1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 7 /** 8 * ice_setup_rx_ctx - Configure a receive ring context 9 * @ring: The Rx ring to configure 10 * 11 * Configure the Rx descriptor ring in RLAN context. 12 */ 13 static int ice_setup_rx_ctx(struct ice_ring *ring) 14 { 15 struct ice_vsi *vsi = ring->vsi; 16 struct ice_hw *hw = &vsi->back->hw; 17 u32 rxdid = ICE_RXDID_FLEX_NIC; 18 struct ice_rlan_ctx rlan_ctx; 19 u32 regval; 20 u16 pf_q; 21 int err; 22 23 /* what is Rx queue number in global space of 2K Rx queues */ 24 pf_q = vsi->rxq_map[ring->q_index]; 25 26 /* clear the context structure first */ 27 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 28 29 rlan_ctx.base = ring->dma >> 7; 30 31 rlan_ctx.qlen = ring->count; 32 33 /* Receive Packet Data Buffer Size. 34 * The Packet Data Buffer Size is defined in 128 byte units. 35 */ 36 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 37 38 /* use 32 byte descriptors */ 39 rlan_ctx.dsize = 1; 40 41 /* Strip the Ethernet CRC bytes before the packet is posted to host 42 * memory. 43 */ 44 rlan_ctx.crcstrip = 1; 45 46 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 47 rlan_ctx.l2tsel = 1; 48 49 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 50 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 51 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 52 53 /* This controls whether VLAN is stripped from inner headers 54 * The VLAN in the inner L2 header is stripped to the receive 55 * descriptor if enabled by this flag. 56 */ 57 rlan_ctx.showiv = 0; 58 59 /* Max packet size for this queue - must not be set to a larger value 60 * than 5 x DBUF 61 */ 62 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 63 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 64 65 /* Rx queue threshold in units of 64 */ 66 rlan_ctx.lrxqthresh = 1; 67 68 /* Enable Flexible Descriptors in the queue context which 69 * allows this driver to select a specific receive descriptor format 70 */ 71 if (vsi->type != ICE_VSI_VF) { 72 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 73 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 74 QRXFLXP_CNTXT_RXDID_IDX_M; 75 76 /* increasing context priority to pick up profile id; 77 * default is 0x01; setting to 0x03 to ensure profile 78 * is programming if prev context is of same priority 79 */ 80 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 81 QRXFLXP_CNTXT_RXDID_PRIO_M; 82 83 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 84 } 85 86 /* Absolute queue number out of 2K needs to be passed */ 87 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 88 if (err) { 89 dev_err(&vsi->back->pdev->dev, 90 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 91 pf_q, err); 92 return -EIO; 93 } 94 95 if (vsi->type == ICE_VSI_VF) 96 return 0; 97 98 /* init queue specific tail register */ 99 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 100 writel(0, ring->tail); 101 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 102 103 return 0; 104 } 105 106 /** 107 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 108 * @ring: The Tx ring to configure 109 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 110 * @pf_q: queue index in the PF space 111 * 112 * Configure the Tx descriptor ring in TLAN context. 113 */ 114 static void 115 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 116 { 117 struct ice_vsi *vsi = ring->vsi; 118 struct ice_hw *hw = &vsi->back->hw; 119 120 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 121 122 tlan_ctx->port_num = vsi->port_info->lport; 123 124 /* Transmit Queue Length */ 125 tlan_ctx->qlen = ring->count; 126 127 /* PF number */ 128 tlan_ctx->pf_num = hw->pf_id; 129 130 /* queue belongs to a specific VSI type 131 * VF / VM index should be programmed per vmvf_type setting: 132 * for vmvf_type = VF, it is VF number between 0-256 133 * for vmvf_type = VM, it is VM number between 0-767 134 * for PF or EMP this field should be set to zero 135 */ 136 switch (vsi->type) { 137 case ICE_VSI_PF: 138 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 139 break; 140 case ICE_VSI_VF: 141 /* Firmware expects vmvf_num to be absolute VF id */ 142 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 144 break; 145 default: 146 return; 147 } 148 149 /* make sure the context is associated with the right VSI */ 150 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 151 152 tlan_ctx->tso_ena = ICE_TX_LEGACY; 153 tlan_ctx->tso_qnum = pf_q; 154 155 /* Legacy or Advanced Host Interface: 156 * 0: Advanced Host Interface 157 * 1: Legacy Host Interface 158 */ 159 tlan_ctx->legacy_int = ICE_TX_LEGACY; 160 } 161 162 /** 163 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 164 * @pf: the PF being configured 165 * @pf_q: the PF queue 166 * @ena: enable or disable state of the queue 167 * 168 * This routine will wait for the given Rx queue of the PF to reach the 169 * enabled or disabled state. 170 * Returns -ETIMEDOUT in case of failing to reach the requested state after 171 * multiple retries; else will return 0 in case of success. 172 */ 173 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 174 { 175 int i; 176 177 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 178 u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q)); 179 180 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 181 break; 182 183 usleep_range(20, 40); 184 } 185 if (i >= ICE_Q_WAIT_MAX_RETRY) 186 return -ETIMEDOUT; 187 188 return 0; 189 } 190 191 /** 192 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 193 * @vsi: the VSI being configured 194 * @ena: start or stop the Rx rings 195 */ 196 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 197 { 198 struct ice_pf *pf = vsi->back; 199 struct ice_hw *hw = &pf->hw; 200 int i, j, ret = 0; 201 202 for (i = 0; i < vsi->num_rxq; i++) { 203 int pf_q = vsi->rxq_map[i]; 204 u32 rx_reg; 205 206 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { 207 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 208 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == 209 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) 210 break; 211 usleep_range(1000, 2000); 212 } 213 214 /* Skip if the queue is already in the requested state */ 215 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 216 continue; 217 218 /* turn on/off the queue */ 219 if (ena) 220 rx_reg |= QRX_CTRL_QENA_REQ_M; 221 else 222 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 223 wr32(hw, QRX_CTRL(pf_q), rx_reg); 224 225 /* wait for the change to finish */ 226 ret = ice_pf_rxq_wait(pf, pf_q, ena); 227 if (ret) { 228 dev_err(&pf->pdev->dev, 229 "VSI idx %d Rx ring %d %sable timeout\n", 230 vsi->idx, pf_q, (ena ? "en" : "dis")); 231 break; 232 } 233 } 234 235 return ret; 236 } 237 238 /** 239 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 240 * @vsi: VSI pointer 241 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 242 * 243 * On error: returns error code (negative) 244 * On success: returns 0 245 */ 246 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) 247 { 248 struct ice_pf *pf = vsi->back; 249 250 /* allocate memory for both Tx and Rx ring pointers */ 251 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 252 sizeof(struct ice_ring *), GFP_KERNEL); 253 if (!vsi->tx_rings) 254 goto err_txrings; 255 256 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 257 sizeof(struct ice_ring *), GFP_KERNEL); 258 if (!vsi->rx_rings) 259 goto err_rxrings; 260 261 if (alloc_qvectors) { 262 /* allocate memory for q_vector pointers */ 263 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, 264 vsi->num_q_vectors, 265 sizeof(struct ice_q_vector *), 266 GFP_KERNEL); 267 if (!vsi->q_vectors) 268 goto err_vectors; 269 } 270 271 return 0; 272 273 err_vectors: 274 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 275 err_rxrings: 276 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 277 err_txrings: 278 return -ENOMEM; 279 } 280 281 /** 282 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI 283 * @vsi: the VSI being configured 284 * 285 * Return 0 on success and a negative value on error 286 */ 287 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 288 { 289 struct ice_pf *pf = vsi->back; 290 291 switch (vsi->type) { 292 case ICE_VSI_PF: 293 vsi->alloc_txq = pf->num_lan_tx; 294 vsi->alloc_rxq = pf->num_lan_rx; 295 vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE); 296 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); 297 break; 298 case ICE_VSI_VF: 299 vsi->alloc_txq = pf->num_vf_qps; 300 vsi->alloc_rxq = pf->num_vf_qps; 301 /* pf->num_vf_msix includes (VF miscellaneous vector + 302 * data queue interrupts). Since vsi->num_q_vectors is number 303 * of queues vectors, subtract 1 from the original vector 304 * count 305 */ 306 vsi->num_q_vectors = pf->num_vf_msix - 1; 307 break; 308 default: 309 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 310 vsi->type); 311 break; 312 } 313 } 314 315 /** 316 * ice_get_free_slot - get the next non-NULL location index in array 317 * @array: array to search 318 * @size: size of the array 319 * @curr: last known occupied index to be used as a search hint 320 * 321 * void * is being used to keep the functionality generic. This lets us use this 322 * function on any array of pointers. 