1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_dcb_lib.h" 7 8 /** 9 * ice_setup_rx_ctx - Configure a receive ring context 10 * @ring: The Rx ring to configure 11 * 12 * Configure the Rx descriptor ring in RLAN context. 13 */ 14 static int ice_setup_rx_ctx(struct ice_ring *ring) 15 { 16 struct ice_vsi *vsi = ring->vsi; 17 struct ice_hw *hw = &vsi->back->hw; 18 u32 rxdid = ICE_RXDID_FLEX_NIC; 19 struct ice_rlan_ctx rlan_ctx; 20 u32 regval; 21 u16 pf_q; 22 int err; 23 24 /* what is Rx queue number in global space of 2K Rx queues */ 25 pf_q = vsi->rxq_map[ring->q_index]; 26 27 /* clear the context structure first */ 28 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 29 30 rlan_ctx.base = ring->dma >> 7; 31 32 rlan_ctx.qlen = ring->count; 33 34 /* Receive Packet Data Buffer Size. 35 * The Packet Data Buffer Size is defined in 128 byte units. 36 */ 37 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 38 39 /* use 32 byte descriptors */ 40 rlan_ctx.dsize = 1; 41 42 /* Strip the Ethernet CRC bytes before the packet is posted to host 43 * memory. 44 */ 45 rlan_ctx.crcstrip = 1; 46 47 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 48 rlan_ctx.l2tsel = 1; 49 50 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 51 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 52 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 53 54 /* This controls whether VLAN is stripped from inner headers 55 * The VLAN in the inner L2 header is stripped to the receive 56 * descriptor if enabled by this flag. 57 */ 58 rlan_ctx.showiv = 0; 59 60 /* Max packet size for this queue - must not be set to a larger value 61 * than 5 x DBUF 62 */ 63 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 64 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 65 66 /* Rx queue threshold in units of 64 */ 67 rlan_ctx.lrxqthresh = 1; 68 69 /* Enable Flexible Descriptors in the queue context which 70 * allows this driver to select a specific receive descriptor format 71 */ 72 if (vsi->type != ICE_VSI_VF) { 73 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 74 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 75 QRXFLXP_CNTXT_RXDID_IDX_M; 76 77 /* increasing context priority to pick up profile ID; 78 * default is 0x01; setting to 0x03 to ensure profile 79 * is programming if prev context is of same priority 80 */ 81 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 82 QRXFLXP_CNTXT_RXDID_PRIO_M; 83 84 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 85 } 86 87 /* Absolute queue number out of 2K needs to be passed */ 88 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 89 if (err) { 90 dev_err(&vsi->back->pdev->dev, 91 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 92 pf_q, err); 93 return -EIO; 94 } 95 96 if (vsi->type == ICE_VSI_VF) 97 return 0; 98 99 /* init queue specific tail register */ 100 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 101 writel(0, ring->tail); 102 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 103 104 return 0; 105 } 106 107 /** 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 109 * @ring: The Tx ring to configure 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 111 * @pf_q: queue index in the PF space 112 * 113 * Configure the Tx descriptor ring in TLAN context. 114 */ 115 static void 116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 117 { 118 struct ice_vsi *vsi = ring->vsi; 119 struct ice_hw *hw = &vsi->back->hw; 120 121 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 122 123 tlan_ctx->port_num = vsi->port_info->lport; 124 125 /* Transmit Queue Length */ 126 tlan_ctx->qlen = ring->count; 127 128 ice_set_cgd_num(tlan_ctx, ring); 129 130 /* PF number */ 131 tlan_ctx->pf_num = hw->pf_id; 132 133 /* queue belongs to a specific VSI type 134 * VF / VM index should be programmed per vmvf_type setting: 135 * for vmvf_type = VF, it is VF number between 0-256 136 * for vmvf_type = VM, it is VM number between 0-767 137 * for PF or EMP this field should be set to zero 138 */ 139 switch (vsi->type) { 140 case ICE_VSI_LB: 141 /* fall through */ 142 case ICE_VSI_PF: 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 144 break; 145 case ICE_VSI_VF: 146 /* Firmware expects vmvf_num to be absolute VF ID */ 147 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 148 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 149 break; 150 default: 151 return; 152 } 153 154 /* make sure the context is associated with the right VSI */ 155 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 156 157 tlan_ctx->tso_ena = ICE_TX_LEGACY; 158 tlan_ctx->tso_qnum = pf_q; 159 160 /* Legacy or Advanced Host Interface: 161 * 0: Advanced Host Interface 162 * 1: Legacy Host Interface 163 */ 164 tlan_ctx->legacy_int = ICE_TX_LEGACY; 165 } 166 167 /** 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 169 * @pf: the PF being configured 170 * @pf_q: the PF queue 171 * @ena: enable or disable state of the queue 172 * 173 * This routine will wait for the given Rx queue of the PF to reach the 174 * enabled or disabled state. 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after 176 * multiple retries; else will return 0 in case of success. 177 */ 178 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 179 { 180 int i; 181 182 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 183 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 184 QRX_CTRL_QENA_STAT_M)) 185 return 0; 186 187 usleep_range(20, 40); 188 } 189 190 return -ETIMEDOUT; 191 } 192 193 /** 194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring 195 * @vsi: the VSI being configured 196 * @ena: start or stop the Rx rings 197 * @rxq_idx: Rx queue index 198 */ 199 #ifndef CONFIG_PCI_IOV 200 static 201 #endif /* !CONFIG_PCI_IOV */ 202 int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 203 { 204 int pf_q = vsi->rxq_map[rxq_idx]; 205 struct ice_pf *pf = vsi->back; 206 struct ice_hw *hw = &pf->hw; 207 int ret = 0; 208 u32 rx_reg; 209 210 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 211 212 /* Skip if the queue is already in the requested state */ 213 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 214 return 0; 215 216 /* turn on/off the queue */ 217 if (ena) 218 rx_reg |= QRX_CTRL_QENA_REQ_M; 219 else 220 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 221 wr32(hw, QRX_CTRL(pf_q), rx_reg); 222 223 /* wait for the change to finish */ 224 ret = ice_pf_rxq_wait(pf, pf_q, ena); 225 if (ret) 226 dev_err(&pf->pdev->dev, 227 "VSI idx %d Rx ring %d %sable timeout\n", 228 vsi->idx, pf_q, (ena ? "en" : "dis")); 229 230 return ret; 231 } 232 233 /** 234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 235 * @vsi: the VSI being configured 236 * @ena: start or stop the Rx rings 237 */ 238 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 239 { 240 int i, ret = 0; 241 242 for (i = 0; i < vsi->num_rxq; i++) { 243 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i); 244 if (ret) 245 break; 246 } 247 248 return ret; 249 } 250 251 /** 252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 253 * @vsi: VSI pointer 254 * 255 * On error: returns error code (negative) 256 * On success: returns 0 257 */ 258 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 259 { 260 struct ice_pf *pf = vsi->back; 261 262 /* allocate memory for both Tx and Rx ring pointers */ 263 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 264 sizeof(*vsi->tx_rings), GFP_KERNEL); 265 if (!vsi->tx_rings) 266 return -ENOMEM; 267 268 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 269 sizeof(*vsi->rx_rings), GFP_KERNEL); 270 if (!vsi->rx_rings) 271 goto err_rings; 272 273 vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 274 sizeof(*vsi->txq_map), GFP_KERNEL); 275 276 if (!vsi->txq_map) 277 goto err_txq_map; 278 279 vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 280 sizeof(*vsi->rxq_map), GFP_KERNEL); 281 if (!vsi->rxq_map) 282 goto err_rxq_map; 283 284 285 /* There is no need to allocate q_vectors for a loopback VSI. */ 286 if (vsi->type == ICE_VSI_LB) 287 return 0; 288 289 /* allocate memory for q_vector pointers */ 290 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors, 291 sizeof(*vsi->q_vectors), GFP_KERNEL); 292 if (!vsi->q_vectors) 293 goto err_vectors; 294 295 return 0; 296 297 err_vectors: 298 devm_kfree(&pf->pdev->dev, vsi->rxq_map); 299 err_rxq_map: 300 devm_kfree(&pf->pdev->dev, vsi->txq_map); 301 err_txq_map: 302 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 303 err_rings: 304 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 305 return -ENOMEM; 306 } 307 308 /** 309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 310 * @vsi: the VSI being configured 311 */ 312 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 313 { 314 switch (vsi->type) { 315 case ICE_VSI_PF: 316 /* fall through */ 317 case ICE_VSI_LB: 318 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 319 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 320 break; 321 default: 322 dev_dbg(&vsi->back->pdev->dev, 323 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 324 vsi->type); 325 break; 326 } 327 } 328 329 /** 330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 331 * @vsi: the VSI being configured 332 * @vf_id: ID of the VF being configured 333 * 334 * Return 0 on success and a negative value on error 335 */ 336 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 337 { 338 struct ice_pf *pf = vsi->back; 339 struct ice_vf *vf = NULL; 340 341 if (vsi->type == ICE_VSI_VF) 342 vsi->vf_id = vf_id; 343 344 switch (vsi->type) { 345 case ICE_VSI_PF: 346 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 347 num_online_cpus()); 348 349 pf->num_lan_tx = vsi->alloc_txq; 350 351 /* only 1 Rx queue unless RSS is enabled */ 352 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 353 vsi->alloc_rxq = 1; 354 else 355 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 356 num_online_cpus()); 357 358 pf->num_lan_rx = vsi->alloc_rxq; 359 360 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 361 break; 362 case ICE_VSI_VF: 363 vf = &pf->vf[vsi->vf_id]; 364 vsi->alloc_txq = vf->num_vf_qs; 365 vsi->alloc_rxq = vf->num_vf_qs; 366 /* pf->num_vf_msix includes (VF miscellaneous vector + 367 * data queue interrupts). Since vsi->num_q_vectors is number 368 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 369 * original vector count 370 */ 371 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 372 break; 373 case ICE_VSI_LB: 374 vsi->alloc_txq = 1; 375 vsi->alloc_rxq = 1; 376 break; 377 default: 378 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 379 break; 380 } 381 382 ice_vsi_set_num_desc(vsi); 383 } 384 385 /** 386 * ice_get_free_slot - get the next non-NULL location index in array 387 * @array: array to search 388 * @size: size of the array 389 * @curr: last known occupied index to be used as a search hint 390 * 391 * void * is being used to keep the functionality generic. This lets us use this 392 * function on any array of pointers. 