1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 
11 /**
12  * ice_vsi_type_str - maps VSI type enum to string equivalents
13  * @vsi_type: VSI type enum
14  */
15 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
16 {
17 	switch (vsi_type) {
18 	case ICE_VSI_PF:
19 		return "ICE_VSI_PF";
20 	case ICE_VSI_VF:
21 		return "ICE_VSI_VF";
22 	case ICE_VSI_CTRL:
23 		return "ICE_VSI_CTRL";
24 	case ICE_VSI_LB:
25 		return "ICE_VSI_LB";
26 	default:
27 		return "unknown";
28 	}
29 }
30 
31 /**
32  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
33  * @vsi: the VSI being configured
34  * @ena: start or stop the Rx rings
35  *
36  * First enable/disable all of the Rx rings, flush any remaining writes, and
37  * then verify that they have all been enabled/disabled successfully. This will
38  * let all of the register writes complete when enabling/disabling the Rx rings
39  * before waiting for the change in hardware to complete.
40  */
41 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
42 {
43 	int ret = 0;
44 	u16 i;
45 
46 	for (i = 0; i < vsi->num_rxq; i++)
47 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
48 
49 	ice_flush(&vsi->back->hw);
50 
51 	for (i = 0; i < vsi->num_rxq; i++) {
52 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
53 		if (ret)
54 			break;
55 	}
56 
57 	return ret;
58 }
59 
60 /**
61  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
62  * @vsi: VSI pointer
63  *
64  * On error: returns error code (negative)
65  * On success: returns 0
66  */
67 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
68 {
69 	struct ice_pf *pf = vsi->back;
70 	struct device *dev;
71 
72 	dev = ice_pf_to_dev(pf);
73 
74 	/* allocate memory for both Tx and Rx ring pointers */
75 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
76 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
77 	if (!vsi->tx_rings)
78 		return -ENOMEM;
79 
80 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
81 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
82 	if (!vsi->rx_rings)
83 		goto err_rings;
84 
85 	/* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
86 	vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
87 				    sizeof(*vsi->txq_map), GFP_KERNEL);
88 
89 	if (!vsi->txq_map)
90 		goto err_txq_map;
91 
92 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
93 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
94 	if (!vsi->rxq_map)
95 		goto err_rxq_map;
96 
97 	/* There is no need to allocate q_vectors for a loopback VSI. */
98 	if (vsi->type == ICE_VSI_LB)
99 		return 0;
100 
101 	/* allocate memory for q_vector pointers */
102 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
103 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
104 	if (!vsi->q_vectors)
105 		goto err_vectors;
106 
107 	return 0;
108 
109 err_vectors:
110 	devm_kfree(dev, vsi->rxq_map);
111 err_rxq_map:
112 	devm_kfree(dev, vsi->txq_map);
113 err_txq_map:
114 	devm_kfree(dev, vsi->rx_rings);
115 err_rings:
116 	devm_kfree(dev, vsi->tx_rings);
117 	return -ENOMEM;
118 }
119 
120 /**
121  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
122  * @vsi: the VSI being configured
123  */
124 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
125 {
126 	switch (vsi->type) {
127 	case ICE_VSI_PF:
128 	case ICE_VSI_CTRL:
129 	case ICE_VSI_LB:
130 		/* a user could change the values of num_[tr]x_desc using
131 		 * ethtool -G so we should keep those values instead of
132 		 * overwriting them with the defaults.
133 		 */
134 		if (!vsi->num_rx_desc)
135 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
136 		if (!vsi->num_tx_desc)
137 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
138 		break;
139 	default:
140 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
141 			vsi->type);
142 		break;
143 	}
144 }
145 
146 /**
147  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
148  * @vsi: the VSI being configured
149  * @vf_id: ID of the VF being configured
150  *
151  * Return 0 on success and a negative value on error
152  */
153 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
154 {
155 	struct ice_pf *pf = vsi->back;
156 	struct ice_vf *vf = NULL;
157 
158 	if (vsi->type == ICE_VSI_VF)
159 		vsi->vf_id = vf_id;
160 
161 	switch (vsi->type) {
162 	case ICE_VSI_PF:
163 		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
164 				       num_online_cpus());
165 		if (vsi->req_txq) {
166 			vsi->alloc_txq = vsi->req_txq;
167 			vsi->num_txq = vsi->req_txq;
168 		}
169 
170 		pf->num_lan_tx = vsi->alloc_txq;
171 
172 		/* only 1 Rx queue unless RSS is enabled */
173 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
174 			vsi->alloc_rxq = 1;
175 		} else {
176 			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
177 					       num_online_cpus());
178 			if (vsi->req_rxq) {
179 				vsi->alloc_rxq = vsi->req_rxq;
180 				vsi->num_rxq = vsi->req_rxq;
181 			}
182 		}
183 
184 		pf->num_lan_rx = vsi->alloc_rxq;
185 
186 		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
187 		break;
188 	case ICE_VSI_VF:
189 		vf = &pf->vf[vsi->vf_id];
190 		vsi->alloc_txq = vf->num_vf_qs;
191 		vsi->alloc_rxq = vf->num_vf_qs;
192 		/* pf->num_msix_per_vf includes (VF miscellaneous vector +
193 		 * data queue interrupts). Since vsi->num_q_vectors is number
194 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
195 		 * original vector count
196 		 */
197 		vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
198 		break;
199 	case ICE_VSI_CTRL:
200 		vsi->alloc_txq = 1;
201 		vsi->alloc_rxq = 1;
202 		vsi->num_q_vectors = 1;
203 		break;
204 	case ICE_VSI_LB:
205 		vsi->alloc_txq = 1;
206 		vsi->alloc_rxq = 1;
207 		break;
208 	default:
209 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
210 		break;
211 	}
212 
213 	ice_vsi_set_num_desc(vsi);
214 }
215 
216 /**
217  * ice_get_free_slot - get the next non-NULL location index in array
218  * @array: array to search
219  * @size: size of the array
220  * @curr: last known occupied index to be used as a search hint
221  *
222  * void * is being used to keep the functionality generic. This lets us use this
223  * function on any array of pointers.
224  */
225 static int ice_get_free_slot(void *array, int size, int curr)
226 {
227 	int **tmp_array = (int **)array;
228 	int next;
229 
230 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
231 		next = curr + 1;
232 	} else {
233 		int i = 0;
234 
235 		while ((i < size) && (tmp_array[i]))
236 			i++;
237 		if (i == size)
238 			next = ICE_NO_VSI;
239 		else
240 			next = i;
241 	}
242 	return next;
243 }
244 
245 /**
246  * ice_vsi_delete - delete a VSI from the switch
247  * @vsi: pointer to VSI being removed
248  */
249 static void ice_vsi_delete(struct ice_vsi *vsi)
250 {
251 	struct ice_pf *pf = vsi->back;
252 	struct ice_vsi_ctx *ctxt;
253 	enum ice_status status;
254 
255 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
256 	if (!ctxt)
257 		return;
258 
259 	if (vsi->type == ICE_VSI_VF)
260 		ctxt->vf_num = vsi->vf_id;
261 	ctxt->vsi_num = vsi->vsi_num;
262 
263 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
264 
265 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
266 	if (status)
267 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
268 			vsi->vsi_num, ice_stat_str(status));
269 
270 	kfree(ctxt);
271 }
272 
273 /**
274  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
275  * @vsi: pointer to VSI being cleared
276  */
277 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
278 {
279 	struct ice_pf *pf = vsi->back;
280 	struct device *dev;
281 
282 	dev = ice_pf_to_dev(pf);
283 
284 	/* free the ring and vector containers */
285 	if (vsi->q_vectors) {
286 		devm_kfree(dev, vsi->q_vectors);
287 		vsi->q_vectors = NULL;
288 	}
289 	if (vsi->tx_rings) {
290 		devm_kfree(dev, vsi->tx_rings);
291 		vsi->tx_rings = NULL;
292 	}
293 	if (vsi->rx_rings) {
294 		devm_kfree(dev, vsi->rx_rings);
295 		vsi->rx_rings = NULL;
296 	}
297 	if (vsi->txq_map) {
298 		devm_kfree(dev, vsi->txq_map);
299 		vsi->txq_map = NULL;
300 	}
301 	if (vsi->rxq_map) {
302 		devm_kfree(dev, vsi->rxq_map);
303 		vsi->rxq_map = NULL;
304 	}
305 }
306 
307 /**
308  * ice_vsi_clear - clean up and deallocate the provided VSI
309  * @vsi: pointer to VSI being cleared
310  *
311  * This deallocates the VSI's queue resources, removes it from the PF's
312  * VSI array if necessary, and deallocates the VSI
313  *
314  * Returns 0 on success, negative on failure
315  */
316 static int ice_vsi_clear(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = NULL;
319 	struct device *dev;
320 
321 	if (!vsi)
322 		return 0;
323 
324 	if (!vsi->back)
325 		return -EINVAL;
326 
327 	pf = vsi->back;
328 	dev = ice_pf_to_dev(pf);
329 
330 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
331 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
332 		return -EINVAL;
333 	}
334 
335 	mutex_lock(&pf->sw_mutex);
336 	/* updates the PF for this cleared VSI */
337 
338 	pf->vsi[vsi->idx] = NULL;
339 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
340 		pf->next_vsi = vsi->idx;
341 
342 	ice_vsi_free_arrays(vsi);
343 	mutex_unlock(&pf->sw_mutex);
344 	devm_kfree(dev, vsi);
345 
346 	return 0;
347 }
348 
349 /**
350  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
351  * @irq: interrupt number
352  * @data: pointer to a q_vector
353  */
354 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
355 {
356 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
357 
358 	if (!q_vector->tx.ring)
359 		return IRQ_HANDLED;
360 
361 #define FDIR_RX_DESC_CLEAN_BUDGET 64
362 	ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
363 	ice_clean_ctrl_tx_irq(q_vector->tx.ring);
364 
365 	return IRQ_HANDLED;
366 }
367 
368 /**
369  * ice_msix_clean_rings - MSIX mode Interrupt Handler
370  * @irq: interrupt number
371  * @data: pointer to a q_vector
372  */
373 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
374 {
375 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
376 
377 	if (!q_vector->tx.ring && !q_vector->rx.ring)
378 		return IRQ_HANDLED;
379 
380 	napi_schedule(&q_vector->napi);
381 
382 	return IRQ_HANDLED;
383 }
384 
385 /**
386  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
387  * @pf: board private structure
388  * @vsi_type: type of VSI
389  * @vf_id: ID of the VF being configured
390  *
391  * returns a pointer to a VSI on success, NULL on failure.
