1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 return 0; 109 110 err_vectors: 111 devm_kfree(dev, vsi->rxq_map); 112 err_rxq_map: 113 devm_kfree(dev, vsi->txq_map); 114 err_txq_map: 115 devm_kfree(dev, vsi->rx_rings); 116 err_rings: 117 devm_kfree(dev, vsi->tx_rings); 118 return -ENOMEM; 119 } 120 121 /** 122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 123 * @vsi: the VSI being configured 124 */ 125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 126 { 127 switch (vsi->type) { 128 case ICE_VSI_PF: 129 case ICE_VSI_CTRL: 130 case ICE_VSI_LB: 131 /* a user could change the values of num_[tr]x_desc using 132 * ethtool -G so we should keep those values instead of 133 * overwriting them with the defaults. 134 */ 135 if (!vsi->num_rx_desc) 136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 137 if (!vsi->num_tx_desc) 138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 139 break; 140 default: 141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 142 vsi->type); 143 break; 144 } 145 } 146 147 /** 148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 149 * @vsi: the VSI being configured 150 * @vf_id: ID of the VF being configured 151 * 152 * Return 0 on success and a negative value on error 153 */ 154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 155 { 156 struct ice_pf *pf = vsi->back; 157 struct ice_vf *vf = NULL; 158 159 if (vsi->type == ICE_VSI_VF) 160 vsi->vf_id = vf_id; 161 162 switch (vsi->type) { 163 case ICE_VSI_PF: 164 vsi->alloc_txq = min3(pf->num_lan_msix, 165 ice_get_avail_txq_count(pf), 166 (u16)num_online_cpus()); 167 if (vsi->req_txq) { 168 vsi->alloc_txq = vsi->req_txq; 169 vsi->num_txq = vsi->req_txq; 170 } 171 172 pf->num_lan_tx = vsi->alloc_txq; 173 174 /* only 1 Rx queue unless RSS is enabled */ 175 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 176 vsi->alloc_rxq = 1; 177 } else { 178 vsi->alloc_rxq = min3(pf->num_lan_msix, 179 ice_get_avail_rxq_count(pf), 180 (u16)num_online_cpus()); 181 if (vsi->req_rxq) { 182 vsi->alloc_rxq = vsi->req_rxq; 183 vsi->num_rxq = vsi->req_rxq; 184 } 185 } 186 187 pf->num_lan_rx = vsi->alloc_rxq; 188 189 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 190 max_t(int, vsi->alloc_rxq, 191 vsi->alloc_txq)); 192 break; 193 case ICE_VSI_VF: 194 vf = &pf->vf[vsi->vf_id]; 195 vsi->alloc_txq = vf->num_vf_qs; 196 vsi->alloc_rxq = vf->num_vf_qs; 197 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 198 * data queue interrupts). Since vsi->num_q_vectors is number 199 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 200 * original vector count 201 */ 202 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 203 break; 204 case ICE_VSI_CTRL: 205 vsi->alloc_txq = 1; 206 vsi->alloc_rxq = 1; 207 vsi->num_q_vectors = 1; 208 break; 209 case ICE_VSI_LB: 210 vsi->alloc_txq = 1; 211 vsi->alloc_rxq = 1; 212 break; 213 default: 214 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 215 break; 216 } 217 218 ice_vsi_set_num_desc(vsi); 219 } 220 221 /** 222 * ice_get_free_slot - get the next non-NULL location index in array 223 * @array: array to search 224 * @size: size of the array 225 * @curr: last known occupied index to be used as a search hint 226 * 227 * void * is being used to keep the functionality generic. This lets us use this 228 * function on any array of pointers. 229 */ 230 static int ice_get_free_slot(void *array, int size, int curr) 231 { 232 int **tmp_array = (int **)array; 233 int next; 234 235 if (curr < (size - 1) && !tmp_array[curr + 1]) { 236 next = curr + 1; 237 } else { 238 int i = 0; 239 240 while ((i < size) && (tmp_array[i])) 241 i++; 242 if (i == size) 243 next = ICE_NO_VSI; 244 else 245 next = i; 246 } 247 return next; 248 } 249 250 /** 251 * ice_vsi_delete - delete a VSI from the switch 252 * @vsi: pointer to VSI being removed 253 */ 254 static void ice_vsi_delete(struct ice_vsi *vsi) 255 { 256 struct ice_pf *pf = vsi->back; 257 struct ice_vsi_ctx *ctxt; 258 enum ice_status status; 259 260 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 261 if (!ctxt) 262 return; 263 264 if (vsi->type == ICE_VSI_VF) 265 ctxt->vf_num = vsi->vf_id; 266 ctxt->vsi_num = vsi->vsi_num; 267 268 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 269 270 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 271 if (status) 272 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 273 vsi->vsi_num, ice_stat_str(status)); 274 275 kfree(ctxt); 276 } 277 278 /** 279 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 280 * @vsi: pointer to VSI being cleared 281 */ 282 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 283 { 284 struct ice_pf *pf = vsi->back; 285 struct device *dev; 286 287 dev = ice_pf_to_dev(pf); 288 289 /* free the ring and vector containers */ 290 if (vsi->q_vectors) { 291 devm_kfree(dev, vsi->q_vectors); 292 vsi->q_vectors = NULL; 293 } 294 if (vsi->tx_rings) { 295 devm_kfree(dev, vsi->tx_rings); 296 vsi->tx_rings = NULL; 297 } 298 if (vsi->rx_rings) { 299 devm_kfree(dev, vsi->rx_rings); 300 vsi->rx_rings = NULL; 301 } 302 if (vsi->txq_map) { 303 devm_kfree(dev, vsi->txq_map); 304 vsi->txq_map = NULL; 305 } 306 if (vsi->rxq_map) { 307 devm_kfree(dev, vsi->rxq_map); 308 vsi->rxq_map = NULL; 309 } 310 } 311 312 /** 313 * ice_vsi_clear - clean up and deallocate the provided VSI 314 * @vsi: pointer to VSI being cleared 315 * 316 * This deallocates the VSI's queue resources, removes it from the PF's 317 * VSI array if necessary, and deallocates the VSI 318 * 319 * Returns 0 on success, negative on failure 320 */ 321 static int ice_vsi_clear(struct ice_vsi *vsi) 322 { 323 struct ice_pf *pf = NULL; 324 struct device *dev; 325 326 if (!vsi) 327 return 0; 328 329 if (!vsi->back) 330 return -EINVAL; 331 332 pf = vsi->back; 333 dev = ice_pf_to_dev(pf); 334 335 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 336 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 337 return -EINVAL; 338 } 339 340 mutex_lock(&pf->sw_mutex); 341 /* updates the PF for this cleared VSI */ 342 343 pf->vsi[vsi->idx] = NULL; 344 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 345 pf->next_vsi = vsi->idx; 346 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 347 vsi->vf_id != ICE_INVAL_VFID) 348 pf->next_vsi = vsi->idx; 349 350 ice_vsi_free_arrays(vsi); 351 mutex_unlock(&pf->sw_mutex); 352 devm_kfree(dev, vsi); 353 354 return 0; 355 } 356 357 /** 358 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 359 * @irq: interrupt number 360 * @data: pointer to a q_vector 361 */ 362 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 363 { 364 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 365 366 if (!q_vector->tx.ring) 367 return IRQ_HANDLED; 368 369 #define FDIR_RX_DESC_CLEAN_BUDGET 64 370 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 371 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 372 373 return IRQ_HANDLED; 374 } 375 376 /** 377 * ice_msix_clean_rings - MSIX mode Interrupt Handler 378 * @irq: interrupt number 379 * @data: pointer to a q_vector 380 */ 381 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 382 { 383 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 384 385 if (!q_vector->tx.ring && !q_vector->rx.ring) 386 return IRQ_HANDLED; 387 388 napi_schedule(&q_vector->napi); 389 390 return IRQ_HANDLED; 391 } 392 393 /** 394 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 395 * @pf: board private structure 396 * @vsi_type: type of VSI 397 * @vf_id: ID of the VF being configured 398 * 399 * returns a pointer to a VSI on success, NULL on failure. 400 */ 401 static struct ice_vsi * 402 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 403 { 404 struct device *dev = ice_pf_to_dev(pf); 405 struct ice_vsi *vsi = NULL; 406 407 /* Need to protect the allocation of the VSIs at the PF level */ 408 mutex_lock(&pf->sw_mutex); 409 410 /* If we have already allocated our maximum number of VSIs, 411 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 412 * is available to be populated 413 */ 414 if (pf->next_vsi == ICE_NO_VSI) { 415 dev_dbg(dev, "out of VSI slots!\n"); 416 goto unlock_pf; 417 } 418 419 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 420 if (!vsi) 421 goto unlock_pf; 422 423 vsi->type = vsi_type; 424 vsi->back = pf; 425 set_bit(__ICE_DOWN, vsi->state); 426 427 if (vsi_type == ICE_VSI_VF) 428 ice_vsi_set_num_qs(vsi, vf_id); 429 else 430 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 431 432 switch (vsi->type) { 433 case ICE_VSI_PF: 434 if (ice_vsi_alloc_arrays(vsi)) 435 goto err_rings; 436 437 /* Setup default MSIX irq handler for VSI */ 438 vsi->irq_handler = ice_msix_clean_rings; 439 break; 440 case ICE_VSI_CTRL: 441 if (ice_vsi_alloc_arrays(vsi)) 442 goto err_rings; 443 444 /* Setup ctrl VSI MSIX irq handler */ 445 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 446 break; 447 case ICE_VSI_VF: 448 if (ice_vsi_alloc_arrays(vsi)) 449 goto err_rings; 450 break; 451 case ICE_VSI_LB: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 break; 455 default: 456 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 457 goto unlock_pf; 458 } 459 460 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 461 /* Use the last VSI slot as the index for PF control VSI */ 462 vsi->idx = pf->num_alloc_vsi - 1; 463 pf->ctrl_vsi_idx = vsi->idx; 464 pf->vsi[vsi->idx] = vsi; 465 } else { 466 /* fill slot and make note of the index */ 467 vsi->idx = pf->next_vsi; 468 pf->vsi[pf->next_vsi] = vsi; 469 470 /* prepare pf->next_vsi for next use */ 471 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 472 pf->next_vsi); 473 } 474 475 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 476 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 477 goto unlock_pf; 478 479 err_rings: 480 devm_kfree(dev, vsi); 481 vsi = NULL; 482 unlock_pf: 483 mutex_unlock(&pf->sw_mutex); 484 return vsi; 485 } 486 487 /** 488 * ice_alloc_fd_res - Allocate FD resource for a VSI 489 * @vsi: pointer to the ice_vsi 490 * 491 * This allocates the FD resources 492 * 493 * Returns 0 on success, -EPERM on no-op or -EIO on failure 494 */ 495 static int ice_alloc_fd_res(struct ice_vsi *vsi) 496 { 497 struct ice_pf *pf = vsi->back; 498 u32 g_val, b_val; 499 500 /* Flow Director filters are only allocated/assigned to the PF VSI which 501 * passes the traffic. The CTRL VSI is only used to add/delete filters 502 * so we don't allocate resources to it 503 */ 504 505 /* FD filters from guaranteed pool per VSI */ 506 g_val = pf->hw.func_caps.fd_fltr_guar; 507 if (!g_val) 508 return -EPERM; 509 510 /* FD filters from best effort pool */ 511 b_val = pf->hw.func_caps.fd_fltr_best_effort; 512 if (!b_val) 513 return -EPERM; 514 515 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 516 return -EPERM; 517 518 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 519 return -EPERM; 520 521 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 522 523 /* each VSI gets same "best_effort" quota */ 524 vsi->num_bfltr = b_val; 525 526 if (vsi->type == ICE_VSI_VF) { 527 vsi->num_gfltr = 0; 528 529 /* each VSI gets same "best_effort" quota */ 530 vsi->num_bfltr = b_val; 531 } 532 533 return 0; 534 } 535 536 /** 537 * ice_vsi_get_qs - Assign queues from PF to VSI 538 * @vsi: the VSI to assign queues to 539 * 540 * Returns 0 on success and a negative value on error 541 */ 542 static int ice_vsi_get_qs(struct ice_vsi *vsi) 543 { 544 struct ice_pf *pf = vsi->back; 545 struct ice_qs_cfg tx_qs_cfg = { 546 .qs_mutex = &pf->avail_q_mutex, 547 .pf_map = pf->avail_txqs, 548 .pf_map_size = pf->max_pf_txqs, 549 .q_count = vsi->alloc_txq, 550 .scatter_count = ICE_MAX_SCATTER_TXQS, 551 .vsi_map = vsi->txq_map, 552 .vsi_map_offset = 0, 553 .mapping_mode = ICE_VSI_MAP_CONTIG 554 }; 555 struct ice_qs_cfg rx_qs_cfg = { 556 .qs_mutex = &pf->avail_q_mutex, 557 .pf_map = pf->avail_rxqs, 558 .pf_map_size = pf->max_pf_rxqs, 559 .q_count = vsi->alloc_rxq, 560 .scatter_count = ICE_MAX_SCATTER_RXQS, 561 .vsi_map = vsi->rxq_map, 562 .vsi_map_offset = 0, 563 .mapping_mode = ICE_VSI_MAP_CONTIG 564 }; 565 int ret; 566 567 ret = __ice_vsi_get_qs(&tx_qs_cfg); 568 if (ret) 569 return ret; 570 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 571 572 ret = __ice_vsi_get_qs(&rx_qs_cfg); 573 if (ret) 574 return ret; 575 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 576 577 return 0; 578 } 579 580 /** 581 * ice_vsi_put_qs - Release queues from VSI to PF 582 * @vsi: the VSI that is going to release queues 583 */ 584 static void ice_vsi_put_qs(struct ice_vsi *vsi) 585 { 586 struct ice_pf *pf = vsi->back; 587 int i; 588 589 mutex_lock(&pf->avail_q_mutex); 590 591 for (i = 0; i < vsi->alloc_txq; i++) { 592 clear_bit(vsi->txq_map[i], pf->avail_txqs); 593 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 594 } 595 596 for (i = 0; i < vsi->alloc_rxq; i++) { 597 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 598 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 599 } 600 601 mutex_unlock(&pf->avail_q_mutex); 602 } 603 604 /** 605 * ice_is_safe_mode 606 * @pf: pointer to the PF struct 607 * 608 * returns true if driver is in safe mode, false otherwise 609 */ 610 bool ice_is_safe_mode(struct ice_pf *pf) 611 { 612 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 613 } 614 615 /** 616 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 617 * @vsi: the VSI being cleaned up 618 * 619 * This function deletes RSS input set for all flows that were configured 620 * for this VSI 621 */ 622 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 623 { 624 struct ice_pf *pf = vsi->back; 625 enum ice_status status; 626 627 if (ice_is_safe_mode(pf)) 628 return; 629 630 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 631 if (status) 632 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 633 vsi->vsi_num, ice_stat_str(status)); 634 } 635 636 /** 637 * ice_rss_clean - Delete RSS related VSI structures and configuration 638 * @vsi: the VSI being removed 639 */ 640 static void ice_rss_clean(struct ice_vsi *vsi) 641 { 642 struct ice_pf *pf = vsi->back; 643 struct device *dev; 644 645 dev = ice_pf_to_dev(pf); 646 647 if (vsi->rss_hkey_user) 648 devm_kfree(dev, vsi->rss_hkey_user); 649 if (vsi->rss_lut_user) 650 devm_kfree(dev, vsi->rss_lut_user); 651 652 ice_vsi_clean_rss_flow_fld(vsi); 653 /* remove RSS replay list */ 654 if (!ice_is_safe_mode(pf)) 655 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 656 } 657 658 /** 659 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 660 * @vsi: the VSI being configured 661 */ 662 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 663 { 664 struct ice_hw_common_caps *cap; 665 struct ice_pf *pf = vsi->back; 666 667 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 668 vsi->rss_size = 1; 669 return; 670 } 671 672 cap = &pf->hw.func_caps.common_cap; 673 switch (vsi->type) { 674 case ICE_VSI_PF: 675 /* PF VSI will inherit RSS instance of PF */ 676 vsi->rss_table_size = (u16)cap->rss_table_size; 677 vsi->rss_size = min_t(u16, num_online_cpus(), 678 BIT(cap->rss_table_entry_width)); 679 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 680 break; 681 case ICE_VSI_VF: 682 /* VF VSI will get a small RSS table. 683 * For VSI_LUT, LUT size should be set to 64 bytes. 684 */ 685 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 686 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 687 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 688 break; 689 case ICE_VSI_LB: 690 break; 691 default: 692 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 693 ice_vsi_type_str(vsi->type)); 694 break; 695 } 696 } 697 698 /** 699 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 700 * @ctxt: the VSI context being set 701 * 702 * This initializes a default VSI context for all sections except the Queues. 703 */ 704 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 705 { 706 u32 table = 0; 707 708 memset(&ctxt->info, 0, sizeof(ctxt->info)); 709 /* VSI's should be allocated from shared pool */ 710 ctxt->alloc_from_pool = true; 711 /* Src pruning enabled by default */ 712 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 713 /* Traffic from VSI can be sent to LAN */ 714 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 715 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 716 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 717 * packets untagged/tagged. 718 */ 719 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 720 ICE_AQ_VSI_VLAN_MODE_M) >> 721 ICE_AQ_VSI_VLAN_MODE_S); 722 /* Have 1:1 UP mapping for both ingress/egress tables */ 723 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 724 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 725 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 726 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 727 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 728 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 729 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 730 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 731 ctxt->info.ingress_table = cpu_to_le32(table); 732 ctxt->info.egress_table = cpu_to_le32(table); 733 /* Have 1:1 UP mapping for outer to inner UP table */ 734 ctxt->info.outer_up_table = cpu_to_le32(table); 735 /* No Outer tag support outer_tag_flags remains to zero */ 736 } 737 738 /** 739 * ice_vsi_setup_q_map - Setup a VSI queue map 740 * @vsi: the VSI being configured 741 * @ctxt: VSI context structure 742 */ 743 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 744 { 745 u16 offset = 0, qmap = 0, tx_count = 0; 746 u16 qcount_tx = vsi->alloc_txq; 747 u16 qcount_rx = vsi->alloc_rxq; 748 u16 tx_numq_tc, rx_numq_tc; 749 u16 pow = 0, max_rss = 0; 750 bool ena_tc0 = false; 751 u8 netdev_tc = 0; 752 int i; 753 754 /* at least TC0 should be enabled by default */ 755 if (vsi->tc_cfg.numtc) { 756 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 757 ena_tc0 = true; 758 } else { 759 ena_tc0 = true; 760 } 761 762 if (ena_tc0) { 763 vsi->tc_cfg.numtc++; 764 vsi->tc_cfg.ena_tc |= 1; 765 } 766 767 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 768 if (!rx_numq_tc) 769 rx_numq_tc = 1; 770 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 771 if (!tx_numq_tc) 772 tx_numq_tc = 1; 773 774 /* TC mapping is a function of the number of Rx queues assigned to the 775 * VSI for each traffic class and the offset of these queues. 776 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 777 * queues allocated to TC0. No:of queues is a power-of-2. 778 * 779 * If TC is not enabled, the queue offset is set to 0, and allocate one 780 * queue, this way, traffic for the given TC will be sent to the default 781 * queue. 782 * 783 * Setup number and offset of Rx queues for all TCs for the VSI 784 */ 785 786 qcount_rx = rx_numq_tc; 787 788 /* qcount will change if RSS is enabled */ 789 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 790 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 791 if (vsi->type == ICE_VSI_PF) 792 max_rss = ICE_MAX_LG_RSS_QS; 793 else 794 max_rss = ICE_MAX_RSS_QS_PER_VF; 795 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 796 if (!vsi->req_rxq) 797 qcount_rx = min_t(u16, qcount_rx, 798 vsi->rss_size); 799 } 800 } 801 802 /* find the (rounded up) power-of-2 of qcount */ 803 pow = (u16)order_base_2(qcount_rx); 804 805 ice_for_each_traffic_class(i) { 806 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 807 /* TC is not enabled */ 808 vsi->tc_cfg.tc_info[i].qoffset = 0; 809 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 810 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 811 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 812 ctxt->info.tc_mapping[i] = 0; 813 continue; 814 } 815 816 /* TC is enabled */ 817 vsi->tc_cfg.tc_info[i].qoffset = offset; 818 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 819 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 820 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 821 822 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 823 ICE_AQ_VSI_TC_Q_OFFSET_M) | 824 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 825 ICE_AQ_VSI_TC_Q_NUM_M); 826 offset += qcount_rx; 827 tx_count += tx_numq_tc; 828 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 829 } 830 831 /* if offset is non-zero, means it is calculated correctly based on 832 * enabled TCs for a given VSI otherwise qcount_rx will always 833 * be correct and non-zero because it is based off - VSI's 834 * allocated Rx queues which is at least 1 (hence qcount_tx will be 835 * at least 1) 836 */ 837 if (offset) 838 vsi->num_rxq = offset; 839 else 840 vsi->num_rxq = qcount_rx; 841 842 vsi->num_txq = tx_count; 843 844 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 845 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 846 /* since there is a chance that num_rxq could have been changed 847 * in the above for loop, make num_txq equal to num_rxq. 848 */ 849 vsi->num_txq = vsi->num_rxq; 850 } 851 852 /* Rx queue mapping */ 853 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 854 /* q_mapping buffer holds the info for the first queue allocated for 855 * this VSI in the PF space and also the number of queues associated 856 * with this VSI. 857 */ 858 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 859 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 860 } 861 862 /** 863 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 864 * @ctxt: the VSI context being set 865 * @vsi: the VSI being configured 866 */ 867 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 868 { 869 u8 dflt_q_group, dflt_q_prio; 870 u16 dflt_q, report_q, val; 871 872 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 873 vsi->type != ICE_VSI_VF) 874 return; 875 876 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 877 ctxt->info.valid_sections |= cpu_to_le16(val); 878 dflt_q = 0; 879 dflt_q_group = 0; 880 report_q = 0; 881 dflt_q_prio = 0; 882 883 /* enable flow director filtering/programming */ 884 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 885 ctxt->info.fd_options = cpu_to_le16(val); 886 /* max of allocated flow director filters */ 887 ctxt->info.max_fd_fltr_dedicated = 888 cpu_to_le16(vsi->num_gfltr); 889 /* max of shared flow director filters any VSI may program */ 890 ctxt->info.max_fd_fltr_shared = 891 cpu_to_le16(vsi->num_bfltr); 892 /* default queue index within the VSI of the default FD */ 893 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 894 ICE_AQ_VSI_FD_DEF_Q_M); 895 /* target queue or queue group to the FD filter */ 896 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 897 ICE_AQ_VSI_FD_DEF_GRP_M); 898 ctxt->info.fd_def_q = cpu_to_le16(val); 899 /* queue index on which FD filter completion is reported */ 900 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 901 ICE_AQ_VSI_FD_REPORT_Q_M); 902 /* priority of the default qindex action */ 903 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 904 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 905 ctxt->info.fd_report_opt = cpu_to_le16(val); 906 } 907 908 /** 909 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 910 * @ctxt: the VSI context being set 911 * @vsi: the VSI being configured 912 */ 913 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 914 { 915 u8 lut_type, hash_type; 916 struct device *dev; 917 struct ice_pf *pf; 918 919 pf = vsi->back; 920 dev = ice_pf_to_dev(pf); 921 922 switch (vsi->type) { 923 case ICE_VSI_PF: 924 /* PF VSI will inherit RSS instance of PF */ 925 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 926 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 927 break; 928 case ICE_VSI_VF: 929 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 930 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 931 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 