1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete_from_hw - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ice_fltr_remove_all(vsi);
295 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 	if (!ctxt)
297 		return;
298 
299 	if (vsi->type == ICE_VSI_VF)
300 		ctxt->vf_num = vsi->vf->vf_id;
301 	ctxt->vsi_num = vsi->vsi_num;
302 
303 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304 
305 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 	if (status)
307 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 			vsi->vsi_num, status);
309 
310 	kfree(ctxt);
311 }
312 
313 /**
314  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315  * @vsi: pointer to VSI being cleared
316  */
317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 	struct ice_pf *pf = vsi->back;
320 	struct device *dev;
321 
322 	dev = ice_pf_to_dev(pf);
323 
324 	bitmap_free(vsi->af_xdp_zc_qps);
325 	vsi->af_xdp_zc_qps = NULL;
326 	/* free the ring and vector containers */
327 	devm_kfree(dev, vsi->q_vectors);
328 	vsi->q_vectors = NULL;
329 	devm_kfree(dev, vsi->tx_rings);
330 	vsi->tx_rings = NULL;
331 	devm_kfree(dev, vsi->rx_rings);
332 	vsi->rx_rings = NULL;
333 	devm_kfree(dev, vsi->txq_map);
334 	vsi->txq_map = NULL;
335 	devm_kfree(dev, vsi->rxq_map);
336 	vsi->rxq_map = NULL;
337 }
338 
339 /**
340  * ice_vsi_free_stats - Free the ring statistics structures
341  * @vsi: VSI pointer
342  */
343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 	struct ice_vsi_stats *vsi_stat;
346 	struct ice_pf *pf = vsi->back;
347 	int i;
348 
349 	if (vsi->type == ICE_VSI_CHNL)
350 		return;
351 	if (!pf->vsi_stats)
352 		return;
353 
354 	vsi_stat = pf->vsi_stats[vsi->idx];
355 	if (!vsi_stat)
356 		return;
357 
358 	ice_for_each_alloc_txq(vsi, i) {
359 		if (vsi_stat->tx_ring_stats[i]) {
360 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 		}
363 	}
364 
365 	ice_for_each_alloc_rxq(vsi, i) {
366 		if (vsi_stat->rx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	kfree(vsi_stat->tx_ring_stats);
373 	kfree(vsi_stat->rx_ring_stats);
374 	kfree(vsi_stat);
375 	pf->vsi_stats[vsi->idx] = NULL;
376 }
377 
378 /**
379  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380  * @vsi: VSI which is having stats allocated
381  */
382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 	struct ice_ring_stats **tx_ring_stats;
385 	struct ice_ring_stats **rx_ring_stats;
386 	struct ice_vsi_stats *vsi_stats;
387 	struct ice_pf *pf = vsi->back;
388 	u16 i;
389 
390 	vsi_stats = pf->vsi_stats[vsi->idx];
391 	tx_ring_stats = vsi_stats->tx_ring_stats;
392 	rx_ring_stats = vsi_stats->rx_ring_stats;
393 
394 	/* Allocate Tx ring stats */
395 	ice_for_each_alloc_txq(vsi, i) {
396 		struct ice_ring_stats *ring_stats;
397 		struct ice_tx_ring *ring;
398 
399 		ring = vsi->tx_rings[i];
400 		ring_stats = tx_ring_stats[i];
401 
402 		if (!ring_stats) {
403 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 			if (!ring_stats)
405 				goto err_out;
406 
407 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 		}
409 
410 		ring->ring_stats = ring_stats;
411 	}
412 
413 	/* Allocate Rx ring stats */
414 	ice_for_each_alloc_rxq(vsi, i) {
415 		struct ice_ring_stats *ring_stats;
416 		struct ice_rx_ring *ring;
417 
418 		ring = vsi->rx_rings[i];
419 		ring_stats = rx_ring_stats[i];
420 
421 		if (!ring_stats) {
422 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 			if (!ring_stats)
424 				goto err_out;
425 
426 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 		}
428 
429 		ring->ring_stats = ring_stats;
430 	}
431 
432 	return 0;
433 
434 err_out:
435 	ice_vsi_free_stats(vsi);
436 	return -ENOMEM;
437 }
438 
439 /**
440  * ice_vsi_free - clean up and deallocate the provided VSI
441  * @vsi: pointer to VSI being cleared
442  *
443  * This deallocates the VSI's queue resources, removes it from the PF's
444  * VSI array if necessary, and deallocates the VSI
445  */
446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = NULL;
449 	struct device *dev;
450 
451 	if (!vsi || !vsi->back)
452 		return;
453 
454 	pf = vsi->back;
455 	dev = ice_pf_to_dev(pf);
456 
457 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 		return;
460 	}
461 
462 	mutex_lock(&pf->sw_mutex);
463 	/* updates the PF for this cleared VSI */
464 
465 	pf->vsi[vsi->idx] = NULL;
466 	pf->next_vsi = vsi->idx;
467 
468 	ice_vsi_free_stats(vsi);
469 	ice_vsi_free_arrays(vsi);
470 	mutex_unlock(&pf->sw_mutex);
471 	devm_kfree(dev, vsi);
472 }
473 
474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 	ice_vsi_delete_from_hw(vsi);
477 	ice_vsi_free(vsi);
478 }
479 
480 /**
481  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482  * @irq: interrupt number
483  * @data: pointer to a q_vector
484  */
485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488 
489 	if (!q_vector->tx.tx_ring)
490 		return IRQ_HANDLED;
491 
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * ice_msix_clean_rings - MSIX mode Interrupt Handler
501  * @irq: interrupt number
502  * @data: pointer to a q_vector
503  */
504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507 
508 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 		return IRQ_HANDLED;
510 
511 	q_vector->total_events++;
512 
513 	napi_schedule(&q_vector->napi);
514 
515 	return IRQ_HANDLED;
516 }
517 
518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 	struct ice_pf *pf = q_vector->vsi->back;
522 	struct ice_vf *vf;
523 	unsigned int bkt;
524 
525 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 		return IRQ_HANDLED;
527 
528 	rcu_read_lock();
529 	ice_for_each_vf_rcu(pf, bkt, vf)
530 		napi_schedule(&vf->repr->q_vector->napi);
531 	rcu_read_unlock();
532 
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538  * @vsi: VSI pointer
539  */
540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 	struct ice_vsi_stats *vsi_stat;
543 	struct ice_pf *pf = vsi->back;
544 
545 	if (vsi->type == ICE_VSI_CHNL)
546 		return 0;
547 	if (!pf->vsi_stats)
548 		return -ENOENT;
549 
550 	if (pf->vsi_stats[vsi->idx])
551 	/* realloc will happen in rebuild path */
552 		return 0;
553 
554 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 	if (!vsi_stat)
556 		return -ENOMEM;
557 
558 	vsi_stat->tx_ring_stats =
559 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 			GFP_KERNEL);
561 	if (!vsi_stat->tx_ring_stats)
562 		goto err_alloc_tx;
563 
564 	vsi_stat->rx_ring_stats =
565 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 			GFP_KERNEL);
567 	if (!vsi_stat->rx_ring_stats)
568 		goto err_alloc_rx;
569 
570 	pf->vsi_stats[vsi->idx] = vsi_stat;
571 
572 	return 0;
573 
574 err_alloc_rx:
575 	kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 	kfree(vsi_stat->tx_ring_stats);
578 	kfree(vsi_stat);
579 	pf->vsi_stats[vsi->idx] = NULL;
580 	return -ENOMEM;
581 }
582 
583 /**
584  * ice_vsi_alloc_def - set default values for already allocated VSI
585  * @vsi: ptr to VSI
586  * @ch: ptr to channel
587  */
588 static int
589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 	if (vsi->type != ICE_VSI_CHNL) {
592 		ice_vsi_set_num_qs(vsi);
593 		if (ice_vsi_alloc_arrays(vsi))
594 			return -ENOMEM;
595 	}
596 
597 	switch (vsi->type) {
598 	case ICE_VSI_SWITCHDEV_CTRL:
599 		/* Setup eswitch MSIX irq handler for VSI */
600 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 		break;
602 	case ICE_VSI_PF:
603 		/* Setup default MSIX irq handler for VSI */
604 		vsi->irq_handler = ice_msix_clean_rings;
605 		break;
606 	case ICE_VSI_CTRL:
607 		/* Setup ctrl VSI MSIX irq handler */
608 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 		break;
610 	case ICE_VSI_CHNL:
611 		if (!ch)
612 			return -EINVAL;
613 
614 		vsi->num_rxq = ch->num_rxq;
615 		vsi->num_txq = ch->num_txq;
616 		vsi->next_base_q = ch->base_q;
617 		break;
618 	case ICE_VSI_VF:
619 	case ICE_VSI_LB:
620 		break;
621 	default:
622 		ice_vsi_free_arrays(vsi);
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631  * @pf: board private structure
632  *
633  * Reserves a VSI index from the PF and allocates an empty VSI structure
634  * without a type. The VSI structure must later be initialized by calling
635  * ice_vsi_cfg().
636  *
637  * returns a pointer to a VSI on success, NULL on failure.
638  */
639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 	struct device *dev = ice_pf_to_dev(pf);
642 	struct ice_vsi *vsi = NULL;
643 
644 	/* Need to protect the allocation of the VSIs at the PF level */
645 	mutex_lock(&pf->sw_mutex);
646 
647 	/* If we have already allocated our maximum number of VSIs,
648 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 	 * is available to be populated
650 	 */
651 	if (pf->next_vsi == ICE_NO_VSI) {
652 		dev_dbg(dev, "out of VSI slots!\n");
653 		goto unlock_pf;
654 	}
655 
656 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 	if (!vsi)
658 		goto unlock_pf;
659 
660 	vsi->back = pf;
661 	set_bit(ICE_VSI_DOWN, vsi->state);
662 
663 	/* fill slot and make note of the index */
664 	vsi->idx = pf->next_vsi;
665 	pf->vsi[pf->next_vsi] = vsi;
666 
667 	/* prepare pf->next_vsi for next use */
668 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 					 pf->next_vsi);
670 
671 unlock_pf:
672 	mutex_unlock(&pf->sw_mutex);
673 	return vsi;
674 }
675 
676 /**
677  * ice_alloc_fd_res - Allocate FD resource for a VSI
678  * @vsi: pointer to the ice_vsi
679  *
680  * This allocates the FD resources
681  *
682  * Returns 0 on success, -EPERM on no-op or -EIO on failure
683  */
684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 	struct ice_pf *pf = vsi->back;
687 	u32 g_val, b_val;
688 
689 	/* Flow Director filters are only allocated/assigned to the PF VSI or
690 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 	 * add/delete filters so resources are not allocated to it
692 	 */
693 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 		return -EPERM;
695 
696 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 	      vsi->type == ICE_VSI_CHNL))
698 		return -EPERM;
699 
700 	/* FD filters from guaranteed pool per VSI */
701 	g_val = pf->hw.func_caps.fd_fltr_guar;
702 	if (!g_val)
703 		return -EPERM;
704 
705 	/* FD filters from best effort pool */
706 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 	if (!b_val)
708 		return -EPERM;
709 
710 	/* PF main VSI gets only 64 FD resources from guaranteed pool
711 	 * when ADQ is configured.
