1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_dcb_lib.h" 9 10 /** 11 * ice_vsi_type_str - maps VSI type enum to string equivalents 12 * @type: VSI type enum 13 */ 14 const char *ice_vsi_type_str(enum ice_vsi_type type) 15 { 16 switch (type) { 17 case ICE_VSI_PF: 18 return "ICE_VSI_PF"; 19 case ICE_VSI_VF: 20 return "ICE_VSI_VF"; 21 case ICE_VSI_LB: 22 return "ICE_VSI_LB"; 23 default: 24 return "unknown"; 25 } 26 } 27 28 /** 29 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 30 * @vsi: the VSI being configured 31 * @ena: start or stop the Rx rings 32 */ 33 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 34 { 35 int i, ret = 0; 36 37 for (i = 0; i < vsi->num_rxq; i++) { 38 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i); 39 if (ret) 40 break; 41 } 42 43 return ret; 44 } 45 46 /** 47 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 48 * @vsi: VSI pointer 49 * 50 * On error: returns error code (negative) 51 * On success: returns 0 52 */ 53 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 54 { 55 struct ice_pf *pf = vsi->back; 56 struct device *dev; 57 58 dev = ice_pf_to_dev(pf); 59 60 /* allocate memory for both Tx and Rx ring pointers */ 61 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 62 sizeof(*vsi->tx_rings), GFP_KERNEL); 63 if (!vsi->tx_rings) 64 return -ENOMEM; 65 66 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 67 sizeof(*vsi->rx_rings), GFP_KERNEL); 68 if (!vsi->rx_rings) 69 goto err_rings; 70 71 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 72 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 73 sizeof(*vsi->txq_map), GFP_KERNEL); 74 75 if (!vsi->txq_map) 76 goto err_txq_map; 77 78 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 79 sizeof(*vsi->rxq_map), GFP_KERNEL); 80 if (!vsi->rxq_map) 81 goto err_rxq_map; 82 83 /* There is no need to allocate q_vectors for a loopback VSI. */ 84 if (vsi->type == ICE_VSI_LB) 85 return 0; 86 87 /* allocate memory for q_vector pointers */ 88 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 89 sizeof(*vsi->q_vectors), GFP_KERNEL); 90 if (!vsi->q_vectors) 91 goto err_vectors; 92 93 return 0; 94 95 err_vectors: 96 devm_kfree(dev, vsi->rxq_map); 97 err_rxq_map: 98 devm_kfree(dev, vsi->txq_map); 99 err_txq_map: 100 devm_kfree(dev, vsi->rx_rings); 101 err_rings: 102 devm_kfree(dev, vsi->tx_rings); 103 return -ENOMEM; 104 } 105 106 /** 107 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 108 * @vsi: the VSI being configured 109 */ 110 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 111 { 112 switch (vsi->type) { 113 case ICE_VSI_PF: 114 /* fall through */ 115 case ICE_VSI_LB: 116 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 117 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 118 break; 119 default: 120 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 121 vsi->type); 122 break; 123 } 124 } 125 126 /** 127 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 128 * @vsi: the VSI being configured 129 * @vf_id: ID of the VF being configured 130 * 131 * Return 0 on success and a negative value on error 132 */ 133 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 134 { 135 struct ice_pf *pf = vsi->back; 136 struct ice_vf *vf = NULL; 137 138 if (vsi->type == ICE_VSI_VF) 139 vsi->vf_id = vf_id; 140 141 switch (vsi->type) { 142 case ICE_VSI_PF: 143 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 144 num_online_cpus()); 145 if (vsi->req_txq) { 146 vsi->alloc_txq = vsi->req_txq; 147 vsi->num_txq = vsi->req_txq; 148 } 149 150 pf->num_lan_tx = vsi->alloc_txq; 151 152 /* only 1 Rx queue unless RSS is enabled */ 153 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 154 vsi->alloc_rxq = 1; 155 } else { 156 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 157 num_online_cpus()); 158 if (vsi->req_rxq) { 159 vsi->alloc_rxq = vsi->req_rxq; 160 vsi->num_rxq = vsi->req_rxq; 161 } 162 } 163 164 pf->num_lan_rx = vsi->alloc_rxq; 165 166 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 167 break; 168 case ICE_VSI_VF: 169 vf = &pf->vf[vsi->vf_id]; 170 vsi->alloc_txq = vf->num_vf_qs; 171 vsi->alloc_rxq = vf->num_vf_qs; 172 /* pf->num_vf_msix includes (VF miscellaneous vector + 173 * data queue interrupts). Since vsi->num_q_vectors is number 174 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 175 * original vector count 176 */ 177 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 178 break; 179 case ICE_VSI_LB: 180 vsi->alloc_txq = 1; 181 vsi->alloc_rxq = 1; 182 break; 183 default: 184 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 185 break; 186 } 187 188 ice_vsi_set_num_desc(vsi); 189 } 190 191 /** 192 * ice_get_free_slot - get the next non-NULL location index in array 193 * @array: array to search 194 * @size: size of the array 195 * @curr: last known occupied index to be used as a search hint 196 * 197 * void * is being used to keep the functionality generic. This lets us use this 198 * function on any array of pointers. 199 */ 200 static int ice_get_free_slot(void *array, int size, int curr) 201 { 202 int **tmp_array = (int **)array; 203 int next; 204 205 if (curr < (size - 1) && !tmp_array[curr + 1]) { 206 next = curr + 1; 207 } else { 208 int i = 0; 209 210 while ((i < size) && (tmp_array[i])) 211 i++; 212 if (i == size) 213 next = ICE_NO_VSI; 214 else 215 next = i; 216 } 217 return next; 218 } 219 220 /** 221 * ice_vsi_delete - delete a VSI from the switch 222 * @vsi: pointer to VSI being removed 223 */ 224 void ice_vsi_delete(struct ice_vsi *vsi) 225 { 226 struct ice_pf *pf = vsi->back; 227 struct ice_vsi_ctx *ctxt; 228 enum ice_status status; 229 230 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 231 if (!ctxt) 232 return; 233 234 if (vsi->type == ICE_VSI_VF) 235 ctxt->vf_num = vsi->vf_id; 236 ctxt->vsi_num = vsi->vsi_num; 237 238 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 239 240 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 241 if (status) 242 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 243 vsi->vsi_num, status); 244 245 kfree(ctxt); 246 } 247 248 /** 249 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 250 * @vsi: pointer to VSI being cleared 251 */ 252 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 253 { 254 struct ice_pf *pf = vsi->back; 255 struct device *dev; 256 257 dev = ice_pf_to_dev(pf); 258 259 /* free the ring and vector containers */ 260 if (vsi->q_vectors) { 261 devm_kfree(dev, vsi->q_vectors); 262 vsi->q_vectors = NULL; 263 } 264 if (vsi->tx_rings) { 265 devm_kfree(dev, vsi->tx_rings); 266 vsi->tx_rings = NULL; 267 } 268 if (vsi->rx_rings) { 269 devm_kfree(dev, vsi->rx_rings); 270 vsi->rx_rings = NULL; 271 } 272 if (vsi->txq_map) { 273 devm_kfree(dev, vsi->txq_map); 274 vsi->txq_map = NULL; 275 } 276 if (vsi->rxq_map) { 277 devm_kfree(dev, vsi->rxq_map); 278 vsi->rxq_map = NULL; 279 } 280 } 281 282 /** 283 * ice_vsi_clear - clean up and deallocate the provided VSI 284 * @vsi: pointer to VSI being cleared 285 * 286 * This deallocates the VSI's queue resources, removes it from the PF's 287 * VSI array if necessary, and deallocates the VSI 288 * 289 * Returns 0 on success, negative on failure 290 */ 291 int ice_vsi_clear(struct ice_vsi *vsi) 292 { 293 struct ice_pf *pf = NULL; 294 struct device *dev; 295 296 if (!vsi) 297 return 0; 298 299 if (!vsi->back) 300 return -EINVAL; 301 302 pf = vsi->back; 303 dev = ice_pf_to_dev(pf); 304 305 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 306 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 307 return -EINVAL; 308 } 309 310 mutex_lock(&pf->sw_mutex); 311 /* updates the PF for this cleared VSI */ 312 313 pf->vsi[vsi->idx] = NULL; 314 if (vsi->idx < pf->next_vsi) 315 pf->next_vsi = vsi->idx; 316 317 ice_vsi_free_arrays(vsi); 318 mutex_unlock(&pf->sw_mutex); 319 devm_kfree(dev, vsi); 320 321 return 0; 322 } 323 324 /** 325 * ice_msix_clean_rings - MSIX mode Interrupt Handler 326 * @irq: interrupt number 327 * @data: pointer to a q_vector 328 */ 329 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 330 { 331 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 332 333 if (!q_vector->tx.ring && !q_vector->rx.ring) 334 return IRQ_HANDLED; 335 336 napi_schedule(&q_vector->napi); 337 338 return IRQ_HANDLED; 339 } 340 341 /** 342 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 343 * @pf: board private structure 344 * @type: type of VSI 345 * @vf_id: ID of the VF being configured 346 * 347 * returns a pointer to a VSI on success, NULL on failure. 348 */ 349 static struct ice_vsi * 350 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 351 { 352 struct device *dev = ice_pf_to_dev(pf); 353 struct ice_vsi *vsi = NULL; 354 355 /* Need to protect the allocation of the VSIs at the PF level */ 356 mutex_lock(&pf->sw_mutex); 357 358 /* If we have already allocated our maximum number of VSIs, 359 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 360 * is available to be populated 361 */ 362 if (pf->next_vsi == ICE_NO_VSI) { 363 dev_dbg(dev, "out of VSI slots!\n"); 364 goto unlock_pf; 365 } 366 367 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 368 if (!vsi) 369 goto unlock_pf; 370 371 vsi->type = type; 372 vsi->back = pf; 373 set_bit(__ICE_DOWN, vsi->state); 374 375 vsi->idx = pf->next_vsi; 376 377 if (type == ICE_VSI_VF) 378 ice_vsi_set_num_qs(vsi, vf_id); 379 else 380 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 381 382 switch (vsi->type) { 383 case ICE_VSI_PF: 384 if (ice_vsi_alloc_arrays(vsi)) 385 goto err_rings; 386 387 /* Setup default MSIX irq handler for VSI */ 388 vsi->irq_handler = ice_msix_clean_rings; 389 break; 390 case ICE_VSI_VF: 391 if (ice_vsi_alloc_arrays(vsi)) 392 goto err_rings; 393 break; 394 case ICE_VSI_LB: 395 if (ice_vsi_alloc_arrays(vsi)) 396 goto err_rings; 397 break; 398 default: 399 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 400 goto unlock_pf; 401 } 402 403 /* fill VSI slot in the PF struct */ 404 pf->vsi[pf->next_vsi] = vsi; 405 406 /* prepare pf->next_vsi for next use */ 407 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 408 pf->next_vsi); 409 goto unlock_pf; 410 411 err_rings: 412 devm_kfree(dev, vsi); 413 vsi = NULL; 414 unlock_pf: 415 mutex_unlock(&pf->sw_mutex); 416 return vsi; 417 } 418 419 /** 420 * ice_vsi_get_qs - Assign queues from PF to VSI 421 * @vsi: the VSI to assign queues to 422 * 423 * Returns 0 on success and a negative value on error 424 */ 425 static int ice_vsi_get_qs(struct ice_vsi *vsi) 426 { 427 struct ice_pf *pf = vsi->back; 428 struct ice_qs_cfg tx_qs_cfg = { 429 .qs_mutex = &pf->avail_q_mutex, 430 .pf_map = pf->avail_txqs, 431 .pf_map_size = pf->max_pf_txqs, 432 .q_count = vsi->alloc_txq, 433 .scatter_count = ICE_MAX_SCATTER_TXQS, 434 .vsi_map = vsi->txq_map, 435 .vsi_map_offset = 0, 436 .mapping_mode = vsi->tx_mapping_mode 437 }; 438 struct ice_qs_cfg rx_qs_cfg = { 439 .qs_mutex = &pf->avail_q_mutex, 440 .pf_map = pf->avail_rxqs, 