 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 132 break; 133 default: 134 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 135 vsi->type); 136 break; 137 } 138 } 139 140 /** 141 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 142 * @vsi: the VSI being configured 143 * @vf_id: ID of the VF being configured 144 * 145 * Return 0 on success and a negative value on error 146 */ 147 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 148 { 149 struct ice_pf *pf = vsi->back; 150 struct ice_vf *vf = NULL; 151 152 if (vsi->type == ICE_VSI_VF) 153 vsi->vf_id = vf_id; 154 155 switch (vsi->type) { 156 case ICE_VSI_PF: 157 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 158 num_online_cpus()); 159 if (vsi->req_txq) { 160 vsi->alloc_txq = vsi->req_txq; 161 vsi->num_txq = vsi->req_txq; 162 } 163 164 pf->num_lan_tx = vsi->alloc_txq; 165 166 /* only 1 Rx queue unless RSS is enabled */ 167 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 168 vsi->alloc_rxq = 1; 169 } else { 170 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 171 num_online_cpus()); 172 if (vsi->req_rxq) { 173 vsi->alloc_rxq = vsi->req_rxq; 174 vsi->num_rxq = vsi->req_rxq; 175 } 176 } 177 178 pf->num_lan_rx = vsi->alloc_rxq; 179 180 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 181 break; 182 case ICE_VSI_VF: 183 vf = &pf->vf[vsi->vf_id]; 184 vsi->alloc_txq = vf->num_vf_qs; 185 vsi->alloc_rxq = vf->num_vf_qs; 186 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 187 * data queue interrupts). Since vsi->num_q_vectors is number 188 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 189 * original vector count 190 */ 191 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 192 break; 193 case ICE_VSI_CTRL: 194 vsi->alloc_txq = 1; 195 vsi->alloc_rxq = 1; 196 vsi->num_q_vectors = 1; 197 break; 198 case ICE_VSI_LB: 199 vsi->alloc_txq = 1; 200 vsi->alloc_rxq = 1; 201 break; 202 default: 203 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 204 break; 205 } 206 207 ice_vsi_set_num_desc(vsi); 208 } 209 210 /** 211 * ice_get_free_slot - get the next non-NULL location index in array 212 * @array: array to search 213 * @size: size of the array 214 * @curr: last known occupied index to be used as a search hint 215 * 216 * void * is being used to keep the functionality generic. This lets us use this 217 * function on any array of pointers. 218 */ 219 static int ice_get_free_slot(void *array, int size, int curr) 220 { 221 int **tmp_array = (int **)array; 222 int next; 223 224 if (curr < (size - 1) && !tmp_array[curr + 1]) { 225 next = curr + 1; 226 } else { 227 int i = 0; 228 229 while ((i < size) && (tmp_array[i])) 230 i++; 231 if (i == size) 232 next = ICE_NO_VSI; 233 else 234 next = i; 235 } 236 return next; 237 } 238 239 /** 240 * ice_vsi_delete - delete a VSI from the switch 241 * @vsi: pointer to VSI being removed 242 */ 243 void ice_vsi_delete(struct ice_vsi *vsi) 244 { 245 struct ice_pf *pf = vsi->back; 246 struct ice_vsi_ctx *ctxt; 247 enum ice_status status; 248 249 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 250 if (!ctxt) 251 return; 252 253 if (vsi->type == ICE_VSI_VF) 254 ctxt->vf_num = vsi->vf_id; 255 ctxt->vsi_num = vsi->vsi_num; 256 257 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 258 259 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 260 if (status) 261 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 262 vsi->vsi_num, ice_stat_str(status)); 263 264 kfree(ctxt); 265 } 266 267 /** 268 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 269 * @vsi: pointer to VSI being cleared 270 */ 271 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 272 { 273 struct ice_pf *pf = vsi->back; 274 struct device *dev; 275 276 dev = ice_pf_to_dev(pf); 277 278 /* free the ring and vector containers */ 279 if (vsi->q_vectors) { 280 devm_kfree(dev, vsi->q_vectors); 281 vsi->q_vectors = NULL; 282 } 283 if (vsi->tx_rings) { 284 devm_kfree(dev, vsi->tx_rings); 285 vsi->tx_rings = NULL; 286 } 287 if (vsi->rx_rings) { 288 devm_kfree(dev, vsi->rx_rings); 289 vsi->rx_rings = NULL; 290 } 291 if (vsi->txq_map) { 292 devm_kfree(dev, vsi->txq_map); 293 vsi->txq_map = NULL; 294 } 295 if (vsi->rxq_map) { 296 devm_kfree(dev, vsi->rxq_map); 297 vsi->rxq_map = NULL; 298 } 299 } 300 301 /** 302 * ice_vsi_clear - clean up and deallocate the provided VSI 303 * @vsi: pointer to VSI being cleared 304 * 305 * This deallocates the VSI's queue resources, removes it from the PF's 306 * VSI array if necessary, and deallocates the VSI 307 * 308 * Returns 0 on success, negative on failure 309 */ 310 int ice_vsi_clear(struct ice_vsi *vsi) 311 { 312 struct ice_pf *pf = NULL; 313 struct device *dev; 314 315 if (!vsi) 316 return 0; 317 318 if (!vsi->back) 319 return -EINVAL; 320 321 pf = vsi->back; 322 dev = ice_pf_to_dev(pf); 323 324 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 325 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 326 return -EINVAL; 327 } 328 329 mutex_lock(&pf->sw_mutex); 330 /* updates the PF for this cleared VSI */ 331 332 pf->vsi[vsi->idx] = NULL; 333 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 334 pf->next_vsi = vsi->idx; 335 336 ice_vsi_free_arrays(vsi); 337 mutex_unlock(&pf->sw_mutex); 338 devm_kfree(dev, vsi); 339 340 return 0; 341 } 342 343 /** 344 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 345 * @irq: interrupt number 346 * @data: pointer to a q_vector 347 */ 348 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 349 { 350 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 351 352 if (!q_vector->tx.ring) 353 return IRQ_HANDLED; 354 355 #define FDIR_RX_DESC_CLEAN_BUDGET 64 356 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 357 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 358 359 return IRQ_HANDLED; 360 } 361 362 /** 363 * ice_msix_clean_rings - MSIX mode Interrupt Handler 364 * @irq: interrupt number 365 * @data: pointer to a q_vector 366 */ 367 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 368 { 369 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 370 371 if (!q_vector->tx.ring && !q_vector->rx.ring) 372 return IRQ_HANDLED; 373 374 napi_schedule(&q_vector->napi); 375 376 return IRQ_HANDLED; 377 } 378 379 /** 380 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 381 * @pf: board private structure 382 * @vsi_type: type of VSI 383 * @vf_id: ID of the VF being configured 384 * 385 * returns a pointer to a VSI on success, NULL on failure. 386 */ 387 static struct ice_vsi * 388 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 389 { 390 struct device *dev = ice_pf_to_dev(pf); 391 struct ice_vsi *vsi = NULL; 392 393 /* Need to protect the allocation of the VSIs at the PF level */ 394 mutex_lock(&pf->sw_mutex); 395 396 /* If we have already allocated our maximum number of VSIs, 397 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 398 * is available to be populated 399 */ 400 if (pf->next_vsi == ICE_NO_VSI) { 401 dev_dbg(dev, "out of VSI slots!\n"); 402 goto unlock_pf; 403 } 404 405 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 406 if (!vsi) 407 goto unlock_pf; 408 409 vsi->type = vsi_type; 410 vsi->back = pf; 411 set_bit(__ICE_DOWN, vsi->state); 412 413 if (vsi_type == ICE_VSI_VF) 414 ice_vsi_set_num_qs(vsi, vf_id); 415 else 416 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 417 418 switch (vsi->type) { 419 case ICE_VSI_PF: 420 if (ice_vsi_alloc_arrays(vsi)) 421 goto err_rings; 422 423 /* Setup default MSIX irq handler for VSI */ 424 vsi->irq_handler = ice_msix_clean_rings; 425 break; 426 case ICE_VSI_CTRL: 427 if (ice_vsi_alloc_arrays(vsi)) 428 goto err_rings; 429 430 /* Setup ctrl VSI MSIX irq handler */ 431 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 432 break; 433 case ICE_VSI_VF: 434 if (ice_vsi_alloc_arrays(vsi)) 435 goto err_rings; 436 break; 437 case ICE_VSI_LB: 438 if (ice_vsi_alloc_arrays(vsi)) 439 goto err_rings; 440 break; 441 default: 442 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 443 goto unlock_pf; 444 } 445 446 if (vsi->type == ICE_VSI_CTRL) { 447 /* Use the last VSI slot as the index for the control VSI */ 448 vsi->idx = pf->num_alloc_vsi - 1; 449 pf->ctrl_vsi_idx = vsi->idx; 450 pf->vsi[vsi->idx] = vsi; 451 } else { 452 /* fill slot and make note of the index */ 453 vsi->idx = pf->next_vsi; 454 pf->vsi[pf->next_vsi] = vsi; 455 456 /* prepare pf->next_vsi for next use */ 457 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 458 pf->next_vsi); 459 } 460 goto unlock_pf; 461 462 err_rings: 463 devm_kfree(dev, vsi); 464 vsi = NULL; 465 unlock_pf: 466 mutex_unlock(&pf->sw_mutex); 467 return vsi; 468 } 469 470 /** 471 * ice_alloc_fd_res - Allocate FD resource for a VSI 472 * @vsi: pointer to the ice_vsi 473 * 474 * This allocates the FD resources 475 * 476 * Returns 0 on success, -EPERM on no-op or -EIO on failure 477 */ 478 static int ice_alloc_fd_res(struct ice_vsi *vsi) 479 { 480 struct ice_pf *pf = vsi->back; 481 u32 g_val, b_val; 482 483 /* Flow Director filters are only allocated/assigned to the PF VSI which 484 * passes the traffic. The CTRL VSI is only used to add/delete filters 485 * so we don't allocate resources to it 486 */ 487 488 /* FD filters from guaranteed pool per VSI */ 489 g_val = pf->hw.func_caps.fd_fltr_guar; 490 if (!g_val) 491 return -EPERM; 492 493 /* FD filters from best effort pool */ 494 b_val = pf->hw.func_caps.fd_fltr_best_effort; 495 if (!b_val) 496 return -EPERM; 497 498 if (vsi->type != ICE_VSI_PF) 499 return -EPERM; 500 501 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 502 return -EPERM; 503 504 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 505 506 /* each VSI gets same "best_effort" quota */ 507 vsi->num_bfltr = b_val; 508 509 return 0; 510 } 511 512 /** 513 * ice_vsi_get_qs - Assign queues from PF to VSI 514 * @vsi: the VSI to assign queues to 515 * 516 * Returns 0 on success and a negative value on error 517 */ 518 static int ice_vsi_get_qs(struct ice_vsi *vsi) 519 { 520 struct ice_pf *pf = vsi->back; 521 struct ice_qs_cfg tx_qs_cfg = { 522 .qs_mutex = &pf->avail_q_mutex, 523 .pf_map = pf->avail_txqs, 524 .pf_map_size = pf->max_pf_txqs, 525 .q_count = vsi->alloc_txq, 526 .scatter_count = ICE_MAX_SCATTER_TXQS, 527 .vsi_map = vsi->txq_map, 528 .vsi_map_offset = 0, 529 .mapping_mode = ICE_VSI_MAP_CONTIG 530 }; 531 struct ice_qs_cfg rx_qs_cfg = { 532 .qs_mutex = &pf->avail_q_mutex, 533 .pf_map = pf->avail_rxqs, 534 .pf_map_size = pf->max_pf_rxqs, 535 .q_count = vsi->alloc_rxq, 536 .scatter_count = ICE_MAX_SCATTER_RXQS, 537 .vsi_map = vsi->rxq_map, 538 .vsi_map_offset = 0, 539 .mapping_mode = ICE_VSI_MAP_CONTIG 540 }; 541 int ret; 542 543 ret = __ice_vsi_get_qs(&tx_qs_cfg); 544 if (ret) 545 return ret; 546 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 547 548 ret = __ice_vsi_get_qs(&rx_qs_cfg); 549 if (ret) 550 return ret; 551 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 552 553 return 0; 554 } 555 556 /** 557 * ice_vsi_put_qs - Release