1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 9 /** 10 * ice_vsi_type_str - maps VSI type enum to string equivalents 11 * @type: VSI type enum 12 */ 13 const char *ice_vsi_type_str(enum ice_vsi_type type) 14 { 15 switch (type) { 16 case ICE_VSI_PF: 17 return "ICE_VSI_PF"; 18 case ICE_VSI_VF: 19 return "ICE_VSI_VF"; 20 case ICE_VSI_LB: 21 return "ICE_VSI_LB"; 22 default: 23 return "unknown"; 24 } 25 } 26 27 /** 28 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 29 * @vsi: the VSI being configured 30 * @ena: start or stop the Rx rings 31 */ 32 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 33 { 34 int i, ret = 0; 35 36 for (i = 0; i < vsi->num_rxq; i++) { 37 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i); 38 if (ret) 39 break; 40 } 41 42 return ret; 43 } 44 45 /** 46 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 47 * @vsi: VSI pointer 48 * 49 * On error: returns error code (negative) 50 * On success: returns 0 51 */ 52 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 53 { 54 struct ice_pf *pf = vsi->back; 55 struct device *dev; 56 57 dev = ice_pf_to_dev(pf); 58 59 /* allocate memory for both Tx and Rx ring pointers */ 60 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 61 sizeof(*vsi->tx_rings), GFP_KERNEL); 62 if (!vsi->tx_rings) 63 return -ENOMEM; 64 65 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 66 sizeof(*vsi->rx_rings), GFP_KERNEL); 67 if (!vsi->rx_rings) 68 goto err_rings; 69 70 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 71 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 72 sizeof(*vsi->txq_map), GFP_KERNEL); 73 74 if (!vsi->txq_map) 75 goto err_txq_map; 76 77 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 78 sizeof(*vsi->rxq_map), GFP_KERNEL); 79 if (!vsi->rxq_map) 80 goto err_rxq_map; 81 82 /* There is no need to allocate q_vectors for a loopback VSI. */ 83 if (vsi->type == ICE_VSI_LB) 84 return 0; 85 86 /* allocate memory for q_vector pointers */ 87 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 88 sizeof(*vsi->q_vectors), GFP_KERNEL); 89 if (!vsi->q_vectors) 90 goto err_vectors; 91 92 return 0; 93 94 err_vectors: 95 devm_kfree(dev, vsi->rxq_map); 96 err_rxq_map: 97 devm_kfree(dev, vsi->txq_map); 98 err_txq_map: 99 devm_kfree(dev, vsi->rx_rings); 100 err_rings: 101 devm_kfree(dev, vsi->tx_rings); 102 return -ENOMEM; 103 } 104 105 /** 106 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 107 * @vsi: the VSI being configured 108 */ 109 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 110 { 111 switch (vsi->type) { 112 case ICE_VSI_PF: 113 /* fall through */ 114 case ICE_VSI_LB: 115 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 116 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 117 break; 118 default: 119 dev_dbg(&vsi->back->pdev->dev, 120 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 121 vsi->type); 122 break; 123 } 124 } 125 126 /** 127 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 128 * @vsi: the VSI being configured 129 * @vf_id: ID of the VF being configured 130 * 131 * Return 0 on success and a negative value on error 132 */ 133 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 134 { 135 struct ice_pf *pf = vsi->back; 136 struct ice_vf *vf = NULL; 137 138 if (vsi->type == ICE_VSI_VF) 139 vsi->vf_id = vf_id; 140 141 switch (vsi->type) { 142 case ICE_VSI_PF: 143 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 144 num_online_cpus()); 145 if (vsi->req_txq) { 146 vsi->alloc_txq = vsi->req_txq; 147 vsi->num_txq = vsi->req_txq; 148 } 149 150 pf->num_lan_tx = vsi->alloc_txq; 151 152 /* only 1 Rx queue unless RSS is enabled */ 153 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 154 vsi->alloc_rxq = 1; 155 } else { 156 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 157 num_online_cpus()); 158 if (vsi->req_rxq) { 159 vsi->alloc_rxq = vsi->req_rxq; 160 vsi->num_rxq = vsi->req_rxq; 161 } 162 } 163 164 pf->num_lan_rx = vsi->alloc_rxq; 165 166 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 167 break; 168 case ICE_VSI_VF: 169 vf = &pf->vf[vsi->vf_id]; 170 vsi->alloc_txq = vf->num_vf_qs; 171 vsi->alloc_rxq = vf->num_vf_qs; 172 /* pf->num_vf_msix includes (VF miscellaneous vector + 173 * data queue interrupts). Since vsi->num_q_vectors is number 174 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 175 * original vector count 176 */ 177 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 178 break; 179 case ICE_VSI_LB: 180 vsi->alloc_txq = 1; 181 vsi->alloc_rxq = 1; 182 break; 183 default: 184 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 185 break; 186 } 187 188 ice_vsi_set_num_desc(vsi); 189 } 190 191 /** 192 * ice_get_free_slot - get the next non-NULL location index in array 193 * @array: array to search 194 * @size: size of the array 195 * @curr: last known occupied index to be used as a search hint 196 * 197 * void * is being used to keep the functionality generic. This lets us use this 198 * function on any array of pointers. 199 */ 200 static int ice_get_free_slot(void *array, int size, int curr) 201 { 202 int **tmp_array = (int **)array; 203 int next; 204 205 if (curr < (size - 1) && !tmp_array[curr + 1]) { 206 next = curr + 1; 207 } else { 208 int i = 0; 209 210 while ((i < size) && (tmp_array[i])) 211 i++; 212 if (i == size) 213 next = ICE_NO_VSI; 214 else 215 next = i; 216 } 217 return next; 218 } 219 220 /** 221 * ice_vsi_delete - delete a VSI from the switch 222 * @vsi: pointer to VSI being removed 223 */ 224 void ice_vsi_delete(struct ice_vsi *vsi) 225 { 226 struct ice_pf *pf = vsi->back; 227 struct ice_vsi_ctx *ctxt; 228 enum ice_status status; 229 230 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 231 if (!ctxt) 232 return; 233 234 if (vsi->type == ICE_VSI_VF) 235 ctxt->vf_num = vsi->vf_id; 236 ctxt->vsi_num = vsi->vsi_num; 237 238 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 239 240 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 241 if (status) 242 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 243 vsi->vsi_num, status); 244 245 kfree(ctxt); 246 } 247 248 /** 249 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 250 * @vsi: pointer to VSI being cleared 251 */ 252 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 253 { 254 struct ice_pf *pf = vsi->back; 255 struct device *dev; 256 257 dev = ice_pf_to_dev(pf); 258 259 /* free the ring and vector containers */ 260 if (vsi->q_vectors) { 261 devm_kfree(dev, vsi->q_vectors); 262 vsi->q_vectors = NULL; 263 } 264 if (vsi->tx_rings) { 265 devm_kfree(dev, vsi->tx_rings); 266 vsi->tx_rings = NULL; 267 } 268 if (vsi->rx_rings) { 269 devm_kfree(dev, vsi->rx_rings); 270 vsi->rx_rings = NULL; 271 } 272 if (vsi->txq_map) { 273 devm_kfree(dev, vsi->txq_map); 274 vsi->txq_map = NULL; 275 } 276 if (vsi->rxq_map) { 277 devm_kfree(dev, vsi->rxq_map); 278 vsi->rxq_map = NULL; 279 } 280 } 281 282 /** 283 * ice_vsi_clear - clean up and deallocate the provided VSI 284 * @vsi: pointer to VSI being cleared 285 * 286 * This deallocates the VSI's queue resources, removes it from the PF's 287 * VSI array if necessary, and deallocates the VSI 288 * 289 * Returns 0 on success, negative on failure 290 */ 291 int ice_vsi_clear(struct ice_vsi *vsi) 292 { 293 struct ice_pf *pf = NULL; 294 struct device *dev; 295 296 if (!vsi) 297 return 0; 298 299 if (!vsi->back) 300 return -EINVAL; 301 302 pf = vsi->back; 303 dev = ice_pf_to_dev(pf); 304 305 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 306 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 307 return -EINVAL; 308 } 309 310 mutex_lock(&pf->sw_mutex); 311 /* updates the PF for this cleared VSI */ 312 313 pf->vsi[vsi->idx] = NULL; 314 if (vsi->idx < pf->next_vsi) 315 pf->next_vsi = vsi->idx; 316 317 ice_vsi_free_arrays(vsi); 318 mutex_unlock(&pf->sw_mutex); 319 devm_kfree(dev, vsi); 320 321 return 0; 322 } 323 324 /** 325 * ice_msix_clean_rings - MSIX mode Interrupt Handler 326 * @irq: interrupt number 327 * @data: pointer to a q_vector 328 */ 329 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 330 { 331 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 332 333 if (!q_vector->tx.ring && !q_vector->rx.ring) 334 return IRQ_HANDLED; 335 336 napi_schedule(&q_vector->napi); 337 338 return IRQ_HANDLED; 339 } 340 341 /** 342 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 343 * @pf: board private structure 344 * @type: type of VSI 345 * @vf_id: ID of the VF being configured 346 * 347 * returns a pointer to a VSI on success, NULL on failure. 348 */ 349 static struct ice_vsi * 350 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 351 { 352 struct device *dev = ice_pf_to_dev(pf); 353 struct ice_vsi *vsi = NULL; 354 355 /* Need to protect the allocation of the VSIs at the PF level */ 356 mutex_lock(&pf->sw_mutex); 357 358 /* If we have already allocated our maximum number of VSIs, 359 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 360 * is available to be populated 361 */ 362 if (pf->next_vsi == ICE_NO_VSI) { 363 dev_dbg(dev, "out of VSI slots!