1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 109 if (!vsi->af_xdp_zc_qps) 110 goto err_zc_qps; 111 112 return 0; 113 114 err_zc_qps: 115 devm_kfree(dev, vsi->q_vectors); 116 err_vectors: 117 devm_kfree(dev, vsi->rxq_map); 118 err_rxq_map: 119 devm_kfree(dev, vsi->txq_map); 120 err_txq_map: 121 devm_kfree(dev, vsi->rx_rings); 122 err_rings: 123 devm_kfree(dev, vsi->tx_rings); 124 return -ENOMEM; 125 } 126 127 /** 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 129 * @vsi: the VSI being configured 130 */ 131 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 132 { 133 switch (vsi->type) { 134 case ICE_VSI_PF: 135 case ICE_VSI_CTRL: 136 case ICE_VSI_LB: 137 /* a user could change the values of num_[tr]x_desc using 138 * ethtool -G so we should keep those values instead of 139 * overwriting them with the defaults. 140 */ 141 if (!vsi->num_rx_desc) 142 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 143 if (!vsi->num_tx_desc) 144 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 145 break; 146 default: 147 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 148 vsi->type); 149 break; 150 } 151 } 152 153 /** 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 155 * @vsi: the VSI being configured 156 * @vf_id: ID of the VF being configured 157 * 158 * Return 0 on success and a negative value on error 159 */ 160 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 161 { 162 struct ice_pf *pf = vsi->back; 163 struct ice_vf *vf = NULL; 164 165 if (vsi->type == ICE_VSI_VF) 166 vsi->vf_id = vf_id; 167 else 168 vsi->vf_id = ICE_INVAL_VFID; 169 170 switch (vsi->type) { 171 case ICE_VSI_PF: 172 vsi->alloc_txq = min3(pf->num_lan_msix, 173 ice_get_avail_txq_count(pf), 174 (u16)num_online_cpus()); 175 if (vsi->req_txq) { 176 vsi->alloc_txq = vsi->req_txq; 177 vsi->num_txq = vsi->req_txq; 178 } 179 180 pf->num_lan_tx = vsi->alloc_txq; 181 182 /* only 1 Rx queue unless RSS is enabled */ 183 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 184 vsi->alloc_rxq = 1; 185 } else { 186 vsi->alloc_rxq = min3(pf->num_lan_msix, 187 ice_get_avail_rxq_count(pf), 188 (u16)num_online_cpus()); 189 if (vsi->req_rxq) { 190 vsi->alloc_rxq = vsi->req_rxq; 191 vsi->num_rxq = vsi->req_rxq; 192 } 193 } 194 195 pf->num_lan_rx = vsi->alloc_rxq; 196 197 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 198 max_t(int, vsi->alloc_rxq, 199 vsi->alloc_txq)); 200 break; 201 case ICE_VSI_VF: 202 vf = &pf->vf[vsi->vf_id]; 203 if (vf->num_req_qs) 204 vf->num_vf_qs = vf->num_req_qs; 205 vsi->alloc_txq = vf->num_vf_qs; 206 vsi->alloc_rxq = vf->num_vf_qs; 207 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 208 * data queue interrupts). Since vsi->num_q_vectors is number 209 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 210 * original vector count 211 */ 212 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 213 break; 214 case ICE_VSI_CTRL: 215 vsi->alloc_txq = 1; 216 vsi->alloc_rxq = 1; 217 vsi->num_q_vectors = 1; 218 break; 219 case ICE_VSI_LB: 220 vsi->alloc_txq = 1; 221 vsi->alloc_rxq = 1; 222 break; 223 default: 224 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 225 break; 226 } 227 228 ice_vsi_set_num_desc(vsi); 229 } 230 231 /** 232 * ice_get_free_slot - get the next non-NULL location index in array 233 * @array: array to search 234 * @size: size of the array 235 * @curr: last known occupied index to be used as a search hint 236 * 237 * void * is being used to keep the functionality generic. This lets us use this 238 * function on any array of pointers. 239 */ 240 static int ice_get_free_slot(void *array, int size, int curr) 241 { 242 int **tmp_array = (int **)array; 243 int next; 244 245 if (curr < (size - 1) && !tmp_array[curr + 1]) { 246 next = curr + 1; 247 } else { 248 int i = 0; 249 250 while ((i < size) && (tmp_array[i])) 251 i++; 252 if (i == size) 253 next = ICE_NO_VSI; 254 else 255 next = i; 256 } 257 return next; 258 } 259 260 /** 261 * ice_vsi_delete - delete a VSI from the switch 262 * @vsi: pointer to VSI being removed 263 */ 264 static void ice_vsi_delete(struct ice_vsi *vsi) 265 { 266 struct ice_pf *pf = vsi->back; 267 struct ice_vsi_ctx *ctxt; 268 enum ice_status status; 269 270 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 271 if (!ctxt) 272 return; 273 274 if (vsi->type == ICE_VSI_VF) 275 ctxt->vf_num = vsi->vf_id; 276 ctxt->vsi_num = vsi->vsi_num; 277 278 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 279 280 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 281 if (status) 282 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 283 vsi->vsi_num, ice_stat_str(status)); 284 285 kfree(ctxt); 286 } 287 288 /** 289 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 290 * @vsi: pointer to VSI being cleared 291 */ 292 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 293 { 294 struct ice_pf *pf = vsi->back; 295 struct device *dev; 296 297 dev = ice_pf_to_dev(pf); 298 299 if (vsi->af_xdp_zc_qps) { 300 bitmap_free(vsi->af_xdp_zc_qps); 301 vsi->af_xdp_zc_qps = NULL; 302 } 303 /* free the ring and vector containers */ 304 if (vsi->q_vectors) { 305 devm_kfree(dev, vsi->q_vectors); 306 vsi->q_vectors = NULL; 307 } 308 if (vsi->tx_rings) { 309 devm_kfree(dev, vsi->tx_rings); 310 vsi->tx_rings = NULL; 311 } 312 if (vsi->rx_rings) { 313 devm_kfree(dev, vsi->rx_rings); 314 vsi->rx_rings = NULL; 315 } 316 if (vsi->txq_map) { 317 devm_kfree(dev, vsi->txq_map); 318 vsi->txq_map = NULL; 319 } 320 if (vsi->rxq_map) { 321 devm_kfree(dev, vsi->rxq_map); 322 vsi->rxq_map = NULL; 323 } 324 } 325 326 /** 327 * ice_vsi_clear - clean up and deallocate the provided VSI 328 * @vsi: pointer to VSI being cleared 329 * 330 * This deallocates the VSI's queue resources, removes it from the PF's 331 * VSI array if necessary, and deallocates the VSI 332 * 333 * Returns 0 on success, negative on failure 334 */ 335 static int ice_vsi_clear(struct ice_vsi *vsi) 336 { 337 struct ice_pf *pf = NULL; 338 struct device *dev; 339 340 if (!vsi) 341 return 0; 342 343 if (!vsi->back) 344 return -EINVAL; 345 346 pf = vsi->back; 347 dev = ice_pf_to_dev(pf); 348 349 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 350 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 351 return -EINVAL; 352 } 353 354 mutex_lock(&pf->sw_mutex); 355 /* updates the PF for this cleared VSI */ 356 357 pf->vsi[vsi->idx] = NULL; 358 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 359 pf->next_vsi = vsi->idx; 360 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 361 vsi->vf_id != ICE_INVAL_VFID) 362 pf->next_vsi = vsi->idx; 363 364 ice_vsi_free_arrays(vsi); 365 mutex_unlock(&pf->sw_mutex); 366 devm_kfree(dev, vsi); 367 368 return 0; 369 } 370 371 /** 372 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 373 * @irq: interrupt number 374 * @data: pointer to a q_vector 375 */ 376 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 377 { 378 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 379 380 if (!q_vector->tx.ring) 381 return IRQ_HANDLED; 382 383 #define FDIR_RX_DESC_CLEAN_BUDGET 64 384 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 385 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 386 387 return IRQ_HANDLED; 388 } 389 390 /** 391 * ice_msix_clean_rings - MSIX mode Interrupt Handler 392 * @irq: interrupt number 393 * @data: pointer to a q_vector 394 */ 395 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 396 { 397 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 398 399 if (!q_vector->tx.ring && !q_vector->rx.ring) 400 return IRQ_HANDLED; 401 402 q_vector->total_events++; 403 404 napi_schedule(&q_vector->napi); 405 406 return IRQ_HANDLED; 407 } 408 409 /** 410 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 411 * @pf: board private structure 412 * @vsi_type: type of VSI 413 * @vf_id: ID of the VF being configured 414 * 415 * returns a pointer to a VSI on success, NULL on failure. 416 */ 417 static struct ice_vsi * 418 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 419 { 420 struct device *dev = ice_pf_to_dev(pf); 421 struct ice_vsi *vsi = NULL; 422 423 /* Need to protect the allocation of the VSIs at the PF level */ 424 mutex_lock(&pf->sw_mutex); 425 426 /* If we have already allocated our maximum number of VSIs, 427 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 428 * is available to be populated 429 */ 430 if (pf->next_vsi == ICE_NO_VSI) { 431 dev_dbg(dev, "out of VSI slots!\n"); 432 goto unlock_pf; 433 } 434 435 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 436 if (!vsi) 437 goto unlock_pf; 438 439 vsi->type = vsi_type; 440 vsi->back = pf; 441 set_bit(ICE_VSI_DOWN, vsi->state); 442 443 if (vsi_type == ICE_VSI_VF) 444 ice_vsi_set_num_qs(vsi, vf_id); 445 else 446 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 447 448 switch (vsi->type) { 449 case ICE_VSI_PF: 450 if (ice_vsi_alloc_arrays(vsi)) 451 goto err_rings; 452 453 /* Setup default MSIX irq handler for VSI */ 454 vsi->irq_handler = ice_msix_clean_rings; 455 break; 456 case ICE_VSI_CTRL: 457 if (ice_vsi_alloc_arrays(vsi)) 458 goto err_rings; 459 460 /* Setup ctrl VSI MSIX irq handler */ 461 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 462 break; 463 case ICE_VSI_VF: 464 if (ice_vsi_alloc_arrays(vsi)) 465 goto err_rings; 466 break; 467 case ICE_VSI_LB: 468 if (ice_vsi_alloc_arrays(vsi)) 469 goto err_rings; 470 break; 471 default: 472 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 473 goto unlock_pf; 474 } 475 476 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 477 /* Use the last VSI slot as the index for PF control VSI */ 478 vsi->idx = pf->num_alloc_vsi - 1; 479 pf->ctrl_vsi_idx = vsi->idx; 480 pf->vsi[vsi->idx] = vsi; 481 } else { 482 /* fill slot and make note of the index */ 483 vsi->idx = pf->next_vsi; 484 pf->vsi[pf->next_vsi] = vsi; 485 486 /* prepare pf->next_vsi for next use */ 487 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 488 pf->next_vsi); 489 } 490 491 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 492 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 493 goto unlock_pf; 494 495 err_rings: 496 devm_kfree(dev, vsi); 497 vsi = NULL; 498 unlock_pf: 499 mutex_unlock(&pf->sw_mutex); 500 return vsi; 501 } 502 503 /** 504 * ice_alloc_fd_res - Allocate FD resource for a VSI 505 * @vsi: pointer to the ice_vsi 506 * 507 * This allocates the FD resources 508 * 509 * Returns 0 on success, -EPERM on no-op or -EIO on failure 510 */ 511 static int ice_alloc_fd_res(struct ice_vsi *vsi) 512 { 513 struct ice_pf *pf = vsi->back; 514 u32 g_val, b_val; 515 516 /* Flow Director filters are only allocated/assigned to the PF VSI which 517 * passes the traffic. The CTRL VSI is only used to add/delete filters 518 * so we don't allocate resources to it 519 */ 520 521 /* FD filters from guaranteed pool per VSI */ 522 g_val = pf->hw.func_caps.fd_fltr_guar; 523 if (!g_val) 524 return -EPERM; 525 526 /* FD filters from best effort pool */ 527 b_val = pf->hw.func_caps.fd_fltr_best_effort; 528 if (!b_val) 529 return -EPERM; 530 531 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 532 return -EPERM; 533 534 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 535 return -EPERM; 536 537 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 538 539 /* each VSI gets same "best_effort" quota */ 540 vsi->num_bfltr = b_val; 541 542 if (vsi->type == ICE_VSI_VF) { 543 vsi->num_gfltr = 0; 544 545 /* each VSI gets same "best_effort" quota */ 546 vsi->num_bfltr = b_val; 547 } 548 549 return 0; 550 } 551 552 /** 553 * ice_vsi_get_qs - Assign queues from PF to VSI 554 * @vsi: the VSI to assign queues to 555 * 556 * Returns 0 on success and a negative value on error 557 */ 558 static int ice_vsi_get_qs(struct ice_vsi *vsi) 559 { 560 struct ice_pf *pf = vsi->back; 561 struct ice_qs_cfg tx_qs_cfg = { 562 .qs_mutex = &pf->avail_q_mutex, 563 .pf_map = pf->avail_txqs, 564 .pf_map_size = pf->max_pf_txqs, 565 .q_count = vsi->alloc_txq, 566 .scatter_count = ICE_MAX_SCATTER_TXQS, 567 .vsi_map = vsi->txq_map, 568 .vsi_map_offset = 0, 569 .mapping_mode = ICE_VSI_MAP_CONTIG 570 }; 571 struct ice_qs_cfg rx_qs_cfg = { 572 .qs_mutex = &pf->avail_q_mutex, 573 .pf_map = pf->avail_rxqs, 574 .pf_map_size = pf->max_pf_rxqs, 575 .q_count = vsi->alloc_rxq, 