queues from VSI to PF 558 * @vsi: the VSI that is going to release queues 559 */ 560 void ice_vsi_put_qs(struct ice_vsi *vsi) 561 { 562 struct ice_pf *pf = vsi->back; 563 int i; 564 565 mutex_lock(&pf->avail_q_mutex); 566 567 for (i = 0; i < vsi->alloc_txq; i++) { 568 clear_bit(vsi->txq_map[i], pf->avail_txqs); 569 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 570 } 571 572 for (i = 0; i < vsi->alloc_rxq; i++) { 573 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 574 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 575 } 576 577 mutex_unlock(&pf->avail_q_mutex); 578 } 579 580 /** 581 * ice_is_safe_mode 582 * @pf: pointer to the PF struct 583 * 584 * returns true if driver is in safe mode, false otherwise 585 */ 586 bool ice_is_safe_mode(struct ice_pf *pf) 587 { 588 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 589 } 590 591 /** 592 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 593 * @vsi: the VSI being cleaned up 594 * 595 * This function deletes RSS input set for all flows that were configured 596 * for this VSI 597 */ 598 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 599 { 600 struct ice_pf *pf = vsi->back; 601 enum ice_status status; 602 603 if (ice_is_safe_mode(pf)) 604 return; 605 606 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 607 if (status) 608 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 609 vsi->vsi_num, ice_stat_str(status)); 610 } 611 612 /** 613 * ice_rss_clean - Delete RSS related VSI structures and configuration 614 * @vsi: the VSI being removed 615 */ 616 static void ice_rss_clean(struct ice_vsi *vsi) 617 { 618 struct ice_pf *pf = vsi->back; 619 struct device *dev; 620 621 dev = ice_pf_to_dev(pf); 622 623 if (vsi->rss_hkey_user) 624 devm_kfree(dev, vsi->rss_hkey_user); 625 if (vsi->rss_lut_user) 626 devm_kfree(dev, vsi->rss_lut_user); 627 628 ice_vsi_clean_rss_flow_fld(vsi); 629 /* remove RSS replay list */ 630 if (!ice_is_safe_mode(pf)) 631 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 632 } 633 634 /** 635 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 636 * @vsi: the VSI being configured 637 */ 638 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 639 { 640 struct ice_hw_common_caps *cap; 641 struct ice_pf *pf = vsi->back; 642 643 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 644 vsi->rss_size = 1; 645 return; 646 } 647 648 cap = &pf->hw.func_caps.common_cap; 649 switch (vsi->type) { 650 case ICE_VSI_PF: 651 /* PF VSI will inherit RSS instance of PF */ 652 vsi->rss_table_size = (u16)cap->rss_table_size; 653 vsi->rss_size = min_t(u16, num_online_cpus(), 654 BIT(cap->rss_table_entry_width)); 655 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 656 break; 657 case ICE_VSI_VF: 658 /* VF VSI will get a small RSS table. 659 * For VSI_LUT, LUT size should be set to 64 bytes. 660 */ 661 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 662 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 663 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 664 break; 665 case ICE_VSI_LB: 666 break; 667 default: 668 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 669 ice_vsi_type_str(vsi->type)); 670 break; 671 } 672 } 673 674 /** 675 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 676 * @ctxt: the VSI context being set 677 * 678 * This initializes a default VSI context for all sections except the Queues. 679 */ 680 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 681 { 682 u32 table = 0; 683 684 memset(&ctxt->info, 0, sizeof(ctxt->info)); 685 /* VSI's should be allocated from shared pool */ 686 ctxt->alloc_from_pool = true; 687 /* Src pruning enabled by default */ 688 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 689 /* Traffic from VSI can be sent to LAN */ 690 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 691 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 692 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 693 * packets untagged/tagged. 694 */ 695 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 696 ICE_AQ_VSI_VLAN_MODE_M) >> 697 ICE_AQ_VSI_VLAN_MODE_S); 698 /* Have 1:1 UP mapping for both ingress/egress tables */ 699 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 700 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 701 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 702 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 703 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 704 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 705 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 706 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 707 ctxt->info.ingress_table = cpu_to_le32(table); 708 ctxt->info.egress_table = cpu_to_le32(table); 709 /* Have 1:1 UP mapping for outer to inner UP table */ 710 ctxt->info.outer_up_table = cpu_to_le32(table); 711 /* No Outer tag support outer_tag_flags remains to zero */ 712 } 713 714 /** 715 * ice_vsi_setup_q_map - Setup a VSI queue map 716 * @vsi: the VSI being configured 717 * @ctxt: VSI context structure 718 */ 719 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 720 { 721 u16 offset = 0, qmap = 0, tx_count = 0; 722 u16 qcount_tx = vsi->alloc_txq; 723 u16 qcount_rx = vsi->alloc_rxq; 724 u16 tx_numq_tc, rx_numq_tc; 725 u16 pow = 0, max_rss = 0; 726 bool ena_tc0 = false; 727 u8 netdev_tc = 0; 728 int i; 729 730 /* at least TC0 should be enabled by default */ 731 if (vsi->tc_cfg.numtc) { 732 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 733 ena_tc0 = true; 734 } else { 735 ena_tc0 = true; 736 } 737 738 if (ena_tc0) { 739 vsi->tc_cfg.numtc++; 740 vsi->tc_cfg.ena_tc |= 1; 741 } 742 743 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 744 if (!rx_numq_tc) 745 rx_numq_tc = 1; 746 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 747 if (!tx_numq_tc) 748 tx_numq_tc = 1; 749 750 /* TC mapping is a function of the number of Rx queues assigned to the 751 * VSI for each traffic class and the offset of these queues. 752 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 753 * queues allocated to TC0. No:of queues is a power-of-2. 754 * 755 * If TC is not enabled, the queue offset is set to 0, and allocate one 756 * queue, this way, traffic for the given TC will be sent to the default 757 * queue. 758 * 759 * Setup number and offset of Rx queues for all TCs for the VSI 760 */ 761 762 qcount_rx = rx_numq_tc; 763 764 /* qcount will change if RSS is enabled */ 765 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 766 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 767 if (vsi->type == ICE_VSI_PF) 768 max_rss = ICE_MAX_LG_RSS_QS; 769 else 770 max_rss = ICE_MAX_RSS_QS_PER_VF; 771 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 772 if (!vsi->req_rxq) 773 qcount_rx = min_t(u16, qcount_rx, 774 vsi->rss_size); 775 } 776 } 777 778 /* find the (rounded up) power-of-2 of qcount */ 779 pow = (u16)order_base_2(qcount_rx); 780 781 ice_for_each_traffic_class(i) { 782 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 783 /* TC is not enabled */ 784 vsi->tc_cfg.tc_info[i].qoffset = 0; 785 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 786 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 787 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 788 ctxt->info.tc_mapping[i] = 0; 789 continue; 790 } 791 792 /* TC is enabled */ 793 vsi->tc_cfg.tc_info[i].qoffset = offset; 794 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 795 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 796 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 797 798 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 799 ICE_AQ_VSI_TC_Q_OFFSET_M) | 800 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 801 ICE_AQ_VSI_TC_Q_NUM_M); 802 offset += qcount_rx; 803 tx_count += tx_numq_tc; 804 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 805 } 806 807 /* if offset is non-zero, means it is calculated correctly based on 808 * enabled TCs for a given VSI otherwise qcount_rx will always 809 * be correct and non-zero because it is based off - VSI's 810 * allocated Rx queues which is at least 1 (hence qcount_tx will be 811 * at least 1) 812 */ 813 if (offset) 814 vsi->num_rxq = offset; 815 else 816 vsi->num_rxq = qcount_rx; 817 818 vsi->num_txq = tx_count; 819 820 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 821 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 822 /* since there is a chance that num_rxq could have been changed 823 * in the above for loop, make num_txq equal to num_rxq. 824 */ 825 vsi->num_txq = vsi->num_rxq; 826 } 827 828 /* Rx queue mapping */ 829 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 830 /* q_mapping buffer holds the info for the first queue allocated for 831 * this VSI in the PF space and also the number of queues associated 832 * with this VSI. 833 */ 834 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 835 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 836 } 837 838 /** 839 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 840 * @ctxt: the VSI context being set 841 * @vsi: the VSI being configured 842 */ 843 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 844 { 845 u8 dflt_q_group, dflt_q_prio; 846 u16 dflt_q, report_q, val; 847 848 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 849 return; 850 851 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 852 ctxt->info.valid_sections |= cpu_to_le16(val); 853 dflt_q = 0; 854 dflt_q_group = 0; 855 report_q = 0; 856 dflt_q_prio = 0; 857 858 /* enable flow director filtering/programming */ 859 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 860 ctxt->info.fd_options = cpu_to_le16(val); 861 /* max of allocated flow director filters */ 862 ctxt->info.max_fd_fltr_dedicated = 863 cpu_to_le16(vsi->num_gfltr); 864 /* max of shared flow director filters any VSI may program */ 865 ctxt->info.max_fd_fltr_shared = 866 cpu_to_le16(vsi->num_bfltr); 867 /* default queue index within the VSI of the default FD */ 868 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 869 ICE_AQ_VSI_FD_DEF_Q_M); 870 /* target queue or queue group to the FD filter */ 871 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 872 ICE_AQ_VSI_FD_DEF_GRP_M); 873 ctxt->info.fd_def_q = cpu_to_le16(val); 874 /* queue index on which FD filter completion is reported */ 875 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 876 ICE_AQ_VSI_FD_REPORT_Q_M); 877 /* priority of the default qindex action */ 878 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 879 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 880 ctxt->info.fd_report_opt = cpu_to_le16(val); 881 } 882 883 /** 884 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 885 * @ctxt: the VSI context being set 886 * @vsi: the VSI being configured 887 */ 888 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 889 { 890 u8 lut_type, hash_type; 891 struct device *dev; 892 struct ice_pf *pf; 893 894 pf = vsi->back; 895 dev = ice_pf_to_dev(pf); 896 897 switch (vsi->type) { 