1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 7 /** 8 * ice_setup_rx_ctx - Configure a receive ring context 9 * @ring: The Rx ring to configure 10 * 11 * Configure the Rx descriptor ring in RLAN context. 12 */ 13 static int ice_setup_rx_ctx(struct ice_ring *ring) 14 { 15 struct ice_vsi *vsi = ring->vsi; 16 struct ice_hw *hw = &vsi->back->hw; 17 u32 rxdid = ICE_RXDID_FLEX_NIC; 18 struct ice_rlan_ctx rlan_ctx; 19 u32 regval; 20 u16 pf_q; 21 int err; 22 23 /* what is RX queue number in global space of 2K Rx queues */ 24 pf_q = vsi->rxq_map[ring->q_index]; 25 26 /* clear the context structure first */ 27 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 28 29 rlan_ctx.base = ring->dma >> 7; 30 31 rlan_ctx.qlen = ring->count; 32 33 /* Receive Packet Data Buffer Size. 34 * The Packet Data Buffer Size is defined in 128 byte units. 35 */ 36 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 37 38 /* use 32 byte descriptors */ 39 rlan_ctx.dsize = 1; 40 41 /* Strip the Ethernet CRC bytes before the packet is posted to host 42 * memory. 43 */ 44 rlan_ctx.crcstrip = 1; 45 46 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 47 rlan_ctx.l2tsel = 1; 48 49 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 50 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 51 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 52 53 /* This controls whether VLAN is stripped from inner headers 54 * The VLAN in the inner L2 header is stripped to the receive 55 * descriptor if enabled by this flag. 56 */ 57 rlan_ctx.showiv = 0; 58 59 /* Max packet size for this queue - must not be set to a larger value 60 * than 5 x DBUF 61 */ 62 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 63 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 64 65 /* Rx queue threshold in units of 64 */ 66 rlan_ctx.lrxqthresh = 1; 67 68 /* Enable Flexible Descriptors in the queue context which 69 * allows this driver to select a specific receive descriptor format 70 */ 71 if (vsi->type != ICE_VSI_VF) { 72 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 73 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 74 QRXFLXP_CNTXT_RXDID_IDX_M; 75 76 /* increasing context priority to pick up profile id; 77 * default is 0x01; setting to 0x03 to ensure profile 78 * is programming if prev context is of same priority 79 */ 80 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 81 QRXFLXP_CNTXT_RXDID_PRIO_M; 82 83 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 84 } 85 86 /* Absolute queue number out of 2K needs to be passed */ 87 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 88 if (err) { 89 dev_err(&vsi->back->pdev->dev, 90 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 91 pf_q, err); 92 return -EIO; 93 } 94 95 if (vsi->type == ICE_VSI_VF) 96 return 0; 97 98 /* init queue specific tail register */ 99 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 100 writel(0, ring->tail); 101 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 102 103 return 0; 104 } 105 106 /** 107 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 108 * @ring: The Tx ring to configure 109 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 110 * @pf_q: queue index in the PF space 111 * 112 * Configure the Tx descriptor ring in TLAN context. 113 */ 114 static void 115 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 116 { 117 struct ice_vsi *vsi = ring->vsi; 118 struct ice_hw *hw = &vsi->back->hw; 119 120 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 121 122 tlan_ctx->port_num = vsi->port_info->lport; 123 124 /* Transmit Queue Length */ 125 tlan_ctx->qlen = ring->count; 126 127 /* PF number */ 128 tlan_ctx->pf_num = hw->pf_id; 129 130 /* queue belongs to a specific VSI type 131 * VF / VM index should be programmed per vmvf_type setting: 132 * for vmvf_type = VF, it is VF number between 0-256 133 * for vmvf_type = VM, it is VM number between 0-767 134 * for PF or EMP this field should be set to zero 135 */ 136 switch (vsi->type) { 137 case ICE_VSI_PF: 138 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 139 break; 140 case ICE_VSI_VF: 141 /* Firmware expects vmvf_num to be absolute VF id */ 142 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 144 break; 145 default: 146 return; 147 } 148 149 /* make sure the context is associated with the right VSI */ 150 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 151 152 tlan_ctx->tso_ena = ICE_TX_LEGACY; 153 tlan_ctx->tso_qnum = pf_q; 154 155 /* Legacy or Advanced Host Interface: 156 * 0: Advanced Host Interface 157 * 1: Legacy Host Interface 158 */ 159 tlan_ctx->legacy_int = ICE_TX_LEGACY; 160 } 161 162 /** 163 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 164 * @pf: the PF being configured 165 * @pf_q: the PF queue 166 * @ena: enable or disable state of the queue 167 * 168 * This routine will wait for the given Rx queue of the PF to reach the 169 * enabled or disabled state. 170 * Returns -ETIMEDOUT in case of failing to reach the requested state after 171 * multiple retries; else will return 0 in case of success. 172 */ 173 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 174 { 175 int i; 176 177 for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) { 178 u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q)); 179 180 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 181 break; 182 183 usleep_range(10, 20); 184 } 185 if (i >= ICE_Q_WAIT_RETRY_LIMIT) 186 return -ETIMEDOUT; 187 188 return 0; 189 } 190 191 /** 192 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 193 * @vsi: the VSI being configured 194 * @ena: start or stop the Rx rings 195 */ 196 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 197 { 198 struct ice_pf *pf = vsi->back; 199 struct ice_hw *hw = &pf->hw; 200 int i, j, ret = 0; 201 202 for (i = 0; i < vsi->num_rxq; i++) { 203 int pf_q = vsi->rxq_map[i]; 204 u32 rx_reg; 205 206 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { 207 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 208 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == 209 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) 210 break; 211 usleep_range(1000, 2000); 212 } 213 214 /* Skip if the queue is already in the requested state */ 215 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 216 continue; 217 218 /* turn on/off the queue */ 219 if (ena) 220 rx_reg |= QRX_CTRL_QENA_REQ_M; 221 else 222 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 223 wr32(hw, QRX_CTRL(pf_q), rx_reg); 224 225 /* wait for the change to finish */ 226 ret = ice_pf_rxq_wait(pf, pf_q, ena); 227 if (ret) { 228 dev_err(&pf->pdev->dev, 229 "VSI idx %d Rx ring %d %sable timeout\n", 230 vsi->idx, pf_q, (ena ? "en" : "dis")); 231 break; 232 } 233 } 234 235 return ret; 236 } 237 238 /** 239 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 240 * @vsi: VSI pointer 241 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 242 * 243 * On error: returns error code (negative) 244 * On success: returns 0 245 */ 246 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) 247 { 248 struct ice_pf *pf = vsi->back; 249 250 /* allocate memory for both Tx and Rx ring pointers */ 251 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 252 sizeof(struct ice_ring *), GFP_KERNEL); 253 if (!vsi->tx_rings) 254 goto err_txrings; 255 256 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 257 sizeof(struct ice_ring *), GFP_KERNEL); 258 if (!vsi->rx_rings) 259 goto err_rxrings; 260 261 if (alloc_qvectors) { 262 /* allocate memory for q_vector pointers */ 263 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, 264 vsi->num_q_vectors, 265 sizeof(struct ice_q_vector *), 266 GFP_KERNEL); 267 if (!vsi->q_vectors) 268 goto err_vectors; 269 } 270 271 return 0; 272 273 err_vectors: 274 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 275 err_rxrings: 276 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 277 err_txrings: 278 return -ENOMEM; 279 } 280 281 /** 282 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI 283 * @vsi: the VSI being configured 284 * 285 * Return 0 on success and a negative value on error 286 */ 287 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 288 { 289 struct ice_pf *pf = vsi->back; 290 291 switch (vsi->type) { 292 case ICE_VSI_PF: 293 vsi->alloc_txq = pf->num_lan_tx; 294 vsi->alloc_rxq = pf->num_lan_rx; 295 vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE); 296 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); 297 break; 298 case ICE_VSI_VF: 299 vsi->alloc_txq = pf->num_vf_qps; 300 vsi->alloc_rxq = pf->num_vf_qps; 301 /* pf->num_vf_msix includes (VF miscellaneous vector + 302 * data queue interrupts). Since vsi->num_q_vectors is number 303 * of queues vectors, subtract 1 from the original vector 304 * count 305 */ 306 vsi->num_q_vectors = pf->num_vf_msix - 1; 307 break; 308 default: 309 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 310 vsi->type); 311 break; 312 } 313 } 314 315 /** 316 * ice_get_free_slot - get the next non-NULL location index in array 317 * @array: array to search 318 * @size: size of the array 319 * @curr: last known occupied index to be used as a search hint 320 * 321 * void * is being used to keep the functionality generic. This lets us use this 322 * function on any array of pointers. 