323 */ 324 static int ice_get_free_slot(void *array, int size, int curr) 325 { 326 int **tmp_array = (int **)array; 327 int next; 328 329 if (curr < (size - 1) && !tmp_array[curr + 1]) { 330 next = curr + 1; 331 } else { 332 int i = 0; 333 334 while ((i < size) && (tmp_array[i])) 335 i++; 336 if (i == size) 337 next = ICE_NO_VSI; 338 else 339 next = i; 340 } 341 return next; 342 } 343 344 /** 345 * ice_vsi_delete - delete a VSI from the switch 346 * @vsi: pointer to VSI being removed 347 */ 348 void ice_vsi_delete(struct ice_vsi *vsi) 349 { 350 struct ice_pf *pf = vsi->back; 351 struct ice_vsi_ctx ctxt; 352 enum ice_status status; 353 354 if (vsi->type == ICE_VSI_VF) 355 ctxt.vf_num = vsi->vf_id; 356 ctxt.vsi_num = vsi->vsi_num; 357 358 memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props)); 359 360 status = ice_free_vsi(&pf->hw, vsi->idx, &ctxt, false, NULL); 361 if (status) 362 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 363 vsi->vsi_num); 364 } 365 366 /** 367 * ice_vsi_free_arrays - clean up VSI resources 368 * @vsi: pointer to VSI being cleared 369 * @free_qvectors: bool to specify if q_vectors should be deallocated 370 */ 371 static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) 372 { 373 struct ice_pf *pf = vsi->back; 374 375 /* free the ring and vector containers */ 376 if (free_qvectors && vsi->q_vectors) { 377 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 378 vsi->q_vectors = NULL; 379 } 380 if (vsi->tx_rings) { 381 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 382 vsi->tx_rings = NULL; 383 } 384 if (vsi->rx_rings) { 385 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 386 vsi->rx_rings = NULL; 387 } 388 } 389 390 /** 391 * ice_vsi_clear - clean up and deallocate the provided VSI 392 * @vsi: pointer to VSI being cleared 393 * 394 * This deallocates the VSI's queue resources, removes it from the PF's 395 * VSI array if necessary, and deallocates the VSI 396 * 397 * Returns 0 on success, negative on failure 398 */ 399 int ice_vsi_clear(struct ice_vsi *vsi) 400 { 401 struct ice_pf *pf = NULL; 402 403 if (!vsi) 404 return 0; 405 406 if (!vsi->back) 407 return -EINVAL; 408 409 pf = vsi->back; 410 411 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 412 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 413 vsi->idx); 414 return -EINVAL; 415 } 416 417 mutex_lock(&pf->sw_mutex); 418 /* updates the PF for this cleared VSI */ 419 420 pf->vsi[vsi->idx] = NULL; 421 if (vsi->idx < pf->next_vsi) 422 pf->next_vsi = vsi->idx; 423 424 ice_vsi_free_arrays(vsi, true); 425 mutex_unlock(&pf->sw_mutex); 426 devm_kfree(&pf->pdev->dev, vsi); 427 428 return 0; 429 } 430 431 /** 432 * ice_msix_clean_rings - MSIX mode Interrupt Handler 433 * @irq: interrupt number 434 * @data: pointer to a q_vector 435 */ 436 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 437 { 438 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 439 440 if (!q_vector->tx.ring && !q_vector->rx.ring) 441 return IRQ_HANDLED; 442 443 napi_schedule(&q_vector->napi); 444 445 return IRQ_HANDLED; 446 } 447 448 /** 449 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 450 * @pf: board private structure 451 * @type: type of VSI 452 * 453 * returns a pointer to a VSI on success, NULL on failure. 454 */ 455 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type) 456 { 457 struct ice_vsi *vsi = NULL; 458 459 /* Need to protect the allocation of the VSIs at the PF level */ 460 mutex_lock(&pf->sw_mutex); 461 462 /* If we have already allocated our maximum number of VSIs, 463 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 464 * is available to be populated 465 */ 466 if (pf->next_vsi == ICE_NO_VSI) { 467 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 468 goto unlock_pf; 469 } 470 471 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 472 if (!vsi) 473 goto unlock_pf; 474 475 vsi->type = type; 476 vsi->back = pf; 477 set_bit(__ICE_DOWN, vsi->state); 478 vsi->idx = pf->next_vsi; 479 vsi->work_lmt = ICE_DFLT_IRQ_WORK; 480 481 ice_vsi_set_num_qs(vsi); 482 483 switch (vsi->type) { 484 case ICE_VSI_PF: 485 if (ice_vsi_alloc_arrays(vsi, true)) 486 goto err_rings; 487 488 /* Setup default MSIX irq handler for VSI */ 489 vsi->irq_handler = ice_msix_clean_rings; 490 break; 491 case ICE_VSI_VF: 492 if (ice_vsi_alloc_arrays(vsi, true)) 493 goto err_rings; 494 break; 495 default: 496 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 497 goto unlock_pf; 498 } 499 500 /* fill VSI slot in the PF struct */ 501 pf->vsi[pf->next_vsi] = vsi; 502 503 /* prepare pf->next_vsi for next use */ 504 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 505 pf->next_vsi); 506 goto unlock_pf; 507 508 err_rings: 509 devm_kfree(&pf->pdev->dev, vsi); 510 vsi = NULL; 511 unlock_pf: 512 mutex_unlock(&pf->sw_mutex); 513 return vsi; 514 } 515 516 /** 517 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 518 * @vsi: the VSI getting queues 519 * 520 * Return 0 on success and a negative value on error 521 */ 522 static int ice_vsi_get_qs_contig(struct ice_vsi *vsi) 523 { 524 struct ice_pf *pf = vsi->back; 525 int offset, ret = 0; 526 527 mutex_lock(&pf->avail_q_mutex); 528 /* look for contiguous block of queues for Tx */ 529 offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS, 530 0, vsi->alloc_txq, 0); 531 if (offset < ICE_MAX_TXQS) { 532 int i; 533 534 bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq); 535 for (i = 0; i < vsi->alloc_txq; i++) 536 vsi->txq_map[i] = i + offset; 537 } else { 538 ret = -ENOMEM; 539 vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER; 540 } 541 542 /* look for contiguous block of queues for Rx */ 543 offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS, 544 0, vsi->alloc_rxq, 0); 545 if (offset < ICE_MAX_RXQS) { 546 int i; 547 548 bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq); 549 for (i = 0; i < vsi->alloc_rxq; i++) 550 vsi->rxq_map[i] = i + offset; 551 } else { 552 ret = -ENOMEM; 553 vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER; 554 } 555 mutex_unlock(&pf->avail_q_mutex); 556 557 return ret; 558 } 559 560 /** 561 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI 562 * @vsi: the VSI getting queues 563 * 564 * Return 0 on success and a negative value on error 565 */ 566 static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi) 567 { 568 struct ice_pf *pf = vsi->back; 569 int i, index = 0; 570 571 mutex_lock(&pf->avail_q_mutex); 572 573 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) { 574 for (i = 0; i < vsi->alloc_txq; i++) { 575 index = find_next_zero_bit(pf->avail_txqs, 576 ICE_MAX_TXQS, index); 577 if (index < ICE_MAX_TXQS) { 578 set_bit(index, pf->avail_txqs); 579 vsi->txq_map[i] = index; 580 } else { 581 goto err_scatter_tx; 582 } 583 } 584 } 585 586 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) { 587 for (i = 0; i < vsi->alloc_rxq; i++) { 588 index = find_next_zero_bit(pf->avail_rxqs, 589 ICE_MAX_RXQS, index); 590 if (index < ICE_MAX_RXQS) { 591 set_bit(index, pf->avail_rxqs); 592 vsi->rxq_map[i] = index; 593 } else { 594 goto err_scatter_rx; 595 } 596 } 597 } 598 599 mutex_unlock(&pf->avail_q_mutex); 600 return 0; 601 602 err_scatter_rx: 603 /* unflag any queues we have grabbed (i is failed position) */ 604 for (index = 0; index < i; index++) { 605 clear_bit(vsi->rxq_map[index], pf->avail_rxqs); 606 vsi->rxq_map[index] = 0; 607 } 608 i = vsi->alloc_txq; 609 err_scatter_tx: 610 /* i is either position of failed attempt or vsi->alloc_txq */ 611 for (index = 0; index < i; index++) { 612 clear_bit(vsi->txq_map[index], pf->avail_txqs); 613 vsi->txq_map[index] = 0; 614 } 615 616 mutex_unlock(&pf->avail_q_mutex); 617 return -ENOMEM; 618 } 619 620 /** 621 * ice_vsi_get_qs - Assign queues from PF to VSI 622 * @vsi: the VSI to assign queues to 623 * 624 * Returns 0 on success and a negative value on error 625 */ 626 static int ice_vsi_get_qs(struct ice_vsi *vsi) 627 { 628 int ret = 0; 629 630 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 631 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 632 633 /* NOTE: ice_vsi_get_qs_contig() will set the Rx/Tx mapping 634 * modes individually to scatter if assigning contiguous queues 635 * to Rx or Tx fails 636 */ 637 ret = ice_vsi_get_qs_contig(vsi); 638 if (ret < 0) { 639 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) 640 vsi->alloc_txq = max_t(u16, vsi->alloc_txq, 641 ICE_MAX_SCATTER_TXQS); 642 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) 643 vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq, 644 ICE_MAX_SCATTER_RXQS); 645 ret = ice_vsi_get_qs_scatter(vsi); 646 } 647 648 return ret; 649 } 650 651 /** 652 * ice_vsi_put_qs - Release queues from VSI to PF 653 * @vsi: the VSI that is going to release queues 654 */ 655 void ice_vsi_put_qs(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 int i; 659 660 mutex_lock(&pf->avail_q_mutex); 661 662 for (i = 0; i < vsi->alloc_txq; i++) { 663 clear_bit(vsi->txq_map[i], pf->avail_txqs); 664 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 665 } 666 667 for (i = 0; i < vsi->alloc_rxq; i++) { 668 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 669 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 670 } 671 672 mutex_unlock(&pf->avail_q_mutex); 673 } 674 675 /** 676 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 677 * @vsi: the VSI being removed 678 */ 679 static void ice_rss_clean(struct ice_vsi *vsi) 680 { 681 struct ice_pf *pf; 682 683 pf = vsi->back; 684 685 if (vsi->rss_hkey_user) 686 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 687 if (vsi->rss_lut_user) 688 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 689 } 690 691 /** 692 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 693 * @vsi: the VSI being configured 694 */ 695 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 696 { 697 struct ice_hw_common_caps *cap; 698 struct ice_pf *pf = vsi->back; 699 700 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 701 vsi->rss_size = 1; 702 return; 703 } 704 705 cap = &pf->hw.func_caps.common_cap; 706 switch (vsi->type) { 707 case ICE_VSI_PF: 708 /* PF VSI will inherit RSS instance of PF */ 709 vsi->rss_table_size = cap->rss_table_size; 710 vsi->rss_size = min_t(int, num_online_cpus(), 711 BIT(cap->rss_table_entry_width)); 712 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 713 break; 714 case ICE_VSI_VF: 715 /* VF VSI will gets a small RSS table 716 * For VSI_LUT, LUT size should be set to 64 bytes 717 */ 718 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 719 vsi->rss_size = min_t(int, num_online_cpus(), 720 BIT(cap->rss_table_entry_width)); 721 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 722 break; 723 default: 724 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 725 vsi->type); 726 break; 727 } 728 } 729 730 /** 731 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 732 * @ctxt: the VSI context being set 733 * 734 * This initializes a default VSI context for all sections except the Queues. 