\n"); 364 goto unlock_pf; 365 } 366 367 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 368 if (!vsi) 369 goto unlock_pf; 370 371 vsi->type = type; 372 vsi->back = pf; 373 set_bit(__ICE_DOWN, vsi->state); 374 375 vsi->idx = pf->next_vsi; 376 377 if (type == ICE_VSI_VF) 378 ice_vsi_set_num_qs(vsi, vf_id); 379 else 380 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 381 382 switch (vsi->type) { 383 case ICE_VSI_PF: 384 if (ice_vsi_alloc_arrays(vsi)) 385 goto err_rings; 386 387 /* Setup default MSIX irq handler for VSI */ 388 vsi->irq_handler = ice_msix_clean_rings; 389 break; 390 case ICE_VSI_VF: 391 if (ice_vsi_alloc_arrays(vsi)) 392 goto err_rings; 393 break; 394 case ICE_VSI_LB: 395 if (ice_vsi_alloc_arrays(vsi)) 396 goto err_rings; 397 break; 398 default: 399 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 400 goto unlock_pf; 401 } 402 403 /* fill VSI slot in the PF struct */ 404 pf->vsi[pf->next_vsi] = vsi; 405 406 /* prepare pf->next_vsi for next use */ 407 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 408 pf->next_vsi); 409 goto unlock_pf; 410 411 err_rings: 412 devm_kfree(dev, vsi); 413 vsi = NULL; 414 unlock_pf: 415 mutex_unlock(&pf->sw_mutex); 416 return vsi; 417 } 418 419 /** 420 * ice_vsi_get_qs - Assign queues from PF to VSI 421 * @vsi: the VSI to assign queues to 422 * 423 * Returns 0 on success and a negative value on error 424 */ 425 static int ice_vsi_get_qs(struct ice_vsi *vsi) 426 { 427 struct ice_pf *pf = vsi->back; 428 struct ice_qs_cfg tx_qs_cfg = { 429 .qs_mutex = &pf->avail_q_mutex, 430 .pf_map = pf->avail_txqs, 431 .pf_map_size = pf->max_pf_txqs, 432 .q_count = vsi->alloc_txq, 433 .scatter_count = ICE_MAX_SCATTER_TXQS, 434 .vsi_map = vsi->txq_map, 435 .vsi_map_offset = 0, 436 .mapping_mode = vsi->tx_mapping_mode 437 }; 438 struct ice_qs_cfg rx_qs_cfg = { 439 .qs_mutex = &pf->avail_q_mutex, 440 .pf_map = pf->avail_rxqs, 441 .pf_map_size = pf->max_pf_rxqs, 442 .q_count = vsi->alloc_rxq, 443 .scatter_count = ICE_MAX_SCATTER_RXQS, 444 .vsi_map = vsi->rxq_map, 445 .vsi_map_offset = 0, 446 .mapping_mode = vsi->rx_mapping_mode 447 }; 448 int ret = 0; 449 450 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 451 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 452 453 ret = __ice_vsi_get_qs(&tx_qs_cfg); 454 if (!ret) 455 ret = __ice_vsi_get_qs(&rx_qs_cfg); 456 457 return ret; 458 } 459 460 /** 461 * ice_vsi_put_qs - Release queues from VSI to PF 462 * @vsi: the VSI that is going to release queues 463 */ 464 void ice_vsi_put_qs(struct ice_vsi *vsi) 465 { 466 struct ice_pf *pf = vsi->back; 467 int i; 468 469 mutex_lock(&pf->avail_q_mutex); 470 471 for (i = 0; i < vsi->alloc_txq; i++) { 472 clear_bit(vsi->txq_map[i], pf->avail_txqs); 473 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 474 } 475 476 for (i = 0; i < vsi->alloc_rxq; i++) { 477 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 478 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 479 } 480 481 mutex_unlock(&pf->avail_q_mutex); 482 } 483 484 /** 485 * ice_is_safe_mode 486 * @pf: pointer to the PF struct 487 * 488 * returns true if driver is in safe mode, false otherwise 489 */ 490 bool ice_is_safe_mode(struct ice_pf *pf) 491 { 492 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 493 } 494 495 /** 496 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 497 * @vsi: the VSI being removed 498 */ 499 static void ice_rss_clean(struct ice_vsi *vsi) 500 { 501 struct ice_pf *pf = vsi->back; 502 struct device *dev; 503 504 dev = ice_pf_to_dev(pf); 505 506 if (vsi->rss_hkey_user) 507 devm_kfree(dev, vsi->rss_hkey_user); 508 if (vsi->rss_lut_user) 509 devm_kfree(dev, vsi->rss_lut_user); 510 } 511 512 /** 513 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 514 * @vsi: the VSI being configured 515 */ 516 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 517 { 518 struct ice_hw_common_caps *cap; 519 struct ice_pf *pf = vsi->back; 520 521 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 522 vsi->rss_size = 1; 523 return; 524 } 525 526 cap = &pf->hw.func_caps.common_cap; 527 switch (vsi->type) { 528 case ICE_VSI_PF: 529 /* PF VSI will inherit RSS instance of PF */ 530 vsi->rss_table_size = cap->rss_table_size; 531 vsi->rss_size = min_t(int, num_online_cpus(), 532 BIT(cap->rss_table_entry_width)); 533 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 534 break; 535 case ICE_VSI_VF: 536 /* VF VSI will gets a small RSS table 537 * For VSI_LUT, LUT size should be set to 64 bytes 538 */ 539 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 540 vsi->rss_size = min_t(int, num_online_cpus(), 541 BIT(cap->rss_table_entry_width)); 542 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 543 break; 544 case ICE_VSI_LB: 545 break; 546 default: 547 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", 548 vsi->type); 549 break; 550 } 551 } 552 553 /** 554 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 555 * @ctxt: the VSI context being set 556 * 557 * This initializes a default VSI context for all sections except the Queues. 558 */ 559 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 560 { 561 u32 table = 0; 562 563 memset(&ctxt->info, 0, sizeof(ctxt->info)); 564 /* VSI's should be allocated from shared pool */ 565 ctxt->alloc_from_pool = true; 566 /* Src pruning enabled by default */ 567 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 568 /* Traffic from VSI can be sent to LAN */ 569 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 570 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 571 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 572 * packets untagged/tagged. 573 */ 574 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 575 ICE_AQ_VSI_VLAN_MODE_M) >> 576 ICE_AQ_VSI_VLAN_MODE_S); 577 /* Have 1:1 UP mapping for both ingress/egress tables */ 578 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 579 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 580 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 581 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 582 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 583 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 584 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 585 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 586 ctxt->info.ingress_table = cpu_to_le32(table); 587 ctxt->info.egress_table = cpu_to_le32(table); 588 /* Have 1:1 UP mapping for outer to inner UP table */ 589 ctxt->info.outer_up_table = cpu_to_le32(table); 590 /* No Outer tag support outer_tag_flags remains to zero */ 591 } 592 593 /** 594 * ice_vsi_setup_q_map - Setup a VSI queue map 595 * @vsi: the VSI being configured 596 * @ctxt: VSI context structure 597 */ 598 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 599 { 600 u16 offset = 0, qmap = 0, tx_count = 0; 601 u16 qcount_tx = vsi->alloc_txq; 602 u16 qcount_rx = vsi->alloc_rxq; 603 u16 tx_numq_tc, rx_numq_tc; 604 u16 pow = 0, max_rss = 0; 605 bool ena_tc0 = false; 606 u8 netdev_tc = 0; 607 int i; 608 609 /* at least TC0 should be enabled by default */ 610 if (vsi->tc_cfg.numtc) { 611 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 612 ena_tc0 = true; 613 } else { 614 ena_tc0 = true; 615 } 616 617 if (ena_tc0) { 618 vsi->tc_cfg.numtc++; 619 vsi->tc_cfg.ena_tc |= 1; 620 } 621 622 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 623 if (!rx_numq_tc) 624 rx_numq_tc = 1; 625 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 626 if (!tx_numq_tc) 627 tx_numq_tc = 1; 628 629 /* TC mapping is a function of the number of Rx queues assigned to the 630 * VSI for each traffic class and the offset of these queues. 631 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 632 * queues allocated to TC0. No:of queues is a power-of-2. 633 * 634 * If TC is not enabled, the queue offset is set to 0, and allocate one 635 * queue, this way, traffic for the given TC will be sent to the default 636 * queue. 637 * 638 * Setup number and offset of Rx queues for all TCs for the VSI 639 */ 640 641 qcount_rx = rx_numq_tc; 642 643 /* qcount will change if RSS is enabled */ 644 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 645 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 646 if (vsi->type == ICE_VSI_PF) 647 max_rss = ICE_MAX_LG_RSS_QS; 648 else 649 max_rss = ICE_MAX_SMALL_RSS_QS; 650 qcount_rx = min_t(int, rx_numq_tc, max_rss); 651 if (!vsi->req_rxq) 652 qcount_rx = min_t(int, qcount_rx, 653 vsi->rss_size); 654 } 655 } 656 657 /* find the (rounded up) power-of-2 of qcount */ 658 pow = order_base_2(qcount_rx); 659 660 ice_for_each_traffic_class(i) { 661 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 662 /* TC is not enabled */ 663 vsi->tc_cfg.tc_info[i].qoffset = 0; 664 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 665 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 666 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 667 ctxt->info.tc_mapping[i] = 0; 668 continue; 669 } 670 671 /* TC is enabled */ 672 vsi->tc_cfg.tc_info[i].qoffset = offset; 673 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 674 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 675 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 676 677 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 678 ICE_AQ_VSI_TC_Q_OFFSET_M) | 679 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 680 ICE_AQ_VSI_TC_Q_NUM_M); 681 offset += qcount_rx; 682 tx_count += tx_numq_tc; 683 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 684 } 685 686 /* if offset is non-zero, means it is calculated correctly based on 687 * enabled TCs for a given VSI otherwise qcount_rx will always 688 * be correct and non-zero because it is based off - VSI's 689 * allocated Rx queues which is at least 1 (hence qcount_tx will be 690 * at least 1) 691 */ 692 if (offset) 693 vsi->num_rxq = offset; 694 else 695 vsi->num_rxq = qcount_rx; 696 697 vsi->num_txq = tx_count; 698 699 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 700 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 701 /* since there is a chance that num_rxq could have been changed 