441 .pf_map_size = pf->max_pf_rxqs, 442 .q_count = vsi->alloc_rxq, 443 .scatter_count = ICE_MAX_SCATTER_RXQS, 444 .vsi_map = vsi->rxq_map, 445 .vsi_map_offset = 0, 446 .mapping_mode = vsi->rx_mapping_mode 447 }; 448 int ret = 0; 449 450 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 451 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 452 453 ret = __ice_vsi_get_qs(&tx_qs_cfg); 454 if (!ret) 455 ret = __ice_vsi_get_qs(&rx_qs_cfg); 456 457 return ret; 458 } 459 460 /** 461 * ice_vsi_put_qs - Release queues from VSI to PF 462 * @vsi: the VSI that is going to release queues 463 */ 464 void ice_vsi_put_qs(struct ice_vsi *vsi) 465 { 466 struct ice_pf *pf = vsi->back; 467 int i; 468 469 mutex_lock(&pf->avail_q_mutex); 470 471 for (i = 0; i < vsi->alloc_txq; i++) { 472 clear_bit(vsi->txq_map[i], pf->avail_txqs); 473 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 474 } 475 476 for (i = 0; i < vsi->alloc_rxq; i++) { 477 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 478 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 479 } 480 481 mutex_unlock(&pf->avail_q_mutex); 482 } 483 484 /** 485 * ice_is_safe_mode 486 * @pf: pointer to the PF struct 487 * 488 * returns true if driver is in safe mode, false otherwise 489 */ 490 bool ice_is_safe_mode(struct ice_pf *pf) 491 { 492 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 493 } 494 495 /** 496 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 497 * @vsi: the VSI being cleaned up 498 * 499 * This function deletes RSS input set for all flows that were configured 500 * for this VSI 501 */ 502 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 503 { 504 struct ice_pf *pf = vsi->back; 505 enum ice_status status; 506 507 if (ice_is_safe_mode(pf)) 508 return; 509 510 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 511 if (status) 512 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 513 vsi->vsi_num, status); 514 } 515 516 /** 517 * ice_rss_clean - Delete RSS related VSI structures and configuration 518 * @vsi: the VSI being removed 519 */ 520 static void ice_rss_clean(struct ice_vsi *vsi) 521 { 522 struct ice_pf *pf = vsi->back; 523 struct device *dev; 524 525 dev = ice_pf_to_dev(pf); 526 527 if (vsi->rss_hkey_user) 528 devm_kfree(dev, vsi->rss_hkey_user); 529 if (vsi->rss_lut_user) 530 devm_kfree(dev, vsi->rss_lut_user); 531 532 ice_vsi_clean_rss_flow_fld(vsi); 533 /* remove RSS replay list */ 534 if (!ice_is_safe_mode(pf)) 535 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 536 } 537 538 /** 539 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 540 * @vsi: the VSI being configured 541 */ 542 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 543 { 544 struct ice_hw_common_caps *cap; 545 struct ice_pf *pf = vsi->back; 546 547 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 548 vsi->rss_size = 1; 549 return; 550 } 551 552 cap = &pf->hw.func_caps.common_cap; 553 switch (vsi->type) { 554 case ICE_VSI_PF: 555 /* PF VSI will inherit RSS instance of PF */ 556 vsi->rss_table_size = cap->rss_table_size; 557 vsi->rss_size = min_t(int, num_online_cpus(), 558 BIT(cap->rss_table_entry_width)); 559 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 560 break; 561 case ICE_VSI_VF: 562 /* VF VSI will gets a small RSS table 563 * For VSI_LUT, LUT size should be set to 64 bytes 564 */ 565 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 566 vsi->rss_size = min_t(int, num_online_cpus(), 567 BIT(cap->rss_table_entry_width)); 568 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 569 break; 570 case ICE_VSI_LB: 571 break; 572 default: 573 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", 574 vsi->type); 575 break; 576 } 577 } 578 579 /** 580 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 581 * @ctxt: the VSI context being set 582 * 583 * This initializes a default VSI context for all sections except the Queues. 584 */ 585 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 586 { 587 u32 table = 0; 588 589 memset(&ctxt->info, 0, sizeof(ctxt->info)); 590 /* VSI's should be allocated from shared pool */ 591 ctxt->alloc_from_pool = true; 592 /* Src pruning enabled by default */ 593 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 594 /* Traffic from VSI can be sent to LAN */ 595 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 596 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 597 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 598 * packets untagged/tagged. 599 */ 600 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 601 ICE_AQ_VSI_VLAN_MODE_M) >> 602 ICE_AQ_VSI_VLAN_MODE_S); 603 /* Have 1:1 UP mapping for both ingress/egress tables */ 604 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 605 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 606 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 607 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 608 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 609 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 610 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 611 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 612 ctxt->info.ingress_table = cpu_to_le32(table); 613 ctxt->info.egress_table = cpu_to_le32(table); 614 /* Have 1:1 UP mapping for outer to inner UP table */ 615 ctxt->info.outer_up_table = cpu_to_le32(table); 616 /* No Outer tag support outer_tag_flags remains to zero */ 617 } 618 619 /** 620 * ice_vsi_setup_q_map - Setup a VSI queue map 621 * @vsi: the VSI being configured 622 * @ctxt: VSI context structure 623 */ 624 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 625 { 626 u16 offset = 0, qmap = 0, tx_count = 0; 627 u16 qcount_tx = vsi->alloc_txq; 628 u16 qcount_rx = vsi->alloc_rxq; 629 u16 tx_numq_tc, rx_numq_tc; 630 u16 pow = 0, max_rss = 0; 631 bool ena_tc0 = false; 632 u8 netdev_tc = 0; 633 int i; 634 635 /* at least TC0 should be enabled by default */ 636 if (vsi->tc_cfg.numtc) { 637 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 638 ena_tc0 = true; 639 } else { 640 ena_tc0 = true; 641 } 642 643 if (ena_tc0) { 644 vsi->tc_cfg.numtc++; 645 vsi->tc_cfg.ena_tc |= 1; 646 } 647 648 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 649 if (!rx_numq_tc) 650 rx_numq_tc = 1; 651 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 652 if (!tx_numq_tc) 653 tx_numq_tc = 1; 654 655 /* TC mapping is a function of the number of Rx queues assigned to the 656 * VSI for each traffic class and the offset of these queues. 657 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 658 * queues allocated to TC0. No:of queues is a power-of-2. 659 * 660 * If TC is not enabled, the queue offset is set to 0, and allocate one 661 * queue, this way, traffic for the given TC will be sent to the default 662 * queue. 663 * 664 * Setup number and offset of Rx queues for all TCs for the VSI 665 */ 666 667 qcount_rx = rx_numq_tc; 668 669 /* qcount will change if RSS is enabled */ 670 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 671 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 672 if (vsi->type == ICE_VSI_PF) 673 max_rss = ICE_MAX_LG_RSS_QS; 674 else 675 max_rss = ICE_MAX_SMALL_RSS_QS; 676 qcount_rx = min_t(int, rx_numq_tc, max_rss); 677 if (!vsi->req_rxq) 678 qcount_rx = min_t(int, qcount_rx, 679 vsi->rss_size); 680 } 681 } 682 683 /* find the (rounded up) power-of-2 of qcount */ 684 pow = order_base_2(qcount_rx); 685 686 ice_for_each_traffic_class(i) { 687 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 688 /* TC is not enabled */ 689 vsi->tc_cfg.tc_info[i].qoffset = 0; 690 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 691 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 692 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 693 ctxt->info.tc_mapping[i] = 0; 694 continue; 695 } 696 697 /* TC is enabled */ 698 vsi->tc_cfg.tc_info[i].qoffset = offset; 699 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 700 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 701 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 702 703 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 704 ICE_AQ_VSI_TC_Q_OFFSET_M) | 705 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 706 ICE_AQ_VSI_TC_Q_NUM_M); 707 offset += qcount_rx; 708 tx_count += tx_numq_tc; 709 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 710 } 711 712 /* if offset is non-zero, means it is calculated correctly based on 713 * enabled TCs for a given VSI otherwise qcount_rx will always 714 * be correct and non-zero because it is based off - VSI's 715 * allocated Rx queues which is at least 1 (hence qcount_tx will be 716 * at least 1) 717 */ 718 if (offset) 719 vsi->num_rxq = offset; 720 else 721 vsi->num_rxq = qcount_rx; 722 723 vsi->num_txq = tx_count; 724 725 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 726 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 727 /* since there is a chance that num_rxq could have been changed 728 * in the above for loop, make num_txq equal to num_rxq. 729 */ 730 vsi->num_txq = vsi->num_rxq; 731 } 732 733 /* Rx queue mapping */ 734 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 735 /* q_mapping buffer holds the info for the first queue allocated for 736 * this VSI in the PF space and also the number of queues associated 737 * with this VSI. 738 */ 739 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 740 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 741 } 742 743 /** 744 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 745 * @ctxt: the VSI context being set 746 * @vsi: the VSI being configured 747 */ 748 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 749 { 750 u8 lut_type, hash_type; 751 struct device *dev; 752 struct ice_pf *pf; 753 754 pf = vsi->back; 755 dev = ice_pf_to_dev(pf); 756 757 switch (vsi->type) { 758 case ICE_VSI_PF: 759 /* PF VSI will inherit RSS instance of PF */ 760 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 761 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 762 break; 763 case ICE_VSI_VF: 764 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 765 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 766 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 767 break; 768 case ICE_VSI_LB: 769 dev_dbg(dev, "Unsupported VSI type %s\n", 770 ice_vsi_type_str(vsi->type)); 771 return; 772 default: 773 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 774 return; 775 } 776 777 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 778 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 779 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 780 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 781 } 782 783 /** 784 * ice_vsi_init - Create and initialize a VSI 785 * @vsi: the VSI being configured 786 * @init_vsi: is this call creating a VSI 787 * 788 * This initializes a VSI context depending on the VSI type to be added and 789 * passes it down to the