1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete_from_hw - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_free_stats - Free the ring statistics structures 352 * @vsi: VSI pointer 353 */ 354 static void ice_vsi_free_stats(struct ice_vsi *vsi) 355 { 356 struct ice_vsi_stats *vsi_stat; 357 struct ice_pf *pf = vsi->back; 358 int i; 359 360 if (vsi->type == ICE_VSI_CHNL) 361 return; 362 if (!pf->vsi_stats) 363 return; 364 365 vsi_stat = pf->vsi_stats[vsi->idx]; 366 if (!vsi_stat) 367 return; 368 369 ice_for_each_alloc_txq(vsi, i) { 370 if (vsi_stat->tx_ring_stats[i]) { 371 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 372 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 373 } 374 } 375 376 ice_for_each_alloc_rxq(vsi, i) { 377 if (vsi_stat->rx_ring_stats[i]) { 378 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 379 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 380 } 381 } 382 383 kfree(vsi_stat->tx_ring_stats); 384 kfree(vsi_stat->rx_ring_stats); 385 kfree(vsi_stat); 386 pf->vsi_stats[vsi->idx] = NULL; 387 } 388 389 /** 390 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 391 * @vsi: VSI which is having stats allocated 392 */ 393 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 394 { 395 struct ice_ring_stats **tx_ring_stats; 396 struct ice_ring_stats **rx_ring_stats; 397 struct ice_vsi_stats *vsi_stats; 398 struct ice_pf *pf = vsi->back; 399 u16 i; 400 401 vsi_stats = pf->vsi_stats[vsi->idx]; 402 tx_ring_stats = vsi_stats->tx_ring_stats; 403 rx_ring_stats = vsi_stats->rx_ring_stats; 404 405 /* Allocate Tx ring stats */ 406 ice_for_each_alloc_txq(vsi, i) { 407 struct ice_ring_stats *ring_stats; 408 struct ice_tx_ring *ring; 409 410 ring = vsi->tx_rings[i]; 411 ring_stats = tx_ring_stats[i]; 412 413 if (!ring_stats) { 414 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 415 if (!ring_stats) 416 goto err_out; 417 418 WRITE_ONCE(tx_ring_stats[i], ring_stats); 419 } 420 421 ring->ring_stats = ring_stats; 422 } 423 424 /* Allocate Rx ring stats */ 425 ice_for_each_alloc_rxq(vsi, i) { 426 struct ice_ring_stats *ring_stats; 427 struct ice_rx_ring *ring; 428 429 ring = vsi->rx_rings[i]; 430 ring_stats = rx_ring_stats[i]; 431 432 if (!ring_stats) { 433 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 434 if (!ring_stats) 435 goto err_out; 436 437 WRITE_ONCE(rx_ring_stats[i], ring_stats); 438 } 439 440 ring->ring_stats = ring_stats; 441 } 442 443 return 0; 444 445 err_out: 446 ice_vsi_free_stats(vsi); 447 return -ENOMEM; 448 } 449 450 /** 451 * ice_vsi_free - clean up and deallocate the provided VSI 452 * @vsi: pointer to VSI being cleared 453 * 454 * This deallocates the VSI's queue resources, removes it from the PF's 455 * VSI array if necessary, and deallocates the VSI 456 */ 457 static void ice_vsi_free(struct ice_vsi *vsi) 458 { 459 struct ice_pf *pf = NULL; 460 struct device *dev; 461 462 if (!vsi || !vsi->back) 463 return; 464 465 pf = vsi->back; 466 dev = ice_pf_to_dev(pf); 467 468 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 469 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 470 return; 471 } 472 473 mutex_lock(&pf->sw_mutex); 474 /* updates the PF for this cleared VSI */ 475 476 pf->vsi[vsi->idx] = NULL; 477 pf->next_vsi = vsi->idx; 478 479 ice_vsi_free_stats(vsi); 480 ice_vsi_free_arrays(vsi); 481 mutex_unlock(&pf->sw_mutex); 482 devm_kfree(dev, vsi); 483 } 484 485 void ice_vsi_delete(struct ice_vsi *vsi) 486 { 487 ice_vsi_delete_from_hw(vsi); 488 ice_vsi_free(vsi); 489 } 490 491 /** 492 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 493 * @irq: interrupt number 494 * @data: pointer to a q_vector 495 */ 496 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 497 { 498 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 499 500 if (!q_vector->tx.tx_ring) 501 return IRQ_HANDLED; 502 503 #define FDIR_RX_DESC_CLEAN_BUDGET 64 504 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 505 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 506 507 return IRQ_HANDLED; 508 } 509 510 /** 511 * ice_msix_clean_rings - MSIX mode Interrupt Handler 512 * @irq: interrupt number 513 * @data: pointer to a q_vector 514 */ 515 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 516 { 517 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 518 519 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 520 return IRQ_HANDLED; 521 522 q_vector->total_events++; 523 524 napi_schedule(&q_vector->napi); 525 526 return IRQ_HANDLED; 527 } 528 529 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 530 { 531 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 532 struct ice_pf *pf = q_vector->vsi->back; 533 struct ice_vf *vf; 534 unsigned int bkt; 535 536 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 537 return IRQ_HANDLED; 538 539 rcu_read_lock(); 540 ice_for_each_vf_rcu(pf, bkt, vf) 541 napi_schedule(&vf->repr->q_vector->napi); 542 rcu_read_unlock(); 543 544 return IRQ_HANDLED; 545 } 546 547 /** 548 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 549 * @vsi: VSI pointer 550 */ 551 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 552 { 553 struct ice_vsi_stats *vsi_stat; 554 struct ice_pf *pf = vsi->back; 555 556 if (vsi->type == ICE_VSI_CHNL) 557 return 0; 558 if (!pf->vsi_stats) 559 return -ENOENT; 560 561 if (pf->vsi_stats[vsi->idx]) 562 /* realloc will happen in rebuild path */ 563 return 0; 564 565 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 566 if (!vsi_stat) 567 return -ENOMEM; 568 569 vsi_stat->tx_ring_stats = 570 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 571 GFP_KERNEL); 572 if (!vsi_stat->tx_ring_stats) 573 goto err_alloc_tx; 574 575 vsi_stat->rx_ring_stats = 576 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 577 GFP_KERNEL); 578 if (!vsi_stat->rx_ring_stats) 579 goto err_alloc_rx; 580 581 pf->vsi_stats[vsi->idx] = vsi_stat; 582 583 return 0; 584 585 err_alloc_rx: 586 kfree(vsi_stat->rx_ring_stats); 587 err_alloc_tx: 588 kfree(vsi_stat->tx_ring_stats); 589 kfree(vsi_stat); 590 pf->vsi_stats[vsi->idx] = NULL; 591 return -ENOMEM; 592 } 593 594 /** 595 * ice_vsi_alloc_def - set default values for already allocated VSI 596 * @vsi: ptr to VSI 597 * @ch: ptr to channel 598 */ 599 static int 600 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 601 { 602 if (vsi->type != ICE_VSI_CHNL) { 603 ice_vsi_set_num_qs(vsi); 604 if (ice_vsi_alloc_arrays(vsi)) 605 return -ENOMEM; 606 } 607 608 switch (vsi->type) { 609 case ICE_VSI_SWITCHDEV_CTRL: 610 /* Setup eswitch MSIX irq handler for VSI */ 611 vsi->irq_handler = ice_eswitch_msix_clean_rings; 612 break; 613 case ICE_VSI_PF: 614 /* Setup default MSIX irq handler for VSI */ 615 vsi->irq_handler = ice_msix_clean_rings; 616 break; 617 case ICE_VSI_CTRL: 618 /* Setup ctrl VSI MSIX irq handler */ 619 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 620 break; 621 case ICE_VSI_CHNL: 622 if (!ch) 623 return -EINVAL; 624 625 vsi->num_rxq = ch->num_rxq; 626 vsi->num_txq = ch->num_txq; 627 vsi->next_base_q = ch->base_q; 628 break; 629 case ICE_VSI_VF: 630 break; 631 default: 632 ice_vsi_free_arrays(vsi); 633 return -EINVAL; 634 } 635 636 return 0; 637 } 638 639 /** 640 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 641 * @pf: board private structure 642 * 643 * Reserves a VSI index from the PF and allocates an empty VSI structure 644 * without a type. The VSI structure must later be initialized by calling 645 * ice_vsi_cfg(). 646 * 647 * returns a pointer to a VSI on success, NULL on failure. 648 */ 649 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 650 { 651 struct device *dev = ice_pf_to_dev(pf); 652 struct ice_vsi *vsi = NULL; 653 654 /* Need to protect the allocation of the VSIs at the PF level */ 655 mutex_lock(&pf->sw_mutex); 656 657 /* If we have already allocated our maximum number of VSIs, 658 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 659 * is available to be populated 660 */ 661 if (pf->next_vsi == ICE_NO_VSI) { 662 dev_dbg(dev, "out of VSI slots!\n"); 663 goto unlock_pf; 664 } 665 666 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 667 if (!vsi) 668 goto unlock_pf; 669 670 vsi->back = pf; 671 set_bit(ICE_VSI_DOWN, vsi->state); 672 673 /* fill slot and make note of the index */ 674 vsi->idx = pf->next_vsi; 675 pf->vsi[pf->next_vsi] = vsi; 676 677 /* prepare pf->next_vsi for next use */ 678 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 679 pf->next_vsi); 680 681 unlock_pf: 682 mutex_unlock(&pf->sw_mutex); 683 return vsi; 684 } 685 686 /** 687 * ice_alloc_fd_res - Allocate FD resource for a VSI 688 * @vsi: pointer to the ice_vsi 689 * 690 * This allocates the FD resources 691 * 692 * Returns 0 on success, -EPERM on no-op or -EIO on failure 693 */ 694 static int ice_alloc_fd_res(struct ice_vsi *vsi) 695 { 696 struct ice_pf *pf = vsi->back; 697 u32 g_val, b_val; 698 699 /* Flow Director filters are only allocated/assigned to the PF VSI or 700 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 701 * add/delete filters so resources are not allocated to it 702 */ 703 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 704 return -EPERM; 705 706 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 707 vsi->type == ICE_VSI_CHNL)) 708 return -EPERM; 709 710 /* FD filters from guaranteed pool per VSI */ 711 g_val = pf->hw.func_caps.fd_fltr_guar; 712 if (!g_val) 713 return -EPERM; 714 715 /* FD filters from best effort pool */ 716 b_val = pf->hw.func_caps.fd_fltr_best_effort; 717 if (!b_val) 718 return -EPERM; 719 720 /* PF main VSI gets only 64 FD resources from guaranteed pool 721 * when ADQ is configured. 722 */ 723 #define ICE_PF_VSI_GFLTR 64 724 725 /* determine FD filter resources per VSI from shared(best effort) and 726 * dedicated pool 727 */ 728 if (vsi->type == ICE_VSI_PF) { 729 vsi->num_gfltr = g_val; 730 /* if MQPRIO is configured, main VSI doesn't get all FD 731 * resources from guaranteed pool. PF VSI gets 64 FD resources 732 */ 733 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 734 if (g_val < ICE_PF_VSI_GFLTR) 735 return -EPERM; 736 /* allow bare minimum entries for PF VSI */ 737 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 738 } 739 740 /* each VSI gets same "best_effort" quota */ 741 vsi->num_bfltr = b_val; 742 } else if (vsi->type == ICE_VSI_VF) { 743 vsi->num_gfltr = 0; 744 745 /* each VSI gets same "best_effort" quota */ 746 vsi->num_bfltr = b_val; 747 } else { 748 struct ice_vsi *main_vsi; 749 int numtc; 750 751 main_vsi = ice_get_main_vsi(pf); 752 if (!main_vsi) 753 return -EPERM; 754 755 if (!main_vsi->all_numtc) 756 return -EINVAL; 757 758 /* figure out ADQ numtc */ 759 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 760 761 /* only one TC but still asking resources for channels, 762 * invalid config 763 */ 764 if (numtc < ICE_CHNL_START_TC) 765 return -EPERM; 766 767 g_val -= ICE_PF_VSI_GFLTR; 768 /* channel VSIs gets equal share from guaranteed pool */ 769 vsi->num_gfltr = g_val / numtc; 770 771 /* each VSI gets same "best_effort" quota */ 772 vsi->num_bfltr = b_val; 773 } 774 775 return 0; 776 } 777 778 /** 779 * ice_vsi_get_qs - Assign queues from PF to VSI 780 * @vsi: the VSI to assign queues to 781 * 782 * Returns 0 on success and a negative value on error 783 */ 784 static int ice_vsi_get_qs(struct ice_vsi *vsi) 785 { 786 struct ice_pf *pf = vsi->back; 787 struct ice_qs_cfg tx_qs_cfg = { 788 .qs_mutex = &pf->avail_q_mutex, 789 .pf_map = pf->avail_txqs, 790 .pf_map_size = pf->max_pf_txqs, 791 .q_count = vsi->alloc_txq, 792 .scatter_count = ICE_MAX_SCATTER_TXQS, 793 .vsi_map = vsi->txq_map, 794 .vsi_map_offset = 0, 795 .mapping_mode = ICE_VSI_MAP_CONTIG 796 }; 797 struct ice_qs_cfg rx_qs_cfg = { 798 .qs_mutex = &pf->avail_q_mutex, 799 .pf_map = pf->avail_rxqs, 800 .pf_map_size = pf->max_pf_rxqs, 801 .q_count = vsi->alloc_rxq, 802 .scatter_count = ICE_MAX_SCATTER_RXQS, 803 .vsi_map = vsi->rxq_map, 804 .vsi_map_offset = 0, 805 .mapping_mode = ICE_VSI_MAP_CONTIG 806 }; 807 int ret; 808 809 if (vsi->type == ICE_VSI_CHNL) 810 return 0; 811 812 ret = __ice_vsi_get_qs(&tx_qs_cfg); 813 if (ret) 814 return ret; 815 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 816 817 ret = __ice_vsi_get_qs(&rx_qs_cfg); 818 if (ret) 819 return ret; 820 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 821 822 return 0; 823 } 824 825 /** 826 * ice_vsi_put_qs - Release queues from VSI to PF 827 * @vsi: the VSI that is going to release queues 828 */ 829 static void ice_vsi_put_qs(struct ice_vsi *vsi) 830 { 831 struct ice_pf *pf = vsi->back; 832 int i; 833 834 mutex_lock(&pf->avail_q_mutex); 835 836 ice_for_each_alloc_txq(vsi, i) { 837 clear_bit(vsi->txq_map[i], pf->avail_txqs); 838 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 839 } 840 841 ice_for_each_alloc_rxq(vsi, i) { 842 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 843 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 844 } 845 846 mutex_unlock(&pf->avail_q_mutex); 847 } 848 849 /** 850 * ice_is_safe_mode 851 * @pf: pointer to the PF struct 852 * 853 * returns true if driver is in safe mode, false otherwise 854 */ 855 bool ice_is_safe_mode(struct ice_pf *pf) 856 { 857 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 858 } 859 860 /** 861 * ice_is_rdma_ena 862 * @pf: pointer to the PF struct 863 * 864 * returns true if RDMA is currently supported, false otherwise 865 */ 866 bool ice_is_rdma_ena(struct ice_pf *pf) 867 { 868 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 869 } 870 871 /** 872 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 873 * @vsi: the VSI being cleaned up 874 * 875 * This function deletes RSS input set for all flows that were configured 876 * for this VSI 877 */ 878 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 879 { 880 struct ice_pf *pf = vsi->back; 881 int status; 882 883 if (ice_is_safe_mode(pf)) 884 return; 885 886 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 887 if (status) 888 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 889 vsi->vsi_num, status); 890 } 891 892 /** 893 * ice_rss_clean - Delete RSS related VSI structures and configuration 894 * @vsi: the VSI being removed 895 */ 896 static void ice_rss_clean(struct ice_vsi *vsi) 897 { 898 struct ice_pf *pf = vsi->back; 899 struct device *dev; 900 901 dev = ice_pf_to_dev(pf); 902 903 if (vsi->rss_hkey_user) 904 devm_kfree(dev, vsi->rss_hkey_user); 905 if (vsi->rss_lut_user) 906 devm_kfree(dev, vsi->rss_lut_user); 907 908 ice_vsi_clean_rss_flow_fld(vsi); 909 /* remove RSS replay list */ 910 if (!ice_is_safe_mode(pf)) 911 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 912 } 913 914 /** 915 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 916 * @vsi: the VSI being configured 917 */ 918 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 919 { 920 struct ice_hw_common_caps *cap; 921 struct ice_pf *pf = vsi->back; 922 923 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 924 vsi->rss_size = 1; 925 return; 926 } 927 928 cap = &pf->hw.func_caps.common_cap; 929 switch (vsi->type) { 930 case ICE_VSI_CHNL: 931 case ICE_VSI_PF: 932 /* PF VSI will inherit RSS instance of PF */ 933 vsi->rss_table_size = (u16)cap->rss_table_size; 934 if (vsi->type == ICE_VSI_CHNL) 935 vsi->rss_size = min_t(u16, vsi->num_rxq, 936 BIT(cap->rss_table_entry_width)); 937 else 938 vsi->rss_size = min_t(u16, num_online_cpus(), 939 BIT(cap->rss_table_entry_width)); 940 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 941 break; 942 case ICE_VSI_SWITCHDEV_CTRL: 943 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 944 vsi->rss_size = min_t(u16, num_online_cpus(), 945 BIT(cap->rss_table_entry_width)); 946 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 947 break; 948 case ICE_VSI_VF: 949 /* VF VSI will get a small RSS table. 