702 * in the above for loop, make num_txq equal to num_rxq. 703 */ 704 vsi->num_txq = vsi->num_rxq; 705 } 706 707 /* Rx queue mapping */ 708 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 709 /* q_mapping buffer holds the info for the first queue allocated for 710 * this VSI in the PF space and also the number of queues associated 711 * with this VSI. 712 */ 713 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 714 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 715 } 716 717 /** 718 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 719 * @ctxt: the VSI context being set 720 * @vsi: the VSI being configured 721 */ 722 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 723 { 724 u8 lut_type, hash_type; 725 struct device *dev; 726 struct ice_pf *pf; 727 728 pf = vsi->back; 729 dev = ice_pf_to_dev(pf); 730 731 switch (vsi->type) { 732 case ICE_VSI_PF: 733 /* PF VSI will inherit RSS instance of PF */ 734 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 735 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 736 break; 737 case ICE_VSI_VF: 738 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 739 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 740 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 741 break; 742 case ICE_VSI_LB: 743 dev_dbg(dev, "Unsupported VSI type %s\n", 744 ice_vsi_type_str(vsi->type)); 745 return; 746 default: 747 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 748 return; 749 } 750 751 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 752 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 753 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 754 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 755 } 756 757 /** 758 * ice_vsi_init - Create and initialize a VSI 759 * @vsi: the VSI being configured 760 * @init_vsi: is this call creating a VSI 761 * 762 * This initializes a VSI context depending on the VSI type to be added and 763 * passes it down to the add_vsi aq command to create a new VSI. 764 */ 765 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 struct ice_hw *hw = &pf->hw; 769 struct ice_vsi_ctx *ctxt; 770 struct device *dev; 771 int ret = 0; 772 773 dev = ice_pf_to_dev(pf); 774 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 775 if (!ctxt) 776 return -ENOMEM; 777 778 ctxt->info = vsi->info; 779 switch (vsi->type) { 780 case ICE_VSI_LB: 781 /* fall through */ 782 case ICE_VSI_PF: 783 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 784 break; 785 case ICE_VSI_VF: 786 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 787 /* VF number here is the absolute VF number (0-255) */ 788 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 789 break; 790 default: 791 ret = -ENODEV; 792 goto out; 793 } 794 795 ice_set_dflt_vsi_ctx(ctxt); 796 /* if the switch is in VEB mode, allow VSI loopback */ 797 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 798 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 799 800 /* Set LUT type and HASH type if RSS is enabled */ 801 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 802 ice_set_rss_vsi_ctx(ctxt, vsi); 803 /* if updating VSI context, make sure to set valid_section: 804 * to indicate which section of VSI context being updated 805 */ 806 if (!init_vsi) 807 ctxt->info.valid_sections |= 808 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 809 } 810 811 ctxt->info.sw_id = vsi->port_info->sw_id; 812 ice_vsi_setup_q_map(vsi, ctxt); 813 if (!init_vsi) /* means VSI being updated */ 814 /* must to indicate which section of VSI context are 815 * being modified 816 */ 817 ctxt->info.valid_sections |= 818 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 819 820 /* Enable MAC Antispoof with new VSI being initialized or updated */ 821 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) { 822 ctxt->info.valid_sections |= 823 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 824 ctxt->info.sec_flags |= 825 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; 826 } 827 828 /* Allow control frames out of main VSI */ 829 if (vsi->type == ICE_VSI_PF) { 830 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 831 ctxt->info.valid_sections |= 832 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 833 } 834 835 if (init_vsi) { 836 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 837 if (ret) { 838 dev_err(dev, "Add VSI failed, err %d\n", ret); 839 ret = -EIO; 840 goto out; 841 } 842 } else { 843 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 844 if (ret) { 845 dev_err(dev, "Update VSI failed, err %d\n", ret); 846 ret = -EIO; 847 goto out; 848 } 849 } 850 851 /* keep context for update VSI operations */ 852 vsi->info = ctxt->info; 853 854 /* record VSI number returned */ 855 vsi->vsi_num = ctxt->vsi_num; 856 857 out: 858 kfree(ctxt); 859 return ret; 860 } 861 862 /** 863 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 864 * @vsi: ptr to the VSI 865 * 866 * This should only be called after ice_vsi_alloc() which allocates the 867 * corresponding SW VSI structure and initializes num_queue_pairs for the 868 * newly allocated VSI. 869 * 870 * Returns 0 on success or negative on failure 871 */ 872 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 873 { 874 struct ice_pf *pf = vsi->back; 875 struct device *dev; 876 u16 num_q_vectors; 877 878 dev = ice_pf_to_dev(pf); 879 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 880 if (vsi->type == ICE_VSI_VF) 881 return 0; 882 883 if (vsi->base_vector) { 884 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 885 vsi->vsi_num, vsi->base_vector); 886 return -EEXIST; 887 } 888 889 num_q_vectors = vsi->num_q_vectors; 890 /* reserve slots from OS requested IRQs */ 891 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 892 vsi->idx); 893 if (vsi->base_vector < 0) { 894 dev_err(dev, 895 "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 896 num_q_vectors, vsi->vsi_num, vsi->base_vector); 897 return -ENOENT; 898 } 899 pf->num_avail_sw_msix -= num_q_vectors; 900 901 return 0; 902 } 903 904 /** 905 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 906 * @vsi: the VSI having rings deallocated 907 */ 908 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 909 { 910 int i; 911 912 if (vsi->tx_rings) { 913 for (i = 0; i < vsi->alloc_txq; i++) { 914 if (vsi->tx_rings[i]) { 915 kfree_rcu(vsi->tx_rings[i], rcu); 916 vsi->tx_rings[i] = NULL; 917 } 918 } 919 } 920 if (vsi->rx_rings) { 921 for (i = 0; i < vsi->alloc_rxq; i++) { 922 if (vsi->rx_rings[i]) { 923 kfree_rcu(vsi->rx_rings[i], rcu); 924 vsi->rx_rings[i] = NULL; 925 } 926 } 927 } 928 } 929 930 /** 931 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 932 * @vsi: VSI which is having rings allocated 933 */ 934 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 935 { 936 struct ice_pf *pf = vsi->back; 937 struct device *dev; 938 int i; 939 940 dev = ice_pf_to_dev(pf); 941 /* Allocate Tx rings */ 942 for (i = 0; i < vsi->alloc_txq; i++) { 943 struct ice_ring *ring; 944 945 /* allocate with kzalloc(), free with kfree_rcu() */ 946 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 947 948 if (!ring) 949 goto err_out; 950 951 ring->q_index = i; 952 ring->reg_idx = vsi->txq_map[i]; 953 ring->ring_active = false; 954 ring->vsi = vsi; 955 ring->dev = dev; 956 ring->count = vsi->num_tx_desc; 957 vsi->tx_rings[i] = ring; 958 } 959 960 /* Allocate Rx rings */ 961 for (i = 0; i < vsi->alloc_rxq; i++) { 962 struct ice_ring *ring; 963 964 /* allocate with kzalloc(), free with kfree_rcu() */ 965 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 966 if (!ring) 967 goto err_out; 968 969 ring->q_index = i; 970 ring->reg_idx = vsi->rxq_map[i]; 971 ring->ring_active = false; 972 ring->vsi = vsi; 973 ring->netdev = vsi->netdev; 974 ring->dev = dev; 975 ring->count = vsi->num_rx_desc; 976 vsi->rx_rings[i] = ring; 977 } 978 979 return 0; 980 981 err_out: 982 ice_vsi_clear_rings(vsi); 983 return -ENOMEM; 984 } 985 986 /** 987 * ice_vsi_manage_rss_lut - disable/enable RSS 988 * @vsi: the VSI being changed 989 * @ena: boolean value indicating if this is an enable or disable request 990 * 991 * In the event of disable request for RSS, this function will zero out RSS 992 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 993 * LUT. 994 */ 995 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 996 { 997 int err = 0; 998 u8 *lut; 999 1000 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1001 if (!lut) 1002 return -ENOMEM; 1003 1004 if (ena) { 1005 if (vsi->rss_lut_user) 1006 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1007 else 1008 ice_fill_rss_lut(lut, vsi->rss_table_size, 1009 vsi->rss_size); 1010 } 1011 1012 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1013 kfree(lut); 1014 return err; 1015 } 1016 1017 /** 1018 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1019 * @vsi: VSI to be configured 1020 */ 1021 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1022 { 1023 struct ice_aqc_get_set_rss_keys *key; 1024 struct ice_pf *pf = vsi->back; 1025 enum ice_status status; 1026 struct device *dev; 1027 int err = 0; 1028 u8 *lut; 1029 1030 dev = ice_pf_to_dev(pf); 1031 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1032 1033 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1034 if (!lut) 1035 return -ENOMEM; 1036 1037 if (vsi->rss_lut_user) 1038 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1039 else 1040 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1041 1042 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1043 vsi->rss_table_size); 1044 1045 if (status) { 1046 dev_err(dev, "set_rss_lut failed, error %d\n", status); 1047 err = -EIO; 1048 goto ice_vsi_cfg_rss_exit; 1049 } 1050 1051 key = kzalloc(sizeof(*key), GFP_KERNEL); 1052 if (!key) { 1053 err = -ENOMEM; 1054 goto ice_vsi_cfg_rss_exit; 1055 } 1056 1057 if (vsi->rss_hkey_user) 1058 memcpy(key, 1059 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1060 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1061 else 1062 netdev_rss_key_fill((void *)key, 1063 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1064 1065 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1066 1067 if (status) { 1068 dev_err(dev, "set_rss_key failed, error %d\n", status); 1069 err = -EIO; 1070 } 1071 1072 kfree(key); 1073 ice_vsi_cfg_rss_exit: 1074 kfree(lut); 1075 return err; 1076 } 1077 1078 /** 1079 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1080 * @vsi: the VSI to be forwarded to 1081 * @add_list: pointer to the list which contains MAC filter entries 1082 * @macaddr: the MAC address to be added. 