1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  * @vf: the VF associated with this VSI, if any
170  *
171  * Return 0 on success and a negative value on error
172  */
173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174 {
175 	enum ice_vsi_type vsi_type = vsi->type;
176 	struct ice_pf *pf = vsi->back;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 void ice_vsi_delete(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 	if (!ctxt)
296 		return;
297 
298 	if (vsi->type == ICE_VSI_VF)
299 		ctxt->vf_num = vsi->vf->vf_id;
300 	ctxt->vsi_num = vsi->vsi_num;
301 
302 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303 
304 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 	if (status)
306 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 			vsi->vsi_num, status);
308 
309 	kfree(ctxt);
310 }
311 
312 /**
313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314  * @vsi: pointer to VSI being cleared
315  */
316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = vsi->back;
319 	struct device *dev;
320 
321 	dev = ice_pf_to_dev(pf);
322 
323 	if (vsi->af_xdp_zc_qps) {
324 		bitmap_free(vsi->af_xdp_zc_qps);
325 		vsi->af_xdp_zc_qps = NULL;
326 	}
327 	/* free the ring and vector containers */
328 	if (vsi->q_vectors) {
329 		devm_kfree(dev, vsi->q_vectors);
330 		vsi->q_vectors = NULL;
331 	}
332 	if (vsi->tx_rings) {
333 		devm_kfree(dev, vsi->tx_rings);
334 		vsi->tx_rings = NULL;
335 	}
336 	if (vsi->rx_rings) {
337 		devm_kfree(dev, vsi->rx_rings);
338 		vsi->rx_rings = NULL;
339 	}
340 	if (vsi->txq_map) {
341 		devm_kfree(dev, vsi->txq_map);
342 		vsi->txq_map = NULL;
343 	}
344 	if (vsi->rxq_map) {
345 		devm_kfree(dev, vsi->rxq_map);
346 		vsi->rxq_map = NULL;
347 	}
348 }
349 
350 /**
351  * ice_vsi_clear - clean up and deallocate the provided VSI
352  * @vsi: pointer to VSI being cleared
353  *
354  * This deallocates the VSI's queue resources, removes it from the PF's
355  * VSI array if necessary, and deallocates the VSI
356  *
357  * Returns 0 on success, negative on failure
358  */
359 int ice_vsi_clear(struct ice_vsi *vsi)
360 {
361 	struct ice_pf *pf = NULL;
362 	struct device *dev;
363 
364 	if (!vsi)
365 		return 0;
366 
367 	if (!vsi->back)
368 		return -EINVAL;
369 
370 	pf = vsi->back;
371 	dev = ice_pf_to_dev(pf);
372 
373 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 		return -EINVAL;
376 	}
377 
378 	mutex_lock(&pf->sw_mutex);
379 	/* updates the PF for this cleared VSI */
380 
381 	pf->vsi[vsi->idx] = NULL;
382 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 		pf->next_vsi = vsi->idx;
384 	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 		pf->next_vsi = vsi->idx;
386 
387 	ice_vsi_free_arrays(vsi);
388 	mutex_unlock(&pf->sw_mutex);
389 	devm_kfree(dev, vsi);
390 
391 	return 0;
392 }
393 
394 /**
395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396  * @irq: interrupt number
397  * @data: pointer to a q_vector
398  */
399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400 {
401 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402 
403 	if (!q_vector->tx.tx_ring)
404 		return IRQ_HANDLED;
405 
406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
407 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 /**
414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
415  * @irq: interrupt number
416  * @data: pointer to a q_vector
417  */
418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419 {
420 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421 
422 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 		return IRQ_HANDLED;
424 
425 	q_vector->total_events++;
426 
427 	napi_schedule(&q_vector->napi);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433 {
434 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 	struct ice_pf *pf = q_vector->vsi->back;
436 	struct ice_vf *vf;
437 	unsigned int bkt;
438 
439 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 		return IRQ_HANDLED;
441 
442 	rcu_read_lock();
443 	ice_for_each_vf_rcu(pf, bkt, vf)
444 		napi_schedule(&vf->repr->q_vector->napi);
445 	rcu_read_unlock();
446 
447 	return IRQ_HANDLED;
448 }
449 
450 /**
451  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
452  * @pf: board private structure
453  * @vsi_type: type of VSI
454  * @ch: ptr to channel
455  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
456  *
457  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
458  * it may be NULL in the case there is no association with a VF. For
459  * ICE_VSI_VF the VF pointer *must not* be NULL.
460  *
461  * returns a pointer to a VSI on success, NULL on failure.
462  */
463 static struct ice_vsi *
464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
465 	      struct ice_channel *ch, struct ice_vf *vf)
466 {
467 	struct device *dev = ice_pf_to_dev(pf);
468 	struct ice_vsi *vsi = NULL;
469 
470 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
471 		return NULL;
472 
473 	/* Need to protect the allocation of the VSIs at the PF level */
474 	mutex_lock(&pf->sw_mutex);
475 
476 	/* If we have already allocated our maximum number of VSIs,
477 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
478 	 * is available to be populated
479 	 */
480 	if (pf->next_vsi == ICE_NO_VSI) {
481 		dev_dbg(dev, "out of VSI slots!\n");
482 		goto unlock_pf;
483 	}
484 
485 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
486 	if (!vsi)
487 		goto unlock_pf;
488 
489 	vsi->type = vsi_type;
490 	vsi->back = pf;
491 	set_bit(ICE_VSI_DOWN, vsi->state);
492 
493 	if (vsi_type == ICE_VSI_VF)
494 		ice_vsi_set_num_qs(vsi, vf);
495 	else if (vsi_type != ICE_VSI_CHNL)
496 		ice_vsi_set_num_qs(vsi, NULL);
497 
498 	switch (vsi->type) {
499 	case ICE_VSI_SWITCHDEV_CTRL:
500 		if (ice_vsi_alloc_arrays(vsi))
501 			goto err_rings;
502 
503 		/* Setup eswitch MSIX irq handler for VSI */
504 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
505 		break;
506 	case ICE_VSI_PF:
507 		if (ice_vsi_alloc_arrays(vsi))
508 			goto err_rings;
509 
510 		/* Setup default MSIX irq handler for VSI */
511 		vsi->irq_handler = ice_msix_clean_rings;
512 		break;
513 	case ICE_VSI_CTRL:
514 		if (ice_vsi_alloc_arrays(vsi))
515 			goto err_rings;
516 
517 		/* Setup ctrl VSI MSIX irq handler */
518 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
519 
520 		/* For the PF control VSI this is NULL, for the VF control VSI
521 		 * this will be the first VF to allocate it.
522 		 */
523 		vsi->vf = vf;
524 		break;
525 	case ICE_VSI_VF:
526 		if (ice_vsi_alloc_arrays(vsi))
527 			goto err_rings;
528 		vsi->vf = vf;
529 		break;
530 	case ICE_VSI_CHNL:
531 		if (!ch)
532 			goto err_rings;
533 		vsi->num_rxq = ch->num_rxq;
534 		vsi->num_txq = ch->num_txq;
535 		vsi->next_base_q = ch->base_q;
536 		break;
537 	case ICE_VSI_LB:
538 		if (ice_vsi_alloc_arrays(vsi))
539 			goto err_rings;
540 		break;
541 	default:
542 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
543 		goto unlock_pf;
544 	}
545 
546 	if (vsi->type == ICE_VSI_CTRL && !vf) {
547 		/* Use the last VSI slot as the index for PF control VSI */
548 		vsi->idx = pf->num_alloc_vsi - 1;
549 		pf->ctrl_vsi_idx = vsi->idx;
550 		pf->vsi[vsi->idx] = vsi;
551 	} else {
552 		/* fill slot and make note of the index */
553 		vsi->idx = pf->next_vsi;
554 		pf->vsi[pf->next_vsi] = vsi;
555 
556 		/* prepare pf->next_vsi for next use */
557 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
558 						 pf->next_vsi);
559 	}
560 
561 	if (vsi->type == ICE_VSI_CTRL && vf)
562 		vf->ctrl_vsi_idx = vsi->idx;
563 	goto unlock_pf;
564 
565 err_rings:
566 	devm_kfree(dev, vsi);
567 	vsi = NULL;
568 unlock_pf:
569 	mutex_unlock(&pf->sw_mutex);
570 	return vsi;
571 }
572 
573 /**
574  * ice_alloc_fd_res - Allocate FD resource for a VSI
575  * @vsi: pointer to the ice_vsi
576  *
577  * This allocates the FD resources
578  *
579  * Returns 0 on success, -EPERM on no-op or -EIO on failure
580  */
581 static int ice_alloc_fd_res(struct ice_vsi *vsi)
582 {
583 	struct ice_pf *pf = vsi->back;
584 	u32 g_val, b_val;
585 
586 	/* Flow Director filters are only allocated/assigned to the PF VSI or
587 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
588 	 * add/delete filters so resources are not allocated to it
589 	 */
590 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
591 		return -EPERM;
592 
593 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
594 	      vsi->type == ICE_VSI_CHNL))
595 		return -EPERM;
596 
597 	/* FD filters from guaranteed pool per VSI */
598 	g_val = pf->hw.func_caps.fd_fltr_guar;
599 	if (!g_val)
600 		return -EPERM;
601 
602 	/* FD filters from best effort pool */
603 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
604 	if (!b_val)
605 		return -EPERM;
606 
607 	/* PF main VSI gets only 64 FD resources from guaranteed pool
608 	 * when ADQ is configured.
609 	 */
610 #define ICE_PF_VSI_GFLTR	64
611 
612 	/* determine FD filter resources per VSI from shared(best effort) and
613 	 * dedicated pool
614 	 */
615 	if (vsi->type == ICE_VSI_PF) {
616 		vsi->num_gfltr = g_val;
617 		/* if MQPRIO is configured, main VSI doesn't get all FD
618 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
619 		 */
620 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
621 			if (g_val < ICE_PF_VSI_GFLTR)
622 				return -EPERM;
623 			/* allow bare minimum entries for PF VSI */
624 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
625 		}
626 
627 		/* each VSI gets same "best_effort" quota */
628 		vsi->num_bfltr = b_val;
629 	} else if (vsi->type == ICE_VSI_VF) {
630 		vsi->num_gfltr = 0;
631 
632 		/* each VSI gets same "best_effort" quota */
633 		vsi->num_bfltr = b_val;
634 	} else {
635 		struct ice_vsi *main_vsi;
636 		int numtc;
637 
638 		main_vsi = ice_get_main_vsi(pf);
639 		if (!main_vsi)
640 			return -EPERM;
641 
642 		if (!main_vsi->all_numtc)
643 			return -EINVAL;
644 
645 		/* figure out ADQ numtc */
646 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
647 
648 		/* only one TC but still asking resources for channels,
649 		 * invalid config
650 		 */
651 		if (numtc < ICE_CHNL_START_TC)
652 			return -EPERM;
653 
654 		g_val -= ICE_PF_VSI_GFLTR;
655 		/* channel VSIs gets equal share from guaranteed pool */
656 		vsi->num_gfltr = g_val / numtc;
657 
658 		/* each VSI gets same "best_effort" quota */
659 		vsi->num_bfltr = b_val;
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * ice_vsi_get_qs - Assign queues from PF to VSI
667  * @vsi: the VSI to assign queues to
668  *
669  * Returns 0 on success and a negative value on error
670  */
671 static int ice_vsi_get_qs(struct ice_vsi *vsi)
672 {
673 	struct ice_pf *pf = vsi->back;
674 	struct ice_qs_cfg tx_qs_cfg = {
675 		.qs_mutex = &pf->avail_q_mutex,
676 		.pf_map = pf->avail_txqs,
677 		.pf_map_size = pf->max_pf_txqs,
678 		.q_count = vsi->alloc_txq,
679 		.scatter_count = ICE_MAX_SCATTER_TXQS,
680 		.vsi_map = vsi->txq_map,
681 		.vsi_map_offset = 0,
682 		.mapping_mode = ICE_VSI_MAP_CONTIG
683 	};
684 	struct ice_qs_cfg rx_qs_cfg = {
685 		.qs_mutex = &pf->avail_q_mutex,
686 		.pf_map = pf->avail_rxqs,
687 		.pf_map_size = pf->max_pf_rxqs,
688 		.q_count = vsi->alloc_rxq,
689 		.scatter_count = ICE_MAX_SCATTER_RXQS,
690 		.vsi_map = vsi->rxq_map,
691 		.vsi_map_offset = 0,
692 		.mapping_mode = ICE_VSI_MAP_CONTIG
693 	};
694 	int ret;
695 
696 	if (vsi->type == ICE_VSI_CHNL)
697 		return 0;
698 
699 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
700 	if (ret)
701 		return ret;
702 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
703 
704 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
705 	if (ret)
706 		return ret;
707 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
708 
709 	return 0;
710 }
711 
712 /**
713  * ice_vsi_put_qs - Release queues from VSI to PF
714  * @vsi: the VSI that is going to release queues
715  */
716 static void ice_vsi_put_qs(struct ice_vsi *vsi)
717 {
718 	struct ice_pf *pf = vsi->back;
719 	int i;
720 
721 	mutex_lock(&pf->avail_q_mutex);
722 
723 	ice_for_each_alloc_txq(vsi, i) {
724 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
725 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
726 	}
727 
728 	ice_for_each_alloc_rxq(vsi, i) {
729 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
730 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
731 	}
732 
733 	mutex_unlock(&pf->avail_q_mutex);
734 }
735 
736 /**
737  * ice_is_safe_mode
738  * @pf: pointer to the PF struct
739  *
740  * returns true if driver is in safe mode, false otherwise
741  */
742 bool ice_is_safe_mode(struct ice_pf *pf)
743 {
744 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
745 }
746 
747 /**
748  * ice_is_rdma_ena
749  * @pf: pointer to the PF struct
750  *
751  * returns true if RDMA is currently supported, false otherwise
752  */
753 bool ice_is_rdma_ena(struct ice_pf *pf)
754 {
755 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
756 }
757 
758 /**
759  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
760  * @vsi: the VSI being cleaned up
761  *
762  * This function deletes RSS input set for all flows that were configured
763  * for this VSI
764  */
765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
766 {
767 	struct ice_pf *pf = vsi->back;
768 	int status;
769 
770 	if (ice_is_safe_mode(pf))
771 		return;
772 
773 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
774 	if (status)
775 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
776 			vsi->vsi_num, status);
777 }
778 
779 /**
780  * ice_rss_clean - Delete RSS related VSI structures and configuration
781  * @vsi: the VSI being removed
782  */
783 static void ice_rss_clean(struct ice_vsi *vsi)
784 {
785 	struct ice_pf *pf = vsi->back;
786 	struct device *dev;
787 
788 	dev = ice_pf_to_dev(pf);
789 
790 	if (vsi->rss_hkey_user)
791 		devm_kfree(dev, vsi->rss_hkey_user);
792 	if (vsi->rss_lut_user)
793 		devm_kfree(dev, vsi->rss_lut_user);
794 
795 	ice_vsi_clean_rss_flow_fld(vsi);
796 	/* remove RSS replay list */
797 	if (!ice_is_safe_mode(pf))
798 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
799 }
800 
801 /**
802  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
803  * @vsi: the VSI being configured
804  */
805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
806 {
807 	struct ice_hw_common_caps *cap;
808 	struct ice_pf *pf = vsi->back;
809 
810 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
811 		vsi->rss_size = 1;
812 		return;
813 	}
814 
815 	cap = &pf->hw.func_caps.common_cap;
816 	switch (vsi->type) {
817 	case ICE_VSI_CHNL:
818 	case ICE_VSI_PF:
819 		/* PF VSI will inherit RSS instance of PF */
820 		vsi->rss_table_size = (u16)cap->rss_table_size;
821 		if (vsi->type == ICE_VSI_CHNL)
822 			vsi->rss_size = min_t(u16, vsi->num_rxq,
823 					      BIT(cap->rss_table_entry_width));
824 		else
825 			vsi->rss_size = min_t(u16, num_online_cpus(),
826 					      BIT(cap->rss_table_entry_width));
827 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
828 		break;
829 	case ICE_VSI_SWITCHDEV_CTRL:
830 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
831 		vsi->rss_size = min_t(u16, num_online_cpus(),
832 				      BIT(cap->rss_table_entry_width));
833 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
834 		break;
835 	case ICE_VSI_VF:
836 		/* VF VSI will get a small RSS table.