712 	 */
713 #define ICE_PF_VSI_GFLTR	64
714 
715 	/* determine FD filter resources per VSI from shared(best effort) and
716 	 * dedicated pool
717 	 */
718 	if (vsi->type == ICE_VSI_PF) {
719 		vsi->num_gfltr = g_val;
720 		/* if MQPRIO is configured, main VSI doesn't get all FD
721 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 		 */
723 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 			if (g_val < ICE_PF_VSI_GFLTR)
725 				return -EPERM;
726 			/* allow bare minimum entries for PF VSI */
727 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 		}
729 
730 		/* each VSI gets same "best_effort" quota */
731 		vsi->num_bfltr = b_val;
732 	} else if (vsi->type == ICE_VSI_VF) {
733 		vsi->num_gfltr = 0;
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else {
738 		struct ice_vsi *main_vsi;
739 		int numtc;
740 
741 		main_vsi = ice_get_main_vsi(pf);
742 		if (!main_vsi)
743 			return -EPERM;
744 
745 		if (!main_vsi->all_numtc)
746 			return -EINVAL;
747 
748 		/* figure out ADQ numtc */
749 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750 
751 		/* only one TC but still asking resources for channels,
752 		 * invalid config
753 		 */
754 		if (numtc < ICE_CHNL_START_TC)
755 			return -EPERM;
756 
757 		g_val -= ICE_PF_VSI_GFLTR;
758 		/* channel VSIs gets equal share from guaranteed pool */
759 		vsi->num_gfltr = g_val / numtc;
760 
761 		/* each VSI gets same "best_effort" quota */
762 		vsi->num_bfltr = b_val;
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ice_vsi_get_qs - Assign queues from PF to VSI
770  * @vsi: the VSI to assign queues to
771  *
772  * Returns 0 on success and a negative value on error
773  */
774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 	struct ice_pf *pf = vsi->back;
777 	struct ice_qs_cfg tx_qs_cfg = {
778 		.qs_mutex = &pf->avail_q_mutex,
779 		.pf_map = pf->avail_txqs,
780 		.pf_map_size = pf->max_pf_txqs,
781 		.q_count = vsi->alloc_txq,
782 		.scatter_count = ICE_MAX_SCATTER_TXQS,
783 		.vsi_map = vsi->txq_map,
784 		.vsi_map_offset = 0,
785 		.mapping_mode = ICE_VSI_MAP_CONTIG
786 	};
787 	struct ice_qs_cfg rx_qs_cfg = {
788 		.qs_mutex = &pf->avail_q_mutex,
789 		.pf_map = pf->avail_rxqs,
790 		.pf_map_size = pf->max_pf_rxqs,
791 		.q_count = vsi->alloc_rxq,
792 		.scatter_count = ICE_MAX_SCATTER_RXQS,
793 		.vsi_map = vsi->rxq_map,
794 		.vsi_map_offset = 0,
795 		.mapping_mode = ICE_VSI_MAP_CONTIG
796 	};
797 	int ret;
798 
799 	if (vsi->type == ICE_VSI_CHNL)
800 		return 0;
801 
802 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 	if (ret)
804 		return ret;
805 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806 
807 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811 
812 	return 0;
813 }
814 
815 /**
816  * ice_vsi_put_qs - Release queues from VSI to PF
817  * @vsi: the VSI that is going to release queues
818  */
819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 	struct ice_pf *pf = vsi->back;
822 	int i;
823 
824 	mutex_lock(&pf->avail_q_mutex);
825 
826 	ice_for_each_alloc_txq(vsi, i) {
827 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 	}
830 
831 	ice_for_each_alloc_rxq(vsi, i) {
832 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	mutex_unlock(&pf->avail_q_mutex);
837 }
838 
839 /**
840  * ice_is_safe_mode
841  * @pf: pointer to the PF struct
842  *
843  * returns true if driver is in safe mode, false otherwise
844  */
845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849 
850 /**
851  * ice_is_rdma_ena
852  * @pf: pointer to the PF struct
853  *
854  * returns true if RDMA is currently supported, false otherwise
855  */
856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860 
861 /**
862  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863  * @vsi: the VSI being cleaned up
864  *
865  * This function deletes RSS input set for all flows that were configured
866  * for this VSI
867  */
868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	int status;
872 
873 	if (ice_is_safe_mode(pf))
874 		return;
875 
876 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 	if (status)
878 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 			vsi->vsi_num, status);
880 }
881 
882 /**
883  * ice_rss_clean - Delete RSS related VSI structures and configuration
884  * @vsi: the VSI being removed
885  */
886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 	struct ice_pf *pf = vsi->back;
889 	struct device *dev;
890 
891 	dev = ice_pf_to_dev(pf);
892 
893 	devm_kfree(dev, vsi->rss_hkey_user);
894 	devm_kfree(dev, vsi->rss_lut_user);
895 
896 	ice_vsi_clean_rss_flow_fld(vsi);
897 	/* remove RSS replay list */
898 	if (!ice_is_safe_mode(pf))
899 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901 
902 /**
903  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904  * @vsi: the VSI being configured
905  */
906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 	struct ice_hw_common_caps *cap;
909 	struct ice_pf *pf = vsi->back;
910 	u16 max_rss_size;
911 
912 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 		vsi->rss_size = 1;
914 		return;
915 	}
916 
917 	cap = &pf->hw.func_caps.common_cap;
918 	max_rss_size = BIT(cap->rss_table_entry_width);
919 	switch (vsi->type) {
920 	case ICE_VSI_CHNL:
921 	case ICE_VSI_PF:
922 		/* PF VSI will inherit RSS instance of PF */
923 		vsi->rss_table_size = (u16)cap->rss_table_size;
924 		if (vsi->type == ICE_VSI_CHNL)
925 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 		else
927 			vsi->rss_size = min_t(u16, num_online_cpus(),
928 					      max_rss_size);
929 		vsi->rss_lut_type = ICE_LUT_PF;
930 		break;
931 	case ICE_VSI_SWITCHDEV_CTRL:
932 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_VSI;
935 		break;
936 	case ICE_VSI_VF:
937 		/* VF VSI will get a small RSS table.
938 		 * For VSI_LUT, LUT size should be set to 64 bytes.
939 		 */
940 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 		vsi->rss_lut_type = ICE_LUT_VSI;
943 		break;
944 	case ICE_VSI_LB:
945 		break;
946 	default:
947 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 			ice_vsi_type_str(vsi->type));
949 		break;
950 	}
951 }
952 
953 /**
954  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955  * @hw: HW structure used to determine the VLAN mode of the device
956  * @ctxt: the VSI context being set
957  *
958  * This initializes a default VSI context for all sections except the Queues.
959  */
960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 	u32 table = 0;
963 
964 	memset(&ctxt->info, 0, sizeof(ctxt->info));
965 	/* VSI's should be allocated from shared pool */
966 	ctxt->alloc_from_pool = true;
967 	/* Src pruning enabled by default */
968 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 	/* Traffic from VSI can be sent to LAN */
970 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 	/* allow all untagged/tagged packets by default on Tx */
972 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 	 *
978 	 * DVM - leave inner VLAN in packet by default
979 	 */
980 	if (ice_is_dvm_ena(hw)) {
981 		ctxt->info.inner_vlan_flags |=
982 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
983 		ctxt->info.outer_vlan_flags =
984 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
985 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
986 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
987 		ctxt->info.outer_vlan_flags |=
988 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
989 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
990 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
993 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
994 	}
995 	/* Have 1:1 UP mapping for both ingress/egress tables */
996 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
997 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
998 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
999 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1000 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1001 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1002 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1003 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1004 	ctxt->info.ingress_table = cpu_to_le32(table);
1005 	ctxt->info.egress_table = cpu_to_le32(table);
1006 	/* Have 1:1 UP mapping for outer to inner UP table */
1007 	ctxt->info.outer_up_table = cpu_to_le32(table);
1008 	/* No Outer tag support outer_tag_flags remains to zero */
1009 }
1010 
1011 /**
1012  * ice_vsi_setup_q_map - Setup a VSI queue map
1013  * @vsi: the VSI being configured
1014  * @ctxt: VSI context structure
1015  */
1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1017 {
1018 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1019 	u16 num_txq_per_tc, num_rxq_per_tc;
1020 	u16 qcount_tx = vsi->alloc_txq;
1021 	u16 qcount_rx = vsi->alloc_rxq;
1022 	u8 netdev_tc = 0;
1023 	int i;
1024 
1025 	if (!vsi->tc_cfg.numtc) {
1026 		/* at least TC0 should be enabled by default */
1027 		vsi->tc_cfg.numtc = 1;
1028 		vsi->tc_cfg.ena_tc = 1;
1029 	}
1030 
1031 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1032 	if (!num_rxq_per_tc)
1033 		num_rxq_per_tc = 1;
1034 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1035 	if (!num_txq_per_tc)
1036 		num_txq_per_tc = 1;
1037 
1038 	/* find the (rounded up) power-of-2 of qcount */
1039 	pow = (u16)order_base_2(num_rxq_per_tc);
1040 
1041 	/* TC mapping is a function of the number of Rx queues assigned to the
1042 	 * VSI for each traffic class and the offset of these queues.
1043 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1044 	 * queues allocated to TC0. No:of queues is a power-of-2.
1045 	 *
1046 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1047 	 * queue, this way, traffic for the given TC will be sent to the default
1048 	 * queue.
1049 	 *
1050 	 * Setup number and offset of Rx queues for all TCs for the VSI
1051 	 */
1052 	ice_for_each_traffic_class(i) {
1053 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1054 			/* TC is not enabled */
1055 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1056 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1057 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1058 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1059 			ctxt->info.tc_mapping[i] = 0;
1060 			continue;
1061 		}
1062 
1063 		/* TC is enabled */
1064 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1065 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1066 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1067 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1068 
1069 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1070 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1071 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1072 			 ICE_AQ_VSI_TC_Q_NUM_M);
1073 		offset += num_rxq_per_tc;
1074 		tx_count += num_txq_per_tc;
1075 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1076 	}
1077 
1078 	/* if offset is non-zero, means it is calculated correctly based on
1079 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1080 	 * be correct and non-zero because it is based off - VSI's
1081 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1082 	 * at least 1)
1083 	 */
1084 	if (offset)
1085 		rx_count = offset;
1086 	else
1087 		rx_count = num_rxq_per_tc;
1088 
1089 	if (rx_count > vsi->alloc_rxq) {
1090 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1091 			rx_count, vsi->alloc_rxq);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (tx_count > vsi->alloc_txq) {
1096 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1097 			tx_count, vsi->alloc_txq);
1098 		return -EINVAL;
1099 	}
1100 
1101 	vsi->num_txq = tx_count;
1102 	vsi->num_rxq = rx_count;
1103 
1104 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1105 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1106 		/* since there is a chance that num_rxq could have been changed
1107 		 * in the above for loop, make num_txq equal to num_rxq.
1108 		 */
1109 		vsi->num_txq = vsi->num_rxq;
1110 	}
1111 
1112 	/* Rx queue mapping */
1113 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1114 	/* q_mapping buffer holds the info for the first queue allocated for
1115 	 * this VSI in the PF space and also the number of queues associated
1116 	 * with this VSI.
1117 	 */
1118 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1119 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1126  * @ctxt: the VSI context being set
1127  * @vsi: the VSI being configured
1128  */
1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1130 {
1131 	u8 dflt_q_group, dflt_q_prio;
1132 	u16 dflt_q, report_q, val;
1133 
1134 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1135 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1136 		return;
1137 
1138 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1139 	ctxt->info.valid_sections |= cpu_to_le16(val);
1140 	dflt_q = 0;
1141 	dflt_q_group = 0;
1142 	report_q = 0;
1143 	dflt_q_prio = 0;
1144 
1145 	/* enable flow director filtering/programming */
1146 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1147 	ctxt->info.fd_options = cpu_to_le16(val);
1148 	/* max of allocated flow director filters */
1149 	ctxt->info.max_fd_fltr_dedicated =
1150 			cpu_to_le16(vsi->num_gfltr);
1151 	/* max of shared flow director filters any VSI may program */
1152 	ctxt->info.max_fd_fltr_shared =
1153 			cpu_to_le16(vsi->num_bfltr);
1154 	/* default queue index within the VSI of the default FD */
1155 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1156 	       ICE_AQ_VSI_FD_DEF_Q_M);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1159 		ICE_AQ_VSI_FD_DEF_GRP_M);
1160 	ctxt->info.fd_def_q = cpu_to_le16(val);
1161 	/* queue index on which FD filter completion is reported */
1162 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1163 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1164 	/* priority of the default qindex action */
1165 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1166 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1167 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1168 }
1169 
1170 /**
1171  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1172  * @ctxt: the VSI context being set
1173  * @vsi: the VSI being configured
1174  */
1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1176 {
1177 	u8 lut_type, hash_type;
1178 	struct device *dev;
1179 	struct ice_pf *pf;
1180 
1181 	pf = vsi->back;
1182 	dev = ice_pf_to_dev(pf);
1183 
1184 	switch (vsi->type) {
1185 	case ICE_VSI_CHNL:
1186 	case ICE_VSI_PF:
1187 		/* PF VSI will inherit RSS instance of PF */
1188 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1189 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1190 		break;
1191 	case ICE_VSI_VF:
1192 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1194 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1195 		break;
1196 	default:
1197 		dev_dbg(dev, "Unsupported VSI type %s\n",
1198 			ice_vsi_type_str(vsi->type));
1199 		return;
1200 	}
1201 
1202 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1203 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1204 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1205 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1206 }
1207 
1208 static void
1209 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1210 {
1211 	struct ice_pf *pf = vsi->back;
1212 	u16 qcount, qmap;
1213 	u8 offset = 0;
1214 	int pow;
1215 
1216 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1217 
1218 	pow = order_base_2(qcount);
1219 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1220 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1221 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1222 		   ICE_AQ_VSI_TC_Q_NUM_M);
1223 
1224 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1225 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1226 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1227 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1228 }
1229 
1230 /**
1231  * ice_vsi_init - Create and initialize a VSI
1232  * @vsi: the VSI being configured
1233  * @vsi_flags: VSI configuration flags
1234  *
1235  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1236  * reconfigure an existing context.
1237  *
1238  * This initializes a VSI context depending on the VSI type to be added and
1239  * passes it down to the add_vsi aq command to create a new VSI.