1083 * 1084 * Adds MAC address filter entry to the temp list 1085 * 1086 * Returns 0 on success or ENOMEM on failure. 1087 */ 1088 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1089 const u8 *macaddr) 1090 { 1091 struct ice_fltr_list_entry *tmp; 1092 struct ice_pf *pf = vsi->back; 1093 1094 tmp = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*tmp), GFP_ATOMIC); 1095 if (!tmp) 1096 return -ENOMEM; 1097 1098 tmp->fltr_info.flag = ICE_FLTR_TX; 1099 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1100 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1101 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1102 tmp->fltr_info.vsi_handle = vsi->idx; 1103 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1104 1105 INIT_LIST_HEAD(&tmp->list_entry); 1106 list_add(&tmp->list_entry, add_list); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1113 * @vsi: the VSI to be updated 1114 */ 1115 void ice_update_eth_stats(struct ice_vsi *vsi) 1116 { 1117 struct ice_eth_stats *prev_es, *cur_es; 1118 struct ice_hw *hw = &vsi->back->hw; 1119 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1120 1121 prev_es = &vsi->eth_stats_prev; 1122 cur_es = &vsi->eth_stats; 1123 1124 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1125 &prev_es->rx_bytes, &cur_es->rx_bytes); 1126 1127 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1128 &prev_es->rx_unicast, &cur_es->rx_unicast); 1129 1130 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1131 &prev_es->rx_multicast, &cur_es->rx_multicast); 1132 1133 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1134 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1135 1136 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1137 &prev_es->rx_discards, &cur_es->rx_discards); 1138 1139 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1140 &prev_es->tx_bytes, &cur_es->tx_bytes); 1141 1142 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1143 &prev_es->tx_unicast, &cur_es->tx_unicast); 1144 1145 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1146 &prev_es->tx_multicast, &cur_es->tx_multicast); 1147 1148 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1149 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1150 1151 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1152 &prev_es->tx_errors, &cur_es->tx_errors); 1153 1154 vsi->stat_offsets_loaded = true; 1155 } 1156 1157 /** 1158 * ice_free_fltr_list - free filter lists helper 1159 * @dev: pointer to the device struct 1160 * @h: pointer to the list head to be freed 1161 * 1162 * Helper function to free filter lists previously created using 1163 * ice_add_mac_to_list 1164 */ 1165 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1166 { 1167 struct ice_fltr_list_entry *e, *tmp; 1168 1169 list_for_each_entry_safe(e, tmp, h, list_entry) { 1170 list_del(&e->list_entry); 1171 devm_kfree(dev, e); 1172 } 1173 } 1174 1175 /** 1176 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1177 * @vsi: the VSI being configured 1178 * @vid: VLAN ID to be added 1179 */ 1180 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1181 { 1182 struct ice_fltr_list_entry *tmp; 1183 struct ice_pf *pf = vsi->back; 1184 LIST_HEAD(tmp_add_list); 1185 enum ice_status status; 1186 struct device *dev; 1187 int err = 0; 1188 1189 dev = ice_pf_to_dev(pf); 1190 tmp = devm_kzalloc(dev, sizeof(*tmp), GFP_KERNEL); 1191 if (!tmp) 1192 return -ENOMEM; 1193 1194 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1195 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1196 tmp->fltr_info.flag = ICE_FLTR_TX; 1197 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1198 tmp->fltr_info.vsi_handle = vsi->idx; 1199 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1200 1201 INIT_LIST_HEAD(&tmp->list_entry); 1202 list_add(&tmp->list_entry, &tmp_add_list); 1203 1204 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1205 if (status) { 1206 err = -ENODEV; 1207 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1208 vsi->vsi_num); 1209 } 1210 1211 ice_free_fltr_list(dev, &tmp_add_list); 1212 return err; 1213 } 1214 1215 /** 1216 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1217 * @vsi: the VSI being configured 1218 * @vid: VLAN ID to be removed 1219 * 1220 * Returns 0 on success and negative on failure 1221 */ 1222 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1223 { 1224 struct ice_fltr_list_entry *list; 1225 struct ice_pf *pf = vsi->back; 1226 LIST_HEAD(tmp_add_list); 1227 enum ice_status status; 1228 struct device *dev; 1229 int err = 0; 1230 1231 dev = ice_pf_to_dev(pf); 1232 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1233 if (!list) 1234 return -ENOMEM; 1235 1236 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1237 list->fltr_info.vsi_handle = vsi->idx; 1238 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1239 list->fltr_info.l_data.vlan.vlan_id = vid; 1240 list->fltr_info.flag = ICE_FLTR_TX; 1241 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1242 1243 INIT_LIST_HEAD(&list->list_entry); 1244 list_add(&list->list_entry, &tmp_add_list); 1245 1246 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1247 if (status == ICE_ERR_DOES_NOT_EXIST) { 1248 dev_dbg(dev, 1249 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1250 vid, vsi->vsi_num, status); 1251 } else if (status) { 1252 dev_err(dev, 1253 "Error removing VLAN %d on vsi %i error: %d\n", 1254 vid, vsi->vsi_num, status); 1255 err = -EIO; 1256 } 1257 1258 ice_free_fltr_list(dev, &tmp_add_list); 1259 return err; 1260 } 1261 1262 /** 1263 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1264 * @vsi: VSI 1265 */ 1266 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1267 { 1268 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1269 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1270 vsi->rx_buf_len = ICE_RXBUF_2048; 1271 #if (PAGE_SIZE < 8192) 1272 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1273 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1274 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1275 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1276 #endif 1277 } else { 1278 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1279 #if (PAGE_SIZE < 8192) 1280 vsi->rx_buf_len = ICE_RXBUF_3072; 1281 #else 1282 vsi->rx_buf_len = ICE_RXBUF_2048; 1283 #endif 1284 } 1285 } 1286 1287 /** 1288 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1289 * @vsi: the VSI being configured 1290 * 1291 * Return 0 on success and a negative value on error 1292 * Configure the Rx VSI for operation. 1293 */ 1294 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1295 { 1296 u16 i; 1297 1298 if (vsi->type == ICE_VSI_VF) 1299 goto setup_rings; 1300 1301 ice_vsi_cfg_frame_size(vsi); 1302 setup_rings: 1303 /* set up individual rings */ 1304 for (i = 0; i < vsi->num_rxq; i++) { 1305 int err; 1306 1307 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1308 if (err) { 1309 dev_err(&vsi->back->pdev->dev, 1310 "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1311 i, err); 1312 return err; 1313 } 1314 } 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1321 * @vsi: the VSI being configured 1322 * @rings: Tx ring array to be configured 1323 * 1324 * Return 0 on success and a negative value on error 1325 * Configure the Tx VSI for operation. 1326 */ 1327 static int 1328 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1329 { 1330 struct ice_aqc_add_tx_qgrp *qg_buf; 1331 u16 q_idx = 0; 1332 int err = 0; 1333 1334 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1335 if (!qg_buf) 1336 return -ENOMEM; 1337 1338 qg_buf->num_txqs = 1; 1339 1340 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1341 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1342 if (err) 1343 goto err_cfg_txqs; 1344 } 1345 1346 err_cfg_txqs: 1347 kfree(qg_buf); 1348 return err; 1349 } 1350 1351 /** 1352 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1353 * @vsi: the VSI being configured 1354 * 1355 * Return 0 on success and a negative value on error 1356 * Configure the Tx VSI for operation. 1357 */ 1358 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1359 { 1360 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1361 } 1362 1363 /** 1364 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1365 * @vsi: the VSI being configured 1366 * 1367 * Return 0 on success and a negative value on error 1368 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1369 */ 1370 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1371 { 1372 int ret; 1373 int i; 1374 1375 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1376 if (ret) 1377 return ret; 1378 1379 for (i = 0; i < vsi->num_xdp_txq; i++) 1380 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1381 1382 return ret; 1383 } 1384 1385 /** 1386 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1387 * @intrl: interrupt rate limit in usecs 1388 * @gran: interrupt rate limit granularity in usecs 1389 * 1390 * This function converts a decimal interrupt rate limit in usecs to the format 1391 * expected by firmware. 