735 */ 736 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 737 { 738 u32 table = 0; 739 740 memset(&ctxt->info, 0, sizeof(ctxt->info)); 741 /* VSI's should be allocated from shared pool */ 742 ctxt->alloc_from_pool = true; 743 /* Src pruning enabled by default */ 744 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 745 /* Traffic from VSI can be sent to LAN */ 746 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 747 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 748 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 749 * packets untagged/tagged. 750 */ 751 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 752 ICE_AQ_VSI_VLAN_MODE_M) >> 753 ICE_AQ_VSI_VLAN_MODE_S); 754 /* Have 1:1 UP mapping for both ingress/egress tables */ 755 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 756 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 757 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 758 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 759 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 760 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 761 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 762 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 763 ctxt->info.ingress_table = cpu_to_le32(table); 764 ctxt->info.egress_table = cpu_to_le32(table); 765 /* Have 1:1 UP mapping for outer to inner UP table */ 766 ctxt->info.outer_up_table = cpu_to_le32(table); 767 /* No Outer tag support outer_tag_flags remains to zero */ 768 } 769 770 /** 771 * ice_vsi_setup_q_map - Setup a VSI queue map 772 * @vsi: the VSI being configured 773 * @ctxt: VSI context structure 774 */ 775 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 776 { 777 u16 offset = 0, qmap = 0, tx_count = 0; 778 u16 qcount_tx = vsi->alloc_txq; 779 u16 qcount_rx = vsi->alloc_rxq; 780 u16 tx_numq_tc, rx_numq_tc; 781 u16 pow = 0, max_rss = 0; 782 bool ena_tc0 = false; 783 u8 netdev_tc = 0; 784 int i; 785 786 /* at least TC0 should be enabled by default */ 787 if (vsi->tc_cfg.numtc) { 788 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 789 ena_tc0 = true; 790 } else { 791 ena_tc0 = true; 792 } 793 794 if (ena_tc0) { 795 vsi->tc_cfg.numtc++; 796 vsi->tc_cfg.ena_tc |= 1; 797 } 798 799 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 800 if (!rx_numq_tc) 801 rx_numq_tc = 1; 802 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 803 if (!tx_numq_tc) 804 tx_numq_tc = 1; 805 806 /* TC mapping is a function of the number of Rx queues assigned to the 807 * VSI for each traffic class and the offset of these queues. 808 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 809 * queues allocated to TC0. No:of queues is a power-of-2. 810 * 811 * If TC is not enabled, the queue offset is set to 0, and allocate one 812 * queue, this way, traffic for the given TC will be sent to the default 813 * queue. 814 * 815 * Setup number and offset of Rx queues for all TCs for the VSI 816 */ 817 818 qcount_rx = rx_numq_tc; 819 820 /* qcount will change if RSS is enabled */ 821 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 822 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 823 if (vsi->type == ICE_VSI_PF) 824 max_rss = ICE_MAX_LG_RSS_QS; 825 else 826 max_rss = ICE_MAX_SMALL_RSS_QS; 827 qcount_rx = min_t(int, rx_numq_tc, max_rss); 828 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 829 } 830 } 831 832 /* find the (rounded up) power-of-2 of qcount */ 833 pow = order_base_2(qcount_rx); 834 835 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { 836 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 837 /* TC is not enabled */ 838 vsi->tc_cfg.tc_info[i].qoffset = 0; 839 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 840 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 841 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 842 ctxt->info.tc_mapping[i] = 0; 843 continue; 844 } 845 846 /* TC is enabled */ 847 vsi->tc_cfg.tc_info[i].qoffset = offset; 848 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 849 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 850 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 851 852 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 853 ICE_AQ_VSI_TC_Q_OFFSET_M) | 854 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 855 ICE_AQ_VSI_TC_Q_NUM_M); 856 offset += qcount_rx; 857 tx_count += tx_numq_tc; 858 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 859 } 860 vsi->num_rxq = offset; 861 vsi->num_txq = tx_count; 862 863 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 864 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 865 /* since there is a chance that num_rxq could have been changed 866 * in the above for loop, make num_txq equal to num_rxq. 867 */ 868 vsi->num_txq = vsi->num_rxq; 869 } 870 871 /* Rx queue mapping */ 872 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 873 /* q_mapping buffer holds the info for the first queue allocated for 874 * this VSI in the PF space and also the number of queues associated 875 * with this VSI. 876 */ 877 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 878 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 879 } 880 881 /** 882 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 883 * @ctxt: the VSI context being set 884 * @vsi: the VSI being configured 885 */ 886 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 887 { 888 u8 lut_type, hash_type; 889 890 switch (vsi->type) { 891 case ICE_VSI_PF: 892 /* PF VSI will inherit RSS instance of PF */ 893 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 894 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 895 break; 896 case ICE_VSI_VF: 897 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 898 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 899 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 900 break; 901 default: 902 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 903 vsi->type); 904 return; 905 } 906 907 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 908 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 909 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 910 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 911 } 912 913 /** 914 * ice_vsi_init - Create and initialize a VSI 915 * @vsi: the VSI being configured 916 * 917 * This initializes a VSI context depending on the VSI type to be added and 918 * passes it down to the add_vsi aq command to create a new VSI. 919 */ 920 static int ice_vsi_init(struct ice_vsi *vsi) 921 { 922 struct ice_vsi_ctx ctxt = { 0 }; 923 struct ice_pf *pf = vsi->back; 924 struct ice_hw *hw = &pf->hw; 925 int ret = 0; 926 927 switch (vsi->type) { 928 case ICE_VSI_PF: 929 ctxt.flags = ICE_AQ_VSI_TYPE_PF; 930 break; 931 case ICE_VSI_VF: 932 ctxt.flags = ICE_AQ_VSI_TYPE_VF; 933 /* VF number here is the absolute VF number (0-255) */ 934 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 935 break; 936 default: 937 return -ENODEV; 938 } 939 940 ice_set_dflt_vsi_ctx(&ctxt); 941 /* if the switch is in VEB mode, allow VSI loopback */ 942 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 943 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 944 945 /* Set LUT type and HASH type if RSS is enabled */ 946 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 947 ice_set_rss_vsi_ctx(&ctxt, vsi); 948 949 ctxt.info.sw_id = vsi->port_info->sw_id; 950 ice_vsi_setup_q_map(vsi, &ctxt); 951 952 ret = ice_add_vsi(hw, vsi->idx, &ctxt, NULL); 953 if (ret) { 954 dev_err(&pf->pdev->dev, 955 "Add VSI failed, err %d\n", ret); 956 return -EIO; 957 } 958 959 /* keep context for update VSI operations */ 960 vsi->info = ctxt.info; 961 962 /* record VSI number returned */ 963 vsi->vsi_num = ctxt.vsi_num; 964 965 return ret; 966 } 967 968 /** 969 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 970 * @vsi: VSI having the memory freed 971 * @v_idx: index of the vector to be freed 972 */ 973 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 974 { 975 struct ice_q_vector *q_vector; 976 struct ice_ring *ring; 977 978 if (!vsi->q_vectors[v_idx]) { 979 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", 980 v_idx); 981 return; 982 } 983 q_vector = vsi->q_vectors[v_idx]; 984 985 ice_for_each_ring(ring, q_vector->tx) 986 ring->q_vector = NULL; 987 ice_for_each_ring(ring, q_vector->rx) 988 ring->q_vector = NULL; 989 990 /* only VSI with an associated netdev is set up with NAPI */ 991 if (vsi->netdev) 992 netif_napi_del(&q_vector->napi); 993 994 