932 break; 933 default: 934 dev_dbg(dev, "Unsupported VSI type %s\n", 935 ice_vsi_type_str(vsi->type)); 936 return; 937 } 938 939 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 940 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 941 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 942 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 943 } 944 945 /** 946 * ice_vsi_init - Create and initialize a VSI 947 * @vsi: the VSI being configured 948 * @init_vsi: is this call creating a VSI 949 * 950 * This initializes a VSI context depending on the VSI type to be added and 951 * passes it down to the add_vsi aq command to create a new VSI. 952 */ 953 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 954 { 955 struct ice_pf *pf = vsi->back; 956 struct ice_hw *hw = &pf->hw; 957 struct ice_vsi_ctx *ctxt; 958 struct device *dev; 959 int ret = 0; 960 961 dev = ice_pf_to_dev(pf); 962 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 963 if (!ctxt) 964 return -ENOMEM; 965 966 switch (vsi->type) { 967 case ICE_VSI_CTRL: 968 case ICE_VSI_LB: 969 case ICE_VSI_PF: 970 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 971 break; 972 case ICE_VSI_VF: 973 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 974 /* VF number here is the absolute VF number (0-255) */ 975 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 976 break; 977 default: 978 ret = -ENODEV; 979 goto out; 980 } 981 982 ice_set_dflt_vsi_ctx(ctxt); 983 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 984 ice_set_fd_vsi_ctx(ctxt, vsi); 985 /* if the switch is in VEB mode, allow VSI loopback */ 986 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 987 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 988 989 /* Set LUT type and HASH type if RSS is enabled */ 990 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 991 vsi->type != ICE_VSI_CTRL) { 992 ice_set_rss_vsi_ctx(ctxt, vsi); 993 /* if updating VSI context, make sure to set valid_section: 994 * to indicate which section of VSI context being updated 995 */ 996 if (!init_vsi) 997 ctxt->info.valid_sections |= 998 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 999 } 1000 1001 ctxt->info.sw_id = vsi->port_info->sw_id; 1002 ice_vsi_setup_q_map(vsi, ctxt); 1003 if (!init_vsi) /* means VSI being updated */ 1004 /* must to indicate which section of VSI context are 1005 * being modified 1006 */ 1007 ctxt->info.valid_sections |= 1008 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1009 1010 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1011 * respectively 1012 */ 1013 if (vsi->type == ICE_VSI_VF) { 1014 ctxt->info.valid_sections |= 1015 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1016 if (pf->vf[vsi->vf_id].spoofchk) { 1017 ctxt->info.sec_flags |= 1018 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1019 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1020 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1021 } else { 1022 ctxt->info.sec_flags &= 1023 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1024 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1025 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1026 } 1027 } 1028 1029 /* Allow control frames out of main VSI */ 1030 if (vsi->type == ICE_VSI_PF) { 1031 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1032 ctxt->info.valid_sections |= 1033 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1034 } 1035 1036 if (init_vsi) { 1037 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1038 if (ret) { 1039 dev_err(dev, "Add VSI failed, err %d\n", ret); 1040 ret = -EIO; 1041 goto out; 1042 } 1043 } else { 1044 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1045 if (ret) { 1046 dev_err(dev, "Update VSI failed, err %d\n", ret); 1047 ret = -EIO; 1048 goto out; 1049 } 1050 } 1051 1052 /* keep context for update VSI operations */ 1053 vsi->info = ctxt->info; 1054 1055 /* record VSI number returned */ 1056 vsi->vsi_num = ctxt->vsi_num; 1057 1058 out: 1059 kfree(ctxt); 1060 return ret; 1061 } 1062 1063 /** 1064 * ice_free_res - free a block of resources 1065 * @res: pointer to the resource 1066 * @index: starting index previously returned by ice_get_res 1067 * @id: identifier to track owner 1068 * 1069 * Returns number of resources freed 1070 */ 1071 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1072 { 1073 int count = 0; 1074 int i; 1075 1076 if (!res || index >= res->end) 1077 return -EINVAL; 1078 1079 id |= ICE_RES_VALID_BIT; 1080 for (i = index; i < res->end && res->list[i] == id; i++) { 1081 res->list[i] = 0; 1082 count++; 1083 } 1084 1085 return count; 1086 } 1087 1088 /** 1089 * ice_search_res - Search the tracker for a block of resources 1090 * @res: pointer to the resource 1091 * @needed: size of the block needed 1092 * @id: identifier to track owner 1093 * 1094 * Returns the base item index of the block, or -ENOMEM for error 1095 */ 1096 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1097 { 1098 u16 start = 0, end = 0; 1099 1100 if (needed > res->end) 1101 return -ENOMEM; 1102 1103 id |= ICE_RES_VALID_BIT; 1104 1105 do { 1106 /* skip already allocated entries */ 1107 if (res->list[end++] & ICE_RES_VALID_BIT) { 1108 start = end; 1109 if ((start + needed) > res->end) 1110 break; 1111 } 1112 1113 if (end == (start + needed)) { 1114 int i = start; 1115 1116 /* there was enough, so assign it to the requestor */ 1117 while (i != end) 1118 res->list[i++] = id; 1119 1120 return start; 1121 } 1122 } while (end < res->end); 1123 1124 return -ENOMEM; 1125 } 1126 1127 /** 1128 * ice_get_free_res_count - Get free count from a resource tracker 1129 * @res: Resource tracker instance 1130 */ 1131 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1132 { 1133 u16 i, count = 0; 1134 1135 for (i = 0; i < res->end; i++) 1136 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1137 count++; 1138 1139 return count; 1140 } 1141 1142 /** 1143 * ice_get_res - get a block of resources 1144 * @pf: board private structure 1145 * @res: pointer to the resource 1146 * @needed: size of the block needed 1147 * @id: identifier to track owner 1148 * 1149 * Returns the base item index of the block, or negative for error 1150 */ 1151 int 1152 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1153 { 1154 if (!res || !pf) 1155 return -EINVAL; 1156 1157 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1158 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1159 needed, res->num_entries, id); 1160 return -EINVAL; 1161 } 1162 1163 return ice_search_res(res, needed, id); 1164 } 1165 1166 /** 1167 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1168 * @vsi: ptr to the VSI 1169 * 1170 * This should only be called after ice_vsi_alloc() which allocates the 1171 * corresponding SW VSI structure and initializes num_queue_pairs for the 1172 * newly allocated VSI. 1173 * 1174 * Returns 0 on success or negative on failure 1175 */ 1176 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1177 { 1178 struct ice_pf *pf = vsi->back; 1179 struct device *dev; 1180 u16 num_q_vectors; 1181 int base; 1182 1183 dev = ice_pf_to_dev(pf); 1184 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1185 if (vsi->type == ICE_VSI_VF) 1186 return 0; 1187 1188 if (vsi->base_vector) { 1189 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1190 vsi->vsi_num, vsi->base_vector); 1191 return -EEXIST; 1192 } 1193 1194 num_q_vectors = vsi->num_q_vectors; 1195 /* reserve slots from OS requested IRQs */ 1196 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1197 struct ice_vf *vf; 1198 int i; 1199 1200 ice_for_each_vf(pf, i) { 1201 vf = &pf->vf[i]; 1202 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1203 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1204 break; 1205 } 1206 } 1207 if (i == pf->num_alloc_vfs) 1208 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1209 ICE_RES_VF_CTRL_VEC_ID); 1210 } else { 1211 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1212 vsi->idx); 1213 } 1214 1215 if (base < 0) { 1216 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1217 ice_get_free_res_count(pf->irq_tracker), 1218 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1219 return -ENOENT; 1220 } 1221 vsi->base_vector = (u16)base; 1222 pf->num_avail_sw_msix -= num_q_vectors; 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1229 * @vsi: the VSI having rings deallocated 1230 */ 1231 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1232 { 1233 int i; 1234 1235 /* Avoid stale references by clearing map from vector to ring */ 1236 if (vsi->q_vectors) { 1237 ice_for_each_q_vector(vsi, i) { 1238 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1239 1240 if (q_vector) { 1241 q_vector->tx.ring = NULL; 1242 q_vector->rx.ring = NULL; 1243 } 1244 } 1245 } 1246 1247 if (vsi->tx_rings) { 1248 for (i = 0; i < vsi->alloc_txq; i++) { 1249 if (vsi->tx_rings[i]) { 1250 kfree_rcu(vsi->tx_rings[i], rcu); 1251 WRITE_ONCE(vsi->tx_rings[i], NULL); 1252 } 1253 } 1254 } 1255 if (vsi->rx_rings) { 1256 for (i = 0; i < vsi->alloc_rxq; i++) { 1257 if (vsi->rx_rings[i]) { 1258 kfree_rcu(vsi->rx_rings[i], rcu); 1259 WRITE_ONCE(vsi->rx_rings[i], NULL); 1260 } 1261 } 1262 } 1263 } 1264 1265 /** 1266 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1267 * @vsi: VSI which is having rings allocated 1268 */ 1269 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1270 { 1271 struct ice_pf *pf = vsi->back; 1272 struct device *dev; 1273 u16 i; 1274 1275 dev = ice_pf_to_dev(pf); 1276 /* Allocate Tx rings */ 1277 for (i = 0; i < vsi->alloc_txq; i++) { 1278 struct ice_ring *ring; 1279 1280 /* allocate with kzalloc(), free with kfree_rcu() */ 1281 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1282 1283 if (!ring) 1284 goto err_out; 1285 1286 ring->q_index = i; 1287 ring->reg_idx = vsi->txq_map[i]; 1288 ring->ring_active = false; 1289 ring->vsi = vsi; 1290 ring->dev = dev; 1291 ring->count = vsi->num_tx_desc; 1292 WRITE_ONCE(vsi->tx_rings[i], ring); 1293 } 1294 1295 /* Allocate Rx rings */ 1296 for (i = 0; i < vsi->alloc_rxq; i++) { 1297 struct ice_ring *ring; 1298 1299 /* allocate with kzalloc(), free with kfree_rcu() */ 1300 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1301 if (!ring) 1302 goto err_out; 1303 1304 ring->q_index = i; 1305 ring->reg_idx = vsi->rxq_map[i]; 1306 ring->ring_active = false; 1307 ring->vsi = vsi; 1308 ring->netdev = vsi->netdev; 1309 ring->dev = dev; 1310 ring->count = vsi->num_rx_desc; 1311 WRITE_ONCE(vsi->rx_rings[i], ring); 1312 } 1313 1314 return 0; 1315 1316 err_out: 1317 ice_vsi_clear_rings(vsi); 1318 return -ENOMEM; 1319 } 1320 1321 /** 1322 * ice_vsi_manage_rss_lut - disable/enable RSS 1323 * @vsi: the VSI being changed 1324 * @ena: boolean value indicating if this is an enable or disable request 1325 * 1326 * In the event of disable request for RSS, this function will zero out RSS 1327 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1328 * LUT. 1329 */ 1330 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1331 { 1332 int err = 0; 1333 u8 *lut; 1334 1335 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1336 if (!lut) 1337 return -ENOMEM; 1338 1339 if (ena) { 1340 if (vsi->rss_lut_user) 1341 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1342 else 1343 ice_fill_rss_lut(lut, vsi->rss_table_size, 1344 vsi->rss_size); 1345 } 1346 1347 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1348 kfree(lut); 1349 return err; 1350 } 1351 1352 /** 1353 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1354 * @vsi: VSI to be configured 1355 */ 1356 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1357 { 1358 struct ice_aqc_get_set_rss_keys *key; 1359 struct ice_pf *pf = vsi->back; 1360 enum ice_status status; 1361 struct device *dev; 1362 int err = 0; 1363 u8 *lut; 1364 1365 dev = ice_pf_to_dev(pf); 1366 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1367 1368 