1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 7 /** 8 * ice_setup_rx_ctx - Configure a receive ring context 9 * @ring: The Rx ring to configure 10 * 11 * Configure the Rx descriptor ring in RLAN context. 12 */ 13 static int ice_setup_rx_ctx(struct ice_ring *ring) 14 { 15 struct ice_vsi *vsi = ring->vsi; 16 struct ice_hw *hw = &vsi->back->hw; 17 u32 rxdid = ICE_RXDID_FLEX_NIC; 18 struct ice_rlan_ctx rlan_ctx; 19 u32 regval; 20 u16 pf_q; 21 int err; 22 23 /* what is Rx queue number in global space of 2K Rx queues */ 24 pf_q = vsi->rxq_map[ring->q_index]; 25 26 /* clear the context structure first */ 27 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 28 29 rlan_ctx.base = ring->dma >> 7; 30 31 rlan_ctx.qlen = ring->count; 32 33 /* Receive Packet Data Buffer Size. 34 * The Packet Data Buffer Size is defined in 128 byte units. 35 */ 36 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 37 38 /* use 32 byte descriptors */ 39 rlan_ctx.dsize = 1; 40 41 /* Strip the Ethernet CRC bytes before the packet is posted to host 42 * memory. 43 */ 44 rlan_ctx.crcstrip = 1; 45 46 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 47 rlan_ctx.l2tsel = 1; 48 49 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 50 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 51 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 52 53 /* This controls whether VLAN is stripped from inner headers 54 * The VLAN in the inner L2 header is stripped to the receive 55 * descriptor if enabled by this flag. 56 */ 57 rlan_ctx.showiv = 0; 58 59 /* Max packet size for this queue - must not be set to a larger value 60 * than 5 x DBUF 61 */ 62 rlan_ctx.rxmax = min_t(u16, vsi->max_frame, 63 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); 64 65 /* Rx queue threshold in units of 64 */ 66 rlan_ctx.lrxqthresh = 1; 67 68 /* Enable Flexible Descriptors in the queue context which 69 * allows this driver to select a specific receive descriptor format 70 */ 71 if (vsi->type != ICE_VSI_VF) { 72 regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 73 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 74 QRXFLXP_CNTXT_RXDID_IDX_M; 75 76 /* increasing context priority to pick up profile id; 77 * default is 0x01; setting to 0x03 to ensure profile 78 * is programming if prev context is of same priority 79 */ 80 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & 81 QRXFLXP_CNTXT_RXDID_PRIO_M; 82 83 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 84 } 85 86 /* Absolute queue number out of 2K needs to be passed */ 87 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 88 if (err) { 89 dev_err(&vsi->back->pdev->dev, 90 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 91 pf_q, err); 92 return -EIO; 93 } 94 95 if (vsi->type == ICE_VSI_VF) 96 return 0; 97 98 /* init queue specific tail register */ 99 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 100 writel(0, ring->tail); 101 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); 102 103 return 0; 104 } 105 106 /** 107 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 108 * @ring: The Tx ring to configure 109 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 110 * @pf_q: queue index in the PF space 111 * 112 * Configure the Tx descriptor ring in TLAN context. 113 */ 114 static void 115 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 116 { 117 struct ice_vsi *vsi = ring->vsi; 118 struct ice_hw *hw = &vsi->back->hw; 119 120 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 121 122 tlan_ctx->port_num = vsi->port_info->lport; 123 124 /* Transmit Queue Length */ 125 tlan_ctx->qlen = ring->count; 126 127 /* PF number */ 128 tlan_ctx->pf_num = hw->pf_id; 129 130 /* queue belongs to a specific VSI type 131 * VF / VM index should be programmed per vmvf_type setting: 132 * for vmvf_type = VF, it is VF number between 0-256 133 * for vmvf_type = VM, it is VM number between 0-767 134 * for PF or EMP this field should be set to zero 135 */ 136 switch (vsi->type) { 137 case ICE_VSI_PF: 138 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 139 break; 140 case ICE_VSI_VF: 141 /* Firmware expects vmvf_num to be absolute VF id */ 142 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 144 break; 145 default: 146 return; 147 } 148 149 /* make sure the context is associated with the right VSI */ 150 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 151 152 tlan_ctx->tso_ena = ICE_TX_LEGACY; 153 tlan_ctx->tso_qnum = pf_q; 154 155 /* Legacy or Advanced Host Interface: 156 * 0: Advanced Host Interface 157 * 1: Legacy Host Interface 158 */ 159 tlan_ctx->legacy_int = ICE_TX_LEGACY; 160 } 161 162 /** 163 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 164 * @pf: the PF being configured 165 * @pf_q: the PF queue 166 * @ena: enable or disable state of the queue 167 * 168 * This routine will wait for the given Rx queue of the PF to reach the 169 * enabled or disabled state. 170 * Returns -ETIMEDOUT in case of failing to reach the requested state after 171 * multiple retries; else will return 0 in case of success. 172 */ 173 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 174 { 175 int i; 176 177 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 178 u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q)); 179 180 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 181 break; 182 183 usleep_range(20, 40); 184 } 185 if (i >= ICE_Q_WAIT_MAX_RETRY) 186 return -ETIMEDOUT; 187 188 return 0; 189 } 190 191 /** 192 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 193 * @vsi: the VSI being configured 194 * @ena: start or stop the Rx rings 195 */ 196 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 197 { 198 struct ice_pf *pf = vsi->back; 199 struct ice_hw *hw = &pf->hw; 200 int i, j, ret = 0; 201 202 for (i = 0; i < vsi->num_rxq; i++) { 203 int pf_q = vsi->rxq_map[i]; 204 u32 rx_reg; 205 206 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { 207 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 208 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == 209 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) 210 break; 211 usleep_range(1000, 2000); 212 } 213 214 /* Skip if the queue is already in the requested state */ 215 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 216 continue; 217 218 /* turn on/off the queue */ 219 if (ena) 220 rx_reg |= QRX_CTRL_QENA_REQ_M; 221 else 222 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 223 wr32(hw, QRX_CTRL(pf_q), rx_reg); 224 225 /* wait for the change to finish */ 226 ret = ice_pf_rxq_wait(pf, pf_q, ena); 227 if (ret) { 228 dev_err(&pf->pdev->dev, 229 "VSI idx %d Rx ring %d %sable timeout\n", 230 vsi->idx, pf_q, (ena ? "en" : "dis")); 231 break; 232 } 233 } 234 235 return ret; 236 } 237 238 /** 239 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 240 * @vsi: VSI pointer 241 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 242 * 243 * On error: returns error code (negative) 244 * On success: returns 0 245 */ 246 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) 247 { 248 struct ice_pf *pf = vsi->back; 249 250 /* allocate memory for both Tx and Rx ring pointers */ 251 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 252 sizeof(struct ice_ring *), GFP_KERNEL); 253 if (!vsi->tx_rings) 254 goto err_txrings; 255 256 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 257 sizeof(struct ice_ring *), GFP_KERNEL); 258 if (!vsi->rx_rings) 259 goto err_rxrings; 260 261 if (alloc_qvectors) { 262 /* allocate memory for q_vector pointers */ 263 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, 264 vsi->num_q_vectors, 265 sizeof(struct ice_q_vector *), 266 GFP_KERNEL); 267 if (!vsi->q_vectors) 268 goto err_vectors; 269 } 270 271 return 0; 272 273 err_vectors: 274 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 275 err_rxrings: 276 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 277 err_txrings: 278 return -ENOMEM; 279 } 280 281 /** 282 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI 283 * @vsi: the VSI being configured 284 * 285 * Return 0 on success and a negative value on error 286 */ 287 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 288 { 289 struct ice_pf *pf = vsi->back; 290 291 switch (vsi->type) { 292 case ICE_VSI_PF: 293 vsi->alloc_txq = pf->num_lan_tx; 294 vsi->alloc_rxq = pf->num_lan_rx; 295 vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE); 296 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); 297 break; 298 case ICE_VSI_VF: 299 vsi->alloc_txq = pf->num_vf_qps; 300 vsi->alloc_rxq = pf->num_vf_qps; 301 /* pf->num_vf_msix includes (VF miscellaneous vector + 302 * data queue interrupts). Since vsi->num_q_vectors is number 303 * of queues vectors, subtract 1 from the original vector 304 * count 305 */ 306 vsi->num_q_vectors = pf->num_vf_msix - 1; 307 break; 308 default: 309 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 310 vsi->type); 311 break; 312 } 313 } 314 315 /** 316 * ice_get_free_slot - get the next non-NULL location index in array 317 * @array: array to search 318 * @size: size of the array 319 * @curr: last known occupied index to be used as a search hint 320 * 321 * void * is being used to keep the functionality generic. This lets us use this 322 * function on any array of pointers. 