323 */ 324 static int ice_get_free_slot(void *array, int size, int curr) 325 { 326 int **tmp_array = (int **)array; 327 int next; 328 329 if (curr < (size - 1) && !tmp_array[curr + 1]) { 330 next = curr + 1; 331 } else { 332 int i = 0; 333 334 while ((i < size) && (tmp_array[i])) 335 i++; 336 if (i == size) 337 next = ICE_NO_VSI; 338 else 339 next = i; 340 } 341 return next; 342 } 343 344 /** 345 * ice_vsi_delete - delete a VSI from the switch 346 * @vsi: pointer to VSI being removed 347 */ 348 void ice_vsi_delete(struct ice_vsi *vsi) 349 { 350 struct ice_pf *pf = vsi->back; 351 struct ice_vsi_ctx ctxt; 352 enum ice_status status; 353 354 if (vsi->type == ICE_VSI_VF) 355 ctxt.vf_num = vsi->vf_id; 356 ctxt.vsi_num = vsi->vsi_num; 357 358 memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props)); 359 360 status = ice_free_vsi(&pf->hw, vsi->idx, &ctxt, false, NULL); 361 if (status) 362 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 363 vsi->vsi_num); 364 } 365 366 /** 367 * ice_vsi_free_arrays - clean up VSI resources 368 * @vsi: pointer to VSI being cleared 369 * @free_qvectors: bool to specify if q_vectors should be deallocated 370 */ 371 static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) 372 { 373 struct ice_pf *pf = vsi->back; 374 375 /* free the ring and vector containers */ 376 if (free_qvectors && vsi->q_vectors) { 377 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 378 vsi->q_vectors = NULL; 379 } 380 if (vsi->tx_rings) { 381 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 382 vsi->tx_rings = NULL; 383 } 384 if (vsi->rx_rings) { 385 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 386 vsi->rx_rings = NULL; 387 } 388 } 389 390 /** 391 * ice_vsi_clear - clean up and deallocate the provided VSI 392 * @vsi: pointer to VSI being cleared 393 * 394 * This deallocates the VSI's queue resources, removes it from the PF's 395 * VSI array if necessary, and deallocates the VSI 396 * 397 * Returns 0 on success, negative on failure 398 */ 399 int ice_vsi_clear(struct ice_vsi *vsi) 400 { 401 struct ice_pf *pf = NULL; 402 403 if (!vsi) 404 return 0; 405 406 if (!vsi->back) 407 return -EINVAL; 408 409 pf = vsi->back; 410 411 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 412 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 413 vsi->idx); 414 return -EINVAL; 415 } 416 417 mutex_lock(&pf->sw_mutex); 418 /* updates the PF for this cleared VSI */ 419 420 pf->vsi[vsi->idx] = NULL; 421 if (vsi->idx < pf->next_vsi) 422 pf->next_vsi = vsi->idx; 423 424 ice_vsi_free_arrays(vsi, true); 425 mutex_unlock(&pf->sw_mutex); 426 devm_kfree(&pf->pdev->dev, vsi); 427 428 return 0; 429 } 430 431 /** 432 * ice_msix_clean_rings - MSIX mode Interrupt Handler 433 * @irq: interrupt number 434 * @data: pointer to a q_vector 435 */ 436 irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 437 { 438 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 439 440 if (!q_vector->tx.ring && !q_vector->rx.ring) 441 return IRQ_HANDLED; 442 443 napi_schedule(&q_vector->napi); 444 445 return IRQ_HANDLED; 446 } 447 448 /** 449 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 450 * @pf: board private structure 451 * @type: type of VSI 452 * 453 * returns a pointer to a VSI on success, NULL on failure. 454 */ 455 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type) 456 { 457 struct ice_vsi *vsi = NULL; 458 459 /* Need to protect the allocation of the VSIs at the PF level */ 460 mutex_lock(&pf->sw_mutex); 461 462 /* If we have already allocated our maximum number of VSIs, 463 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 464 * is available to be populated 465 */ 466 if (pf->next_vsi == ICE_NO_VSI) { 467 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 468 goto unlock_pf; 469 } 470 471 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 472 if (!vsi) 473 goto unlock_pf; 474 475 vsi->type = type; 476 vsi->back = pf; 477 set_bit(__ICE_DOWN, vsi->state); 478 vsi->idx = pf->next_vsi; 479 vsi->work_lmt = ICE_DFLT_IRQ_WORK; 480 481 ice_vsi_set_num_qs(vsi); 482 483 switch (vsi->type) { 484 case ICE_VSI_PF: 485 if (ice_vsi_alloc_arrays(vsi, true)) 486 goto err_rings; 487 488 /* Setup default MSIX irq handler for VSI */ 489 vsi->irq_handler = ice_msix_clean_rings; 490 break; 491 case ICE_VSI_VF: 492 if (ice_vsi_alloc_arrays(vsi, true)) 493 goto err_rings; 494 break; 495 default: 496 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 497 goto unlock_pf; 498 } 499 500 /* fill VSI slot in the PF struct */ 501 pf->vsi[pf->next_vsi] = vsi; 502 503 /* prepare pf->next_vsi for next use */ 504 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 505 pf->next_vsi); 506 goto unlock_pf; 507 508 err_rings: 509 devm_kfree(&pf->pdev->dev, vsi); 510 vsi = NULL; 511 unlock_pf: 512 mutex_unlock(&pf->sw_mutex); 513 return vsi; 514 } 515 516 /** 517 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 518 * @vsi: the VSI getting queues 519 * 520 * Return 0 on success and a negative value on error 521 */ 522 static int ice_vsi_get_qs_contig(struct ice_vsi *vsi) 523 { 524 struct ice_pf *pf = vsi->back; 525 int offset, ret = 0; 526 527 mutex_lock(&pf->avail_q_mutex); 528 /* look for contiguous block of queues for Tx */ 529 offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS, 530 0, vsi->alloc_txq, 0); 531 if (offset < ICE_MAX_TXQS) { 532 int i; 533 534 bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq); 535 for (i = 0; i < vsi->alloc_txq; i++) 536 vsi->txq_map[i] = i + offset; 537 } else { 538 ret = -ENOMEM; 539 vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER; 540 } 541 542 /* look for contiguous block of queues for Rx */ 543 offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS, 544 0, vsi->alloc_rxq, 0); 545 if (offset < ICE_MAX_RXQS) { 546 int i; 547 548 bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq); 549 for (i = 0; i < vsi->alloc_rxq; i++) 550 vsi->rxq_map[i] = i + offset; 551 } else { 552 ret = -ENOMEM; 553 vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER; 554 } 555 mutex_unlock(&pf->avail_q_mutex); 556 557 return ret; 558 } 559 560 /** 561 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI 562 * @vsi: the VSI getting queues 563 * 564 * Return 0 on success and a negative value on error 565 */ 566 static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi) 567 { 568 struct ice_pf *pf = vsi->back; 569 int i, index = 0; 570 571 mutex_lock(&pf->avail_q_mutex); 572 573 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) { 574 for (i = 0; i < vsi->alloc_txq; i++) { 575 index = find_next_zero_bit(pf->avail_txqs, 576 ICE_MAX_TXQS, index); 577 if (index < ICE_MAX_TXQS) { 578 set_bit(index, pf->avail_txqs); 579 vsi->txq_map[i] = index; 580 } else { 581 goto err_scatter_tx; 582 } 583 } 584 } 585 586 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) { 587 for (i = 0; i < vsi->alloc_rxq; i++) { 588 index = find_next_zero_bit(pf->avail_rxqs, 589 ICE_MAX_RXQS, index); 590 if (index < ICE_MAX_RXQS) { 591 set_bit(index, pf->avail_rxqs); 592 vsi->rxq_map[i] = index; 593 } else { 594 goto err_scatter_rx; 595 } 596 } 597 } 598 599 mutex_unlock(&pf->avail_q_mutex); 600 return 0; 601 602 err_scatter_rx: 603 /* unflag any queues we have grabbed (i is failed position) */ 604 for (index = 0; index < i; index++) { 605 clear_bit(vsi->rxq_map[index], pf->avail_rxqs); 606 vsi->rxq_map[index] = 0; 607 } 608 i = vsi->alloc_txq; 609 err_scatter_tx: 610 /* i is either position of failed attempt or vsi->alloc_txq */ 611 for (index = 0; index < i; index++) { 612 clear_bit(vsi->txq_map[index], pf->avail_txqs); 613 vsi->txq_map[index] = 0; 614 } 615 616 mutex_unlock(&pf->avail_q_mutex); 617 return -ENOMEM; 618 } 619 620 /** 621 * ice_vsi_get_qs - Assign queues from PF to VSI 622 * @vsi: the VSI to assign queues to 623 * 624 * Returns 0 on success and a negative value on error 625 */ 626 static int ice_vsi_get_qs(struct ice_vsi *vsi) 627 { 628 int ret = 0; 629 630 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 631 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 632 633 /* NOTE: ice_vsi_get_qs_contig() will set the Rx/Tx mapping 634 * modes individually to scatter if assigning contiguous queues 635 * to Rx or Tx fails 636 */ 637 ret = ice_vsi_get_qs_contig(vsi); 638 if (ret < 0) { 639 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) 640 vsi->alloc_txq = max_t(u16, vsi->alloc_txq, 641 ICE_MAX_SCATTER_TXQS); 642 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) 643 vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq, 644 ICE_MAX_SCATTER_RXQS); 645 ret = ice_vsi_get_qs_scatter(vsi); 646 } 647 648 return ret; 649 } 650 651 /** 652 * ice_vsi_put_qs - Release queues from VSI to PF 653 * @vsi: the VSI that is going to release queues 654 */ 655 void ice_vsi_put_qs(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 int i; 659 660 mutex_lock(&pf->avail_q_mutex); 661 662 for (i = 0; i < vsi->alloc_txq; i++) { 663 clear_bit(vsi->txq_map[i], pf->avail_txqs); 664 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 665 } 666 667 for (i = 0; i < vsi->alloc_rxq; i++) { 668 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 669 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 670 } 671 672 mutex_unlock(&pf->avail_q_mutex); 673 } 674 675 /** 676 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 677 * @vsi: the VSI being removed 678 */ 679 static void ice_rss_clean(struct ice_vsi *vsi) 680 { 681 struct ice_pf *pf; 682 683 pf = vsi->back; 684 685 if (vsi->rss_hkey_user) 686 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 687 if (vsi->rss_lut_user) 688 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 689 } 690 691 /** 692 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 693 * @vsi: the VSI being configured 694 */ 695 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 696 { 697 struct ice_hw_common_caps *cap; 698 struct ice_pf *pf = vsi->back; 699 700 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 701 vsi->rss_size = 1; 702 return; 703 } 704 705 cap = &pf->hw.func_caps.common_cap; 706 switch (vsi->type) { 707 case ICE_VSI_PF: 708 /* PF VSI will inherit RSS instance of PF */ 709 vsi->rss_table_size = cap->rss_table_size; 710 vsi->rss_size = min_t(int, num_online_cpus(), 711 BIT(cap->rss_table_entry_width)); 712 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 713 break; 714 case ICE_VSI_VF: 715 /* VF VSI will gets a small RSS table 716 * For VSI_LUT, LUT size should be set to 64 bytes 717 */ 718 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 719 vsi->rss_size = min_t(int, num_online_cpus(), 720 BIT(cap->rss_table_entry_width)); 721 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 722 break; 723 default: 724 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 725 vsi->type); 726 break; 727 } 728 } 729 730 /** 731 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 732 * @ctxt: the VSI context being set 733 * 734 * This initializes a default VSI context for all sections except the Queues. 