1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 return 0; 109 110 err_vectors: 111 devm_kfree(dev, vsi->rxq_map); 112 err_rxq_map: 113 devm_kfree(dev, vsi->txq_map); 114 err_txq_map: 115 devm_kfree(dev, vsi->rx_rings); 116 err_rings: 117 devm_kfree(dev, vsi->tx_rings); 118 return -ENOMEM; 119 } 120 121 /** 122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 123 * @vsi: the VSI being configured 124 */ 125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 126 { 127 switch (vsi->type) { 128 case ICE_VSI_PF: 129 case ICE_VSI_CTRL: 130 case ICE_VSI_LB: 131 /* a user could change the values of num_[tr]x_desc using 132 * ethtool -G so we should keep those values instead of 133 * overwriting them with the defaults. 134 */ 135 if (!vsi->num_rx_desc) 136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 137 if (!vsi->num_tx_desc) 138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 139 break; 140 default: 141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 142 vsi->type); 143 break; 144 } 145 } 146 147 /** 148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 149 * @vsi: the VSI being configured 150 * @vf_id: ID of the VF being configured 151 * 152 * Return 0 on success and a negative value on error 153 */ 154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 155 { 156 struct ice_pf *pf = vsi->back; 157 struct ice_vf *vf = NULL; 158 159 if (vsi->type == ICE_VSI_VF) 160 vsi->vf_id = vf_id; 161 else 162 vsi->vf_id = ICE_INVAL_VFID; 163 164 switch (vsi->type) { 165 case ICE_VSI_PF: 166 vsi->alloc_txq = min3(pf->num_lan_msix, 167 ice_get_avail_txq_count(pf), 168 (u16)num_online_cpus()); 169 if (vsi->req_txq) { 170 vsi->alloc_txq = vsi->req_txq; 171 vsi->num_txq = vsi->req_txq; 172 } 173 174 pf->num_lan_tx = vsi->alloc_txq; 175 176 /* only 1 Rx queue unless RSS is enabled */ 177 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 178 vsi->alloc_rxq = 1; 179 } else { 180 vsi->alloc_rxq = min3(pf->num_lan_msix, 181 ice_get_avail_rxq_count(pf), 182 (u16)num_online_cpus()); 183 if (vsi->req_rxq) { 184 vsi->alloc_rxq = vsi->req_rxq; 185 vsi->num_rxq = vsi->req_rxq; 186 } 187 } 188 189 pf->num_lan_rx = vsi->alloc_rxq; 190 191 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 192 max_t(int, vsi->alloc_rxq, 193 vsi->alloc_txq)); 194 break; 195 case ICE_VSI_VF: 196 vf = &pf->vf[vsi->vf_id]; 197 vsi->alloc_txq = vf->num_vf_qs; 198 vsi->alloc_rxq = vf->num_vf_qs; 199 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 200 * data queue interrupts). Since vsi->num_q_vectors is number 201 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 202 * original vector count 203 */ 204 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 205 break; 206 case ICE_VSI_CTRL: 207 vsi->alloc_txq = 1; 208 vsi->alloc_rxq = 1; 209 vsi->num_q_vectors = 1; 210 break; 211 case ICE_VSI_LB: 212 vsi->alloc_txq = 1; 213 vsi->alloc_rxq = 1; 214 break; 215 default: 216 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 217 break; 218 } 219 220 ice_vsi_set_num_desc(vsi); 221 } 222 223 /** 224 * ice_get_free_slot - get the next non-NULL location index in array 225 * @array: array to search 226 * @size: size of the array 227 * @curr: last known occupied index to be used as a search hint 228 * 229 * void * is being used to keep the functionality generic. This lets us use this 230 * function on any array of pointers. 231 */ 232 static int ice_get_free_slot(void *array, int size, int curr) 233 { 234 int **tmp_array = (int **)array; 235 int next; 236 237 if (curr < (size - 1) && !tmp_array[curr + 1]) { 238 next = curr + 1; 239 } else { 240 int i = 0; 241 242 while ((i < size) && (tmp_array[i])) 243 i++; 244 if (i == size) 245 next = ICE_NO_VSI; 246 else 247 next = i; 248 } 249 return next; 250 } 251 252 /** 253 * ice_vsi_delete - delete a VSI from the switch 254 * @vsi: pointer to VSI being removed 255 */ 256 static void ice_vsi_delete(struct ice_vsi *vsi) 257 { 258 struct ice_pf *pf = vsi->back; 259 struct ice_vsi_ctx *ctxt; 260 enum ice_status status; 261 262 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 263 if (!ctxt) 264 return; 265 266 if (vsi->type == ICE_VSI_VF) 267 ctxt->vf_num = vsi->vf_id; 268 ctxt->vsi_num = vsi->vsi_num; 269 270 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 271 272 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 273 if (status) 274 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 275 vsi->vsi_num, ice_stat_str(status)); 276 277 kfree(ctxt); 278 } 279 280 /** 281 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 282 * @vsi: pointer to VSI being cleared 283 */ 284 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 285 { 286 struct ice_pf *pf = vsi->back; 287 struct device *dev; 288 289 dev = ice_pf_to_dev(pf); 290 291 /* free the ring and vector containers */ 292 if (vsi->q_vectors) { 293 devm_kfree(dev, vsi->q_vectors); 294 vsi->q_vectors = NULL; 295 } 296 if (vsi->tx_rings) { 297 devm_kfree(dev, vsi->tx_rings); 298 vsi->tx_rings = NULL; 299 } 300 if (vsi->rx_rings) { 301 devm_kfree(dev, vsi->rx_rings); 302 vsi->rx_rings = NULL; 303 } 304 if (vsi->txq_map) { 305 devm_kfree(dev, vsi->txq_map); 306 vsi->txq_map = NULL; 307 } 308 if (vsi->rxq_map) { 309 devm_kfree(dev, vsi->rxq_map); 310 vsi->rxq_map = NULL; 311 } 312 } 313 314 /** 315 * ice_vsi_clear - clean up and deallocate the provided VSI 316 * @vsi: pointer to VSI being cleared 317 * 318 * This deallocates the VSI's queue resources, removes it from the PF's 319 * VSI array if necessary, and deallocates the VSI 320 * 321 * Returns 0 on success, negative on failure 322 */ 323 static int ice_vsi_clear(struct ice_vsi *vsi) 324 { 325 struct ice_pf *pf = NULL; 326 struct device *dev; 327 328 if (!vsi) 329 return 0; 330 331 if (!vsi->back) 332 return -EINVAL; 333 334 pf = vsi->back; 335 dev = ice_pf_to_dev(pf); 336 337 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 338 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 339 return -EINVAL; 340 } 341 342 mutex_lock(&pf->sw_mutex); 343 /* updates the PF for this cleared VSI */ 344 345 pf->vsi[vsi->idx] = NULL; 346 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 347 pf->next_vsi = vsi->idx; 348 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 349 vsi->vf_id != ICE_INVAL_VFID) 350 pf->next_vsi = vsi->idx; 351 352 ice_vsi_free_arrays(vsi); 353 mutex_unlock(&pf->sw_mutex); 354 devm_kfree(dev, vsi); 355 356 return 0; 357 } 358 359 /** 360 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 361 * @irq: interrupt number 362 * @data: pointer to a q_vector 363 */ 364 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 365 { 366 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 367 368 if (!q_vector->tx.ring) 369 return IRQ_HANDLED; 370 371 #define FDIR_RX_DESC_CLEAN_BUDGET 64 372 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 373 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 374 375 return IRQ_HANDLED; 376 } 377 378 /** 379 * ice_msix_clean_rings - MSIX mode Interrupt Handler 380 * @irq: interrupt number 381 * @data: pointer to a q_vector 382 */ 383 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 384 { 385 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 386 387 if (!q_vector->tx.ring && !q_vector->rx.ring) 388 return IRQ_HANDLED; 389 390 q_vector->total_events++; 391 392 napi_schedule(&q_vector->napi); 393 394 return IRQ_HANDLED; 395 } 396 397 /** 398 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 399 * @pf: board private structure 400 * @vsi_type: type of VSI 401 * @vf_id: ID of the VF being configured 402 * 403 * returns a pointer to a VSI on success, NULL on failure. 404 */ 405 static struct ice_vsi * 406 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 407 { 408 struct device *dev = ice_pf_to_dev(pf); 409 struct ice_vsi *vsi = NULL; 410 411 /* Need to protect the allocation of the VSIs at the PF level */ 412 mutex_lock(&pf->sw_mutex); 413 414 /* If we have already allocated our maximum number of VSIs, 415 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 416 * is available to be populated 417 */ 418 if (pf->next_vsi == ICE_NO_VSI) { 419 dev_dbg(dev, "out of VSI slots!\n"); 420 goto unlock_pf; 421 } 422 423 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 424 if (!vsi) 425 goto unlock_pf; 426 427 vsi->type = vsi_type; 428 vsi->back = pf; 429 set_bit(ICE_VSI_DOWN, vsi->state); 430 431 if (vsi_type == ICE_VSI_VF) 432 ice_vsi_set_num_qs(vsi, vf_id); 433 else 434 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 435 436 switch (vsi->type) { 437 case ICE_VSI_PF: 438 if (ice_vsi_alloc_arrays(vsi)) 439 goto err_rings; 440 441 /* Setup default MSIX irq handler for VSI */ 442 vsi->irq_handler = ice_msix_clean_rings; 443 break; 444 case ICE_VSI_CTRL: 445 if (ice_vsi_alloc_arrays(vsi)) 446 goto err_rings; 447 448 /* Setup ctrl VSI MSIX irq handler */ 449 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 450 break; 451 case ICE_VSI_VF: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 break; 455 case ICE_VSI_LB: 456 if (ice_vsi_alloc_arrays(vsi)) 457 goto err_rings; 458 break; 459 default: 460 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 461 goto unlock_pf; 462 } 463 464 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 465 /* Use the last VSI slot as the index for PF control VSI */ 466 vsi->idx = pf->num_alloc_vsi - 1; 467 pf->ctrl_vsi_idx = vsi->idx; 468 pf->vsi[vsi->idx] = vsi; 469 } else { 470 /* fill slot and make note of the index */ 471 vsi->idx = pf->next_vsi; 472 pf->vsi[pf->next_vsi] = vsi; 473 474 /* prepare pf->next_vsi for next use */ 475 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 476 pf->next_vsi); 477 } 478 479 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 480 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 481 goto unlock_pf; 482 483 err_rings: 484 devm_kfree(dev, vsi); 485 vsi = NULL; 486 unlock_pf: 487 mutex_unlock(&pf->sw_mutex); 488 return vsi; 489 } 490 491 /** 492 * ice_alloc_fd_res - Allocate FD resource for a VSI 493 * @vsi: pointer to the ice_vsi 494 * 495 * This allocates the FD resources 496 * 497 * Returns 0 on success, -EPERM on no-op or -EIO on failure 498 */ 499 static int ice_alloc_fd_res(struct ice_vsi *vsi) 500 { 501 struct ice_pf *pf = vsi->back; 502 u32 g_val, b_val; 503 504 /* Flow Director filters are only allocated/assigned to the PF VSI which 505 * passes the traffic. The CTRL VSI is only used to add/delete filters 506 * so we don't allocate resources to it 507 */ 508 509 /* FD filters from guaranteed pool per VSI */ 510 g_val = pf->hw.func_caps.fd_fltr_guar; 511 if (!g_val) 512 return -EPERM; 513 514 /* FD filters from best effort pool */ 515 b_val = pf->hw.func_caps.fd_fltr_best_effort; 516 if (!b_val) 517 return -EPERM; 518 519 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 520 return -EPERM; 521 522 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 523 return -EPERM; 524 525 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 526 527 /* each VSI gets same "best_effort" quota */ 528 vsi->num_bfltr = b_val; 529 530 if (vsi->type == ICE_VSI_VF) { 531 vsi->num_gfltr = 0; 532 533 /* each VSI gets same "best_effort" quota */ 534 vsi->num_bfltr = b_val; 535 } 536 537 return 0; 538 } 539 540 /** 541 * ice_vsi_get_qs - Assign queues from PF to VSI 542 * @vsi: the VSI to assign queues to 543 * 544 * Returns 0 on success and a negative value on error 545 */ 546 static int ice_vsi_get_qs(struct ice_vsi *vsi) 547 { 548 struct ice_pf *pf = vsi->back; 549 struct ice_qs_cfg tx_qs_cfg = { 550 .qs_mutex = &pf->avail_q_mutex, 551 .pf_map = pf->avail_txqs, 552 .pf_map_size = pf->max_pf_txqs, 553 .q_count = vsi->alloc_txq, 554 .scatter_count = ICE_MAX_SCATTER_TXQS, 555 .vsi_map = vsi->txq_map, 556 .vsi_map_offset = 0, 557 .mapping_mode = ICE_VSI_MAP_CONTIG 558 }; 559 struct ice_qs_cfg rx_qs_cfg = { 560 .qs_mutex = &pf->avail_q_mutex, 561 .pf_map = pf->avail_rxqs, 562 .pf_map_size = pf->max_pf_rxqs, 563 .q_count = vsi->alloc_rxq, 564 .scatter_count = ICE_MAX_SCATTER_RXQS, 565 .vsi_map = vsi->rxq_map, 566 .vsi_map_offset = 0, 567 .mapping_mode = ICE_VSI_MAP_CONTIG 568 }; 569 int ret; 570 571 ret = __ice_vsi_get_qs(&tx_qs_cfg); 572 if (ret) 573 return ret; 574 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 575 576 ret = __ice_vsi_get_qs(&rx_qs_cfg); 577 if (ret) 578 return ret; 579 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 580 581 return 0; 582 } 583 584 /** 585 * ice_vsi_put_qs - Release queues from VSI to PF 586 * @vsi: the VSI that is going to release queues 587 */ 588 static void ice_vsi_put_qs(struct ice_vsi *vsi) 589 { 590 struct ice_pf *pf = vsi->back; 591 int i; 592 593 mutex_lock(&pf->avail_q_mutex); 594 595 for (i = 0; i < vsi->alloc_txq; i++) { 596 clear_bit(vsi->txq_map[i], pf->avail_txqs); 597 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 598 } 599 600 for (i = 0; i < vsi->alloc_rxq; i++) { 601 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 602 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 603 } 604 605 mutex_unlock(&pf->avail_q_mutex); 606 } 607 608 /** 609 * ice_is_safe_mode 610 * @pf: pointer to the PF struct 611 * 612 * returns true if driver is in safe mode, false otherwise 613 */ 614 bool ice_is_safe_mode(struct ice_pf *pf) 615 { 616 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 617 } 618 619 /** 620 * ice_is_aux_ena 621 * @pf: pointer to the PF struct 622 * 623 * returns true if AUX devices/drivers are supported, false otherwise 624 */ 625 bool ice_is_aux_ena(struct ice_pf *pf) 626 { 627 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 628 } 629 630 /** 631 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 632 * @vsi: the VSI being cleaned up 633 * 634 * This function deletes RSS input set for all flows that were configured 635 * for this VSI 636 */ 637 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 638 { 639 struct ice_pf *pf = vsi->back; 640 enum ice_status status; 641 642 if (ice_is_safe_mode(pf)) 643 return; 644 645 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 646 if (status) 647 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 648 vsi->vsi_num, ice_stat_str(status)); 649 } 650 651 /** 652 * ice_rss_clean - Delete RSS related VSI structures and configuration 653 * @vsi: the VSI being removed 654 */ 655 static void ice_rss_clean(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 struct device *dev; 659 660 dev = ice_pf_to_dev(pf); 661 662 if (vsi->rss_hkey_user) 663 devm_kfree(dev, vsi->rss_hkey_user); 664 if (vsi->rss_lut_user) 665 devm_kfree(dev, vsi->rss_lut_user); 666 667 ice_vsi_clean_rss_flow_fld(vsi); 668 /* remove RSS replay list */ 669 if (!ice_is_safe_mode(pf)) 670 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 671 } 672 673 /** 674 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 675 * @vsi: the VSI being configured 676 */ 677 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 678 { 679 struct ice_hw_common_caps *cap; 680 struct ice_pf *pf = vsi->back; 681 682 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 683 vsi->rss_size = 1; 684 return; 685 } 686 687 cap = &pf->hw.func_caps.common_cap; 688 switch (vsi->type) { 689 case ICE_VSI_PF: 690 /* PF VSI will inherit RSS instance of PF */ 691 vsi->rss_table_size = (u16)cap->rss_table_size; 692 vsi->rss_size = min_t(u16, num_online_cpus(), 693 BIT(cap->rss_table_entry_width)); 694 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 695 break; 696 case ICE_VSI_VF: 697 /* VF VSI will get a small RSS table. 698 * For VSI_LUT, LUT size should be set to 64 bytes. 699 */ 700 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 701 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 702 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 703 break; 704 case ICE_VSI_LB: 705 break; 706 default: 707 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 708 ice_vsi_type_str(vsi->type)); 709 break; 710 } 711 } 712 713 /** 714 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 715 * @ctxt: the VSI context being set 716 * 717 * This initializes a default VSI context for all sections except the Queues. 718 */ 719 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 720 { 721 u32 table = 0; 722 723 memset(&ctxt->info, 0, sizeof(ctxt->info)); 724 /* VSI's should be allocated from shared pool */ 725 ctxt->alloc_from_pool = true; 726 /* Src pruning enabled by default */ 727 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 728 /* Traffic from VSI can be sent to LAN */ 729 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 730 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 731 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 732 * packets untagged/tagged. 733 */ 734 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 735 ICE_AQ_VSI_VLAN_MODE_M) >> 736 ICE_AQ_VSI_VLAN_MODE_S); 737 /* Have 1:1 UP mapping for both ingress/egress tables */ 738 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 739 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 740 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 741 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 742 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 743 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 744 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 745 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 746 ctxt->info.ingress_table = cpu_to_le32(table); 747 ctxt->info.egress_table = cpu_to_le32(table); 748 /* Have 1:1 UP mapping for outer to inner UP table */ 749 ctxt->info.outer_up_table = cpu_to_le32(table); 750 /* No Outer tag support outer_tag_flags remains to zero */ 751 } 752 753 /** 754 * ice_vsi_setup_q_map - Setup a VSI queue map 755 * @vsi: the VSI being configured 756 * @ctxt: VSI context structure 757 */ 758 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 759 { 760 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 761 u16 num_txq_per_tc, num_rxq_per_tc; 762 u16 qcount_tx = vsi->alloc_txq; 763 u16 qcount_rx = vsi->alloc_rxq; 764 bool ena_tc0 = false; 765 u8 netdev_tc = 0; 766 int i; 767 768 /* at least TC0 should be enabled by default */ 769 if (vsi->tc_cfg.numtc) { 770 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 771 ena_tc0 = true; 772 } else { 773 ena_tc0 = true; 774 } 775 776 if (ena_tc0) { 777 vsi->tc_cfg.numtc++; 778 vsi->tc_cfg.ena_tc |= 1; 779 } 780 781 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 782 if (!num_rxq_per_tc) 783 num_rxq_per_tc = 1; 784 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 785 if (!num_txq_per_tc) 786 num_txq_per_tc = 1; 787 788 /* find the (rounded up) power-of-2 of qcount */ 789 pow = (u16)order_base_2(num_rxq_per_tc); 790 791 /* TC mapping is a function of the number of Rx queues assigned to the 792 * VSI for each traffic class and the offset of these queues. 793 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 794 * queues allocated to TC0. No:of queues is a power-of-2. 795 * 796 * If TC is not enabled, the queue offset is set to 0, and allocate one 797 * queue, this way, traffic for the given TC will be sent to the default 798 * queue. 799 * 800 * Setup number and offset of Rx queues for all TCs for the VSI 801 */ 802 ice_for_each_traffic_class(i) { 803 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 804 /* TC is not enabled */ 805 vsi->tc_cfg.tc_info[i].qoffset = 0; 806 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 807 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 808 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 809 ctxt->info.tc_mapping[i] = 0; 810 continue; 811 } 812 813 /* TC is enabled */ 814 vsi->tc_cfg.tc_info[i].qoffset = offset; 815 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 816 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 817 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 818 819 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 820 ICE_AQ_VSI_TC_Q_OFFSET_M) | 821 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 822 ICE_AQ_VSI_TC_Q_NUM_M); 823 offset += num_rxq_per_tc; 824 tx_count += num_txq_per_tc; 825 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 826 } 827 828 /* if offset is non-zero, means it is calculated correctly based on 829 * enabled TCs for a given VSI otherwise qcount_rx will always 830 * be correct and non-zero because it is based off - VSI's 831 * allocated Rx queues which is at least 1 (hence qcount_tx will be 832 * at least 1) 833 */ 834 if (offset) 835 vsi->num_rxq = offset; 836 else 837 vsi->num_rxq = num_rxq_per_tc; 838 839 vsi->num_txq = tx_count; 840 841 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 842 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 843 /* since there is a chance that num_rxq could have been changed 844 * in the above for loop, make num_txq equal to num_rxq. 845 */ 846 vsi->num_txq = vsi->num_rxq; 847 } 848 849 /* Rx queue mapping */ 850 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 851 /* q_mapping buffer holds the info for the first queue allocated for 852 * this VSI in the PF space and also the number of queues associated 853 * with this VSI. 854 */ 855 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 856 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 857 } 858 859 /** 860 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 861 * @ctxt: the VSI context being set 862 * @vsi: the VSI being configured 863 */ 864 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 865 { 866 u8 dflt_q_group, dflt_q_prio; 867 u16 dflt_q, report_q, val; 868 869 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 870 vsi->type != ICE_VSI_VF) 871 return; 872 873 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 874 ctxt->info.valid_sections |= cpu_to_le16(val); 875 dflt_q = 0; 876 dflt_q_group = 0; 877 report_q = 0; 878 dflt_q_prio = 0; 879 880 /* enable flow director filtering/programming */ 881 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 882 ctxt->info.fd_options = cpu_to_le16(val); 883 /* max of allocated flow director filters */ 884 ctxt->info.max_fd_fltr_dedicated = 885 cpu_to_le16(vsi->num_gfltr); 886 /* max of shared flow director filters any VSI may program */ 887 ctxt->info.max_fd_fltr_shared = 888 cpu_to_le16(vsi->num_bfltr); 889 /* default queue index within the VSI of the default FD */ 890 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 891 ICE_AQ_VSI_FD_DEF_Q_M); 892 /* target queue or queue group to the FD filter */ 893 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 894 ICE_AQ_VSI_FD_DEF_GRP_M); 895 ctxt->info.fd_def_q = cpu_to_le16(val); 896 /* queue index on which FD filter completion is reported */ 897 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 898 ICE_AQ_VSI_FD_REPORT_Q_M); 899 /* priority of the default qindex action */ 900 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 901 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 902 ctxt->info.fd_report_opt = cpu_to_le16(val); 903 } 904 905 /** 906 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 907 * @ctxt: the VSI context being set 908 * @vsi: the VSI being configured 909 */ 910 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 911 { 912 u8 lut_type, hash_type; 913 struct device *dev; 914 struct ice_pf *pf; 915 916 pf = vsi->back; 917 dev = ice_pf_to_dev(pf); 918 919 switch (vsi->type) { 920 case ICE_VSI_PF: 921 /* PF VSI will inherit RSS instance of PF */ 922 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 923 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 924 break; 925 case ICE_VSI_VF: 926 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 927 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 928 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 929 break; 930 default: 931 dev_dbg(dev, "Unsupported VSI type %s\n", 932 ice_vsi_type_str(vsi->type)); 933 return; 934 } 935 936 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 937 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 938 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 939 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 940 } 941 942 /** 943 * ice_vsi_init - Create and initialize a VSI 944 * @vsi: the VSI being configured 945 * @init_vsi: is this call creating a VSI 946 * 947 * This initializes a VSI context depending on the VSI type to be added and 948 * passes it down to the add_vsi aq command to create a new VSI. 949 */ 950 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 951 { 952 struct ice_pf *pf = vsi->back; 953 struct ice_hw *hw = &pf->hw; 954 struct ice_vsi_ctx *ctxt; 955 struct device *dev; 956 