393 */ 394 static int ice_get_free_slot(void *array, int size, int curr) 395 { 396 int **tmp_array = (int **)array; 397 int next; 398 399 if (curr < (size - 1) && !tmp_array[curr + 1]) { 400 next = curr + 1; 401 } else { 402 int i = 0; 403 404 while ((i < size) && (tmp_array[i])) 405 i++; 406 if (i == size) 407 next = ICE_NO_VSI; 408 else 409 next = i; 410 } 411 return next; 412 } 413 414 /** 415 * ice_vsi_delete - delete a VSI from the switch 416 * @vsi: pointer to VSI being removed 417 */ 418 void ice_vsi_delete(struct ice_vsi *vsi) 419 { 420 struct ice_pf *pf = vsi->back; 421 struct ice_vsi_ctx *ctxt; 422 enum ice_status status; 423 424 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 425 if (!ctxt) 426 return; 427 428 if (vsi->type == ICE_VSI_VF) 429 ctxt->vf_num = vsi->vf_id; 430 ctxt->vsi_num = vsi->vsi_num; 431 432 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 433 434 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 435 if (status) 436 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 437 vsi->vsi_num); 438 439 devm_kfree(&pf->pdev->dev, ctxt); 440 } 441 442 /** 443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 444 * @vsi: pointer to VSI being cleared 445 */ 446 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 447 { 448 struct ice_pf *pf = vsi->back; 449 450 /* free the ring and vector containers */ 451 if (vsi->q_vectors) { 452 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 453 vsi->q_vectors = NULL; 454 } 455 if (vsi->tx_rings) { 456 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 457 vsi->tx_rings = NULL; 458 } 459 if (vsi->rx_rings) { 460 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 461 vsi->rx_rings = NULL; 462 } 463 if (vsi->txq_map) { 464 devm_kfree(&pf->pdev->dev, vsi->txq_map); 465 vsi->txq_map = NULL; 466 } 467 if (vsi->rxq_map) { 468 devm_kfree(&pf->pdev->dev, vsi->rxq_map); 469 vsi->rxq_map = NULL; 470 } 471 } 472 473 /** 474 * ice_vsi_clear - clean up and deallocate the provided VSI 475 * @vsi: pointer to VSI being cleared 476 * 477 * This deallocates the VSI's queue resources, removes it from the PF's 478 * VSI array if necessary, and deallocates the VSI 479 * 480 * Returns 0 on success, negative on failure 481 */ 482 int ice_vsi_clear(struct ice_vsi *vsi) 483 { 484 struct ice_pf *pf = NULL; 485 486 if (!vsi) 487 return 0; 488 489 if (!vsi->back) 490 return -EINVAL; 491 492 pf = vsi->back; 493 494 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 495 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 496 vsi->idx); 497 return -EINVAL; 498 } 499 500 mutex_lock(&pf->sw_mutex); 501 /* updates the PF for this cleared VSI */ 502 503 pf->vsi[vsi->idx] = NULL; 504 if (vsi->idx < pf->next_vsi) 505 pf->next_vsi = vsi->idx; 506 507 ice_vsi_free_arrays(vsi); 508 mutex_unlock(&pf->sw_mutex); 509 devm_kfree(&pf->pdev->dev, vsi); 510 511 return 0; 512 } 513 514 /** 515 * ice_msix_clean_rings - MSIX mode Interrupt Handler 516 * @irq: interrupt number 517 * @data: pointer to a q_vector 518 */ 519 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 520 { 521 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 522 523 if (!q_vector->tx.ring && !q_vector->rx.ring) 524 return IRQ_HANDLED; 525 526 napi_schedule(&q_vector->napi); 527 528 return IRQ_HANDLED; 529 } 530 531 /** 532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 533 * @pf: board private structure 534 * @type: type of VSI 535 * @vf_id: ID of the VF being configured 536 * 537 * returns a pointer to a VSI on success, NULL on failure. 538 */ 539 static struct ice_vsi * 540 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 541 { 542 struct ice_vsi *vsi = NULL; 543 544 /* Need to protect the allocation of the VSIs at the PF level */ 545 mutex_lock(&pf->sw_mutex); 546 547 /* If we have already allocated our maximum number of VSIs, 548 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 549 * is available to be populated 550 */ 551 if (pf->next_vsi == ICE_NO_VSI) { 552 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 553 goto unlock_pf; 554 } 555 556 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 557 if (!vsi) 558 goto unlock_pf; 559 560 vsi->type = type; 561 vsi->back = pf; 562 set_bit(__ICE_DOWN, vsi->state); 563 564 vsi->idx = pf->next_vsi; 565 566 if (type == ICE_VSI_VF) 567 ice_vsi_set_num_qs(vsi, vf_id); 568 else 569 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 570 571 switch (vsi->type) { 572 case ICE_VSI_PF: 573 if (ice_vsi_alloc_arrays(vsi)) 574 goto err_rings; 575 576 /* Setup default MSIX irq handler for VSI */ 577 vsi->irq_handler = ice_msix_clean_rings; 578 break; 579 case ICE_VSI_VF: 580 if (ice_vsi_alloc_arrays(vsi)) 581 goto err_rings; 582 break; 583 case ICE_VSI_LB: 584 if (ice_vsi_alloc_arrays(vsi)) 585 goto err_rings; 586 break; 587 default: 588 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 589 goto unlock_pf; 590 } 591 592 /* fill VSI slot in the PF struct */ 593 pf->vsi[pf->next_vsi] = vsi; 594 595 /* prepare pf->next_vsi for next use */ 596 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 597 pf->next_vsi); 598 goto unlock_pf; 599 600 err_rings: 601 devm_kfree(&pf->pdev->dev, vsi); 602 vsi = NULL; 603 unlock_pf: 604 mutex_unlock(&pf->sw_mutex); 605 return vsi; 606 } 607 608 /** 609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 611 * 612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 613 */ 614 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 615 { 616 int offset, i; 617 618 mutex_lock(qs_cfg->qs_mutex); 619 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 620 0, qs_cfg->q_count, 0); 621 if (offset >= qs_cfg->pf_map_size) { 622 mutex_unlock(qs_cfg->qs_mutex); 623 return -ENOMEM; 624 } 625 626 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 627 for (i = 0; i < qs_cfg->q_count; i++) 628 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset; 629 mutex_unlock(qs_cfg->qs_mutex); 630 631 return 0; 632 } 633 634 /** 635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 637 * 638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 639 */ 640 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 641 { 642 int i, index = 0; 643 644 mutex_lock(qs_cfg->qs_mutex); 645 for (i = 0; i < qs_cfg->q_count; i++) { 646 index = find_next_zero_bit(qs_cfg->pf_map, 647 qs_cfg->pf_map_size, index); 648 if (index >= qs_cfg->pf_map_size) 649 goto err_scatter; 650 set_bit(index, qs_cfg->pf_map); 651 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index; 652 } 653 mutex_unlock(qs_cfg->qs_mutex); 654 655 return 0; 656 err_scatter: 657 for (index = 0; index < i; index++) { 658 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 659 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 660 } 661 mutex_unlock(qs_cfg->qs_mutex); 662 663 return -ENOMEM; 664 } 665 666 /** 667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 669 * 670 * This function first tries to find contiguous space. If it is not successful, 671 * it tries with the scatter approach. 672 * 673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 674 */ 675 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 676 { 677 int ret = 0; 678 679 ret = __ice_vsi_get_qs_contig(qs_cfg); 680 if (ret) { 681 /* contig failed, so try with scatter approach */ 682 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 683 qs_cfg->q_count = min_t(u16, qs_cfg->q_count, 684 qs_cfg->scatter_count); 685 ret = __ice_vsi_get_qs_sc(qs_cfg); 686 } 687 return ret; 688 } 689 690 /** 691 * ice_vsi_get_qs - Assign queues from PF to VSI 692 * @vsi: the VSI to assign queues to 693 * 694 * Returns 0 on success and a negative value on error 695 */ 696 static int ice_vsi_get_qs(struct ice_vsi *vsi) 697 { 698 struct ice_pf *pf = vsi->back; 699 struct ice_qs_cfg tx_qs_cfg = { 700 .qs_mutex = &pf->avail_q_mutex, 701 .pf_map = pf->avail_txqs, 702 .pf_map_size = pf->max_pf_txqs, 703 .q_count = vsi->alloc_txq, 704 .scatter_count = ICE_MAX_SCATTER_TXQS, 705 .vsi_map = vsi->txq_map, 706 .vsi_map_offset = 0, 707 .mapping_mode = vsi->tx_mapping_mode 708 }; 709 struct ice_qs_cfg rx_qs_cfg = { 710 .qs_mutex = &pf->avail_q_mutex, 711 .pf_map = pf->avail_rxqs, 712 .pf_map_size = pf->max_pf_rxqs, 713 .q_count = vsi->alloc_rxq, 714 .scatter_count = ICE_MAX_SCATTER_RXQS, 715 .vsi_map = vsi->rxq_map, 716 .vsi_map_offset = 0, 717 .mapping_mode = vsi->rx_mapping_mode 718 }; 719 int ret = 0; 720 721 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 722 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 723 724 ret = __ice_vsi_get_qs(&tx_qs_cfg); 725 if (!ret) 726 ret = __ice_vsi_get_qs(&rx_qs_cfg); 727 728 return ret; 729 } 730 731 /** 732 * ice_vsi_put_qs - Release queues from VSI to PF 733 * @vsi: the VSI that is going to release queues 734 */ 735 void ice_vsi_put_qs(struct ice_vsi *vsi) 736 { 737 struct ice_pf *pf = vsi->back; 738 int i; 739 740 mutex_lock(&pf->avail_q_mutex); 741 742 for (i = 0; i < vsi->alloc_txq; i++) { 743 clear_bit(vsi->txq_map[i], pf->avail_txqs); 744 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 745 } 746 747 for (i = 0; i < vsi->alloc_rxq; i++) { 748 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 749 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 750 } 751 752 mutex_unlock(&pf->avail_q_mutex); 753 } 754 755 /** 756 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 757 * @vsi: the VSI being removed 758 */ 759 static void ice_rss_clean(struct ice_vsi *vsi) 760 { 761 struct ice_pf *pf; 762 763 pf = vsi->back; 764 765 if (vsi->rss_hkey_user) 766 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 767 if (vsi->rss_lut_user) 768 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 769 } 770 771 /** 772 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 773 * @vsi: the VSI being configured 774 */ 775 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 776 { 777 struct ice_hw_common_caps *cap; 778 struct ice_pf *pf = vsi->back; 779 780 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 781 vsi->rss_size = 1; 782 return; 783 } 784 785 cap = &pf->hw.func_caps.common_cap; 786 switch (vsi->type) { 787 case ICE_VSI_PF: 788 /* PF VSI will inherit RSS instance of PF */ 789 vsi->rss_table_size = cap->rss_table_size; 790 vsi->rss_size = min_t(int, num_online_cpus(), 791 BIT(cap->rss_table_entry_width)); 792 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 793 break; 794 case ICE_VSI_VF: 795 /* VF VSI will gets a small RSS table 796 * For VSI_LUT, LUT size should be set to 64 bytes 797 */ 798 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 799 vsi->rss_size = min_t(int, num_online_cpus(), 800 BIT(cap->rss_table_entry_width)); 801 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 802 break; 803 case ICE_VSI_LB: 804 break; 805 default: 806 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 807 vsi->type); 808 break; 809 } 810 } 811 812 /** 813 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 814 * @ctxt: the VSI context being set 815 * 816 * This initializes a default VSI context for all sections except the Queues. 817 */ 818 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 819 { 820 u32 table = 0; 821 822 memset(&ctxt->info, 0, sizeof(ctxt->info)); 823 /* VSI's should be allocated from shared pool */ 824 ctxt->alloc_from_pool = true; 825 /* Src pruning enabled by default */ 826 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 827 /* Traffic from VSI can be sent to LAN */ 828 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 829 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 830 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 831 * packets untagged/tagged. 832 */ 833 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 834 ICE_AQ_VSI_VLAN_MODE_M) >> 835 ICE_AQ_VSI_VLAN_MODE_S); 836 /* Have 1:1 UP mapping for both ingress/egress tables */ 837 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 838 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 839 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 840 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 841 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 842 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 843 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 844 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 845 ctxt->info.ingress_table = cpu_to_le32(table); 846 ctxt->info.egress_table = cpu_to_le32(table); 847 /* Have 1:1 UP mapping for outer to inner UP table */ 848 ctxt->info.outer_up_table = cpu_to_le32(table); 849 /* No Outer tag support outer_tag_flags remains to zero */ 850 } 851 852 /** 853 * ice_vsi_setup_q_map - Setup a VSI queue map 854 * @vsi: the VSI being configured 855 * @ctxt: VSI context structure 856 */ 857 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 858 { 859 u16 offset = 0, qmap = 0, tx_count = 0; 860 u16 qcount_tx = vsi->alloc_txq; 861 u16 qcount_rx = vsi->alloc_rxq; 862 u16 tx_numq_tc, rx_numq_tc; 863 u16 pow = 0, max_rss = 0; 864 bool ena_tc0 = false; 865 u8 netdev_tc = 0; 866 int i; 867 868 /* at least TC0 should be enabled by default */ 869 if (vsi->tc_cfg.numtc) { 870 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 871 ena_tc0 = true; 872 } else { 873 ena_tc0 = true; 874 } 875 876 if (ena_tc0) { 877 vsi->tc_cfg.numtc++; 878 vsi->tc_cfg.ena_tc |= 1; 879 } 880 881 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 882 if (!rx_numq_tc) 883 rx_numq_tc = 1; 884 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 885 if (!tx_numq_tc) 886 tx_numq_tc = 1; 887 888 /* TC mapping is a function of the number of Rx queues assigned to the 889 * VSI for each traffic class and the offset of these queues. 