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1369 if (!lut) 1370 return -ENOMEM; 1371 1372 if (vsi->rss_lut_user) 1373 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1374 else 1375 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1376 1377 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1378 vsi->rss_table_size); 1379 1380 if (status) { 1381 dev_err(dev, "set_rss_lut failed, error %s\n", 1382 ice_stat_str(status)); 1383 err = -EIO; 1384 goto ice_vsi_cfg_rss_exit; 1385 } 1386 1387 key = kzalloc(sizeof(*key), GFP_KERNEL); 1388 if (!key) { 1389 err = -ENOMEM; 1390 goto ice_vsi_cfg_rss_exit; 1391 } 1392 1393 if (vsi->rss_hkey_user) 1394 memcpy(key, 1395 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1396 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1397 else 1398 netdev_rss_key_fill((void *)key, 1399 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1400 1401 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1402 1403 if (status) { 1404 dev_err(dev, "set_rss_key failed, error %s\n", 1405 ice_stat_str(status)); 1406 err = -EIO; 1407 } 1408 1409 kfree(key); 1410 ice_vsi_cfg_rss_exit: 1411 kfree(lut); 1412 return err; 1413 } 1414 1415 /** 1416 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1417 * @vsi: VSI to be configured 1418 * 1419 * This function will only be called during the VF VSI setup. Upon successful 1420 * completion of package download, this function will configure default RSS 1421 * input sets for VF VSI. 1422 */ 1423 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1424 { 1425 struct ice_pf *pf = vsi->back; 1426 enum ice_status status; 1427 struct device *dev; 1428 1429 dev = ice_pf_to_dev(pf); 1430 if (ice_is_safe_mode(pf)) { 1431 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1432 vsi->vsi_num); 1433 return; 1434 } 1435 1436 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1437 if (status) 1438 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1439 vsi->vsi_num, ice_stat_str(status)); 1440 } 1441 1442 /** 1443 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1444 * @vsi: VSI to be configured 1445 * 1446 * This function will only be called after successful download package call 1447 * during initialization of PF. Since the downloaded package will erase the 1448 * RSS section, this function will configure RSS input sets for different 1449 * flow types. The last profile added has the highest priority, therefore 2 1450 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1451 * (i.e. IPv4 src/dst TCP src/dst port). 1452 */ 1453 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1454 { 1455 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1456 struct ice_pf *pf = vsi->back; 1457 struct ice_hw *hw = &pf->hw; 1458 enum ice_status status; 1459 struct device *dev; 1460 1461 dev = ice_pf_to_dev(pf); 1462 if (ice_is_safe_mode(pf)) { 1463 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1464 vsi_num); 1465 return; 1466 } 1467 /* configure RSS for IPv4 with input set IP src/dst */ 1468 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1469 ICE_FLOW_SEG_HDR_IPV4); 1470 if (status) 1471 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1472 vsi_num, ice_stat_str(status)); 1473 1474 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1475 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1476 ICE_FLOW_SEG_HDR_IPV6); 1477 if (status) 1478 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1479 vsi_num, ice_stat_str(status)); 1480 1481 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1482 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1483 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1484 if (status) 1485 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1486 vsi_num, ice_stat_str(status)); 1487 1488 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1489 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1490 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1491 if (status) 1492 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1493 vsi_num, ice_stat_str(status)); 1494 1495 /* configure RSS for sctp4 with input set IP src/dst */ 1496 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1497 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1498 if (status) 1499 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1500 vsi_num, ice_stat_str(status)); 1501 1502 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1503 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1504 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1505 if (status) 1506 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1507 vsi_num, ice_stat_str(status)); 1508 1509 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1510 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1511 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1512 if (status) 1513 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1514 vsi_num, ice_stat_str(status)); 1515 1516 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1517 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1518 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1519 if (status) 1520 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1521 vsi_num, ice_stat_str(status)); 1522 } 1523 1524 /** 1525 * ice_pf_state_is_nominal - checks the PF for nominal state 1526 * @pf: pointer to PF to check 1527 * 1528 * Check the PF's state for a collection of bits that would indicate 1529 * the PF is in a state that would inhibit normal operation for 1530 * driver functionality. 1531 * 1532 * Returns true if PF is in a nominal state, false otherwise 1533 */ 1534 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1535 { 1536 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1537 1538 if (!pf) 1539 return false; 1540 1541 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1542 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1543 return false; 1544 1545 return true; 1546 } 1547 1548 /** 1549 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1550 * @vsi: the VSI to be updated 1551 */ 1552 void ice_update_eth_stats(struct ice_vsi *vsi) 1553 { 1554 struct ice_eth_stats *prev_es, *cur_es; 1555 struct ice_hw *hw = &vsi->back->hw; 1556 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1557 1558 prev_es = &vsi->eth_stats_prev; 1559 cur_es = &vsi->eth_stats; 1560 1561 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1562 &prev_es->rx_bytes, &cur_es->rx_bytes); 1563 1564 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1565 &prev_es->rx_unicast, &cur_es->rx_unicast); 1566 1567 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1568 &prev_es->rx_multicast, &cur_es->rx_multicast); 1569 1570 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1571 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1572 1573 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1574 &prev_es->rx_discards, &cur_es->rx_discards); 1575 1576 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1577 &prev_es->tx_bytes, &cur_es->tx_bytes); 1578 1579 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1580 &prev_es->tx_unicast, &cur_es->tx_unicast); 1581 1582 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1583 &prev_es->tx_multicast, &cur_es->tx_multicast); 1584 1585 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1586 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1587 1588 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1589 &prev_es->tx_errors, &cur_es->tx_errors); 1590 1591 vsi->stat_offsets_loaded = true; 1592 } 1593 1594 /** 1595 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1596 * @vsi: the VSI being configured 1597 * @vid: VLAN ID to be added 1598 * @action: filter action to be performed on match 1599 */ 1600 int 1601 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1602 { 1603 struct ice_pf *pf = vsi->back; 1604 struct device *dev; 1605 int err = 0; 1606 1607 dev = ice_pf_to_dev(pf); 1608 1609 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1610 vsi->num_vlan++; 1611 } else { 1612 err = -ENODEV; 1613 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1614 vsi->vsi_num); 1615 } 1616 1617 return err; 1618 } 1619 1620 /** 1621 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1622 * @vsi: the VSI being configured 1623 * @vid: VLAN ID to be removed 1624 * 1625 * Returns 0 on success and negative on failure 1626 */ 1627 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1628 { 1629 struct ice_pf *pf = vsi->back; 1630 enum ice_status status; 1631 struct device *dev; 1632 int err = 0; 1633 1634 dev = ice_pf_to_dev(pf); 1635 1636 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1637 if (!status) { 1638 vsi->num_vlan--; 1639 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1640 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1641 vid, vsi->vsi_num, ice_stat_str(status)); 1642 } else { 1643 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1644 vid, vsi->vsi_num, ice_stat_str(status)); 1645 err = -EIO; 1646 } 1647 1648 return err; 1649 } 1650 1651 /** 1652 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1653 * @vsi: VSI 1654 */ 1655 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1656 { 1657 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1658 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1659 vsi->rx_buf_len = ICE_RXBUF_2048; 1660 #if (PAGE_SIZE < 8192) 1661 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1662 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1663 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1664 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1665 #endif 1666 } else { 1667 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1668 #if (PAGE_SIZE < 8192) 1669 vsi->rx_buf_len = ICE_RXBUF_3072; 1670 #else 1671 vsi->rx_buf_len = ICE_RXBUF_2048; 1672 #endif 1673 } 1674 } 1675 1676 /** 1677 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1678 * @hw: HW pointer 1679 * @pf_q: index of the Rx queue in the PF's queue space 1680 * @rxdid: flexible descriptor RXDID 1681 * @prio: priority for the RXDID for this queue 1682 */ 1683 void 1684 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1685 { 1686 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1687 1688 /* clear any previous values */ 1689 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1690 QRXFLXP_CNTXT_RXDID_PRIO_M | 1691 QRXFLXP_CNTXT_TS_M); 1692 1693 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1694 QRXFLXP_CNTXT_RXDID_IDX_M; 1695 1696 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1697 QRXFLXP_CNTXT_RXDID_PRIO_M; 1698 1699 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1700 } 1701 1702 /** 1703 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1704 * @vsi: the VSI being configured 1705 * 1706 * Return 0 on success and a negative value on error 1707 * Configure the Rx VSI for operation. 1708 */ 1709 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1710 { 1711 u16 i; 1712 1713 if (vsi->type == ICE_VSI_VF) 1714 goto setup_rings; 1715 1716 ice_vsi_cfg_frame_size(vsi); 1717 setup_rings: 1718 /* set up individual rings */ 1719 for (i = 0; i < vsi->num_rxq; i++) { 1720 int err; 1721 1722 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1723 if (err) { 1724 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1725 i, err); 1726 return err; 1727 } 1728 } 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1735 * @vsi: the VSI being configured 1736 * @rings: Tx ring array to be configured 1737 * 1738 * Return 0 on success and a negative value on error 1739 * Configure the Tx VSI for operation. 