devm_kfree(&vsi->back->pdev->dev, q_vector); 995 vsi->q_vectors[v_idx] = NULL; 996 } 997 998 /** 999 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 1000 * @vsi: the VSI having memory freed 1001 */ 1002 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 1003 { 1004 int v_idx; 1005 1006 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1007 ice_free_q_vector(vsi, v_idx); 1008 } 1009 1010 /** 1011 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1012 * @vsi: the VSI being configured 1013 * @v_idx: index of the vector in the VSI struct 1014 * 1015 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1016 */ 1017 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1018 { 1019 struct ice_pf *pf = vsi->back; 1020 struct ice_q_vector *q_vector; 1021 1022 /* allocate q_vector */ 1023 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1024 if (!q_vector) 1025 return -ENOMEM; 1026 1027 q_vector->vsi = vsi; 1028 q_vector->v_idx = v_idx; 1029 if (vsi->type == ICE_VSI_VF) 1030 goto out; 1031 /* only set affinity_mask if the CPU is online */ 1032 if (cpu_online(v_idx)) 1033 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1034 1035 /* This will not be called in the driver load path because the netdev 1036 * will not be created yet. All other cases with register the NAPI 1037 * handler here (i.e. resume, reset/rebuild, etc.) 1038 */ 1039 if (vsi->netdev) 1040 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1041 NAPI_POLL_WEIGHT); 1042 1043 out: 1044 /* tie q_vector and VSI together */ 1045 vsi->q_vectors[v_idx] = q_vector; 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1052 * @vsi: the VSI being configured 1053 * 1054 * We allocate one q_vector per queue interrupt. If allocation fails we 1055 * return -ENOMEM. 1056 */ 1057 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1058 { 1059 struct ice_pf *pf = vsi->back; 1060 int v_idx = 0, num_q_vectors; 1061 int err; 1062 1063 if (vsi->q_vectors[0]) { 1064 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1065 vsi->vsi_num); 1066 return -EEXIST; 1067 } 1068 1069 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1070 num_q_vectors = vsi->num_q_vectors; 1071 } else { 1072 err = -EINVAL; 1073 goto err_out; 1074 } 1075 1076 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1077 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1078 if (err) 1079 goto err_out; 1080 } 1081 1082 return 0; 1083 1084 err_out: 1085 while (v_idx--) 1086 ice_free_q_vector(vsi, v_idx); 1087 1088 dev_err(&pf->pdev->dev, 1089 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1090 vsi->num_q_vectors, vsi->vsi_num, err); 1091 vsi->num_q_vectors = 0; 1092 return err; 1093 } 1094 1095 /** 1096 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1097 * @vsi: ptr to the VSI 1098 * 1099 * This should only be called after ice_vsi_alloc() which allocates the 1100 * corresponding SW VSI structure and initializes num_queue_pairs for the 1101 * newly allocated VSI. 1102 * 1103 * Returns 0 on success or negative on failure 1104 */ 1105 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1106 { 1107 struct ice_pf *pf = vsi->back; 1108 int num_q_vectors = 0; 1109 1110 if (vsi->sw_base_vector || vsi->hw_base_vector) { 1111 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n", 1112 vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector); 1113 return -EEXIST; 1114 } 1115 1116 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1117 return -ENOENT; 1118 1119 switch (vsi->type) { 1120 case ICE_VSI_PF: 1121 num_q_vectors = vsi->num_q_vectors; 1122 /* reserve slots from OS requested IRQs */ 1123 vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker, 1124 num_q_vectors, vsi->idx); 1125 if (vsi->sw_base_vector < 0) { 1126 dev_err(&pf->pdev->dev, 1127 "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n", 1128 num_q_vectors, vsi->vsi_num, 1129 vsi->sw_base_vector); 1130 return -ENOENT; 1131 } 1132 pf->num_avail_sw_msix -= num_q_vectors; 1133 1134 /* reserve slots from HW interrupts */ 1135 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1136 num_q_vectors, vsi->idx); 1137 break; 1138 case ICE_VSI_VF: 1139 /* take VF misc vector and data vectors into account */ 1140 num_q_vectors = pf->num_vf_msix; 1141 /* For VF VSI, reserve slots only from HW interrupts */ 1142 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1143 num_q_vectors, vsi->idx); 1144 break; 1145 default: 1146 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 1147 vsi->type); 1148 break; 1149 } 1150 1151 if (vsi->hw_base_vector < 0) { 1152 dev_err(&pf->pdev->dev, 1153 "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n", 1154 num_q_vectors, vsi->vsi_num, vsi->hw_base_vector); 1155 if (vsi->type != ICE_VSI_VF) { 1156 ice_free_res(vsi->back->sw_irq_tracker, 1157 vsi->sw_base_vector, vsi->idx); 1158 pf->num_avail_sw_msix += num_q_vectors; 1159 } 1160 return -ENOENT; 1161 } 1162 1163 pf->num_avail_hw_msix -= num_q_vectors; 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1170 * @vsi: the VSI having rings deallocated 1171 */ 1172 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1173 { 1174 int i; 1175 1176 if (vsi->tx_rings) { 1177 for (i = 0; i < vsi->alloc_txq; i++) { 1178 if (vsi->tx_rings[i]) { 1179 kfree_rcu(vsi->tx_rings[i], rcu); 1180 vsi->tx_rings[i] = NULL; 1181 } 1182 } 1183 } 1184 if (vsi->rx_rings) { 1185 for (i = 0; i < vsi->alloc_rxq; i++) { 1186 if (vsi->rx_rings[i]) { 1187 kfree_rcu(vsi->rx_rings[i], rcu); 1188 vsi->rx_rings[i] = NULL; 1189 } 1190 } 1191 } 1192 } 1193 1194 /** 1195 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1196 * @vsi: VSI which is having rings allocated 1197 */ 1198 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1199 { 1200 struct ice_pf *pf = vsi->back; 1201 int i; 1202 1203 /* Allocate Tx rings */ 1204 for (i = 0; i < vsi->alloc_txq; i++) { 1205 struct ice_ring *ring; 1206 1207 /* allocate with kzalloc(), free with kfree_rcu() */ 1208 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1209 1210 if (!ring) 1211 goto err_out; 1212 1213 ring->q_index = i; 1214 ring->reg_idx = vsi->txq_map[i]; 1215 ring->ring_active = false; 1216 ring->vsi = vsi; 1217 ring->dev = &pf->pdev->dev; 1218 ring->count = vsi->num_desc; 1219 vsi->tx_rings[i] = ring; 1220 } 1221 1222 /* Allocate Rx rings */ 1223 for (i = 0; i < vsi->alloc_rxq; i++) { 1224 struct ice_ring *ring; 1225 1226 /* allocate with kzalloc(), free with kfree_rcu() */ 1227 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1228 if (!ring) 1229 goto err_out; 1230 1231 ring->q_index = i; 1232 ring->reg_idx = vsi->rxq_map[i]; 1233 ring->ring_active = false; 1234 ring->vsi = vsi; 1235 ring->netdev = vsi->netdev; 1236 ring->dev = &pf->pdev->dev; 1237 ring->count = vsi->num_desc; 1238 vsi->rx_rings[i] = ring; 1239 } 1240 1241 return 0; 1242 1243 err_out: 1244 ice_vsi_clear_rings(vsi); 1245 return -ENOMEM; 1246 } 1247 1248 /** 1249 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1250 * @vsi: the VSI being configured 1251 * 1252 * This function maps descriptor rings to the queue-specific vectors allotted 1253 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1254 * and Rx rings to the vector as "efficiently" as possible. 1255 */ 1256 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1257 { 1258 int q_vectors = vsi->num_q_vectors; 1259 int tx_rings_rem, rx_rings_rem; 1260 int v_id; 1261 1262 /* initially assigning remaining rings count to VSIs num queue value */ 1263 tx_rings_rem = vsi->num_txq; 1264 rx_rings_rem = vsi->num_rxq; 1265 1266 for (v_id = 0; v_id < q_vectors; v_id++) { 1267 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1268 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1269 1270 /* Tx rings mapping to vector */ 1271 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1272 q_vector->num_ring_tx = tx_rings_per_v; 1273 q_vector->tx.ring = NULL; 1274 q_vector->tx.itr_idx = ICE_TX_ITR; 1275 q_base = vsi->num_txq - tx_rings_rem; 1276 1277 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1278 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1279 1280 tx_ring->q_vector = q_vector; 1281 tx_ring->next = q_vector->tx.ring; 1282 q_vector->tx.ring = tx_ring; 1283 } 1284 tx_rings_rem -= tx_rings_per_v; 1285 1286 /* Rx rings mapping to vector */ 1287 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1288 q_vector->num_ring_rx = rx_rings_per_v; 1289 q_vector->rx.ring = NULL; 1290 q_vector->rx.itr_idx = ICE_RX_ITR; 1291 q_base = vsi->num_rxq - rx_rings_rem; 1292 1293 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1294 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1295 1296 rx_ring->q_vector = q_vector; 1297 rx_ring->next = q_vector->rx.ring; 1298 q_vector->rx.ring = rx_ring; 1299 } 1300 rx_rings_rem -= rx_rings_per_v; 1301 } 1302 } 1303 1304 /** 1305 * ice_vsi_manage_rss_lut - disable/enable RSS 1306 * @vsi: the VSI being changed 1307 * @ena: boolean value indicating if this is an enable or disable request 1308 * 1309 * In the event of disable request for RSS, this function will zero out RSS 1310 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1311 * LUT. 1312 */ 1313 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1314 { 1315 int err = 0; 1316 u8 *lut; 1317 1318 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1319 GFP_KERNEL); 1320 if (!lut) 1321 return -ENOMEM; 1322 1323 if (ena) { 1324 if (vsi->rss_lut_user) 1325 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1326 else 1327 ice_fill_rss_lut(lut, vsi->rss_table_size, 1328 vsi->rss_size); 1329 } 1330 1331 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1332 