392  */
393 static struct ice_vsi *
394 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
395 {
396 	struct device *dev = ice_pf_to_dev(pf);
397 	struct ice_vsi *vsi = NULL;
398 
399 	/* Need to protect the allocation of the VSIs at the PF level */
400 	mutex_lock(&pf->sw_mutex);
401 
402 	/* If we have already allocated our maximum number of VSIs,
403 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
404 	 * is available to be populated
405 	 */
406 	if (pf->next_vsi == ICE_NO_VSI) {
407 		dev_dbg(dev, "out of VSI slots!\n");
408 		goto unlock_pf;
409 	}
410 
411 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
412 	if (!vsi)
413 		goto unlock_pf;
414 
415 	vsi->type = vsi_type;
416 	vsi->back = pf;
417 	set_bit(__ICE_DOWN, vsi->state);
418 
419 	if (vsi_type == ICE_VSI_VF)
420 		ice_vsi_set_num_qs(vsi, vf_id);
421 	else
422 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
423 
424 	switch (vsi->type) {
425 	case ICE_VSI_PF:
426 		if (ice_vsi_alloc_arrays(vsi))
427 			goto err_rings;
428 
429 		/* Setup default MSIX irq handler for VSI */
430 		vsi->irq_handler = ice_msix_clean_rings;
431 		break;
432 	case ICE_VSI_CTRL:
433 		if (ice_vsi_alloc_arrays(vsi))
434 			goto err_rings;
435 
436 		/* Setup ctrl VSI MSIX irq handler */
437 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
438 		break;
439 	case ICE_VSI_VF:
440 		if (ice_vsi_alloc_arrays(vsi))
441 			goto err_rings;
442 		break;
443 	case ICE_VSI_LB:
444 		if (ice_vsi_alloc_arrays(vsi))
445 			goto err_rings;
446 		break;
447 	default:
448 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
449 		goto unlock_pf;
450 	}
451 
452 	if (vsi->type == ICE_VSI_CTRL) {
453 		/* Use the last VSI slot as the index for the control VSI */
454 		vsi->idx = pf->num_alloc_vsi - 1;
455 		pf->ctrl_vsi_idx = vsi->idx;
456 		pf->vsi[vsi->idx] = vsi;
457 	} else {
458 		/* fill slot and make note of the index */
459 		vsi->idx = pf->next_vsi;
460 		pf->vsi[pf->next_vsi] = vsi;
461 
462 		/* prepare pf->next_vsi for next use */
463 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
464 						 pf->next_vsi);
465 	}
466 	goto unlock_pf;
467 
468 err_rings:
469 	devm_kfree(dev, vsi);
470 	vsi = NULL;
471 unlock_pf:
472 	mutex_unlock(&pf->sw_mutex);
473 	return vsi;
474 }
475 
476 /**
477  * ice_alloc_fd_res - Allocate FD resource for a VSI
478  * @vsi: pointer to the ice_vsi
479  *
480  * This allocates the FD resources
481  *
482  * Returns 0 on success, -EPERM on no-op or -EIO on failure
483  */
484 static int ice_alloc_fd_res(struct ice_vsi *vsi)
485 {
486 	struct ice_pf *pf = vsi->back;
487 	u32 g_val, b_val;
488 
489 	/* Flow Director filters are only allocated/assigned to the PF VSI which
490 	 * passes the traffic. The CTRL VSI is only used to add/delete filters
491 	 * so we don't allocate resources to it
492 	 */
493 
494 	/* FD filters from guaranteed pool per VSI */
495 	g_val = pf->hw.func_caps.fd_fltr_guar;
496 	if (!g_val)
497 		return -EPERM;
498 
499 	/* FD filters from best effort pool */
500 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
501 	if (!b_val)
502 		return -EPERM;
503 
504 	if (vsi->type != ICE_VSI_PF)
505 		return -EPERM;
506 
507 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
508 		return -EPERM;
509 
510 	vsi->num_gfltr = g_val / pf->num_alloc_vsi;
511 
512 	/* each VSI gets same "best_effort" quota */
513 	vsi->num_bfltr = b_val;
514 
515 	return 0;
516 }
517 
518 /**
519  * ice_vsi_get_qs - Assign queues from PF to VSI
520  * @vsi: the VSI to assign queues to
521  *
522  * Returns 0 on success and a negative value on error
523  */
524 static int ice_vsi_get_qs(struct ice_vsi *vsi)
525 {
526 	struct ice_pf *pf = vsi->back;
527 	struct ice_qs_cfg tx_qs_cfg = {
528 		.qs_mutex = &pf->avail_q_mutex,
529 		.pf_map = pf->avail_txqs,
530 		.pf_map_size = pf->max_pf_txqs,
531 		.q_count = vsi->alloc_txq,
532 		.scatter_count = ICE_MAX_SCATTER_TXQS,
533 		.vsi_map = vsi->txq_map,
534 		.vsi_map_offset = 0,
535 		.mapping_mode = ICE_VSI_MAP_CONTIG
536 	};
537 	struct ice_qs_cfg rx_qs_cfg = {
538 		.qs_mutex = &pf->avail_q_mutex,
539 		.pf_map = pf->avail_rxqs,
540 		.pf_map_size = pf->max_pf_rxqs,
541 		.q_count = vsi->alloc_rxq,
542 		.scatter_count = ICE_MAX_SCATTER_RXQS,
543 		.vsi_map = vsi->rxq_map,
544 		.vsi_map_offset = 0,
545 		.mapping_mode = ICE_VSI_MAP_CONTIG
546 	};
547 	int ret;
548 
549 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
550 	if (ret)
551 		return ret;
552 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
553 
554 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
555 	if (ret)
556 		return ret;
557 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
558 
559 	return 0;
560 }
561 
562 /**
563  * ice_vsi_put_qs - Release queues from VSI to PF
564  * @vsi: the VSI that is going to release queues
565  */
566 static void ice_vsi_put_qs(struct ice_vsi *vsi)
567 {
568 	struct ice_pf *pf = vsi->back;
569 	int i;
570 
571 	mutex_lock(&pf->avail_q_mutex);
572 
573 	for (i = 0; i < vsi->alloc_txq; i++) {
574 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
575 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
576 	}
577 
578 	for (i = 0; i < vsi->alloc_rxq; i++) {
579 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
580 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
581 	}
582 
583 	mutex_unlock(&pf->avail_q_mutex);
584 }
585 
586 /**
587  * ice_is_safe_mode
588  * @pf: pointer to the PF struct
589  *
590  * returns true if driver is in safe mode, false otherwise
591  */
592 bool ice_is_safe_mode(struct ice_pf *pf)
593 {
594 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
595 }
596 
597 /**
598  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
599  * @vsi: the VSI being cleaned up
600  *
601  * This function deletes RSS input set for all flows that were configured
602  * for this VSI
603  */
604 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
605 {
606 	struct ice_pf *pf = vsi->back;
607 	enum ice_status status;
608 
609 	if (ice_is_safe_mode(pf))
610 		return;
611 
612 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
613 	if (status)
614 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
615 			vsi->vsi_num, ice_stat_str(status));
616 }
617 
618 /**
619  * ice_rss_clean - Delete RSS related VSI structures and configuration
620  * @vsi: the VSI being removed
621  */
622 static void ice_rss_clean(struct ice_vsi *vsi)
623 {
624 	struct ice_pf *pf = vsi->back;
625 	struct device *dev;
626 
627 	dev = ice_pf_to_dev(pf);
628 
629 	if (vsi->rss_hkey_user)
630 		devm_kfree(dev, vsi->rss_hkey_user);
631 	if (vsi->rss_lut_user)
632 		devm_kfree(dev, vsi->rss_lut_user);
633 
634 	ice_vsi_clean_rss_flow_fld(vsi);
635 	/* remove RSS replay list */
636 	if (!ice_is_safe_mode(pf))
637 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
638 }
639 
640 /**
641  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
642  * @vsi: the VSI being configured
643  */
644 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
645 {
646 	struct ice_hw_common_caps *cap;
647 	struct ice_pf *pf = vsi->back;
648 
649 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
650 		vsi->rss_size = 1;
651 		return;
652 	}
653 
654 	cap = &pf->hw.func_caps.common_cap;
655 	switch (vsi->type) {
656 	case ICE_VSI_PF:
657 		/* PF VSI will inherit RSS instance of PF */
658 		vsi->rss_table_size = (u16)cap->rss_table_size;
659 		vsi->rss_size = min_t(u16, num_online_cpus(),
660 				      BIT(cap->rss_table_entry_width));
661 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
662 		break;
663 	case ICE_VSI_VF:
664 		/* VF VSI will get a small RSS table.
665 		 * For VSI_LUT, LUT size should be set to 64 bytes.
666 		 */
667 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
668 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
669 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
670 		break;
671 	case ICE_VSI_LB:
672 		break;
673 	default:
674 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
675 			ice_vsi_type_str(vsi->type));
676 		break;
677 	}
678 }
679 
680 /**
681  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
682  * @ctxt: the VSI context being set
683  *
684  * This initializes a default VSI context for all sections except the Queues.
685  */
686 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
687 {
688 	u32 table = 0;
689 
690 	memset(&ctxt->info, 0, sizeof(ctxt->info));
691 	/* VSI's should be allocated from shared pool */
692 	ctxt->alloc_from_pool = true;
693 	/* Src pruning enabled by default */
694 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
695 	/* Traffic from VSI can be sent to LAN */
696 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
697 	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
698 	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
699 	 * packets untagged/tagged.
700 	 */
701 	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
702 				  ICE_AQ_VSI_VLAN_MODE_M) >>
703 				 ICE_AQ_VSI_VLAN_MODE_S);
704 	/* Have 1:1 UP mapping for both ingress/egress tables */
705 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
706 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
707 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
708 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
709 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
710 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
711 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
712 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
713 	ctxt->info.ingress_table = cpu_to_le32(table);
714 	ctxt->info.egress_table = cpu_to_le32(table);
715 	/* Have 1:1 UP mapping for outer to inner UP table */
716 	ctxt->info.outer_up_table = cpu_to_le32(table);
717 	/* No Outer tag support outer_tag_flags remains to zero */
718 }
719 
720 /**
721  * ice_vsi_setup_q_map - Setup a VSI queue map
722  * @vsi: the VSI being configured
723  * @ctxt: VSI context structure
724  */
725 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
726 {
727 	u16 offset = 0, qmap = 0, tx_count = 0;
728 	u16 qcount_tx = vsi->alloc_txq;
729 	u16 qcount_rx = vsi->alloc_rxq;
730 	u16 tx_numq_tc, rx_numq_tc;
731 	u16 pow = 0, max_rss = 0;
732 	bool ena_tc0 = false;
733 	u8 netdev_tc = 0;
734 	int i;
735 
736 	/* at least TC0 should be enabled by default */
737 	if (vsi->tc_cfg.numtc) {
738 		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
739 			ena_tc0 = true;
740 	} else {
741 		ena_tc0 = true;
742 	}
743 
744 	if (ena_tc0) {
745 		vsi->tc_cfg.numtc++;
746 		vsi->tc_cfg.ena_tc |= 1;
747 	}
748 
749 	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
750 	if (!rx_numq_tc)
751 		rx_numq_tc = 1;
752 	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
753 	if (!tx_numq_tc)
754 		tx_numq_tc = 1;
755 
756 	/* TC mapping is a function of the number of Rx queues assigned to the
757 	 * VSI for each traffic class and the offset of these queues.
758 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
759 	 * queues allocated to TC0. No:of queues is a power-of-2.
760 	 *
761 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
762 	 * queue, this way, traffic for the given TC will be sent to the default
763 	 * queue.