323 */ 324 static int ice_get_free_slot(void *array, int size, int curr) 325 { 326 int **tmp_array = (int **)array; 327 int next; 328 329 if (curr < (size - 1) && !tmp_array[curr + 1]) { 330 next = curr + 1; 331 } else { 332 int i = 0; 333 334 while ((i < size) && (tmp_array[i])) 335 i++; 336 if (i == size) 337 next = ICE_NO_VSI; 338 else 339 next = i; 340 } 341 return next; 342 } 343 344 /** 345 * ice_vsi_delete - delete a VSI from the switch 346 * @vsi: pointer to VSI being removed 347 */ 348 void ice_vsi_delete(struct ice_vsi *vsi) 349 { 350 struct ice_pf *pf = vsi->back; 351 struct ice_vsi_ctx ctxt; 352 enum ice_status status; 353 354 if (vsi->type == ICE_VSI_VF) 355 ctxt.vf_num = vsi->vf_id; 356 ctxt.vsi_num = vsi->vsi_num; 357 358 memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props)); 359 360 status = ice_free_vsi(&pf->hw, vsi->idx, &ctxt, false, NULL); 361 if (status) 362 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 363 vsi->vsi_num); 364 } 365 366 /** 367 * ice_vsi_free_arrays - clean up VSI resources 368 * @vsi: pointer to VSI being cleared 369 * @free_qvectors: bool to specify if q_vectors should be deallocated 370 */ 371 static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) 372 { 373 struct ice_pf *pf = vsi->back; 374 375 /* free the ring and vector containers */ 376 if (free_qvectors && vsi->q_vectors) { 377 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 378 vsi->q_vectors = NULL; 379 } 380 if (vsi->tx_rings) { 381 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 382 vsi->tx_rings = NULL; 383 } 384 if (vsi->rx_rings) { 385 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 386 vsi->rx_rings = NULL; 387 } 388 } 389 390 /** 391 * ice_vsi_clear - clean up and deallocate the provided VSI 392 * @vsi: pointer to VSI being cleared 393 * 394 * This deallocates the VSI's queue resources, removes it from the PF's 395 * VSI array if necessary, and deallocates the VSI 396 * 397 * Returns 0 on success, negative on failure 398 */ 399 int ice_vsi_clear(struct ice_vsi *vsi) 400 { 401 struct ice_pf *pf = NULL; 402 403 if (!vsi) 404 return 0; 405 406 if (!vsi->back) 407 return -EINVAL; 408 409 pf = vsi->back; 410 411 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 412 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 413 vsi->idx); 414 return -EINVAL; 415 } 416 417 mutex_lock(&pf->sw_mutex); 418 /* updates the PF for this cleared VSI */ 419 420 pf->vsi[vsi->idx] = NULL; 421 if (vsi->idx < pf->next_vsi) 422 pf->next_vsi = vsi->idx; 423 424 ice_vsi_free_arrays(vsi, true); 425 mutex_unlock(&pf->sw_mutex); 426 devm_kfree(&pf->pdev->dev, vsi); 427 428 return 0; 429 } 430 431 /** 432 * ice_msix_clean_rings - MSIX mode Interrupt Handler 433 * @irq: interrupt number 434 * @data: pointer to a q_vector 435 */ 436 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 437 { 438 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 439 440 if (!q_vector->tx.ring && !q_vector->rx.ring) 441 return IRQ_HANDLED; 442 443 napi_schedule(&q_vector->napi); 444 445 return IRQ_HANDLED; 446 } 447 448 /** 449 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 450 * @pf: board private structure 451 * @type: type of VSI 452 * 453 * returns a pointer to a VSI on success, NULL on failure. 454 */ 455 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type) 456 { 457 struct ice_vsi *vsi = NULL; 458 459 /* Need to protect the allocation of the VSIs at the PF level */ 460 mutex_lock(&pf->sw_mutex); 461 462 /* If we have already allocated our maximum number of VSIs, 463 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 464 * is available to be populated 465 */ 466 if (pf->next_vsi == ICE_NO_VSI) { 467 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 468 goto unlock_pf; 469 } 470 471 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 472 if (!vsi) 473 goto unlock_pf; 474 475 vsi->type = type; 476 vsi->back = pf; 477 set_bit(__ICE_DOWN, vsi->state); 478 vsi->idx = pf->next_vsi; 479 vsi->work_lmt = ICE_DFLT_IRQ_WORK; 480 481 ice_vsi_set_num_qs(vsi); 482 483 switch (vsi->type) { 484 case ICE_VSI_PF: 485 if (ice_vsi_alloc_arrays(vsi, true)) 486 goto err_rings; 487 488 /* Setup default MSIX irq handler for VSI */ 489 vsi->irq_handler = ice_msix_clean_rings; 490 break; 491 case ICE_VSI_VF: 492 if (ice_vsi_alloc_arrays(vsi, true)) 493 goto err_rings; 494 break; 495 default: 496 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 497 goto unlock_pf; 498 } 499 500 /* fill VSI slot in the PF struct */ 501 pf->vsi[pf->next_vsi] = vsi; 502 503 /* prepare pf->next_vsi for next use */ 504 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 505 pf->next_vsi); 506 goto unlock_pf; 507 508 err_rings: 509 devm_kfree(&pf->pdev->dev, vsi); 510 vsi = NULL; 511 unlock_pf: 512 mutex_unlock(&pf->sw_mutex); 513 return vsi; 514 } 515 516 /** 517 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 518 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 519 * 520 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 521 */ 522 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 523 { 524 int offset, i; 525 526 mutex_lock(qs_cfg->qs_mutex); 527 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 528 0, qs_cfg->q_count, 0); 529 if (offset >= qs_cfg->pf_map_size) { 530 mutex_unlock(qs_cfg->qs_mutex); 531 return -ENOMEM; 532 } 533 534 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 535 for (i = 0; i < qs_cfg->q_count; i++) 536 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset; 537 mutex_unlock(qs_cfg->qs_mutex); 538 539 return 0; 540 } 541 542 /** 543 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 544 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 545 * 546 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 547 */ 548 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 549 { 550 int i, index = 0; 551 552 mutex_lock(qs_cfg->qs_mutex); 553 for (i = 0; i < qs_cfg->q_count; i++) { 554 index = find_next_zero_bit(qs_cfg->pf_map, 555 qs_cfg->pf_map_size, index); 556 if (index >= qs_cfg->pf_map_size) 557 goto err_scatter; 558 set_bit(index, qs_cfg->pf_map); 559 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index; 560 } 561 mutex_unlock(qs_cfg->qs_mutex); 562 563 return 0; 564 err_scatter: 565 for (index = 0; index < i; index++) { 566 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 567 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 568 } 569 mutex_unlock(qs_cfg->qs_mutex); 570 571 return -ENOMEM; 572 } 573 574 /** 575 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 576 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 577 * 578 * This is an internal function for assigning queues from the PF to VSI and 579 * initially tries to find contiguous space. If it is not successful to find 580 * contiguous space, then it tries with the scatter approach. 581 * 582 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 583 */ 584 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 585 { 586 int ret = 0; 587 588 ret = __ice_vsi_get_qs_contig(qs_cfg); 589 if (ret) { 590 /* contig failed, so try with scatter approach */ 591 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 592 qs_cfg->q_count = min_t(u16, qs_cfg->q_count, 593 qs_cfg->scatter_count); 594 ret = __ice_vsi_get_qs_sc(qs_cfg); 595 } 596 return ret; 597 } 598 599 /** 600 * ice_vsi_get_qs - Assign queues from PF to VSI 601 * @vsi: the VSI to assign queues to 602 * 603 * Returns 0 on success and a negative value on error 604 */ 605 static int ice_vsi_get_qs(struct ice_vsi *vsi) 606 { 607 struct ice_pf *pf = vsi->back; 608 struct ice_qs_cfg tx_qs_cfg = { 609 .qs_mutex = &pf->avail_q_mutex, 610 .pf_map = pf->avail_txqs, 611 .pf_map_size = ICE_MAX_TXQS, 612 .q_count = vsi->alloc_txq, 613 .scatter_count = ICE_MAX_SCATTER_TXQS, 614 .vsi_map = vsi->txq_map, 615 .vsi_map_offset = 0, 616 .mapping_mode = vsi->tx_mapping_mode 617 }; 618 struct ice_qs_cfg rx_qs_cfg = { 619 .qs_mutex = &pf->avail_q_mutex, 620 .pf_map = pf->avail_rxqs, 621 .pf_map_size = ICE_MAX_RXQS, 622 .q_count = vsi->alloc_rxq, 623 .scatter_count = ICE_MAX_SCATTER_RXQS, 624 .vsi_map = vsi->rxq_map, 625 .vsi_map_offset = 0, 626 .mapping_mode = vsi->rx_mapping_mode 627 }; 628 int ret = 0; 629 630 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 631 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 632 633 ret = __ice_vsi_get_qs(&tx_qs_cfg); 634 if (!ret) 635 ret = __ice_vsi_get_qs(&rx_qs_cfg); 636 637 return ret; 638 } 639 640 /** 641 * ice_vsi_put_qs - Release queues from VSI to PF 642 * @vsi: the VSI that is going to release queues 643 */ 644 void ice_vsi_put_qs(struct ice_vsi *vsi) 645 { 646 struct ice_pf *pf = vsi->back; 647 int i; 648 649 mutex_lock(&pf->avail_q_mutex); 650 651 for (i = 0; i < vsi->alloc_txq; i++) { 652 clear_bit(vsi->txq_map[i], pf->avail_txqs); 653 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 654 } 655 656 for (i = 0; i < vsi->alloc_rxq; i++) { 657 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 658 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 659 } 660 661 mutex_unlock(&pf->avail_q_mutex); 662 } 663 664 /** 665 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 666 * @vsi: the VSI being removed 667 */ 668 static void ice_rss_clean(struct ice_vsi *vsi) 669 { 670 struct ice_pf *pf; 671 672 pf = vsi->back; 673 674 if (vsi->rss_hkey_user) 675 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 676 if (vsi->rss_lut_user) 677 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 678 } 679 680 /** 681 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 682 * @vsi: the VSI being configured 683 */ 684 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 685 { 686 struct ice_hw_common_caps *cap; 687 struct ice_pf *pf = vsi->back; 688 689 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 690 vsi->rss_size = 1; 691 return; 692 } 693 694 cap = &pf->hw.func_caps.common_cap; 695 switch (vsi->type) { 696 case ICE_VSI_PF: 697 /* PF VSI will inherit RSS instance of PF */ 698 vsi->rss_table_size = cap->rss_table_size; 699 vsi->rss_size = min_t(int, num_online_cpus(), 700 BIT(cap->rss_table_entry_width)); 701 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 702 break; 703 case ICE_VSI_VF: 704 /* VF VSI will gets a small RSS table 705 * For VSI_LUT, LUT size should be set to 64 bytes 706 */ 707 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 708 vsi->rss_size = min_t(int, num_online_cpus(), 709 BIT(cap->rss_table_entry_width)); 710 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 711 break; 712 default: 713 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 714 vsi->type); 715 break; 716 } 717 } 718 719 /** 720 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 721 * @ctxt: the VSI context being set 722 * 723 * This initializes a default VSI context for all sections except the Queues. 