837 		 * For VSI_LUT, LUT size should be set to 64 bytes.
838 		 */
839 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
840 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
841 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
842 		break;
843 	case ICE_VSI_LB:
844 		break;
845 	default:
846 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
847 			ice_vsi_type_str(vsi->type));
848 		break;
849 	}
850 }
851 
852 /**
853  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
854  * @hw: HW structure used to determine the VLAN mode of the device
855  * @ctxt: the VSI context being set
856  *
857  * This initializes a default VSI context for all sections except the Queues.
858  */
859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
860 {
861 	u32 table = 0;
862 
863 	memset(&ctxt->info, 0, sizeof(ctxt->info));
864 	/* VSI's should be allocated from shared pool */
865 	ctxt->alloc_from_pool = true;
866 	/* Src pruning enabled by default */
867 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
868 	/* Traffic from VSI can be sent to LAN */
869 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
870 	/* allow all untagged/tagged packets by default on Tx */
871 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
872 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
873 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
874 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
875 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
876 	 *
877 	 * DVM - leave inner VLAN in packet by default
878 	 */
879 	if (ice_is_dvm_ena(hw)) {
880 		ctxt->info.inner_vlan_flags |=
881 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
882 		ctxt->info.outer_vlan_flags =
883 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
884 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
885 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
886 		ctxt->info.outer_vlan_flags |=
887 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
888 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
889 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
890 		ctxt->info.outer_vlan_flags |=
891 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
892 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
893 	}
894 	/* Have 1:1 UP mapping for both ingress/egress tables */
895 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
896 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
897 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
898 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
899 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
900 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
901 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
902 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
903 	ctxt->info.ingress_table = cpu_to_le32(table);
904 	ctxt->info.egress_table = cpu_to_le32(table);
905 	/* Have 1:1 UP mapping for outer to inner UP table */
906 	ctxt->info.outer_up_table = cpu_to_le32(table);
907 	/* No Outer tag support outer_tag_flags remains to zero */
908 }
909 
910 /**
911  * ice_vsi_setup_q_map - Setup a VSI queue map
912  * @vsi: the VSI being configured
913  * @ctxt: VSI context structure
914  */
915 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
916 {
917 	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
918 	u16 num_txq_per_tc, num_rxq_per_tc;
919 	u16 qcount_tx = vsi->alloc_txq;
920 	u16 qcount_rx = vsi->alloc_rxq;
921 	u8 netdev_tc = 0;
922 	int i;
923 
924 	if (!vsi->tc_cfg.numtc) {
925 		/* at least TC0 should be enabled by default */
926 		vsi->tc_cfg.numtc = 1;
927 		vsi->tc_cfg.ena_tc = 1;
928 	}
929 
930 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
931 	if (!num_rxq_per_tc)
932 		num_rxq_per_tc = 1;
933 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
934 	if (!num_txq_per_tc)
935 		num_txq_per_tc = 1;
936 
937 	/* find the (rounded up) power-of-2 of qcount */
938 	pow = (u16)order_base_2(num_rxq_per_tc);
939 
940 	/* TC mapping is a function of the number of Rx queues assigned to the
941 	 * VSI for each traffic class and the offset of these queues.
942 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
943 	 * queues allocated to TC0. No:of queues is a power-of-2.
944 	 *
945 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
946 	 * queue, this way, traffic for the given TC will be sent to the default
947 	 * queue.
948 	 *
949 	 * Setup number and offset of Rx queues for all TCs for the VSI
950 	 */
951 	ice_for_each_traffic_class(i) {
952 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
953 			/* TC is not enabled */
954 			vsi->tc_cfg.tc_info[i].qoffset = 0;
955 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
956 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
957 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
958 			ctxt->info.tc_mapping[i] = 0;
959 			continue;
960 		}
961 
962 		/* TC is enabled */
963 		vsi->tc_cfg.tc_info[i].qoffset = offset;
964 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
965 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
966 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
967 
968 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
969 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
970 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
971 			 ICE_AQ_VSI_TC_Q_NUM_M);
972 		offset += num_rxq_per_tc;
973 		tx_count += num_txq_per_tc;
974 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
975 	}
976 
977 	/* if offset is non-zero, means it is calculated correctly based on
978 	 * enabled TCs for a given VSI otherwise qcount_rx will always
979 	 * be correct and non-zero because it is based off - VSI's
980 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
981 	 * at least 1)
982 	 */
983 	if (offset)
984 		vsi->num_rxq = offset;
985 	else
986 		vsi->num_rxq = num_rxq_per_tc;
987 
988 	vsi->num_txq = tx_count;
989 
990 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
991 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
992 		/* since there is a chance that num_rxq could have been changed
993 		 * in the above for loop, make num_txq equal to num_rxq.
994 		 */
995 		vsi->num_txq = vsi->num_rxq;
996 	}
997 
998 	/* Rx queue mapping */
999 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1000 	/* q_mapping buffer holds the info for the first queue allocated for
1001 	 * this VSI in the PF space and also the number of queues associated
1002 	 * with this VSI.
1003 	 */
1004 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1005 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1006 }
1007 
1008 /**
1009  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1010  * @ctxt: the VSI context being set
1011  * @vsi: the VSI being configured
1012  */
1013 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1014 {
1015 	u8 dflt_q_group, dflt_q_prio;
1016 	u16 dflt_q, report_q, val;
1017 
1018 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1019 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1020 		return;
1021 
1022 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1023 	ctxt->info.valid_sections |= cpu_to_le16(val);
1024 	dflt_q = 0;
1025 	dflt_q_group = 0;
1026 	report_q = 0;
1027 	dflt_q_prio = 0;
1028 
1029 	/* enable flow director filtering/programming */
1030 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1031 	ctxt->info.fd_options = cpu_to_le16(val);
1032 	/* max of allocated flow director filters */
1033 	ctxt->info.max_fd_fltr_dedicated =
1034 			cpu_to_le16(vsi->num_gfltr);
1035 	/* max of shared flow director filters any VSI may program */
1036 	ctxt->info.max_fd_fltr_shared =
1037 			cpu_to_le16(vsi->num_bfltr);
1038 	/* default queue index within the VSI of the default FD */
1039 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1040 	       ICE_AQ_VSI_FD_DEF_Q_M);
1041 	/* target queue or queue group to the FD filter */
1042 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1043 		ICE_AQ_VSI_FD_DEF_GRP_M);
1044 	ctxt->info.fd_def_q = cpu_to_le16(val);
1045 	/* queue index on which FD filter completion is reported */
1046 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1047 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1048 	/* priority of the default qindex action */
1049 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1050 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1051 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1052 }
1053 
1054 /**
1055  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1056  * @ctxt: the VSI context being set
1057  * @vsi: the VSI being configured
1058  */
1059 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1060 {
1061 	u8 lut_type, hash_type;
1062 	struct device *dev;
1063 	struct ice_pf *pf;
1064 
1065 	pf = vsi->back;
1066 	dev = ice_pf_to_dev(pf);
1067 
1068 	switch (vsi->type) {
1069 	case ICE_VSI_CHNL:
1070 	case ICE_VSI_PF:
1071 		/* PF VSI will inherit RSS instance of PF */
1072 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1073 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1074 		break;
1075 	case ICE_VSI_VF:
1076 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1077 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1078 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1079 		break;
1080 	default:
1081 		dev_dbg(dev, "Unsupported VSI type %s\n",
1082 			ice_vsi_type_str(vsi->type));
1083 		return;
1084 	}
1085 
1086 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1087 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1088 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1089 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1090 }
1091 
1092 static void
1093 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1094 {
1095 	struct ice_pf *pf = vsi->back;
1096 	u16 qcount, qmap;
1097 	u8 offset = 0;
1098 	int pow;
1099 
1100 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1101 
1102 	pow = order_base_2(qcount);
1103 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1104 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1105 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1106 		   ICE_AQ_VSI_TC_Q_NUM_M);
1107 
1108 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1109 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1110 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1111 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1112 }
1113 
1114 /**
1115  * ice_vsi_init - Create and initialize a VSI
1116  * @vsi: the VSI being configured
1117  * @init_vsi: is this call creating a VSI
1118  *
1119  * This initializes a VSI context depending on the VSI type to be added and
1120  * passes it down to the add_vsi aq command to create a new VSI.
1121  */
1122 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1123 {
1124 	struct ice_pf *pf = vsi->back;
1125 	struct ice_hw *hw = &pf->hw;
1126 	struct ice_vsi_ctx *ctxt;
1127 	struct device *dev;
1128 	int ret = 0;
1129 
1130 	dev = ice_pf_to_dev(pf);
1131 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1132 	if (!ctxt)
1133 		return -ENOMEM;
1134 
1135 	switch (vsi->type) {
1136 	case ICE_VSI_CTRL:
1137 	case ICE_VSI_LB:
1138 	case ICE_VSI_PF:
1139 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1140 		break;
1141 	case ICE_VSI_SWITCHDEV_CTRL:
1142 	case ICE_VSI_CHNL:
1143 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1144 		break;
1145 	case ICE_VSI_VF:
1146 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1147 		/* VF number here is the absolute VF number (0-255) */
1148 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1149 		break;
1150 	default:
1151 		ret = -ENODEV;
1152 		goto out;
1153 	}
1154 
1155 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1156 	 * prune enabled
1157 	 */
1158 	if (vsi->type == ICE_VSI_CHNL) {
1159 		struct ice_vsi *main_vsi;
1160 
1161 		main_vsi = ice_get_main_vsi(pf);
1162 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1163 			ctxt->info.sw_flags2 |=
1164 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1165 		else
1166 			ctxt->info.sw_flags2 &=
1167 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1168 	}
1169 
1170 	ice_set_dflt_vsi_ctx(hw, ctxt);
1171 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1172 		ice_set_fd_vsi_ctx(ctxt, vsi);
1173 	/* if the switch is in VEB mode, allow VSI loopback */
1174 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1175 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1176 
1177 	/* Set LUT type and HASH type if RSS is enabled */
1178 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1179 	    vsi->type != ICE_VSI_CTRL) {
1180 		ice_set_rss_vsi_ctx(ctxt, vsi);
1181 		/* if updating VSI context, make sure to set valid_section:
1182 		 * to indicate which section of VSI context being updated
1183 		 */
1184 		if (!init_vsi)
1185 			ctxt->info.valid_sections |=
1186 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1187 	}
1188 
1189 	ctxt->info.sw_id = vsi->port_info->sw_id;
1190 	if (vsi->type == ICE_VSI_CHNL) {
1191 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1192 	} else {
1193 		ice_vsi_setup_q_map(vsi, ctxt);
1194 		if (!init_vsi) /* means VSI being updated */
1195 			/* must to indicate which section of VSI context are
1196 			 * being modified
1197 			 */
1198 			ctxt->info.valid_sections |=
1199 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1200 	}
1201 
1202 	/* Allow control frames out of main VSI */
1203 	if (vsi->type == ICE_VSI_PF) {
1204 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1205 		ctxt->info.valid_sections |=
1206 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1207 	}
1208 
1209 	if (init_vsi) {
1210 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1211 		if (ret) {
1212 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1213 			ret = -EIO;
1214 			goto out;
1215 		}
1216 	} else {
1217 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1218 		if (ret) {
1219 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1220 			ret = -EIO;
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	/* keep context for update VSI operations */
1226 	vsi->info = ctxt->info;
1227 
1228 	/* record VSI number returned */
1229 	vsi->vsi_num = ctxt->vsi_num;
1230 
1231 out:
1232 	kfree(ctxt);
1233 	return ret;
1234 }
1235 
1236 /**
1237  * ice_free_res - free a block of resources
1238  * @res: pointer to the resource
1239  * @index: starting index previously returned by ice_get_res
1240  * @id: identifier to track owner
1241  *
1242  * Returns number of resources freed
1243  */
1244 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1245 {
1246 	int count = 0;
1247 	int i;
1248 
1249 	if (!res || index >= res->end)
1250 		return -EINVAL;
1251 
1252 	id |= ICE_RES_VALID_BIT;
1253 	for (i = index; i < res->end && res->list[i] == id; i++) {
1254 		res->list[i] = 0;
1255 		count++;
1256 	}
1257 
1258 	return count;
1259 }
1260 
1261 /**
1262  * ice_search_res - Search the tracker for a block of resources
1263  * @res: pointer to the resource
1264  * @needed: size of the block needed
1265  * @id: identifier to track owner
1266  *
1267  * Returns the base item index of the block, or -ENOMEM for error
1268  */
1269 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1270 {
1271 	u16 start = 0, end = 0;
1272 
1273 	if (needed > res->end)
1274 		return -ENOMEM;
1275 
1276 	id |= ICE_RES_VALID_BIT;
1277 
1278 	do {
1279 		/* skip already allocated entries */
1280 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1281 			start = end;
1282 			if ((start + needed) > res->end)
1283 				break;
1284 		}
1285 
1286 		if (end == (start + needed)) {
1287 			int i = start;
1288 
1289 			/* there was enough, so assign it to the requestor */
1290 			while (i != end)
1291 				res->list[i++] = id;
1292 
1293 			return start;
1294 		}
1295 	} while (end < res->end);
1296 
1297 	return -ENOMEM;
1298 }
1299 
1300 /**
1301  * ice_get_free_res_count - Get free count from a resource tracker
1302  * @res: Resource tracker instance
1303  */
1304 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1305 {
1306 	u16 i, count = 0;
1307 
1308 	for (i = 0; i < res->end; i++)
1309 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1310 			count++;
1311 
1312 	return count;
1313 }
1314 
1315 /**
1316  * ice_get_res - get a block of resources
1317  * @pf: board private structure
1318  * @res: pointer to the resource
1319  * @needed: size of the block needed
1320  * @id: identifier to track owner
1321  *
1322  * Returns the base item index of the block, or negative for error
1323  */
1324 int
1325 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1326 {
1327 	if (!res || !pf)
1328 		return -EINVAL;
1329 
1330 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1331 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1332 			needed, res->num_entries, id);
1333 		return -EINVAL;
1334 	}
1335 
1336 	return ice_search_res(res, needed, id);
1337 }
1338 
1339 /**
1340  * ice_get_vf_ctrl_res - Get VF control VSI resource
1341  * @pf: pointer to the PF structure
1342  * @vsi: the VSI to allocate a resource for
1343  *
1344  * Look up whether another VF has already allocated the control VSI resource.