950 * For VSI_LUT, LUT size should be set to 64 bytes. 951 */ 952 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 953 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 954 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 955 break; 956 case ICE_VSI_LB: 957 break; 958 default: 959 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 960 ice_vsi_type_str(vsi->type)); 961 break; 962 } 963 } 964 965 /** 966 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 967 * @hw: HW structure used to determine the VLAN mode of the device 968 * @ctxt: the VSI context being set 969 * 970 * This initializes a default VSI context for all sections except the Queues. 971 */ 972 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 973 { 974 u32 table = 0; 975 976 memset(&ctxt->info, 0, sizeof(ctxt->info)); 977 /* VSI's should be allocated from shared pool */ 978 ctxt->alloc_from_pool = true; 979 /* Src pruning enabled by default */ 980 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 981 /* Traffic from VSI can be sent to LAN */ 982 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 983 /* allow all untagged/tagged packets by default on Tx */ 984 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 985 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 986 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 987 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 988 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 989 * 990 * DVM - leave inner VLAN in packet by default 991 */ 992 if (ice_is_dvm_ena(hw)) { 993 ctxt->info.inner_vlan_flags |= 994 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 995 ctxt->info.outer_vlan_flags = 996 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 997 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 998 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 999 ctxt->info.outer_vlan_flags |= 1000 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 1001 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 1002 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 1003 ctxt->info.outer_vlan_flags |= 1004 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 1005 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 1006 } 1007 /* Have 1:1 UP mapping for both ingress/egress tables */ 1008 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 1009 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 1010 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 1011 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1012 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1013 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1014 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1015 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1016 ctxt->info.ingress_table = cpu_to_le32(table); 1017 ctxt->info.egress_table = cpu_to_le32(table); 1018 /* Have 1:1 UP mapping for outer to inner UP table */ 1019 ctxt->info.outer_up_table = cpu_to_le32(table); 1020 /* No Outer tag support outer_tag_flags remains to zero */ 1021 } 1022 1023 /** 1024 * ice_vsi_setup_q_map - Setup a VSI queue map 1025 * @vsi: the VSI being configured 1026 * @ctxt: VSI context structure 1027 */ 1028 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1029 { 1030 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1031 u16 num_txq_per_tc, num_rxq_per_tc; 1032 u16 qcount_tx = vsi->alloc_txq; 1033 u16 qcount_rx = vsi->alloc_rxq; 1034 u8 netdev_tc = 0; 1035 int i; 1036 1037 if (!vsi->tc_cfg.numtc) { 1038 /* at least TC0 should be enabled by default */ 1039 vsi->tc_cfg.numtc = 1; 1040 vsi->tc_cfg.ena_tc = 1; 1041 } 1042 1043 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1044 if (!num_rxq_per_tc) 1045 num_rxq_per_tc = 1; 1046 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1047 if (!num_txq_per_tc) 1048 num_txq_per_tc = 1; 1049 1050 /* find the (rounded up) power-of-2 of qcount */ 1051 pow = (u16)order_base_2(num_rxq_per_tc); 1052 1053 /* TC mapping is a function of the number of Rx queues assigned to the 1054 * VSI for each traffic class and the offset of these queues. 1055 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1056 * queues allocated to TC0. No:of queues is a power-of-2. 1057 * 1058 * If TC is not enabled, the queue offset is set to 0, and allocate one 1059 * queue, this way, traffic for the given TC will be sent to the default 1060 * queue. 1061 * 1062 * Setup number and offset of Rx queues for all TCs for the VSI 1063 */ 1064 ice_for_each_traffic_class(i) { 1065 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1066 /* TC is not enabled */ 1067 vsi->tc_cfg.tc_info[i].qoffset = 0; 1068 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1069 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1070 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1071 ctxt->info.tc_mapping[i] = 0; 1072 continue; 1073 } 1074 1075 /* TC is enabled */ 1076 vsi->tc_cfg.tc_info[i].qoffset = offset; 1077 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1078 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1079 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1080 1081 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1082 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1083 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1084 ICE_AQ_VSI_TC_Q_NUM_M); 1085 offset += num_rxq_per_tc; 1086 tx_count += num_txq_per_tc; 1087 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1088 } 1089 1090 /* if offset is non-zero, means it is calculated correctly based on 1091 * enabled TCs for a given VSI otherwise qcount_rx will always 1092 * be correct and non-zero because it is based off - VSI's 1093 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1094 * at least 1) 1095 */ 1096 if (offset) 1097 rx_count = offset; 1098 else 1099 rx_count = num_rxq_per_tc; 1100 1101 if (rx_count > vsi->alloc_rxq) { 1102 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1103 rx_count, vsi->alloc_rxq); 1104 return -EINVAL; 1105 } 1106 1107 if (tx_count > vsi->alloc_txq) { 1108 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1109 tx_count, vsi->alloc_txq); 1110 return -EINVAL; 1111 } 1112 1113 vsi->num_txq = tx_count; 1114 vsi->num_rxq = rx_count; 1115 1116 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1117 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1118 /* since there is a chance that num_rxq could have been changed 1119 * in the above for loop, make num_txq equal to num_rxq. 1120 */ 1121 vsi->num_txq = vsi->num_rxq; 1122 } 1123 1124 /* Rx queue mapping */ 1125 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1126 /* q_mapping buffer holds the info for the first queue allocated for 1127 * this VSI in the PF space and also the number of queues associated 1128 * with this VSI. 1129 */ 1130 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1131 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1138 * @ctxt: the VSI context being set 1139 * @vsi: the VSI being configured 1140 */ 1141 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1142 { 1143 u8 dflt_q_group, dflt_q_prio; 1144 u16 dflt_q, report_q, val; 1145 1146 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1147 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1148 return; 1149 1150 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1151 ctxt->info.valid_sections |= cpu_to_le16(val); 1152 dflt_q = 0; 1153 dflt_q_group = 0; 1154 report_q = 0; 1155 dflt_q_prio = 0; 1156 1157 /* enable flow director filtering/programming */ 1158 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1159 ctxt->info.fd_options = cpu_to_le16(val); 1160 /* max of allocated flow director filters */ 1161 ctxt->info.max_fd_fltr_dedicated = 1162 cpu_to_le16(vsi->num_gfltr); 1163 /* max of shared flow director filters any VSI may program */ 1164 ctxt->info.max_fd_fltr_shared = 1165 cpu_to_le16(vsi->num_bfltr); 1166 /* default queue index within the VSI of the default FD */ 1167 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1168 ICE_AQ_VSI_FD_DEF_Q_M); 1169 /* target queue or queue group to the FD filter */ 1170 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1171 ICE_AQ_VSI_FD_DEF_GRP_M); 1172 ctxt->info.fd_def_q = cpu_to_le16(val); 1173 /* queue index on which FD filter completion is reported */ 1174 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1175 ICE_AQ_VSI_FD_REPORT_Q_M); 1176 /* priority of the default qindex action */ 1177 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1178 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1179 ctxt->info.fd_report_opt = cpu_to_le16(val); 1180 } 1181 1182 /** 1183 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1184 * @ctxt: the VSI context being set 1185 * @vsi: the VSI being configured 1186 */ 1187 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1188 { 1189 u8 lut_type, hash_type; 1190 struct device *dev; 1191 struct ice_pf *pf; 1192 1193 pf = vsi->back; 1194 dev = ice_pf_to_dev(pf); 1195 1196 switch (vsi->type) { 1197 case ICE_VSI_CHNL: 1198 case ICE_VSI_PF: 1199 /* PF VSI will inherit RSS instance of PF */ 1200 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1201 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1202 break; 1203 case ICE_VSI_VF: 1204 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1205 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1206 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1207 break; 1208 default: 1209 dev_dbg(dev, "Unsupported VSI type %s\n", 1210 ice_vsi_type_str(vsi->type)); 1211 return; 1212 } 1213 1214 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1215 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1216 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1217 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1218 } 1219 1220 static void 1221 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1222 { 1223 struct ice_pf *pf = vsi->back; 1224 u16 qcount, qmap; 1225 u8 offset = 0; 1226 int pow; 1227 1228 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1229 1230 pow = order_base_2(qcount); 1231 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1232 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1233 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1234 ICE_AQ_VSI_TC_Q_NUM_M); 1235 1236 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1237 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1238 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1239 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1240 } 1241 1242 /** 1243 * ice_vsi_init - Create and initialize a VSI 1244 * @vsi: the VSI being configured 1245 * @vsi_flags: VSI configuration flags 1246 * 1247 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1248 * reconfigure an existing context. 1249 * 1250 * This initializes a VSI context depending on the VSI type to be added and 1251 * passes it down to the add_vsi aq command to create a new VSI. 1252 */ 1253 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1254 { 1255 struct ice_pf *pf = vsi->back; 1256 struct ice_hw *hw = &pf->hw; 1257 struct ice_vsi_ctx *ctxt; 1258 struct device *dev; 1259 int ret = 0; 1260 1261 dev = ice_pf_to_dev(pf); 1262 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1263 if (!ctxt) 1264 return -ENOMEM; 1265 1266 switch (vsi->type) { 1267 case ICE_VSI_CTRL: 1268 case ICE_VSI_LB: 1269 case ICE_VSI_PF: 1270 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1271 break; 1272 case ICE_VSI_SWITCHDEV_CTRL: 1273 case ICE_VSI_CHNL: 1274 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1275 break; 1276 case ICE_VSI_VF: 1277 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1278 /* VF number here is the absolute VF number (0-255) */ 1279 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1280 break; 1281 default: 1282 ret = -ENODEV; 1283 goto out; 1284 } 1285 1286 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1287 * prune enabled 1288 */ 1289 if (vsi->type == ICE_VSI_CHNL) { 1290 struct ice_vsi *main_vsi; 1291 1292 main_vsi = ice_get_main_vsi(pf); 1293 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1294 ctxt->info.sw_flags2 |= 1295 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1296 else 1297 ctxt->info.sw_flags2 &= 1298 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1299 } 1300 1301 ice_set_dflt_vsi_ctx(hw, ctxt); 1302 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1303 ice_set_fd_vsi_ctx(ctxt, vsi); 1304 /* if the switch is in VEB mode, allow VSI loopback */ 1305 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1306 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1307 1308 /* Set LUT type and HASH type if RSS is enabled */ 1309 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1310 vsi->type != ICE_VSI_CTRL) { 1311 ice_set_rss_vsi_ctx(ctxt, vsi); 1312 /* if updating VSI context, make sure to set valid_section: 1313 * to indicate which section of VSI context being updated 1314 */ 1315 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1316 ctxt->info.valid_sections |= 1317 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1318 } 1319 1320 ctxt->info.sw_id = vsi->port_info->sw_id; 1321 if (vsi->type == ICE_VSI_CHNL) { 1322 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1323 } else { 1324 ret = ice_vsi_setup_q_map(vsi, ctxt); 1325 if (ret) 1326 goto out; 1327 1328 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1329 /* means VSI being updated */ 1330 /* must to indicate which section of VSI context are 1331 * being modified 1332 */ 1333 ctxt->info.valid_sections |= 1334 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1335 } 1336 1337 /* Allow control frames out of main VSI */ 1338 if (vsi->type == ICE_VSI_PF) { 1339 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1340 