1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 11 /** 12 * ice_vsi_type_str - maps VSI type enum to string equivalents 13 * @vsi_type: VSI type enum 14 */ 15 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 16 { 17 switch (vsi_type) { 18 case ICE_VSI_PF: 19 return "ICE_VSI_PF"; 20 case ICE_VSI_VF: 21 return "ICE_VSI_VF"; 22 case ICE_VSI_CTRL: 23 return "ICE_VSI_CTRL"; 24 case ICE_VSI_LB: 25 return "ICE_VSI_LB"; 26 default: 27 return "unknown"; 28 } 29 } 30 31 /** 32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 33 * @vsi: the VSI being configured 34 * @ena: start or stop the Rx rings 35 * 36 * First enable/disable all of the Rx rings, flush any remaining writes, and 37 * then verify that they have all been enabled/disabled successfully. This will 38 * let all of the register writes complete when enabling/disabling the Rx rings 39 * before waiting for the change in hardware to complete. 40 */ 41 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 42 { 43 int ret = 0; 44 u16 i; 45 46 for (i = 0; i < vsi->num_rxq; i++) 47 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 48 49 ice_flush(&vsi->back->hw); 50 51 for (i = 0; i < vsi->num_rxq; i++) { 52 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 53 if (ret) 54 break; 55 } 56 57 return ret; 58 } 59 60 /** 61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 62 * @vsi: VSI pointer 63 * 64 * On error: returns error code (negative) 65 * On success: returns 0 66 */ 67 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 68 { 69 struct ice_pf *pf = vsi->back; 70 struct device *dev; 71 72 dev = ice_pf_to_dev(pf); 73 74 /* allocate memory for both Tx and Rx ring pointers */ 75 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 76 sizeof(*vsi->tx_rings), GFP_KERNEL); 77 if (!vsi->tx_rings) 78 return -ENOMEM; 79 80 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 81 sizeof(*vsi->rx_rings), GFP_KERNEL); 82 if (!vsi->rx_rings) 83 goto err_rings; 84 85 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 86 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 87 sizeof(*vsi->txq_map), GFP_KERNEL); 88 89 if (!vsi->txq_map) 90 goto err_txq_map; 91 92 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 93 sizeof(*vsi->rxq_map), GFP_KERNEL); 94 if (!vsi->rxq_map) 95 goto err_rxq_map; 96 97 /* There is no need to allocate q_vectors for a loopback VSI. */ 98 if (vsi->type == ICE_VSI_LB) 99 return 0; 100 101 /* allocate memory for q_vector pointers */ 102 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 103 sizeof(*vsi->q_vectors), GFP_KERNEL); 104 if (!vsi->q_vectors) 105 goto err_vectors; 106 107 return 0; 108 109 err_vectors: 110 devm_kfree(dev, vsi->rxq_map); 111 err_rxq_map: 112 devm_kfree(dev, vsi->txq_map); 113 err_txq_map: 114 devm_kfree(dev, vsi->rx_rings); 115 err_rings: 116 devm_kfree(dev, vsi->tx_rings); 117 return -ENOMEM; 118 } 119 120 /** 121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 122 * @vsi: the VSI being configured 123 */ 124 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 125 { 126 switch (vsi->type) { 127 case ICE_VSI_PF: 128 case ICE_VSI_CTRL: 129 case ICE_VSI_LB: 130 /* a user could change the values of num_[tr]x_desc using 131 * ethtool -G so we should keep those values instead of 132 * overwriting them with the defaults. 133 */ 134 if (!vsi->num_rx_desc) 135 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 136 if (!vsi->num_tx_desc) 137 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 138 break; 139 default: 140 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 141 vsi->type); 142 break; 143 } 144 } 145 146 /** 147 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 148 * @vsi: the VSI being configured 149 * @vf_id: ID of the VF being configured 150 * 151 * Return 0 on success and a negative value on error 152 */ 153 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 154 { 155 struct ice_pf *pf = vsi->back; 156 struct ice_vf *vf = NULL; 157 158 if (vsi->type == ICE_VSI_VF) 159 vsi->vf_id = vf_id; 160 161 switch (vsi->type) { 162 case ICE_VSI_PF: 163 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 164 num_online_cpus()); 165 if (vsi->req_txq) { 166 vsi->alloc_txq = vsi->req_txq; 167 vsi->num_txq = vsi->req_txq; 168 } 169 170 pf->num_lan_tx = vsi->alloc_txq; 171 172 /* only 1 Rx queue unless RSS is enabled */ 173 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 174 vsi->alloc_rxq = 1; 175 } else { 176 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 177 num_online_cpus()); 178 if (vsi->req_rxq) { 179 vsi->alloc_rxq = vsi->req_rxq; 180 vsi->num_rxq = vsi->req_rxq; 181 } 182 } 183 184 pf->num_lan_rx = vsi->alloc_rxq; 185 186 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 187 break; 188 case ICE_VSI_VF: 189 vf = &pf->vf[vsi->vf_id]; 190 vsi->alloc_txq = vf->num_vf_qs; 191 vsi->alloc_rxq = vf->num_vf_qs; 192 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 193 * data queue interrupts). Since vsi->num_q_vectors is number 194 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 195 * original vector count 196 */ 197 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 198 break; 199 case ICE_VSI_CTRL: 200 vsi->alloc_txq = 1; 201 vsi->alloc_rxq = 1; 202 vsi->num_q_vectors = 1; 203 break; 204 case ICE_VSI_LB: 205 vsi->alloc_txq = 1; 206 vsi->alloc_rxq = 1; 207 break; 208 default: 209 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 210 break; 211 } 212 213 ice_vsi_set_num_desc(vsi); 214 } 215 216 /** 217 * ice_get_free_slot - get the next non-NULL location index in array 218 * @array: array to search 219 * @size: size of the array 220 * @curr: last known occupied index to be used as a search hint 221 * 222 * void * is being used to keep the functionality generic. This lets us use this 223 * function on any array of pointers. 224 */ 225 static int ice_get_free_slot(void *array, int size, int curr) 226 { 227 int **tmp_array = (int **)array; 228 int next; 229 230 if (curr < (size - 1) && !tmp_array[curr + 1]) { 231 next = curr + 1; 232 } else { 233 int i = 0; 234 235 while ((i < size) && (tmp_array[i])) 236 i++; 237 if (i == size) 238 next = ICE_NO_VSI; 239 else 240 next = i; 241 } 242 return next; 243 } 244 245 /** 246 * ice_vsi_delete - delete a VSI from the switch 247 * @vsi: pointer to VSI being removed 248 */ 249 static void ice_vsi_delete(struct ice_vsi *vsi) 250 { 251 struct ice_pf *pf = vsi->back; 252 struct ice_vsi_ctx *ctxt; 253 enum ice_status status; 254 255 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 256 if (!ctxt) 257 return; 258 259 if (vsi->type == ICE_VSI_VF) 260 ctxt->vf_num = vsi->vf_id; 261 ctxt->vsi_num = vsi->vsi_num; 262 263 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 264 265 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 266 if (status) 267 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 268 vsi->vsi_num, ice_stat_str(status)); 269 270 kfree(ctxt); 271 } 272 273 /** 274 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 275 * @vsi: pointer to VSI being cleared 276 */ 277 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 278 { 279 struct ice_pf *pf = vsi->back; 280 struct device *dev; 281 282 dev = ice_pf_to_dev(pf); 283 284 /* free the ring and vector containers */ 285 if (vsi->q_vectors) { 286 devm_kfree(dev, vsi->q_vectors); 287 vsi->q_vectors = NULL; 288 } 289 if (vsi->tx_rings) { 290 devm_kfree(dev, vsi->tx_rings); 291 vsi->tx_rings = NULL; 292 } 293 if (vsi->rx_rings) { 294 devm_kfree(dev, vsi->rx_rings); 295 vsi->rx_rings = NULL; 296 } 297 if (vsi->txq_map) { 298 devm_kfree(dev, vsi->txq_map); 299 vsi->txq_map = NULL; 300 } 301 if (vsi->rxq_map) { 302 devm_kfree(dev, vsi->rxq_map); 303 vsi->rxq_map = NULL; 304 } 305 } 306 307 /** 308 * ice_vsi_clear - clean up and deallocate the provided VSI 309 * @vsi: pointer to VSI being cleared 310 * 311 * This deallocates the VSI's queue resources, removes it from the PF's 312 * VSI array if necessary, and deallocates the VSI 313 * 314 * Returns 0 on success, negative on failure 315 */ 316 static int ice_vsi_clear(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = NULL; 319 struct device *dev; 320 321 if (!vsi) 322 return 0; 323 324 if (!vsi->back) 325 return -EINVAL; 326 327 pf = vsi->back; 328 dev = ice_pf_to_dev(pf); 329 330 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 331 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 332 return -EINVAL; 333 } 334 335 mutex_lock(&pf->sw_mutex); 336 /* updates the PF for this cleared VSI */ 337 338 pf->vsi[vsi->idx] = NULL; 339 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 340 pf->next_vsi = vsi->idx; 341 342 ice_vsi_free_arrays(vsi); 343 mutex_unlock(&pf->sw_mutex); 344 devm_kfree(dev, vsi); 345 346 return 0; 347 } 348 349 /** 350 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 351 * @irq: interrupt number 352 * @data: pointer to a q_vector 353 */ 354 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 355 { 356 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 357 358 if (!q_vector->tx.ring) 359 return IRQ_HANDLED; 360 361 #define FDIR_RX_DESC_CLEAN_BUDGET 64 362 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 363 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 364 365 return IRQ_HANDLED; 366 } 367 368 /** 369 * ice_msix_clean_rings - MSIX mode Interrupt Handler 370 * @irq: interrupt number 371 * @data: pointer to a q_vector 372 */ 373 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 374 { 375 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 376 377 if (!q_vector->tx.ring && !q_vector->rx.ring) 378 return IRQ_HANDLED; 379 380 napi_schedule(&q_vector->napi); 381 382 return IRQ_HANDLED; 383 } 384 385 /** 386 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 387 * @pf: board private structure 388 * @vsi_type: type of VSI 389 * @vf_id: ID of the VF being configured 390 * 391 * returns a pointer to a VSI on success, NULL on failure. 392 */ 393 static struct ice_vsi * 394 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 395 { 396 struct device *dev = ice_pf_to_dev(pf); 397 struct ice_vsi *vsi = NULL; 398 399 /* Need to protect the allocation of the VSIs at the PF level */ 400 mutex_lock(&pf->sw_mutex); 401 402 /* If we have already allocated our maximum number of VSIs, 403 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 404 * is available to be populated 405 */ 406 if (pf->next_vsi == ICE_NO_VSI) { 407 dev_dbg(dev, "out of VSI slots!