898 case ICE_VSI_PF: 899 /* PF VSI will inherit RSS instance of PF */ 900 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 901 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 902 break; 903 case ICE_VSI_VF: 904 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 905 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 906 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 907 break; 908 default: 909 dev_dbg(dev, "Unsupported VSI type %s\n", 910 ice_vsi_type_str(vsi->type)); 911 return; 912 } 913 914 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 915 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 916 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 917 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 918 } 919 920 /** 921 * ice_vsi_init - Create and initialize a VSI 922 * @vsi: the VSI being configured 923 * @init_vsi: is this call creating a VSI 924 * 925 * This initializes a VSI context depending on the VSI type to be added and 926 * passes it down to the add_vsi aq command to create a new VSI. 927 */ 928 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 929 { 930 struct ice_pf *pf = vsi->back; 931 struct ice_hw *hw = &pf->hw; 932 struct ice_vsi_ctx *ctxt; 933 struct device *dev; 934 int ret = 0; 935 936 dev = ice_pf_to_dev(pf); 937 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 938 if (!ctxt) 939 return -ENOMEM; 940 941 switch (vsi->type) { 942 case ICE_VSI_CTRL: 943 case ICE_VSI_LB: 944 case ICE_VSI_PF: 945 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 946 break; 947 case ICE_VSI_VF: 948 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 949 /* VF number here is the absolute VF number (0-255) */ 950 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 951 break; 952 default: 953 ret = -ENODEV; 954 goto out; 955 } 956 957 ice_set_dflt_vsi_ctx(ctxt); 958 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 959 ice_set_fd_vsi_ctx(ctxt, vsi); 960 /* if the switch is in VEB mode, allow VSI loopback */ 961 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 962 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 963 964 /* Set LUT type and HASH type if RSS is enabled */ 965 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 966 vsi->type != ICE_VSI_CTRL) { 967 ice_set_rss_vsi_ctx(ctxt, vsi); 968 /* if updating VSI context, make sure to set valid_section: 969 * to indicate which section of VSI context being updated 970 */ 971 if (!init_vsi) 972 ctxt->info.valid_sections |= 973 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 974 } 975 976 ctxt->info.sw_id = vsi->port_info->sw_id; 977 ice_vsi_setup_q_map(vsi, ctxt); 978 if (!init_vsi) /* means VSI being updated */ 979 /* must to indicate which section of VSI context are 980 * being modified 981 */ 982 ctxt->info.valid_sections |= 983 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 984 985 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 986 * respectively 987 */ 988 if (vsi->type == ICE_VSI_VF) { 989 ctxt->info.valid_sections |= 990 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 991 if (pf->vf[vsi->vf_id].spoofchk) { 992 ctxt->info.sec_flags |= 993 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 994 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 995 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 996 } else { 997 ctxt->info.sec_flags &= 998 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 999 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1000 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1001 } 1002 } 1003 1004 /* Allow control frames out of main VSI */ 1005 if (vsi->type == ICE_VSI_PF) { 1006 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1007 ctxt->info.valid_sections |= 1008 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1009 } 1010 1011 if (init_vsi) { 1012 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1013 if (ret) { 1014 dev_err(dev, "Add VSI failed, err %d\n", ret); 1015 ret = -EIO; 1016 goto out; 1017 } 1018 } else { 1019 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1020 if (ret) { 1021 dev_err(dev, "Update VSI failed, err %d\n", ret); 1022 ret = -EIO; 1023 goto out; 1024 } 1025 } 1026 1027 /* keep context for update VSI operations */ 1028 vsi->info = ctxt->info; 1029 1030 /* record VSI number returned */ 1031 vsi->vsi_num = ctxt->vsi_num; 1032 1033 out: 1034 kfree(ctxt); 1035 return ret; 1036 } 1037 1038 /** 1039 * ice_free_res - free a block of resources 1040 * @res: pointer to the resource 1041 * @index: starting index previously returned by ice_get_res 1042 * @id: identifier to track owner 1043 * 1044 * Returns number of resources freed 1045 */ 1046 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1047 { 1048 int count = 0; 1049 int i; 1050 1051 if (!res || index >= res->end) 1052 return -EINVAL; 1053 1054 id |= ICE_RES_VALID_BIT; 1055 for (i = index; i < res->end && res->list[i] == id; i++) { 1056 res->list[i] = 0; 1057 count++; 1058 } 1059 1060 return count; 1061 } 1062 1063 /** 1064 * ice_search_res - Search the tracker for a block of resources 1065 * @res: pointer to the resource 1066 * @needed: size of the block needed 1067 * @id: identifier to track owner 1068 * 1069 * Returns the base item index of the block, or -ENOMEM for error 1070 */ 1071 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1072 { 1073 u16 start = 0, end = 0; 1074 1075 if (needed > res->end) 1076 return -ENOMEM; 1077 1078 id |= ICE_RES_VALID_BIT; 1079 1080 do { 1081 /* skip already allocated entries */ 1082 if (res->list[end++] & ICE_RES_VALID_BIT) { 1083 start = end; 1084 if ((start + needed) > res->end) 1085 break; 1086 } 1087 1088 if (end == (start + needed)) { 1089 int i = start; 1090 1091 /* there was enough, so assign it to the requestor */ 1092 while (i != end) 1093 res->list[i++] = id; 1094 1095 return start; 1096 } 1097 } while (end < res->end); 1098 1099 return -ENOMEM; 1100 } 1101 1102 /** 1103 * ice_get_free_res_count - Get free count from a resource tracker 1104 * @res: Resource tracker instance 1105 */ 1106 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1107 { 1108 u16 i, count = 0; 1109 1110 for (i = 0; i < res->end; i++) 1111 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1112 count++; 1113 1114 return count; 1115 } 1116 1117 /** 1118 * ice_get_res - get a block of resources 1119 * @pf: board private structure 1120 * @res: pointer to the resource 1121 * @needed: size of the block needed 1122 * @id: identifier to track owner 1123 * 1124 * Returns the base item index of the block, or negative for error 1125 */ 1126 int 1127 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1128 { 1129 if (!res || !pf) 1130 return -EINVAL; 1131 1132 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1133 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1134 needed, res->num_entries, id); 1135 return -EINVAL; 1136 } 1137 1138 return ice_search_res(res, needed, id); 1139 } 1140 1141 /** 1142 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1143 * @vsi: ptr to the VSI 1144 * 1145 * This should only be called after ice_vsi_alloc() which allocates the 1146 * corresponding SW VSI structure and initializes num_queue_pairs for the 1147 * newly allocated VSI. 1148 * 1149 * Returns 0 on success or negative on failure 1150 */ 1151 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1152 { 1153 struct ice_pf *pf = vsi->back; 1154 struct device *dev; 1155 u16 num_q_vectors; 1156 int base; 1157 1158 dev = ice_pf_to_dev(pf); 1159 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1160 if (vsi->type == ICE_VSI_VF) 1161 return 0; 1162 1163 if (vsi->base_vector) { 1164 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1165 vsi->vsi_num, vsi->base_vector); 1166 return -EEXIST; 1167 } 1168 1169 num_q_vectors = vsi->num_q_vectors; 1170 /* reserve slots from OS requested IRQs */ 1171 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1172 1173 if (base < 0) { 1174 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1175 ice_get_free_res_count(pf->irq_tracker), 1176 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1177 return -ENOENT; 1178 } 1179 vsi->base_vector = (u16)base; 1180 pf->num_avail_sw_msix -= num_q_vectors; 1181 1182 return 0; 1183 } 1184 1185 /** 1186 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1187 * @vsi: the VSI having rings deallocated 1188 */ 1189 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1190 { 1191 int i; 1192 1193 if (vsi->tx_rings) { 1194 for (i = 0; i < vsi->alloc_txq; i++) { 1195 if (vsi->tx_rings[i]) { 1196 kfree_rcu(vsi->tx_rings[i], rcu); 1197 WRITE_ONCE(vsi->tx_rings[i], NULL); 1198 } 1199 } 1200 } 1201 if (vsi->rx_rings) { 1202 for (i = 0; i < vsi->alloc_rxq; i++) { 1203 if (vsi->rx_rings[i]) { 1204 kfree_rcu(vsi->rx_rings[i], rcu); 1205 WRITE_ONCE(vsi->rx_rings[i], NULL); 1206 } 1207 } 1208 } 1209 } 1210 1211 /** 1212 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1213 * @vsi: VSI which is having rings allocated 1214 */ 1215 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1216 { 1217 struct ice_pf *pf = vsi->back; 1218 struct device *dev; 1219 u16 i; 1220 1221 dev = ice_pf_to_dev(pf); 1222 /* Allocate Tx rings */ 1223 for (i = 0; i < vsi->alloc_txq; i++) { 1224 struct ice_ring *ring; 1225 1226 /* allocate with kzalloc(), free with kfree_rcu() */ 1227 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1228 1229 if (!ring) 1230 goto err_out; 1231 1232 ring->q_index = i; 1233 ring->reg_idx = vsi->txq_map[i]; 1234 ring->ring_active = false; 1235 ring->vsi = vsi; 1236 ring->dev = dev; 1237 ring->count = vsi->num_tx_desc; 1238 WRITE_ONCE(vsi->tx_rings[i], ring); 1239 } 1240 1241 /* Allocate Rx rings */ 1242 for (i = 0; i < vsi->alloc_rxq; i++) { 1243 struct ice_ring *ring; 1244 1245 /* allocate with kzalloc(), free with kfree_rcu() */ 1246 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1247 if (!ring) 1248 goto err_out; 1249 1250 ring->q_index = i; 1251 ring->reg_idx = vsi->rxq_map[i]; 1252 ring->ring_active = false; 1253 ring->vsi = vsi; 1254 ring->netdev = vsi->netdev; 1255 ring->dev = dev; 1256 ring->count = vsi->num_rx_desc; 1257 WRITE_ONCE(vsi->rx_rings[i], ring); 1258 } 1259 1260 return 0; 1261 1262 err_out: 1263 ice_vsi_clear_rings(vsi); 1264 return -ENOMEM; 1265 } 1266 1267 /** 1268 * ice_vsi_manage_rss_lut - disable/enable RSS 1269 * @vsi: the VSI being changed 1270 * @ena: boolean value indicating if this is an enable or disable request 1271 * 1272 * In the event of disable request for RSS, this function will zero out RSS 1273 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1274 * LUT. 1275 */ 1276 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1277 { 1278 int err = 0; 1279 u8 *lut; 1280 1281 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1282 if (!lut) 1283 return -ENOMEM; 1284 1285 if (ena) { 1286 if (vsi->rss_lut_user) 1287 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1288 else 1289 ice_fill_rss_lut(lut, vsi->rss_table_size, 1290 