1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 vsi->num_rxq = offset; 985 else 986 vsi->num_rxq = num_rxq_per_tc; 987 988 vsi->num_txq = tx_count; 989 990 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 991 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 992 /* since there is a chance that num_rxq could have been changed 993 * in the above for loop, make num_txq equal to num_rxq. 994 */ 995 vsi->num_txq = vsi->num_rxq; 996 } 997 998 /* Rx queue mapping */ 999 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1000 /* q_mapping buffer holds the info for the first queue allocated for 1001 * this VSI in the PF space and also the number of queues associated 1002 * with this VSI. 1003 */ 1004 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1005 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1006 } 1007 1008 /** 1009 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1010 * @ctxt: the VSI context being set 1011 * @vsi: the VSI being configured 1012 */ 1013 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1014 { 1015 u8 dflt_q_group, dflt_q_prio; 1016 u16 dflt_q, report_q, val; 1017 1018 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1019 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1020 return; 1021 1022 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1023 ctxt->info.valid_sections |= cpu_to_le16(val); 1024 dflt_q = 0; 1025 dflt_q_group = 0; 1026 report_q = 0; 1027 dflt_q_prio = 0; 1028 1029 /* enable flow director filtering/programming */ 1030 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1031 ctxt->info.fd_options = cpu_to_le16(val); 1032 /* max of allocated flow director filters */ 1033 ctxt->info.max_fd_fltr_dedicated = 1034 cpu_to_le16(vsi->num_gfltr); 1035 /* max of shared flow director filters any VSI may program */ 1036 ctxt->info.max_fd_fltr_shared = 1037 cpu_to_le16(vsi->num_bfltr); 1038 /* default queue index within the VSI of the default FD */ 1039 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1040 ICE_AQ_VSI_FD_DEF_Q_M); 1041 /* target queue or queue group to the FD filter */ 1042 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1043 ICE_AQ_VSI_FD_DEF_GRP_M); 1044 ctxt->info.fd_def_q = cpu_to_le16(val); 1045 /* queue index on which FD filter completion is reported */ 1046 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1047 ICE_AQ_VSI_FD_REPORT_Q_M); 1048 /* priority of the default qindex action */ 1049 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1050 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1051 ctxt->info.fd_report_opt = cpu_to_le16(val); 1052 } 1053 1054 /** 1055 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1056 * @ctxt: the VSI context being set 1057 * @vsi: the VSI being configured 1058 */ 1059 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1060 { 1061 u8 lut_type, hash_type; 1062 struct device *dev; 1063 struct ice_pf *pf; 1064 1065 pf = vsi->back; 1066 dev = ice_pf_to_dev(pf); 1067 1068 switch (vsi->type) { 1069 case ICE_VSI_CHNL: 1070 case ICE_VSI_PF: 1071 /* PF VSI will inherit RSS instance of PF */ 1072 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1073 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1074 break; 1075 case ICE_VSI_VF: 1076 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1077 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1078 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1079 break; 1080 default: 1081 dev_dbg(dev, "Unsupported VSI type %s\n", 1082 ice_vsi_type_str(vsi->type)); 1083 return; 1084 } 1085 1086 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1087 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1088 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1089 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1090 } 1091 1092 static void 1093 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1094 { 1095 struct ice_pf *pf = vsi->back; 1096 u16 qcount, qmap; 1097 u8 offset = 0; 1098 int pow; 1099 1100 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1101 1102 pow = order_base_2(qcount); 1103 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1104 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1105 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1106 ICE_AQ_VSI_TC_Q_NUM_M); 1107 1108 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1109 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1110 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1111 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1112 } 1113 1114 /** 1115 * ice_vsi_init - Create and initialize a VSI 1116 * @vsi: the VSI being configured 1117 * @init_vsi: is this call creating a VSI 1118 * 1119 * This initializes a VSI context depending on the VSI type to be added and 1120 * passes it down to the add_vsi aq command to create a new VSI. 1121 */ 1122 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1123 { 1124 struct ice_pf *pf = vsi->back; 1125 struct ice_hw *hw = &pf->hw; 1126 struct ice_vsi_ctx *ctxt; 1127 struct device *dev; 1128 int ret = 0; 1129 1130 dev = ice_pf_to_dev(pf); 1131 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1132 if (!ctxt) 1133 return -ENOMEM; 1134 1135 switch (vsi->type) { 1136 case ICE_VSI_CTRL: 1137 case ICE_VSI_LB: 1138 case ICE_VSI_PF: 1139 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1140 break; 1141 case ICE_VSI_SWITCHDEV_CTRL: 1142 case ICE_VSI_CHNL: 1143 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1144 break; 1145 case ICE_VSI_VF: 1146 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1147 /* VF number here is the absolute VF number (0-255) */ 1148 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1149 break; 1150 default: 1151 ret = -ENODEV; 1152 goto out; 1153 } 1154 1155 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1156 * prune enabled 1157 */ 1158 if (vsi->type == ICE_VSI_CHNL) { 1159 struct ice_vsi *main_vsi; 1160 1161 main_vsi = ice_get_main_vsi(pf); 1162 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1163 ctxt->info.sw_flags2 |= 1164 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1165 else 1166 ctxt->info.sw_flags2 &= 1167 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1168 } 1169 1170 ice_set_dflt_vsi_ctx(hw, ctxt); 1171 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1172 ice_set_fd_vsi_ctx(ctxt, vsi); 1173 /* if the switch is in VEB mode, allow VSI loopback */ 1174 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1175 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1176 1177 /* Set LUT type and HASH type if RSS is enabled */ 1178 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1179 vsi->type != ICE_VSI_CTRL) { 1180 ice_set_rss_vsi_ctx(ctxt, vsi); 1181 /* if updating VSI context, make sure to set valid_section: 1182 * to indicate which section of VSI context being updated 1183 */ 1184 if (!init_vsi) 1185 ctxt->info.valid_sections |= 1186 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1187 } 1188 1189 ctxt->info.sw_id = vsi->port_info->sw_id; 1190 if (vsi->type == ICE_VSI_CHNL) { 1191 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1192 } else { 1193 ice_vsi_setup_q_map(vsi, ctxt); 1194 if (!init_vsi) /* means VSI being updated */ 1195 /* must to indicate which section of VSI context are 1196 * being modified 1197 */ 1198 ctxt->info.valid_sections |= 1199 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1200 } 1201 1202 /* Allow control frames out of main VSI */ 1203 if (vsi->type == ICE_VSI_PF) { 1204 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1205 ctxt->info.valid_sections |= 1206 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1207 } 1208 1209 if (init_vsi) { 1210 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1211 if (ret) { 1212 dev_err(dev, "Add VSI failed, err %d\n", ret); 1213 ret = -EIO; 1214 goto out; 1215 } 1216 } else { 1217 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1218 if (ret) { 1219 dev_err(dev, "Update VSI failed, err %d\n", ret); 1220 ret = -EIO; 1221 goto out; 1222 } 1223 } 1224 1225 /* keep context for update VSI operations */ 1226 vsi->info = ctxt->info; 1227 1228 /* record VSI number returned */ 1229 vsi->vsi_num = ctxt->vsi_num; 1230 1231 out: 1232 kfree(ctxt); 1233 return ret; 1234 } 1235 1236 /** 1237 * ice_free_res - free a block of resources 1238 * @res: pointer to the resource 1239 * @index: starting index previously returned by ice_get_res 1240 * @id: identifier to track owner 1241 * 1242 * Returns number of resources freed 1243 */ 1244 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1245 { 1246 int count = 0; 1247 int i; 1248 1249 if (!res || index >= res->end) 1250 return -EINVAL; 1251 1252 id |= ICE_RES_VALID_BIT; 1253 for (i = index; i < res->end && res->list[i] == id; i++) { 1254 res->list[i] = 0; 1255 count++; 1256 } 1257 1258 return count; 1259 } 1260 1261 /** 1262 * ice_search_res - Search the tracker for a block of resources 1263 * @res: pointer to the resource 1264 * @needed: size of the block needed 1265 * @id: identifier to track owner 1266 * 1267 * Returns the base item index of the block, or -ENOMEM for error 1268 */ 1269 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1270 { 1271 u16 start = 0, end = 0; 1272 1273 if (needed > res->end) 1274 return -ENOMEM; 1275 1276 id |= ICE_RES_VALID_BIT; 1277 1278 do { 1279 /* skip already allocated entries */ 1280 if (res->list[end++] & ICE_RES_VALID_BIT) { 1281 start = end; 1282 if ((start + needed) > res->end) 1283 break; 1284 } 1285 1286 if (end == (start + needed)) { 1287 int i = start; 1288 1289 /* there was enough, so assign it to the requestor */ 1290 while (i != end) 1291 res->list[i++] = id; 1292 1293 return start; 1294 } 1295 } while (end < res->end); 1296 1297 return -ENOMEM; 1298 } 1299 1300 /** 1301 * ice_get_free_res_count - Get free count from a resource tracker 1302 * @res: Resource tracker instance 1303 */ 1304 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1305 { 1306 u16 i, count = 0; 1307 1308 for (i = 0; i < res->end; i++) 1309 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1310 count++; 1311 1312 return count; 1313 } 1314 1315 /** 1316 * ice_get_res - get a block of resources 1317 * @pf: board private structure 1318 * @res: pointer to the resource 1319 * @needed: size of the block needed 1320 * @id: identifier to track owner 1321 * 1322 * Returns the base item index of the block, or negative for error 1323 */ 1324 int 1325 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1326 { 1327 if (!res || !pf) 1328 return -EINVAL; 1329 1330 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1331 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1332 needed, res->num_entries, id); 1333 return -EINVAL; 1334 } 1335 1336 return ice_search_res(res, needed, id); 1337 } 1338 1339 /** 1340 * ice_get_vf_ctrl_res - Get VF control VSI resource 1341 * @pf: pointer to the PF structure 1342 * @vsi: the VSI to allocate a resource for 1343 * 1344 * Look up whether another VF has already allocated the control VSI resource. 