735 */ 736 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 737 { 738 u32 table = 0; 739 740 memset(&ctxt->info, 0, sizeof(ctxt->info)); 741 /* VSI's should be allocated from shared pool */ 742 ctxt->alloc_from_pool = true; 743 /* Src pruning enabled by default */ 744 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 745 /* Traffic from VSI can be sent to LAN */ 746 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 747 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 748 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 749 * packets untagged/tagged. 750 */ 751 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 752 ICE_AQ_VSI_VLAN_MODE_M) >> 753 ICE_AQ_VSI_VLAN_MODE_S); 754 /* Have 1:1 UP mapping for both ingress/egress tables */ 755 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 756 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 757 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 758 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 759 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 760 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 761 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 762 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 763 ctxt->info.ingress_table = cpu_to_le32(table); 764 ctxt->info.egress_table = cpu_to_le32(table); 765 /* Have 1:1 UP mapping for outer to inner UP table */ 766 ctxt->info.outer_up_table = cpu_to_le32(table); 767 /* No Outer tag support outer_tag_flags remains to zero */ 768 } 769 770 /** 771 * ice_vsi_setup_q_map - Setup a VSI queue map 772 * @vsi: the VSI being configured 773 * @ctxt: VSI context structure 774 */ 775 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 776 { 777 u16 offset = 0, qmap = 0, numq_tc; 778 u16 pow = 0, max_rss = 0, qcount; 779 u16 qcount_tx = vsi->alloc_txq; 780 u16 qcount_rx = vsi->alloc_rxq; 781 bool ena_tc0 = false; 782 int i; 783 784 /* at least TC0 should be enabled by default */ 785 if (vsi->tc_cfg.numtc) { 786 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 787 ena_tc0 = true; 788 } else { 789 ena_tc0 = true; 790 } 791 792 if (ena_tc0) { 793 vsi->tc_cfg.numtc++; 794 vsi->tc_cfg.ena_tc |= 1; 795 } 796 797 numq_tc = qcount_rx / vsi->tc_cfg.numtc; 798 799 /* TC mapping is a function of the number of Rx queues assigned to the 800 * VSI for each traffic class and the offset of these queues. 801 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 802 * queues allocated to TC0. No:of queues is a power-of-2. 803 * 804 * If TC is not enabled, the queue offset is set to 0, and allocate one 805 * queue, this way, traffic for the given TC will be sent to the default 806 * queue. 807 * 808 * Setup number and offset of Rx queues for all TCs for the VSI 809 */ 810 811 qcount = numq_tc; 812 /* qcount will change if RSS is enabled */ 813 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 814 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 815 if (vsi->type == ICE_VSI_PF) 816 max_rss = ICE_MAX_LG_RSS_QS; 817 else 818 max_rss = ICE_MAX_SMALL_RSS_QS; 819 qcount = min_t(int, numq_tc, max_rss); 820 qcount = min_t(int, qcount, vsi->rss_size); 821 } 822 } 823 824 /* find the (rounded up) power-of-2 of qcount */ 825 pow = order_base_2(qcount); 826 827 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { 828 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 829 /* TC is not enabled */ 830 vsi->tc_cfg.tc_info[i].qoffset = 0; 831 vsi->tc_cfg.tc_info[i].qcount = 1; 832 ctxt->info.tc_mapping[i] = 0; 833 continue; 834 } 835 836 /* TC is enabled */ 837 vsi->tc_cfg.tc_info[i].qoffset = offset; 838 vsi->tc_cfg.tc_info[i].qcount = qcount; 839 840 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 841 ICE_AQ_VSI_TC_Q_OFFSET_M) | 842 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 843 ICE_AQ_VSI_TC_Q_NUM_M); 844 offset += qcount; 845 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 846 } 847 848 vsi->num_txq = qcount_tx; 849 vsi->num_rxq = offset; 850 851 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 852 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 853 /* since there is a chance that num_rxq could have been changed 854 * in the above for loop, make num_txq equal to num_rxq. 855 */ 856 vsi->num_txq = vsi->num_rxq; 857 } 858 859 /* Rx queue mapping */ 860 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 861 /* q_mapping buffer holds the info for the first queue allocated for 862 * this VSI in the PF space and also the number of queues associated 863 * with this VSI. 864 */ 865 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 866 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 867 } 868 869 /** 870 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 871 * @ctxt: the VSI context being set 872 * @vsi: the VSI being configured 873 */ 874 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 875 { 876 u8 lut_type, hash_type; 877 878 switch (vsi->type) { 879 case ICE_VSI_PF: 880 /* PF VSI will inherit RSS instance of PF */ 881 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 882 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 883 break; 884 case ICE_VSI_VF: 885 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 886 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 887 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 888 break; 889 default: 890 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 891 vsi->type); 892 return; 893 } 894 895 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 896 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 897 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 898 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 899 } 900 901 /** 902 * ice_vsi_init - Create and initialize a VSI 903 * @vsi: the VSI being configured 904 * 905 * This initializes a VSI context depending on the VSI type to be added and 906 * passes it down to the add_vsi aq command to create a new VSI. 907 */ 908 static int ice_vsi_init(struct ice_vsi *vsi) 909 { 910 struct ice_vsi_ctx ctxt = { 0 }; 911 struct ice_pf *pf = vsi->back; 912 struct ice_hw *hw = &pf->hw; 913 int ret = 0; 914 915 switch (vsi->type) { 916 case ICE_VSI_PF: 917 ctxt.flags = ICE_AQ_VSI_TYPE_PF; 918 break; 919 case ICE_VSI_VF: 920 ctxt.flags = ICE_AQ_VSI_TYPE_VF; 921 /* VF number here is the absolute VF number (0-255) */ 922 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 923 break; 924 default: 925 return -ENODEV; 926 } 927 928 ice_set_dflt_vsi_ctx(&ctxt); 929 /* if the switch is in VEB mode, allow VSI loopback */ 930 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 931 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 932 933 /* Set LUT type and HASH type if RSS is enabled */ 934 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 935 ice_set_rss_vsi_ctx(&ctxt, vsi); 936 937 ctxt.info.sw_id = vsi->port_info->sw_id; 938 ice_vsi_setup_q_map(vsi, &ctxt); 939 940 ret = ice_add_vsi(hw, vsi->idx, &ctxt, NULL); 941 if (ret) { 942 dev_err(&pf->pdev->dev, 943 "Add VSI failed, err %d\n", ret); 944 return -EIO; 945 } 946 947 /* keep context for update VSI operations */ 948 vsi->info = ctxt.info; 949 950 /* record VSI number returned */ 951 vsi->vsi_num = ctxt.vsi_num; 952 953 return ret; 954 } 955 956 /** 957 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 958 * @vsi: VSI having the memory freed 959 * @v_idx: index of the vector to be freed 960 */ 961 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 962 { 963 struct ice_q_vector *q_vector; 964 struct ice_ring *ring; 965 966 if (!vsi->q_vectors[v_idx]) { 967 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", 968 v_idx); 969 return; 970 } 971 q_vector = vsi->q_vectors[v_idx]; 972 973 ice_for_each_ring(ring, q_vector->tx) 974 ring->q_vector = NULL; 975 ice_for_each_ring(ring, q_vector->rx) 976 ring->q_vector = NULL; 977 978 /* only VSI with an associated netdev is set up with NAPI */ 979 if (vsi->netdev) 980 netif_napi_del(&q_vector->napi); 981 982 devm_kfree(&vsi->back->pdev->dev, q_vector); 983 vsi->q_vectors[v_idx] = NULL; 984 } 985 986 /** 987 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 988 * @vsi: the VSI having