890 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 891 * queues allocated to TC0. No:of queues is a power-of-2. 892 * 893 * If TC is not enabled, the queue offset is set to 0, and allocate one 894 * queue, this way, traffic for the given TC will be sent to the default 895 * queue. 896 * 897 * Setup number and offset of Rx queues for all TCs for the VSI 898 */ 899 900 qcount_rx = rx_numq_tc; 901 902 /* qcount will change if RSS is enabled */ 903 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 904 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 905 if (vsi->type == ICE_VSI_PF) 906 max_rss = ICE_MAX_LG_RSS_QS; 907 else 908 max_rss = ICE_MAX_SMALL_RSS_QS; 909 qcount_rx = min_t(int, rx_numq_tc, max_rss); 910 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 911 } 912 } 913 914 /* find the (rounded up) power-of-2 of qcount */ 915 pow = order_base_2(qcount_rx); 916 917 ice_for_each_traffic_class(i) { 918 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 919 /* TC is not enabled */ 920 vsi->tc_cfg.tc_info[i].qoffset = 0; 921 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 922 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 923 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 924 ctxt->info.tc_mapping[i] = 0; 925 continue; 926 } 927 928 /* TC is enabled */ 929 vsi->tc_cfg.tc_info[i].qoffset = offset; 930 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 931 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 932 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 933 934 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 935 ICE_AQ_VSI_TC_Q_OFFSET_M) | 936 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 937 ICE_AQ_VSI_TC_Q_NUM_M); 938 offset += qcount_rx; 939 tx_count += tx_numq_tc; 940 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 941 } 942 943 /* if offset is non-zero, means it is calculated correctly based on 944 * enabled TCs for a given VSI otherwise qcount_rx will always 945 * be correct and non-zero because it is based off - VSI's 946 * allocated Rx queues which is at least 1 (hence qcount_tx will be 947 * at least 1) 948 */ 949 if (offset) 950 vsi->num_rxq = offset; 951 else 952 vsi->num_rxq = qcount_rx; 953 954 vsi->num_txq = tx_count; 955 956 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 957 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 958 /* since there is a chance that num_rxq could have been changed 959 * in the above for loop, make num_txq equal to num_rxq. 960 */ 961 vsi->num_txq = vsi->num_rxq; 962 } 963 964 /* Rx queue mapping */ 965 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 966 /* q_mapping buffer holds the info for the first queue allocated for 967 * this VSI in the PF space and also the number of queues associated 968 * with this VSI. 969 */ 970 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 971 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 972 } 973 974 /** 975 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 976 * @ctxt: the VSI context being set 977 * @vsi: the VSI being configured 978 */ 979 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 980 { 981 u8 lut_type, hash_type; 982 struct ice_pf *pf; 983 984 pf = vsi->back; 985 986 switch (vsi->type) { 987 case ICE_VSI_PF: 988 /* PF VSI will inherit RSS instance of PF */ 989 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 990 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 991 break; 992 case ICE_VSI_VF: 993 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 994 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 995 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 996 break; 997 case ICE_VSI_LB: 998 dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type); 999 return; 1000 default: 1001 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 1002 return; 1003 } 1004 1005 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1006 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1007 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1008 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1009 } 1010 1011 /** 1012 * ice_vsi_init - Create and initialize a VSI 1013 * @vsi: the VSI being configured 1014 * 1015 * This initializes a VSI context depending on the VSI type to be added and 1016 * passes it down to the add_vsi aq command to create a new VSI. 1017 */ 1018 static int ice_vsi_init(struct ice_vsi *vsi) 1019 { 1020 struct ice_pf *pf = vsi->back; 1021 struct ice_hw *hw = &pf->hw; 1022 struct ice_vsi_ctx *ctxt; 1023 int ret = 0; 1024 1025 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 1026 if (!ctxt) 1027 return -ENOMEM; 1028 1029 ctxt->info = vsi->info; 1030 switch (vsi->type) { 1031 case ICE_VSI_LB: 1032 /* fall through */ 1033 case ICE_VSI_PF: 1034 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1035 break; 1036 case ICE_VSI_VF: 1037 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1038 /* VF number here is the absolute VF number (0-255) */ 1039 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1040 break; 1041 default: 1042 return -ENODEV; 1043 } 1044 1045 ice_set_dflt_vsi_ctx(ctxt); 1046 /* if the switch is in VEB mode, allow VSI loopback */ 1047 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1048 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1049 1050 /* Set LUT type and HASH type if RSS is enabled */ 1051 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1052 ice_set_rss_vsi_ctx(ctxt, vsi); 1053 1054 ctxt->info.sw_id = vsi->port_info->sw_id; 1055 ice_vsi_setup_q_map(vsi, ctxt); 1056 1057 /* Enable MAC Antispoof with new VSI being initialized or updated */ 1058 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) { 1059 ctxt->info.valid_sections |= 1060 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1061 ctxt->info.sec_flags |= 1062 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; 1063 } 1064 1065 /* Allow control frames out of main VSI */ 1066 if (vsi->type == ICE_VSI_PF) { 1067 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1068 ctxt->info.valid_sections |= 1069 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1070 } 1071 1072 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1073 if (ret) { 1074 dev_err(&pf->pdev->dev, 1075 "Add VSI failed, err %d\n", ret); 1076 return -EIO; 1077 } 1078 1079 /* keep context for update VSI operations */ 1080 vsi->info = ctxt->info; 1081 1082 /* record VSI number returned */ 1083 vsi->vsi_num = ctxt->vsi_num; 1084 1085 devm_kfree(&pf->pdev->dev, ctxt); 1086 return ret; 1087 } 1088 1089 /** 1090 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 1091 * @vsi: VSI having the memory freed 1092 * @v_idx: index of the vector to be freed 1093 */ 1094 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 1095 { 1096 struct ice_q_vector *q_vector; 1097 struct ice_pf *pf = vsi->back; 1098 struct ice_ring *ring; 1099 1100 if (!vsi->q_vectors[v_idx]) { 1101 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n", 1102 v_idx); 1103 return; 1104 } 1105 q_vector = vsi->q_vectors[v_idx]; 1106 1107 ice_for_each_ring(ring, q_vector->tx) 1108 ring->q_vector = NULL; 1109 ice_for_each_ring(ring, q_vector->rx) 1110 ring->q_vector = NULL; 1111 1112 /* only VSI with an associated netdev is set up with NAPI */ 1113 if (vsi->netdev) 1114 netif_napi_del(&q_vector->napi); 1115 1116 devm_kfree(&pf->pdev->dev, q_vector); 1117 vsi->q_vectors[v_idx] = NULL; 1118 } 1119 1120 /** 1121 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 1122 * @vsi: the VSI having memory freed 1123 */ 1124 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 1125 { 1126 int v_idx; 1127 1128 ice_for_each_q_vector(vsi, v_idx) 1129 ice_free_q_vector(vsi, v_idx); 1130 } 1131 1132 /** 1133 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1134 * @vsi: the VSI being configured 1135 * @v_idx: index of the vector in the VSI struct 1136 * 1137 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1138 */ 1139 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1140 { 1141 struct ice_pf *pf = vsi->back; 1142 struct ice_q_vector *q_vector; 1143 1144 /* allocate q_vector */ 1145 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1146 if (!q_vector) 1147 return -ENOMEM; 1148 1149 q_vector->vsi = vsi; 1150 q_vector->v_idx = v_idx; 1151 if (vsi->type == ICE_VSI_VF) 1152 goto out; 1153 /* only set affinity_mask if the CPU is online */ 1154 if (cpu_online(v_idx)) 1155 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1156 1157 /* This will not be called in the driver load path because the netdev 1158 * will not be created yet. All other cases with register the NAPI 1159 * handler here (i.e. resume, reset/rebuild, etc.) 1160 */ 1161 if (vsi->netdev) 1162 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1163 NAPI_POLL_WEIGHT); 1164 1165 out: 1166 /* tie q_vector and VSI together */ 1167 vsi->q_vectors[v_idx] = q_vector; 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1174 * @vsi: the VSI being configured 1175 * 1176 * We allocate one q_vector per queue interrupt. If allocation fails we 1177 * return -ENOMEM. 1178 */ 1179 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1180 { 1181 struct ice_pf *pf = vsi->back; 1182 int v_idx = 0, num_q_vectors; 1183 int err; 1184 1185 if (vsi->q_vectors[0]) { 1186 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1187 vsi->vsi_num); 1188 return -EEXIST; 1189 } 1190 1191 num_q_vectors = vsi->num_q_vectors; 1192 1193 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1194 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1195 if (err) 1196 goto err_out; 1197 } 1198 1199 return 0; 1200 1201 err_out: 1202 while (v_idx--) 1203 ice_free_q_vector(vsi, v_idx); 1204 1205 dev_err(&pf->pdev->dev, 1206 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1207 vsi->num_q_vectors, vsi->vsi_num, err); 1208 vsi->num_q_vectors = 0; 1209 return err; 1210 } 1211 1212 /** 1213 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1214 * @vsi: ptr to the VSI 1215 * 1216 * This should only be called after ice_vsi_alloc() which allocates the 1217 * corresponding SW VSI structure and initializes num_queue_pairs for the 1218 * newly allocated VSI. 1219 * 1220 * Returns 0 on success or negative on failure 1221 */ 1222 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1223 { 1224 struct ice_pf *pf = vsi->back; 1225 u16 num_q_vectors; 1226 1227 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1228 if (vsi->type == ICE_VSI_VF) 1229 return 0; 1230 1231 if (vsi->base_vector) { 1232 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 1233 vsi->vsi_num, vsi->base_vector); 1234 return -EEXIST; 1235 } 1236 1237 num_q_vectors = vsi->num_q_vectors; 1238 /* reserve slots from OS requested IRQs */ 1239 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1240 vsi->idx); 1241 if (vsi->base_vector < 0) { 1242 dev_err(&pf->pdev->dev, 1243 "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 1244 num_q_vectors, vsi->vsi_num, vsi->base_vector); 1245 return -ENOENT; 1246 } 1247 pf->num_avail_sw_msix -= num_q_vectors; 1248 1249 return 0; 1250 } 1251 1252 /** 1253 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1254 * @vsi: the VSI having rings deallocated 1255 */ 1256 