\n"); 408 goto unlock_pf; 409 } 410 411 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 412 if (!vsi) 413 goto unlock_pf; 414 415 vsi->type = vsi_type; 416 vsi->back = pf; 417 set_bit(__ICE_DOWN, vsi->state); 418 419 if (vsi_type == ICE_VSI_VF) 420 ice_vsi_set_num_qs(vsi, vf_id); 421 else 422 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 423 424 switch (vsi->type) { 425 case ICE_VSI_PF: 426 if (ice_vsi_alloc_arrays(vsi)) 427 goto err_rings; 428 429 /* Setup default MSIX irq handler for VSI */ 430 vsi->irq_handler = ice_msix_clean_rings; 431 break; 432 case ICE_VSI_CTRL: 433 if (ice_vsi_alloc_arrays(vsi)) 434 goto err_rings; 435 436 /* Setup ctrl VSI MSIX irq handler */ 437 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 438 break; 439 case ICE_VSI_VF: 440 if (ice_vsi_alloc_arrays(vsi)) 441 goto err_rings; 442 break; 443 case ICE_VSI_LB: 444 if (ice_vsi_alloc_arrays(vsi)) 445 goto err_rings; 446 break; 447 default: 448 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 449 goto unlock_pf; 450 } 451 452 if (vsi->type == ICE_VSI_CTRL) { 453 /* Use the last VSI slot as the index for the control VSI */ 454 vsi->idx = pf->num_alloc_vsi - 1; 455 pf->ctrl_vsi_idx = vsi->idx; 456 pf->vsi[vsi->idx] = vsi; 457 } else { 458 /* fill slot and make note of the index */ 459 vsi->idx = pf->next_vsi; 460 pf->vsi[pf->next_vsi] = vsi; 461 462 /* prepare pf->next_vsi for next use */ 463 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 464 pf->next_vsi); 465 } 466 goto unlock_pf; 467 468 err_rings: 469 devm_kfree(dev, vsi); 470 vsi = NULL; 471 unlock_pf: 472 mutex_unlock(&pf->sw_mutex); 473 return vsi; 474 } 475 476 /** 477 * ice_alloc_fd_res - Allocate FD resource for a VSI 478 * @vsi: pointer to the ice_vsi 479 * 480 * This allocates the FD resources 481 * 482 * Returns 0 on success, -EPERM on no-op or -EIO on failure 483 */ 484 static int ice_alloc_fd_res(struct ice_vsi *vsi) 485 { 486 struct ice_pf *pf = vsi->back; 487 u32 g_val, b_val; 488 489 /* Flow Director filters are only allocated/assigned to the PF VSI which 490 * passes the traffic. The CTRL VSI is only used to add/delete filters 491 * so we don't allocate resources to it 492 */ 493 494 /* FD filters from guaranteed pool per VSI */ 495 g_val = pf->hw.func_caps.fd_fltr_guar; 496 if (!g_val) 497 return -EPERM; 498 499 /* FD filters from best effort pool */ 500 b_val = pf->hw.func_caps.fd_fltr_best_effort; 501 if (!b_val) 502 return -EPERM; 503 504 if (vsi->type != ICE_VSI_PF) 505 return -EPERM; 506 507 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 508 return -EPERM; 509 510 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 511 512 /* each VSI gets same "best_effort" quota */ 513 vsi->num_bfltr = b_val; 514 515 return 0; 516 } 517 518 /** 519 * ice_vsi_get_qs - Assign queues from PF to VSI 520 * @vsi: the VSI to assign queues to 521 * 522 * Returns 0 on success and a negative value on error 523 */ 524 static int ice_vsi_get_qs(struct ice_vsi *vsi) 525 { 526 struct ice_pf *pf = vsi->back; 527 struct ice_qs_cfg tx_qs_cfg = { 528 .qs_mutex = &pf->avail_q_mutex, 529 .pf_map = pf->avail_txqs, 530 .pf_map_size = pf->max_pf_txqs, 531 .q_count = vsi->alloc_txq, 532 .scatter_count = ICE_MAX_SCATTER_TXQS, 533 .vsi_map = vsi->txq_map, 534 .vsi_map_offset = 0, 535 .mapping_mode = ICE_VSI_MAP_CONTIG 536 }; 537 struct ice_qs_cfg rx_qs_cfg = { 538 .qs_mutex = &pf->avail_q_mutex, 539 .pf_map = pf->avail_rxqs, 540 .pf_map_size = pf->max_pf_rxqs, 541 .q_count = vsi->alloc_rxq, 542 .scatter_count = ICE_MAX_SCATTER_RXQS, 543 .vsi_map = vsi->rxq_map, 544 .vsi_map_offset = 0, 545 .mapping_mode = ICE_VSI_MAP_CONTIG 546 }; 547 int ret; 548 549 ret = __ice_vsi_get_qs(&tx_qs_cfg); 550 if (ret) 551 return ret; 552 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 553 554 ret = __ice_vsi_get_qs(&rx_qs_cfg); 555 if (ret) 556 return ret; 557 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 558 559 return 0; 560 } 561 562 /** 563 * ice_vsi_put_qs - Release queues from VSI to PF 564 * @vsi: the VSI that is going to release queues 565 */ 566 static void ice_vsi_put_qs(struct ice_vsi *vsi) 567 { 568 struct ice_pf *pf = vsi->back; 569 int i; 570 571 mutex_lock(&pf->avail_q_mutex); 572 573 for (i = 0; i < vsi->alloc_txq; i++) { 574 clear_bit(vsi->txq_map[i], pf->avail_txqs); 575 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 576 } 577 578 for (i = 0; i < vsi->alloc_rxq; i++) { 579 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 580 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 581 } 582 583 mutex_unlock(&pf->avail_q_mutex); 584 } 585 586 /** 587 * ice_is_safe_mode 588 * @pf: pointer to the PF struct 589 * 590 * returns true if driver is in safe mode, false otherwise 591 */ 592 bool ice_is_safe_mode(struct ice_pf *pf) 593 { 594 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 595 } 596 597 /** 598 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 599 * @vsi: the VSI being cleaned up 600 * 601 * This function deletes RSS input set for all flows that were configured 602 * for this VSI 603 */ 604 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 605 { 606 struct ice_pf *pf = vsi->back; 607 enum ice_status status; 608 609 if (ice_is_safe_mode(pf)) 610 return; 611 612 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 613 if (status) 614 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 615 vsi->vsi_num, ice_stat_str(status)); 616 } 617 618 /** 619 * ice_rss_clean - Delete RSS related VSI structures and configuration 620 * @vsi: the VSI being removed 621 */ 622 static void ice_rss_clean(struct ice_vsi *vsi) 623 { 624 struct ice_pf *pf = vsi->back; 625 struct device *dev; 626 627 dev = ice_pf_to_dev(pf); 628 629 if (vsi->rss_hkey_user) 630 devm_kfree(dev, vsi->rss_hkey_user); 631 if (vsi->rss_lut_user) 632 devm_kfree(dev, vsi->rss_lut_user); 633 634 ice_vsi_clean_rss_flow_fld(vsi); 635 /* remove RSS replay list */ 636 if (!ice_is_safe_mode(pf)) 637 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 638 } 639 640 /** 641 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 642 * @vsi: the VSI being configured 643 */ 644 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 645 { 646 struct ice_hw_common_caps *cap; 647 struct ice_pf *pf = vsi->back; 648 649 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 650 vsi->rss_size = 1; 651 return; 652 } 653 654 cap = &pf->hw.func_caps.common_cap; 655 switch (vsi->type) { 656 case ICE_VSI_PF: 657 /* PF VSI will inherit RSS instance of PF */ 658 vsi->rss_table_size = (u16)cap->rss_table_size; 659 vsi->rss_size = min_t(u16, num_online_cpus(), 660 BIT(cap->rss_table_entry_width)); 661 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 662 break; 663 case ICE_VSI_VF: 664 /* VF VSI will get a small RSS table. 665 * For VSI_LUT, LUT size should be set to 64 bytes. 666 */ 667 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 668 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 669 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 670 break; 671 case ICE_VSI_LB: 672 break; 673 default: 674 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 675 ice_vsi_type_str(vsi->type)); 676 break; 677 } 678 } 679 680 /** 681 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 682 * @ctxt: the VSI context being set 683 * 684 * This initializes a default VSI context for all sections except the Queues. 685 */ 686 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 687 { 688 u32 table = 0; 689 690 memset(&ctxt->info, 0, sizeof(ctxt->info)); 691 /* VSI's should be allocated from shared pool */ 692 ctxt->alloc_from_pool = true; 693 /* Src pruning enabled by default */ 694 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 695 /* Traffic from VSI can be sent to LAN */ 696 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 697 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 698 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 699 * packets untagged/tagged. 700 */ 701 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 702 ICE_AQ_VSI_VLAN_MODE_M) >> 703 ICE_AQ_VSI_VLAN_MODE_S); 704 /* Have 1:1 UP mapping for both ingress/egress tables */ 705 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 706 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 707 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 708 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 709 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 710 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 711 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 712 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 713 ctxt->info.ingress_table = cpu_to_le32(table); 714 ctxt->info.egress_table = cpu_to_le32(table); 715 /* Have 1:1 UP mapping for outer to inner UP table */ 716 ctxt->info.outer_up_table = cpu_to_le32(table); 717 /* No Outer tag support outer_tag_flags remains to zero */ 718 } 719 720 /** 721 * ice_vsi_setup_q_map - Setup a VSI queue map 722 * @vsi: the VSI being configured 723 * @ctxt: VSI context structure 724 */ 725 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 726 { 727 u16 offset = 0, qmap = 0, tx_count = 0; 728 u16 qcount_tx = vsi->alloc_txq; 729 u16 qcount_rx = vsi->alloc_rxq; 730 u16 tx_numq_tc, rx_numq_tc; 731 u16 pow = 0, max_rss = 0; 732 bool ena_tc0 = false; 733 u8 netdev_tc = 0; 734 int i; 735 736 /* at least TC0 should be enabled by default */ 737 if (vsi->tc_cfg.numtc) { 738 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 739 ena_tc0 = true; 740 } else { 741 ena_tc0 = true; 742 } 743 744 if (ena_tc0) { 745 vsi->tc_cfg.numtc++; 746 vsi->tc_cfg.ena_tc |= 1; 747 } 748 749 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 750 if (!rx_numq_tc) 751 rx_numq_tc = 1; 752 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 753 if (!tx_numq_tc) 754 tx_numq_tc = 1; 755 756 /* TC mapping is a function of the number of Rx queues assigned to the 757 * VSI for each traffic class and the offset of these queues. 758 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 759 * queues allocated to TC0. No:of queues is a power-of-2. 760 * 761 * If TC is not enabled, the queue offset is set to 0, and allocate one 762 * queue, this way, traffic for the given TC will be sent to the default 763 * queue. 764 * 765 * Setup number and offset of Rx queues for all TCs for the VSI 766 */ 767 768 qcount_rx = rx_numq_tc; 769 770 /* qcount will change if RSS is enabled */ 771 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 772 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 773 if (vsi->type == ICE_VSI_PF) 774 max_rss = ICE_MAX_LG_RSS_QS; 775 else 776 max_rss = ICE_MAX_RSS_QS_PER_VF; 777 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 778 if (!vsi->req_rxq) 779 qcount_rx = min_t(u16, qcount_rx, 780 vsi->rss_size); 781 } 782 } 783 784 /* find the (rounded up) power-of-2 of qcount */ 785 pow = (u16)order_base_2(qcount_rx); 786 787 ice_for_each_traffic_class(i) { 788 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 789 /* TC is not enabled */ 790 vsi->tc_cfg.tc_info[i].qoffset = 0; 791 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 792 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 793 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 794 ctxt->info.tc_mapping[i] = 0; 795 continue; 796 } 797 798 /* TC is enabled */ 799 vsi->tc_cfg.tc_info[i].qoffset = offset; 800 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 801 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 802 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 803 804 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 805 ICE_AQ_VSI_TC_Q_OFFSET_M) | 806 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 807 ICE_AQ_VSI_TC_Q_NUM_M); 808 offset += qcount_rx; 809 tx_count += tx_numq_tc; 810 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 811 } 812 813 /* if offset is non-zero, means it is calculated correctly based on 814 * enabled TCs for a given VSI otherwise qcount_rx will always 815 * be correct and non-zero because it is based off - VSI's 816 * allocated Rx queues which is at least 1 (hence qcount_tx will be 817 * at least 1) 818 */ 819 if (offset) 820 vsi->num_rxq = offset; 821 else 822 vsi->num_rxq = qcount_rx; 823 824 vsi->num_txq = tx_count; 825 826 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 827 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 828 /* since there is a chance that num_rxq could have been changed 829 * in the above for loop, make num_txq equal to num_rxq. 830 */ 831 