764 	 *
765 	 * Setup number and offset of Rx queues for all TCs for the VSI
766 	 */
767 
768 	qcount_rx = rx_numq_tc;
769 
770 	/* qcount will change if RSS is enabled */
771 	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
772 		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
773 			if (vsi->type == ICE_VSI_PF)
774 				max_rss = ICE_MAX_LG_RSS_QS;
775 			else
776 				max_rss = ICE_MAX_RSS_QS_PER_VF;
777 			qcount_rx = min_t(u16, rx_numq_tc, max_rss);
778 			if (!vsi->req_rxq)
779 				qcount_rx = min_t(u16, qcount_rx,
780 						  vsi->rss_size);
781 		}
782 	}
783 
784 	/* find the (rounded up) power-of-2 of qcount */
785 	pow = (u16)order_base_2(qcount_rx);
786 
787 	ice_for_each_traffic_class(i) {
788 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
789 			/* TC is not enabled */
790 			vsi->tc_cfg.tc_info[i].qoffset = 0;
791 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
792 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
793 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
794 			ctxt->info.tc_mapping[i] = 0;
795 			continue;
796 		}
797 
798 		/* TC is enabled */
799 		vsi->tc_cfg.tc_info[i].qoffset = offset;
800 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
801 		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
802 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
803 
804 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
805 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
806 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
807 			 ICE_AQ_VSI_TC_Q_NUM_M);
808 		offset += qcount_rx;
809 		tx_count += tx_numq_tc;
810 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
811 	}
812 
813 	/* if offset is non-zero, means it is calculated correctly based on
814 	 * enabled TCs for a given VSI otherwise qcount_rx will always
815 	 * be correct and non-zero because it is based off - VSI's
816 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
817 	 * at least 1)
818 	 */
819 	if (offset)
820 		vsi->num_rxq = offset;
821 	else
822 		vsi->num_rxq = qcount_rx;
823 
824 	vsi->num_txq = tx_count;
825 
826 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
827 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
828 		/* since there is a chance that num_rxq could have been changed
829 		 * in the above for loop, make num_txq equal to num_rxq.
830 		 */
831 		vsi->num_txq = vsi->num_rxq;
832 	}
833 
834 	/* Rx queue mapping */
835 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
836 	/* q_mapping buffer holds the info for the first queue allocated for
837 	 * this VSI in the PF space and also the number of queues associated
838 	 * with this VSI.
839 	 */
840 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
841 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
842 }
843 
844 /**
845  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
846  * @ctxt: the VSI context being set
847  * @vsi: the VSI being configured
848  */
849 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
850 {
851 	u8 dflt_q_group, dflt_q_prio;
852 	u16 dflt_q, report_q, val;
853 
854 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
855 		return;
856 
857 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
858 	ctxt->info.valid_sections |= cpu_to_le16(val);
859 	dflt_q = 0;
860 	dflt_q_group = 0;
861 	report_q = 0;
862 	dflt_q_prio = 0;
863 
864 	/* enable flow director filtering/programming */
865 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
866 	ctxt->info.fd_options = cpu_to_le16(val);
867 	/* max of allocated flow director filters */
868 	ctxt->info.max_fd_fltr_dedicated =
869 			cpu_to_le16(vsi->num_gfltr);
870 	/* max of shared flow director filters any VSI may program */
871 	ctxt->info.max_fd_fltr_shared =
872 			cpu_to_le16(vsi->num_bfltr);
873 	/* default queue index within the VSI of the default FD */
874 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
875 	       ICE_AQ_VSI_FD_DEF_Q_M);
876 	/* target queue or queue group to the FD filter */
877 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
878 		ICE_AQ_VSI_FD_DEF_GRP_M);
879 	ctxt->info.fd_def_q = cpu_to_le16(val);
880 	/* queue index on which FD filter completion is reported */
881 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
882 	       ICE_AQ_VSI_FD_REPORT_Q_M);
883 	/* priority of the default qindex action */
884 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
885 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
886 	ctxt->info.fd_report_opt = cpu_to_le16(val);
887 }
888 
889 /**
890  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
891  * @ctxt: the VSI context being set
892  * @vsi: the VSI being configured
893  */
894 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
895 {
896 	u8 lut_type, hash_type;
897 	struct device *dev;
898 	struct ice_pf *pf;
899 
900 	pf = vsi->back;
901 	dev = ice_pf_to_dev(pf);
902 
903 	switch (vsi->type) {
904 	case ICE_VSI_PF:
905 		/* PF VSI will inherit RSS instance of PF */
906 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
907 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
908 		break;
909 	case ICE_VSI_VF:
910 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
911 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
912 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
913 		break;
914 	default:
915 		dev_dbg(dev, "Unsupported VSI type %s\n",
916 			ice_vsi_type_str(vsi->type));
917 		return;
918 	}
919 
920 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
921 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
922 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
923 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
924 }
925 
926 /**
927  * ice_vsi_init - Create and initialize a VSI
928  * @vsi: the VSI being configured
929  * @init_vsi: is this call creating a VSI
930  *
931  * This initializes a VSI context depending on the VSI type to be added and
932  * passes it down to the add_vsi aq command to create a new VSI.
933  */
934 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
935 {
936 	struct ice_pf *pf = vsi->back;
937 	struct ice_hw *hw = &pf->hw;
938 	struct ice_vsi_ctx *ctxt;
939 	struct device *dev;
940 	int ret = 0;
941 
942 	dev = ice_pf_to_dev(pf);
943 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
944 	if (!ctxt)
945 		return -ENOMEM;
946 
947 	switch (vsi->type) {
948 	case ICE_VSI_CTRL:
949 	case ICE_VSI_LB:
950 	case ICE_VSI_PF:
951 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
952 		break;
953 	case ICE_VSI_VF:
954 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
955 		/* VF number here is the absolute VF number (0-255) */
956 		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
957 		break;
958 	default:
959 		ret = -ENODEV;
960 		goto out;
961 	}
962 
963 	ice_set_dflt_vsi_ctx(ctxt);
964 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
965 		ice_set_fd_vsi_ctx(ctxt, vsi);
966 	/* if the switch is in VEB mode, allow VSI loopback */
967 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
968 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
969 
970 	/* Set LUT type and HASH type if RSS is enabled */
971 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
972 	    vsi->type != ICE_VSI_CTRL) {
973 		ice_set_rss_vsi_ctx(ctxt, vsi);
974 		/* if updating VSI context, make sure to set valid_section:
975 		 * to indicate which section of VSI context being updated
976 		 */
977 		if (!init_vsi)
978 			ctxt->info.valid_sections |=
979 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
980 	}
981 
982 	ctxt->info.sw_id = vsi->port_info->sw_id;
983 	ice_vsi_setup_q_map(vsi, ctxt);
984 	if (!init_vsi) /* means VSI being updated */
985 		/* must to indicate which section of VSI context are
986 		 * being modified
987 		 */
988 		ctxt->info.valid_sections |=
989 			cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
990 
991 	/* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
992 	 * respectively
993 	 */
994 	if (vsi->type == ICE_VSI_VF) {
995 		ctxt->info.valid_sections |=
996 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
997 		if (pf->vf[vsi->vf_id].spoofchk) {
998 			ctxt->info.sec_flags |=
999 				ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1000 				(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1001 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1002 		} else {
1003 			ctxt->info.sec_flags &=
1004 				~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1005 				  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1006 				   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1007 		}
1008 	}
1009 
1010 	/* Allow control frames out of main VSI */
1011 	if (vsi->type == ICE_VSI_PF) {
1012 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1013 		ctxt->info.valid_sections |=
1014 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1015 	}
1016 
1017 	if (init_vsi) {
1018 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1019 		if (ret) {
1020 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1021 			ret = -EIO;
1022 			goto out;
1023 		}
1024 	} else {
1025 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1026 		if (ret) {
1027 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1028 			ret = -EIO;
1029 			goto out;
1030 		}
1031 	}
1032 
1033 	/* keep context for update VSI operations */
1034 	vsi->info = ctxt->info;
1035 
1036 	/* record VSI number returned */
1037 	vsi->vsi_num = ctxt->vsi_num;
1038 
1039 out:
1040 	kfree(ctxt);
1041 	return ret;
1042 }
1043 
1044 /**
1045  * ice_free_res - free a block of resources
1046  * @res: pointer to the resource
1047  * @index: starting index previously returned by ice_get_res
1048  * @id: identifier to track owner
1049  *
1050  * Returns number of resources freed
1051  */
1052 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1053 {
1054 	int count = 0;
1055 	int i;
1056 
1057 	if (!res || index >= res->end)
1058 		return -EINVAL;
1059 
1060 	id |= ICE_RES_VALID_BIT;
1061 	for (i = index; i < res->end && res->list[i] == id; i++) {
1062 		res->list[i] = 0;
1063 		count++;
1064 	}
1065 
1066 	return count;
1067 }
1068 
1069 /**
1070  * ice_search_res - Search the tracker for a block of resources
1071  * @res: pointer to the resource
1072  * @needed: size of the block needed
1073  * @id: identifier to track owner
1074  *
1075  * Returns the base item index of the block, or -ENOMEM for error
1076  */
1077 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1078 {
1079 	u16 start = 0, end = 0;
1080 
1081 	if (needed > res->end)
1082 		return -ENOMEM;
1083 
1084 	id |= ICE_RES_VALID_BIT;
1085 
1086 	do {
1087 		/* skip already allocated entries */
1088 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1089 			start = end;
1090 			if ((start + needed) > res->end)
1091 				break;
1092 		}
1093 
1094 		if (end == (start + needed)) {
1095 			int i = start;
1096 
1097 			/* there was enough, so assign it to the requestor */
1098 			while (i != end)
1099 				res->list[i++] = id;
1100 
1101 			return start;
1102 		}
1103 	} while (end < res->end);
1104 
1105 	return -ENOMEM;
1106 }
1107 
1108 /**
1109  * ice_get_free_res_count - Get free count from a resource tracker
1110  * @res: Resource tracker instance
1111  */
1112 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1113 {
1114 	u16 i, count = 0;
1115 
1116 	for (i = 0; i < res->end; i++)
1117 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1118 			count++;
1119 
1120 	return count;
1121 }
1122 
1123 /**
1124  * ice_get_res - get a block of resources
1125  * @pf: board private structure
1126  * @res: pointer to the resource
1127  * @needed: size of the block needed
1128  * @id: identifier to track owner
1129  *
1130  * Returns the base item index of the block, or negative for error
1131  */
1132 int
1133 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1134 {
1135 	if (!res || !pf)
1136 		return -EINVAL;
1137 
1138 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1139 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1140 			needed, res->num_entries, id);
1141 		return -EINVAL;
1142 	}
1143 
1144 	return ice_search_res(res, needed, id);
1145 }
1146 
1147 /**
1148  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1149  * @vsi: ptr to the VSI
1150  *
1151  * This should only be called after ice_vsi_alloc() which allocates the
1152  * corresponding SW VSI structure and initializes num_queue_pairs for the
1153  * newly allocated VSI.