1345 * If so, re-use this resource so that we share it among all VFs. 1346 * 1347 * Otherwise, allocate the resource and return it. 1348 */ 1349 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1350 { 1351 struct ice_vf *vf; 1352 unsigned int bkt; 1353 int base; 1354 1355 rcu_read_lock(); 1356 ice_for_each_vf_rcu(pf, bkt, vf) { 1357 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1358 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1359 rcu_read_unlock(); 1360 return base; 1361 } 1362 } 1363 rcu_read_unlock(); 1364 1365 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1366 ICE_RES_VF_CTRL_VEC_ID); 1367 } 1368 1369 /** 1370 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1371 * @vsi: ptr to the VSI 1372 * 1373 * This should only be called after ice_vsi_alloc() which allocates the 1374 * corresponding SW VSI structure and initializes num_queue_pairs for the 1375 * newly allocated VSI. 1376 * 1377 * Returns 0 on success or negative on failure 1378 */ 1379 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1380 { 1381 struct ice_pf *pf = vsi->back; 1382 struct device *dev; 1383 u16 num_q_vectors; 1384 int base; 1385 1386 dev = ice_pf_to_dev(pf); 1387 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1388 if (vsi->type == ICE_VSI_VF) 1389 return 0; 1390 if (vsi->type == ICE_VSI_CHNL) 1391 return 0; 1392 1393 if (vsi->base_vector) { 1394 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1395 vsi->vsi_num, vsi->base_vector); 1396 return -EEXIST; 1397 } 1398 1399 num_q_vectors = vsi->num_q_vectors; 1400 /* reserve slots from OS requested IRQs */ 1401 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1402 base = ice_get_vf_ctrl_res(pf, vsi); 1403 } else { 1404 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1405 vsi->idx); 1406 } 1407 1408 if (base < 0) { 1409 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1410 ice_get_free_res_count(pf->irq_tracker), 1411 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1412 return -ENOENT; 1413 } 1414 vsi->base_vector = (u16)base; 1415 pf->num_avail_sw_msix -= num_q_vectors; 1416 1417 return 0; 1418 } 1419 1420 /** 1421 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1422 * @vsi: the VSI having rings deallocated 1423 */ 1424 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1425 { 1426 int i; 1427 1428 /* Avoid stale references by clearing map from vector to ring */ 1429 if (vsi->q_vectors) { 1430 ice_for_each_q_vector(vsi, i) { 1431 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1432 1433 if (q_vector) { 1434 q_vector->tx.tx_ring = NULL; 1435 q_vector->rx.rx_ring = NULL; 1436 } 1437 } 1438 } 1439 1440 if (vsi->tx_rings) { 1441 ice_for_each_alloc_txq(vsi, i) { 1442 if (vsi->tx_rings[i]) { 1443 kfree_rcu(vsi->tx_rings[i], rcu); 1444 WRITE_ONCE(vsi->tx_rings[i], NULL); 1445 } 1446 } 1447 } 1448 if (vsi->rx_rings) { 1449 ice_for_each_alloc_rxq(vsi, i) { 1450 if (vsi->rx_rings[i]) { 1451 kfree_rcu(vsi->rx_rings[i], rcu); 1452 WRITE_ONCE(vsi->rx_rings[i], NULL); 1453 } 1454 } 1455 } 1456 } 1457 1458 /** 1459 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1460 * @vsi: VSI which is having rings allocated 1461 */ 1462 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1463 { 1464 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1465 struct ice_pf *pf = vsi->back; 1466 struct device *dev; 1467 u16 i; 1468 1469 dev = ice_pf_to_dev(pf); 1470 /* Allocate Tx rings */ 1471 ice_for_each_alloc_txq(vsi, i) { 1472 struct ice_tx_ring *ring; 1473 1474 /* allocate with kzalloc(), free with kfree_rcu() */ 1475 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1476 1477 if (!ring) 1478 goto err_out; 1479 1480 ring->q_index = i; 1481 ring->reg_idx = vsi->txq_map[i]; 1482 ring->vsi = vsi; 1483 ring->tx_tstamps = &pf->ptp.port.tx; 1484 ring->dev = dev; 1485 ring->count = vsi->num_tx_desc; 1486 ring->txq_teid = ICE_INVAL_TEID; 1487 if (dvm_ena) 1488 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1489 else 1490 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1491 WRITE_ONCE(vsi->tx_rings[i], ring); 1492 } 1493 1494 /* Allocate Rx rings */ 1495 ice_for_each_alloc_rxq(vsi, i) { 1496 struct ice_rx_ring *ring; 1497 1498 /* allocate with kzalloc(), free with kfree_rcu() */ 1499 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1500 if (!ring) 1501 goto err_out; 1502 1503 ring->q_index = i; 1504 ring->reg_idx = vsi->rxq_map[i]; 1505 ring->vsi = vsi; 1506 ring->netdev = vsi->netdev; 1507 ring->dev = dev; 1508 ring->count = vsi->num_rx_desc; 1509 WRITE_ONCE(vsi->rx_rings[i], ring); 1510 } 1511 1512 return 0; 1513 1514 err_out: 1515 ice_vsi_clear_rings(vsi); 1516 return -ENOMEM; 1517 } 1518 1519 /** 1520 * ice_vsi_manage_rss_lut - disable/enable RSS 1521 * @vsi: the VSI being changed 1522 * @ena: boolean value indicating if this is an enable or disable request 1523 * 1524 * In the event of disable request for RSS, this function will zero out RSS 1525 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1526 * LUT. 1527 */ 1528 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1529 { 1530 u8 *lut; 1531 1532 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1533 if (!lut) 1534 return; 1535 1536 if (ena) { 1537 if (vsi->rss_lut_user) 1538 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1539 else 1540 ice_fill_rss_lut(lut, vsi->rss_table_size, 1541 vsi->rss_size); 1542 } 1543 1544 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1545 kfree(lut); 1546 } 1547 1548 /** 1549 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1550 * @vsi: VSI to be configured 1551 */ 1552 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1553 { 1554 struct ice_pf *pf = vsi->back; 1555 struct device *dev; 1556 u8 *lut, *key; 1557 int err; 1558 1559 dev = ice_pf_to_dev(pf); 1560 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1561 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1562 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1563 } else { 1564 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1565 1566 /* If orig_rss_size is valid and it is less than determined 1567 * main VSI's rss_size, update main VSI's rss_size to be 1568 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1569 * RSS table gets programmed to be correct (whatever it was 1570 * to begin with (prior to setup-tc for ADQ config) 1571 */ 1572 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1573 vsi->orig_rss_size <= vsi->num_rxq) { 1574 vsi->rss_size = vsi->orig_rss_size; 1575 /* now orig_rss_size is used, reset it to zero */ 1576 vsi->orig_rss_size = 0; 1577 } 1578 } 1579 1580 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1581 if (!lut) 1582 return -ENOMEM; 1583 1584 if (vsi->rss_lut_user) 1585 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1586 else 1587 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1588 1589 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1590 if (err) { 1591 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1592 goto ice_vsi_cfg_rss_exit; 1593 } 1594 1595 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1596 if (!key) { 1597 err = -ENOMEM; 1598 goto ice_vsi_cfg_rss_exit; 1599 } 1600 1601 if (vsi->rss_hkey_user) 1602 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1603 else 1604 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1605 1606 err = ice_set_rss_key(vsi, key); 1607 if (err) 1608 dev_err(dev, "set_rss_key failed, error %d\n", err); 1609 1610 kfree(key); 1611 ice_vsi_cfg_rss_exit: 1612 kfree(lut); 1613 return err; 1614 } 1615 1616 /** 1617 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1618 * @vsi: VSI to be configured 1619 * 1620 * This function will only be called during the VF VSI setup. Upon successful 1621 * completion of package download, this function will configure default RSS 1622 * input sets for VF VSI. 1623 */ 1624 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1625 { 1626 struct ice_pf *pf = vsi->back; 1627 struct device *dev; 1628 int status; 1629 1630 dev = ice_pf_to_dev(pf); 1631 if (ice_is_safe_mode(pf)) { 1632 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1633 vsi->vsi_num); 1634 return; 1635 } 1636 1637 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1638 if (status) 1639 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1640 vsi->vsi_num, status); 1641 } 1642 1643 /** 1644 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1645 * @vsi: VSI to be configured 1646 * 1647 * This function will only be called after successful download package call 1648 * during initialization of PF. Since the downloaded package will erase the 1649 * RSS section, this function will configure RSS input sets for different 1650 * flow types. The last profile added has the highest priority, therefore 2 1651 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1652 * (i.e. IPv4 src/dst TCP src/dst port). 1653 */ 1654 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1655 { 1656 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1657 struct ice_pf *pf = vsi->back; 1658 struct ice_hw *hw = &pf->hw; 1659 struct device *dev; 1660 int status; 1661 1662 dev = ice_pf_to_dev(pf); 1663 if (ice_is_safe_mode(pf)) { 1664 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1665 vsi_num); 1666 return; 1667 } 1668 /* configure RSS for IPv4 with input set IP src/dst */ 1669 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1670 ICE_FLOW_SEG_HDR_IPV4); 1671 if (status) 1672 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1673 vsi_num, status); 1674 1675 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1676 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1677 ICE_FLOW_SEG_HDR_IPV6); 1678 if (status) 1679 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1680 vsi_num, status); 1681 1682 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1683 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1684 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1685 if (status) 1686 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1687 vsi_num, status); 1688 1689 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1690 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1691 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1692 if (status) 1693 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1694 vsi_num, status); 1695 1696 /* configure RSS for sctp4 with input set IP src/dst */ 1697 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1698 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1699 if (status) 1700 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1701 vsi_num, status); 1702 1703 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1704 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1705 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1706 if (status) 1707 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1708 vsi_num, status); 1709 1710 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1711 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1712 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1713 if (status) 1714 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1715 vsi_num, status); 1716 1717 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1718 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1719 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1720 if (status) 1721 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1722 vsi_num, status); 1723 1724 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1725 ICE_FLOW_SEG_HDR_ESP); 1726 if (status) 1727 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1728 vsi_num, status); 1729 } 1730 1731 /** 1732 * ice_pf_state_is_nominal - checks the PF for nominal state 1733 * @pf: pointer to PF to check 1734 * 1735 * Check the PF's state for a collection of bits that would indicate 1736 * the PF is in a state that would inhibit normal operation for 1737 * driver functionality. 