1240  */
1241 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1242 {
1243 	struct ice_pf *pf = vsi->back;
1244 	struct ice_hw *hw = &pf->hw;
1245 	struct ice_vsi_ctx *ctxt;
1246 	struct device *dev;
1247 	int ret = 0;
1248 
1249 	dev = ice_pf_to_dev(pf);
1250 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1251 	if (!ctxt)
1252 		return -ENOMEM;
1253 
1254 	switch (vsi->type) {
1255 	case ICE_VSI_CTRL:
1256 	case ICE_VSI_LB:
1257 	case ICE_VSI_PF:
1258 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1259 		break;
1260 	case ICE_VSI_SWITCHDEV_CTRL:
1261 	case ICE_VSI_CHNL:
1262 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1263 		break;
1264 	case ICE_VSI_VF:
1265 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1266 		/* VF number here is the absolute VF number (0-255) */
1267 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1268 		break;
1269 	default:
1270 		ret = -ENODEV;
1271 		goto out;
1272 	}
1273 
1274 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1275 	 * prune enabled
1276 	 */
1277 	if (vsi->type == ICE_VSI_CHNL) {
1278 		struct ice_vsi *main_vsi;
1279 
1280 		main_vsi = ice_get_main_vsi(pf);
1281 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1282 			ctxt->info.sw_flags2 |=
1283 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1284 		else
1285 			ctxt->info.sw_flags2 &=
1286 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1287 	}
1288 
1289 	ice_set_dflt_vsi_ctx(hw, ctxt);
1290 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1291 		ice_set_fd_vsi_ctx(ctxt, vsi);
1292 	/* if the switch is in VEB mode, allow VSI loopback */
1293 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1294 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1295 
1296 	/* Set LUT type and HASH type if RSS is enabled */
1297 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1298 	    vsi->type != ICE_VSI_CTRL) {
1299 		ice_set_rss_vsi_ctx(ctxt, vsi);
1300 		/* if updating VSI context, make sure to set valid_section:
1301 		 * to indicate which section of VSI context being updated
1302 		 */
1303 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1304 			ctxt->info.valid_sections |=
1305 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1306 	}
1307 
1308 	ctxt->info.sw_id = vsi->port_info->sw_id;
1309 	if (vsi->type == ICE_VSI_CHNL) {
1310 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1311 	} else {
1312 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1313 		if (ret)
1314 			goto out;
1315 
1316 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1317 			/* means VSI being updated */
1318 			/* must to indicate which section of VSI context are
1319 			 * being modified
1320 			 */
1321 			ctxt->info.valid_sections |=
1322 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1323 	}
1324 
1325 	/* Allow control frames out of main VSI */
1326 	if (vsi->type == ICE_VSI_PF) {
1327 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1328 		ctxt->info.valid_sections |=
1329 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1330 	}
1331 
1332 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1333 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1334 		if (ret) {
1335 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1336 			ret = -EIO;
1337 			goto out;
1338 		}
1339 	} else {
1340 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1341 		if (ret) {
1342 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1343 			ret = -EIO;
1344 			goto out;
1345 		}
1346 	}
1347 
1348 	/* keep context for update VSI operations */
1349 	vsi->info = ctxt->info;
1350 
1351 	/* record VSI number returned */
1352 	vsi->vsi_num = ctxt->vsi_num;
1353 
1354 out:
1355 	kfree(ctxt);
1356 	return ret;
1357 }
1358 
1359 /**
1360  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1361  * @vsi: the VSI having rings deallocated
1362  */
1363 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1364 {
1365 	int i;
1366 
1367 	/* Avoid stale references by clearing map from vector to ring */
1368 	if (vsi->q_vectors) {
1369 		ice_for_each_q_vector(vsi, i) {
1370 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1371 
1372 			if (q_vector) {
1373 				q_vector->tx.tx_ring = NULL;
1374 				q_vector->rx.rx_ring = NULL;
1375 			}
1376 		}
1377 	}
1378 
1379 	if (vsi->tx_rings) {
1380 		ice_for_each_alloc_txq(vsi, i) {
1381 			if (vsi->tx_rings[i]) {
1382 				kfree_rcu(vsi->tx_rings[i], rcu);
1383 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1384 			}
1385 		}
1386 	}
1387 	if (vsi->rx_rings) {
1388 		ice_for_each_alloc_rxq(vsi, i) {
1389 			if (vsi->rx_rings[i]) {
1390 				kfree_rcu(vsi->rx_rings[i], rcu);
1391 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1392 			}
1393 		}
1394 	}
1395 }
1396 
1397 /**
1398  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1399  * @vsi: VSI which is having rings allocated
1400  */
1401 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1402 {
1403 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1404 	struct ice_pf *pf = vsi->back;
1405 	struct device *dev;
1406 	u16 i;
1407 
1408 	dev = ice_pf_to_dev(pf);
1409 	/* Allocate Tx rings */
1410 	ice_for_each_alloc_txq(vsi, i) {
1411 		struct ice_tx_ring *ring;
1412 
1413 		/* allocate with kzalloc(), free with kfree_rcu() */
1414 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1415 
1416 		if (!ring)
1417 			goto err_out;
1418 
1419 		ring->q_index = i;
1420 		ring->reg_idx = vsi->txq_map[i];
1421 		ring->vsi = vsi;
1422 		ring->tx_tstamps = &pf->ptp.port.tx;
1423 		ring->dev = dev;
1424 		ring->count = vsi->num_tx_desc;
1425 		ring->txq_teid = ICE_INVAL_TEID;
1426 		if (dvm_ena)
1427 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1428 		else
1429 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1430 		WRITE_ONCE(vsi->tx_rings[i], ring);
1431 	}
1432 
1433 	/* Allocate Rx rings */
1434 	ice_for_each_alloc_rxq(vsi, i) {
1435 		struct ice_rx_ring *ring;
1436 
1437 		/* allocate with kzalloc(), free with kfree_rcu() */
1438 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1439 		if (!ring)
1440 			goto err_out;
1441 
1442 		ring->q_index = i;
1443 		ring->reg_idx = vsi->rxq_map[i];
1444 		ring->vsi = vsi;
1445 		ring->netdev = vsi->netdev;
1446 		ring->dev = dev;
1447 		ring->count = vsi->num_rx_desc;
1448 		ring->cached_phctime = pf->ptp.cached_phc_time;
1449 		WRITE_ONCE(vsi->rx_rings[i], ring);
1450 	}
1451 
1452 	return 0;
1453 
1454 err_out:
1455 	ice_vsi_clear_rings(vsi);
1456 	return -ENOMEM;
1457 }
1458 
1459 /**
1460  * ice_vsi_manage_rss_lut - disable/enable RSS
1461  * @vsi: the VSI being changed
1462  * @ena: boolean value indicating if this is an enable or disable request
1463  *
1464  * In the event of disable request for RSS, this function will zero out RSS
1465  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1466  * LUT.
1467  */
1468 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1469 {
1470 	u8 *lut;
1471 
1472 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1473 	if (!lut)
1474 		return;
1475 
1476 	if (ena) {
1477 		if (vsi->rss_lut_user)
1478 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1479 		else
1480 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1481 					 vsi->rss_size);
1482 	}
1483 
1484 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1485 	kfree(lut);
1486 }
1487 
1488 /**
1489  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1490  * @vsi: VSI to be configured
1491  * @disable: set to true to have FCS / CRC in the frame data
1492  */
1493 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1494 {
1495 	int i;
1496 
1497 	ice_for_each_rxq(vsi, i)
1498 		if (disable)
1499 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1500 		else
1501 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1502 }
1503 
1504 /**
1505  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1506  * @vsi: VSI to be configured
1507  */
1508 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1509 {
1510 	struct ice_pf *pf = vsi->back;
1511 	struct device *dev;
1512 	u8 *lut, *key;
1513 	int err;
1514 
1515 	dev = ice_pf_to_dev(pf);
1516 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1517 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1518 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1519 	} else {
1520 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1521 
1522 		/* If orig_rss_size is valid and it is less than determined
1523 		 * main VSI's rss_size, update main VSI's rss_size to be
1524 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1525 		 * RSS table gets programmed to be correct (whatever it was
1526 		 * to begin with (prior to setup-tc for ADQ config)
1527 		 */
1528 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1529 		    vsi->orig_rss_size <= vsi->num_rxq) {
1530 			vsi->rss_size = vsi->orig_rss_size;
1531 			/* now orig_rss_size is used, reset it to zero */
1532 			vsi->orig_rss_size = 0;
1533 		}
1534 	}
1535 
1536 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1537 	if (!lut)
1538 		return -ENOMEM;
1539 
1540 	if (vsi->rss_lut_user)
1541 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1542 	else
1543 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1544 
1545 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1546 	if (err) {
1547 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1548 		goto ice_vsi_cfg_rss_exit;
1549 	}
1550 
1551 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1552 	if (!key) {
1553 		err = -ENOMEM;
1554 		goto ice_vsi_cfg_rss_exit;
1555 	}
1556 
1557 	if (vsi->rss_hkey_user)
1558 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1559 	else
1560 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1561 
1562 	err = ice_set_rss_key(vsi, key);
1563 	if (err)
1564 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1565 
1566 	kfree(key);
1567 ice_vsi_cfg_rss_exit:
1568 	kfree(lut);
1569 	return err;
1570 }
1571 
1572 /**
1573  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1574  * @vsi: VSI to be configured
1575  *
1576  * This function will only be called during the VF VSI setup. Upon successful
1577  * completion of package download, this function will configure default RSS
1578  * input sets for VF VSI.
1579  */
1580 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1581 {
1582 	struct ice_pf *pf = vsi->back;
1583 	struct device *dev;
1584 	int status;
1585 
1586 	dev = ice_pf_to_dev(pf);
1587 	if (ice_is_safe_mode(pf)) {
1588 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1589 			vsi->vsi_num);
1590 		return;
1591 	}
1592 
1593 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1594 	if (status)
1595 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1596 			vsi->vsi_num, status);
1597 }
1598 
1599 /**
1600  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1601  * @vsi: VSI to be configured
1602  *
1603  * This function will only be called after successful download package call
1604  * during initialization of PF. Since the downloaded package will erase the
1605  * RSS section, this function will configure RSS input sets for different
1606  * flow types. The last profile added has the highest priority, therefore 2
1607  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1608  * (i.e. IPv4 src/dst TCP src/dst port).
1609  */
1610 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1611 {
1612 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1613 	struct ice_pf *pf = vsi->back;
1614 	struct ice_hw *hw = &pf->hw;
1615 	struct device *dev;
1616 	int status;
1617 
1618 	dev = ice_pf_to_dev(pf);
1619 	if (ice_is_safe_mode(pf)) {
1620 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1621 			vsi_num);
1622 		return;
1623 	}
1624 	/* configure RSS for IPv4 with input set IP src/dst */
1625 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1626 				 ICE_FLOW_SEG_HDR_IPV4);
1627 	if (status)
1628 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1629 			vsi_num, status);
1630 
1631 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1632 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1633 				 ICE_FLOW_SEG_HDR_IPV6);
1634 	if (status)
1635 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1636 			vsi_num, status);
1637 
1638 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1639 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1640 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1641 	if (status)
1642 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1643 			vsi_num, status);
1644 
1645 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1646 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1647 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1648 	if (status)
1649 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1650 			vsi_num, status);
1651 
1652 	/* configure RSS for sctp4 with input set IP src/dst */
1653 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1654 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1655 	if (status)
1656 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1657 			vsi_num, status);
1658 
1659 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1660 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1661 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1662 	if (status)
1663 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1664 			vsi_num, status);
1665 
1666 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1667 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1668 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1669 	if (status)
1670 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1671 			vsi_num, status);
1672 
1673 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1674 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1675 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1676 	if (status)
1677 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1678 			vsi_num, status);
1679 
1680 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1681 				 ICE_FLOW_SEG_HDR_ESP);
1682 	if (status)
1683 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1684 			vsi_num, status);
1685 }
1686 
1687 /**
1688  * ice_pf_state_is_nominal - checks the PF for nominal state
1689  * @pf: pointer to PF to check
1690  *
1691  * Check the PF's state for a collection of bits that would indicate
1692  * the PF is in a state that would inhibit normal operation for
1693  * driver functionality.