ctxt->info.valid_sections |= 1341 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1342 } 1343 1344 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1345 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1346 if (ret) { 1347 dev_err(dev, "Add VSI failed, err %d\n", ret); 1348 ret = -EIO; 1349 goto out; 1350 } 1351 } else { 1352 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1353 if (ret) { 1354 dev_err(dev, "Update VSI failed, err %d\n", ret); 1355 ret = -EIO; 1356 goto out; 1357 } 1358 } 1359 1360 /* keep context for update VSI operations */ 1361 vsi->info = ctxt->info; 1362 1363 /* record VSI number returned */ 1364 vsi->vsi_num = ctxt->vsi_num; 1365 1366 out: 1367 kfree(ctxt); 1368 return ret; 1369 } 1370 1371 /** 1372 * ice_free_res - free a block of resources 1373 * @res: pointer to the resource 1374 * @index: starting index previously returned by ice_get_res 1375 * @id: identifier to track owner 1376 * 1377 * Returns number of resources freed 1378 */ 1379 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1380 { 1381 int count = 0; 1382 int i; 1383 1384 if (!res || index >= res->end) 1385 return -EINVAL; 1386 1387 id |= ICE_RES_VALID_BIT; 1388 for (i = index; i < res->end && res->list[i] == id; i++) { 1389 res->list[i] = 0; 1390 count++; 1391 } 1392 1393 return count; 1394 } 1395 1396 /** 1397 * ice_search_res - Search the tracker for a block of resources 1398 * @res: pointer to the resource 1399 * @needed: size of the block needed 1400 * @id: identifier to track owner 1401 * 1402 * Returns the base item index of the block, or -ENOMEM for error 1403 */ 1404 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1405 { 1406 u16 start = 0, end = 0; 1407 1408 if (needed > res->end) 1409 return -ENOMEM; 1410 1411 id |= ICE_RES_VALID_BIT; 1412 1413 do { 1414 /* skip already allocated entries */ 1415 if (res->list[end++] & ICE_RES_VALID_BIT) { 1416 start = end; 1417 if ((start + needed) > res->end) 1418 break; 1419 } 1420 1421 if (end == (start + needed)) { 1422 int i = start; 1423 1424 /* there was enough, so assign it to the requestor */ 1425 while (i != end) 1426 res->list[i++] = id; 1427 1428 return start; 1429 } 1430 } while (end < res->end); 1431 1432 return -ENOMEM; 1433 } 1434 1435 /** 1436 * ice_get_free_res_count - Get free count from a resource tracker 1437 * @res: Resource tracker instance 1438 */ 1439 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1440 { 1441 u16 i, count = 0; 1442 1443 for (i = 0; i < res->end; i++) 1444 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1445 count++; 1446 1447 return count; 1448 } 1449 1450 /** 1451 * ice_get_res - get a block of resources 1452 * @pf: board private structure 1453 * @res: pointer to the resource 1454 * @needed: size of the block needed 1455 * @id: identifier to track owner 1456 * 1457 * Returns the base item index of the block, or negative for error 1458 */ 1459 int 1460 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1461 { 1462 if (!res || !pf) 1463 return -EINVAL; 1464 1465 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1466 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1467 needed, res->num_entries, id); 1468 return -EINVAL; 1469 } 1470 1471 return ice_search_res(res, needed, id); 1472 } 1473 1474 /** 1475 * ice_get_vf_ctrl_res - Get VF control VSI resource 1476 * @pf: pointer to the PF structure 1477 * @vsi: the VSI to allocate a resource for 1478 * 1479 * Look up whether another VF has already allocated the control VSI resource. 1480 * If so, re-use this resource so that we share it among all VFs. 1481 * 1482 * Otherwise, allocate the resource and return it. 1483 */ 1484 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1485 { 1486 struct ice_vf *vf; 1487 unsigned int bkt; 1488 int base; 1489 1490 rcu_read_lock(); 1491 ice_for_each_vf_rcu(pf, bkt, vf) { 1492 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1493 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1494 rcu_read_unlock(); 1495 return base; 1496 } 1497 } 1498 rcu_read_unlock(); 1499 1500 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1501 ICE_RES_VF_CTRL_VEC_ID); 1502 } 1503 1504 /** 1505 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1506 * @vsi: ptr to the VSI 1507 * 1508 * This should only be called after ice_vsi_alloc_def() which allocates the 1509 * corresponding SW VSI structure and initializes num_queue_pairs for the 1510 * newly allocated VSI. 1511 * 1512 * Returns 0 on success or negative on failure 1513 */ 1514 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1515 { 1516 struct ice_pf *pf = vsi->back; 1517 struct device *dev; 1518 u16 num_q_vectors; 1519 int base; 1520 1521 dev = ice_pf_to_dev(pf); 1522 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1523 if (vsi->type == ICE_VSI_VF) 1524 return 0; 1525 if (vsi->type == ICE_VSI_CHNL) 1526 return 0; 1527 1528 if (vsi->base_vector) { 1529 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1530 vsi->vsi_num, vsi->base_vector); 1531 return -EEXIST; 1532 } 1533 1534 num_q_vectors = vsi->num_q_vectors; 1535 /* reserve slots from OS requested IRQs */ 1536 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1537 base = ice_get_vf_ctrl_res(pf, vsi); 1538 } else { 1539 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1540 vsi->idx); 1541 } 1542 1543 if (base < 0) { 1544 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1545 ice_get_free_res_count(pf->irq_tracker), 1546 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1547 return -ENOENT; 1548 } 1549 vsi->base_vector = (u16)base; 1550 pf->num_avail_sw_msix -= num_q_vectors; 1551 1552 return 0; 1553 } 1554 1555 /** 1556 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1557 * @vsi: the VSI having rings deallocated 1558 */ 1559 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1560 { 1561 int i; 1562 1563 /* Avoid stale references by clearing map from vector to ring */ 1564 if (vsi->q_vectors) { 1565 ice_for_each_q_vector(vsi, i) { 1566 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1567 1568 if (q_vector) { 1569 q_vector->tx.tx_ring = NULL; 1570 q_vector->rx.rx_ring = NULL; 1571 } 1572 } 1573 } 1574 1575 if (vsi->tx_rings) { 1576 ice_for_each_alloc_txq(vsi, i) { 1577 if (vsi->tx_rings[i]) { 1578 kfree_rcu(vsi->tx_rings[i], rcu); 1579 WRITE_ONCE(vsi->tx_rings[i], NULL); 1580 } 1581 } 1582 } 1583 if (vsi->rx_rings) { 1584 ice_for_each_alloc_rxq(vsi, i) { 1585 if (vsi->rx_rings[i]) { 1586 kfree_rcu(vsi->rx_rings[i], rcu); 1587 WRITE_ONCE(vsi->rx_rings[i], NULL); 1588 } 1589 } 1590 } 1591 } 1592 1593 /** 1594 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1595 * @vsi: VSI which is having rings allocated 1596 */ 1597 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1598 { 1599 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1600 struct ice_pf *pf = vsi->back; 1601 struct device *dev; 1602 u16 i; 1603 1604 dev = ice_pf_to_dev(pf); 1605 /* Allocate Tx rings */ 1606 ice_for_each_alloc_txq(vsi, i) { 1607 struct ice_tx_ring *ring; 1608 1609 /* allocate with kzalloc(), free with kfree_rcu() */ 1610 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1611 1612 if (!ring) 1613 goto err_out; 1614 1615 ring->q_index = i; 1616 ring->reg_idx = vsi->txq_map[i]; 1617 ring->vsi = vsi; 1618 ring->tx_tstamps = &pf->ptp.port.tx; 1619 ring->dev = dev; 1620 ring->count = vsi->num_tx_desc; 1621 ring->txq_teid = ICE_INVAL_TEID; 1622 if (dvm_ena) 1623 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1624 else 1625 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1626 WRITE_ONCE(vsi->tx_rings[i], ring); 1627 } 1628 1629 /* Allocate Rx rings */ 1630 ice_for_each_alloc_rxq(vsi, i) { 1631 struct ice_rx_ring *ring; 1632 1633 /* allocate with kzalloc(), free with kfree_rcu() */ 1634 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1635 if (!ring) 1636 goto err_out; 1637 1638 ring->q_index = i; 1639 ring->reg_idx = vsi->rxq_map[i]; 1640 ring->vsi = vsi; 1641 ring->netdev = vsi->netdev; 1642 ring->dev = dev; 1643 ring->count = vsi->num_rx_desc; 1644 ring->cached_phctime = pf->ptp.cached_phc_time; 1645 WRITE_ONCE(vsi->rx_rings[i], ring); 1646 } 1647 1648 return 0; 1649 1650 err_out: 1651 ice_vsi_clear_rings(vsi); 1652 return -ENOMEM; 1653 } 1654 1655 /** 1656 * ice_vsi_manage_rss_lut - disable/enable RSS 1657 * @vsi: the VSI being changed 1658 * @ena: boolean value indicating if this is an enable or disable request 1659 * 1660 * In the event of disable request for RSS, this function will zero out RSS 1661 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1662 * LUT. 1663 */ 1664 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1665 { 1666 u8 *lut; 1667 1668 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1669 if (!lut) 1670 return; 1671 1672 if (ena) { 1673 if (vsi->rss_lut_user) 1674 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1675 else 1676 ice_fill_rss_lut(lut, vsi->rss_table_size, 1677 vsi->rss_size); 1678 } 1679 1680 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1681 kfree(lut); 1682 } 1683 1684 /** 1685 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1686 * @vsi: VSI to be configured 1687 * @disable: set to true to have FCS / CRC in the frame data 1688 */ 1689 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1690 { 1691 int i; 1692 1693 ice_for_each_rxq(vsi, i) 1694 if (disable) 1695 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1696 else 1697 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1698 } 1699 1700 /** 1701 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1702 * @vsi: VSI to be configured 1703 */ 1704 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1705 { 1706 struct ice_pf *pf = vsi->back; 1707 struct device *dev; 1708 u8 *lut, *key; 1709 int err; 1710 1711 dev = ice_pf_to_dev(pf); 1712 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1713 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1714 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1715 } else { 1716 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1717 1718 /* If orig_rss_size is valid and it is less than determined 1719 * main VSI's rss_size, update main VSI's rss_size to be 1720 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1721 * RSS table gets programmed to be correct (whatever it was 1722 * to begin with (prior to setup-tc for ADQ config) 1723 */ 1724 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1725 vsi->orig_rss_size <= vsi->num_rxq) { 1726 vsi->rss_size = vsi->orig_rss_size; 1727 /* now orig_rss_size is used, reset it to zero */ 1728 vsi->orig_rss_size = 0; 1729 } 1730 } 1731 1732 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1733 if (!lut) 1734 return -ENOMEM; 1735 1736 if (vsi->rss_lut_user) 1737 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1738 else 1739 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1740 1741 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1742 if (err) { 1743 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1744 goto ice_vsi_cfg_rss_exit; 1745 } 1746 1747 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1748 if (!key) { 1749 err = -ENOMEM; 1750 goto ice_vsi_cfg_rss_exit; 1751 } 1752 1753 if (vsi->rss_hkey_user) 1754 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1755 else 1756 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1757 1758 err = ice_set_rss_key(vsi, key); 1759 if (err) 1760 dev_err(dev, "set_rss_key failed, error %d\n", err); 1761 1762 kfree(key); 1763 ice_vsi_cfg_rss_exit: 1764 kfree(lut); 1765 return err; 1766 } 1767 1768 /** 1769 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1770 * @vsi: VSI to be configured 1771 * 1772 * This function will only be called during the VF VSI setup. Upon successful 1773 * completion of package download, this function will configure default RSS 1774 * input sets for VF VSI. 1775 */ 1776 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1777 { 1778 struct ice_pf *pf = vsi->back; 1779 struct device *dev; 1780 int status; 1781 1782 dev = ice_pf_to_dev(pf); 1783 if (ice_is_safe_mode(pf)) { 1784 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1785 vsi->vsi_num); 1786 return; 1787 } 1788 1789 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1790 if (status) 1791 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1792 vsi->vsi_num, status); 1793 } 1794 1795 /** 1796 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1797 * @vsi: VSI to be configured 1798 * 1799 * This function will only be called after successful download package call 1800 * during initialization of PF. Since the downloaded package will erase the 1801 * RSS section, this function will configure RSS input sets for different 1802 * flow types. The last profile added has the highest priority, therefore 2 1803 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1804 * (i.e. IPv4 src/dst TCP src/dst port). 1805 */ 1806 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1807 { 1808 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1809 struct ice_pf *pf = vsi->back; 1810 struct ice_hw *hw = &pf->hw; 1811 struct device *dev; 1812 int status; 1813 1814 dev = ice_pf_to_dev(pf); 1815 if (ice_is_safe_mode(pf)) { 1816 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1817 vsi_num); 1818 return; 1819 } 1820 /* configure RSS for IPv4 with input set IP src/dst */ 1821 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1822 ICE_FLOW_SEG_HDR_IPV4); 1823 if (status) 1824 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1825 vsi_num, status); 1826 1827 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1828 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1829 ICE_FLOW_SEG_HDR_IPV6); 1830 if (status) 1831 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1832 vsi_num, status); 1833 1834 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1835 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1836 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1837 if (status) 1838 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1839 vsi_num, status); 1840 1841 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1842 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1843 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1844 if (status) 1845 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1846 vsi_num, status); 1847 1848 /* configure RSS for sctp4 with input set IP src/dst */ 1849 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1850 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1851 if (status) 1852 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1853 vsi_num, status); 1854 1855 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1856 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1857 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1858 if (status) 1859 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1860 vsi_num, status); 1861 1862 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1863 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1864 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1865 if (status) 1866 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1867 vsi_num, status); 1868 1869 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1870 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1871 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1872 if (status) 1873 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1874 vsi_num, status); 1875 1876 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1877 ICE_FLOW_SEG_HDR_ESP); 1878 if (status) 1879 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1880 vsi_num, status); 1881 } 1882 1883 /** 1884 * ice_pf_state_is_nominal - checks the PF for nominal state 1885 * @pf: pointer to PF to check 1886 * 1887 * Check the PF's state for a collection of bits that would indicate 1888 * the PF is in a state that would inhibit normal operation for 1889 * driver functionality. 