1392 */ 1393 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1394 { 1395 u32 val = intrl / gran; 1396 1397 if (val) 1398 return val | GLINT_RATE_INTRL_ENA_M; 1399 return 0; 1400 } 1401 1402 /** 1403 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1404 * @vsi: the VSI being configured 1405 * 1406 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1407 * for the VF VSI. 1408 */ 1409 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1410 { 1411 struct ice_pf *pf = vsi->back; 1412 struct ice_hw *hw = &pf->hw; 1413 u32 txq = 0, rxq = 0; 1414 int i, q; 1415 1416 for (i = 0; i < vsi->num_q_vectors; i++) { 1417 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1418 u16 reg_idx = q_vector->reg_idx; 1419 1420 ice_cfg_itr(hw, q_vector); 1421 1422 wr32(hw, GLINT_RATE(reg_idx), 1423 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1424 1425 /* Both Transmit Queue Interrupt Cause Control register 1426 * and Receive Queue Interrupt Cause control register 1427 * expects MSIX_INDX field to be the vector index 1428 * within the function space and not the absolute 1429 * vector index across PF or across device. 1430 * For SR-IOV VF VSIs queue vector index always starts 1431 * with 1 since first vector index(0) is used for OICR 1432 * in VF space. Since VMDq and other PF VSIs are within 1433 * the PF function space, use the vector index that is 1434 * tracked for this PF. 1435 */ 1436 for (q = 0; q < q_vector->num_ring_tx; q++) { 1437 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1438 q_vector->tx.itr_idx); 1439 txq++; 1440 } 1441 1442 for (q = 0; q < q_vector->num_ring_rx; q++) { 1443 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1444 q_vector->rx.itr_idx); 1445 rxq++; 1446 } 1447 } 1448 } 1449 1450 /** 1451 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1452 * @vsi: the VSI being changed 1453 */ 1454 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1455 { 1456 struct ice_hw *hw = &vsi->back->hw; 1457 struct ice_vsi_ctx *ctxt; 1458 enum ice_status status; 1459 int ret = 0; 1460 1461 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1462 if (!ctxt) 1463 return -ENOMEM; 1464 1465 /* Here we are configuring the VSI to let the driver add VLAN tags by 1466 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1467 * insertion happens in the Tx hot path, in ice_tx_map. 1468 */ 1469 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1470 1471 /* Preserve existing VLAN strip setting */ 1472 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1473 ICE_AQ_VSI_VLAN_EMOD_M); 1474 1475 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1476 1477 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1478 if (status) { 1479 dev_err(&vsi->back->pdev->dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1480 status, hw->adminq.sq_last_status); 1481 ret = -EIO; 1482 goto out; 1483 } 1484 1485 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1486 out: 1487 kfree(ctxt); 1488 return ret; 1489 } 1490 1491 /** 1492 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1493 * @vsi: the VSI being changed 1494 * @ena: boolean value indicating if this is a enable or disable request 1495 */ 1496 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1497 { 1498 struct ice_hw *hw = &vsi->back->hw; 1499 struct ice_vsi_ctx *ctxt; 1500 enum ice_status status; 1501 int ret = 0; 1502 1503 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1504 if (!ctxt) 1505 return -ENOMEM; 1506 1507 /* Here we are configuring what the VSI should do with the VLAN tag in 1508 * the Rx packet. We can either leave the tag in the packet or put it in 1509 * the Rx descriptor. 1510 */ 1511 if (ena) 1512 /* Strip VLAN tag from Rx packet and put it in the desc */ 1513 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1514 else 1515 /* Disable stripping. Leave tag in packet */ 1516 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1517 1518 /* Allow all packets untagged/tagged */ 1519 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1520 1521 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1522 1523 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1524 if (status) { 1525 dev_err(&vsi->back->pdev->dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1526 ena, status, hw->adminq.sq_last_status); 1527 ret = -EIO; 1528 goto out; 1529 } 1530 1531 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1532 out: 1533 kfree(ctxt); 1534 return ret; 1535 } 1536 1537 /** 1538 * ice_vsi_start_rx_rings - start VSI's Rx rings 1539 * @vsi: the VSI whose rings are to be started 1540 * 1541 * Returns 0 on success and a negative value on error 1542 */ 1543 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1544 { 1545 return ice_vsi_ctrl_rx_rings(vsi, true); 1546 } 1547 1548 /** 1549 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1550 * @vsi: the VSI 1551 * 1552 * Returns 0 on success and a negative value on error 1553 */ 1554 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1555 { 1556 return ice_vsi_ctrl_rx_rings(vsi, false); 1557 } 1558 1559 /** 1560 * ice_vsi_stop_tx_rings - Disable Tx rings 1561 * @vsi: the VSI being configured 1562 * @rst_src: reset source 1563 * @rel_vmvf_num: Relative ID of VF/VM 1564 * @rings: Tx ring array to be stopped 1565 */ 1566 static int 1567 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1568 u16 rel_vmvf_num, struct ice_ring **rings) 1569 { 1570 u16 q_idx; 1571 1572 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1573 return -EINVAL; 1574 1575 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1576 struct ice_txq_meta txq_meta = { }; 1577 int status; 1578 1579 if (!rings || !rings[q_idx]) 1580 return -EINVAL; 1581 1582 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1583 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1584 rings[q_idx], &txq_meta); 1585 1586 if (status) 1587 return status; 1588 } 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1595 * @vsi: the VSI being configured 1596 * @rst_src: reset source 1597 * @rel_vmvf_num: Relative ID of VF/VM 1598 */ 1599 int 1600 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1601 u16 rel_vmvf_num) 1602 { 1603 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1604 } 1605 1606 /** 1607 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1608 * @vsi: the VSI being configured 1609 */ 1610 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1611 { 1612 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1613 } 1614 1615 /** 1616 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1617 * @vsi: VSI to enable or disable VLAN pruning on 1618 * @ena: set to true to enable VLAN pruning and false to disable it 1619 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1620 * 1621 * returns 0 if VSI is updated, negative otherwise 1622 */ 1623 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1624 { 1625 struct ice_vsi_ctx *ctxt; 1626 struct ice_pf *pf; 1627 int status; 1628 1629 if (!vsi) 1630 return -EINVAL; 1631 1632 pf = vsi->back; 1633 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1634 if (!ctxt) 1635 return -ENOMEM; 1636 1637 ctxt->info = vsi->info; 1638 1639 if (ena) { 1640 ctxt->info.sec_flags |= 1641 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1642 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 1643 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1644 } else { 1645 ctxt->info.sec_flags &= 1646 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1647 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1648 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1649 } 1650 1651 if (!vlan_promisc) 1652 ctxt->info.valid_sections = 1653 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 1654 ICE_AQ_VSI_PROP_SW_VALID); 1655 1656 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1657 if (status) { 1658 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1659 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1660 pf->hw.adminq.sq_last_status); 1661 goto err_out; 1662 } 1663 1664 vsi->info.sec_flags = ctxt->info.sec_flags; 1665 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1666 1667 kfree(ctxt); 1668 return 0; 1669 1670 err_out: 1671 kfree(ctxt); 1672 return -EIO; 1673 } 1674 1675 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1676 { 1677 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1678 1679 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1680 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1681 } 1682 1683 /** 1684 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1685 * @vsi: VSI to set the q_vectors register index on 1686 */ 1687 static int 1688 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1689 { 1690 u16 i; 1691 1692 if (!vsi || !vsi->q_vectors) 1693 return -EINVAL; 1694 1695 ice_for_each_q_vector(vsi, i) { 1696 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1697 1698 if (!q_vector) { 1699 dev_err(&vsi->back->pdev->dev, 1700 "Failed to set reg_idx on q_vector %d VSI %d\n", 1701 i, vsi->vsi_num); 1702 goto clear_reg_idx; 1703 } 1704 1705 if (vsi->type == ICE_VSI_VF) { 1706 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1707 