add_vsi aq command to create a new VSI. 790 */ 791 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 792 { 793 struct ice_pf *pf = vsi->back; 794 struct ice_hw *hw = &pf->hw; 795 struct ice_vsi_ctx *ctxt; 796 struct device *dev; 797 int ret = 0; 798 799 dev = ice_pf_to_dev(pf); 800 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 801 if (!ctxt) 802 return -ENOMEM; 803 804 ctxt->info = vsi->info; 805 switch (vsi->type) { 806 case ICE_VSI_LB: 807 /* fall through */ 808 case ICE_VSI_PF: 809 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 810 break; 811 case ICE_VSI_VF: 812 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 813 /* VF number here is the absolute VF number (0-255) */ 814 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 815 break; 816 default: 817 ret = -ENODEV; 818 goto out; 819 } 820 821 ice_set_dflt_vsi_ctx(ctxt); 822 /* if the switch is in VEB mode, allow VSI loopback */ 823 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 824 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 825 826 /* Set LUT type and HASH type if RSS is enabled */ 827 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 828 ice_set_rss_vsi_ctx(ctxt, vsi); 829 /* if updating VSI context, make sure to set valid_section: 830 * to indicate which section of VSI context being updated 831 */ 832 if (!init_vsi) 833 ctxt->info.valid_sections |= 834 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 835 } 836 837 ctxt->info.sw_id = vsi->port_info->sw_id; 838 ice_vsi_setup_q_map(vsi, ctxt); 839 if (!init_vsi) /* means VSI being updated */ 840 /* must to indicate which section of VSI context are 841 * being modified 842 */ 843 ctxt->info.valid_sections |= 844 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 845 846 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 847 * respectively 848 */ 849 if (vsi->type == ICE_VSI_VF) { 850 ctxt->info.valid_sections |= 851 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 852 if (pf->vf[vsi->vf_id].spoofchk) { 853 ctxt->info.sec_flags |= 854 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 855 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 856 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 857 } else { 858 ctxt->info.sec_flags &= 859 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 860 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 861 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 862 } 863 } 864 865 /* Allow control frames out of main VSI */ 866 if (vsi->type == ICE_VSI_PF) { 867 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 868 ctxt->info.valid_sections |= 869 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 870 } 871 872 if (init_vsi) { 873 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 874 if (ret) { 875 dev_err(dev, "Add VSI failed, err %d\n", ret); 876 ret = -EIO; 877 goto out; 878 } 879 } else { 880 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 881 if (ret) { 882 dev_err(dev, "Update VSI failed, err %d\n", ret); 883 ret = -EIO; 884 goto out; 885 } 886 } 887 888 /* keep context for update VSI operations */ 889 vsi->info = ctxt->info; 890 891 /* record VSI number returned */ 892 vsi->vsi_num = ctxt->vsi_num; 893 894 out: 895 kfree(ctxt); 896 return ret; 897 } 898 899 /** 900 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 901 * @vsi: ptr to the VSI 902 * 903 * This should only be called after ice_vsi_alloc() which allocates the 904 * corresponding SW VSI structure and initializes num_queue_pairs for the 905 * newly allocated VSI. 906 * 907 * Returns 0 on success or negative on failure 908 */ 909 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 910 { 911 struct ice_pf *pf = vsi->back; 912 struct device *dev; 913 u16 num_q_vectors; 914 915 dev = ice_pf_to_dev(pf); 916 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 917 if (vsi->type == ICE_VSI_VF) 918 return 0; 919 920 if (vsi->base_vector) { 921 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 922 vsi->vsi_num, vsi->base_vector); 923 return -EEXIST; 924 } 925 926 num_q_vectors = vsi->num_q_vectors; 927 /* reserve slots from OS requested IRQs */ 928 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 929 vsi->idx); 930 if (vsi->base_vector < 0) { 931 dev_err(dev, "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 932 num_q_vectors, vsi->vsi_num, vsi->base_vector); 933 return -ENOENT; 934 } 935 pf->num_avail_sw_msix -= num_q_vectors; 936 937 return 0; 938 } 939 940 /** 941 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 942 * @vsi: the VSI having rings deallocated 943 */ 944 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 945 { 946 int i; 947 948 if (vsi->tx_rings) { 949 for (i = 0; i < vsi->alloc_txq; i++) { 950 if (vsi->tx_rings[i]) { 951 kfree_rcu(vsi->tx_rings[i], rcu); 952 vsi->tx_rings[i] = NULL; 953 } 954 } 955 } 956 if (vsi->rx_rings) { 957 for (i = 0; i < vsi->alloc_rxq; i++) { 958 if (vsi->rx_rings[i]) { 959 kfree_rcu(vsi->rx_rings[i], rcu); 960 vsi->rx_rings[i] = NULL; 961 } 962 } 963 } 964 } 965 966 /** 967 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 968 * @vsi: VSI which is having rings allocated 969 */ 970 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 971 { 972 struct ice_pf *pf = vsi->back; 973 struct device *dev; 974 int i; 975 976 dev = ice_pf_to_dev(pf); 977 /* Allocate Tx rings */ 978 for (i = 0; i < vsi->alloc_txq; i++) { 979 struct ice_ring *ring; 980 981 /* allocate with kzalloc(), free with kfree_rcu() */ 982 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 983 984 if (!ring) 985 goto err_out; 986 987 ring->q_index = i; 988 ring->reg_idx = vsi->txq_map[i]; 989 ring->ring_active = false; 990 ring->vsi = vsi; 991 ring->dev = dev; 992 ring->count = vsi->num_tx_desc; 993 vsi->tx_rings[i] = ring; 994 } 995 996 /* Allocate Rx rings */ 997 for (i = 0; i < vsi->alloc_rxq; i++) { 998 struct ice_ring *ring; 999 1000 /* allocate with kzalloc(), free with kfree_rcu() */ 1001 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1002 if (!ring) 1003 goto err_out; 1004 1005 ring->q_index = i; 1006 ring->reg_idx = vsi->rxq_map[i]; 1007 ring->ring_active = false; 1008 ring->vsi = vsi; 1009 ring->netdev = vsi->netdev; 1010 ring->dev = dev; 1011 ring->count = vsi->num_rx_desc; 1012 vsi->rx_rings[i] = ring; 1013 } 1014 1015 return 0; 1016 1017 err_out: 1018 ice_vsi_clear_rings(vsi); 1019 return -ENOMEM; 1020 } 1021 1022 /** 1023 * ice_vsi_manage_rss_lut - disable/enable RSS 1024 * @vsi: the VSI being changed 1025 * @ena: boolean value indicating if this is an enable or disable request 1026 * 1027 * In the event of disable request for RSS, this function will zero out RSS 1028 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1029 * LUT. 1030 */ 1031 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1032 { 1033 int err = 0; 1034 u8 *lut; 1035 1036 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1037 if (!lut) 1038 return -ENOMEM; 1039 1040 if (ena) { 1041 if (vsi->rss_lut_user) 1042 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1043 else 1044 ice_fill_rss_lut(lut, vsi->rss_table_size, 1045 vsi->rss_size); 1046 } 1047 1048 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1049 kfree(lut); 1050 return err; 1051 } 1052 1053 /** 1054 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1055 * @vsi: VSI to be configured 1056 */ 1057 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1058 { 1059 struct ice_aqc_get_set_rss_keys *key; 1060 struct ice_pf *pf = vsi->back; 1061 enum ice_status status; 1062 struct device *dev; 1063 int err = 0; 1064 u8 *lut; 1065 1066 dev = ice_pf_to_dev(pf); 1067 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1068 1069 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1070 if (!lut) 1071 return -ENOMEM; 1072 1073 if (vsi->rss_lut_user) 1074 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1075 else 1076 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1077 1078 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1079 vsi->rss_table_size); 1080 1081 if (status) { 1082 dev_err(dev, "set_rss_lut failed, error %d\n", status); 1083 err = -EIO; 1084 goto ice_vsi_cfg_rss_exit; 1085 } 1086 1087 key = kzalloc(sizeof(*key), GFP_KERNEL); 1088 if (!key) { 1089 err = -ENOMEM; 1090 goto ice_vsi_cfg_rss_exit; 1091 } 1092 1093 if (vsi->rss_hkey_user) 1094 memcpy(key, 1095 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1096 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1097 else 1098 netdev_rss_key_fill((void *)key, 1099 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1100 1101 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1102 1103 if (status) { 1104 dev_err(dev, "set_rss_key failed, error %d\n", status); 1105 err = -EIO; 1106 } 1107 1108 kfree(key); 1109 ice_vsi_cfg_rss_exit: 1110 kfree(lut); 1111 return err; 1112 } 1113 1114 /** 1115 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1116 * @vsi: VSI to be configured 1117 * 1118 * This function will only be called during the VF VSI setup. Upon successful 1119 * completion of package download, this function will configure default RSS 1120 * input sets for VF VSI. 1121 */ 1122 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1123 { 1124 struct ice_pf *pf = vsi->back; 1125 enum ice_status status; 1126 struct device *dev; 1127 1128 dev = ice_pf_to_dev(pf); 1129 if (ice_is_safe_mode(pf)) { 1130 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1131 vsi->vsi_num); 1132 return; 1133 } 1134 1135 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1136 if (status) 1137 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1138 vsi->vsi_num, status); 1139 } 1140 1141 /** 1142 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1143 * @vsi: VSI to be configured 1144 * 1145 * This function will only be called after successful download package call 1146 * during initialization of PF. Since the downloaded package will erase the 1147 * RSS section, this function will configure RSS input sets for different 1148 * flow types. The last profile added has the highest priority, therefore 2 1149 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1150 * (i.e. IPv4 src/dst TCP src/dst port). 