memory freed 989 */ 990 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 991 { 992 int v_idx; 993 994 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 995 ice_free_q_vector(vsi, v_idx); 996 } 997 998 /** 999 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1000 * @vsi: the VSI being configured 1001 * @v_idx: index of the vector in the VSI struct 1002 * 1003 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1004 */ 1005 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1006 { 1007 struct ice_pf *pf = vsi->back; 1008 struct ice_q_vector *q_vector; 1009 1010 /* allocate q_vector */ 1011 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1012 if (!q_vector) 1013 return -ENOMEM; 1014 1015 q_vector->vsi = vsi; 1016 q_vector->v_idx = v_idx; 1017 if (vsi->type == ICE_VSI_VF) 1018 goto out; 1019 /* only set affinity_mask if the CPU is online */ 1020 if (cpu_online(v_idx)) 1021 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1022 1023 /* This will not be called in the driver load path because the netdev 1024 * will not be created yet. All other cases with register the NAPI 1025 * handler here (i.e. resume, reset/rebuild, etc.) 1026 */ 1027 if (vsi->netdev) 1028 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1029 NAPI_POLL_WEIGHT); 1030 1031 out: 1032 /* tie q_vector and VSI together */ 1033 vsi->q_vectors[v_idx] = q_vector; 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1040 * @vsi: the VSI being configured 1041 * 1042 * We allocate one q_vector per queue interrupt. If allocation fails we 1043 * return -ENOMEM. 1044 */ 1045 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1046 { 1047 struct ice_pf *pf = vsi->back; 1048 int v_idx = 0, num_q_vectors; 1049 int err; 1050 1051 if (vsi->q_vectors[0]) { 1052 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1053 vsi->vsi_num); 1054 return -EEXIST; 1055 } 1056 1057 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1058 num_q_vectors = vsi->num_q_vectors; 1059 } else { 1060 err = -EINVAL; 1061 goto err_out; 1062 } 1063 1064 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1065 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1066 if (err) 1067 goto err_out; 1068 } 1069 1070 return 0; 1071 1072 err_out: 1073 while (v_idx--) 1074 ice_free_q_vector(vsi, v_idx); 1075 1076 dev_err(&pf->pdev->dev, 1077 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1078 vsi->num_q_vectors, vsi->vsi_num, err); 1079 vsi->num_q_vectors = 0; 1080 return err; 1081 } 1082 1083 /** 1084 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1085 * @vsi: ptr to the VSI 1086 * 1087 * This should only be called after ice_vsi_alloc() which allocates the 1088 * corresponding SW VSI structure and initializes num_queue_pairs for the 1089 * newly allocated VSI. 1090 * 1091 * Returns 0 on success or negative on failure 1092 */ 1093 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1094 { 1095 struct ice_pf *pf = vsi->back; 1096 int num_q_vectors = 0; 1097 1098 if (vsi->sw_base_vector || vsi->hw_base_vector) { 1099 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n", 1100 vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector); 1101 return -EEXIST; 1102 } 1103 1104 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1105 return -ENOENT; 1106 1107 switch (vsi->type) { 1108 case ICE_VSI_PF: 1109 num_q_vectors = vsi->num_q_vectors; 1110 /* reserve slots from OS requested IRQs */ 1111 vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker, 1112 num_q_vectors, vsi->idx); 1113 if (vsi->sw_base_vector < 0) { 1114 dev_err(&pf->pdev->dev, 1115 "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n", 1116 num_q_vectors, vsi->vsi_num, 1117 vsi->sw_base_vector); 1118 return -ENOENT; 1119 } 1120 pf->num_avail_sw_msix -= num_q_vectors; 1121 1122 /* reserve slots from HW interrupts */ 1123 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1124 num_q_vectors, vsi->idx); 1125 break; 1126 case ICE_VSI_VF: 1127 /* take VF misc vector and data vectors into account */ 1128 num_q_vectors = pf->num_vf_msix; 1129 /* For VF VSI, reserve slots only from HW interrupts */ 1130 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1131 num_q_vectors, vsi->idx); 1132 break; 1133 default: 1134 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 1135 vsi->type); 1136 break; 1137 } 1138 1139 if (vsi->hw_base_vector < 0) { 1140 dev_err(&pf->pdev->dev, 1141 "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n", 1142 num_q_vectors, vsi->vsi_num, vsi->hw_base_vector); 1143 if (vsi->type != ICE_VSI_VF) { 1144 ice_free_res(vsi->back->sw_irq_tracker, 1145 vsi->sw_base_vector, vsi->idx); 1146 pf->num_avail_sw_msix += num_q_vectors; 1147 } 1148 return -ENOENT; 1149 } 1150 1151 pf->num_avail_hw_msix -= num_q_vectors; 1152 1153 return 0; 1154 } 1155 1156 /** 1157 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1158 * @vsi: the VSI having rings deallocated 1159 */ 1160 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1161 { 1162 int i; 1163 1164 if (vsi->tx_rings) { 1165 for (i = 0; i < vsi->alloc_txq; i++) { 1166 if (vsi->tx_rings[i]) { 1167 kfree_rcu(vsi->tx_rings[i], rcu); 1168 vsi->tx_rings[i] = NULL; 1169 } 1170 } 1171 } 1172 if (vsi->rx_rings) { 1173 for (i = 0; i < vsi->alloc_rxq; i++) { 1174 if (vsi->rx_rings[i]) { 1175 kfree_rcu(vsi->rx_rings[i], rcu); 1176 vsi->rx_rings[i] = NULL; 1177 } 1178 } 1179 } 1180 } 1181 1182 /** 1183 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1184 * @vsi: VSI which is having rings allocated 1185 */ 1186 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1187 { 1188 struct ice_pf *pf = vsi->back; 1189 int i; 1190 1191 /* Allocate tx_rings */ 1192 for (i = 0; i < vsi->alloc_txq; i++) { 1193 struct ice_ring *ring; 1194 1195 /* allocate with kzalloc(), free with kfree_rcu() */ 1196 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1197 1198 if (!ring) 1199 goto err_out; 1200 1201 ring->q_index = i; 1202 ring->reg_idx = vsi->txq_map[i]; 1203 ring->ring_active = false; 1204 ring->vsi = vsi; 1205 ring->dev = &pf->pdev->dev; 1206 ring->count = vsi->num_desc; 1207 vsi->tx_rings[i] = ring; 1208 } 1209 1210 /* Allocate rx_rings */ 1211 for (i = 0; i < vsi->alloc_rxq; i++) { 1212 struct ice_ring *ring; 1213 1214 /* allocate with kzalloc(), free with kfree_rcu() */ 1215 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1216 if (!ring) 1217 goto err_out; 1218 1219 ring->q_index = i; 1220 ring->reg_idx = vsi->rxq_map[i]; 1221 ring->ring_active = false; 1222 ring->vsi = vsi; 1223 ring->netdev = vsi->netdev; 1224 ring->dev = &pf->pdev->dev; 1225 ring->count = vsi->num_desc; 1226 vsi->rx_rings[i] = ring; 1227 } 1228 1229 return 0; 1230 1231 err_out: 1232 ice_vsi_clear_rings(vsi); 1233 return -ENOMEM; 1234 } 1235 1236 /** 1237 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1238 * @vsi: the VSI being configured 1239 * 1240 * This function maps descriptor rings to the queue-specific vectors allotted 1241 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1242 * and Rx rings to the vector as "efficiently" as possible. 1243 */ 1244 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1245 { 1246 int q_vectors = vsi->num_q_vectors; 1247 int tx_rings_rem, rx_rings_rem; 1248 int v_id; 1249 1250 /* initially assigning remaining rings count to VSIs num queue value */ 1251 tx_rings_rem = vsi->num_txq; 1252 rx_rings_rem = vsi->num_rxq; 1253 1254 for (v_id = 0; v_id < q_vectors; v_id++) { 1255 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1256 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1257 1258 /* Tx rings mapping to vector */ 1259 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1260 q_vector->num_ring_tx = tx_rings_per_v; 1261 q_vector->tx.ring = NULL; 1262 q_vector->tx.itr_idx = ICE_TX_ITR; 1263 q_base = vsi->num_txq - tx_rings_rem; 1264 1265 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1266 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1267 1268 tx_ring->q_vector = q_vector; 1269 tx_ring->next = q_vector->tx.ring; 1270 q_vector->tx.ring = tx_ring; 1271 } 1272 tx_rings_rem -= tx_rings_per_v; 1273 1274 /* Rx rings mapping to vector */ 1275 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1276 q_vector->num_ring_rx = rx_rings_per_v; 1277 q_vector->rx.ring = NULL; 1278 q_vector->rx.itr_idx = ICE_RX_ITR; 1279 q_base = vsi->num_rxq - rx_rings_rem; 1280 1281 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1282 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1283 1284 rx_ring->q_vector = q_vector; 1285 rx_ring->next = q_vector->rx.ring; 1286 q_vector->rx.ring = rx_ring; 1287 } 1288 rx_rings_rem -= rx_rings_per_v; 1289 } 1290 } 1291 1292 /** 1293 * ice_vsi_manage_rss_lut - disable/enable RSS 1294 * @vsi: the VSI being changed 1295 * @ena: boolean value indicating if this is an enable or disable request 1296 * 1297 * In the event of disable request for RSS, this function will zero out RSS 1298 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1299 * LUT. 1300 */ 1301 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1302 { 1303 int err = 0; 1304 u8 *lut; 1305 1306 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1307 GFP_KERNEL); 1308 if (!lut) 1309 return -ENOMEM; 1310 1311 if (ena) { 1312 if (vsi->rss_lut_user) 1313 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1314 else 1315 ice_fill_rss_lut(lut, vsi->rss_table_size, 1316 vsi->rss_size); 1317 } 1318 1319 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1320 devm_kfree(&vsi->back->pdev->dev, lut); 