724 */ 725 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 726 { 727 u32 table = 0; 728 729 memset(&ctxt->info, 0, sizeof(ctxt->info)); 730 /* VSI's should be allocated from shared pool */ 731 ctxt->alloc_from_pool = true; 732 /* Src pruning enabled by default */ 733 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 734 /* Traffic from VSI can be sent to LAN */ 735 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 736 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 737 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 738 * packets untagged/tagged. 739 */ 740 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 741 ICE_AQ_VSI_VLAN_MODE_M) >> 742 ICE_AQ_VSI_VLAN_MODE_S); 743 /* Have 1:1 UP mapping for both ingress/egress tables */ 744 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 745 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 746 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 747 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 748 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 749 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 750 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 751 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 752 ctxt->info.ingress_table = cpu_to_le32(table); 753 ctxt->info.egress_table = cpu_to_le32(table); 754 /* Have 1:1 UP mapping for outer to inner UP table */ 755 ctxt->info.outer_up_table = cpu_to_le32(table); 756 /* No Outer tag support outer_tag_flags remains to zero */ 757 } 758 759 /** 760 * ice_vsi_setup_q_map - Setup a VSI queue map 761 * @vsi: the VSI being configured 762 * @ctxt: VSI context structure 763 */ 764 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 765 { 766 u16 offset = 0, qmap = 0, tx_count = 0; 767 u16 qcount_tx = vsi->alloc_txq; 768 u16 qcount_rx = vsi->alloc_rxq; 769 u16 tx_numq_tc, rx_numq_tc; 770 u16 pow = 0, max_rss = 0; 771 bool ena_tc0 = false; 772 u8 netdev_tc = 0; 773 int i; 774 775 /* at least TC0 should be enabled by default */ 776 if (vsi->tc_cfg.numtc) { 777 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 778 ena_tc0 = true; 779 } else { 780 ena_tc0 = true; 781 } 782 783 if (ena_tc0) { 784 vsi->tc_cfg.numtc++; 785 vsi->tc_cfg.ena_tc |= 1; 786 } 787 788 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 789 if (!rx_numq_tc) 790 rx_numq_tc = 1; 791 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 792 if (!tx_numq_tc) 793 tx_numq_tc = 1; 794 795 /* TC mapping is a function of the number of Rx queues assigned to the 796 * VSI for each traffic class and the offset of these queues. 797 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 798 * queues allocated to TC0. No:of queues is a power-of-2. 799 * 800 * If TC is not enabled, the queue offset is set to 0, and allocate one 801 * queue, this way, traffic for the given TC will be sent to the default 802 * queue. 803 * 804 * Setup number and offset of Rx queues for all TCs for the VSI 805 */ 806 807 qcount_rx = rx_numq_tc; 808 809 /* qcount will change if RSS is enabled */ 810 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 811 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 812 if (vsi->type == ICE_VSI_PF) 813 max_rss = ICE_MAX_LG_RSS_QS; 814 else 815 max_rss = ICE_MAX_SMALL_RSS_QS; 816 qcount_rx = min_t(int, rx_numq_tc, max_rss); 817 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 818 } 819 } 820 821 /* find the (rounded up) power-of-2 of qcount */ 822 pow = order_base_2(qcount_rx); 823 824 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { 825 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 826 /* TC is not enabled */ 827 vsi->tc_cfg.tc_info[i].qoffset = 0; 828 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 829 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 830 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 831 ctxt->info.tc_mapping[i] = 0; 832 continue; 833 } 834 835 /* TC is enabled */ 836 vsi->tc_cfg.tc_info[i].qoffset = offset; 837 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 838 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 839 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 840 841 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 842 ICE_AQ_VSI_TC_Q_OFFSET_M) | 843 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 844 ICE_AQ_VSI_TC_Q_NUM_M); 845 offset += qcount_rx; 846 tx_count += tx_numq_tc; 847 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 848 } 849 vsi->num_rxq = offset; 850 vsi->num_txq = tx_count; 851 852 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 853 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 854 /* since there is a chance that num_rxq could have been changed 855 * in the above for loop, make num_txq equal to num_rxq. 856 */ 857 vsi->num_txq = vsi->num_rxq; 858 } 859 860 /* Rx queue mapping */ 861 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 862 /* q_mapping buffer holds the info for the first queue allocated for 863 * this VSI in the PF space and also the number of queues associated 864 * with this VSI. 865 */ 866 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 867 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 868 } 869 870 /** 871 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 872 * @ctxt: the VSI context being set 873 * @vsi: the VSI being configured 874 */ 875 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 876 { 877 u8 lut_type, hash_type; 878 879 switch (vsi->type) { 880 case ICE_VSI_PF: 881 /* PF VSI will inherit RSS instance of PF */ 882 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 883 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 884 break; 885 case ICE_VSI_VF: 886 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 887 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 888 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 889 break; 890 default: 891 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 892 vsi->type); 893 return; 894 } 895 896 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 897 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 898 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 899 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 900 } 901 902 /** 903 * ice_vsi_init - Create and initialize a VSI 904 * @vsi: the VSI being configured 905 * 906 * This initializes a VSI context depending on the VSI type to be added and 907 * passes it down to the add_vsi aq command to create a new VSI. 908 */ 909 static int ice_vsi_init(struct ice_vsi *vsi) 910 { 911 struct ice_vsi_ctx ctxt = { 0 }; 912 struct ice_pf *pf = vsi->back; 913 struct ice_hw *hw = &pf->hw; 914 int ret = 0; 915 916 switch (vsi->type) { 917 case ICE_VSI_PF: 918 ctxt.flags = ICE_AQ_VSI_TYPE_PF; 919 break; 920 case ICE_VSI_VF: 921 ctxt.flags = ICE_AQ_VSI_TYPE_VF; 922 /* VF number here is the absolute VF number (0-255) */ 923 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 924 break; 925 default: 926 return -ENODEV; 927 } 928 929 ice_set_dflt_vsi_ctx(&ctxt); 930 /* if the switch is in VEB mode, allow VSI loopback */ 931 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 932 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 933 934 /* Set LUT type and HASH type if RSS is enabled */ 935 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 936 ice_set_rss_vsi_ctx(&ctxt, vsi); 937 938 ctxt.info.sw_id = vsi->port_info->sw_id; 939 ice_vsi_setup_q_map(vsi, &ctxt); 940 941 ret = ice_add_vsi(hw, vsi->idx, &ctxt, NULL); 942 if (ret) { 943 dev_err(&pf->pdev->dev, 944 "Add VSI failed, err %d\n", ret); 945 return -EIO; 946 } 947 948 /* keep context for update VSI operations */ 949 vsi->info = ctxt.info; 950 951 /* record VSI number returned */ 952 vsi->vsi_num = ctxt.vsi_num; 953 954 return ret; 955 } 956 957 /** 958 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 959 * @vsi: VSI having the memory freed 960 * @v_idx: index of the vector to be freed 961 */ 962 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 963 { 964 struct ice_q_vector *q_vector; 965 struct ice_ring *ring; 966 967 if (!vsi->q_vectors[v_idx]) { 968 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", 969 v_idx); 970 return; 971 } 972 q_vector = vsi->q_vectors[v_idx]; 973 974 ice_for_each_ring(ring, q_vector->tx) 975 ring->q_vector = NULL; 976 ice_for_each_ring(ring, q_vector->rx) 977 ring->q_vector = NULL; 978 979 /* only VSI with an associated netdev is set up with NAPI */ 980 if (vsi->netdev) 981 netif_napi_del(&q_vector->napi); 982 983 devm_kfree(&vsi->back->pdev->dev, q_vector); 984 vsi->q_vectors[v_idx] = NULL; 985 } 986 987 /** 988 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 989 * @vsi: the VSI having memory freed 990 */ 991 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 992 { 993 int v_idx; 994 995 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 996 ice_free_q_vector(vsi, v_idx); 997 } 998 999 /** 1000 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 1001 * @vsi: the VSI being configured 1002 * @v_idx: index of the vector in the VSI struct 1003 * 1004 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1005 */ 1006 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) 1007 { 1008 struct ice_pf *pf = vsi->back; 1009 struct ice_q_vector *q_vector; 1010 1011 /* allocate q_vector */ 1012 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); 1013 if (!q_vector) 1014 return -ENOMEM; 1015 1016 q_vector->vsi = vsi; 1017 q_vector->v_idx = v_idx; 1018 if (vsi->type == ICE_VSI_VF) 1019 goto out; 1020 /* only set affinity_mask if the CPU is online */ 1021 if (cpu_online(v_idx)) 1022 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 1023 1024 /* This will not be called in the driver load path because the netdev 1025 * will not be created yet. All other cases with register the NAPI 1026 * handler here (i.e. resume, reset/rebuild, etc.) 1027 */ 1028 if (vsi->netdev) 1029 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 1030 NAPI_POLL_WEIGHT); 1031 1032 out: 1033 /* tie q_vector and VSI together */ 1034 vsi->q_vectors[v_idx] = q_vector; 1035 1036 return 0; 1037 } 1038 1039 /** 1040 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 1041 * @vsi: the VSI being configured 1042 * 1043 * We allocate one q_vector per queue interrupt. If allocation fails we 1044 * return -ENOMEM. 