vsi->num_txq = vsi->num_rxq; 832 } 833 834 /* Rx queue mapping */ 835 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 836 /* q_mapping buffer holds the info for the first queue allocated for 837 * this VSI in the PF space and also the number of queues associated 838 * with this VSI. 839 */ 840 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 841 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 842 } 843 844 /** 845 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 846 * @ctxt: the VSI context being set 847 * @vsi: the VSI being configured 848 */ 849 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 850 { 851 u8 dflt_q_group, dflt_q_prio; 852 u16 dflt_q, report_q, val; 853 854 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 855 return; 856 857 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 858 ctxt->info.valid_sections |= cpu_to_le16(val); 859 dflt_q = 0; 860 dflt_q_group = 0; 861 report_q = 0; 862 dflt_q_prio = 0; 863 864 /* enable flow director filtering/programming */ 865 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 866 ctxt->info.fd_options = cpu_to_le16(val); 867 /* max of allocated flow director filters */ 868 ctxt->info.max_fd_fltr_dedicated = 869 cpu_to_le16(vsi->num_gfltr); 870 /* max of shared flow director filters any VSI may program */ 871 ctxt->info.max_fd_fltr_shared = 872 cpu_to_le16(vsi->num_bfltr); 873 /* default queue index within the VSI of the default FD */ 874 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 875 ICE_AQ_VSI_FD_DEF_Q_M); 876 /* target queue or queue group to the FD filter */ 877 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 878 ICE_AQ_VSI_FD_DEF_GRP_M); 879 ctxt->info.fd_def_q = cpu_to_le16(val); 880 /* queue index on which FD filter completion is reported */ 881 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 882 ICE_AQ_VSI_FD_REPORT_Q_M); 883 /* priority of the default qindex action */ 884 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 885 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 886 ctxt->info.fd_report_opt = cpu_to_le16(val); 887 } 888 889 /** 890 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 891 * @ctxt: the VSI context being set 892 * @vsi: the VSI being configured 893 */ 894 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 895 { 896 u8 lut_type, hash_type; 897 struct device *dev; 898 struct ice_pf *pf; 899 900 pf = vsi->back; 901 dev = ice_pf_to_dev(pf); 902 903 switch (vsi->type) { 904 case ICE_VSI_PF: 905 /* PF VSI will inherit RSS instance of PF */ 906 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 907 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 908 break; 909 case ICE_VSI_VF: 910 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 911 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 912 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 913 break; 914 default: 915 dev_dbg(dev, "Unsupported VSI type %s\n", 916 ice_vsi_type_str(vsi->type)); 917 return; 918 } 919 920 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 921 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 922 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 923 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 924 } 925 926 /** 927 * ice_vsi_init - Create and initialize a VSI 928 * @vsi: the VSI being configured 929 * @init_vsi: is this call creating a VSI 930 * 931 * This initializes a VSI context depending on the VSI type to be added and 932 * passes it down to the add_vsi aq command to create a new VSI. 933 */ 934 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 935 { 936 struct ice_pf *pf = vsi->back; 937 struct ice_hw *hw = &pf->hw; 938 struct ice_vsi_ctx *ctxt; 939 struct device *dev; 940 int ret = 0; 941 942 dev = ice_pf_to_dev(pf); 943 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 944 if (!ctxt) 945 return -ENOMEM; 946 947 switch (vsi->type) { 948 case ICE_VSI_CTRL: 949 case ICE_VSI_LB: 950 case ICE_VSI_PF: 951 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 952 break; 953 case ICE_VSI_VF: 954 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 955 /* VF number here is the absolute VF number (0-255) */ 956 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 957 break; 958 default: 959 ret = -ENODEV; 960 goto out; 961 } 962 963 ice_set_dflt_vsi_ctx(ctxt); 964 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 965 ice_set_fd_vsi_ctx(ctxt, vsi); 966 /* if the switch is in VEB mode, allow VSI loopback */ 967 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 969 970 /* Set LUT type and HASH type if RSS is enabled */ 971 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 972 vsi->type != ICE_VSI_CTRL) { 973 ice_set_rss_vsi_ctx(ctxt, vsi); 974 /* if updating VSI context, make sure to set valid_section: 975 * to indicate which section of VSI context being updated 976 */ 977 if (!init_vsi) 978 ctxt->info.valid_sections |= 979 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 980 } 981 982 ctxt->info.sw_id = vsi->port_info->sw_id; 983 ice_vsi_setup_q_map(vsi, ctxt); 984 if (!init_vsi) /* means VSI being updated */ 985 /* must to indicate which section of VSI context are 986 * being modified 987 */ 988 ctxt->info.valid_sections |= 989 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 990 991 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 992 * respectively 993 */ 994 if (vsi->type == ICE_VSI_VF) { 995 ctxt->info.valid_sections |= 996 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 997 if (pf->vf[vsi->vf_id].spoofchk) { 998 ctxt->info.sec_flags |= 999 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1000 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1001 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1002 } else { 1003 ctxt->info.sec_flags &= 1004 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1005 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1006 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1007 } 1008 } 1009 1010 /* Allow control frames out of main VSI */ 1011 if (vsi->type == ICE_VSI_PF) { 1012 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1013 ctxt->info.valid_sections |= 1014 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1015 } 1016 1017 if (init_vsi) { 1018 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1019 if (ret) { 1020 dev_err(dev, "Add VSI failed, err %d\n", ret); 1021 ret = -EIO; 1022 goto out; 1023 } 1024 } else { 1025 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1026 if (ret) { 1027 dev_err(dev, "Update VSI failed, err %d\n", ret); 1028 ret = -EIO; 1029 goto out; 1030 } 1031 } 1032 1033 /* keep context for update VSI operations */ 1034 vsi->info = ctxt->info; 1035 1036 /* record VSI number returned */ 1037 vsi->vsi_num = ctxt->vsi_num; 1038 1039 out: 1040 kfree(ctxt); 1041 return ret; 1042 } 1043 1044 /** 1045 * ice_free_res - free a block of resources 1046 * @res: pointer to the resource 1047 * @index: starting index previously returned by ice_get_res 1048 * @id: identifier to track owner 1049 * 1050 * Returns number of resources freed 1051 */ 1052 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1053 { 1054 int count = 0; 1055 int i; 1056 1057 if (!res || index >= res->end) 1058 return -EINVAL; 1059 1060 id |= ICE_RES_VALID_BIT; 1061 for (i = index; i < res->end && res->list[i] == id; i++) { 1062 res->list[i] = 0; 1063 count++; 1064 } 1065 1066 return count; 1067 } 1068 1069 /** 1070 * ice_search_res - Search the tracker for a block of resources 1071 * @res: pointer to the resource 1072 * @needed: size of the block needed 1073 * @id: identifier to track owner 1074 * 1075 * Returns the base item index of the block, or -ENOMEM for error 1076 */ 1077 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1078 { 1079 u16 start = 0, end = 0; 1080 1081 if (needed > res->end) 1082 return -ENOMEM; 1083 1084 id |= ICE_RES_VALID_BIT; 1085 1086 do { 1087 /* skip already allocated entries */ 1088 if (res->list[end++] & ICE_RES_VALID_BIT) { 1089 start = end; 1090 if ((start + needed) > res->end) 1091 break; 1092 } 1093 1094 if (end == (start + needed)) { 1095 int i = start; 1096 1097 /* there was enough, so assign it to the requestor */ 1098 while (i != end) 1099 res->list[i++] = id; 1100 1101 return start; 1102 } 1103 } while (end < res->end); 1104 1105 return -ENOMEM; 1106 } 1107 1108 /** 1109 * ice_get_free_res_count - Get free count from a resource tracker 1110 * @res: Resource tracker instance 1111 */ 1112 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1113 { 1114 u16 i, count = 0; 1115 1116 for (i = 0; i < res->end; i++) 1117 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1118 count++; 1119 1120 return count; 1121 } 1122 1123 /** 1124 * ice_get_res - get a block of resources 1125 * @pf: board private structure 1126 * @res: pointer to the resource 1127 * @needed: size of the block needed 1128 * @id: identifier to track owner 1129 * 1130 * Returns the base item index of the block, or negative for error 1131 */ 1132 int 1133 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1134 { 1135 if (!res || !pf) 1136 return -EINVAL; 1137 1138 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1139 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1140 needed, res->num_entries, id); 1141 return -EINVAL; 1142 } 1143 1144 return ice_search_res(res, needed, id); 1145 } 1146 1147 /** 1148 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1149 * @vsi: ptr to the VSI 1150 * 1151 * This should only be called after ice_vsi_alloc() which allocates the 1152 * corresponding SW VSI structure and initializes num_queue_pairs for the 1153 * newly allocated VSI. 1154 * 1155 * Returns 0 on success or negative on failure 1156 */ 1157 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1158 { 1159 struct ice_pf *pf = vsi->back; 1160 struct device *dev; 1161 u16 num_q_vectors; 1162 int base; 1163 1164 dev = ice_pf_to_dev(pf); 1165 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1166 if (vsi->type == ICE_VSI_VF) 1167 return 0; 1168 1169 if (vsi->base_vector) { 1170 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1171 vsi->vsi_num, vsi->base_vector); 1172 return -EEXIST; 1173 } 1174 1175 num_q_vectors = vsi->num_q_vectors; 1176 /* reserve slots from OS requested IRQs */ 1177 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1178 1179 if (base < 0) { 1180 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1181 ice_get_free_res_count(pf->irq_tracker), 1182 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1183 return -ENOENT; 1184 } 1185 vsi->base_vector = (u16)base; 1186 pf->num_avail_sw_msix -= num_q_vectors; 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1193 * @vsi: the VSI having rings deallocated 1194 */ 1195 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1196 { 1197 int i; 1198 1199 /* Avoid stale references by clearing map from vector to ring */ 1200 if (vsi->q_vectors) { 1201 ice_for_each_q_vector(vsi, i) { 1202 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1203 1204 if (q_vector) { 1205 q_vector->tx.ring = NULL; 1206 q_vector->rx.ring = NULL; 1207 } 1208 } 1209 } 1210 1211 if (vsi->tx_rings) { 1212 for (i = 0; i < vsi->alloc_txq; i++) { 1213 if (vsi->tx_rings[i]) { 1214 kfree_rcu(vsi->tx_rings[i], rcu); 1215 WRITE_ONCE(vsi->tx_rings[i], NULL); 1216 } 1217 } 1218 } 1219 if (vsi->rx_rings) { 1220 for (i = 0; i < vsi->alloc_rxq; i++) { 1221 if (vsi->rx_rings[i]) { 1222 kfree_rcu(vsi->rx_rings[i], rcu); 1223 WRITE_ONCE(vsi->rx_rings[i], NULL); 