1738 * 1739 * Returns true if PF is in a nominal state, false otherwise 1740 */ 1741 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1742 { 1743 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1744 1745 if (!pf) 1746 return false; 1747 1748 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1749 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1750 return false; 1751 1752 return true; 1753 } 1754 1755 /** 1756 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1757 * @vsi: the VSI to be updated 1758 */ 1759 void ice_update_eth_stats(struct ice_vsi *vsi) 1760 { 1761 struct ice_eth_stats *prev_es, *cur_es; 1762 struct ice_hw *hw = &vsi->back->hw; 1763 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1764 1765 prev_es = &vsi->eth_stats_prev; 1766 cur_es = &vsi->eth_stats; 1767 1768 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1769 &prev_es->rx_bytes, &cur_es->rx_bytes); 1770 1771 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1772 &prev_es->rx_unicast, &cur_es->rx_unicast); 1773 1774 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1775 &prev_es->rx_multicast, &cur_es->rx_multicast); 1776 1777 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1778 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1779 1780 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1781 &prev_es->rx_discards, &cur_es->rx_discards); 1782 1783 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1784 &prev_es->tx_bytes, &cur_es->tx_bytes); 1785 1786 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1787 &prev_es->tx_unicast, &cur_es->tx_unicast); 1788 1789 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1790 &prev_es->tx_multicast, &cur_es->tx_multicast); 1791 1792 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1793 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1794 1795 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1796 &prev_es->tx_errors, &cur_es->tx_errors); 1797 1798 vsi->stat_offsets_loaded = true; 1799 } 1800 1801 /** 1802 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1803 * @vsi: VSI 1804 */ 1805 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1806 { 1807 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1808 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1809 vsi->rx_buf_len = ICE_RXBUF_2048; 1810 #if (PAGE_SIZE < 8192) 1811 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1812 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1813 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1814 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1815 #endif 1816 } else { 1817 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1818 #if (PAGE_SIZE < 8192) 1819 vsi->rx_buf_len = ICE_RXBUF_3072; 1820 #else 1821 vsi->rx_buf_len = ICE_RXBUF_2048; 1822 #endif 1823 } 1824 } 1825 1826 /** 1827 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1828 * @hw: HW pointer 1829 * @pf_q: index of the Rx queue in the PF's queue space 1830 * @rxdid: flexible descriptor RXDID 1831 * @prio: priority for the RXDID for this queue 1832 * @ena_ts: true to enable timestamp and false to disable timestamp 1833 */ 1834 void 1835 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1836 bool ena_ts) 1837 { 1838 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1839 1840 /* clear any previous values */ 1841 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1842 QRXFLXP_CNTXT_RXDID_PRIO_M | 1843 QRXFLXP_CNTXT_TS_M); 1844 1845 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1846 QRXFLXP_CNTXT_RXDID_IDX_M; 1847 1848 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1849 QRXFLXP_CNTXT_RXDID_PRIO_M; 1850 1851 if (ena_ts) 1852 /* Enable TimeSync on this queue */ 1853 regval |= QRXFLXP_CNTXT_TS_M; 1854 1855 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1856 } 1857 1858 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1859 { 1860 if (q_idx >= vsi->num_rxq) 1861 return -EINVAL; 1862 1863 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1864 } 1865 1866 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1867 { 1868 struct ice_aqc_add_tx_qgrp *qg_buf; 1869 int err; 1870 1871 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1872 return -EINVAL; 1873 1874 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1875 if (!qg_buf) 1876 return -ENOMEM; 1877 1878 qg_buf->num_txqs = 1; 1879 1880 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1881 kfree(qg_buf); 1882 return err; 1883 } 1884 1885 /** 1886 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1887 * @vsi: the VSI being configured 1888 * 1889 * Return 0 on success and a negative value on error 1890 * Configure the Rx VSI for operation. 1891 */ 1892 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1893 { 1894 u16 i; 1895 1896 if (vsi->type == ICE_VSI_VF) 1897 goto setup_rings; 1898 1899 ice_vsi_cfg_frame_size(vsi); 1900 setup_rings: 1901 /* set up individual rings */ 1902 ice_for_each_rxq(vsi, i) { 1903 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1904 1905 if (err) 1906 return err; 1907 } 1908 1909 return 0; 1910 } 1911 1912 /** 1913 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1914 * @vsi: the VSI being configured 1915 * @rings: Tx ring array to be configured 1916 * @count: number of Tx ring array elements 1917 * 1918 * Return 0 on success and a negative value on error 1919 * Configure the Tx VSI for operation. 1920 */ 1921 static int 1922 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1923 { 1924 struct ice_aqc_add_tx_qgrp *qg_buf; 1925 u16 q_idx = 0; 1926 int err = 0; 1927 1928 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1929 if (!qg_buf) 1930 return -ENOMEM; 1931 1932 qg_buf->num_txqs = 1; 1933 1934 for (q_idx = 0; q_idx < count; q_idx++) { 1935 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1936 if (err) 1937 goto err_cfg_txqs; 1938 } 1939 1940 err_cfg_txqs: 1941 kfree(qg_buf); 1942 return err; 1943 } 1944 1945 /** 1946 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1947 * @vsi: the VSI being configured 1948 * 1949 * Return 0 on success and a negative value on error 1950 * Configure the Tx VSI for operation. 1951 */ 1952 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1953 { 1954 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1955 } 1956 1957 /** 1958 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1959 * @vsi: the VSI being configured 1960 * 1961 * Return 0 on success and a negative value on error 1962 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1963 */ 1964 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1965 { 1966 int ret; 1967 int i; 1968 1969 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1970 if (ret) 1971 return ret; 1972 1973 ice_for_each_xdp_txq(vsi, i) 1974 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1975 1976 return ret; 1977 } 1978 1979 /** 1980 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1981 * @intrl: interrupt rate limit in usecs 1982 * @gran: interrupt rate limit granularity in usecs 1983 * 1984 * This function converts a decimal interrupt rate limit in usecs to the format 1985 * expected by firmware. 1986 */ 1987 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1988 { 1989 u32 val = intrl / gran; 1990 1991 if (val) 1992 return val | GLINT_RATE_INTRL_ENA_M; 1993 return 0; 1994 } 1995 1996 /** 1997 * ice_write_intrl - write throttle rate limit to interrupt specific register 1998 * @q_vector: pointer to interrupt specific structure 1999 * @intrl: throttle rate limit in microseconds to write 2000 */ 2001 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2002 { 2003 struct ice_hw *hw = &q_vector->vsi->back->hw; 2004 2005 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2006 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2007 } 2008 2009 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2010 { 2011 switch (rc->type) { 2012 case ICE_RX_CONTAINER: 2013 if (rc->rx_ring) 2014 return rc->rx_ring->q_vector; 2015 break; 2016 case ICE_TX_CONTAINER: 2017 if (rc->tx_ring) 2018 return rc->tx_ring->q_vector; 2019 break; 2020 default: 2021 break; 2022 } 2023 2024 return NULL; 2025 } 2026 2027 /** 2028 * __ice_write_itr - write throttle rate to register 2029 * @q_vector: pointer to interrupt data structure 2030 * @rc: pointer to ring container 2031 * @itr: throttle rate in microseconds to write 2032 */ 2033 static void __ice_write_itr(struct ice_q_vector *q_vector, 2034 struct ice_ring_container *rc, u16 itr) 2035 { 2036 struct ice_hw *hw = &q_vector->vsi->back->hw; 2037 2038 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2039 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2040 } 2041 2042 /** 2043 * ice_write_itr - write throttle rate to queue specific register 2044 * @rc: pointer to ring container 2045 * @itr: throttle rate in microseconds to write 2046 */ 2047 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2048 { 2049 struct ice_q_vector *q_vector; 2050 2051 q_vector = ice_pull_qvec_from_rc(rc); 2052 if (!q_vector) 2053 return; 2054 2055 __ice_write_itr(q_vector, rc, itr); 2056 } 2057 2058 /** 2059 * ice_set_q_vector_intrl - set up interrupt rate limiting 2060 * @q_vector: the vector to be configured 2061 * 2062 * Interrupt rate limiting is local to the vector, not per-queue so we must 2063 * detect if either ring container has dynamic moderation enabled to decide 2064 * what to set the interrupt rate limit to via INTRL settings. In the case that 2065 * dynamic moderation is disabled on both, write the value with the cached 2066 * setting to make sure INTRL register matches the user visible value. 2067 */ 2068 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2069 { 2070 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2071 /* in the case of dynamic enabled, cap each vector to no more 2072 * than (4 us) 250,000 ints/sec, which allows low latency 2073 * but still less than 500,000 interrupts per second, which 2074 * reduces CPU a bit in the case of the lowest latency 2075 * setting. The 4 here is a value in microseconds. 2076 */ 2077 ice_write_intrl(q_vector, 4); 2078 } else { 2079 ice_write_intrl(q_vector, q_vector->intrl); 2080 } 2081 } 2082 2083 /** 2084 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2085 * @vsi: the VSI being configured 2086 * 2087 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2088 * for the VF VSI. 2089 */ 2090 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2091 { 2092 struct ice_pf *pf = vsi->back; 2093 struct ice_hw *hw = &pf->hw; 2094 u16 txq = 0, rxq = 0; 2095 int i, q; 2096 2097 ice_for_each_q_vector(vsi, i) { 2098 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2099 u16 reg_idx = q_vector->reg_idx; 2100 2101 ice_cfg_itr(hw, q_vector); 2102 2103 /* Both Transmit Queue Interrupt Cause Control register 2104 * and Receive Queue Interrupt Cause control register 2105 * expects MSIX_INDX field to be the vector index 2106 * within the function space and not the absolute 2107 * vector index across PF or across device. 2108 * For SR-IOV VF VSIs queue vector index always starts 2109 * with 1 since first vector index(0) is used for OICR 2110 * in VF space. Since VMDq and other PF VSIs are within 2111 * the PF function space, use the vector index that is 2112 * tracked for this PF. 2113 */ 2114 for (q = 0; q < q_vector->num_ring_tx; q++) { 2115 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2116 q_vector->tx.itr_idx); 2117 txq++; 2118 } 2119 2120 for (q = 0; q < q_vector->num_ring_rx; q++) { 2121 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2122 q_vector->rx.itr_idx); 2123 rxq++; 2124 } 2125 } 2126 } 2127 2128 /** 2129 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2130 * @vsi: the VSI whose rings are to be enabled 2131 * 2132 * Returns 0 on success and a negative value on error 2133 */ 2134 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2135 { 2136 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2137 } 2138 2139 /** 2140 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2141 * @vsi: the VSI whose rings are to be disabled 2142 * 2143 * Returns 0 on success and a negative value on error 2144 */ 2145 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2146 { 2147 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2148 } 2149 2150 /** 2151 * ice_vsi_stop_tx_rings - Disable Tx rings 2152 * @vsi: the VSI being configured 2153 * @rst_src: reset source 2154 * @rel_vmvf_num: Relative ID of VF/VM 2155 * @rings: Tx ring array to be stopped 2156 * @count: number of Tx ring array elements 2157 */ 2158 static int 2159 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2160 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2161 { 2162 u16 q_idx; 2163 2164 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2165 return -EINVAL; 2166 2167 for (q_idx = 0; q_idx < count; q_idx++) { 2168 struct ice_txq_meta txq_meta = { }; 2169 int status; 2170 2171 if (!rings || !rings[q_idx]) 2172 return -EINVAL; 2173 2174 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2175 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2176 rings[q_idx], &txq_meta); 2177 2178 if (status) 2179 return status; 2180 } 2181 2182 return 0; 2183 } 2184 2185 /** 2186 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2187 * @vsi: the VSI being configured 2188 * @rst_src: reset source 2189 * @rel_vmvf_num: Relative ID of VF/VM 2190 */ 2191 int 2192 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2193 u16 rel_vmvf_num) 2194 { 2195 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2196 } 2197 2198 /** 2199 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2200 * @vsi: the VSI being configured 2201 */ 2202 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2203 { 2204 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2205 } 2206 2207 /** 2208 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2209 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2210 * 2211 * returns true if Rx VLAN pruning is enabled and false otherwise. 