1694  *
1695  * Returns true if PF is in a nominal state, false otherwise
1696  */
1697 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1698 {
1699 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1700 
1701 	if (!pf)
1702 		return false;
1703 
1704 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1705 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1706 		return false;
1707 
1708 	return true;
1709 }
1710 
1711 /**
1712  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1713  * @vsi: the VSI to be updated
1714  */
1715 void ice_update_eth_stats(struct ice_vsi *vsi)
1716 {
1717 	struct ice_eth_stats *prev_es, *cur_es;
1718 	struct ice_hw *hw = &vsi->back->hw;
1719 	struct ice_pf *pf = vsi->back;
1720 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1721 
1722 	prev_es = &vsi->eth_stats_prev;
1723 	cur_es = &vsi->eth_stats;
1724 
1725 	if (ice_is_reset_in_progress(pf->state))
1726 		vsi->stat_offsets_loaded = false;
1727 
1728 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1729 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1730 
1731 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1732 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1733 
1734 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1735 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1736 
1737 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1738 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1739 
1740 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1741 			  &prev_es->rx_discards, &cur_es->rx_discards);
1742 
1743 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1744 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1745 
1746 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1747 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1748 
1749 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1750 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1751 
1752 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1753 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1754 
1755 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1756 			  &prev_es->tx_errors, &cur_es->tx_errors);
1757 
1758 	vsi->stat_offsets_loaded = true;
1759 }
1760 
1761 /**
1762  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1763  * @vsi: VSI
1764  */
1765 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1766 {
1767 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1768 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1769 		vsi->rx_buf_len = ICE_RXBUF_1664;
1770 #if (PAGE_SIZE < 8192)
1771 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1772 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1773 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1774 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1775 #endif
1776 	} else {
1777 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1778 		vsi->rx_buf_len = ICE_RXBUF_3072;
1779 	}
1780 }
1781 
1782 /**
1783  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1784  * @hw: HW pointer
1785  * @pf_q: index of the Rx queue in the PF's queue space
1786  * @rxdid: flexible descriptor RXDID
1787  * @prio: priority for the RXDID for this queue
1788  * @ena_ts: true to enable timestamp and false to disable timestamp
1789  */
1790 void
1791 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1792 			bool ena_ts)
1793 {
1794 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1795 
1796 	/* clear any previous values */
1797 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1798 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1799 		    QRXFLXP_CNTXT_TS_M);
1800 
1801 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1802 		QRXFLXP_CNTXT_RXDID_IDX_M;
1803 
1804 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1805 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1806 
1807 	if (ena_ts)
1808 		/* Enable TimeSync on this queue */
1809 		regval |= QRXFLXP_CNTXT_TS_M;
1810 
1811 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1812 }
1813 
1814 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1815 {
1816 	if (q_idx >= vsi->num_rxq)
1817 		return -EINVAL;
1818 
1819 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1820 }
1821 
1822 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1823 {
1824 	struct ice_aqc_add_tx_qgrp *qg_buf;
1825 	int err;
1826 
1827 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1828 		return -EINVAL;
1829 
1830 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1831 	if (!qg_buf)
1832 		return -ENOMEM;
1833 
1834 	qg_buf->num_txqs = 1;
1835 
1836 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1837 	kfree(qg_buf);
1838 	return err;
1839 }
1840 
1841 /**
1842  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1843  * @vsi: the VSI being configured
1844  *
1845  * Return 0 on success and a negative value on error
1846  * Configure the Rx VSI for operation.
1847  */
1848 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1849 {
1850 	u16 i;
1851 
1852 	if (vsi->type == ICE_VSI_VF)
1853 		goto setup_rings;
1854 
1855 	ice_vsi_cfg_frame_size(vsi);
1856 setup_rings:
1857 	/* set up individual rings */
1858 	ice_for_each_rxq(vsi, i) {
1859 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1860 
1861 		if (err)
1862 			return err;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 /**
1869  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1870  * @vsi: the VSI being configured
1871  * @rings: Tx ring array to be configured
1872  * @count: number of Tx ring array elements
1873  *
1874  * Return 0 on success and a negative value on error
1875  * Configure the Tx VSI for operation.
1876  */
1877 static int
1878 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1879 {
1880 	struct ice_aqc_add_tx_qgrp *qg_buf;
1881 	u16 q_idx = 0;
1882 	int err = 0;
1883 
1884 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1885 	if (!qg_buf)
1886 		return -ENOMEM;
1887 
1888 	qg_buf->num_txqs = 1;
1889 
1890 	for (q_idx = 0; q_idx < count; q_idx++) {
1891 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1892 		if (err)
1893 			goto err_cfg_txqs;
1894 	}
1895 
1896 err_cfg_txqs:
1897 	kfree(qg_buf);
1898 	return err;
1899 }
1900 
1901 /**
1902  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1903  * @vsi: the VSI being configured
1904  *
1905  * Return 0 on success and a negative value on error
1906  * Configure the Tx VSI for operation.
1907  */
1908 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1909 {
1910 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1911 }
1912 
1913 /**
1914  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1915  * @vsi: the VSI being configured
1916  *
1917  * Return 0 on success and a negative value on error
1918  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1919  */
1920 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1921 {
1922 	int ret;
1923 	int i;
1924 
1925 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1926 	if (ret)
1927 		return ret;
1928 
1929 	ice_for_each_rxq(vsi, i)
1930 		ice_tx_xsk_pool(vsi, i);
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1937  * @intrl: interrupt rate limit in usecs
1938  * @gran: interrupt rate limit granularity in usecs
1939  *
1940  * This function converts a decimal interrupt rate limit in usecs to the format
1941  * expected by firmware.
1942  */
1943 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1944 {
1945 	u32 val = intrl / gran;
1946 
1947 	if (val)
1948 		return val | GLINT_RATE_INTRL_ENA_M;
1949 	return 0;
1950 }
1951 
1952 /**
1953  * ice_write_intrl - write throttle rate limit to interrupt specific register
1954  * @q_vector: pointer to interrupt specific structure
1955  * @intrl: throttle rate limit in microseconds to write
1956  */
1957 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1958 {
1959 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1960 
1961 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1962 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1963 }
1964 
1965 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1966 {
1967 	switch (rc->type) {
1968 	case ICE_RX_CONTAINER:
1969 		if (rc->rx_ring)
1970 			return rc->rx_ring->q_vector;
1971 		break;
1972 	case ICE_TX_CONTAINER:
1973 		if (rc->tx_ring)
1974 			return rc->tx_ring->q_vector;
1975 		break;
1976 	default:
1977 		break;
1978 	}
1979 
1980 	return NULL;
1981 }
1982 
1983 /**
1984  * __ice_write_itr - write throttle rate to register
1985  * @q_vector: pointer to interrupt data structure
1986  * @rc: pointer to ring container
1987  * @itr: throttle rate in microseconds to write
1988  */
1989 static void __ice_write_itr(struct ice_q_vector *q_vector,
1990 			    struct ice_ring_container *rc, u16 itr)
1991 {
1992 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1993 
1994 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1995 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1996 }
1997 
1998 /**
1999  * ice_write_itr - write throttle rate to queue specific register
2000  * @rc: pointer to ring container
2001  * @itr: throttle rate in microseconds to write
2002  */
2003 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2004 {
2005 	struct ice_q_vector *q_vector;
2006 
2007 	q_vector = ice_pull_qvec_from_rc(rc);
2008 	if (!q_vector)
2009 		return;
2010 
2011 	__ice_write_itr(q_vector, rc, itr);
2012 }
2013 
2014 /**
2015  * ice_set_q_vector_intrl - set up interrupt rate limiting
2016  * @q_vector: the vector to be configured
2017  *
2018  * Interrupt rate limiting is local to the vector, not per-queue so we must
2019  * detect if either ring container has dynamic moderation enabled to decide
2020  * what to set the interrupt rate limit to via INTRL settings. In the case that
2021  * dynamic moderation is disabled on both, write the value with the cached
2022  * setting to make sure INTRL register matches the user visible value.
2023  */
2024 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2025 {
2026 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2027 		/* in the case of dynamic enabled, cap each vector to no more
2028 		 * than (4 us) 250,000 ints/sec, which allows low latency
2029 		 * but still less than 500,000 interrupts per second, which
2030 		 * reduces CPU a bit in the case of the lowest latency
2031 		 * setting. The 4 here is a value in microseconds.
2032 		 */
2033 		ice_write_intrl(q_vector, 4);
2034 	} else {
2035 		ice_write_intrl(q_vector, q_vector->intrl);
2036 	}
2037 }
2038 
2039 /**
2040  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2041  * @vsi: the VSI being configured
2042  *
2043  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2044  * for the VF VSI.
2045  */
2046 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2047 {
2048 	struct ice_pf *pf = vsi->back;
2049 	struct ice_hw *hw = &pf->hw;
2050 	u16 txq = 0, rxq = 0;
2051 	int i, q;
2052 
2053 	ice_for_each_q_vector(vsi, i) {
2054 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2055 		u16 reg_idx = q_vector->reg_idx;
2056 
2057 		ice_cfg_itr(hw, q_vector);
2058 
2059 		/* Both Transmit Queue Interrupt Cause Control register
2060 		 * and Receive Queue Interrupt Cause control register
2061 		 * expects MSIX_INDX field to be the vector index
2062 		 * within the function space and not the absolute
2063 		 * vector index across PF or across device.
2064 		 * For SR-IOV VF VSIs queue vector index always starts
2065 		 * with 1 since first vector index(0) is used for OICR
2066 		 * in VF space. Since VMDq and other PF VSIs are within
2067 		 * the PF function space, use the vector index that is
2068 		 * tracked for this PF.
2069 		 */
2070 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2071 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2072 					      q_vector->tx.itr_idx);
2073 			txq++;
2074 		}
2075 
2076 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2077 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2078 					      q_vector->rx.itr_idx);
2079 			rxq++;
2080 		}
2081 	}
2082 }
2083 
2084 /**
2085  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2086  * @vsi: the VSI whose rings are to be enabled
2087  *
2088  * Returns 0 on success and a negative value on error
2089  */
2090 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2091 {
2092 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2093 }
2094 
2095 /**
2096  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2097  * @vsi: the VSI whose rings are to be disabled
2098  *
2099  * Returns 0 on success and a negative value on error
2100  */
2101 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2102 {
2103 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2104 }
2105 
2106 /**
2107  * ice_vsi_stop_tx_rings - Disable Tx rings
2108  * @vsi: the VSI being configured
2109  * @rst_src: reset source
2110  * @rel_vmvf_num: Relative ID of VF/VM
2111  * @rings: Tx ring array to be stopped
2112  * @count: number of Tx ring array elements
2113  */
2114 static int
2115 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2116 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2117 {
2118 	u16 q_idx;
2119 
2120 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2121 		return -EINVAL;
2122 
2123 	for (q_idx = 0; q_idx < count; q_idx++) {
2124 		struct ice_txq_meta txq_meta = { };
2125 		int status;
2126 
2127 		if (!rings || !rings[q_idx])
2128 			return -EINVAL;
2129 
2130 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2131 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2132 					      rings[q_idx], &txq_meta);
2133 
2134 		if (status)
2135 			return status;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2143  * @vsi: the VSI being configured
2144  * @rst_src: reset source
2145  * @rel_vmvf_num: Relative ID of VF/VM
2146  */
2147 int
2148 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2149 			  u16 rel_vmvf_num)
2150 {
2151 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2152 }
2153 
2154 /**
2155  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2156  * @vsi: the VSI being configured
2157  */
2158 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2159 {
2160 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2161 }
2162 
2163 /**
2164  * ice_vsi_is_rx_queue_active
2165  * @vsi: the VSI being configured
2166  *
2167  * Return true if at least one queue is active.
2168  */
2169 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2170 {
2171 	struct ice_pf *pf = vsi->back;
2172 	struct ice_hw *hw = &pf->hw;
2173 	int i;
2174 
2175 	ice_for_each_rxq(vsi, i) {
2176 		u32 rx_reg;
2177 		int pf_q;
2178 
2179 		pf_q = vsi->rxq_map[i];
2180 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2181 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2182 			return true;
2183 	}
2184 
2185 	return false;
2186 }
2187 
2188 /**
2189  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2190  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2191  *
2192  * returns true if Rx VLAN pruning is enabled and false otherwise.
2193  */
2194 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2195 {
2196 	if (!vsi)
2197 		return false;
2198 
2199 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2200 }
2201 
2202 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2203 {
2204 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2205 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2206 		vsi->tc_cfg.numtc = 1;
2207 		return;
2208 	}
2209 
2210 	/* set VSI TC information based on DCB config */
2211 	ice_vsi_set_dcb_tc_cfg(vsi);
2212 }
2213 
2214 /**
2215  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2216  * @vsi: the VSI being configured
2217  * @tx: bool to determine Tx or Rx rule
2218  * @create: bool to determine create or remove Rule
2219  */
2220 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2221 {
2222 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2223 			enum ice_sw_fwd_act_type act);
2224 	struct ice_pf *pf = vsi->back;
2225 	struct device *dev;
2226 	int status;
2227 
2228 	dev = ice_pf_to_dev(pf);
2229 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2230 
2231 	if (tx) {
2232 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2233 				  ICE_DROP_PACKET);
2234 	} else {
2235 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2236 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2237 							  create);
2238 		} else {
2239 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2240 					  ICE_FWD_TO_VSI);
2241 		}
2242 	}
2243 
2244 	if (status)
2245 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2246 			create ? "adding" : "removing", tx ? "TX" : "RX",
2247 			vsi->vsi_num, status);
2248 }
2249 
2250 /**
2251  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2252  * @vsi: pointer to the VSI
2253  *
2254  * This function will allocate new scheduler aggregator now if needed and will
2255  * move specified VSI into it.