devm_kfree(&vsi->back->pdev->dev, lut); 1333 return err; 1334 } 1335 1336 /** 1337 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1338 * @vsi: VSI to be configured 1339 */ 1340 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1341 { 1342 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; 1343 struct ice_aqc_get_set_rss_keys *key; 1344 struct ice_pf *pf = vsi->back; 1345 enum ice_status status; 1346 int err = 0; 1347 u8 *lut; 1348 1349 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1350 1351 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1352 if (!lut) 1353 return -ENOMEM; 1354 1355 if (vsi->rss_lut_user) 1356 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1357 else 1358 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1359 1360 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1361 vsi->rss_table_size); 1362 1363 if (status) { 1364 dev_err(&vsi->back->pdev->dev, 1365 "set_rss_lut failed, error %d\n", status); 1366 err = -EIO; 1367 goto ice_vsi_cfg_rss_exit; 1368 } 1369 1370 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); 1371 if (!key) { 1372 err = -ENOMEM; 1373 goto ice_vsi_cfg_rss_exit; 1374 } 1375 1376 if (vsi->rss_hkey_user) 1377 memcpy(seed, vsi->rss_hkey_user, 1378 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1379 else 1380 netdev_rss_key_fill((void *)seed, 1381 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1382 memcpy(&key->standard_rss_key, seed, 1383 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1384 1385 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1386 1387 if (status) { 1388 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", 1389 status); 1390 err = -EIO; 1391 } 1392 1393 devm_kfree(&pf->pdev->dev, key); 1394 ice_vsi_cfg_rss_exit: 1395 devm_kfree(&pf->pdev->dev, lut); 1396 return err; 1397 } 1398 1399 /** 1400 * ice_add_mac_to_list - Add a mac address filter entry to the list 1401 * @vsi: the VSI to be forwarded to 1402 * @add_list: pointer to the list which contains MAC filter entries 1403 * @macaddr: the MAC address to be added. 1404 * 1405 * Adds mac address filter entry to the temp list 1406 * 1407 * Returns 0 on success or ENOMEM on failure. 1408 */ 1409 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1410 const u8 *macaddr) 1411 { 1412 struct ice_fltr_list_entry *tmp; 1413 struct ice_pf *pf = vsi->back; 1414 1415 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1416 if (!tmp) 1417 return -ENOMEM; 1418 1419 tmp->fltr_info.flag = ICE_FLTR_TX; 1420 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1421 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1422 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1423 tmp->fltr_info.vsi_handle = vsi->idx; 1424 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1425 1426 INIT_LIST_HEAD(&tmp->list_entry); 1427 list_add(&tmp->list_entry, add_list); 1428 1429 return 0; 1430 } 1431 1432 /** 1433 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1434 * @vsi: the VSI to be updated 1435 */ 1436 void ice_update_eth_stats(struct ice_vsi *vsi) 1437 { 1438 struct ice_eth_stats *prev_es, *cur_es; 1439 struct ice_hw *hw = &vsi->back->hw; 1440 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1441 1442 prev_es = &vsi->eth_stats_prev; 1443 cur_es = &vsi->eth_stats; 1444 1445 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), 1446 vsi->stat_offsets_loaded, &prev_es->rx_bytes, 1447 &cur_es->rx_bytes); 1448 1449 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), 1450 vsi->stat_offsets_loaded, &prev_es->rx_unicast, 1451 &cur_es->rx_unicast); 1452 1453 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), 1454 vsi->stat_offsets_loaded, &prev_es->rx_multicast, 1455 &cur_es->rx_multicast); 1456 1457 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), 1458 vsi->stat_offsets_loaded, &prev_es->rx_broadcast, 1459 &cur_es->rx_broadcast); 1460 1461 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1462 &prev_es->rx_discards, &cur_es->rx_discards); 1463 1464 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), 1465 vsi->stat_offsets_loaded, &prev_es->tx_bytes, 1466 &cur_es->tx_bytes); 1467 1468 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), 1469 vsi->stat_offsets_loaded, &prev_es->tx_unicast, 1470 &cur_es->tx_unicast); 1471 1472 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), 1473 vsi->stat_offsets_loaded, &prev_es->tx_multicast, 1474 &cur_es->tx_multicast); 1475 1476 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), 1477 vsi->stat_offsets_loaded, &prev_es->tx_broadcast, 1478 &cur_es->tx_broadcast); 1479 1480 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1481 &prev_es->tx_errors, &cur_es->tx_errors); 1482 1483 vsi->stat_offsets_loaded = true; 1484 } 1485 1486 /** 1487 * ice_free_fltr_list - free filter lists helper 1488 * @dev: pointer to the device struct 1489 * @h: pointer to the list head to be freed 1490 * 1491 * Helper function to free filter lists previously created using 1492 * ice_add_mac_to_list 1493 */ 1494 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1495 { 1496 struct ice_fltr_list_entry *e, *tmp; 1497 1498 list_for_each_entry_safe(e, tmp, h, list_entry) { 1499 list_del(&e->list_entry); 1500 devm_kfree(dev, e); 1501 } 1502 } 1503 1504 /** 1505 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1506 * @vsi: the VSI being configured 1507 * @vid: VLAN id to be added 1508 */ 1509 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1510 { 1511 struct ice_fltr_list_entry *tmp; 1512 struct ice_pf *pf = vsi->back; 1513 LIST_HEAD(tmp_add_list); 1514 enum ice_status status; 1515 int err = 0; 1516 1517 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1518 if (!tmp) 1519 return -ENOMEM; 1520 1521 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1522 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1523 tmp->fltr_info.flag = ICE_FLTR_TX; 1524 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1525 tmp->fltr_info.vsi_handle = vsi->idx; 1526 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1527 1528 INIT_LIST_HEAD(&tmp->list_entry); 1529 list_add(&tmp->list_entry, &tmp_add_list); 1530 1531 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1532 if (status) { 1533 err = -ENODEV; 1534 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1535 vid, vsi->vsi_num); 1536 } 1537 1538 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1539 return err; 1540 } 1541 1542 /** 1543 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1544 * @vsi: the VSI being configured 1545 * @vid: VLAN id to be removed 1546 * 1547 * Returns 0 on success and negative on failure 1548 */ 1549 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1550 { 1551 struct ice_fltr_list_entry *list; 1552 struct ice_pf *pf = vsi->back; 1553 LIST_HEAD(tmp_add_list); 1554 int status = 0; 1555 1556 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1557 if (!list) 1558 return -ENOMEM; 1559 1560 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1561 list->fltr_info.vsi_handle = vsi->idx; 1562 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1563 list->fltr_info.l_data.vlan.vlan_id = vid; 1564 list->fltr_info.flag = ICE_FLTR_TX; 1565 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1566 1567 INIT_LIST_HEAD(&list->list_entry); 1568 list_add(&list->list_entry, &tmp_add_list); 1569 1570 if (ice_remove_vlan(&pf->hw, &tmp_add_list)) { 1571 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", 1572 vid, vsi->vsi_num); 1573 status = -EIO; 1574 } 1575 1576 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1577 return status; 1578 } 1579 1580 /** 1581 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1582 * @vsi: the VSI being configured 1583 * 1584 * Return 0 on success and a negative value on error 1585 * Configure the Rx VSI for operation. 1586 */ 1587 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1588 { 1589 int err = 0; 1590 u16 i; 1591 1592 if (vsi->type == ICE_VSI_VF) 1593 goto setup_rings; 1594 1595 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1596 vsi->max_frame = vsi->netdev->mtu + 1597 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1598 else 1599 vsi->max_frame = ICE_RXBUF_2048; 1600 1601 vsi->rx_buf_len = ICE_RXBUF_2048; 1602 setup_rings: 1603 /* set up individual rings */ 1604 for (i = 0; i < vsi->num_rxq && !err; i++) 1605 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1606 1607 if (err) { 1608 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); 1609 return -EIO; 1610 } 1611 return err; 1612 } 1613 1614 /** 1615 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1616 * @vsi: the VSI being configured 1617 * 1618 * Return 0 on success and a negative value on error 1619 * Configure the Tx VSI for operation. 1620 */ 1621 int ice_vsi_cfg_txqs(struct ice_vsi *vsi) 1622 { 1623 struct ice_aqc_add_tx_qgrp *qg_buf; 1624 struct ice_aqc_add_txqs_perq *txq; 1625 struct ice_pf *pf = vsi->back; 1626 u8 num_q_grps, q_idx = 0; 1627 enum ice_status status; 1628 u16 buf_len, i, pf_q; 1629 int err = 0, tc = 0; 1630 1631 buf_len = sizeof(struct ice_aqc_add_tx_qgrp); 1632 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); 1633 if (!qg_buf) 1634 return -ENOMEM; 1635 1636 qg_buf->num_txqs = 1; 1637 num_q_grps = 1; 1638 1639 /* set up and configure the Tx queues for each enabled TC */ 1640 for (tc = 0; tc < ICE_MAX_TRAFFIC_CLASS; tc++) { 1641 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 1642 break; 1643 1644 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 1645 struct ice_tlan_ctx tlan_ctx = { 0 }; 1646 1647 pf_q = vsi->txq_map[q_idx]; 1648 ice_setup_tx_ctx(vsi->tx_rings[q_idx], &tlan_ctx, 1649 pf_q); 1650 /* copy context contents into the qg_buf */ 1651 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1652 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1653 ice_tlan_ctx_info); 1654 1655 /* init queue specific tail reg. It is referred as 1656 * transmit comm scheduler queue doorbell. 