2212 */ 2213 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2214 { 2215 if (!vsi) 2216 return false; 2217 2218 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2219 } 2220 2221 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2222 { 2223 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2224 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2225 vsi->tc_cfg.numtc = 1; 2226 return; 2227 } 2228 2229 /* set VSI TC information based on DCB config */ 2230 ice_vsi_set_dcb_tc_cfg(vsi); 2231 } 2232 2233 /** 2234 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2235 * @vsi: VSI to set the q_vectors register index on 2236 */ 2237 static int 2238 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2239 { 2240 u16 i; 2241 2242 if (!vsi || !vsi->q_vectors) 2243 return -EINVAL; 2244 2245 ice_for_each_q_vector(vsi, i) { 2246 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2247 2248 if (!q_vector) { 2249 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2250 i, vsi->vsi_num); 2251 goto clear_reg_idx; 2252 } 2253 2254 if (vsi->type == ICE_VSI_VF) { 2255 struct ice_vf *vf = vsi->vf; 2256 2257 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2258 } else { 2259 q_vector->reg_idx = 2260 q_vector->v_idx + vsi->base_vector; 2261 } 2262 } 2263 2264 return 0; 2265 2266 clear_reg_idx: 2267 ice_for_each_q_vector(vsi, i) { 2268 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2269 2270 if (q_vector) 2271 q_vector->reg_idx = 0; 2272 } 2273 2274 return -EINVAL; 2275 } 2276 2277 /** 2278 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2279 * @vsi: the VSI being configured 2280 * @tx: bool to determine Tx or Rx rule 2281 * @create: bool to determine create or remove Rule 2282 */ 2283 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2284 { 2285 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2286 enum ice_sw_fwd_act_type act); 2287 struct ice_pf *pf = vsi->back; 2288 struct device *dev; 2289 int status; 2290 2291 dev = ice_pf_to_dev(pf); 2292 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2293 2294 if (tx) { 2295 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2296 ICE_DROP_PACKET); 2297 } else { 2298 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2299 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2300 create); 2301 } else { 2302 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2303 ICE_FWD_TO_VSI); 2304 } 2305 } 2306 2307 if (status) 2308 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2309 create ? "adding" : "removing", tx ? "TX" : "RX", 2310 vsi->vsi_num, status); 2311 } 2312 2313 /** 2314 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2315 * @vsi: pointer to the VSI 2316 * 2317 * This function will allocate new scheduler aggregator now if needed and will 2318 * move specified VSI into it. 2319 */ 2320 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2321 { 2322 struct device *dev = ice_pf_to_dev(vsi->back); 2323 struct ice_agg_node *agg_node_iter = NULL; 2324 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2325 struct ice_agg_node *agg_node = NULL; 2326 int node_offset, max_agg_nodes = 0; 2327 struct ice_port_info *port_info; 2328 struct ice_pf *pf = vsi->back; 2329 u32 agg_node_id_start = 0; 2330 int status; 2331 2332 /* create (as needed) scheduler aggregator node and move VSI into 2333 * corresponding aggregator node 2334 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2335 * - VF aggregator nodes will contain VF VSI 2336 */ 2337 port_info = pf->hw.port_info; 2338 if (!port_info) 2339 return; 2340 2341 switch (vsi->type) { 2342 case ICE_VSI_CTRL: 2343 case ICE_VSI_CHNL: 2344 case ICE_VSI_LB: 2345 case ICE_VSI_PF: 2346 case ICE_VSI_SWITCHDEV_CTRL: 2347 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2348 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2349 agg_node_iter = &pf->pf_agg_node[0]; 2350 break; 2351 case ICE_VSI_VF: 2352 /* user can create 'n' VFs on a given PF, but since max children 2353 * per aggregator node can be only 64. Following code handles 2354 * aggregator(s) for VF VSIs, either selects a agg_node which 2355 * was already created provided num_vsis < 64, otherwise 2356 * select next available node, which will be created 2357 */ 2358 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2359 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2360 agg_node_iter = &pf->vf_agg_node[0]; 2361 break; 2362 default: 2363 /* other VSI type, handle later if needed */ 2364 dev_dbg(dev, "unexpected VSI type %s\n", 2365 ice_vsi_type_str(vsi->type)); 2366 return; 2367 } 2368 2369 /* find the appropriate aggregator node */ 2370 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2371 /* see if we can find space in previously created 2372 * node if num_vsis < 64, otherwise skip 2373 */ 2374 if (agg_node_iter->num_vsis && 2375 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2376 agg_node_iter++; 2377 continue; 2378 } 2379 2380 if (agg_node_iter->valid && 2381 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2382 agg_id = agg_node_iter->agg_id; 2383 agg_node = agg_node_iter; 2384 break; 2385 } 2386 2387 /* find unclaimed agg_id */ 2388 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2389 agg_id = node_offset + agg_node_id_start; 2390 agg_node = agg_node_iter; 2391 break; 2392 } 2393 /* move to next agg_node */ 2394 agg_node_iter++; 2395 } 2396 2397 if (!agg_node) 2398 return; 2399 2400 /* if selected aggregator node was not created, create it */ 2401 if (!agg_node->valid) { 2402 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2403 (u8)vsi->tc_cfg.ena_tc); 2404 if (status) { 2405 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2406 agg_id); 2407 return; 2408 } 2409 /* aggregator node is created, store the needed info */ 2410 agg_node->valid = true; 2411 agg_node->agg_id = agg_id; 2412 } 2413 2414 /* move VSI to corresponding aggregator node */ 2415 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2416 (u8)vsi->tc_cfg.ena_tc); 2417 if (status) { 2418 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2419 vsi->idx, agg_id); 2420 return; 2421 } 2422 2423 /* keep active children count for aggregator node */ 2424 agg_node->num_vsis++; 2425 2426 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2427 * to aggregator node 2428 */ 2429 vsi->agg_node = agg_node; 2430 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2431 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2432 vsi->agg_node->num_vsis); 2433 } 2434 2435 /** 2436 * ice_vsi_setup - Set up a VSI by a given type 2437 * @pf: board private structure 2438 * @pi: pointer to the port_info instance 2439 * @vsi_type: VSI type 2440 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2441 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2442 * @ch: ptr to channel 2443 * 2444 * This allocates the sw VSI structure and its queue resources. 2445 * 2446 * Returns pointer to the successfully allocated and configured VSI sw struct on 2447 * success, NULL on failure. 2448 */ 2449 struct ice_vsi * 2450 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2451 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2452 struct ice_channel *ch) 2453 { 2454 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2455 struct device *dev = ice_pf_to_dev(pf); 2456 struct ice_vsi *vsi; 2457 int ret, i; 2458 2459 if (vsi_type == ICE_VSI_CHNL) 2460 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2461 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2462 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2463 else 2464 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2465 2466 if (!vsi) { 2467 dev_err(dev, "could not allocate VSI\n"); 2468 return NULL; 2469 } 2470 2471 vsi->port_info = pi; 2472 vsi->vsw = pf->first_sw; 2473 if (vsi->type == ICE_VSI_PF) 2474 vsi->ethtype = ETH_P_PAUSE; 2475 2476 ice_alloc_fd_res(vsi); 2477 2478 if (vsi_type != ICE_VSI_CHNL) { 2479 if (ice_vsi_get_qs(vsi)) { 2480 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2481 vsi->idx); 2482 goto unroll_vsi_alloc; 2483 } 2484 } 2485 2486 /* set RSS capabilities */ 2487 ice_vsi_set_rss_params(vsi); 2488 2489 /* set TC configuration */ 2490 ice_vsi_set_tc_cfg(vsi); 2491 2492 /* create the VSI */ 2493 ret = ice_vsi_init(vsi, true); 2494 if (ret) 2495 goto unroll_get_qs; 2496 2497 ice_vsi_init_vlan_ops(vsi); 2498 2499 switch (vsi->type) { 2500 case ICE_VSI_CTRL: 2501 case ICE_VSI_SWITCHDEV_CTRL: 2502 case ICE_VSI_PF: 2503 ret = ice_vsi_alloc_q_vectors(vsi); 2504 if (ret) 2505 goto unroll_vsi_init; 2506 2507 ret = ice_vsi_setup_vector_base(vsi); 2508 if (ret) 2509 goto unroll_alloc_q_vector; 2510 2511 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2512 if (ret) 2513 goto unroll_vector_base; 2514 2515 ret = ice_vsi_alloc_rings(vsi); 2516 if (ret) 2517 goto unroll_vector_base; 2518 2519 ice_vsi_map_rings_to_vectors(vsi); 2520 2521 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2522 if (vsi->type != ICE_VSI_CTRL) 2523 /* Do not exit if configuring RSS had an issue, at 2524 * least receive traffic on first queue. Hence no 2525 * need to capture return value 2526 */ 2527 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2528 ice_vsi_cfg_rss_lut_key(vsi); 2529 ice_vsi_set_rss_flow_fld(vsi); 2530 } 2531 ice_init_arfs(vsi); 2532 break; 2533 case ICE_VSI_CHNL: 2534 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2535 ice_vsi_cfg_rss_lut_key(vsi); 2536 ice_vsi_set_rss_flow_fld(vsi); 2537 } 2538 break; 2539 case ICE_VSI_VF: 2540 /* VF driver will take care of creating netdev for this type and 2541 * map queues to vectors through Virtchnl, PF driver only 2542 * creates a VSI and corresponding structures for bookkeeping 2543 * purpose 2544 */ 2545 ret = ice_vsi_alloc_q_vectors(vsi); 2546 if (ret) 2547 goto unroll_vsi_init; 2548 2549 ret = ice_vsi_alloc_rings(vsi); 2550 if (ret) 2551 goto unroll_alloc_q_vector; 2552 2553 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2554 if (ret) 2555 goto unroll_vector_base; 2556 2557 /* Do not exit if configuring RSS had an issue, at least 2558 * receive traffic on first queue. Hence no need to capture 2559 * return value 2560 */ 2561 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2562 ice_vsi_cfg_rss_lut_key(vsi); 2563 ice_vsi_set_vf_rss_flow_fld(vsi); 2564 } 2565 break; 2566 case ICE_VSI_LB: 2567 ret = ice_vsi_alloc_rings(vsi); 2568 if (ret) 2569 goto unroll_vsi_init; 2570 break; 2571 default: 2572 /* clean up the resources and exit */ 2573 goto unroll_vsi_init; 2574 } 2575 2576 /* configure VSI nodes based on number of queues and TC's */ 2577 ice_for_each_traffic_class(i) { 2578 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2579 continue; 2580 2581 if (vsi->type == ICE_VSI_CHNL) { 2582 if (!vsi->alloc_txq && vsi->num_txq) 2583 max_txqs[i] = vsi->num_txq; 2584 else 2585 max_txqs[i] = pf->num_lan_tx; 2586 } else { 2587 max_txqs[i] = vsi->alloc_txq; 2588 } 2589 } 2590 2591 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2592 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2593 max_txqs); 2594 if (ret) { 2595 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2596 vsi->vsi_num, ret); 2597 goto unroll_clear_rings; 2598 } 2599 2600 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2601 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2602 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2603 * The rule is added once for PF VSI in order to create appropriate 2604 * recipe, since VSI/VSI list is ignored with drop action... 