1345  * If so, re-use this resource so that we share it among all VFs.
1346  *
1347  * Otherwise, allocate the resource and return it.
1348  */
1349 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1350 {
1351 	struct ice_vf *vf;
1352 	unsigned int bkt;
1353 	int base;
1354 
1355 	rcu_read_lock();
1356 	ice_for_each_vf_rcu(pf, bkt, vf) {
1357 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1358 			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1359 			rcu_read_unlock();
1360 			return base;
1361 		}
1362 	}
1363 	rcu_read_unlock();
1364 
1365 	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1366 			   ICE_RES_VF_CTRL_VEC_ID);
1367 }
1368 
1369 /**
1370  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1371  * @vsi: ptr to the VSI
1372  *
1373  * This should only be called after ice_vsi_alloc() which allocates the
1374  * corresponding SW VSI structure and initializes num_queue_pairs for the
1375  * newly allocated VSI.
1376  *
1377  * Returns 0 on success or negative on failure
1378  */
1379 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1380 {
1381 	struct ice_pf *pf = vsi->back;
1382 	struct device *dev;
1383 	u16 num_q_vectors;
1384 	int base;
1385 
1386 	dev = ice_pf_to_dev(pf);
1387 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1388 	if (vsi->type == ICE_VSI_VF)
1389 		return 0;
1390 	if (vsi->type == ICE_VSI_CHNL)
1391 		return 0;
1392 
1393 	if (vsi->base_vector) {
1394 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1395 			vsi->vsi_num, vsi->base_vector);
1396 		return -EEXIST;
1397 	}
1398 
1399 	num_q_vectors = vsi->num_q_vectors;
1400 	/* reserve slots from OS requested IRQs */
1401 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1402 		base = ice_get_vf_ctrl_res(pf, vsi);
1403 	} else {
1404 		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1405 				   vsi->idx);
1406 	}
1407 
1408 	if (base < 0) {
1409 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1410 			ice_get_free_res_count(pf->irq_tracker),
1411 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1412 		return -ENOENT;
1413 	}
1414 	vsi->base_vector = (u16)base;
1415 	pf->num_avail_sw_msix -= num_q_vectors;
1416 
1417 	return 0;
1418 }
1419 
1420 /**
1421  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1422  * @vsi: the VSI having rings deallocated
1423  */
1424 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1425 {
1426 	int i;
1427 
1428 	/* Avoid stale references by clearing map from vector to ring */
1429 	if (vsi->q_vectors) {
1430 		ice_for_each_q_vector(vsi, i) {
1431 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1432 
1433 			if (q_vector) {
1434 				q_vector->tx.tx_ring = NULL;
1435 				q_vector->rx.rx_ring = NULL;
1436 			}
1437 		}
1438 	}
1439 
1440 	if (vsi->tx_rings) {
1441 		ice_for_each_alloc_txq(vsi, i) {
1442 			if (vsi->tx_rings[i]) {
1443 				kfree_rcu(vsi->tx_rings[i], rcu);
1444 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1445 			}
1446 		}
1447 	}
1448 	if (vsi->rx_rings) {
1449 		ice_for_each_alloc_rxq(vsi, i) {
1450 			if (vsi->rx_rings[i]) {
1451 				kfree_rcu(vsi->rx_rings[i], rcu);
1452 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1453 			}
1454 		}
1455 	}
1456 }
1457 
1458 /**
1459  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1460  * @vsi: VSI which is having rings allocated
1461  */
1462 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1463 {
1464 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1465 	struct ice_pf *pf = vsi->back;
1466 	struct device *dev;
1467 	u16 i;
1468 
1469 	dev = ice_pf_to_dev(pf);
1470 	/* Allocate Tx rings */
1471 	ice_for_each_alloc_txq(vsi, i) {
1472 		struct ice_tx_ring *ring;
1473 
1474 		/* allocate with kzalloc(), free with kfree_rcu() */
1475 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1476 
1477 		if (!ring)
1478 			goto err_out;
1479 
1480 		ring->q_index = i;
1481 		ring->reg_idx = vsi->txq_map[i];
1482 		ring->vsi = vsi;
1483 		ring->tx_tstamps = &pf->ptp.port.tx;
1484 		ring->dev = dev;
1485 		ring->count = vsi->num_tx_desc;
1486 		ring->txq_teid = ICE_INVAL_TEID;
1487 		if (dvm_ena)
1488 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1489 		else
1490 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1491 		WRITE_ONCE(vsi->tx_rings[i], ring);
1492 	}
1493 
1494 	/* Allocate Rx rings */
1495 	ice_for_each_alloc_rxq(vsi, i) {
1496 		struct ice_rx_ring *ring;
1497 
1498 		/* allocate with kzalloc(), free with kfree_rcu() */
1499 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1500 		if (!ring)
1501 			goto err_out;
1502 
1503 		ring->q_index = i;
1504 		ring->reg_idx = vsi->rxq_map[i];
1505 		ring->vsi = vsi;
1506 		ring->netdev = vsi->netdev;
1507 		ring->dev = dev;
1508 		ring->count = vsi->num_rx_desc;
1509 		WRITE_ONCE(vsi->rx_rings[i], ring);
1510 	}
1511 
1512 	return 0;
1513 
1514 err_out:
1515 	ice_vsi_clear_rings(vsi);
1516 	return -ENOMEM;
1517 }
1518 
1519 /**
1520  * ice_vsi_manage_rss_lut - disable/enable RSS
1521  * @vsi: the VSI being changed
1522  * @ena: boolean value indicating if this is an enable or disable request
1523  *
1524  * In the event of disable request for RSS, this function will zero out RSS
1525  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1526  * LUT.
1527  */
1528 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1529 {
1530 	u8 *lut;
1531 
1532 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1533 	if (!lut)
1534 		return;
1535 
1536 	if (ena) {
1537 		if (vsi->rss_lut_user)
1538 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1539 		else
1540 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1541 					 vsi->rss_size);
1542 	}
1543 
1544 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1545 	kfree(lut);
1546 }
1547 
1548 /**
1549  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1550  * @vsi: VSI to be configured
1551  */
1552 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1553 {
1554 	struct ice_pf *pf = vsi->back;
1555 	struct device *dev;
1556 	u8 *lut, *key;
1557 	int err;
1558 
1559 	dev = ice_pf_to_dev(pf);
1560 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1561 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1562 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1563 	} else {
1564 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1565 
1566 		/* If orig_rss_size is valid and it is less than determined
1567 		 * main VSI's rss_size, update main VSI's rss_size to be
1568 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1569 		 * RSS table gets programmed to be correct (whatever it was
1570 		 * to begin with (prior to setup-tc for ADQ config)
1571 		 */
1572 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1573 		    vsi->orig_rss_size <= vsi->num_rxq) {
1574 			vsi->rss_size = vsi->orig_rss_size;
1575 			/* now orig_rss_size is used, reset it to zero */
1576 			vsi->orig_rss_size = 0;
1577 		}
1578 	}
1579 
1580 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1581 	if (!lut)
1582 		return -ENOMEM;
1583 
1584 	if (vsi->rss_lut_user)
1585 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1586 	else
1587 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1588 
1589 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1590 	if (err) {
1591 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1592 		goto ice_vsi_cfg_rss_exit;
1593 	}
1594 
1595 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1596 	if (!key) {
1597 		err = -ENOMEM;
1598 		goto ice_vsi_cfg_rss_exit;
1599 	}
1600 
1601 	if (vsi->rss_hkey_user)
1602 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1603 	else
1604 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1605 
1606 	err = ice_set_rss_key(vsi, key);
1607 	if (err)
1608 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1609 
1610 	kfree(key);
1611 ice_vsi_cfg_rss_exit:
1612 	kfree(lut);
1613 	return err;
1614 }
1615 
1616 /**
1617  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1618  * @vsi: VSI to be configured
1619  *
1620  * This function will only be called during the VF VSI setup. Upon successful
1621  * completion of package download, this function will configure default RSS
1622  * input sets for VF VSI.
1623  */
1624 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1625 {
1626 	struct ice_pf *pf = vsi->back;
1627 	struct device *dev;
1628 	int status;
1629 
1630 	dev = ice_pf_to_dev(pf);
1631 	if (ice_is_safe_mode(pf)) {
1632 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1633 			vsi->vsi_num);
1634 		return;
1635 	}
1636 
1637 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1638 	if (status)
1639 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1640 			vsi->vsi_num, status);
1641 }
1642 
1643 /**
1644  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1645  * @vsi: VSI to be configured
1646  *
1647  * This function will only be called after successful download package call
1648  * during initialization of PF. Since the downloaded package will erase the
1649  * RSS section, this function will configure RSS input sets for different
1650  * flow types. The last profile added has the highest priority, therefore 2
1651  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1652  * (i.e. IPv4 src/dst TCP src/dst port).
1653  */
1654 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1655 {
1656 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1657 	struct ice_pf *pf = vsi->back;
1658 	struct ice_hw *hw = &pf->hw;
1659 	struct device *dev;
1660 	int status;
1661 
1662 	dev = ice_pf_to_dev(pf);
1663 	if (ice_is_safe_mode(pf)) {
1664 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1665 			vsi_num);
1666 		return;
1667 	}
1668 	/* configure RSS for IPv4 with input set IP src/dst */
1669 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1670 				 ICE_FLOW_SEG_HDR_IPV4);
1671 	if (status)
1672 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1673 			vsi_num, status);
1674 
1675 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1676 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1677 				 ICE_FLOW_SEG_HDR_IPV6);
1678 	if (status)
1679 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1680 			vsi_num, status);
1681 
1682 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1683 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1684 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1685 	if (status)
1686 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1687 			vsi_num, status);
1688 
1689 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1690 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1691 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1692 	if (status)
1693 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1694 			vsi_num, status);
1695 
1696 	/* configure RSS for sctp4 with input set IP src/dst */
1697 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1698 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1699 	if (status)
1700 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1701 			vsi_num, status);
1702 
1703 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1704 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1705 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1706 	if (status)
1707 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1708 			vsi_num, status);
1709 
1710 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1711 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1712 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1713 	if (status)
1714 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1715 			vsi_num, status);
1716 
1717 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1718 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1719 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1720 	if (status)
1721 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1722 			vsi_num, status);
1723 
1724 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1725 				 ICE_FLOW_SEG_HDR_ESP);
1726 	if (status)
1727 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1728 			vsi_num, status);
1729 }
1730 
1731 /**
1732  * ice_pf_state_is_nominal - checks the PF for nominal state
1733  * @pf: pointer to PF to check
1734  *
1735  * Check the PF's state for a collection of bits that would indicate
1736  * the PF is in a state that would inhibit normal operation for
1737  * driver functionality.