vsi->rss_size); 1291 } 1292 1293 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1294 kfree(lut); 1295 return err; 1296 } 1297 1298 /** 1299 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1300 * @vsi: VSI to be configured 1301 */ 1302 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1303 { 1304 struct ice_aqc_get_set_rss_keys *key; 1305 struct ice_pf *pf = vsi->back; 1306 enum ice_status status; 1307 struct device *dev; 1308 int err = 0; 1309 u8 *lut; 1310 1311 dev = ice_pf_to_dev(pf); 1312 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1313 1314 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1315 if (!lut) 1316 return -ENOMEM; 1317 1318 if (vsi->rss_lut_user) 1319 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1320 else 1321 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1322 1323 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1324 vsi->rss_table_size); 1325 1326 if (status) { 1327 dev_err(dev, "set_rss_lut failed, error %s\n", 1328 ice_stat_str(status)); 1329 err = -EIO; 1330 goto ice_vsi_cfg_rss_exit; 1331 } 1332 1333 key = kzalloc(sizeof(*key), GFP_KERNEL); 1334 if (!key) { 1335 err = -ENOMEM; 1336 goto ice_vsi_cfg_rss_exit; 1337 } 1338 1339 if (vsi->rss_hkey_user) 1340 memcpy(key, 1341 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1342 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1343 else 1344 netdev_rss_key_fill((void *)key, 1345 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1346 1347 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1348 1349 if (status) { 1350 dev_err(dev, "set_rss_key failed, error %s\n", 1351 ice_stat_str(status)); 1352 err = -EIO; 1353 } 1354 1355 kfree(key); 1356 ice_vsi_cfg_rss_exit: 1357 kfree(lut); 1358 return err; 1359 } 1360 1361 /** 1362 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1363 * @vsi: VSI to be configured 1364 * 1365 * This function will only be called during the VF VSI setup. Upon successful 1366 * completion of package download, this function will configure default RSS 1367 * input sets for VF VSI. 1368 */ 1369 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1370 { 1371 struct ice_pf *pf = vsi->back; 1372 enum ice_status status; 1373 struct device *dev; 1374 1375 dev = ice_pf_to_dev(pf); 1376 if (ice_is_safe_mode(pf)) { 1377 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1378 vsi->vsi_num); 1379 return; 1380 } 1381 1382 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1383 if (status) 1384 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1385 vsi->vsi_num, ice_stat_str(status)); 1386 } 1387 1388 /** 1389 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1390 * @vsi: VSI to be configured 1391 * 1392 * This function will only be called after successful download package call 1393 * during initialization of PF. Since the downloaded package will erase the 1394 * RSS section, this function will configure RSS input sets for different 1395 * flow types. The last profile added has the highest priority, therefore 2 1396 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1397 * (i.e. IPv4 src/dst TCP src/dst port). 1398 */ 1399 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1400 { 1401 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1402 struct ice_pf *pf = vsi->back; 1403 struct ice_hw *hw = &pf->hw; 1404 enum ice_status status; 1405 struct device *dev; 1406 1407 dev = ice_pf_to_dev(pf); 1408 if (ice_is_safe_mode(pf)) { 1409 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1410 vsi_num); 1411 return; 1412 } 1413 /* configure RSS for IPv4 with input set IP src/dst */ 1414 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1415 ICE_FLOW_SEG_HDR_IPV4); 1416 if (status) 1417 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1418 vsi_num, ice_stat_str(status)); 1419 1420 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1421 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1422 ICE_FLOW_SEG_HDR_IPV6); 1423 if (status) 1424 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1425 vsi_num, ice_stat_str(status)); 1426 1427 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1428 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1429 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1430 if (status) 1431 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1432 vsi_num, ice_stat_str(status)); 1433 1434 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1435 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1436 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1437 if (status) 1438 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1439 vsi_num, ice_stat_str(status)); 1440 1441 /* configure RSS for sctp4 with input set IP src/dst */ 1442 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1443 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1444 if (status) 1445 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1446 vsi_num, ice_stat_str(status)); 1447 1448 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1449 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1450 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1451 if (status) 1452 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1453 vsi_num, ice_stat_str(status)); 1454 1455 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1456 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1457 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1458 if (status) 1459 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1460 vsi_num, ice_stat_str(status)); 1461 1462 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1463 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1464 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1465 if (status) 1466 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1467 vsi_num, ice_stat_str(status)); 1468 } 1469 1470 /** 1471 * ice_pf_state_is_nominal - checks the PF for nominal state 1472 * @pf: pointer to PF to check 1473 * 1474 * Check the PF's state for a collection of bits that would indicate 1475 * the PF is in a state that would inhibit normal operation for 1476 * driver functionality. 1477 * 1478 * Returns true if PF is in a nominal state, false otherwise 1479 */ 1480 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1481 { 1482 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1483 1484 if (!pf) 1485 return false; 1486 1487 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1488 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1489 return false; 1490 1491 return true; 1492 } 1493 1494 /** 1495 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1496 * @vsi: the VSI to be updated 1497 */ 1498 void ice_update_eth_stats(struct ice_vsi *vsi) 1499 { 1500 struct ice_eth_stats *prev_es, *cur_es; 1501 struct ice_hw *hw = &vsi->back->hw; 1502 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1503 1504 prev_es = &vsi->eth_stats_prev; 1505 cur_es = &vsi->eth_stats; 1506 1507 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1508 &prev_es->rx_bytes, &cur_es->rx_bytes); 1509 1510 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1511 &prev_es->rx_unicast, &cur_es->rx_unicast); 1512 1513 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1514 &prev_es->rx_multicast, &cur_es->rx_multicast); 1515 1516 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1517 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1518 1519 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1520 &prev_es->rx_discards, &cur_es->rx_discards); 1521 1522 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1523 &prev_es->tx_bytes, &cur_es->tx_bytes); 1524 1525 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1526 &prev_es->tx_unicast, &cur_es->tx_unicast); 1527 1528 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1529 &prev_es->tx_multicast, &cur_es->tx_multicast); 1530 1531 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1532 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1533 1534 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1535 &prev_es->tx_errors, &cur_es->tx_errors); 1536 1537 vsi->stat_offsets_loaded = true; 1538 } 1539 1540 /** 1541 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1542 * @vsi: the VSI being configured 1543 * @vid: VLAN ID to be added 1544 * @action: filter action to be performed on match 1545 */ 1546 int 1547 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1548 { 1549 struct ice_pf *pf = vsi->back; 1550 struct device *dev; 1551 int err = 0; 1552 1553 dev = ice_pf_to_dev(pf); 1554 1555 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1556 vsi->num_vlan++; 1557 } else { 1558 err = -ENODEV; 1559 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1560 vsi->vsi_num); 1561 } 1562 1563 return err; 1564 } 1565 1566 /** 1567 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1568 * @vsi: the VSI being configured 1569 * @vid: VLAN ID to be removed 1570 * 1571 * Returns 0 on success and negative on failure 1572 */ 1573 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1574 { 1575 struct ice_pf *pf = vsi->back; 1576 enum ice_status status; 1577 struct device *dev; 1578 int err = 0; 1579 1580 dev = ice_pf_to_dev(pf); 1581 1582 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1583 if (!status) { 1584 vsi->num_vlan--; 1585 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1586 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1587 vid, vsi->vsi_num, ice_stat_str(status)); 1588 } else { 1589 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1590 vid, vsi->vsi_num, ice_stat_str(status)); 1591 err = -EIO; 1592 } 1593 1594 return err; 1595 } 1596 1597 /** 1598 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1599 * @vsi: VSI 1600 */ 1601 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1602 { 1603 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1604 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1605 vsi->rx_buf_len = ICE_RXBUF_2048; 1606 #if (PAGE_SIZE < 8192) 1607 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1608 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1609 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1610 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1611 #endif 1612 } else { 1613 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1614 #if (PAGE_SIZE < 8192) 1615 vsi->rx_buf_len = ICE_RXBUF_3072; 1616 #else 1617 vsi->rx_buf_len = ICE_RXBUF_2048; 1618 #endif 1619 } 1620 } 1621 1622 /** 1623 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1624 * @hw: HW pointer 1625 * @pf_q: index of the Rx queue in the PF's queue space 1626 * @rxdid: flexible descriptor RXDID 1627 * @prio: priority for the RXDID for this queue 1628 */ 1629 void 1630 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1631 { 1632 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1633 1634 /* clear any previous values */ 1635 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1636 QRXFLXP_CNTXT_RXDID_PRIO_M | 1637 QRXFLXP_CNTXT_TS_M); 1638 1639 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1640 QRXFLXP_CNTXT_RXDID_IDX_M; 1641 1642 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1643 QRXFLXP_CNTXT_RXDID_PRIO_M; 1644 1645 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1646 } 1647 1648 /** 1649 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1650 * @vsi: the VSI being configured 1651 * 1652 * Return 0 on success and a negative value on error 1653 * Configure the Rx VSI for operation. 