1708 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1709 } else { 1710 q_vector->reg_idx = 1711 q_vector->v_idx + vsi->base_vector; 1712 } 1713 } 1714 1715 return 0; 1716 1717 clear_reg_idx: 1718 ice_for_each_q_vector(vsi, i) { 1719 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1720 1721 if (q_vector) 1722 q_vector->reg_idx = 0; 1723 } 1724 1725 return -EINVAL; 1726 } 1727 1728 /** 1729 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1730 * @vsi: the VSI being configured 1731 * @add_rule: boolean value to add or remove ethertype filter rule 1732 */ 1733 static void 1734 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 1735 { 1736 struct ice_fltr_list_entry *list; 1737 struct ice_pf *pf = vsi->back; 1738 LIST_HEAD(tmp_add_list); 1739 enum ice_status status; 1740 struct device *dev; 1741 1742 dev = ice_pf_to_dev(pf); 1743 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1744 if (!list) 1745 return; 1746 1747 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1748 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1749 list->fltr_info.flag = ICE_FLTR_TX; 1750 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1751 list->fltr_info.vsi_handle = vsi->idx; 1752 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 1753 1754 INIT_LIST_HEAD(&list->list_entry); 1755 list_add(&list->list_entry, &tmp_add_list); 1756 1757 if (add_rule) 1758 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1759 else 1760 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1761 1762 if (status) 1763 dev_err(dev, 1764 "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 1765 vsi->vsi_num, status); 1766 1767 ice_free_fltr_list(dev, &tmp_add_list); 1768 } 1769 1770 /** 1771 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 1772 * @vsi: the VSI being configured 1773 * @tx: bool to determine Tx or Rx rule 1774 * @create: bool to determine create or remove Rule 1775 */ 1776 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 1777 { 1778 struct ice_fltr_list_entry *list; 1779 struct ice_pf *pf = vsi->back; 1780 LIST_HEAD(tmp_add_list); 1781 enum ice_status status; 1782 struct device *dev; 1783 1784 dev = ice_pf_to_dev(pf); 1785 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1786 if (!list) 1787 return; 1788 1789 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1790 list->fltr_info.vsi_handle = vsi->idx; 1791 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 1792 1793 if (tx) { 1794 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1795 list->fltr_info.flag = ICE_FLTR_TX; 1796 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1797 } else { 1798 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1799 list->fltr_info.flag = ICE_FLTR_RX; 1800 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 1801 } 1802 1803 INIT_LIST_HEAD(&list->list_entry); 1804 list_add(&list->list_entry, &tmp_add_list); 1805 1806 if (create) 1807 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1808 else 1809 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1810 1811 if (status) 1812 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 1813 create ? "adding" : "removing", tx ? "TX" : "RX", 1814 vsi->vsi_num, status); 1815 1816 ice_free_fltr_list(dev, &tmp_add_list); 1817 } 1818 1819 /** 1820 * ice_vsi_setup - Set up a VSI by a given type 1821 * @pf: board private structure 1822 * @pi: pointer to the port_info instance 1823 * @type: VSI type 1824 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 1825 * used only for ICE_VSI_VF VSI type. For other VSI types, should 1826 * fill-in ICE_INVAL_VFID as input. 1827 * 1828 * This allocates the sw VSI structure and its queue resources. 1829 * 1830 * Returns pointer to the successfully allocated and configured VSI sw struct on 1831 * success, NULL on failure. 1832 */ 1833 struct ice_vsi * 1834 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 1835 enum ice_vsi_type type, u16 vf_id) 1836 { 1837 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1838 struct device *dev = ice_pf_to_dev(pf); 1839 enum ice_status status; 1840 struct ice_vsi *vsi; 1841 int ret, i; 1842 1843 if (type == ICE_VSI_VF) 1844 vsi = ice_vsi_alloc(pf, type, vf_id); 1845 else 1846 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 1847 1848 if (!vsi) { 1849 dev_err(dev, "could not allocate VSI\n"); 1850 return NULL; 1851 } 1852 1853 vsi->port_info = pi; 1854 vsi->vsw = pf->first_sw; 1855 if (vsi->type == ICE_VSI_PF) 1856 vsi->ethtype = ETH_P_PAUSE; 1857 1858 if (vsi->type == ICE_VSI_VF) 1859 vsi->vf_id = vf_id; 1860 1861 if (ice_vsi_get_qs(vsi)) { 1862 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 1863 vsi->idx); 1864 goto unroll_get_qs; 1865 } 1866 1867 /* set RSS capabilities */ 1868 ice_vsi_set_rss_params(vsi); 1869 1870 /* set TC configuration */ 1871 ice_vsi_set_tc_cfg(vsi); 1872 1873 /* create the VSI */ 1874 ret = ice_vsi_init(vsi, true); 1875 if (ret) 1876 goto unroll_get_qs; 1877 1878 switch (vsi->type) { 1879 case ICE_VSI_PF: 1880 ret = ice_vsi_alloc_q_vectors(vsi); 1881 if (ret) 1882 goto unroll_vsi_init; 1883 1884 ret = ice_vsi_setup_vector_base(vsi); 1885 if (ret) 1886 goto unroll_alloc_q_vector; 1887 1888 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 1889 if (ret) 1890 goto unroll_vector_base; 1891 1892 ret = ice_vsi_alloc_rings(vsi); 1893 if (ret) 1894 goto unroll_vector_base; 1895 1896 ice_vsi_map_rings_to_vectors(vsi); 1897 1898 /* Do not exit if configuring RSS had an issue, at least 1899 * receive traffic on first queue. Hence no need to capture 1900 * return value 1901 */ 1902 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1903 ice_vsi_cfg_rss_lut_key(vsi); 1904 break; 1905 case ICE_VSI_VF: 1906 /* VF driver will take care of creating netdev for this type and 1907 * map queues to vectors through Virtchnl, PF driver only 1908 * creates a VSI and corresponding structures for bookkeeping 1909 * purpose 1910 */ 1911 ret = ice_vsi_alloc_q_vectors(vsi); 1912 if (ret) 1913 goto unroll_vsi_init; 1914 1915 ret = ice_vsi_alloc_rings(vsi); 1916 if (ret) 1917 goto unroll_alloc_q_vector; 1918 1919 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 1920 if (ret) 1921 goto unroll_vector_base; 1922 1923 /* Do not exit if configuring RSS had an issue, at least 1924 * receive traffic on first queue. Hence no need to capture 1925 * return value 1926 */ 1927 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1928 ice_vsi_cfg_rss_lut_key(vsi); 1929 break; 1930 case ICE_VSI_LB: 1931 ret = ice_vsi_alloc_rings(vsi); 1932 if (ret) 1933 goto unroll_vsi_init; 1934 break; 1935 default: 1936 /* clean up the resources and exit */ 1937 goto unroll_vsi_init; 1938 } 1939 1940 /* configure VSI nodes based on number of queues and TC's */ 1941 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1942 max_txqs[i] = vsi->alloc_txq; 1943 1944 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1945 max_txqs); 1946 if (status) { 1947 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 1948 vsi->vsi_num, status); 1949 goto unroll_vector_base; 1950 } 1951 1952 /* Add switch rule to drop all Tx Flow Control Frames, of look up 1953 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 1954 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 1955 * The rule is added once for PF VSI in order to create appropriate 1956 * recipe, since VSI/VSI list is ignored with drop action... 1957 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 1958 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 1959 * settings in the HW. 1960 */ 1961 if (!ice_is_safe_mode(pf)) 1962 if (vsi->type == ICE_VSI_PF) { 1963 ice_vsi_add_rem_eth_mac(vsi, true); 1964 1965 /* Tx LLDP packets */ 1966 ice_cfg_sw_lldp(vsi, true, true); 1967 } 1968 1969 return vsi; 1970 1971 unroll_vector_base: 1972 /* reclaim SW interrupts back to the common pool */ 1973 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 1974 pf->num_avail_sw_msix += vsi->num_q_vectors; 1975 unroll_alloc_q_vector: 1976 ice_vsi_free_q_vectors(vsi); 1977 unroll_vsi_init: 1978 ice_vsi_delete(vsi); 1979 unroll_get_qs: 1980 ice_vsi_put_qs(vsi); 1981 ice_vsi_clear(vsi); 1982 1983 return NULL; 1984 } 1985 1986 /** 1987 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 1988 * @vsi: the VSI being cleaned up 1989 */ 1990 static void ice_vsi_release_msix(struct ice_vsi *vsi) 1991 { 1992 struct ice_pf *pf = vsi->back; 1993 struct ice_hw *hw = &pf->hw; 1994 u32 txq = 0; 1995 u32 rxq = 0; 1996 int i, q; 1997 1998 for (i = 0; i < vsi->num_q_vectors; i++) { 1999 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2000 u16 reg_idx = q_vector->reg_idx; 2001 2002 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2003 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2004 for (q = 0; q < q_vector->num_ring_tx; q++) { 2005 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2006 if (ice_is_xdp_ena_vsi(vsi)) { 2007 u32 xdp_txq = txq + vsi->num_xdp_txq; 2008 2009 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2010 } 2011 txq++; 2012 } 2013 2014 for (q = 0; q < q_vector->num_ring_rx; q++) { 2015 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2016 rxq++; 2017 } 2018 } 2019 2020 ice_flush(hw); 2021 } 2022 2023 /** 2024 * ice_vsi_free_irq - Free the IRQ association with the OS 2025 * @vsi: the VSI being configured 2026 */ 2027 void ice_vsi_free_irq(struct ice_vsi *vsi) 2028 { 2029 struct ice_pf *pf = vsi->back; 2030 int base = vsi->base_vector; 2031 int i; 2032 2033 if (!vsi->q_vectors || !vsi->irqs_ready) 2034 return; 2035 2036 ice_vsi_release_msix(vsi); 2037 if (vsi->type == ICE_VSI_VF) 2038 return; 2039 2040 vsi->irqs_ready = false; 2041 ice_for_each_q_vector(vsi, i) { 2042 u16 vector = i + base; 2043 int irq_num; 2044 2045 irq_num = pf->msix_entries[vector].vector; 2046 2047 /* free only the irqs that were actually requested */ 2048 if (!vsi->q_vectors[i] || 2049 !