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1257 { 1258 int i; 1259 1260 if (vsi->tx_rings) { 1261 for (i = 0; i < vsi->alloc_txq; i++) { 1262 if (vsi->tx_rings[i]) { 1263 kfree_rcu(vsi->tx_rings[i], rcu); 1264 vsi->tx_rings[i] = NULL; 1265 } 1266 } 1267 } 1268 if (vsi->rx_rings) { 1269 for (i = 0; i < vsi->alloc_rxq; i++) { 1270 if (vsi->rx_rings[i]) { 1271 kfree_rcu(vsi->rx_rings[i], rcu); 1272 vsi->rx_rings[i] = NULL; 1273 } 1274 } 1275 } 1276 } 1277 1278 /** 1279 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1280 * @vsi: VSI which is having rings allocated 1281 */ 1282 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1283 { 1284 struct ice_pf *pf = vsi->back; 1285 int i; 1286 1287 /* Allocate Tx rings */ 1288 for (i = 0; i < vsi->alloc_txq; i++) { 1289 struct ice_ring *ring; 1290 1291 /* allocate with kzalloc(), free with kfree_rcu() */ 1292 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1293 1294 if (!ring) 1295 goto err_out; 1296 1297 ring->q_index = i; 1298 ring->reg_idx = vsi->txq_map[i]; 1299 ring->ring_active = false; 1300 ring->vsi = vsi; 1301 ring->dev = &pf->pdev->dev; 1302 ring->count = vsi->num_tx_desc; 1303 vsi->tx_rings[i] = ring; 1304 } 1305 1306 /* Allocate Rx rings */ 1307 for (i = 0; i < vsi->alloc_rxq; i++) { 1308 struct ice_ring *ring; 1309 1310 /* allocate with kzalloc(), free with kfree_rcu() */ 1311 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1312 if (!ring) 1313 goto err_out; 1314 1315 ring->q_index = i; 1316 ring->reg_idx = vsi->rxq_map[i]; 1317 ring->ring_active = false; 1318 ring->vsi = vsi; 1319 ring->netdev = vsi->netdev; 1320 ring->dev = &pf->pdev->dev; 1321 ring->count = vsi->num_rx_desc; 1322 vsi->rx_rings[i] = ring; 1323 } 1324 1325 return 0; 1326 1327 err_out: 1328 ice_vsi_clear_rings(vsi); 1329 return -ENOMEM; 1330 } 1331 1332 /** 1333 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1334 * @vsi: the VSI being configured 1335 * 1336 * This function maps descriptor rings to the queue-specific vectors allotted 1337 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1338 * and Rx rings to the vector as "efficiently" as possible. 1339 */ 1340 #ifdef CONFIG_DCB 1341 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1342 #else 1343 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1344 #endif /* CONFIG_DCB */ 1345 { 1346 int q_vectors = vsi->num_q_vectors; 1347 int tx_rings_rem, rx_rings_rem; 1348 int v_id; 1349 1350 /* initially assigning remaining rings count to VSIs num queue value */ 1351 tx_rings_rem = vsi->num_txq; 1352 rx_rings_rem = vsi->num_rxq; 1353 1354 for (v_id = 0; v_id < q_vectors; v_id++) { 1355 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1356 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1357 1358 /* Tx rings mapping to vector */ 1359 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1360 q_vector->num_ring_tx = tx_rings_per_v; 1361 q_vector->tx.ring = NULL; 1362 q_vector->tx.itr_idx = ICE_TX_ITR; 1363 q_base = vsi->num_txq - tx_rings_rem; 1364 1365 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1366 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1367 1368 tx_ring->q_vector = q_vector; 1369 tx_ring->next = q_vector->tx.ring; 1370 q_vector->tx.ring = tx_ring; 1371 } 1372 tx_rings_rem -= tx_rings_per_v; 1373 1374 /* Rx rings mapping to vector */ 1375 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1376 q_vector->num_ring_rx = rx_rings_per_v; 1377 q_vector->rx.ring = NULL; 1378 q_vector->rx.itr_idx = ICE_RX_ITR; 1379 q_base = vsi->num_rxq - rx_rings_rem; 1380 1381 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1382 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1383 1384 rx_ring->q_vector = q_vector; 1385 rx_ring->next = q_vector->rx.ring; 1386 q_vector->rx.ring = rx_ring; 1387 } 1388 rx_rings_rem -= rx_rings_per_v; 1389 } 1390 } 1391 1392 /** 1393 * ice_vsi_manage_rss_lut - disable/enable RSS 1394 * @vsi: the VSI being changed 1395 * @ena: boolean value indicating if this is an enable or disable request 1396 * 1397 * In the event of disable request for RSS, this function will zero out RSS 1398 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1399 * LUT. 1400 */ 1401 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1402 { 1403 int err = 0; 1404 u8 *lut; 1405 1406 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1407 GFP_KERNEL); 1408 if (!lut) 1409 return -ENOMEM; 1410 1411 if (ena) { 1412 if (vsi->rss_lut_user) 1413 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1414 else 1415 ice_fill_rss_lut(lut, vsi->rss_table_size, 1416 vsi->rss_size); 1417 } 1418 1419 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1420 devm_kfree(&vsi->back->pdev->dev, lut); 1421 return err; 1422 } 1423 1424 /** 1425 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1426 * @vsi: VSI to be configured 1427 */ 1428 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1429 { 1430 struct ice_aqc_get_set_rss_keys *key; 1431 struct ice_pf *pf = vsi->back; 1432 enum ice_status status; 1433 int err = 0; 1434 u8 *lut; 1435 1436 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1437 1438 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1439 if (!lut) 1440 return -ENOMEM; 1441 1442 if (vsi->rss_lut_user) 1443 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1444 else 1445 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1446 1447 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1448 vsi->rss_table_size); 1449 1450 if (status) { 1451 dev_err(&pf->pdev->dev, 1452 "set_rss_lut failed, error %d\n", status); 1453 err = -EIO; 1454 goto ice_vsi_cfg_rss_exit; 1455 } 1456 1457 key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL); 1458 if (!key) { 1459 err = -ENOMEM; 1460 goto ice_vsi_cfg_rss_exit; 1461 } 1462 1463 if (vsi->rss_hkey_user) 1464 memcpy(key, 1465 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1466 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1467 else 1468 netdev_rss_key_fill((void *)key, 1469 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1470 1471 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1472 1473 if (status) { 1474 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n", 1475 status); 1476 err = -EIO; 1477 } 1478 1479 devm_kfree(&pf->pdev->dev, key); 1480 ice_vsi_cfg_rss_exit: 1481 devm_kfree(&pf->pdev->dev, lut); 1482 return err; 1483 } 1484 1485 /** 1486 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1487 * @vsi: the VSI to be forwarded to 1488 * @add_list: pointer to the list which contains MAC filter entries 1489 * @macaddr: the MAC address to be added. 1490 * 1491 * Adds MAC address filter entry to the temp list 1492 * 1493 * Returns 0 on success or ENOMEM on failure. 1494 */ 1495 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1496 const u8 *macaddr) 1497 { 1498 struct ice_fltr_list_entry *tmp; 1499 struct ice_pf *pf = vsi->back; 1500 1501 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1502 if (!tmp) 1503 return -ENOMEM; 1504 1505 tmp->fltr_info.flag = ICE_FLTR_TX; 1506 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1507 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1508 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1509 tmp->fltr_info.vsi_handle = vsi->idx; 1510 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1511 1512 INIT_LIST_HEAD(&tmp->list_entry); 1513 list_add(&tmp->list_entry, add_list); 1514 1515 return 0; 1516 } 1517 1518 /** 1519 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1520 * @vsi: the VSI to be updated 1521 */ 1522 void ice_update_eth_stats(struct ice_vsi *vsi) 1523 { 1524 struct ice_eth_stats *prev_es, *cur_es; 1525 struct ice_hw *hw = &vsi->back->hw; 1526 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1527 1528 prev_es = &vsi->eth_stats_prev; 1529 cur_es = &vsi->eth_stats; 1530 1531 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1532 &prev_es->rx_bytes, &cur_es->rx_bytes); 1533 1534 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1535 &prev_es->rx_unicast, &cur_es->rx_unicast); 1536 1537 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1538 &prev_es->rx_multicast, &cur_es->rx_multicast); 1539 1540 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1541 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1542 1543 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1544 &prev_es->rx_discards, &cur_es->rx_discards); 1545 1546 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1547 &prev_es->tx_bytes, &cur_es->tx_bytes); 1548 1549 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1550 &prev_es->tx_unicast, &cur_es->tx_unicast); 1551 1552 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1553 &prev_es->tx_multicast, &cur_es->tx_multicast); 1554 1555 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1556 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1557 1558 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1559 &prev_es->tx_errors, &cur_es->tx_errors); 1560 1561 vsi->stat_offsets_loaded = true; 1562 } 1563 1564 /** 1565 * ice_free_fltr_list - free filter lists helper 1566 * @dev: pointer to the device struct 1567 * @h: pointer to the list head to be freed 1568 * 1569 * Helper function to free filter lists previously created using 1570 * ice_add_mac_to_list 1571 */ 1572 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1573 { 1574 struct ice_fltr_list_entry *e, *tmp; 1575 1576 list_for_each_entry_safe(e, tmp, h, list_entry) { 1577 list_del(&e->list_entry); 1578 devm_kfree(dev, e); 1579 } 1580 } 1581 1582 /** 1583 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1584 * @vsi: the VSI being configured 1585 * @vid: VLAN ID to be added 1586 */ 1587 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1588 { 1589 struct ice_fltr_list_entry *tmp; 1590 struct ice_pf *pf = vsi->back; 1591 LIST_HEAD(tmp_add_list); 1592 enum ice_status status; 1593 int err = 0; 1594 1595 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1596 if (!tmp) 1597 return -ENOMEM; 1598 1599 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1600 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1601 tmp->fltr_info.flag = ICE_FLTR_TX; 1602 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1603 tmp->fltr_info.vsi_handle = vsi->idx; 1604 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1605 1606 INIT_LIST_HEAD(&tmp->list_entry); 1607 list_add(&tmp->list_entry, &tmp_add_list); 1608 1609 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1610 if (status) { 1611 err = -ENODEV; 1612 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1613 vid, vsi->vsi_num); 1614 } 1615 1616 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1617 return err; 1618 } 1619 1620 /** 1621 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1622 * @vsi: the VSI being configured 1623 * @vid: VLAN ID to be removed 1624 * 1625 * Returns 0 on success and negative on failure 1626 */ 1627 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1628 { 1629 struct ice_fltr_list_entry *list; 1630 struct ice_pf *pf = vsi->back; 1631 LIST_HEAD(tmp_add_list); 1632 enum ice_status status; 1633 int err = 0; 1634 1635 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1636 if (!list) 1637 return -ENOMEM; 1638 1639 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1640 list->fltr_info.vsi_handle = vsi->idx; 1641 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1642 list->fltr_info.l_data.vlan.vlan_id = vid; 1643 list->fltr_info.flag = ICE_FLTR_TX; 1644 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1645 1646 INIT_LIST_HEAD(&list->list_entry); 1647 list_add(&list->list_entry, &tmp_add_list); 1648 1649 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1650 if (status == ICE_ERR_DOES_NOT_EXIST) { 1651 dev_dbg(&pf->pdev->dev, 1652 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1653 vid, vsi->vsi_num, status); 1654 } else if (status) { 1655 dev_err(&pf->pdev->dev, 1656 "Error removing VLAN %d on vsi %i error: %d\n", 1657 vid, vsi->vsi_num, status); 1658 err = -EIO; 1659 } 1660 1661 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1662 return err; 1663 } 1664 1665 /** 1666 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1667 * @vsi: the VSI being configured 1668 * 1669 * Return 0 on success and a negative value on error 1670 * Configure the Rx VSI for operation. 