1045 */ 1046 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 1047 { 1048 struct ice_pf *pf = vsi->back; 1049 int v_idx = 0, num_q_vectors; 1050 int err; 1051 1052 if (vsi->q_vectors[0]) { 1053 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 1054 vsi->vsi_num); 1055 return -EEXIST; 1056 } 1057 1058 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1059 num_q_vectors = vsi->num_q_vectors; 1060 } else { 1061 err = -EINVAL; 1062 goto err_out; 1063 } 1064 1065 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 1066 err = ice_vsi_alloc_q_vector(vsi, v_idx); 1067 if (err) 1068 goto err_out; 1069 } 1070 1071 return 0; 1072 1073 err_out: 1074 while (v_idx--) 1075 ice_free_q_vector(vsi, v_idx); 1076 1077 dev_err(&pf->pdev->dev, 1078 "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 1079 vsi->num_q_vectors, vsi->vsi_num, err); 1080 vsi->num_q_vectors = 0; 1081 return err; 1082 } 1083 1084 /** 1085 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1086 * @vsi: ptr to the VSI 1087 * 1088 * This should only be called after ice_vsi_alloc() which allocates the 1089 * corresponding SW VSI structure and initializes num_queue_pairs for the 1090 * newly allocated VSI. 1091 * 1092 * Returns 0 on success or negative on failure 1093 */ 1094 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1095 { 1096 struct ice_pf *pf = vsi->back; 1097 int num_q_vectors = 0; 1098 1099 if (vsi->sw_base_vector || vsi->hw_base_vector) { 1100 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n", 1101 vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector); 1102 return -EEXIST; 1103 } 1104 1105 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1106 return -ENOENT; 1107 1108 switch (vsi->type) { 1109 case ICE_VSI_PF: 1110 num_q_vectors = vsi->num_q_vectors; 1111 /* reserve slots from OS requested IRQs */ 1112 vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker, 1113 num_q_vectors, vsi->idx); 1114 if (vsi->sw_base_vector < 0) { 1115 dev_err(&pf->pdev->dev, 1116 "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n", 1117 num_q_vectors, vsi->vsi_num, 1118 vsi->sw_base_vector); 1119 return -ENOENT; 1120 } 1121 pf->num_avail_sw_msix -= num_q_vectors; 1122 1123 /* reserve slots from HW interrupts */ 1124 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1125 num_q_vectors, vsi->idx); 1126 break; 1127 case ICE_VSI_VF: 1128 /* take VF misc vector and data vectors into account */ 1129 num_q_vectors = pf->num_vf_msix; 1130 /* For VF VSI, reserve slots only from HW interrupts */ 1131 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, 1132 num_q_vectors, vsi->idx); 1133 break; 1134 default: 1135 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", 1136 vsi->type); 1137 break; 1138 } 1139 1140 if (vsi->hw_base_vector < 0) { 1141 dev_err(&pf->pdev->dev, 1142 "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n", 1143 num_q_vectors, vsi->vsi_num, vsi->hw_base_vector); 1144 if (vsi->type != ICE_VSI_VF) { 1145 ice_free_res(vsi->back->sw_irq_tracker, 1146 vsi->sw_base_vector, vsi->idx); 1147 pf->num_avail_sw_msix += num_q_vectors; 1148 } 1149 return -ENOENT; 1150 } 1151 1152 pf->num_avail_hw_msix -= num_q_vectors; 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1159 * @vsi: the VSI having rings deallocated 1160 */ 1161 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1162 { 1163 int i; 1164 1165 if (vsi->tx_rings) { 1166 for (i = 0; i < vsi->alloc_txq; i++) { 1167 if (vsi->tx_rings[i]) { 1168 kfree_rcu(vsi->tx_rings[i], rcu); 1169 vsi->tx_rings[i] = NULL; 1170 } 1171 } 1172 } 1173 if (vsi->rx_rings) { 1174 for (i = 0; i < vsi->alloc_rxq; i++) { 1175 if (vsi->rx_rings[i]) { 1176 kfree_rcu(vsi->rx_rings[i], rcu); 1177 vsi->rx_rings[i] = NULL; 1178 } 1179 } 1180 } 1181 } 1182 1183 /** 1184 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1185 * @vsi: VSI which is having rings allocated 1186 */ 1187 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1188 { 1189 struct ice_pf *pf = vsi->back; 1190 int i; 1191 1192 /* Allocate Tx rings */ 1193 for (i = 0; i < vsi->alloc_txq; i++) { 1194 struct ice_ring *ring; 1195 1196 /* allocate with kzalloc(), free with kfree_rcu() */ 1197 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1198 1199 if (!ring) 1200 goto err_out; 1201 1202 ring->q_index = i; 1203 ring->reg_idx = vsi->txq_map[i]; 1204 ring->ring_active = false; 1205 ring->vsi = vsi; 1206 ring->dev = &pf->pdev->dev; 1207 ring->count = vsi->num_desc; 1208 vsi->tx_rings[i] = ring; 1209 } 1210 1211 /* Allocate Rx rings */ 1212 for (i = 0; i < vsi->alloc_rxq; i++) { 1213 struct ice_ring *ring; 1214 1215 /* allocate with kzalloc(), free with kfree_rcu() */ 1216 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1217 if (!ring) 1218 goto err_out; 1219 1220 ring->q_index = i; 1221 ring->reg_idx = vsi->rxq_map[i]; 1222 ring->ring_active = false; 1223 ring->vsi = vsi; 1224 ring->netdev = vsi->netdev; 1225 ring->dev = &pf->pdev->dev; 1226 ring->count = vsi->num_desc; 1227 vsi->rx_rings[i] = ring; 1228 } 1229 1230 return 0; 1231 1232 err_out: 1233 ice_vsi_clear_rings(vsi); 1234 return -ENOMEM; 1235 } 1236 1237 /** 1238 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 1239 * @vsi: the VSI being configured 1240 * 1241 * This function maps descriptor rings to the queue-specific vectors allotted 1242 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 1243 * and Rx rings to the vector as "efficiently" as possible. 1244 */ 1245 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 1246 { 1247 int q_vectors = vsi->num_q_vectors; 1248 int tx_rings_rem, rx_rings_rem; 1249 int v_id; 1250 1251 /* initially assigning remaining rings count to VSIs num queue value */ 1252 tx_rings_rem = vsi->num_txq; 1253 rx_rings_rem = vsi->num_rxq; 1254 1255 for (v_id = 0; v_id < q_vectors; v_id++) { 1256 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 1257 int tx_rings_per_v, rx_rings_per_v, q_id, q_base; 1258 1259 /* Tx rings mapping to vector */ 1260 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); 1261 q_vector->num_ring_tx = tx_rings_per_v; 1262 q_vector->tx.ring = NULL; 1263 q_vector->tx.itr_idx = ICE_TX_ITR; 1264 q_base = vsi->num_txq - tx_rings_rem; 1265 1266 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 1267 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 1268 1269 tx_ring->q_vector = q_vector; 1270 tx_ring->next = q_vector->tx.ring; 1271 q_vector->tx.ring = tx_ring; 1272 } 1273 tx_rings_rem -= tx_rings_per_v; 1274 1275 /* Rx rings mapping to vector */ 1276 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); 1277 q_vector->num_ring_rx = rx_rings_per_v; 1278 q_vector->rx.ring = NULL; 1279 q_vector->rx.itr_idx = ICE_RX_ITR; 1280 q_base = vsi->num_rxq - rx_rings_rem; 1281 1282 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 1283 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 1284 1285 rx_ring->q_vector = q_vector; 1286 rx_ring->next = q_vector->rx.ring; 1287 q_vector->rx.ring = rx_ring; 1288 } 1289 rx_rings_rem -= rx_rings_per_v; 1290 } 1291 } 1292 1293 /** 1294 * ice_vsi_manage_rss_lut - disable/enable RSS 1295 * @vsi: the VSI being changed 1296 * @ena: boolean value indicating if this is an enable or disable request 1297 * 1298 * In the event of disable request for RSS, this function will zero out RSS 1299 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1300 * LUT. 1301 */ 1302 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1303 { 1304 int err = 0; 1305 u8 *lut; 1306 1307 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 1308 GFP_KERNEL); 1309 if (!lut) 1310 return -ENOMEM; 1311 1312 if (ena) { 1313 if (vsi->rss_lut_user) 1314 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1315 else 1316 ice_fill_rss_lut(lut, vsi->rss_table_size, 1317 vsi->rss_size); 1318 } 1319 1320 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1321 devm_kfree(&vsi->back->pdev->dev, lut); 1322 return err; 1323 } 1324 1325 /** 1326 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1327 * @vsi: VSI to be configured 1328 */ 1329 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1330 { 1331 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; 1332 struct ice_aqc_get_set_rss_keys *key; 1333 struct ice_pf *pf = vsi->back; 1334 enum ice_status status; 1335 int err = 0; 1336 u8 *lut; 1337 1338 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1339 1340 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 1341 if (!lut) 1342 return -ENOMEM; 1343 1344 if (vsi->rss_lut_user) 1345 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1346 else 1347 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1348 1349 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1350 vsi->rss_table_size); 1351 1352 if (status) { 1353 dev_err(&vsi->back->pdev->dev, 1354 "set_rss_lut failed, error %d\n", status); 1355 err = -EIO; 1356 goto ice_vsi_cfg_rss_exit; 1357 } 1358 1359 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); 1360 if (!key) { 1361 err = -ENOMEM; 1362 goto ice_vsi_cfg_rss_exit; 1363 } 1364 1365 if (vsi->rss_hkey_user) 1366 memcpy(seed, vsi->rss_hkey_user, 1367 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1368 else 1369 netdev_rss_key_fill((void *)seed, 1370 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1371 memcpy(&key->standard_rss_key, seed, 1372 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); 1373 1374 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1375 1376 if (status) { 1377 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", 1378 status); 1379 err = -EIO; 1380 } 1381 1382 devm_kfree(&pf->pdev->dev, key); 1383 ice_vsi_cfg_rss_exit: 1384 devm_kfree(&pf->pdev->dev, lut); 1385 return err; 1386 } 1387 1388 /** 1389 * ice_add_mac_to_list - Add a mac address filter entry to the list 1390 * @vsi: the VSI to be forwarded to 1391 * @add_list: pointer to the list which contains MAC filter entries 1392 * @macaddr: the MAC address to be added. 