1657 */ 1658 vsi->tx_rings[q_idx]->tail = 1659 pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1660 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 1661 num_q_grps, qg_buf, buf_len, 1662 NULL); 1663 if (status) { 1664 dev_err(&vsi->back->pdev->dev, 1665 "Failed to set LAN Tx queue context, error: %d\n", 1666 status); 1667 err = -ENODEV; 1668 goto err_cfg_txqs; 1669 } 1670 1671 /* Add Tx Queue TEID into the VSI Tx ring from the 1672 * response. This will complete configuring and 1673 * enabling the queue. 1674 */ 1675 txq = &qg_buf->txqs[0]; 1676 if (pf_q == le16_to_cpu(txq->txq_id)) 1677 vsi->tx_rings[q_idx]->txq_teid = 1678 le32_to_cpu(txq->q_teid); 1679 1680 q_idx++; 1681 } 1682 } 1683 err_cfg_txqs: 1684 devm_kfree(&pf->pdev->dev, qg_buf); 1685 return err; 1686 } 1687 1688 /** 1689 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1690 * @intrl: interrupt rate limit in usecs 1691 * @gran: interrupt rate limit granularity in usecs 1692 * 1693 * This function converts a decimal interrupt rate limit in usecs to the format 1694 * expected by firmware. 1695 */ 1696 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1697 { 1698 u32 val = intrl / gran; 1699 1700 if (val) 1701 return val | GLINT_RATE_INTRL_ENA_M; 1702 return 0; 1703 } 1704 1705 /** 1706 * ice_cfg_itr - configure the initial interrupt throttle values 1707 * @hw: pointer to the HW structure 1708 * @q_vector: interrupt vector that's being configured 1709 * @vector: HW vector index to apply the interrupt throttling to 1710 * 1711 * Configure interrupt throttling values for the ring containers that are 1712 * associated with the interrupt vector passed in. 1713 */ 1714 static void 1715 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector) 1716 { 1717 u8 itr_gran = hw->itr_gran; 1718 1719 if (q_vector->num_ring_rx) { 1720 struct ice_ring_container *rc = &q_vector->rx; 1721 1722 rc->itr = ITR_TO_REG(ICE_DFLT_RX_ITR, itr_gran); 1723 rc->latency_range = ICE_LOW_LATENCY; 1724 wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr); 1725 } 1726 1727 if (q_vector->num_ring_tx) { 1728 struct ice_ring_container *rc = &q_vector->tx; 1729 1730 rc->itr = ITR_TO_REG(ICE_DFLT_TX_ITR, itr_gran); 1731 rc->latency_range = ICE_LOW_LATENCY; 1732 wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr); 1733 } 1734 } 1735 1736 /** 1737 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1738 * @vsi: the VSI being configured 1739 */ 1740 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1741 { 1742 struct ice_pf *pf = vsi->back; 1743 u16 vector = vsi->hw_base_vector; 1744 struct ice_hw *hw = &pf->hw; 1745 u32 txq = 0, rxq = 0; 1746 int i, q; 1747 1748 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 1749 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1750 1751 ice_cfg_itr(hw, q_vector, vector); 1752 1753 wr32(hw, GLINT_RATE(vector), 1754 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1755 1756 /* Both Transmit Queue Interrupt Cause Control register 1757 * and Receive Queue Interrupt Cause control register 1758 * expects MSIX_INDX field to be the vector index 1759 * within the function space and not the absolute 1760 * vector index across PF or across device. 1761 * For SR-IOV VF VSIs queue vector index always starts 1762 * with 1 since first vector index(0) is used for OICR 1763 * in VF space. Since VMDq and other PF VSIs are within 1764 * the PF function space, use the vector index that is 1765 * tracked for this PF. 1766 */ 1767 for (q = 0; q < q_vector->num_ring_tx; q++) { 1768 int itr_idx = q_vector->tx.itr_idx; 1769 u32 val; 1770 1771 if (vsi->type == ICE_VSI_VF) 1772 val = QINT_TQCTL_CAUSE_ENA_M | 1773 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1774 ((i + 1) << QINT_TQCTL_MSIX_INDX_S); 1775 else 1776 val = QINT_TQCTL_CAUSE_ENA_M | 1777 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1778 (vector << QINT_TQCTL_MSIX_INDX_S); 1779 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1780 txq++; 1781 } 1782 1783 for (q = 0; q < q_vector->num_ring_rx; q++) { 1784 int itr_idx = q_vector->rx.itr_idx; 1785 u32 val; 1786 1787 if (vsi->type == ICE_VSI_VF) 1788 val = QINT_RQCTL_CAUSE_ENA_M | 1789 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1790 ((i + 1) << QINT_RQCTL_MSIX_INDX_S); 1791 else 1792 val = QINT_RQCTL_CAUSE_ENA_M | 1793 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1794 (vector << QINT_RQCTL_MSIX_INDX_S); 1795 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1796 rxq++; 1797 } 1798 } 1799 1800 ice_flush(hw); 1801 } 1802 1803 /** 1804 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1805 * @vsi: the VSI being changed 1806 */ 1807 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1808 { 1809 struct device *dev = &vsi->back->pdev->dev; 1810 struct ice_hw *hw = &vsi->back->hw; 1811 struct ice_vsi_ctx ctxt = { 0 }; 1812 enum ice_status status; 1813 1814 /* Here we are configuring the VSI to let the driver add VLAN tags by 1815 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1816 * insertion happens in the Tx hot path, in ice_tx_map. 1817 */ 1818 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1819 1820 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1821 1822 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1823 if (status) { 1824 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1825 status, hw->adminq.sq_last_status); 1826 return -EIO; 1827 } 1828 1829 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1830 return 0; 1831 } 1832 1833 /** 1834 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1835 * @vsi: the VSI being changed 1836 * @ena: boolean value indicating if this is a enable or disable request 1837 */ 1838 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1839 { 1840 struct device *dev = &vsi->back->pdev->dev; 1841 struct ice_hw *hw = &vsi->back->hw; 1842 struct ice_vsi_ctx ctxt = { 0 }; 1843 enum ice_status status; 1844 1845 /* Here we are configuring what the VSI should do with the VLAN tag in 1846 * the Rx packet. We can either leave the tag in the packet or put it in 1847 * the Rx descriptor. 1848 */ 1849 if (ena) { 1850 /* Strip VLAN tag from Rx packet and put it in the desc */ 1851 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1852 } else { 1853 /* Disable stripping. Leave tag in packet */ 1854 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1855 } 1856 1857 /* Allow all packets untagged/tagged */ 1858 ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1859 1860 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1861 1862 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1863 if (status) { 1864 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1865 ena, status, hw->adminq.sq_last_status); 1866 return -EIO; 1867 } 1868 1869 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1870 return 0; 1871 } 1872 1873 /** 1874 * ice_vsi_start_rx_rings - start VSI's Rx rings 1875 * @vsi: the VSI whose rings are to be started 1876 * 1877 * Returns 0 on success and a negative value on error 1878 */ 1879 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1880 { 1881 return ice_vsi_ctrl_rx_rings(vsi, true); 1882 } 1883 1884 /** 1885 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1886 * @vsi: the VSI 1887 * 1888 * Returns 0 on success and a negative value on error 1889 */ 1890 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1891 { 1892 return ice_vsi_ctrl_rx_rings(vsi, false); 1893 } 1894 1895 /** 1896 * ice_vsi_stop_tx_rings - Disable Tx rings 1897 * @vsi: the VSI being configured 1898 * @rst_src: reset source 1899 * @rel_vmvf_num: Relative id of VF/VM 1900 */ 1901 int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1902 u16 rel_vmvf_num) 1903 { 1904 struct ice_pf *pf = vsi->back; 1905 struct ice_hw *hw = &pf->hw; 1906 enum ice_status status; 1907 u32 *q_teids, val; 1908 u16 *q_ids, i; 1909 int err = 0; 1910 1911 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1912 return -EINVAL; 1913 1914 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), 1915 GFP_KERNEL); 1916 if (!q_teids) 1917 return -ENOMEM; 1918 1919 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), 1920 GFP_KERNEL); 1921 if (!q_ids) { 1922 err = -ENOMEM; 1923 goto err_alloc_q_ids; 1924 } 1925 1926 /* set up the Tx queue list to be disabled */ 1927 ice_for_each_txq(vsi, i) { 1928 u16 v_idx; 1929 1930 if (!vsi->tx_rings || !vsi->tx_rings[i] || 1931 !vsi->tx_rings[i]->q_vector) { 1932 err = -EINVAL; 1933 goto err_out; 1934 } 1935 1936 q_ids[i] = vsi->txq_map[i]; 1937 q_teids[i] = vsi->tx_rings[i]->txq_teid; 1938 1939 /* clear cause_ena bit for disabled queues */ 1940 val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 1941 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1942 wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 1943 1944 /* software is expected to wait for 100 ns */ 1945 ndelay(100); 1946 1947 /* trigger a software interrupt for the vector associated to 1948 * the queue to schedule NAPI handler 1949 */ 1950 v_idx = vsi->tx_rings[i]->q_vector->v_idx; 1951 wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 1952 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); 1953 } 1954 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, 1955 rst_src, rel_vmvf_num, NULL); 1956 /* if the disable queue command was exercised during an active reset 1957 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as 1958 * the reset operation disables queues at the hardware level anyway. 