1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 vsi->num_rxq = offset; 985 else 986 vsi->num_rxq = num_rxq_per_tc; 987 988 if (vsi->num_rxq > vsi->alloc_rxq) { 989 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 990 vsi->num_rxq, vsi->alloc_rxq); 991 return -EINVAL; 992 } 993 994 vsi->num_txq = tx_count; 995 if (vsi->num_txq > vsi->alloc_txq) { 996 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 997 vsi->num_txq, vsi->alloc_txq); 998 return -EINVAL; 999 } 1000 1001 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1002 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1003 /* since there is a chance that num_rxq could have been changed 1004 * in the above for loop, make num_txq equal to num_rxq. 1005 */ 1006 vsi->num_txq = vsi->num_rxq; 1007 } 1008 1009 /* Rx queue mapping */ 1010 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1011 /* q_mapping buffer holds the info for the first queue allocated for 1012 * this VSI in the PF space and also the number of queues associated 1013 * with this VSI. 1014 */ 1015 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1016 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1023 * @ctxt: the VSI context being set 1024 * @vsi: the VSI being configured 1025 */ 1026 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1027 { 1028 u8 dflt_q_group, dflt_q_prio; 1029 u16 dflt_q, report_q, val; 1030 1031 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1032 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1033 return; 1034 1035 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1036 ctxt->info.valid_sections |= cpu_to_le16(val); 1037 dflt_q = 0; 1038 dflt_q_group = 0; 1039 report_q = 0; 1040 dflt_q_prio = 0; 1041 1042 /* enable flow director filtering/programming */ 1043 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1044 ctxt->info.fd_options = cpu_to_le16(val); 1045 /* max of allocated flow director filters */ 1046 ctxt->info.max_fd_fltr_dedicated = 1047 cpu_to_le16(vsi->num_gfltr); 1048 /* max of shared flow director filters any VSI may program */ 1049 ctxt->info.max_fd_fltr_shared = 1050 cpu_to_le16(vsi->num_bfltr); 1051 /* default queue index within the VSI of the default FD */ 1052 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1053 ICE_AQ_VSI_FD_DEF_Q_M); 1054 /* target queue or queue group to the FD filter */ 1055 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1056 ICE_AQ_VSI_FD_DEF_GRP_M); 1057 ctxt->info.fd_def_q = cpu_to_le16(val); 1058 /* queue index on which FD filter completion is reported */ 1059 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1060 ICE_AQ_VSI_FD_REPORT_Q_M); 1061 /* priority of the default qindex action */ 1062 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1063 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1064 ctxt->info.fd_report_opt = cpu_to_le16(val); 1065 } 1066 1067 /** 1068 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1069 * @ctxt: the VSI context being set 1070 * @vsi: the VSI being configured 1071 */ 1072 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1073 { 1074 u8 lut_type, hash_type; 1075 struct device *dev; 1076 struct ice_pf *pf; 1077 1078 pf = vsi->back; 1079 dev = ice_pf_to_dev(pf); 1080 1081 switch (vsi->type) { 1082 case ICE_VSI_CHNL: 1083 case ICE_VSI_PF: 1084 /* PF VSI will inherit RSS instance of PF */ 1085 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1086 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1087 break; 1088 case ICE_VSI_VF: 1089 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1090 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1091 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1092 break; 1093 default: 1094 dev_dbg(dev, "Unsupported VSI type %s\n", 1095 ice_vsi_type_str(vsi->type)); 1096 return; 1097 } 1098 1099 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1100 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1101 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1102 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1103 } 1104 1105 static void 1106 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1107 { 1108 struct ice_pf *pf = vsi->back; 1109 u16 qcount, qmap; 1110 u8 offset = 0; 1111 int pow; 1112 1113 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1114 1115 pow = order_base_2(qcount); 1116 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1117 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1118 