int ret = 0; 957 958 dev = ice_pf_to_dev(pf); 959 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 960 if (!ctxt) 961 return -ENOMEM; 962 963 switch (vsi->type) { 964 case ICE_VSI_CTRL: 965 case ICE_VSI_LB: 966 case ICE_VSI_PF: 967 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 968 break; 969 case ICE_VSI_VF: 970 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 971 /* VF number here is the absolute VF number (0-255) */ 972 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 973 break; 974 default: 975 ret = -ENODEV; 976 goto out; 977 } 978 979 ice_set_dflt_vsi_ctx(ctxt); 980 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 981 ice_set_fd_vsi_ctx(ctxt, vsi); 982 /* if the switch is in VEB mode, allow VSI loopback */ 983 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 984 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 985 986 /* Set LUT type and HASH type if RSS is enabled */ 987 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 988 vsi->type != ICE_VSI_CTRL) { 989 ice_set_rss_vsi_ctx(ctxt, vsi); 990 /* if updating VSI context, make sure to set valid_section: 991 * to indicate which section of VSI context being updated 992 */ 993 if (!init_vsi) 994 ctxt->info.valid_sections |= 995 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 996 } 997 998 ctxt->info.sw_id = vsi->port_info->sw_id; 999 ice_vsi_setup_q_map(vsi, ctxt); 1000 if (!init_vsi) /* means VSI being updated */ 1001 /* must to indicate which section of VSI context are 1002 * being modified 1003 */ 1004 ctxt->info.valid_sections |= 1005 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1006 1007 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1008 * respectively 1009 */ 1010 if (vsi->type == ICE_VSI_VF) { 1011 ctxt->info.valid_sections |= 1012 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1013 if (pf->vf[vsi->vf_id].spoofchk) { 1014 ctxt->info.sec_flags |= 1015 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1016 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1017 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1018 } else { 1019 ctxt->info.sec_flags &= 1020 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1021 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1022 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1023 } 1024 } 1025 1026 /* Allow control frames out of main VSI */ 1027 if (vsi->type == ICE_VSI_PF) { 1028 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1029 ctxt->info.valid_sections |= 1030 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1031 } 1032 1033 if (init_vsi) { 1034 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1035 if (ret) { 1036 dev_err(dev, "Add VSI failed, err %d\n", ret); 1037 ret = -EIO; 1038 goto out; 1039 } 1040 } else { 1041 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1042 if (ret) { 1043 dev_err(dev, "Update VSI failed, err %d\n", ret); 1044 ret = -EIO; 1045 goto out; 1046 } 1047 } 1048 1049 /* keep context for update VSI operations */ 1050 vsi->info = ctxt->info; 1051 1052 /* record VSI number returned */ 1053 vsi->vsi_num = ctxt->vsi_num; 1054 1055 out: 1056 kfree(ctxt); 1057 return ret; 1058 } 1059 1060 /** 1061 * ice_free_res - free a block of resources 1062 * @res: pointer to the resource 1063 * @index: starting index previously returned by ice_get_res 1064 * @id: identifier to track owner 1065 * 1066 * Returns number of resources freed 1067 */ 1068 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1069 { 1070 int count = 0; 1071 int i; 1072 1073 if (!res || index >= res->end) 1074 return -EINVAL; 1075 1076 id |= ICE_RES_VALID_BIT; 1077 for (i = index; i < res->end && res->list[i] == id; i++) { 1078 res->list[i] = 0; 1079 count++; 1080 } 1081 1082 return count; 1083 } 1084 1085 /** 1086 * ice_search_res - Search the tracker for a block of resources 1087 * @res: pointer to the resource 1088 * @needed: size of the block needed 1089 * @id: identifier to track owner 1090 * 1091 * Returns the base item index of the block, or -ENOMEM for error 1092 */ 1093 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1094 { 1095 u16 start = 0, end = 0; 1096 1097 if (needed > res->end) 1098 return -ENOMEM; 1099 1100 id |= ICE_RES_VALID_BIT; 1101 1102 do { 1103 /* skip already allocated entries */ 1104 if (res->list[end++] & ICE_RES_VALID_BIT) { 1105 start = end; 1106 if ((start + needed) > res->end) 1107 break; 1108 } 1109 1110 if (end == (start + needed)) { 1111 int i = start; 1112 1113 /* there was enough, so assign it to the requestor */ 1114 while (i != end) 1115 res->list[i++] = id; 1116 1117 return start; 1118 } 1119 } while (end < res->end); 1120 1121 return -ENOMEM; 1122 } 1123 1124 /** 1125 * ice_get_free_res_count - Get free count from a resource tracker 1126 * @res: Resource tracker instance 1127 */ 1128 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1129 { 1130 u16 i, count = 0; 1131 1132 for (i = 0; i < res->end; i++) 1133 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1134 count++; 1135 1136 return count; 1137 } 1138 1139 /** 1140 * ice_get_res - get a block of resources 1141 * @pf: board private structure 1142 * @res: pointer to the resource 1143 * @needed: size of the block needed 1144 * @id: identifier to track owner 1145 * 1146 * Returns the base item index of the block, or negative for error 1147 */ 1148 int 1149 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1150 { 1151 if (!res || !pf) 1152 return -EINVAL; 1153 1154 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1155 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1156 needed, res->num_entries, id); 1157 return -EINVAL; 1158 } 1159 1160 return ice_search_res(res, needed, id); 1161 } 1162 1163 /** 1164 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1165 * @vsi: ptr to the VSI 1166 * 1167 * This should only be called after ice_vsi_alloc() which allocates the 1168 * corresponding SW VSI structure and initializes num_queue_pairs for the 1169 * newly allocated VSI. 1170 * 1171 * Returns 0 on success or negative on failure 1172 */ 1173 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1174 { 1175 struct ice_pf *pf = vsi->back; 1176 struct device *dev; 1177 u16 num_q_vectors; 1178 int base; 1179 1180 dev = ice_pf_to_dev(pf); 1181 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1182 if (vsi->type == ICE_VSI_VF) 1183 return 0; 1184 1185 if (vsi->base_vector) { 1186 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1187 vsi->vsi_num, vsi->base_vector); 1188 return -EEXIST; 1189 } 1190 1191 num_q_vectors = vsi->num_q_vectors; 1192 /* reserve slots from OS requested IRQs */ 1193 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1194 struct ice_vf *vf; 1195 int i; 1196 1197 ice_for_each_vf(pf, i) { 1198 vf = &pf->vf[i]; 1199 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1200 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1201 break; 1202 } 1203 } 1204 if (i == pf->num_alloc_vfs) 1205 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1206 ICE_RES_VF_CTRL_VEC_ID); 1207 } else { 1208 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1209 vsi->idx); 1210 } 1211 1212 if (base < 0) { 1213 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1214 ice_get_free_res_count(pf->irq_tracker), 1215 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1216 return -ENOENT; 1217 } 1218 vsi->base_vector = (u16)base; 1219 pf->num_avail_sw_msix -= num_q_vectors; 1220 1221 return 0; 1222 } 1223 1224 /** 1225 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1226 * @vsi: the VSI having rings deallocated 1227 */ 1228 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1229 { 1230 int i; 1231 1232 /* Avoid stale references by clearing map from vector to ring */ 1233 if (vsi->q_vectors) { 1234 ice_for_each_q_vector(vsi, i) { 1235 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1236 1237 if (q_vector) { 1238 q_vector->tx.ring = NULL; 1239 q_vector->rx.ring = NULL; 1240 } 1241 } 1242 } 1243 1244 if (vsi->tx_rings) { 1245 for (i = 0; i < vsi->alloc_txq; i++) { 1246 if (vsi->tx_rings[i]) { 1247 kfree_rcu(vsi->tx_rings[i], rcu); 1248 WRITE_ONCE(vsi->tx_rings[i], NULL); 1249 } 1250 } 1251 } 1252 if (vsi->rx_rings) { 1253 for (i = 0; i < vsi->alloc_rxq; i++) { 1254 if (vsi->rx_rings[i]) { 1255 kfree_rcu(vsi->rx_rings[i], rcu); 1256 WRITE_ONCE(vsi->rx_rings[i], NULL); 1257 } 1258 } 1259 } 1260 } 1261 1262 /** 1263 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1264 * @vsi: VSI which is having rings allocated 1265 */ 1266 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1267 { 1268 struct ice_pf *pf = vsi->back; 1269 struct device *dev; 1270 u16 i; 1271 1272 dev = ice_pf_to_dev(pf); 1273 /* Allocate Tx rings */ 1274 for (i = 0; i < vsi->alloc_txq; i++) { 1275 struct ice_ring *ring; 1276 1277 /* allocate with kzalloc(), free with kfree_rcu() */ 1278 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1279 1280 if (!ring) 1281 goto err_out; 1282 1283 ring->q_index = i; 1284 ring->reg_idx = vsi->txq_map[i]; 1285 ring->ring_active = false; 1286 ring->vsi = vsi; 1287 ring->dev = dev; 1288 ring->count = vsi->num_tx_desc; 1289 WRITE_ONCE(vsi->tx_rings[i], ring); 1290 } 1291 1292 /* Allocate Rx rings */ 1293 for (i = 0; i < vsi->alloc_rxq; i++) { 1294 struct ice_ring *ring; 1295 1296 /* allocate with kzalloc(), free with kfree_rcu() */ 1297 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1298 if (!ring) 1299 goto err_out; 1300 1301 ring->q_index = i; 1302 ring->reg_idx = vsi->rxq_map[i]; 1303 ring->ring_active = false; 1304 ring->vsi = vsi; 1305 ring->netdev = vsi->netdev; 1306 ring->dev = dev; 1307 ring->count = vsi->num_rx_desc; 1308 WRITE_ONCE(vsi->rx_rings[i], ring); 1309 } 1310 1311 return 0; 1312 1313 err_out: 1314 ice_vsi_clear_rings(vsi); 1315 return -ENOMEM; 1316 } 1317 1318 /** 1319 * ice_vsi_manage_rss_lut - disable/enable RSS 1320 * @vsi: the VSI being changed 1321 * @ena: boolean value indicating if this is an enable or disable request 1322 * 1323 * In the event of disable request for RSS, this function will zero out RSS 1324 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1325 * LUT. 1326 */ 1327 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1328 { 1329 u8 *lut; 1330 1331 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1332 if (!lut) 1333 return; 1334 1335 if (ena) { 1336 if (vsi->rss_lut_user) 1337 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1338 else 1339 ice_fill_rss_lut(lut, vsi->rss_table_size, 1340 vsi->rss_size); 1341 } 1342 1343 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1344 kfree(lut); 1345 } 1346 1347 /** 1348 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1349 * @vsi: VSI to be configured 1350 */ 1351 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1352 { 1353 struct ice_pf *pf = vsi->back; 1354 struct device *dev; 1355 u8 *lut, *key; 1356 int err; 1357 1358 dev = ice_pf_to_dev(pf); 1359 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1360 1361 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1362 if (!lut) 1363 return -ENOMEM; 1364 1365 if (vsi->rss_lut_user) 1366 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1367 else 1368 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1369 1370 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1371 if (err) { 1372 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1373 goto ice_vsi_cfg_rss_exit; 1374 } 1375 1376 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1377 if (!key) { 1378 err = -ENOMEM; 1379 goto ice_vsi_cfg_rss_exit; 1380 } 1381 1382 if (vsi->rss_hkey_user) 1383 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1384 else 1385 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1386 1387 err = ice_set_rss_key(vsi, key); 1388 if (err) 1389 dev_err(dev, "set_rss_key failed, error %d\n", err); 1390 1391 kfree(key); 1392 ice_vsi_cfg_rss_exit: 1393 kfree(lut); 1394 return err; 1395 } 1396 1397 /** 1398 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1399 * @vsi: VSI to be configured 1400 * 1401 * This function will only be called during the VF VSI setup. Upon successful 1402 * completion of package download, this function will configure default RSS 1403 * input sets for VF VSI. 1404 */ 1405 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1406 { 1407 struct ice_pf *pf = vsi->back; 1408 enum ice_status status; 1409 struct device *dev; 1410 1411 dev = ice_pf_to_dev(pf); 1412 if (ice_is_safe_mode(pf)) { 1413 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1414 vsi->vsi_num); 1415 return; 1416 } 1417 1418 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1419 if (status) 1420 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1421 vsi->vsi_num, ice_stat_str(status)); 1422 } 1423 1424 /** 1425 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1426 * @vsi: VSI to be configured 1427 * 1428 * This function will only be called after successful download package call 1429 * during initialization of PF. Since the downloaded package will erase the 1430 * RSS section, this function will configure RSS input sets for different 1431 * flow types. The last profile added has the highest priority, therefore 2 1432 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1433 * (i.e. IPv4 src/dst TCP src/dst port). 