1321 return err; 1322 } 1323 1324 /** 1325 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1326 * @vsi: VSI to be configured 1327 */ 1328 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1329 { 1330 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; 1331 struct ice_aqc_get_set_rss_keys *key; 1332 struct ice_pf *pf = vsi->back; 1333 enum ice_status status; 1334 int err = 0; 1335 u8 *lut; 1336 1337 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1338 1339 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1340 if (!lut) 1341 return -ENOMEM; 1342 1343 if (vsi->rss_lut_user) 1344 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1345 else 1346 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1347 1348 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1349 vsi->rss_table_size); 1350 1351 if (status) { 1352 dev_err(&vsi->back->pdev->dev, 1353 "set_rss_lut failed, error %d\n", status); 1354 err = -EIO; 1355 goto ice_vsi_cfg_rss_exit; 1356 } 1357 1358 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); 1359 if (!key) { 1360 err = -ENOMEM; 1361 goto ice_vsi_cfg_rss_exit; 1362 } 1363 1364 if (vsi->rss_hkey_user) 1365 memcpy(seed, vsi->rss_hkey_user, 1366 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1367 else 1368 netdev_rss_key_fill((void *)seed, 1369 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1370 memcpy(&key->standard_rss_key, seed, 1371 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1372 1373 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1374 1375 if (status) { 1376 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", 1377 status); 1378 err = -EIO; 1379 } 1380 1381 devm_kfree(&pf->pdev->dev, key); 1382 ice_vsi_cfg_rss_exit: 1383 devm_kfree(&pf->pdev->dev, lut); 1384 return err; 1385 } 1386 1387 /** 1388 * ice_add_mac_to_list - Add a mac address filter entry to the list 1389 * @vsi: the VSI to be forwarded to 1390 * @add_list: pointer to the list which contains MAC filter entries 1391 * @macaddr: the MAC address to be added. 1392 * 1393 * Adds mac address filter entry to the temp list 1394 * 1395 * Returns 0 on success or ENOMEM on failure. 1396 */ 1397 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1398 const u8 *macaddr) 1399 { 1400 struct ice_fltr_list_entry *tmp; 1401 struct ice_pf *pf = vsi->back; 1402 1403 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1404 if (!tmp) 1405 return -ENOMEM; 1406 1407 tmp->fltr_info.flag = ICE_FLTR_TX; 1408 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1409 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1410 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1411 tmp->fltr_info.vsi_handle = vsi->idx; 1412 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1413 1414 INIT_LIST_HEAD(&tmp->list_entry); 1415 list_add(&tmp->list_entry, add_list); 1416 1417 return 0; 1418 } 1419 1420 /** 1421 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1422 * @vsi: the VSI to be updated 1423 */ 1424 void ice_update_eth_stats(struct ice_vsi *vsi) 1425 { 1426 struct ice_eth_stats *prev_es, *cur_es; 1427 struct ice_hw *hw = &vsi->back->hw; 1428 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1429 1430 prev_es = &vsi->eth_stats_prev; 1431 cur_es = &vsi->eth_stats; 1432 1433 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), 1434 vsi->stat_offsets_loaded, &prev_es->rx_bytes, 1435 &cur_es->rx_bytes); 1436 1437 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), 1438 vsi->stat_offsets_loaded, &prev_es->rx_unicast, 1439 &cur_es->rx_unicast); 1440 1441 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), 1442 vsi->stat_offsets_loaded, &prev_es->rx_multicast, 1443 &cur_es->rx_multicast); 1444 1445 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), 1446 vsi->stat_offsets_loaded, &prev_es->rx_broadcast, 1447 &cur_es->rx_broadcast); 1448 1449 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1450 &prev_es->rx_discards, &cur_es->rx_discards); 1451 1452 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), 1453 vsi->stat_offsets_loaded, &prev_es->tx_bytes, 1454 &cur_es->tx_bytes); 1455 1456 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), 1457 vsi->stat_offsets_loaded, &prev_es->tx_unicast, 1458 &cur_es->tx_unicast); 1459 1460 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), 1461 vsi->stat_offsets_loaded, &prev_es->tx_multicast, 1462 &cur_es->tx_multicast); 1463 1464 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), 1465 vsi->stat_offsets_loaded, &prev_es->tx_broadcast, 1466 &cur_es->tx_broadcast); 1467 1468 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1469 &prev_es->tx_errors, &cur_es->tx_errors); 1470 1471 vsi->stat_offsets_loaded = true; 1472 } 1473 1474 /** 1475 * ice_free_fltr_list - free filter lists helper 1476 * @dev: pointer to the device struct 1477 * @h: pointer to the list head to be freed 1478 * 1479 * Helper function to free filter lists previously created using 1480 * ice_add_mac_to_list 1481 */ 1482 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1483 { 1484 struct ice_fltr_list_entry *e, *tmp; 1485 1486 list_for_each_entry_safe(e, tmp, h, list_entry) { 1487 list_del(&e->list_entry); 1488 devm_kfree(dev, e); 1489 } 1490 } 1491 1492 /** 1493 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1494 * @vsi: the VSI being configured 1495 * @vid: VLAN id to be added 1496 */ 1497 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1498 { 1499 struct ice_fltr_list_entry *tmp; 1500 struct ice_pf *pf = vsi->back; 1501 LIST_HEAD(tmp_add_list); 1502 enum ice_status status; 1503 int err = 0; 1504 1505 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1506 if (!tmp) 1507 return -ENOMEM; 1508 1509 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1510 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1511 tmp->fltr_info.flag = ICE_FLTR_TX; 1512 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1513 tmp->fltr_info.vsi_handle = vsi->idx; 1514 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1515 1516 INIT_LIST_HEAD(&tmp->list_entry); 1517 list_add(&tmp->list_entry, &tmp_add_list); 1518 1519 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1520 if (status) { 1521 err = -ENODEV; 1522 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1523 vid, vsi->vsi_num); 1524 } 1525 1526 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1527 return err; 1528 } 1529 1530 /** 1531 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1532 * @vsi: the VSI being configured 1533 * @vid: VLAN id to be removed 1534 * 1535 * Returns 0 on success and negative on failure 1536 */ 1537 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1538 { 1539 struct ice_fltr_list_entry *list; 1540 struct ice_pf *pf = vsi->back; 1541 LIST_HEAD(tmp_add_list); 1542 int status = 0; 1543 1544 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1545 if (!list) 1546 return -ENOMEM; 1547 1548 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1549 list->fltr_info.vsi_handle = vsi->idx; 1550 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1551 list->fltr_info.l_data.vlan.vlan_id = vid; 1552 list->fltr_info.flag = ICE_FLTR_TX; 1553 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1554 1555 INIT_LIST_HEAD(&list->list_entry); 1556 list_add(&list->list_entry, &tmp_add_list); 1557 1558 if (ice_remove_vlan(&pf->hw, &tmp_add_list)) { 1559 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", 1560 vid, vsi->vsi_num); 1561 status = -EIO; 1562 } 1563 1564 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1565 return status; 1566 } 1567 1568 /** 1569 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1570 * @vsi: the VSI being configured 1571 * 1572 * Return 0 on success and a negative value on error 1573 * Configure the Rx VSI for operation. 1574 */ 1575 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1576 { 1577 int err = 0; 1578 u16 i; 1579 1580 if (vsi->type == ICE_VSI_VF) 1581 goto setup_rings; 1582 1583 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1584 vsi->max_frame = vsi->netdev->mtu + 1585 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1586 else 1587 vsi->max_frame = ICE_RXBUF_2048; 1588 1589 vsi->rx_buf_len = ICE_RXBUF_2048; 1590 setup_rings: 1591 /* set up individual rings */ 1592 for (i = 0; i < vsi->num_rxq && !err; i++) 1593 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1594 1595 if (err) { 1596 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); 1597 return -EIO; 1598 } 1599 return err; 1600 } 1601 1602 /** 1603 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1604 * @vsi: the VSI being configured 1605 * 1606 * Return 0 on success and a negative value on error 1607 * Configure the Tx VSI for operation. 1608 */ 1609 int ice_vsi_cfg_txqs(struct ice_vsi *vsi) 1610 { 1611 struct ice_aqc_add_tx_qgrp *qg_buf; 1612 struct ice_aqc_add_txqs_perq *txq; 1613 struct ice_pf *pf = vsi->back; 1614 enum ice_status status; 1615 u16 buf_len, i, pf_q; 1616 int err = 0, tc = 0; 1617 u8 num_q_grps; 1618 1619 buf_len = sizeof(struct ice_aqc_add_tx_qgrp); 1620 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); 1621 if (!qg_buf) 1622 return -ENOMEM; 1623 1624 if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) { 1625 err = -EINVAL; 1626 goto err_cfg_txqs; 1627 } 1628 qg_buf->num_txqs = 1; 1629 num_q_grps = 1; 1630 1631 /* set up and configure the Tx queues */ 1632 ice_for_each_txq(vsi, i) { 1633 struct ice_tlan_ctx tlan_ctx = { 0 }; 1634 1635 pf_q = vsi->txq_map[i]; 1636 ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q); 1637 /* copy context contents into the qg_buf */ 1638 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1639 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1640 ice_tlan_ctx_info); 1641 1642 /* init queue specific tail reg. It is referred as transmit 1643 * comm scheduler queue doorbell. 