1959 */ 1960 if (status == ICE_ERR_RESET_ONGOING) { 1961 dev_info(&pf->pdev->dev, 1962 "Reset in progress. LAN Tx queues already disabled\n"); 1963 } else if (status) { 1964 dev_err(&pf->pdev->dev, 1965 "Failed to disable LAN Tx queues, error: %d\n", 1966 status); 1967 err = -ENODEV; 1968 } 1969 1970 err_out: 1971 devm_kfree(&pf->pdev->dev, q_ids); 1972 1973 err_alloc_q_ids: 1974 devm_kfree(&pf->pdev->dev, q_teids); 1975 1976 return err; 1977 } 1978 1979 /** 1980 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1981 * @vsi: VSI to enable or disable VLAN pruning on 1982 * @ena: set to true to enable VLAN pruning and false to disable it 1983 * 1984 * returns 0 if VSI is updated, negative otherwise 1985 */ 1986 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) 1987 { 1988 struct ice_vsi_ctx *ctxt; 1989 struct device *dev; 1990 int status; 1991 1992 if (!vsi) 1993 return -EINVAL; 1994 1995 dev = &vsi->back->pdev->dev; 1996 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1997 if (!ctxt) 1998 return -ENOMEM; 1999 2000 ctxt->info = vsi->info; 2001 2002 if (ena) { 2003 ctxt->info.sec_flags |= 2004 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2005 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 2006 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2007 } else { 2008 ctxt->info.sec_flags &= 2009 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2010 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 2011 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2012 } 2013 2014 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 2015 ICE_AQ_VSI_PROP_SW_VALID); 2016 2017 status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL); 2018 if (status) { 2019 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2020 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 2021 vsi->back->hw.adminq.sq_last_status); 2022 goto err_out; 2023 } 2024 2025 vsi->info.sec_flags = ctxt->info.sec_flags; 2026 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2027 2028 devm_kfree(dev, ctxt); 2029 return 0; 2030 2031 err_out: 2032 devm_kfree(dev, ctxt); 2033 return -EIO; 2034 } 2035 2036 /** 2037 * ice_vsi_setup - Set up a VSI by a given type 2038 * @pf: board private structure 2039 * @pi: pointer to the port_info instance 2040 * @type: VSI type 2041 * @vf_id: defines VF id to which this VSI connects. This field is meant to be 2042 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2043 * fill-in ICE_INVAL_VFID as input. 2044 * 2045 * This allocates the sw VSI structure and its queue resources. 2046 * 2047 * Returns pointer to the successfully allocated and configured VSI sw struct on 2048 * success, NULL on failure. 2049 */ 2050 struct ice_vsi * 2051 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2052 enum ice_vsi_type type, u16 vf_id) 2053 { 2054 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2055 struct device *dev = &pf->pdev->dev; 2056 struct ice_vsi *vsi; 2057 int ret, i; 2058 2059 vsi = ice_vsi_alloc(pf, type); 2060 if (!vsi) { 2061 dev_err(dev, "could not allocate VSI\n"); 2062 return NULL; 2063 } 2064 2065 vsi->port_info = pi; 2066 vsi->vsw = pf->first_sw; 2067 if (vsi->type == ICE_VSI_VF) 2068 vsi->vf_id = vf_id; 2069 2070 if (ice_vsi_get_qs(vsi)) { 2071 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2072 vsi->idx); 2073 goto unroll_get_qs; 2074 } 2075 2076 /* set RSS capabilities */ 2077 ice_vsi_set_rss_params(vsi); 2078 2079 /* set tc configuration */ 2080 ice_vsi_set_tc_cfg(vsi); 2081 2082 /* create the VSI */ 2083 ret = ice_vsi_init(vsi); 2084 if (ret) 2085 goto unroll_get_qs; 2086 2087 switch (vsi->type) { 2088 case ICE_VSI_PF: 2089 ret = ice_vsi_alloc_q_vectors(vsi); 2090 if (ret) 2091 goto unroll_vsi_init; 2092 2093 ret = ice_vsi_setup_vector_base(vsi); 2094 if (ret) 2095 goto unroll_alloc_q_vector; 2096 2097 ret = ice_vsi_alloc_rings(vsi); 2098 if (ret) 2099 goto unroll_vector_base; 2100 2101 ice_vsi_map_rings_to_vectors(vsi); 2102 2103 /* Do not exit if configuring RSS had an issue, at least 2104 * receive traffic on first queue. Hence no need to capture 2105 * return value 2106 */ 2107 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2108 ice_vsi_cfg_rss_lut_key(vsi); 2109 break; 2110 case ICE_VSI_VF: 2111 /* VF driver will take care of creating netdev for this type and 2112 * map queues to vectors through Virtchnl, PF driver only 2113 * creates a VSI and corresponding structures for bookkeeping 2114 * purpose 2115 */ 2116 ret = ice_vsi_alloc_q_vectors(vsi); 2117 if (ret) 2118 goto unroll_vsi_init; 2119 2120 ret = ice_vsi_alloc_rings(vsi); 2121 if (ret) 2122 goto unroll_alloc_q_vector; 2123 2124 /* Setup Vector base only during VF init phase or when VF asks 2125 * for more vectors than assigned number. In all other cases, 2126 * assign hw_base_vector to the value given earlier. 2127 */ 2128 if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) { 2129 ret = ice_vsi_setup_vector_base(vsi); 2130 if (ret) 2131 goto unroll_vector_base; 2132 } else { 2133 vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx; 2134 } 2135 pf->q_left_tx -= vsi->alloc_txq; 2136 pf->q_left_rx -= vsi->alloc_rxq; 2137 break; 2138 default: 2139 /* clean up the resources and exit */ 2140 goto unroll_vsi_init; 2141 } 2142 2143 /* configure VSI nodes based on number of queues and TC's */ 2144 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2145 max_txqs[i] = pf->num_lan_tx; 2146 2147 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2148 max_txqs); 2149 if (ret) { 2150 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); 2151 goto unroll_vector_base; 2152 } 2153 2154 return vsi; 2155 2156 unroll_vector_base: 2157 /* reclaim SW interrupts back to the common pool */ 2158 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2159 pf->num_avail_sw_msix += vsi->num_q_vectors; 2160 /* reclaim HW interrupt back to the common pool */ 2161 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2162 pf->num_avail_hw_msix += vsi->num_q_vectors; 2163 unroll_alloc_q_vector: 2164 ice_vsi_free_q_vectors(vsi); 2165 unroll_vsi_init: 2166 ice_vsi_delete(vsi); 2167 unroll_get_qs: 2168 ice_vsi_put_qs(vsi); 2169 pf->q_left_tx += vsi->alloc_txq; 2170 pf->q_left_rx += vsi->alloc_rxq; 2171 ice_vsi_clear(vsi); 2172 2173 return NULL; 2174 } 2175 2176 /** 2177 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2178 * @vsi: the VSI being cleaned up 2179 */ 2180 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2181 { 2182 struct ice_pf *pf = vsi->back; 2183 u16 vector = vsi->hw_base_vector; 2184 struct ice_hw *hw = &pf->hw; 2185 u32 txq = 0; 2186 u32 rxq = 0; 2187 int i, q; 2188 2189 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 2190 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2191 2192 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0); 2193 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0); 2194 for (q = 0; q < q_vector->num_ring_tx; q++) { 2195 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2196 txq++; 2197 } 2198 2199 for (q = 0; q < q_vector->num_ring_rx; q++) { 2200 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2201 rxq++; 2202 } 2203 } 2204 2205 ice_flush(hw); 2206 } 2207 2208 /** 2209 * ice_vsi_free_irq - Free the IRQ association with the OS 2210 * @vsi: the VSI being configured 2211 */ 2212 void ice_vsi_free_irq(struct ice_vsi *vsi) 2213 { 2214 struct ice_pf *pf = vsi->back; 2215 int base = vsi->sw_base_vector; 2216 2217 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2218 int i; 2219 2220 if (!vsi->q_vectors || !vsi->irqs_ready) 2221 return; 2222 2223 ice_vsi_release_msix(vsi); 2224 if (vsi->type == ICE_VSI_VF) 2225 return; 2226 2227 vsi->irqs_ready = false; 2228 for (i = 0; i < vsi->num_q_vectors; i++) { 2229 u16 vector = i + base; 2230 int irq_num; 2231 2232 irq_num = pf->msix_entries[vector].vector; 2233 2234 /* free only the irqs that were actually requested */ 2235 if (!vsi->q_vectors[i] || 2236 !(vsi->q_vectors[i]->num_ring_tx || 2237 vsi->q_vectors[i]->num_ring_rx)) 2238 continue; 2239 2240 /* clear the affinity notifier in the IRQ descriptor */ 2241 irq_set_affinity_notifier(irq_num, NULL); 2242 2243 /* clear the affinity_mask in the IRQ descriptor */ 2244 irq_set_affinity_hint(irq_num, NULL); 2245 synchronize_irq(irq_num); 2246 devm_free_irq(&pf->pdev->dev, irq_num, 2247 vsi->q_vectors[i]); 2248 } 2249 } 2250 } 2251 2252 /** 2253 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2254 * @vsi: the VSI having resources freed 2255 */ 2256 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2257 { 2258 int i; 2259 2260 if (!vsi->tx_rings) 2261 return; 2262 2263 ice_for_each_txq(vsi, i) 2264 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2265 ice_free_tx_ring(vsi->tx_rings[i]); 2266 } 2267 2268 /** 2269 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2270 * @vsi: the VSI having resources freed 2271 */ 2272 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2273 { 2274 int i; 2275 2276 if (!vsi->rx_rings) 2277 return; 2278 2279 ice_for_each_rxq(vsi, i) 2280 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2281 ice_free_rx_ring(vsi->rx_rings[i]); 2282 } 2283 2284 /** 2285 * ice_vsi_close - Shut down a VSI 2286 * @vsi: the VSI being shut down 2287 */ 2288 void ice_vsi_close(struct ice_vsi *vsi) 2289 { 2290 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2291 ice_down(vsi); 2292 2293 ice_vsi_free_irq(vsi); 2294 ice_vsi_free_tx_rings(vsi); 