1224 } 1225 } 1226 } 1227 } 1228 1229 /** 1230 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1231 * @vsi: VSI which is having rings allocated 1232 */ 1233 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1234 { 1235 struct ice_pf *pf = vsi->back; 1236 struct device *dev; 1237 u16 i; 1238 1239 dev = ice_pf_to_dev(pf); 1240 /* Allocate Tx rings */ 1241 for (i = 0; i < vsi->alloc_txq; i++) { 1242 struct ice_ring *ring; 1243 1244 /* allocate with kzalloc(), free with kfree_rcu() */ 1245 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1246 1247 if (!ring) 1248 goto err_out; 1249 1250 ring->q_index = i; 1251 ring->reg_idx = vsi->txq_map[i]; 1252 ring->ring_active = false; 1253 ring->vsi = vsi; 1254 ring->dev = dev; 1255 ring->count = vsi->num_tx_desc; 1256 WRITE_ONCE(vsi->tx_rings[i], ring); 1257 } 1258 1259 /* Allocate Rx rings */ 1260 for (i = 0; i < vsi->alloc_rxq; i++) { 1261 struct ice_ring *ring; 1262 1263 /* allocate with kzalloc(), free with kfree_rcu() */ 1264 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1265 if (!ring) 1266 goto err_out; 1267 1268 ring->q_index = i; 1269 ring->reg_idx = vsi->rxq_map[i]; 1270 ring->ring_active = false; 1271 ring->vsi = vsi; 1272 ring->netdev = vsi->netdev; 1273 ring->dev = dev; 1274 ring->count = vsi->num_rx_desc; 1275 WRITE_ONCE(vsi->rx_rings[i], ring); 1276 } 1277 1278 return 0; 1279 1280 err_out: 1281 ice_vsi_clear_rings(vsi); 1282 return -ENOMEM; 1283 } 1284 1285 /** 1286 * ice_vsi_manage_rss_lut - disable/enable RSS 1287 * @vsi: the VSI being changed 1288 * @ena: boolean value indicating if this is an enable or disable request 1289 * 1290 * In the event of disable request for RSS, this function will zero out RSS 1291 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1292 * LUT. 1293 */ 1294 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1295 { 1296 int err = 0; 1297 u8 *lut; 1298 1299 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1300 if (!lut) 1301 return -ENOMEM; 1302 1303 if (ena) { 1304 if (vsi->rss_lut_user) 1305 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1306 else 1307 ice_fill_rss_lut(lut, vsi->rss_table_size, 1308 vsi->rss_size); 1309 } 1310 1311 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1312 kfree(lut); 1313 return err; 1314 } 1315 1316 /** 1317 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1318 * @vsi: VSI to be configured 1319 */ 1320 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1321 { 1322 struct ice_aqc_get_set_rss_keys *key; 1323 struct ice_pf *pf = vsi->back; 1324 enum ice_status status; 1325 struct device *dev; 1326 int err = 0; 1327 u8 *lut; 1328 1329 dev = ice_pf_to_dev(pf); 1330 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1331 1332 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1333 if (!lut) 1334 return -ENOMEM; 1335 1336 if (vsi->rss_lut_user) 1337 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1338 else 1339 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1340 1341 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1342 vsi->rss_table_size); 1343 1344 if (status) { 1345 dev_err(dev, "set_rss_lut failed, error %s\n", 1346 ice_stat_str(status)); 1347 err = -EIO; 1348 goto ice_vsi_cfg_rss_exit; 1349 } 1350 1351 key = kzalloc(sizeof(*key), GFP_KERNEL); 1352 if (!key) { 1353 err = -ENOMEM; 1354 goto ice_vsi_cfg_rss_exit; 1355 } 1356 1357 if (vsi->rss_hkey_user) 1358 memcpy(key, 1359 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1360 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1361 else 1362 netdev_rss_key_fill((void *)key, 1363 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1364 1365 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1366 1367 if (status) { 1368 dev_err(dev, "set_rss_key failed, error %s\n", 1369 ice_stat_str(status)); 1370 err = -EIO; 1371 } 1372 1373 kfree(key); 1374 ice_vsi_cfg_rss_exit: 1375 kfree(lut); 1376 return err; 1377 } 1378 1379 /** 1380 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1381 * @vsi: VSI to be configured 1382 * 1383 * This function will only be called during the VF VSI setup. Upon successful 1384 * completion of package download, this function will configure default RSS 1385 * input sets for VF VSI. 1386 */ 1387 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1388 { 1389 struct ice_pf *pf = vsi->back; 1390 enum ice_status status; 1391 struct device *dev; 1392 1393 dev = ice_pf_to_dev(pf); 1394 if (ice_is_safe_mode(pf)) { 1395 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1396 vsi->vsi_num); 1397 return; 1398 } 1399 1400 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1401 if (status) 1402 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1403 vsi->vsi_num, ice_stat_str(status)); 1404 } 1405 1406 /** 1407 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1408 * @vsi: VSI to be configured 1409 * 1410 * This function will only be called after successful download package call 1411 * during initialization of PF. Since the downloaded package will erase the 1412 * RSS section, this function will configure RSS input sets for different 1413 * flow types. The last profile added has the highest priority, therefore 2 1414 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1415 * (i.e. IPv4 src/dst TCP src/dst port). 1416 */ 1417 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1418 { 1419 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1420 struct ice_pf *pf = vsi->back; 1421 struct ice_hw *hw = &pf->hw; 1422 enum ice_status status; 1423 struct device *dev; 1424 1425 dev = ice_pf_to_dev(pf); 1426 if (ice_is_safe_mode(pf)) { 1427 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1428 vsi_num); 1429 return; 1430 } 1431 /* configure RSS for IPv4 with input set IP src/dst */ 1432 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1433 ICE_FLOW_SEG_HDR_IPV4); 1434 if (status) 1435 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1436 vsi_num, ice_stat_str(status)); 1437 1438 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1439 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1440 ICE_FLOW_SEG_HDR_IPV6); 1441 if (status) 1442 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1443 vsi_num, ice_stat_str(status)); 1444 1445 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1446 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1447 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1448 if (status) 1449 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1450 vsi_num, ice_stat_str(status)); 1451 1452 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1453 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1454 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1455 if (status) 1456 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1457 vsi_num, ice_stat_str(status)); 1458 1459 /* configure RSS for sctp4 with input set IP src/dst */ 1460 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1461 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1462 if (status) 1463 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1464 vsi_num, ice_stat_str(status)); 1465 1466 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1467 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1468 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1469 if (status) 1470 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1471 vsi_num, ice_stat_str(status)); 1472 1473 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1474 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1475 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1476 if (status) 1477 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1478 vsi_num, ice_stat_str(status)); 1479 1480 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1481 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1482 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1483 if (status) 1484 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1485 vsi_num, ice_stat_str(status)); 1486 } 1487 1488 /** 1489 * ice_pf_state_is_nominal - checks the PF for nominal state 1490 * @pf: pointer to PF to check 1491 * 1492 * Check the PF's state for a collection of bits that would indicate 1493 * the PF is in a state that would inhibit normal operation for 1494 * driver functionality. 1495 * 1496 * Returns true if PF is in a nominal state, false otherwise 1497 */ 1498 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1499 { 1500 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1501 1502 if (!pf) 1503 return false; 1504 1505 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1506 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1507 return false; 1508 1509 return true; 1510 } 1511 1512 /** 1513 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1514 * @vsi: the VSI to be updated 1515 */ 1516 void ice_update_eth_stats(struct ice_vsi *vsi) 1517 { 1518 struct ice_eth_stats *prev_es, *cur_es; 1519 struct ice_hw *hw = &vsi->back->hw; 1520 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1521 1522 prev_es = &vsi->eth_stats_prev; 1523 cur_es = &vsi->eth_stats; 1524 1525 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1526 &prev_es->rx_bytes, &cur_es->rx_bytes); 1527 1528 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1529 &prev_es->rx_unicast, &cur_es->rx_unicast); 1530 1531 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1532 &prev_es->rx_multicast, &cur_es->rx_multicast); 1533 1534 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1535 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1536 1537 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1538 &prev_es->rx_discards, &cur_es->rx_discards); 1539 1540 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1541 &prev_es->tx_bytes, &cur_es->tx_bytes); 1542 1543 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1544 &prev_es->tx_unicast, &cur_es->tx_unicast); 1545 1546 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1547 &prev_es->tx_multicast, &cur_es->tx_multicast); 1548 1549 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1550 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1551 1552 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1553 &prev_es->tx_errors, &cur_es->tx_errors); 1554 1555 vsi->stat_offsets_loaded = true; 1556 } 1557 1558 /** 1559 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1560 * @vsi: the VSI being configured 1561 * @vid: VLAN ID to be added 1562 * @action: filter action to be performed on match 1563 */ 1564 int 1565 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1566 { 1567 struct ice_pf *pf = vsi->back; 1568 struct device *dev; 1569 int err = 0; 1570 1571 dev = ice_pf_to_dev(pf); 1572 1573 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1574 vsi->num_vlan++; 1575 } else { 1576 err = -ENODEV; 1577 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1578 vsi->vsi_num); 1579 } 1580 1581 return err; 1582 } 1583 1584 /** 1585 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1586 * @vsi: the VSI being configured 1587 * @vid: VLAN ID to be removed 1588 * 1589 * Returns 0 on success and negative on failure 1590 */ 1591 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1592 { 1593 struct ice_pf *pf = vsi->back; 1594 enum ice_status status; 1595 struct device *dev; 1596 int err = 0; 1597 1598 dev = ice_pf_to_dev(pf); 1599 1600 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1601 if (!status) { 1602 vsi->num_vlan--; 1603 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1604 