1740 */ 1741 static int 1742 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1743 { 1744 struct ice_aqc_add_tx_qgrp *qg_buf; 1745 u16 q_idx = 0; 1746 int err = 0; 1747 1748 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1749 if (!qg_buf) 1750 return -ENOMEM; 1751 1752 qg_buf->num_txqs = 1; 1753 1754 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1755 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1756 if (err) 1757 goto err_cfg_txqs; 1758 } 1759 1760 err_cfg_txqs: 1761 kfree(qg_buf); 1762 return err; 1763 } 1764 1765 /** 1766 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1767 * @vsi: the VSI being configured 1768 * 1769 * Return 0 on success and a negative value on error 1770 * Configure the Tx VSI for operation. 1771 */ 1772 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1773 { 1774 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1775 } 1776 1777 /** 1778 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1779 * @vsi: the VSI being configured 1780 * 1781 * Return 0 on success and a negative value on error 1782 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1783 */ 1784 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1785 { 1786 int ret; 1787 int i; 1788 1789 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1790 if (ret) 1791 return ret; 1792 1793 for (i = 0; i < vsi->num_xdp_txq; i++) 1794 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1795 1796 return ret; 1797 } 1798 1799 /** 1800 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1801 * @intrl: interrupt rate limit in usecs 1802 * @gran: interrupt rate limit granularity in usecs 1803 * 1804 * This function converts a decimal interrupt rate limit in usecs to the format 1805 * expected by firmware. 1806 */ 1807 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1808 { 1809 u32 val = intrl / gran; 1810 1811 if (val) 1812 return val | GLINT_RATE_INTRL_ENA_M; 1813 return 0; 1814 } 1815 1816 /** 1817 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1818 * @vsi: the VSI being configured 1819 * 1820 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1821 * for the VF VSI. 1822 */ 1823 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1824 { 1825 struct ice_pf *pf = vsi->back; 1826 struct ice_hw *hw = &pf->hw; 1827 u16 txq = 0, rxq = 0; 1828 int i, q; 1829 1830 for (i = 0; i < vsi->num_q_vectors; i++) { 1831 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1832 u16 reg_idx = q_vector->reg_idx; 1833 1834 ice_cfg_itr(hw, q_vector); 1835 1836 wr32(hw, GLINT_RATE(reg_idx), 1837 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1838 1839 /* Both Transmit Queue Interrupt Cause Control register 1840 * and Receive Queue Interrupt Cause control register 1841 * expects MSIX_INDX field to be the vector index 1842 * within the function space and not the absolute 1843 * vector index across PF or across device. 1844 * For SR-IOV VF VSIs queue vector index always starts 1845 * with 1 since first vector index(0) is used for OICR 1846 * in VF space. Since VMDq and other PF VSIs are within 1847 * the PF function space, use the vector index that is 1848 * tracked for this PF. 1849 */ 1850 for (q = 0; q < q_vector->num_ring_tx; q++) { 1851 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1852 q_vector->tx.itr_idx); 1853 txq++; 1854 } 1855 1856 for (q = 0; q < q_vector->num_ring_rx; q++) { 1857 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1858 q_vector->rx.itr_idx); 1859 rxq++; 1860 } 1861 } 1862 } 1863 1864 /** 1865 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1866 * @vsi: the VSI being changed 1867 */ 1868 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1869 { 1870 struct ice_hw *hw = &vsi->back->hw; 1871 struct ice_vsi_ctx *ctxt; 1872 enum ice_status status; 1873 int ret = 0; 1874 1875 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1876 if (!ctxt) 1877 return -ENOMEM; 1878 1879 /* Here we are configuring the VSI to let the driver add VLAN tags by 1880 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1881 * insertion happens in the Tx hot path, in ice_tx_map. 1882 */ 1883 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1884 1885 /* Preserve existing VLAN strip setting */ 1886 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1887 ICE_AQ_VSI_VLAN_EMOD_M); 1888 1889 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1890 1891 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1892 if (status) { 1893 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1894 ice_stat_str(status), 1895 ice_aq_str(hw->adminq.sq_last_status)); 1896 ret = -EIO; 1897 goto out; 1898 } 1899 1900 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1901 out: 1902 kfree(ctxt); 1903 return ret; 1904 } 1905 1906 /** 1907 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1908 * @vsi: the VSI being changed 1909 * @ena: boolean value indicating if this is a enable or disable request 1910 */ 1911 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1912 { 1913 struct ice_hw *hw = &vsi->back->hw; 1914 struct ice_vsi_ctx *ctxt; 1915 enum ice_status status; 1916 int ret = 0; 1917 1918 /* do not allow modifying VLAN stripping when a port VLAN is configured 1919 * on this VSI 1920 */ 1921 if (vsi->info.pvid) 1922 return 0; 1923 1924 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1925 if (!ctxt) 1926 return -ENOMEM; 1927 1928 /* Here we are configuring what the VSI should do with the VLAN tag in 1929 * the Rx packet. We can either leave the tag in the packet or put it in 1930 * the Rx descriptor. 1931 */ 1932 if (ena) 1933 /* Strip VLAN tag from Rx packet and put it in the desc */ 1934 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1935 else 1936 /* Disable stripping. Leave tag in packet */ 1937 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1938 1939 /* Allow all packets untagged/tagged */ 1940 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1941 1942 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1943 1944 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1945 if (status) { 1946 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1947 ena, ice_stat_str(status), 1948 ice_aq_str(hw->adminq.sq_last_status)); 1949 ret = -EIO; 1950 goto out; 1951 } 1952 1953 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1954 out: 1955 kfree(ctxt); 1956 return ret; 1957 } 1958 1959 /** 1960 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1961 * @vsi: the VSI whose rings are to be enabled 1962 * 1963 * Returns 0 on success and a negative value on error 1964 */ 1965 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1966 { 1967 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1968 } 1969 1970 /** 1971 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1972 * @vsi: the VSI whose rings are to be disabled 1973 * 1974 * Returns 0 on success and a negative value on error 1975 */ 1976 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1977 { 1978 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1979 } 1980 1981 /** 1982 * ice_vsi_stop_tx_rings - Disable Tx rings 1983 * @vsi: the VSI being configured 1984 * @rst_src: reset source 1985 * @rel_vmvf_num: Relative ID of VF/VM 1986 * @rings: Tx ring array to be stopped 1987 */ 1988 static int 1989 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1990 u16 rel_vmvf_num, struct ice_ring **rings) 1991 { 1992 u16 q_idx; 1993 1994 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1995 return -EINVAL; 1996 1997 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1998 struct ice_txq_meta txq_meta = { }; 1999 int status; 2000 2001 if (!rings || !rings[q_idx]) 2002 return -EINVAL; 2003 2004 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2005 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2006 rings[q_idx], &txq_meta); 2007 2008 if (status) 2009 return status; 2010 } 2011 2012 return 0; 2013 } 2014 2015 /** 2016 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2017 * @vsi: the VSI being configured 2018 * @rst_src: reset source 2019 * @rel_vmvf_num: Relative ID of VF/VM 2020 */ 2021 int 2022 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2023 u16 rel_vmvf_num) 2024 { 2025 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2026 } 2027 2028 /** 2029 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2030 * @vsi: the VSI being configured 2031 */ 2032 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2033 { 2034 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2035 } 2036 2037 /** 2038 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2039 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2040 * 2041 * returns true if Rx VLAN pruning is enabled and false otherwise. 2042 */ 2043 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2044 { 2045 if (!vsi) 2046 return false; 2047 2048 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2049 } 2050 2051 /** 2052 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2053 * @vsi: VSI to enable or disable VLAN pruning on 2054 * @ena: set to true to enable VLAN pruning and false to disable it 2055 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2056 * 2057 * returns 0 if VSI is updated, negative otherwise 2058 */ 2059 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2060 { 2061 struct ice_vsi_ctx *ctxt; 2062 struct ice_pf *pf; 2063 int status; 2064 2065 if (!vsi) 2066 return -EINVAL; 2067 2068 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2069 * mode. VLAN pruning will be enabled when the interface exits 2070 * promiscuous mode if any VLAN filters are active. 2071 */ 2072 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2073 return 0; 2074 2075 pf = vsi->back; 2076 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2077 if (!ctxt) 2078 return -ENOMEM; 2079 2080 ctxt->info = vsi->info; 2081 2082 if (ena) 2083 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2084 else 2085 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2086 2087 if (!vlan_promisc) 2088 ctxt->info.valid_sections = 2089 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2090 2091 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2092 if (status) { 2093 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2094 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2095 ice_stat_str(status), 2096 ice_aq_str(pf->hw.adminq.sq_last_status)); 2097 goto err_out; 2098 } 2099 2100 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2101 2102 kfree(ctxt); 2103 return 0; 2104 2105 err_out: 2106 kfree(ctxt); 2107 return -EIO; 2108 } 2109 2110 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2111 { 2112 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2113 2114 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2115 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2116 } 2117 2118 /** 2119 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2120 * @vsi: VSI to set the q_vectors register index on 2121 */ 2122 static int 2123 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2124 { 2125 u16 i; 2126 2127 if (!vsi || !vsi->q_vectors) 2128 return -EINVAL; 2129 2130 ice_for_each_q_vector(vsi, i) { 2131 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2132 2133 if (!q_vector) { 2134 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2135 i, vsi->vsi_num); 2136 goto clear_reg_idx; 2137 } 2138 2139 if (vsi->type == ICE_VSI_VF) { 2140 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2141 2142 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2143 } else { 2144 q_vector->reg_idx = 2145 q_vector->v_idx + vsi->base_vector; 2146 } 2147 } 2148 2149 return 0; 2150 2151 clear_reg_idx: 2152 ice_for_each_q_vector(vsi, i) { 2153 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2154 2155 if (q_vector) 2156 q_vector->reg_idx = 0; 2157 } 2158 2159 return -EINVAL; 2160 } 2161 2162 /** 2163 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2164 * @vsi: the VSI being configured 2165 * @tx: bool to determine Tx or Rx rule 2166 * @create: bool to determine create or remove Rule 2167 */ 2168 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2169 { 2170 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2171 enum ice_sw_fwd_act_type act); 2172 struct ice_pf *pf = vsi->back; 2173 enum