(vsi->q_vectors[i]->num_ring_tx || 2050 vsi->q_vectors[i]->num_ring_rx)) 2051 continue; 2052 2053 /* clear the affinity notifier in the IRQ descriptor */ 2054 irq_set_affinity_notifier(irq_num, NULL); 2055 2056 /* clear the affinity_mask in the IRQ descriptor */ 2057 irq_set_affinity_hint(irq_num, NULL); 2058 synchronize_irq(irq_num); 2059 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2060 } 2061 } 2062 2063 /** 2064 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2065 * @vsi: the VSI having resources freed 2066 */ 2067 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2068 { 2069 int i; 2070 2071 if (!vsi->tx_rings) 2072 return; 2073 2074 ice_for_each_txq(vsi, i) 2075 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2076 ice_free_tx_ring(vsi->tx_rings[i]); 2077 } 2078 2079 /** 2080 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2081 * @vsi: the VSI having resources freed 2082 */ 2083 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2084 { 2085 int i; 2086 2087 if (!vsi->rx_rings) 2088 return; 2089 2090 ice_for_each_rxq(vsi, i) 2091 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2092 ice_free_rx_ring(vsi->rx_rings[i]); 2093 } 2094 2095 /** 2096 * ice_vsi_close - Shut down a VSI 2097 * @vsi: the VSI being shut down 2098 */ 2099 void ice_vsi_close(struct ice_vsi *vsi) 2100 { 2101 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2102 ice_down(vsi); 2103 2104 ice_vsi_free_irq(vsi); 2105 ice_vsi_free_tx_rings(vsi); 2106 ice_vsi_free_rx_rings(vsi); 2107 } 2108 2109 /** 2110 * ice_ena_vsi - resume a VSI 2111 * @vsi: the VSI being resume 2112 * @locked: is the rtnl_lock already held 2113 */ 2114 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2115 { 2116 int err = 0; 2117 2118 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2119 return 0; 2120 2121 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2122 2123 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2124 if (netif_running(vsi->netdev)) { 2125 if (!locked) 2126 rtnl_lock(); 2127 2128 err = ice_open(vsi->netdev); 2129 2130 if (!locked) 2131 rtnl_unlock(); 2132 } 2133 } 2134 2135 return err; 2136 } 2137 2138 /** 2139 * ice_dis_vsi - pause a VSI 2140 * @vsi: the VSI being paused 2141 * @locked: is the rtnl_lock already held 2142 */ 2143 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2144 { 2145 if (test_bit(__ICE_DOWN, vsi->state)) 2146 return; 2147 2148 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2149 2150 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2151 if (netif_running(vsi->netdev)) { 2152 if (!locked) 2153 rtnl_lock(); 2154 2155 ice_stop(vsi->netdev); 2156 2157 if (!locked) 2158 rtnl_unlock(); 2159 } else { 2160 ice_vsi_close(vsi); 2161 } 2162 } 2163 } 2164 2165 /** 2166 * ice_free_res - free a block of resources 2167 * @res: pointer to the resource 2168 * @index: starting index previously returned by ice_get_res 2169 * @id: identifier to track owner 2170 * 2171 * Returns number of resources freed 2172 */ 2173 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2174 { 2175 int count = 0; 2176 int i; 2177 2178 if (!res || index >= res->end) 2179 return -EINVAL; 2180 2181 id |= ICE_RES_VALID_BIT; 2182 for (i = index; i < res->end && res->list[i] == id; i++) { 2183 res->list[i] = 0; 2184 count++; 2185 } 2186 2187 return count; 2188 } 2189 2190 /** 2191 * ice_search_res - Search the tracker for a block of resources 2192 * @res: pointer to the resource 2193 * @needed: size of the block needed 2194 * @id: identifier to track owner 2195 * 2196 * Returns the base item index of the block, or -ENOMEM for error 2197 */ 2198 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2199 { 2200 int start = 0, end = 0; 2201 2202 if (needed > res->end) 2203 return -ENOMEM; 2204 2205 id |= ICE_RES_VALID_BIT; 2206 2207 do { 2208 /* skip already allocated entries */ 2209 if (res->list[end++] & ICE_RES_VALID_BIT) { 2210 start = end; 2211 if ((start + needed) > res->end) 2212 break; 2213 } 2214 2215 if (end == (start + needed)) { 2216 int i = start; 2217 2218 /* there was enough, so assign it to the requestor */ 2219 while (i != end) 2220 res->list[i++] = id; 2221 2222 return start; 2223 } 2224 } while (end < res->end); 2225 2226 return -ENOMEM; 2227 } 2228 2229 /** 2230 * ice_get_res - get a block of resources 2231 * @pf: board private structure 2232 * @res: pointer to the resource 2233 * @needed: size of the block needed 2234 * @id: identifier to track owner 2235 * 2236 * Returns the base item index of the block, or negative for error 2237 */ 2238 int 2239 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2240 { 2241 if (!res || !pf) 2242 return -EINVAL; 2243 2244 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2245 dev_err(ice_pf_to_dev(pf), 2246 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2247 needed, res->num_entries, id); 2248 return -EINVAL; 2249 } 2250 2251 return ice_search_res(res, needed, id); 2252 } 2253 2254 /** 2255 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2256 * @vsi: the VSI being un-configured 2257 */ 2258 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2259 { 2260 int base = vsi->base_vector; 2261 struct ice_pf *pf = vsi->back; 2262 struct ice_hw *hw = &pf->hw; 2263 u32 val; 2264 int i; 2265 2266 /* disable interrupt causation from each queue */ 2267 if (vsi->tx_rings) { 2268 ice_for_each_txq(vsi, i) { 2269 if (vsi->tx_rings[i]) { 2270 u16 reg; 2271 2272 reg = vsi->tx_rings[i]->reg_idx; 2273 val = rd32(hw, QINT_TQCTL(reg)); 2274 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2275 wr32(hw, QINT_TQCTL(reg), val); 2276 } 2277 } 2278 } 2279 2280 if (vsi->rx_rings) { 2281 ice_for_each_rxq(vsi, i) { 2282 if (vsi->rx_rings[i]) { 2283 u16 reg; 2284 2285 reg = vsi->rx_rings[i]->reg_idx; 2286 val = rd32(hw, QINT_RQCTL(reg)); 2287 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2288 wr32(hw, QINT_RQCTL(reg), val); 2289 } 2290 } 2291 } 2292 2293 /* disable each interrupt */ 2294 ice_for_each_q_vector(vsi, i) { 2295 if (!vsi->q_vectors[i]) 2296 continue; 2297 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2298 } 2299 2300 ice_flush(hw); 2301 2302 /* don't call synchronize_irq() for VF's from the host */ 2303 if (vsi->type == ICE_VSI_VF) 2304 return; 2305 2306 ice_for_each_q_vector(vsi, i) 2307 synchronize_irq(pf->msix_entries[i + base].vector); 2308 } 2309 2310 /** 2311 * ice_napi_del - Remove NAPI handler for the VSI 2312 * @vsi: VSI for which NAPI handler is to be removed 2313 */ 2314 void ice_napi_del(struct ice_vsi *vsi) 2315 { 2316 int v_idx; 2317 2318 if (!vsi->netdev) 2319 return; 2320 2321 ice_for_each_q_vector(vsi, v_idx) 2322 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2323 } 2324 2325 /** 2326 * ice_vsi_release - Delete a VSI and free its resources 2327 * @vsi: the VSI being removed 2328 * 2329 * Returns 0 on success or < 0 on error 2330 */ 2331 int ice_vsi_release(struct ice_vsi *vsi) 2332 { 2333 struct ice_pf *pf; 2334 2335 if (!vsi->back) 2336 return -ENODEV; 2337 pf = vsi->back; 2338 2339 /* do not unregister while driver is in the reset recovery pending 2340 * state. Since reset/rebuild happens through PF service task workqueue, 2341 * it's not a good idea to unregister netdev that is associated to the 2342 * PF that is running the work queue items currently. This is done to 2343 * avoid check_flush_dependency() warning on this wq 2344 */ 2345 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2346 unregister_netdev(vsi->netdev); 2347 2348 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2349 ice_rss_clean(vsi); 2350 2351 /* Disable VSI and free resources */ 2352 if (vsi->type != ICE_VSI_LB) 2353 ice_vsi_dis_irq(vsi); 2354 ice_vsi_close(vsi); 2355 2356 /* SR-IOV determines needed MSIX resources all at once instead of per 2357 * VSI since when VFs are spawned we know how many VFs there are and how 2358 * many interrupts each VF needs. SR-IOV MSIX resources are also 2359 * cleared in the same manner. 2360 */ 2361 if (vsi->type != ICE_VSI_VF) { 2362 /* reclaim SW interrupts back to the common pool */ 2363 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2364 pf->num_avail_sw_msix += vsi->num_q_vectors; 2365 } 2366 2367 if (!ice_is_safe_mode(pf)) { 2368 if (vsi->type == ICE_VSI_PF) { 2369 ice_vsi_add_rem_eth_mac(vsi, false); 2370 ice_cfg_sw_lldp(vsi, true, false); 2371 /* The Rx rule will only exist to remove if the LLDP FW 2372 * engine is currently stopped 2373 */ 2374 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2375 ice_cfg_sw_lldp(vsi, false, false); 2376 } 2377 } 2378 2379 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2380 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2381 ice_vsi_delete(vsi); 2382 ice_vsi_free_q_vectors(vsi); 2383 2384 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2385 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2386 free_netdev(vsi->netdev); 2387 vsi->netdev = NULL; 2388 } 2389 2390 ice_vsi_clear_rings(vsi); 2391 2392 ice_vsi_put_qs(vsi); 2393 2394 /* retain SW VSI data structure since it is needed to unregister and 2395 * free VSI netdev when PF is not in reset recovery pending state,\ 2396 * for ex: during rmmod. 