576 .scatter_count = ICE_MAX_SCATTER_RXQS, 577 .vsi_map = vsi->rxq_map, 578 .vsi_map_offset = 0, 579 .mapping_mode = ICE_VSI_MAP_CONTIG 580 }; 581 int ret; 582 583 ret = __ice_vsi_get_qs(&tx_qs_cfg); 584 if (ret) 585 return ret; 586 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 587 588 ret = __ice_vsi_get_qs(&rx_qs_cfg); 589 if (ret) 590 return ret; 591 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 592 593 return 0; 594 } 595 596 /** 597 * ice_vsi_put_qs - Release queues from VSI to PF 598 * @vsi: the VSI that is going to release queues 599 */ 600 static void ice_vsi_put_qs(struct ice_vsi *vsi) 601 { 602 struct ice_pf *pf = vsi->back; 603 int i; 604 605 mutex_lock(&pf->avail_q_mutex); 606 607 for (i = 0; i < vsi->alloc_txq; i++) { 608 clear_bit(vsi->txq_map[i], pf->avail_txqs); 609 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 610 } 611 612 for (i = 0; i < vsi->alloc_rxq; i++) { 613 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 614 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 615 } 616 617 mutex_unlock(&pf->avail_q_mutex); 618 } 619 620 /** 621 * ice_is_safe_mode 622 * @pf: pointer to the PF struct 623 * 624 * returns true if driver is in safe mode, false otherwise 625 */ 626 bool ice_is_safe_mode(struct ice_pf *pf) 627 { 628 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 629 } 630 631 /** 632 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 633 * @vsi: the VSI being cleaned up 634 * 635 * This function deletes RSS input set for all flows that were configured 636 * for this VSI 637 */ 638 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 639 { 640 struct ice_pf *pf = vsi->back; 641 enum ice_status status; 642 643 if (ice_is_safe_mode(pf)) 644 return; 645 646 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 647 if (status) 648 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 649 vsi->vsi_num, ice_stat_str(status)); 650 } 651 652 /** 653 * ice_rss_clean - Delete RSS related VSI structures and configuration 654 * @vsi: the VSI being removed 655 */ 656 static void ice_rss_clean(struct ice_vsi *vsi) 657 { 658 struct ice_pf *pf = vsi->back; 659 struct device *dev; 660 661 dev = ice_pf_to_dev(pf); 662 663 if (vsi->rss_hkey_user) 664 devm_kfree(dev, vsi->rss_hkey_user); 665 if (vsi->rss_lut_user) 666 devm_kfree(dev, vsi->rss_lut_user); 667 668 ice_vsi_clean_rss_flow_fld(vsi); 669 /* remove RSS replay list */ 670 if (!ice_is_safe_mode(pf)) 671 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 672 } 673 674 /** 675 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 676 * @vsi: the VSI being configured 677 */ 678 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 679 { 680 struct ice_hw_common_caps *cap; 681 struct ice_pf *pf = vsi->back; 682 683 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 684 vsi->rss_size = 1; 685 return; 686 } 687 688 cap = &pf->hw.func_caps.common_cap; 689 switch (vsi->type) { 690 case ICE_VSI_PF: 691 /* PF VSI will inherit RSS instance of PF */ 692 vsi->rss_table_size = (u16)cap->rss_table_size; 693 vsi->rss_size = min_t(u16, num_online_cpus(), 694 BIT(cap->rss_table_entry_width)); 695 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 696 break; 697 case ICE_VSI_VF: 698 /* VF VSI will get a small RSS table. 699 * For VSI_LUT, LUT size should be set to 64 bytes. 700 */ 701 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 702 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 703 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 704 break; 705 case ICE_VSI_LB: 706 break; 707 default: 708 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 709 ice_vsi_type_str(vsi->type)); 710 break; 711 } 712 } 713 714 /** 715 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 716 * @ctxt: the VSI context being set 717 * 718 * This initializes a default VSI context for all sections except the Queues. 719 */ 720 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 721 { 722 u32 table = 0; 723 724 memset(&ctxt->info, 0, sizeof(ctxt->info)); 725 /* VSI's should be allocated from shared pool */ 726 ctxt->alloc_from_pool = true; 727 /* Src pruning enabled by default */ 728 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 729 /* Traffic from VSI can be sent to LAN */ 730 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 731 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 732 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 733 * packets untagged/tagged. 734 */ 735 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 736 ICE_AQ_VSI_VLAN_MODE_M) >> 737 ICE_AQ_VSI_VLAN_MODE_S); 738 /* Have 1:1 UP mapping for both ingress/egress tables */ 739 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 740 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 741 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 742 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 743 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 744 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 745 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 746 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 747 ctxt->info.ingress_table = cpu_to_le32(table); 748 ctxt->info.egress_table = cpu_to_le32(table); 749 /* Have 1:1 UP mapping for outer to inner UP table */ 750 ctxt->info.outer_up_table = cpu_to_le32(table); 751 /* No Outer tag support outer_tag_flags remains to zero */ 752 } 753 754 /** 755 * ice_vsi_setup_q_map - Setup a VSI queue map 756 * @vsi: the VSI being configured 757 * @ctxt: VSI context structure 758 */ 759 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 760 { 761 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 762 u16 num_txq_per_tc, num_rxq_per_tc; 763 u16 qcount_tx = vsi->alloc_txq; 764 u16 qcount_rx = vsi->alloc_rxq; 765 bool ena_tc0 = false; 766 u8 netdev_tc = 0; 767 int i; 768 769 /* at least TC0 should be enabled by default */ 770 if (vsi->tc_cfg.numtc) { 771 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 772 ena_tc0 = true; 773 } else { 774 ena_tc0 = true; 775 } 776 777 if (ena_tc0) { 778 vsi->tc_cfg.numtc++; 779 vsi->tc_cfg.ena_tc |= 1; 780 } 781 782 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 783 if (!num_rxq_per_tc) 784 num_rxq_per_tc = 1; 785 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 786 if (!num_txq_per_tc) 787 num_txq_per_tc = 1; 788 789 /* find the (rounded up) power-of-2 of qcount */ 790 pow = (u16)order_base_2(num_rxq_per_tc); 791 792 /* TC mapping is a function of the number of Rx queues assigned to the 793 * VSI for each traffic class and the offset of these queues. 794 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 795 * queues allocated to TC0. No:of queues is a power-of-2. 796 * 797 * If TC is not enabled, the queue offset is set to 0, and allocate one 798 * queue, this way, traffic for the given TC will be sent to the default 799 * queue. 800 * 801 * Setup number and offset of Rx queues for all TCs for the VSI 802 */ 803 ice_for_each_traffic_class(i) { 804 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 805 /* TC is not enabled */ 806 vsi->tc_cfg.tc_info[i].qoffset = 0; 807 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 808 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 809 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 810 ctxt->info.tc_mapping[i] = 0; 811 continue; 812 } 813 814 /* TC is enabled */ 815 vsi->tc_cfg.tc_info[i].qoffset = offset; 816 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 817 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 818 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 819 820 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 821 ICE_AQ_VSI_TC_Q_OFFSET_M) | 822 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 823 ICE_AQ_VSI_TC_Q_NUM_M); 824 offset += num_rxq_per_tc; 825 tx_count += num_txq_per_tc; 826 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 827 } 828 829 /* if offset is non-zero, means it is calculated correctly based on 830 * enabled TCs for a given VSI otherwise qcount_rx will always 831 * be correct and non-zero because it is based off - VSI's 832 * allocated Rx queues which is at least 1 (hence qcount_tx will be 833 * at least 1) 834 */ 835 if (offset) 836 vsi->num_rxq = offset; 837 else 838 vsi->num_rxq = num_rxq_per_tc; 839 840 vsi->num_txq = tx_count; 841 842 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 843 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 844 /* since there is a chance that num_rxq could have been changed 845 * in the above for loop, make num_txq equal to num_rxq. 846 */ 847 vsi->num_txq = vsi->num_rxq; 848 } 849 850 /* Rx queue mapping */ 851 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 852 /* q_mapping buffer holds the info for the first queue allocated for 853 * this VSI in the PF space and also the number of queues associated 854 * with this VSI. 855 */ 856 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 857 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 858 } 859 860 /** 861 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 862 * @ctxt: the VSI context being set 863 * @vsi: the VSI being configured 864 */ 865 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 866 { 867 u8 dflt_q_group, dflt_q_prio; 868 u16 dflt_q, report_q, val; 869 870 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 871 vsi->type != ICE_VSI_VF) 872 return; 873 874 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 875 ctxt->info.valid_sections |= cpu_to_le16(val); 876 dflt_q = 0; 877 dflt_q_group = 0; 878 report_q = 0; 879 dflt_q_prio = 0; 880 881 /* enable flow director filtering/programming */ 882 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 883 ctxt->info.fd_options = cpu_to_le16(val); 884 /* max of allocated flow director filters */ 885 ctxt->info.max_fd_fltr_dedicated = 886 cpu_to_le16(vsi->num_gfltr); 887 /* max of shared flow director filters any VSI may program */ 888 ctxt->info.max_fd_fltr_shared = 889 cpu_to_le16(vsi->num_bfltr); 890 /* default queue index within the VSI of the default FD */ 891 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 892 ICE_AQ_VSI_FD_DEF_Q_M); 893 /* target queue or queue group to the FD filter */ 894 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 895 ICE_AQ_VSI_FD_DEF_GRP_M); 896 ctxt->info.fd_def_q = cpu_to_le16(val); 897 /* queue index on which FD filter completion is reported */ 898 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 899 ICE_AQ_VSI_FD_REPORT_Q_M); 900 /* priority of the default qindex action */ 901 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 902 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 903 ctxt->info.fd_report_opt = cpu_to_le16(val); 904 } 905 906 /** 907 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 908 * @ctxt: the VSI context being set 909 * @vsi: the VSI being configured 910 */ 911 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 912 { 913 u8 lut_type, hash_type; 914 struct device *dev; 915 struct ice_pf *pf; 916 917 pf = vsi->back; 918 dev = ice_pf_to_dev(pf); 919 920 switch (vsi->type) { 921 case ICE_VSI_PF: 922 /* PF VSI will inherit RSS instance of PF */ 923 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 924 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 925 break; 926 case ICE_VSI_VF: 927 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 928 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 929 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 930 break; 931 default: 932 dev_dbg(dev, "Unsupported VSI type %s\n", 933 ice_vsi_type_str(vsi->type)); 934 return; 935 } 936 937 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 938 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 939 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 940 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 941 } 942 943 /** 944 * ice_vsi_init - Create and initialize a VSI 945 * @vsi: the VSI being configured 946 * @init_vsi: is this call creating a VSI 947 * 948 * This initializes a VSI context depending on the VSI type to be added and 949 * passes it down to the add_vsi aq command to create a new VSI. 950 */ 951 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 952 { 953 struct ice_pf *pf = vsi->back; 954 