2605 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2606 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2607 * settings in the HW. 2608 */ 2609 if (!ice_is_safe_mode(pf)) 2610 if (vsi->type == ICE_VSI_PF) { 2611 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2612 ICE_DROP_PACKET); 2613 ice_cfg_sw_lldp(vsi, true, true); 2614 } 2615 2616 if (!vsi->agg_node) 2617 ice_set_agg_vsi(vsi); 2618 return vsi; 2619 2620 unroll_clear_rings: 2621 ice_vsi_clear_rings(vsi); 2622 unroll_vector_base: 2623 /* reclaim SW interrupts back to the common pool */ 2624 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2625 pf->num_avail_sw_msix += vsi->num_q_vectors; 2626 unroll_alloc_q_vector: 2627 ice_vsi_free_q_vectors(vsi); 2628 unroll_vsi_init: 2629 ice_vsi_delete(vsi); 2630 unroll_get_qs: 2631 ice_vsi_put_qs(vsi); 2632 unroll_vsi_alloc: 2633 if (vsi_type == ICE_VSI_VF) 2634 ice_enable_lag(pf->lag); 2635 ice_vsi_clear(vsi); 2636 2637 return NULL; 2638 } 2639 2640 /** 2641 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2642 * @vsi: the VSI being cleaned up 2643 */ 2644 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2645 { 2646 struct ice_pf *pf = vsi->back; 2647 struct ice_hw *hw = &pf->hw; 2648 u32 txq = 0; 2649 u32 rxq = 0; 2650 int i, q; 2651 2652 ice_for_each_q_vector(vsi, i) { 2653 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2654 2655 ice_write_intrl(q_vector, 0); 2656 for (q = 0; q < q_vector->num_ring_tx; q++) { 2657 ice_write_itr(&q_vector->tx, 0); 2658 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2659 if (ice_is_xdp_ena_vsi(vsi)) { 2660 u32 xdp_txq = txq + vsi->num_xdp_txq; 2661 2662 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2663 } 2664 txq++; 2665 } 2666 2667 for (q = 0; q < q_vector->num_ring_rx; q++) { 2668 ice_write_itr(&q_vector->rx, 0); 2669 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2670 rxq++; 2671 } 2672 } 2673 2674 ice_flush(hw); 2675 } 2676 2677 /** 2678 * ice_vsi_free_irq - Free the IRQ association with the OS 2679 * @vsi: the VSI being configured 2680 */ 2681 void ice_vsi_free_irq(struct ice_vsi *vsi) 2682 { 2683 struct ice_pf *pf = vsi->back; 2684 int base = vsi->base_vector; 2685 int i; 2686 2687 if (!vsi->q_vectors || !vsi->irqs_ready) 2688 return; 2689 2690 ice_vsi_release_msix(vsi); 2691 if (vsi->type == ICE_VSI_VF) 2692 return; 2693 2694 vsi->irqs_ready = false; 2695 ice_free_cpu_rx_rmap(vsi); 2696 2697 ice_for_each_q_vector(vsi, i) { 2698 u16 vector = i + base; 2699 int irq_num; 2700 2701 irq_num = pf->msix_entries[vector].vector; 2702 2703 /* free only the irqs that were actually requested */ 2704 if (!vsi->q_vectors[i] || 2705 !(vsi->q_vectors[i]->num_ring_tx || 2706 vsi->q_vectors[i]->num_ring_rx)) 2707 continue; 2708 2709 /* clear the affinity notifier in the IRQ descriptor */ 2710 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2711 irq_set_affinity_notifier(irq_num, NULL); 2712 2713 /* clear the affinity_mask in the IRQ descriptor */ 2714 irq_set_affinity_hint(irq_num, NULL); 2715 synchronize_irq(irq_num); 2716 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2717 } 2718 } 2719 2720 /** 2721 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2722 * @vsi: the VSI having resources freed 2723 */ 2724 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2725 { 2726 int i; 2727 2728 if (!vsi->tx_rings) 2729 return; 2730 2731 ice_for_each_txq(vsi, i) 2732 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2733 ice_free_tx_ring(vsi->tx_rings[i]); 2734 } 2735 2736 /** 2737 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2738 * @vsi: the VSI having resources freed 2739 */ 2740 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2741 { 2742 int i; 2743 2744 if (!vsi->rx_rings) 2745 return; 2746 2747 ice_for_each_rxq(vsi, i) 2748 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2749 ice_free_rx_ring(vsi->rx_rings[i]); 2750 } 2751 2752 /** 2753 * ice_vsi_close - Shut down a VSI 2754 * @vsi: the VSI being shut down 2755 */ 2756 void ice_vsi_close(struct ice_vsi *vsi) 2757 { 2758 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2759 ice_down(vsi); 2760 2761 ice_vsi_free_irq(vsi); 2762 ice_vsi_free_tx_rings(vsi); 2763 ice_vsi_free_rx_rings(vsi); 2764 } 2765 2766 /** 2767 * ice_ena_vsi - resume a VSI 2768 * @vsi: the VSI being resume 2769 * @locked: is the rtnl_lock already held 2770 */ 2771 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2772 { 2773 int err = 0; 2774 2775 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2776 return 0; 2777 2778 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2779 2780 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2781 if (netif_running(vsi->netdev)) { 2782 if (!locked) 2783 rtnl_lock(); 2784 2785 err = ice_open_internal(vsi->netdev); 2786 2787 if (!locked) 2788 rtnl_unlock(); 2789 } 2790 } else if (vsi->type == ICE_VSI_CTRL) { 2791 err = ice_vsi_open_ctrl(vsi); 2792 } 2793 2794 return err; 2795 } 2796 2797 /** 2798 * ice_dis_vsi - pause a VSI 2799 * @vsi: the VSI being paused 2800 * @locked: is the rtnl_lock already held 2801 */ 2802 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2803 { 2804 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2805 return; 2806 2807 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2808 2809 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2810 if (netif_running(vsi->netdev)) { 2811 if (!locked) 2812 rtnl_lock(); 2813 2814 ice_vsi_close(vsi); 2815 2816 if (!locked) 2817 rtnl_unlock(); 2818 } else { 2819 ice_vsi_close(vsi); 2820 } 2821 } else if (vsi->type == ICE_VSI_CTRL || 2822 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2823 ice_vsi_close(vsi); 2824 } 2825 } 2826 2827 /** 2828 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2829 * @vsi: the VSI being un-configured 2830 */ 2831 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2832 { 2833 int base = vsi->base_vector; 2834 struct ice_pf *pf = vsi->back; 2835 struct ice_hw *hw = &pf->hw; 2836 u32 val; 2837 int i; 2838 2839 /* disable interrupt causation from each queue */ 2840 if (vsi->tx_rings) { 2841 ice_for_each_txq(vsi, i) { 2842 if (vsi->tx_rings[i]) { 2843 u16 reg; 2844 2845 reg = vsi->tx_rings[i]->reg_idx; 2846 val = rd32(hw, QINT_TQCTL(reg)); 2847 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2848 wr32(hw, QINT_TQCTL(reg), val); 2849 } 2850 } 2851 } 2852 2853 if (vsi->rx_rings) { 2854 ice_for_each_rxq(vsi, i) { 2855 if (vsi->rx_rings[i]) { 2856 u16 reg; 2857 2858 reg = vsi->rx_rings[i]->reg_idx; 2859 val = rd32(hw, QINT_RQCTL(reg)); 2860 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2861 wr32(hw, QINT_RQCTL(reg), val); 2862 } 2863 } 2864 } 2865 2866 /* disable each interrupt */ 2867 ice_for_each_q_vector(vsi, i) { 2868 if (!vsi->q_vectors[i]) 2869 continue; 2870 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2871 } 2872 2873 ice_flush(hw); 2874 2875 /* don't call synchronize_irq() for VF's from the host */ 2876 if (vsi->type == ICE_VSI_VF) 2877 return; 2878 2879 ice_for_each_q_vector(vsi, i) 2880 synchronize_irq(pf->msix_entries[i + base].vector); 2881 } 2882 2883 /** 2884 * ice_napi_del - Remove NAPI handler for the VSI 2885 * @vsi: VSI for which NAPI handler is to be removed 2886 */ 2887 void ice_napi_del(struct ice_vsi *vsi) 2888 { 2889 int v_idx; 2890 2891 if (!vsi->netdev) 2892 return; 2893 2894 ice_for_each_q_vector(vsi, v_idx) 2895 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2896 } 2897 2898 /** 2899 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2900 * @pf: pointer to PF structure 2901 * @vsi: the VSI to free resources for 2902 * 2903 * Check if the VF control VSI resource is still in use. If no VF is using it 2904 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2905 * once no other VF uses it. 2906 */ 2907 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2908 { 2909 struct ice_vf *vf; 2910 unsigned int bkt; 2911 2912 rcu_read_lock(); 2913 ice_for_each_vf_rcu(pf, bkt, vf) { 2914 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2915 rcu_read_unlock(); 2916 return; 2917 } 2918 } 2919 rcu_read_unlock(); 2920 2921 /* No other VFs left that have control VSI. It is now safe to reclaim 2922 * SW interrupts back to the common pool. 2923 */ 2924 ice_free_res(pf->irq_tracker, vsi->base_vector, 2925 ICE_RES_VF_CTRL_VEC_ID); 2926 pf->num_avail_sw_msix += vsi->num_q_vectors; 2927 } 2928 2929 /** 2930 * ice_vsi_release - Delete a VSI and free its resources 2931 * @vsi: the VSI being removed 2932 * 2933 * Returns 0 on success or < 0 on error 2934 */ 2935 int ice_vsi_release(struct ice_vsi *vsi) 2936 { 2937 struct ice_pf *pf; 2938 int err; 2939 2940 if (!vsi->back) 2941 return -ENODEV; 2942 pf = vsi->back; 2943 2944 /* do not unregister while driver is in the reset recovery pending 2945 * state. Since reset/rebuild happens through PF service task workqueue, 2946 * it's not a good idea to unregister netdev that is associated to the 2947 * PF that is running the work queue items currently. This is done to 2948 * avoid check_flush_dependency() warning on this wq 2949 */ 2950 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2951 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2952 unregister_netdev(vsi->netdev); 2953 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2954 } 2955 2956 if (vsi->type == ICE_VSI_PF) 2957 ice_devlink_destroy_pf_port(pf); 2958 2959 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2960 ice_rss_clean(vsi); 2961 2962 /* Disable VSI and free resources */ 2963 if (vsi->type != ICE_VSI_LB) 2964 ice_vsi_dis_irq(vsi); 2965 ice_vsi_close(vsi); 2966 2967 /* SR-IOV determines needed MSIX resources all at once instead of per 2968 * VSI since when VFs are spawned we know how many VFs there are and how 2969 * many interrupts each VF needs. SR-IOV MSIX resources are also 2970 * cleared in the same manner. 2971 */ 2972 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2973 ice_free_vf_ctrl_res(pf, vsi); 2974 } else if (vsi->type != ICE_VSI_VF) { 2975 /* reclaim SW interrupts back to the common pool */ 2976 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2977 pf->num_avail_sw_msix += vsi->num_q_vectors; 2978 } 2979 2980 if (!ice_is_safe_mode(pf)) { 2981 if (vsi->type == ICE_VSI_PF) { 2982 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2983 ICE_DROP_PACKET); 2984 ice_cfg_sw_lldp(vsi, true, false); 2985 /* The Rx rule will only exist to remove if the LLDP FW 2986 * engine is currently stopped 2987 */ 2988 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2989 ice_cfg_sw_lldp(vsi, false, false); 2990 } 2991 } 2992 2993 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 2994 ice_clear_dflt_vsi(pf->first_sw); 2995 ice_fltr_remove_all(vsi); 2996 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2997 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2998 if (err) 2999 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3000 vsi->vsi_num, err); 3001 ice_vsi_delete(vsi); 3002 ice_vsi_free_q_vectors(vsi); 3003 3004 if (vsi->netdev) { 3005 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3006 unregister_netdev(vsi->netdev); 3007 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3008 } 3009 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3010 free_netdev(vsi->netdev); 3011 vsi->netdev = NULL; 3012 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3013 } 3014 } 3015 3016 if (vsi->type == ICE_VSI_VF && 3017 vsi->agg_node && vsi->agg_node->valid) 3018 vsi->agg_node->num_vsis--; 3019 ice_vsi_clear_rings(vsi); 3020 3021 ice_vsi_put_qs(vsi); 3022 3023 /* retain SW VSI data structure since it is needed to unregister and 3024 * free VSI netdev when PF is not in reset recovery pending state,\ 3025 * for ex: during rmmod. 