2397 */ 2398 if (!ice_is_reset_in_progress(pf->state)) 2399 ice_vsi_clear(vsi); 2400 2401 return 0; 2402 } 2403 2404 /** 2405 * ice_vsi_rebuild - Rebuild VSI after reset 2406 * @vsi: VSI to be rebuild 2407 * @init_vsi: is this an initialization or a reconfigure of the VSI 2408 * 2409 * Returns 0 on success and negative value on failure 2410 */ 2411 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2412 { 2413 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2414 struct ice_vf *vf = NULL; 2415 enum ice_status status; 2416 struct ice_pf *pf; 2417 int ret, i; 2418 2419 if (!vsi) 2420 return -EINVAL; 2421 2422 pf = vsi->back; 2423 if (vsi->type == ICE_VSI_VF) 2424 vf = &pf->vf[vsi->vf_id]; 2425 2426 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2427 ice_vsi_free_q_vectors(vsi); 2428 2429 /* SR-IOV determines needed MSIX resources all at once instead of per 2430 * VSI since when VFs are spawned we know how many VFs there are and how 2431 * many interrupts each VF needs. SR-IOV MSIX resources are also 2432 * cleared in the same manner. 2433 */ 2434 if (vsi->type != ICE_VSI_VF) { 2435 /* reclaim SW interrupts back to the common pool */ 2436 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2437 pf->num_avail_sw_msix += vsi->num_q_vectors; 2438 vsi->base_vector = 0; 2439 } 2440 2441 if (ice_is_xdp_ena_vsi(vsi)) 2442 /* return value check can be skipped here, it always returns 2443 * 0 if reset is in progress 2444 */ 2445 ice_destroy_xdp_rings(vsi); 2446 ice_vsi_put_qs(vsi); 2447 ice_vsi_clear_rings(vsi); 2448 ice_vsi_free_arrays(vsi); 2449 ice_dev_onetime_setup(&pf->hw); 2450 if (vsi->type == ICE_VSI_VF) 2451 ice_vsi_set_num_qs(vsi, vf->vf_id); 2452 else 2453 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2454 2455 ret = ice_vsi_alloc_arrays(vsi); 2456 if (ret < 0) 2457 goto err_vsi; 2458 2459 ice_vsi_get_qs(vsi); 2460 ice_vsi_set_tc_cfg(vsi); 2461 2462 /* Initialize VSI struct elements and create VSI in FW */ 2463 ret = ice_vsi_init(vsi, init_vsi); 2464 if (ret < 0) 2465 goto err_vsi; 2466 2467 switch (vsi->type) { 2468 case ICE_VSI_PF: 2469 ret = ice_vsi_alloc_q_vectors(vsi); 2470 if (ret) 2471 goto err_rings; 2472 2473 ret = ice_vsi_setup_vector_base(vsi); 2474 if (ret) 2475 goto err_vectors; 2476 2477 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2478 if (ret) 2479 goto err_vectors; 2480 2481 ret = ice_vsi_alloc_rings(vsi); 2482 if (ret) 2483 goto err_vectors; 2484 2485 ice_vsi_map_rings_to_vectors(vsi); 2486 if (ice_is_xdp_ena_vsi(vsi)) { 2487 vsi->num_xdp_txq = vsi->alloc_txq; 2488 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2489 if (ret) 2490 goto err_vectors; 2491 } 2492 /* Do not exit if configuring RSS had an issue, at least 2493 * receive traffic on first queue. Hence no need to capture 2494 * return value 2495 */ 2496 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2497 ice_vsi_cfg_rss_lut_key(vsi); 2498 break; 2499 case ICE_VSI_VF: 2500 ret = ice_vsi_alloc_q_vectors(vsi); 2501 if (ret) 2502 goto err_rings; 2503 2504 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2505 if (ret) 2506 goto err_vectors; 2507 2508 ret = ice_vsi_alloc_rings(vsi); 2509 if (ret) 2510 goto err_vectors; 2511 2512 break; 2513 default: 2514 break; 2515 } 2516 2517 /* configure VSI nodes based on number of queues and TC's */ 2518 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2519 max_txqs[i] = vsi->alloc_txq; 2520 2521 if (ice_is_xdp_ena_vsi(vsi)) 2522 max_txqs[i] += vsi->num_xdp_txq; 2523 } 2524 2525 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2526 max_txqs); 2527 if (status) { 2528 dev_err(ice_pf_to_dev(pf), 2529 "VSI %d failed lan queue config, error %d\n", 2530 vsi->vsi_num, status); 2531 if (init_vsi) { 2532 ret = -EIO; 2533 goto err_vectors; 2534 } else { 2535 return ice_schedule_reset(pf, ICE_RESET_PFR); 2536 } 2537 } 2538 return 0; 2539 2540 err_vectors: 2541 ice_vsi_free_q_vectors(vsi); 2542 err_rings: 2543 if (vsi->netdev) { 2544 vsi->current_netdev_flags = 0; 2545 unregister_netdev(vsi->netdev); 2546 free_netdev(vsi->netdev); 2547 vsi->netdev = NULL; 2548 } 2549 err_vsi: 2550 ice_vsi_clear(vsi); 2551 set_bit(__ICE_RESET_FAILED, pf->state); 2552 return ret; 2553 } 2554 2555 /** 2556 * ice_is_reset_in_progress - check for a reset in progress 2557 * @state: PF state field 2558 */ 2559 bool ice_is_reset_in_progress(unsigned long *state) 2560 { 2561 return test_bit(__ICE_RESET_OICR_RECV, state) || 2562 test_bit(__ICE_DCBNL_DEVRESET, state) || 2563 test_bit(__ICE_PFR_REQ, state) || 2564 test_bit(__ICE_CORER_REQ, state) || 2565 test_bit(__ICE_GLOBR_REQ, state); 2566 } 2567 2568 #ifdef CONFIG_DCB 2569 /** 2570 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2571 * @vsi: VSI being configured 2572 * @ctx: the context buffer returned from AQ VSI update command 2573 */ 2574 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2575 { 2576 vsi->info.mapping_flags = ctx->info.mapping_flags; 2577 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2578 sizeof(vsi->info.q_mapping)); 2579 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2580 sizeof(vsi->info.tc_mapping)); 2581 } 2582 2583 /** 2584 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2585 * @vsi: VSI to be configured 2586 * @ena_tc: TC bitmap 2587 * 2588 * VSI queues expected to be quiesced before calling this function 2589 */ 2590 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2591 { 2592 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2593 struct ice_vsi_ctx *ctx; 2594 struct ice_pf *pf = vsi->back; 2595 enum ice_status status; 2596 struct device *dev; 2597 int i, ret = 0; 2598 u8 num_tc = 0; 2599 2600 dev = ice_pf_to_dev(pf); 2601 2602 ice_for_each_traffic_class(i) { 2603 /* build bitmap of enabled TCs */ 2604 if (ena_tc & BIT(i)) 2605 num_tc++; 2606 /* populate max_txqs per TC */ 2607 max_txqs[i] = vsi->alloc_txq; 2608 } 2609 2610 vsi->tc_cfg.ena_tc = ena_tc; 2611 vsi->tc_cfg.numtc = num_tc; 2612 2613 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2614 if (!ctx) 2615 return -ENOMEM; 2616 2617 ctx->vf_num = 0; 2618 ctx->info = vsi->info; 2619 2620 ice_vsi_setup_q_map(vsi, ctx); 2621 2622 /* must to indicate which section of VSI context are being modified */ 2623 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2624 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2625 if (status) { 2626 dev_info(dev, "Failed VSI Update\n"); 2627 ret = -EIO; 2628 goto out; 2629 } 2630 2631 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2632 max_txqs); 2633 2634 if (status) { 2635 dev_err(dev, "VSI %d failed TC config, error %d\n", 2636 vsi->vsi_num, status); 2637 ret = -EIO; 2638 goto out; 2639 } 2640 ice_vsi_update_q_map(vsi, ctx); 2641 vsi->info.valid_sections = 0; 2642 2643 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2644 out: 2645 kfree(ctx); 2646 return ret; 2647 } 2648 #endif /* CONFIG_DCB */ 2649 2650 /** 2651 * ice_nvm_version_str - format the NVM version strings 2652 * @hw: ptr to the hardware info 2653 */ 2654 char *ice_nvm_version_str(struct ice_hw *hw) 2655 { 2656 u8 oem_ver, oem_patch, ver_hi, ver_lo; 2657 static char buf[ICE_NVM_VER_LEN]; 2658 u16 oem_build; 2659 2660 ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi, 2661 &ver_lo); 2662 2663 snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo, 2664 hw->nvm.eetrack, oem_ver, oem_build, oem_patch); 2665 2666 return buf; 2667 } 2668 2669 /** 2670 * ice_update_ring_stats - Update ring statistics 2671 * @ring: ring to update 2672 * @cont: used to increment per-vector counters 2673 * @pkts: number of processed packets 2674 * @bytes: number of processed bytes 2675 * 2676 * This function assumes that caller has acquired a u64_stats_sync lock. 2677 */ 2678 static void 2679 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2680 u64 pkts, u64 bytes) 2681 { 2682 ring->stats.bytes += bytes; 2683 ring->stats.pkts += pkts; 2684 cont->total_bytes += bytes; 2685 cont->total_pkts += pkts; 2686 } 2687 2688 /** 2689 * ice_update_tx_ring_stats - Update Tx ring specific counters 2690 * @tx_ring: ring to update 2691 * @pkts: number of processed packets 2692 * @bytes: number of processed bytes 2693 */ 2694 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2695 { 2696 u64_stats_update_begin(&tx_ring->syncp); 2697 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2698 u64_stats_update_end(&tx_ring->syncp); 2699 } 2700 2701 /** 2702 * ice_update_rx_ring_stats - Update Rx ring specific counters 2703 * @rx_ring: ring to update 2704 * @pkts: number of processed packets 2705 * @bytes: number of processed bytes 2706 */ 2707 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2708 { 2709 u64_stats_update_begin(&rx_ring->syncp); 2710 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2711 u64_stats_update_end(&rx_ring->syncp); 2712 } 2713 2714 /** 2715 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2716 * @vsi: the VSI being configured MAC filter 2717 * @macaddr: the MAC address to be added. 2718 * @set: Add or delete a MAC filter 2719 * 2720 * Adds or removes MAC address filter entry for VF VSI 2721 */ 2722 enum ice_status 2723 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2724 { 2725 LIST_HEAD(tmp_add_list); 2726 enum ice_status status; 2727 2728 /* Update MAC filter list to be added or removed for a VSI */ 2729 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 2730 status = ICE_ERR_NO_MEMORY; 2731 goto cfg_mac_fltr_exit; 2732 } 2733 2734 if (set) 2735 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 2736 else 2737 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 2738 2739 cfg_mac_fltr_exit: 2740 ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list); 2741 return status; 2742 } 2743