1151 */ 1152 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1153 { 1154 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1155 struct ice_pf *pf = vsi->back; 1156 struct ice_hw *hw = &pf->hw; 1157 enum ice_status status; 1158 struct device *dev; 1159 1160 dev = ice_pf_to_dev(pf); 1161 if (ice_is_safe_mode(pf)) { 1162 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1163 vsi_num); 1164 return; 1165 } 1166 /* configure RSS for IPv4 with input set IP src/dst */ 1167 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1168 ICE_FLOW_SEG_HDR_IPV4); 1169 if (status) 1170 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1171 vsi_num, status); 1172 1173 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1174 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1175 ICE_FLOW_SEG_HDR_IPV6); 1176 if (status) 1177 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1178 vsi_num, status); 1179 1180 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1181 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1182 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1183 if (status) 1184 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1185 vsi_num, status); 1186 1187 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1188 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1189 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1190 if (status) 1191 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1192 vsi_num, status); 1193 1194 /* configure RSS for sctp4 with input set IP src/dst */ 1195 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1196 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1197 if (status) 1198 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1199 vsi_num, status); 1200 1201 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1202 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1203 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1204 if (status) 1205 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1206 vsi_num, status); 1207 1208 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1209 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1210 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1211 if (status) 1212 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1213 vsi_num, status); 1214 1215 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1216 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1217 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1218 if (status) 1219 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1220 vsi_num, status); 1221 } 1222 1223 /** 1224 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1225 * @vsi: the VSI to be forwarded to 1226 * @add_list: pointer to the list which contains MAC filter entries 1227 * @macaddr: the MAC address to be added. 1228 * 1229 * Adds MAC address filter entry to the temp list 1230 * 1231 * Returns 0 on success or ENOMEM on failure. 1232 */ 1233 int 1234 ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1235 const u8 *macaddr) 1236 { 1237 struct ice_fltr_list_entry *tmp; 1238 struct ice_pf *pf = vsi->back; 1239 1240 tmp = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*tmp), GFP_ATOMIC); 1241 if (!tmp) 1242 return -ENOMEM; 1243 1244 tmp->fltr_info.flag = ICE_FLTR_TX; 1245 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1246 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1247 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1248 tmp->fltr_info.vsi_handle = vsi->idx; 1249 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1250 1251 INIT_LIST_HEAD(&tmp->list_entry); 1252 list_add(&tmp->list_entry, add_list); 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1259 * @vsi: the VSI to be updated 1260 */ 1261 void ice_update_eth_stats(struct ice_vsi *vsi) 1262 { 1263 struct ice_eth_stats *prev_es, *cur_es; 1264 struct ice_hw *hw = &vsi->back->hw; 1265 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1266 1267 prev_es = &vsi->eth_stats_prev; 1268 cur_es = &vsi->eth_stats; 1269 1270 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1271 &prev_es->rx_bytes, &cur_es->rx_bytes); 1272 1273 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1274 &prev_es->rx_unicast, &cur_es->rx_unicast); 1275 1276 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1277 &prev_es->rx_multicast, &cur_es->rx_multicast); 1278 1279 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1280 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1281 1282 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1283 &prev_es->rx_discards, &cur_es->rx_discards); 1284 1285 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1286 &prev_es->tx_bytes, &cur_es->tx_bytes); 1287 1288 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1289 &prev_es->tx_unicast, &cur_es->tx_unicast); 1290 1291 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1292 &prev_es->tx_multicast, &cur_es->tx_multicast); 1293 1294 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1295 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1296 1297 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1298 &prev_es->tx_errors, &cur_es->tx_errors); 1299 1300 vsi->stat_offsets_loaded = true; 1301 } 1302 1303 /** 1304 * ice_free_fltr_list - free filter lists helper 1305 * @dev: pointer to the device struct 1306 * @h: pointer to the list head to be freed 1307 * 1308 * Helper function to free filter lists previously created using 1309 * ice_add_mac_to_list 1310 */ 1311 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1312 { 1313 struct ice_fltr_list_entry *e, *tmp; 1314 1315 list_for_each_entry_safe(e, tmp, h, list_entry) { 1316 list_del(&e->list_entry); 1317 devm_kfree(dev, e); 1318 } 1319 } 1320 1321 /** 1322 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1323 * @vsi: the VSI being configured 1324 * @vid: VLAN ID to be added 1325 */ 1326 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1327 { 1328 struct ice_fltr_list_entry *tmp; 1329 struct ice_pf *pf = vsi->back; 1330 LIST_HEAD(tmp_add_list); 1331 enum ice_status status; 1332 struct device *dev; 1333 int err = 0; 1334 1335 dev = ice_pf_to_dev(pf); 1336 tmp = devm_kzalloc(dev, sizeof(*tmp), GFP_KERNEL); 1337 if (!tmp) 1338 return -ENOMEM; 1339 1340 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1341 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1342 tmp->fltr_info.flag = ICE_FLTR_TX; 1343 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1344 tmp->fltr_info.vsi_handle = vsi->idx; 1345 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1346 1347 INIT_LIST_HEAD(&tmp->list_entry); 1348 list_add(&tmp->list_entry, &tmp_add_list); 1349 1350 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1351 if (status) { 1352 err = -ENODEV; 1353 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1354 vsi->vsi_num); 1355 } 1356 1357 ice_free_fltr_list(dev, &tmp_add_list); 1358 return err; 1359 } 1360 1361 /** 1362 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1363 * @vsi: the VSI being configured 1364 * @vid: VLAN ID to be removed 1365 * 1366 * Returns 0 on success and negative on failure 1367 */ 1368 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1369 { 1370 struct ice_fltr_list_entry *list; 1371 struct ice_pf *pf = vsi->back; 1372 LIST_HEAD(tmp_add_list); 1373 enum ice_status status; 1374 struct device *dev; 1375 int err = 0; 1376 1377 dev = ice_pf_to_dev(pf); 1378 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1379 if (!list) 1380 return -ENOMEM; 1381 1382 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1383 list->fltr_info.vsi_handle = vsi->idx; 1384 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1385 list->fltr_info.l_data.vlan.vlan_id = vid; 1386 list->fltr_info.flag = ICE_FLTR_TX; 1387 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1388 1389 INIT_LIST_HEAD(&list->list_entry); 1390 list_add(&list->list_entry, &tmp_add_list); 1391 1392 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1393 if (status == ICE_ERR_DOES_NOT_EXIST) { 1394 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1395 vid, vsi->vsi_num, status); 1396 } else if (status) { 1397 dev_err(dev, "Error removing VLAN %d on vsi %i error: %d\n", 1398 vid, vsi->vsi_num, status); 1399 err = -EIO; 1400 } 1401 1402 ice_free_fltr_list(dev, &tmp_add_list); 1403 return err; 1404 } 1405 1406 /** 1407 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1408 * @vsi: VSI 1409 */ 1410 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1411 { 1412 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1413 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1414 vsi->rx_buf_len = ICE_RXBUF_2048; 1415 #if (PAGE_SIZE < 8192) 1416 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1417 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1418 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1419 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1420 #endif 1421 } else { 1422 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1423 #if (PAGE_SIZE < 8192) 1424 vsi->rx_buf_len = ICE_RXBUF_3072; 1425 #else 1426 vsi->rx_buf_len = ICE_RXBUF_2048; 1427 #endif 1428 } 1429 } 1430 1431 /** 1432 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1433 * @vsi: the VSI being configured 1434 * 1435 * Return 0 on success and a negative value on error 1436 * Configure the Rx VSI for operation. 1437 */ 1438 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1439 { 1440 u16 i; 1441 1442 if (vsi->type == ICE_VSI_VF) 1443 goto setup_rings; 1444 1445 ice_vsi_cfg_frame_size(vsi); 1446 setup_rings: 1447 /* set up individual rings */ 1448 for (i = 0; i < vsi->num_rxq; i++) { 1449 int err; 1450 1451 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1452 if (err) { 1453 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1454 i, err); 1455 return err; 1456 } 1457 } 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1464 * @vsi: the VSI being configured 1465 * @rings: Tx ring array to be configured 1466 * 1467 * Return 0 on success and a negative value on error 1468 * Configure the Tx VSI for operation. 1469 */ 1470 static int 1471 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1472 { 1473 struct ice_aqc_add_tx_qgrp *qg_buf; 1474 u16 q_idx = 0; 1475 int err = 0; 1476 1477 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1478 if (!qg_buf) 1479 return -ENOMEM; 1480 1481 qg_buf->num_txqs = 1; 1482 1483 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1484 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1485 if (err) 1486 goto err_cfg_txqs; 1487 } 1488 1489 err_cfg_txqs: 1490 kfree(qg_buf); 1491 return err; 1492 } 1493 1494 /** 1495 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1496 * @vsi: the VSI being configured 1497 * 1498 * Return 0 on success and a negative value on error 1499 * Configure the Tx VSI for operation. 1500 */ 1501 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1502 { 1503 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1504 } 1505 1506 /** 1507 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1508 * @vsi: the VSI being configured 1509 * 1510 * Return 0 on success and a negative value on error 1511 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1512 */ 1513 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1514 { 1515 int ret; 1516 int i; 1517 1518 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1519 if (ret) 1520 return ret; 1521 1522 for (i = 0; i < vsi->num_xdp_txq; i++) 1523 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1524 1525 return ret; 1526 } 1527 1528 /** 1529 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1530 * @intrl: interrupt rate limit in usecs 1531 * @gran: interrupt rate limit granularity in usecs 1532 * 1533 * This function converts a decimal interrupt rate limit in usecs to the format 1534 * expected by firmware. 