2256  */
2257 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2258 {
2259 	struct device *dev = ice_pf_to_dev(vsi->back);
2260 	struct ice_agg_node *agg_node_iter = NULL;
2261 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2262 	struct ice_agg_node *agg_node = NULL;
2263 	int node_offset, max_agg_nodes = 0;
2264 	struct ice_port_info *port_info;
2265 	struct ice_pf *pf = vsi->back;
2266 	u32 agg_node_id_start = 0;
2267 	int status;
2268 
2269 	/* create (as needed) scheduler aggregator node and move VSI into
2270 	 * corresponding aggregator node
2271 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2272 	 * - VF aggregator nodes will contain VF VSI
2273 	 */
2274 	port_info = pf->hw.port_info;
2275 	if (!port_info)
2276 		return;
2277 
2278 	switch (vsi->type) {
2279 	case ICE_VSI_CTRL:
2280 	case ICE_VSI_CHNL:
2281 	case ICE_VSI_LB:
2282 	case ICE_VSI_PF:
2283 	case ICE_VSI_SWITCHDEV_CTRL:
2284 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2285 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2286 		agg_node_iter = &pf->pf_agg_node[0];
2287 		break;
2288 	case ICE_VSI_VF:
2289 		/* user can create 'n' VFs on a given PF, but since max children
2290 		 * per aggregator node can be only 64. Following code handles
2291 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2292 		 * was already created provided num_vsis < 64, otherwise
2293 		 * select next available node, which will be created
2294 		 */
2295 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2296 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2297 		agg_node_iter = &pf->vf_agg_node[0];
2298 		break;
2299 	default:
2300 		/* other VSI type, handle later if needed */
2301 		dev_dbg(dev, "unexpected VSI type %s\n",
2302 			ice_vsi_type_str(vsi->type));
2303 		return;
2304 	}
2305 
2306 	/* find the appropriate aggregator node */
2307 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2308 		/* see if we can find space in previously created
2309 		 * node if num_vsis < 64, otherwise skip
2310 		 */
2311 		if (agg_node_iter->num_vsis &&
2312 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2313 			agg_node_iter++;
2314 			continue;
2315 		}
2316 
2317 		if (agg_node_iter->valid &&
2318 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2319 			agg_id = agg_node_iter->agg_id;
2320 			agg_node = agg_node_iter;
2321 			break;
2322 		}
2323 
2324 		/* find unclaimed agg_id */
2325 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2326 			agg_id = node_offset + agg_node_id_start;
2327 			agg_node = agg_node_iter;
2328 			break;
2329 		}
2330 		/* move to next agg_node */
2331 		agg_node_iter++;
2332 	}
2333 
2334 	if (!agg_node)
2335 		return;
2336 
2337 	/* if selected aggregator node was not created, create it */
2338 	if (!agg_node->valid) {
2339 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2340 				     (u8)vsi->tc_cfg.ena_tc);
2341 		if (status) {
2342 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2343 				agg_id);
2344 			return;
2345 		}
2346 		/* aggregator node is created, store the needed info */
2347 		agg_node->valid = true;
2348 		agg_node->agg_id = agg_id;
2349 	}
2350 
2351 	/* move VSI to corresponding aggregator node */
2352 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2353 				     (u8)vsi->tc_cfg.ena_tc);
2354 	if (status) {
2355 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2356 			vsi->idx, agg_id);
2357 		return;
2358 	}
2359 
2360 	/* keep active children count for aggregator node */
2361 	agg_node->num_vsis++;
2362 
2363 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2364 	 * to aggregator node
2365 	 */
2366 	vsi->agg_node = agg_node;
2367 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2368 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2369 		vsi->agg_node->num_vsis);
2370 }
2371 
2372 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2373 {
2374 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2375 	struct device *dev = ice_pf_to_dev(pf);
2376 	int ret, i;
2377 
2378 	/* configure VSI nodes based on number of queues and TC's */
2379 	ice_for_each_traffic_class(i) {
2380 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2381 			continue;
2382 
2383 		if (vsi->type == ICE_VSI_CHNL) {
2384 			if (!vsi->alloc_txq && vsi->num_txq)
2385 				max_txqs[i] = vsi->num_txq;
2386 			else
2387 				max_txqs[i] = pf->num_lan_tx;
2388 		} else {
2389 			max_txqs[i] = vsi->alloc_txq;
2390 		}
2391 	}
2392 
2393 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2394 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2395 			      max_txqs);
2396 	if (ret) {
2397 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2398 			vsi->vsi_num, ret);
2399 		return ret;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 /**
2406  * ice_vsi_cfg_def - configure default VSI based on the type
2407  * @vsi: pointer to VSI
2408  * @params: the parameters to configure this VSI with
2409  */
2410 static int
2411 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2412 {
2413 	struct device *dev = ice_pf_to_dev(vsi->back);
2414 	struct ice_pf *pf = vsi->back;
2415 	int ret;
2416 
2417 	vsi->vsw = pf->first_sw;
2418 
2419 	ret = ice_vsi_alloc_def(vsi, params->ch);
2420 	if (ret)
2421 		return ret;
2422 
2423 	/* allocate memory for Tx/Rx ring stat pointers */
2424 	ret = ice_vsi_alloc_stat_arrays(vsi);
2425 	if (ret)
2426 		goto unroll_vsi_alloc;
2427 
2428 	ice_alloc_fd_res(vsi);
2429 
2430 	ret = ice_vsi_get_qs(vsi);
2431 	if (ret) {
2432 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2433 			vsi->idx);
2434 		goto unroll_vsi_alloc_stat;
2435 	}
2436 
2437 	/* set RSS capabilities */
2438 	ice_vsi_set_rss_params(vsi);
2439 
2440 	/* set TC configuration */
2441 	ice_vsi_set_tc_cfg(vsi);
2442 
2443 	/* create the VSI */
2444 	ret = ice_vsi_init(vsi, params->flags);
2445 	if (ret)
2446 		goto unroll_get_qs;
2447 
2448 	ice_vsi_init_vlan_ops(vsi);
2449 
2450 	switch (vsi->type) {
2451 	case ICE_VSI_CTRL:
2452 	case ICE_VSI_SWITCHDEV_CTRL:
2453 	case ICE_VSI_PF:
2454 		ret = ice_vsi_alloc_q_vectors(vsi);
2455 		if (ret)
2456 			goto unroll_vsi_init;
2457 
2458 		ret = ice_vsi_alloc_rings(vsi);
2459 		if (ret)
2460 			goto unroll_vector_base;
2461 
2462 		ret = ice_vsi_alloc_ring_stats(vsi);
2463 		if (ret)
2464 			goto unroll_vector_base;
2465 
2466 		ice_vsi_map_rings_to_vectors(vsi);
2467 		vsi->stat_offsets_loaded = false;
2468 
2469 		if (ice_is_xdp_ena_vsi(vsi)) {
2470 			ret = ice_vsi_determine_xdp_res(vsi);
2471 			if (ret)
2472 				goto unroll_vector_base;
2473 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2474 			if (ret)
2475 				goto unroll_vector_base;
2476 		}
2477 
2478 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2479 		if (vsi->type != ICE_VSI_CTRL)
2480 			/* Do not exit if configuring RSS had an issue, at
2481 			 * least receive traffic on first queue. Hence no
2482 			 * need to capture return value
2483 			 */
2484 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2485 				ice_vsi_cfg_rss_lut_key(vsi);
2486 				ice_vsi_set_rss_flow_fld(vsi);
2487 			}
2488 		ice_init_arfs(vsi);
2489 		break;
2490 	case ICE_VSI_CHNL:
2491 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2492 			ice_vsi_cfg_rss_lut_key(vsi);
2493 			ice_vsi_set_rss_flow_fld(vsi);
2494 		}
2495 		break;
2496 	case ICE_VSI_VF:
2497 		/* VF driver will take care of creating netdev for this type and
2498 		 * map queues to vectors through Virtchnl, PF driver only
2499 		 * creates a VSI and corresponding structures for bookkeeping
2500 		 * purpose
2501 		 */
2502 		ret = ice_vsi_alloc_q_vectors(vsi);
2503 		if (ret)
2504 			goto unroll_vsi_init;
2505 
2506 		ret = ice_vsi_alloc_rings(vsi);
2507 		if (ret)
2508 			goto unroll_alloc_q_vector;
2509 
2510 		ret = ice_vsi_alloc_ring_stats(vsi);
2511 		if (ret)
2512 			goto unroll_vector_base;
2513 
2514 		vsi->stat_offsets_loaded = false;
2515 
2516 		/* Do not exit if configuring RSS had an issue, at least
2517 		 * receive traffic on first queue. Hence no need to capture
2518 		 * return value
2519 		 */
2520 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2521 			ice_vsi_cfg_rss_lut_key(vsi);
2522 			ice_vsi_set_vf_rss_flow_fld(vsi);
2523 		}
2524 		break;
2525 	case ICE_VSI_LB:
2526 		ret = ice_vsi_alloc_rings(vsi);
2527 		if (ret)
2528 			goto unroll_vsi_init;
2529 
2530 		ret = ice_vsi_alloc_ring_stats(vsi);
2531 		if (ret)
2532 			goto unroll_vector_base;
2533 
2534 		break;
2535 	default:
2536 		/* clean up the resources and exit */
2537 		ret = -EINVAL;
2538 		goto unroll_vsi_init;
2539 	}
2540 
2541 	return 0;
2542 
2543 unroll_vector_base:
2544 	/* reclaim SW interrupts back to the common pool */
2545 unroll_alloc_q_vector:
2546 	ice_vsi_free_q_vectors(vsi);
2547 unroll_vsi_init:
2548 	ice_vsi_delete_from_hw(vsi);
2549 unroll_get_qs:
2550 	ice_vsi_put_qs(vsi);
2551 unroll_vsi_alloc_stat:
2552 	ice_vsi_free_stats(vsi);
2553 unroll_vsi_alloc:
2554 	ice_vsi_free_arrays(vsi);
2555 	return ret;
2556 }
2557 
2558 /**
2559  * ice_vsi_cfg - configure a previously allocated VSI
2560  * @vsi: pointer to VSI
2561  * @params: parameters used to configure this VSI
2562  */
2563 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2564 {
2565 	struct ice_pf *pf = vsi->back;
2566 	int ret;
2567 
2568 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2569 		return -EINVAL;
2570 
2571 	vsi->type = params->type;
2572 	vsi->port_info = params->pi;
2573 
2574 	/* For VSIs which don't have a connected VF, this will be NULL */
2575 	vsi->vf = params->vf;
2576 
2577 	ret = ice_vsi_cfg_def(vsi, params);
2578 	if (ret)
2579 		return ret;
2580 
2581 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2582 	if (ret)
2583 		ice_vsi_decfg(vsi);
2584 
2585 	if (vsi->type == ICE_VSI_CTRL) {
2586 		if (vsi->vf) {
2587 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2588 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2589 		} else {
2590 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2591 			pf->ctrl_vsi_idx = vsi->idx;
2592 		}
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 /**
2599  * ice_vsi_decfg - remove all VSI configuration
2600  * @vsi: pointer to VSI
2601  */
2602 void ice_vsi_decfg(struct ice_vsi *vsi)
2603 {
2604 	struct ice_pf *pf = vsi->back;
2605 	int err;
2606 
2607 	/* The Rx rule will only exist to remove if the LLDP FW
2608 	 * engine is currently stopped
2609 	 */
2610 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2611 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2612 		ice_cfg_sw_lldp(vsi, false, false);
2613 
2614 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2615 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2616 	if (err)
2617 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2618 			vsi->vsi_num, err);
2619 
2620 	if (ice_is_xdp_ena_vsi(vsi))
2621 		/* return value check can be skipped here, it always returns
2622 		 * 0 if reset is in progress
2623 		 */
2624 		ice_destroy_xdp_rings(vsi);
2625 
2626 	ice_vsi_clear_rings(vsi);
2627 	ice_vsi_free_q_vectors(vsi);
2628 	ice_vsi_put_qs(vsi);
2629 	ice_vsi_free_arrays(vsi);
2630 
2631 	/* SR-IOV determines needed MSIX resources all at once instead of per
2632 	 * VSI since when VFs are spawned we know how many VFs there are and how
2633 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2634 	 * cleared in the same manner.
2635 	 */
2636 
2637 	if (vsi->type == ICE_VSI_VF &&
2638 	    vsi->agg_node && vsi->agg_node->valid)
2639 		vsi->agg_node->num_vsis--;
2640 	if (vsi->agg_node) {
2641 		vsi->agg_node->valid = false;
2642 		vsi->agg_node->agg_id = 0;
2643 	}
2644 }
2645 
2646 /**
2647  * ice_vsi_setup - Set up a VSI by a given type
2648  * @pf: board private structure
2649  * @params: parameters to use when creating the VSI
2650  *
2651  * This allocates the sw VSI structure and its queue resources.
2652  *
2653  * Returns pointer to the successfully allocated and configured VSI sw struct on
2654  * success, NULL on failure.
2655  */
2656 struct ice_vsi *
2657 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2658 {
2659 	struct device *dev = ice_pf_to_dev(pf);
2660 	struct ice_vsi *vsi;
2661 	int ret;
2662 
2663 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2664 	 * a port_info structure for it.