struct ice_hw *hw = &pf->hw; 955 struct ice_vsi_ctx *ctxt; 956 struct device *dev; 957 int ret = 0; 958 959 dev = ice_pf_to_dev(pf); 960 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 961 if (!ctxt) 962 return -ENOMEM; 963 964 switch (vsi->type) { 965 case ICE_VSI_CTRL: 966 case ICE_VSI_LB: 967 case ICE_VSI_PF: 968 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 969 break; 970 case ICE_VSI_VF: 971 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 972 /* VF number here is the absolute VF number (0-255) */ 973 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 974 break; 975 default: 976 ret = -ENODEV; 977 goto out; 978 } 979 980 ice_set_dflt_vsi_ctx(ctxt); 981 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 982 ice_set_fd_vsi_ctx(ctxt, vsi); 983 /* if the switch is in VEB mode, allow VSI loopback */ 984 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 985 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 986 987 /* Set LUT type and HASH type if RSS is enabled */ 988 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 989 vsi->type != ICE_VSI_CTRL) { 990 ice_set_rss_vsi_ctx(ctxt, vsi); 991 /* if updating VSI context, make sure to set valid_section: 992 * to indicate which section of VSI context being updated 993 */ 994 if (!init_vsi) 995 ctxt->info.valid_sections |= 996 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 997 } 998 999 ctxt->info.sw_id = vsi->port_info->sw_id; 1000 ice_vsi_setup_q_map(vsi, ctxt); 1001 if (!init_vsi) /* means VSI being updated */ 1002 /* must to indicate which section of VSI context are 1003 * being modified 1004 */ 1005 ctxt->info.valid_sections |= 1006 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1007 1008 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1009 * respectively 1010 */ 1011 if (vsi->type == ICE_VSI_VF) { 1012 ctxt->info.valid_sections |= 1013 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1014 if (pf->vf[vsi->vf_id].spoofchk) { 1015 ctxt->info.sec_flags |= 1016 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1017 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1018 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1019 } else { 1020 ctxt->info.sec_flags &= 1021 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1022 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1023 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1024 } 1025 } 1026 1027 /* Allow control frames out of main VSI */ 1028 if (vsi->type == ICE_VSI_PF) { 1029 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1030 ctxt->info.valid_sections |= 1031 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1032 } 1033 1034 if (init_vsi) { 1035 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1036 if (ret) { 1037 dev_err(dev, "Add VSI failed, err %d\n", ret); 1038 ret = -EIO; 1039 goto out; 1040 } 1041 } else { 1042 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1043 if (ret) { 1044 dev_err(dev, "Update VSI failed, err %d\n", ret); 1045 ret = -EIO; 1046 goto out; 1047 } 1048 } 1049 1050 /* keep context for update VSI operations */ 1051 vsi->info = ctxt->info; 1052 1053 /* record VSI number returned */ 1054 vsi->vsi_num = ctxt->vsi_num; 1055 1056 out: 1057 kfree(ctxt); 1058 return ret; 1059 } 1060 1061 /** 1062 * ice_free_res - free a block of resources 1063 * @res: pointer to the resource 1064 * @index: starting index previously returned by ice_get_res 1065 * @id: identifier to track owner 1066 * 1067 * Returns number of resources freed 1068 */ 1069 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1070 { 1071 int count = 0; 1072 int i; 1073 1074 if (!res || index >= res->end) 1075 return -EINVAL; 1076 1077 id |= ICE_RES_VALID_BIT; 1078 for (i = index; i < res->end && res->list[i] == id; i++) { 1079 res->list[i] = 0; 1080 count++; 1081 } 1082 1083 return count; 1084 } 1085 1086 /** 1087 * ice_search_res - Search the tracker for a block of resources 1088 * @res: pointer to the resource 1089 * @needed: size of the block needed 1090 * @id: identifier to track owner 1091 * 1092 * Returns the base item index of the block, or -ENOMEM for error 1093 */ 1094 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1095 { 1096 u16 start = 0, end = 0; 1097 1098 if (needed > res->end) 1099 return -ENOMEM; 1100 1101 id |= ICE_RES_VALID_BIT; 1102 1103 do { 1104 /* skip already allocated entries */ 1105 if (res->list[end++] & ICE_RES_VALID_BIT) { 1106 start = end; 1107 if ((start + needed) > res->end) 1108 break; 1109 } 1110 1111 if (end == (start + needed)) { 1112 int i = start; 1113 1114 /* there was enough, so assign it to the requestor */ 1115 while (i != end) 1116 res->list[i++] = id; 1117 1118 return start; 1119 } 1120 } while (end < res->end); 1121 1122 return -ENOMEM; 1123 } 1124 1125 /** 1126 * ice_get_free_res_count - Get free count from a resource tracker 1127 * @res: Resource tracker instance 1128 */ 1129 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1130 { 1131 u16 i, count = 0; 1132 1133 for (i = 0; i < res->end; i++) 1134 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1135 count++; 1136 1137 return count; 1138 } 1139 1140 /** 1141 * ice_get_res - get a block of resources 1142 * @pf: board private structure 1143 * @res: pointer to the resource 1144 * @needed: size of the block needed 1145 * @id: identifier to track owner 1146 * 1147 * Returns the base item index of the block, or negative for error 1148 */ 1149 int 1150 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1151 { 1152 if (!res || !pf) 1153 return -EINVAL; 1154 1155 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1156 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1157 needed, res->num_entries, id); 1158 return -EINVAL; 1159 } 1160 1161 return ice_search_res(res, needed, id); 1162 } 1163 1164 /** 1165 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1166 * @vsi: ptr to the VSI 1167 * 1168 * This should only be called after ice_vsi_alloc() which allocates the 1169 * corresponding SW VSI structure and initializes num_queue_pairs for the 1170 * newly allocated VSI. 1171 * 1172 * Returns 0 on success or negative on failure 1173 */ 1174 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1175 { 1176 struct ice_pf *pf = vsi->back; 1177 struct device *dev; 1178 u16 num_q_vectors; 1179 int base; 1180 1181 dev = ice_pf_to_dev(pf); 1182 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1183 if (vsi->type == ICE_VSI_VF) 1184 return 0; 1185 1186 if (vsi->base_vector) { 1187 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1188 vsi->vsi_num, vsi->base_vector); 1189 return -EEXIST; 1190 } 1191 1192 num_q_vectors = vsi->num_q_vectors; 1193 /* reserve slots from OS requested IRQs */ 1194 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1195 struct ice_vf *vf; 1196 int i; 1197 1198 ice_for_each_vf(pf, i) { 1199 vf = &pf->vf[i]; 1200 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1201 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1202 break; 1203 } 1204 } 1205 if (i == pf->num_alloc_vfs) 1206 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1207 ICE_RES_VF_CTRL_VEC_ID); 1208 } else { 1209 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1210 vsi->idx); 1211 } 1212 1213 if (base < 0) { 1214 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1215 ice_get_free_res_count(pf->irq_tracker), 1216 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1217 return -ENOENT; 1218 } 1219 vsi->base_vector = (u16)base; 1220 pf->num_avail_sw_msix -= num_q_vectors; 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1227 * @vsi: the VSI having rings deallocated 1228 */ 1229 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1230 { 1231 int i; 1232 1233 /* Avoid stale references by clearing map from vector to ring */ 1234 if (vsi->q_vectors) { 1235 ice_for_each_q_vector(vsi, i) { 1236 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1237 1238 if (q_vector) { 1239 q_vector->tx.ring = NULL; 1240 q_vector->rx.ring = NULL; 1241 } 1242 } 1243 } 1244 1245 if (vsi->tx_rings) { 1246 for (i = 0; i < vsi->alloc_txq; i++) { 1247 if (vsi->tx_rings[i]) { 1248 kfree_rcu(vsi->tx_rings[i], rcu); 1249 WRITE_ONCE(vsi->tx_rings[i], NULL); 1250 } 1251 } 1252 } 1253 if (vsi->rx_rings) { 1254 for (i = 0; i < vsi->alloc_rxq; i++) { 1255 if (vsi->rx_rings[i]) { 1256 kfree_rcu(vsi->rx_rings[i], rcu); 1257 WRITE_ONCE(vsi->rx_rings[i], NULL); 1258 } 1259 } 1260 } 1261 } 1262 1263 /** 1264 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1265 * @vsi: VSI which is having rings allocated 1266 */ 1267 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1268 { 1269 struct ice_pf *pf = vsi->back; 1270 struct device *dev; 1271 u16 i; 1272 1273 dev = ice_pf_to_dev(pf); 1274 /* Allocate Tx rings */ 1275 for (i = 0; i < vsi->alloc_txq; i++) { 1276 struct ice_ring *ring; 1277 1278 /* allocate with kzalloc(), free with kfree_rcu() */ 1279 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1280 1281 if (!ring) 1282 goto err_out; 1283 1284 ring->q_index = i; 1285 ring->reg_idx = vsi->txq_map[i]; 1286 ring->ring_active = false; 1287 ring->vsi = vsi; 1288 ring->dev = dev; 1289 ring->count = vsi->num_tx_desc; 1290 WRITE_ONCE(vsi->tx_rings[i], ring); 1291 } 1292 1293 /* Allocate Rx rings */ 1294 for (i = 0; i < vsi->alloc_rxq; i++) { 1295 struct ice_ring *ring; 1296 1297 /* allocate with kzalloc(), free with kfree_rcu() */ 1298 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1299 if (!ring) 1300 goto err_out; 1301 1302 ring->q_index = i; 1303 ring->reg_idx = vsi->rxq_map[i]; 1304 ring->ring_active = false; 1305 ring->vsi = vsi; 1306 ring->netdev = vsi->netdev; 1307 ring->dev = dev; 1308 ring->count = vsi->num_rx_desc; 1309 WRITE_ONCE(vsi->rx_rings[i], ring); 1310 } 1311 1312 return 0; 1313 1314 err_out: 1315 ice_vsi_clear_rings(vsi); 1316 return -ENOMEM; 1317 } 1318 1319 /** 1320 * ice_vsi_manage_rss_lut - disable/enable RSS 1321 * @vsi: the VSI being changed 1322 * @ena: boolean value indicating if this is an enable or disable request 1323 * 1324 * In the event of disable request for RSS, this function will zero out RSS 1325 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1326 * LUT. 1327 */ 1328 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1329 { 1330 u8 *lut; 1331 1332 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1333 if (!lut) 1334 return; 1335 1336 if (ena) { 1337 if (vsi->rss_lut_user) 1338 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1339 else 1340 ice_fill_rss_lut(lut, vsi->rss_table_size, 1341 vsi->rss_size); 1342 } 1343 1344 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1345 kfree(lut); 1346 } 1347 1348 /** 1349 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1350 * @vsi: VSI to be configured 1351 */ 1352 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1353 { 1354 struct ice_pf *pf = vsi->back; 1355 struct device *dev; 1356 u8 *lut, *key; 1357 int err; 1358 1359 dev = ice_pf_to_dev(pf); 1360 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1361 1362 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1363 if (!lut) 1364 return -ENOMEM; 1365 1366 if (vsi->rss_lut_user) 1367 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1368 else 1369 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1370 1371 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1372 if (err) { 1373 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1374 goto ice_vsi_cfg_rss_exit; 1375 } 1376 1377 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1378 if (!key) { 1379 err = -ENOMEM; 1380 goto ice_vsi_cfg_rss_exit; 1381 } 1382 1383 if (vsi->rss_hkey_user) 1384 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1385 else 1386 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1387 1388 err = ice_set_rss_key(vsi, key); 1389 if (err) 1390 dev_err(dev, "set_rss_key failed, error %d\n", err); 1391 1392 kfree(key); 1393 ice_vsi_cfg_rss_exit: 1394 kfree(lut); 1395 return err; 1396 } 1397 1398 /** 1399 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1400 * @vsi: VSI to be configured 1401 * 1402 * This function will only be called during the VF VSI setup. Upon successful 1403 * completion of package download, this function will configure default RSS 1404 * input sets for VF VSI. 1405 */ 1406 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1407 { 1408 struct ice_pf *pf = vsi->back; 1409 enum ice_status status; 1410 struct device *dev; 1411 1412 dev = ice_pf_to_dev(pf); 1413 if (ice_is_safe_mode(pf)) { 1414 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1415 vsi->vsi_num); 1416 return; 1417 } 1418 1419 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1420 if (status) 1421 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1422 vsi->vsi_num, ice_stat_str(status)); 1423 } 1424 1425 /** 1426 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1427 * @vsi: VSI to be configured 1428 * 1429 * This function will only be called after successful download package call 1430 * during initialization of PF. Since the downloaded package will erase the 1431 * RSS section, this function will configure RSS input sets for different 1432 * flow types. The last profile added has the highest priority, therefore 2 1433 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1434 * (i.e. IPv4 src/dst TCP src/dst port). 