ice_status status; 2174 struct device *dev; 2175 2176 dev = ice_pf_to_dev(pf); 2177 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2178 2179 if (tx) { 2180 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2181 ICE_DROP_PACKET); 2182 } else { 2183 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2184 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2185 create); 2186 } else { 2187 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2188 ICE_FWD_TO_VSI); 2189 } 2190 } 2191 2192 if (status) 2193 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2194 create ? "adding" : "removing", tx ? "TX" : "RX", 2195 vsi->vsi_num, ice_stat_str(status)); 2196 } 2197 2198 /** 2199 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2200 * @vsi: pointer to the VSI 2201 * 2202 * This function will allocate new scheduler aggregator now if needed and will 2203 * move specified VSI into it. 2204 */ 2205 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2206 { 2207 struct device *dev = ice_pf_to_dev(vsi->back); 2208 struct ice_agg_node *agg_node_iter = NULL; 2209 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2210 struct ice_agg_node *agg_node = NULL; 2211 int node_offset, max_agg_nodes = 0; 2212 struct ice_port_info *port_info; 2213 struct ice_pf *pf = vsi->back; 2214 u32 agg_node_id_start = 0; 2215 enum ice_status status; 2216 2217 /* create (as needed) scheduler aggregator node and move VSI into 2218 * corresponding aggregator node 2219 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2220 * - VF aggregator nodes will contain VF VSI 2221 */ 2222 port_info = pf->hw.port_info; 2223 if (!port_info) 2224 return; 2225 2226 switch (vsi->type) { 2227 case ICE_VSI_CTRL: 2228 case ICE_VSI_LB: 2229 case ICE_VSI_PF: 2230 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2231 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2232 agg_node_iter = &pf->pf_agg_node[0]; 2233 break; 2234 case ICE_VSI_VF: 2235 /* user can create 'n' VFs on a given PF, but since max children 2236 * per aggregator node can be only 64. Following code handles 2237 * aggregator(s) for VF VSIs, either selects a agg_node which 2238 * was already created provided num_vsis < 64, otherwise 2239 * select next available node, which will be created 2240 */ 2241 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2242 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2243 agg_node_iter = &pf->vf_agg_node[0]; 2244 break; 2245 default: 2246 /* other VSI type, handle later if needed */ 2247 dev_dbg(dev, "unexpected VSI type %s\n", 2248 ice_vsi_type_str(vsi->type)); 2249 return; 2250 } 2251 2252 /* find the appropriate aggregator node */ 2253 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2254 /* see if we can find space in previously created 2255 * node if num_vsis < 64, otherwise skip 2256 */ 2257 if (agg_node_iter->num_vsis && 2258 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2259 agg_node_iter++; 2260 continue; 2261 } 2262 2263 if (agg_node_iter->valid && 2264 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2265 agg_id = agg_node_iter->agg_id; 2266 agg_node = agg_node_iter; 2267 break; 2268 } 2269 2270 /* find unclaimed agg_id */ 2271 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2272 agg_id = node_offset + agg_node_id_start; 2273 agg_node = agg_node_iter; 2274 break; 2275 } 2276 /* move to next agg_node */ 2277 agg_node_iter++; 2278 } 2279 2280 if (!agg_node) 2281 return; 2282 2283 /* if selected aggregator node was not created, create it */ 2284 if (!agg_node->valid) { 2285 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2286 (u8)vsi->tc_cfg.ena_tc); 2287 if (status) { 2288 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2289 agg_id); 2290 return; 2291 } 2292 /* aggregator node is created, store the neeeded info */ 2293 agg_node->valid = true; 2294 agg_node->agg_id = agg_id; 2295 } 2296 2297 /* move VSI to corresponding aggregator node */ 2298 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2299 (u8)vsi->tc_cfg.ena_tc); 2300 if (status) { 2301 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2302 vsi->idx, agg_id); 2303 return; 2304 } 2305 2306 /* keep active children count for aggregator node */ 2307 agg_node->num_vsis++; 2308 2309 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2310 * to aggregator node 2311 */ 2312 vsi->agg_node = agg_node; 2313 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2314 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2315 vsi->agg_node->num_vsis); 2316 } 2317 2318 /** 2319 * ice_vsi_setup - Set up a VSI by a given type 2320 * @pf: board private structure 2321 * @pi: pointer to the port_info instance 2322 * @vsi_type: VSI type 2323 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2324 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2325 * fill-in ICE_INVAL_VFID as input. 2326 * 2327 * This allocates the sw VSI structure and its queue resources. 2328 * 2329 * Returns pointer to the successfully allocated and configured VSI sw struct on 2330 * success, NULL on failure. 2331 */ 2332 struct ice_vsi * 2333 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2334 enum ice_vsi_type vsi_type, u16 vf_id) 2335 { 2336 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2337 struct device *dev = ice_pf_to_dev(pf); 2338 enum ice_status status; 2339 struct ice_vsi *vsi; 2340 int ret, i; 2341 2342 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2343 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2344 else 2345 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2346 2347 if (!vsi) { 2348 dev_err(dev, "could not allocate VSI\n"); 2349 return NULL; 2350 } 2351 2352 vsi->port_info = pi; 2353 vsi->vsw = pf->first_sw; 2354 if (vsi->type == ICE_VSI_PF) 2355 vsi->ethtype = ETH_P_PAUSE; 2356 2357 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2358 vsi->vf_id = vf_id; 2359 2360 ice_alloc_fd_res(vsi); 2361 2362 if (ice_vsi_get_qs(vsi)) { 2363 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2364 vsi->idx); 2365 goto unroll_vsi_alloc; 2366 } 2367 2368 /* set RSS capabilities */ 2369 ice_vsi_set_rss_params(vsi); 2370 2371 /* set TC configuration */ 2372 ice_vsi_set_tc_cfg(vsi); 2373 2374 /* create the VSI */ 2375 ret = ice_vsi_init(vsi, true); 2376 if (ret) 2377 goto unroll_get_qs; 2378 2379 switch (vsi->type) { 2380 case ICE_VSI_CTRL: 2381 case ICE_VSI_PF: 2382 ret = ice_vsi_alloc_q_vectors(vsi); 2383 if (ret) 2384 goto unroll_vsi_init; 2385 2386 ret = ice_vsi_setup_vector_base(vsi); 2387 if (ret) 2388 goto unroll_alloc_q_vector; 2389 2390 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2391 if (ret) 2392 goto unroll_vector_base; 2393 2394 ret = ice_vsi_alloc_rings(vsi); 2395 if (ret) 2396 goto unroll_vector_base; 2397 2398 /* Always add VLAN ID 0 switch rule by default. This is needed 2399 * in order to allow all untagged and 0 tagged priority traffic 2400 * if Rx VLAN pruning is enabled. Also there are cases where we 2401 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2402 * so this handles those cases (i.e. adding the PF to a bridge 2403 * without the 8021q module loaded). 2404 */ 2405 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2406 if (ret) 2407 goto unroll_clear_rings; 2408 2409 ice_vsi_map_rings_to_vectors(vsi); 2410 2411 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2412 if (vsi->type != ICE_VSI_CTRL) 2413 /* Do not exit if configuring RSS had an issue, at 2414 * least receive traffic on first queue. Hence no 2415 * need to capture return value 2416 */ 2417 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2418 ice_vsi_cfg_rss_lut_key(vsi); 2419 ice_vsi_set_rss_flow_fld(vsi); 2420 } 2421 ice_init_arfs(vsi); 2422 break; 2423 case ICE_VSI_VF: 2424 /* VF driver will take care of creating netdev for this type and 2425 * map queues to vectors through Virtchnl, PF driver only 2426 * creates a VSI and corresponding structures for bookkeeping 2427 * purpose 2428 */ 2429 ret = ice_vsi_alloc_q_vectors(vsi); 2430 if (ret) 2431 goto unroll_vsi_init; 2432 2433 ret = ice_vsi_alloc_rings(vsi); 2434 if (ret) 2435 goto unroll_alloc_q_vector; 2436 2437 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2438 if (ret) 2439 goto unroll_vector_base; 2440 2441 /* Do not exit if configuring RSS had an issue, at least 2442 * receive traffic on first queue. Hence no need to capture 2443 * return value 2444 */ 2445 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2446 ice_vsi_cfg_rss_lut_key(vsi); 2447 ice_vsi_set_vf_rss_flow_fld(vsi); 2448 } 2449 break; 2450 case ICE_VSI_LB: 2451 ret = ice_vsi_alloc_rings(vsi); 2452 if (ret) 2453 goto unroll_vsi_init; 2454 break; 2455 default: 2456 /* clean up the resources and exit */ 2457 goto unroll_vsi_init; 2458 } 2459 2460 /* configure VSI nodes based on number of queues and TC's */ 2461 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2462 max_txqs[i] = vsi->alloc_txq; 2463 2464 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2465 max_txqs); 2466 if (status) { 2467 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2468 vsi->vsi_num, ice_stat_str(status)); 2469 goto unroll_clear_rings; 2470 } 2471 2472 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2473 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2474 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2475 * The rule is added once for PF VSI in order to create appropriate 2476 * recipe, since VSI/VSI list is ignored with drop action... 2477 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2478 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2479 * settings in the HW. 2480 */ 2481 if (!ice_is_safe_mode(pf)) 2482 if (vsi->type == ICE_VSI_PF) { 2483 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2484 ICE_DROP_PACKET); 2485 ice_cfg_sw_lldp(vsi, true, true); 2486 } 2487 2488 if (!vsi->agg_node) 2489 ice_set_agg_vsi(vsi); 2490 return vsi; 2491 2492 unroll_clear_rings: 2493 ice_vsi_clear_rings(vsi); 2494 unroll_vector_base: 2495 /* reclaim SW interrupts back to the common pool */ 2496 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2497 pf->num_avail_sw_msix += vsi->num_q_vectors; 2498 unroll_alloc_q_vector: 2499 ice_vsi_free_q_vectors(vsi); 2500 unroll_vsi_init: 2501 ice_vsi_delete(vsi); 2502 unroll_get_qs: 2503 ice_vsi_put_qs(vsi); 2504 unroll_vsi_alloc: 2505 if (vsi_type == ICE_VSI_VF) 2506 ice_enable_lag(pf->lag); 2507 ice_vsi_clear(vsi); 2508 2509 return NULL; 2510 } 2511 2512 /** 2513 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2514 * @vsi: the VSI being cleaned up 2515 */ 2516 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2517 { 2518 struct ice_pf *pf = vsi->back; 2519 struct ice_hw *hw = &pf->hw; 2520 u32 txq = 0; 2521 u32 rxq = 0; 2522 int i, q; 2523 2524 for (i = 0; i < vsi->num_q_vectors; i++) { 2525 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2526 u16 reg_idx = q_vector->reg_idx; 2527 2528 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2529 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2530 for (q = 0; q < q_vector->num_ring_tx; q++) { 2531 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2532 if (ice_is_xdp_ena_vsi(vsi)) { 2533 u32 xdp_txq = txq + vsi->num_xdp_txq; 2534 2535 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2536 } 2537 txq++; 2538 } 2539 2540 for (q = 0; q < q_vector->num_ring_rx; q++) { 2541 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2542 rxq++; 2543 } 2544 } 2545 2546 ice_flush(hw); 2547 } 2548 2549 /** 2550 * ice_vsi_free_irq - Free the IRQ association with the OS 2551 * @vsi: the VSI being configured 2552 */ 2553 void ice_vsi_free_irq(struct ice_vsi *vsi) 2554 { 2555 struct ice_pf *pf = vsi->back; 2556 int base = vsi->base_vector; 2557 int i; 2558 2559 if (!vsi->q_vectors || !vsi->irqs_ready) 2560 return; 2561 2562 ice_vsi_release_msix(vsi); 2563 if (vsi->type == ICE_VSI_VF) 2564 return; 2565 2566 vsi->irqs_ready = false; 2567 ice_for_each_q_vector(vsi, i) { 2568 u16 vector = i + base; 2569 int irq_num; 2570 2571 irq_num = pf->msix_entries[vector].vector; 2572 2573 /* free only the irqs that were actually requested */ 2574 if (!vsi->q_vectors[i] || 2575 !