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1605 vid, vsi->vsi_num, ice_stat_str(status)); 1606 } else { 1607 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1608 vid, vsi->vsi_num, ice_stat_str(status)); 1609 err = -EIO; 1610 } 1611 1612 return err; 1613 } 1614 1615 /** 1616 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1617 * @vsi: VSI 1618 */ 1619 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1620 { 1621 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1622 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1623 vsi->rx_buf_len = ICE_RXBUF_2048; 1624 #if (PAGE_SIZE < 8192) 1625 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1626 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1627 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1628 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1629 #endif 1630 } else { 1631 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1632 #if (PAGE_SIZE < 8192) 1633 vsi->rx_buf_len = ICE_RXBUF_3072; 1634 #else 1635 vsi->rx_buf_len = ICE_RXBUF_2048; 1636 #endif 1637 } 1638 } 1639 1640 /** 1641 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1642 * @hw: HW pointer 1643 * @pf_q: index of the Rx queue in the PF's queue space 1644 * @rxdid: flexible descriptor RXDID 1645 * @prio: priority for the RXDID for this queue 1646 */ 1647 void 1648 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1649 { 1650 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1651 1652 /* clear any previous values */ 1653 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1654 QRXFLXP_CNTXT_RXDID_PRIO_M | 1655 QRXFLXP_CNTXT_TS_M); 1656 1657 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1658 QRXFLXP_CNTXT_RXDID_IDX_M; 1659 1660 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1661 QRXFLXP_CNTXT_RXDID_PRIO_M; 1662 1663 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1664 } 1665 1666 /** 1667 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1668 * @vsi: the VSI being configured 1669 * 1670 * Return 0 on success and a negative value on error 1671 * Configure the Rx VSI for operation. 1672 */ 1673 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1674 { 1675 u16 i; 1676 1677 if (vsi->type == ICE_VSI_VF) 1678 goto setup_rings; 1679 1680 ice_vsi_cfg_frame_size(vsi); 1681 setup_rings: 1682 /* set up individual rings */ 1683 for (i = 0; i < vsi->num_rxq; i++) { 1684 int err; 1685 1686 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1687 if (err) { 1688 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1689 i, err); 1690 return err; 1691 } 1692 } 1693 1694 return 0; 1695 } 1696 1697 /** 1698 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1699 * @vsi: the VSI being configured 1700 * @rings: Tx ring array to be configured 1701 * 1702 * Return 0 on success and a negative value on error 1703 * Configure the Tx VSI for operation. 1704 */ 1705 static int 1706 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1707 { 1708 struct ice_aqc_add_tx_qgrp *qg_buf; 1709 u16 q_idx = 0; 1710 int err = 0; 1711 1712 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1713 if (!qg_buf) 1714 return -ENOMEM; 1715 1716 qg_buf->num_txqs = 1; 1717 1718 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1719 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1720 if (err) 1721 goto err_cfg_txqs; 1722 } 1723 1724 err_cfg_txqs: 1725 kfree(qg_buf); 1726 return err; 1727 } 1728 1729 /** 1730 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1731 * @vsi: the VSI being configured 1732 * 1733 * Return 0 on success and a negative value on error 1734 * Configure the Tx VSI for operation. 1735 */ 1736 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1737 { 1738 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1739 } 1740 1741 /** 1742 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1743 * @vsi: the VSI being configured 1744 * 1745 * Return 0 on success and a negative value on error 1746 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1747 */ 1748 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1749 { 1750 int ret; 1751 int i; 1752 1753 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1754 if (ret) 1755 return ret; 1756 1757 for (i = 0; i < vsi->num_xdp_txq; i++) 1758 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1759 1760 return ret; 1761 } 1762 1763 /** 1764 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1765 * @intrl: interrupt rate limit in usecs 1766 * @gran: interrupt rate limit granularity in usecs 1767 * 1768 * This function converts a decimal interrupt rate limit in usecs to the format 1769 * expected by firmware. 1770 */ 1771 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1772 { 1773 u32 val = intrl / gran; 1774 1775 if (val) 1776 return val | GLINT_RATE_INTRL_ENA_M; 1777 return 0; 1778 } 1779 1780 /** 1781 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1782 * @vsi: the VSI being configured 1783 * 1784 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1785 * for the VF VSI. 1786 */ 1787 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1788 { 1789 struct ice_pf *pf = vsi->back; 1790 struct ice_hw *hw = &pf->hw; 1791 u16 txq = 0, rxq = 0; 1792 int i, q; 1793 1794 for (i = 0; i < vsi->num_q_vectors; i++) { 1795 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1796 u16 reg_idx = q_vector->reg_idx; 1797 1798 ice_cfg_itr(hw, q_vector); 1799 1800 wr32(hw, GLINT_RATE(reg_idx), 1801 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1802 1803 /* Both Transmit Queue Interrupt Cause Control register 1804 * and Receive Queue Interrupt Cause control register 1805 * expects MSIX_INDX field to be the vector index 1806 * within the function space and not the absolute 1807 * vector index across PF or across device. 1808 * For SR-IOV VF VSIs queue vector index always starts 1809 * with 1 since first vector index(0) is used for OICR 1810 * in VF space. Since VMDq and other PF VSIs are within 1811 * the PF function space, use the vector index that is 1812 * tracked for this PF. 1813 */ 1814 for (q = 0; q < q_vector->num_ring_tx; q++) { 1815 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1816 q_vector->tx.itr_idx); 1817 txq++; 1818 } 1819 1820 for (q = 0; q < q_vector->num_ring_rx; q++) { 1821 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1822 q_vector->rx.itr_idx); 1823 rxq++; 1824 } 1825 } 1826 } 1827 1828 /** 1829 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1830 * @vsi: the VSI being changed 1831 */ 1832 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1833 { 1834 struct ice_hw *hw = &vsi->back->hw; 1835 struct ice_vsi_ctx *ctxt; 1836 enum ice_status status; 1837 int ret = 0; 1838 1839 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1840 if (!ctxt) 1841 return -ENOMEM; 1842 1843 /* Here we are configuring the VSI to let the driver add VLAN tags by 1844 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1845 * insertion happens in the Tx hot path, in ice_tx_map. 1846 */ 1847 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1848 1849 /* Preserve existing VLAN strip setting */ 1850 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1851 ICE_AQ_VSI_VLAN_EMOD_M); 1852 1853 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1854 1855 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1856 if (status) { 1857 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1858 ice_stat_str(status), 1859 ice_aq_str(hw->adminq.sq_last_status)); 1860 ret = -EIO; 1861 goto out; 1862 } 1863 1864 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1865 out: 1866 kfree(ctxt); 1867 return ret; 1868 } 1869 1870 /** 1871 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1872 * @vsi: the VSI being changed 1873 * @ena: boolean value indicating if this is a enable or disable request 1874 */ 1875 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1876 { 1877 struct ice_hw *hw = &vsi->back->hw; 1878 struct ice_vsi_ctx *ctxt; 1879 enum ice_status status; 1880 int ret = 0; 1881 1882 /* do not allow modifying VLAN stripping when a port VLAN is configured 1883 * on this VSI 1884 */ 1885 if (vsi->info.pvid) 1886 return 0; 1887 1888 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1889 if (!ctxt) 1890 return -ENOMEM; 1891 1892 /* Here we are configuring what the VSI should do with the VLAN tag in 1893 * the Rx packet. We can either leave the tag in the packet or put it in 1894 * the Rx descriptor. 1895 */ 1896 if (ena) 1897 /* Strip VLAN tag from Rx packet and put it in the desc */ 1898 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1899 else 1900 /* Disable stripping. Leave tag in packet */ 1901 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1902 1903 /* Allow all packets untagged/tagged */ 1904 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1905 1906 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1907 1908 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1909 if (status) { 1910 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1911 ena, ice_stat_str(status), 1912 ice_aq_str(hw->adminq.sq_last_status)); 1913 ret = -EIO; 1914 goto out; 1915 } 1916 1917 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1918 out: 1919 kfree(ctxt); 1920 return ret; 1921 } 1922 1923 /** 1924 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1925 * @vsi: the VSI whose rings are to be enabled 1926 * 1927 * Returns 0 on success and a negative value on error 1928 */ 1929 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1930 { 1931 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1932 } 1933 1934 /** 1935 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1936 * @vsi: the VSI whose rings are to be disabled 1937 * 1938 * Returns 0 on success and a negative value on error 1939 */ 1940 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1941 { 1942 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1943 } 1944 1945 /** 1946 * ice_vsi_stop_tx_rings - Disable Tx rings 1947 * @vsi: the VSI being configured 1948 * @rst_src: reset source 1949 * @rel_vmvf_num: Relative ID of VF/VM 1950 * @rings: Tx ring array to be stopped 1951 */ 1952 static int 1953 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1954 u16 rel_vmvf_num, struct ice_ring **rings) 1955 { 1956 u16 q_idx; 1957 1958 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1959 return -EINVAL; 1960 1961 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1962 struct ice_txq_meta txq_meta = { }; 1963 int status; 1964 1965 if (!rings || !rings[q_idx]) 1966 return -EINVAL; 1967 1968 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1969 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1970 rings[q_idx], &txq_meta); 1971 1972 if (status) 1973 return status; 1974 } 1975 1976 return 0; 1977 } 1978 1979 /** 1980 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1981 * @vsi: the VSI being configured 1982 * @rst_src: reset source 1983 * @rel_vmvf_num: Relative ID of VF/VM 1984 */ 1985 int 1986 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1987 u16 rel_vmvf_num) 1988 { 1989 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1990 } 1991 1992 /** 1993 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1994 * @vsi: the VSI being configured 1995 */ 1996 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1997 { 1998 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1999 } 2000 2001 /** 2002 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2003 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2004 * 2005 * returns true if Rx VLAN pruning is enabled and false otherwise. 