1435 */ 1436 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1437 { 1438 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1439 struct ice_pf *pf = vsi->back; 1440 struct ice_hw *hw = &pf->hw; 1441 enum ice_status status; 1442 struct device *dev; 1443 1444 dev = ice_pf_to_dev(pf); 1445 if (ice_is_safe_mode(pf)) { 1446 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1447 vsi_num); 1448 return; 1449 } 1450 /* configure RSS for IPv4 with input set IP src/dst */ 1451 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1452 ICE_FLOW_SEG_HDR_IPV4); 1453 if (status) 1454 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1455 vsi_num, ice_stat_str(status)); 1456 1457 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1458 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1459 ICE_FLOW_SEG_HDR_IPV6); 1460 if (status) 1461 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1462 vsi_num, ice_stat_str(status)); 1463 1464 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1466 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1467 if (status) 1468 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1469 vsi_num, ice_stat_str(status)); 1470 1471 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1473 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1474 if (status) 1475 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1476 vsi_num, ice_stat_str(status)); 1477 1478 /* configure RSS for sctp4 with input set IP src/dst */ 1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1480 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1481 if (status) 1482 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1483 vsi_num, ice_stat_str(status)); 1484 1485 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1487 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1488 if (status) 1489 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1490 vsi_num, ice_stat_str(status)); 1491 1492 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1493 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1494 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1495 if (status) 1496 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1497 vsi_num, ice_stat_str(status)); 1498 1499 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1500 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1501 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1502 if (status) 1503 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1504 vsi_num, ice_stat_str(status)); 1505 } 1506 1507 /** 1508 * ice_pf_state_is_nominal - checks the PF for nominal state 1509 * @pf: pointer to PF to check 1510 * 1511 * Check the PF's state for a collection of bits that would indicate 1512 * the PF is in a state that would inhibit normal operation for 1513 * driver functionality. 1514 * 1515 * Returns true if PF is in a nominal state, false otherwise 1516 */ 1517 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1518 { 1519 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1520 1521 if (!pf) 1522 return false; 1523 1524 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1525 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1526 return false; 1527 1528 return true; 1529 } 1530 1531 /** 1532 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1533 * @vsi: the VSI to be updated 1534 */ 1535 void ice_update_eth_stats(struct ice_vsi *vsi) 1536 { 1537 struct ice_eth_stats *prev_es, *cur_es; 1538 struct ice_hw *hw = &vsi->back->hw; 1539 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1540 1541 prev_es = &vsi->eth_stats_prev; 1542 cur_es = &vsi->eth_stats; 1543 1544 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1545 &prev_es->rx_bytes, &cur_es->rx_bytes); 1546 1547 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1548 &prev_es->rx_unicast, &cur_es->rx_unicast); 1549 1550 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1551 &prev_es->rx_multicast, &cur_es->rx_multicast); 1552 1553 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1554 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1555 1556 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1557 &prev_es->rx_discards, &cur_es->rx_discards); 1558 1559 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1560 &prev_es->tx_bytes, &cur_es->tx_bytes); 1561 1562 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1563 &prev_es->tx_unicast, &cur_es->tx_unicast); 1564 1565 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1566 &prev_es->tx_multicast, &cur_es->tx_multicast); 1567 1568 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1569 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1570 1571 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1572 &prev_es->tx_errors, &cur_es->tx_errors); 1573 1574 vsi->stat_offsets_loaded = true; 1575 } 1576 1577 /** 1578 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1579 * @vsi: the VSI being configured 1580 * @vid: VLAN ID to be added 1581 * @action: filter action to be performed on match 1582 */ 1583 int 1584 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1585 { 1586 struct ice_pf *pf = vsi->back; 1587 struct device *dev; 1588 int err = 0; 1589 1590 dev = ice_pf_to_dev(pf); 1591 1592 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1593 vsi->num_vlan++; 1594 } else { 1595 err = -ENODEV; 1596 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1597 vsi->vsi_num); 1598 } 1599 1600 return err; 1601 } 1602 1603 /** 1604 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1605 * @vsi: the VSI being configured 1606 * @vid: VLAN ID to be removed 1607 * 1608 * Returns 0 on success and negative on failure 1609 */ 1610 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1611 { 1612 struct ice_pf *pf = vsi->back; 1613 enum ice_status status; 1614 struct device *dev; 1615 int err = 0; 1616 1617 dev = ice_pf_to_dev(pf); 1618 1619 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1620 if (!status) { 1621 vsi->num_vlan--; 1622 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1623 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1624 vid, vsi->vsi_num, ice_stat_str(status)); 1625 } else { 1626 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1627 vid, vsi->vsi_num, ice_stat_str(status)); 1628 err = -EIO; 1629 } 1630 1631 return err; 1632 } 1633 1634 /** 1635 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1636 * @vsi: VSI 1637 */ 1638 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1639 { 1640 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1641 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1642 vsi->rx_buf_len = ICE_RXBUF_2048; 1643 #if (PAGE_SIZE < 8192) 1644 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1645 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1646 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1647 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1648 #endif 1649 } else { 1650 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1651 #if (PAGE_SIZE < 8192) 1652 vsi->rx_buf_len = ICE_RXBUF_3072; 1653 #else 1654 vsi->rx_buf_len = ICE_RXBUF_2048; 1655 #endif 1656 } 1657 } 1658 1659 /** 1660 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1661 * @hw: HW pointer 1662 * @pf_q: index of the Rx queue in the PF's queue space 1663 * @rxdid: flexible descriptor RXDID 1664 * @prio: priority for the RXDID for this queue 1665 */ 1666 void 1667 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1668 { 1669 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1670 1671 /* clear any previous values */ 1672 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1673 QRXFLXP_CNTXT_RXDID_PRIO_M | 1674 QRXFLXP_CNTXT_TS_M); 1675 1676 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1677 QRXFLXP_CNTXT_RXDID_IDX_M; 1678 1679 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1680 QRXFLXP_CNTXT_RXDID_PRIO_M; 1681 1682 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1683 } 1684 1685 /** 1686 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1687 * @vsi: the VSI being configured 1688 * 1689 * Return 0 on success and a negative value on error 1690 * Configure the Rx VSI for operation. 1691 */ 1692 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1693 { 1694 u16 i; 1695 1696 if (vsi->type == ICE_VSI_VF) 1697 goto setup_rings; 1698 1699 ice_vsi_cfg_frame_size(vsi); 1700 setup_rings: 1701 /* set up individual rings */ 1702 for (i = 0; i < vsi->num_rxq; i++) { 1703 int err; 1704 1705 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1706 if (err) { 1707 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1708 i, err); 1709 return err; 1710 } 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1718 * @vsi: the VSI being configured 1719 * @rings: Tx ring array to be configured 1720 * 1721 * Return 0 on success and a negative value on error 1722 * Configure the Tx VSI for operation. 1723 */ 1724 static int 1725 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1726 { 1727 struct ice_aqc_add_tx_qgrp *qg_buf; 1728 u16 q_idx = 0; 1729 int err = 0; 1730 1731 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1732 if (!qg_buf) 1733 return -ENOMEM; 1734 1735 qg_buf->num_txqs = 1; 1736 1737 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1738 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1739 if (err) 1740 goto err_cfg_txqs; 1741 } 1742 1743 err_cfg_txqs: 1744 kfree(qg_buf); 1745 return err; 1746 } 1747 1748 /** 1749 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1750 * @vsi: the VSI being configured 1751 * 1752 * Return 0 on success and a negative value on error 1753 * Configure the Tx VSI for operation. 1754 */ 1755 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1756 { 1757 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1758 } 1759 1760 /** 1761 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1762 * @vsi: the VSI being configured 1763 * 1764 * Return 0 on success and a negative value on error 1765 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1766 */ 1767 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1768 { 1769 int ret; 1770 int i; 1771 1772 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1773 if (ret) 1774 return ret; 1775 1776 for (i = 0; i < vsi->num_xdp_txq; i++) 1777 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1778 1779 return ret; 1780 } 1781 1782 /** 1783 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1784 * @intrl: interrupt rate limit in usecs 1785 * @gran: interrupt rate limit granularity in usecs 1786 * 1787 * This function converts a decimal interrupt rate limit in usecs to the format 1788 * expected by firmware. 