1738  *
1739  * Returns true if PF is in a nominal state, false otherwise
1740  */
1741 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1742 {
1743 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1744 
1745 	if (!pf)
1746 		return false;
1747 
1748 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1749 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1750 		return false;
1751 
1752 	return true;
1753 }
1754 
1755 /**
1756  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1757  * @vsi: the VSI to be updated
1758  */
1759 void ice_update_eth_stats(struct ice_vsi *vsi)
1760 {
1761 	struct ice_eth_stats *prev_es, *cur_es;
1762 	struct ice_hw *hw = &vsi->back->hw;
1763 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1764 
1765 	prev_es = &vsi->eth_stats_prev;
1766 	cur_es = &vsi->eth_stats;
1767 
1768 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1769 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1770 
1771 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1772 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1773 
1774 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1775 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1776 
1777 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1778 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1779 
1780 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1781 			  &prev_es->rx_discards, &cur_es->rx_discards);
1782 
1783 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1784 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1785 
1786 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1787 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1788 
1789 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1790 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1791 
1792 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1793 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1794 
1795 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1796 			  &prev_es->tx_errors, &cur_es->tx_errors);
1797 
1798 	vsi->stat_offsets_loaded = true;
1799 }
1800 
1801 /**
1802  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1803  * @vsi: VSI
1804  */
1805 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1806 {
1807 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1808 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1809 		vsi->rx_buf_len = ICE_RXBUF_2048;
1810 #if (PAGE_SIZE < 8192)
1811 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1812 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1813 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1814 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1815 #endif
1816 	} else {
1817 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1818 #if (PAGE_SIZE < 8192)
1819 		vsi->rx_buf_len = ICE_RXBUF_3072;
1820 #else
1821 		vsi->rx_buf_len = ICE_RXBUF_2048;
1822 #endif
1823 	}
1824 }
1825 
1826 /**
1827  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1828  * @hw: HW pointer
1829  * @pf_q: index of the Rx queue in the PF's queue space
1830  * @rxdid: flexible descriptor RXDID
1831  * @prio: priority for the RXDID for this queue
1832  * @ena_ts: true to enable timestamp and false to disable timestamp
1833  */
1834 void
1835 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1836 			bool ena_ts)
1837 {
1838 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1839 
1840 	/* clear any previous values */
1841 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1842 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1843 		    QRXFLXP_CNTXT_TS_M);
1844 
1845 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1846 		QRXFLXP_CNTXT_RXDID_IDX_M;
1847 
1848 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1849 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1850 
1851 	if (ena_ts)
1852 		/* Enable TimeSync on this queue */
1853 		regval |= QRXFLXP_CNTXT_TS_M;
1854 
1855 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1856 }
1857 
1858 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1859 {
1860 	if (q_idx >= vsi->num_rxq)
1861 		return -EINVAL;
1862 
1863 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1864 }
1865 
1866 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1867 {
1868 	struct ice_aqc_add_tx_qgrp *qg_buf;
1869 	int err;
1870 
1871 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1872 		return -EINVAL;
1873 
1874 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1875 	if (!qg_buf)
1876 		return -ENOMEM;
1877 
1878 	qg_buf->num_txqs = 1;
1879 
1880 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1881 	kfree(qg_buf);
1882 	return err;
1883 }
1884 
1885 /**
1886  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1887  * @vsi: the VSI being configured
1888  *
1889  * Return 0 on success and a negative value on error
1890  * Configure the Rx VSI for operation.
1891  */
1892 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1893 {
1894 	u16 i;
1895 
1896 	if (vsi->type == ICE_VSI_VF)
1897 		goto setup_rings;
1898 
1899 	ice_vsi_cfg_frame_size(vsi);
1900 setup_rings:
1901 	/* set up individual rings */
1902 	ice_for_each_rxq(vsi, i) {
1903 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1904 
1905 		if (err)
1906 			return err;
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 /**
1913  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1914  * @vsi: the VSI being configured
1915  * @rings: Tx ring array to be configured
1916  * @count: number of Tx ring array elements
1917  *
1918  * Return 0 on success and a negative value on error
1919  * Configure the Tx VSI for operation.
1920  */
1921 static int
1922 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1923 {
1924 	struct ice_aqc_add_tx_qgrp *qg_buf;
1925 	u16 q_idx = 0;
1926 	int err = 0;
1927 
1928 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1929 	if (!qg_buf)
1930 		return -ENOMEM;
1931 
1932 	qg_buf->num_txqs = 1;
1933 
1934 	for (q_idx = 0; q_idx < count; q_idx++) {
1935 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1936 		if (err)
1937 			goto err_cfg_txqs;
1938 	}
1939 
1940 err_cfg_txqs:
1941 	kfree(qg_buf);
1942 	return err;
1943 }
1944 
1945 /**
1946  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1947  * @vsi: the VSI being configured
1948  *
1949  * Return 0 on success and a negative value on error
1950  * Configure the Tx VSI for operation.
1951  */
1952 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1953 {
1954 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1955 }
1956 
1957 /**
1958  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1959  * @vsi: the VSI being configured
1960  *
1961  * Return 0 on success and a negative value on error
1962  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1963  */
1964 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1965 {
1966 	int ret;
1967 	int i;
1968 
1969 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1970 	if (ret)
1971 		return ret;
1972 
1973 	ice_for_each_xdp_txq(vsi, i)
1974 		vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]);
1975 
1976 	return ret;
1977 }
1978 
1979 /**
1980  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1981  * @intrl: interrupt rate limit in usecs
1982  * @gran: interrupt rate limit granularity in usecs
1983  *
1984  * This function converts a decimal interrupt rate limit in usecs to the format
1985  * expected by firmware.
1986  */
1987 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1988 {
1989 	u32 val = intrl / gran;
1990 
1991 	if (val)
1992 		return val | GLINT_RATE_INTRL_ENA_M;
1993 	return 0;
1994 }
1995 
1996 /**
1997  * ice_write_intrl - write throttle rate limit to interrupt specific register
1998  * @q_vector: pointer to interrupt specific structure
1999  * @intrl: throttle rate limit in microseconds to write
2000  */
2001 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2002 {
2003 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2004 
2005 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2006 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2007 }
2008 
2009 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2010 {
2011 	switch (rc->type) {
2012 	case ICE_RX_CONTAINER:
2013 		if (rc->rx_ring)
2014 			return rc->rx_ring->q_vector;
2015 		break;
2016 	case ICE_TX_CONTAINER:
2017 		if (rc->tx_ring)
2018 			return rc->tx_ring->q_vector;
2019 		break;
2020 	default:
2021 		break;
2022 	}
2023 
2024 	return NULL;
2025 }
2026 
2027 /**
2028  * __ice_write_itr - write throttle rate to register
2029  * @q_vector: pointer to interrupt data structure
2030  * @rc: pointer to ring container
2031  * @itr: throttle rate in microseconds to write
2032  */
2033 static void __ice_write_itr(struct ice_q_vector *q_vector,
2034 			    struct ice_ring_container *rc, u16 itr)
2035 {
2036 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2037 
2038 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2039 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2040 }
2041 
2042 /**
2043  * ice_write_itr - write throttle rate to queue specific register
2044  * @rc: pointer to ring container
2045  * @itr: throttle rate in microseconds to write
2046  */
2047 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2048 {
2049 	struct ice_q_vector *q_vector;
2050 
2051 	q_vector = ice_pull_qvec_from_rc(rc);
2052 	if (!q_vector)
2053 		return;
2054 
2055 	__ice_write_itr(q_vector, rc, itr);
2056 }
2057 
2058 /**
2059  * ice_set_q_vector_intrl - set up interrupt rate limiting
2060  * @q_vector: the vector to be configured
2061  *
2062  * Interrupt rate limiting is local to the vector, not per-queue so we must
2063  * detect if either ring container has dynamic moderation enabled to decide
2064  * what to set the interrupt rate limit to via INTRL settings. In the case that
2065  * dynamic moderation is disabled on both, write the value with the cached
2066  * setting to make sure INTRL register matches the user visible value.
2067  */
2068 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2069 {
2070 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2071 		/* in the case of dynamic enabled, cap each vector to no more
2072 		 * than (4 us) 250,000 ints/sec, which allows low latency
2073 		 * but still less than 500,000 interrupts per second, which
2074 		 * reduces CPU a bit in the case of the lowest latency
2075 		 * setting. The 4 here is a value in microseconds.
2076 		 */
2077 		ice_write_intrl(q_vector, 4);
2078 	} else {
2079 		ice_write_intrl(q_vector, q_vector->intrl);
2080 	}
2081 }
2082 
2083 /**
2084  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2085  * @vsi: the VSI being configured
2086  *
2087  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2088  * for the VF VSI.
2089  */
2090 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2091 {
2092 	struct ice_pf *pf = vsi->back;
2093 	struct ice_hw *hw = &pf->hw;
2094 	u16 txq = 0, rxq = 0;
2095 	int i, q;
2096 
2097 	ice_for_each_q_vector(vsi, i) {
2098 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2099 		u16 reg_idx = q_vector->reg_idx;
2100 
2101 		ice_cfg_itr(hw, q_vector);
2102 
2103 		/* Both Transmit Queue Interrupt Cause Control register
2104 		 * and Receive Queue Interrupt Cause control register
2105 		 * expects MSIX_INDX field to be the vector index
2106 		 * within the function space and not the absolute
2107 		 * vector index across PF or across device.
2108 		 * For SR-IOV VF VSIs queue vector index always starts
2109 		 * with 1 since first vector index(0) is used for OICR
2110 		 * in VF space. Since VMDq and other PF VSIs are within
2111 		 * the PF function space, use the vector index that is
2112 		 * tracked for this PF.
2113 		 */
2114 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2115 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2116 					      q_vector->tx.itr_idx);
2117 			txq++;
2118 		}
2119 
2120 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2121 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2122 					      q_vector->rx.itr_idx);
2123 			rxq++;
2124 		}
2125 	}
2126 }
2127 
2128 /**
2129  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2130  * @vsi: the VSI whose rings are to be enabled
2131  *
2132  * Returns 0 on success and a negative value on error
2133  */
2134 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2135 {
2136 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2137 }
2138 
2139 /**
2140  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2141  * @vsi: the VSI whose rings are to be disabled
2142  *
2143  * Returns 0 on success and a negative value on error
2144  */
2145 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2146 {
2147 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2148 }
2149 
2150 /**
2151  * ice_vsi_stop_tx_rings - Disable Tx rings
2152  * @vsi: the VSI being configured
2153  * @rst_src: reset source
2154  * @rel_vmvf_num: Relative ID of VF/VM
2155  * @rings: Tx ring array to be stopped
2156  * @count: number of Tx ring array elements
2157  */
2158 static int
2159 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2160 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2161 {
2162 	u16 q_idx;
2163 
2164 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2165 		return -EINVAL;
2166 
2167 	for (q_idx = 0; q_idx < count; q_idx++) {
2168 		struct ice_txq_meta txq_meta = { };
2169 		int status;
2170 
2171 		if (!rings || !rings[q_idx])
2172 			return -EINVAL;
2173 
2174 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2175 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2176 					      rings[q_idx], &txq_meta);
2177 
2178 		if (status)
2179 			return status;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2187  * @vsi: the VSI being configured
2188  * @rst_src: reset source
2189  * @rel_vmvf_num: Relative ID of VF/VM
2190  */
2191 int
2192 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2193 			  u16 rel_vmvf_num)
2194 {
2195 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2196 }
2197 
2198 /**
2199  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2200  * @vsi: the VSI being configured
2201  */
2202 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2203 {
2204 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2205 }
2206 
2207 /**
2208  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2209  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2210  *
2211  * returns true if Rx VLAN pruning is enabled and false otherwise.
2212  */
2213 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2214 {
2215 	if (!vsi)
2216 		return false;
2217 
2218 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2219 }
2220 
2221 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2222 {
2223 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2224 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2225 		vsi->tc_cfg.numtc = 1;
2226 		return;
2227 	}
2228 
2229 	/* set VSI TC information based on DCB config */
2230 	ice_vsi_set_dcb_tc_cfg(vsi);
2231 }
2232 
2233 /**
2234  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2235  * @vsi: VSI to set the q_vectors register index on
2236  */
2237 static int
2238 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2239 {
2240 	u16 i;
2241 
2242 	if (!vsi || !vsi->q_vectors)
2243 		return -EINVAL;
2244 
2245 	ice_for_each_q_vector(vsi, i) {
2246 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2247 
2248 		if (!q_vector) {
2249 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2250 				i, vsi->vsi_num);
2251 			goto clear_reg_idx;
2252 		}
2253 
2254 		if (vsi->type == ICE_VSI_VF) {
2255 			struct ice_vf *vf = vsi->vf;
2256 
2257 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2258 		} else {
2259 			q_vector->reg_idx =
2260 				q_vector->v_idx + vsi->base_vector;
2261 		}
2262 	}
2263 
2264 	return 0;
2265 
2266 clear_reg_idx:
2267 	ice_for_each_q_vector(vsi, i) {
2268 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2269 
2270 		if (q_vector)
2271 			q_vector->reg_idx = 0;
2272 	}
2273 
2274 	return -EINVAL;
2275 }
2276 
2277 /**
2278  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2279  * @vsi: the VSI being configured
2280  * @tx: bool to determine Tx or Rx rule
2281  * @create: bool to determine create or remove Rule
2282  */
2283 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2284 {
2285 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2286 			enum ice_sw_fwd_act_type act);
2287 	struct ice_pf *pf = vsi->back;
2288 	struct device *dev;
2289 	int status;
2290 
2291 	dev = ice_pf_to_dev(pf);
2292 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2293 
2294 	if (tx) {
2295 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2296 				  ICE_DROP_PACKET);
2297 	} else {
2298 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2299 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2300 							  create);
2301 		} else {
2302 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2303 					  ICE_FWD_TO_VSI);
2304 		}
2305 	}
2306 
2307 	if (status)
2308 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2309 			create ? "adding" : "removing", tx ? "TX" : "RX",
2310 			vsi->vsi_num, status);
2311 }
2312 
2313 /**
2314  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2315  * @vsi: pointer to the VSI
2316  *
2317  * This function will allocate new scheduler aggregator now if needed and will
2318  * move specified VSI into it.