1890 * 1891 * Returns true if PF is in a nominal state, false otherwise 1892 */ 1893 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1894 { 1895 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1896 1897 if (!pf) 1898 return false; 1899 1900 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1901 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1902 return false; 1903 1904 return true; 1905 } 1906 1907 /** 1908 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1909 * @vsi: the VSI to be updated 1910 */ 1911 void ice_update_eth_stats(struct ice_vsi *vsi) 1912 { 1913 struct ice_eth_stats *prev_es, *cur_es; 1914 struct ice_hw *hw = &vsi->back->hw; 1915 struct ice_pf *pf = vsi->back; 1916 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1917 1918 prev_es = &vsi->eth_stats_prev; 1919 cur_es = &vsi->eth_stats; 1920 1921 if (ice_is_reset_in_progress(pf->state)) 1922 vsi->stat_offsets_loaded = false; 1923 1924 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1925 &prev_es->rx_bytes, &cur_es->rx_bytes); 1926 1927 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1928 &prev_es->rx_unicast, &cur_es->rx_unicast); 1929 1930 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1931 &prev_es->rx_multicast, &cur_es->rx_multicast); 1932 1933 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1934 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1935 1936 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1937 &prev_es->rx_discards, &cur_es->rx_discards); 1938 1939 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1940 &prev_es->tx_bytes, &cur_es->tx_bytes); 1941 1942 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1943 &prev_es->tx_unicast, &cur_es->tx_unicast); 1944 1945 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1946 &prev_es->tx_multicast, &cur_es->tx_multicast); 1947 1948 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1949 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1950 1951 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1952 &prev_es->tx_errors, &cur_es->tx_errors); 1953 1954 vsi->stat_offsets_loaded = true; 1955 } 1956 1957 /** 1958 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1959 * @vsi: VSI 1960 */ 1961 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1962 { 1963 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1964 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1965 vsi->rx_buf_len = ICE_RXBUF_1664; 1966 #if (PAGE_SIZE < 8192) 1967 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1968 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1969 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1970 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1971 #endif 1972 } else { 1973 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1974 vsi->rx_buf_len = ICE_RXBUF_3072; 1975 } 1976 } 1977 1978 /** 1979 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1980 * @hw: HW pointer 1981 * @pf_q: index of the Rx queue in the PF's queue space 1982 * @rxdid: flexible descriptor RXDID 1983 * @prio: priority for the RXDID for this queue 1984 * @ena_ts: true to enable timestamp and false to disable timestamp 1985 */ 1986 void 1987 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1988 bool ena_ts) 1989 { 1990 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1991 1992 /* clear any previous values */ 1993 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1994 QRXFLXP_CNTXT_RXDID_PRIO_M | 1995 QRXFLXP_CNTXT_TS_M); 1996 1997 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1998 QRXFLXP_CNTXT_RXDID_IDX_M; 1999 2000 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 2001 QRXFLXP_CNTXT_RXDID_PRIO_M; 2002 2003 if (ena_ts) 2004 /* Enable TimeSync on this queue */ 2005 regval |= QRXFLXP_CNTXT_TS_M; 2006 2007 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 2008 } 2009 2010 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 2011 { 2012 if (q_idx >= vsi->num_rxq) 2013 return -EINVAL; 2014 2015 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 2016 } 2017 2018 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 2019 { 2020 struct ice_aqc_add_tx_qgrp *qg_buf; 2021 int err; 2022 2023 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 2024 return -EINVAL; 2025 2026 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2027 if (!qg_buf) 2028 return -ENOMEM; 2029 2030 qg_buf->num_txqs = 1; 2031 2032 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 2033 kfree(qg_buf); 2034 return err; 2035 } 2036 2037 /** 2038 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 2039 * @vsi: the VSI being configured 2040 * 2041 * Return 0 on success and a negative value on error 2042 * Configure the Rx VSI for operation. 2043 */ 2044 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 2045 { 2046 u16 i; 2047 2048 if (vsi->type == ICE_VSI_VF) 2049 goto setup_rings; 2050 2051 ice_vsi_cfg_frame_size(vsi); 2052 setup_rings: 2053 /* set up individual rings */ 2054 ice_for_each_rxq(vsi, i) { 2055 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 2056 2057 if (err) 2058 return err; 2059 } 2060 2061 return 0; 2062 } 2063 2064 /** 2065 * ice_vsi_cfg_txqs - Configure the VSI for Tx 2066 * @vsi: the VSI being configured 2067 * @rings: Tx ring array to be configured 2068 * @count: number of Tx ring array elements 2069 * 2070 * Return 0 on success and a negative value on error 2071 * Configure the Tx VSI for operation. 2072 */ 2073 static int 2074 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 2075 { 2076 struct ice_aqc_add_tx_qgrp *qg_buf; 2077 u16 q_idx = 0; 2078 int err = 0; 2079 2080 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2081 if (!qg_buf) 2082 return -ENOMEM; 2083 2084 qg_buf->num_txqs = 1; 2085 2086 for (q_idx = 0; q_idx < count; q_idx++) { 2087 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 2088 if (err) 2089 goto err_cfg_txqs; 2090 } 2091 2092 err_cfg_txqs: 2093 kfree(qg_buf); 2094 return err; 2095 } 2096 2097 /** 2098 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 2099 * @vsi: the VSI being configured 2100 * 2101 * Return 0 on success and a negative value on error 2102 * Configure the Tx VSI for operation. 2103 */ 2104 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 2105 { 2106 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 2107 } 2108 2109 /** 2110 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 2111 * @vsi: the VSI being configured 2112 * 2113 * Return 0 on success and a negative value on error 2114 * Configure the Tx queues dedicated for XDP in given VSI for operation. 2115 */ 2116 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 2117 { 2118 int ret; 2119 int i; 2120 2121 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 2122 if (ret) 2123 return ret; 2124 2125 ice_for_each_rxq(vsi, i) 2126 ice_tx_xsk_pool(vsi, i); 2127 2128 return ret; 2129 } 2130 2131 /** 2132 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 2133 * @intrl: interrupt rate limit in usecs 2134 * @gran: interrupt rate limit granularity in usecs 2135 * 2136 * This function converts a decimal interrupt rate limit in usecs to the format 2137 * expected by firmware. 2138 */ 2139 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2140 { 2141 u32 val = intrl / gran; 2142 2143 if (val) 2144 return val | GLINT_RATE_INTRL_ENA_M; 2145 return 0; 2146 } 2147 2148 /** 2149 * ice_write_intrl - write throttle rate limit to interrupt specific register 2150 * @q_vector: pointer to interrupt specific structure 2151 * @intrl: throttle rate limit in microseconds to write 2152 */ 2153 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2154 { 2155 struct ice_hw *hw = &q_vector->vsi->back->hw; 2156 2157 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2158 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2159 } 2160 2161 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2162 { 2163 switch (rc->type) { 2164 case ICE_RX_CONTAINER: 2165 if (rc->rx_ring) 2166 return rc->rx_ring->q_vector; 2167 break; 2168 case ICE_TX_CONTAINER: 2169 if (rc->tx_ring) 2170 return rc->tx_ring->q_vector; 2171 break; 2172 default: 2173 break; 2174 } 2175 2176 return NULL; 2177 } 2178 2179 /** 2180 * __ice_write_itr - write throttle rate to register 2181 * @q_vector: pointer to interrupt data structure 2182 * @rc: pointer to ring container 2183 * @itr: throttle rate in microseconds to write 2184 */ 2185 static void __ice_write_itr(struct ice_q_vector *q_vector, 2186 struct ice_ring_container *rc, u16 itr) 2187 { 2188 struct ice_hw *hw = &q_vector->vsi->back->hw; 2189 2190 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2191 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2192 } 2193 2194 /** 2195 * ice_write_itr - write throttle rate to queue specific register 2196 * @rc: pointer to ring container 2197 * @itr: throttle rate in microseconds to write 2198 */ 2199 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2200 { 2201 struct ice_q_vector *q_vector; 2202 2203 q_vector = ice_pull_qvec_from_rc(rc); 2204 if (!q_vector) 2205 return; 2206 2207 __ice_write_itr(q_vector, rc, itr); 2208 } 2209 2210 /** 2211 * ice_set_q_vector_intrl - set up interrupt rate limiting 2212 * @q_vector: the vector to be configured 2213 * 2214 * Interrupt rate limiting is local to the vector, not per-queue so we must 2215 * detect if either ring container has dynamic moderation enabled to decide 2216 * what to set the interrupt rate limit to via INTRL settings. In the case that 2217 * dynamic moderation is disabled on both, write the value with the cached 2218 * setting to make sure INTRL register matches the user visible value. 2219 */ 2220 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2221 { 2222 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2223 /* in the case of dynamic enabled, cap each vector to no more 2224 * than (4 us) 250,000 ints/sec, which allows low latency 2225 * but still less than 500,000 interrupts per second, which 2226 * reduces CPU a bit in the case of the lowest latency 2227 * setting. The 4 here is a value in microseconds. 2228 */ 2229 ice_write_intrl(q_vector, 4); 2230 } else { 2231 ice_write_intrl(q_vector, q_vector->intrl); 2232 } 2233 } 2234 2235 /** 2236 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2237 * @vsi: the VSI being configured 2238 * 2239 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2240 * for the VF VSI. 2241 */ 2242 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2243 { 2244 struct ice_pf *pf = vsi->back; 2245 struct ice_hw *hw = &pf->hw; 2246 u16 txq = 0, rxq = 0; 2247 int i, q; 2248 2249 ice_for_each_q_vector(vsi, i) { 2250 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2251 u16 reg_idx = q_vector->reg_idx; 2252 2253 ice_cfg_itr(hw, q_vector); 2254 2255 /* Both Transmit Queue Interrupt Cause Control register 2256 * and Receive Queue Interrupt Cause control register 2257 * expects MSIX_INDX field to be the vector index 2258 * within the function space and not the absolute 2259 * vector index across PF or across device. 2260 * For SR-IOV VF VSIs queue vector index always starts 2261 * with 1 since first vector index(0) is used for OICR 2262 * in VF space. Since VMDq and other PF VSIs are within 2263 * the PF function space, use the vector index that is 2264 * tracked for this PF. 2265 */ 2266 for (q = 0; q < q_vector->num_ring_tx; q++) { 2267 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2268 q_vector->tx.itr_idx); 2269 txq++; 2270 } 2271 2272 for (q = 0; q < q_vector->num_ring_rx; q++) { 2273 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2274 q_vector->rx.itr_idx); 2275 rxq++; 2276 } 2277 } 2278 } 2279 2280 /** 2281 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2282 * @vsi: the VSI whose rings are to be enabled 2283 * 2284 * Returns 0 on success and a negative value on error 2285 */ 2286 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2287 { 2288 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2289 } 2290 2291 /** 2292 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2293 * @vsi: the VSI whose rings are to be disabled 2294 * 2295 * Returns 0 on success and a negative value on error 2296 */ 2297 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2298 { 2299 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2300 } 2301 2302 /** 2303 * ice_vsi_stop_tx_rings - Disable Tx rings 2304 * @vsi: the VSI being configured 2305 * @rst_src: reset source 2306 * @rel_vmvf_num: Relative ID of VF/VM 2307 * @rings: Tx ring array to be stopped 2308 * @count: number of Tx ring array elements 2309 */ 2310 static int 2311 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2312 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2313 { 2314 u16 q_idx; 2315 2316 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2317 return -EINVAL; 2318 2319 for (q_idx = 0; q_idx < count; q_idx++) { 2320 struct ice_txq_meta txq_meta = { }; 2321 int status; 2322 2323 if (!rings || !rings[q_idx]) 2324 return -EINVAL; 2325 2326 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2327 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2328 rings[q_idx], &txq_meta); 2329 2330 if (status) 2331 return status; 2332 } 2333 2334 return 0; 2335 } 2336 2337 /** 2338 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2339 * @vsi: the VSI being configured 2340 * @rst_src: reset source 2341 * @rel_vmvf_num: Relative ID of VF/VM 2342 */ 2343 int 2344 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2345 u16 rel_vmvf_num) 2346 { 2347 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2348 } 2349 2350 /** 2351 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2352 * @vsi: the VSI being configured 2353 */ 2354 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2355 { 2356 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2357 } 2358 2359 /** 2360 * ice_vsi_is_rx_queue_active 2361 * @vsi: the VSI being configured 2362 * 2363 * Return true if at least one queue is active. 