2006 */ 2007 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2008 { 2009 if (!vsi) 2010 return false; 2011 2012 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2013 } 2014 2015 /** 2016 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2017 * @vsi: VSI to enable or disable VLAN pruning on 2018 * @ena: set to true to enable VLAN pruning and false to disable it 2019 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2020 * 2021 * returns 0 if VSI is updated, negative otherwise 2022 */ 2023 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2024 { 2025 struct ice_vsi_ctx *ctxt; 2026 struct ice_pf *pf; 2027 int status; 2028 2029 if (!vsi) 2030 return -EINVAL; 2031 2032 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2033 * mode. VLAN pruning will be enabled when the interface exits 2034 * promiscuous mode if any VLAN filters are active. 2035 */ 2036 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2037 return 0; 2038 2039 pf = vsi->back; 2040 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2041 if (!ctxt) 2042 return -ENOMEM; 2043 2044 ctxt->info = vsi->info; 2045 2046 if (ena) 2047 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2048 else 2049 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2050 2051 if (!vlan_promisc) 2052 ctxt->info.valid_sections = 2053 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2054 2055 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2056 if (status) { 2057 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2058 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2059 ice_stat_str(status), 2060 ice_aq_str(pf->hw.adminq.sq_last_status)); 2061 goto err_out; 2062 } 2063 2064 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2065 2066 kfree(ctxt); 2067 return 0; 2068 2069 err_out: 2070 kfree(ctxt); 2071 return -EIO; 2072 } 2073 2074 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2075 { 2076 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2077 2078 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2079 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2080 } 2081 2082 /** 2083 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2084 * @vsi: VSI to set the q_vectors register index on 2085 */ 2086 static int 2087 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2088 { 2089 u16 i; 2090 2091 if (!vsi || !vsi->q_vectors) 2092 return -EINVAL; 2093 2094 ice_for_each_q_vector(vsi, i) { 2095 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2096 2097 if (!q_vector) { 2098 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2099 i, vsi->vsi_num); 2100 goto clear_reg_idx; 2101 } 2102 2103 if (vsi->type == ICE_VSI_VF) { 2104 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2105 2106 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2107 } else { 2108 q_vector->reg_idx = 2109 q_vector->v_idx + vsi->base_vector; 2110 } 2111 } 2112 2113 return 0; 2114 2115 clear_reg_idx: 2116 ice_for_each_q_vector(vsi, i) { 2117 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2118 2119 if (q_vector) 2120 q_vector->reg_idx = 0; 2121 } 2122 2123 return -EINVAL; 2124 } 2125 2126 /** 2127 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2128 * @vsi: the VSI being configured 2129 * @tx: bool to determine Tx or Rx rule 2130 * @create: bool to determine create or remove Rule 2131 */ 2132 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2133 { 2134 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2135 enum ice_sw_fwd_act_type act); 2136 struct ice_pf *pf = vsi->back; 2137 enum ice_status status; 2138 struct device *dev; 2139 2140 dev = ice_pf_to_dev(pf); 2141 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2142 2143 if (tx) 2144 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2145 ICE_DROP_PACKET); 2146 else 2147 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); 2148 2149 if (status) 2150 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2151 create ? "adding" : "removing", tx ? "TX" : "RX", 2152 vsi->vsi_num, ice_stat_str(status)); 2153 } 2154 2155 /** 2156 * ice_vsi_setup - Set up a VSI by a given type 2157 * @pf: board private structure 2158 * @pi: pointer to the port_info instance 2159 * @vsi_type: VSI type 2160 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2161 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2162 * fill-in ICE_INVAL_VFID as input. 2163 * 2164 * This allocates the sw VSI structure and its queue resources. 2165 * 2166 * Returns pointer to the successfully allocated and configured VSI sw struct on 2167 * success, NULL on failure. 2168 */ 2169 struct ice_vsi * 2170 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2171 enum ice_vsi_type vsi_type, u16 vf_id) 2172 { 2173 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2174 struct device *dev = ice_pf_to_dev(pf); 2175 enum ice_status status; 2176 struct ice_vsi *vsi; 2177 int ret, i; 2178 2179 if (vsi_type == ICE_VSI_VF) 2180 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2181 else 2182 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2183 2184 if (!vsi) { 2185 dev_err(dev, "could not allocate VSI\n"); 2186 return NULL; 2187 } 2188 2189 vsi->port_info = pi; 2190 vsi->vsw = pf->first_sw; 2191 if (vsi->type == ICE_VSI_PF) 2192 vsi->ethtype = ETH_P_PAUSE; 2193 2194 if (vsi->type == ICE_VSI_VF) 2195 vsi->vf_id = vf_id; 2196 2197 ice_alloc_fd_res(vsi); 2198 2199 if (ice_vsi_get_qs(vsi)) { 2200 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2201 vsi->idx); 2202 goto unroll_vsi_alloc; 2203 } 2204 2205 /* set RSS capabilities */ 2206 ice_vsi_set_rss_params(vsi); 2207 2208 /* set TC configuration */ 2209 ice_vsi_set_tc_cfg(vsi); 2210 2211 /* create the VSI */ 2212 ret = ice_vsi_init(vsi, true); 2213 if (ret) 2214 goto unroll_get_qs; 2215 2216 switch (vsi->type) { 2217 case ICE_VSI_CTRL: 2218 case ICE_VSI_PF: 2219 ret = ice_vsi_alloc_q_vectors(vsi); 2220 if (ret) 2221 goto unroll_vsi_init; 2222 2223 ret = ice_vsi_setup_vector_base(vsi); 2224 if (ret) 2225 goto unroll_alloc_q_vector; 2226 2227 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2228 if (ret) 2229 goto unroll_vector_base; 2230 2231 ret = ice_vsi_alloc_rings(vsi); 2232 if (ret) 2233 goto unroll_vector_base; 2234 2235 /* Always add VLAN ID 0 switch rule by default. This is needed 2236 * in order to allow all untagged and 0 tagged priority traffic 2237 * if Rx VLAN pruning is enabled. Also there are cases where we 2238 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2239 * so this handles those cases (i.e. adding the PF to a bridge 2240 * without the 8021q module loaded). 2241 */ 2242 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2243 if (ret) 2244 goto unroll_clear_rings; 2245 2246 ice_vsi_map_rings_to_vectors(vsi); 2247 2248 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2249 if (vsi->type != ICE_VSI_CTRL) 2250 /* Do not exit if configuring RSS had an issue, at 2251 * least receive traffic on first queue. Hence no 2252 * need to capture return value 2253 */ 2254 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2255 ice_vsi_cfg_rss_lut_key(vsi); 2256 ice_vsi_set_rss_flow_fld(vsi); 2257 } 2258 ice_init_arfs(vsi); 2259 break; 2260 case ICE_VSI_VF: 2261 /* VF driver will take care of creating netdev for this type and 2262 * map queues to vectors through Virtchnl, PF driver only 2263 * creates a VSI and corresponding structures for bookkeeping 2264 * purpose 2265 */ 2266 ret = ice_vsi_alloc_q_vectors(vsi); 2267 if (ret) 2268 goto unroll_vsi_init; 2269 2270 ret = ice_vsi_alloc_rings(vsi); 2271 if (ret) 2272 goto unroll_alloc_q_vector; 2273 2274 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2275 if (ret) 2276 goto unroll_vector_base; 2277 2278 /* Do not exit if configuring RSS had an issue, at least 2279 * receive traffic on first queue. Hence no need to capture 2280 * return value 2281 */ 2282 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2283 ice_vsi_cfg_rss_lut_key(vsi); 2284 ice_vsi_set_vf_rss_flow_fld(vsi); 2285 } 2286 break; 2287 case ICE_VSI_LB: 2288 ret = ice_vsi_alloc_rings(vsi); 2289 if (ret) 2290 goto unroll_vsi_init; 2291 break; 2292 default: 2293 /* clean up the resources and exit */ 2294 goto unroll_vsi_init; 2295 } 2296 2297 /* configure VSI nodes based on number of queues and TC's */ 2298 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2299 max_txqs[i] = vsi->alloc_txq; 2300 2301 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2302 max_txqs); 2303 if (status) { 2304 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2305 vsi->vsi_num, ice_stat_str(status)); 2306 goto unroll_clear_rings; 2307 } 2308 2309 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2310 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2311 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2312 * The rule is added once for PF VSI in order to create appropriate 2313 * recipe, since VSI/VSI list is ignored with drop action... 2314 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2315 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2316 * settings in the HW. 2317 */ 2318 if (!ice_is_safe_mode(pf)) 2319 if (vsi->type == ICE_VSI_PF) { 2320 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2321 ICE_DROP_PACKET); 2322 ice_cfg_sw_lldp(vsi, true, true); 2323 } 2324 2325 return vsi; 2326 2327 unroll_clear_rings: 2328 ice_vsi_clear_rings(vsi); 2329 unroll_vector_base: 2330 /* reclaim SW interrupts back to the common pool */ 2331 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2332 pf->num_avail_sw_msix += vsi->num_q_vectors; 2333 unroll_alloc_q_vector: 2334 ice_vsi_free_q_vectors(vsi); 2335 unroll_vsi_init: 2336 ice_vsi_delete(vsi); 2337 unroll_get_qs: 2338 ice_vsi_put_qs(vsi); 2339 unroll_vsi_alloc: 2340 ice_vsi_clear(vsi); 2341 2342 return NULL; 2343 } 2344 2345 /** 2346 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2347 * @vsi: the VSI being cleaned up 2348 */ 2349 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2350 { 2351 struct ice_pf *pf = vsi->back; 2352 struct ice_hw *hw = &pf->hw; 2353 u32 txq = 0; 2354 u32 rxq = 0; 2355 int i, q; 2356 2357 for (i = 0; i < vsi->num_q_vectors; i++) { 2358 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2359 u16 reg_idx = q_vector->reg_idx; 2360 2361 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2362 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2363 for (q = 0; q < q_vector->num_ring_tx; q++) { 2364 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2365 if (ice_is_xdp_ena_vsi(vsi)) { 2366 u32 xdp_txq = txq + vsi->num_xdp_txq; 2367 2368 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2369 } 2370 txq++; 2371 } 2372 2373 for (q = 0; q < q_vector->num_ring_rx; q++) { 2374 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2375 rxq++; 2376 } 2377 } 2378 2379 ice_flush(hw); 2380 } 2381 2382 /** 2383 * ice_vsi_free_irq - Free the IRQ association with the OS 2384 * @vsi: the VSI being configured 2385 */ 2386 void ice_vsi_free_irq(struct ice_vsi *vsi) 2387 { 2388 struct ice_pf *pf = vsi->back; 2389 int base = vsi->base_vector; 2390 int i; 2391 2392 if (!vsi->q_vectors || !vsi->irqs_ready) 2393 return; 2394 2395 ice_vsi_release_msix(vsi); 2396 if (vsi->type == ICE_VSI_VF) 2397 return; 2398 2399 vsi->irqs_ready = false; 2400 ice_for_each_q_vector(vsi, i) { 2401 u16 vector = i + base; 2402 int irq_num; 2403 2404 irq_num = pf->msix_entries[vector].vector; 2405 2406 /* free only the irqs that were actually requested */ 2407 if (!vsi->q_vectors[i] || 2408 !