1671 */ 1672 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1673 { 1674 u16 i; 1675 1676 if (vsi->type == ICE_VSI_VF) 1677 goto setup_rings; 1678 1679 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1680 vsi->max_frame = vsi->netdev->mtu + 1681 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1682 else 1683 vsi->max_frame = ICE_RXBUF_2048; 1684 1685 vsi->rx_buf_len = ICE_RXBUF_2048; 1686 setup_rings: 1687 /* set up individual rings */ 1688 for (i = 0; i < vsi->num_rxq; i++) { 1689 int err; 1690 1691 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1692 if (err) { 1693 dev_err(&vsi->back->pdev->dev, 1694 "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1695 i, err); 1696 return err; 1697 } 1698 } 1699 1700 return 0; 1701 } 1702 1703 /** 1704 * ice_vsi_cfg_txq - Configure single Tx queue 1705 * @vsi: the VSI that queue belongs to 1706 * @ring: Tx ring to be configured 1707 * @tc_q_idx: queue index within given TC 1708 * @qg_buf: queue group buffer 1709 * @tc: TC that Tx ring belongs to 1710 */ 1711 static int 1712 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx, 1713 struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc) 1714 { 1715 struct ice_tlan_ctx tlan_ctx = { 0 }; 1716 struct ice_aqc_add_txqs_perq *txq; 1717 struct ice_pf *pf = vsi->back; 1718 u8 buf_len = sizeof(*qg_buf); 1719 enum ice_status status; 1720 u16 pf_q; 1721 1722 pf_q = ring->reg_idx; 1723 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 1724 /* copy context contents into the qg_buf */ 1725 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1726 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1727 ice_tlan_ctx_info); 1728 1729 /* init queue specific tail reg. It is referred as 1730 * transmit comm scheduler queue doorbell. 1731 */ 1732 ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1733 1734 /* Add unique software queue handle of the Tx queue per 1735 * TC into the VSI Tx ring 1736 */ 1737 ring->q_handle = tc_q_idx; 1738 1739 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 1740 1, qg_buf, buf_len, NULL); 1741 if (status) { 1742 dev_err(&pf->pdev->dev, 1743 "Failed to set LAN Tx queue context, error: %d\n", 1744 status); 1745 return -ENODEV; 1746 } 1747 1748 /* Add Tx Queue TEID into the VSI Tx ring from the 1749 * response. This will complete configuring and 1750 * enabling the queue. 1751 */ 1752 txq = &qg_buf->txqs[0]; 1753 if (pf_q == le16_to_cpu(txq->txq_id)) 1754 ring->txq_teid = le32_to_cpu(txq->q_teid); 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1761 * @vsi: the VSI being configured 1762 * @rings: Tx ring array to be configured 1763 * @offset: offset within vsi->txq_map 1764 * 1765 * Return 0 on success and a negative value on error 1766 * Configure the Tx VSI for operation. 1767 */ 1768 static int 1769 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset) 1770 { 1771 struct ice_aqc_add_tx_qgrp *qg_buf; 1772 struct ice_pf *pf = vsi->back; 1773 u16 q_idx = 0, i; 1774 int err = 0; 1775 u8 tc; 1776 1777 qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL); 1778 if (!qg_buf) 1779 return -ENOMEM; 1780 1781 qg_buf->num_txqs = 1; 1782 1783 /* set up and configure the Tx queues for each enabled TC */ 1784 ice_for_each_traffic_class(tc) { 1785 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 1786 break; 1787 1788 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 1789 err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset, 1790 qg_buf, tc); 1791 if (err) 1792 goto err_cfg_txqs; 1793 1794 q_idx++; 1795 } 1796 } 1797 err_cfg_txqs: 1798 devm_kfree(&pf->pdev->dev, qg_buf); 1799 return err; 1800 } 1801 1802 /** 1803 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1804 * @vsi: the VSI being configured 1805 * 1806 * Return 0 on success and a negative value on error 1807 * Configure the Tx VSI for operation. 1808 */ 1809 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1810 { 1811 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0); 1812 } 1813 1814 /** 1815 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1816 * @intrl: interrupt rate limit in usecs 1817 * @gran: interrupt rate limit granularity in usecs 1818 * 1819 * This function converts a decimal interrupt rate limit in usecs to the format 1820 * expected by firmware. 1821 */ 1822 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1823 { 1824 u32 val = intrl / gran; 1825 1826 if (val) 1827 return val | GLINT_RATE_INTRL_ENA_M; 1828 return 0; 1829 } 1830 1831 /** 1832 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 1833 * @hw: board specific structure 1834 */ 1835 static void ice_cfg_itr_gran(struct ice_hw *hw) 1836 { 1837 u32 regval = rd32(hw, GLINT_CTL); 1838 1839 /* no need to update global register if ITR gran is already set */ 1840 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 1841 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 1842 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 1843 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 1844 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 1845 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 1846 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 1847 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 1848 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 1849 return; 1850 1851 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 1852 GLINT_CTL_ITR_GRAN_200_M) | 1853 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 1854 GLINT_CTL_ITR_GRAN_100_M) | 1855 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 1856 GLINT_CTL_ITR_GRAN_50_M) | 1857 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 1858 GLINT_CTL_ITR_GRAN_25_M); 1859 wr32(hw, GLINT_CTL, regval); 1860 } 1861 1862 /** 1863 * ice_cfg_itr - configure the initial interrupt throttle values 1864 * @hw: pointer to the HW structure 1865 * @q_vector: interrupt vector that's being configured 1866 * 1867 * Configure interrupt throttling values for the ring containers that are 1868 * associated with the interrupt vector passed in. 1869 */ 1870 static void 1871 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1872 { 1873 ice_cfg_itr_gran(hw); 1874 1875 if (q_vector->num_ring_rx) { 1876 struct ice_ring_container *rc = &q_vector->rx; 1877 1878 /* if this value is set then don't overwrite with default */ 1879 if (!rc->itr_setting) 1880 rc->itr_setting = ICE_DFLT_RX_ITR; 1881 1882 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1883 rc->next_update = jiffies + 1; 1884 rc->current_itr = rc->target_itr; 1885 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1886 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1887 } 1888 1889 if (q_vector->num_ring_tx) { 1890 struct ice_ring_container *rc = &q_vector->tx; 1891 1892 /* if this value is set then don't overwrite with default */ 1893 if (!rc->itr_setting) 1894 rc->itr_setting = ICE_DFLT_TX_ITR; 1895 1896 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1897 rc->next_update = jiffies + 1; 1898 rc->current_itr = rc->target_itr; 1899 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1900 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1901 } 1902 } 1903 1904 /** 1905 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1906 * @vsi: the VSI being configured 1907 * @txq: Tx queue being mapped to MSI-X vector 1908 * @msix_idx: MSI-X vector index within the function 1909 * @itr_idx: ITR index of the interrupt cause 1910 * 1911 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1912 * within the function space. 1913 */ 1914 #ifdef CONFIG_PCI_IOV 1915 void 1916 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1917 #else 1918 static void 1919 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1920 #endif /* CONFIG_PCI_IOV */ 1921 { 1922 struct ice_pf *pf = vsi->back; 1923 struct ice_hw *hw = &pf->hw; 1924 u32 val; 1925 1926 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 1927 1928 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1929 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 1930 1931 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1932 } 1933 1934 /** 1935 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1936 * @vsi: the VSI being configured 1937 * @rxq: Rx queue being mapped to MSI-X vector 1938 * @msix_idx: MSI-X vector index within the function 1939 * @itr_idx: ITR index of the interrupt cause 1940 * 1941 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1942 * within the function space. 1943 */ 1944 #ifdef CONFIG_PCI_IOV 1945 void 1946 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1947 #else 1948 static void 1949 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1950 #endif /* CONFIG_PCI_IOV */ 1951 { 1952 struct ice_pf *pf = vsi->back; 1953 struct ice_hw *hw = &pf->hw; 1954 u32 val; 1955 1956 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 1957 1958 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1959 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 1960 1961 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1962 1963 ice_flush(hw); 1964 } 1965 1966 /** 1967 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1968 * @vsi: the VSI being configured 1969 * 1970 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1971 * for the VF VSI. 1972 */ 1973 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1974 { 1975 struct ice_pf *pf = vsi->back; 1976 struct ice_hw *hw = &pf->hw; 1977 u32 txq = 0, rxq = 0; 1978 int i, q; 1979 1980 for (i = 0; i < vsi->num_q_vectors; i++) { 1981 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1982 u16 reg_idx = q_vector->reg_idx; 1983 1984 ice_cfg_itr(hw, q_vector); 1985 1986 wr32(hw, GLINT_RATE(reg_idx), 1987 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1988 1989 /* Both Transmit Queue Interrupt Cause Control register 1990 * and Receive Queue Interrupt Cause control register 1991 * expects MSIX_INDX field to be the vector index 1992 * within the function space and not the absolute 1993 * vector index across PF or across device. 1994 * For SR-IOV VF VSIs queue vector index always starts 1995 * with 1 since first vector index(0) is used for OICR 1996 * in VF space. Since VMDq and other PF VSIs are within 1997 * the PF function space, use the vector index that is 1998 * tracked for this PF. 1999 */ 2000 for (q = 0; q < q_vector->num_ring_tx; q++) { 2001 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2002 q_vector->tx.itr_idx); 2003 txq++; 2004 } 2005 2006 for (q = 0; q < q_vector->num_ring_rx; q++) { 2007 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2008 q_vector->rx.itr_idx); 2009 rxq++; 2010 } 2011 } 2012 } 2013 2014 /** 2015 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 2016 * @vsi: the VSI being changed 2017 */ 2018 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 2019 { 2020 struct device *dev = &vsi->back->pdev->dev; 2021 struct ice_hw *hw = &vsi->back->hw; 2022 struct ice_vsi_ctx *ctxt; 2023 enum ice_status status; 2024 int ret = 0; 2025 2026 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2027 if (!ctxt) 2028 return -ENOMEM; 2029 2030 /* Here we are configuring the VSI to let the driver add VLAN tags by 2031 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 2032 * insertion happens in the Tx hot path, in ice_tx_map. 2033 */ 2034 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 2035 2036 /* Preserve existing VLAN strip setting */ 2037 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 2038 ICE_AQ_VSI_VLAN_EMOD_M); 2039 2040 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2041 2042 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2043 if (status) { 2044 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 2045 status, hw->adminq.sq_last_status); 2046 ret = -EIO; 2047 goto out; 2048 } 2049 2050 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2051 out: 2052 devm_kfree(dev, ctxt); 2053 return ret; 2054 } 2055 2056 /** 2057 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2058 * @vsi: the VSI being changed 2059 * @ena: boolean value indicating if this is a enable or disable request 2060 */ 2061 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2062 { 2063 struct device *dev = &vsi->back->pdev->dev; 2064 struct ice_hw *hw = &vsi->back->hw; 2065 struct ice_vsi_ctx *ctxt; 2066 enum ice_status status; 2067 int ret = 0; 2068 2069 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2070 if (!ctxt) 2071 return -ENOMEM; 2072 2073 /* Here we are configuring what the VSI should do with the VLAN tag in 2074 * the Rx packet. We can either leave the tag in the packet or put it in 2075 * the Rx descriptor. 