2295 ice_vsi_free_rx_rings(vsi); 2296 } 2297 2298 /** 2299 * ice_free_res - free a block of resources 2300 * @res: pointer to the resource 2301 * @index: starting index previously returned by ice_get_res 2302 * @id: identifier to track owner 2303 * 2304 * Returns number of resources freed 2305 */ 2306 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2307 { 2308 int count = 0; 2309 int i; 2310 2311 if (!res || index >= res->num_entries) 2312 return -EINVAL; 2313 2314 id |= ICE_RES_VALID_BIT; 2315 for (i = index; i < res->num_entries && res->list[i] == id; i++) { 2316 res->list[i] = 0; 2317 count++; 2318 } 2319 2320 return count; 2321 } 2322 2323 /** 2324 * ice_search_res - Search the tracker for a block of resources 2325 * @res: pointer to the resource 2326 * @needed: size of the block needed 2327 * @id: identifier to track owner 2328 * 2329 * Returns the base item index of the block, or -ENOMEM for error 2330 */ 2331 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2332 { 2333 int start = res->search_hint; 2334 int end = start; 2335 2336 if ((start + needed) > res->num_entries) 2337 return -ENOMEM; 2338 2339 id |= ICE_RES_VALID_BIT; 2340 2341 do { 2342 /* skip already allocated entries */ 2343 if (res->list[end++] & ICE_RES_VALID_BIT) { 2344 start = end; 2345 if ((start + needed) > res->num_entries) 2346 break; 2347 } 2348 2349 if (end == (start + needed)) { 2350 int i = start; 2351 2352 /* there was enough, so assign it to the requestor */ 2353 while (i != end) 2354 res->list[i++] = id; 2355 2356 if (end == res->num_entries) 2357 end = 0; 2358 2359 res->search_hint = end; 2360 return start; 2361 } 2362 } while (1); 2363 2364 return -ENOMEM; 2365 } 2366 2367 /** 2368 * ice_get_res - get a block of resources 2369 * @pf: board private structure 2370 * @res: pointer to the resource 2371 * @needed: size of the block needed 2372 * @id: identifier to track owner 2373 * 2374 * Returns the base item index of the block, or -ENOMEM for error 2375 * The search_hint trick and lack of advanced fit-finding only works 2376 * because we're highly likely to have all the same sized requests. 2377 * Linear search time and any fragmentation should be minimal. 2378 */ 2379 int 2380 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2381 { 2382 int ret; 2383 2384 if (!res || !pf) 2385 return -EINVAL; 2386 2387 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2388 dev_err(&pf->pdev->dev, 2389 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2390 needed, res->num_entries, id); 2391 return -EINVAL; 2392 } 2393 2394 /* search based on search_hint */ 2395 ret = ice_search_res(res, needed, id); 2396 2397 if (ret < 0) { 2398 /* previous search failed. Reset search hint and try again */ 2399 res->search_hint = 0; 2400 ret = ice_search_res(res, needed, id); 2401 } 2402 2403 return ret; 2404 } 2405 2406 /** 2407 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2408 * @vsi: the VSI being un-configured 2409 */ 2410 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2411 { 2412 int base = vsi->sw_base_vector; 2413 struct ice_pf *pf = vsi->back; 2414 struct ice_hw *hw = &pf->hw; 2415 u32 val; 2416 int i; 2417 2418 /* disable interrupt causation from each queue */ 2419 if (vsi->tx_rings) { 2420 ice_for_each_txq(vsi, i) { 2421 if (vsi->tx_rings[i]) { 2422 u16 reg; 2423 2424 reg = vsi->tx_rings[i]->reg_idx; 2425 val = rd32(hw, QINT_TQCTL(reg)); 2426 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2427 wr32(hw, QINT_TQCTL(reg), val); 2428 } 2429 } 2430 } 2431 2432 if (vsi->rx_rings) { 2433 ice_for_each_rxq(vsi, i) { 2434 if (vsi->rx_rings[i]) { 2435 u16 reg; 2436 2437 reg = vsi->rx_rings[i]->reg_idx; 2438 val = rd32(hw, QINT_RQCTL(reg)); 2439 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2440 wr32(hw, QINT_RQCTL(reg), val); 2441 } 2442 } 2443 } 2444 2445 /* disable each interrupt */ 2446 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2447 for (i = vsi->hw_base_vector; 2448 i < (vsi->num_q_vectors + vsi->hw_base_vector); i++) 2449 wr32(hw, GLINT_DYN_CTL(i), 0); 2450 2451 ice_flush(hw); 2452 for (i = 0; i < vsi->num_q_vectors; i++) 2453 synchronize_irq(pf->msix_entries[i + base].vector); 2454 } 2455 } 2456 2457 /** 2458 * ice_vsi_release - Delete a VSI and free its resources 2459 * @vsi: the VSI being removed 2460 * 2461 * Returns 0 on success or < 0 on error 2462 */ 2463 int ice_vsi_release(struct ice_vsi *vsi) 2464 { 2465 struct ice_pf *pf; 2466 struct ice_vf *vf; 2467 2468 if (!vsi->back) 2469 return -ENODEV; 2470 pf = vsi->back; 2471 vf = &pf->vf[vsi->vf_id]; 2472 /* do not unregister and free netdevs while driver is in the reset 2473 * recovery pending state. Since reset/rebuild happens through PF 2474 * service task workqueue, its not a good idea to unregister netdev 2475 * that is associated to the PF that is running the work queue items 2476 * currently. This is done to avoid check_flush_dependency() warning 2477 * on this wq 2478 */ 2479 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2480 ice_napi_del(vsi); 2481 unregister_netdev(vsi->netdev); 2482 free_netdev(vsi->netdev); 2483 vsi->netdev = NULL; 2484 } 2485 2486 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2487 ice_rss_clean(vsi); 2488 2489 /* Disable VSI and free resources */ 2490 ice_vsi_dis_irq(vsi); 2491 ice_vsi_close(vsi); 2492 2493 /* reclaim interrupt vectors back to PF */ 2494 if (vsi->type != ICE_VSI_VF) { 2495 /* reclaim SW interrupts back to the common pool */ 2496 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, 2497 vsi->idx); 2498 pf->num_avail_sw_msix += vsi->num_q_vectors; 2499 /* reclaim HW interrupts back to the common pool */ 2500 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, 2501 vsi->idx); 2502 pf->num_avail_hw_msix += vsi->num_q_vectors; 2503 } else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) { 2504 /* Reclaim VF resources back only while freeing all VFs or 2505 * vector reassignment is requested 2506 */ 2507 ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx, 2508 vsi->idx); 2509 pf->num_avail_hw_msix += pf->num_vf_msix; 2510 } 2511 2512 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2513 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2514 ice_vsi_delete(vsi); 2515 ice_vsi_free_q_vectors(vsi); 2516 ice_vsi_clear_rings(vsi); 2517 2518 ice_vsi_put_qs(vsi); 2519 pf->q_left_tx += vsi->alloc_txq; 2520 pf->q_left_rx += vsi->alloc_rxq; 2521 2522 /* retain SW VSI data structure since it is needed to unregister and 2523 * free VSI netdev when PF is not in reset recovery pending state,\ 2524 * for ex: during rmmod. 2525 */ 2526 if (!ice_is_reset_in_progress(pf->state)) 2527 ice_vsi_clear(vsi); 2528 2529 return 0; 2530 } 2531 2532 /** 2533 * ice_vsi_rebuild - Rebuild VSI after reset 2534 * @vsi: VSI to be rebuild 2535 * 2536 * Returns 0 on success and negative value on failure 2537 */ 2538 int ice_vsi_rebuild(struct ice_vsi *vsi) 2539 { 2540 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2541 struct ice_pf *pf; 2542 int ret, i; 2543 2544 if (!vsi) 2545 return -EINVAL; 2546 2547 pf = vsi->back; 2548 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2549 ice_vsi_free_q_vectors(vsi); 2550 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2551 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2552 vsi->sw_base_vector = 0; 2553 vsi->hw_base_vector = 0; 2554 ice_vsi_clear_rings(vsi); 2555 ice_vsi_free_arrays(vsi, false); 2556 ice_dev_onetime_setup(&vsi->back->hw); 2557 ice_vsi_set_num_qs(vsi); 2558 ice_vsi_set_tc_cfg(vsi); 2559 2560 /* Initialize VSI struct elements and create VSI in FW */ 2561 ret = ice_vsi_init(vsi); 2562 if (ret < 0) 2563 goto err_vsi; 2564 2565 ret = ice_vsi_alloc_arrays(vsi, false); 2566 if (ret < 0) 2567 goto err_vsi; 2568 2569 switch (vsi->type) { 2570 case ICE_VSI_PF: 2571 ret = ice_vsi_alloc_q_vectors(vsi); 2572 if (ret) 2573 goto err_rings; 2574 2575 ret = ice_vsi_setup_vector_base(vsi); 2576 if (ret) 2577 goto err_vectors; 2578 2579 ret = ice_vsi_alloc_rings(vsi); 2580 if (ret) 2581 goto err_vectors; 2582 2583 ice_vsi_map_rings_to_vectors(vsi); 2584 break; 2585 case ICE_VSI_VF: 2586 ret = ice_vsi_alloc_q_vectors(vsi); 2587 if (ret) 2588 goto err_rings; 2589 2590 ret = ice_vsi_setup_vector_base(vsi); 2591 if (ret) 2592 goto err_vectors; 2593 2594 ret = ice_vsi_alloc_rings(vsi); 2595 if (ret) 2596 goto err_vectors; 2597 2598 vsi->back->q_left_tx -= vsi->alloc_txq; 2599 vsi->back->q_left_rx -= vsi->alloc_rxq; 2600 break; 2601 default: 2602 break; 2603 } 2604 2605 /* configure VSI nodes based on number of queues and TC's */ 2606 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2607 max_txqs[i] = pf->num_lan_tx; 2608 2609 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2610 max_txqs); 2611 if (ret) { 2612 dev_info(&vsi->back->pdev->dev, 2613 "Failed VSI lan queue config\n"); 2614 goto err_vectors; 2615 } 2616 return 0; 2617 2618 err_vectors: 2619 ice_vsi_free_q_vectors(vsi); 2620 err_rings: 2621 if (vsi->netdev) { 2622 vsi->current_netdev_flags = 0; 2623 unregister_netdev(vsi->netdev); 2624 free_netdev(vsi->netdev); 2625 vsi->netdev = NULL; 2626 } 2627 err_vsi: 2628 ice_vsi_clear(vsi); 2629 set_bit(__ICE_RESET_FAILED, vsi->back->state); 2630 return ret; 2631 } 2632 2633 /** 2634 * ice_is_reset_in_progress - check for a reset in progress 2635 * @state: pf state field 2636 */ 2637 bool ice_is_reset_in_progress(unsigned long *state) 2638 { 2639 return test_bit(__ICE_RESET_OICR_RECV, state) || 2640 test_bit(__ICE_PFR_REQ, state) || 2641 test_bit(__ICE_CORER_REQ, state) || 2642 test_bit(__ICE_GLOBR_REQ, state); 2643 } 2644