1789 */ 1790 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1791 { 1792 u32 val = intrl / gran; 1793 1794 if (val) 1795 return val | GLINT_RATE_INTRL_ENA_M; 1796 return 0; 1797 } 1798 1799 /** 1800 * ice_write_intrl - write throttle rate limit to interrupt specific register 1801 * @q_vector: pointer to interrupt specific structure 1802 * @intrl: throttle rate limit in microseconds to write 1803 */ 1804 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1805 { 1806 struct ice_hw *hw = &q_vector->vsi->back->hw; 1807 1808 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1809 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1810 } 1811 1812 /** 1813 * __ice_write_itr - write throttle rate to register 1814 * @q_vector: pointer to interrupt data structure 1815 * @rc: pointer to ring container 1816 * @itr: throttle rate in microseconds to write 1817 */ 1818 static void __ice_write_itr(struct ice_q_vector *q_vector, 1819 struct ice_ring_container *rc, u16 itr) 1820 { 1821 struct ice_hw *hw = &q_vector->vsi->back->hw; 1822 1823 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1824 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1825 } 1826 1827 /** 1828 * ice_write_itr - write throttle rate to queue specific register 1829 * @rc: pointer to ring container 1830 * @itr: throttle rate in microseconds to write 1831 */ 1832 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1833 { 1834 struct ice_q_vector *q_vector; 1835 1836 if (!rc->ring) 1837 return; 1838 1839 q_vector = rc->ring->q_vector; 1840 1841 __ice_write_itr(q_vector, rc, itr); 1842 } 1843 1844 /** 1845 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1846 * @vsi: the VSI being configured 1847 * 1848 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1849 * for the VF VSI. 1850 */ 1851 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1852 { 1853 struct ice_pf *pf = vsi->back; 1854 struct ice_hw *hw = &pf->hw; 1855 u16 txq = 0, rxq = 0; 1856 int i, q; 1857 1858 for (i = 0; i < vsi->num_q_vectors; i++) { 1859 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1860 u16 reg_idx = q_vector->reg_idx; 1861 1862 ice_cfg_itr(hw, q_vector); 1863 1864 /* Both Transmit Queue Interrupt Cause Control register 1865 * and Receive Queue Interrupt Cause control register 1866 * expects MSIX_INDX field to be the vector index 1867 * within the function space and not the absolute 1868 * vector index across PF or across device. 1869 * For SR-IOV VF VSIs queue vector index always starts 1870 * with 1 since first vector index(0) is used for OICR 1871 * in VF space. Since VMDq and other PF VSIs are within 1872 * the PF function space, use the vector index that is 1873 * tracked for this PF. 1874 */ 1875 for (q = 0; q < q_vector->num_ring_tx; q++) { 1876 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1877 q_vector->tx.itr_idx); 1878 txq++; 1879 } 1880 1881 for (q = 0; q < q_vector->num_ring_rx; q++) { 1882 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1883 q_vector->rx.itr_idx); 1884 rxq++; 1885 } 1886 } 1887 } 1888 1889 /** 1890 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1891 * @vsi: the VSI being changed 1892 */ 1893 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1894 { 1895 struct ice_hw *hw = &vsi->back->hw; 1896 struct ice_vsi_ctx *ctxt; 1897 enum ice_status status; 1898 int ret = 0; 1899 1900 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1901 if (!ctxt) 1902 return -ENOMEM; 1903 1904 /* Here we are configuring the VSI to let the driver add VLAN tags by 1905 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1906 * insertion happens in the Tx hot path, in ice_tx_map. 1907 */ 1908 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1909 1910 /* Preserve existing VLAN strip setting */ 1911 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1912 ICE_AQ_VSI_VLAN_EMOD_M); 1913 1914 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1915 1916 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1917 if (status) { 1918 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1919 ice_stat_str(status), 1920 ice_aq_str(hw->adminq.sq_last_status)); 1921 ret = -EIO; 1922 goto out; 1923 } 1924 1925 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1926 out: 1927 kfree(ctxt); 1928 return ret; 1929 } 1930 1931 /** 1932 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1933 * @vsi: the VSI being changed 1934 * @ena: boolean value indicating if this is a enable or disable request 1935 */ 1936 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1937 { 1938 struct ice_hw *hw = &vsi->back->hw; 1939 struct ice_vsi_ctx *ctxt; 1940 enum ice_status status; 1941 int ret = 0; 1942 1943 /* do not allow modifying VLAN stripping when a port VLAN is configured 1944 * on this VSI 1945 */ 1946 if (vsi->info.pvid) 1947 return 0; 1948 1949 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1950 if (!ctxt) 1951 return -ENOMEM; 1952 1953 /* Here we are configuring what the VSI should do with the VLAN tag in 1954 * the Rx packet. We can either leave the tag in the packet or put it in 1955 * the Rx descriptor. 1956 */ 1957 if (ena) 1958 /* Strip VLAN tag from Rx packet and put it in the desc */ 1959 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1960 else 1961 /* Disable stripping. Leave tag in packet */ 1962 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1963 1964 /* Allow all packets untagged/tagged */ 1965 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1966 1967 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1968 1969 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1970 if (status) { 1971 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1972 ena, ice_stat_str(status), 1973 ice_aq_str(hw->adminq.sq_last_status)); 1974 ret = -EIO; 1975 goto out; 1976 } 1977 1978 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1979 out: 1980 kfree(ctxt); 1981 return ret; 1982 } 1983 1984 /** 1985 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1986 * @vsi: the VSI whose rings are to be enabled 1987 * 1988 * Returns 0 on success and a negative value on error 1989 */ 1990 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1991 { 1992 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1993 } 1994 1995 /** 1996 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1997 * @vsi: the VSI whose rings are to be disabled 1998 * 1999 * Returns 0 on success and a negative value on error 2000 */ 2001 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2002 { 2003 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2004 } 2005 2006 /** 2007 * ice_vsi_stop_tx_rings - Disable Tx rings 2008 * @vsi: the VSI being configured 2009 * @rst_src: reset source 2010 * @rel_vmvf_num: Relative ID of VF/VM 2011 * @rings: Tx ring array to be stopped 2012 */ 2013 static int 2014 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2015 u16 rel_vmvf_num, struct ice_ring **rings) 2016 { 2017 u16 q_idx; 2018 2019 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2020 return -EINVAL; 2021 2022 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 2023 struct ice_txq_meta txq_meta = { }; 2024 int status; 2025 2026 if (!rings || !rings[q_idx]) 2027 return -EINVAL; 2028 2029 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2030 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2031 rings[q_idx], &txq_meta); 2032 2033 if (status) 2034 return status; 2035 } 2036 2037 return 0; 2038 } 2039 2040 /** 2041 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2042 * @vsi: the VSI being configured 2043 * @rst_src: reset source 2044 * @rel_vmvf_num: Relative ID of VF/VM 2045 */ 2046 int 2047 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2048 u16 rel_vmvf_num) 2049 { 2050 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2051 } 2052 2053 /** 2054 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2055 * @vsi: the VSI being configured 2056 */ 2057 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2058 { 2059 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2060 } 2061 2062 /** 2063 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2064 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2065 * 2066 * returns true if Rx VLAN pruning is enabled and false otherwise. 2067 */ 2068 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2069 { 2070 if (!vsi) 2071 return false; 2072 2073 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2074 } 2075 2076 /** 2077 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2078 * @vsi: VSI to enable or disable VLAN pruning on 2079 * @ena: set to true to enable VLAN pruning and false to disable it 2080 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2081 * 2082 * returns 0 if VSI is updated, negative otherwise 2083 */ 2084 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2085 { 2086 struct ice_vsi_ctx *ctxt; 2087 struct ice_pf *pf; 2088 int status; 2089 2090 if (!vsi) 2091 return -EINVAL; 2092 2093 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2094 * mode. VLAN pruning will be enabled when the interface exits 2095 * promiscuous mode if any VLAN filters are active. 2096 */ 2097 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2098 return 0; 2099 2100 pf = vsi->back; 2101 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2102 if (!ctxt) 2103 return -ENOMEM; 2104 2105 ctxt->info = vsi->info; 2106 2107 if (ena) 2108 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2109 else 2110 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2111 2112 if (!vlan_promisc) 2113 ctxt->info.valid_sections = 2114 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2115 2116 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2117 if (status) { 2118 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2119 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2120 ice_stat_str(status), 2121 ice_aq_str(pf->hw.adminq.sq_last_status)); 2122 goto err_out; 2123 } 2124 2125 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2126 2127 kfree(ctxt); 2128 return 0; 2129 2130 err_out: 2131 kfree(ctxt); 2132 return -EIO; 2133 } 2134 2135 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2136 { 2137 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2138 2139 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2140 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2141 } 2142 2143 /** 2144 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2145 * @vsi: VSI to set the q_vectors register index on 2146 */ 2147 static int 2148 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2149 { 2150 u16 i; 2151 2152 if (!vsi || !vsi->q_vectors) 2153 return -EINVAL; 2154 2155 ice_for_each_q_vector(vsi, i) { 2156 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2157 2158 if (!q_vector) { 2159 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2160 i, vsi->vsi_num); 2161 goto clear_reg_idx; 2162 } 2163 2164 if (vsi->type == ICE_VSI_VF) { 2165 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2166 2167 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2168 } else { 2169 q_vector->reg_idx = 2170 q_vector->v_idx + vsi->base_vector; 2171 } 2172 } 2173 2174 return 0; 2175 2176 clear_reg_idx: 2177 ice_for_each_q_vector(vsi, i) { 2178 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2179 2180 if (q_vector) 2181 q_vector->reg_idx = 0; 2182 } 2183 2184 return -EINVAL; 2185 } 2186 2187 /** 2188 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2189 * @vsi: the VSI being configured 2190 * @tx: bool to determine Tx or Rx rule 2191 * @create: bool to determine create or remove Rule 2192 */ 2193 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2194 { 2195 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2196 enum ice_sw_fwd_act_type act); 2197 struct ice_pf *pf = vsi->back; 2198 enum ice_status status; 2199 struct device *dev; 2200 2201 dev = ice_pf_to_dev(pf); 2202 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2203 2204 if (tx) { 2205 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2206 ICE_DROP_PACKET); 2207 } else { 2208 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2209 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2210 create); 2211 } else { 2212 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2213 ICE_FWD_TO_VSI); 2214 } 2215 } 2216 2217 if (status) 2218 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2219 create ? "adding" : "removing", tx ? "TX" : "RX", 2220 vsi->vsi_num, ice_stat_str(status)); 2221 } 2222 2223 /** 2224 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2225 * @vsi: pointer to the VSI 2226 * 2227 * This function will allocate new scheduler aggregator now if needed and will 2228 * move specified VSI into it. 2229 */ 2230 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2231 { 2232 struct device *dev = ice_pf_to_dev(vsi->back); 2233 struct ice_agg_node *agg_node_iter = NULL; 