2364 */ 2365 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2366 { 2367 struct ice_pf *pf = vsi->back; 2368 struct ice_hw *hw = &pf->hw; 2369 int i; 2370 2371 ice_for_each_rxq(vsi, i) { 2372 u32 rx_reg; 2373 int pf_q; 2374 2375 pf_q = vsi->rxq_map[i]; 2376 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2377 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2378 return true; 2379 } 2380 2381 return false; 2382 } 2383 2384 /** 2385 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2386 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2387 * 2388 * returns true if Rx VLAN pruning is enabled and false otherwise. 2389 */ 2390 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2391 { 2392 if (!vsi) 2393 return false; 2394 2395 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2396 } 2397 2398 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2399 { 2400 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2401 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2402 vsi->tc_cfg.numtc = 1; 2403 return; 2404 } 2405 2406 /* set VSI TC information based on DCB config */ 2407 ice_vsi_set_dcb_tc_cfg(vsi); 2408 } 2409 2410 /** 2411 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2412 * @vsi: VSI to set the q_vectors register index on 2413 */ 2414 static int 2415 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2416 { 2417 u16 i; 2418 2419 if (!vsi || !vsi->q_vectors) 2420 return -EINVAL; 2421 2422 ice_for_each_q_vector(vsi, i) { 2423 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2424 2425 if (!q_vector) { 2426 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2427 i, vsi->vsi_num); 2428 goto clear_reg_idx; 2429 } 2430 2431 if (vsi->type == ICE_VSI_VF) { 2432 struct ice_vf *vf = vsi->vf; 2433 2434 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2435 } else { 2436 q_vector->reg_idx = 2437 q_vector->v_idx + vsi->base_vector; 2438 } 2439 } 2440 2441 return 0; 2442 2443 clear_reg_idx: 2444 ice_for_each_q_vector(vsi, i) { 2445 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2446 2447 if (q_vector) 2448 q_vector->reg_idx = 0; 2449 } 2450 2451 return -EINVAL; 2452 } 2453 2454 /** 2455 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2456 * @vsi: the VSI being configured 2457 * @tx: bool to determine Tx or Rx rule 2458 * @create: bool to determine create or remove Rule 2459 */ 2460 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2461 { 2462 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2463 enum ice_sw_fwd_act_type act); 2464 struct ice_pf *pf = vsi->back; 2465 struct device *dev; 2466 int status; 2467 2468 dev = ice_pf_to_dev(pf); 2469 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2470 2471 if (tx) { 2472 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2473 ICE_DROP_PACKET); 2474 } else { 2475 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2476 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2477 create); 2478 } else { 2479 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2480 ICE_FWD_TO_VSI); 2481 } 2482 } 2483 2484 if (status) 2485 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2486 create ? "adding" : "removing", tx ? "TX" : "RX", 2487 vsi->vsi_num, status); 2488 } 2489 2490 /** 2491 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2492 * @vsi: pointer to the VSI 2493 * 2494 * This function will allocate new scheduler aggregator now if needed and will 2495 * move specified VSI into it. 2496 */ 2497 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2498 { 2499 struct device *dev = ice_pf_to_dev(vsi->back); 2500 struct ice_agg_node *agg_node_iter = NULL; 2501 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2502 struct ice_agg_node *agg_node = NULL; 2503 int node_offset, max_agg_nodes = 0; 2504 struct ice_port_info *port_info; 2505 struct ice_pf *pf = vsi->back; 2506 u32 agg_node_id_start = 0; 2507 int status; 2508 2509 /* create (as needed) scheduler aggregator node and move VSI into 2510 * corresponding aggregator node 2511 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2512 * - VF aggregator nodes will contain VF VSI 2513 */ 2514 port_info = pf->hw.port_info; 2515 if (!port_info) 2516 return; 2517 2518 switch (vsi->type) { 2519 case ICE_VSI_CTRL: 2520 case ICE_VSI_CHNL: 2521 case ICE_VSI_LB: 2522 case ICE_VSI_PF: 2523 case ICE_VSI_SWITCHDEV_CTRL: 2524 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2525 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2526 agg_node_iter = &pf->pf_agg_node[0]; 2527 break; 2528 case ICE_VSI_VF: 2529 /* user can create 'n' VFs on a given PF, but since max children 2530 * per aggregator node can be only 64. Following code handles 2531 * aggregator(s) for VF VSIs, either selects a agg_node which 2532 * was already created provided num_vsis < 64, otherwise 2533 * select next available node, which will be created 2534 */ 2535 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2536 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2537 agg_node_iter = &pf->vf_agg_node[0]; 2538 break; 2539 default: 2540 /* other VSI type, handle later if needed */ 2541 dev_dbg(dev, "unexpected VSI type %s\n", 2542 ice_vsi_type_str(vsi->type)); 2543 return; 2544 } 2545 2546 /* find the appropriate aggregator node */ 2547 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2548 /* see if we can find space in previously created 2549 * node if num_vsis < 64, otherwise skip 2550 */ 2551 if (agg_node_iter->num_vsis && 2552 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2553 agg_node_iter++; 2554 continue; 2555 } 2556 2557 if (agg_node_iter->valid && 2558 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2559 agg_id = agg_node_iter->agg_id; 2560 agg_node = agg_node_iter; 2561 break; 2562 } 2563 2564 /* find unclaimed agg_id */ 2565 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2566 agg_id = node_offset + agg_node_id_start; 2567 agg_node = agg_node_iter; 2568 break; 2569 } 2570 /* move to next agg_node */ 2571 agg_node_iter++; 2572 } 2573 2574 if (!agg_node) 2575 return; 2576 2577 /* if selected aggregator node was not created, create it */ 2578 if (!agg_node->valid) { 2579 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2580 (u8)vsi->tc_cfg.ena_tc); 2581 if (status) { 2582 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2583 agg_id); 2584 return; 2585 } 2586 /* aggregator node is created, store the needed info */ 2587 agg_node->valid = true; 2588 agg_node->agg_id = agg_id; 2589 } 2590 2591 /* move VSI to corresponding aggregator node */ 2592 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2593 (u8)vsi->tc_cfg.ena_tc); 2594 if (status) { 2595 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2596 vsi->idx, agg_id); 2597 return; 2598 } 2599 2600 /* keep active children count for aggregator node */ 2601 agg_node->num_vsis++; 2602 2603 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2604 * to aggregator node 2605 */ 2606 vsi->agg_node = agg_node; 2607 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2608 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2609 vsi->agg_node->num_vsis); 2610 } 2611 2612 /** 2613 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2614 * @pf: pointer to PF structure 2615 * @vsi: the VSI to free resources for 2616 * 2617 * Check if the VF control VSI resource is still in use. If no VF is using it 2618 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2619 * once no other VF uses it. 2620 */ 2621 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2622 { 2623 struct ice_vf *vf; 2624 unsigned int bkt; 2625 2626 rcu_read_lock(); 2627 ice_for_each_vf_rcu(pf, bkt, vf) { 2628 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2629 rcu_read_unlock(); 2630 return; 2631 } 2632 } 2633 rcu_read_unlock(); 2634 2635 /* No other VFs left that have control VSI. It is now safe to reclaim 2636 * SW interrupts back to the common pool. 2637 */ 2638 ice_free_res(pf->irq_tracker, vsi->base_vector, 2639 ICE_RES_VF_CTRL_VEC_ID); 2640 pf->num_avail_sw_msix += vsi->num_q_vectors; 2641 } 2642 2643 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2644 { 2645 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2646 struct device *dev = ice_pf_to_dev(pf); 2647 int ret, i; 2648 2649 /* configure VSI nodes based on number of queues and TC's */ 2650 ice_for_each_traffic_class(i) { 2651 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2652 continue; 2653 2654 if (vsi->type == ICE_VSI_CHNL) { 2655 if (!vsi->alloc_txq && vsi->num_txq) 2656 max_txqs[i] = vsi->num_txq; 2657 else 2658 max_txqs[i] = pf->num_lan_tx; 2659 } else { 2660 max_txqs[i] = vsi->alloc_txq; 2661 } 2662 } 2663 2664 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2665 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2666 max_txqs); 2667 if (ret) { 2668 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2669 vsi->vsi_num, ret); 2670 return ret; 2671 } 2672 2673 return 0; 2674 } 2675 2676 /** 2677 * ice_vsi_cfg_def - configure default VSI based on the type 2678 * @vsi: pointer to VSI 2679 * @params: the parameters to configure this VSI with 2680 */ 2681 static int 2682 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2683 { 2684 struct device *dev = ice_pf_to_dev(vsi->back); 2685 struct ice_pf *pf = vsi->back; 2686 int ret; 2687 2688 vsi->vsw = pf->first_sw; 2689 2690 ret = ice_vsi_alloc_def(vsi, params->ch); 2691 if (ret) 2692 return ret; 2693 2694 /* allocate memory for Tx/Rx ring stat pointers */ 2695 if (ice_vsi_alloc_stat_arrays(vsi)) 2696 goto unroll_vsi_alloc; 2697 2698 ice_alloc_fd_res(vsi); 2699 2700 if (ice_vsi_get_qs(vsi)) { 2701 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2702 vsi->idx); 2703 goto unroll_vsi_alloc_stat; 2704 } 2705 2706 /* set RSS capabilities */ 2707 ice_vsi_set_rss_params(vsi); 2708 2709 /* set TC configuration */ 2710 ice_vsi_set_tc_cfg(vsi); 2711 2712 /* create the VSI */ 2713 ret = ice_vsi_init(vsi, params->flags); 2714 if (ret) 2715 goto unroll_get_qs; 2716 2717 ice_vsi_init_vlan_ops(vsi); 2718 2719 switch (vsi->type) { 2720 case ICE_VSI_CTRL: 2721 case ICE_VSI_SWITCHDEV_CTRL: 2722 case ICE_VSI_PF: 2723 ret = ice_vsi_alloc_q_vectors(vsi); 2724 if (ret) 2725 goto unroll_vsi_init; 2726 2727 ret = ice_vsi_setup_vector_base(vsi); 2728 if (ret) 2729 goto unroll_alloc_q_vector; 2730 2731 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2732 if (ret) 2733 goto unroll_vector_base; 2734 2735 ret = ice_vsi_alloc_rings(vsi); 2736 if (ret) 2737 goto unroll_vector_base; 2738 2739 ret = ice_vsi_alloc_ring_stats(vsi); 2740 if (ret) 2741 goto unroll_vector_base; 2742 2743 ice_vsi_map_rings_to_vectors(vsi); 2744 if (ice_is_xdp_ena_vsi(vsi)) { 2745 ret = ice_vsi_determine_xdp_res(vsi); 2746 if (ret) 2747 goto unroll_vector_base; 2748 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2749 if (ret) 2750 goto unroll_vector_base; 2751 } 2752 2753 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2754 if (vsi->type != ICE_VSI_CTRL) 2755 /* Do not exit if configuring RSS had an issue, at 2756 * least receive traffic on first queue. Hence no 2757 * need to capture return value 2758 */ 2759 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2760 ice_vsi_cfg_rss_lut_key(vsi); 2761 ice_vsi_set_rss_flow_fld(vsi); 2762 } 2763 ice_init_arfs(vsi); 2764 break; 2765 case ICE_VSI_CHNL: 2766 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2767 ice_vsi_cfg_rss_lut_key(vsi); 2768 ice_vsi_set_rss_flow_fld(vsi); 2769 } 2770 break; 2771 case ICE_VSI_VF: 2772 /* VF driver will take care of creating netdev for this type and 2773 * map queues to vectors through Virtchnl, PF driver only 2774 * creates a VSI and corresponding structures for bookkeeping 2775 * purpose 2776 */ 2777 ret = ice_vsi_alloc_q_vectors(vsi); 2778 if (ret) 2779 goto unroll_vsi_init; 2780 2781 ret = ice_vsi_alloc_rings(vsi); 2782 if (ret) 2783 goto unroll_alloc_q_vector; 2784 2785 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2786 if (ret) 2787 goto unroll_vector_base; 2788 2789 ret = ice_vsi_alloc_ring_stats(vsi); 2790 if (ret) 2791 goto unroll_vector_base; 2792 /* Do not exit if configuring RSS had an issue, at least 2793 * receive traffic on first queue. Hence no need to capture 2794 * return value 2795 */ 2796 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2797 ice_vsi_cfg_rss_lut_key(vsi); 2798 ice_vsi_set_vf_rss_flow_fld(vsi); 2799 } 2800 break; 2801 case ICE_VSI_LB: 2802 ret = ice_vsi_alloc_rings(vsi); 2803 if (ret) 2804 goto unroll_vsi_init; 2805 2806 ret = ice_vsi_alloc_ring_stats(vsi); 2807 if (ret) 2808 goto unroll_vector_base; 2809 2810 break; 2811 default: 2812 /* clean up the resources and exit */ 2813 goto unroll_vsi_init; 2814 } 2815 2816 return 0; 2817 2818 unroll_vector_base: 2819 /* reclaim SW interrupts back to the common pool */ 2820 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2821 pf->num_avail_sw_msix += vsi->num_q_vectors; 2822 unroll_alloc_q_vector: 2823 ice_vsi_free_q_vectors(vsi); 2824 unroll_vsi_init: 2825 ice_vsi_delete_from_hw(vsi); 2826 unroll_get_qs: 2827 ice_vsi_put_qs(vsi); 2828 unroll_vsi_alloc_stat: 2829 ice_vsi_free_stats(vsi); 2830 unroll_vsi_alloc: 2831 ice_vsi_free_arrays(vsi); 2832 return ret; 2833 } 2834 2835 /** 2836 * ice_vsi_cfg - configure a previously allocated VSI 2837 * @vsi: pointer to VSI 2838 * @params: parameters used to configure this VSI 2839 */ 2840 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2841 { 2842 struct ice_pf *pf = vsi->back; 2843 int ret; 2844 2845 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2846 return -EINVAL; 2847 2848 vsi->type = params->type; 2849 vsi->port_info = params->pi; 2850 2851 /* For VSIs which don't have a connected VF, this will be NULL */ 2852 vsi->vf = params->vf; 2853 2854 ret = ice_vsi_cfg_def(vsi, params); 2855 if (ret) 2856 return ret; 2857 2858 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2859 if (ret) 2860 ice_vsi_decfg(vsi); 2861 2862 if (vsi->type == ICE_VSI_CTRL) { 2863 if (vsi->vf) { 2864 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2865 vsi->vf->ctrl_vsi_idx = vsi->idx; 2866 } else { 2867 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2868 pf->ctrl_vsi_idx = vsi->idx; 2869 } 2870 } 2871 2872 return ret; 2873 } 2874 2875 /** 2876 * ice_vsi_decfg - remove all VSI configuration 2877 * @vsi: pointer to VSI 2878 */ 2879 void ice_vsi_decfg(struct ice_vsi *vsi) 2880 { 2881 struct ice_pf *pf = vsi->back; 2882 int err; 2883 2884 /* The Rx rule will only exist to remove if the LLDP FW 2885 * engine is currently stopped 2886 */ 2887 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2888 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2889 ice_cfg_sw_lldp(vsi, false, false); 2890 2891 ice_fltr_remove_all(vsi); 2892 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2893 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2894 if (err) 2895 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2896 vsi->vsi_num, err); 2897 2898 if (ice_is_xdp_ena_vsi(vsi)) 2899 /* return value check can be skipped here, it always returns 2900 * 0 if reset is in progress 2901 */ 2902 ice_destroy_xdp_rings(vsi); 2903 2904 ice_vsi_clear_rings(vsi); 2905 ice_vsi_free_q_vectors(vsi); 2906 ice_vsi_put_qs(vsi); 2907 ice_vsi_free_arrays(vsi); 2908 2909 /* SR-IOV determines needed MSIX resources all at once instead of per 2910 * VSI since when VFs are spawned we know how many VFs there are and how 2911 * many interrupts each VF needs. SR-IOV MSIX resources are also 2912 * cleared in the same manner. 