1654 */ 1655 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1656 { 1657 u16 i; 1658 1659 if (vsi->type == ICE_VSI_VF) 1660 goto setup_rings; 1661 1662 ice_vsi_cfg_frame_size(vsi); 1663 setup_rings: 1664 /* set up individual rings */ 1665 for (i = 0; i < vsi->num_rxq; i++) { 1666 int err; 1667 1668 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1669 if (err) { 1670 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1671 i, err); 1672 return err; 1673 } 1674 } 1675 1676 return 0; 1677 } 1678 1679 /** 1680 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1681 * @vsi: the VSI being configured 1682 * @rings: Tx ring array to be configured 1683 * 1684 * Return 0 on success and a negative value on error 1685 * Configure the Tx VSI for operation. 1686 */ 1687 static int 1688 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1689 { 1690 struct ice_aqc_add_tx_qgrp *qg_buf; 1691 u16 q_idx = 0; 1692 int err = 0; 1693 1694 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1695 if (!qg_buf) 1696 return -ENOMEM; 1697 1698 qg_buf->num_txqs = 1; 1699 1700 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1701 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1702 if (err) 1703 goto err_cfg_txqs; 1704 } 1705 1706 err_cfg_txqs: 1707 kfree(qg_buf); 1708 return err; 1709 } 1710 1711 /** 1712 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1713 * @vsi: the VSI being configured 1714 * 1715 * Return 0 on success and a negative value on error 1716 * Configure the Tx VSI for operation. 1717 */ 1718 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1719 { 1720 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1721 } 1722 1723 /** 1724 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1725 * @vsi: the VSI being configured 1726 * 1727 * Return 0 on success and a negative value on error 1728 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1729 */ 1730 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1731 { 1732 int ret; 1733 int i; 1734 1735 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1736 if (ret) 1737 return ret; 1738 1739 for (i = 0; i < vsi->num_xdp_txq; i++) 1740 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1741 1742 return ret; 1743 } 1744 1745 /** 1746 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1747 * @intrl: interrupt rate limit in usecs 1748 * @gran: interrupt rate limit granularity in usecs 1749 * 1750 * This function converts a decimal interrupt rate limit in usecs to the format 1751 * expected by firmware. 1752 */ 1753 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1754 { 1755 u32 val = intrl / gran; 1756 1757 if (val) 1758 return val | GLINT_RATE_INTRL_ENA_M; 1759 return 0; 1760 } 1761 1762 /** 1763 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1764 * @vsi: the VSI being configured 1765 * 1766 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1767 * for the VF VSI. 1768 */ 1769 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1770 { 1771 struct ice_pf *pf = vsi->back; 1772 struct ice_hw *hw = &pf->hw; 1773 u16 txq = 0, rxq = 0; 1774 int i, q; 1775 1776 for (i = 0; i < vsi->num_q_vectors; i++) { 1777 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1778 u16 reg_idx = q_vector->reg_idx; 1779 1780 ice_cfg_itr(hw, q_vector); 1781 1782 wr32(hw, GLINT_RATE(reg_idx), 1783 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1784 1785 /* Both Transmit Queue Interrupt Cause Control register 1786 * and Receive Queue Interrupt Cause control register 1787 * expects MSIX_INDX field to be the vector index 1788 * within the function space and not the absolute 1789 * vector index across PF or across device. 1790 * For SR-IOV VF VSIs queue vector index always starts 1791 * with 1 since first vector index(0) is used for OICR 1792 * in VF space. Since VMDq and other PF VSIs are within 1793 * the PF function space, use the vector index that is 1794 * tracked for this PF. 1795 */ 1796 for (q = 0; q < q_vector->num_ring_tx; q++) { 1797 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1798 q_vector->tx.itr_idx); 1799 txq++; 1800 } 1801 1802 for (q = 0; q < q_vector->num_ring_rx; q++) { 1803 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1804 q_vector->rx.itr_idx); 1805 rxq++; 1806 } 1807 } 1808 } 1809 1810 /** 1811 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1812 * @vsi: the VSI being changed 1813 */ 1814 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1815 { 1816 struct ice_hw *hw = &vsi->back->hw; 1817 struct ice_vsi_ctx *ctxt; 1818 enum ice_status status; 1819 int ret = 0; 1820 1821 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1822 if (!ctxt) 1823 return -ENOMEM; 1824 1825 /* Here we are configuring the VSI to let the driver add VLAN tags by 1826 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1827 * insertion happens in the Tx hot path, in ice_tx_map. 1828 */ 1829 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1830 1831 /* Preserve existing VLAN strip setting */ 1832 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1833 ICE_AQ_VSI_VLAN_EMOD_M); 1834 1835 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1836 1837 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1838 if (status) { 1839 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1840 ice_stat_str(status), 1841 ice_aq_str(hw->adminq.sq_last_status)); 1842 ret = -EIO; 1843 goto out; 1844 } 1845 1846 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1847 out: 1848 kfree(ctxt); 1849 return ret; 1850 } 1851 1852 /** 1853 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1854 * @vsi: the VSI being changed 1855 * @ena: boolean value indicating if this is a enable or disable request 1856 */ 1857 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1858 { 1859 struct ice_hw *hw = &vsi->back->hw; 1860 struct ice_vsi_ctx *ctxt; 1861 enum ice_status status; 1862 int ret = 0; 1863 1864 /* do not allow modifying VLAN stripping when a port VLAN is configured 1865 * on this VSI 1866 */ 1867 if (vsi->info.pvid) 1868 return 0; 1869 1870 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1871 if (!ctxt) 1872 return -ENOMEM; 1873 1874 /* Here we are configuring what the VSI should do with the VLAN tag in 1875 * the Rx packet. We can either leave the tag in the packet or put it in 1876 * the Rx descriptor. 1877 */ 1878 if (ena) 1879 /* Strip VLAN tag from Rx packet and put it in the desc */ 1880 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1881 else 1882 /* Disable stripping. Leave tag in packet */ 1883 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1884 1885 /* Allow all packets untagged/tagged */ 1886 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1887 1888 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1889 1890 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1891 if (status) { 1892 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1893 ena, ice_stat_str(status), 1894 ice_aq_str(hw->adminq.sq_last_status)); 1895 ret = -EIO; 1896 goto out; 1897 } 1898 1899 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1900 out: 1901 kfree(ctxt); 1902 return ret; 1903 } 1904 1905 /** 1906 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1907 * @vsi: the VSI whose rings are to be enabled 1908 * 1909 * Returns 0 on success and a negative value on error 1910 */ 1911 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1912 { 1913 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1914 } 1915 1916 /** 1917 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1918 * @vsi: the VSI whose rings are to be disabled 1919 * 1920 * Returns 0 on success and a negative value on error 1921 */ 1922 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1923 { 1924 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1925 } 1926 1927 /** 1928 * ice_vsi_stop_tx_rings - Disable Tx rings 1929 * @vsi: the VSI being configured 1930 * @rst_src: reset source 1931 * @rel_vmvf_num: Relative ID of VF/VM 1932 * @rings: Tx ring array to be stopped 1933 */ 1934 static int 1935 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1936 u16 rel_vmvf_num, struct ice_ring **rings) 1937 { 1938 u16 q_idx; 1939 1940 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1941 return -EINVAL; 1942 1943 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1944 struct ice_txq_meta txq_meta = { }; 1945 int status; 1946 1947 if (!rings || !rings[q_idx]) 1948 return -EINVAL; 1949 1950 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1951 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1952 rings[q_idx], &txq_meta); 1953 1954 if (status) 1955 return status; 1956 } 1957 1958 return 0; 1959 } 1960 1961 /** 1962 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1963 * @vsi: the VSI being configured 1964 * @rst_src: reset source 1965 * @rel_vmvf_num: Relative ID of VF/VM 1966 */ 1967 int 1968 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1969 u16 rel_vmvf_num) 1970 { 1971 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1972 } 1973 1974 /** 1975 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1976 * @vsi: the VSI being configured 1977 */ 1978 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1979 { 1980 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1981 } 1982 1983 /** 1984 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1985 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1986 * 1987 * returns true if Rx VLAN pruning is enabled and false otherwise. 