(vsi->q_vectors[i]->num_ring_tx || 2409 vsi->q_vectors[i]->num_ring_rx)) 2410 continue; 2411 2412 /* clear the affinity notifier in the IRQ descriptor */ 2413 irq_set_affinity_notifier(irq_num, NULL); 2414 2415 /* clear the affinity_mask in the IRQ descriptor */ 2416 irq_set_affinity_hint(irq_num, NULL); 2417 synchronize_irq(irq_num); 2418 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2419 } 2420 } 2421 2422 /** 2423 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2424 * @vsi: the VSI having resources freed 2425 */ 2426 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2427 { 2428 int i; 2429 2430 if (!vsi->tx_rings) 2431 return; 2432 2433 ice_for_each_txq(vsi, i) 2434 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2435 ice_free_tx_ring(vsi->tx_rings[i]); 2436 } 2437 2438 /** 2439 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2440 * @vsi: the VSI having resources freed 2441 */ 2442 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2443 { 2444 int i; 2445 2446 if (!vsi->rx_rings) 2447 return; 2448 2449 ice_for_each_rxq(vsi, i) 2450 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2451 ice_free_rx_ring(vsi->rx_rings[i]); 2452 } 2453 2454 /** 2455 * ice_vsi_close - Shut down a VSI 2456 * @vsi: the VSI being shut down 2457 */ 2458 void ice_vsi_close(struct ice_vsi *vsi) 2459 { 2460 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2461 ice_down(vsi); 2462 2463 ice_vsi_free_irq(vsi); 2464 ice_vsi_free_tx_rings(vsi); 2465 ice_vsi_free_rx_rings(vsi); 2466 } 2467 2468 /** 2469 * ice_ena_vsi - resume a VSI 2470 * @vsi: the VSI being resume 2471 * @locked: is the rtnl_lock already held 2472 */ 2473 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2474 { 2475 int err = 0; 2476 2477 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2478 return 0; 2479 2480 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2481 2482 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2483 if (netif_running(vsi->netdev)) { 2484 if (!locked) 2485 rtnl_lock(); 2486 2487 err = ice_open(vsi->netdev); 2488 2489 if (!locked) 2490 rtnl_unlock(); 2491 } 2492 } else if (vsi->type == ICE_VSI_CTRL) { 2493 err = ice_vsi_open_ctrl(vsi); 2494 } 2495 2496 return err; 2497 } 2498 2499 /** 2500 * ice_dis_vsi - pause a VSI 2501 * @vsi: the VSI being paused 2502 * @locked: is the rtnl_lock already held 2503 */ 2504 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2505 { 2506 if (test_bit(__ICE_DOWN, vsi->state)) 2507 return; 2508 2509 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2510 2511 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2512 if (netif_running(vsi->netdev)) { 2513 if (!locked) 2514 rtnl_lock(); 2515 2516 ice_stop(vsi->netdev); 2517 2518 if (!locked) 2519 rtnl_unlock(); 2520 } else { 2521 ice_vsi_close(vsi); 2522 } 2523 } else if (vsi->type == ICE_VSI_CTRL) { 2524 ice_vsi_close(vsi); 2525 } 2526 } 2527 2528 /** 2529 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2530 * @vsi: the VSI being un-configured 2531 */ 2532 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2533 { 2534 int base = vsi->base_vector; 2535 struct ice_pf *pf = vsi->back; 2536 struct ice_hw *hw = &pf->hw; 2537 u32 val; 2538 int i; 2539 2540 /* disable interrupt causation from each queue */ 2541 if (vsi->tx_rings) { 2542 ice_for_each_txq(vsi, i) { 2543 if (vsi->tx_rings[i]) { 2544 u16 reg; 2545 2546 reg = vsi->tx_rings[i]->reg_idx; 2547 val = rd32(hw, QINT_TQCTL(reg)); 2548 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2549 wr32(hw, QINT_TQCTL(reg), val); 2550 } 2551 } 2552 } 2553 2554 if (vsi->rx_rings) { 2555 ice_for_each_rxq(vsi, i) { 2556 if (vsi->rx_rings[i]) { 2557 u16 reg; 2558 2559 reg = vsi->rx_rings[i]->reg_idx; 2560 val = rd32(hw, QINT_RQCTL(reg)); 2561 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2562 wr32(hw, QINT_RQCTL(reg), val); 2563 } 2564 } 2565 } 2566 2567 /* disable each interrupt */ 2568 ice_for_each_q_vector(vsi, i) { 2569 if (!vsi->q_vectors[i]) 2570 continue; 2571 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2572 } 2573 2574 ice_flush(hw); 2575 2576 /* don't call synchronize_irq() for VF's from the host */ 2577 if (vsi->type == ICE_VSI_VF) 2578 return; 2579 2580 ice_for_each_q_vector(vsi, i) 2581 synchronize_irq(pf->msix_entries[i + base].vector); 2582 } 2583 2584 /** 2585 * ice_napi_del - Remove NAPI handler for the VSI 2586 * @vsi: VSI for which NAPI handler is to be removed 2587 */ 2588 void ice_napi_del(struct ice_vsi *vsi) 2589 { 2590 int v_idx; 2591 2592 if (!vsi->netdev) 2593 return; 2594 2595 ice_for_each_q_vector(vsi, v_idx) 2596 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2597 } 2598 2599 /** 2600 * ice_vsi_release - Delete a VSI and free its resources 2601 * @vsi: the VSI being removed 2602 * 2603 * Returns 0 on success or < 0 on error 2604 */ 2605 int ice_vsi_release(struct ice_vsi *vsi) 2606 { 2607 struct ice_pf *pf; 2608 2609 if (!vsi->back) 2610 return -ENODEV; 2611 pf = vsi->back; 2612 2613 /* do not unregister while driver is in the reset recovery pending 2614 * state. Since reset/rebuild happens through PF service task workqueue, 2615 * it's not a good idea to unregister netdev that is associated to the 2616 * PF that is running the work queue items currently. This is done to 2617 * avoid check_flush_dependency() warning on this wq 2618 */ 2619 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2620 unregister_netdev(vsi->netdev); 2621 2622 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2623 ice_rss_clean(vsi); 2624 2625 /* Disable VSI and free resources */ 2626 if (vsi->type != ICE_VSI_LB) 2627 ice_vsi_dis_irq(vsi); 2628 ice_vsi_close(vsi); 2629 2630 /* SR-IOV determines needed MSIX resources all at once instead of per 2631 * VSI since when VFs are spawned we know how many VFs there are and how 2632 * many interrupts each VF needs. SR-IOV MSIX resources are also 2633 * cleared in the same manner. 2634 */ 2635 if (vsi->type != ICE_VSI_VF) { 2636 /* reclaim SW interrupts back to the common pool */ 2637 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2638 pf->num_avail_sw_msix += vsi->num_q_vectors; 2639 } 2640 2641 if (!ice_is_safe_mode(pf)) { 2642 if (vsi->type == ICE_VSI_PF) { 2643 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2644 ICE_DROP_PACKET); 2645 ice_cfg_sw_lldp(vsi, true, false); 2646 /* The Rx rule will only exist to remove if the LLDP FW 2647 * engine is currently stopped 2648 */ 2649 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2650 ice_cfg_sw_lldp(vsi, false, false); 2651 } 2652 } 2653 2654 ice_fltr_remove_all(vsi); 2655 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2656 ice_vsi_delete(vsi); 2657 ice_vsi_free_q_vectors(vsi); 2658 2659 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2660 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2661 free_netdev(vsi->netdev); 2662 vsi->netdev = NULL; 2663 } 2664 2665 ice_vsi_clear_rings(vsi); 2666 2667 ice_vsi_put_qs(vsi); 2668 2669 /* retain SW VSI data structure since it is needed to unregister and 2670 * free VSI netdev when PF is not in reset recovery pending state,\ 2671 * for ex: during rmmod. 2672 */ 2673 if (!ice_is_reset_in_progress(pf->state)) 2674 ice_vsi_clear(vsi); 2675 2676 return 0; 2677 } 2678 2679 /** 2680 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2681 * @q_vector: pointer to q_vector which is being updated 2682 * @coalesce: pointer to array of struct with stored coalesce 2683 * 2684 * Set coalesce param in q_vector and update these parameters in HW. 2685 */ 2686 static void 2687 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2688 struct ice_coalesce_stored *coalesce) 2689 { 2690 struct ice_ring_container *rx_rc = &q_vector->rx; 2691 struct ice_ring_container *tx_rc = &q_vector->tx; 2692 struct ice_hw *hw = &q_vector->vsi->back->hw; 2693 2694 tx_rc->itr_setting = coalesce->itr_tx; 2695 rx_rc->itr_setting = coalesce->itr_rx; 2696 2697 /* dynamic ITR values will be updated during Tx/Rx */ 2698 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2699 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2700 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2701 ICE_ITR_GRAN_S); 2702 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2703 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2704 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2705 ICE_ITR_GRAN_S); 2706 2707 q_vector->intrl = coalesce->intrl; 2708 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2709 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2710 } 2711 2712 /** 2713 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2714 * @vsi: VSI connected with q_vectors 2715 * @coalesce: array of struct with stored coalesce 2716 * 2717 * Returns array size. 2718 */ 2719 static int 2720 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2721 struct ice_coalesce_stored *coalesce) 2722 { 2723 int i; 2724 2725 ice_for_each_q_vector(vsi, i) { 2726 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2727 2728 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2729 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2730 coalesce[i].intrl = q_vector->intrl; 2731 } 2732 2733 return vsi->num_q_vectors; 2734 } 2735 2736 /** 2737 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2738 * @vsi: VSI connected with q_vectors 2739 * @coalesce: pointer to array of struct with stored coalesce 2740 * @size: size of coalesce array 2741 * 2742 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2743 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2744 * to default value. 2745 */ 2746 static void 2747 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2748 struct ice_coalesce_stored *coalesce, int size) 2749 { 2750 int i; 2751 2752 if ((size && !coalesce) || !vsi) 2753 return; 2754 2755 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2756 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2757 &coalesce[i]); 2758 2759 /* number of q_vectors increased, so assume coalesce settings were 2760 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2761 * the previous settings from q_vector 0 for all of the new q_vectors 2762 */ 2763 for (; i < vsi->num_q_vectors; i++) 2764 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2765 &coalesce[0]); 2766 } 2767 2768 /** 2769 * ice_vsi_rebuild - Rebuild VSI after reset 2770 * @vsi: VSI to be rebuild 2771 * @init_vsi: is this an initialization or a reconfigure of the VSI 2772 * 2773 * Returns 0 on success and negative value on failure 2774 */ 2775 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2776 { 2777 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2778 struct ice_coalesce_stored *coalesce; 2779 int prev_num_q_vectors = 0; 2780 struct ice_vf *vf = NULL; 2781 enum ice_status status; 2782 struct ice_pf *pf; 2783 int ret, i; 2784 2785 if (!vsi) 2786 return -EINVAL; 2787 2788 pf = vsi->back; 2789 if (vsi->type == ICE_VSI_VF) 2790 vf = &pf->vf[vsi->vf_id]; 2791 2792 coalesce = kcalloc(vsi->num_q_vectors, 2793 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2794 if (coalesce) 2795 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2796 coalesce); 2797 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2798 ice_vsi_free_q_vectors(vsi); 2799 2800 /* SR-IOV determines needed MSIX resources all at once instead of per 2801 * VSI since when VFs are spawned we know how many VFs there are and how 2802 * many interrupts each VF needs. SR-IOV MSIX resources are also 2803 * cleared in the same manner. 