2319  */
2320 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2321 {
2322 	struct device *dev = ice_pf_to_dev(vsi->back);
2323 	struct ice_agg_node *agg_node_iter = NULL;
2324 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2325 	struct ice_agg_node *agg_node = NULL;
2326 	int node_offset, max_agg_nodes = 0;
2327 	struct ice_port_info *port_info;
2328 	struct ice_pf *pf = vsi->back;
2329 	u32 agg_node_id_start = 0;
2330 	int status;
2331 
2332 	/* create (as needed) scheduler aggregator node and move VSI into
2333 	 * corresponding aggregator node
2334 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2335 	 * - VF aggregator nodes will contain VF VSI
2336 	 */
2337 	port_info = pf->hw.port_info;
2338 	if (!port_info)
2339 		return;
2340 
2341 	switch (vsi->type) {
2342 	case ICE_VSI_CTRL:
2343 	case ICE_VSI_CHNL:
2344 	case ICE_VSI_LB:
2345 	case ICE_VSI_PF:
2346 	case ICE_VSI_SWITCHDEV_CTRL:
2347 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2348 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2349 		agg_node_iter = &pf->pf_agg_node[0];
2350 		break;
2351 	case ICE_VSI_VF:
2352 		/* user can create 'n' VFs on a given PF, but since max children
2353 		 * per aggregator node can be only 64. Following code handles
2354 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2355 		 * was already created provided num_vsis < 64, otherwise
2356 		 * select next available node, which will be created
2357 		 */
2358 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2359 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2360 		agg_node_iter = &pf->vf_agg_node[0];
2361 		break;
2362 	default:
2363 		/* other VSI type, handle later if needed */
2364 		dev_dbg(dev, "unexpected VSI type %s\n",
2365 			ice_vsi_type_str(vsi->type));
2366 		return;
2367 	}
2368 
2369 	/* find the appropriate aggregator node */
2370 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2371 		/* see if we can find space in previously created
2372 		 * node if num_vsis < 64, otherwise skip
2373 		 */
2374 		if (agg_node_iter->num_vsis &&
2375 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2376 			agg_node_iter++;
2377 			continue;
2378 		}
2379 
2380 		if (agg_node_iter->valid &&
2381 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2382 			agg_id = agg_node_iter->agg_id;
2383 			agg_node = agg_node_iter;
2384 			break;
2385 		}
2386 
2387 		/* find unclaimed agg_id */
2388 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2389 			agg_id = node_offset + agg_node_id_start;
2390 			agg_node = agg_node_iter;
2391 			break;
2392 		}
2393 		/* move to next agg_node */
2394 		agg_node_iter++;
2395 	}
2396 
2397 	if (!agg_node)
2398 		return;
2399 
2400 	/* if selected aggregator node was not created, create it */
2401 	if (!agg_node->valid) {
2402 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2403 				     (u8)vsi->tc_cfg.ena_tc);
2404 		if (status) {
2405 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2406 				agg_id);
2407 			return;
2408 		}
2409 		/* aggregator node is created, store the needed info */
2410 		agg_node->valid = true;
2411 		agg_node->agg_id = agg_id;
2412 	}
2413 
2414 	/* move VSI to corresponding aggregator node */
2415 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2416 				     (u8)vsi->tc_cfg.ena_tc);
2417 	if (status) {
2418 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2419 			vsi->idx, agg_id);
2420 		return;
2421 	}
2422 
2423 	/* keep active children count for aggregator node */
2424 	agg_node->num_vsis++;
2425 
2426 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2427 	 * to aggregator node
2428 	 */
2429 	vsi->agg_node = agg_node;
2430 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2431 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2432 		vsi->agg_node->num_vsis);
2433 }
2434 
2435 /**
2436  * ice_vsi_setup - Set up a VSI by a given type
2437  * @pf: board private structure
2438  * @pi: pointer to the port_info instance
2439  * @vsi_type: VSI type
2440  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2441  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2442  * @ch: ptr to channel
2443  *
2444  * This allocates the sw VSI structure and its queue resources.
2445  *
2446  * Returns pointer to the successfully allocated and configured VSI sw struct on
2447  * success, NULL on failure.
2448  */
2449 struct ice_vsi *
2450 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2451 	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2452 	      struct ice_channel *ch)
2453 {
2454 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2455 	struct device *dev = ice_pf_to_dev(pf);
2456 	struct ice_vsi *vsi;
2457 	int ret, i;
2458 
2459 	if (vsi_type == ICE_VSI_CHNL)
2460 		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2461 	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2462 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2463 	else
2464 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2465 
2466 	if (!vsi) {
2467 		dev_err(dev, "could not allocate VSI\n");
2468 		return NULL;
2469 	}
2470 
2471 	vsi->port_info = pi;
2472 	vsi->vsw = pf->first_sw;
2473 	if (vsi->type == ICE_VSI_PF)
2474 		vsi->ethtype = ETH_P_PAUSE;
2475 
2476 	ice_alloc_fd_res(vsi);
2477 
2478 	if (vsi_type != ICE_VSI_CHNL) {
2479 		if (ice_vsi_get_qs(vsi)) {
2480 			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2481 				vsi->idx);
2482 			goto unroll_vsi_alloc;
2483 		}
2484 	}
2485 
2486 	/* set RSS capabilities */
2487 	ice_vsi_set_rss_params(vsi);
2488 
2489 	/* set TC configuration */
2490 	ice_vsi_set_tc_cfg(vsi);
2491 
2492 	/* create the VSI */
2493 	ret = ice_vsi_init(vsi, true);
2494 	if (ret)
2495 		goto unroll_get_qs;
2496 
2497 	ice_vsi_init_vlan_ops(vsi);
2498 
2499 	switch (vsi->type) {
2500 	case ICE_VSI_CTRL:
2501 	case ICE_VSI_SWITCHDEV_CTRL:
2502 	case ICE_VSI_PF:
2503 		ret = ice_vsi_alloc_q_vectors(vsi);
2504 		if (ret)
2505 			goto unroll_vsi_init;
2506 
2507 		ret = ice_vsi_setup_vector_base(vsi);
2508 		if (ret)
2509 			goto unroll_alloc_q_vector;
2510 
2511 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2512 		if (ret)
2513 			goto unroll_vector_base;
2514 
2515 		ret = ice_vsi_alloc_rings(vsi);
2516 		if (ret)
2517 			goto unroll_vector_base;
2518 
2519 		ice_vsi_map_rings_to_vectors(vsi);
2520 
2521 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2522 		if (vsi->type != ICE_VSI_CTRL)
2523 			/* Do not exit if configuring RSS had an issue, at
2524 			 * least receive traffic on first queue. Hence no
2525 			 * need to capture return value
2526 			 */
2527 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2528 				ice_vsi_cfg_rss_lut_key(vsi);
2529 				ice_vsi_set_rss_flow_fld(vsi);
2530 			}
2531 		ice_init_arfs(vsi);
2532 		break;
2533 	case ICE_VSI_CHNL:
2534 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2535 			ice_vsi_cfg_rss_lut_key(vsi);
2536 			ice_vsi_set_rss_flow_fld(vsi);
2537 		}
2538 		break;
2539 	case ICE_VSI_VF:
2540 		/* VF driver will take care of creating netdev for this type and
2541 		 * map queues to vectors through Virtchnl, PF driver only
2542 		 * creates a VSI and corresponding structures for bookkeeping
2543 		 * purpose
2544 		 */
2545 		ret = ice_vsi_alloc_q_vectors(vsi);
2546 		if (ret)
2547 			goto unroll_vsi_init;
2548 
2549 		ret = ice_vsi_alloc_rings(vsi);
2550 		if (ret)
2551 			goto unroll_alloc_q_vector;
2552 
2553 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2554 		if (ret)
2555 			goto unroll_vector_base;
2556 
2557 		/* Do not exit if configuring RSS had an issue, at least
2558 		 * receive traffic on first queue. Hence no need to capture
2559 		 * return value
2560 		 */
2561 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2562 			ice_vsi_cfg_rss_lut_key(vsi);
2563 			ice_vsi_set_vf_rss_flow_fld(vsi);
2564 		}
2565 		break;
2566 	case ICE_VSI_LB:
2567 		ret = ice_vsi_alloc_rings(vsi);
2568 		if (ret)
2569 			goto unroll_vsi_init;
2570 		break;
2571 	default:
2572 		/* clean up the resources and exit */
2573 		goto unroll_vsi_init;
2574 	}
2575 
2576 	/* configure VSI nodes based on number of queues and TC's */
2577 	ice_for_each_traffic_class(i) {
2578 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2579 			continue;
2580 
2581 		if (vsi->type == ICE_VSI_CHNL) {
2582 			if (!vsi->alloc_txq && vsi->num_txq)
2583 				max_txqs[i] = vsi->num_txq;
2584 			else
2585 				max_txqs[i] = pf->num_lan_tx;
2586 		} else {
2587 			max_txqs[i] = vsi->alloc_txq;
2588 		}
2589 	}
2590 
2591 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2592 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2593 			      max_txqs);
2594 	if (ret) {
2595 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2596 			vsi->vsi_num, ret);
2597 		goto unroll_clear_rings;
2598 	}
2599 
2600 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2601 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2602 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2603 	 * The rule is added once for PF VSI in order to create appropriate
2604 	 * recipe, since VSI/VSI list is ignored with drop action...
2605 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2606 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2607 	 * settings in the HW.
2608 	 */
2609 	if (!ice_is_safe_mode(pf))
2610 		if (vsi->type == ICE_VSI_PF) {
2611 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2612 					 ICE_DROP_PACKET);
2613 			ice_cfg_sw_lldp(vsi, true, true);
2614 		}
2615 
2616 	if (!vsi->agg_node)
2617 		ice_set_agg_vsi(vsi);
2618 	return vsi;
2619 
2620 unroll_clear_rings:
2621 	ice_vsi_clear_rings(vsi);
2622 unroll_vector_base:
2623 	/* reclaim SW interrupts back to the common pool */
2624 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2625 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2626 unroll_alloc_q_vector:
2627 	ice_vsi_free_q_vectors(vsi);
2628 unroll_vsi_init:
2629 	ice_vsi_delete(vsi);
2630 unroll_get_qs:
2631 	ice_vsi_put_qs(vsi);
2632 unroll_vsi_alloc:
2633 	if (vsi_type == ICE_VSI_VF)
2634 		ice_enable_lag(pf->lag);
2635 	ice_vsi_clear(vsi);
2636 
2637 	return NULL;
2638 }
2639 
2640 /**
2641  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2642  * @vsi: the VSI being cleaned up
2643  */
2644 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2645 {
2646 	struct ice_pf *pf = vsi->back;
2647 	struct ice_hw *hw = &pf->hw;
2648 	u32 txq = 0;
2649 	u32 rxq = 0;
2650 	int i, q;
2651 
2652 	ice_for_each_q_vector(vsi, i) {
2653 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2654 
2655 		ice_write_intrl(q_vector, 0);
2656 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2657 			ice_write_itr(&q_vector->tx, 0);
2658 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2659 			if (ice_is_xdp_ena_vsi(vsi)) {
2660 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2661 
2662 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2663 			}
2664 			txq++;
2665 		}
2666 
2667 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2668 			ice_write_itr(&q_vector->rx, 0);
2669 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2670 			rxq++;
2671 		}
2672 	}
2673 
2674 	ice_flush(hw);
2675 }
2676 
2677 /**
2678  * ice_vsi_free_irq - Free the IRQ association with the OS
2679  * @vsi: the VSI being configured
2680  */
2681 void ice_vsi_free_irq(struct ice_vsi *vsi)
2682 {
2683 	struct ice_pf *pf = vsi->back;
2684 	int base = vsi->base_vector;
2685 	int i;
2686 
2687 	if (!vsi->q_vectors || !vsi->irqs_ready)
2688 		return;
2689 
2690 	ice_vsi_release_msix(vsi);
2691 	if (vsi->type == ICE_VSI_VF)
2692 		return;
2693 
2694 	vsi->irqs_ready = false;
2695 	ice_free_cpu_rx_rmap(vsi);
2696 
2697 	ice_for_each_q_vector(vsi, i) {
2698 		u16 vector = i + base;
2699 		int irq_num;
2700 
2701 		irq_num = pf->msix_entries[vector].vector;
2702 
2703 		/* free only the irqs that were actually requested */
2704 		if (!vsi->q_vectors[i] ||
2705 		    !(vsi->q_vectors[i]->num_ring_tx ||
2706 		      vsi->q_vectors[i]->num_ring_rx))
2707 			continue;
2708 
2709 		/* clear the affinity notifier in the IRQ descriptor */
2710 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2711 			irq_set_affinity_notifier(irq_num, NULL);
2712 
2713 		/* clear the affinity_mask in the IRQ descriptor */
2714 		irq_set_affinity_hint(irq_num, NULL);
2715 		synchronize_irq(irq_num);
2716 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2717 	}
2718 }
2719 
2720 /**
2721  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2722  * @vsi: the VSI having resources freed
2723  */
2724 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2725 {
2726 	int i;
2727 
2728 	if (!vsi->tx_rings)
2729 		return;
2730 
2731 	ice_for_each_txq(vsi, i)
2732 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2733 			ice_free_tx_ring(vsi->tx_rings[i]);
2734 }
2735 
2736 /**
2737  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2738  * @vsi: the VSI having resources freed
2739  */
2740 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2741 {
2742 	int i;
2743 
2744 	if (!vsi->rx_rings)
2745 		return;
2746 
2747 	ice_for_each_rxq(vsi, i)
2748 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2749 			ice_free_rx_ring(vsi->rx_rings[i]);
2750 }
2751 
2752 /**
2753  * ice_vsi_close - Shut down a VSI
2754  * @vsi: the VSI being shut down
2755  */
2756 void ice_vsi_close(struct ice_vsi *vsi)
2757 {
2758 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2759 		ice_down(vsi);
2760 
2761 	ice_vsi_free_irq(vsi);
2762 	ice_vsi_free_tx_rings(vsi);
2763 	ice_vsi_free_rx_rings(vsi);
2764 }
2765 
2766 /**
2767  * ice_ena_vsi - resume a VSI
2768  * @vsi: the VSI being resume
2769  * @locked: is the rtnl_lock already held
2770  */
2771 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2772 {
2773 	int err = 0;
2774 
2775 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2776 		return 0;
2777 
2778 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2779 
2780 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2781 		if (netif_running(vsi->netdev)) {
2782 			if (!locked)
2783 				rtnl_lock();
2784 
2785 			err = ice_open_internal(vsi->netdev);
2786 
2787 			if (!locked)
2788 				rtnl_unlock();
2789 		}
2790 	} else if (vsi->type == ICE_VSI_CTRL) {
2791 		err = ice_vsi_open_ctrl(vsi);
2792 	}
2793 
2794 	return err;
2795 }
2796 
2797 /**
2798  * ice_dis_vsi - pause a VSI
2799  * @vsi: the VSI being paused
2800  * @locked: is the rtnl_lock already held
2801  */
2802 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2803 {
2804 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2805 		return;
2806 
2807 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2808 
2809 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2810 		if (netif_running(vsi->netdev)) {
2811 			if (!locked)
2812 				rtnl_lock();
2813 
2814 			ice_vsi_close(vsi);
2815 
2816 			if (!locked)
2817 				rtnl_unlock();
2818 		} else {
2819 			ice_vsi_close(vsi);
2820 		}
2821 	} else if (vsi->type == ICE_VSI_CTRL ||
2822 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2823 		ice_vsi_close(vsi);
2824 	}
2825 }
2826 
2827 /**
2828  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2829  * @vsi: the VSI being un-configured
2830  */
2831 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2832 {
2833 	int base = vsi->base_vector;
2834 	struct ice_pf *pf = vsi->back;
2835 	struct ice_hw *hw = &pf->hw;
2836 	u32 val;
2837 	int i;
2838 
2839 	/* disable interrupt causation from each queue */
2840 	if (vsi->tx_rings) {
2841 		ice_for_each_txq(vsi, i) {
2842 			if (vsi->tx_rings[i]) {
2843 				u16 reg;
2844 
2845 				reg = vsi->tx_rings[i]->reg_idx;
2846 				val = rd32(hw, QINT_TQCTL(reg));
2847 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2848 				wr32(hw, QINT_TQCTL(reg), val);
2849 			}
2850 		}
2851 	}
2852 
2853 	if (vsi->rx_rings) {
2854 		ice_for_each_rxq(vsi, i) {
2855 			if (vsi->rx_rings[i]) {
2856 				u16 reg;
2857 
2858 				reg = vsi->rx_rings[i]->reg_idx;
2859 				val = rd32(hw, QINT_RQCTL(reg));
2860 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2861 				wr32(hw, QINT_RQCTL(reg), val);
2862 			}
2863 		}
2864 	}
2865 
2866 	/* disable each interrupt */
2867 	ice_for_each_q_vector(vsi, i) {
2868 		if (!vsi->q_vectors[i])
2869 			continue;
2870 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2871 	}
2872 
2873 	ice_flush(hw);
2874 
2875 	/* don't call synchronize_irq() for VF's from the host */
2876 	if (vsi->type == ICE_VSI_VF)
2877 		return;
2878 
2879 	ice_for_each_q_vector(vsi, i)
2880 		synchronize_irq(pf->msix_entries[i + base].vector);
2881 }
2882 
2883 /**
2884  * ice_napi_del - Remove NAPI handler for the VSI
2885  * @vsi: VSI for which NAPI handler is to be removed
2886  */
2887 void ice_napi_del(struct ice_vsi *vsi)
2888 {
2889 	int v_idx;
2890 
2891 	if (!vsi->netdev)
2892 		return;
2893 
2894 	ice_for_each_q_vector(vsi, v_idx)
2895 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2896 }
2897 
2898 /**
2899  * ice_free_vf_ctrl_res - Free the VF control VSI resource
2900  * @pf: pointer to PF structure
2901  * @vsi: the VSI to free resources for
2902  *
2903  * Check if the VF control VSI resource is still in use. If no VF is using it
2904  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
2905  * once no other VF uses it.