1154  *
1155  * Returns 0 on success or negative on failure
1156  */
1157 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1158 {
1159 	struct ice_pf *pf = vsi->back;
1160 	struct device *dev;
1161 	u16 num_q_vectors;
1162 	int base;
1163 
1164 	dev = ice_pf_to_dev(pf);
1165 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1166 	if (vsi->type == ICE_VSI_VF)
1167 		return 0;
1168 
1169 	if (vsi->base_vector) {
1170 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1171 			vsi->vsi_num, vsi->base_vector);
1172 		return -EEXIST;
1173 	}
1174 
1175 	num_q_vectors = vsi->num_q_vectors;
1176 	/* reserve slots from OS requested IRQs */
1177 	base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1178 
1179 	if (base < 0) {
1180 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1181 			ice_get_free_res_count(pf->irq_tracker),
1182 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1183 		return -ENOENT;
1184 	}
1185 	vsi->base_vector = (u16)base;
1186 	pf->num_avail_sw_msix -= num_q_vectors;
1187 
1188 	return 0;
1189 }
1190 
1191 /**
1192  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1193  * @vsi: the VSI having rings deallocated
1194  */
1195 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1196 {
1197 	int i;
1198 
1199 	/* Avoid stale references by clearing map from vector to ring */
1200 	if (vsi->q_vectors) {
1201 		ice_for_each_q_vector(vsi, i) {
1202 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1203 
1204 			if (q_vector) {
1205 				q_vector->tx.ring = NULL;
1206 				q_vector->rx.ring = NULL;
1207 			}
1208 		}
1209 	}
1210 
1211 	if (vsi->tx_rings) {
1212 		for (i = 0; i < vsi->alloc_txq; i++) {
1213 			if (vsi->tx_rings[i]) {
1214 				kfree_rcu(vsi->tx_rings[i], rcu);
1215 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1216 			}
1217 		}
1218 	}
1219 	if (vsi->rx_rings) {
1220 		for (i = 0; i < vsi->alloc_rxq; i++) {
1221 			if (vsi->rx_rings[i]) {
1222 				kfree_rcu(vsi->rx_rings[i], rcu);
1223 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1224 			}
1225 		}
1226 	}
1227 }
1228 
1229 /**
1230  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1231  * @vsi: VSI which is having rings allocated
1232  */
1233 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1234 {
1235 	struct ice_pf *pf = vsi->back;
1236 	struct device *dev;
1237 	u16 i;
1238 
1239 	dev = ice_pf_to_dev(pf);
1240 	/* Allocate Tx rings */
1241 	for (i = 0; i < vsi->alloc_txq; i++) {
1242 		struct ice_ring *ring;
1243 
1244 		/* allocate with kzalloc(), free with kfree_rcu() */
1245 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1246 
1247 		if (!ring)
1248 			goto err_out;
1249 
1250 		ring->q_index = i;
1251 		ring->reg_idx = vsi->txq_map[i];
1252 		ring->ring_active = false;
1253 		ring->vsi = vsi;
1254 		ring->dev = dev;
1255 		ring->count = vsi->num_tx_desc;
1256 		WRITE_ONCE(vsi->tx_rings[i], ring);
1257 	}
1258 
1259 	/* Allocate Rx rings */
1260 	for (i = 0; i < vsi->alloc_rxq; i++) {
1261 		struct ice_ring *ring;
1262 
1263 		/* allocate with kzalloc(), free with kfree_rcu() */
1264 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1265 		if (!ring)
1266 			goto err_out;
1267 
1268 		ring->q_index = i;
1269 		ring->reg_idx = vsi->rxq_map[i];
1270 		ring->ring_active = false;
1271 		ring->vsi = vsi;
1272 		ring->netdev = vsi->netdev;
1273 		ring->dev = dev;
1274 		ring->count = vsi->num_rx_desc;
1275 		WRITE_ONCE(vsi->rx_rings[i], ring);
1276 	}
1277 
1278 	return 0;
1279 
1280 err_out:
1281 	ice_vsi_clear_rings(vsi);
1282 	return -ENOMEM;
1283 }
1284 
1285 /**
1286  * ice_vsi_manage_rss_lut - disable/enable RSS
1287  * @vsi: the VSI being changed
1288  * @ena: boolean value indicating if this is an enable or disable request
1289  *
1290  * In the event of disable request for RSS, this function will zero out RSS
1291  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1292  * LUT.
1293  */
1294 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1295 {
1296 	int err = 0;
1297 	u8 *lut;
1298 
1299 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1300 	if (!lut)
1301 		return -ENOMEM;
1302 
1303 	if (ena) {
1304 		if (vsi->rss_lut_user)
1305 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1306 		else
1307 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1308 					 vsi->rss_size);
1309 	}
1310 
1311 	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1312 	kfree(lut);
1313 	return err;
1314 }
1315 
1316 /**
1317  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1318  * @vsi: VSI to be configured
1319  */
1320 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1321 {
1322 	struct ice_aqc_get_set_rss_keys *key;
1323 	struct ice_pf *pf = vsi->back;
1324 	enum ice_status status;
1325 	struct device *dev;
1326 	int err = 0;
1327 	u8 *lut;
1328 
1329 	dev = ice_pf_to_dev(pf);
1330 	vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1331 
1332 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1333 	if (!lut)
1334 		return -ENOMEM;
1335 
1336 	if (vsi->rss_lut_user)
1337 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1338 	else
1339 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1340 
1341 	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1342 				    vsi->rss_table_size);
1343 
1344 	if (status) {
1345 		dev_err(dev, "set_rss_lut failed, error %s\n",
1346 			ice_stat_str(status));
1347 		err = -EIO;
1348 		goto ice_vsi_cfg_rss_exit;
1349 	}
1350 
1351 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1352 	if (!key) {
1353 		err = -ENOMEM;
1354 		goto ice_vsi_cfg_rss_exit;
1355 	}
1356 
1357 	if (vsi->rss_hkey_user)
1358 		memcpy(key,
1359 		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1360 		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1361 	else
1362 		netdev_rss_key_fill((void *)key,
1363 				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1364 
1365 	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1366 
1367 	if (status) {
1368 		dev_err(dev, "set_rss_key failed, error %s\n",
1369 			ice_stat_str(status));
1370 		err = -EIO;
1371 	}
1372 
1373 	kfree(key);
1374 ice_vsi_cfg_rss_exit:
1375 	kfree(lut);
1376 	return err;
1377 }
1378 
1379 /**
1380  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1381  * @vsi: VSI to be configured
1382  *
1383  * This function will only be called during the VF VSI setup. Upon successful
1384  * completion of package download, this function will configure default RSS
1385  * input sets for VF VSI.
1386  */
1387 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1388 {
1389 	struct ice_pf *pf = vsi->back;
1390 	enum ice_status status;
1391 	struct device *dev;
1392 
1393 	dev = ice_pf_to_dev(pf);
1394 	if (ice_is_safe_mode(pf)) {
1395 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1396 			vsi->vsi_num);
1397 		return;
1398 	}
1399 
1400 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1401 	if (status)
1402 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1403 			vsi->vsi_num, ice_stat_str(status));
1404 }
1405 
1406 /**
1407  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1408  * @vsi: VSI to be configured
1409  *
1410  * This function will only be called after successful download package call
1411  * during initialization of PF. Since the downloaded package will erase the
1412  * RSS section, this function will configure RSS input sets for different
1413  * flow types. The last profile added has the highest priority, therefore 2
1414  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1415  * (i.e. IPv4 src/dst TCP src/dst port).
1416  */
1417 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1418 {
1419 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1420 	struct ice_pf *pf = vsi->back;
1421 	struct ice_hw *hw = &pf->hw;
1422 	enum ice_status status;
1423 	struct device *dev;
1424 
1425 	dev = ice_pf_to_dev(pf);
1426 	if (ice_is_safe_mode(pf)) {
1427 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1428 			vsi_num);
1429 		return;
1430 	}
1431 	/* configure RSS for IPv4 with input set IP src/dst */
1432 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1433 				 ICE_FLOW_SEG_HDR_IPV4);
1434 	if (status)
1435 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1436 			vsi_num, ice_stat_str(status));
1437 
1438 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1439 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1440 				 ICE_FLOW_SEG_HDR_IPV6);
1441 	if (status)
1442 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1443 			vsi_num, ice_stat_str(status));
1444 
1445 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1446 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1447 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1448 	if (status)
1449 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1450 			vsi_num, ice_stat_str(status));
1451 
1452 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1453 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1454 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1455 	if (status)
1456 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1457 			vsi_num, ice_stat_str(status));
1458 
1459 	/* configure RSS for sctp4 with input set IP src/dst */
1460 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1461 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1462 	if (status)
1463 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1464 			vsi_num, ice_stat_str(status));
1465 
1466 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1467 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1468 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1469 	if (status)
1470 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1471 			vsi_num, ice_stat_str(status));
1472 
1473 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1474 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1475 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1476 	if (status)
1477 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1478 			vsi_num, ice_stat_str(status));
1479 
1480 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1481 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1482 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1483 	if (status)
1484 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1485 			vsi_num, ice_stat_str(status));
1486 }
1487 
1488 /**
1489  * ice_pf_state_is_nominal - checks the PF for nominal state
1490  * @pf: pointer to PF to check
1491  *
1492  * Check the PF's state for a collection of bits that would indicate
1493  * the PF is in a state that would inhibit normal operation for
1494  * driver functionality.
1495  *
1496  * Returns true if PF is in a nominal state, false otherwise
1497  */
1498 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1499 {
1500 	DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1501 
1502 	if (!pf)
1503 		return false;
1504 
1505 	bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1506 	if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1507 		return false;
1508 
1509 	return true;
1510 }
1511 
1512 /**
1513  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1514  * @vsi: the VSI to be updated
1515  */
1516 void ice_update_eth_stats(struct ice_vsi *vsi)
1517 {
1518 	struct ice_eth_stats *prev_es, *cur_es;
1519 	struct ice_hw *hw = &vsi->back->hw;
1520 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1521 
1522 	prev_es = &vsi->eth_stats_prev;
1523 	cur_es = &vsi->eth_stats;
1524 
1525 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1526 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1527 
1528 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1529 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1530 
1531 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1532 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1533 
1534 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1535 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1536 
1537 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1538 			  &prev_es->rx_discards, &cur_es->rx_discards);
1539 
1540 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1541 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1542 
1543 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1544 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1545 
1546 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1547 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1548 
1549 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1550 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1551 
1552 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1553 			  &prev_es->tx_errors, &cur_es->tx_errors);
1554 
1555 	vsi->stat_offsets_loaded = true;
1556 }
1557 
1558 /**
1559  * ice_vsi_add_vlan - Add VSI membership for given VLAN
1560  * @vsi: the VSI being configured
1561  * @vid: VLAN ID to be added
1562  * @action: filter action to be performed on match
1563  */
1564 int
1565 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1566 {
1567 	struct ice_pf *pf = vsi->back;
1568 	struct device *dev;
1569 	int err = 0;
1570 
1571 	dev = ice_pf_to_dev(pf);
1572 
1573 	if (!ice_fltr_add_vlan(vsi, vid, action)) {
1574 		vsi->num_vlan++;
1575 	} else {
1576 		err = -ENODEV;
1577 		dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1578 			vsi->vsi_num);
1579 	}
1580 
1581 	return err;
1582 }
1583 
1584 /**
1585  * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1586  * @vsi: the VSI being configured
1587  * @vid: VLAN ID to be removed
1588  *
1589  * Returns 0 on success and negative on failure
1590  */
1591 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1592 {
1593 	struct ice_pf *pf = vsi->back;
1594 	enum ice_status status;
1595 	struct device *dev;
1596 	int err = 0;
1597 
1598 	dev = ice_pf_to_dev(pf);
1599 
1600 	status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1601 	if (!status) {
1602 		vsi->num_vlan--;
1603 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
1604 		dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1605 			vid, vsi->vsi_num, ice_stat_str(status));
1606 	} else {
1607 		dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1608 			vid, vsi->vsi_num, ice_stat_str(status));
1609 		err = -EIO;
1610 	}
1611 
1612 	return err;
1613 }
1614 
1615 /**
1616  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1617  * @vsi: VSI
1618  */
1619 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1620 {
1621 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1622 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1623 		vsi->rx_buf_len = ICE_RXBUF_2048;
1624 #if (PAGE_SIZE < 8192)
1625 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1626 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1627 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1628 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1629 #endif
1630 	} else {
1631 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1632 #if (PAGE_SIZE < 8192)
1633 		vsi->rx_buf_len = ICE_RXBUF_3072;
1634 #else
1635 		vsi->rx_buf_len = ICE_RXBUF_2048;
1636 #endif
1637 	}
1638 }
1639 
1640 /**
1641  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1642  * @hw: HW pointer
1643  * @pf_q: index of the Rx queue in the PF's queue space
1644  * @rxdid: flexible descriptor RXDID
1645  * @prio: priority for the RXDID for this queue
1646  */
1647 void
1648 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1649 {
1650 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1651 
1652 	/* clear any previous values */
1653 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1654 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1655 		    QRXFLXP_CNTXT_TS_M);
1656 
1657 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1658 		QRXFLXP_CNTXT_RXDID_IDX_M;
1659 
1660 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1661 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1662 
1663 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1664 }
1665 
1666 /**
1667  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1668  * @vsi: the VSI being configured
1669  *
1670  * Return 0 on success and a negative value on error
1671  * Configure the Rx VSI for operation.