2665 	 */
2666 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2667 	    WARN_ON(!params->pi))
2668 		return NULL;
2669 
2670 	vsi = ice_vsi_alloc(pf);
2671 	if (!vsi) {
2672 		dev_err(dev, "could not allocate VSI\n");
2673 		return NULL;
2674 	}
2675 
2676 	ret = ice_vsi_cfg(vsi, params);
2677 	if (ret)
2678 		goto err_vsi_cfg;
2679 
2680 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2681 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2682 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2683 	 * The rule is added once for PF VSI in order to create appropriate
2684 	 * recipe, since VSI/VSI list is ignored with drop action...
2685 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2686 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2687 	 * settings in the HW.
2688 	 */
2689 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2690 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2691 				 ICE_DROP_PACKET);
2692 		ice_cfg_sw_lldp(vsi, true, true);
2693 	}
2694 
2695 	if (!vsi->agg_node)
2696 		ice_set_agg_vsi(vsi);
2697 
2698 	return vsi;
2699 
2700 err_vsi_cfg:
2701 	ice_vsi_free(vsi);
2702 
2703 	return NULL;
2704 }
2705 
2706 /**
2707  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2708  * @vsi: the VSI being cleaned up
2709  */
2710 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2711 {
2712 	struct ice_pf *pf = vsi->back;
2713 	struct ice_hw *hw = &pf->hw;
2714 	u32 txq = 0;
2715 	u32 rxq = 0;
2716 	int i, q;
2717 
2718 	ice_for_each_q_vector(vsi, i) {
2719 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2720 
2721 		ice_write_intrl(q_vector, 0);
2722 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2723 			ice_write_itr(&q_vector->tx, 0);
2724 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2725 			if (ice_is_xdp_ena_vsi(vsi)) {
2726 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2727 
2728 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2729 			}
2730 			txq++;
2731 		}
2732 
2733 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2734 			ice_write_itr(&q_vector->rx, 0);
2735 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2736 			rxq++;
2737 		}
2738 	}
2739 
2740 	ice_flush(hw);
2741 }
2742 
2743 /**
2744  * ice_vsi_free_irq - Free the IRQ association with the OS
2745  * @vsi: the VSI being configured
2746  */
2747 void ice_vsi_free_irq(struct ice_vsi *vsi)
2748 {
2749 	struct ice_pf *pf = vsi->back;
2750 	int i;
2751 
2752 	if (!vsi->q_vectors || !vsi->irqs_ready)
2753 		return;
2754 
2755 	ice_vsi_release_msix(vsi);
2756 	if (vsi->type == ICE_VSI_VF)
2757 		return;
2758 
2759 	vsi->irqs_ready = false;
2760 	ice_free_cpu_rx_rmap(vsi);
2761 
2762 	ice_for_each_q_vector(vsi, i) {
2763 		int irq_num;
2764 
2765 		irq_num = vsi->q_vectors[i]->irq.virq;
2766 
2767 		/* free only the irqs that were actually requested */
2768 		if (!vsi->q_vectors[i] ||
2769 		    !(vsi->q_vectors[i]->num_ring_tx ||
2770 		      vsi->q_vectors[i]->num_ring_rx))
2771 			continue;
2772 
2773 		/* clear the affinity notifier in the IRQ descriptor */
2774 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2775 			irq_set_affinity_notifier(irq_num, NULL);
2776 
2777 		/* clear the affinity_mask in the IRQ descriptor */
2778 		irq_set_affinity_hint(irq_num, NULL);
2779 		synchronize_irq(irq_num);
2780 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2781 	}
2782 }
2783 
2784 /**
2785  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2786  * @vsi: the VSI having resources freed
2787  */
2788 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2789 {
2790 	int i;
2791 
2792 	if (!vsi->tx_rings)
2793 		return;
2794 
2795 	ice_for_each_txq(vsi, i)
2796 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2797 			ice_free_tx_ring(vsi->tx_rings[i]);
2798 }
2799 
2800 /**
2801  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2802  * @vsi: the VSI having resources freed
2803  */
2804 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2805 {
2806 	int i;
2807 
2808 	if (!vsi->rx_rings)
2809 		return;
2810 
2811 	ice_for_each_rxq(vsi, i)
2812 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2813 			ice_free_rx_ring(vsi->rx_rings[i]);
2814 }
2815 
2816 /**
2817  * ice_vsi_close - Shut down a VSI
2818  * @vsi: the VSI being shut down
2819  */
2820 void ice_vsi_close(struct ice_vsi *vsi)
2821 {
2822 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2823 		ice_down(vsi);
2824 
2825 	ice_vsi_free_irq(vsi);
2826 	ice_vsi_free_tx_rings(vsi);
2827 	ice_vsi_free_rx_rings(vsi);
2828 }
2829 
2830 /**
2831  * ice_ena_vsi - resume a VSI
2832  * @vsi: the VSI being resume
2833  * @locked: is the rtnl_lock already held
2834  */
2835 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2836 {
2837 	int err = 0;
2838 
2839 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2840 		return 0;
2841 
2842 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2843 
2844 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2845 		if (netif_running(vsi->netdev)) {
2846 			if (!locked)
2847 				rtnl_lock();
2848 
2849 			err = ice_open_internal(vsi->netdev);
2850 
2851 			if (!locked)
2852 				rtnl_unlock();
2853 		}
2854 	} else if (vsi->type == ICE_VSI_CTRL) {
2855 		err = ice_vsi_open_ctrl(vsi);
2856 	}
2857 
2858 	return err;
2859 }
2860 
2861 /**
2862  * ice_dis_vsi - pause a VSI
2863  * @vsi: the VSI being paused
2864  * @locked: is the rtnl_lock already held
2865  */
2866 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2867 {
2868 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2869 		return;
2870 
2871 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2872 
2873 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2874 		if (netif_running(vsi->netdev)) {
2875 			if (!locked)
2876 				rtnl_lock();
2877 
2878 			ice_vsi_close(vsi);
2879 
2880 			if (!locked)
2881 				rtnl_unlock();
2882 		} else {
2883 			ice_vsi_close(vsi);
2884 		}
2885 	} else if (vsi->type == ICE_VSI_CTRL ||
2886 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2887 		ice_vsi_close(vsi);
2888 	}
2889 }
2890 
2891 /**
2892  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2893  * @vsi: the VSI being un-configured
2894  */
2895 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2896 {
2897 	struct ice_pf *pf = vsi->back;
2898 	struct ice_hw *hw = &pf->hw;
2899 	u32 val;
2900 	int i;
2901 
2902 	/* disable interrupt causation from each queue */
2903 	if (vsi->tx_rings) {
2904 		ice_for_each_txq(vsi, i) {
2905 			if (vsi->tx_rings[i]) {
2906 				u16 reg;
2907 
2908 				reg = vsi->tx_rings[i]->reg_idx;
2909 				val = rd32(hw, QINT_TQCTL(reg));
2910 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2911 				wr32(hw, QINT_TQCTL(reg), val);
2912 			}
2913 		}
2914 	}
2915 
2916 	if (vsi->rx_rings) {
2917 		ice_for_each_rxq(vsi, i) {
2918 			if (vsi->rx_rings[i]) {
2919 				u16 reg;
2920 
2921 				reg = vsi->rx_rings[i]->reg_idx;
2922 				val = rd32(hw, QINT_RQCTL(reg));
2923 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2924 				wr32(hw, QINT_RQCTL(reg), val);
2925 			}
2926 		}
2927 	}
2928 
2929 	/* disable each interrupt */
2930 	ice_for_each_q_vector(vsi, i) {
2931 		if (!vsi->q_vectors[i])
2932 			continue;
2933 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2934 	}
2935 
2936 	ice_flush(hw);
2937 
2938 	/* don't call synchronize_irq() for VF's from the host */
2939 	if (vsi->type == ICE_VSI_VF)
2940 		return;
2941 
2942 	ice_for_each_q_vector(vsi, i)
2943 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2944 }
2945 
2946 /**
2947  * ice_napi_del - Remove NAPI handler for the VSI
2948  * @vsi: VSI for which NAPI handler is to be removed
2949  */
2950 void ice_napi_del(struct ice_vsi *vsi)
2951 {
2952 	int v_idx;
2953 
2954 	if (!vsi->netdev)
2955 		return;
2956 
2957 	ice_for_each_q_vector(vsi, v_idx)
2958 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2959 }
2960 
2961 /**
2962  * ice_vsi_release - Delete a VSI and free its resources
2963  * @vsi: the VSI being removed
2964  *
2965  * Returns 0 on success or < 0 on error
2966  */
2967 int ice_vsi_release(struct ice_vsi *vsi)
2968 {
2969 	struct ice_pf *pf;
2970 
2971 	if (!vsi->back)
2972 		return -ENODEV;
2973 	pf = vsi->back;
2974 
2975 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976 		ice_rss_clean(vsi);
2977 
2978 	ice_vsi_close(vsi);
2979 	ice_vsi_decfg(vsi);
2980 
2981 	/* retain SW VSI data structure since it is needed to unregister and
2982 	 * free VSI netdev when PF is not in reset recovery pending state,\
2983 	 * for ex: during rmmod.
2984 	 */
2985 	if (!ice_is_reset_in_progress(pf->state))
2986 		ice_vsi_delete(vsi);
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2993  * @vsi: VSI connected with q_vectors
2994  * @coalesce: array of struct with stored coalesce
2995  *
2996  * Returns array size.
2997  */
2998 static int
2999 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3000 			     struct ice_coalesce_stored *coalesce)
3001 {
3002 	int i;
3003 
3004 	ice_for_each_q_vector(vsi, i) {
3005 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3006 
3007 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3008 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3009 		coalesce[i].intrl = q_vector->intrl;
3010 
3011 		if (i < vsi->num_txq)
3012 			coalesce[i].tx_valid = true;
3013 		if (i < vsi->num_rxq)
3014 			coalesce[i].rx_valid = true;
3015 	}
3016 
3017 	return vsi->num_q_vectors;
3018 }
3019 
3020 /**
3021  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3022  * @vsi: VSI connected with q_vectors
3023  * @coalesce: pointer to array of struct with stored coalesce
3024  * @size: size of coalesce array
3025  *
3026  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3027  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3028  * to default value.
3029  */
3030 static void
3031 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3032 			     struct ice_coalesce_stored *coalesce, int size)
3033 {
3034 	struct ice_ring_container *rc;
3035 	int i;
3036 
3037 	if ((size && !coalesce) || !vsi)
3038 		return;
3039 
3040 	/* There are a couple of cases that have to be handled here:
3041 	 *   1. The case where the number of queue vectors stays the same, but
3042 	 *      the number of Tx or Rx rings changes (the first for loop)
3043 	 *   2. The case where the number of queue vectors increased (the
3044 	 *      second for loop)
3045 	 */
3046 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3047 		/* There are 2 cases to handle here and they are the same for
3048 		 * both Tx and Rx:
3049 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3050 		 *   and the loop variable is less than the number of rings
3051 		 *   allocated, then write the previous values
3052 		 *
3053 		 *   if the entry was not valid previously, but the number of
3054 		 *   rings is less than are allocated (this means the number of
3055 		 *   rings increased from previously), then write out the
3056 		 *   values in the first element
3057 		 *
3058 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3059 		 *   as there is no harm because the dynamic algorithm
3060 		 *   will just overwrite.