2906  */
2907 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
2908 {
2909 	struct ice_vf *vf;
2910 	unsigned int bkt;
2911 
2912 	rcu_read_lock();
2913 	ice_for_each_vf_rcu(pf, bkt, vf) {
2914 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
2915 			rcu_read_unlock();
2916 			return;
2917 		}
2918 	}
2919 	rcu_read_unlock();
2920 
2921 	/* No other VFs left that have control VSI. It is now safe to reclaim
2922 	 * SW interrupts back to the common pool.
2923 	 */
2924 	ice_free_res(pf->irq_tracker, vsi->base_vector,
2925 		     ICE_RES_VF_CTRL_VEC_ID);
2926 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2927 }
2928 
2929 /**
2930  * ice_vsi_release - Delete a VSI and free its resources
2931  * @vsi: the VSI being removed
2932  *
2933  * Returns 0 on success or < 0 on error
2934  */
2935 int ice_vsi_release(struct ice_vsi *vsi)
2936 {
2937 	struct ice_pf *pf;
2938 	int err;
2939 
2940 	if (!vsi->back)
2941 		return -ENODEV;
2942 	pf = vsi->back;
2943 
2944 	/* do not unregister while driver is in the reset recovery pending
2945 	 * state. Since reset/rebuild happens through PF service task workqueue,
2946 	 * it's not a good idea to unregister netdev that is associated to the
2947 	 * PF that is running the work queue items currently. This is done to
2948 	 * avoid check_flush_dependency() warning on this wq
2949 	 */
2950 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2951 	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2952 		unregister_netdev(vsi->netdev);
2953 		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2954 	}
2955 
2956 	if (vsi->type == ICE_VSI_PF)
2957 		ice_devlink_destroy_pf_port(pf);
2958 
2959 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2960 		ice_rss_clean(vsi);
2961 
2962 	/* Disable VSI and free resources */
2963 	if (vsi->type != ICE_VSI_LB)
2964 		ice_vsi_dis_irq(vsi);
2965 	ice_vsi_close(vsi);
2966 
2967 	/* SR-IOV determines needed MSIX resources all at once instead of per
2968 	 * VSI since when VFs are spawned we know how many VFs there are and how
2969 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2970 	 * cleared in the same manner.
2971 	 */
2972 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
2973 		ice_free_vf_ctrl_res(pf, vsi);
2974 	} else if (vsi->type != ICE_VSI_VF) {
2975 		/* reclaim SW interrupts back to the common pool */
2976 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2977 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2978 	}
2979 
2980 	if (!ice_is_safe_mode(pf)) {
2981 		if (vsi->type == ICE_VSI_PF) {
2982 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2983 					    ICE_DROP_PACKET);
2984 			ice_cfg_sw_lldp(vsi, true, false);
2985 			/* The Rx rule will only exist to remove if the LLDP FW
2986 			 * engine is currently stopped
2987 			 */
2988 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2989 				ice_cfg_sw_lldp(vsi, false, false);
2990 		}
2991 	}
2992 
2993 	if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2994 		ice_clear_dflt_vsi(pf->first_sw);
2995 	ice_fltr_remove_all(vsi);
2996 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2997 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2998 	if (err)
2999 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3000 			vsi->vsi_num, err);
3001 	ice_vsi_delete(vsi);
3002 	ice_vsi_free_q_vectors(vsi);
3003 
3004 	if (vsi->netdev) {
3005 		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3006 			unregister_netdev(vsi->netdev);
3007 			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3008 		}
3009 		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3010 			free_netdev(vsi->netdev);
3011 			vsi->netdev = NULL;
3012 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3013 		}
3014 	}
3015 
3016 	if (vsi->type == ICE_VSI_VF &&
3017 	    vsi->agg_node && vsi->agg_node->valid)
3018 		vsi->agg_node->num_vsis--;
3019 	ice_vsi_clear_rings(vsi);
3020 
3021 	ice_vsi_put_qs(vsi);
3022 
3023 	/* retain SW VSI data structure since it is needed to unregister and
3024 	 * free VSI netdev when PF is not in reset recovery pending state,\
3025 	 * for ex: during rmmod.
3026 	 */
3027 	if (!ice_is_reset_in_progress(pf->state))
3028 		ice_vsi_clear(vsi);
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3035  * @vsi: VSI connected with q_vectors
3036  * @coalesce: array of struct with stored coalesce
3037  *
3038  * Returns array size.
3039  */
3040 static int
3041 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3042 			     struct ice_coalesce_stored *coalesce)
3043 {
3044 	int i;
3045 
3046 	ice_for_each_q_vector(vsi, i) {
3047 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3048 
3049 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3050 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3051 		coalesce[i].intrl = q_vector->intrl;
3052 
3053 		if (i < vsi->num_txq)
3054 			coalesce[i].tx_valid = true;
3055 		if (i < vsi->num_rxq)
3056 			coalesce[i].rx_valid = true;
3057 	}
3058 
3059 	return vsi->num_q_vectors;
3060 }
3061 
3062 /**
3063  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3064  * @vsi: VSI connected with q_vectors
3065  * @coalesce: pointer to array of struct with stored coalesce
3066  * @size: size of coalesce array
3067  *
3068  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3069  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3070  * to default value.
3071  */
3072 static void
3073 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3074 			     struct ice_coalesce_stored *coalesce, int size)
3075 {
3076 	struct ice_ring_container *rc;
3077 	int i;
3078 
3079 	if ((size && !coalesce) || !vsi)
3080 		return;
3081 
3082 	/* There are a couple of cases that have to be handled here:
3083 	 *   1. The case where the number of queue vectors stays the same, but
3084 	 *      the number of Tx or Rx rings changes (the first for loop)
3085 	 *   2. The case where the number of queue vectors increased (the
3086 	 *      second for loop)
3087 	 */
3088 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3089 		/* There are 2 cases to handle here and they are the same for
3090 		 * both Tx and Rx:
3091 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3092 		 *   and the loop variable is less than the number of rings
3093 		 *   allocated, then write the previous values
3094 		 *
3095 		 *   if the entry was not valid previously, but the number of
3096 		 *   rings is less than are allocated (this means the number of
3097 		 *   rings increased from previously), then write out the
3098 		 *   values in the first element
3099 		 *
3100 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3101 		 *   as there is no harm because the dynamic algorithm
3102 		 *   will just overwrite.
3103 		 */
3104 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3105 			rc = &vsi->q_vectors[i]->rx;
3106 			rc->itr_settings = coalesce[i].itr_rx;
3107 			ice_write_itr(rc, rc->itr_setting);
3108 		} else if (i < vsi->alloc_rxq) {
3109 			rc = &vsi->q_vectors[i]->rx;
3110 			rc->itr_settings = coalesce[0].itr_rx;
3111 			ice_write_itr(rc, rc->itr_setting);
3112 		}
3113 
3114 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3115 			rc = &vsi->q_vectors[i]->tx;
3116 			rc->itr_settings = coalesce[i].itr_tx;
3117 			ice_write_itr(rc, rc->itr_setting);
3118 		} else if (i < vsi->alloc_txq) {
3119 			rc = &vsi->q_vectors[i]->tx;
3120 			rc->itr_settings = coalesce[0].itr_tx;
3121 			ice_write_itr(rc, rc->itr_setting);
3122 		}
3123 
3124 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3125 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3126 	}
3127 
3128 	/* the number of queue vectors increased so write whatever is in
3129 	 * the first element
3130 	 */
3131 	for (; i < vsi->num_q_vectors; i++) {
3132 		/* transmit */
3133 		rc = &vsi->q_vectors[i]->tx;
3134 		rc->itr_settings = coalesce[0].itr_tx;
3135 		ice_write_itr(rc, rc->itr_setting);
3136 
3137 		/* receive */
3138 		rc = &vsi->q_vectors[i]->rx;
3139 		rc->itr_settings = coalesce[0].itr_rx;
3140 		ice_write_itr(rc, rc->itr_setting);
3141 
3142 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3143 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3144 	}
3145 }
3146 
3147 /**
3148  * ice_vsi_rebuild - Rebuild VSI after reset
3149  * @vsi: VSI to be rebuild
3150  * @init_vsi: is this an initialization or a reconfigure of the VSI
3151  *
3152  * Returns 0 on success and negative value on failure
3153  */
3154 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3155 {
3156 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3157 	struct ice_coalesce_stored *coalesce;
3158 	int prev_num_q_vectors = 0;
3159 	enum ice_vsi_type vtype;
3160 	struct ice_pf *pf;
3161 	int ret, i;
3162 
3163 	if (!vsi)
3164 		return -EINVAL;
3165 
3166 	pf = vsi->back;
3167 	vtype = vsi->type;
3168 	if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf)
3169 		return -EINVAL;
3170 
3171 	ice_vsi_init_vlan_ops(vsi);
3172 
3173 	coalesce = kcalloc(vsi->num_q_vectors,
3174 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3175 	if (!coalesce)
3176 		return -ENOMEM;
3177 
3178 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3179 
3180 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3181 	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3182 	if (ret)
3183 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3184 			vsi->vsi_num, ret);
3185 	ice_vsi_free_q_vectors(vsi);
3186 
3187 	/* SR-IOV determines needed MSIX resources all at once instead of per
3188 	 * VSI since when VFs are spawned we know how many VFs there are and how
3189 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3190 	 * cleared in the same manner.