3026 */ 3027 if (!ice_is_reset_in_progress(pf->state)) 3028 ice_vsi_clear(vsi); 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3035 * @vsi: VSI connected with q_vectors 3036 * @coalesce: array of struct with stored coalesce 3037 * 3038 * Returns array size. 3039 */ 3040 static int 3041 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3042 struct ice_coalesce_stored *coalesce) 3043 { 3044 int i; 3045 3046 ice_for_each_q_vector(vsi, i) { 3047 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3048 3049 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3050 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3051 coalesce[i].intrl = q_vector->intrl; 3052 3053 if (i < vsi->num_txq) 3054 coalesce[i].tx_valid = true; 3055 if (i < vsi->num_rxq) 3056 coalesce[i].rx_valid = true; 3057 } 3058 3059 return vsi->num_q_vectors; 3060 } 3061 3062 /** 3063 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3064 * @vsi: VSI connected with q_vectors 3065 * @coalesce: pointer to array of struct with stored coalesce 3066 * @size: size of coalesce array 3067 * 3068 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3069 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3070 * to default value. 3071 */ 3072 static void 3073 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3074 struct ice_coalesce_stored *coalesce, int size) 3075 { 3076 struct ice_ring_container *rc; 3077 int i; 3078 3079 if ((size && !coalesce) || !vsi) 3080 return; 3081 3082 /* There are a couple of cases that have to be handled here: 3083 * 1. The case where the number of queue vectors stays the same, but 3084 * the number of Tx or Rx rings changes (the first for loop) 3085 * 2. The case where the number of queue vectors increased (the 3086 * second for loop) 3087 */ 3088 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3089 /* There are 2 cases to handle here and they are the same for 3090 * both Tx and Rx: 3091 * if the entry was valid previously (coalesce[i].[tr]x_valid 3092 * and the loop variable is less than the number of rings 3093 * allocated, then write the previous values 3094 * 3095 * if the entry was not valid previously, but the number of 3096 * rings is less than are allocated (this means the number of 3097 * rings increased from previously), then write out the 3098 * values in the first element 3099 * 3100 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3101 * as there is no harm because the dynamic algorithm 3102 * will just overwrite. 3103 */ 3104 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3105 rc = &vsi->q_vectors[i]->rx; 3106 rc->itr_settings = coalesce[i].itr_rx; 3107 ice_write_itr(rc, rc->itr_setting); 3108 } else if (i < vsi->alloc_rxq) { 3109 rc = &vsi->q_vectors[i]->rx; 3110 rc->itr_settings = coalesce[0].itr_rx; 3111 ice_write_itr(rc, rc->itr_setting); 3112 } 3113 3114 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3115 rc = &vsi->q_vectors[i]->tx; 3116 rc->itr_settings = coalesce[i].itr_tx; 3117 ice_write_itr(rc, rc->itr_setting); 3118 } else if (i < vsi->alloc_txq) { 3119 rc = &vsi->q_vectors[i]->tx; 3120 rc->itr_settings = coalesce[0].itr_tx; 3121 ice_write_itr(rc, rc->itr_setting); 3122 } 3123 3124 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3125 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3126 } 3127 3128 /* the number of queue vectors increased so write whatever is in 3129 * the first element 3130 */ 3131 for (; i < vsi->num_q_vectors; i++) { 3132 /* transmit */ 3133 rc = &vsi->q_vectors[i]->tx; 3134 rc->itr_settings = coalesce[0].itr_tx; 3135 ice_write_itr(rc, rc->itr_setting); 3136 3137 /* receive */ 3138 rc = &vsi->q_vectors[i]->rx; 3139 rc->itr_settings = coalesce[0].itr_rx; 3140 ice_write_itr(rc, rc->itr_setting); 3141 3142 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3143 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3144 } 3145 } 3146 3147 /** 3148 * ice_vsi_rebuild - Rebuild VSI after reset 3149 * @vsi: VSI to be rebuild 3150 * @init_vsi: is this an initialization or a reconfigure of the VSI 3151 * 3152 * Returns 0 on success and negative value on failure 3153 */ 3154 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3155 { 3156 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3157 struct ice_coalesce_stored *coalesce; 3158 int prev_num_q_vectors = 0; 3159 enum ice_vsi_type vtype; 3160 struct ice_pf *pf; 3161 int ret, i; 3162 3163 if (!vsi) 3164 return -EINVAL; 3165 3166 pf = vsi->back; 3167 vtype = vsi->type; 3168 if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf) 3169 return -EINVAL; 3170 3171 ice_vsi_init_vlan_ops(vsi); 3172 3173 coalesce = kcalloc(vsi->num_q_vectors, 3174 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3175 if (!coalesce) 3176 return -ENOMEM; 3177 3178 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3179 3180 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3181 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3182 if (ret) 3183 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3184 vsi->vsi_num, ret); 3185 ice_vsi_free_q_vectors(vsi); 3186 3187 /* SR-IOV determines needed MSIX resources all at once instead of per 3188 * VSI since when VFs are spawned we know how many VFs there are and how 3189 * many interrupts each VF needs. SR-IOV MSIX resources are also 3190 * cleared in the same manner. 3191 */ 3192 if (vtype != ICE_VSI_VF) { 3193 /* reclaim SW interrupts back to the common pool */ 3194 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3195 pf->num_avail_sw_msix += vsi->num_q_vectors; 3196 vsi->base_vector = 0; 3197 } 3198 3199 if (ice_is_xdp_ena_vsi(vsi)) 3200 /* return value check can be skipped here, it always returns 3201 * 0 if reset is in progress 3202 */ 3203 ice_destroy_xdp_rings(vsi); 3204 ice_vsi_put_qs(vsi); 3205 ice_vsi_clear_rings(vsi); 3206 ice_vsi_free_arrays(vsi); 3207 if (vtype == ICE_VSI_VF) 3208 ice_vsi_set_num_qs(vsi, vsi->vf); 3209 else 3210 ice_vsi_set_num_qs(vsi, NULL); 3211 3212 ret = ice_vsi_alloc_arrays(vsi); 3213 if (ret < 0) 3214 goto err_vsi; 3215 3216 ice_vsi_get_qs(vsi); 3217 3218 ice_alloc_fd_res(vsi); 3219 ice_vsi_set_tc_cfg(vsi); 3220 3221 /* Initialize VSI struct elements and create VSI in FW */ 3222 ret = ice_vsi_init(vsi, init_vsi); 3223 if (ret < 0) 3224 goto err_vsi; 3225 3226 switch (vtype) { 3227 case ICE_VSI_CTRL: 3228 case ICE_VSI_SWITCHDEV_CTRL: 3229 case ICE_VSI_PF: 3230 ret = ice_vsi_alloc_q_vectors(vsi); 3231 if (ret) 3232 goto err_rings; 3233 3234 ret = ice_vsi_setup_vector_base(vsi); 3235 if (ret) 3236 goto err_vectors; 3237 3238 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3239 if (ret) 3240 goto err_vectors; 3241 3242 ret = ice_vsi_alloc_rings(vsi); 3243 if (ret) 3244 goto err_vectors; 3245 3246 ice_vsi_map_rings_to_vectors(vsi); 3247 if (ice_is_xdp_ena_vsi(vsi)) { 3248 ret = ice_vsi_determine_xdp_res(vsi); 3249 if (ret) 3250 goto err_vectors; 3251 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3252 if (ret) 3253 goto err_vectors; 3254 } 3255 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3256 if (vtype != ICE_VSI_CTRL) 3257 /* Do not exit if configuring RSS had an issue, at 3258 * least receive traffic on first queue. Hence no 3259 * need to capture return value 3260 */ 3261 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3262 ice_vsi_cfg_rss_lut_key(vsi); 3263 break; 3264 case ICE_VSI_VF: 3265 ret = ice_vsi_alloc_q_vectors(vsi); 3266 if (ret) 3267 goto err_rings; 3268 3269 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3270 if (ret) 3271 goto err_vectors; 3272 3273 ret = ice_vsi_alloc_rings(vsi); 3274 if (ret) 3275 goto err_vectors; 3276 3277 break; 3278 case ICE_VSI_CHNL: 3279 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3280 ice_vsi_cfg_rss_lut_key(vsi); 3281 ice_vsi_set_rss_flow_fld(vsi); 3282 } 3283 break; 3284 default: 3285 break; 3286 } 3287 3288 /* configure VSI nodes based on number of queues and TC's */ 3289 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3290 /* configure VSI nodes based on number of queues and TC's. 3291 * ADQ creates VSIs for each TC/Channel but doesn't 3292 * allocate queues instead it reconfigures the PF queues 3293 * as per the TC command. So max_txqs should point to the 3294 * PF Tx queues. 3295 */ 3296 if (vtype == ICE_VSI_CHNL) 3297 max_txqs[i] = pf->num_lan_tx; 3298 else 3299 max_txqs[i] = vsi->alloc_txq; 3300 3301 if (ice_is_xdp_ena_vsi(vsi)) 3302 max_txqs[i] += vsi->num_xdp_txq; 3303 } 3304 3305 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3306 /* If MQPRIO is set, means channel code path, hence for main 3307 * VSI's, use TC as 1 3308 */ 3309 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3310 else 3311 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3312 vsi->tc_cfg.ena_tc, max_txqs); 3313 3314 if (ret) { 3315 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3316 vsi->vsi_num, ret); 3317 if (init_vsi) { 3318 ret = -EIO; 3319 goto err_vectors; 3320 } else { 3321 return ice_schedule_reset(pf, ICE_RESET_PFR); 3322 } 3323 } 3324 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3325 kfree(coalesce); 3326 3327 return 0; 3328 3329 err_vectors: 3330 ice_vsi_free_q_vectors(vsi); 3331 err_rings: 3332 if (vsi->netdev) { 3333 vsi->current_netdev_flags = 0; 3334 unregister_netdev(vsi->netdev); 3335 free_netdev(vsi->netdev); 3336 vsi->netdev = NULL; 3337 } 3338 err_vsi: 3339 ice_vsi_clear(vsi); 3340 set_bit(ICE_RESET_FAILED, pf->state); 3341 kfree(coalesce); 3342 return ret; 3343 } 3344 3345 /** 3346 * ice_is_reset_in_progress - check for a reset in progress 3347 * @state: PF state field 3348 */ 3349 bool ice_is_reset_in_progress(unsigned long *state) 3350 { 3351 return test_bit(ICE_RESET_OICR_RECV, state) || 3352 test_bit(ICE_PFR_REQ, state) || 3353 test_bit(ICE_CORER_REQ, state) || 3354 test_bit(ICE_GLOBR_REQ, state); 3355 } 3356 3357 /** 3358 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3359 * @pf: pointer to the PF structure 3360 * @timeout: length of time to wait, in jiffies 3361 * 3362 * Wait (sleep) for a short time until the driver finishes cleaning up from 3363 * a device reset. The caller must be able to sleep. Use this to delay 3364 * operations that could fail while the driver is cleaning up after a device 3365 * reset. 3366 * 3367 * Returns 0 on success, -EBUSY if the reset is not finished within the 3368 * timeout, and -ERESTARTSYS if the thread was interrupted. 3369 */ 3370 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3371 { 3372 long ret; 3373 3374 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3375 !ice_is_reset_in_progress(pf->state), 3376 timeout); 3377 if (ret < 0) 3378 return ret; 3379 else if (!ret) 3380 return -EBUSY; 3381 else 3382 return 0; 3383 } 3384 3385 /** 3386 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3387 * @vsi: VSI being configured 3388 * @ctx: the context buffer returned from AQ VSI update command 3389 */ 3390 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3391 { 3392 vsi->info.mapping_flags = ctx->info.mapping_flags; 3393 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3394 sizeof(vsi->info.q_mapping)); 3395 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3396 sizeof(vsi->info.tc_mapping)); 3397 } 3398 3399 /** 3400 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3401 * @vsi: the VSI being configured 3402 * @ena_tc: TC map to be enabled 3403 */ 3404 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3405 { 3406 struct net_device *netdev = vsi->netdev; 3407 struct ice_pf *pf = vsi->back; 3408 int numtc = vsi->tc_cfg.numtc; 3409 struct ice_dcbx_cfg *dcbcfg; 3410 u8 netdev_tc; 3411 int i; 3412 3413 if (!netdev) 3414 return; 3415 3416 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3417 if (vsi->type == ICE_VSI_CHNL) 3418 return; 3419 3420 if (!ena_tc) { 3421 netdev_reset_tc(netdev); 3422 return; 3423 } 3424 3425 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3426 numtc = vsi->all_numtc; 3427 3428 if (netdev_set_num_tc(netdev, numtc)) 3429 return; 3430 3431 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3432 3433 ice_for_each_traffic_class(i) 3434 if (vsi->tc_cfg.ena_tc & BIT(i)) 3435 netdev_set_tc_queue(netdev, 3436 vsi->tc_cfg.tc_info[i].netdev_tc, 3437 vsi->tc_cfg.tc_info[i].qcount_tx, 3438 vsi->tc_cfg.tc_info[i].qoffset); 3439 /* setup TC queue map for CHNL TCs */ 3440 ice_for_each_chnl_tc(i) { 3441 if (!