1393 * 1394 * Adds mac address filter entry to the temp list 1395 * 1396 * Returns 0 on success or ENOMEM on failure. 1397 */ 1398 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1399 const u8 *macaddr) 1400 { 1401 struct ice_fltr_list_entry *tmp; 1402 struct ice_pf *pf = vsi->back; 1403 1404 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1405 if (!tmp) 1406 return -ENOMEM; 1407 1408 tmp->fltr_info.flag = ICE_FLTR_TX; 1409 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1410 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1411 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1412 tmp->fltr_info.vsi_handle = vsi->idx; 1413 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1414 1415 INIT_LIST_HEAD(&tmp->list_entry); 1416 list_add(&tmp->list_entry, add_list); 1417 1418 return 0; 1419 } 1420 1421 /** 1422 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1423 * @vsi: the VSI to be updated 1424 */ 1425 void ice_update_eth_stats(struct ice_vsi *vsi) 1426 { 1427 struct ice_eth_stats *prev_es, *cur_es; 1428 struct ice_hw *hw = &vsi->back->hw; 1429 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1430 1431 prev_es = &vsi->eth_stats_prev; 1432 cur_es = &vsi->eth_stats; 1433 1434 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), 1435 vsi->stat_offsets_loaded, &prev_es->rx_bytes, 1436 &cur_es->rx_bytes); 1437 1438 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), 1439 vsi->stat_offsets_loaded, &prev_es->rx_unicast, 1440 &cur_es->rx_unicast); 1441 1442 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), 1443 vsi->stat_offsets_loaded, &prev_es->rx_multicast, 1444 &cur_es->rx_multicast); 1445 1446 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), 1447 vsi->stat_offsets_loaded, &prev_es->rx_broadcast, 1448 &cur_es->rx_broadcast); 1449 1450 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1451 &prev_es->rx_discards, &cur_es->rx_discards); 1452 1453 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), 1454 vsi->stat_offsets_loaded, &prev_es->tx_bytes, 1455 &cur_es->tx_bytes); 1456 1457 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), 1458 vsi->stat_offsets_loaded, &prev_es->tx_unicast, 1459 &cur_es->tx_unicast); 1460 1461 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), 1462 vsi->stat_offsets_loaded, &prev_es->tx_multicast, 1463 &cur_es->tx_multicast); 1464 1465 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), 1466 vsi->stat_offsets_loaded, &prev_es->tx_broadcast, 1467 &cur_es->tx_broadcast); 1468 1469 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1470 &prev_es->tx_errors, &cur_es->tx_errors); 1471 1472 vsi->stat_offsets_loaded = true; 1473 } 1474 1475 /** 1476 * ice_free_fltr_list - free filter lists helper 1477 * @dev: pointer to the device struct 1478 * @h: pointer to the list head to be freed 1479 * 1480 * Helper function to free filter lists previously created using 1481 * ice_add_mac_to_list 1482 */ 1483 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1484 { 1485 struct ice_fltr_list_entry *e, *tmp; 1486 1487 list_for_each_entry_safe(e, tmp, h, list_entry) { 1488 list_del(&e->list_entry); 1489 devm_kfree(dev, e); 1490 } 1491 } 1492 1493 /** 1494 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1495 * @vsi: the VSI being configured 1496 * @vid: VLAN id to be added 1497 */ 1498 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1499 { 1500 struct ice_fltr_list_entry *tmp; 1501 struct ice_pf *pf = vsi->back; 1502 LIST_HEAD(tmp_add_list); 1503 enum ice_status status; 1504 int err = 0; 1505 1506 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1507 if (!tmp) 1508 return -ENOMEM; 1509 1510 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1511 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1512 tmp->fltr_info.flag = ICE_FLTR_TX; 1513 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1514 tmp->fltr_info.vsi_handle = vsi->idx; 1515 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1516 1517 INIT_LIST_HEAD(&tmp->list_entry); 1518 list_add(&tmp->list_entry, &tmp_add_list); 1519 1520 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1521 if (status) { 1522 err = -ENODEV; 1523 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1524 vid, vsi->vsi_num); 1525 } 1526 1527 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1528 return err; 1529 } 1530 1531 /** 1532 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1533 * @vsi: the VSI being configured 1534 * @vid: VLAN id to be removed 1535 * 1536 * Returns 0 on success and negative on failure 1537 */ 1538 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1539 { 1540 struct ice_fltr_list_entry *list; 1541 struct ice_pf *pf = vsi->back; 1542 LIST_HEAD(tmp_add_list); 1543 int status = 0; 1544 1545 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1546 if (!list) 1547 return -ENOMEM; 1548 1549 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1550 list->fltr_info.vsi_handle = vsi->idx; 1551 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1552 list->fltr_info.l_data.vlan.vlan_id = vid; 1553 list->fltr_info.flag = ICE_FLTR_TX; 1554 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1555 1556 INIT_LIST_HEAD(&list->list_entry); 1557 list_add(&list->list_entry, &tmp_add_list); 1558 1559 if (ice_remove_vlan(&pf->hw, &tmp_add_list)) { 1560 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", 1561 vid, vsi->vsi_num); 1562 status = -EIO; 1563 } 1564 1565 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1566 return status; 1567 } 1568 1569 /** 1570 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1571 * @vsi: the VSI being configured 1572 * 1573 * Return 0 on success and a negative value on error 1574 * Configure the Rx VSI for operation. 1575 */ 1576 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1577 { 1578 int err = 0; 1579 u16 i; 1580 1581 if (vsi->type == ICE_VSI_VF) 1582 goto setup_rings; 1583 1584 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) 1585 vsi->max_frame = vsi->netdev->mtu + 1586 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1587 else 1588 vsi->max_frame = ICE_RXBUF_2048; 1589 1590 vsi->rx_buf_len = ICE_RXBUF_2048; 1591 setup_rings: 1592 /* set up individual rings */ 1593 for (i = 0; i < vsi->num_rxq && !err; i++) 1594 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1595 1596 if (err) { 1597 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); 1598 return -EIO; 1599 } 1600 return err; 1601 } 1602 1603 /** 1604 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1605 * @vsi: the VSI being configured 1606 * @rings: Tx ring array to be configured 1607 * @offset: offset within vsi->txq_map 1608 * 1609 * Return 0 on success and a negative value on error 1610 * Configure the Tx VSI for operation. 1611 */ 1612 static int 1613 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset) 1614 { 1615 struct ice_aqc_add_tx_qgrp *qg_buf; 1616 struct ice_aqc_add_txqs_perq *txq; 1617 struct ice_pf *pf = vsi->back; 1618 u8 num_q_grps, q_idx = 0; 1619 enum ice_status status; 1620 u16 buf_len, i, pf_q; 1621 int err = 0, tc; 1622 1623 buf_len = sizeof(struct ice_aqc_add_tx_qgrp); 1624 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); 1625 if (!qg_buf) 1626 return -ENOMEM; 1627 1628 qg_buf->num_txqs = 1; 1629 num_q_grps = 1; 1630 1631 /* set up and configure the Tx queues for each enabled TC */ 1632 for (tc = 0; tc < ICE_MAX_TRAFFIC_CLASS; tc++) { 1633 if (!(vsi->tc_cfg.ena_tc & BIT(tc))) 1634 break; 1635 1636 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) { 1637 struct ice_tlan_ctx tlan_ctx = { 0 }; 1638 1639 pf_q = vsi->txq_map[q_idx + offset]; 1640 ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q); 1641 /* copy context contents into the qg_buf */ 1642 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 1643 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 1644 ice_tlan_ctx_info); 1645 1646 /* init queue specific tail reg. It is referred as 1647 * transmit comm scheduler queue doorbell. 1648 */ 1649 rings[q_idx]->tail = 1650 pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); 1651 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 1652 num_q_grps, qg_buf, buf_len, 1653 NULL); 1654 if (status) { 1655 dev_err(&vsi->back->pdev->dev, 1656 "Failed to set LAN Tx queue context, error: %d\n", 1657 status); 1658 err = -ENODEV; 1659 goto err_cfg_txqs; 1660 } 1661 1662 /* Add Tx Queue TEID into the VSI Tx ring from the 1663 * response. This will complete configuring and 1664 * enabling the queue. 