3061 		 */
3062 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3063 			rc = &vsi->q_vectors[i]->rx;
3064 			rc->itr_settings = coalesce[i].itr_rx;
3065 			ice_write_itr(rc, rc->itr_setting);
3066 		} else if (i < vsi->alloc_rxq) {
3067 			rc = &vsi->q_vectors[i]->rx;
3068 			rc->itr_settings = coalesce[0].itr_rx;
3069 			ice_write_itr(rc, rc->itr_setting);
3070 		}
3071 
3072 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3073 			rc = &vsi->q_vectors[i]->tx;
3074 			rc->itr_settings = coalesce[i].itr_tx;
3075 			ice_write_itr(rc, rc->itr_setting);
3076 		} else if (i < vsi->alloc_txq) {
3077 			rc = &vsi->q_vectors[i]->tx;
3078 			rc->itr_settings = coalesce[0].itr_tx;
3079 			ice_write_itr(rc, rc->itr_setting);
3080 		}
3081 
3082 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3083 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3084 	}
3085 
3086 	/* the number of queue vectors increased so write whatever is in
3087 	 * the first element
3088 	 */
3089 	for (; i < vsi->num_q_vectors; i++) {
3090 		/* transmit */
3091 		rc = &vsi->q_vectors[i]->tx;
3092 		rc->itr_settings = coalesce[0].itr_tx;
3093 		ice_write_itr(rc, rc->itr_setting);
3094 
3095 		/* receive */
3096 		rc = &vsi->q_vectors[i]->rx;
3097 		rc->itr_settings = coalesce[0].itr_rx;
3098 		ice_write_itr(rc, rc->itr_setting);
3099 
3100 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3101 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3102 	}
3103 }
3104 
3105 /**
3106  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3107  * @vsi: VSI pointer
3108  * @prev_txq: Number of Tx rings before ring reallocation
3109  * @prev_rxq: Number of Rx rings before ring reallocation
3110  */
3111 static void
3112 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3113 {
3114 	struct ice_vsi_stats *vsi_stat;
3115 	struct ice_pf *pf = vsi->back;
3116 	int i;
3117 
3118 	if (!prev_txq || !prev_rxq)
3119 		return;
3120 	if (vsi->type == ICE_VSI_CHNL)
3121 		return;
3122 
3123 	vsi_stat = pf->vsi_stats[vsi->idx];
3124 
3125 	if (vsi->num_txq < prev_txq) {
3126 		for (i = vsi->num_txq; i < prev_txq; i++) {
3127 			if (vsi_stat->tx_ring_stats[i]) {
3128 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3129 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3130 			}
3131 		}
3132 	}
3133 
3134 	if (vsi->num_rxq < prev_rxq) {
3135 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3136 			if (vsi_stat->rx_ring_stats[i]) {
3137 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3138 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3139 			}
3140 		}
3141 	}
3142 }
3143 
3144 /**
3145  * ice_vsi_rebuild - Rebuild VSI after reset
3146  * @vsi: VSI to be rebuild
3147  * @vsi_flags: flags used for VSI rebuild flow
3148  *
3149  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3150  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3151  *
3152  * Returns 0 on success and negative value on failure
3153  */
3154 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3155 {
3156 	struct ice_vsi_cfg_params params = {};
3157 	struct ice_coalesce_stored *coalesce;
3158 	int ret, prev_txq, prev_rxq;
3159 	int prev_num_q_vectors = 0;
3160 	struct ice_pf *pf;
3161 
3162 	if (!vsi)
3163 		return -EINVAL;
3164 
3165 	params = ice_vsi_to_params(vsi);
3166 	params.flags = vsi_flags;
3167 
3168 	pf = vsi->back;
3169 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3170 		return -EINVAL;
3171 
3172 	coalesce = kcalloc(vsi->num_q_vectors,
3173 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3174 	if (!coalesce)
3175 		return -ENOMEM;
3176 
3177 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3178 
3179 	prev_txq = vsi->num_txq;
3180 	prev_rxq = vsi->num_rxq;
3181 
3182 	ice_vsi_decfg(vsi);
3183 	ret = ice_vsi_cfg_def(vsi, &params);
3184 	if (ret)
3185 		goto err_vsi_cfg;
3186 
3187 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3188 	if (ret) {
3189 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3190 			ret = -EIO;
3191 			goto err_vsi_cfg_tc_lan;
3192 		}
3193 
3194 		kfree(coalesce);
3195 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3196 	}
3197 
3198 	ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3199 
3200 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3201 	kfree(coalesce);
3202 
3203 	return 0;
3204 
3205 err_vsi_cfg_tc_lan:
3206 	ice_vsi_decfg(vsi);
3207 err_vsi_cfg:
3208 	kfree(coalesce);
3209 	return ret;
3210 }
3211 
3212 /**
3213  * ice_is_reset_in_progress - check for a reset in progress
3214  * @state: PF state field
3215  */
3216 bool ice_is_reset_in_progress(unsigned long *state)
3217 {
3218 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3219 	       test_bit(ICE_PFR_REQ, state) ||
3220 	       test_bit(ICE_CORER_REQ, state) ||
3221 	       test_bit(ICE_GLOBR_REQ, state);
3222 }
3223 
3224 /**
3225  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3226  * @pf: pointer to the PF structure
3227  * @timeout: length of time to wait, in jiffies
3228  *
3229  * Wait (sleep) for a short time until the driver finishes cleaning up from
3230  * a device reset. The caller must be able to sleep. Use this to delay
3231  * operations that could fail while the driver is cleaning up after a device
3232  * reset.
3233  *
3234  * Returns 0 on success, -EBUSY if the reset is not finished within the
3235  * timeout, and -ERESTARTSYS if the thread was interrupted.
3236  */
3237 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3238 {
3239 	long ret;
3240 
3241 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3242 					       !ice_is_reset_in_progress(pf->state),
3243 					       timeout);
3244 	if (ret < 0)
3245 		return ret;
3246 	else if (!ret)
3247 		return -EBUSY;
3248 	else
3249 		return 0;
3250 }
3251 
3252 /**
3253  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3254  * @vsi: VSI being configured
3255  * @ctx: the context buffer returned from AQ VSI update command
3256  */
3257 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3258 {
3259 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3260 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3261 	       sizeof(vsi->info.q_mapping));
3262 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3263 	       sizeof(vsi->info.tc_mapping));
3264 }
3265 
3266 /**
3267  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3268  * @vsi: the VSI being configured
3269  * @ena_tc: TC map to be enabled
3270  */
3271 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3272 {
3273 	struct net_device *netdev = vsi->netdev;
3274 	struct ice_pf *pf = vsi->back;
3275 	int numtc = vsi->tc_cfg.numtc;
3276 	struct ice_dcbx_cfg *dcbcfg;
3277 	u8 netdev_tc;
3278 	int i;
3279 
3280 	if (!netdev)
3281 		return;
3282 
3283 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3284 	if (vsi->type == ICE_VSI_CHNL)
3285 		return;
3286 
3287 	if (!ena_tc) {
3288 		netdev_reset_tc(netdev);
3289 		return;
3290 	}
3291 
3292 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3293 		numtc = vsi->all_numtc;
3294 
3295 	if (netdev_set_num_tc(netdev, numtc))
3296 		return;
3297 
3298 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3299 
3300 	ice_for_each_traffic_class(i)
3301 		if (vsi->tc_cfg.ena_tc & BIT(i))
3302 			netdev_set_tc_queue(netdev,
3303 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3304 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3305 					    vsi->tc_cfg.tc_info[i].qoffset);
3306 	/* setup TC queue map for CHNL TCs */
3307 	ice_for_each_chnl_tc(i) {
3308 		if (!(vsi->all_enatc & BIT(i)))
3309 			break;
3310 		if (!vsi->mqprio_qopt.qopt.count[i])
3311 			break;
3312 		netdev_set_tc_queue(netdev, i,
3313 				    vsi->mqprio_qopt.qopt.count[i],
3314 				    vsi->mqprio_qopt.qopt.offset[i]);
3315 	}
3316 
3317 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3318 		return;
3319 
3320 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3321 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3322 
3323 		/* Get the mapped netdev TC# for the UP */
3324 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3325 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3326 	}
3327 }
3328 
3329 /**
3330  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3331  * @vsi: the VSI being configured,
3332  * @ctxt: VSI context structure
3333  * @ena_tc: number of traffic classes to enable
3334  *
3335  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3336  */
3337 static int
3338 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3339 			   u8 ena_tc)
3340 {
3341 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3342 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3343 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3344 	u16 new_txq, new_rxq;
3345 	u8 netdev_tc = 0;
3346 	int i;
3347 
3348 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3349 
3350 	pow = order_base_2(tc0_qcount);
3351 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3352 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3353 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3354 
3355 	ice_for_each_traffic_class(i) {
3356 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3357 			/* TC is not enabled */
3358 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3359 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3360 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3361 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3362 			ctxt->info.tc_mapping[i] = 0;
3363 			continue;
3364 		}
3365 
3366 		offset = vsi->mqprio_qopt.qopt.offset[i];
3367 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3368 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3369 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3370 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3371 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3372 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3373 	}
3374 
3375 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3376 		ice_for_each_chnl_tc(i) {
3377 			if (!(vsi->all_enatc & BIT(i)))
3378 				continue;
3379 			offset = vsi->mqprio_qopt.qopt.offset[i];
3380 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3381 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3382 		}
3383 	}
3384 
3385 	new_txq = offset + qcount_tx;
3386 	if (new_txq > vsi->alloc_txq) {
3387 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3388 			new_txq, vsi->alloc_txq);
3389 		return -EINVAL;
3390 	}
3391 
3392 	new_rxq = offset + qcount_rx;
3393 	if (new_rxq > vsi->alloc_rxq) {
3394 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3395 			new_rxq, vsi->alloc_rxq);
3396 		return -EINVAL;
3397 	}
3398 
3399 	/* Set actual Tx/Rx queue pairs */
3400 	vsi->num_txq = new_txq;
3401 	vsi->num_rxq = new_rxq;
3402 
3403 	/* Setup queue TC[0].qmap for given VSI context */
3404 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3405 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3406 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3407 
3408 	/* Find queue count available for channel VSIs and starting offset
3409 	 * for channel VSIs
3410 	 */
3411 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3412 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3413 		vsi->next_base_q = tc0_qcount;
3414 	}
3415 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3416 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3417 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3418 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3419 
3420 	return 0;
3421 }
3422 
3423 /**
3424  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3425  * @vsi: VSI to be configured
3426  * @ena_tc: TC bitmap
3427  *
3428  * VSI queues expected to be quiesced before calling this function
3429  */
3430 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3431 {
3432 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3433 	struct ice_pf *pf = vsi->back;
3434 	struct ice_tc_cfg old_tc_cfg;
3435 	struct ice_vsi_ctx *ctx;
3436 	struct device *dev;
3437 	int i, ret = 0;
3438 	u8 num_tc = 0;
3439 
3440 	dev = ice_pf_to_dev(pf);
3441 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3442 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3443 		return 0;
3444 
3445 	ice_for_each_traffic_class(i) {
3446 		/* build bitmap of enabled TCs */
3447 		if (ena_tc & BIT(i))
3448 			num_tc++;
3449 		/* populate max_txqs per TC */
3450 		max_txqs[i] = vsi->alloc_txq;
3451 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3452 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3453 		 */
3454 		if (vsi->type == ICE_VSI_CHNL &&
3455 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3456 			max_txqs[i] = vsi->num_txq;
3457 	}
3458 
3459 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3460 	vsi->tc_cfg.ena_tc = ena_tc;
3461 	vsi->tc_cfg.numtc = num_tc;
3462 
3463 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3464 	if (!ctx)
3465 		return -ENOMEM;
3466 
3467 	ctx->vf_num = 0;
3468 	ctx->info = vsi->info;
3469 
3470 	if (vsi->type == ICE_VSI_PF &&
3471 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3472 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3473 	else
3474 		ret = ice_vsi_setup_q_map(vsi, ctx);
3475 
3476 	if (ret) {
3477 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3478 		goto out;
3479 	}
3480 
3481 	/* must to indicate which section of VSI context are being modified */
3482 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3483 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3484 	if (ret) {
3485 		dev_info(dev, "Failed VSI Update\n");
3486 		goto out;
3487 	}
3488 
3489 	if (vsi->type == ICE_VSI_PF &&
3490 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3491 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3492 	else
3493 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3494 				      vsi->tc_cfg.ena_tc, max_txqs);
3495 
3496 	if (ret) {
3497 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3498 			vsi->vsi_num, ret);
3499 		goto out;
3500 	}
3501 	ice_vsi_update_q_map(vsi, ctx);
3502 	vsi->info.valid_sections = 0;
3503 
3504 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3505 out:
3506 	kfree(ctx);
3507 	return ret;
3508 }
3509 
3510 /**
3511  * ice_update_ring_stats - Update ring statistics
3512  * @stats: stats to be updated
3513  * @pkts: number of processed packets
3514  * @bytes: number of processed bytes
3515  *
3516  * This function assumes that caller has acquired a u64_stats_sync lock.
3517  */
3518 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3519 {
3520 	stats->bytes += bytes;
3521 	stats->pkts += pkts;
3522 }
3523 
3524 /**
3525  * ice_update_tx_ring_stats - Update Tx ring specific counters
3526  * @tx_ring: ring to update
3527  * @pkts: number of processed packets
3528  * @bytes: number of processed bytes
3529  */
3530 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3531 {
3532 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3533 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3534 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3535 }
3536 
3537 /**
3538  * ice_update_rx_ring_stats - Update Rx ring specific counters
3539  * @rx_ring: ring to update
3540  * @pkts: number of processed packets
3541  * @bytes: number of processed bytes
3542  */
3543 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3544 {
3545 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3546 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3547 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3548 }
3549 
3550 /**
3551  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3552  * @pi: port info of the switch with default VSI
3553  *
3554  * Return true if the there is a single VSI in default forwarding VSI list
3555  */
3556 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3557 {
3558 	bool exists = false;
3559 
3560 	ice_check_if_dflt_vsi(pi, 0, &exists);
3561 	return exists;
3562 }
3563 
3564 /**
3565  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3566  * @vsi: VSI to compare against default forwarding VSI
3567  *
3568  * If this VSI passed in is the default forwarding VSI then return true, else
3569  * return false
3570  */
3571 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3572 {
3573 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3574 }
3575 
3576 /**
3577  * ice_set_dflt_vsi - set the default forwarding VSI
3578  * @vsi: VSI getting set as the default forwarding VSI on the switch
3579  *
3580  * If the VSI passed in is already the default VSI and it's enabled just return
3581  * success.