1988 */ 1989 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1990 { 1991 if (!vsi) 1992 return false; 1993 1994 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 1995 } 1996 1997 /** 1998 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1999 * @vsi: VSI to enable or disable VLAN pruning on 2000 * @ena: set to true to enable VLAN pruning and false to disable it 2001 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2002 * 2003 * returns 0 if VSI is updated, negative otherwise 2004 */ 2005 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2006 { 2007 struct ice_vsi_ctx *ctxt; 2008 struct ice_pf *pf; 2009 int status; 2010 2011 if (!vsi) 2012 return -EINVAL; 2013 2014 pf = vsi->back; 2015 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2016 if (!ctxt) 2017 return -ENOMEM; 2018 2019 ctxt->info = vsi->info; 2020 2021 if (ena) 2022 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2023 else 2024 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2025 2026 if (!vlan_promisc) 2027 ctxt->info.valid_sections = 2028 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2029 2030 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2031 if (status) { 2032 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2033 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2034 ice_stat_str(status), 2035 ice_aq_str(pf->hw.adminq.sq_last_status)); 2036 goto err_out; 2037 } 2038 2039 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2040 2041 kfree(ctxt); 2042 return 0; 2043 2044 err_out: 2045 kfree(ctxt); 2046 return -EIO; 2047 } 2048 2049 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2050 { 2051 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2052 2053 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2054 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2055 } 2056 2057 /** 2058 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2059 * @vsi: VSI to set the q_vectors register index on 2060 */ 2061 static int 2062 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2063 { 2064 u16 i; 2065 2066 if (!vsi || !vsi->q_vectors) 2067 return -EINVAL; 2068 2069 ice_for_each_q_vector(vsi, i) { 2070 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2071 2072 if (!q_vector) { 2073 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2074 i, vsi->vsi_num); 2075 goto clear_reg_idx; 2076 } 2077 2078 if (vsi->type == ICE_VSI_VF) { 2079 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2080 2081 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2082 } else { 2083 q_vector->reg_idx = 2084 q_vector->v_idx + vsi->base_vector; 2085 } 2086 } 2087 2088 return 0; 2089 2090 clear_reg_idx: 2091 ice_for_each_q_vector(vsi, i) { 2092 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2093 2094 if (q_vector) 2095 q_vector->reg_idx = 0; 2096 } 2097 2098 return -EINVAL; 2099 } 2100 2101 /** 2102 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2103 * @vsi: the VSI being configured 2104 * @tx: bool to determine Tx or Rx rule 2105 * @create: bool to determine create or remove Rule 2106 */ 2107 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2108 { 2109 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2110 enum ice_sw_fwd_act_type act); 2111 struct ice_pf *pf = vsi->back; 2112 enum ice_status status; 2113 struct device *dev; 2114 2115 dev = ice_pf_to_dev(pf); 2116 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2117 2118 if (tx) 2119 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2120 ICE_DROP_PACKET); 2121 else 2122 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); 2123 2124 if (status) 2125 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2126 create ? "adding" : "removing", tx ? "TX" : "RX", 2127 vsi->vsi_num, ice_stat_str(status)); 2128 } 2129 2130 /** 2131 * ice_vsi_setup - Set up a VSI by a given type 2132 * @pf: board private structure 2133 * @pi: pointer to the port_info instance 2134 * @vsi_type: VSI type 2135 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2136 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2137 * fill-in ICE_INVAL_VFID as input. 2138 * 2139 * This allocates the sw VSI structure and its queue resources. 2140 * 2141 * Returns pointer to the successfully allocated and configured VSI sw struct on 2142 * success, NULL on failure. 2143 */ 2144 struct ice_vsi * 2145 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2146 enum ice_vsi_type vsi_type, u16 vf_id) 2147 { 2148 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2149 struct device *dev = ice_pf_to_dev(pf); 2150 enum ice_status status; 2151 struct ice_vsi *vsi; 2152 int ret, i; 2153 2154 if (vsi_type == ICE_VSI_VF) 2155 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2156 else 2157 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2158 2159 if (!vsi) { 2160 dev_err(dev, "could not allocate VSI\n"); 2161 return NULL; 2162 } 2163 2164 vsi->port_info = pi; 2165 vsi->vsw = pf->first_sw; 2166 if (vsi->type == ICE_VSI_PF) 2167 vsi->ethtype = ETH_P_PAUSE; 2168 2169 if (vsi->type == ICE_VSI_VF) 2170 vsi->vf_id = vf_id; 2171 2172 ice_alloc_fd_res(vsi); 2173 2174 if (ice_vsi_get_qs(vsi)) { 2175 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2176 vsi->idx); 2177 goto unroll_vsi_alloc; 2178 } 2179 2180 /* set RSS capabilities */ 2181 ice_vsi_set_rss_params(vsi); 2182 2183 /* set TC configuration */ 2184 ice_vsi_set_tc_cfg(vsi); 2185 2186 /* create the VSI */ 2187 ret = ice_vsi_init(vsi, true); 2188 if (ret) 2189 goto unroll_get_qs; 2190 2191 switch (vsi->type) { 2192 case ICE_VSI_CTRL: 2193 case ICE_VSI_PF: 2194 ret = ice_vsi_alloc_q_vectors(vsi); 2195 if (ret) 2196 goto unroll_vsi_init; 2197 2198 ret = ice_vsi_setup_vector_base(vsi); 2199 if (ret) 2200 goto unroll_alloc_q_vector; 2201 2202 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2203 if (ret) 2204 goto unroll_vector_base; 2205 2206 ret = ice_vsi_alloc_rings(vsi); 2207 if (ret) 2208 goto unroll_vector_base; 2209 2210 /* Always add VLAN ID 0 switch rule by default. This is needed 2211 * in order to allow all untagged and 0 tagged priority traffic 2212 * if Rx VLAN pruning is enabled. Also there are cases where we 2213 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2214 * so this handles those cases (i.e. adding the PF to a bridge 2215 * without the 8021q module loaded). 2216 */ 2217 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2218 if (ret) 2219 goto unroll_clear_rings; 2220 2221 ice_vsi_map_rings_to_vectors(vsi); 2222 2223 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2224 if (vsi->type != ICE_VSI_CTRL) 2225 /* Do not exit if configuring RSS had an issue, at 2226 * least receive traffic on first queue. Hence no 2227 * need to capture return value 2228 */ 2229 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2230 ice_vsi_cfg_rss_lut_key(vsi); 2231 ice_vsi_set_rss_flow_fld(vsi); 2232 } 2233 ice_init_arfs(vsi); 2234 break; 2235 case ICE_VSI_VF: 2236 /* VF driver will take care of creating netdev for this type and 2237 * map queues to vectors through Virtchnl, PF driver only 2238 * creates a VSI and corresponding structures for bookkeeping 2239 * purpose 2240 */ 2241 ret = ice_vsi_alloc_q_vectors(vsi); 2242 if (ret) 2243 goto unroll_vsi_init; 2244 2245 ret = ice_vsi_alloc_rings(vsi); 2246 if (ret) 2247 goto unroll_alloc_q_vector; 2248 2249 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2250 if (ret) 2251 goto unroll_vector_base; 2252 2253 /* Do not exit if configuring RSS had an issue, at least 2254 * receive traffic on first queue. Hence no need to capture 2255 * return value 2256 */ 2257 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2258 ice_vsi_cfg_rss_lut_key(vsi); 2259 ice_vsi_set_vf_rss_flow_fld(vsi); 2260 } 2261 break; 2262 case ICE_VSI_LB: 2263 ret = ice_vsi_alloc_rings(vsi); 2264 if (ret) 2265 goto unroll_vsi_init; 2266 break; 2267 default: 2268 /* clean up the resources and exit */ 2269 goto unroll_vsi_init; 2270 } 2271 2272 /* configure VSI nodes based on number of queues and TC's */ 2273 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2274 max_txqs[i] = vsi->alloc_txq; 2275 2276 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2277 max_txqs); 2278 if (status) { 2279 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2280 vsi->vsi_num, ice_stat_str(status)); 2281 goto unroll_vector_base; 2282 } 2283 2284 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2285 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2286 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2287 * The rule is added once for PF VSI in order to create appropriate 2288 * recipe, since VSI/VSI list is ignored with drop action... 2289 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2290 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2291 * settings in the HW. 2292 */ 2293 if (!ice_is_safe_mode(pf)) 2294 if (vsi->type == ICE_VSI_PF) { 2295 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2296 ICE_DROP_PACKET); 2297 ice_cfg_sw_lldp(vsi, true, true); 2298 } 2299 2300 return vsi; 2301 2302 unroll_clear_rings: 2303 ice_vsi_clear_rings(vsi); 2304 unroll_vector_base: 2305 /* reclaim SW interrupts back to the common pool */ 2306 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2307 pf->num_avail_sw_msix += vsi->num_q_vectors; 2308 unroll_alloc_q_vector: 2309 ice_vsi_free_q_vectors(vsi); 2310 unroll_vsi_init: 2311 ice_vsi_delete(vsi); 2312 unroll_get_qs: 2313 ice_vsi_put_qs(vsi); 2314 unroll_vsi_alloc: 2315 ice_vsi_clear(vsi); 2316 2317 return NULL; 2318 } 2319 2320 /** 2321 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2322 * @vsi: the VSI being cleaned up 2323 */ 2324 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2325 { 2326 struct ice_pf *pf = vsi->back; 2327 struct ice_hw *hw = &pf->hw; 2328 u32 txq = 0; 2329 u32 rxq = 0; 2330 int i, q; 2331 2332 for (i = 0; i < vsi->num_q_vectors; i++) { 2333 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2334 u16 reg_idx = q_vector->reg_idx; 2335 2336 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2337 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2338 for (q = 0; q < q_vector->num_ring_tx; q++) { 2339 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2340 if (ice_is_xdp_ena_vsi(vsi)) { 2341 u32 xdp_txq = txq + vsi->num_xdp_txq; 2342 2343 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2344 } 2345 txq++; 2346 } 2347 2348 for (q = 0; q < q_vector->num_ring_rx; q++) { 2349 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2350 rxq++; 2351 } 2352 } 2353 2354 ice_flush(hw); 2355 } 2356 2357 /** 2358 * ice_vsi_free_irq - Free the IRQ association with the OS 2359 * @vsi: the VSI being configured 2360 */ 2361 void ice_vsi_free_irq(struct ice_vsi *vsi) 2362 { 2363 struct ice_pf *pf = vsi->back; 2364 int base = vsi->base_vector; 2365 int i; 2366 2367 if (!vsi->q_vectors || !vsi->irqs_ready) 2368 return; 2369 2370 ice_vsi_release_msix(vsi); 2371 if (vsi->type == ICE_VSI_VF) 2372 return; 2373 2374 vsi->irqs_ready = false; 2375 ice_for_each_q_vector(vsi, i) { 2376 u16 vector = i + base; 2377 int irq_num; 2378 2379 irq_num = pf->msix_entries[vector].vector; 2380 2381 /* free only the irqs that were actually requested */ 2382 if (!vsi->q_vectors[i] || 2383 !