1434 */ 1435 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1436 { 1437 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1438 struct ice_pf *pf = vsi->back; 1439 struct ice_hw *hw = &pf->hw; 1440 enum ice_status status; 1441 struct device *dev; 1442 1443 dev = ice_pf_to_dev(pf); 1444 if (ice_is_safe_mode(pf)) { 1445 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1446 vsi_num); 1447 return; 1448 } 1449 /* configure RSS for IPv4 with input set IP src/dst */ 1450 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1451 ICE_FLOW_SEG_HDR_IPV4); 1452 if (status) 1453 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1454 vsi_num, ice_stat_str(status)); 1455 1456 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1457 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1458 ICE_FLOW_SEG_HDR_IPV6); 1459 if (status) 1460 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1461 vsi_num, ice_stat_str(status)); 1462 1463 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1464 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1465 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1466 if (status) 1467 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1468 vsi_num, ice_stat_str(status)); 1469 1470 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1471 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1472 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1473 if (status) 1474 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1475 vsi_num, ice_stat_str(status)); 1476 1477 /* configure RSS for sctp4 with input set IP src/dst */ 1478 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1479 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1480 if (status) 1481 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1482 vsi_num, ice_stat_str(status)); 1483 1484 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1485 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1486 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1487 if (status) 1488 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1489 vsi_num, ice_stat_str(status)); 1490 1491 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1492 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1493 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1494 if (status) 1495 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1496 vsi_num, ice_stat_str(status)); 1497 1498 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1499 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1500 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1501 if (status) 1502 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1503 vsi_num, ice_stat_str(status)); 1504 } 1505 1506 /** 1507 * ice_pf_state_is_nominal - checks the PF for nominal state 1508 * @pf: pointer to PF to check 1509 * 1510 * Check the PF's state for a collection of bits that would indicate 1511 * the PF is in a state that would inhibit normal operation for 1512 * driver functionality. 1513 * 1514 * Returns true if PF is in a nominal state, false otherwise 1515 */ 1516 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1517 { 1518 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1519 1520 if (!pf) 1521 return false; 1522 1523 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1524 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1525 return false; 1526 1527 return true; 1528 } 1529 1530 /** 1531 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1532 * @vsi: the VSI to be updated 1533 */ 1534 void ice_update_eth_stats(struct ice_vsi *vsi) 1535 { 1536 struct ice_eth_stats *prev_es, *cur_es; 1537 struct ice_hw *hw = &vsi->back->hw; 1538 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1539 1540 prev_es = &vsi->eth_stats_prev; 1541 cur_es = &vsi->eth_stats; 1542 1543 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1544 &prev_es->rx_bytes, &cur_es->rx_bytes); 1545 1546 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1547 &prev_es->rx_unicast, &cur_es->rx_unicast); 1548 1549 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1550 &prev_es->rx_multicast, &cur_es->rx_multicast); 1551 1552 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1553 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1554 1555 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1556 &prev_es->rx_discards, &cur_es->rx_discards); 1557 1558 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1559 &prev_es->tx_bytes, &cur_es->tx_bytes); 1560 1561 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1562 &prev_es->tx_unicast, &cur_es->tx_unicast); 1563 1564 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1565 &prev_es->tx_multicast, &cur_es->tx_multicast); 1566 1567 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1568 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1569 1570 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1571 &prev_es->tx_errors, &cur_es->tx_errors); 1572 1573 vsi->stat_offsets_loaded = true; 1574 } 1575 1576 /** 1577 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1578 * @vsi: the VSI being configured 1579 * @vid: VLAN ID to be added 1580 * @action: filter action to be performed on match 1581 */ 1582 int 1583 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1584 { 1585 struct ice_pf *pf = vsi->back; 1586 struct device *dev; 1587 int err = 0; 1588 1589 dev = ice_pf_to_dev(pf); 1590 1591 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1592 vsi->num_vlan++; 1593 } else { 1594 err = -ENODEV; 1595 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1596 vsi->vsi_num); 1597 } 1598 1599 return err; 1600 } 1601 1602 /** 1603 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1604 * @vsi: the VSI being configured 1605 * @vid: VLAN ID to be removed 1606 * 1607 * Returns 0 on success and negative on failure 1608 */ 1609 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1610 { 1611 struct ice_pf *pf = vsi->back; 1612 enum ice_status status; 1613 struct device *dev; 1614 int err = 0; 1615 1616 dev = ice_pf_to_dev(pf); 1617 1618 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1619 if (!status) { 1620 vsi->num_vlan--; 1621 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1622 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1623 vid, vsi->vsi_num, ice_stat_str(status)); 1624 } else { 1625 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1626 vid, vsi->vsi_num, ice_stat_str(status)); 1627 err = -EIO; 1628 } 1629 1630 return err; 1631 } 1632 1633 /** 1634 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1635 * @vsi: VSI 1636 */ 1637 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1638 { 1639 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1640 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1641 vsi->rx_buf_len = ICE_RXBUF_2048; 1642 #if (PAGE_SIZE < 8192) 1643 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1644 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1645 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1646 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1647 #endif 1648 } else { 1649 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1650 #if (PAGE_SIZE < 8192) 1651 vsi->rx_buf_len = ICE_RXBUF_3072; 1652 #else 1653 vsi->rx_buf_len = ICE_RXBUF_2048; 1654 #endif 1655 } 1656 } 1657 1658 /** 1659 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1660 * @hw: HW pointer 1661 * @pf_q: index of the Rx queue in the PF's queue space 1662 * @rxdid: flexible descriptor RXDID 1663 * @prio: priority for the RXDID for this queue 1664 */ 1665 void 1666 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1667 { 1668 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1669 1670 /* clear any previous values */ 1671 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1672 QRXFLXP_CNTXT_RXDID_PRIO_M | 1673 QRXFLXP_CNTXT_TS_M); 1674 1675 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1676 QRXFLXP_CNTXT_RXDID_IDX_M; 1677 1678 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1679 QRXFLXP_CNTXT_RXDID_PRIO_M; 1680 1681 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1682 } 1683 1684 /** 1685 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1686 * @vsi: the VSI being configured 1687 * 1688 * Return 0 on success and a negative value on error 1689 * Configure the Rx VSI for operation. 1690 */ 1691 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1692 { 1693 u16 i; 1694 1695 if (vsi->type == ICE_VSI_VF) 1696 goto setup_rings; 1697 1698 ice_vsi_cfg_frame_size(vsi); 1699 setup_rings: 1700 /* set up individual rings */ 1701 for (i = 0; i < vsi->num_rxq; i++) { 1702 int err; 1703 1704 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1705 if (err) { 1706 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1707 i, err); 1708 return err; 1709 } 1710 } 1711 1712 return 0; 1713 } 1714 1715 /** 1716 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1717 * @vsi: the VSI being configured 1718 * @rings: Tx ring array to be configured 1719 * 1720 * Return 0 on success and a negative value on error 1721 * Configure the Tx VSI for operation. 1722 */ 1723 static int 1724 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1725 { 1726 struct ice_aqc_add_tx_qgrp *qg_buf; 1727 u16 q_idx = 0; 1728 int err = 0; 1729 1730 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1731 if (!qg_buf) 1732 return -ENOMEM; 1733 1734 qg_buf->num_txqs = 1; 1735 1736 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1737 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1738 if (err) 1739 goto err_cfg_txqs; 1740 } 1741 1742 err_cfg_txqs: 1743 kfree(qg_buf); 1744 return err; 1745 } 1746 1747 /** 1748 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1749 * @vsi: the VSI being configured 1750 * 1751 * Return 0 on success and a negative value on error 1752 * Configure the Tx VSI for operation. 1753 */ 1754 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1755 { 1756 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1757 } 1758 1759 /** 1760 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1761 * @vsi: the VSI being configured 1762 * 1763 * Return 0 on success and a negative value on error 1764 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1765 */ 1766 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1767 { 1768 int ret; 1769 int i; 1770 1771 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1772 if (ret) 1773 return ret; 1774 1775 for (i = 0; i < vsi->num_xdp_txq; i++) 1776 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1777 1778 return ret; 1779 } 1780 1781 /** 1782 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1783 * @intrl: interrupt rate limit in usecs 1784 * @gran: interrupt rate limit granularity in usecs 1785 * 1786 * This function converts a decimal interrupt rate limit in usecs to the format 1787 * expected by firmware. 