2804 */ 2805 if (vsi->type != ICE_VSI_VF) { 2806 /* reclaim SW interrupts back to the common pool */ 2807 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2808 pf->num_avail_sw_msix += vsi->num_q_vectors; 2809 vsi->base_vector = 0; 2810 } 2811 2812 if (ice_is_xdp_ena_vsi(vsi)) 2813 /* return value check can be skipped here, it always returns 2814 * 0 if reset is in progress 2815 */ 2816 ice_destroy_xdp_rings(vsi); 2817 ice_vsi_put_qs(vsi); 2818 ice_vsi_clear_rings(vsi); 2819 ice_vsi_free_arrays(vsi); 2820 if (vsi->type == ICE_VSI_VF) 2821 ice_vsi_set_num_qs(vsi, vf->vf_id); 2822 else 2823 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2824 2825 ret = ice_vsi_alloc_arrays(vsi); 2826 if (ret < 0) 2827 goto err_vsi; 2828 2829 ice_vsi_get_qs(vsi); 2830 2831 ice_alloc_fd_res(vsi); 2832 ice_vsi_set_tc_cfg(vsi); 2833 2834 /* Initialize VSI struct elements and create VSI in FW */ 2835 ret = ice_vsi_init(vsi, init_vsi); 2836 if (ret < 0) 2837 goto err_vsi; 2838 2839 switch (vsi->type) { 2840 case ICE_VSI_CTRL: 2841 case ICE_VSI_PF: 2842 ret = ice_vsi_alloc_q_vectors(vsi); 2843 if (ret) 2844 goto err_rings; 2845 2846 ret = ice_vsi_setup_vector_base(vsi); 2847 if (ret) 2848 goto err_vectors; 2849 2850 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2851 if (ret) 2852 goto err_vectors; 2853 2854 ret = ice_vsi_alloc_rings(vsi); 2855 if (ret) 2856 goto err_vectors; 2857 2858 ice_vsi_map_rings_to_vectors(vsi); 2859 if (ice_is_xdp_ena_vsi(vsi)) { 2860 vsi->num_xdp_txq = vsi->alloc_rxq; 2861 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2862 if (ret) 2863 goto err_vectors; 2864 } 2865 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2866 if (vsi->type != ICE_VSI_CTRL) 2867 /* Do not exit if configuring RSS had an issue, at 2868 * least receive traffic on first queue. Hence no 2869 * need to capture return value 2870 */ 2871 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2872 ice_vsi_cfg_rss_lut_key(vsi); 2873 break; 2874 case ICE_VSI_VF: 2875 ret = ice_vsi_alloc_q_vectors(vsi); 2876 if (ret) 2877 goto err_rings; 2878 2879 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2880 if (ret) 2881 goto err_vectors; 2882 2883 ret = ice_vsi_alloc_rings(vsi); 2884 if (ret) 2885 goto err_vectors; 2886 2887 break; 2888 default: 2889 break; 2890 } 2891 2892 /* configure VSI nodes based on number of queues and TC's */ 2893 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2894 max_txqs[i] = vsi->alloc_txq; 2895 2896 if (ice_is_xdp_ena_vsi(vsi)) 2897 max_txqs[i] += vsi->num_xdp_txq; 2898 } 2899 2900 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2901 max_txqs); 2902 if (status) { 2903 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 2904 vsi->vsi_num, ice_stat_str(status)); 2905 if (init_vsi) { 2906 ret = -EIO; 2907 goto err_vectors; 2908 } else { 2909 return ice_schedule_reset(pf, ICE_RESET_PFR); 2910 } 2911 } 2912 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2913 kfree(coalesce); 2914 2915 return 0; 2916 2917 err_vectors: 2918 ice_vsi_free_q_vectors(vsi); 2919 err_rings: 2920 if (vsi->netdev) { 2921 vsi->current_netdev_flags = 0; 2922 unregister_netdev(vsi->netdev); 2923 free_netdev(vsi->netdev); 2924 vsi->netdev = NULL; 2925 } 2926 err_vsi: 2927 ice_vsi_clear(vsi); 2928 set_bit(__ICE_RESET_FAILED, pf->state); 2929 kfree(coalesce); 2930 return ret; 2931 } 2932 2933 /** 2934 * ice_is_reset_in_progress - check for a reset in progress 2935 * @state: PF state field 2936 */ 2937 bool ice_is_reset_in_progress(unsigned long *state) 2938 { 2939 return test_bit(__ICE_RESET_OICR_RECV, state) || 2940 test_bit(__ICE_DCBNL_DEVRESET, state) || 2941 test_bit(__ICE_PFR_REQ, state) || 2942 test_bit(__ICE_CORER_REQ, state) || 2943 test_bit(__ICE_GLOBR_REQ, state); 2944 } 2945 2946 #ifdef CONFIG_DCB 2947 /** 2948 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2949 * @vsi: VSI being configured 2950 * @ctx: the context buffer returned from AQ VSI update command 2951 */ 2952 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2953 { 2954 vsi->info.mapping_flags = ctx->info.mapping_flags; 2955 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2956 sizeof(vsi->info.q_mapping)); 2957 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2958 sizeof(vsi->info.tc_mapping)); 2959 } 2960 2961 /** 2962 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2963 * @vsi: VSI to be configured 2964 * @ena_tc: TC bitmap 2965 * 2966 * VSI queues expected to be quiesced before calling this function 2967 */ 2968 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2969 { 2970 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2971 struct ice_pf *pf = vsi->back; 2972 struct ice_vsi_ctx *ctx; 2973 enum ice_status status; 2974 struct device *dev; 2975 int i, ret = 0; 2976 u8 num_tc = 0; 2977 2978 dev = ice_pf_to_dev(pf); 2979 2980 ice_for_each_traffic_class(i) { 2981 /* build bitmap of enabled TCs */ 2982 if (ena_tc & BIT(i)) 2983 num_tc++; 2984 /* populate max_txqs per TC */ 2985 max_txqs[i] = vsi->alloc_txq; 2986 } 2987 2988 vsi->tc_cfg.ena_tc = ena_tc; 2989 vsi->tc_cfg.numtc = num_tc; 2990 2991 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2992 if (!ctx) 2993 return -ENOMEM; 2994 2995 ctx->vf_num = 0; 2996 ctx->info = vsi->info; 2997 2998 ice_vsi_setup_q_map(vsi, ctx); 2999 3000 /* must to indicate which section of VSI context are being modified */ 3001 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3002 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3003 if (status) { 3004 dev_info(dev, "Failed VSI Update\n"); 3005 ret = -EIO; 3006 goto out; 3007 } 3008 3009 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3010 max_txqs); 3011 3012 if (status) { 3013 dev_err(dev, "VSI %d failed TC config, error %s\n", 3014 vsi->vsi_num, ice_stat_str(status)); 3015 ret = -EIO; 3016 goto out; 3017 } 3018 ice_vsi_update_q_map(vsi, ctx); 3019 vsi->info.valid_sections = 0; 3020 3021 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3022 out: 3023 kfree(ctx); 3024 return ret; 3025 } 3026 #endif /* CONFIG_DCB */ 3027 3028 /** 3029 * ice_update_ring_stats - Update ring statistics 3030 * @ring: ring to update 3031 * @cont: used to increment per-vector counters 3032 * @pkts: number of processed packets 3033 * @bytes: number of processed bytes 3034 * 3035 * This function assumes that caller has acquired a u64_stats_sync lock. 3036 */ 3037 static void 3038 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3039 u64 pkts, u64 bytes) 3040 { 3041 ring->stats.bytes += bytes; 3042 ring->stats.pkts += pkts; 3043 cont->total_bytes += bytes; 3044 cont->total_pkts += pkts; 3045 } 3046 3047 /** 3048 * ice_update_tx_ring_stats - Update Tx ring specific counters 3049 * @tx_ring: ring to update 3050 * @pkts: number of processed packets 3051 * @bytes: number of processed bytes 3052 */ 3053 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3054 { 3055 u64_stats_update_begin(&tx_ring->syncp); 3056 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3057 u64_stats_update_end(&tx_ring->syncp); 3058 } 3059 3060 /** 3061 * ice_update_rx_ring_stats - Update Rx ring specific counters 3062 * @rx_ring: ring to update 3063 * @pkts: number of processed packets 3064 * @bytes: number of processed bytes 3065 */ 3066 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3067 { 3068 u64_stats_update_begin(&rx_ring->syncp); 3069 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3070 u64_stats_update_end(&rx_ring->syncp); 3071 } 3072 3073 /** 3074 * ice_status_to_errno - convert from enum ice_status to Linux errno 3075 * @err: ice_status value to convert 3076 */ 3077 int ice_status_to_errno(enum ice_status err) 3078 { 3079 switch (err) { 3080 case ICE_SUCCESS: 3081 return 0; 3082 case ICE_ERR_DOES_NOT_EXIST: 3083 return -ENOENT; 3084 case ICE_ERR_OUT_OF_RANGE: 3085 return -ENOTTY; 3086 case ICE_ERR_PARAM: 3087 return -EINVAL; 3088 case ICE_ERR_NO_MEMORY: 3089 return -ENOMEM; 3090 case ICE_ERR_MAX_LIMIT: 3091 return -EAGAIN; 3092 default: 3093 return -EINVAL; 3094 } 3095 } 3096 3097 /** 3098 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3099 * @sw: switch to check if its default forwarding VSI is free 3100 * 3101 * Return true if the default forwarding VSI is already being used, else returns 3102 * false signalling that it's available to use. 3103 */ 3104 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3105 { 3106 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3107 } 3108 3109 /** 3110 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3111 * @sw: switch for the default forwarding VSI to compare against 3112 * @vsi: VSI to compare against default forwarding VSI 3113 * 3114 * If this VSI passed in is the default forwarding VSI then return true, else 3115 * return false 3116 */ 3117 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3118 { 3119 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3120 } 3121 3122 /** 3123 * ice_set_dflt_vsi - set the default forwarding VSI 3124 * @sw: switch used to assign the default forwarding VSI 3125 * @vsi: VSI getting set as the default forwarding VSI on the switch 3126 * 3127 * If the VSI passed in is already the default VSI and it's enabled just return 3128 * success. 3129 * 3130 * If there is already a default VSI on the switch and it's enabled then return 3131 * -EEXIST since there can only be one default VSI per switch. 3132 * 3133 * Otherwise try to set the VSI passed in as the switch's default VSI and 3134 * return the result. 3135 */ 3136 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3137 { 3138 enum ice_status status; 3139 struct device *dev; 3140 3141 if (!sw || !vsi) 3142 return -EINVAL; 3143 3144 dev = ice_pf_to_dev(vsi->back); 3145 3146 /* the VSI passed in is already the default VSI */ 3147 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3148 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3149 vsi->vsi_num); 3150 return 0; 3151 } 3152 3153 /* another VSI is already the default VSI for this switch */ 3154 if (ice_is_dflt_vsi_in_use(sw)) { 3155 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3156 sw->dflt_vsi->vsi_num); 3157 return -EEXIST; 3158 } 3159 3160 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3161 if (status) { 3162 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3163 vsi->vsi_num, ice_stat_str(status)); 3164 return -EIO; 3165 } 3166 3167 sw->dflt_vsi = vsi; 3168 sw->dflt_vsi_ena = true; 3169 3170 return 0; 3171 } 3172 3173 /** 3174 * ice_clear_dflt_vsi - clear the default forwarding VSI 3175 * @sw: switch used to clear the default VSI 3176 * 3177 * If the switch has no default VSI or it's not enabled then return error. 3178 * 3179 * Otherwise try to clear the default VSI and return the result. 3180 */ 3181 int ice_clear_dflt_vsi(struct ice_sw *sw) 3182 { 3183 struct ice_vsi *dflt_vsi; 3184 enum ice_status status; 3185 struct device *dev; 3186 3187 if (!sw) 3188 return -EINVAL; 3189 3190 dev = ice_pf_to_dev(sw->pf); 3191 3192 dflt_vsi = sw->dflt_vsi; 3193 3194 /* there is no default VSI configured */ 3195 if (!ice_is_dflt_vsi_in_use(sw)) 3196 return -ENODEV; 3197 3198 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3199 ICE_FLTR_RX); 3200 if (status) { 3201 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3202 dflt_vsi->vsi_num, ice_stat_str(status)); 3203 return -EIO; 3204 } 3205 3206 sw->dflt_vsi = NULL; 3207 sw->dflt_vsi_ena = false; 3208 3209 return 0; 3210 } 3211