(vsi->q_vectors[i]->num_ring_tx || 2384 vsi->q_vectors[i]->num_ring_rx)) 2385 continue; 2386 2387 /* clear the affinity notifier in the IRQ descriptor */ 2388 irq_set_affinity_notifier(irq_num, NULL); 2389 2390 /* clear the affinity_mask in the IRQ descriptor */ 2391 irq_set_affinity_hint(irq_num, NULL); 2392 synchronize_irq(irq_num); 2393 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2394 } 2395 } 2396 2397 /** 2398 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2399 * @vsi: the VSI having resources freed 2400 */ 2401 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2402 { 2403 int i; 2404 2405 if (!vsi->tx_rings) 2406 return; 2407 2408 ice_for_each_txq(vsi, i) 2409 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2410 ice_free_tx_ring(vsi->tx_rings[i]); 2411 } 2412 2413 /** 2414 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2415 * @vsi: the VSI having resources freed 2416 */ 2417 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2418 { 2419 int i; 2420 2421 if (!vsi->rx_rings) 2422 return; 2423 2424 ice_for_each_rxq(vsi, i) 2425 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2426 ice_free_rx_ring(vsi->rx_rings[i]); 2427 } 2428 2429 /** 2430 * ice_vsi_close - Shut down a VSI 2431 * @vsi: the VSI being shut down 2432 */ 2433 void ice_vsi_close(struct ice_vsi *vsi) 2434 { 2435 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2436 ice_down(vsi); 2437 2438 ice_vsi_free_irq(vsi); 2439 ice_vsi_free_tx_rings(vsi); 2440 ice_vsi_free_rx_rings(vsi); 2441 } 2442 2443 /** 2444 * ice_ena_vsi - resume a VSI 2445 * @vsi: the VSI being resume 2446 * @locked: is the rtnl_lock already held 2447 */ 2448 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2449 { 2450 int err = 0; 2451 2452 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2453 return 0; 2454 2455 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2456 2457 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2458 if (netif_running(vsi->netdev)) { 2459 if (!locked) 2460 rtnl_lock(); 2461 2462 err = ice_open(vsi->netdev); 2463 2464 if (!locked) 2465 rtnl_unlock(); 2466 } 2467 } else if (vsi->type == ICE_VSI_CTRL) { 2468 err = ice_vsi_open_ctrl(vsi); 2469 } 2470 2471 return err; 2472 } 2473 2474 /** 2475 * ice_dis_vsi - pause a VSI 2476 * @vsi: the VSI being paused 2477 * @locked: is the rtnl_lock already held 2478 */ 2479 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2480 { 2481 if (test_bit(__ICE_DOWN, vsi->state)) 2482 return; 2483 2484 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2485 2486 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2487 if (netif_running(vsi->netdev)) { 2488 if (!locked) 2489 rtnl_lock(); 2490 2491 ice_stop(vsi->netdev); 2492 2493 if (!locked) 2494 rtnl_unlock(); 2495 } else { 2496 ice_vsi_close(vsi); 2497 } 2498 } else if (vsi->type == ICE_VSI_CTRL) { 2499 ice_vsi_close(vsi); 2500 } 2501 } 2502 2503 /** 2504 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2505 * @vsi: the VSI being un-configured 2506 */ 2507 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2508 { 2509 int base = vsi->base_vector; 2510 struct ice_pf *pf = vsi->back; 2511 struct ice_hw *hw = &pf->hw; 2512 u32 val; 2513 int i; 2514 2515 /* disable interrupt causation from each queue */ 2516 if (vsi->tx_rings) { 2517 ice_for_each_txq(vsi, i) { 2518 if (vsi->tx_rings[i]) { 2519 u16 reg; 2520 2521 reg = vsi->tx_rings[i]->reg_idx; 2522 val = rd32(hw, QINT_TQCTL(reg)); 2523 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2524 wr32(hw, QINT_TQCTL(reg), val); 2525 } 2526 } 2527 } 2528 2529 if (vsi->rx_rings) { 2530 ice_for_each_rxq(vsi, i) { 2531 if (vsi->rx_rings[i]) { 2532 u16 reg; 2533 2534 reg = vsi->rx_rings[i]->reg_idx; 2535 val = rd32(hw, QINT_RQCTL(reg)); 2536 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2537 wr32(hw, QINT_RQCTL(reg), val); 2538 } 2539 } 2540 } 2541 2542 /* disable each interrupt */ 2543 ice_for_each_q_vector(vsi, i) { 2544 if (!vsi->q_vectors[i]) 2545 continue; 2546 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2547 } 2548 2549 ice_flush(hw); 2550 2551 /* don't call synchronize_irq() for VF's from the host */ 2552 if (vsi->type == ICE_VSI_VF) 2553 return; 2554 2555 ice_for_each_q_vector(vsi, i) 2556 synchronize_irq(pf->msix_entries[i + base].vector); 2557 } 2558 2559 /** 2560 * ice_napi_del - Remove NAPI handler for the VSI 2561 * @vsi: VSI for which NAPI handler is to be removed 2562 */ 2563 void ice_napi_del(struct ice_vsi *vsi) 2564 { 2565 int v_idx; 2566 2567 if (!vsi->netdev) 2568 return; 2569 2570 ice_for_each_q_vector(vsi, v_idx) 2571 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2572 } 2573 2574 /** 2575 * ice_vsi_release - Delete a VSI and free its resources 2576 * @vsi: the VSI being removed 2577 * 2578 * Returns 0 on success or < 0 on error 2579 */ 2580 int ice_vsi_release(struct ice_vsi *vsi) 2581 { 2582 struct ice_pf *pf; 2583 2584 if (!vsi->back) 2585 return -ENODEV; 2586 pf = vsi->back; 2587 2588 /* do not unregister while driver is in the reset recovery pending 2589 * state. Since reset/rebuild happens through PF service task workqueue, 2590 * it's not a good idea to unregister netdev that is associated to the 2591 * PF that is running the work queue items currently. This is done to 2592 * avoid check_flush_dependency() warning on this wq 2593 */ 2594 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2595 unregister_netdev(vsi->netdev); 2596 2597 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2598 ice_rss_clean(vsi); 2599 2600 /* Disable VSI and free resources */ 2601 if (vsi->type != ICE_VSI_LB) 2602 ice_vsi_dis_irq(vsi); 2603 ice_vsi_close(vsi); 2604 2605 /* SR-IOV determines needed MSIX resources all at once instead of per 2606 * VSI since when VFs are spawned we know how many VFs there are and how 2607 * many interrupts each VF needs. SR-IOV MSIX resources are also 2608 * cleared in the same manner. 2609 */ 2610 if (vsi->type != ICE_VSI_VF) { 2611 /* reclaim SW interrupts back to the common pool */ 2612 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2613 pf->num_avail_sw_msix += vsi->num_q_vectors; 2614 } 2615 2616 if (!ice_is_safe_mode(pf)) { 2617 if (vsi->type == ICE_VSI_PF) { 2618 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2619 ICE_DROP_PACKET); 2620 ice_cfg_sw_lldp(vsi, true, false); 2621 /* The Rx rule will only exist to remove if the LLDP FW 2622 * engine is currently stopped 2623 */ 2624 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2625 ice_cfg_sw_lldp(vsi, false, false); 2626 } 2627 } 2628 2629 ice_fltr_remove_all(vsi); 2630 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2631 ice_vsi_delete(vsi); 2632 ice_vsi_free_q_vectors(vsi); 2633 2634 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2635 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2636 free_netdev(vsi->netdev); 2637 vsi->netdev = NULL; 2638 } 2639 2640 ice_vsi_clear_rings(vsi); 2641 2642 ice_vsi_put_qs(vsi); 2643 2644 /* retain SW VSI data structure since it is needed to unregister and 2645 * free VSI netdev when PF is not in reset recovery pending state,\ 2646 * for ex: during rmmod. 2647 */ 2648 if (!ice_is_reset_in_progress(pf->state)) 2649 ice_vsi_clear(vsi); 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2656 * @q_vector: pointer to q_vector which is being updated 2657 * @coalesce: pointer to array of struct with stored coalesce 2658 * 2659 * Set coalesce param in q_vector and update these parameters in HW. 2660 */ 2661 static void 2662 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2663 struct ice_coalesce_stored *coalesce) 2664 { 2665 struct ice_ring_container *rx_rc = &q_vector->rx; 2666 struct ice_ring_container *tx_rc = &q_vector->tx; 2667 struct ice_hw *hw = &q_vector->vsi->back->hw; 2668 2669 tx_rc->itr_setting = coalesce->itr_tx; 2670 rx_rc->itr_setting = coalesce->itr_rx; 2671 2672 /* dynamic ITR values will be updated during Tx/Rx */ 2673 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2674 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2675 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2676 ICE_ITR_GRAN_S); 2677 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2678 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2679 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2680 ICE_ITR_GRAN_S); 2681 2682 q_vector->intrl = coalesce->intrl; 2683 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2684 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2685 } 2686 2687 /** 2688 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2689 * @vsi: VSI connected with q_vectors 2690 * @coalesce: array of struct with stored coalesce 2691 * 2692 * Returns array size. 2693 */ 2694 static int 2695 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2696 struct ice_coalesce_stored *coalesce) 2697 { 2698 int i; 2699 2700 ice_for_each_q_vector(vsi, i) { 2701 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2702 2703 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2704 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2705 coalesce[i].intrl = q_vector->intrl; 2706 } 2707 2708 return vsi->num_q_vectors; 2709 } 2710 2711 /** 2712 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2713 * @vsi: VSI connected with q_vectors 2714 * @coalesce: pointer to array of struct with stored coalesce 2715 * @size: size of coalesce array 2716 * 2717 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2718 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2719 * to default value. 2720 */ 2721 static void 2722 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2723 struct ice_coalesce_stored *coalesce, int size) 2724 { 2725 int i; 2726 2727 if ((size && !coalesce) || !vsi) 2728 return; 2729 2730 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2731 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2732 &coalesce[i]); 2733 2734 /* number of q_vectors increased, so assume coalesce settings were 2735 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2736 * the previous settings from q_vector 0 for all of the new q_vectors 2737 */ 2738 for (; i < vsi->num_q_vectors; i++) 2739 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2740 &coalesce[0]); 2741 } 2742 2743 /** 2744 * ice_vsi_rebuild - Rebuild VSI after reset 2745 * @vsi: VSI to be rebuild 2746 * @init_vsi: is this an initialization or a reconfigure of the VSI 2747 * 2748 * Returns 0 on success and negative value on failure 2749 */ 2750 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2751 { 2752 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2753 struct ice_coalesce_stored *coalesce; 2754 int prev_num_q_vectors = 0; 2755 struct ice_vf *vf = NULL; 2756 enum ice_status status; 2757 struct ice_pf *pf; 2758 int ret, i; 2759 2760 if (!vsi) 2761 return -EINVAL; 2762 2763 pf = vsi->back; 2764 if (vsi->type == ICE_VSI_VF) 2765 vf = &pf->vf[vsi->vf_id]; 2766 2767 coalesce = kcalloc(vsi->num_q_vectors, 2768 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2769 if (coalesce) 2770 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2771 coalesce); 2772 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2773 ice_vsi_free_q_vectors(vsi); 2774 2775 /* SR-IOV determines needed MSIX resources all at once instead of per 2776 * VSI since when VFs are spawned we know how many VFs there are and how 2777 * many interrupts each VF needs. SR-IOV MSIX resources are also 2778 * cleared in the same manner. 