1644 */ 1645 vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1646 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 1647 num_q_grps, qg_buf, buf_len, NULL); 1648 if (status) { 1649 dev_err(&vsi->back->pdev->dev, 1650 "Failed to set LAN Tx queue context, error: %d\n", 1651 status); 1652 err = -ENODEV; 1653 goto err_cfg_txqs; 1654 } 1655 1656 /* Add Tx Queue TEID into the VSI Tx ring from the response 1657 * This will complete configuring and enabling the queue. 1658 */ 1659 txq = &qg_buf->txqs[0]; 1660 if (pf_q == le16_to_cpu(txq->txq_id)) 1661 vsi->tx_rings[i]->txq_teid = 1662 le32_to_cpu(txq->q_teid); 1663 } 1664 err_cfg_txqs: 1665 devm_kfree(&pf->pdev->dev, qg_buf); 1666 return err; 1667 } 1668 1669 /** 1670 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1671 * @intrl: interrupt rate limit in usecs 1672 * @gran: interrupt rate limit granularity in usecs 1673 * 1674 * This function converts a decimal interrupt rate limit in usecs to the format 1675 * expected by firmware. 1676 */ 1677 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1678 { 1679 u32 val = intrl / gran; 1680 1681 if (val) 1682 return val | GLINT_RATE_INTRL_ENA_M; 1683 return 0; 1684 } 1685 1686 /** 1687 * ice_cfg_itr - configure the initial interrupt throttle values 1688 * @hw: pointer to the HW structure 1689 * @q_vector: interrupt vector that's being configured 1690 * @vector: HW vector index to apply the interrupt throttling to 1691 * 1692 * Configure interrupt throttling values for the ring containers that are 1693 * associated with the interrupt vector passed in. 1694 */ 1695 static void 1696 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector) 1697 { 1698 u8 itr_gran = hw->itr_gran; 1699 1700 if (q_vector->num_ring_rx) { 1701 struct ice_ring_container *rc = &q_vector->rx; 1702 1703 rc->itr = ITR_TO_REG(ICE_DFLT_RX_ITR, itr_gran); 1704 rc->latency_range = ICE_LOW_LATENCY; 1705 wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr); 1706 } 1707 1708 if (q_vector->num_ring_tx) { 1709 struct ice_ring_container *rc = &q_vector->tx; 1710 1711 rc->itr = ITR_TO_REG(ICE_DFLT_TX_ITR, itr_gran); 1712 rc->latency_range = ICE_LOW_LATENCY; 1713 wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr); 1714 } 1715 } 1716 1717 /** 1718 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1719 * @vsi: the VSI being configured 1720 */ 1721 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1722 { 1723 struct ice_pf *pf = vsi->back; 1724 u16 vector = vsi->hw_base_vector; 1725 struct ice_hw *hw = &pf->hw; 1726 u32 txq = 0, rxq = 0; 1727 int i, q; 1728 1729 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 1730 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1731 1732 ice_cfg_itr(hw, q_vector, vector); 1733 1734 wr32(hw, GLINT_RATE(vector), 1735 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1736 1737 /* Both Transmit Queue Interrupt Cause Control register 1738 * and Receive Queue Interrupt Cause control register 1739 * expects MSIX_INDX field to be the vector index 1740 * within the function space and not the absolute 1741 * vector index across PF or across device. 1742 * For SR-IOV VF VSIs queue vector index always starts 1743 * with 1 since first vector index(0) is used for OICR 1744 * in VF space. Since VMDq and other PF VSIs are within 1745 * the PF function space, use the vector index that is 1746 * tracked for this PF. 1747 */ 1748 for (q = 0; q < q_vector->num_ring_tx; q++) { 1749 int itr_idx = q_vector->tx.itr_idx; 1750 u32 val; 1751 1752 if (vsi->type == ICE_VSI_VF) 1753 val = QINT_TQCTL_CAUSE_ENA_M | 1754 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1755 ((i + 1) << QINT_TQCTL_MSIX_INDX_S); 1756 else 1757 val = QINT_TQCTL_CAUSE_ENA_M | 1758 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1759 (vector << QINT_TQCTL_MSIX_INDX_S); 1760 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1761 txq++; 1762 } 1763 1764 for (q = 0; q < q_vector->num_ring_rx; q++) { 1765 int itr_idx = q_vector->rx.itr_idx; 1766 u32 val; 1767 1768 if (vsi->type == ICE_VSI_VF) 1769 val = QINT_RQCTL_CAUSE_ENA_M | 1770 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1771 ((i + 1) << QINT_RQCTL_MSIX_INDX_S); 1772 else 1773 val = QINT_RQCTL_CAUSE_ENA_M | 1774 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1775 (vector << QINT_RQCTL_MSIX_INDX_S); 1776 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1777 rxq++; 1778 } 1779 } 1780 1781 ice_flush(hw); 1782 } 1783 1784 /** 1785 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1786 * @vsi: the VSI being changed 1787 */ 1788 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1789 { 1790 struct device *dev = &vsi->back->pdev->dev; 1791 struct ice_hw *hw = &vsi->back->hw; 1792 struct ice_vsi_ctx ctxt = { 0 }; 1793 enum ice_status status; 1794 1795 /* Here we are configuring the VSI to let the driver add VLAN tags by 1796 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1797 * insertion happens in the Tx hot path, in ice_tx_map. 1798 */ 1799 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1800 1801 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1802 1803 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1804 if (status) { 1805 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1806 status, hw->adminq.sq_last_status); 1807 return -EIO; 1808 } 1809 1810 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1811 return 0; 1812 } 1813 1814 /** 1815 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1816 * @vsi: the VSI being changed 1817 * @ena: boolean value indicating if this is a enable or disable request 1818 */ 1819 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1820 { 1821 struct device *dev = &vsi->back->pdev->dev; 1822 struct ice_hw *hw = &vsi->back->hw; 1823 struct ice_vsi_ctx ctxt = { 0 }; 1824 enum ice_status status; 1825 1826 /* Here we are configuring what the VSI should do with the VLAN tag in 1827 * the Rx packet. We can either leave the tag in the packet or put it in 1828 * the Rx descriptor. 1829 */ 1830 if (ena) { 1831 /* Strip VLAN tag from Rx packet and put it in the desc */ 1832 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1833 } else { 1834 /* Disable stripping. Leave tag in packet */ 1835 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1836 } 1837 1838 /* Allow all packets untagged/tagged */ 1839 ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1840 1841 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1842 1843 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1844 if (status) { 1845 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1846 ena, status, hw->adminq.sq_last_status); 1847 return -EIO; 1848 } 1849 1850 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1851 return 0; 1852 } 1853 1854 /** 1855 * ice_vsi_start_rx_rings - start VSI's Rx rings 1856 * @vsi: the VSI whose rings are to be started 1857 * 1858 * Returns 0 on success and a negative value on error 1859 */ 1860 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1861 { 1862 return ice_vsi_ctrl_rx_rings(vsi, true); 1863 } 1864 1865 /** 1866 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1867 * @vsi: the VSI 1868 * 1869 * Returns 0 on success and a negative value on error 1870 */ 1871 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1872 { 1873 return ice_vsi_ctrl_rx_rings(vsi, false); 1874 } 1875 1876 /** 1877 * ice_vsi_stop_tx_rings - Disable Tx rings 1878 * @vsi: the VSI being configured 1879 * @rst_src: reset source 1880 * @rel_vmvf_num: Relative id of VF/VM 1881 */ 1882 int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1883 u16 rel_vmvf_num) 1884 { 1885 struct ice_pf *pf = vsi->back; 1886 struct ice_hw *hw = &pf->hw; 1887 enum ice_status status; 1888 u32 *q_teids, val; 1889 u16 *q_ids, i; 1890 int err = 0; 1891 1892 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1893 return -EINVAL; 1894 1895 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), 1896 GFP_KERNEL); 1897 if (!q_teids) 1898 return -ENOMEM; 1899 1900 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), 1901 GFP_KERNEL); 1902 if (!q_ids) { 1903 err = -ENOMEM; 1904 goto err_alloc_q_ids; 1905 } 1906 1907 /* set up the Tx queue list to be disabled */ 1908 ice_for_each_txq(vsi, i) { 1909 u16 v_idx; 1910 1911 if (!vsi->tx_rings || !vsi->tx_rings[i]) { 1912 err = -EINVAL; 1913 goto err_out; 1914 } 1915 1916 q_ids[i] = vsi->txq_map[i]; 1917 q_teids[i] = vsi->tx_rings[i]->txq_teid; 1918 1919 /* clear cause_ena bit for disabled queues */ 1920 val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 1921 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1922 wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 1923 1924 /* software is expected to wait for 100 ns */ 1925 ndelay(100); 1926 1927 /* trigger a software interrupt for the vector associated to 1928 * the queue to schedule NAPI handler 1929 */ 1930 v_idx = vsi->tx_rings[i]->q_vector->v_idx; 1931 wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 1932 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); 1933 } 1934 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, 1935 rst_src, rel_vmvf_num, NULL); 1936 /* if the disable queue command was exercised during an active reset 1937 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as 1938 * the reset operation disables queues at the hardware level anyway. 