1788 */ 1789 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1790 { 1791 u32 val = intrl / gran; 1792 1793 if (val) 1794 return val | GLINT_RATE_INTRL_ENA_M; 1795 return 0; 1796 } 1797 1798 /** 1799 * ice_write_intrl - write throttle rate limit to interrupt specific register 1800 * @q_vector: pointer to interrupt specific structure 1801 * @intrl: throttle rate limit in microseconds to write 1802 */ 1803 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1804 { 1805 struct ice_hw *hw = &q_vector->vsi->back->hw; 1806 1807 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1808 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1809 } 1810 1811 /** 1812 * __ice_write_itr - write throttle rate to register 1813 * @q_vector: pointer to interrupt data structure 1814 * @rc: pointer to ring container 1815 * @itr: throttle rate in microseconds to write 1816 */ 1817 static void __ice_write_itr(struct ice_q_vector *q_vector, 1818 struct ice_ring_container *rc, u16 itr) 1819 { 1820 struct ice_hw *hw = &q_vector->vsi->back->hw; 1821 1822 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1823 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1824 } 1825 1826 /** 1827 * ice_write_itr - write throttle rate to queue specific register 1828 * @rc: pointer to ring container 1829 * @itr: throttle rate in microseconds to write 1830 */ 1831 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1832 { 1833 struct ice_q_vector *q_vector; 1834 1835 if (!rc->ring) 1836 return; 1837 1838 q_vector = rc->ring->q_vector; 1839 1840 __ice_write_itr(q_vector, rc, itr); 1841 } 1842 1843 /** 1844 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1845 * @vsi: the VSI being configured 1846 * 1847 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1848 * for the VF VSI. 1849 */ 1850 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1851 { 1852 struct ice_pf *pf = vsi->back; 1853 struct ice_hw *hw = &pf->hw; 1854 u16 txq = 0, rxq = 0; 1855 int i, q; 1856 1857 for (i = 0; i < vsi->num_q_vectors; i++) { 1858 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1859 u16 reg_idx = q_vector->reg_idx; 1860 1861 ice_cfg_itr(hw, q_vector); 1862 1863 /* Both Transmit Queue Interrupt Cause Control register 1864 * and Receive Queue Interrupt Cause control register 1865 * expects MSIX_INDX field to be the vector index 1866 * within the function space and not the absolute 1867 * vector index across PF or across device. 1868 * For SR-IOV VF VSIs queue vector index always starts 1869 * with 1 since first vector index(0) is used for OICR 1870 * in VF space. Since VMDq and other PF VSIs are within 1871 * the PF function space, use the vector index that is 1872 * tracked for this PF. 1873 */ 1874 for (q = 0; q < q_vector->num_ring_tx; q++) { 1875 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1876 q_vector->tx.itr_idx); 1877 txq++; 1878 } 1879 1880 for (q = 0; q < q_vector->num_ring_rx; q++) { 1881 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1882 q_vector->rx.itr_idx); 1883 rxq++; 1884 } 1885 } 1886 } 1887 1888 /** 1889 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1890 * @vsi: the VSI being changed 1891 */ 1892 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1893 { 1894 struct ice_hw *hw = &vsi->back->hw; 1895 struct ice_vsi_ctx *ctxt; 1896 enum ice_status status; 1897 int ret = 0; 1898 1899 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1900 if (!ctxt) 1901 return -ENOMEM; 1902 1903 /* Here we are configuring the VSI to let the driver add VLAN tags by 1904 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1905 * insertion happens in the Tx hot path, in ice_tx_map. 1906 */ 1907 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1908 1909 /* Preserve existing VLAN strip setting */ 1910 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1911 ICE_AQ_VSI_VLAN_EMOD_M); 1912 1913 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1914 1915 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1916 if (status) { 1917 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1918 ice_stat_str(status), 1919 ice_aq_str(hw->adminq.sq_last_status)); 1920 ret = -EIO; 1921 goto out; 1922 } 1923 1924 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1925 out: 1926 kfree(ctxt); 1927 return ret; 1928 } 1929 1930 /** 1931 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1932 * @vsi: the VSI being changed 1933 * @ena: boolean value indicating if this is a enable or disable request 1934 */ 1935 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1936 { 1937 struct ice_hw *hw = &vsi->back->hw; 1938 struct ice_vsi_ctx *ctxt; 1939 enum ice_status status; 1940 int ret = 0; 1941 1942 /* do not allow modifying VLAN stripping when a port VLAN is configured 1943 * on this VSI 1944 */ 1945 if (vsi->info.pvid) 1946 return 0; 1947 1948 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1949 if (!ctxt) 1950 return -ENOMEM; 1951 1952 /* Here we are configuring what the VSI should do with the VLAN tag in 1953 * the Rx packet. We can either leave the tag in the packet or put it in 1954 * the Rx descriptor. 1955 */ 1956 if (ena) 1957 /* Strip VLAN tag from Rx packet and put it in the desc */ 1958 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1959 else 1960 /* Disable stripping. Leave tag in packet */ 1961 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1962 1963 /* Allow all packets untagged/tagged */ 1964 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1965 1966 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1967 1968 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1969 if (status) { 1970 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1971 ena, ice_stat_str(status), 1972 ice_aq_str(hw->adminq.sq_last_status)); 1973 ret = -EIO; 1974 goto out; 1975 } 1976 1977 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1978 out: 1979 kfree(ctxt); 1980 return ret; 1981 } 1982 1983 /** 1984 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1985 * @vsi: the VSI whose rings are to be enabled 1986 * 1987 * Returns 0 on success and a negative value on error 1988 */ 1989 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1990 { 1991 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1992 } 1993 1994 /** 1995 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1996 * @vsi: the VSI whose rings are to be disabled 1997 * 1998 * Returns 0 on success and a negative value on error 1999 */ 2000 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2001 { 2002 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2003 } 2004 2005 /** 2006 * ice_vsi_stop_tx_rings - Disable Tx rings 2007 * @vsi: the VSI being configured 2008 * @rst_src: reset source 2009 * @rel_vmvf_num: Relative ID of VF/VM 2010 * @rings: Tx ring array to be stopped 2011 */ 2012 static int 2013 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2014 u16 rel_vmvf_num, struct ice_ring **rings) 2015 { 2016 u16 q_idx; 2017 2018 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2019 return -EINVAL; 2020 2021 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 2022 struct ice_txq_meta txq_meta = { }; 2023 int status; 2024 2025 if (!rings || !rings[q_idx]) 2026 return -EINVAL; 2027 2028 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2029 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2030 rings[q_idx], &txq_meta); 2031 2032 if (status) 2033 return status; 2034 } 2035 2036 return 0; 2037 } 2038 2039 /** 2040 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2041 * @vsi: the VSI being configured 2042 * @rst_src: reset source 2043 * @rel_vmvf_num: Relative ID of VF/VM 2044 */ 2045 int 2046 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2047 u16 rel_vmvf_num) 2048 { 2049 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2050 } 2051 2052 /** 2053 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2054 * @vsi: the VSI being configured 2055 */ 2056 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2057 { 2058 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2059 } 2060 2061 /** 2062 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2063 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2064 * 2065 * returns true if Rx VLAN pruning is enabled and false otherwise. 2066 */ 2067 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2068 { 2069 if (!vsi) 2070 return false; 2071 2072 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2073 } 2074 2075 /** 2076 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2077 * @vsi: VSI to enable or disable VLAN pruning on 2078 * @ena: set to true to enable VLAN pruning and false to disable it 2079 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2080 * 2081 * returns 0 if VSI is updated, negative otherwise 2082 */ 2083 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2084 { 2085 struct ice_vsi_ctx *ctxt; 2086 struct ice_pf *pf; 2087 int status; 2088 2089 if (!vsi) 2090 return -EINVAL; 2091 2092 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2093 * mode. VLAN pruning will be enabled when the interface exits 2094 * promiscuous mode if any VLAN filters are active. 2095 */ 2096 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2097 return 0; 2098 2099 pf = vsi->back; 2100 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2101 if (!ctxt) 2102 return -ENOMEM; 2103 2104 ctxt->info = vsi->info; 2105 2106 if (ena) 2107 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2108 else 2109 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2110 2111 if (!vlan_promisc) 2112 ctxt->info.valid_sections = 2113 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2114 2115 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2116 if (status) { 2117 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2118 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2119 ice_stat_str(status), 2120 ice_aq_str(pf->hw.adminq.sq_last_status)); 2121 goto err_out; 2122 } 2123 2124 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2125 2126 kfree(ctxt); 2127 return 0; 2128 2129 err_out: 2130 kfree(ctxt); 2131 return -EIO; 2132 } 2133 2134 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2135 { 2136 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2137 2138 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2139 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2140 } 2141 2142 /** 2143 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2144 * @vsi: VSI to set the q_vectors register index on 2145 */ 2146 static int 2147 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2148 { 2149 u16 i; 2150 2151 if (!vsi || !vsi->q_vectors) 2152 return -EINVAL; 2153 2154 ice_for_each_q_vector(vsi, i) { 2155 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2156 2157 if (!q_vector) { 2158 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2159 i, vsi->vsi_num); 2160 goto clear_reg_idx; 2161 } 2162 2163 if (vsi->type == ICE_VSI_VF) { 2164 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2165 2166 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2167 } else { 2168 q_vector->reg_idx = 2169 q_vector->v_idx + vsi->base_vector; 2170 } 2171 } 2172 2173 return 0; 2174 2175 clear_reg_idx: 2176 ice_for_each_q_vector(vsi, i) { 2177 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2178 2179 if (q_vector) 2180 q_vector->reg_idx = 0; 2181 } 2182 2183 return -EINVAL; 2184 } 2185 2186 /** 2187 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2188 * @vsi: the VSI being configured 2189 * @tx: bool to determine Tx or Rx rule 2190 * @create: bool to determine create or remove Rule 2191 */ 2192 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2193 { 2194 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2195 enum ice_sw_fwd_act_type act); 2196 struct ice_pf *pf = vsi->back; 2197 enum ice_status status; 2198 struct device *dev; 2199 2200 dev = ice_pf_to_dev(pf); 2201 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2202 2203 if (tx) { 2204 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2205 ICE_DROP_PACKET); 2206 } else { 2207 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2208 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2209 create); 2210 } else { 2211 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2212 ICE_FWD_TO_VSI); 2213 } 2214 } 2215 2216 if (status) 2217 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2218 create ? "adding" : "removing", tx ? "TX" : "RX", 2219 vsi->vsi_num, ice_stat_str(status)); 2220 } 2221 2222 /** 2223 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2224 * @vsi: pointer to the VSI 2225 * 2226 * This function will allocate new scheduler aggregator now if needed and will 2227 * move specified VSI into it. 2228 */ 2229 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2230 { 2231 