3191 	 */
3192 	if (vtype != ICE_VSI_VF) {
3193 		/* reclaim SW interrupts back to the common pool */
3194 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3195 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3196 		vsi->base_vector = 0;
3197 	}
3198 
3199 	if (ice_is_xdp_ena_vsi(vsi))
3200 		/* return value check can be skipped here, it always returns
3201 		 * 0 if reset is in progress
3202 		 */
3203 		ice_destroy_xdp_rings(vsi);
3204 	ice_vsi_put_qs(vsi);
3205 	ice_vsi_clear_rings(vsi);
3206 	ice_vsi_free_arrays(vsi);
3207 	if (vtype == ICE_VSI_VF)
3208 		ice_vsi_set_num_qs(vsi, vsi->vf);
3209 	else
3210 		ice_vsi_set_num_qs(vsi, NULL);
3211 
3212 	ret = ice_vsi_alloc_arrays(vsi);
3213 	if (ret < 0)
3214 		goto err_vsi;
3215 
3216 	ice_vsi_get_qs(vsi);
3217 
3218 	ice_alloc_fd_res(vsi);
3219 	ice_vsi_set_tc_cfg(vsi);
3220 
3221 	/* Initialize VSI struct elements and create VSI in FW */
3222 	ret = ice_vsi_init(vsi, init_vsi);
3223 	if (ret < 0)
3224 		goto err_vsi;
3225 
3226 	switch (vtype) {
3227 	case ICE_VSI_CTRL:
3228 	case ICE_VSI_SWITCHDEV_CTRL:
3229 	case ICE_VSI_PF:
3230 		ret = ice_vsi_alloc_q_vectors(vsi);
3231 		if (ret)
3232 			goto err_rings;
3233 
3234 		ret = ice_vsi_setup_vector_base(vsi);
3235 		if (ret)
3236 			goto err_vectors;
3237 
3238 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3239 		if (ret)
3240 			goto err_vectors;
3241 
3242 		ret = ice_vsi_alloc_rings(vsi);
3243 		if (ret)
3244 			goto err_vectors;
3245 
3246 		ice_vsi_map_rings_to_vectors(vsi);
3247 		if (ice_is_xdp_ena_vsi(vsi)) {
3248 			ret = ice_vsi_determine_xdp_res(vsi);
3249 			if (ret)
3250 				goto err_vectors;
3251 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3252 			if (ret)
3253 				goto err_vectors;
3254 		}
3255 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3256 		if (vtype != ICE_VSI_CTRL)
3257 			/* Do not exit if configuring RSS had an issue, at
3258 			 * least receive traffic on first queue. Hence no
3259 			 * need to capture return value
3260 			 */
3261 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3262 				ice_vsi_cfg_rss_lut_key(vsi);
3263 		break;
3264 	case ICE_VSI_VF:
3265 		ret = ice_vsi_alloc_q_vectors(vsi);
3266 		if (ret)
3267 			goto err_rings;
3268 
3269 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3270 		if (ret)
3271 			goto err_vectors;
3272 
3273 		ret = ice_vsi_alloc_rings(vsi);
3274 		if (ret)
3275 			goto err_vectors;
3276 
3277 		break;
3278 	case ICE_VSI_CHNL:
3279 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3280 			ice_vsi_cfg_rss_lut_key(vsi);
3281 			ice_vsi_set_rss_flow_fld(vsi);
3282 		}
3283 		break;
3284 	default:
3285 		break;
3286 	}
3287 
3288 	/* configure VSI nodes based on number of queues and TC's */
3289 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3290 		/* configure VSI nodes based on number of queues and TC's.
3291 		 * ADQ creates VSIs for each TC/Channel but doesn't
3292 		 * allocate queues instead it reconfigures the PF queues
3293 		 * as per the TC command. So max_txqs should point to the
3294 		 * PF Tx queues.
3295 		 */
3296 		if (vtype == ICE_VSI_CHNL)
3297 			max_txqs[i] = pf->num_lan_tx;
3298 		else
3299 			max_txqs[i] = vsi->alloc_txq;
3300 
3301 		if (ice_is_xdp_ena_vsi(vsi))
3302 			max_txqs[i] += vsi->num_xdp_txq;
3303 	}
3304 
3305 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3306 		/* If MQPRIO is set, means channel code path, hence for main
3307 		 * VSI's, use TC as 1
3308 		 */
3309 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3310 	else
3311 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3312 				      vsi->tc_cfg.ena_tc, max_txqs);
3313 
3314 	if (ret) {
3315 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3316 			vsi->vsi_num, ret);
3317 		if (init_vsi) {
3318 			ret = -EIO;
3319 			goto err_vectors;
3320 		} else {
3321 			return ice_schedule_reset(pf, ICE_RESET_PFR);
3322 		}
3323 	}
3324 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3325 	kfree(coalesce);
3326 
3327 	return 0;
3328 
3329 err_vectors:
3330 	ice_vsi_free_q_vectors(vsi);
3331 err_rings:
3332 	if (vsi->netdev) {
3333 		vsi->current_netdev_flags = 0;
3334 		unregister_netdev(vsi->netdev);
3335 		free_netdev(vsi->netdev);
3336 		vsi->netdev = NULL;
3337 	}
3338 err_vsi:
3339 	ice_vsi_clear(vsi);
3340 	set_bit(ICE_RESET_FAILED, pf->state);
3341 	kfree(coalesce);
3342 	return ret;
3343 }
3344 
3345 /**
3346  * ice_is_reset_in_progress - check for a reset in progress
3347  * @state: PF state field
3348  */
3349 bool ice_is_reset_in_progress(unsigned long *state)
3350 {
3351 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3352 	       test_bit(ICE_PFR_REQ, state) ||
3353 	       test_bit(ICE_CORER_REQ, state) ||
3354 	       test_bit(ICE_GLOBR_REQ, state);
3355 }
3356 
3357 /**
3358  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3359  * @pf: pointer to the PF structure
3360  * @timeout: length of time to wait, in jiffies
3361  *
3362  * Wait (sleep) for a short time until the driver finishes cleaning up from
3363  * a device reset. The caller must be able to sleep. Use this to delay
3364  * operations that could fail while the driver is cleaning up after a device
3365  * reset.
3366  *
3367  * Returns 0 on success, -EBUSY if the reset is not finished within the
3368  * timeout, and -ERESTARTSYS if the thread was interrupted.
3369  */
3370 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3371 {
3372 	long ret;
3373 
3374 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3375 					       !ice_is_reset_in_progress(pf->state),
3376 					       timeout);
3377 	if (ret < 0)
3378 		return ret;
3379 	else if (!ret)
3380 		return -EBUSY;
3381 	else
3382 		return 0;
3383 }
3384 
3385 /**
3386  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3387  * @vsi: VSI being configured
3388  * @ctx: the context buffer returned from AQ VSI update command
3389  */
3390 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3391 {
3392 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3393 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3394 	       sizeof(vsi->info.q_mapping));
3395 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3396 	       sizeof(vsi->info.tc_mapping));
3397 }
3398 
3399 /**
3400  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3401  * @vsi: the VSI being configured
3402  * @ena_tc: TC map to be enabled
3403  */
3404 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3405 {
3406 	struct net_device *netdev = vsi->netdev;
3407 	struct ice_pf *pf = vsi->back;
3408 	int numtc = vsi->tc_cfg.numtc;
3409 	struct ice_dcbx_cfg *dcbcfg;
3410 	u8 netdev_tc;
3411 	int i;
3412 
3413 	if (!netdev)
3414 		return;
3415 
3416 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3417 	if (vsi->type == ICE_VSI_CHNL)
3418 		return;
3419 
3420 	if (!ena_tc) {
3421 		netdev_reset_tc(netdev);
3422 		return;
3423 	}
3424 
3425 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3426 		numtc = vsi->all_numtc;
3427 
3428 	if (netdev_set_num_tc(netdev, numtc))
3429 		return;
3430 
3431 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3432 
3433 	ice_for_each_traffic_class(i)
3434 		if (vsi->tc_cfg.ena_tc & BIT(i))
3435 			netdev_set_tc_queue(netdev,
3436 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3437 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3438 					    vsi->tc_cfg.tc_info[i].qoffset);
3439 	/* setup TC queue map for CHNL TCs */
3440 	ice_for_each_chnl_tc(i) {
3441 		if (!(vsi->all_enatc & BIT(i)))
3442 			break;
3443 		if (!vsi->mqprio_qopt.qopt.count[i])
3444 			break;
3445 		netdev_set_tc_queue(netdev, i,
3446 				    vsi->mqprio_qopt.qopt.count[i],
3447 				    vsi->mqprio_qopt.qopt.offset[i]);
3448 	}
3449 
3450 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3451 		return;
3452 
3453 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3454 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3455 
3456 		/* Get the mapped netdev TC# for the UP */
3457 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3458 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3459 	}
3460 }
3461 
3462 /**
3463  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3464  * @vsi: the VSI being configured,
3465  * @ctxt: VSI context structure
3466  * @ena_tc: number of traffic classes to enable
3467  *
3468  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3469  */
3470 static void
3471 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3472 			   u8 ena_tc)
3473 {
3474 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3475 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3476 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3477 	u8 netdev_tc = 0;
3478 	int i;
3479 
3480 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3481 
3482 	pow = order_base_2(tc0_qcount);
3483 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3484 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3485 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3486 
3487 	ice_for_each_traffic_class(i) {
3488 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3489 			/* TC is not enabled */
3490 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3491 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3492 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3493 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3494 			ctxt->info.tc_mapping[i] = 0;
3495 			continue;
3496 		}
3497 
3498 		offset = vsi->mqprio_qopt.qopt.offset[i];
3499 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3500 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3501 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3502 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3503 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3504 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3505 	}
3506 
3507 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3508 		ice_for_each_chnl_tc(i) {
3509 			if (!(vsi->all_enatc & BIT(i)))
3510 				continue;
3511 			offset = vsi->mqprio_qopt.qopt.offset[i];
3512 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3513 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3514 		}
3515 	}
3516 
3517 	/* Set actual Tx/Rx queue pairs */
3518 	vsi->num_txq = offset + qcount_tx;
3519 	vsi->num_rxq = offset + qcount_rx;
3520 
3521 	/* Setup queue TC[0].qmap for given VSI context */
3522 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3523 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3524 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3525 
3526 	/* Find queue count available for channel VSIs and starting offset
3527 	 * for channel VSIs
3528 	 */
3529 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3530 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3531 		vsi->next_base_q = tc0_qcount;
3532 	}
3533 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3534 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3535 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3536 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3537 }
3538 
3539 /**
3540  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3541  * @vsi: VSI to be configured
3542  * @ena_tc: TC bitmap
3543  *
3544  * VSI queues expected to be quiesced before calling this function
3545  */
3546 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3547 {
3548 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3549 	struct ice_pf *pf = vsi->back;
3550 	struct ice_vsi_ctx *ctx;
3551 	struct device *dev;
3552 	int i, ret = 0;
3553 	u8 num_tc = 0;
3554 
3555 	dev = ice_pf_to_dev(pf);
3556 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3557 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3558 		return ret;
3559 
3560 	ice_for_each_traffic_class(i) {
3561 		/* build bitmap of enabled TCs */
3562 		if (ena_tc & BIT(i))
3563 			num_tc++;
3564 		/* populate max_txqs per TC */
3565 		max_txqs[i] = vsi->alloc_txq;
3566 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3567 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3568 		 */
3569 		if (vsi->type == ICE_VSI_CHNL &&
3570 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3571 			max_txqs[i] = vsi->num_txq;
3572 	}
3573 
3574 	vsi->tc_cfg.ena_tc = ena_tc;
3575 	vsi->tc_cfg.numtc = num_tc;
3576 
3577 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3578 	if (!ctx)
3579 		return -ENOMEM;
3580 
3581 	ctx->vf_num = 0;
3582 	ctx->info = vsi->info;
3583 
3584 	if (vsi->type == ICE_VSI_PF &&
3585 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3586 		ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3587 	else
3588 		ice_vsi_setup_q_map(vsi, ctx);
3589 
3590 	/* must to indicate which section of VSI context are being modified */
3591 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3592 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3593 	if (ret) {
3594 		dev_info(dev, "Failed VSI Update\n");
3595 		goto out;
3596 	}
3597 
3598 	if (vsi->type == ICE_VSI_PF &&
3599 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3600 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3601 	else
3602 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3603 				      vsi->tc_cfg.ena_tc, max_txqs);
3604 
3605 	if (ret) {
3606 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3607 			vsi->vsi_num, ret);
3608 		goto out;
3609 	}
3610 	ice_vsi_update_q_map(vsi, ctx);
3611 	vsi->info.valid_sections = 0;
3612 
3613 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3614 out:
3615 	kfree(ctx);
3616 	return ret;
3617 }
3618 
3619 /**
3620  * ice_update_ring_stats - Update ring statistics
3621  * @stats: stats to be updated
3622  * @pkts: number of processed packets
3623  * @bytes: number of processed bytes
3624  *
3625  * This function assumes that caller has acquired a u64_stats_sync lock.
3626  */
3627 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3628 {
3629 	stats->bytes += bytes;
3630 	stats->pkts += pkts;
3631 }
3632 
3633 /**
3634  * ice_update_tx_ring_stats - Update Tx ring specific counters
3635  * @tx_ring: ring to update
3636  * @pkts: number of processed packets
3637  * @bytes: number of processed bytes
3638  */
3639 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3640 {
3641 	u64_stats_update_begin(&tx_ring->syncp);
3642 	ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
3643 	u64_stats_update_end(&tx_ring->syncp);
3644 }
3645 
3646 /**
3647  * ice_update_rx_ring_stats - Update Rx ring specific counters
3648  * @rx_ring: ring to update
3649  * @pkts: number of processed packets
3650  * @bytes: number of processed bytes
3651  */
3652 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3653 {
3654 	u64_stats_update_begin(&rx_ring->syncp);
3655 	ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
3656 	u64_stats_update_end(&rx_ring->syncp);
3657 }
3658 
3659 /**
3660  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3661  * @sw: switch to check if its default forwarding VSI is free
3662  *
3663  * Return true if the default forwarding VSI is already being used, else returns
3664  * false signalling that it's available to use.
3665  */
3666 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3667 {
3668 	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3669 }
3670 
3671 /**
3672  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3673  * @sw: switch for the default forwarding VSI to compare against
3674  * @vsi: VSI to compare against default forwarding VSI
3675  *
3676  * If this VSI passed in is the default forwarding VSI then return true, else
3677  * return false
3678  */
3679 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3680 {
3681 	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3682 }
3683 
3684 /**
3685  * ice_set_dflt_vsi - set the default forwarding VSI
3686  * @sw: switch used to assign the default forwarding VSI
3687  * @vsi: VSI getting set as the default forwarding VSI on the switch
3688  *
3689  * If the VSI passed in is already the default VSI and it's enabled just return
3690  * success.
3691  *
3692  * If there is already a default VSI on the switch and it's enabled then return
3693  * -EEXIST since there can only be one default VSI per switch.
3694  *
3695  *  Otherwise try to set the VSI passed in as the switch's default VSI and
3696  *  return the result.