1672  */
1673 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1674 {
1675 	u16 i;
1676 
1677 	if (vsi->type == ICE_VSI_VF)
1678 		goto setup_rings;
1679 
1680 	ice_vsi_cfg_frame_size(vsi);
1681 setup_rings:
1682 	/* set up individual rings */
1683 	for (i = 0; i < vsi->num_rxq; i++) {
1684 		int err;
1685 
1686 		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1687 		if (err) {
1688 			dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1689 				i, err);
1690 			return err;
1691 		}
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 /**
1698  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1699  * @vsi: the VSI being configured
1700  * @rings: Tx ring array to be configured
1701  *
1702  * Return 0 on success and a negative value on error
1703  * Configure the Tx VSI for operation.
1704  */
1705 static int
1706 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings)
1707 {
1708 	struct ice_aqc_add_tx_qgrp *qg_buf;
1709 	u16 q_idx = 0;
1710 	int err = 0;
1711 
1712 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1713 	if (!qg_buf)
1714 		return -ENOMEM;
1715 
1716 	qg_buf->num_txqs = 1;
1717 
1718 	for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1719 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1720 		if (err)
1721 			goto err_cfg_txqs;
1722 	}
1723 
1724 err_cfg_txqs:
1725 	kfree(qg_buf);
1726 	return err;
1727 }
1728 
1729 /**
1730  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1731  * @vsi: the VSI being configured
1732  *
1733  * Return 0 on success and a negative value on error
1734  * Configure the Tx VSI for operation.
1735  */
1736 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1737 {
1738 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings);
1739 }
1740 
1741 /**
1742  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1743  * @vsi: the VSI being configured
1744  *
1745  * Return 0 on success and a negative value on error
1746  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1747  */
1748 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1749 {
1750 	int ret;
1751 	int i;
1752 
1753 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings);
1754 	if (ret)
1755 		return ret;
1756 
1757 	for (i = 0; i < vsi->num_xdp_txq; i++)
1758 		vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]);
1759 
1760 	return ret;
1761 }
1762 
1763 /**
1764  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1765  * @intrl: interrupt rate limit in usecs
1766  * @gran: interrupt rate limit granularity in usecs
1767  *
1768  * This function converts a decimal interrupt rate limit in usecs to the format
1769  * expected by firmware.
1770  */
1771 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1772 {
1773 	u32 val = intrl / gran;
1774 
1775 	if (val)
1776 		return val | GLINT_RATE_INTRL_ENA_M;
1777 	return 0;
1778 }
1779 
1780 /**
1781  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1782  * @vsi: the VSI being configured
1783  *
1784  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1785  * for the VF VSI.
1786  */
1787 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1788 {
1789 	struct ice_pf *pf = vsi->back;
1790 	struct ice_hw *hw = &pf->hw;
1791 	u16 txq = 0, rxq = 0;
1792 	int i, q;
1793 
1794 	for (i = 0; i < vsi->num_q_vectors; i++) {
1795 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1796 		u16 reg_idx = q_vector->reg_idx;
1797 
1798 		ice_cfg_itr(hw, q_vector);
1799 
1800 		wr32(hw, GLINT_RATE(reg_idx),
1801 		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1802 
1803 		/* Both Transmit Queue Interrupt Cause Control register
1804 		 * and Receive Queue Interrupt Cause control register
1805 		 * expects MSIX_INDX field to be the vector index
1806 		 * within the function space and not the absolute
1807 		 * vector index across PF or across device.
1808 		 * For SR-IOV VF VSIs queue vector index always starts
1809 		 * with 1 since first vector index(0) is used for OICR
1810 		 * in VF space. Since VMDq and other PF VSIs are within
1811 		 * the PF function space, use the vector index that is
1812 		 * tracked for this PF.
1813 		 */
1814 		for (q = 0; q < q_vector->num_ring_tx; q++) {
1815 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1816 					      q_vector->tx.itr_idx);
1817 			txq++;
1818 		}
1819 
1820 		for (q = 0; q < q_vector->num_ring_rx; q++) {
1821 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1822 					      q_vector->rx.itr_idx);
1823 			rxq++;
1824 		}
1825 	}
1826 }
1827 
1828 /**
1829  * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1830  * @vsi: the VSI being changed
1831  */
1832 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1833 {
1834 	struct ice_hw *hw = &vsi->back->hw;
1835 	struct ice_vsi_ctx *ctxt;
1836 	enum ice_status status;
1837 	int ret = 0;
1838 
1839 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1840 	if (!ctxt)
1841 		return -ENOMEM;
1842 
1843 	/* Here we are configuring the VSI to let the driver add VLAN tags by
1844 	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1845 	 * insertion happens in the Tx hot path, in ice_tx_map.
1846 	 */
1847 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1848 
1849 	/* Preserve existing VLAN strip setting */
1850 	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1851 				  ICE_AQ_VSI_VLAN_EMOD_M);
1852 
1853 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1854 
1855 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1856 	if (status) {
1857 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1858 			ice_stat_str(status),
1859 			ice_aq_str(hw->adminq.sq_last_status));
1860 		ret = -EIO;
1861 		goto out;
1862 	}
1863 
1864 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1865 out:
1866 	kfree(ctxt);
1867 	return ret;
1868 }
1869 
1870 /**
1871  * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1872  * @vsi: the VSI being changed
1873  * @ena: boolean value indicating if this is a enable or disable request
1874  */
1875 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1876 {
1877 	struct ice_hw *hw = &vsi->back->hw;
1878 	struct ice_vsi_ctx *ctxt;
1879 	enum ice_status status;
1880 	int ret = 0;
1881 
1882 	/* do not allow modifying VLAN stripping when a port VLAN is configured
1883 	 * on this VSI
1884 	 */
1885 	if (vsi->info.pvid)
1886 		return 0;
1887 
1888 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1889 	if (!ctxt)
1890 		return -ENOMEM;
1891 
1892 	/* Here we are configuring what the VSI should do with the VLAN tag in
1893 	 * the Rx packet. We can either leave the tag in the packet or put it in
1894 	 * the Rx descriptor.
1895 	 */
1896 	if (ena)
1897 		/* Strip VLAN tag from Rx packet and put it in the desc */
1898 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1899 	else
1900 		/* Disable stripping. Leave tag in packet */
1901 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1902 
1903 	/* Allow all packets untagged/tagged */
1904 	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1905 
1906 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1907 
1908 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1909 	if (status) {
1910 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1911 			ena, ice_stat_str(status),
1912 			ice_aq_str(hw->adminq.sq_last_status));
1913 		ret = -EIO;
1914 		goto out;
1915 	}
1916 
1917 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1918 out:
1919 	kfree(ctxt);
1920 	return ret;
1921 }
1922 
1923 /**
1924  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1925  * @vsi: the VSI whose rings are to be enabled
1926  *
1927  * Returns 0 on success and a negative value on error
1928  */
1929 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1930 {
1931 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1932 }
1933 
1934 /**
1935  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1936  * @vsi: the VSI whose rings are to be disabled
1937  *
1938  * Returns 0 on success and a negative value on error
1939  */
1940 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1941 {
1942 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1943 }
1944 
1945 /**
1946  * ice_vsi_stop_tx_rings - Disable Tx rings
1947  * @vsi: the VSI being configured
1948  * @rst_src: reset source
1949  * @rel_vmvf_num: Relative ID of VF/VM
1950  * @rings: Tx ring array to be stopped
1951  */
1952 static int
1953 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1954 		      u16 rel_vmvf_num, struct ice_ring **rings)
1955 {
1956 	u16 q_idx;
1957 
1958 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1959 		return -EINVAL;
1960 
1961 	for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1962 		struct ice_txq_meta txq_meta = { };
1963 		int status;
1964 
1965 		if (!rings || !rings[q_idx])
1966 			return -EINVAL;
1967 
1968 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1969 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1970 					      rings[q_idx], &txq_meta);
1971 
1972 		if (status)
1973 			return status;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 /**
1980  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1981  * @vsi: the VSI being configured
1982  * @rst_src: reset source
1983  * @rel_vmvf_num: Relative ID of VF/VM
1984  */
1985 int
1986 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1987 			  u16 rel_vmvf_num)
1988 {
1989 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
1990 }
1991 
1992 /**
1993  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
1994  * @vsi: the VSI being configured
1995  */
1996 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
1997 {
1998 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings);
1999 }
2000 
2001 /**
2002  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2003  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2004  *
2005  * returns true if Rx VLAN pruning is enabled and false otherwise.
2006  */
2007 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2008 {
2009 	if (!vsi)
2010 		return false;
2011 
2012 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2013 }
2014 
2015 /**
2016  * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2017  * @vsi: VSI to enable or disable VLAN pruning on
2018  * @ena: set to true to enable VLAN pruning and false to disable it
2019  * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2020  *
2021  * returns 0 if VSI is updated, negative otherwise
2022  */
2023 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2024 {
2025 	struct ice_vsi_ctx *ctxt;
2026 	struct ice_pf *pf;
2027 	int status;
2028 
2029 	if (!vsi)
2030 		return -EINVAL;
2031 
2032 	/* Don't enable VLAN pruning if the netdev is currently in promiscuous
2033 	 * mode. VLAN pruning will be enabled when the interface exits
2034 	 * promiscuous mode if any VLAN filters are active.
2035 	 */
2036 	if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2037 		return 0;
2038 
2039 	pf = vsi->back;
2040 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2041 	if (!ctxt)
2042 		return -ENOMEM;
2043 
2044 	ctxt->info = vsi->info;
2045 
2046 	if (ena)
2047 		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2048 	else
2049 		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2050 
2051 	if (!vlan_promisc)
2052 		ctxt->info.valid_sections =
2053 			cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2054 
2055 	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2056 	if (status) {
2057 		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2058 			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2059 			   ice_stat_str(status),
2060 			   ice_aq_str(pf->hw.adminq.sq_last_status));
2061 		goto err_out;
2062 	}
2063 
2064 	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2065 
2066 	kfree(ctxt);
2067 	return 0;
2068 
2069 err_out:
2070 	kfree(ctxt);
2071 	return -EIO;
2072 }
2073 
2074 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2075 {
2076 	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2077 
2078 	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2079 	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2080 }
2081 
2082 /**
2083  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2084  * @vsi: VSI to set the q_vectors register index on
2085  */
2086 static int
2087 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2088 {
2089 	u16 i;
2090 
2091 	if (!vsi || !vsi->q_vectors)
2092 		return -EINVAL;
2093 
2094 	ice_for_each_q_vector(vsi, i) {
2095 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2096 
2097 		if (!q_vector) {
2098 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2099 				i, vsi->vsi_num);
2100 			goto clear_reg_idx;
2101 		}
2102 
2103 		if (vsi->type == ICE_VSI_VF) {
2104 			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2105 
2106 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2107 		} else {
2108 			q_vector->reg_idx =
2109 				q_vector->v_idx + vsi->base_vector;
2110 		}
2111 	}
2112 
2113 	return 0;
2114 
2115 clear_reg_idx:
2116 	ice_for_each_q_vector(vsi, i) {
2117 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2118 
2119 		if (q_vector)
2120 			q_vector->reg_idx = 0;
2121 	}
2122 
2123 	return -EINVAL;
2124 }
2125 
2126 /**
2127  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2128  * @vsi: the VSI being configured
2129  * @tx: bool to determine Tx or Rx rule
2130  * @create: bool to determine create or remove Rule
2131  */
2132 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2133 {
2134 	enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2135 				    enum ice_sw_fwd_act_type act);
2136 	struct ice_pf *pf = vsi->back;
2137 	enum ice_status status;
2138 	struct device *dev;
2139 
2140 	dev = ice_pf_to_dev(pf);
2141 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2142 
2143 	if (tx)
2144 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2145 				  ICE_DROP_PACKET);
2146 	else
2147 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2148 
2149 	if (status)
2150 		dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2151 			create ? "adding" : "removing", tx ? "TX" : "RX",
2152 			vsi->vsi_num, ice_stat_str(status));
2153 }
2154 
2155 /**
2156  * ice_vsi_setup - Set up a VSI by a given type
2157  * @pf: board private structure
2158  * @pi: pointer to the port_info instance
2159  * @vsi_type: VSI type
2160  * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2161  *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2162  *         fill-in ICE_INVAL_VFID as input.