(vsi->q_vectors[i]->num_ring_tx || 2576 vsi->q_vectors[i]->num_ring_rx)) 2577 continue; 2578 2579 /* clear the affinity notifier in the IRQ descriptor */ 2580 irq_set_affinity_notifier(irq_num, NULL); 2581 2582 /* clear the affinity_mask in the IRQ descriptor */ 2583 irq_set_affinity_hint(irq_num, NULL); 2584 synchronize_irq(irq_num); 2585 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2586 } 2587 } 2588 2589 /** 2590 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2591 * @vsi: the VSI having resources freed 2592 */ 2593 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2594 { 2595 int i; 2596 2597 if (!vsi->tx_rings) 2598 return; 2599 2600 ice_for_each_txq(vsi, i) 2601 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2602 ice_free_tx_ring(vsi->tx_rings[i]); 2603 } 2604 2605 /** 2606 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2607 * @vsi: the VSI having resources freed 2608 */ 2609 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2610 { 2611 int i; 2612 2613 if (!vsi->rx_rings) 2614 return; 2615 2616 ice_for_each_rxq(vsi, i) 2617 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2618 ice_free_rx_ring(vsi->rx_rings[i]); 2619 } 2620 2621 /** 2622 * ice_vsi_close - Shut down a VSI 2623 * @vsi: the VSI being shut down 2624 */ 2625 void ice_vsi_close(struct ice_vsi *vsi) 2626 { 2627 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2628 ice_down(vsi); 2629 2630 ice_vsi_free_irq(vsi); 2631 ice_vsi_free_tx_rings(vsi); 2632 ice_vsi_free_rx_rings(vsi); 2633 } 2634 2635 /** 2636 * ice_ena_vsi - resume a VSI 2637 * @vsi: the VSI being resume 2638 * @locked: is the rtnl_lock already held 2639 */ 2640 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2641 { 2642 int err = 0; 2643 2644 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2645 return 0; 2646 2647 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2648 2649 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2650 if (netif_running(vsi->netdev)) { 2651 if (!locked) 2652 rtnl_lock(); 2653 2654 err = ice_open(vsi->netdev); 2655 2656 if (!locked) 2657 rtnl_unlock(); 2658 } 2659 } else if (vsi->type == ICE_VSI_CTRL) { 2660 err = ice_vsi_open_ctrl(vsi); 2661 } 2662 2663 return err; 2664 } 2665 2666 /** 2667 * ice_dis_vsi - pause a VSI 2668 * @vsi: the VSI being paused 2669 * @locked: is the rtnl_lock already held 2670 */ 2671 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2672 { 2673 if (test_bit(__ICE_DOWN, vsi->state)) 2674 return; 2675 2676 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2677 2678 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2679 if (netif_running(vsi->netdev)) { 2680 if (!locked) 2681 rtnl_lock(); 2682 2683 ice_stop(vsi->netdev); 2684 2685 if (!locked) 2686 rtnl_unlock(); 2687 } else { 2688 ice_vsi_close(vsi); 2689 } 2690 } else if (vsi->type == ICE_VSI_CTRL) { 2691 ice_vsi_close(vsi); 2692 } 2693 } 2694 2695 /** 2696 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2697 * @vsi: the VSI being un-configured 2698 */ 2699 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2700 { 2701 int base = vsi->base_vector; 2702 struct ice_pf *pf = vsi->back; 2703 struct ice_hw *hw = &pf->hw; 2704 u32 val; 2705 int i; 2706 2707 /* disable interrupt causation from each queue */ 2708 if (vsi->tx_rings) { 2709 ice_for_each_txq(vsi, i) { 2710 if (vsi->tx_rings[i]) { 2711 u16 reg; 2712 2713 reg = vsi->tx_rings[i]->reg_idx; 2714 val = rd32(hw, QINT_TQCTL(reg)); 2715 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2716 wr32(hw, QINT_TQCTL(reg), val); 2717 } 2718 } 2719 } 2720 2721 if (vsi->rx_rings) { 2722 ice_for_each_rxq(vsi, i) { 2723 if (vsi->rx_rings[i]) { 2724 u16 reg; 2725 2726 reg = vsi->rx_rings[i]->reg_idx; 2727 val = rd32(hw, QINT_RQCTL(reg)); 2728 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2729 wr32(hw, QINT_RQCTL(reg), val); 2730 } 2731 } 2732 } 2733 2734 /* disable each interrupt */ 2735 ice_for_each_q_vector(vsi, i) { 2736 if (!vsi->q_vectors[i]) 2737 continue; 2738 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2739 } 2740 2741 ice_flush(hw); 2742 2743 /* don't call synchronize_irq() for VF's from the host */ 2744 if (vsi->type == ICE_VSI_VF) 2745 return; 2746 2747 ice_for_each_q_vector(vsi, i) 2748 synchronize_irq(pf->msix_entries[i + base].vector); 2749 } 2750 2751 /** 2752 * ice_napi_del - Remove NAPI handler for the VSI 2753 * @vsi: VSI for which NAPI handler is to be removed 2754 */ 2755 void ice_napi_del(struct ice_vsi *vsi) 2756 { 2757 int v_idx; 2758 2759 if (!vsi->netdev) 2760 return; 2761 2762 ice_for_each_q_vector(vsi, v_idx) 2763 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2764 } 2765 2766 /** 2767 * ice_vsi_release - Delete a VSI and free its resources 2768 * @vsi: the VSI being removed 2769 * 2770 * Returns 0 on success or < 0 on error 2771 */ 2772 int ice_vsi_release(struct ice_vsi *vsi) 2773 { 2774 struct ice_pf *pf; 2775 2776 if (!vsi->back) 2777 return -ENODEV; 2778 pf = vsi->back; 2779 2780 /* do not unregister while driver is in the reset recovery pending 2781 * state. Since reset/rebuild happens through PF service task workqueue, 2782 * it's not a good idea to unregister netdev that is associated to the 2783 * PF that is running the work queue items currently. This is done to 2784 * avoid check_flush_dependency() warning on this wq 2785 */ 2786 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2787 unregister_netdev(vsi->netdev); 2788 ice_devlink_destroy_port(vsi); 2789 } 2790 2791 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2792 ice_rss_clean(vsi); 2793 2794 /* Disable VSI and free resources */ 2795 if (vsi->type != ICE_VSI_LB) 2796 ice_vsi_dis_irq(vsi); 2797 ice_vsi_close(vsi); 2798 2799 /* SR-IOV determines needed MSIX resources all at once instead of per 2800 * VSI since when VFs are spawned we know how many VFs there are and how 2801 * many interrupts each VF needs. SR-IOV MSIX resources are also 2802 * cleared in the same manner. 2803 */ 2804 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2805 struct ice_vf *vf; 2806 int i; 2807 2808 ice_for_each_vf(pf, i) { 2809 vf = &pf->vf[i]; 2810 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2811 break; 2812 } 2813 if (i == pf->num_alloc_vfs) { 2814 /* No other VFs left that have control VSI, reclaim SW 2815 * interrupts back to the common pool 2816 */ 2817 ice_free_res(pf->irq_tracker, vsi->base_vector, 2818 ICE_RES_VF_CTRL_VEC_ID); 2819 pf->num_avail_sw_msix += vsi->num_q_vectors; 2820 } 2821 } else if (vsi->type != ICE_VSI_VF) { 2822 /* reclaim SW interrupts back to the common pool */ 2823 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2824 pf->num_avail_sw_msix += vsi->num_q_vectors; 2825 } 2826 2827 if (!ice_is_safe_mode(pf)) { 2828 if (vsi->type == ICE_VSI_PF) { 2829 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2830 ICE_DROP_PACKET); 2831 ice_cfg_sw_lldp(vsi, true, false); 2832 /* The Rx rule will only exist to remove if the LLDP FW 2833 * engine is currently stopped 2834 */ 2835 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2836 ice_cfg_sw_lldp(vsi, false, false); 2837 } 2838 } 2839 2840 ice_fltr_remove_all(vsi); 2841 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2842 ice_vsi_delete(vsi); 2843 ice_vsi_free_q_vectors(vsi); 2844 2845 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2846 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2847 free_netdev(vsi->netdev); 2848 vsi->netdev = NULL; 2849 } 2850 2851 if (vsi->type == ICE_VSI_VF && 2852 vsi->agg_node && vsi->agg_node->valid) 2853 vsi->agg_node->num_vsis--; 2854 ice_vsi_clear_rings(vsi); 2855 2856 ice_vsi_put_qs(vsi); 2857 2858 /* retain SW VSI data structure since it is needed to unregister and 2859 * free VSI netdev when PF is not in reset recovery pending state,\ 2860 * for ex: during rmmod. 2861 */ 2862 if (!ice_is_reset_in_progress(pf->state)) 2863 ice_vsi_clear(vsi); 2864 2865 return 0; 2866 } 2867 2868 /** 2869 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2870 * @q_vector: pointer to q_vector which is being updated 2871 * @coalesce: pointer to array of struct with stored coalesce 2872 * 2873 * Set coalesce param in q_vector and update these parameters in HW. 2874 */ 2875 static void 2876 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2877 struct ice_coalesce_stored *coalesce) 2878 { 2879 struct ice_ring_container *rx_rc = &q_vector->rx; 2880 struct ice_ring_container *tx_rc = &q_vector->tx; 2881 struct ice_hw *hw = &q_vector->vsi->back->hw; 2882 2883 tx_rc->itr_setting = coalesce->itr_tx; 2884 rx_rc->itr_setting = coalesce->itr_rx; 2885 2886 /* dynamic ITR values will be updated during Tx/Rx */ 2887 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2888 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2889 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2890 ICE_ITR_GRAN_S); 2891 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2892 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2893 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2894 ICE_ITR_GRAN_S); 2895 2896 q_vector->intrl = coalesce->intrl; 2897 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2898 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2899 } 2900 2901 /** 2902 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2903 * @vsi: VSI connected with q_vectors 2904 * @coalesce: array of struct with stored coalesce 2905 * 2906 * Returns array size. 2907 */ 2908 static int 2909 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2910 struct ice_coalesce_stored *coalesce) 2911 { 2912 int i; 2913 2914 ice_for_each_q_vector(vsi, i) { 2915 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2916 2917 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2918 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2919 coalesce[i].intrl = q_vector->intrl; 2920 } 2921 2922 return vsi->num_q_vectors; 2923 } 2924 2925 /** 2926 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2927 * @vsi: VSI connected with q_vectors 2928 * @coalesce: pointer to array of struct with stored coalesce 2929 * @size: size of coalesce array 2930 * 2931 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2932 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2933 * to default value. 2934 */ 2935 static void 2936 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2937 struct ice_coalesce_stored *coalesce, int size) 2938 { 2939 int i; 2940 2941 if ((size && !coalesce) || !vsi) 2942 return; 2943 2944 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2945 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2946 &coalesce[i]); 2947 2948 /* number of q_vectors increased, so assume coalesce settings were 2949 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2950 * the previous settings from q_vector 0 for all of the new q_vectors 2951 */ 2952 for (; i < vsi->num_q_vectors; i++) 2953 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2954 &coalesce[0]); 2955 } 2956 2957 /** 2958 * ice_vsi_rebuild - Rebuild VSI after reset 2959 * @vsi: VSI to be rebuild 2960 * @init_vsi: is this an initialization or a reconfigure of the VSI 2961 * 2962 * Returns 0 on success and negative value on failure 2963 */ 2964 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2965 { 2966 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2967 struct ice_coalesce_stored *coalesce; 2968 int prev_num_q_vectors = 0; 2969 struct ice_vf *vf = NULL; 2970 enum ice_status status; 2971 struct ice_pf *pf; 2972 int ret, i; 2973 2974 if (!vsi) 2975 return -EINVAL; 2976 2977 pf = vsi->back; 2978 if (vsi->type == ICE_VSI_VF) 2979 vf = &pf->vf[vsi->vf_id]; 2980 2981 coalesce = kcalloc(vsi->num_q_vectors, 2982 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2983 if (coalesce) 2984 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2985 coalesce); 2986 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2987 ice_vsi_free_q_vectors(vsi); 2988 2989 /* SR-IOV determines needed MSIX resources all at once instead of per 2990 * VSI since when VFs are spawned we know how many VFs there are and how 2991 * many interrupts each VF needs. SR-IOV MSIX resources are also 2992 * cleared in the same manner. 