2234 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2235 struct ice_agg_node *agg_node = NULL; 2236 int node_offset, max_agg_nodes = 0; 2237 struct ice_port_info *port_info; 2238 struct ice_pf *pf = vsi->back; 2239 u32 agg_node_id_start = 0; 2240 enum ice_status status; 2241 2242 /* create (as needed) scheduler aggregator node and move VSI into 2243 * corresponding aggregator node 2244 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2245 * - VF aggregator nodes will contain VF VSI 2246 */ 2247 port_info = pf->hw.port_info; 2248 if (!port_info) 2249 return; 2250 2251 switch (vsi->type) { 2252 case ICE_VSI_CTRL: 2253 case ICE_VSI_LB: 2254 case ICE_VSI_PF: 2255 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2256 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2257 agg_node_iter = &pf->pf_agg_node[0]; 2258 break; 2259 case ICE_VSI_VF: 2260 /* user can create 'n' VFs on a given PF, but since max children 2261 * per aggregator node can be only 64. Following code handles 2262 * aggregator(s) for VF VSIs, either selects a agg_node which 2263 * was already created provided num_vsis < 64, otherwise 2264 * select next available node, which will be created 2265 */ 2266 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2267 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2268 agg_node_iter = &pf->vf_agg_node[0]; 2269 break; 2270 default: 2271 /* other VSI type, handle later if needed */ 2272 dev_dbg(dev, "unexpected VSI type %s\n", 2273 ice_vsi_type_str(vsi->type)); 2274 return; 2275 } 2276 2277 /* find the appropriate aggregator node */ 2278 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2279 /* see if we can find space in previously created 2280 * node if num_vsis < 64, otherwise skip 2281 */ 2282 if (agg_node_iter->num_vsis && 2283 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2284 agg_node_iter++; 2285 continue; 2286 } 2287 2288 if (agg_node_iter->valid && 2289 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2290 agg_id = agg_node_iter->agg_id; 2291 agg_node = agg_node_iter; 2292 break; 2293 } 2294 2295 /* find unclaimed agg_id */ 2296 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2297 agg_id = node_offset + agg_node_id_start; 2298 agg_node = agg_node_iter; 2299 break; 2300 } 2301 /* move to next agg_node */ 2302 agg_node_iter++; 2303 } 2304 2305 if (!agg_node) 2306 return; 2307 2308 /* if selected aggregator node was not created, create it */ 2309 if (!agg_node->valid) { 2310 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2311 (u8)vsi->tc_cfg.ena_tc); 2312 if (status) { 2313 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2314 agg_id); 2315 return; 2316 } 2317 /* aggregator node is created, store the neeeded info */ 2318 agg_node->valid = true; 2319 agg_node->agg_id = agg_id; 2320 } 2321 2322 /* move VSI to corresponding aggregator node */ 2323 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2324 (u8)vsi->tc_cfg.ena_tc); 2325 if (status) { 2326 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2327 vsi->idx, agg_id); 2328 return; 2329 } 2330 2331 /* keep active children count for aggregator node */ 2332 agg_node->num_vsis++; 2333 2334 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2335 * to aggregator node 2336 */ 2337 vsi->agg_node = agg_node; 2338 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2339 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2340 vsi->agg_node->num_vsis); 2341 } 2342 2343 /** 2344 * ice_vsi_setup - Set up a VSI by a given type 2345 * @pf: board private structure 2346 * @pi: pointer to the port_info instance 2347 * @vsi_type: VSI type 2348 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2349 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2350 * fill-in ICE_INVAL_VFID as input. 2351 * 2352 * This allocates the sw VSI structure and its queue resources. 2353 * 2354 * Returns pointer to the successfully allocated and configured VSI sw struct on 2355 * success, NULL on failure. 2356 */ 2357 struct ice_vsi * 2358 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2359 enum ice_vsi_type vsi_type, u16 vf_id) 2360 { 2361 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2362 struct device *dev = ice_pf_to_dev(pf); 2363 enum ice_status status; 2364 struct ice_vsi *vsi; 2365 int ret, i; 2366 2367 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2368 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2369 else 2370 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2371 2372 if (!vsi) { 2373 dev_err(dev, "could not allocate VSI\n"); 2374 return NULL; 2375 } 2376 2377 vsi->port_info = pi; 2378 vsi->vsw = pf->first_sw; 2379 if (vsi->type == ICE_VSI_PF) 2380 vsi->ethtype = ETH_P_PAUSE; 2381 2382 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2383 vsi->vf_id = vf_id; 2384 2385 ice_alloc_fd_res(vsi); 2386 2387 if (ice_vsi_get_qs(vsi)) { 2388 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2389 vsi->idx); 2390 goto unroll_vsi_alloc; 2391 } 2392 2393 /* set RSS capabilities */ 2394 ice_vsi_set_rss_params(vsi); 2395 2396 /* set TC configuration */ 2397 ice_vsi_set_tc_cfg(vsi); 2398 2399 /* create the VSI */ 2400 ret = ice_vsi_init(vsi, true); 2401 if (ret) 2402 goto unroll_get_qs; 2403 2404 switch (vsi->type) { 2405 case ICE_VSI_CTRL: 2406 case ICE_VSI_PF: 2407 ret = ice_vsi_alloc_q_vectors(vsi); 2408 if (ret) 2409 goto unroll_vsi_init; 2410 2411 ret = ice_vsi_setup_vector_base(vsi); 2412 if (ret) 2413 goto unroll_alloc_q_vector; 2414 2415 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2416 if (ret) 2417 goto unroll_vector_base; 2418 2419 ret = ice_vsi_alloc_rings(vsi); 2420 if (ret) 2421 goto unroll_vector_base; 2422 2423 /* Always add VLAN ID 0 switch rule by default. This is needed 2424 * in order to allow all untagged and 0 tagged priority traffic 2425 * if Rx VLAN pruning is enabled. Also there are cases where we 2426 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2427 * so this handles those cases (i.e. adding the PF to a bridge 2428 * without the 8021q module loaded). 2429 */ 2430 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2431 if (ret) 2432 goto unroll_clear_rings; 2433 2434 ice_vsi_map_rings_to_vectors(vsi); 2435 2436 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2437 if (vsi->type != ICE_VSI_CTRL) 2438 /* Do not exit if configuring RSS had an issue, at 2439 * least receive traffic on first queue. Hence no 2440 * need to capture return value 2441 */ 2442 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2443 ice_vsi_cfg_rss_lut_key(vsi); 2444 ice_vsi_set_rss_flow_fld(vsi); 2445 } 2446 ice_init_arfs(vsi); 2447 break; 2448 case ICE_VSI_VF: 2449 /* VF driver will take care of creating netdev for this type and 2450 * map queues to vectors through Virtchnl, PF driver only 2451 * creates a VSI and corresponding structures for bookkeeping 2452 * purpose 2453 */ 2454 ret = ice_vsi_alloc_q_vectors(vsi); 2455 if (ret) 2456 goto unroll_vsi_init; 2457 2458 ret = ice_vsi_alloc_rings(vsi); 2459 if (ret) 2460 goto unroll_alloc_q_vector; 2461 2462 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2463 if (ret) 2464 goto unroll_vector_base; 2465 2466 /* Do not exit if configuring RSS had an issue, at least 2467 * receive traffic on first queue. Hence no need to capture 2468 * return value 2469 */ 2470 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2471 ice_vsi_cfg_rss_lut_key(vsi); 2472 ice_vsi_set_vf_rss_flow_fld(vsi); 2473 } 2474 break; 2475 case ICE_VSI_LB: 2476 ret = ice_vsi_alloc_rings(vsi); 2477 if (ret) 2478 goto unroll_vsi_init; 2479 break; 2480 default: 2481 /* clean up the resources and exit */ 2482 goto unroll_vsi_init; 2483 } 2484 2485 /* configure VSI nodes based on number of queues and TC's */ 2486 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2487 max_txqs[i] = vsi->alloc_txq; 2488 2489 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2490 max_txqs); 2491 if (status) { 2492 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2493 vsi->vsi_num, ice_stat_str(status)); 2494 goto unroll_clear_rings; 2495 } 2496 2497 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2498 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2499 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2500 * The rule is added once for PF VSI in order to create appropriate 2501 * recipe, since VSI/VSI list is ignored with drop action... 2502 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2503 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2504 * settings in the HW. 2505 */ 2506 if (!ice_is_safe_mode(pf)) 2507 if (vsi->type == ICE_VSI_PF) { 2508 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2509 ICE_DROP_PACKET); 2510 ice_cfg_sw_lldp(vsi, true, true); 2511 } 2512 2513 if (!vsi->agg_node) 2514 ice_set_agg_vsi(vsi); 2515 return vsi; 2516 2517 unroll_clear_rings: 2518 ice_vsi_clear_rings(vsi); 2519 unroll_vector_base: 2520 /* reclaim SW interrupts back to the common pool */ 2521 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2522 pf->num_avail_sw_msix += vsi->num_q_vectors; 2523 unroll_alloc_q_vector: 2524 ice_vsi_free_q_vectors(vsi); 2525 unroll_vsi_init: 2526 ice_vsi_delete(vsi); 2527 unroll_get_qs: 2528 ice_vsi_put_qs(vsi); 2529 unroll_vsi_alloc: 2530 if (vsi_type == ICE_VSI_VF) 2531 ice_enable_lag(pf->lag); 2532 ice_vsi_clear(vsi); 2533 2534 return NULL; 2535 } 2536 2537 /** 2538 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2539 * @vsi: the VSI being cleaned up 2540 */ 2541 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2542 { 2543 struct ice_pf *pf = vsi->back; 2544 struct ice_hw *hw = &pf->hw; 2545 u32 txq = 0; 2546 u32 rxq = 0; 2547 int i, q; 2548 2549 for (i = 0; i < vsi->num_q_vectors; i++) { 2550 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2551 2552 ice_write_intrl(q_vector, 0); 2553 for (q = 0; q < q_vector->num_ring_tx; q++) { 2554 ice_write_itr(&q_vector->tx, 0); 2555 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2556 if (ice_is_xdp_ena_vsi(vsi)) { 2557 u32 xdp_txq = txq + vsi->num_xdp_txq; 2558 2559 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2560 } 2561 txq++; 2562 } 2563 2564 for (q = 0; q < q_vector->num_ring_rx; q++) { 2565 ice_write_itr(&q_vector->rx, 0); 2566 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2567 rxq++; 2568 } 2569 } 2570 2571 ice_flush(hw); 2572 } 2573 2574 /** 2575 * ice_vsi_free_irq - Free the IRQ association with the OS 2576 * @vsi: the VSI being configured 2577 */ 2578 void ice_vsi_free_irq(struct ice_vsi *vsi) 2579 { 2580 struct ice_pf *pf = vsi->back; 2581 int base = vsi->base_vector; 2582 int i; 2583 2584 if (!vsi->q_vectors || !vsi->irqs_ready) 2585 return; 2586 2587 ice_vsi_release_msix(vsi); 2588 if (vsi->type == ICE_VSI_VF) 2589 return; 2590 2591 vsi->irqs_ready = false; 2592 ice_for_each_q_vector(vsi, i) { 2593 u16 vector = i + base; 2594 int irq_num; 2595 2596 irq_num = pf->msix_entries[vector].vector; 2597 2598 /* free only the irqs that were actually requested */ 2599 if (!vsi->q_vectors[i] || 2600 !