2163  *
2164  * This allocates the sw VSI structure and its queue resources.
2165  *
2166  * Returns pointer to the successfully allocated and configured VSI sw struct on
2167  * success, NULL on failure.
2168  */
2169 struct ice_vsi *
2170 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2171 	      enum ice_vsi_type vsi_type, u16 vf_id)
2172 {
2173 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2174 	struct device *dev = ice_pf_to_dev(pf);
2175 	enum ice_status status;
2176 	struct ice_vsi *vsi;
2177 	int ret, i;
2178 
2179 	if (vsi_type == ICE_VSI_VF)
2180 		vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2181 	else
2182 		vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2183 
2184 	if (!vsi) {
2185 		dev_err(dev, "could not allocate VSI\n");
2186 		return NULL;
2187 	}
2188 
2189 	vsi->port_info = pi;
2190 	vsi->vsw = pf->first_sw;
2191 	if (vsi->type == ICE_VSI_PF)
2192 		vsi->ethtype = ETH_P_PAUSE;
2193 
2194 	if (vsi->type == ICE_VSI_VF)
2195 		vsi->vf_id = vf_id;
2196 
2197 	ice_alloc_fd_res(vsi);
2198 
2199 	if (ice_vsi_get_qs(vsi)) {
2200 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2201 			vsi->idx);
2202 		goto unroll_vsi_alloc;
2203 	}
2204 
2205 	/* set RSS capabilities */
2206 	ice_vsi_set_rss_params(vsi);
2207 
2208 	/* set TC configuration */
2209 	ice_vsi_set_tc_cfg(vsi);
2210 
2211 	/* create the VSI */
2212 	ret = ice_vsi_init(vsi, true);
2213 	if (ret)
2214 		goto unroll_get_qs;
2215 
2216 	switch (vsi->type) {
2217 	case ICE_VSI_CTRL:
2218 	case ICE_VSI_PF:
2219 		ret = ice_vsi_alloc_q_vectors(vsi);
2220 		if (ret)
2221 			goto unroll_vsi_init;
2222 
2223 		ret = ice_vsi_setup_vector_base(vsi);
2224 		if (ret)
2225 			goto unroll_alloc_q_vector;
2226 
2227 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2228 		if (ret)
2229 			goto unroll_vector_base;
2230 
2231 		ret = ice_vsi_alloc_rings(vsi);
2232 		if (ret)
2233 			goto unroll_vector_base;
2234 
2235 		/* Always add VLAN ID 0 switch rule by default. This is needed
2236 		 * in order to allow all untagged and 0 tagged priority traffic
2237 		 * if Rx VLAN pruning is enabled. Also there are cases where we
2238 		 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2239 		 * so this handles those cases (i.e. adding the PF to a bridge
2240 		 * without the 8021q module loaded).
2241 		 */
2242 		ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2243 		if (ret)
2244 			goto unroll_clear_rings;
2245 
2246 		ice_vsi_map_rings_to_vectors(vsi);
2247 
2248 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2249 		if (vsi->type != ICE_VSI_CTRL)
2250 			/* Do not exit if configuring RSS had an issue, at
2251 			 * least receive traffic on first queue. Hence no
2252 			 * need to capture return value
2253 			 */
2254 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2255 				ice_vsi_cfg_rss_lut_key(vsi);
2256 				ice_vsi_set_rss_flow_fld(vsi);
2257 			}
2258 		ice_init_arfs(vsi);
2259 		break;
2260 	case ICE_VSI_VF:
2261 		/* VF driver will take care of creating netdev for this type and
2262 		 * map queues to vectors through Virtchnl, PF driver only
2263 		 * creates a VSI and corresponding structures for bookkeeping
2264 		 * purpose
2265 		 */
2266 		ret = ice_vsi_alloc_q_vectors(vsi);
2267 		if (ret)
2268 			goto unroll_vsi_init;
2269 
2270 		ret = ice_vsi_alloc_rings(vsi);
2271 		if (ret)
2272 			goto unroll_alloc_q_vector;
2273 
2274 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2275 		if (ret)
2276 			goto unroll_vector_base;
2277 
2278 		/* Do not exit if configuring RSS had an issue, at least
2279 		 * receive traffic on first queue. Hence no need to capture
2280 		 * return value
2281 		 */
2282 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2283 			ice_vsi_cfg_rss_lut_key(vsi);
2284 			ice_vsi_set_vf_rss_flow_fld(vsi);
2285 		}
2286 		break;
2287 	case ICE_VSI_LB:
2288 		ret = ice_vsi_alloc_rings(vsi);
2289 		if (ret)
2290 			goto unroll_vsi_init;
2291 		break;
2292 	default:
2293 		/* clean up the resources and exit */
2294 		goto unroll_vsi_init;
2295 	}
2296 
2297 	/* configure VSI nodes based on number of queues and TC's */
2298 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2299 		max_txqs[i] = vsi->alloc_txq;
2300 
2301 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2302 				 max_txqs);
2303 	if (status) {
2304 		dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2305 			vsi->vsi_num, ice_stat_str(status));
2306 		goto unroll_clear_rings;
2307 	}
2308 
2309 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2310 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2311 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2312 	 * The rule is added once for PF VSI in order to create appropriate
2313 	 * recipe, since VSI/VSI list is ignored with drop action...
2314 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2315 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2316 	 * settings in the HW.
2317 	 */
2318 	if (!ice_is_safe_mode(pf))
2319 		if (vsi->type == ICE_VSI_PF) {
2320 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2321 					 ICE_DROP_PACKET);
2322 			ice_cfg_sw_lldp(vsi, true, true);
2323 		}
2324 
2325 	return vsi;
2326 
2327 unroll_clear_rings:
2328 	ice_vsi_clear_rings(vsi);
2329 unroll_vector_base:
2330 	/* reclaim SW interrupts back to the common pool */
2331 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2332 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2333 unroll_alloc_q_vector:
2334 	ice_vsi_free_q_vectors(vsi);
2335 unroll_vsi_init:
2336 	ice_vsi_delete(vsi);
2337 unroll_get_qs:
2338 	ice_vsi_put_qs(vsi);
2339 unroll_vsi_alloc:
2340 	ice_vsi_clear(vsi);
2341 
2342 	return NULL;
2343 }
2344 
2345 /**
2346  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2347  * @vsi: the VSI being cleaned up
2348  */
2349 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2350 {
2351 	struct ice_pf *pf = vsi->back;
2352 	struct ice_hw *hw = &pf->hw;
2353 	u32 txq = 0;
2354 	u32 rxq = 0;
2355 	int i, q;
2356 
2357 	for (i = 0; i < vsi->num_q_vectors; i++) {
2358 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2359 		u16 reg_idx = q_vector->reg_idx;
2360 
2361 		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2362 		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2363 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2364 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2365 			if (ice_is_xdp_ena_vsi(vsi)) {
2366 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2367 
2368 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2369 			}
2370 			txq++;
2371 		}
2372 
2373 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2374 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2375 			rxq++;
2376 		}
2377 	}
2378 
2379 	ice_flush(hw);
2380 }
2381 
2382 /**
2383  * ice_vsi_free_irq - Free the IRQ association with the OS
2384  * @vsi: the VSI being configured
2385  */
2386 void ice_vsi_free_irq(struct ice_vsi *vsi)
2387 {
2388 	struct ice_pf *pf = vsi->back;
2389 	int base = vsi->base_vector;
2390 	int i;
2391 
2392 	if (!vsi->q_vectors || !vsi->irqs_ready)
2393 		return;
2394 
2395 	ice_vsi_release_msix(vsi);
2396 	if (vsi->type == ICE_VSI_VF)
2397 		return;
2398 
2399 	vsi->irqs_ready = false;
2400 	ice_for_each_q_vector(vsi, i) {
2401 		u16 vector = i + base;
2402 		int irq_num;
2403 
2404 		irq_num = pf->msix_entries[vector].vector;
2405 
2406 		/* free only the irqs that were actually requested */
2407 		if (!vsi->q_vectors[i] ||
2408 		    !(vsi->q_vectors[i]->num_ring_tx ||
2409 		      vsi->q_vectors[i]->num_ring_rx))
2410 			continue;
2411 
2412 		/* clear the affinity notifier in the IRQ descriptor */
2413 		irq_set_affinity_notifier(irq_num, NULL);
2414 
2415 		/* clear the affinity_mask in the IRQ descriptor */
2416 		irq_set_affinity_hint(irq_num, NULL);
2417 		synchronize_irq(irq_num);
2418 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2419 	}
2420 }
2421 
2422 /**
2423  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2424  * @vsi: the VSI having resources freed
2425  */
2426 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2427 {
2428 	int i;
2429 
2430 	if (!vsi->tx_rings)
2431 		return;
2432 
2433 	ice_for_each_txq(vsi, i)
2434 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2435 			ice_free_tx_ring(vsi->tx_rings[i]);
2436 }
2437 
2438 /**
2439  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2440  * @vsi: the VSI having resources freed
2441  */
2442 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2443 {
2444 	int i;
2445 
2446 	if (!vsi->rx_rings)
2447 		return;
2448 
2449 	ice_for_each_rxq(vsi, i)
2450 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2451 			ice_free_rx_ring(vsi->rx_rings[i]);
2452 }
2453 
2454 /**
2455  * ice_vsi_close - Shut down a VSI
2456  * @vsi: the VSI being shut down
2457  */
2458 void ice_vsi_close(struct ice_vsi *vsi)
2459 {
2460 	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2461 		ice_down(vsi);
2462 
2463 	ice_vsi_free_irq(vsi);
2464 	ice_vsi_free_tx_rings(vsi);
2465 	ice_vsi_free_rx_rings(vsi);
2466 }
2467 
2468 /**
2469  * ice_ena_vsi - resume a VSI
2470  * @vsi: the VSI being resume
2471  * @locked: is the rtnl_lock already held
2472  */
2473 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2474 {
2475 	int err = 0;
2476 
2477 	if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2478 		return 0;
2479 
2480 	clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2481 
2482 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2483 		if (netif_running(vsi->netdev)) {
2484 			if (!locked)
2485 				rtnl_lock();
2486 
2487 			err = ice_open(vsi->netdev);
2488 
2489 			if (!locked)
2490 				rtnl_unlock();
2491 		}