3697  */
3698 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3699 {
3700 	struct device *dev;
3701 	int status;
3702 
3703 	if (!sw || !vsi)
3704 		return -EINVAL;
3705 
3706 	dev = ice_pf_to_dev(vsi->back);
3707 
3708 	/* the VSI passed in is already the default VSI */
3709 	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3710 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3711 			vsi->vsi_num);
3712 		return 0;
3713 	}
3714 
3715 	/* another VSI is already the default VSI for this switch */
3716 	if (ice_is_dflt_vsi_in_use(sw)) {
3717 		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3718 			sw->dflt_vsi->vsi_num);
3719 		return -EEXIST;
3720 	}
3721 
3722 	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3723 	if (status) {
3724 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3725 			vsi->vsi_num, status);
3726 		return status;
3727 	}
3728 
3729 	sw->dflt_vsi = vsi;
3730 	sw->dflt_vsi_ena = true;
3731 
3732 	return 0;
3733 }
3734 
3735 /**
3736  * ice_clear_dflt_vsi - clear the default forwarding VSI
3737  * @sw: switch used to clear the default VSI
3738  *
3739  * If the switch has no default VSI or it's not enabled then return error.
3740  *
3741  * Otherwise try to clear the default VSI and return the result.
3742  */
3743 int ice_clear_dflt_vsi(struct ice_sw *sw)
3744 {
3745 	struct ice_vsi *dflt_vsi;
3746 	struct device *dev;
3747 	int status;
3748 
3749 	if (!sw)
3750 		return -EINVAL;
3751 
3752 	dev = ice_pf_to_dev(sw->pf);
3753 
3754 	dflt_vsi = sw->dflt_vsi;
3755 
3756 	/* there is no default VSI configured */
3757 	if (!ice_is_dflt_vsi_in_use(sw))
3758 		return -ENODEV;
3759 
3760 	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3761 				  ICE_FLTR_RX);
3762 	if (status) {
3763 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3764 			dflt_vsi->vsi_num, status);
3765 		return -EIO;
3766 	}
3767 
3768 	sw->dflt_vsi = NULL;
3769 	sw->dflt_vsi_ena = false;
3770 
3771 	return 0;
3772 }
3773 
3774 /**
3775  * ice_get_link_speed_mbps - get link speed in Mbps
3776  * @vsi: the VSI whose link speed is being queried
3777  *
3778  * Return current VSI link speed and 0 if the speed is unknown.
3779  */
3780 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3781 {
3782 	switch (vsi->port_info->phy.link_info.link_speed) {
3783 	case ICE_AQ_LINK_SPEED_100GB:
3784 		return SPEED_100000;
3785 	case ICE_AQ_LINK_SPEED_50GB:
3786 		return SPEED_50000;
3787 	case ICE_AQ_LINK_SPEED_40GB:
3788 		return SPEED_40000;
3789 	case ICE_AQ_LINK_SPEED_25GB:
3790 		return SPEED_25000;
3791 	case ICE_AQ_LINK_SPEED_20GB:
3792 		return SPEED_20000;
3793 	case ICE_AQ_LINK_SPEED_10GB:
3794 		return SPEED_10000;
3795 	case ICE_AQ_LINK_SPEED_5GB:
3796 		return SPEED_5000;
3797 	case ICE_AQ_LINK_SPEED_2500MB:
3798 		return SPEED_2500;
3799 	case ICE_AQ_LINK_SPEED_1000MB:
3800 		return SPEED_1000;
3801 	case ICE_AQ_LINK_SPEED_100MB:
3802 		return SPEED_100;
3803 	case ICE_AQ_LINK_SPEED_10MB:
3804 		return SPEED_10;
3805 	case ICE_AQ_LINK_SPEED_UNKNOWN:
3806 	default:
3807 		return 0;
3808 	}
3809 }
3810 
3811 /**
3812  * ice_get_link_speed_kbps - get link speed in Kbps
3813  * @vsi: the VSI whose link speed is being queried
3814  *
3815  * Return current VSI link speed and 0 if the speed is unknown.
3816  */
3817 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3818 {
3819 	int speed_mbps;
3820 
3821 	speed_mbps = ice_get_link_speed_mbps(vsi);
3822 
3823 	return speed_mbps * 1000;
3824 }
3825 
3826 /**
3827  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3828  * @vsi: VSI to be configured
3829  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3830  *
3831  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3832  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3833  * on TC 0.
3834  */
3835 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3836 {
3837 	struct ice_pf *pf = vsi->back;
3838 	struct device *dev;
3839 	int status;
3840 	int speed;
3841 
3842 	dev = ice_pf_to_dev(pf);
3843 	if (!vsi->port_info) {
3844 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3845 			vsi->idx, vsi->type);
3846 		return -EINVAL;
3847 	}
3848 
3849 	speed = ice_get_link_speed_kbps(vsi);
3850 	if (min_tx_rate > (u64)speed) {
3851 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3852 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3853 			speed);
3854 		return -EINVAL;
3855 	}
3856 
3857 	/* Configure min BW for VSI limit */
3858 	if (min_tx_rate) {
3859 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3860 						   ICE_MIN_BW, min_tx_rate);
3861 		if (status) {
3862 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3863 				min_tx_rate, ice_vsi_type_str(vsi->type),
3864 				vsi->idx);
3865 			return status;
3866 		}
3867 
3868 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3869 			min_tx_rate, ice_vsi_type_str(vsi->type));
3870 	} else {
3871 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3872 							vsi->idx, 0,
3873 							ICE_MIN_BW);
3874 		if (status) {
3875 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3876 				ice_vsi_type_str(vsi->type), vsi->idx);
3877 			return status;
3878 		}
3879 
3880 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3881 			ice_vsi_type_str(vsi->type), vsi->idx);
3882 	}
3883 
3884 	return 0;
3885 }
3886 
3887 /**
3888  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3889  * @vsi: VSI to be configured
3890  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3891  *
3892  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3893  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3894  * on TC 0.
3895  */
3896 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3897 {
3898 	struct ice_pf *pf = vsi->back;
3899 	struct device *dev;
3900 	int status;
3901 	int speed;
3902 
3903 	dev = ice_pf_to_dev(pf);
3904 	if (!vsi->port_info) {
3905 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3906 			vsi->idx, vsi->type);
3907 		return -EINVAL;
3908 	}
3909 
3910 	speed = ice_get_link_speed_kbps(vsi);
3911 	if (max_tx_rate > (u64)speed) {
3912 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3913 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3914 			speed);
3915 		return -EINVAL;
3916 	}
3917 
3918 	/* Configure max BW for VSI limit */
3919 	if (max_tx_rate) {
3920 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3921 						   ICE_MAX_BW, max_tx_rate);
3922 		if (status) {
3923 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3924 				max_tx_rate, ice_vsi_type_str(vsi->type),
3925 				vsi->idx);
3926 			return status;
3927 		}
3928 
3929 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3930 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3931 	} else {
3932 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3933 							vsi->idx, 0,
3934 							ICE_MAX_BW);
3935 		if (status) {
3936 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3937 				ice_vsi_type_str(vsi->type), vsi->idx);
3938 			return status;
3939 		}
3940 
3941 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3942 			ice_vsi_type_str(vsi->type), vsi->idx);
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 /**
3949  * ice_set_link - turn on/off physical link
3950  * @vsi: VSI to modify physical link on
3951  * @ena: turn on/off physical link
3952  */
3953 int ice_set_link(struct ice_vsi *vsi, bool ena)
3954 {
3955 	struct device *dev = ice_pf_to_dev(vsi->back);
3956 	struct ice_port_info *pi = vsi->port_info;
3957 	struct ice_hw *hw = pi->hw;
3958 	int status;
3959 
3960 	if (vsi->type != ICE_VSI_PF)
3961 		return -EINVAL;
3962 
3963 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3964 
3965 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3966 	 * this is not a fatal error, so print a warning message and return
3967 	 * a success code. Return an error if FW returns an error code other
3968 	 * than ICE_AQ_RC_EMODE
3969 	 */
3970 	if (status == -EIO) {
3971 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3972 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3973 				(ena ? "ON" : "OFF"), status,
3974 				ice_aq_str(hw->adminq.sq_last_status));
3975 	} else if (status) {
3976 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3977 			(ena ? "ON" : "OFF"), status,
3978 			ice_aq_str(hw->adminq.sq_last_status));
3979 		return status;
3980 	}
3981 
3982 	return 0;
3983 }
3984 
3985 /**
3986  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3987  * @vsi: VSI used to add VLAN filters
3988  *
3989  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3990  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3991  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3992  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3993  *
3994  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3995  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3996  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3997  *
3998  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3999  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4000  * part of filtering.
4001  */
4002 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4003 {
4004 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4005 	struct ice_vlan vlan;
4006 	int err;
4007 
4008 	vlan = ICE_VLAN(0, 0, 0);
4009 	err = vlan_ops->add_vlan(vsi, &vlan);
4010 	if (err && err != -EEXIST)
4011 		return err;
4012 
4013 	/* in SVM both VLAN 0 filters are identical */
4014 	if (!ice_is_dvm_ena(&vsi->back->hw))
4015 		return 0;
4016 
4017 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4018 	err = vlan_ops->add_vlan(vsi, &vlan);
4019 	if (err && err != -EEXIST)
4020 		return err;
4021 
4022 	return 0;
4023 }
4024 
4025 /**
4026  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4027  * @vsi: VSI used to add VLAN filters
4028  *
4029  * Delete the VLAN 0 filters in the same manner that they were added in
4030  * ice_vsi_add_vlan_zero.
4031  */
4032 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4033 {
4034 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4035 	struct ice_vlan vlan;
4036 	int err;
4037 
4038 	vlan = ICE_VLAN(0, 0, 0);
4039 	err = vlan_ops->del_vlan(vsi, &vlan);
4040 	if (err && err != -EEXIST)
4041 		return err;
4042 
4043 	/* in SVM both VLAN 0 filters are identical */
4044 	if (!ice_is_dvm_ena(&vsi->back->hw))
4045 		return 0;
4046 
4047 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4048 	err = vlan_ops->del_vlan(vsi, &vlan);
4049 	if (err && err != -EEXIST)
4050 		return err;
4051 
4052 	return 0;
4053 }
4054 
4055 /**
4056  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4057  * @vsi: VSI used to get the VLAN mode
4058  *
4059  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4060  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4061  */
4062 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4063 {
4064 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4065 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4066 	/* no VLAN 0 filter is created when a port VLAN is active */
4067 	if (vsi->type == ICE_VSI_VF) {
4068 		if (WARN_ON(!vsi->vf))
4069 			return 0;
4070 
4071 		if (ice_vf_is_port_vlan_ena(vsi->vf))
4072 			return 0;
4073 	}
4074 
4075 	if (ice_is_dvm_ena(&vsi->back->hw))
4076 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4077 	else
4078 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4079 }
4080 
4081 /**
4082  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4083  * @vsi: VSI used to determine if any non-zero VLANs have been added
4084  */
4085 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4086 {
4087 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4088 }
4089 
4090 /**
4091  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4092  * @vsi: VSI used to get the number of non-zero VLANs added
4093  */
4094 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4095 {
4096 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4097 }
4098 
4099 /**
4100  * ice_is_feature_supported
4101  * @pf: pointer to the struct ice_pf instance
4102  * @f: feature enum to be checked
4103  *
4104  * returns true if feature is supported, false otherwise
4105  */
4106 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4107 {
4108 	if (f < 0 || f >= ICE_F_MAX)
4109 		return false;
4110 
4111 	return test_bit(f, pf->features);
4112 }
4113 
4114 /**
4115  * ice_set_feature_support
4116  * @pf: pointer to the struct ice_pf instance
4117  * @f: feature enum to set
4118  */
4119 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4120 {
4121 	if (f < 0 || f >= ICE_F_MAX)
4122 		return;
4123 
4124 	set_bit(f, pf->features);
4125 }
4126 
4127 /**
4128  * ice_clear_feature_support
4129  * @pf: pointer to the struct ice_pf instance
4130  * @f: feature enum to clear
4131  */
4132 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4133 {
4134 	if (f < 0 || f >= ICE_F_MAX)
4135 		return;
4136 
4137 	clear_bit(f, pf->features);
4138 }
4139 
4140 /**
4141  * ice_init_feature_support
4142  * @pf: pointer to the struct ice_pf instance
4143  *
4144  * called during init to setup supported feature
4145  */
4146 void ice_init_feature_support(struct ice_pf *pf)
4147 {
4148 	switch (pf->hw.device_id) {
4149 	case ICE_DEV_ID_E810C_BACKPLANE:
4150 	case ICE_DEV_ID_E810C_QSFP:
4151 	case ICE_DEV_ID_E810C_SFP:
4152 		ice_set_feature_support(pf, ICE_F_DSCP);
4153 		if (ice_is_e810t(&pf->hw)) {
4154 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4155 			if (ice_gnss_is_gps_present(&pf->hw))
4156 				ice_set_feature_support(pf, ICE_F_GNSS);
4157 		}
4158 		break;
4159 	default:
4160 		break;
4161 	}
4162 }
4163 
4164 /**
4165  * ice_vsi_update_security - update security block in VSI
4166  * @vsi: pointer to VSI structure
4167  * @fill: function pointer to fill ctx
4168  */
4169 int
4170 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4171 {
4172 	struct ice_vsi_ctx ctx = { 0 };
4173 
4174 	ctx.info = vsi->info;
4175 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4176 	fill(&ctx);
4177 
4178 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4179 		return -ENODEV;
4180 
4181 	vsi->info = ctx.info;
4182 	return 0;
4183 }
4184 
4185 /**
4186  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4187  * @ctx: pointer to VSI ctx structure
4188  */
4189 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4190 {
4191 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4192 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4193 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4194 }
4195 
4196 /**
4197  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4198  * @ctx: pointer to VSI ctx structure
4199  */
4200 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4201 {
4202 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4203 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4204 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4205 }
4206 
4207 /**
4208  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4209  * @ctx: pointer to VSI ctx structure
4210  */
4211 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4212 {
4213 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4214 }
4215 
4216 /**
4217  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4218  * @ctx: pointer to VSI ctx structure
4219  */
4220 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4221 {
4222 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4223 }
4224