1535 */ 1536 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1537 { 1538 u32 val = intrl / gran; 1539 1540 if (val) 1541 return val | GLINT_RATE_INTRL_ENA_M; 1542 return 0; 1543 } 1544 1545 /** 1546 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1547 * @vsi: the VSI being configured 1548 * 1549 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1550 * for the VF VSI. 1551 */ 1552 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1553 { 1554 struct ice_pf *pf = vsi->back; 1555 struct ice_hw *hw = &pf->hw; 1556 u32 txq = 0, rxq = 0; 1557 int i, q; 1558 1559 for (i = 0; i < vsi->num_q_vectors; i++) { 1560 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1561 u16 reg_idx = q_vector->reg_idx; 1562 1563 ice_cfg_itr(hw, q_vector); 1564 1565 wr32(hw, GLINT_RATE(reg_idx), 1566 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1567 1568 /* Both Transmit Queue Interrupt Cause Control register 1569 * and Receive Queue Interrupt Cause control register 1570 * expects MSIX_INDX field to be the vector index 1571 * within the function space and not the absolute 1572 * vector index across PF or across device. 1573 * For SR-IOV VF VSIs queue vector index always starts 1574 * with 1 since first vector index(0) is used for OICR 1575 * in VF space. Since VMDq and other PF VSIs are within 1576 * the PF function space, use the vector index that is 1577 * tracked for this PF. 1578 */ 1579 for (q = 0; q < q_vector->num_ring_tx; q++) { 1580 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1581 q_vector->tx.itr_idx); 1582 txq++; 1583 } 1584 1585 for (q = 0; q < q_vector->num_ring_rx; q++) { 1586 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1587 q_vector->rx.itr_idx); 1588 rxq++; 1589 } 1590 } 1591 } 1592 1593 /** 1594 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1595 * @vsi: the VSI being changed 1596 */ 1597 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1598 { 1599 struct ice_hw *hw = &vsi->back->hw; 1600 struct ice_vsi_ctx *ctxt; 1601 enum ice_status status; 1602 int ret = 0; 1603 1604 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1605 if (!ctxt) 1606 return -ENOMEM; 1607 1608 /* Here we are configuring the VSI to let the driver add VLAN tags by 1609 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1610 * insertion happens in the Tx hot path, in ice_tx_map. 1611 */ 1612 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1613 1614 /* Preserve existing VLAN strip setting */ 1615 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1616 ICE_AQ_VSI_VLAN_EMOD_M); 1617 1618 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1619 1620 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1621 if (status) { 1622 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %d aq_err %d\n", 1623 status, hw->adminq.sq_last_status); 1624 ret = -EIO; 1625 goto out; 1626 } 1627 1628 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1629 out: 1630 kfree(ctxt); 1631 return ret; 1632 } 1633 1634 /** 1635 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1636 * @vsi: the VSI being changed 1637 * @ena: boolean value indicating if this is a enable or disable request 1638 */ 1639 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1640 { 1641 struct ice_hw *hw = &vsi->back->hw; 1642 struct ice_vsi_ctx *ctxt; 1643 enum ice_status status; 1644 int ret = 0; 1645 1646 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1647 if (!ctxt) 1648 return -ENOMEM; 1649 1650 /* Here we are configuring what the VSI should do with the VLAN tag in 1651 * the Rx packet. We can either leave the tag in the packet or put it in 1652 * the Rx descriptor. 1653 */ 1654 if (ena) 1655 /* Strip VLAN tag from Rx packet and put it in the desc */ 1656 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1657 else 1658 /* Disable stripping. Leave tag in packet */ 1659 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1660 1661 /* Allow all packets untagged/tagged */ 1662 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1663 1664 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1665 1666 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1667 if (status) { 1668 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1669 ena, status, hw->adminq.sq_last_status); 1670 ret = -EIO; 1671 goto out; 1672 } 1673 1674 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1675 out: 1676 kfree(ctxt); 1677 return ret; 1678 } 1679 1680 /** 1681 * ice_vsi_start_rx_rings - start VSI's Rx rings 1682 * @vsi: the VSI whose rings are to be started 1683 * 1684 * Returns 0 on success and a negative value on error 1685 */ 1686 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1687 { 1688 return ice_vsi_ctrl_rx_rings(vsi, true); 1689 } 1690 1691 /** 1692 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1693 * @vsi: the VSI 1694 * 1695 * Returns 0 on success and a negative value on error 1696 */ 1697 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1698 { 1699 return ice_vsi_ctrl_rx_rings(vsi, false); 1700 } 1701 1702 /** 1703 * ice_vsi_stop_tx_rings - Disable Tx rings 1704 * @vsi: the VSI being configured 1705 * @rst_src: reset source 1706 * @rel_vmvf_num: Relative ID of VF/VM 1707 * @rings: Tx ring array to be stopped 1708 */ 1709 static int 1710 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1711 u16 rel_vmvf_num, struct ice_ring **rings) 1712 { 1713 u16 q_idx; 1714 1715 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1716 return -EINVAL; 1717 1718 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1719 struct ice_txq_meta txq_meta = { }; 1720 int status; 1721 1722 if (!rings || !rings[q_idx]) 1723 return -EINVAL; 1724 1725 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1726 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1727 rings[q_idx], &txq_meta); 1728 1729 if (status) 1730 return status; 1731 } 1732 1733 return 0; 1734 } 1735 1736 /** 1737 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1738 * @vsi: the VSI being configured 1739 * @rst_src: reset source 1740 * @rel_vmvf_num: Relative ID of VF/VM 1741 */ 1742 int 1743 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1744 u16 rel_vmvf_num) 1745 { 1746 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1747 } 1748 1749 /** 1750 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1751 * @vsi: the VSI being configured 1752 */ 1753 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1754 { 1755 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1756 } 1757 1758 /** 1759 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1760 * @vsi: VSI to enable or disable VLAN pruning on 1761 * @ena: set to true to enable VLAN pruning and false to disable it 1762 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1763 * 1764 * returns 0 if VSI is updated, negative otherwise 1765 */ 1766 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1767 { 1768 struct ice_vsi_ctx *ctxt; 1769 struct ice_pf *pf; 1770 int status; 1771 1772 if (!vsi) 1773 return -EINVAL; 1774 1775 pf = vsi->back; 1776 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1777 if (!ctxt) 1778 return -ENOMEM; 1779 1780 ctxt->info = vsi->info; 1781 1782 if (ena) 1783 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1784 else 1785 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1786 1787 if (!vlan_promisc) 1788 ctxt->info.valid_sections = 1789 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 1790 1791 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1792 if (status) { 1793 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1794 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1795 pf->hw.adminq.sq_last_status); 1796 goto err_out; 1797 } 1798 1799 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1800 1801 kfree(ctxt); 1802 return 0; 1803 1804 err_out: 1805 kfree(ctxt); 1806 return -EIO; 1807 } 1808 1809 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1810 { 1811 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1812 1813 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1814 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1815 } 1816 1817 /** 1818 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1819 * @vsi: VSI to set the q_vectors register index on 1820 */ 1821 static int 1822 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1823 { 1824 u16 i; 1825 1826 if (!vsi || !vsi->q_vectors) 1827 return -EINVAL; 1828 1829 ice_for_each_q_vector(vsi, i) { 1830 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1831 1832 if (!q_vector) { 1833 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 1834 i, vsi->vsi_num); 1835 goto clear_reg_idx; 1836 } 1837 1838 if (vsi->type == ICE_VSI_VF) { 1839 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1840 1841 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1842 } else { 1843 q_vector->reg_idx = 1844 q_vector->v_idx + vsi->base_vector; 1845 } 1846 } 1847 1848 return 0; 1849 1850 clear_reg_idx: 1851 ice_for_each_q_vector(vsi, i) { 1852 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1853 1854 if (q_vector) 1855 q_vector->reg_idx = 0; 1856 } 1857 1858 return -EINVAL; 1859 } 1860 1861 /** 1862 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1863 * @vsi: the VSI being configured 1864 * @add_rule: boolean value to add or remove ethertype filter rule 1865 */ 1866 static void 1867 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 1868 { 1869 struct ice_fltr_list_entry *list; 1870 struct ice_pf *pf = vsi->back; 1871 LIST_HEAD(tmp_add_list); 1872 enum ice_status status; 1873 struct device *dev; 1874 1875 dev = ice_pf_to_dev(pf); 1876 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1877 if (!list) 1878 return; 1879 1880 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1881 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1882 list->fltr_info.flag = ICE_FLTR_TX; 1883 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1884 list->fltr_info.vsi_handle = vsi->idx; 1885 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 1886 1887 INIT_LIST_HEAD(&list->list_entry); 1888 list_add(&list->list_entry, &tmp_add_list); 1889 1890 if (add_rule) 1891 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1892 else 1893 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1894 1895 if (status) 1896 dev_err(dev, "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 1897 vsi->vsi_num, status); 1898 1899 ice_free_fltr_list(dev, &tmp_add_list); 1900 } 1901 1902 /** 1903 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 1904 * @vsi: the VSI being configured 1905 * @tx: bool to determine Tx or Rx rule 1906 * @create: bool to determine create or remove Rule 1907 */ 1908 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 1909 { 1910 struct ice_fltr_list_entry *list; 1911 struct ice_pf *pf = vsi->back; 1912 LIST_HEAD(tmp_add_list); 1913 enum ice_status status; 1914 struct device *dev; 1915 1916 dev = ice_pf_to_dev(pf); 1917 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1918 if (!list) 1919 return; 1920 1921 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1922 list->fltr_info.vsi_handle = vsi->idx; 1923 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 1924 1925 if (tx) { 1926 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1927 list->fltr_info.flag = ICE_FLTR_TX; 1928 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1929 } else { 1930 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1931 list->fltr_info.flag = ICE_FLTR_RX; 1932 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 1933 } 1934 1935 INIT_LIST_HEAD(&list->list_entry); 1936 list_add(&list->list_entry, &tmp_add_list); 1937 1938 if (create) 1939 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1940 else 1941 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1942 1943 if (status) 1944 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 1945 create ? "adding" : "removing", tx ? "TX" : "RX", 1946 vsi->vsi_num, status); 1947 1948 ice_free_fltr_list(dev, &tmp_add_list); 1949 } 1950 1951 /** 1952 * ice_vsi_setup - Set up a VSI by a given type 1953 * @pf: board private structure 1954 * @pi: pointer to the port_info instance 1955 * @type: VSI type 1956 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 1957 * used only for ICE_VSI_VF VSI type. For other VSI types, should 1958 * fill-in ICE_INVAL_VFID as input. 