(vsi->q_vectors[i]->num_ring_tx || 2601 vsi->q_vectors[i]->num_ring_rx)) 2602 continue; 2603 2604 /* clear the affinity notifier in the IRQ descriptor */ 2605 irq_set_affinity_notifier(irq_num, NULL); 2606 2607 /* clear the affinity_mask in the IRQ descriptor */ 2608 irq_set_affinity_hint(irq_num, NULL); 2609 synchronize_irq(irq_num); 2610 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2611 } 2612 } 2613 2614 /** 2615 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2616 * @vsi: the VSI having resources freed 2617 */ 2618 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2619 { 2620 int i; 2621 2622 if (!vsi->tx_rings) 2623 return; 2624 2625 ice_for_each_txq(vsi, i) 2626 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2627 ice_free_tx_ring(vsi->tx_rings[i]); 2628 } 2629 2630 /** 2631 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2632 * @vsi: the VSI having resources freed 2633 */ 2634 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2635 { 2636 int i; 2637 2638 if (!vsi->rx_rings) 2639 return; 2640 2641 ice_for_each_rxq(vsi, i) 2642 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2643 ice_free_rx_ring(vsi->rx_rings[i]); 2644 } 2645 2646 /** 2647 * ice_vsi_close - Shut down a VSI 2648 * @vsi: the VSI being shut down 2649 */ 2650 void ice_vsi_close(struct ice_vsi *vsi) 2651 { 2652 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2653 ice_down(vsi); 2654 2655 ice_vsi_free_irq(vsi); 2656 ice_vsi_free_tx_rings(vsi); 2657 ice_vsi_free_rx_rings(vsi); 2658 } 2659 2660 /** 2661 * ice_ena_vsi - resume a VSI 2662 * @vsi: the VSI being resume 2663 * @locked: is the rtnl_lock already held 2664 */ 2665 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2666 { 2667 int err = 0; 2668 2669 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2670 return 0; 2671 2672 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2673 2674 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2675 if (netif_running(vsi->netdev)) { 2676 if (!locked) 2677 rtnl_lock(); 2678 2679 err = ice_open_internal(vsi->netdev); 2680 2681 if (!locked) 2682 rtnl_unlock(); 2683 } 2684 } else if (vsi->type == ICE_VSI_CTRL) { 2685 err = ice_vsi_open_ctrl(vsi); 2686 } 2687 2688 return err; 2689 } 2690 2691 /** 2692 * ice_dis_vsi - pause a VSI 2693 * @vsi: the VSI being paused 2694 * @locked: is the rtnl_lock already held 2695 */ 2696 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2697 { 2698 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2699 return; 2700 2701 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2702 2703 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2704 if (netif_running(vsi->netdev)) { 2705 if (!locked) 2706 rtnl_lock(); 2707 2708 ice_vsi_close(vsi); 2709 2710 if (!locked) 2711 rtnl_unlock(); 2712 } else { 2713 ice_vsi_close(vsi); 2714 } 2715 } else if (vsi->type == ICE_VSI_CTRL) { 2716 ice_vsi_close(vsi); 2717 } 2718 } 2719 2720 /** 2721 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2722 * @vsi: the VSI being un-configured 2723 */ 2724 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2725 { 2726 int base = vsi->base_vector; 2727 struct ice_pf *pf = vsi->back; 2728 struct ice_hw *hw = &pf->hw; 2729 u32 val; 2730 int i; 2731 2732 /* disable interrupt causation from each queue */ 2733 if (vsi->tx_rings) { 2734 ice_for_each_txq(vsi, i) { 2735 if (vsi->tx_rings[i]) { 2736 u16 reg; 2737 2738 reg = vsi->tx_rings[i]->reg_idx; 2739 val = rd32(hw, QINT_TQCTL(reg)); 2740 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2741 wr32(hw, QINT_TQCTL(reg), val); 2742 } 2743 } 2744 } 2745 2746 if (vsi->rx_rings) { 2747 ice_for_each_rxq(vsi, i) { 2748 if (vsi->rx_rings[i]) { 2749 u16 reg; 2750 2751 reg = vsi->rx_rings[i]->reg_idx; 2752 val = rd32(hw, QINT_RQCTL(reg)); 2753 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2754 wr32(hw, QINT_RQCTL(reg), val); 2755 } 2756 } 2757 } 2758 2759 /* disable each interrupt */ 2760 ice_for_each_q_vector(vsi, i) { 2761 if (!vsi->q_vectors[i]) 2762 continue; 2763 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2764 } 2765 2766 ice_flush(hw); 2767 2768 /* don't call synchronize_irq() for VF's from the host */ 2769 if (vsi->type == ICE_VSI_VF) 2770 return; 2771 2772 ice_for_each_q_vector(vsi, i) 2773 synchronize_irq(pf->msix_entries[i + base].vector); 2774 } 2775 2776 /** 2777 * ice_napi_del - Remove NAPI handler for the VSI 2778 * @vsi: VSI for which NAPI handler is to be removed 2779 */ 2780 void ice_napi_del(struct ice_vsi *vsi) 2781 { 2782 int v_idx; 2783 2784 if (!vsi->netdev) 2785 return; 2786 2787 ice_for_each_q_vector(vsi, v_idx) 2788 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2789 } 2790 2791 /** 2792 * ice_vsi_release - Delete a VSI and free its resources 2793 * @vsi: the VSI being removed 2794 * 2795 * Returns 0 on success or < 0 on error 2796 */ 2797 int ice_vsi_release(struct ice_vsi *vsi) 2798 { 2799 struct ice_pf *pf; 2800 2801 if (!vsi->back) 2802 return -ENODEV; 2803 pf = vsi->back; 2804 2805 /* do not unregister while driver is in the reset recovery pending 2806 * state. Since reset/rebuild happens through PF service task workqueue, 2807 * it's not a good idea to unregister netdev that is associated to the 2808 * PF that is running the work queue items currently. This is done to 2809 * avoid check_flush_dependency() warning on this wq 2810 */ 2811 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2812 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2813 unregister_netdev(vsi->netdev); 2814 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2815 } 2816 2817 ice_devlink_destroy_port(vsi); 2818 2819 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2820 ice_rss_clean(vsi); 2821 2822 /* Disable VSI and free resources */ 2823 if (vsi->type != ICE_VSI_LB) 2824 ice_vsi_dis_irq(vsi); 2825 ice_vsi_close(vsi); 2826 2827 /* SR-IOV determines needed MSIX resources all at once instead of per 2828 * VSI since when VFs are spawned we know how many VFs there are and how 2829 * many interrupts each VF needs. SR-IOV MSIX resources are also 2830 * cleared in the same manner. 2831 */ 2832 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2833 struct ice_vf *vf; 2834 int i; 2835 2836 ice_for_each_vf(pf, i) { 2837 vf = &pf->vf[i]; 2838 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2839 break; 2840 } 2841 if (i == pf->num_alloc_vfs) { 2842 /* No other VFs left that have control VSI, reclaim SW 2843 * interrupts back to the common pool 2844 */ 2845 ice_free_res(pf->irq_tracker, vsi->base_vector, 2846 ICE_RES_VF_CTRL_VEC_ID); 2847 pf->num_avail_sw_msix += vsi->num_q_vectors; 2848 } 2849 } else if (vsi->type != ICE_VSI_VF) { 2850 /* reclaim SW interrupts back to the common pool */ 2851 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2852 pf->num_avail_sw_msix += vsi->num_q_vectors; 2853 } 2854 2855 if (!ice_is_safe_mode(pf)) { 2856 if (vsi->type == ICE_VSI_PF) { 2857 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2858 ICE_DROP_PACKET); 2859 ice_cfg_sw_lldp(vsi, true, false); 2860 /* The Rx rule will only exist to remove if the LLDP FW 2861 * engine is currently stopped 2862 */ 2863 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2864 ice_cfg_sw_lldp(vsi, false, false); 2865 } 2866 } 2867 2868 ice_fltr_remove_all(vsi); 2869 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2870 ice_vsi_delete(vsi); 2871 ice_vsi_free_q_vectors(vsi); 2872 2873 if (vsi->netdev) { 2874 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2875 unregister_netdev(vsi->netdev); 2876 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2877 } 2878 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2879 free_netdev(vsi->netdev); 2880 vsi->netdev = NULL; 2881 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2882 } 2883 } 2884 2885 if (vsi->type == ICE_VSI_VF && 2886 vsi->agg_node && vsi->agg_node->valid) 2887 vsi->agg_node->num_vsis--; 2888 ice_vsi_clear_rings(vsi); 2889 2890 ice_vsi_put_qs(vsi); 2891 2892 /* retain SW VSI data structure since it is needed to unregister and 2893 * free VSI netdev when PF is not in reset recovery pending state,\ 2894 * for ex: during rmmod. 2895 */ 2896 if (!ice_is_reset_in_progress(pf->state)) 2897 ice_vsi_clear(vsi); 2898 2899 return 0; 2900 } 2901 2902 /** 2903 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2904 * @vsi: VSI connected with q_vectors 2905 * @coalesce: array of struct with stored coalesce 2906 * 2907 * Returns array size. 2908 */ 2909 static int 2910 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2911 struct ice_coalesce_stored *coalesce) 2912 { 2913 int i; 2914 2915 ice_for_each_q_vector(vsi, i) { 2916 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2917 2918 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2919 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2920 coalesce[i].intrl = q_vector->intrl; 2921 2922 if (i < vsi->num_txq) 2923 coalesce[i].tx_valid = true; 2924 if (i < vsi->num_rxq) 2925 coalesce[i].rx_valid = true; 2926 } 2927 2928 return vsi->num_q_vectors; 2929 } 2930 2931 /** 2932 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2933 * @vsi: VSI connected with q_vectors 2934 * @coalesce: pointer to array of struct with stored coalesce 2935 * @size: size of coalesce array 2936 * 2937 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2938 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2939 * to default value. 2940 */ 2941 static void 2942 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2943 struct ice_coalesce_stored *coalesce, int size) 2944 { 2945 struct ice_ring_container *rc; 2946 int i; 2947 2948 if ((size && !coalesce) || !vsi) 2949 return; 2950 2951 /* There are a couple of cases that have to be handled here: 2952 * 1. The case where the number of queue vectors stays the same, but 2953 * the number of Tx or Rx rings changes (the first for loop) 2954 * 2. The case where the number of queue vectors increased (the 2955 * second for loop) 2956 */ 2957 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2958 /* There are 2 cases to handle here and they are the same for 2959 * both Tx and Rx: 2960 * if the entry was valid previously (coalesce[i].[tr]x_valid 2961 * and the loop variable is less than the number of rings 2962 * allocated, then write the previous values 2963 * 2964 * if the entry was not valid previously, but the number of 2965 * rings is less than are allocated (this means the number of 2966 * rings increased from previously), then write out the 2967 * values in the first element 2968 * 2969 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2970 * as there is no harm because the dynamic algorithm 2971 * will just overwrite. 2972 */ 2973 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2974 rc = &vsi->q_vectors[i]->rx; 2975 rc->itr_setting = coalesce[i].itr_rx; 2976 ice_write_itr(rc, rc->itr_setting); 2977 } else if (i < vsi->alloc_rxq) { 2978 rc = &vsi->q_vectors[i]->rx; 2979 rc->itr_setting = coalesce[0].itr_rx; 2980 ice_write_itr(rc, rc->itr_setting); 2981 } 2982 2983 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2984 rc = &vsi->q_vectors[i]->tx; 2985 rc->itr_setting = coalesce[i].itr_tx; 2986 ice_write_itr(rc, rc->itr_setting); 2987 } else if (i < vsi->alloc_txq) { 2988 rc = &vsi->q_vectors[i]->tx; 2989 rc->itr_setting = coalesce[0].itr_tx; 2990 ice_write_itr(rc, rc->itr_setting); 2991 } 2992 2993 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2994 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 2995 } 2996 2997 /* the number of queue vectors increased so write whatever is in 2998 * the first element 2999 */ 3000 for (; i < vsi->num_q_vectors; i++) { 3001 /* transmit */ 3002 rc = &vsi->q_vectors[i]->tx; 3003 rc->itr_setting = coalesce[0].itr_tx; 3004 ice_write_itr(rc, rc->itr_setting); 3005 3006 /* receive */ 3007 rc = &vsi->q_vectors[i]->rx; 3008 rc->itr_setting = coalesce[0].itr_rx; 3009 ice_write_itr(rc, rc->itr_setting); 3010 3011 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3012 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3013 } 3014 } 3015 3016 /** 3017 * ice_vsi_rebuild - Rebuild VSI after reset 3018 * @vsi: VSI to be rebuild 3019 * @init_vsi: is this an initialization or a reconfigure of the VSI 3020 * 3021 * Returns 0 on success and negative value on failure 3022 */ 3023 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3024 { 3025 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3026 struct ice_coalesce_stored *coalesce; 3027 int prev_num_q_vectors = 0; 3028 struct ice_vf *vf = NULL; 3029 enum ice_vsi_type vtype; 3030 enum ice_status status; 3031 struct ice_pf *pf; 3032 int ret, i; 3033 3034 if (!vsi) 3035 return -EINVAL; 3036 3037 pf = vsi->back; 3038 vtype = vsi->type; 3039 if (vtype == ICE_VSI_VF) 3040 vf = &pf->vf[vsi->vf_id]; 3041 3042 coalesce = kcalloc(vsi->num_q_vectors, 3043 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3044 if (!coalesce) 3045 return -ENOMEM; 3046 3047 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3048 3049 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3050 ice_vsi_free_q_vectors(vsi); 3051 3052 /* SR-IOV determines needed MSIX resources all at once instead of per 3053 * VSI since when VFs are spawned we know how many VFs there are and how 3054 * many interrupts each VF needs. SR-IOV MSIX resources are also 3055 * cleared in the same manner. 