struct device *dev = ice_pf_to_dev(vsi->back); 2232 struct ice_agg_node *agg_node_iter = NULL; 2233 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2234 struct ice_agg_node *agg_node = NULL; 2235 int node_offset, max_agg_nodes = 0; 2236 struct ice_port_info *port_info; 2237 struct ice_pf *pf = vsi->back; 2238 u32 agg_node_id_start = 0; 2239 enum ice_status status; 2240 2241 /* create (as needed) scheduler aggregator node and move VSI into 2242 * corresponding aggregator node 2243 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2244 * - VF aggregator nodes will contain VF VSI 2245 */ 2246 port_info = pf->hw.port_info; 2247 if (!port_info) 2248 return; 2249 2250 switch (vsi->type) { 2251 case ICE_VSI_CTRL: 2252 case ICE_VSI_LB: 2253 case ICE_VSI_PF: 2254 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2255 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2256 agg_node_iter = &pf->pf_agg_node[0]; 2257 break; 2258 case ICE_VSI_VF: 2259 /* user can create 'n' VFs on a given PF, but since max children 2260 * per aggregator node can be only 64. Following code handles 2261 * aggregator(s) for VF VSIs, either selects a agg_node which 2262 * was already created provided num_vsis < 64, otherwise 2263 * select next available node, which will be created 2264 */ 2265 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2266 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2267 agg_node_iter = &pf->vf_agg_node[0]; 2268 break; 2269 default: 2270 /* other VSI type, handle later if needed */ 2271 dev_dbg(dev, "unexpected VSI type %s\n", 2272 ice_vsi_type_str(vsi->type)); 2273 return; 2274 } 2275 2276 /* find the appropriate aggregator node */ 2277 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2278 /* see if we can find space in previously created 2279 * node if num_vsis < 64, otherwise skip 2280 */ 2281 if (agg_node_iter->num_vsis && 2282 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2283 agg_node_iter++; 2284 continue; 2285 } 2286 2287 if (agg_node_iter->valid && 2288 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2289 agg_id = agg_node_iter->agg_id; 2290 agg_node = agg_node_iter; 2291 break; 2292 } 2293 2294 /* find unclaimed agg_id */ 2295 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2296 agg_id = node_offset + agg_node_id_start; 2297 agg_node = agg_node_iter; 2298 break; 2299 } 2300 /* move to next agg_node */ 2301 agg_node_iter++; 2302 } 2303 2304 if (!agg_node) 2305 return; 2306 2307 /* if selected aggregator node was not created, create it */ 2308 if (!agg_node->valid) { 2309 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2310 (u8)vsi->tc_cfg.ena_tc); 2311 if (status) { 2312 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2313 agg_id); 2314 return; 2315 } 2316 /* aggregator node is created, store the neeeded info */ 2317 agg_node->valid = true; 2318 agg_node->agg_id = agg_id; 2319 } 2320 2321 /* move VSI to corresponding aggregator node */ 2322 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2323 (u8)vsi->tc_cfg.ena_tc); 2324 if (status) { 2325 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2326 vsi->idx, agg_id); 2327 return; 2328 } 2329 2330 /* keep active children count for aggregator node */ 2331 agg_node->num_vsis++; 2332 2333 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2334 * to aggregator node 2335 */ 2336 vsi->agg_node = agg_node; 2337 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2338 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2339 vsi->agg_node->num_vsis); 2340 } 2341 2342 /** 2343 * ice_vsi_setup - Set up a VSI by a given type 2344 * @pf: board private structure 2345 * @pi: pointer to the port_info instance 2346 * @vsi_type: VSI type 2347 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2348 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2349 * fill-in ICE_INVAL_VFID as input. 2350 * 2351 * This allocates the sw VSI structure and its queue resources. 2352 * 2353 * Returns pointer to the successfully allocated and configured VSI sw struct on 2354 * success, NULL on failure. 2355 */ 2356 struct ice_vsi * 2357 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2358 enum ice_vsi_type vsi_type, u16 vf_id) 2359 { 2360 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2361 struct device *dev = ice_pf_to_dev(pf); 2362 enum ice_status status; 2363 struct ice_vsi *vsi; 2364 int ret, i; 2365 2366 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2367 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2368 else 2369 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2370 2371 if (!vsi) { 2372 dev_err(dev, "could not allocate VSI\n"); 2373 return NULL; 2374 } 2375 2376 vsi->port_info = pi; 2377 vsi->vsw = pf->first_sw; 2378 if (vsi->type == ICE_VSI_PF) 2379 vsi->ethtype = ETH_P_PAUSE; 2380 2381 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2382 vsi->vf_id = vf_id; 2383 2384 ice_alloc_fd_res(vsi); 2385 2386 if (ice_vsi_get_qs(vsi)) { 2387 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2388 vsi->idx); 2389 goto unroll_vsi_alloc; 2390 } 2391 2392 /* set RSS capabilities */ 2393 ice_vsi_set_rss_params(vsi); 2394 2395 /* set TC configuration */ 2396 ice_vsi_set_tc_cfg(vsi); 2397 2398 /* create the VSI */ 2399 ret = ice_vsi_init(vsi, true); 2400 if (ret) 2401 goto unroll_get_qs; 2402 2403 switch (vsi->type) { 2404 case ICE_VSI_CTRL: 2405 case ICE_VSI_PF: 2406 ret = ice_vsi_alloc_q_vectors(vsi); 2407 if (ret) 2408 goto unroll_vsi_init; 2409 2410 ret = ice_vsi_setup_vector_base(vsi); 2411 if (ret) 2412 goto unroll_alloc_q_vector; 2413 2414 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2415 if (ret) 2416 goto unroll_vector_base; 2417 2418 ret = ice_vsi_alloc_rings(vsi); 2419 if (ret) 2420 goto unroll_vector_base; 2421 2422 /* Always add VLAN ID 0 switch rule by default. This is needed 2423 * in order to allow all untagged and 0 tagged priority traffic 2424 * if Rx VLAN pruning is enabled. Also there are cases where we 2425 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2426 * so this handles those cases (i.e. adding the PF to a bridge 2427 * without the 8021q module loaded). 2428 */ 2429 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2430 if (ret) 2431 goto unroll_clear_rings; 2432 2433 ice_vsi_map_rings_to_vectors(vsi); 2434 2435 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2436 if (vsi->type != ICE_VSI_CTRL) 2437 /* Do not exit if configuring RSS had an issue, at 2438 * least receive traffic on first queue. Hence no 2439 * need to capture return value 2440 */ 2441 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2442 ice_vsi_cfg_rss_lut_key(vsi); 2443 ice_vsi_set_rss_flow_fld(vsi); 2444 } 2445 ice_init_arfs(vsi); 2446 break; 2447 case ICE_VSI_VF: 2448 /* VF driver will take care of creating netdev for this type and 2449 * map queues to vectors through Virtchnl, PF driver only 2450 * creates a VSI and corresponding structures for bookkeeping 2451 * purpose 2452 */ 2453 ret = ice_vsi_alloc_q_vectors(vsi); 2454 if (ret) 2455 goto unroll_vsi_init; 2456 2457 ret = ice_vsi_alloc_rings(vsi); 2458 if (ret) 2459 goto unroll_alloc_q_vector; 2460 2461 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2462 if (ret) 2463 goto unroll_vector_base; 2464 2465 /* Do not exit if configuring RSS had an issue, at least 2466 * receive traffic on first queue. Hence no need to capture 2467 * return value 2468 */ 2469 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2470 ice_vsi_cfg_rss_lut_key(vsi); 2471 ice_vsi_set_vf_rss_flow_fld(vsi); 2472 } 2473 break; 2474 case ICE_VSI_LB: 2475 ret = ice_vsi_alloc_rings(vsi); 2476 if (ret) 2477 goto unroll_vsi_init; 2478 break; 2479 default: 2480 /* clean up the resources and exit */ 2481 goto unroll_vsi_init; 2482 } 2483 2484 /* configure VSI nodes based on number of queues and TC's */ 2485 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2486 max_txqs[i] = vsi->alloc_txq; 2487 2488 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2489 max_txqs); 2490 if (status) { 2491 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2492 vsi->vsi_num, ice_stat_str(status)); 2493 goto unroll_clear_rings; 2494 } 2495 2496 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2497 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2498 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2499 * The rule is added once for PF VSI in order to create appropriate 2500 * recipe, since VSI/VSI list is ignored with drop action... 2501 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2502 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2503 * settings in the HW. 2504 */ 2505 if (!ice_is_safe_mode(pf)) 2506 if (vsi->type == ICE_VSI_PF) { 2507 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2508 ICE_DROP_PACKET); 2509 ice_cfg_sw_lldp(vsi, true, true); 2510 } 2511 2512 if (!vsi->agg_node) 2513 ice_set_agg_vsi(vsi); 2514 return vsi; 2515 2516 unroll_clear_rings: 2517 ice_vsi_clear_rings(vsi); 2518 unroll_vector_base: 2519 /* reclaim SW interrupts back to the common pool */ 2520 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2521 pf->num_avail_sw_msix += vsi->num_q_vectors; 2522 unroll_alloc_q_vector: 2523 ice_vsi_free_q_vectors(vsi); 2524 unroll_vsi_init: 2525 ice_vsi_delete(vsi); 2526 unroll_get_qs: 2527 ice_vsi_put_qs(vsi); 2528 unroll_vsi_alloc: 2529 if (vsi_type == ICE_VSI_VF) 2530 ice_enable_lag(pf->lag); 2531 ice_vsi_clear(vsi); 2532 2533 return NULL; 2534 } 2535 2536 /** 2537 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2538 * @vsi: the VSI being cleaned up 2539 */ 2540 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2541 { 2542 struct ice_pf *pf = vsi->back; 2543 struct ice_hw *hw = &pf->hw; 2544 u32 txq = 0; 2545 u32 rxq = 0; 2546 int i, q; 2547 2548 for (i = 0; i < vsi->num_q_vectors; i++) { 2549 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2550 2551 ice_write_intrl(q_vector, 0); 2552 for (q = 0; q < q_vector->num_ring_tx; q++) { 2553 ice_write_itr(&q_vector->tx, 0); 2554 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2555 if (ice_is_xdp_ena_vsi(vsi)) { 2556 u32 xdp_txq = txq + vsi->num_xdp_txq; 2557 2558 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2559 } 2560 txq++; 2561 } 2562 2563 for (q = 0; q < q_vector->num_ring_rx; q++) { 2564 ice_write_itr(&q_vector->rx, 0); 2565 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2566 rxq++; 2567 } 2568 } 2569 2570 ice_flush(hw); 2571 } 2572 2573 /** 2574 * ice_vsi_free_irq - Free the IRQ association with the OS 2575 * @vsi: the VSI being configured 2576 */ 2577 void ice_vsi_free_irq(struct ice_vsi *vsi) 2578 { 2579 struct ice_pf *pf = vsi->back; 2580 int base = vsi->base_vector; 2581 int i; 2582 2583 if (!vsi->q_vectors || !vsi->irqs_ready) 2584 return; 2585 2586 ice_vsi_release_msix(vsi); 2587 if (vsi->type == ICE_VSI_VF) 2588 return; 2589 2590 vsi->irqs_ready = false; 2591 ice_for_each_q_vector(vsi, i) { 2592 u16 vector = i + base; 2593 int irq_num; 2594 2595 irq_num = pf->msix_entries[vector].vector; 2596 2597 /* free only the irqs that were actually requested */ 2598 if (!vsi->q_vectors[i] || 2599 !