2913 */ 2914 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2915 ice_free_vf_ctrl_res(pf, vsi); 2916 } else if (vsi->type != ICE_VSI_VF) { 2917 /* reclaim SW interrupts back to the common pool */ 2918 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2919 pf->num_avail_sw_msix += vsi->num_q_vectors; 2920 vsi->base_vector = 0; 2921 } 2922 2923 if (vsi->type == ICE_VSI_VF && 2924 vsi->agg_node && vsi->agg_node->valid) 2925 vsi->agg_node->num_vsis--; 2926 if (vsi->agg_node) { 2927 vsi->agg_node->valid = false; 2928 vsi->agg_node->agg_id = 0; 2929 } 2930 } 2931 2932 /** 2933 * ice_vsi_setup - Set up a VSI by a given type 2934 * @pf: board private structure 2935 * @params: parameters to use when creating the VSI 2936 * 2937 * This allocates the sw VSI structure and its queue resources. 2938 * 2939 * Returns pointer to the successfully allocated and configured VSI sw struct on 2940 * success, NULL on failure. 2941 */ 2942 struct ice_vsi * 2943 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2944 { 2945 struct device *dev = ice_pf_to_dev(pf); 2946 struct ice_vsi *vsi; 2947 int ret; 2948 2949 /* ice_vsi_setup can only initialize a new VSI, and we must have 2950 * a port_info structure for it. 2951 */ 2952 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2953 WARN_ON(!params->pi)) 2954 return NULL; 2955 2956 vsi = ice_vsi_alloc(pf); 2957 if (!vsi) { 2958 dev_err(dev, "could not allocate VSI\n"); 2959 return NULL; 2960 } 2961 2962 ret = ice_vsi_cfg(vsi, params); 2963 if (ret) 2964 goto err_vsi_cfg; 2965 2966 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2967 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2968 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2969 * The rule is added once for PF VSI in order to create appropriate 2970 * recipe, since VSI/VSI list is ignored with drop action... 2971 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2972 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2973 * settings in the HW. 2974 */ 2975 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2976 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2977 ICE_DROP_PACKET); 2978 ice_cfg_sw_lldp(vsi, true, true); 2979 } 2980 2981 if (!vsi->agg_node) 2982 ice_set_agg_vsi(vsi); 2983 2984 return vsi; 2985 2986 err_vsi_cfg: 2987 if (params->type == ICE_VSI_VF) 2988 ice_enable_lag(pf->lag); 2989 ice_vsi_free(vsi); 2990 2991 return NULL; 2992 } 2993 2994 /** 2995 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2996 * @vsi: the VSI being cleaned up 2997 */ 2998 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2999 { 3000 struct ice_pf *pf = vsi->back; 3001 struct ice_hw *hw = &pf->hw; 3002 u32 txq = 0; 3003 u32 rxq = 0; 3004 int i, q; 3005 3006 ice_for_each_q_vector(vsi, i) { 3007 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3008 3009 ice_write_intrl(q_vector, 0); 3010 for (q = 0; q < q_vector->num_ring_tx; q++) { 3011 ice_write_itr(&q_vector->tx, 0); 3012 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 3013 if (ice_is_xdp_ena_vsi(vsi)) { 3014 u32 xdp_txq = txq + vsi->num_xdp_txq; 3015 3016 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 3017 } 3018 txq++; 3019 } 3020 3021 for (q = 0; q < q_vector->num_ring_rx; q++) { 3022 ice_write_itr(&q_vector->rx, 0); 3023 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 3024 rxq++; 3025 } 3026 } 3027 3028 ice_flush(hw); 3029 } 3030 3031 /** 3032 * ice_vsi_free_irq - Free the IRQ association with the OS 3033 * @vsi: the VSI being configured 3034 */ 3035 void ice_vsi_free_irq(struct ice_vsi *vsi) 3036 { 3037 struct ice_pf *pf = vsi->back; 3038 int base = vsi->base_vector; 3039 int i; 3040 3041 if (!vsi->q_vectors || !vsi->irqs_ready) 3042 return; 3043 3044 ice_vsi_release_msix(vsi); 3045 if (vsi->type == ICE_VSI_VF) 3046 return; 3047 3048 vsi->irqs_ready = false; 3049 ice_free_cpu_rx_rmap(vsi); 3050 3051 ice_for_each_q_vector(vsi, i) { 3052 u16 vector = i + base; 3053 int irq_num; 3054 3055 irq_num = pf->msix_entries[vector].vector; 3056 3057 /* free only the irqs that were actually requested */ 3058 if (!vsi->q_vectors[i] || 3059 !(vsi->q_vectors[i]->num_ring_tx || 3060 vsi->q_vectors[i]->num_ring_rx)) 3061 continue; 3062 3063 /* clear the affinity notifier in the IRQ descriptor */ 3064 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 3065 irq_set_affinity_notifier(irq_num, NULL); 3066 3067 /* clear the affinity_mask in the IRQ descriptor */ 3068 irq_set_affinity_hint(irq_num, NULL); 3069 synchronize_irq(irq_num); 3070 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 3071 } 3072 } 3073 3074 /** 3075 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 3076 * @vsi: the VSI having resources freed 3077 */ 3078 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 3079 { 3080 int i; 3081 3082 if (!vsi->tx_rings) 3083 return; 3084 3085 ice_for_each_txq(vsi, i) 3086 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3087 ice_free_tx_ring(vsi->tx_rings[i]); 3088 } 3089 3090 /** 3091 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 3092 * @vsi: the VSI having resources freed 3093 */ 3094 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 3095 { 3096 int i; 3097 3098 if (!vsi->rx_rings) 3099 return; 3100 3101 ice_for_each_rxq(vsi, i) 3102 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3103 ice_free_rx_ring(vsi->rx_rings[i]); 3104 } 3105 3106 /** 3107 * ice_vsi_close - Shut down a VSI 3108 * @vsi: the VSI being shut down 3109 */ 3110 void ice_vsi_close(struct ice_vsi *vsi) 3111 { 3112 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 3113 ice_down(vsi); 3114 3115 ice_vsi_free_irq(vsi); 3116 ice_vsi_free_tx_rings(vsi); 3117 ice_vsi_free_rx_rings(vsi); 3118 } 3119 3120 /** 3121 * ice_ena_vsi - resume a VSI 3122 * @vsi: the VSI being resume 3123 * @locked: is the rtnl_lock already held 3124 */ 3125 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 3126 { 3127 int err = 0; 3128 3129 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 3130 return 0; 3131 3132 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3133 3134 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3135 if (netif_running(vsi->netdev)) { 3136 if (!locked) 3137 rtnl_lock(); 3138 3139 err = ice_open_internal(vsi->netdev); 3140 3141 if (!locked) 3142 rtnl_unlock(); 3143 } 3144 } else if (vsi->type == ICE_VSI_CTRL) { 3145 err = ice_vsi_open_ctrl(vsi); 3146 } 3147 3148 return err; 3149 } 3150 3151 /** 3152 * ice_dis_vsi - pause a VSI 3153 * @vsi: the VSI being paused 3154 * @locked: is the rtnl_lock already held 3155 */ 3156 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 3157 { 3158 if (test_bit(ICE_VSI_DOWN, vsi->state)) 3159 return; 3160 3161 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3162 3163 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 3164 if (netif_running(vsi->netdev)) { 3165 if (!locked) 3166 rtnl_lock(); 3167 3168 ice_vsi_close(vsi); 3169 3170 if (!locked) 3171 rtnl_unlock(); 3172 } else { 3173 ice_vsi_close(vsi); 3174 } 3175 } else if (vsi->type == ICE_VSI_CTRL || 3176 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 3177 ice_vsi_close(vsi); 3178 } 3179 } 3180 3181 /** 3182 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 3183 * @vsi: the VSI being un-configured 3184 */ 3185 void ice_vsi_dis_irq(struct ice_vsi *vsi) 3186 { 3187 int base = vsi->base_vector; 3188 struct ice_pf *pf = vsi->back; 3189 struct ice_hw *hw = &pf->hw; 3190 u32 val; 3191 int i; 3192 3193 /* disable interrupt causation from each queue */ 3194 if (vsi->tx_rings) { 3195 ice_for_each_txq(vsi, i) { 3196 if (vsi->tx_rings[i]) { 3197 u16 reg; 3198 3199 reg = vsi->tx_rings[i]->reg_idx; 3200 val = rd32(hw, QINT_TQCTL(reg)); 3201 val &= ~QINT_TQCTL_CAUSE_ENA_M; 3202 wr32(hw, QINT_TQCTL(reg), val); 3203 } 3204 } 3205 } 3206 3207 if (vsi->rx_rings) { 3208 ice_for_each_rxq(vsi, i) { 3209 if (vsi->rx_rings[i]) { 3210 u16 reg; 3211 3212 reg = vsi->rx_rings[i]->reg_idx; 3213 val = rd32(hw, QINT_RQCTL(reg)); 3214 val &= ~QINT_RQCTL_CAUSE_ENA_M; 3215 wr32(hw, QINT_RQCTL(reg), val); 3216 } 3217 } 3218 } 3219 3220 /* disable each interrupt */ 3221 ice_for_each_q_vector(vsi, i) { 3222 if (!vsi->q_vectors[i]) 3223 continue; 3224 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3225 } 3226 3227 ice_flush(hw); 3228 3229 /* don't call synchronize_irq() for VF's from the host */ 3230 if (vsi->type == ICE_VSI_VF) 3231 return; 3232 3233 ice_for_each_q_vector(vsi, i) 3234 synchronize_irq(pf->msix_entries[i + base].vector); 3235 } 3236 3237 /** 3238 * ice_napi_del - Remove NAPI handler for the VSI 3239 * @vsi: VSI for which NAPI handler is to be removed 3240 */ 3241 void ice_napi_del(struct ice_vsi *vsi) 3242 { 3243 int v_idx; 3244 3245 if (!vsi->netdev) 3246 return; 3247 3248 ice_for_each_q_vector(vsi, v_idx) 3249 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3250 } 3251 3252 /** 3253 * ice_vsi_release - Delete a VSI and free its resources 3254 * @vsi: the VSI being removed 3255 * 3256 * Returns 0 on success or < 0 on error 3257 */ 3258 int ice_vsi_release(struct ice_vsi *vsi) 3259 { 3260 struct ice_pf *pf; 3261 3262 if (!vsi->back) 3263 return -ENODEV; 3264 pf = vsi->back; 3265 3266 /* do not unregister while driver is in the reset recovery pending 3267 * state. Since reset/rebuild happens through PF service task workqueue, 3268 * it's not a good idea to unregister netdev that is associated to the 3269 * PF that is running the work queue items currently. This is done to 3270 * avoid check_flush_dependency() warning on this wq 3271 */ 3272 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3273 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3274 unregister_netdev(vsi->netdev); 3275 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3276 } 3277 3278 if (vsi->type == ICE_VSI_PF) 3279 ice_devlink_destroy_pf_port(pf); 3280 3281 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3282 ice_rss_clean(vsi); 3283 3284 ice_vsi_close(vsi); 3285 ice_vsi_decfg(vsi); 3286 3287 if (vsi->netdev) { 3288 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3289 unregister_netdev(vsi->netdev); 3290 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3291 } 3292 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3293 free_netdev(vsi->netdev); 3294 vsi->netdev = NULL; 3295 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3296 } 3297 } 3298 3299 /* retain SW VSI data structure since it is needed to unregister and 3300 * free VSI netdev when PF is not in reset recovery pending state,\ 3301 * for ex: during rmmod. 3302 */ 3303 if (!ice_is_reset_in_progress(pf->state)) 3304 ice_vsi_delete(vsi); 3305 3306 return 0; 3307 } 3308 3309 /** 3310 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3311 * @vsi: VSI connected with q_vectors 3312 * @coalesce: array of struct with stored coalesce 3313 * 3314 * Returns array size. 3315 */ 3316 static int 3317 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3318 struct ice_coalesce_stored *coalesce) 3319 { 3320 int i; 3321 3322 ice_for_each_q_vector(vsi, i) { 3323 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3324 3325 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3326 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3327 coalesce[i].intrl = q_vector->intrl; 3328 3329 if (i < vsi->num_txq) 3330 coalesce[i].tx_valid = true; 3331 if (i < vsi->num_rxq) 3332 coalesce[i].rx_valid = true; 3333 } 3334 3335 return vsi->num_q_vectors; 3336 } 3337 3338 /** 3339 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3340 * @vsi: VSI connected with q_vectors 3341 * @coalesce: pointer to array of struct with stored coalesce 3342 * @size: size of coalesce array 3343 * 3344 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3345 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3346 * to default value. 3347 */ 3348 static void 3349 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3350 struct ice_coalesce_stored *coalesce, int size) 3351 { 3352 struct ice_ring_container *rc; 3353 int i; 3354 3355 if ((size && !coalesce) || !vsi) 3356 return; 3357 3358 /* There are a couple of cases that have to be handled here: 3359 * 1. The case where the number of queue vectors stays the same, but 3360 * the number of Tx or Rx rings changes (the first for loop) 3361 * 2. The case where the number of queue vectors increased (the 3362 * second for loop) 3363 */ 3364 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3365 /* There are 2 cases to handle here and they are the same for 3366 * both Tx and Rx: 3367 * if the entry was valid previously (coalesce[i].[tr]x_valid 3368 * and the loop variable is less than the number of rings 3369 * allocated, then write the previous values 3370 * 3371 * if the entry was not valid previously, but the number of 3372 * rings is less than are allocated (this means the number of 3373 * rings increased from previously), then write out the 3374 * values in the first element 3375 * 3376 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3377 * as there is no harm because the dynamic algorithm 3378 * will just overwrite. 