3056 */ 3057 if (vtype != ICE_VSI_VF) { 3058 /* reclaim SW interrupts back to the common pool */ 3059 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3060 pf->num_avail_sw_msix += vsi->num_q_vectors; 3061 vsi->base_vector = 0; 3062 } 3063 3064 if (ice_is_xdp_ena_vsi(vsi)) 3065 /* return value check can be skipped here, it always returns 3066 * 0 if reset is in progress 3067 */ 3068 ice_destroy_xdp_rings(vsi); 3069 ice_vsi_put_qs(vsi); 3070 ice_vsi_clear_rings(vsi); 3071 ice_vsi_free_arrays(vsi); 3072 if (vtype == ICE_VSI_VF) 3073 ice_vsi_set_num_qs(vsi, vf->vf_id); 3074 else 3075 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3076 3077 ret = ice_vsi_alloc_arrays(vsi); 3078 if (ret < 0) 3079 goto err_vsi; 3080 3081 ice_vsi_get_qs(vsi); 3082 3083 ice_alloc_fd_res(vsi); 3084 ice_vsi_set_tc_cfg(vsi); 3085 3086 /* Initialize VSI struct elements and create VSI in FW */ 3087 ret = ice_vsi_init(vsi, init_vsi); 3088 if (ret < 0) 3089 goto err_vsi; 3090 3091 switch (vtype) { 3092 case ICE_VSI_CTRL: 3093 case ICE_VSI_PF: 3094 ret = ice_vsi_alloc_q_vectors(vsi); 3095 if (ret) 3096 goto err_rings; 3097 3098 ret = ice_vsi_setup_vector_base(vsi); 3099 if (ret) 3100 goto err_vectors; 3101 3102 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3103 if (ret) 3104 goto err_vectors; 3105 3106 ret = ice_vsi_alloc_rings(vsi); 3107 if (ret) 3108 goto err_vectors; 3109 3110 ice_vsi_map_rings_to_vectors(vsi); 3111 if (ice_is_xdp_ena_vsi(vsi)) { 3112 vsi->num_xdp_txq = vsi->alloc_rxq; 3113 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3114 if (ret) 3115 goto err_vectors; 3116 } 3117 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3118 if (vtype != ICE_VSI_CTRL) 3119 /* Do not exit if configuring RSS had an issue, at 3120 * least receive traffic on first queue. Hence no 3121 * need to capture return value 3122 */ 3123 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3124 ice_vsi_cfg_rss_lut_key(vsi); 3125 break; 3126 case ICE_VSI_VF: 3127 ret = ice_vsi_alloc_q_vectors(vsi); 3128 if (ret) 3129 goto err_rings; 3130 3131 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3132 if (ret) 3133 goto err_vectors; 3134 3135 ret = ice_vsi_alloc_rings(vsi); 3136 if (ret) 3137 goto err_vectors; 3138 3139 break; 3140 default: 3141 break; 3142 } 3143 3144 /* configure VSI nodes based on number of queues and TC's */ 3145 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3146 max_txqs[i] = vsi->alloc_txq; 3147 3148 if (ice_is_xdp_ena_vsi(vsi)) 3149 max_txqs[i] += vsi->num_xdp_txq; 3150 } 3151 3152 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3153 max_txqs); 3154 if (status) { 3155 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3156 vsi->vsi_num, ice_stat_str(status)); 3157 if (init_vsi) { 3158 ret = -EIO; 3159 goto err_vectors; 3160 } else { 3161 return ice_schedule_reset(pf, ICE_RESET_PFR); 3162 } 3163 } 3164 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3165 kfree(coalesce); 3166 3167 return 0; 3168 3169 err_vectors: 3170 ice_vsi_free_q_vectors(vsi); 3171 err_rings: 3172 if (vsi->netdev) { 3173 vsi->current_netdev_flags = 0; 3174 unregister_netdev(vsi->netdev); 3175 free_netdev(vsi->netdev); 3176 vsi->netdev = NULL; 3177 } 3178 err_vsi: 3179 ice_vsi_clear(vsi); 3180 set_bit(ICE_RESET_FAILED, pf->state); 3181 kfree(coalesce); 3182 return ret; 3183 } 3184 3185 /** 3186 * ice_is_reset_in_progress - check for a reset in progress 3187 * @state: PF state field 3188 */ 3189 bool ice_is_reset_in_progress(unsigned long *state) 3190 { 3191 return test_bit(ICE_RESET_OICR_RECV, state) || 3192 test_bit(ICE_PFR_REQ, state) || 3193 test_bit(ICE_CORER_REQ, state) || 3194 test_bit(ICE_GLOBR_REQ, state); 3195 } 3196 3197 #ifdef CONFIG_DCB 3198 /** 3199 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3200 * @vsi: VSI being configured 3201 * @ctx: the context buffer returned from AQ VSI update command 3202 */ 3203 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3204 { 3205 vsi->info.mapping_flags = ctx->info.mapping_flags; 3206 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3207 sizeof(vsi->info.q_mapping)); 3208 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3209 sizeof(vsi->info.tc_mapping)); 3210 } 3211 3212 /** 3213 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3214 * @vsi: VSI to be configured 3215 * @ena_tc: TC bitmap 3216 * 3217 * VSI queues expected to be quiesced before calling this function 3218 */ 3219 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3220 { 3221 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3222 struct ice_pf *pf = vsi->back; 3223 struct ice_vsi_ctx *ctx; 3224 enum ice_status status; 3225 struct device *dev; 3226 int i, ret = 0; 3227 u8 num_tc = 0; 3228 3229 dev = ice_pf_to_dev(pf); 3230 3231 ice_for_each_traffic_class(i) { 3232 /* build bitmap of enabled TCs */ 3233 if (ena_tc & BIT(i)) 3234 num_tc++; 3235 /* populate max_txqs per TC */ 3236 max_txqs[i] = vsi->alloc_txq; 3237 } 3238 3239 vsi->tc_cfg.ena_tc = ena_tc; 3240 vsi->tc_cfg.numtc = num_tc; 3241 3242 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3243 if (!ctx) 3244 return -ENOMEM; 3245 3246 ctx->vf_num = 0; 3247 ctx->info = vsi->info; 3248 3249 ice_vsi_setup_q_map(vsi, ctx); 3250 3251 /* must to indicate which section of VSI context are being modified */ 3252 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3253 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3254 if (status) { 3255 dev_info(dev, "Failed VSI Update\n"); 3256 ret = -EIO; 3257 goto out; 3258 } 3259 3260 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3261 max_txqs); 3262 3263 if (status) { 3264 dev_err(dev, "VSI %d failed TC config, error %s\n", 3265 vsi->vsi_num, ice_stat_str(status)); 3266 ret = -EIO; 3267 goto out; 3268 } 3269 ice_vsi_update_q_map(vsi, ctx); 3270 vsi->info.valid_sections = 0; 3271 3272 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3273 out: 3274 kfree(ctx); 3275 return ret; 3276 } 3277 #endif /* CONFIG_DCB */ 3278 3279 /** 3280 * ice_update_ring_stats - Update ring statistics 3281 * @ring: ring to update 3282 * @pkts: number of processed packets 3283 * @bytes: number of processed bytes 3284 * 3285 * This function assumes that caller has acquired a u64_stats_sync lock. 3286 */ 3287 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3288 { 3289 ring->stats.bytes += bytes; 3290 ring->stats.pkts += pkts; 3291 } 3292 3293 /** 3294 * ice_update_tx_ring_stats - Update Tx ring specific counters 3295 * @tx_ring: ring to update 3296 * @pkts: number of processed packets 3297 * @bytes: number of processed bytes 3298 */ 3299 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3300 { 3301 u64_stats_update_begin(&tx_ring->syncp); 3302 ice_update_ring_stats(tx_ring, pkts, bytes); 3303 u64_stats_update_end(&tx_ring->syncp); 3304 } 3305 3306 /** 3307 * ice_update_rx_ring_stats - Update Rx ring specific counters 3308 * @rx_ring: ring to update 3309 * @pkts: number of processed packets 3310 * @bytes: number of processed bytes 3311 */ 3312 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3313 { 3314 u64_stats_update_begin(&rx_ring->syncp); 3315 ice_update_ring_stats(rx_ring, pkts, bytes); 3316 u64_stats_update_end(&rx_ring->syncp); 3317 } 3318 3319 /** 3320 * ice_status_to_errno - convert from enum ice_status to Linux errno 3321 * @err: ice_status value to convert 3322 */ 3323 int ice_status_to_errno(enum ice_status err) 3324 { 3325 switch (err) { 3326 case ICE_SUCCESS: 3327 return 0; 3328 case ICE_ERR_DOES_NOT_EXIST: 3329 return -ENOENT; 3330 case ICE_ERR_OUT_OF_RANGE: 3331 return -ENOTTY; 3332 case ICE_ERR_PARAM: 3333 return -EINVAL; 3334 case ICE_ERR_NO_MEMORY: 3335 return -ENOMEM; 3336 case ICE_ERR_MAX_LIMIT: 3337 return -EAGAIN; 3338 default: 3339 return -EINVAL; 3340 } 3341 } 3342 3343 /** 3344 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3345 * @sw: switch to check if its default forwarding VSI is free 3346 * 3347 * Return true if the default forwarding VSI is already being used, else returns 3348 * false signalling that it's available to use. 3349 */ 3350 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3351 { 3352 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3353 } 3354 3355 /** 3356 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3357 * @sw: switch for the default forwarding VSI to compare against 3358 * @vsi: VSI to compare against default forwarding VSI 3359 * 3360 * If this VSI passed in is the default forwarding VSI then return true, else 3361 * return false 3362 */ 3363 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3364 { 3365 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3366 } 3367 3368 /** 3369 * ice_set_dflt_vsi - set the default forwarding VSI 3370 * @sw: switch used to assign the default forwarding VSI 3371 * @vsi: VSI getting set as the default forwarding VSI on the switch 3372 * 3373 * If the VSI passed in is already the default VSI and it's enabled just return 3374 * success. 3375 * 3376 * If there is already a default VSI on the switch and it's enabled then return 3377 * -EEXIST since there can only be one default VSI per switch. 3378 * 3379 * Otherwise try to set the VSI passed in as the switch's default VSI and 3380 * return the result. 3381 */ 3382 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3383 { 3384 enum ice_status status; 3385 struct device *dev; 3386 3387 if (!sw || !vsi) 3388 return -EINVAL; 3389 3390 dev = ice_pf_to_dev(vsi->back); 3391 3392 /* the VSI passed in is already the default VSI */ 3393 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3394 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3395 vsi->vsi_num); 3396 return 0; 3397 } 3398 3399 /* another VSI is already the default VSI for this switch */ 3400 if (ice_is_dflt_vsi_in_use(sw)) { 3401 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3402 sw->dflt_vsi->vsi_num); 3403 return -EEXIST; 3404 } 3405 3406 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3407 if (status) { 3408 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3409 vsi->vsi_num, ice_stat_str(status)); 3410 return -EIO; 3411 } 3412 3413 sw->dflt_vsi = vsi; 3414 sw->dflt_vsi_ena = true; 3415 3416 return 0; 3417 } 3418 3419 /** 3420 * ice_clear_dflt_vsi - clear the default forwarding VSI 3421 * @sw: switch used to clear the default VSI 3422 * 3423 * If the switch has no default VSI or it's not enabled then return error. 3424 * 3425 * Otherwise try to clear the default VSI and return the result. 3426 */ 3427 int ice_clear_dflt_vsi(struct ice_sw *sw) 3428 { 3429 struct ice_vsi *dflt_vsi; 3430 enum ice_status status; 3431 struct device *dev; 3432 3433 if (!sw) 3434 return -EINVAL; 3435 3436 dev = ice_pf_to_dev(sw->pf); 3437 3438 dflt_vsi = sw->dflt_vsi; 3439 3440 /* there is no default VSI configured */ 3441 if (!ice_is_dflt_vsi_in_use(sw)) 3442 return -ENODEV; 3443 3444 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3445 ICE_FLTR_RX); 3446 if (status) { 3447 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3448 dflt_vsi->vsi_num, ice_stat_str(status)); 3449 return -EIO; 3450 } 3451 3452 sw->dflt_vsi = NULL; 3453 sw->dflt_vsi_ena = false; 3454 3455 return 0; 3456 } 3457 3458 /** 3459 * ice_set_link - turn on/off physical link 3460 * @vsi: VSI to modify physical link on 3461 * @ena: turn on/off physical link 3462 */ 3463 int ice_set_link(struct ice_vsi *vsi, bool ena) 3464 { 3465 struct device *dev = ice_pf_to_dev(vsi->back); 3466 struct ice_port_info *pi = vsi->port_info; 3467 struct ice_hw *hw = pi->hw; 3468 enum ice_status status; 3469 3470 if (vsi->type != ICE_VSI_PF) 3471 return -EINVAL; 3472 3473 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3474 3475 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3476 * this is not a fatal error, so print a warning message and return 3477 * a success code. Return an error if FW returns an error code other 3478 * than ICE_AQ_RC_EMODE 3479 */ 3480 if (status == ICE_ERR_AQ_ERROR) { 3481 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3482 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3483 (ena ? "ON" : "OFF"), ice_stat_str(status), 3484 ice_aq_str(hw->adminq.sq_last_status)); 3485 } else if (status) { 3486 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3487 (ena ? "ON" : "OFF"), ice_stat_str(status), 3488 ice_aq_str(hw->adminq.sq_last_status)); 3489 return -EIO; 3490 } 3491 3492 return 0; 3493 } 3494