1939 */ 1940 if (status == ICE_ERR_RESET_ONGOING) { 1941 dev_info(&pf->pdev->dev, 1942 "Reset in progress. LAN Tx queues already disabled\n"); 1943 } else if (status) { 1944 dev_err(&pf->pdev->dev, 1945 "Failed to disable LAN Tx queues, error: %d\n", 1946 status); 1947 err = -ENODEV; 1948 } 1949 1950 err_out: 1951 devm_kfree(&pf->pdev->dev, q_ids); 1952 1953 err_alloc_q_ids: 1954 devm_kfree(&pf->pdev->dev, q_teids); 1955 1956 return err; 1957 } 1958 1959 /** 1960 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1961 * @vsi: VSI to enable or disable VLAN pruning on 1962 * @ena: set to true to enable VLAN pruning and false to disable it 1963 * 1964 * returns 0 if VSI is updated, negative otherwise 1965 */ 1966 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) 1967 { 1968 struct ice_vsi_ctx *ctxt; 1969 struct device *dev; 1970 int status; 1971 1972 if (!vsi) 1973 return -EINVAL; 1974 1975 dev = &vsi->back->pdev->dev; 1976 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1977 if (!ctxt) 1978 return -ENOMEM; 1979 1980 ctxt->info = vsi->info; 1981 1982 if (ena) { 1983 ctxt->info.sec_flags |= 1984 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1985 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 1986 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1987 } else { 1988 ctxt->info.sec_flags &= 1989 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1990 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1991 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1992 } 1993 1994 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 1995 ICE_AQ_VSI_PROP_SW_VALID); 1996 1997 status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL); 1998 if (status) { 1999 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2000 ena ? "Ena" : "Dis", vsi->idx, vsi->vsi_num, status, 2001 vsi->back->hw.adminq.sq_last_status); 2002 goto err_out; 2003 } 2004 2005 vsi->info.sec_flags = ctxt->info.sec_flags; 2006 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2007 2008 devm_kfree(dev, ctxt); 2009 return 0; 2010 2011 err_out: 2012 devm_kfree(dev, ctxt); 2013 return -EIO; 2014 } 2015 2016 /** 2017 * ice_vsi_setup - Set up a VSI by a given type 2018 * @pf: board private structure 2019 * @pi: pointer to the port_info instance 2020 * @type: VSI type 2021 * @vf_id: defines VF id to which this VSI connects. This field is meant to be 2022 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2023 * fill-in ICE_INVAL_VFID as input. 2024 * 2025 * This allocates the sw VSI structure and its queue resources. 2026 * 2027 * Returns pointer to the successfully allocated and configured VSI sw struct on 2028 * success, NULL on failure. 2029 */ 2030 struct ice_vsi * 2031 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2032 enum ice_vsi_type type, u16 vf_id) 2033 { 2034 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2035 struct device *dev = &pf->pdev->dev; 2036 struct ice_vsi *vsi; 2037 int ret, i; 2038 2039 vsi = ice_vsi_alloc(pf, type); 2040 if (!vsi) { 2041 dev_err(dev, "could not allocate VSI\n"); 2042 return NULL; 2043 } 2044 2045 vsi->port_info = pi; 2046 vsi->vsw = pf->first_sw; 2047 if (vsi->type == ICE_VSI_VF) 2048 vsi->vf_id = vf_id; 2049 2050 if (ice_vsi_get_qs(vsi)) { 2051 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2052 vsi->idx); 2053 goto unroll_get_qs; 2054 } 2055 2056 /* set RSS capabilities */ 2057 ice_vsi_set_rss_params(vsi); 2058 2059 /* create the VSI */ 2060 ret = ice_vsi_init(vsi); 2061 if (ret) 2062 goto unroll_get_qs; 2063 2064 switch (vsi->type) { 2065 case ICE_VSI_PF: 2066 ret = ice_vsi_alloc_q_vectors(vsi); 2067 if (ret) 2068 goto unroll_vsi_init; 2069 2070 ret = ice_vsi_setup_vector_base(vsi); 2071 if (ret) 2072 goto unroll_alloc_q_vector; 2073 2074 ret = ice_vsi_alloc_rings(vsi); 2075 if (ret) 2076 goto unroll_vector_base; 2077 2078 ice_vsi_map_rings_to_vectors(vsi); 2079 2080 /* Do not exit if configuring RSS had an issue, at least 2081 * receive traffic on first queue. Hence no need to capture 2082 * return value 2083 */ 2084 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2085 ice_vsi_cfg_rss_lut_key(vsi); 2086 break; 2087 case ICE_VSI_VF: 2088 /* VF driver will take care of creating netdev for this type and 2089 * map queues to vectors through Virtchnl, PF driver only 2090 * creates a VSI and corresponding structures for bookkeeping 2091 * purpose 2092 */ 2093 ret = ice_vsi_alloc_q_vectors(vsi); 2094 if (ret) 2095 goto unroll_vsi_init; 2096 2097 ret = ice_vsi_alloc_rings(vsi); 2098 if (ret) 2099 goto unroll_alloc_q_vector; 2100 2101 /* Setup Vector base only during VF init phase or when VF asks 2102 * for more vectors than assigned number. In all other cases, 2103 * assign hw_base_vector to the value given earlier. 2104 */ 2105 if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) { 2106 ret = ice_vsi_setup_vector_base(vsi); 2107 if (ret) 2108 goto unroll_vector_base; 2109 } else { 2110 vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx; 2111 } 2112 pf->q_left_tx -= vsi->alloc_txq; 2113 pf->q_left_rx -= vsi->alloc_rxq; 2114 break; 2115 default: 2116 /* if VSI type is not recognized, clean up the resources and 2117 * exit 2118 */ 2119 goto unroll_vsi_init; 2120 } 2121 2122 ice_vsi_set_tc_cfg(vsi); 2123 2124 /* configure VSI nodes based on number of queues and TC's */ 2125 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2126 max_txqs[i] = vsi->num_txq; 2127 2128 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2129 max_txqs); 2130 if (ret) { 2131 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); 2132 goto unroll_vector_base; 2133 } 2134 2135 return vsi; 2136 2137 unroll_vector_base: 2138 /* reclaim SW interrupts back to the common pool */ 2139 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2140 pf->num_avail_sw_msix += vsi->num_q_vectors; 2141 /* reclaim HW interrupt back to the common pool */ 2142 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2143 pf->num_avail_hw_msix += vsi->num_q_vectors; 2144 unroll_alloc_q_vector: 2145 ice_vsi_free_q_vectors(vsi); 2146 unroll_vsi_init: 2147 ice_vsi_delete(vsi); 2148 unroll_get_qs: 2149 ice_vsi_put_qs(vsi); 2150 pf->q_left_tx += vsi->alloc_txq; 2151 pf->q_left_rx += vsi->alloc_rxq; 2152 ice_vsi_clear(vsi); 2153 2154 return NULL; 2155 } 2156 2157 /** 2158 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2159 * @vsi: the VSI being cleaned up 2160 */ 2161 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2162 { 2163 struct ice_pf *pf = vsi->back; 2164 u16 vector = vsi->hw_base_vector; 2165 struct ice_hw *hw = &pf->hw; 2166 u32 txq = 0; 2167 u32 rxq = 0; 2168 int i, q; 2169 2170 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 2171 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2172 2173 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0); 2174 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0); 2175 for (q = 0; q < q_vector->num_ring_tx; q++) { 2176 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2177 txq++; 2178 } 2179 2180 for (q = 0; q < q_vector->num_ring_rx; q++) { 2181 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2182 rxq++; 2183 } 2184 } 2185 2186 ice_flush(hw); 2187 } 2188 2189 /** 2190 * ice_vsi_free_irq - Free the IRQ association with the OS 2191 * @vsi: the VSI being configured 2192 */ 2193 void ice_vsi_free_irq(struct ice_vsi *vsi) 2194 { 2195 struct ice_pf *pf = vsi->back; 2196 int base = vsi->sw_base_vector; 2197 2198 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2199 int i; 2200 2201 if (!vsi->q_vectors || !vsi->irqs_ready) 2202 return; 2203 2204 ice_vsi_release_msix(vsi); 2205 if (vsi->type == ICE_VSI_VF) 2206 return; 2207 2208 vsi->irqs_ready = false; 2209 for (i = 0; i < vsi->num_q_vectors; i++) { 2210 u16 vector = i + base; 2211 int irq_num; 2212 2213 irq_num = pf->msix_entries[vector].vector; 2214 2215 /* free only the irqs that were actually requested */ 2216 if (!vsi->q_vectors[i] || 2217 !