1959 * 1960 * This allocates the sw VSI structure and its queue resources. 1961 * 1962 * Returns pointer to the successfully allocated and configured VSI sw struct on 1963 * success, NULL on failure. 1964 */ 1965 struct ice_vsi * 1966 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 1967 enum ice_vsi_type type, u16 vf_id) 1968 { 1969 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1970 struct device *dev = ice_pf_to_dev(pf); 1971 enum ice_status status; 1972 struct ice_vsi *vsi; 1973 int ret, i; 1974 1975 if (type == ICE_VSI_VF) 1976 vsi = ice_vsi_alloc(pf, type, vf_id); 1977 else 1978 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 1979 1980 if (!vsi) { 1981 dev_err(dev, "could not allocate VSI\n"); 1982 return NULL; 1983 } 1984 1985 vsi->port_info = pi; 1986 vsi->vsw = pf->first_sw; 1987 if (vsi->type == ICE_VSI_PF) 1988 vsi->ethtype = ETH_P_PAUSE; 1989 1990 if (vsi->type == ICE_VSI_VF) 1991 vsi->vf_id = vf_id; 1992 1993 if (ice_vsi_get_qs(vsi)) { 1994 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 1995 vsi->idx); 1996 goto unroll_get_qs; 1997 } 1998 1999 /* set RSS capabilities */ 2000 ice_vsi_set_rss_params(vsi); 2001 2002 /* set TC configuration */ 2003 ice_vsi_set_tc_cfg(vsi); 2004 2005 /* create the VSI */ 2006 ret = ice_vsi_init(vsi, true); 2007 if (ret) 2008 goto unroll_get_qs; 2009 2010 switch (vsi->type) { 2011 case ICE_VSI_PF: 2012 ret = ice_vsi_alloc_q_vectors(vsi); 2013 if (ret) 2014 goto unroll_vsi_init; 2015 2016 ret = ice_vsi_setup_vector_base(vsi); 2017 if (ret) 2018 goto unroll_alloc_q_vector; 2019 2020 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2021 if (ret) 2022 goto unroll_vector_base; 2023 2024 ret = ice_vsi_alloc_rings(vsi); 2025 if (ret) 2026 goto unroll_vector_base; 2027 2028 ice_vsi_map_rings_to_vectors(vsi); 2029 2030 /* Do not exit if configuring RSS had an issue, at least 2031 * receive traffic on first queue. Hence no need to capture 2032 * return value 2033 */ 2034 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2035 ice_vsi_cfg_rss_lut_key(vsi); 2036 ice_vsi_set_rss_flow_fld(vsi); 2037 } 2038 break; 2039 case ICE_VSI_VF: 2040 /* VF driver will take care of creating netdev for this type and 2041 * map queues to vectors through Virtchnl, PF driver only 2042 * creates a VSI and corresponding structures for bookkeeping 2043 * purpose 2044 */ 2045 ret = ice_vsi_alloc_q_vectors(vsi); 2046 if (ret) 2047 goto unroll_vsi_init; 2048 2049 ret = ice_vsi_alloc_rings(vsi); 2050 if (ret) 2051 goto unroll_alloc_q_vector; 2052 2053 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2054 if (ret) 2055 goto unroll_vector_base; 2056 2057 /* Do not exit if configuring RSS had an issue, at least 2058 * receive traffic on first queue. Hence no need to capture 2059 * return value 2060 */ 2061 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2062 ice_vsi_cfg_rss_lut_key(vsi); 2063 ice_vsi_set_vf_rss_flow_fld(vsi); 2064 } 2065 break; 2066 case ICE_VSI_LB: 2067 ret = ice_vsi_alloc_rings(vsi); 2068 if (ret) 2069 goto unroll_vsi_init; 2070 break; 2071 default: 2072 /* clean up the resources and exit */ 2073 goto unroll_vsi_init; 2074 } 2075 2076 /* configure VSI nodes based on number of queues and TC's */ 2077 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2078 max_txqs[i] = vsi->alloc_txq; 2079 2080 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2081 max_txqs); 2082 if (status) { 2083 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2084 vsi->vsi_num, status); 2085 goto unroll_vector_base; 2086 } 2087 2088 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2089 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2090 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2091 * The rule is added once for PF VSI in order to create appropriate 2092 * recipe, since VSI/VSI list is ignored with drop action... 2093 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2094 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2095 * settings in the HW. 2096 */ 2097 if (!ice_is_safe_mode(pf)) 2098 if (vsi->type == ICE_VSI_PF) { 2099 ice_vsi_add_rem_eth_mac(vsi, true); 2100 2101 /* Tx LLDP packets */ 2102 ice_cfg_sw_lldp(vsi, true, true); 2103 } 2104 2105 return vsi; 2106 2107 unroll_vector_base: 2108 /* reclaim SW interrupts back to the common pool */ 2109 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2110 pf->num_avail_sw_msix += vsi->num_q_vectors; 2111 unroll_alloc_q_vector: 2112 ice_vsi_free_q_vectors(vsi); 2113 unroll_vsi_init: 2114 ice_vsi_delete(vsi); 2115 unroll_get_qs: 2116 ice_vsi_put_qs(vsi); 2117 ice_vsi_clear(vsi); 2118 2119 return NULL; 2120 } 2121 2122 /** 2123 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2124 * @vsi: the VSI being cleaned up 2125 */ 2126 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2127 { 2128 struct ice_pf *pf = vsi->back; 2129 struct ice_hw *hw = &pf->hw; 2130 u32 txq = 0; 2131 u32 rxq = 0; 2132 int i, q; 2133 2134 for (i = 0; i < vsi->num_q_vectors; i++) { 2135 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2136 u16 reg_idx = q_vector->reg_idx; 2137 2138 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2139 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2140 for (q = 0; q < q_vector->num_ring_tx; q++) { 2141 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2142 if (ice_is_xdp_ena_vsi(vsi)) { 2143 u32 xdp_txq = txq + vsi->num_xdp_txq; 2144 2145 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2146 } 2147 txq++; 2148 } 2149 2150 for (q = 0; q < q_vector->num_ring_rx; q++) { 2151 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2152 rxq++; 2153 } 2154 } 2155 2156 ice_flush(hw); 2157 } 2158 2159 /** 2160 * ice_vsi_free_irq - Free the IRQ association with the OS 2161 * @vsi: the VSI being configured 2162 */ 2163 void ice_vsi_free_irq(struct ice_vsi *vsi) 2164 { 2165 struct ice_pf *pf = vsi->back; 2166 int base = vsi->base_vector; 2167 int i; 2168 2169 if (!vsi->q_vectors || !vsi->irqs_ready) 2170 return; 2171 2172 ice_vsi_release_msix(vsi); 2173 if (vsi->type == ICE_VSI_VF) 2174 return; 2175 2176 vsi->irqs_ready = false; 2177 ice_for_each_q_vector(vsi, i) { 2178 u16 vector = i + base; 2179 int irq_num; 2180 2181 irq_num = pf->msix_entries[vector].vector; 2182 2183 /* free only the irqs that were actually requested */ 2184 if (!vsi->q_vectors[i] || 2185 !(vsi->q_vectors[i]->num_ring_tx || 2186 vsi->q_vectors[i]->num_ring_rx)) 2187 continue; 2188 2189 /* clear the affinity notifier in the IRQ descriptor */ 2190 irq_set_affinity_notifier(irq_num, NULL); 2191 2192 /* clear the affinity_mask in the IRQ descriptor */ 2193 irq_set_affinity_hint(irq_num, NULL); 2194 synchronize_irq(irq_num); 2195 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2196 } 2197 } 2198 2199 /** 2200 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2201 * @vsi: the VSI having resources freed 2202 */ 2203 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2204 { 2205 int i; 2206 2207 if (!vsi->tx_rings) 2208 return; 2209 2210 ice_for_each_txq(vsi, i) 2211 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2212 ice_free_tx_ring(vsi->tx_rings[i]); 2213 } 2214 2215 /** 2216 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2217 * @vsi: the VSI having resources freed 2218 */ 2219 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2220 { 2221 int i; 2222 2223 if (!vsi->rx_rings) 2224 return; 2225 2226 ice_for_each_rxq(vsi, i) 2227 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2228 ice_free_rx_ring(vsi->rx_rings[i]); 2229 } 2230 2231 /** 2232 * ice_vsi_close - Shut down a VSI 2233 * @vsi: the VSI being shut down 2234 */ 2235 void ice_vsi_close(struct ice_vsi *vsi) 2236 { 2237 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2238 ice_down(vsi); 2239 2240 ice_vsi_free_irq(vsi); 2241 ice_vsi_free_tx_rings(vsi); 2242 ice_vsi_free_rx_rings(vsi); 2243 } 2244 2245 /** 2246 * ice_ena_vsi - resume a VSI 2247 * @vsi: the VSI being resume 2248 * @locked: is the rtnl_lock already held 2249 */ 2250 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2251 { 2252 int err = 0; 2253 2254 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2255 return 0; 2256 2257 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2258 2259 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2260 if (netif_running(vsi->netdev)) { 2261 if (!locked) 2262 rtnl_lock(); 2263 2264 err = ice_open(vsi->netdev); 2265 2266 if (!locked) 2267 rtnl_unlock(); 2268 } 2269 } 2270 2271 return err; 2272 } 2273 2274 /** 2275 * ice_dis_vsi - pause a VSI 2276 * @vsi: the VSI being paused 2277 * @locked: is the rtnl_lock already held 2278 */ 2279 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2280 { 2281 if (test_bit(__ICE_DOWN, vsi->state)) 2282 return; 2283 2284 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2285 2286 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2287 if (netif_running(vsi->netdev)) { 2288 if (!locked) 2289 rtnl_lock(); 2290 2291 ice_stop(vsi->netdev); 2292 2293 if (!locked) 2294 rtnl_unlock(); 2295 } else { 2296 ice_vsi_close(vsi); 2297 } 2298 } 2299 } 2300 2301 /** 2302 * ice_free_res - free a block of resources 2303 * @res: pointer to the resource 2304 * @index: starting index previously returned by ice_get_res 2305 * @id: identifier to track owner 2306 * 2307 * Returns number of resources freed 2308 */ 2309 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2310 { 2311 int count = 0; 2312 int i; 2313 2314 if (!res || index >= res->end) 2315 return -EINVAL; 2316 2317 id |= ICE_RES_VALID_BIT; 2318 for (i = index; i < res->end && res->list[i] == id; i++) { 2319 res->list[i] = 0; 2320 count++; 2321 } 2322 2323 return count; 2324 } 2325 2326 /** 2327 * ice_search_res - Search the tracker for a block of resources 2328 * @res: pointer to the resource 2329 * @needed: size of the block needed 2330 * @id: identifier to track owner 2331 * 2332 * Returns the base item index of the block, or -ENOMEM for error 2333 */ 2334 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2335 { 2336 int start = 0, end = 0; 2337 2338 if (needed > res->end) 2339 return -ENOMEM; 2340 2341 id |= ICE_RES_VALID_BIT; 2342 2343 do { 2344 /* skip already allocated entries */ 2345 if (res->list[end++] & ICE_RES_VALID_BIT) { 2346 start = end; 2347 if ((start + needed) > res->end) 2348 break; 2349 } 2350 2351 if (end == (start + needed)) { 2352 int i = start; 2353 2354 /* there was enough, so assign it to the requestor */ 2355 while (i != end) 2356 res->list[i++] = id; 2357 2358 return start; 2359 } 2360 } while (end < res->end); 2361 2362 return -ENOMEM; 2363 } 2364 2365 /** 2366 * ice_get_res - get a block of resources 2367 * @pf: board private structure 2368 * @res: pointer to the resource 2369 * @needed: size of the block needed 2370 * @id: identifier to track owner 2371 * 2372 * Returns the base item index of the block, or negative for error 2373 */ 2374 int 2375 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2376 { 2377 if (!res || !pf) 2378 return -EINVAL; 2379 2380 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2381 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 2382 needed, res->num_entries, id); 2383 return -EINVAL; 2384 } 2385 2386 return ice_search_res(res, needed, id); 2387 } 2388 2389 /** 2390 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2391 * @vsi: the VSI being un-configured 2392 */ 2393 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2394 { 2395 int base = vsi->base_vector; 2396 struct ice_pf *pf = vsi->back; 2397 struct ice_hw *hw = &pf->hw; 2398 u32 val; 2399 int i; 2400 2401 /* disable interrupt causation from each queue */ 2402 if (vsi->tx_rings) { 2403 ice_for_each_txq(vsi, i) { 2404 if (vsi->tx_rings[i]) { 2405 u16 reg; 2406 2407 reg = vsi->tx_rings[i]->reg_idx; 2408 val = rd32(hw, QINT_TQCTL(reg)); 2409 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2410 wr32(hw, QINT_TQCTL(reg), val); 2411 } 2412 } 2413 } 2414 2415 if (vsi->rx_rings) { 2416 ice_for_each_rxq(vsi, i) { 2417 if (vsi->rx_rings[i]) { 2418 u16 reg; 2419 2420 reg = vsi->rx_rings[i]->reg_idx; 2421 val = rd32(hw, QINT_RQCTL(reg)); 2422 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2423 wr32(hw, QINT_RQCTL(reg), val); 2424 } 2425 } 2426 } 2427 2428 /* disable each interrupt */ 2429 ice_for_each_q_vector(vsi, i) { 2430 if (!vsi->q_vectors[i]) 2431 continue; 2432 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2433 } 2434 2435 ice_flush(hw); 2436 2437 /* don't call synchronize_irq() for VF's from the host */ 2438 if (vsi->type == ICE_VSI_VF) 2439 return; 2440 2441 ice_for_each_q_vector(vsi, i) 2442 synchronize_irq(pf->msix_entries[i + base].vector); 2443 } 2444 2445 /** 2446 * ice_napi_del - Remove NAPI handler for the VSI 2447 * @vsi: VSI for which NAPI handler is to be removed 2448 */ 2449 void ice_napi_del(struct ice_vsi *vsi) 2450 { 2451 int v_idx; 2452 2453 if (!vsi->netdev) 2454 return; 2455 2456 ice_for_each_q_vector(vsi, v_idx) 2457 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2458 } 2459 2460 /** 2461 * ice_vsi_release - Delete a VSI and free its resources 2462 * @vsi: the VSI being removed 2463 * 2464 * Returns 0 on success or < 0 on error 2465 */ 2466 int ice_vsi_release(struct ice_vsi *vsi) 2467 { 2468 struct ice_pf *pf; 2469 2470 if (!vsi->back) 2471 return -ENODEV; 2472 pf = vsi->back; 2473 2474 /* do not unregister while driver is in the reset recovery pending 2475 * state. Since reset/rebuild happens through PF service task workqueue, 2476 * it's not a good idea to unregister netdev that is associated to the 2477 * PF that is running the work queue items currently. This is done to 2478 * avoid check_flush_dependency() warning on this wq 2479 */ 2480 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2481 unregister_netdev(vsi->netdev); 2482 2483 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2484 ice_rss_clean(vsi); 2485 2486 /* Disable VSI and free resources */ 2487 if (vsi->type != ICE_VSI_LB) 2488 ice_vsi_dis_irq(vsi); 2489 ice_vsi_close(vsi); 2490 2491 /* SR-IOV determines needed MSIX resources all at once instead of per 2492 * VSI since when VFs are spawned we know how many VFs there are and how 2493 * many interrupts each VF needs. SR-IOV MSIX resources are also 2494 * cleared in the same manner. 2495 */ 2496 if (vsi->type != ICE_VSI_VF) { 2497 /* reclaim SW interrupts back to the common pool */ 2498 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2499 pf->num_avail_sw_msix += vsi->num_q_vectors; 2500 } 2501 2502 if (!ice_is_safe_mode(pf)) { 2503 if (vsi->type == ICE_VSI_PF) { 2504 ice_vsi_add_rem_eth_mac(vsi, false); 2505 ice_cfg_sw_lldp(vsi, true, false); 2506 /* The Rx rule will only exist to remove if the LLDP FW 2507 * engine is currently stopped 2508 */ 2509 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2510 ice_cfg_sw_lldp(vsi, false, false); 2511 } 2512 } 2513 2514 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2515 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2516 ice_vsi_delete(vsi); 2517 ice_vsi_free_q_vectors(vsi); 2518 2519 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2520 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2521 free_netdev(vsi->netdev); 2522 vsi->netdev = NULL; 2523 } 2524 2525 ice_vsi_clear_rings(vsi); 2526 2527 ice_vsi_put_qs(vsi); 2528 2529 /* retain SW VSI data structure since it is needed to unregister and 2530 * free VSI netdev when PF is not in reset recovery pending state,\ 2531 * for ex: during rmmod. 2532 */ 2533 if (!ice_is_reset_in_progress(pf->state)) 2534 ice_vsi_clear(vsi); 2535 2536 return 0; 2537 } 2538 2539 /** 2540 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2541 * @q_vector: pointer to q_vector which is being updated 2542 * @coalesce: pointer to array of struct with stored coalesce 2543 * 2544 * Set coalesce param in q_vector and update these parameters in HW. 2545 */ 2546 static void 2547 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2548 struct ice_coalesce_stored *coalesce) 2549 { 2550 struct ice_ring_container *rx_rc = &q_vector->rx; 2551 struct ice_ring_container *tx_rc = &q_vector->tx; 2552 struct ice_hw *hw = &q_vector->vsi->back->hw; 2553 2554 tx_rc->itr_setting = coalesce->itr_tx; 2555 rx_rc->itr_setting = coalesce->itr_rx; 2556 2557 /* dynamic ITR values will be updated during Tx/Rx */ 2558 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2559 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2560 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2561 ICE_ITR_GRAN_S); 2562 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2563 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2564 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2565 ICE_ITR_GRAN_S); 2566 2567 q_vector->intrl = coalesce->intrl; 2568 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2569 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2570 } 2571 2572 /** 2573 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2574 * @vsi: VSI connected with q_vectors 2575 * @coalesce: array of struct with stored coalesce 2576 * 2577 * Returns array size. 2578 */ 2579 static int 2580 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2581 struct ice_coalesce_stored *coalesce) 2582 { 2583 int i; 2584 2585 ice_for_each_q_vector(vsi, i) { 2586 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2587 2588 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2589 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2590 coalesce[i].intrl = q_vector->intrl; 2591 } 2592 2593 return vsi->num_q_vectors; 2594 } 2595 2596 /** 2597 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2598 * @vsi: VSI connected with q_vectors 2599 * @coalesce: pointer to array of struct with stored coalesce 2600 * @size: size of coalesce array 2601 * 2602 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2603 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2604 * to default value. 2605 */ 2606 static void 2607 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2608 struct ice_coalesce_stored *coalesce, int size) 2609 { 2610 int i; 2611 2612 if ((size && !coalesce) || !vsi) 2613 return; 2614 2615 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2616 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2617 &coalesce[i]); 2618 2619 for (; i < vsi->num_q_vectors; i++) { 2620 struct ice_coalesce_stored coalesce_dflt = { 2621 .itr_tx = ICE_DFLT_TX_ITR, 2622 .itr_rx = ICE_DFLT_RX_ITR, 2623 .intrl = 0 2624 }; 2625 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2626 &coalesce_dflt); 2627 } 2628 } 2629 2630 /** 2631 * ice_vsi_rebuild - Rebuild VSI after reset 2632 * @vsi: VSI to be rebuild 2633 * @init_vsi: is this an initialization or a reconfigure of the VSI 2634 * 2635 * Returns 0 on success and negative value on failure 2636 */ 2637 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2638 { 2639 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2640 struct ice_coalesce_stored *coalesce; 2641 int prev_num_q_vectors = 0; 2642 struct ice_vf *vf = NULL; 2643 enum ice_status status; 2644 struct ice_pf *pf; 2645 int ret, i; 2646 2647 if (!vsi) 2648 return -EINVAL; 2649 2650 pf = vsi->back; 2651 if (vsi->type == ICE_VSI_VF) 2652 vf = &pf->vf[vsi->vf_id]; 2653 2654 coalesce = kcalloc(vsi->num_q_vectors, 2655 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2656 if (coalesce) 2657 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2658 coalesce); 2659 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2660 ice_vsi_free_q_vectors(vsi); 2661 2662 /* SR-IOV determines needed MSIX resources all at once instead of per 2663 * VSI since when VFs are spawned we know how many VFs there are and how 2664 * many interrupts each VF needs. SR-IOV MSIX resources are also 2665 * cleared in the same manner. 