2076 */ 2077 if (ena) 2078 /* Strip VLAN tag from Rx packet and put it in the desc */ 2079 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2080 else 2081 /* Disable stripping. Leave tag in packet */ 2082 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2083 2084 /* Allow all packets untagged/tagged */ 2085 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2086 2087 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2088 2089 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2090 if (status) { 2091 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 2092 ena, status, hw->adminq.sq_last_status); 2093 ret = -EIO; 2094 goto out; 2095 } 2096 2097 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2098 out: 2099 devm_kfree(dev, ctxt); 2100 return ret; 2101 } 2102 2103 /** 2104 * ice_vsi_start_rx_rings - start VSI's Rx rings 2105 * @vsi: the VSI whose rings are to be started 2106 * 2107 * Returns 0 on success and a negative value on error 2108 */ 2109 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 2110 { 2111 return ice_vsi_ctrl_rx_rings(vsi, true); 2112 } 2113 2114 /** 2115 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 2116 * @vsi: the VSI 2117 * 2118 * Returns 0 on success and a negative value on error 2119 */ 2120 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 2121 { 2122 return ice_vsi_ctrl_rx_rings(vsi, false); 2123 } 2124 2125 /** 2126 * ice_trigger_sw_intr - trigger a software interrupt 2127 * @hw: pointer to the HW structure 2128 * @q_vector: interrupt vector to trigger the software interrupt for 2129 */ 2130 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 2131 { 2132 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 2133 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 2134 GLINT_DYN_CTL_SWINT_TRIG_M | 2135 GLINT_DYN_CTL_INTENA_M); 2136 } 2137 2138 /** 2139 * ice_vsi_stop_tx_ring - Disable single Tx ring 2140 * @vsi: the VSI being configured 2141 * @rst_src: reset source 2142 * @rel_vmvf_num: Relative ID of VF/VM 2143 * @ring: Tx ring to be stopped 2144 * @txq_meta: Meta data of Tx ring to be stopped 2145 */ 2146 #ifndef CONFIG_PCI_IOV 2147 static 2148 #endif /* !CONFIG_PCI_IOV */ 2149 int 2150 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2151 u16 rel_vmvf_num, struct ice_ring *ring, 2152 struct ice_txq_meta *txq_meta) 2153 { 2154 struct ice_pf *pf = vsi->back; 2155 struct ice_q_vector *q_vector; 2156 struct ice_hw *hw = &pf->hw; 2157 enum ice_status status; 2158 u32 val; 2159 2160 /* clear cause_ena bit for disabled queues */ 2161 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 2162 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2163 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 2164 2165 /* software is expected to wait for 100 ns */ 2166 ndelay(100); 2167 2168 /* trigger a software interrupt for the vector 2169 * associated to the queue to schedule NAPI handler 2170 */ 2171 q_vector = ring->q_vector; 2172 if (q_vector) 2173 ice_trigger_sw_intr(hw, q_vector); 2174 2175 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 2176 txq_meta->tc, 1, &txq_meta->q_handle, 2177 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 2178 rel_vmvf_num, NULL); 2179 2180 /* if the disable queue command was exercised during an 2181 * active reset flow, ICE_ERR_RESET_ONGOING is returned. 2182 * This is not an error as the reset operation disables 2183 * queues at the hardware level anyway. 2184 */ 2185 if (status == ICE_ERR_RESET_ONGOING) { 2186 dev_dbg(&vsi->back->pdev->dev, 2187 "Reset in progress. LAN Tx queues already disabled\n"); 2188 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 2189 dev_dbg(&vsi->back->pdev->dev, 2190 "LAN Tx queues do not exist, nothing to disable\n"); 2191 } else if (status) { 2192 dev_err(&vsi->back->pdev->dev, 2193 "Failed to disable LAN Tx queues, error: %d\n", status); 2194 return -ENODEV; 2195 } 2196 2197 return 0; 2198 } 2199 2200 /** 2201 * ice_fill_txq_meta - Prepare the Tx queue's meta data 2202 * @vsi: VSI that ring belongs to 2203 * @ring: ring that txq_meta will be based on 2204 * @txq_meta: a helper struct that wraps Tx queue's information 2205 * 2206 * Set up a helper struct that will contain all the necessary fields that 2207 * are needed for stopping Tx queue 2208 */ 2209 #ifndef CONFIG_PCI_IOV 2210 static 2211 #endif /* !CONFIG_PCI_IOV */ 2212 void 2213 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring, 2214 struct ice_txq_meta *txq_meta) 2215 { 2216 u8 tc = 0; 2217 2218 #ifdef CONFIG_DCB 2219 tc = ring->dcb_tc; 2220 #endif /* CONFIG_DCB */ 2221 txq_meta->q_id = ring->reg_idx; 2222 txq_meta->q_teid = ring->txq_teid; 2223 txq_meta->q_handle = ring->q_handle; 2224 txq_meta->vsi_idx = vsi->idx; 2225 txq_meta->tc = tc; 2226 } 2227 2228 /** 2229 * ice_vsi_stop_tx_rings - Disable Tx rings 2230 * @vsi: the VSI being configured 2231 * @rst_src: reset source 2232 * @rel_vmvf_num: Relative ID of VF/VM 2233 * @rings: Tx ring array to be stopped 2234 */ 2235 static int 2236 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2237 u16 rel_vmvf_num, struct ice_ring **rings) 2238 { 2239 u16 i, q_idx = 0; 2240 int status; 2241 u8 tc; 2242 2243 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2244 return -EINVAL; 2245 2246 /* set up the Tx queue list to be disabled for each enabled TC */ 2247 ice_for_each_traffic_class(tc) { 2248 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 2249 break; 2250 2251 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 2252 struct ice_txq_meta txq_meta = { }; 2253 2254 if (!rings || !rings[q_idx]) 2255 return -EINVAL; 2256 2257 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2258 status = ice_vsi_stop_tx_ring(vsi, rst_src, 2259 rel_vmvf_num, 2260 rings[q_idx], &txq_meta); 2261 2262 if (status) 2263 return status; 2264 2265 q_idx++; 2266 } 2267 } 2268 2269 return 0; 2270 } 2271 2272 /** 2273 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2274 * @vsi: the VSI being configured 2275 * @rst_src: reset source 2276 * @rel_vmvf_num: Relative ID of VF/VM 2277 */ 2278 int 2279 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2280 u16 rel_vmvf_num) 2281 { 2282 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2283 } 2284 2285 /** 2286 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2287 * @vsi: VSI to enable or disable VLAN pruning on 2288 * @ena: set to true to enable VLAN pruning and false to disable it 2289 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2290 * 2291 * returns 0 if VSI is updated, negative otherwise 2292 */ 2293 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2294 { 2295 struct ice_vsi_ctx *ctxt; 2296 struct device *dev; 2297 struct ice_pf *pf; 2298 int status; 2299 2300 if (!vsi) 2301 return -EINVAL; 2302 2303 pf = vsi->back; 2304 dev = &pf->pdev->dev; 2305 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2306 if (!ctxt) 2307 return -ENOMEM; 2308 2309 ctxt->info = vsi->info; 2310 2311 if (ena) { 2312 ctxt->info.sec_flags |= 2313 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2314 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 2315 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2316 } else { 2317 ctxt->info.sec_flags &= 2318 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2319 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 2320 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2321 } 2322 2323 if (!vlan_promisc) 2324 ctxt->info.valid_sections = 2325 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 2326 ICE_AQ_VSI_PROP_SW_VALID); 2327 2328 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2329 if (status) { 2330 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2331 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 2332 pf->hw.adminq.sq_last_status); 2333 goto err_out; 2334 } 2335 2336 vsi->info.sec_flags = ctxt->info.sec_flags; 2337 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2338 2339 devm_kfree(dev, ctxt); 2340 return 0; 2341 2342 err_out: 2343 devm_kfree(dev, ctxt); 2344 return -EIO; 2345 } 2346 2347 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2348 { 2349 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2350 2351 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2352 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2353 } 2354 2355 /** 2356 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2357 * @vsi: VSI to set the q_vectors register index on 2358 */ 2359 static int 2360 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2361 { 2362 u16 i; 2363 2364 if (!vsi || !vsi->q_vectors) 2365 return -EINVAL; 2366 2367 ice_for_each_q_vector(vsi, i) { 2368 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2369 2370 if (!q_vector) { 2371 dev_err(&vsi->back->pdev->dev, 2372 "Failed to set reg_idx on q_vector %d VSI %d\n", 2373 i, vsi->vsi_num); 2374 goto clear_reg_idx; 2375 } 2376 2377 if (vsi->type == ICE_VSI_VF) { 2378 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2379 2380 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2381 } else { 2382 q_vector->reg_idx = 2383 q_vector->v_idx + vsi->base_vector; 2384 } 2385 } 2386 2387 return 0; 2388 2389 clear_reg_idx: 2390 ice_for_each_q_vector(vsi, i) { 2391 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2392 2393 if (q_vector) 2394 q_vector->reg_idx = 0; 2395 } 2396 2397 return -EINVAL; 2398 } 2399 2400 /** 2401 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 2402 * @vsi: the VSI being configured 2403 * @add_rule: boolean value to add or remove ethertype filter rule 2404 */ 2405 static void 2406 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 2407 { 2408 struct ice_fltr_list_entry *list; 2409 struct ice_pf *pf = vsi->back; 2410 LIST_HEAD(tmp_add_list); 2411 enum ice_status status; 2412 2413 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 2414 if (!list) 2415 return; 2416 2417 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2418 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2419 list->fltr_info.flag = ICE_FLTR_TX; 2420 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2421 list->fltr_info.vsi_handle = vsi->idx; 2422 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 2423 2424 INIT_LIST_HEAD(&list->list_entry); 2425 list_add(&list->list_entry, &tmp_add_list); 2426 2427 if (add_rule) 2428 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2429 else 2430 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2431 2432 if (status) 2433 dev_err(&pf->pdev->dev, 2434 "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 2435 vsi->vsi_num, status); 2436 2437 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 2438 } 2439 2440 /** 2441 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2442 * @vsi: the VSI being configured 2443 * @tx: bool to determine Tx or Rx rule 2444 * @create: bool to determine create or remove Rule 2445 */ 2446 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2447 { 2448 struct ice_fltr_list_entry *list; 2449 struct ice_pf *pf = vsi->back; 2450 LIST_HEAD(tmp_add_list); 2451 enum ice_status status; 2452 2453 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 2454 if (!list) 2455 return; 2456 2457 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2458 list->fltr_info.vsi_handle = vsi->idx; 2459 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 2460 2461 if (tx) { 2462 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2463 list->fltr_info.flag = ICE_FLTR_TX; 2464 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2465 } else { 2466 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2467 list->fltr_info.flag = ICE_FLTR_RX; 2468 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 2469 } 2470 2471 INIT_LIST_HEAD(&list->list_entry); 2472 list_add(&list->list_entry, &tmp_add_list); 2473 2474 if (create) 2475 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2476 else 2477 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2478 2479 if (status) 2480 dev_err(&pf->pdev->dev, 2481 "Fail %s %s LLDP rule on VSI %i error: %d\n", 2482 create ? "adding" : "removing", tx ? "TX" : "RX", 2483 vsi->vsi_num, status); 2484 2485 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 2486 } 2487 2488 /** 2489 * ice_vsi_setup - Set up a VSI by a given type 2490 * @pf: board private structure 2491 * @pi: pointer to the port_info instance 2492 * @type: VSI type 2493 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2494 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2495 * fill-in ICE_INVAL_VFID as input. 