(vsi->all_enatc & BIT(i))) 3442 break; 3443 if (!vsi->mqprio_qopt.qopt.count[i]) 3444 break; 3445 netdev_set_tc_queue(netdev, i, 3446 vsi->mqprio_qopt.qopt.count[i], 3447 vsi->mqprio_qopt.qopt.offset[i]); 3448 } 3449 3450 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3451 return; 3452 3453 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3454 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3455 3456 /* Get the mapped netdev TC# for the UP */ 3457 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3458 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3459 } 3460 } 3461 3462 /** 3463 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3464 * @vsi: the VSI being configured, 3465 * @ctxt: VSI context structure 3466 * @ena_tc: number of traffic classes to enable 3467 * 3468 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3469 */ 3470 static void 3471 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3472 u8 ena_tc) 3473 { 3474 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3475 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3476 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3477 u8 netdev_tc = 0; 3478 int i; 3479 3480 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3481 3482 pow = order_base_2(tc0_qcount); 3483 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3484 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3485 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3486 3487 ice_for_each_traffic_class(i) { 3488 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3489 /* TC is not enabled */ 3490 vsi->tc_cfg.tc_info[i].qoffset = 0; 3491 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3492 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3493 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3494 ctxt->info.tc_mapping[i] = 0; 3495 continue; 3496 } 3497 3498 offset = vsi->mqprio_qopt.qopt.offset[i]; 3499 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3500 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3501 vsi->tc_cfg.tc_info[i].qoffset = offset; 3502 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3503 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3504 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3505 } 3506 3507 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3508 ice_for_each_chnl_tc(i) { 3509 if (!(vsi->all_enatc & BIT(i))) 3510 continue; 3511 offset = vsi->mqprio_qopt.qopt.offset[i]; 3512 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3513 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3514 } 3515 } 3516 3517 /* Set actual Tx/Rx queue pairs */ 3518 vsi->num_txq = offset + qcount_tx; 3519 vsi->num_rxq = offset + qcount_rx; 3520 3521 /* Setup queue TC[0].qmap for given VSI context */ 3522 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3523 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3524 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3525 3526 /* Find queue count available for channel VSIs and starting offset 3527 * for channel VSIs 3528 */ 3529 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3530 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3531 vsi->next_base_q = tc0_qcount; 3532 } 3533 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3534 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3535 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3536 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3537 } 3538 3539 /** 3540 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3541 * @vsi: VSI to be configured 3542 * @ena_tc: TC bitmap 3543 * 3544 * VSI queues expected to be quiesced before calling this function 3545 */ 3546 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3547 { 3548 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3549 struct ice_pf *pf = vsi->back; 3550 struct ice_vsi_ctx *ctx; 3551 struct device *dev; 3552 int i, ret = 0; 3553 u8 num_tc = 0; 3554 3555 dev = ice_pf_to_dev(pf); 3556 if (vsi->tc_cfg.ena_tc == ena_tc && 3557 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3558 return ret; 3559 3560 ice_for_each_traffic_class(i) { 3561 /* build bitmap of enabled TCs */ 3562 if (ena_tc & BIT(i)) 3563 num_tc++; 3564 /* populate max_txqs per TC */ 3565 max_txqs[i] = vsi->alloc_txq; 3566 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3567 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3568 */ 3569 if (vsi->type == ICE_VSI_CHNL && 3570 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3571 max_txqs[i] = vsi->num_txq; 3572 } 3573 3574 vsi->tc_cfg.ena_tc = ena_tc; 3575 vsi->tc_cfg.numtc = num_tc; 3576 3577 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3578 if (!ctx) 3579 return -ENOMEM; 3580 3581 ctx->vf_num = 0; 3582 ctx->info = vsi->info; 3583 3584 if (vsi->type == ICE_VSI_PF && 3585 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3586 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3587 else 3588 ice_vsi_setup_q_map(vsi, ctx); 3589 3590 /* must to indicate which section of VSI context are being modified */ 3591 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3592 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3593 if (ret) { 3594 dev_info(dev, "Failed VSI Update\n"); 3595 goto out; 3596 } 3597 3598 if (vsi->type == ICE_VSI_PF && 3599 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3600 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3601 else 3602 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3603 vsi->tc_cfg.ena_tc, max_txqs); 3604 3605 if (ret) { 3606 dev_err(dev, "VSI %d failed TC config, error %d\n", 3607 vsi->vsi_num, ret); 3608 goto out; 3609 } 3610 ice_vsi_update_q_map(vsi, ctx); 3611 vsi->info.valid_sections = 0; 3612 3613 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3614 out: 3615 kfree(ctx); 3616 return ret; 3617 } 3618 3619 /** 3620 * ice_update_ring_stats - Update ring statistics 3621 * @stats: stats to be updated 3622 * @pkts: number of processed packets 3623 * @bytes: number of processed bytes 3624 * 3625 * This function assumes that caller has acquired a u64_stats_sync lock. 3626 */ 3627 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3628 { 3629 stats->bytes += bytes; 3630 stats->pkts += pkts; 3631 } 3632 3633 /** 3634 * ice_update_tx_ring_stats - Update Tx ring specific counters 3635 * @tx_ring: ring to update 3636 * @pkts: number of processed packets 3637 * @bytes: number of processed bytes 3638 */ 3639 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3640 { 3641 u64_stats_update_begin(&tx_ring->syncp); 3642 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3643 u64_stats_update_end(&tx_ring->syncp); 3644 } 3645 3646 /** 3647 * ice_update_rx_ring_stats - Update Rx ring specific counters 3648 * @rx_ring: ring to update 3649 * @pkts: number of processed packets 3650 * @bytes: number of processed bytes 3651 */ 3652 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3653 { 3654 u64_stats_update_begin(&rx_ring->syncp); 3655 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3656 u64_stats_update_end(&rx_ring->syncp); 3657 } 3658 3659 /** 3660 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3661 * @sw: switch to check if its default forwarding VSI is free 3662 * 3663 * Return true if the default forwarding VSI is already being used, else returns 3664 * false signalling that it's available to use. 3665 */ 3666 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3667 { 3668 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3669 } 3670 3671 /** 3672 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3673 * @sw: switch for the default forwarding VSI to compare against 3674 * @vsi: VSI to compare against default forwarding VSI 3675 * 3676 * If this VSI passed in is the default forwarding VSI then return true, else 3677 * return false 3678 */ 3679 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3680 { 3681 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3682 } 3683 3684 /** 3685 * ice_set_dflt_vsi - set the default forwarding VSI 3686 * @sw: switch used to assign the default forwarding VSI 3687 * @vsi: VSI getting set as the default forwarding VSI on the switch 3688 * 3689 * If the VSI passed in is already the default VSI and it's enabled just return 3690 * success. 3691 * 3692 * If there is already a default VSI on the switch and it's enabled then return 3693 * -EEXIST since there can only be one default VSI per switch. 3694 * 3695 * Otherwise try to set the VSI passed in as the switch's default VSI and 3696 * return the result. 3697 */ 3698 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3699 { 3700 struct device *dev; 3701 int status; 3702 3703 if (!sw || !vsi) 3704 return -EINVAL; 3705 3706 dev = ice_pf_to_dev(vsi->back); 3707 3708 /* the VSI passed in is already the default VSI */ 3709 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3710 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3711 vsi->vsi_num); 3712 return 0; 3713 } 3714 3715 /* another VSI is already the default VSI for this switch */ 3716 if (ice_is_dflt_vsi_in_use(sw)) { 3717 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3718 sw->dflt_vsi->vsi_num); 3719 return -EEXIST; 3720 } 3721 3722 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3723 if (status) { 3724 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3725 vsi->vsi_num, status); 3726 return status; 3727 } 3728 3729 sw->dflt_vsi = vsi; 3730 sw->dflt_vsi_ena = true; 3731 3732 return 0; 3733 } 3734 3735 /** 3736 * ice_clear_dflt_vsi - clear the default forwarding VSI 3737 * @sw: switch used to clear the default VSI 3738 * 3739 * If the switch has no default VSI or it's not enabled then return error. 3740 * 3741 * Otherwise try to clear the default VSI and return the result. 3742 */ 3743 int ice_clear_dflt_vsi(struct ice_sw *sw) 3744 { 3745 struct ice_vsi *dflt_vsi; 3746 struct device *dev; 3747 int status; 3748 3749 if (!sw) 3750 return -EINVAL; 3751 3752 dev = ice_pf_to_dev(sw->pf); 3753 3754 dflt_vsi = sw->dflt_vsi; 3755 3756 /* there is no default VSI configured */ 3757 if (!ice_is_dflt_vsi_in_use(sw)) 3758 return -ENODEV; 3759 3760 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3761 ICE_FLTR_RX); 3762 if (status) { 3763 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3764 dflt_vsi->vsi_num, status); 3765 return -EIO; 3766 } 3767 3768 sw->dflt_vsi = NULL; 3769 sw->dflt_vsi_ena = false; 3770 3771 return 0; 3772 } 3773 3774 /** 3775 * ice_get_link_speed_mbps - get link speed in Mbps 3776 * @vsi: the VSI whose link speed is being queried 3777 * 3778 * Return current VSI link speed and 0 if the speed is unknown. 3779 */ 3780 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3781 { 3782 switch (vsi->port_info->phy.link_info.link_speed) { 3783 case ICE_AQ_LINK_SPEED_100GB: 3784 return SPEED_100000; 3785 case ICE_AQ_LINK_SPEED_50GB: 3786 return SPEED_50000; 3787 case ICE_AQ_LINK_SPEED_40GB: 3788 return SPEED_40000; 3789 case ICE_AQ_LINK_SPEED_25GB: 3790 return SPEED_25000; 3791 case ICE_AQ_LINK_SPEED_20GB: 3792 return SPEED_20000; 3793 case ICE_AQ_LINK_SPEED_10GB: 3794 return SPEED_10000; 3795 case ICE_AQ_LINK_SPEED_5GB: 3796 return SPEED_5000; 3797 case ICE_AQ_LINK_SPEED_2500MB: 3798 return SPEED_2500; 3799 case ICE_AQ_LINK_SPEED_1000MB: 3800 return SPEED_1000; 3801 case ICE_AQ_LINK_SPEED_100MB: 3802 return SPEED_100; 3803 case ICE_AQ_LINK_SPEED_10MB: 3804 return SPEED_10; 3805 case ICE_AQ_LINK_SPEED_UNKNOWN: 3806 default: 3807 return 0; 3808 } 3809 } 3810 3811 /** 3812 * ice_get_link_speed_kbps - get link speed in Kbps 3813 * @vsi: the VSI whose link speed is being queried 3814 * 3815 * Return current VSI link speed and 0 if the speed is unknown. 