2666 */ 2667 if (vsi->type != ICE_VSI_VF) { 2668 /* reclaim SW interrupts back to the common pool */ 2669 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2670 pf->num_avail_sw_msix += vsi->num_q_vectors; 2671 vsi->base_vector = 0; 2672 } 2673 2674 if (ice_is_xdp_ena_vsi(vsi)) 2675 /* return value check can be skipped here, it always returns 2676 * 0 if reset is in progress 2677 */ 2678 ice_destroy_xdp_rings(vsi); 2679 ice_vsi_put_qs(vsi); 2680 ice_vsi_clear_rings(vsi); 2681 ice_vsi_free_arrays(vsi); 2682 if (vsi->type == ICE_VSI_VF) 2683 ice_vsi_set_num_qs(vsi, vf->vf_id); 2684 else 2685 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2686 2687 ret = ice_vsi_alloc_arrays(vsi); 2688 if (ret < 0) 2689 goto err_vsi; 2690 2691 ice_vsi_get_qs(vsi); 2692 ice_vsi_set_tc_cfg(vsi); 2693 2694 /* Initialize VSI struct elements and create VSI in FW */ 2695 ret = ice_vsi_init(vsi, init_vsi); 2696 if (ret < 0) 2697 goto err_vsi; 2698 2699 switch (vsi->type) { 2700 case ICE_VSI_PF: 2701 ret = ice_vsi_alloc_q_vectors(vsi); 2702 if (ret) 2703 goto err_rings; 2704 2705 ret = ice_vsi_setup_vector_base(vsi); 2706 if (ret) 2707 goto err_vectors; 2708 2709 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2710 if (ret) 2711 goto err_vectors; 2712 2713 ret = ice_vsi_alloc_rings(vsi); 2714 if (ret) 2715 goto err_vectors; 2716 2717 ice_vsi_map_rings_to_vectors(vsi); 2718 if (ice_is_xdp_ena_vsi(vsi)) { 2719 vsi->num_xdp_txq = vsi->alloc_txq; 2720 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2721 if (ret) 2722 goto err_vectors; 2723 } 2724 /* Do not exit if configuring RSS had an issue, at least 2725 * receive traffic on first queue. Hence no need to capture 2726 * return value 2727 */ 2728 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2729 ice_vsi_cfg_rss_lut_key(vsi); 2730 break; 2731 case ICE_VSI_VF: 2732 ret = ice_vsi_alloc_q_vectors(vsi); 2733 if (ret) 2734 goto err_rings; 2735 2736 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2737 if (ret) 2738 goto err_vectors; 2739 2740 ret = ice_vsi_alloc_rings(vsi); 2741 if (ret) 2742 goto err_vectors; 2743 2744 break; 2745 default: 2746 break; 2747 } 2748 2749 /* configure VSI nodes based on number of queues and TC's */ 2750 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2751 max_txqs[i] = vsi->alloc_txq; 2752 2753 if (ice_is_xdp_ena_vsi(vsi)) 2754 max_txqs[i] += vsi->num_xdp_txq; 2755 } 2756 2757 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2758 max_txqs); 2759 if (status) { 2760 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 2761 vsi->vsi_num, status); 2762 if (init_vsi) { 2763 ret = -EIO; 2764 goto err_vectors; 2765 } else { 2766 return ice_schedule_reset(pf, ICE_RESET_PFR); 2767 } 2768 } 2769 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2770 kfree(coalesce); 2771 2772 return 0; 2773 2774 err_vectors: 2775 ice_vsi_free_q_vectors(vsi); 2776 err_rings: 2777 if (vsi->netdev) { 2778 vsi->current_netdev_flags = 0; 2779 unregister_netdev(vsi->netdev); 2780 free_netdev(vsi->netdev); 2781 vsi->netdev = NULL; 2782 } 2783 err_vsi: 2784 ice_vsi_clear(vsi); 2785 set_bit(__ICE_RESET_FAILED, pf->state); 2786 kfree(coalesce); 2787 return ret; 2788 } 2789 2790 /** 2791 * ice_is_reset_in_progress - check for a reset in progress 2792 * @state: PF state field 2793 */ 2794 bool ice_is_reset_in_progress(unsigned long *state) 2795 { 2796 return test_bit(__ICE_RESET_OICR_RECV, state) || 2797 test_bit(__ICE_DCBNL_DEVRESET, state) || 2798 test_bit(__ICE_PFR_REQ, state) || 2799 test_bit(__ICE_CORER_REQ, state) || 2800 test_bit(__ICE_GLOBR_REQ, state); 2801 } 2802 2803 #ifdef CONFIG_DCB 2804 /** 2805 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2806 * @vsi: VSI being configured 2807 * @ctx: the context buffer returned from AQ VSI update command 2808 */ 2809 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2810 { 2811 vsi->info.mapping_flags = ctx->info.mapping_flags; 2812 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2813 sizeof(vsi->info.q_mapping)); 2814 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2815 sizeof(vsi->info.tc_mapping)); 2816 } 2817 2818 /** 2819 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2820 * @vsi: VSI to be configured 2821 * @ena_tc: TC bitmap 2822 * 2823 * VSI queues expected to be quiesced before calling this function 2824 */ 2825 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2826 { 2827 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2828 struct ice_pf *pf = vsi->back; 2829 struct ice_vsi_ctx *ctx; 2830 enum ice_status status; 2831 struct device *dev; 2832 int i, ret = 0; 2833 u8 num_tc = 0; 2834 2835 dev = ice_pf_to_dev(pf); 2836 2837 ice_for_each_traffic_class(i) { 2838 /* build bitmap of enabled TCs */ 2839 if (ena_tc & BIT(i)) 2840 num_tc++; 2841 /* populate max_txqs per TC */ 2842 max_txqs[i] = vsi->alloc_txq; 2843 } 2844 2845 vsi->tc_cfg.ena_tc = ena_tc; 2846 vsi->tc_cfg.numtc = num_tc; 2847 2848 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2849 if (!ctx) 2850 return -ENOMEM; 2851 2852 ctx->vf_num = 0; 2853 ctx->info = vsi->info; 2854 2855 ice_vsi_setup_q_map(vsi, ctx); 2856 2857 /* must to indicate which section of VSI context are being modified */ 2858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2859 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2860 if (status) { 2861 dev_info(dev, "Failed VSI Update\n"); 2862 ret = -EIO; 2863 goto out; 2864 } 2865 2866 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2867 max_txqs); 2868 2869 if (status) { 2870 dev_err(dev, "VSI %d failed TC config, error %d\n", 2871 vsi->vsi_num, status); 2872 ret = -EIO; 2873 goto out; 2874 } 2875 ice_vsi_update_q_map(vsi, ctx); 2876 vsi->info.valid_sections = 0; 2877 2878 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2879 out: 2880 kfree(ctx); 2881 return ret; 2882 } 2883 #endif /* CONFIG_DCB */ 2884 2885 /** 2886 * ice_update_ring_stats - Update ring statistics 2887 * @ring: ring to update 2888 * @cont: used to increment per-vector counters 2889 * @pkts: number of processed packets 2890 * @bytes: number of processed bytes 2891 * 2892 * This function assumes that caller has acquired a u64_stats_sync lock. 2893 */ 2894 static void 2895 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2896 u64 pkts, u64 bytes) 2897 { 2898 ring->stats.bytes += bytes; 2899 ring->stats.pkts += pkts; 2900 cont->total_bytes += bytes; 2901 cont->total_pkts += pkts; 2902 } 2903 2904 /** 2905 * ice_update_tx_ring_stats - Update Tx ring specific counters 2906 * @tx_ring: ring to update 2907 * @pkts: number of processed packets 2908 * @bytes: number of processed bytes 2909 */ 2910 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2911 { 2912 u64_stats_update_begin(&tx_ring->syncp); 2913 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2914 u64_stats_update_end(&tx_ring->syncp); 2915 } 2916 2917 /** 2918 * ice_update_rx_ring_stats - Update Rx ring specific counters 2919 * @rx_ring: ring to update 2920 * @pkts: number of processed packets 2921 * @bytes: number of processed bytes 2922 */ 2923 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2924 { 2925 u64_stats_update_begin(&rx_ring->syncp); 2926 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2927 u64_stats_update_end(&rx_ring->syncp); 2928 } 2929 2930 /** 2931 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2932 * @vsi: the VSI being configured MAC filter 2933 * @macaddr: the MAC address to be added. 2934 * @set: Add or delete a MAC filter 2935 * 2936 * Adds or removes MAC address filter entry for VF VSI 2937 */ 2938 enum ice_status 2939 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2940 { 2941 LIST_HEAD(tmp_add_list); 2942 enum ice_status status; 2943 2944 /* Update MAC filter list to be added or removed for a VSI */ 2945 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 2946 status = ICE_ERR_NO_MEMORY; 2947 goto cfg_mac_fltr_exit; 2948 } 2949 2950 if (set) 2951 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 2952 else 2953 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 2954 2955 cfg_mac_fltr_exit: 2956 ice_free_fltr_list(ice_pf_to_dev(vsi->back), &tmp_add_list); 2957 return status; 2958 } 2959 2960 /** 2961 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 2962 * @sw: switch to check if its default forwarding VSI is free 2963 * 2964 * Return true if the default forwarding VSI is already being used, else returns 2965 * false signalling that it's available to use. 2966 */ 2967 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 2968 { 2969 return (sw->dflt_vsi && sw->dflt_vsi_ena); 2970 } 2971 2972 /** 2973 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 2974 * @sw: switch for the default forwarding VSI to compare against 2975 * @vsi: VSI to compare against default forwarding VSI 2976 * 2977 * If this VSI passed in is the default forwarding VSI then return true, else 2978 * return false 2979 */ 2980 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 2981 { 2982 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 2983 } 2984 2985 /** 2986 * ice_set_dflt_vsi - set the default forwarding VSI 2987 * @sw: switch used to assign the default forwarding VSI 2988 * @vsi: VSI getting set as the default forwarding VSI on the switch 2989 * 2990 * If the VSI passed in is already the default VSI and it's enabled just return 2991 * success. 2992 * 2993 * If there is already a default VSI on the switch and it's enabled then return 2994 * -EEXIST since there can only be one default VSI per switch. 2995 * 2996 * Otherwise try to set the VSI passed in as the switch's default VSI and 2997 * return the result. 2998 */ 2999 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3000 { 3001 enum ice_status status; 3002 struct device *dev; 3003 3004 if (!sw || !vsi) 3005 return -EINVAL; 3006 3007 dev = ice_pf_to_dev(vsi->back); 3008 3009 /* the VSI passed in is already the default VSI */ 3010 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3011 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3012 vsi->vsi_num); 3013 return 0; 3014 } 3015 3016 /* another VSI is already the default VSI for this switch */ 3017 if (ice_is_dflt_vsi_in_use(sw)) { 3018 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3019 sw->dflt_vsi->vsi_num); 3020 return -EEXIST; 3021 } 3022 3023 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3024 if (status) { 3025 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3026 vsi->vsi_num, status); 3027 return -EIO; 3028 } 3029 3030 sw->dflt_vsi = vsi; 3031 sw->dflt_vsi_ena = true; 3032 3033 return 0; 3034 } 3035 3036 /** 3037 * ice_clear_dflt_vsi - clear the default forwarding VSI 3038 * @sw: switch used to clear the default VSI 3039 * 3040 * If the switch has no default VSI or it's not enabled then return error. 3041 * 3042 * Otherwise try to clear the default VSI and return the result. 3043 */ 3044 int ice_clear_dflt_vsi(struct ice_sw *sw) 3045 { 3046 struct ice_vsi *dflt_vsi; 3047 enum ice_status status; 3048 struct device *dev; 3049 3050 if (!sw) 3051 return -EINVAL; 3052 3053 dev = ice_pf_to_dev(sw->pf); 3054 3055 dflt_vsi = sw->dflt_vsi; 3056 3057 /* there is no default VSI configured */ 3058 if (!ice_is_dflt_vsi_in_use(sw)) 3059 return -ENODEV; 3060 3061 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3062 ICE_FLTR_RX); 3063 if (status) { 3064 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3065 dflt_vsi->vsi_num, status); 3066 return -EIO; 3067 } 3068 3069 sw->dflt_vsi = NULL; 3070 sw->dflt_vsi_ena = false; 3071 3072 return 0; 3073 } 3074