2496 * 2497 * This allocates the sw VSI structure and its queue resources. 2498 * 2499 * Returns pointer to the successfully allocated and configured VSI sw struct on 2500 * success, NULL on failure. 2501 */ 2502 struct ice_vsi * 2503 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2504 enum ice_vsi_type type, u16 vf_id) 2505 { 2506 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2507 struct device *dev = &pf->pdev->dev; 2508 enum ice_status status; 2509 struct ice_vsi *vsi; 2510 int ret, i; 2511 2512 if (type == ICE_VSI_VF) 2513 vsi = ice_vsi_alloc(pf, type, vf_id); 2514 else 2515 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 2516 2517 if (!vsi) { 2518 dev_err(dev, "could not allocate VSI\n"); 2519 return NULL; 2520 } 2521 2522 vsi->port_info = pi; 2523 vsi->vsw = pf->first_sw; 2524 if (vsi->type == ICE_VSI_PF) 2525 vsi->ethtype = ETH_P_PAUSE; 2526 2527 if (vsi->type == ICE_VSI_VF) 2528 vsi->vf_id = vf_id; 2529 2530 if (ice_vsi_get_qs(vsi)) { 2531 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2532 vsi->idx); 2533 goto unroll_get_qs; 2534 } 2535 2536 /* set RSS capabilities */ 2537 ice_vsi_set_rss_params(vsi); 2538 2539 /* set TC configuration */ 2540 ice_vsi_set_tc_cfg(vsi); 2541 2542 /* create the VSI */ 2543 ret = ice_vsi_init(vsi); 2544 if (ret) 2545 goto unroll_get_qs; 2546 2547 switch (vsi->type) { 2548 case ICE_VSI_PF: 2549 ret = ice_vsi_alloc_q_vectors(vsi); 2550 if (ret) 2551 goto unroll_vsi_init; 2552 2553 ret = ice_vsi_setup_vector_base(vsi); 2554 if (ret) 2555 goto unroll_alloc_q_vector; 2556 2557 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2558 if (ret) 2559 goto unroll_vector_base; 2560 2561 ret = ice_vsi_alloc_rings(vsi); 2562 if (ret) 2563 goto unroll_vector_base; 2564 2565 ice_vsi_map_rings_to_vectors(vsi); 2566 2567 /* Do not exit if configuring RSS had an issue, at least 2568 * receive traffic on first queue. Hence no need to capture 2569 * return value 2570 */ 2571 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2572 ice_vsi_cfg_rss_lut_key(vsi); 2573 break; 2574 case ICE_VSI_VF: 2575 /* VF driver will take care of creating netdev for this type and 2576 * map queues to vectors through Virtchnl, PF driver only 2577 * creates a VSI and corresponding structures for bookkeeping 2578 * purpose 2579 */ 2580 ret = ice_vsi_alloc_q_vectors(vsi); 2581 if (ret) 2582 goto unroll_vsi_init; 2583 2584 ret = ice_vsi_alloc_rings(vsi); 2585 if (ret) 2586 goto unroll_alloc_q_vector; 2587 2588 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2589 if (ret) 2590 goto unroll_vector_base; 2591 2592 /* Do not exit if configuring RSS had an issue, at least 2593 * receive traffic on first queue. Hence no need to capture 2594 * return value 2595 */ 2596 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2597 ice_vsi_cfg_rss_lut_key(vsi); 2598 break; 2599 case ICE_VSI_LB: 2600 ret = ice_vsi_alloc_rings(vsi); 2601 if (ret) 2602 goto unroll_vsi_init; 2603 break; 2604 default: 2605 /* clean up the resources and exit */ 2606 goto unroll_vsi_init; 2607 } 2608 2609 /* configure VSI nodes based on number of queues and TC's */ 2610 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2611 max_txqs[i] = vsi->alloc_txq; 2612 2613 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2614 max_txqs); 2615 if (status) { 2616 dev_err(&pf->pdev->dev, 2617 "VSI %d failed lan queue config, error %d\n", 2618 vsi->vsi_num, status); 2619 goto unroll_vector_base; 2620 } 2621 2622 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2623 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2624 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2625 * The rule is added once for PF VSI in order to create appropriate 2626 * recipe, since VSI/VSI list is ignored with drop action... 2627 * Also add rules to handle LLDP Tx and Rx packets. Tx LLDP packets 2628 * need to be dropped so that VFs cannot send LLDP packets to reconfig 2629 * DCB settings in the HW. Also, if the FW DCBX engine is not running 2630 * then Rx LLDP packets need to be redirected up the stack. 2631 */ 2632 if (vsi->type == ICE_VSI_PF) { 2633 ice_vsi_add_rem_eth_mac(vsi, true); 2634 2635 /* Tx LLDP packets */ 2636 ice_cfg_sw_lldp(vsi, true, true); 2637 2638 /* Rx LLDP packets */ 2639 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2640 ice_cfg_sw_lldp(vsi, false, true); 2641 } 2642 2643 return vsi; 2644 2645 unroll_vector_base: 2646 /* reclaim SW interrupts back to the common pool */ 2647 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2648 pf->num_avail_sw_msix += vsi->num_q_vectors; 2649 unroll_alloc_q_vector: 2650 ice_vsi_free_q_vectors(vsi); 2651 unroll_vsi_init: 2652 ice_vsi_delete(vsi); 2653 unroll_get_qs: 2654 ice_vsi_put_qs(vsi); 2655 ice_vsi_clear(vsi); 2656 2657 return NULL; 2658 } 2659 2660 /** 2661 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2662 * @vsi: the VSI being cleaned up 2663 */ 2664 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2665 { 2666 struct ice_pf *pf = vsi->back; 2667 struct ice_hw *hw = &pf->hw; 2668 u32 txq = 0; 2669 u32 rxq = 0; 2670 int i, q; 2671 2672 for (i = 0; i < vsi->num_q_vectors; i++) { 2673 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2674 u16 reg_idx = q_vector->reg_idx; 2675 2676 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2677 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2678 for (q = 0; q < q_vector->num_ring_tx; q++) { 2679 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2680 txq++; 2681 } 2682 2683 for (q = 0; q < q_vector->num_ring_rx; q++) { 2684 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2685 rxq++; 2686 } 2687 } 2688 2689 ice_flush(hw); 2690 } 2691 2692 /** 2693 * ice_vsi_free_irq - Free the IRQ association with the OS 2694 * @vsi: the VSI being configured 2695 */ 2696 void ice_vsi_free_irq(struct ice_vsi *vsi) 2697 { 2698 struct ice_pf *pf = vsi->back; 2699 int base = vsi->base_vector; 2700 int i; 2701 2702 if (!vsi->q_vectors || !vsi->irqs_ready) 2703 return; 2704 2705 ice_vsi_release_msix(vsi); 2706 if (vsi->type == ICE_VSI_VF) 2707 return; 2708 2709 vsi->irqs_ready = false; 2710 ice_for_each_q_vector(vsi, i) { 2711 u16 vector = i + base; 2712 int irq_num; 2713 2714 irq_num = pf->msix_entries[vector].vector; 2715 2716 /* free only the irqs that were actually requested */ 2717 if (!vsi->q_vectors[i] || 2718 !(vsi->q_vectors[i]->num_ring_tx || 2719 vsi->q_vectors[i]->num_ring_rx)) 2720 continue; 2721 2722 /* clear the affinity notifier in the IRQ descriptor */ 2723 irq_set_affinity_notifier(irq_num, NULL); 2724 2725 /* clear the affinity_mask in the IRQ descriptor */ 2726 irq_set_affinity_hint(irq_num, NULL); 2727 synchronize_irq(irq_num); 2728 devm_free_irq(&pf->pdev->dev, irq_num, 2729 vsi->q_vectors[i]); 2730 } 2731 } 2732 2733 /** 2734 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2735 * @vsi: the VSI having resources freed 2736 */ 2737 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2738 { 2739 int i; 2740 2741 if (!vsi->tx_rings) 2742 return; 2743 2744 ice_for_each_txq(vsi, i) 2745 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2746 ice_free_tx_ring(vsi->tx_rings[i]); 2747 } 2748 2749 /** 2750 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2751 * @vsi: the VSI having resources freed 2752 */ 2753 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2754 { 2755 int i; 2756 2757 if (!vsi->rx_rings) 2758 return; 2759 2760 ice_for_each_rxq(vsi, i) 2761 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2762 ice_free_rx_ring(vsi->rx_rings[i]); 2763 } 2764 2765 /** 2766 * ice_vsi_close - Shut down a VSI 2767 * @vsi: the VSI being shut down 2768 */ 2769 void ice_vsi_close(struct ice_vsi *vsi) 2770 { 2771 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2772 ice_down(vsi); 2773 2774 ice_vsi_free_irq(vsi); 2775 ice_vsi_free_tx_rings(vsi); 2776 ice_vsi_free_rx_rings(vsi); 2777 } 2778 2779 /** 2780 * ice_free_res - free a block of resources 2781 * @res: pointer to the resource 2782 * @index: starting index previously returned by ice_get_res 2783 * @id: identifier to track owner 2784 * 2785 * Returns number of resources freed 2786 */ 2787 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2788 { 2789 int count = 0; 2790 int i; 2791 2792 if (!res || index >= res->end) 2793 return -EINVAL; 2794 2795 id |= ICE_RES_VALID_BIT; 2796 for (i = index; i < res->end && res->list[i] == id; i++) { 2797 res->list[i] = 0; 2798 count++; 2799 } 2800 2801 return count; 2802 } 2803 2804 /** 2805 * ice_search_res - Search the tracker for a block of resources 2806 * @res: pointer to the resource 2807 * @needed: size of the block needed 2808 * @id: identifier to track owner 2809 * 2810 * Returns the base item index of the block, or -ENOMEM for error 2811 */ 2812 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2813 { 2814 int start = 0, end = 0; 2815 2816 if (needed > res->end) 2817 return -ENOMEM; 2818 2819 id |= ICE_RES_VALID_BIT; 2820 2821 do { 2822 /* skip already allocated entries */ 2823 if (res->list[end++] & ICE_RES_VALID_BIT) { 2824 start = end; 2825 if ((start + needed) > res->end) 2826 break; 2827 } 2828 2829 if (end == (start + needed)) { 2830 int i = start; 2831 2832 /* there was enough, so assign it to the requestor */ 2833 while (i != end) 2834 res->list[i++] = id; 2835 2836 return start; 2837 } 2838 } while (end < res->end); 2839 2840 return -ENOMEM; 2841 } 2842 2843 /** 2844 * ice_get_res - get a block of resources 2845 * @pf: board private structure 2846 * @res: pointer to the resource 2847 * @needed: size of the block needed 2848 * @id: identifier to track owner 2849 * 2850 * Returns the base item index of the block, or negative for error 2851 */ 2852 int 2853 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2854 { 2855 if (!res || !pf) 2856 return -EINVAL; 2857 2858 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2859 dev_err(&pf->pdev->dev, 2860 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2861 needed, res->num_entries, id); 2862 return -EINVAL; 2863 } 2864 2865 return ice_search_res(res, needed, id); 2866 } 2867 2868 /** 2869 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2870 * @vsi: the VSI being un-configured 2871 */ 2872 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2873 { 2874 int base = vsi->base_vector; 2875 struct ice_pf *pf = vsi->back; 2876 struct ice_hw *hw = &pf->hw; 2877 u32 val; 2878 int i; 2879 2880 /* disable interrupt causation from each queue */ 2881 if (vsi->tx_rings) { 