3582  *
3583  * Otherwise try to set the VSI passed in as the switch's default VSI and
3584  * return the result.
3585  */
3586 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3587 {
3588 	struct device *dev;
3589 	int status;
3590 
3591 	if (!vsi)
3592 		return -EINVAL;
3593 
3594 	dev = ice_pf_to_dev(vsi->back);
3595 
3596 	/* the VSI passed in is already the default VSI */
3597 	if (ice_is_vsi_dflt_vsi(vsi)) {
3598 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3599 			vsi->vsi_num);
3600 		return 0;
3601 	}
3602 
3603 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3604 	if (status) {
3605 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3606 			vsi->vsi_num, status);
3607 		return status;
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 /**
3614  * ice_clear_dflt_vsi - clear the default forwarding VSI
3615  * @vsi: VSI to remove from filter list
3616  *
3617  * If the switch has no default VSI or it's not enabled then return error.
3618  *
3619  * Otherwise try to clear the default VSI and return the result.
3620  */
3621 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3622 {
3623 	struct device *dev;
3624 	int status;
3625 
3626 	if (!vsi)
3627 		return -EINVAL;
3628 
3629 	dev = ice_pf_to_dev(vsi->back);
3630 
3631 	/* there is no default VSI configured */
3632 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3633 		return -ENODEV;
3634 
3635 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3636 				  ICE_FLTR_RX);
3637 	if (status) {
3638 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3639 			vsi->vsi_num, status);
3640 		return -EIO;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 /**
3647  * ice_get_link_speed_mbps - get link speed in Mbps
3648  * @vsi: the VSI whose link speed is being queried
3649  *
3650  * Return current VSI link speed and 0 if the speed is unknown.
3651  */
3652 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3653 {
3654 	unsigned int link_speed;
3655 
3656 	link_speed = vsi->port_info->phy.link_info.link_speed;
3657 
3658 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3659 }
3660 
3661 /**
3662  * ice_get_link_speed_kbps - get link speed in Kbps
3663  * @vsi: the VSI whose link speed is being queried
3664  *
3665  * Return current VSI link speed and 0 if the speed is unknown.
3666  */
3667 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3668 {
3669 	int speed_mbps;
3670 
3671 	speed_mbps = ice_get_link_speed_mbps(vsi);
3672 
3673 	return speed_mbps * 1000;
3674 }
3675 
3676 /**
3677  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3678  * @vsi: VSI to be configured
3679  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3680  *
3681  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3682  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3683  * on TC 0.
3684  */
3685 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3686 {
3687 	struct ice_pf *pf = vsi->back;
3688 	struct device *dev;
3689 	int status;
3690 	int speed;
3691 
3692 	dev = ice_pf_to_dev(pf);
3693 	if (!vsi->port_info) {
3694 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3695 			vsi->idx, vsi->type);
3696 		return -EINVAL;
3697 	}
3698 
3699 	speed = ice_get_link_speed_kbps(vsi);
3700 	if (min_tx_rate > (u64)speed) {
3701 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3702 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3703 			speed);
3704 		return -EINVAL;
3705 	}
3706 
3707 	/* Configure min BW for VSI limit */
3708 	if (min_tx_rate) {
3709 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3710 						   ICE_MIN_BW, min_tx_rate);
3711 		if (status) {
3712 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3713 				min_tx_rate, ice_vsi_type_str(vsi->type),
3714 				vsi->idx);
3715 			return status;
3716 		}
3717 
3718 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3719 			min_tx_rate, ice_vsi_type_str(vsi->type));
3720 	} else {
3721 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3722 							vsi->idx, 0,
3723 							ICE_MIN_BW);
3724 		if (status) {
3725 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3726 				ice_vsi_type_str(vsi->type), vsi->idx);
3727 			return status;
3728 		}
3729 
3730 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3731 			ice_vsi_type_str(vsi->type), vsi->idx);
3732 	}
3733 
3734 	return 0;
3735 }
3736 
3737 /**
3738  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3739  * @vsi: VSI to be configured
3740  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3741  *
3742  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3743  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3744  * on TC 0.
3745  */
3746 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3747 {
3748 	struct ice_pf *pf = vsi->back;
3749 	struct device *dev;
3750 	int status;
3751 	int speed;
3752 
3753 	dev = ice_pf_to_dev(pf);
3754 	if (!vsi->port_info) {
3755 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3756 			vsi->idx, vsi->type);
3757 		return -EINVAL;
3758 	}
3759 
3760 	speed = ice_get_link_speed_kbps(vsi);
3761 	if (max_tx_rate > (u64)speed) {
3762 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3763 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3764 			speed);
3765 		return -EINVAL;
3766 	}
3767 
3768 	/* Configure max BW for VSI limit */
3769 	if (max_tx_rate) {
3770 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3771 						   ICE_MAX_BW, max_tx_rate);
3772 		if (status) {
3773 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3774 				max_tx_rate, ice_vsi_type_str(vsi->type),
3775 				vsi->idx);
3776 			return status;
3777 		}
3778 
3779 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3780 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3781 	} else {
3782 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3783 							vsi->idx, 0,
3784 							ICE_MAX_BW);
3785 		if (status) {
3786 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3787 				ice_vsi_type_str(vsi->type), vsi->idx);
3788 			return status;
3789 		}
3790 
3791 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3792 			ice_vsi_type_str(vsi->type), vsi->idx);
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 /**
3799  * ice_set_link - turn on/off physical link
3800  * @vsi: VSI to modify physical link on
3801  * @ena: turn on/off physical link
3802  */
3803 int ice_set_link(struct ice_vsi *vsi, bool ena)
3804 {
3805 	struct device *dev = ice_pf_to_dev(vsi->back);
3806 	struct ice_port_info *pi = vsi->port_info;
3807 	struct ice_hw *hw = pi->hw;
3808 	int status;
3809 
3810 	if (vsi->type != ICE_VSI_PF)
3811 		return -EINVAL;
3812 
3813 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3814 
3815 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3816 	 * this is not a fatal error, so print a warning message and return
3817 	 * a success code. Return an error if FW returns an error code other
3818 	 * than ICE_AQ_RC_EMODE
3819 	 */
3820 	if (status == -EIO) {
3821 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3822 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3823 				(ena ? "ON" : "OFF"), status,
3824 				ice_aq_str(hw->adminq.sq_last_status));
3825 	} else if (status) {
3826 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3827 			(ena ? "ON" : "OFF"), status,
3828 			ice_aq_str(hw->adminq.sq_last_status));
3829 		return status;
3830 	}
3831 
3832 	return 0;
3833 }
3834 
3835 /**
3836  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3837  * @vsi: VSI used to add VLAN filters
3838  *
3839  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3840  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3841  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3842  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3843  *
3844  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3845  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3846  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3847  *
3848  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3849  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3850  * part of filtering.
3851  */
3852 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3853 {
3854 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3855 	struct ice_vlan vlan;
3856 	int err;
3857 
3858 	vlan = ICE_VLAN(0, 0, 0);
3859 	err = vlan_ops->add_vlan(vsi, &vlan);
3860 	if (err && err != -EEXIST)
3861 		return err;
3862 
3863 	/* in SVM both VLAN 0 filters are identical */
3864 	if (!ice_is_dvm_ena(&vsi->back->hw))
3865 		return 0;
3866 
3867 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3868 	err = vlan_ops->add_vlan(vsi, &vlan);
3869 	if (err && err != -EEXIST)
3870 		return err;
3871 
3872 	return 0;
3873 }
3874 
3875 /**
3876  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3877  * @vsi: VSI used to add VLAN filters
3878  *
3879  * Delete the VLAN 0 filters in the same manner that they were added in
3880  * ice_vsi_add_vlan_zero.
3881  */
3882 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3883 {
3884 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3885 	struct ice_vlan vlan;
3886 	int err;
3887 
3888 	vlan = ICE_VLAN(0, 0, 0);
3889 	err = vlan_ops->del_vlan(vsi, &vlan);
3890 	if (err && err != -EEXIST)
3891 		return err;
3892 
3893 	/* in SVM both VLAN 0 filters are identical */
3894 	if (!ice_is_dvm_ena(&vsi->back->hw))
3895 		return 0;
3896 
3897 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3898 	err = vlan_ops->del_vlan(vsi, &vlan);
3899 	if (err && err != -EEXIST)
3900 		return err;
3901 
3902 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3903 	 * promisc mode so the filter isn't left by accident
3904 	 */
3905 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3906 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3907 }
3908 
3909 /**
3910  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3911  * @vsi: VSI used to get the VLAN mode
3912  *
3913  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3914  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3915  */
3916 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3917 {
3918 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3919 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3920 	/* no VLAN 0 filter is created when a port VLAN is active */
3921 	if (vsi->type == ICE_VSI_VF) {
3922 		if (WARN_ON(!vsi->vf))
3923 			return 0;
3924 
3925 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3926 			return 0;
3927 	}
3928 
3929 	if (ice_is_dvm_ena(&vsi->back->hw))
3930 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3931 	else
3932 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3933 }
3934 
3935 /**
3936  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3937  * @vsi: VSI used to determine if any non-zero VLANs have been added
3938  */
3939 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3940 {
3941 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3942 }
3943 
3944 /**
3945  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3946  * @vsi: VSI used to get the number of non-zero VLANs added
3947  */
3948 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3949 {
3950 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3951 }
3952 
3953 /**
3954  * ice_is_feature_supported
3955  * @pf: pointer to the struct ice_pf instance
3956  * @f: feature enum to be checked
3957  *
3958  * returns true if feature is supported, false otherwise
3959  */
3960 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3961 {
3962 	if (f < 0 || f >= ICE_F_MAX)
3963 		return false;
3964 
3965 	return test_bit(f, pf->features);
3966 }
3967 
3968 /**
3969  * ice_set_feature_support
3970  * @pf: pointer to the struct ice_pf instance
3971  * @f: feature enum to set
3972  */
3973 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3974 {
3975 	if (f < 0 || f >= ICE_F_MAX)
3976 		return;
3977 
3978 	set_bit(f, pf->features);
3979 }
3980 
3981 /**
3982  * ice_clear_feature_support
3983  * @pf: pointer to the struct ice_pf instance
3984  * @f: feature enum to clear
3985  */
3986 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3987 {
3988 	if (f < 0 || f >= ICE_F_MAX)
3989 		return;
3990 
3991 	clear_bit(f, pf->features);
3992 }
3993 
3994 /**
3995  * ice_init_feature_support
3996  * @pf: pointer to the struct ice_pf instance
3997  *
3998  * called during init to setup supported feature
3999  */
4000 void ice_init_feature_support(struct ice_pf *pf)
4001 {
4002 	switch (pf->hw.device_id) {
4003 	case ICE_DEV_ID_E810C_BACKPLANE:
4004 	case ICE_DEV_ID_E810C_QSFP:
4005 	case ICE_DEV_ID_E810C_SFP:
4006 		ice_set_feature_support(pf, ICE_F_DSCP);
4007 		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4008 		if (ice_is_e810t(&pf->hw)) {
4009 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4010 			if (ice_gnss_is_gps_present(&pf->hw))
4011 				ice_set_feature_support(pf, ICE_F_GNSS);
4012 		}
4013 		break;
4014 	default:
4015 		break;
4016 	}
4017 }
4018 
4019 /**
4020  * ice_vsi_update_security - update security block in VSI
4021  * @vsi: pointer to VSI structure
4022  * @fill: function pointer to fill ctx
4023  */
4024 int
4025 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4026 {
4027 	struct ice_vsi_ctx ctx = { 0 };
4028 
4029 	ctx.info = vsi->info;
4030 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4031 	fill(&ctx);
4032 
4033 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4034 		return -ENODEV;
4035 
4036 	vsi->info = ctx.info;
4037 	return 0;
4038 }
4039 
4040 /**
4041  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4042  * @ctx: pointer to VSI ctx structure
4043  */
4044 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4045 {
4046 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4047 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4048 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4049 }
4050 
4051 /**
4052  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4053  * @ctx: pointer to VSI ctx structure
4054  */
4055 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4056 {
4057 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4058 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4059 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4060 }
4061 
4062 /**
4063  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4064  * @ctx: pointer to VSI ctx structure
4065  */
4066 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4067 {
4068 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4069 }
4070 
4071 /**
4072  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4073  * @ctx: pointer to VSI ctx structure
4074  */
4075 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4076 {
4077 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4078 }
4079 
4080 /**
4081  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4082  * @vsi: pointer to VSI structure
4083  * @set: set or unset the bit
4084  */
4085 int
4086 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4087 {
4088 	struct ice_vsi_ctx ctx = {
4089 		.info	= vsi->info,
4090 	};
4091 
4092 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4093 	if (set)
4094 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4095 	else
4096 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4097 
4098 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4099 		return -ENODEV;
4100 
4101 	vsi->info = ctx.info;
4102 	return 0;
4103 }
4104