2779 */ 2780 if (vsi->type != ICE_VSI_VF) { 2781 /* reclaim SW interrupts back to the common pool */ 2782 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2783 pf->num_avail_sw_msix += vsi->num_q_vectors; 2784 vsi->base_vector = 0; 2785 } 2786 2787 if (ice_is_xdp_ena_vsi(vsi)) 2788 /* return value check can be skipped here, it always returns 2789 * 0 if reset is in progress 2790 */ 2791 ice_destroy_xdp_rings(vsi); 2792 ice_vsi_put_qs(vsi); 2793 ice_vsi_clear_rings(vsi); 2794 ice_vsi_free_arrays(vsi); 2795 if (vsi->type == ICE_VSI_VF) 2796 ice_vsi_set_num_qs(vsi, vf->vf_id); 2797 else 2798 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2799 2800 ret = ice_vsi_alloc_arrays(vsi); 2801 if (ret < 0) 2802 goto err_vsi; 2803 2804 ice_vsi_get_qs(vsi); 2805 2806 ice_alloc_fd_res(vsi); 2807 ice_vsi_set_tc_cfg(vsi); 2808 2809 /* Initialize VSI struct elements and create VSI in FW */ 2810 ret = ice_vsi_init(vsi, init_vsi); 2811 if (ret < 0) 2812 goto err_vsi; 2813 2814 switch (vsi->type) { 2815 case ICE_VSI_CTRL: 2816 case ICE_VSI_PF: 2817 ret = ice_vsi_alloc_q_vectors(vsi); 2818 if (ret) 2819 goto err_rings; 2820 2821 ret = ice_vsi_setup_vector_base(vsi); 2822 if (ret) 2823 goto err_vectors; 2824 2825 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2826 if (ret) 2827 goto err_vectors; 2828 2829 ret = ice_vsi_alloc_rings(vsi); 2830 if (ret) 2831 goto err_vectors; 2832 2833 ice_vsi_map_rings_to_vectors(vsi); 2834 if (ice_is_xdp_ena_vsi(vsi)) { 2835 vsi->num_xdp_txq = vsi->alloc_rxq; 2836 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2837 if (ret) 2838 goto err_vectors; 2839 } 2840 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2841 if (vsi->type != ICE_VSI_CTRL) 2842 /* Do not exit if configuring RSS had an issue, at 2843 * least receive traffic on first queue. Hence no 2844 * need to capture return value 2845 */ 2846 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2847 ice_vsi_cfg_rss_lut_key(vsi); 2848 break; 2849 case ICE_VSI_VF: 2850 ret = ice_vsi_alloc_q_vectors(vsi); 2851 if (ret) 2852 goto err_rings; 2853 2854 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2855 if (ret) 2856 goto err_vectors; 2857 2858 ret = ice_vsi_alloc_rings(vsi); 2859 if (ret) 2860 goto err_vectors; 2861 2862 break; 2863 default: 2864 break; 2865 } 2866 2867 /* configure VSI nodes based on number of queues and TC's */ 2868 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2869 max_txqs[i] = vsi->alloc_txq; 2870 2871 if (ice_is_xdp_ena_vsi(vsi)) 2872 max_txqs[i] += vsi->num_xdp_txq; 2873 } 2874 2875 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2876 max_txqs); 2877 if (status) { 2878 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 2879 vsi->vsi_num, ice_stat_str(status)); 2880 if (init_vsi) { 2881 ret = -EIO; 2882 goto err_vectors; 2883 } else { 2884 return ice_schedule_reset(pf, ICE_RESET_PFR); 2885 } 2886 } 2887 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2888 kfree(coalesce); 2889 2890 return 0; 2891 2892 err_vectors: 2893 ice_vsi_free_q_vectors(vsi); 2894 err_rings: 2895 if (vsi->netdev) { 2896 vsi->current_netdev_flags = 0; 2897 unregister_netdev(vsi->netdev); 2898 free_netdev(vsi->netdev); 2899 vsi->netdev = NULL; 2900 } 2901 err_vsi: 2902 ice_vsi_clear(vsi); 2903 set_bit(__ICE_RESET_FAILED, pf->state); 2904 kfree(coalesce); 2905 return ret; 2906 } 2907 2908 /** 2909 * ice_is_reset_in_progress - check for a reset in progress 2910 * @state: PF state field 2911 */ 2912 bool ice_is_reset_in_progress(unsigned long *state) 2913 { 2914 return test_bit(__ICE_RESET_OICR_RECV, state) || 2915 test_bit(__ICE_DCBNL_DEVRESET, state) || 2916 test_bit(__ICE_PFR_REQ, state) || 2917 test_bit(__ICE_CORER_REQ, state) || 2918 test_bit(__ICE_GLOBR_REQ, state); 2919 } 2920 2921 #ifdef CONFIG_DCB 2922 /** 2923 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2924 * @vsi: VSI being configured 2925 * @ctx: the context buffer returned from AQ VSI update command 2926 */ 2927 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2928 { 2929 vsi->info.mapping_flags = ctx->info.mapping_flags; 2930 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2931 sizeof(vsi->info.q_mapping)); 2932 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2933 sizeof(vsi->info.tc_mapping)); 2934 } 2935 2936 /** 2937 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2938 * @vsi: VSI to be configured 2939 * @ena_tc: TC bitmap 2940 * 2941 * VSI queues expected to be quiesced before calling this function 2942 */ 2943 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2944 { 2945 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2946 struct ice_pf *pf = vsi->back; 2947 struct ice_vsi_ctx *ctx; 2948 enum ice_status status; 2949 struct device *dev; 2950 int i, ret = 0; 2951 u8 num_tc = 0; 2952 2953 dev = ice_pf_to_dev(pf); 2954 2955 ice_for_each_traffic_class(i) { 2956 /* build bitmap of enabled TCs */ 2957 if (ena_tc & BIT(i)) 2958 num_tc++; 2959 /* populate max_txqs per TC */ 2960 max_txqs[i] = vsi->alloc_txq; 2961 } 2962 2963 vsi->tc_cfg.ena_tc = ena_tc; 2964 vsi->tc_cfg.numtc = num_tc; 2965 2966 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2967 if (!ctx) 2968 return -ENOMEM; 2969 2970 ctx->vf_num = 0; 2971 ctx->info = vsi->info; 2972 2973 ice_vsi_setup_q_map(vsi, ctx); 2974 2975 /* must to indicate which section of VSI context are being modified */ 2976 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2977 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2978 if (status) { 2979 dev_info(dev, "Failed VSI Update\n"); 2980 ret = -EIO; 2981 goto out; 2982 } 2983 2984 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2985 max_txqs); 2986 2987 if (status) { 2988 dev_err(dev, "VSI %d failed TC config, error %s\n", 2989 vsi->vsi_num, ice_stat_str(status)); 2990 ret = -EIO; 2991 goto out; 2992 } 2993 ice_vsi_update_q_map(vsi, ctx); 2994 vsi->info.valid_sections = 0; 2995 2996 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2997 out: 2998 kfree(ctx); 2999 return ret; 3000 } 3001 #endif /* CONFIG_DCB */ 3002 3003 /** 3004 * ice_update_ring_stats - Update ring statistics 3005 * @ring: ring to update 3006 * @cont: used to increment per-vector counters 3007 * @pkts: number of processed packets 3008 * @bytes: number of processed bytes 3009 * 3010 * This function assumes that caller has acquired a u64_stats_sync lock. 3011 */ 3012 static void 3013 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3014 u64 pkts, u64 bytes) 3015 { 3016 ring->stats.bytes += bytes; 3017 ring->stats.pkts += pkts; 3018 cont->total_bytes += bytes; 3019 cont->total_pkts += pkts; 3020 } 3021 3022 /** 3023 * ice_update_tx_ring_stats - Update Tx ring specific counters 3024 * @tx_ring: ring to update 3025 * @pkts: number of processed packets 3026 * @bytes: number of processed bytes 3027 */ 3028 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3029 { 3030 u64_stats_update_begin(&tx_ring->syncp); 3031 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3032 u64_stats_update_end(&tx_ring->syncp); 3033 } 3034 3035 /** 3036 * ice_update_rx_ring_stats - Update Rx ring specific counters 3037 * @rx_ring: ring to update 3038 * @pkts: number of processed packets 3039 * @bytes: number of processed bytes 3040 */ 3041 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3042 { 3043 u64_stats_update_begin(&rx_ring->syncp); 3044 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3045 u64_stats_update_end(&rx_ring->syncp); 3046 } 3047 3048 /** 3049 * ice_status_to_errno - convert from enum ice_status to Linux errno 3050 * @err: ice_status value to convert 3051 */ 3052 int ice_status_to_errno(enum ice_status err) 3053 { 3054 switch (err) { 3055 case ICE_SUCCESS: 3056 return 0; 3057 case ICE_ERR_DOES_NOT_EXIST: 3058 return -ENOENT; 3059 case ICE_ERR_OUT_OF_RANGE: 3060 return -ENOTTY; 3061 case ICE_ERR_PARAM: 3062 return -EINVAL; 3063 case ICE_ERR_NO_MEMORY: 3064 return -ENOMEM; 3065 case ICE_ERR_MAX_LIMIT: 3066 return -EAGAIN; 3067 default: 3068 return -EINVAL; 3069 } 3070 } 3071 3072 /** 3073 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3074 * @sw: switch to check if its default forwarding VSI is free 3075 * 3076 * Return true if the default forwarding VSI is already being used, else returns 3077 * false signalling that it's available to use. 3078 */ 3079 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3080 { 3081 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3082 } 3083 3084 /** 3085 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3086 * @sw: switch for the default forwarding VSI to compare against 3087 * @vsi: VSI to compare against default forwarding VSI 3088 * 3089 * If this VSI passed in is the default forwarding VSI then return true, else 3090 * return false 3091 */ 3092 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3093 { 3094 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3095 } 3096 3097 /** 3098 * ice_set_dflt_vsi - set the default forwarding VSI 3099 * @sw: switch used to assign the default forwarding VSI 3100 * @vsi: VSI getting set as the default forwarding VSI on the switch 3101 * 3102 * If the VSI passed in is already the default VSI and it's enabled just return 3103 * success. 3104 * 3105 * If there is already a default VSI on the switch and it's enabled then return 3106 * -EEXIST since there can only be one default VSI per switch. 3107 * 3108 * Otherwise try to set the VSI passed in as the switch's default VSI and 3109 * return the result. 3110 */ 3111 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3112 { 3113 enum ice_status status; 3114 struct device *dev; 3115 3116 if (!sw || !vsi) 3117 return -EINVAL; 3118 3119 dev = ice_pf_to_dev(vsi->back); 3120 3121 /* the VSI passed in is already the default VSI */ 3122 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3123 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3124 vsi->vsi_num); 3125 return 0; 3126 } 3127 3128 /* another VSI is already the default VSI for this switch */ 3129 if (ice_is_dflt_vsi_in_use(sw)) { 3130 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3131 sw->dflt_vsi->vsi_num); 3132 return -EEXIST; 3133 } 3134 3135 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3136 if (status) { 3137 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3138 vsi->vsi_num, ice_stat_str(status)); 3139 return -EIO; 3140 } 3141 3142 sw->dflt_vsi = vsi; 3143 sw->dflt_vsi_ena = true; 3144 3145 return 0; 3146 } 3147 3148 /** 3149 * ice_clear_dflt_vsi - clear the default forwarding VSI 3150 * @sw: switch used to clear the default VSI 3151 * 3152 * If the switch has no default VSI or it's not enabled then return error. 3153 * 3154 * Otherwise try to clear the default VSI and return the result. 3155 */ 3156 int ice_clear_dflt_vsi(struct ice_sw *sw) 3157 { 3158 struct ice_vsi *dflt_vsi; 3159 enum ice_status status; 3160 struct device *dev; 3161 3162 if (!sw) 3163 return -EINVAL; 3164 3165 dev = ice_pf_to_dev(sw->pf); 3166 3167 dflt_vsi = sw->dflt_vsi; 3168 3169 /* there is no default VSI configured */ 3170 if (!ice_is_dflt_vsi_in_use(sw)) 3171 return -ENODEV; 3172 3173 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3174 ICE_FLTR_RX); 3175 if (status) { 3176 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3177 dflt_vsi->vsi_num, ice_stat_str(status)); 3178 return -EIO; 3179 } 3180 3181 sw->dflt_vsi = NULL; 3182 sw->dflt_vsi_ena = false; 3183 3184 return 0; 3185 } 3186