(vsi->q_vectors[i]->num_ring_tx || 2600 vsi->q_vectors[i]->num_ring_rx)) 2601 continue; 2602 2603 /* clear the affinity notifier in the IRQ descriptor */ 2604 irq_set_affinity_notifier(irq_num, NULL); 2605 2606 /* clear the affinity_mask in the IRQ descriptor */ 2607 irq_set_affinity_hint(irq_num, NULL); 2608 synchronize_irq(irq_num); 2609 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2610 } 2611 } 2612 2613 /** 2614 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2615 * @vsi: the VSI having resources freed 2616 */ 2617 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2618 { 2619 int i; 2620 2621 if (!vsi->tx_rings) 2622 return; 2623 2624 ice_for_each_txq(vsi, i) 2625 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2626 ice_free_tx_ring(vsi->tx_rings[i]); 2627 } 2628 2629 /** 2630 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2631 * @vsi: the VSI having resources freed 2632 */ 2633 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2634 { 2635 int i; 2636 2637 if (!vsi->rx_rings) 2638 return; 2639 2640 ice_for_each_rxq(vsi, i) 2641 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2642 ice_free_rx_ring(vsi->rx_rings[i]); 2643 } 2644 2645 /** 2646 * ice_vsi_close - Shut down a VSI 2647 * @vsi: the VSI being shut down 2648 */ 2649 void ice_vsi_close(struct ice_vsi *vsi) 2650 { 2651 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2652 ice_down(vsi); 2653 2654 ice_vsi_free_irq(vsi); 2655 ice_vsi_free_tx_rings(vsi); 2656 ice_vsi_free_rx_rings(vsi); 2657 } 2658 2659 /** 2660 * ice_ena_vsi - resume a VSI 2661 * @vsi: the VSI being resume 2662 * @locked: is the rtnl_lock already held 2663 */ 2664 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2665 { 2666 int err = 0; 2667 2668 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2669 return 0; 2670 2671 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2672 2673 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2674 if (netif_running(vsi->netdev)) { 2675 if (!locked) 2676 rtnl_lock(); 2677 2678 err = ice_open_internal(vsi->netdev); 2679 2680 if (!locked) 2681 rtnl_unlock(); 2682 } 2683 } else if (vsi->type == ICE_VSI_CTRL) { 2684 err = ice_vsi_open_ctrl(vsi); 2685 } 2686 2687 return err; 2688 } 2689 2690 /** 2691 * ice_dis_vsi - pause a VSI 2692 * @vsi: the VSI being paused 2693 * @locked: is the rtnl_lock already held 2694 */ 2695 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2696 { 2697 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2698 return; 2699 2700 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2701 2702 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2703 if (netif_running(vsi->netdev)) { 2704 if (!locked) 2705 rtnl_lock(); 2706 2707 ice_vsi_close(vsi); 2708 2709 if (!locked) 2710 rtnl_unlock(); 2711 } else { 2712 ice_vsi_close(vsi); 2713 } 2714 } else if (vsi->type == ICE_VSI_CTRL) { 2715 ice_vsi_close(vsi); 2716 } 2717 } 2718 2719 /** 2720 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2721 * @vsi: the VSI being un-configured 2722 */ 2723 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2724 { 2725 int base = vsi->base_vector; 2726 struct ice_pf *pf = vsi->back; 2727 struct ice_hw *hw = &pf->hw; 2728 u32 val; 2729 int i; 2730 2731 /* disable interrupt causation from each queue */ 2732 if (vsi->tx_rings) { 2733 ice_for_each_txq(vsi, i) { 2734 if (vsi->tx_rings[i]) { 2735 u16 reg; 2736 2737 reg = vsi->tx_rings[i]->reg_idx; 2738 val = rd32(hw, QINT_TQCTL(reg)); 2739 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2740 wr32(hw, QINT_TQCTL(reg), val); 2741 } 2742 } 2743 } 2744 2745 if (vsi->rx_rings) { 2746 ice_for_each_rxq(vsi, i) { 2747 if (vsi->rx_rings[i]) { 2748 u16 reg; 2749 2750 reg = vsi->rx_rings[i]->reg_idx; 2751 val = rd32(hw, QINT_RQCTL(reg)); 2752 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2753 wr32(hw, QINT_RQCTL(reg), val); 2754 } 2755 } 2756 } 2757 2758 /* disable each interrupt */ 2759 ice_for_each_q_vector(vsi, i) { 2760 if (!vsi->q_vectors[i]) 2761 continue; 2762 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2763 } 2764 2765 ice_flush(hw); 2766 2767 /* don't call synchronize_irq() for VF's from the host */ 2768 if (vsi->type == ICE_VSI_VF) 2769 return; 2770 2771 ice_for_each_q_vector(vsi, i) 2772 synchronize_irq(pf->msix_entries[i + base].vector); 2773 } 2774 2775 /** 2776 * ice_napi_del - Remove NAPI handler for the VSI 2777 * @vsi: VSI for which NAPI handler is to be removed 2778 */ 2779 void ice_napi_del(struct ice_vsi *vsi) 2780 { 2781 int v_idx; 2782 2783 if (!vsi->netdev) 2784 return; 2785 2786 ice_for_each_q_vector(vsi, v_idx) 2787 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2788 } 2789 2790 /** 2791 * ice_vsi_release - Delete a VSI and free its resources 2792 * @vsi: the VSI being removed 2793 * 2794 * Returns 0 on success or < 0 on error 2795 */ 2796 int ice_vsi_release(struct ice_vsi *vsi) 2797 { 2798 struct ice_pf *pf; 2799 2800 if (!vsi->back) 2801 return -ENODEV; 2802 pf = vsi->back; 2803 2804 /* do not unregister while driver is in the reset recovery pending 2805 * state. Since reset/rebuild happens through PF service task workqueue, 2806 * it's not a good idea to unregister netdev that is associated to the 2807 * PF that is running the work queue items currently. This is done to 2808 * avoid check_flush_dependency() warning on this wq 2809 */ 2810 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2811 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2812 unregister_netdev(vsi->netdev); 2813 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2814 } 2815 2816 ice_devlink_destroy_port(vsi); 2817 2818 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2819 ice_rss_clean(vsi); 2820 2821 /* Disable VSI and free resources */ 2822 if (vsi->type != ICE_VSI_LB) 2823 ice_vsi_dis_irq(vsi); 2824 ice_vsi_close(vsi); 2825 2826 /* SR-IOV determines needed MSIX resources all at once instead of per 2827 * VSI since when VFs are spawned we know how many VFs there are and how 2828 * many interrupts each VF needs. SR-IOV MSIX resources are also 2829 * cleared in the same manner. 2830 */ 2831 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2832 struct ice_vf *vf; 2833 int i; 2834 2835 ice_for_each_vf(pf, i) { 2836 vf = &pf->vf[i]; 2837 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2838 break; 2839 } 2840 if (i == pf->num_alloc_vfs) { 2841 /* No other VFs left that have control VSI, reclaim SW 2842 * interrupts back to the common pool 2843 */ 2844 ice_free_res(pf->irq_tracker, vsi->base_vector, 2845 ICE_RES_VF_CTRL_VEC_ID); 2846 pf->num_avail_sw_msix += vsi->num_q_vectors; 2847 } 2848 } else if (vsi->type != ICE_VSI_VF) { 2849 /* reclaim SW interrupts back to the common pool */ 2850 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2851 pf->num_avail_sw_msix += vsi->num_q_vectors; 2852 } 2853 2854 if (!ice_is_safe_mode(pf)) { 2855 if (vsi->type == ICE_VSI_PF) { 2856 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2857 ICE_DROP_PACKET); 2858 ice_cfg_sw_lldp(vsi, true, false); 2859 /* The Rx rule will only exist to remove if the LLDP FW 2860 * engine is currently stopped 2861 */ 2862 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2863 ice_cfg_sw_lldp(vsi, false, false); 2864 } 2865 } 2866 2867 ice_fltr_remove_all(vsi); 2868 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2869 ice_vsi_delete(vsi); 2870 ice_vsi_free_q_vectors(vsi); 2871 2872 if (vsi->netdev) { 2873 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2874 unregister_netdev(vsi->netdev); 2875 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2876 } 2877 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2878 free_netdev(vsi->netdev); 2879 vsi->netdev = NULL; 2880 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2881 } 2882 } 2883 2884 if (vsi->type == ICE_VSI_VF && 2885 vsi->agg_node && vsi->agg_node->valid) 2886 vsi->agg_node->num_vsis--; 2887 ice_vsi_clear_rings(vsi); 2888 2889 ice_vsi_put_qs(vsi); 2890 2891 /* retain SW VSI data structure since it is needed to unregister and 2892 * free VSI netdev when PF is not in reset recovery pending state,\ 2893 * for ex: during rmmod. 2894 */ 2895 if (!ice_is_reset_in_progress(pf->state)) 2896 ice_vsi_clear(vsi); 2897 2898 return 0; 2899 } 2900 2901 /** 2902 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2903 * @vsi: VSI connected with q_vectors 2904 * @coalesce: array of struct with stored coalesce 2905 * 2906 * Returns array size. 2907 */ 2908 static int 2909 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2910 struct ice_coalesce_stored *coalesce) 2911 { 2912 int i; 2913 2914 ice_for_each_q_vector(vsi, i) { 2915 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2916 2917 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2918 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2919 coalesce[i].intrl = q_vector->intrl; 2920 2921 if (i < vsi->num_txq) 2922 coalesce[i].tx_valid = true; 2923 if (i < vsi->num_rxq) 2924 coalesce[i].rx_valid = true; 2925 } 2926 2927 return vsi->num_q_vectors; 2928 } 2929 2930 /** 2931 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2932 * @vsi: VSI connected with q_vectors 2933 * @coalesce: pointer to array of struct with stored coalesce 2934 * @size: size of coalesce array 2935 * 2936 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2937 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2938 * to default value. 2939 */ 2940 static void 2941 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2942 struct ice_coalesce_stored *coalesce, int size) 2943 { 2944 struct ice_ring_container *rc; 2945 int i; 2946 2947 if ((size && !coalesce) || !vsi) 2948 return; 2949 2950 /* There are a couple of cases that have to be handled here: 2951 * 1. The case where the number of queue vectors stays the same, but 2952 * the number of Tx or Rx rings changes (the first for loop) 2953 * 2. The case where the number of queue vectors increased (the 2954 * second for loop) 2955 */ 2956 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2957 /* There are 2 cases to handle here and they are the same for 2958 * both Tx and Rx: 2959 * if the entry was valid previously (coalesce[i].[tr]x_valid 2960 * and the loop variable is less than the number of rings 2961 * allocated, then write the previous values 2962 * 2963 * if the entry was not valid previously, but the number of 2964 * rings is less than are allocated (this means the number of 2965 * rings increased from previously), then write out the 2966 * values in the first element 2967 * 2968 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2969 * as there is no harm because the dynamic algorithm 2970 * will just overwrite. 2971 */ 2972 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2973 rc = &vsi->q_vectors[i]->rx; 2974 rc->itr_setting = coalesce[i].itr_rx; 2975 ice_write_itr(rc, rc->itr_setting); 2976 } else if (i < vsi->alloc_rxq) { 2977 rc = &vsi->q_vectors[i]->rx; 2978 rc->itr_setting = coalesce[0].itr_rx; 2979 ice_write_itr(rc, rc->itr_setting); 2980 } 2981 2982 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2983 rc = &vsi->q_vectors[i]->tx; 2984 rc->itr_setting = coalesce[i].itr_tx; 2985 ice_write_itr(rc, rc->itr_setting); 2986 } else if (i < vsi->alloc_txq) { 2987 rc = &vsi->q_vectors[i]->tx; 2988 rc->itr_setting = coalesce[0].itr_tx; 2989 ice_write_itr(rc, rc->itr_setting); 2990 } 2991 2992 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2993 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 2994 } 2995 2996 /* the number of queue vectors increased so write whatever is in 2997 * the first element 2998 */ 2999 for (; i < vsi->num_q_vectors; i++) { 3000 /* transmit */ 3001 rc = &vsi->q_vectors[i]->tx; 3002 rc->itr_setting = coalesce[0].itr_tx; 3003 ice_write_itr(rc, rc->itr_setting); 3004 3005 /* receive */ 3006 rc = &vsi->q_vectors[i]->rx; 3007 rc->itr_setting = coalesce[0].itr_rx; 3008 ice_write_itr(rc, rc->itr_setting); 3009 3010 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3011 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3012 } 3013 } 3014 3015 /** 3016 * ice_vsi_rebuild - Rebuild VSI after reset 3017 * @vsi: VSI to be rebuild 3018 * @init_vsi: is this an initialization or a reconfigure of the VSI 3019 * 3020 * Returns 0 on success and negative value on failure 3021 */ 3022 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3023 { 3024 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3025 struct ice_coalesce_stored *coalesce; 3026 int prev_num_q_vectors = 0; 3027 struct ice_vf *vf = NULL; 3028 enum ice_vsi_type vtype; 3029 enum ice_status status; 3030 struct ice_pf *pf; 3031 int ret, i; 3032 3033 if (!vsi) 3034 return -EINVAL; 3035 3036 pf = vsi->back; 3037 vtype = vsi->type; 3038 if (vtype == ICE_VSI_VF) 3039 vf = &pf->vf[vsi->vf_id]; 3040 3041 coalesce = kcalloc(vsi->num_q_vectors, 3042 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3043 if (!coalesce) 3044 return -ENOMEM; 3045 3046 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3047 3048 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3049 ice_vsi_free_q_vectors(vsi); 3050 3051 /* SR-IOV determines needed MSIX resources all at once instead of per 3052 * VSI since when VFs are spawned we know how many VFs there are and how 3053 * many interrupts each VF needs. SR-IOV MSIX resources are also 3054 * cleared in the same manner. 