2993 */ 2994 if (vsi->type != ICE_VSI_VF) { 2995 /* reclaim SW interrupts back to the common pool */ 2996 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2997 pf->num_avail_sw_msix += vsi->num_q_vectors; 2998 vsi->base_vector = 0; 2999 } 3000 3001 if (ice_is_xdp_ena_vsi(vsi)) 3002 /* return value check can be skipped here, it always returns 3003 * 0 if reset is in progress 3004 */ 3005 ice_destroy_xdp_rings(vsi); 3006 ice_vsi_put_qs(vsi); 3007 ice_vsi_clear_rings(vsi); 3008 ice_vsi_free_arrays(vsi); 3009 if (vsi->type == ICE_VSI_VF) 3010 ice_vsi_set_num_qs(vsi, vf->vf_id); 3011 else 3012 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3013 3014 ret = ice_vsi_alloc_arrays(vsi); 3015 if (ret < 0) 3016 goto err_vsi; 3017 3018 ice_vsi_get_qs(vsi); 3019 3020 ice_alloc_fd_res(vsi); 3021 ice_vsi_set_tc_cfg(vsi); 3022 3023 /* Initialize VSI struct elements and create VSI in FW */ 3024 ret = ice_vsi_init(vsi, init_vsi); 3025 if (ret < 0) 3026 goto err_vsi; 3027 3028 switch (vsi->type) { 3029 case ICE_VSI_CTRL: 3030 case ICE_VSI_PF: 3031 ret = ice_vsi_alloc_q_vectors(vsi); 3032 if (ret) 3033 goto err_rings; 3034 3035 ret = ice_vsi_setup_vector_base(vsi); 3036 if (ret) 3037 goto err_vectors; 3038 3039 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3040 if (ret) 3041 goto err_vectors; 3042 3043 ret = ice_vsi_alloc_rings(vsi); 3044 if (ret) 3045 goto err_vectors; 3046 3047 ice_vsi_map_rings_to_vectors(vsi); 3048 if (ice_is_xdp_ena_vsi(vsi)) { 3049 vsi->num_xdp_txq = vsi->alloc_rxq; 3050 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3051 if (ret) 3052 goto err_vectors; 3053 } 3054 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3055 if (vsi->type != ICE_VSI_CTRL) 3056 /* Do not exit if configuring RSS had an issue, at 3057 * least receive traffic on first queue. Hence no 3058 * need to capture return value 3059 */ 3060 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3061 ice_vsi_cfg_rss_lut_key(vsi); 3062 break; 3063 case ICE_VSI_VF: 3064 ret = ice_vsi_alloc_q_vectors(vsi); 3065 if (ret) 3066 goto err_rings; 3067 3068 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3069 if (ret) 3070 goto err_vectors; 3071 3072 ret = ice_vsi_alloc_rings(vsi); 3073 if (ret) 3074 goto err_vectors; 3075 3076 break; 3077 default: 3078 break; 3079 } 3080 3081 /* configure VSI nodes based on number of queues and TC's */ 3082 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3083 max_txqs[i] = vsi->alloc_txq; 3084 3085 if (ice_is_xdp_ena_vsi(vsi)) 3086 max_txqs[i] += vsi->num_xdp_txq; 3087 } 3088 3089 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3090 max_txqs); 3091 if (status) { 3092 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3093 vsi->vsi_num, ice_stat_str(status)); 3094 if (init_vsi) { 3095 ret = -EIO; 3096 goto err_vectors; 3097 } else { 3098 return ice_schedule_reset(pf, ICE_RESET_PFR); 3099 } 3100 } 3101 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3102 kfree(coalesce); 3103 3104 return 0; 3105 3106 err_vectors: 3107 ice_vsi_free_q_vectors(vsi); 3108 err_rings: 3109 if (vsi->netdev) { 3110 vsi->current_netdev_flags = 0; 3111 unregister_netdev(vsi->netdev); 3112 free_netdev(vsi->netdev); 3113 vsi->netdev = NULL; 3114 } 3115 err_vsi: 3116 ice_vsi_clear(vsi); 3117 set_bit(__ICE_RESET_FAILED, pf->state); 3118 kfree(coalesce); 3119 return ret; 3120 } 3121 3122 /** 3123 * ice_is_reset_in_progress - check for a reset in progress 3124 * @state: PF state field 3125 */ 3126 bool ice_is_reset_in_progress(unsigned long *state) 3127 { 3128 return test_bit(__ICE_RESET_OICR_RECV, state) || 3129 test_bit(__ICE_DCBNL_DEVRESET, state) || 3130 test_bit(__ICE_PFR_REQ, state) || 3131 test_bit(__ICE_CORER_REQ, state) || 3132 test_bit(__ICE_GLOBR_REQ, state); 3133 } 3134 3135 #ifdef CONFIG_DCB 3136 /** 3137 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3138 * @vsi: VSI being configured 3139 * @ctx: the context buffer returned from AQ VSI update command 3140 */ 3141 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3142 { 3143 vsi->info.mapping_flags = ctx->info.mapping_flags; 3144 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3145 sizeof(vsi->info.q_mapping)); 3146 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3147 sizeof(vsi->info.tc_mapping)); 3148 } 3149 3150 /** 3151 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3152 * @vsi: VSI to be configured 3153 * @ena_tc: TC bitmap 3154 * 3155 * VSI queues expected to be quiesced before calling this function 3156 */ 3157 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3158 { 3159 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3160 struct ice_pf *pf = vsi->back; 3161 struct ice_vsi_ctx *ctx; 3162 enum ice_status status; 3163 struct device *dev; 3164 int i, ret = 0; 3165 u8 num_tc = 0; 3166 3167 dev = ice_pf_to_dev(pf); 3168 3169 ice_for_each_traffic_class(i) { 3170 /* build bitmap of enabled TCs */ 3171 if (ena_tc & BIT(i)) 3172 num_tc++; 3173 /* populate max_txqs per TC */ 3174 max_txqs[i] = vsi->alloc_txq; 3175 } 3176 3177 vsi->tc_cfg.ena_tc = ena_tc; 3178 vsi->tc_cfg.numtc = num_tc; 3179 3180 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3181 if (!ctx) 3182 return -ENOMEM; 3183 3184 ctx->vf_num = 0; 3185 ctx->info = vsi->info; 3186 3187 ice_vsi_setup_q_map(vsi, ctx); 3188 3189 /* must to indicate which section of VSI context are being modified */ 3190 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3191 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3192 if (status) { 3193 dev_info(dev, "Failed VSI Update\n"); 3194 ret = -EIO; 3195 goto out; 3196 } 3197 3198 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3199 max_txqs); 3200 3201 if (status) { 3202 dev_err(dev, "VSI %d failed TC config, error %s\n", 3203 vsi->vsi_num, ice_stat_str(status)); 3204 ret = -EIO; 3205 goto out; 3206 } 3207 ice_vsi_update_q_map(vsi, ctx); 3208 vsi->info.valid_sections = 0; 3209 3210 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3211 out: 3212 kfree(ctx); 3213 return ret; 3214 } 3215 #endif /* CONFIG_DCB */ 3216 3217 /** 3218 * ice_update_ring_stats - Update ring statistics 3219 * @ring: ring to update 3220 * @cont: used to increment per-vector counters 3221 * @pkts: number of processed packets 3222 * @bytes: number of processed bytes 3223 * 3224 * This function assumes that caller has acquired a u64_stats_sync lock. 3225 */ 3226 static void 3227 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3228 u64 pkts, u64 bytes) 3229 { 3230 ring->stats.bytes += bytes; 3231 ring->stats.pkts += pkts; 3232 cont->total_bytes += bytes; 3233 cont->total_pkts += pkts; 3234 } 3235 3236 /** 3237 * ice_update_tx_ring_stats - Update Tx ring specific counters 3238 * @tx_ring: ring to update 3239 * @pkts: number of processed packets 3240 * @bytes: number of processed bytes 3241 */ 3242 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3243 { 3244 u64_stats_update_begin(&tx_ring->syncp); 3245 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3246 u64_stats_update_end(&tx_ring->syncp); 3247 } 3248 3249 /** 3250 * ice_update_rx_ring_stats - Update Rx ring specific counters 3251 * @rx_ring: ring to update 3252 * @pkts: number of processed packets 3253 * @bytes: number of processed bytes 3254 */ 3255 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3256 { 3257 u64_stats_update_begin(&rx_ring->syncp); 3258 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3259 u64_stats_update_end(&rx_ring->syncp); 3260 } 3261 3262 /** 3263 * ice_status_to_errno - convert from enum ice_status to Linux errno 3264 * @err: ice_status value to convert 3265 */ 3266 int ice_status_to_errno(enum ice_status err) 3267 { 3268 switch (err) { 3269 case ICE_SUCCESS: 3270 return 0; 3271 case ICE_ERR_DOES_NOT_EXIST: 3272 return -ENOENT; 3273 case ICE_ERR_OUT_OF_RANGE: 3274 return -ENOTTY; 3275 case ICE_ERR_PARAM: 3276 return -EINVAL; 3277 case ICE_ERR_NO_MEMORY: 3278 return -ENOMEM; 3279 case ICE_ERR_MAX_LIMIT: 3280 return -EAGAIN; 3281 default: 3282 return -EINVAL; 3283 } 3284 } 3285 3286 /** 3287 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3288 * @sw: switch to check if its default forwarding VSI is free 3289 * 3290 * Return true if the default forwarding VSI is already being used, else returns 3291 * false signalling that it's available to use. 3292 */ 3293 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3294 { 3295 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3296 } 3297 3298 /** 3299 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3300 * @sw: switch for the default forwarding VSI to compare against 3301 * @vsi: VSI to compare against default forwarding VSI 3302 * 3303 * If this VSI passed in is the default forwarding VSI then return true, else 3304 * return false 3305 */ 3306 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3307 { 3308 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3309 } 3310 3311 /** 3312 * ice_set_dflt_vsi - set the default forwarding VSI 3313 * @sw: switch used to assign the default forwarding VSI 3314 * @vsi: VSI getting set as the default forwarding VSI on the switch 3315 * 3316 * If the VSI passed in is already the default VSI and it's enabled just return 3317 * success. 3318 * 3319 * If there is already a default VSI on the switch and it's enabled then return 3320 * -EEXIST since there can only be one default VSI per switch. 3321 * 3322 * Otherwise try to set the VSI passed in as the switch's default VSI and 3323 * return the result. 3324 */ 3325 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3326 { 3327 enum ice_status status; 3328 struct device *dev; 3329 3330 if (!sw || !vsi) 3331 return -EINVAL; 3332 3333 dev = ice_pf_to_dev(vsi->back); 3334 3335 /* the VSI passed in is already the default VSI */ 3336 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3337 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3338 vsi->vsi_num); 3339 return 0; 3340 } 3341 3342 /* another VSI is already the default VSI for this switch */ 3343 if (ice_is_dflt_vsi_in_use(sw)) { 3344 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3345 sw->dflt_vsi->vsi_num); 3346 return -EEXIST; 3347 } 3348 3349 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3350 if (status) { 3351 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3352 vsi->vsi_num, ice_stat_str(status)); 3353 return -EIO; 3354 } 3355 3356 sw->dflt_vsi = vsi; 3357 sw->dflt_vsi_ena = true; 3358 3359 return 0; 3360 } 3361 3362 /** 3363 * ice_clear_dflt_vsi - clear the default forwarding VSI 3364 * @sw: switch used to clear the default VSI 3365 * 3366 * If the switch has no default VSI or it's not enabled then return error. 3367 * 3368 * Otherwise try to clear the default VSI and return the result. 3369 */ 3370 int ice_clear_dflt_vsi(struct ice_sw *sw) 3371 { 3372 struct ice_vsi *dflt_vsi; 3373 enum ice_status status; 3374 struct device *dev; 3375 3376 if (!sw) 3377 return -EINVAL; 3378 3379 dev = ice_pf_to_dev(sw->pf); 3380 3381 dflt_vsi = sw->dflt_vsi; 3382 3383 /* there is no default VSI configured */ 3384 if (!ice_is_dflt_vsi_in_use(sw)) 3385 return -ENODEV; 3386 3387 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3388 ICE_FLTR_RX); 3389 if (status) { 3390 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3391 dflt_vsi->vsi_num, ice_stat_str(status)); 3392 return -EIO; 3393 } 3394 3395 sw->dflt_vsi = NULL; 3396 sw->dflt_vsi_ena = false; 3397 3398 return 0; 3399 } 3400