2882 ice_for_each_txq(vsi, i) { 2883 if (vsi->tx_rings[i]) { 2884 u16 reg; 2885 2886 reg = vsi->tx_rings[i]->reg_idx; 2887 val = rd32(hw, QINT_TQCTL(reg)); 2888 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2889 wr32(hw, QINT_TQCTL(reg), val); 2890 } 2891 } 2892 } 2893 2894 if (vsi->rx_rings) { 2895 ice_for_each_rxq(vsi, i) { 2896 if (vsi->rx_rings[i]) { 2897 u16 reg; 2898 2899 reg = vsi->rx_rings[i]->reg_idx; 2900 val = rd32(hw, QINT_RQCTL(reg)); 2901 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2902 wr32(hw, QINT_RQCTL(reg), val); 2903 } 2904 } 2905 } 2906 2907 /* disable each interrupt */ 2908 ice_for_each_q_vector(vsi, i) 2909 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2910 2911 ice_flush(hw); 2912 2913 /* don't call synchronize_irq() for VF's from the host */ 2914 if (vsi->type == ICE_VSI_VF) 2915 return; 2916 2917 ice_for_each_q_vector(vsi, i) 2918 synchronize_irq(pf->msix_entries[i + base].vector); 2919 } 2920 2921 /** 2922 * ice_napi_del - Remove NAPI handler for the VSI 2923 * @vsi: VSI for which NAPI handler is to be removed 2924 */ 2925 void ice_napi_del(struct ice_vsi *vsi) 2926 { 2927 int v_idx; 2928 2929 if (!vsi->netdev) 2930 return; 2931 2932 ice_for_each_q_vector(vsi, v_idx) 2933 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2934 } 2935 2936 /** 2937 * ice_vsi_release - Delete a VSI and free its resources 2938 * @vsi: the VSI being removed 2939 * 2940 * Returns 0 on success or < 0 on error 2941 */ 2942 int ice_vsi_release(struct ice_vsi *vsi) 2943 { 2944 struct ice_pf *pf; 2945 2946 if (!vsi->back) 2947 return -ENODEV; 2948 pf = vsi->back; 2949 2950 /* do not unregister while driver is in the reset recovery pending 2951 * state. Since reset/rebuild happens through PF service task workqueue, 2952 * it's not a good idea to unregister netdev that is associated to the 2953 * PF that is running the work queue items currently. This is done to 2954 * avoid check_flush_dependency() warning on this wq 2955 */ 2956 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2957 unregister_netdev(vsi->netdev); 2958 2959 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2960 ice_rss_clean(vsi); 2961 2962 /* Disable VSI and free resources */ 2963 if (vsi->type != ICE_VSI_LB) 2964 ice_vsi_dis_irq(vsi); 2965 ice_vsi_close(vsi); 2966 2967 /* SR-IOV determines needed MSIX resources all at once instead of per 2968 * VSI since when VFs are spawned we know how many VFs there are and how 2969 * many interrupts each VF needs. SR-IOV MSIX resources are also 2970 * cleared in the same manner. 2971 */ 2972 if (vsi->type != ICE_VSI_VF) { 2973 /* reclaim SW interrupts back to the common pool */ 2974 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2975 pf->num_avail_sw_msix += vsi->num_q_vectors; 2976 } 2977 2978 if (vsi->type == ICE_VSI_PF) { 2979 ice_vsi_add_rem_eth_mac(vsi, false); 2980 ice_cfg_sw_lldp(vsi, true, false); 2981 /* The Rx rule will only exist to remove if the LLDP FW 2982 * engine is currently stopped 2983 */ 2984 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2985 ice_cfg_sw_lldp(vsi, false, false); 2986 } 2987 2988 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2989 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2990 ice_vsi_delete(vsi); 2991 ice_vsi_free_q_vectors(vsi); 2992 2993 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2994 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2995 free_netdev(vsi->netdev); 2996 vsi->netdev = NULL; 2997 } 2998 2999 ice_vsi_clear_rings(vsi); 3000 3001 ice_vsi_put_qs(vsi); 3002 3003 /* retain SW VSI data structure since it is needed to unregister and 3004 * free VSI netdev when PF is not in reset recovery pending state,\ 3005 * for ex: during rmmod. 3006 */ 3007 if (!ice_is_reset_in_progress(pf->state)) 3008 ice_vsi_clear(vsi); 3009 3010 return 0; 3011 } 3012 3013 /** 3014 * ice_vsi_rebuild - Rebuild VSI after reset 3015 * @vsi: VSI to be rebuild 3016 * 3017 * Returns 0 on success and negative value on failure 3018 */ 3019 int ice_vsi_rebuild(struct ice_vsi *vsi) 3020 { 3021 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3022 struct ice_vf *vf = NULL; 3023 enum ice_status status; 3024 struct ice_pf *pf; 3025 int ret, i; 3026 3027 if (!vsi) 3028 return -EINVAL; 3029 3030 pf = vsi->back; 3031 if (vsi->type == ICE_VSI_VF) 3032 vf = &pf->vf[vsi->vf_id]; 3033 3034 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3035 ice_vsi_free_q_vectors(vsi); 3036 3037 /* SR-IOV determines needed MSIX resources all at once instead of per 3038 * VSI since when VFs are spawned we know how many VFs there are and how 3039 * many interrupts each VF needs. SR-IOV MSIX resources are also 3040 * cleared in the same manner. 3041 */ 3042 if (vsi->type != ICE_VSI_VF) { 3043 /* reclaim SW interrupts back to the common pool */ 3044 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3045 pf->num_avail_sw_msix += vsi->num_q_vectors; 3046 vsi->base_vector = 0; 3047 } 3048 3049 ice_vsi_put_qs(vsi); 3050 ice_vsi_clear_rings(vsi); 3051 ice_vsi_free_arrays(vsi); 3052 ice_dev_onetime_setup(&pf->hw); 3053 if (vsi->type == ICE_VSI_VF) 3054 ice_vsi_set_num_qs(vsi, vf->vf_id); 3055 else 3056 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3057 3058 ret = ice_vsi_alloc_arrays(vsi); 3059 if (ret < 0) 3060 goto err_vsi; 3061 3062 ice_vsi_get_qs(vsi); 3063 ice_vsi_set_tc_cfg(vsi); 3064 3065 /* Initialize VSI struct elements and create VSI in FW */ 3066 ret = ice_vsi_init(vsi); 3067 if (ret < 0) 3068 goto err_vsi; 3069 3070 3071 switch (vsi->type) { 3072 case ICE_VSI_PF: 3073 ret = ice_vsi_alloc_q_vectors(vsi); 3074 if (ret) 3075 goto err_rings; 3076 3077 ret = ice_vsi_setup_vector_base(vsi); 3078 if (ret) 3079 goto err_vectors; 3080 3081 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3082 if (ret) 3083 goto err_vectors; 3084 3085 ret = ice_vsi_alloc_rings(vsi); 3086 if (ret) 3087 goto err_vectors; 3088 3089 ice_vsi_map_rings_to_vectors(vsi); 3090 /* Do not exit if configuring RSS had an issue, at least 3091 * receive traffic on first queue. Hence no need to capture 3092 * return value 3093 */ 3094 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3095 ice_vsi_cfg_rss_lut_key(vsi); 3096 break; 3097 case ICE_VSI_VF: 3098 ret = ice_vsi_alloc_q_vectors(vsi); 3099 if (ret) 3100 goto err_rings; 3101 3102 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3103 if (ret) 3104 goto err_vectors; 3105 3106 ret = ice_vsi_alloc_rings(vsi); 3107 if (ret) 3108 goto err_vectors; 3109 3110 break; 3111 default: 3112 break; 3113 } 3114 3115 /* configure VSI nodes based on number of queues and TC's */ 3116 for (i = 0; i < vsi->tc_cfg.numtc; i++) 3117 max_txqs[i] = vsi->alloc_txq; 3118 3119 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3120 max_txqs); 3121 if (status) { 3122 dev_err(&pf->pdev->dev, 3123 "VSI %d failed lan queue config, error %d\n", 3124 vsi->vsi_num, status); 3125 goto err_vectors; 3126 } 3127 return 0; 3128 3129 err_vectors: 3130 ice_vsi_free_q_vectors(vsi); 3131 err_rings: 3132 if (vsi->netdev) { 3133 vsi->current_netdev_flags = 0; 3134 unregister_netdev(vsi->netdev); 3135 free_netdev(vsi->netdev); 3136 vsi->netdev = NULL; 3137 } 3138 err_vsi: 3139 ice_vsi_clear(vsi); 3140 set_bit(__ICE_RESET_FAILED, pf->state); 3141 return ret; 3142 } 3143 3144 /** 3145 * ice_is_reset_in_progress - check for a reset in progress 3146 * @state: PF state field 3147 */ 3148 bool ice_is_reset_in_progress(unsigned long *state) 3149 { 3150 return test_bit(__ICE_RESET_OICR_RECV, state) || 3151 test_bit(__ICE_PFR_REQ, state) || 3152 test_bit(__ICE_CORER_REQ, state) || 3153 test_bit(__ICE_GLOBR_REQ, state); 3154 } 3155 3156 #ifdef CONFIG_DCB 3157 /** 3158 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3159 * @vsi: VSI being configured 3160 * @ctx: the context buffer returned from AQ VSI update command 3161 */ 3162 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3163 { 3164 vsi->info.mapping_flags = ctx->info.mapping_flags; 3165 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3166 sizeof(vsi->info.q_mapping)); 3167 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3168 sizeof(vsi->info.tc_mapping)); 3169 } 3170 3171 /** 3172 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3173 * @vsi: the VSI being configured 3174 * @ena_tc: TC map to be enabled 3175 */ 3176 static void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3177 { 3178 struct net_device *netdev = vsi->netdev; 3179 struct ice_pf *pf = vsi->back; 3180 struct ice_dcbx_cfg *dcbcfg; 3181 u8 netdev_tc; 3182 int i; 3183 3184 if (!netdev) 3185 return; 3186 3187 if (!ena_tc) { 3188 netdev_reset_tc(netdev); 3189 return; 3190 } 3191 3192 if (netdev_set_num_tc(netdev, vsi->tc_cfg.numtc)) 3193 return; 3194 3195 dcbcfg = &pf->hw.port_info->local_dcbx_cfg; 3196 3197 ice_for_each_traffic_class(i) 3198 if (vsi->tc_cfg.ena_tc & BIT(i)) 3199 netdev_set_tc_queue(netdev, 3200 vsi->tc_cfg.tc_info[i].netdev_tc, 3201 vsi->tc_cfg.tc_info[i].qcount_tx, 3202 vsi->tc_cfg.tc_info[i].qoffset); 3203 3204 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3205 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3206 3207 /* Get the mapped netdev TC# for the UP */ 3208 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3209 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3210 } 3211 } 3212 3213 /** 3214 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3215 * @vsi: VSI to be configured 3216 * @ena_tc: TC bitmap 3217 * 3218 * VSI queues expected to be quiesced before calling this function 3219 */ 3220 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3221 { 3222 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3223 struct ice_vsi_ctx *ctx; 3224 struct ice_pf *pf = vsi->back; 3225 enum ice_status status; 3226 int i, ret = 0; 3227 u8 num_tc = 0; 3228 3229 ice_for_each_traffic_class(i) { 3230 /* build bitmap of enabled TCs */ 3231 if (ena_tc & BIT(i)) 3232 num_tc++; 3233 /* populate max_txqs per TC */ 3234 max_txqs[i] = vsi->alloc_txq; 3235 } 3236 3237 vsi->tc_cfg.ena_tc = ena_tc; 3238 vsi->tc_cfg.numtc = num_tc; 3239 3240 ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL); 3241 if (!ctx) 3242 return -ENOMEM; 3243 3244 ctx->vf_num = 0; 3245 ctx->info = vsi->info; 3246 3247 ice_vsi_setup_q_map(vsi, ctx); 3248 3249 /* must to indicate which section of VSI context are being modified */ 3250 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3251 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3252 if (status) { 3253 dev_info(&pf->pdev->dev, "Failed VSI Update\n"); 3254 ret = -EIO; 3255 goto out; 3256 } 3257 3258 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3259 max_txqs); 3260 3261 if (status) { 3262 dev_err(&pf->pdev->dev, 3263 "VSI %d failed TC config, error %d\n", 3264 vsi->vsi_num, status); 3265 ret = -EIO; 3266 goto out; 3267 } 3268 ice_vsi_update_q_map(vsi, ctx); 3269 vsi->info.valid_sections = 0; 3270 3271 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3272 out: 3273 devm_kfree(&pf->pdev->dev, ctx); 3274 return ret; 3275 } 3276 #endif /* CONFIG_DCB */ 3277 3278 /** 3279 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 3280 * @vsi: the VSI being configured MAC filter 3281 * @macaddr: the MAC address to be added. 3282 * @set: Add or delete a MAC filter 3283 * 3284 * Adds or removes MAC address filter entry for VF VSI 3285 */ 3286 enum ice_status 3287 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 3288 { 3289 LIST_HEAD(tmp_add_list); 3290 enum ice_status status; 3291 3292 /* Update MAC filter list to be added or removed for a VSI */ 3293 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 3294 status = ICE_ERR_NO_MEMORY; 3295 goto cfg_mac_fltr_exit; 3296 } 3297 3298 if (set) 3299 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 3300 else 3301 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 3302 3303 cfg_mac_fltr_exit: 3304 ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list); 3305 return status; 3306 } 3307