3055 */ 3056 if (vtype != ICE_VSI_VF) { 3057 /* reclaim SW interrupts back to the common pool */ 3058 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3059 pf->num_avail_sw_msix += vsi->num_q_vectors; 3060 vsi->base_vector = 0; 3061 } 3062 3063 if (ice_is_xdp_ena_vsi(vsi)) 3064 /* return value check can be skipped here, it always returns 3065 * 0 if reset is in progress 3066 */ 3067 ice_destroy_xdp_rings(vsi); 3068 ice_vsi_put_qs(vsi); 3069 ice_vsi_clear_rings(vsi); 3070 ice_vsi_free_arrays(vsi); 3071 if (vtype == ICE_VSI_VF) 3072 ice_vsi_set_num_qs(vsi, vf->vf_id); 3073 else 3074 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3075 3076 ret = ice_vsi_alloc_arrays(vsi); 3077 if (ret < 0) 3078 goto err_vsi; 3079 3080 ice_vsi_get_qs(vsi); 3081 3082 ice_alloc_fd_res(vsi); 3083 ice_vsi_set_tc_cfg(vsi); 3084 3085 /* Initialize VSI struct elements and create VSI in FW */ 3086 ret = ice_vsi_init(vsi, init_vsi); 3087 if (ret < 0) 3088 goto err_vsi; 3089 3090 switch (vtype) { 3091 case ICE_VSI_CTRL: 3092 case ICE_VSI_PF: 3093 ret = ice_vsi_alloc_q_vectors(vsi); 3094 if (ret) 3095 goto err_rings; 3096 3097 ret = ice_vsi_setup_vector_base(vsi); 3098 if (ret) 3099 goto err_vectors; 3100 3101 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3102 if (ret) 3103 goto err_vectors; 3104 3105 ret = ice_vsi_alloc_rings(vsi); 3106 if (ret) 3107 goto err_vectors; 3108 3109 ice_vsi_map_rings_to_vectors(vsi); 3110 if (ice_is_xdp_ena_vsi(vsi)) { 3111 vsi->num_xdp_txq = vsi->alloc_rxq; 3112 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3113 if (ret) 3114 goto err_vectors; 3115 } 3116 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3117 if (vtype != ICE_VSI_CTRL) 3118 /* Do not exit if configuring RSS had an issue, at 3119 * least receive traffic on first queue. Hence no 3120 * need to capture return value 3121 */ 3122 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3123 ice_vsi_cfg_rss_lut_key(vsi); 3124 break; 3125 case ICE_VSI_VF: 3126 ret = ice_vsi_alloc_q_vectors(vsi); 3127 if (ret) 3128 goto err_rings; 3129 3130 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3131 if (ret) 3132 goto err_vectors; 3133 3134 ret = ice_vsi_alloc_rings(vsi); 3135 if (ret) 3136 goto err_vectors; 3137 3138 break; 3139 default: 3140 break; 3141 } 3142 3143 /* configure VSI nodes based on number of queues and TC's */ 3144 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3145 max_txqs[i] = vsi->alloc_txq; 3146 3147 if (ice_is_xdp_ena_vsi(vsi)) 3148 max_txqs[i] += vsi->num_xdp_txq; 3149 } 3150 3151 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3152 max_txqs); 3153 if (status) { 3154 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3155 vsi->vsi_num, ice_stat_str(status)); 3156 if (init_vsi) { 3157 ret = -EIO; 3158 goto err_vectors; 3159 } else { 3160 return ice_schedule_reset(pf, ICE_RESET_PFR); 3161 } 3162 } 3163 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3164 kfree(coalesce); 3165 3166 return 0; 3167 3168 err_vectors: 3169 ice_vsi_free_q_vectors(vsi); 3170 err_rings: 3171 if (vsi->netdev) { 3172 vsi->current_netdev_flags = 0; 3173 unregister_netdev(vsi->netdev); 3174 free_netdev(vsi->netdev); 3175 vsi->netdev = NULL; 3176 } 3177 err_vsi: 3178 ice_vsi_clear(vsi); 3179 set_bit(ICE_RESET_FAILED, pf->state); 3180 kfree(coalesce); 3181 return ret; 3182 } 3183 3184 /** 3185 * ice_is_reset_in_progress - check for a reset in progress 3186 * @state: PF state field 3187 */ 3188 bool ice_is_reset_in_progress(unsigned long *state) 3189 { 3190 return test_bit(ICE_RESET_OICR_RECV, state) || 3191 test_bit(ICE_PFR_REQ, state) || 3192 test_bit(ICE_CORER_REQ, state) || 3193 test_bit(ICE_GLOBR_REQ, state); 3194 } 3195 3196 #ifdef CONFIG_DCB 3197 /** 3198 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3199 * @vsi: VSI being configured 3200 * @ctx: the context buffer returned from AQ VSI update command 3201 */ 3202 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3203 { 3204 vsi->info.mapping_flags = ctx->info.mapping_flags; 3205 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3206 sizeof(vsi->info.q_mapping)); 3207 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3208 sizeof(vsi->info.tc_mapping)); 3209 } 3210 3211 /** 3212 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3213 * @vsi: VSI to be configured 3214 * @ena_tc: TC bitmap 3215 * 3216 * VSI queues expected to be quiesced before calling this function 3217 */ 3218 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3219 { 3220 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3221 struct ice_pf *pf = vsi->back; 3222 struct ice_vsi_ctx *ctx; 3223 enum ice_status status; 3224 struct device *dev; 3225 int i, ret = 0; 3226 u8 num_tc = 0; 3227 3228 dev = ice_pf_to_dev(pf); 3229 3230 ice_for_each_traffic_class(i) { 3231 /* build bitmap of enabled TCs */ 3232 if (ena_tc & BIT(i)) 3233 num_tc++; 3234 /* populate max_txqs per TC */ 3235 max_txqs[i] = vsi->alloc_txq; 3236 } 3237 3238 vsi->tc_cfg.ena_tc = ena_tc; 3239 vsi->tc_cfg.numtc = num_tc; 3240 3241 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3242 if (!ctx) 3243 return -ENOMEM; 3244 3245 ctx->vf_num = 0; 3246 ctx->info = vsi->info; 3247 3248 ice_vsi_setup_q_map(vsi, ctx); 3249 3250 /* must to indicate which section of VSI context are being modified */ 3251 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3252 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3253 if (status) { 3254 dev_info(dev, "Failed VSI Update\n"); 3255 ret = -EIO; 3256 goto out; 3257 } 3258 3259 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3260 max_txqs); 3261 3262 if (status) { 3263 dev_err(dev, "VSI %d failed TC config, error %s\n", 3264 vsi->vsi_num, ice_stat_str(status)); 3265 ret = -EIO; 3266 goto out; 3267 } 3268 ice_vsi_update_q_map(vsi, ctx); 3269 vsi->info.valid_sections = 0; 3270 3271 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3272 out: 3273 kfree(ctx); 3274 return ret; 3275 } 3276 #endif /* CONFIG_DCB */ 3277 3278 /** 3279 * ice_update_ring_stats - Update ring statistics 3280 * @ring: ring to update 3281 * @pkts: number of processed packets 3282 * @bytes: number of processed bytes 3283 * 3284 * This function assumes that caller has acquired a u64_stats_sync lock. 3285 */ 3286 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3287 { 3288 ring->stats.bytes += bytes; 3289 ring->stats.pkts += pkts; 3290 } 3291 3292 /** 3293 * ice_update_tx_ring_stats - Update Tx ring specific counters 3294 * @tx_ring: ring to update 3295 * @pkts: number of processed packets 3296 * @bytes: number of processed bytes 3297 */ 3298 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3299 { 3300 u64_stats_update_begin(&tx_ring->syncp); 3301 ice_update_ring_stats(tx_ring, pkts, bytes); 3302 u64_stats_update_end(&tx_ring->syncp); 3303 } 3304 3305 /** 3306 * ice_update_rx_ring_stats - Update Rx ring specific counters 3307 * @rx_ring: ring to update 3308 * @pkts: number of processed packets 3309 * @bytes: number of processed bytes 3310 */ 3311 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3312 { 3313 u64_stats_update_begin(&rx_ring->syncp); 3314 ice_update_ring_stats(rx_ring, pkts, bytes); 3315 u64_stats_update_end(&rx_ring->syncp); 3316 } 3317 3318 /** 3319 * ice_status_to_errno - convert from enum ice_status to Linux errno 3320 * @err: ice_status value to convert 3321 */ 3322 int ice_status_to_errno(enum ice_status err) 3323 { 3324 switch (err) { 3325 case ICE_SUCCESS: 3326 return 0; 3327 case ICE_ERR_DOES_NOT_EXIST: 3328 return -ENOENT; 3329 case ICE_ERR_OUT_OF_RANGE: 3330 return -ENOTTY; 3331 case ICE_ERR_PARAM: 3332 return -EINVAL; 3333 case ICE_ERR_NO_MEMORY: 3334 return -ENOMEM; 3335 case ICE_ERR_MAX_LIMIT: 3336 return -EAGAIN; 3337 default: 3338 return -EINVAL; 3339 } 3340 } 3341 3342 /** 3343 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3344 * @sw: switch to check if its default forwarding VSI is free 3345 * 3346 * Return true if the default forwarding VSI is already being used, else returns 3347 * false signalling that it's available to use. 3348 */ 3349 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3350 { 3351 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3352 } 3353 3354 /** 3355 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3356 * @sw: switch for the default forwarding VSI to compare against 3357 * @vsi: VSI to compare against default forwarding VSI 3358 * 3359 * If this VSI passed in is the default forwarding VSI then return true, else 3360 * return false 3361 */ 3362 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3363 { 3364 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3365 } 3366 3367 /** 3368 * ice_set_dflt_vsi - set the default forwarding VSI 3369 * @sw: switch used to assign the default forwarding VSI 3370 * @vsi: VSI getting set as the default forwarding VSI on the switch 3371 * 3372 * If the VSI passed in is already the default VSI and it's enabled just return 3373 * success. 3374 * 3375 * If there is already a default VSI on the switch and it's enabled then return 3376 * -EEXIST since there can only be one default VSI per switch. 3377 * 3378 * Otherwise try to set the VSI passed in as the switch's default VSI and 3379 * return the result. 3380 */ 3381 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3382 { 3383 enum ice_status status; 3384 struct device *dev; 3385 3386 if (!sw || !vsi) 3387 return -EINVAL; 3388 3389 dev = ice_pf_to_dev(vsi->back); 3390 3391 /* the VSI passed in is already the default VSI */ 3392 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3393 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3394 vsi->vsi_num); 3395 return 0; 3396 } 3397 3398 /* another VSI is already the default VSI for this switch */ 3399 if (ice_is_dflt_vsi_in_use(sw)) { 3400 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3401 sw->dflt_vsi->vsi_num); 3402 return -EEXIST; 3403 } 3404 3405 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3406 if (status) { 3407 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3408 vsi->vsi_num, ice_stat_str(status)); 3409 return -EIO; 3410 } 3411 3412 sw->dflt_vsi = vsi; 3413 sw->dflt_vsi_ena = true; 3414 3415 return 0; 3416 } 3417 3418 /** 3419 * ice_clear_dflt_vsi - clear the default forwarding VSI 3420 * @sw: switch used to clear the default VSI 3421 * 3422 * If the switch has no default VSI or it's not enabled then return error. 3423 * 3424 * Otherwise try to clear the default VSI and return the result. 3425 */ 3426 int ice_clear_dflt_vsi(struct ice_sw *sw) 3427 { 3428 struct ice_vsi *dflt_vsi; 3429 enum ice_status status; 3430 struct device *dev; 3431 3432 if (!sw) 3433 return -EINVAL; 3434 3435 dev = ice_pf_to_dev(sw->pf); 3436 3437 dflt_vsi = sw->dflt_vsi; 3438 3439 /* there is no default VSI configured */ 3440 if (!ice_is_dflt_vsi_in_use(sw)) 3441 return -ENODEV; 3442 3443 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3444 ICE_FLTR_RX); 3445 if (status) { 3446 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3447 dflt_vsi->vsi_num, ice_stat_str(status)); 3448 return -EIO; 3449 } 3450 3451 sw->dflt_vsi = NULL; 3452 sw->dflt_vsi_ena = false; 3453 3454 return 0; 3455 } 3456 3457 /** 3458 * ice_set_link - turn on/off physical link 3459 * @vsi: VSI to modify physical link on 3460 * @ena: turn on/off physical link 3461 */ 3462 int ice_set_link(struct ice_vsi *vsi, bool ena) 3463 { 3464 struct device *dev = ice_pf_to_dev(vsi->back); 3465 struct ice_port_info *pi = vsi->port_info; 3466 struct ice_hw *hw = pi->hw; 3467 enum ice_status status; 3468 3469 if (vsi->type != ICE_VSI_PF) 3470 return -EINVAL; 3471 3472 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3473 3474 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3475 * this is not a fatal error, so print a warning message and return 3476 * a success code. Return an error if FW returns an error code other 3477 * than ICE_AQ_RC_EMODE 3478 */ 3479 if (status == ICE_ERR_AQ_ERROR) { 3480 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3481 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3482 (ena ? "ON" : "OFF"), ice_stat_str(status), 3483 ice_aq_str(hw->adminq.sq_last_status)); 3484 } else if (status) { 3485 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3486 (ena ? "ON" : "OFF"), ice_stat_str(status), 3487 ice_aq_str(hw->adminq.sq_last_status)); 3488 return -EIO; 3489 } 3490 3491 return 0; 3492 } 3493