3816 */ 3817 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3818 { 3819 int speed_mbps; 3820 3821 speed_mbps = ice_get_link_speed_mbps(vsi); 3822 3823 return speed_mbps * 1000; 3824 } 3825 3826 /** 3827 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3828 * @vsi: VSI to be configured 3829 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3830 * 3831 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3832 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3833 * on TC 0. 3834 */ 3835 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3836 { 3837 struct ice_pf *pf = vsi->back; 3838 struct device *dev; 3839 int status; 3840 int speed; 3841 3842 dev = ice_pf_to_dev(pf); 3843 if (!vsi->port_info) { 3844 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3845 vsi->idx, vsi->type); 3846 return -EINVAL; 3847 } 3848 3849 speed = ice_get_link_speed_kbps(vsi); 3850 if (min_tx_rate > (u64)speed) { 3851 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3852 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3853 speed); 3854 return -EINVAL; 3855 } 3856 3857 /* Configure min BW for VSI limit */ 3858 if (min_tx_rate) { 3859 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3860 ICE_MIN_BW, min_tx_rate); 3861 if (status) { 3862 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3863 min_tx_rate, ice_vsi_type_str(vsi->type), 3864 vsi->idx); 3865 return status; 3866 } 3867 3868 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3869 min_tx_rate, ice_vsi_type_str(vsi->type)); 3870 } else { 3871 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3872 vsi->idx, 0, 3873 ICE_MIN_BW); 3874 if (status) { 3875 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3876 ice_vsi_type_str(vsi->type), vsi->idx); 3877 return status; 3878 } 3879 3880 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3881 ice_vsi_type_str(vsi->type), vsi->idx); 3882 } 3883 3884 return 0; 3885 } 3886 3887 /** 3888 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3889 * @vsi: VSI to be configured 3890 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3891 * 3892 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3893 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3894 * on TC 0. 3895 */ 3896 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3897 { 3898 struct ice_pf *pf = vsi->back; 3899 struct device *dev; 3900 int status; 3901 int speed; 3902 3903 dev = ice_pf_to_dev(pf); 3904 if (!vsi->port_info) { 3905 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3906 vsi->idx, vsi->type); 3907 return -EINVAL; 3908 } 3909 3910 speed = ice_get_link_speed_kbps(vsi); 3911 if (max_tx_rate > (u64)speed) { 3912 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3913 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3914 speed); 3915 return -EINVAL; 3916 } 3917 3918 /* Configure max BW for VSI limit */ 3919 if (max_tx_rate) { 3920 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3921 ICE_MAX_BW, max_tx_rate); 3922 if (status) { 3923 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3924 max_tx_rate, ice_vsi_type_str(vsi->type), 3925 vsi->idx); 3926 return status; 3927 } 3928 3929 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3930 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3931 } else { 3932 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3933 vsi->idx, 0, 3934 ICE_MAX_BW); 3935 if (status) { 3936 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3937 ice_vsi_type_str(vsi->type), vsi->idx); 3938 return status; 3939 } 3940 3941 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3942 ice_vsi_type_str(vsi->type), vsi->idx); 3943 } 3944 3945 return 0; 3946 } 3947 3948 /** 3949 * ice_set_link - turn on/off physical link 3950 * @vsi: VSI to modify physical link on 3951 * @ena: turn on/off physical link 3952 */ 3953 int ice_set_link(struct ice_vsi *vsi, bool ena) 3954 { 3955 struct device *dev = ice_pf_to_dev(vsi->back); 3956 struct ice_port_info *pi = vsi->port_info; 3957 struct ice_hw *hw = pi->hw; 3958 int status; 3959 3960 if (vsi->type != ICE_VSI_PF) 3961 return -EINVAL; 3962 3963 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3964 3965 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3966 * this is not a fatal error, so print a warning message and return 3967 * a success code. Return an error if FW returns an error code other 3968 * than ICE_AQ_RC_EMODE 3969 */ 3970 if (status == -EIO) { 3971 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3972 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3973 (ena ? "ON" : "OFF"), status, 3974 ice_aq_str(hw->adminq.sq_last_status)); 3975 } else if (status) { 3976 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3977 (ena ? "ON" : "OFF"), status, 3978 ice_aq_str(hw->adminq.sq_last_status)); 3979 return status; 3980 } 3981 3982 return 0; 3983 } 3984 3985 /** 3986 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3987 * @vsi: VSI used to add VLAN filters 3988 * 3989 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3990 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3991 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3992 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3993 * 3994 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3995 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3996 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3997 * 3998 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3999 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4000 * part of filtering. 4001 */ 4002 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4003 { 4004 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4005 struct ice_vlan vlan; 4006 int err; 4007 4008 vlan = ICE_VLAN(0, 0, 0); 4009 err = vlan_ops->add_vlan(vsi, &vlan); 4010 if (err && err != -EEXIST) 4011 return err; 4012 4013 /* in SVM both VLAN 0 filters are identical */ 4014 if (!ice_is_dvm_ena(&vsi->back->hw)) 4015 return 0; 4016 4017 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4018 err = vlan_ops->add_vlan(vsi, &vlan); 4019 if (err && err != -EEXIST) 4020 return err; 4021 4022 return 0; 4023 } 4024 4025 /** 4026 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4027 * @vsi: VSI used to add VLAN filters 4028 * 4029 * Delete the VLAN 0 filters in the same manner that they were added in 4030 * ice_vsi_add_vlan_zero. 4031 */ 4032 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4033 { 4034 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4035 struct ice_vlan vlan; 4036 int err; 4037 4038 vlan = ICE_VLAN(0, 0, 0); 4039 err = vlan_ops->del_vlan(vsi, &vlan); 4040 if (err && err != -EEXIST) 4041 return err; 4042 4043 /* in SVM both VLAN 0 filters are identical */ 4044 if (!ice_is_dvm_ena(&vsi->back->hw)) 4045 return 0; 4046 4047 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4048 err = vlan_ops->del_vlan(vsi, &vlan); 4049 if (err && err != -EEXIST) 4050 return err; 4051 4052 return 0; 4053 } 4054 4055 /** 4056 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4057 * @vsi: VSI used to get the VLAN mode 4058 * 4059 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4060 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4061 */ 4062 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4063 { 4064 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4065 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4066 /* no VLAN 0 filter is created when a port VLAN is active */ 4067 if (vsi->type == ICE_VSI_VF) { 4068 if (WARN_ON(!vsi->vf)) 4069 return 0; 4070 4071 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4072 return 0; 4073 } 4074 4075 if (ice_is_dvm_ena(&vsi->back->hw)) 4076 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4077 else 4078 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4079 } 4080 4081 /** 4082 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4083 * @vsi: VSI used to determine if any non-zero VLANs have been added 4084 */ 4085 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4086 { 4087 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4088 } 4089 4090 /** 4091 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4092 * @vsi: VSI used to get the number of non-zero VLANs added 4093 */ 4094 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4095 { 4096 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4097 } 4098 4099 /** 4100 * ice_is_feature_supported 4101 * @pf: pointer to the struct ice_pf instance 4102 * @f: feature enum to be checked 4103 * 4104 * returns true if feature is supported, false otherwise 4105 */ 4106 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4107 { 4108 if (f < 0 || f >= ICE_F_MAX) 4109 return false; 4110 4111 return test_bit(f, pf->features); 4112 } 4113 4114 /** 4115 * ice_set_feature_support 4116 * @pf: pointer to the struct ice_pf instance 4117 * @f: feature enum to set 4118 */ 4119 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4120 { 4121 if (f < 0 || f >= ICE_F_MAX) 4122 return; 4123 4124 set_bit(f, pf->features); 4125 } 4126 4127 /** 4128 * ice_clear_feature_support 4129 * @pf: pointer to the struct ice_pf instance 4130 * @f: feature enum to clear 4131 */ 4132 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4133 { 4134 if (f < 0 || f >= ICE_F_MAX) 4135 return; 4136 4137 clear_bit(f, pf->features); 4138 } 4139 4140 /** 4141 * ice_init_feature_support 4142 * @pf: pointer to the struct ice_pf instance 4143 * 4144 * called during init to setup supported feature 4145 */ 4146 void ice_init_feature_support(struct ice_pf *pf) 4147 { 4148 switch (pf->hw.device_id) { 4149 case ICE_DEV_ID_E810C_BACKPLANE: 4150 case ICE_DEV_ID_E810C_QSFP: 4151 case ICE_DEV_ID_E810C_SFP: 4152 ice_set_feature_support(pf, ICE_F_DSCP); 4153 if (ice_is_e810t(&pf->hw)) { 4154 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4155 if (ice_gnss_is_gps_present(&pf->hw)) 4156 ice_set_feature_support(pf, ICE_F_GNSS); 4157 } 4158 break; 4159 default: 4160 break; 4161 } 4162 } 4163 4164 /** 4165 * ice_vsi_update_security - update security block in VSI 4166 * @vsi: pointer to VSI structure 4167 * @fill: function pointer to fill ctx 4168 */ 4169 int 4170 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4171 { 4172 struct ice_vsi_ctx ctx = { 0 }; 4173 4174 ctx.info = vsi->info; 4175 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4176 fill(&ctx); 4177 4178 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4179 return -ENODEV; 4180 4181 vsi->info = ctx.info; 4182 return 0; 4183 } 4184 4185 /** 4186 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4187 * @ctx: pointer to VSI ctx structure 4188 */ 4189 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4190 { 4191 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4192 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4193 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4194 } 4195 4196 /** 4197 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4198 * @ctx: pointer to VSI ctx structure 4199 */ 4200 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4201 { 4202 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4203 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4204 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4205 } 4206 4207 /** 4208 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4209 * @ctx: pointer to VSI ctx structure 4210 */ 4211 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4212 { 4213 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4214 } 4215 4216 /** 4217 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4218 * @ctx: pointer to VSI ctx structure 4219 */ 4220 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4221 { 4222 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4223 } 4224