2492 	} else if (vsi->type == ICE_VSI_CTRL) {
2493 		err = ice_vsi_open_ctrl(vsi);
2494 	}
2495 
2496 	return err;
2497 }
2498 
2499 /**
2500  * ice_dis_vsi - pause a VSI
2501  * @vsi: the VSI being paused
2502  * @locked: is the rtnl_lock already held
2503  */
2504 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2505 {
2506 	if (test_bit(__ICE_DOWN, vsi->state))
2507 		return;
2508 
2509 	set_bit(__ICE_NEEDS_RESTART, vsi->state);
2510 
2511 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2512 		if (netif_running(vsi->netdev)) {
2513 			if (!locked)
2514 				rtnl_lock();
2515 
2516 			ice_stop(vsi->netdev);
2517 
2518 			if (!locked)
2519 				rtnl_unlock();
2520 		} else {
2521 			ice_vsi_close(vsi);
2522 		}
2523 	} else if (vsi->type == ICE_VSI_CTRL) {
2524 		ice_vsi_close(vsi);
2525 	}
2526 }
2527 
2528 /**
2529  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2530  * @vsi: the VSI being un-configured
2531  */
2532 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2533 {
2534 	int base = vsi->base_vector;
2535 	struct ice_pf *pf = vsi->back;
2536 	struct ice_hw *hw = &pf->hw;
2537 	u32 val;
2538 	int i;
2539 
2540 	/* disable interrupt causation from each queue */
2541 	if (vsi->tx_rings) {
2542 		ice_for_each_txq(vsi, i) {
2543 			if (vsi->tx_rings[i]) {
2544 				u16 reg;
2545 
2546 				reg = vsi->tx_rings[i]->reg_idx;
2547 				val = rd32(hw, QINT_TQCTL(reg));
2548 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2549 				wr32(hw, QINT_TQCTL(reg), val);
2550 			}
2551 		}
2552 	}
2553 
2554 	if (vsi->rx_rings) {
2555 		ice_for_each_rxq(vsi, i) {
2556 			if (vsi->rx_rings[i]) {
2557 				u16 reg;
2558 
2559 				reg = vsi->rx_rings[i]->reg_idx;
2560 				val = rd32(hw, QINT_RQCTL(reg));
2561 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2562 				wr32(hw, QINT_RQCTL(reg), val);
2563 			}
2564 		}
2565 	}
2566 
2567 	/* disable each interrupt */
2568 	ice_for_each_q_vector(vsi, i) {
2569 		if (!vsi->q_vectors[i])
2570 			continue;
2571 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2572 	}
2573 
2574 	ice_flush(hw);
2575 
2576 	/* don't call synchronize_irq() for VF's from the host */
2577 	if (vsi->type == ICE_VSI_VF)
2578 		return;
2579 
2580 	ice_for_each_q_vector(vsi, i)
2581 		synchronize_irq(pf->msix_entries[i + base].vector);
2582 }
2583 
2584 /**
2585  * ice_napi_del - Remove NAPI handler for the VSI
2586  * @vsi: VSI for which NAPI handler is to be removed
2587  */
2588 void ice_napi_del(struct ice_vsi *vsi)
2589 {
2590 	int v_idx;
2591 
2592 	if (!vsi->netdev)
2593 		return;
2594 
2595 	ice_for_each_q_vector(vsi, v_idx)
2596 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2597 }
2598 
2599 /**
2600  * ice_vsi_release - Delete a VSI and free its resources
2601  * @vsi: the VSI being removed
2602  *
2603  * Returns 0 on success or < 0 on error
2604  */
2605 int ice_vsi_release(struct ice_vsi *vsi)
2606 {
2607 	struct ice_pf *pf;
2608 
2609 	if (!vsi->back)
2610 		return -ENODEV;
2611 	pf = vsi->back;
2612 
2613 	/* do not unregister while driver is in the reset recovery pending
2614 	 * state. Since reset/rebuild happens through PF service task workqueue,
2615 	 * it's not a good idea to unregister netdev that is associated to the
2616 	 * PF that is running the work queue items currently. This is done to
2617 	 * avoid check_flush_dependency() warning on this wq
2618 	 */
2619 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2620 		unregister_netdev(vsi->netdev);
2621 
2622 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2623 		ice_rss_clean(vsi);
2624 
2625 	/* Disable VSI and free resources */
2626 	if (vsi->type != ICE_VSI_LB)
2627 		ice_vsi_dis_irq(vsi);
2628 	ice_vsi_close(vsi);
2629 
2630 	/* SR-IOV determines needed MSIX resources all at once instead of per
2631 	 * VSI since when VFs are spawned we know how many VFs there are and how
2632 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2633 	 * cleared in the same manner.
2634 	 */
2635 	if (vsi->type != ICE_VSI_VF) {
2636 		/* reclaim SW interrupts back to the common pool */
2637 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2638 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2639 	}
2640 
2641 	if (!ice_is_safe_mode(pf)) {
2642 		if (vsi->type == ICE_VSI_PF) {
2643 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2644 					    ICE_DROP_PACKET);
2645 			ice_cfg_sw_lldp(vsi, true, false);
2646 			/* The Rx rule will only exist to remove if the LLDP FW
2647 			 * engine is currently stopped
2648 			 */
2649 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2650 				ice_cfg_sw_lldp(vsi, false, false);
2651 		}
2652 	}
2653 
2654 	ice_fltr_remove_all(vsi);
2655 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2656 	ice_vsi_delete(vsi);
2657 	ice_vsi_free_q_vectors(vsi);
2658 
2659 	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
2660 	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2661 		free_netdev(vsi->netdev);
2662 		vsi->netdev = NULL;
2663 	}
2664 
2665 	ice_vsi_clear_rings(vsi);
2666 
2667 	ice_vsi_put_qs(vsi);
2668 
2669 	/* retain SW VSI data structure since it is needed to unregister and
2670 	 * free VSI netdev when PF is not in reset recovery pending state,\
2671 	 * for ex: during rmmod.
2672 	 */
2673 	if (!ice_is_reset_in_progress(pf->state))
2674 		ice_vsi_clear(vsi);
2675 
2676 	return 0;
2677 }
2678 
2679 /**
2680  * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector
2681  * @q_vector: pointer to q_vector which is being updated
2682  * @coalesce: pointer to array of struct with stored coalesce
2683  *
2684  * Set coalesce param in q_vector and update these parameters in HW.
2685  */
2686 static void
2687 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector,
2688 				struct ice_coalesce_stored *coalesce)
2689 {
2690 	struct ice_ring_container *rx_rc = &q_vector->rx;
2691 	struct ice_ring_container *tx_rc = &q_vector->tx;
2692 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2693 
2694 	tx_rc->itr_setting = coalesce->itr_tx;
2695 	rx_rc->itr_setting = coalesce->itr_rx;
2696 
2697 	/* dynamic ITR values will be updated during Tx/Rx */
2698 	if (!ITR_IS_DYNAMIC(tx_rc->itr_setting))
2699 		wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx),
2700 		     ITR_REG_ALIGN(tx_rc->itr_setting) >>
2701 		     ICE_ITR_GRAN_S);
2702 	if (!ITR_IS_DYNAMIC(rx_rc->itr_setting))
2703 		wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx),
2704 		     ITR_REG_ALIGN(rx_rc->itr_setting) >>
2705 		     ICE_ITR_GRAN_S);
2706 
2707 	q_vector->intrl = coalesce->intrl;
2708 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2709 	     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2710 }
2711 
2712 /**
2713  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2714  * @vsi: VSI connected with q_vectors
2715  * @coalesce: array of struct with stored coalesce
2716  *
2717  * Returns array size.
2718  */
2719 static int
2720 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2721 			     struct ice_coalesce_stored *coalesce)
2722 {
2723 	int i;
2724 
2725 	ice_for_each_q_vector(vsi, i) {
2726 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2727 
2728 		coalesce[i].itr_tx = q_vector->tx.itr_setting;
2729 		coalesce[i].itr_rx = q_vector->rx.itr_setting;
2730 		coalesce[i].intrl = q_vector->intrl;
2731 	}
2732 
2733 	return vsi->num_q_vectors;
2734 }
2735 
2736 /**
2737  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2738  * @vsi: VSI connected with q_vectors
2739  * @coalesce: pointer to array of struct with stored coalesce
2740  * @size: size of coalesce array
2741  *
2742  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2743  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2744  * to default value.
2745  */
2746 static void
2747 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2748 			     struct ice_coalesce_stored *coalesce, int size)
2749 {
2750 	int i;
2751 
2752 	if ((size && !coalesce) || !vsi)
2753 		return;
2754 
2755 	for (i = 0; i < size && i < vsi->num_q_vectors; i++)
2756 		ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2757 						&coalesce[i]);
2758 
2759 	/* number of q_vectors increased, so assume coalesce settings were
2760 	 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use
2761 	 * the previous settings from q_vector 0 for all of the new q_vectors
2762 	 */
2763 	for (; i < vsi->num_q_vectors; i++)
2764 		ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2765 						&coalesce[0]);
2766 }
2767 
2768 /**
2769  * ice_vsi_rebuild - Rebuild VSI after reset
2770  * @vsi: VSI to be rebuild
2771  * @init_vsi: is this an initialization or a reconfigure of the VSI
2772  *
2773  * Returns 0 on success and negative value on failure
2774  */
2775 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2776 {
2777 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2778 	struct ice_coalesce_stored *coalesce;
2779 	int prev_num_q_vectors = 0;
2780 	struct ice_vf *vf = NULL;
2781 	enum ice_status status;
2782 	struct ice_pf *pf;
2783 	int ret, i;
2784 
2785 	if (!vsi)
2786 		return -EINVAL;
2787 
2788 	pf = vsi->back;
2789 	if (vsi->type == ICE_VSI_VF)
2790 		vf = &pf->vf[vsi->vf_id];
2791 
2792 	coalesce = kcalloc(vsi->num_q_vectors,
2793 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2794 	if (coalesce)
2795 		prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi,
2796 								  coalesce);
2797 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2798 	ice_vsi_free_q_vectors(vsi);
2799 
2800 	/* SR-IOV determines needed MSIX resources all at once instead of per
2801 	 * VSI since when VFs are spawned we know how many VFs there are and how
2802 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2803 	 * cleared in the same manner.