3379 */ 3380 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3381 rc = &vsi->q_vectors[i]->rx; 3382 rc->itr_settings = coalesce[i].itr_rx; 3383 ice_write_itr(rc, rc->itr_setting); 3384 } else if (i < vsi->alloc_rxq) { 3385 rc = &vsi->q_vectors[i]->rx; 3386 rc->itr_settings = coalesce[0].itr_rx; 3387 ice_write_itr(rc, rc->itr_setting); 3388 } 3389 3390 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3391 rc = &vsi->q_vectors[i]->tx; 3392 rc->itr_settings = coalesce[i].itr_tx; 3393 ice_write_itr(rc, rc->itr_setting); 3394 } else if (i < vsi->alloc_txq) { 3395 rc = &vsi->q_vectors[i]->tx; 3396 rc->itr_settings = coalesce[0].itr_tx; 3397 ice_write_itr(rc, rc->itr_setting); 3398 } 3399 3400 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3401 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3402 } 3403 3404 /* the number of queue vectors increased so write whatever is in 3405 * the first element 3406 */ 3407 for (; i < vsi->num_q_vectors; i++) { 3408 /* transmit */ 3409 rc = &vsi->q_vectors[i]->tx; 3410 rc->itr_settings = coalesce[0].itr_tx; 3411 ice_write_itr(rc, rc->itr_setting); 3412 3413 /* receive */ 3414 rc = &vsi->q_vectors[i]->rx; 3415 rc->itr_settings = coalesce[0].itr_rx; 3416 ice_write_itr(rc, rc->itr_setting); 3417 3418 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3419 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3420 } 3421 } 3422 3423 /** 3424 * ice_vsi_realloc_stat_arrays - Frees unused stat structures 3425 * @vsi: VSI pointer 3426 * @prev_txq: Number of Tx rings before ring reallocation 3427 * @prev_rxq: Number of Rx rings before ring reallocation 3428 */ 3429 static int 3430 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq) 3431 { 3432 struct ice_vsi_stats *vsi_stat; 3433 struct ice_pf *pf = vsi->back; 3434 int i; 3435 3436 if (!prev_txq || !prev_rxq) 3437 return 0; 3438 if (vsi->type == ICE_VSI_CHNL) 3439 return 0; 3440 3441 vsi_stat = pf->vsi_stats[vsi->idx]; 3442 3443 if (vsi->num_txq < prev_txq) { 3444 for (i = vsi->num_txq; i < prev_txq; i++) { 3445 if (vsi_stat->tx_ring_stats[i]) { 3446 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3447 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3448 } 3449 } 3450 } 3451 3452 if (vsi->num_rxq < prev_rxq) { 3453 for (i = vsi->num_rxq; i < prev_rxq; i++) { 3454 if (vsi_stat->rx_ring_stats[i]) { 3455 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3456 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3457 } 3458 } 3459 } 3460 3461 return 0; 3462 } 3463 3464 /** 3465 * ice_vsi_rebuild - Rebuild VSI after reset 3466 * @vsi: VSI to be rebuild 3467 * @vsi_flags: flags used for VSI rebuild flow 3468 * 3469 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3470 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3471 * 3472 * Returns 0 on success and negative value on failure 3473 */ 3474 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3475 { 3476 struct ice_vsi_cfg_params params = {}; 3477 struct ice_coalesce_stored *coalesce; 3478 int ret, prev_txq, prev_rxq; 3479 int prev_num_q_vectors = 0; 3480 struct ice_pf *pf; 3481 3482 if (!vsi) 3483 return -EINVAL; 3484 3485 params = ice_vsi_to_params(vsi); 3486 params.flags = vsi_flags; 3487 3488 pf = vsi->back; 3489 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3490 return -EINVAL; 3491 3492 coalesce = kcalloc(vsi->num_q_vectors, 3493 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3494 if (!coalesce) 3495 return -ENOMEM; 3496 3497 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3498 3499 prev_txq = vsi->num_txq; 3500 prev_rxq = vsi->num_rxq; 3501 3502 ice_vsi_decfg(vsi); 3503 ret = ice_vsi_cfg_def(vsi, ¶ms); 3504 if (ret) 3505 goto err_vsi_cfg; 3506 3507 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3508 if (ret) { 3509 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3510 ret = -EIO; 3511 goto err_vsi_cfg_tc_lan; 3512 } else { 3513 kfree(coalesce); 3514 return ice_schedule_reset(pf, ICE_RESET_PFR); 3515 } 3516 } 3517 3518 if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq)) 3519 goto err_vsi_cfg_tc_lan; 3520 3521 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3522 kfree(coalesce); 3523 3524 return 0; 3525 3526 err_vsi_cfg_tc_lan: 3527 ice_vsi_decfg(vsi); 3528 err_vsi_cfg: 3529 kfree(coalesce); 3530 return ret; 3531 } 3532 3533 /** 3534 * ice_is_reset_in_progress - check for a reset in progress 3535 * @state: PF state field 3536 */ 3537 bool ice_is_reset_in_progress(unsigned long *state) 3538 { 3539 return test_bit(ICE_RESET_OICR_RECV, state) || 3540 test_bit(ICE_PFR_REQ, state) || 3541 test_bit(ICE_CORER_REQ, state) || 3542 test_bit(ICE_GLOBR_REQ, state); 3543 } 3544 3545 /** 3546 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3547 * @pf: pointer to the PF structure 3548 * @timeout: length of time to wait, in jiffies 3549 * 3550 * Wait (sleep) for a short time until the driver finishes cleaning up from 3551 * a device reset. The caller must be able to sleep. Use this to delay 3552 * operations that could fail while the driver is cleaning up after a device 3553 * reset. 3554 * 3555 * Returns 0 on success, -EBUSY if the reset is not finished within the 3556 * timeout, and -ERESTARTSYS if the thread was interrupted. 3557 */ 3558 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3559 { 3560 long ret; 3561 3562 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3563 !ice_is_reset_in_progress(pf->state), 3564 timeout); 3565 if (ret < 0) 3566 return ret; 3567 else if (!ret) 3568 return -EBUSY; 3569 else 3570 return 0; 3571 } 3572 3573 /** 3574 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3575 * @vsi: VSI being configured 3576 * @ctx: the context buffer returned from AQ VSI update command 3577 */ 3578 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3579 { 3580 vsi->info.mapping_flags = ctx->info.mapping_flags; 3581 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3582 sizeof(vsi->info.q_mapping)); 3583 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3584 sizeof(vsi->info.tc_mapping)); 3585 } 3586 3587 /** 3588 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3589 * @vsi: the VSI being configured 3590 * @ena_tc: TC map to be enabled 3591 */ 3592 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3593 { 3594 struct net_device *netdev = vsi->netdev; 3595 struct ice_pf *pf = vsi->back; 3596 int numtc = vsi->tc_cfg.numtc; 3597 struct ice_dcbx_cfg *dcbcfg; 3598 u8 netdev_tc; 3599 int i; 3600 3601 if (!netdev) 3602 return; 3603 3604 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3605 if (vsi->type == ICE_VSI_CHNL) 3606 return; 3607 3608 if (!ena_tc) { 3609 netdev_reset_tc(netdev); 3610 return; 3611 } 3612 3613 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3614 numtc = vsi->all_numtc; 3615 3616 if (netdev_set_num_tc(netdev, numtc)) 3617 return; 3618 3619 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3620 3621 ice_for_each_traffic_class(i) 3622 if (vsi->tc_cfg.ena_tc & BIT(i)) 3623 netdev_set_tc_queue(netdev, 3624 vsi->tc_cfg.tc_info[i].netdev_tc, 3625 vsi->tc_cfg.tc_info[i].qcount_tx, 3626 vsi->tc_cfg.tc_info[i].qoffset); 3627 /* setup TC queue map for CHNL TCs */ 3628 ice_for_each_chnl_tc(i) { 3629 if (!(vsi->all_enatc & BIT(i))) 3630 break; 3631 if (!vsi->mqprio_qopt.qopt.count[i]) 3632 break; 3633 netdev_set_tc_queue(netdev, i, 3634 vsi->mqprio_qopt.qopt.count[i], 3635 vsi->mqprio_qopt.qopt.offset[i]); 3636 } 3637 3638 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3639 return; 3640 3641 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3642 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3643 3644 /* Get the mapped netdev TC# for the UP */ 3645 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3646 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3647 } 3648 } 3649 3650 /** 3651 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3652 * @vsi: the VSI being configured, 3653 * @ctxt: VSI context structure 3654 * @ena_tc: number of traffic classes to enable 3655 * 3656 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3657 */ 3658 static int 3659 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3660 u8 ena_tc) 3661 { 3662 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3663 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3664 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3665 u16 new_txq, new_rxq; 3666 u8 netdev_tc = 0; 3667 int i; 3668 3669 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3670 3671 pow = order_base_2(tc0_qcount); 3672 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3673 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3674 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3675 3676 ice_for_each_traffic_class(i) { 3677 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3678 /* TC is not enabled */ 3679 vsi->tc_cfg.tc_info[i].qoffset = 0; 3680 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3681 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3682 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3683 ctxt->info.tc_mapping[i] = 0; 3684 continue; 3685 } 3686 3687 offset = vsi->mqprio_qopt.qopt.offset[i]; 3688 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3689 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3690 vsi->tc_cfg.tc_info[i].qoffset = offset; 3691 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3692 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3693 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3694 } 3695 3696 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3697 ice_for_each_chnl_tc(i) { 3698 if (!(vsi->all_enatc & BIT(i))) 3699 continue; 3700 offset = vsi->mqprio_qopt.qopt.offset[i]; 3701 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3702 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3703 } 3704 } 3705 3706 new_txq = offset + qcount_tx; 3707 if (new_txq > vsi->alloc_txq) { 3708 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3709 new_txq, vsi->alloc_txq); 3710 return -EINVAL; 3711 } 3712 3713 new_rxq = offset + qcount_rx; 3714 if (new_rxq > vsi->alloc_rxq) { 3715 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3716 new_rxq, vsi->alloc_rxq); 3717 return -EINVAL; 3718 } 3719 3720 /* Set actual Tx/Rx queue pairs */ 3721 vsi->num_txq = new_txq; 3722 vsi->num_rxq = new_rxq; 3723 3724 /* Setup queue TC[0].qmap for given VSI context */ 3725 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3726 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3727 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3728 3729 /* Find queue count available for channel VSIs and starting offset 3730 * for channel VSIs 3731 */ 3732 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3733 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3734 vsi->next_base_q = tc0_qcount; 3735 } 3736 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3737 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3738 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3739 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3740 3741 return 0; 3742 } 3743 3744 /** 3745 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3746 * @vsi: VSI to be configured 3747 * @ena_tc: TC bitmap 3748 * 3749 * VSI queues expected to be quiesced before calling this function 3750 */ 3751 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3752 { 3753 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3754 struct ice_pf *pf = vsi->back; 3755 struct ice_tc_cfg old_tc_cfg; 3756 struct ice_vsi_ctx *ctx; 3757 struct device *dev; 3758 int i, ret = 0; 3759 u8 num_tc = 0; 3760 3761 dev = ice_pf_to_dev(pf); 3762 if (vsi->tc_cfg.ena_tc == ena_tc && 3763 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3764 return ret; 3765 3766 ice_for_each_traffic_class(i) { 3767 /* build bitmap of enabled TCs */ 3768 if (ena_tc & BIT(i)) 3769 num_tc++; 3770 /* populate max_txqs per TC */ 3771 max_txqs[i] = vsi->alloc_txq; 3772 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3773 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3774 */ 3775 if (vsi->type == ICE_VSI_CHNL && 3776 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3777 max_txqs[i] = vsi->num_txq; 3778 } 3779 3780 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3781 vsi->tc_cfg.ena_tc = ena_tc; 3782 vsi->tc_cfg.numtc = num_tc; 3783 3784 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3785 if (!ctx) 3786 return -ENOMEM; 3787 3788 ctx->vf_num = 0; 3789 ctx->info = vsi->info; 3790 3791 if (vsi->type == ICE_VSI_PF && 3792 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3793 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3794 else 3795 ret = ice_vsi_setup_q_map(vsi, ctx); 3796 3797 if (ret) { 3798 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3799 goto out; 3800 } 3801 3802 /* must to indicate which section of VSI context are being modified */ 3803 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3804 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3805 if (ret) { 3806 dev_info(dev, "Failed VSI Update\n"); 3807 goto out; 3808 } 3809 3810 if (vsi->type == ICE_VSI_PF && 3811 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3812 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3813 else 3814 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3815 vsi->tc_cfg.ena_tc, max_txqs); 3816 3817 if (ret) { 3818 dev_err(dev, "VSI %d failed TC config, error %d\n", 3819 vsi->vsi_num, ret); 3820 goto out; 3821 } 3822 ice_vsi_update_q_map(vsi, ctx); 3823 vsi->info.valid_sections = 0; 3824 3825 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3826 out: 3827 kfree(ctx); 3828 return ret; 3829 } 3830 3831 /** 3832 * ice_update_ring_stats - Update ring statistics 3833 * @stats: stats to be updated 3834 * @pkts: number of processed packets 3835 * @bytes: number of processed bytes 3836 * 3837 * This function assumes that caller has acquired a u64_stats_sync lock. 3838 */ 3839 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3840 { 3841 stats->bytes += bytes; 3842 stats->pkts += pkts; 3843 } 3844 3845 /** 3846 * ice_update_tx_ring_stats - Update Tx ring specific counters 3847 * @tx_ring: ring to update 3848 * @pkts: number of processed packets 3849 * @bytes: number of processed bytes 3850 */ 3851 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3852 { 3853 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3854 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3855 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3856 } 3857 3858 /** 3859 * ice_update_rx_ring_stats - Update Rx ring specific counters 3860 * @rx_ring: ring to update 3861 * @pkts: number of processed packets 3862 * @bytes: number of processed bytes 3863 */ 3864 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3865 { 3866 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3867 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3868 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3869 } 3870 3871 /** 3872 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3873 * @pi: port info of the switch with default VSI 3874 * 3875 * Return true if the there is a single VSI in default forwarding VSI list 3876 */ 3877 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3878 { 3879 bool exists = false; 3880 3881 ice_check_if_dflt_vsi(pi, 0, &exists); 3882 return exists; 3883 } 3884 3885 /** 3886 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3887 * @vsi: VSI to compare against default forwarding VSI 3888 * 3889 * If this VSI passed in is the default forwarding VSI then return true, else 3890 * return false 3891 */ 3892 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3893 { 3894 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3895 } 3896 3897 /** 3898 * ice_set_dflt_vsi - set the default forwarding VSI 3899 * @vsi: VSI getting set as the default forwarding VSI on the switch 3900 * 3901 * If the VSI passed in is already the default VSI and it's enabled just return 3902 * success. 