1665 */ 1666 txq = &qg_buf->txqs[0]; 1667 if (pf_q == le16_to_cpu(txq->txq_id)) 1668 rings[q_idx]->txq_teid = 1669 le32_to_cpu(txq->q_teid); 1670 1671 q_idx++; 1672 } 1673 } 1674 err_cfg_txqs: 1675 devm_kfree(&pf->pdev->dev, qg_buf); 1676 return err; 1677 } 1678 1679 /** 1680 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1681 * @vsi: the VSI being configured 1682 * 1683 * Return 0 on success and a negative value on error 1684 * Configure the Tx VSI for operation. 1685 */ 1686 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1687 { 1688 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0); 1689 } 1690 1691 /** 1692 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1693 * @intrl: interrupt rate limit in usecs 1694 * @gran: interrupt rate limit granularity in usecs 1695 * 1696 * This function converts a decimal interrupt rate limit in usecs to the format 1697 * expected by firmware. 1698 */ 1699 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1700 { 1701 u32 val = intrl / gran; 1702 1703 if (val) 1704 return val | GLINT_RATE_INTRL_ENA_M; 1705 return 0; 1706 } 1707 1708 /** 1709 * ice_cfg_itr - configure the initial interrupt throttle values 1710 * @hw: pointer to the HW structure 1711 * @q_vector: interrupt vector that's being configured 1712 * @vector: HW vector index to apply the interrupt throttling to 1713 * 1714 * Configure interrupt throttling values for the ring containers that are 1715 * associated with the interrupt vector passed in. 1716 */ 1717 static void 1718 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector) 1719 { 1720 if (q_vector->num_ring_rx) { 1721 struct ice_ring_container *rc = &q_vector->rx; 1722 1723 /* if this value is set then don't overwrite with default */ 1724 if (!rc->itr_setting) 1725 rc->itr_setting = ICE_DFLT_RX_ITR; 1726 1727 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1728 rc->next_update = jiffies + 1; 1729 rc->current_itr = rc->target_itr; 1730 rc->latency_range = ICE_LOW_LATENCY; 1731 wr32(hw, GLINT_ITR(rc->itr_idx, vector), 1732 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1733 } 1734 1735 if (q_vector->num_ring_tx) { 1736 struct ice_ring_container *rc = &q_vector->tx; 1737 1738 /* if this value is set then don't overwrite with default */ 1739 if (!rc->itr_setting) 1740 rc->itr_setting = ICE_DFLT_TX_ITR; 1741 1742 rc->target_itr = ITR_TO_REG(rc->itr_setting); 1743 rc->next_update = jiffies + 1; 1744 rc->current_itr = rc->target_itr; 1745 rc->latency_range = ICE_LOW_LATENCY; 1746 wr32(hw, GLINT_ITR(rc->itr_idx, vector), 1747 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 1748 } 1749 } 1750 1751 /** 1752 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1753 * @vsi: the VSI being configured 1754 */ 1755 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1756 { 1757 struct ice_pf *pf = vsi->back; 1758 u16 vector = vsi->hw_base_vector; 1759 struct ice_hw *hw = &pf->hw; 1760 u32 txq = 0, rxq = 0; 1761 int i, q; 1762 1763 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 1764 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1765 1766 ice_cfg_itr(hw, q_vector, vector); 1767 1768 wr32(hw, GLINT_RATE(vector), 1769 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1770 1771 /* Both Transmit Queue Interrupt Cause Control register 1772 * and Receive Queue Interrupt Cause control register 1773 * expects MSIX_INDX field to be the vector index 1774 * within the function space and not the absolute 1775 * vector index across PF or across device. 1776 * For SR-IOV VF VSIs queue vector index always starts 1777 * with 1 since first vector index(0) is used for OICR 1778 * in VF space. Since VMDq and other PF VSIs are within 1779 * the PF function space, use the vector index that is 1780 * tracked for this PF. 1781 */ 1782 for (q = 0; q < q_vector->num_ring_tx; q++) { 1783 int itr_idx = q_vector->tx.itr_idx; 1784 u32 val; 1785 1786 if (vsi->type == ICE_VSI_VF) 1787 val = QINT_TQCTL_CAUSE_ENA_M | 1788 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1789 ((i + 1) << QINT_TQCTL_MSIX_INDX_S); 1790 else 1791 val = QINT_TQCTL_CAUSE_ENA_M | 1792 (itr_idx << QINT_TQCTL_ITR_INDX_S) | 1793 (vector << QINT_TQCTL_MSIX_INDX_S); 1794 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1795 txq++; 1796 } 1797 1798 for (q = 0; q < q_vector->num_ring_rx; q++) { 1799 int itr_idx = q_vector->rx.itr_idx; 1800 u32 val; 1801 1802 if (vsi->type == ICE_VSI_VF) 1803 val = QINT_RQCTL_CAUSE_ENA_M | 1804 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1805 ((i + 1) << QINT_RQCTL_MSIX_INDX_S); 1806 else 1807 val = QINT_RQCTL_CAUSE_ENA_M | 1808 (itr_idx << QINT_RQCTL_ITR_INDX_S) | 1809 (vector << QINT_RQCTL_MSIX_INDX_S); 1810 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1811 rxq++; 1812 } 1813 } 1814 1815 ice_flush(hw); 1816 } 1817 1818 /** 1819 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1820 * @vsi: the VSI being changed 1821 */ 1822 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1823 { 1824 struct device *dev = &vsi->back->pdev->dev; 1825 struct ice_hw *hw = &vsi->back->hw; 1826 struct ice_vsi_ctx ctxt = { 0 }; 1827 enum ice_status status; 1828 1829 /* Here we are configuring the VSI to let the driver add VLAN tags by 1830 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1831 * insertion happens in the Tx hot path, in ice_tx_map. 1832 */ 1833 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1834 1835 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1836 1837 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1838 if (status) { 1839 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1840 status, hw->adminq.sq_last_status); 1841 return -EIO; 1842 } 1843 1844 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1845 return 0; 1846 } 1847 1848 /** 1849 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1850 * @vsi: the VSI being changed 1851 * @ena: boolean value indicating if this is a enable or disable request 1852 */ 1853 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1854 { 1855 struct device *dev = &vsi->back->pdev->dev; 1856 struct ice_hw *hw = &vsi->back->hw; 1857 struct ice_vsi_ctx ctxt = { 0 }; 1858 enum ice_status status; 1859 1860 /* Here we are configuring what the VSI should do with the VLAN tag in 1861 * the Rx packet. We can either leave the tag in the packet or put it in 1862 * the Rx descriptor. 1863 */ 1864 if (ena) { 1865 /* Strip VLAN tag from Rx packet and put it in the desc */ 1866 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1867 } else { 1868 /* Disable stripping. Leave tag in packet */ 1869 ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1870 } 1871 1872 /* Allow all packets untagged/tagged */ 1873 ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1874 1875 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1876 1877 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 1878 if (status) { 1879 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1880 ena, status, hw->adminq.sq_last_status); 1881 return -EIO; 1882 } 1883 1884 vsi->info.vlan_flags = ctxt.info.vlan_flags; 1885 return 0; 1886 } 1887 1888 /** 1889 * ice_vsi_start_rx_rings - start VSI's Rx rings 1890 * @vsi: the VSI whose rings are to be started 1891 * 1892 * Returns 0 on success and a negative value on error 1893 */ 1894 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1895 { 1896 return ice_vsi_ctrl_rx_rings(vsi, true); 1897 } 1898 1899 /** 1900 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1901 * @vsi: the VSI 1902 * 1903 * Returns 0 on success and a negative value on error 1904 */ 1905 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1906 { 1907 return ice_vsi_ctrl_rx_rings(vsi, false); 1908 } 1909 1910 /** 1911 * ice_vsi_stop_tx_rings - Disable Tx rings 1912 * @vsi: the VSI being configured 1913 * @rst_src: reset source 1914 * @rel_vmvf_num: Relative id of VF/VM 1915 * @rings: Tx ring array to be stopped 1916 * @offset: offset within vsi->txq_map 1917 */ 1918 static int 1919 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1920 u16 rel_vmvf_num, struct ice_ring **rings, int offset) 1921 { 1922 struct ice_pf *pf = vsi->back; 1923 struct ice_hw *hw = &pf->hw; 1924 enum ice_status status; 1925 u32 *q_teids, val; 1926 u16 *q_ids, i; 1927 int err = 0; 1928 1929 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1930 return -EINVAL; 1931 1932 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), 1933 GFP_KERNEL); 1934 if (!q_teids) 1935 return -ENOMEM; 1936 1937 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), 1938 GFP_KERNEL); 1939 if (!q_ids) { 1940 err = -ENOMEM; 1941 goto err_alloc_q_ids; 1942 } 1943 1944 /* set up the Tx queue list to be disabled */ 1945 ice_for_each_txq(vsi, i) { 1946 u16 v_idx; 1947 1948 if (!rings || !rings[i] || !rings[i]->q_vector) { 1949 err = -EINVAL; 1950 goto err_out; 1951 } 1952 1953 q_ids[i] = vsi->txq_map[i + offset]; 1954 q_teids[i] = rings[i]->txq_teid; 1955 1956 /* clear cause_ena bit for disabled queues */ 1957 val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx)); 1958 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1959 wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val); 1960 1961 /* software is expected to wait for 100 ns */ 1962 ndelay(100); 1963 1964 /* trigger a software interrupt for the vector associated to 1965 * the queue to schedule NAPI handler 1966 */ 1967 v_idx = rings[i]->q_vector->v_idx; 1968 wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 1969 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); 1970 } 1971 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, 1972 rst_src, rel_vmvf_num, NULL); 1973 /* if the disable queue command was exercised during an active reset 1974 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as 1975 * the reset operation disables queues at the hardware level anyway. 