2804 	 */
2805 	if (vsi->type != ICE_VSI_VF) {
2806 		/* reclaim SW interrupts back to the common pool */
2807 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2808 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2809 		vsi->base_vector = 0;
2810 	}
2811 
2812 	if (ice_is_xdp_ena_vsi(vsi))
2813 		/* return value check can be skipped here, it always returns
2814 		 * 0 if reset is in progress
2815 		 */
2816 		ice_destroy_xdp_rings(vsi);
2817 	ice_vsi_put_qs(vsi);
2818 	ice_vsi_clear_rings(vsi);
2819 	ice_vsi_free_arrays(vsi);
2820 	if (vsi->type == ICE_VSI_VF)
2821 		ice_vsi_set_num_qs(vsi, vf->vf_id);
2822 	else
2823 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2824 
2825 	ret = ice_vsi_alloc_arrays(vsi);
2826 	if (ret < 0)
2827 		goto err_vsi;
2828 
2829 	ice_vsi_get_qs(vsi);
2830 
2831 	ice_alloc_fd_res(vsi);
2832 	ice_vsi_set_tc_cfg(vsi);
2833 
2834 	/* Initialize VSI struct elements and create VSI in FW */
2835 	ret = ice_vsi_init(vsi, init_vsi);
2836 	if (ret < 0)
2837 		goto err_vsi;
2838 
2839 	switch (vsi->type) {
2840 	case ICE_VSI_CTRL:
2841 	case ICE_VSI_PF:
2842 		ret = ice_vsi_alloc_q_vectors(vsi);
2843 		if (ret)
2844 			goto err_rings;
2845 
2846 		ret = ice_vsi_setup_vector_base(vsi);
2847 		if (ret)
2848 			goto err_vectors;
2849 
2850 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2851 		if (ret)
2852 			goto err_vectors;
2853 
2854 		ret = ice_vsi_alloc_rings(vsi);
2855 		if (ret)
2856 			goto err_vectors;
2857 
2858 		ice_vsi_map_rings_to_vectors(vsi);
2859 		if (ice_is_xdp_ena_vsi(vsi)) {
2860 			vsi->num_xdp_txq = vsi->alloc_rxq;
2861 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2862 			if (ret)
2863 				goto err_vectors;
2864 		}
2865 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2866 		if (vsi->type != ICE_VSI_CTRL)
2867 			/* Do not exit if configuring RSS had an issue, at
2868 			 * least receive traffic on first queue. Hence no
2869 			 * need to capture return value
2870 			 */
2871 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2872 				ice_vsi_cfg_rss_lut_key(vsi);
2873 		break;
2874 	case ICE_VSI_VF:
2875 		ret = ice_vsi_alloc_q_vectors(vsi);
2876 		if (ret)
2877 			goto err_rings;
2878 
2879 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2880 		if (ret)
2881 			goto err_vectors;
2882 
2883 		ret = ice_vsi_alloc_rings(vsi);
2884 		if (ret)
2885 			goto err_vectors;
2886 
2887 		break;
2888 	default:
2889 		break;
2890 	}
2891 
2892 	/* configure VSI nodes based on number of queues and TC's */
2893 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2894 		max_txqs[i] = vsi->alloc_txq;
2895 
2896 		if (ice_is_xdp_ena_vsi(vsi))
2897 			max_txqs[i] += vsi->num_xdp_txq;
2898 	}
2899 
2900 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2901 				 max_txqs);
2902 	if (status) {
2903 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2904 			vsi->vsi_num, ice_stat_str(status));
2905 		if (init_vsi) {
2906 			ret = -EIO;
2907 			goto err_vectors;
2908 		} else {
2909 			return ice_schedule_reset(pf, ICE_RESET_PFR);
2910 		}
2911 	}
2912 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2913 	kfree(coalesce);
2914 
2915 	return 0;
2916 
2917 err_vectors:
2918 	ice_vsi_free_q_vectors(vsi);
2919 err_rings:
2920 	if (vsi->netdev) {
2921 		vsi->current_netdev_flags = 0;
2922 		unregister_netdev(vsi->netdev);
2923 		free_netdev(vsi->netdev);
2924 		vsi->netdev = NULL;
2925 	}
2926 err_vsi:
2927 	ice_vsi_clear(vsi);
2928 	set_bit(__ICE_RESET_FAILED, pf->state);
2929 	kfree(coalesce);
2930 	return ret;
2931 }
2932 
2933 /**
2934  * ice_is_reset_in_progress - check for a reset in progress
2935  * @state: PF state field
2936  */
2937 bool ice_is_reset_in_progress(unsigned long *state)
2938 {
2939 	return test_bit(__ICE_RESET_OICR_RECV, state) ||
2940 	       test_bit(__ICE_DCBNL_DEVRESET, state) ||
2941 	       test_bit(__ICE_PFR_REQ, state) ||
2942 	       test_bit(__ICE_CORER_REQ, state) ||
2943 	       test_bit(__ICE_GLOBR_REQ, state);
2944 }
2945 
2946 #ifdef CONFIG_DCB
2947 /**
2948  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
2949  * @vsi: VSI being configured
2950  * @ctx: the context buffer returned from AQ VSI update command
2951  */
2952 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
2953 {
2954 	vsi->info.mapping_flags = ctx->info.mapping_flags;
2955 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
2956 	       sizeof(vsi->info.q_mapping));
2957 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
2958 	       sizeof(vsi->info.tc_mapping));
2959 }
2960 
2961 /**
2962  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
2963  * @vsi: VSI to be configured
2964  * @ena_tc: TC bitmap
2965  *
2966  * VSI queues expected to be quiesced before calling this function
2967  */
2968 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
2969 {
2970 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2971 	struct ice_pf *pf = vsi->back;
2972 	struct ice_vsi_ctx *ctx;
2973 	enum ice_status status;
2974 	struct device *dev;
2975 	int i, ret = 0;
2976 	u8 num_tc = 0;
2977 
2978 	dev = ice_pf_to_dev(pf);
2979 
2980 	ice_for_each_traffic_class(i) {
2981 		/* build bitmap of enabled TCs */
2982 		if (ena_tc & BIT(i))
2983 			num_tc++;
2984 		/* populate max_txqs per TC */
2985 		max_txqs[i] = vsi->alloc_txq;
2986 	}
2987 
2988 	vsi->tc_cfg.ena_tc = ena_tc;
2989 	vsi->tc_cfg.numtc = num_tc;
2990 
2991 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2992 	if (!ctx)
2993 		return -ENOMEM;
2994 
2995 	ctx->vf_num = 0;
2996 	ctx->info = vsi->info;
2997 
2998 	ice_vsi_setup_q_map(vsi, ctx);
2999 
3000 	/* must to indicate which section of VSI context are being modified */
3001 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3002 	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3003 	if (status) {
3004 		dev_info(dev, "Failed VSI Update\n");
3005 		ret = -EIO;
3006 		goto out;
3007 	}
3008 
3009 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3010 				 max_txqs);
3011 
3012 	if (status) {
3013 		dev_err(dev, "VSI %d failed TC config, error %s\n",
3014 			vsi->vsi_num, ice_stat_str(status));
3015 		ret = -EIO;
3016 		goto out;
3017 	}
3018 	ice_vsi_update_q_map(vsi, ctx);
3019 	vsi->info.valid_sections = 0;
3020 
3021 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3022 out:
3023 	kfree(ctx);
3024 	return ret;
3025 }
3026 #endif /* CONFIG_DCB */
3027 
3028 /**
3029  * ice_update_ring_stats - Update ring statistics
3030  * @ring: ring to update
3031  * @cont: used to increment per-vector counters
3032  * @pkts: number of processed packets
3033  * @bytes: number of processed bytes
3034  *
3035  * This function assumes that caller has acquired a u64_stats_sync lock.
3036  */
3037 static void
3038 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3039 		      u64 pkts, u64 bytes)
3040 {
3041 	ring->stats.bytes += bytes;
3042 	ring->stats.pkts += pkts;
3043 	cont->total_bytes += bytes;
3044 	cont->total_pkts += pkts;
3045 }
3046 
3047 /**
3048  * ice_update_tx_ring_stats - Update Tx ring specific counters
3049  * @tx_ring: ring to update
3050  * @pkts: number of processed packets
3051  * @bytes: number of processed bytes
3052  */
3053 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3054 {
3055 	u64_stats_update_begin(&tx_ring->syncp);
3056 	ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3057 	u64_stats_update_end(&tx_ring->syncp);
3058 }
3059 
3060 /**
3061  * ice_update_rx_ring_stats - Update Rx ring specific counters
3062  * @rx_ring: ring to update
3063  * @pkts: number of processed packets
3064  * @bytes: number of processed bytes
3065  */
3066 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3067 {
3068 	u64_stats_update_begin(&rx_ring->syncp);
3069 	ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3070 	u64_stats_update_end(&rx_ring->syncp);
3071 }
3072 
3073 /**
3074  * ice_status_to_errno - convert from enum ice_status to Linux errno
3075  * @err: ice_status value to convert
3076  */
3077 int ice_status_to_errno(enum ice_status err)
3078 {
3079 	switch (err) {
3080 	case ICE_SUCCESS:
3081 		return 0;
3082 	case ICE_ERR_DOES_NOT_EXIST:
3083 		return -ENOENT;
3084 	case ICE_ERR_OUT_OF_RANGE:
3085 		return -ENOTTY;
3086 	case ICE_ERR_PARAM:
3087 		return -EINVAL;
3088 	case ICE_ERR_NO_MEMORY:
3089 		return -ENOMEM;
3090 	case ICE_ERR_MAX_LIMIT:
3091 		return -EAGAIN;
3092 	default:
3093 		return -EINVAL;
3094 	}
3095 }
3096 
3097 /**
3098  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3099  * @sw: switch to check if its default forwarding VSI is free
3100  *
3101  * Return true if the default forwarding VSI is already being used, else returns
3102  * false signalling that it's available to use.
3103  */
3104 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3105 {
3106 	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3107 }
3108 
3109 /**
3110  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3111  * @sw: switch for the default forwarding VSI to compare against
3112  * @vsi: VSI to compare against default forwarding VSI
3113  *
3114  * If this VSI passed in is the default forwarding VSI then return true, else
3115  * return false
3116  */
3117 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3118 {
3119 	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3120 }
3121 
3122 /**
3123  * ice_set_dflt_vsi - set the default forwarding VSI
3124  * @sw: switch used to assign the default forwarding VSI
3125  * @vsi: VSI getting set as the default forwarding VSI on the switch
3126  *
3127  * If the VSI passed in is already the default VSI and it's enabled just return
3128  * success.
3129  *
3130  * If there is already a default VSI on the switch and it's enabled then return
3131  * -EEXIST since there can only be one default VSI per switch.
3132  *
3133  *  Otherwise try to set the VSI passed in as the switch's default VSI and
3134  *  return the result.
3135  */
3136 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3137 {
3138 	enum ice_status status;
3139 	struct device *dev;
3140 
3141 	if (!sw || !vsi)
3142 		return -EINVAL;
3143 
3144 	dev = ice_pf_to_dev(vsi->back);
3145 
3146 	/* the VSI passed in is already the default VSI */
3147 	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3148 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3149 			vsi->vsi_num);
3150 		return 0;
3151 	}
3152 
3153 	/* another VSI is already the default VSI for this switch */
3154 	if (ice_is_dflt_vsi_in_use(sw)) {
3155 		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3156 			sw->dflt_vsi->vsi_num);
3157 		return -EEXIST;
3158 	}
3159 
3160 	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3161 	if (status) {
3162 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3163 			vsi->vsi_num, ice_stat_str(status));
3164 		return -EIO;
3165 	}
3166 
3167 	sw->dflt_vsi = vsi;
3168 	sw->dflt_vsi_ena = true;
3169 
3170 	return 0;
3171 }
3172 
3173 /**
3174  * ice_clear_dflt_vsi - clear the default forwarding VSI
3175  * @sw: switch used to clear the default VSI
3176  *
3177  * If the switch has no default VSI or it's not enabled then return error.
3178  *
3179  * Otherwise try to clear the default VSI and return the result.
3180  */
3181 int ice_clear_dflt_vsi(struct ice_sw *sw)
3182 {
3183 	struct ice_vsi *dflt_vsi;
3184 	enum ice_status status;
3185 	struct device *dev;
3186 
3187 	if (!sw)
3188 		return -EINVAL;
3189 
3190 	dev = ice_pf_to_dev(sw->pf);
3191 
3192 	dflt_vsi = sw->dflt_vsi;
3193 
3194 	/* there is no default VSI configured */
3195 	if (!ice_is_dflt_vsi_in_use(sw))
3196 		return -ENODEV;
3197 
3198 	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3199 				  ICE_FLTR_RX);
3200 	if (status) {
3201 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3202 			dflt_vsi->vsi_num, ice_stat_str(status));
3203 		return -EIO;
3204 	}
3205 
3206 	sw->dflt_vsi = NULL;
3207 	sw->dflt_vsi_ena = false;
3208 
3209 	return 0;
3210 }
3211