3903 * 3904 * Otherwise try to set the VSI passed in as the switch's default VSI and 3905 * return the result. 3906 */ 3907 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3908 { 3909 struct device *dev; 3910 int status; 3911 3912 if (!vsi) 3913 return -EINVAL; 3914 3915 dev = ice_pf_to_dev(vsi->back); 3916 3917 /* the VSI passed in is already the default VSI */ 3918 if (ice_is_vsi_dflt_vsi(vsi)) { 3919 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3920 vsi->vsi_num); 3921 return 0; 3922 } 3923 3924 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3925 if (status) { 3926 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3927 vsi->vsi_num, status); 3928 return status; 3929 } 3930 3931 return 0; 3932 } 3933 3934 /** 3935 * ice_clear_dflt_vsi - clear the default forwarding VSI 3936 * @vsi: VSI to remove from filter list 3937 * 3938 * If the switch has no default VSI or it's not enabled then return error. 3939 * 3940 * Otherwise try to clear the default VSI and return the result. 3941 */ 3942 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3943 { 3944 struct device *dev; 3945 int status; 3946 3947 if (!vsi) 3948 return -EINVAL; 3949 3950 dev = ice_pf_to_dev(vsi->back); 3951 3952 /* there is no default VSI configured */ 3953 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3954 return -ENODEV; 3955 3956 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3957 ICE_FLTR_RX); 3958 if (status) { 3959 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3960 vsi->vsi_num, status); 3961 return -EIO; 3962 } 3963 3964 return 0; 3965 } 3966 3967 /** 3968 * ice_get_link_speed_mbps - get link speed in Mbps 3969 * @vsi: the VSI whose link speed is being queried 3970 * 3971 * Return current VSI link speed and 0 if the speed is unknown. 3972 */ 3973 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3974 { 3975 unsigned int link_speed; 3976 3977 link_speed = vsi->port_info->phy.link_info.link_speed; 3978 3979 return (int)ice_get_link_speed(fls(link_speed) - 1); 3980 } 3981 3982 /** 3983 * ice_get_link_speed_kbps - get link speed in Kbps 3984 * @vsi: the VSI whose link speed is being queried 3985 * 3986 * Return current VSI link speed and 0 if the speed is unknown. 3987 */ 3988 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3989 { 3990 int speed_mbps; 3991 3992 speed_mbps = ice_get_link_speed_mbps(vsi); 3993 3994 return speed_mbps * 1000; 3995 } 3996 3997 /** 3998 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3999 * @vsi: VSI to be configured 4000 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 4001 * 4002 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 4003 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 4004 * on TC 0. 4005 */ 4006 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 4007 { 4008 struct ice_pf *pf = vsi->back; 4009 struct device *dev; 4010 int status; 4011 int speed; 4012 4013 dev = ice_pf_to_dev(pf); 4014 if (!vsi->port_info) { 4015 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4016 vsi->idx, vsi->type); 4017 return -EINVAL; 4018 } 4019 4020 speed = ice_get_link_speed_kbps(vsi); 4021 if (min_tx_rate > (u64)speed) { 4022 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4023 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4024 speed); 4025 return -EINVAL; 4026 } 4027 4028 /* Configure min BW for VSI limit */ 4029 if (min_tx_rate) { 4030 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4031 ICE_MIN_BW, min_tx_rate); 4032 if (status) { 4033 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4034 min_tx_rate, ice_vsi_type_str(vsi->type), 4035 vsi->idx); 4036 return status; 4037 } 4038 4039 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4040 min_tx_rate, ice_vsi_type_str(vsi->type)); 4041 } else { 4042 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4043 vsi->idx, 0, 4044 ICE_MIN_BW); 4045 if (status) { 4046 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4047 ice_vsi_type_str(vsi->type), vsi->idx); 4048 return status; 4049 } 4050 4051 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4052 ice_vsi_type_str(vsi->type), vsi->idx); 4053 } 4054 4055 return 0; 4056 } 4057 4058 /** 4059 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4060 * @vsi: VSI to be configured 4061 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4062 * 4063 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4064 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4065 * on TC 0. 4066 */ 4067 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4068 { 4069 struct ice_pf *pf = vsi->back; 4070 struct device *dev; 4071 int status; 4072 int speed; 4073 4074 dev = ice_pf_to_dev(pf); 4075 if (!vsi->port_info) { 4076 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4077 vsi->idx, vsi->type); 4078 return -EINVAL; 4079 } 4080 4081 speed = ice_get_link_speed_kbps(vsi); 4082 if (max_tx_rate > (u64)speed) { 4083 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4084 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4085 speed); 4086 return -EINVAL; 4087 } 4088 4089 /* Configure max BW for VSI limit */ 4090 if (max_tx_rate) { 4091 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4092 ICE_MAX_BW, max_tx_rate); 4093 if (status) { 4094 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4095 max_tx_rate, ice_vsi_type_str(vsi->type), 4096 vsi->idx); 4097 return status; 4098 } 4099 4100 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4101 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4102 } else { 4103 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4104 vsi->idx, 0, 4105 ICE_MAX_BW); 4106 if (status) { 4107 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4108 ice_vsi_type_str(vsi->type), vsi->idx); 4109 return status; 4110 } 4111 4112 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4113 ice_vsi_type_str(vsi->type), vsi->idx); 4114 } 4115 4116 return 0; 4117 } 4118 4119 /** 4120 * ice_set_link - turn on/off physical link 4121 * @vsi: VSI to modify physical link on 4122 * @ena: turn on/off physical link 4123 */ 4124 int ice_set_link(struct ice_vsi *vsi, bool ena) 4125 { 4126 struct device *dev = ice_pf_to_dev(vsi->back); 4127 struct ice_port_info *pi = vsi->port_info; 4128 struct ice_hw *hw = pi->hw; 4129 int status; 4130 4131 if (vsi->type != ICE_VSI_PF) 4132 return -EINVAL; 4133 4134 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4135 4136 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4137 * this is not a fatal error, so print a warning message and return 4138 * a success code. Return an error if FW returns an error code other 4139 * than ICE_AQ_RC_EMODE 4140 */ 4141 if (status == -EIO) { 4142 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4143 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4144 (ena ? "ON" : "OFF"), status, 4145 ice_aq_str(hw->adminq.sq_last_status)); 4146 } else if (status) { 4147 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4148 (ena ? "ON" : "OFF"), status, 4149 ice_aq_str(hw->adminq.sq_last_status)); 4150 return status; 4151 } 4152 4153 return 0; 4154 } 4155 4156 /** 4157 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4158 * @vsi: VSI used to add VLAN filters 4159 * 4160 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4161 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4162 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4163 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4164 * 4165 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4166 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4167 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4168 * 4169 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4170 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4171 * part of filtering. 4172 */ 4173 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4174 { 4175 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4176 struct ice_vlan vlan; 4177 int err; 4178 4179 vlan = ICE_VLAN(0, 0, 0); 4180 err = vlan_ops->add_vlan(vsi, &vlan); 4181 if (err && err != -EEXIST) 4182 return err; 4183 4184 /* in SVM both VLAN 0 filters are identical */ 4185 if (!ice_is_dvm_ena(&vsi->back->hw)) 4186 return 0; 4187 4188 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4189 err = vlan_ops->add_vlan(vsi, &vlan); 4190 if (err && err != -EEXIST) 4191 return err; 4192 4193 return 0; 4194 } 4195 4196 /** 4197 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4198 * @vsi: VSI used to add VLAN filters 4199 * 4200 * Delete the VLAN 0 filters in the same manner that they were added in 4201 * ice_vsi_add_vlan_zero. 4202 */ 4203 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4204 { 4205 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4206 struct ice_vlan vlan; 4207 int err; 4208 4209 vlan = ICE_VLAN(0, 0, 0); 4210 err = vlan_ops->del_vlan(vsi, &vlan); 4211 if (err && err != -EEXIST) 4212 return err; 4213 4214 /* in SVM both VLAN 0 filters are identical */ 4215 if (!ice_is_dvm_ena(&vsi->back->hw)) 4216 return 0; 4217 4218 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4219 err = vlan_ops->del_vlan(vsi, &vlan); 4220 if (err && err != -EEXIST) 4221 return err; 4222 4223 /* when deleting the last VLAN filter, make sure to disable the VLAN 4224 * promisc mode so the filter isn't left by accident 4225 */ 4226 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4227 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4228 } 4229 4230 /** 4231 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4232 * @vsi: VSI used to get the VLAN mode 4233 * 4234 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4235 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4236 */ 4237 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4238 { 4239 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4240 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4241 /* no VLAN 0 filter is created when a port VLAN is active */ 4242 if (vsi->type == ICE_VSI_VF) { 4243 if (WARN_ON(!vsi->vf)) 4244 return 0; 4245 4246 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4247 return 0; 4248 } 4249 4250 if (ice_is_dvm_ena(&vsi->back->hw)) 4251 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4252 else 4253 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4254 } 4255 4256 /** 4257 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4258 * @vsi: VSI used to determine if any non-zero VLANs have been added 4259 */ 4260 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4261 { 4262 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4263 } 4264 4265 /** 4266 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4267 * @vsi: VSI used to get the number of non-zero VLANs added 4268 */ 4269 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4270 { 4271 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4272 } 4273 4274 /** 4275 * ice_is_feature_supported 4276 * @pf: pointer to the struct ice_pf instance 4277 * @f: feature enum to be checked 4278 * 4279 * returns true if feature is supported, false otherwise 4280 */ 4281 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4282 { 4283 if (f < 0 || f >= ICE_F_MAX) 4284 return false; 4285 4286 return test_bit(f, pf->features); 4287 } 4288 4289 /** 4290 * ice_set_feature_support 4291 * @pf: pointer to the struct ice_pf instance 4292 * @f: feature enum to set 4293 */ 4294 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4295 { 4296 if (f < 0 || f >= ICE_F_MAX) 4297 return; 4298 4299 set_bit(f, pf->features); 4300 } 4301 4302 /** 4303 * ice_clear_feature_support 4304 * @pf: pointer to the struct ice_pf instance 4305 * @f: feature enum to clear 4306 */ 4307 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4308 { 4309 if (f < 0 || f >= ICE_F_MAX) 4310 return; 4311 4312 clear_bit(f, pf->features); 4313 } 4314 4315 /** 4316 * ice_init_feature_support 4317 * @pf: pointer to the struct ice_pf instance 4318 * 4319 * called during init to setup supported feature 4320 */ 4321 void ice_init_feature_support(struct ice_pf *pf) 4322 { 4323 switch (pf->hw.device_id) { 4324 case ICE_DEV_ID_E810C_BACKPLANE: 4325 case ICE_DEV_ID_E810C_QSFP: 4326 case ICE_DEV_ID_E810C_SFP: 4327 ice_set_feature_support(pf, ICE_F_DSCP); 4328 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4329 if (ice_is_e810t(&pf->hw)) { 4330 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4331 if (ice_gnss_is_gps_present(&pf->hw)) 4332 ice_set_feature_support(pf, ICE_F_GNSS); 4333 } 4334 break; 4335 default: 4336 break; 4337 } 4338 } 4339 4340 /** 4341 * ice_vsi_update_security - update security block in VSI 4342 * @vsi: pointer to VSI structure 4343 * @fill: function pointer to fill ctx 4344 */ 4345 int 4346 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4347 { 4348 struct ice_vsi_ctx ctx = { 0 }; 4349 4350 ctx.info = vsi->info; 4351 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4352 fill(&ctx); 4353 4354 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4355 return -ENODEV; 4356 4357 vsi->info = ctx.info; 4358 return 0; 4359 } 4360 4361 /** 4362 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4363 * @ctx: pointer to VSI ctx structure 4364 */ 4365 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4366 { 4367 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4368 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4369 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4370 } 4371 4372 /** 4373 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4374 * @ctx: pointer to VSI ctx structure 4375 */ 4376 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4377 { 4378 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4379 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4380 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4381 } 4382 4383 /** 4384 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4385 * @ctx: pointer to VSI ctx structure 4386 */ 4387 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4388 { 4389 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4390 } 4391 4392 /** 4393 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4394 * @ctx: pointer to VSI ctx structure 4395 */ 4396 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4397 { 4398 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4399 } 4400