(vsi->q_vectors[i]->num_ring_tx || 2218 vsi->q_vectors[i]->num_ring_rx)) 2219 continue; 2220 2221 /* clear the affinity notifier in the IRQ descriptor */ 2222 irq_set_affinity_notifier(irq_num, NULL); 2223 2224 /* clear the affinity_mask in the IRQ descriptor */ 2225 irq_set_affinity_hint(irq_num, NULL); 2226 synchronize_irq(irq_num); 2227 devm_free_irq(&pf->pdev->dev, irq_num, 2228 vsi->q_vectors[i]); 2229 } 2230 } 2231 } 2232 2233 /** 2234 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2235 * @vsi: the VSI having resources freed 2236 */ 2237 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2238 { 2239 int i; 2240 2241 if (!vsi->tx_rings) 2242 return; 2243 2244 ice_for_each_txq(vsi, i) 2245 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2246 ice_free_tx_ring(vsi->tx_rings[i]); 2247 } 2248 2249 /** 2250 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2251 * @vsi: the VSI having resources freed 2252 */ 2253 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2254 { 2255 int i; 2256 2257 if (!vsi->rx_rings) 2258 return; 2259 2260 ice_for_each_rxq(vsi, i) 2261 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2262 ice_free_rx_ring(vsi->rx_rings[i]); 2263 } 2264 2265 /** 2266 * ice_vsi_close - Shut down a VSI 2267 * @vsi: the VSI being shut down 2268 */ 2269 void ice_vsi_close(struct ice_vsi *vsi) 2270 { 2271 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2272 ice_down(vsi); 2273 2274 ice_vsi_free_irq(vsi); 2275 ice_vsi_free_tx_rings(vsi); 2276 ice_vsi_free_rx_rings(vsi); 2277 } 2278 2279 /** 2280 * ice_free_res - free a block of resources 2281 * @res: pointer to the resource 2282 * @index: starting index previously returned by ice_get_res 2283 * @id: identifier to track owner 2284 * 2285 * Returns number of resources freed 2286 */ 2287 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2288 { 2289 int count = 0; 2290 int i; 2291 2292 if (!res || index >= res->num_entries) 2293 return -EINVAL; 2294 2295 id |= ICE_RES_VALID_BIT; 2296 for (i = index; i < res->num_entries && res->list[i] == id; i++) { 2297 res->list[i] = 0; 2298 count++; 2299 } 2300 2301 return count; 2302 } 2303 2304 /** 2305 * ice_search_res - Search the tracker for a block of resources 2306 * @res: pointer to the resource 2307 * @needed: size of the block needed 2308 * @id: identifier to track owner 2309 * 2310 * Returns the base item index of the block, or -ENOMEM for error 2311 */ 2312 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2313 { 2314 int start = res->search_hint; 2315 int end = start; 2316 2317 if ((start + needed) > res->num_entries) 2318 return -ENOMEM; 2319 2320 id |= ICE_RES_VALID_BIT; 2321 2322 do { 2323 /* skip already allocated entries */ 2324 if (res->list[end++] & ICE_RES_VALID_BIT) { 2325 start = end; 2326 if ((start + needed) > res->num_entries) 2327 break; 2328 } 2329 2330 if (end == (start + needed)) { 2331 int i = start; 2332 2333 /* there was enough, so assign it to the requestor */ 2334 while (i != end) 2335 res->list[i++] = id; 2336 2337 if (end == res->num_entries) 2338 end = 0; 2339 2340 res->search_hint = end; 2341 return start; 2342 } 2343 } while (1); 2344 2345 return -ENOMEM; 2346 } 2347 2348 /** 2349 * ice_get_res - get a block of resources 2350 * @pf: board private structure 2351 * @res: pointer to the resource 2352 * @needed: size of the block needed 2353 * @id: identifier to track owner 2354 * 2355 * Returns the base item index of the block, or -ENOMEM for error 2356 * The search_hint trick and lack of advanced fit-finding only works 2357 * because we're highly likely to have all the same sized requests. 2358 * Linear search time and any fragmentation should be minimal. 2359 */ 2360 int 2361 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2362 { 2363 int ret; 2364 2365 if (!res || !pf) 2366 return -EINVAL; 2367 2368 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2369 dev_err(&pf->pdev->dev, 2370 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2371 needed, res->num_entries, id); 2372 return -EINVAL; 2373 } 2374 2375 /* search based on search_hint */ 2376 ret = ice_search_res(res, needed, id); 2377 2378 if (ret < 0) { 2379 /* previous search failed. Reset search hint and try again */ 2380 res->search_hint = 0; 2381 ret = ice_search_res(res, needed, id); 2382 } 2383 2384 return ret; 2385 } 2386 2387 /** 2388 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2389 * @vsi: the VSI being un-configured 2390 */ 2391 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2392 { 2393 int base = vsi->sw_base_vector; 2394 struct ice_pf *pf = vsi->back; 2395 struct ice_hw *hw = &pf->hw; 2396 u32 val; 2397 int i; 2398 2399 /* disable interrupt causation from each queue */ 2400 if (vsi->tx_rings) { 2401 ice_for_each_txq(vsi, i) { 2402 if (vsi->tx_rings[i]) { 2403 u16 reg; 2404 2405 reg = vsi->tx_rings[i]->reg_idx; 2406 val = rd32(hw, QINT_TQCTL(reg)); 2407 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2408 wr32(hw, QINT_TQCTL(reg), val); 2409 } 2410 } 2411 } 2412 2413 if (vsi->rx_rings) { 2414 ice_for_each_rxq(vsi, i) { 2415 if (vsi->rx_rings[i]) { 2416 u16 reg; 2417 2418 reg = vsi->rx_rings[i]->reg_idx; 2419 val = rd32(hw, QINT_RQCTL(reg)); 2420 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2421 wr32(hw, QINT_RQCTL(reg), val); 2422 } 2423 } 2424 } 2425 2426 /* disable each interrupt */ 2427 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2428 for (i = vsi->hw_base_vector; 2429 i < (vsi->num_q_vectors + vsi->hw_base_vector); i++) 2430 wr32(hw, GLINT_DYN_CTL(i), 0); 2431 2432 ice_flush(hw); 2433 for (i = 0; i < vsi->num_q_vectors; i++) 2434 synchronize_irq(pf->msix_entries[i + base].vector); 2435 } 2436 } 2437 2438 /** 2439 * ice_vsi_release - Delete a VSI and free its resources 2440 * @vsi: the VSI being removed 2441 * 2442 * Returns 0 on success or < 0 on error 2443 */ 2444 int ice_vsi_release(struct ice_vsi *vsi) 2445 { 2446 struct ice_pf *pf; 2447 struct ice_vf *vf; 2448 2449 if (!vsi->back) 2450 return -ENODEV; 2451 pf = vsi->back; 2452 vf = &pf->vf[vsi->vf_id]; 2453 /* do not unregister and free netdevs while driver is in the reset 2454 * recovery pending state. Since reset/rebuild happens through PF 2455 * service task workqueue, its not a good idea to unregister netdev 2456 * that is associated to the PF that is running the work queue items 2457 * currently. This is done to avoid check_flush_dependency() warning 2458 * on this wq 2459 */ 2460 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2461 unregister_netdev(vsi->netdev); 2462 free_netdev(vsi->netdev); 2463 vsi->netdev = NULL; 2464 } 2465 2466 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2467 ice_rss_clean(vsi); 2468 2469 /* Disable VSI and free resources */ 2470 ice_vsi_dis_irq(vsi); 2471 ice_vsi_close(vsi); 2472 2473 /* reclaim interrupt vectors back to PF */ 2474 if (vsi->type != ICE_VSI_VF) { 2475 /* reclaim SW interrupts back to the common pool */ 2476 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, 2477 vsi->idx); 2478 pf->num_avail_sw_msix += vsi->num_q_vectors; 2479 /* reclaim HW interrupts back to the common pool */ 2480 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, 2481 vsi->idx); 2482 pf->num_avail_hw_msix += vsi->num_q_vectors; 2483 } else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) { 2484 /* Reclaim VF resources back only while freeing all VFs or 2485 * vector reassignment is requested 2486 */ 2487 ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx, 2488 vsi->idx); 2489 pf->num_avail_hw_msix += pf->num_vf_msix; 2490 } 2491 2492 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2493 ice_vsi_delete(vsi); 2494 ice_vsi_free_q_vectors(vsi); 2495 ice_vsi_clear_rings(vsi); 2496 2497 ice_vsi_put_qs(vsi); 2498 pf->q_left_tx += vsi->alloc_txq; 2499 pf->q_left_rx += vsi->alloc_rxq; 2500 2501 /* retain SW VSI data structure since it is needed to unregister and 2502 * free VSI netdev when PF is not in reset recovery pending state,\ 2503 * for ex: during rmmod. 2504 */ 2505 if (!ice_is_reset_in_progress(pf->state)) 2506 ice_vsi_clear(vsi); 2507 2508 return 0; 2509 } 2510 2511 /** 2512 * ice_vsi_rebuild - Rebuild VSI after reset 2513 * @vsi: VSI to be rebuild 2514 * 2515 * Returns 0 on success and negative value on failure 2516 */ 2517 int ice_vsi_rebuild(struct ice_vsi *vsi) 2518 { 2519 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2520 int ret, i; 2521 2522 if (!vsi) 2523 return -EINVAL; 2524 2525 ice_vsi_free_q_vectors(vsi); 2526 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2527 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2528 vsi->sw_base_vector = 0; 2529 vsi->hw_base_vector = 0; 2530 ice_vsi_clear_rings(vsi); 2531 ice_vsi_free_arrays(vsi, false); 2532 ice_vsi_set_num_qs(vsi); 2533 2534 /* Initialize VSI struct elements and create VSI in FW */ 2535 ret = ice_vsi_init(vsi); 2536 if (ret < 0) 2537 goto err_vsi; 2538 2539 ret = ice_vsi_alloc_arrays(vsi, false); 2540 if (ret < 0) 2541 goto err_vsi; 2542 2543 switch (vsi->type) { 2544 case ICE_VSI_PF: 2545 ret = ice_vsi_alloc_q_vectors(vsi); 2546 if (ret) 2547 goto err_rings; 2548 2549 ret = ice_vsi_setup_vector_base(vsi); 2550 if (ret) 2551 goto err_vectors; 2552 2553 ret = ice_vsi_alloc_rings(vsi); 2554 if (ret) 2555 goto err_vectors; 2556 2557 ice_vsi_map_rings_to_vectors(vsi); 2558 break; 2559 case ICE_VSI_VF: 2560 ret = ice_vsi_alloc_q_vectors(vsi); 2561 if (ret) 2562 goto err_rings; 2563 2564 ret = ice_vsi_setup_vector_base(vsi); 2565 if (ret) 2566 goto err_vectors; 2567 2568 ret = ice_vsi_alloc_rings(vsi); 2569 if (ret) 2570 goto err_vectors; 2571 2572 vsi->back->q_left_tx -= vsi->alloc_txq; 2573 vsi->back->q_left_rx -= vsi->alloc_rxq; 2574 break; 2575 default: 2576 break; 2577 } 2578 2579 ice_vsi_set_tc_cfg(vsi); 2580 2581 /* configure VSI nodes based on number of queues and TC's */ 2582 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2583 max_txqs[i] = vsi->num_txq; 2584 2585 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2586 max_txqs); 2587 if (ret) { 2588 dev_info(&vsi->back->pdev->dev, 2589 "Failed VSI lan queue config\n"); 2590 goto err_vectors; 2591 } 2592 return 0; 2593 2594 err_vectors: 2595 ice_vsi_free_q_vectors(vsi); 2596 err_rings: 2597 if (vsi->netdev) { 2598 vsi->current_netdev_flags = 0; 2599 unregister_netdev(vsi->netdev); 2600 free_netdev(vsi->netdev); 2601 vsi->netdev = NULL; 2602 } 2603 err_vsi: 2604 ice_vsi_clear(vsi); 2605 set_bit(__ICE_RESET_FAILED, vsi->back->state); 2606 return ret; 2607 } 2608 2609 /** 2610 * ice_is_reset_in_progress - check for a reset in progress 2611 * @state: pf state field 2612 */ 2613 bool ice_is_reset_in_progress(unsigned long *state) 2614 { 2615 return test_bit(__ICE_RESET_OICR_RECV, state) || 2616 test_bit(__ICE_PFR_REQ, state) || 2617 test_bit(__ICE_CORER_REQ, state) || 2618 test_bit(__ICE_GLOBR_REQ, state); 2619 } 2620