1976 */ 1977 if (status == ICE_ERR_RESET_ONGOING) { 1978 dev_info(&pf->pdev->dev, 1979 "Reset in progress. LAN Tx queues already disabled\n"); 1980 } else if (status) { 1981 dev_err(&pf->pdev->dev, 1982 "Failed to disable LAN Tx queues, error: %d\n", 1983 status); 1984 err = -ENODEV; 1985 } 1986 1987 err_out: 1988 devm_kfree(&pf->pdev->dev, q_ids); 1989 1990 err_alloc_q_ids: 1991 devm_kfree(&pf->pdev->dev, q_teids); 1992 1993 return err; 1994 } 1995 1996 /** 1997 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1998 * @vsi: the VSI being configured 1999 * @rst_src: reset source 2000 * @rel_vmvf_num: Relative id of VF/VM 2001 */ 2002 int ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, 2003 enum ice_disq_rst_src rst_src, u16 rel_vmvf_num) 2004 { 2005 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, 2006 0); 2007 } 2008 2009 /** 2010 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2011 * @vsi: VSI to enable or disable VLAN pruning on 2012 * @ena: set to true to enable VLAN pruning and false to disable it 2013 * 2014 * returns 0 if VSI is updated, negative otherwise 2015 */ 2016 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) 2017 { 2018 struct ice_vsi_ctx *ctxt; 2019 struct device *dev; 2020 int status; 2021 2022 if (!vsi) 2023 return -EINVAL; 2024 2025 dev = &vsi->back->pdev->dev; 2026 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 2027 if (!ctxt) 2028 return -ENOMEM; 2029 2030 ctxt->info = vsi->info; 2031 2032 if (ena) { 2033 ctxt->info.sec_flags |= 2034 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2035 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 2036 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2037 } else { 2038 ctxt->info.sec_flags &= 2039 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 2040 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 2041 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2042 } 2043 2044 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 2045 ICE_AQ_VSI_PROP_SW_VALID); 2046 2047 status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL); 2048 if (status) { 2049 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 2050 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 2051 vsi->back->hw.adminq.sq_last_status); 2052 goto err_out; 2053 } 2054 2055 vsi->info.sec_flags = ctxt->info.sec_flags; 2056 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2057 2058 devm_kfree(dev, ctxt); 2059 return 0; 2060 2061 err_out: 2062 devm_kfree(dev, ctxt); 2063 return -EIO; 2064 } 2065 2066 /** 2067 * ice_vsi_setup - Set up a VSI by a given type 2068 * @pf: board private structure 2069 * @pi: pointer to the port_info instance 2070 * @type: VSI type 2071 * @vf_id: defines VF id to which this VSI connects. This field is meant to be 2072 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2073 * fill-in ICE_INVAL_VFID as input. 2074 * 2075 * This allocates the sw VSI structure and its queue resources. 2076 * 2077 * Returns pointer to the successfully allocated and configured VSI sw struct on 2078 * success, NULL on failure. 2079 */ 2080 struct ice_vsi * 2081 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2082 enum ice_vsi_type type, u16 vf_id) 2083 { 2084 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2085 struct device *dev = &pf->pdev->dev; 2086 struct ice_vsi *vsi; 2087 int ret, i; 2088 2089 vsi = ice_vsi_alloc(pf, type); 2090 if (!vsi) { 2091 dev_err(dev, "could not allocate VSI\n"); 2092 return NULL; 2093 } 2094 2095 vsi->port_info = pi; 2096 vsi->vsw = pf->first_sw; 2097 if (vsi->type == ICE_VSI_VF) 2098 vsi->vf_id = vf_id; 2099 2100 if (ice_vsi_get_qs(vsi)) { 2101 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2102 vsi->idx); 2103 goto unroll_get_qs; 2104 } 2105 2106 /* set RSS capabilities */ 2107 ice_vsi_set_rss_params(vsi); 2108 2109 /* set tc configuration */ 2110 ice_vsi_set_tc_cfg(vsi); 2111 2112 /* create the VSI */ 2113 ret = ice_vsi_init(vsi); 2114 if (ret) 2115 goto unroll_get_qs; 2116 2117 switch (vsi->type) { 2118 case ICE_VSI_PF: 2119 ret = ice_vsi_alloc_q_vectors(vsi); 2120 if (ret) 2121 goto unroll_vsi_init; 2122 2123 ret = ice_vsi_setup_vector_base(vsi); 2124 if (ret) 2125 goto unroll_alloc_q_vector; 2126 2127 ret = ice_vsi_alloc_rings(vsi); 2128 if (ret) 2129 goto unroll_vector_base; 2130 2131 ice_vsi_map_rings_to_vectors(vsi); 2132 2133 /* Do not exit if configuring RSS had an issue, at least 2134 * receive traffic on first queue. Hence no need to capture 2135 * return value 2136 */ 2137 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2138 ice_vsi_cfg_rss_lut_key(vsi); 2139 break; 2140 case ICE_VSI_VF: 2141 /* VF driver will take care of creating netdev for this type and 2142 * map queues to vectors through Virtchnl, PF driver only 2143 * creates a VSI and corresponding structures for bookkeeping 2144 * purpose 2145 */ 2146 ret = ice_vsi_alloc_q_vectors(vsi); 2147 if (ret) 2148 goto unroll_vsi_init; 2149 2150 ret = ice_vsi_alloc_rings(vsi); 2151 if (ret) 2152 goto unroll_alloc_q_vector; 2153 2154 /* Setup Vector base only during VF init phase or when VF asks 2155 * for more vectors than assigned number. In all other cases, 2156 * assign hw_base_vector to the value given earlier. 2157 */ 2158 if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) { 2159 ret = ice_vsi_setup_vector_base(vsi); 2160 if (ret) 2161 goto unroll_vector_base; 2162 } else { 2163 vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx; 2164 } 2165 pf->q_left_tx -= vsi->alloc_txq; 2166 pf->q_left_rx -= vsi->alloc_rxq; 2167 break; 2168 default: 2169 /* clean up the resources and exit */ 2170 goto unroll_vsi_init; 2171 } 2172 2173 /* configure VSI nodes based on number of queues and TC's */ 2174 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2175 max_txqs[i] = pf->num_lan_tx; 2176 2177 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2178 max_txqs); 2179 if (ret) { 2180 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); 2181 goto unroll_vector_base; 2182 } 2183 2184 return vsi; 2185 2186 unroll_vector_base: 2187 /* reclaim SW interrupts back to the common pool */ 2188 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2189 pf->num_avail_sw_msix += vsi->num_q_vectors; 2190 /* reclaim HW interrupt back to the common pool */ 2191 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2192 pf->num_avail_hw_msix += vsi->num_q_vectors; 2193 unroll_alloc_q_vector: 2194 ice_vsi_free_q_vectors(vsi); 2195 unroll_vsi_init: 2196 ice_vsi_delete(vsi); 2197 unroll_get_qs: 2198 ice_vsi_put_qs(vsi); 2199 pf->q_left_tx += vsi->alloc_txq; 2200 pf->q_left_rx += vsi->alloc_rxq; 2201 ice_vsi_clear(vsi); 2202 2203 return NULL; 2204 } 2205 2206 /** 2207 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2208 * @vsi: the VSI being cleaned up 2209 */ 2210 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2211 { 2212 struct ice_pf *pf = vsi->back; 2213 u16 vector = vsi->hw_base_vector; 2214 struct ice_hw *hw = &pf->hw; 2215 u32 txq = 0; 2216 u32 rxq = 0; 2217 int i, q; 2218 2219 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 2220 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2221 2222 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0); 2223 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0); 2224 for (q = 0; q < q_vector->num_ring_tx; q++) { 2225 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2226 txq++; 2227 } 2228 2229 for (q = 0; q < q_vector->num_ring_rx; q++) { 2230 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2231 rxq++; 2232 } 2233 } 2234 2235 ice_flush(hw); 2236 } 2237 2238 /** 2239 * ice_vsi_free_irq - Free the IRQ association with the OS 2240 * @vsi: the VSI being configured 2241 */ 2242 void ice_vsi_free_irq(struct ice_vsi *vsi) 2243 { 2244 struct ice_pf *pf = vsi->back; 2245 int base = vsi->sw_base_vector; 2246 2247 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2248 int i; 2249 2250 if (!vsi->q_vectors || !vsi->irqs_ready) 2251 return; 2252 2253 ice_vsi_release_msix(vsi); 2254 if (vsi->type == ICE_VSI_VF) 2255 return; 2256 2257 vsi->irqs_ready = false; 2258 for (i = 0; i < vsi->num_q_vectors; i++) { 2259 u16 vector = i + base; 2260 int irq_num; 2261 2262 irq_num = pf->msix_entries[vector].vector; 2263 2264 /* free only the irqs that were actually requested */ 2265 if (!vsi->q_vectors[i] || 2266 !(vsi->q_vectors[i]->num_ring_tx || 2267 vsi->q_vectors[i]->num_ring_rx)) 2268 continue; 2269 2270 /* clear the affinity notifier in the IRQ descriptor */ 2271 irq_set_affinity_notifier(irq_num, NULL); 2272 2273 /* clear the affinity_mask in the IRQ descriptor */ 2274 irq_set_affinity_hint(irq_num, NULL); 2275 synchronize_irq(irq_num); 2276 devm_free_irq(&pf->pdev->dev, irq_num, 2277 vsi->q_vectors[i]); 2278 } 2279 } 2280 } 2281 2282 /** 2283 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2284 * @vsi: the VSI having resources freed 2285 */ 2286 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2287 { 2288 int i; 2289 2290 if (!vsi->tx_rings) 2291 return; 2292 2293 ice_for_each_txq(vsi, i) 2294 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2295 ice_free_tx_ring(vsi->tx_rings[i]); 2296 } 2297 2298 /** 2299 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2300 * @vsi: the VSI having resources freed 2301 */ 2302 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2303 { 2304 int i; 2305 2306 if (!vsi->rx_rings) 2307 return; 2308 2309 ice_for_each_rxq(vsi, i) 2310 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2311 ice_free_rx_ring(vsi->rx_rings[i]); 2312 } 2313 2314 /** 2315 * ice_vsi_close - Shut down a VSI 2316 * @vsi: the VSI being shut down 2317 */ 2318 void ice_vsi_close(struct ice_vsi *vsi) 2319 { 2320 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2321 ice_down(vsi); 2322 2323 ice_vsi_free_irq(vsi); 2324 ice_vsi_free_tx_rings(vsi); 2325 ice_vsi_free_rx_rings(vsi); 2326 } 2327 2328 /** 2329 * ice_free_res - free a block of resources 2330 * @res: pointer to the resource 2331 * @index: starting index previously returned by ice_get_res 2332 * @id: identifier to track owner 2333 * 2334 * Returns number of resources freed 2335 */ 2336 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2337 { 2338 int count = 0; 2339 int i; 2340 2341 if (!res || index >= res->num_entries) 2342 return -EINVAL; 2343 2344 id |= ICE_RES_VALID_BIT; 2345 for (i = index; i < res->num_entries && res->list[i] == id; i++) { 2346 res->list[i] = 0; 2347 count++; 2348 } 2349 2350 return count; 2351 } 2352 2353 /** 2354 * ice_search_res - Search the tracker for a block of resources 2355 * @res: pointer to the resource 2356 * @needed: size of the block needed 2357 * @id: identifier to track owner 2358 * 2359 * Returns the base item index of the block, or -ENOMEM for error 2360 */ 2361 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2362 { 2363 int start = res->search_hint; 2364 int end = start; 2365 2366 if ((start + needed) > res->num_entries) 2367 return -ENOMEM; 2368 2369 id |= ICE_RES_VALID_BIT; 2370 2371 do { 2372 /* skip already allocated entries */ 2373 if (res->list[end++] & ICE_RES_VALID_BIT) { 2374 start = end; 2375 if ((start + needed) > res->num_entries) 2376 break; 2377 } 2378 2379 if (end == (start + needed)) { 2380 int i = start; 2381 2382 /* there was enough, so assign it to the requestor */ 2383 while (i != end) 2384 res->list[i++] = id; 2385 2386 if (end == res->num_entries) 2387 end = 0; 2388 2389 res->search_hint = end; 2390 return start; 2391 } 2392 } while (1); 2393 2394 return -ENOMEM; 2395 } 2396 2397 /** 2398 * ice_get_res - get a block of resources 2399 * @pf: board private structure 2400 * @res: pointer to the resource 2401 * @needed: size of the block needed 2402 * @id: identifier to track owner 2403 * 2404 * Returns the base item index of the block, or -ENOMEM for error 2405 * The search_hint trick and lack of advanced fit-finding only works 2406 * because we're highly likely to have all the same sized requests. 2407 * Linear search time and any fragmentation should be minimal. 2408 */ 2409 int 2410 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2411 { 2412 int ret; 2413 2414 if (!res || !pf) 2415 return -EINVAL; 2416 2417 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2418 dev_err(&pf->pdev->dev, 2419 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2420 needed, res->num_entries, id); 2421 return -EINVAL; 2422 } 2423 2424 /* search based on search_hint */ 2425 ret = ice_search_res(res, needed, id); 2426 2427 if (ret < 0) { 2428 /* previous search failed. Reset search hint and try again */ 2429 res->search_hint = 0; 2430 ret = ice_search_res(res, needed, id); 2431 } 2432 2433 return ret; 2434 } 2435 2436 /** 2437 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2438 * @vsi: the VSI being un-configured 2439 */ 2440 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2441 { 2442 int base = vsi->sw_base_vector; 2443 struct ice_pf *pf = vsi->back; 2444 struct ice_hw *hw = &pf->hw; 2445 u32 val; 2446 int i; 2447 2448 /* disable interrupt causation from each queue */ 2449 if (vsi->tx_rings) { 2450 ice_for_each_txq(vsi, i) { 2451 if (vsi->tx_rings[i]) { 2452 u16 reg; 2453 2454 reg = vsi->tx_rings[i]->reg_idx; 2455 val = rd32(hw, QINT_TQCTL(reg)); 2456 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2457 wr32(hw, QINT_TQCTL(reg), val); 2458 } 2459 } 2460 } 2461 2462 if (vsi->rx_rings) { 2463 ice_for_each_rxq(vsi, i) { 2464 if (vsi->rx_rings[i]) { 2465 u16 reg; 2466 2467 reg = vsi->rx_rings[i]->reg_idx; 2468 val = rd32(hw, QINT_RQCTL(reg)); 2469 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2470 wr32(hw, QINT_RQCTL(reg), val); 2471 } 2472 } 2473 } 2474 2475 /* disable each interrupt */ 2476 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2477 for (i = vsi->hw_base_vector; 2478 i < (vsi->num_q_vectors + vsi->hw_base_vector); i++) 2479 wr32(hw, GLINT_DYN_CTL(i), 0); 2480 2481 ice_flush(hw); 2482 for (i = 0; i < vsi->num_q_vectors; i++) 2483 synchronize_irq(pf->msix_entries[i + base].vector); 2484 } 2485 } 2486 2487 /** 2488 * ice_vsi_release - Delete a VSI and free its resources 2489 * @vsi: the VSI being removed 2490 * 2491 * Returns 0 on success or < 0 on error 2492 */ 2493 int ice_vsi_release(struct ice_vsi *vsi) 2494 { 2495 struct ice_pf *pf; 2496 struct ice_vf *vf; 2497 2498 if (!vsi->back) 2499 return -ENODEV; 2500 pf = vsi->back; 2501 vf = &pf->vf[vsi->vf_id]; 2502 /* do not unregister and free netdevs while driver is in the reset 2503 * recovery pending state. Since reset/rebuild happens through PF 2504 * service task workqueue, its not a good idea to unregister netdev 2505 * that is associated to the PF that is running the work queue items 2506 * currently. This is done to avoid check_flush_dependency() warning 2507 * on this wq 2508 */ 2509 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2510 ice_napi_del(vsi); 2511 unregister_netdev(vsi->netdev); 2512 free_netdev(vsi->netdev); 2513 vsi->netdev = NULL; 2514 } 2515 2516 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2517 ice_rss_clean(vsi); 2518 2519 /* Disable VSI and free resources */ 2520 ice_vsi_dis_irq(vsi); 2521 ice_vsi_close(vsi); 2522 2523 /* reclaim interrupt vectors back to PF */ 2524 if (vsi->type != ICE_VSI_VF) { 2525 /* reclaim SW interrupts back to the common pool */ 2526 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, 2527 vsi->idx); 2528 pf->num_avail_sw_msix += vsi->num_q_vectors; 2529 /* reclaim HW interrupts back to the common pool */ 2530 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, 2531 vsi->idx); 2532 pf->num_avail_hw_msix += vsi->num_q_vectors; 2533 } else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) { 2534 /* Reclaim VF resources back only while freeing all VFs or 2535 * vector reassignment is requested 2536 */ 2537 ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx, 2538 vsi->idx); 2539 pf->num_avail_hw_msix += pf->num_vf_msix; 2540 } 2541 2542 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2543 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2544 ice_vsi_delete(vsi); 2545 ice_vsi_free_q_vectors(vsi); 2546 ice_vsi_clear_rings(vsi); 2547 2548 ice_vsi_put_qs(vsi); 2549 pf->q_left_tx += vsi->alloc_txq; 2550 pf->q_left_rx += vsi->alloc_rxq; 2551 2552 /* retain SW VSI data structure since it is needed to unregister and 2553 * free VSI netdev when PF is not in reset recovery pending state,\ 2554 * for ex: during rmmod. 2555 */ 2556 if (!ice_is_reset_in_progress(pf->state)) 2557 ice_vsi_clear(vsi); 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * ice_vsi_rebuild - Rebuild VSI after reset 2564 * @vsi: VSI to be rebuild 2565 * 2566 * Returns 0 on success and negative value on failure 2567 */ 2568 int ice_vsi_rebuild(struct ice_vsi *vsi) 2569 { 2570 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2571 struct ice_pf *pf; 2572 int ret, i; 2573 2574 if (!vsi) 2575 return -EINVAL; 2576 2577 pf = vsi->back; 2578 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2579 ice_vsi_free_q_vectors(vsi); 2580 ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); 2581 ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); 2582 vsi->sw_base_vector = 0; 2583 vsi->hw_base_vector = 0; 2584 ice_vsi_clear_rings(vsi); 2585 ice_vsi_free_arrays(vsi, false); 2586 ice_dev_onetime_setup(&vsi->back->hw); 2587 ice_vsi_set_num_qs(vsi); 2588 ice_vsi_set_tc_cfg(vsi); 2589 2590 /* Initialize VSI struct elements and create VSI in FW */ 2591 ret = ice_vsi_init(vsi); 2592 if (ret < 0) 2593 goto err_vsi; 2594 2595 ret = ice_vsi_alloc_arrays(vsi, false); 2596 if (ret < 0) 2597 goto err_vsi; 2598 2599 switch (vsi->type) { 2600 case ICE_VSI_PF: 2601 ret = ice_vsi_alloc_q_vectors(vsi); 2602 if (ret) 2603 goto err_rings; 2604 2605 ret = ice_vsi_setup_vector_base(vsi); 2606 if (ret) 2607 goto err_vectors; 2608 2609 ret = ice_vsi_alloc_rings(vsi); 2610 if (ret) 2611 goto err_vectors; 2612 2613 ice_vsi_map_rings_to_vectors(vsi); 2614 /* Do not exit if configuring RSS had an issue, at least 2615 * receive traffic on first queue. Hence no need to capture 2616 * return value 2617 */ 2618 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) 2619 ice_vsi_cfg_rss_lut_key(vsi); 2620 break; 2621 case ICE_VSI_VF: 2622 ret = ice_vsi_alloc_q_vectors(vsi); 2623 if (ret) 2624 goto err_rings; 2625 2626 ret = ice_vsi_setup_vector_base(vsi); 2627 if (ret) 2628 goto err_vectors; 2629 2630 ret = ice_vsi_alloc_rings(vsi); 2631 if (ret) 2632 goto err_vectors; 2633 2634 vsi->back->q_left_tx -= vsi->alloc_txq; 2635 vsi->back->q_left_rx -= vsi->alloc_rxq; 2636 break; 2637 default: 2638 break; 2639 } 2640 2641 /* configure VSI nodes based on number of queues and TC's */ 2642 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2643 max_txqs[i] = pf->num_lan_tx; 2644 2645 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2646 max_txqs); 2647 if (ret) { 2648 dev_info(&vsi->back->pdev->dev, 2649 "Failed VSI lan queue config\n"); 2650 goto err_vectors; 2651 } 2652 return 0; 2653 2654 err_vectors: 2655 ice_vsi_free_q_vectors(vsi); 2656 err_rings: 2657 if (vsi->netdev) { 2658 vsi->current_netdev_flags = 0; 2659 unregister_netdev(vsi->netdev); 2660 free_netdev(vsi->netdev); 2661 vsi->netdev = NULL; 2662 } 2663 err_vsi: 2664 ice_vsi_clear(vsi); 2665 set_bit(__ICE_RESET_FAILED, vsi->back->state); 2666 return ret; 2667 } 2668 2669 /** 2670 * ice_is_reset_in_progress - check for a reset in progress 2671 * @state: pf state field 2672 */ 2673 bool ice_is_reset_in_progress(unsigned long *state) 2674 { 2675 return test_bit(__ICE_RESET_OICR_RECV, state) || 2676 test_bit(__ICE_PFR_REQ, state) || 2677 test_bit(__ICE_CORER_REQ, state) || 2678 test_bit(__ICE_GLOBR_REQ, state); 2679 } 2680