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1119 ICE_AQ_VSI_TC_Q_NUM_M); 1120 1121 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1122 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1123 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1124 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1125 } 1126 1127 /** 1128 * ice_vsi_init - Create and initialize a VSI 1129 * @vsi: the VSI being configured 1130 * @init_vsi: is this call creating a VSI 1131 * 1132 * This initializes a VSI context depending on the VSI type to be added and 1133 * passes it down to the add_vsi aq command to create a new VSI. 1134 */ 1135 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1136 { 1137 struct ice_pf *pf = vsi->back; 1138 struct ice_hw *hw = &pf->hw; 1139 struct ice_vsi_ctx *ctxt; 1140 struct device *dev; 1141 int ret = 0; 1142 1143 dev = ice_pf_to_dev(pf); 1144 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1145 if (!ctxt) 1146 return -ENOMEM; 1147 1148 switch (vsi->type) { 1149 case ICE_VSI_CTRL: 1150 case ICE_VSI_LB: 1151 case ICE_VSI_PF: 1152 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1153 break; 1154 case ICE_VSI_SWITCHDEV_CTRL: 1155 case ICE_VSI_CHNL: 1156 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1157 break; 1158 case ICE_VSI_VF: 1159 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1160 /* VF number here is the absolute VF number (0-255) */ 1161 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1162 break; 1163 default: 1164 ret = -ENODEV; 1165 goto out; 1166 } 1167 1168 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1169 * prune enabled 1170 */ 1171 if (vsi->type == ICE_VSI_CHNL) { 1172 struct ice_vsi *main_vsi; 1173 1174 main_vsi = ice_get_main_vsi(pf); 1175 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1176 ctxt->info.sw_flags2 |= 1177 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1178 else 1179 ctxt->info.sw_flags2 &= 1180 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1181 } 1182 1183 ice_set_dflt_vsi_ctx(hw, ctxt); 1184 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1185 ice_set_fd_vsi_ctx(ctxt, vsi); 1186 /* if the switch is in VEB mode, allow VSI loopback */ 1187 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1188 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1189 1190 /* Set LUT type and HASH type if RSS is enabled */ 1191 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1192 vsi->type != ICE_VSI_CTRL) { 1193 ice_set_rss_vsi_ctx(ctxt, vsi); 1194 /* if updating VSI context, make sure to set valid_section: 1195 * to indicate which section of VSI context being updated 1196 */ 1197 if (!init_vsi) 1198 ctxt->info.valid_sections |= 1199 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1200 } 1201 1202 ctxt->info.sw_id = vsi->port_info->sw_id; 1203 if (vsi->type == ICE_VSI_CHNL) { 1204 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1205 } else { 1206 ret = ice_vsi_setup_q_map(vsi, ctxt); 1207 if (ret) 1208 goto out; 1209 1210 if (!init_vsi) /* means VSI being updated */ 1211 /* must to indicate which section of VSI context are 1212 * being modified 1213 */ 1214 ctxt->info.valid_sections |= 1215 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1216 } 1217 1218 /* Allow control frames out of main VSI */ 1219 if (vsi->type == ICE_VSI_PF) { 1220 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1221 ctxt->info.valid_sections |= 1222 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1223 } 1224 1225 if (init_vsi) { 1226 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1227 if (ret) { 1228 dev_err(dev, "Add VSI failed, err %d\n", ret); 1229 ret = -EIO; 1230 goto out; 1231 } 1232 } else { 1233 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1234 if (ret) { 1235 dev_err(dev, "Update VSI failed, err %d\n", ret); 1236 ret = -EIO; 1237 goto out; 1238 } 1239 } 1240 1241 /* keep context for update VSI operations */ 1242 vsi->info = ctxt->info; 1243 1244 /* record VSI number returned */ 1245 vsi->vsi_num = ctxt->vsi_num; 1246 1247 out: 1248 kfree(ctxt); 1249 return ret; 1250 } 1251 1252 /** 1253 * ice_free_res - free a block of resources 1254 * @res: pointer to the resource 1255 * @index: starting index previously returned by ice_get_res 1256 * @id: identifier to track owner 1257 * 1258 * Returns number of resources freed 1259 */ 1260 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1261 { 1262 int count = 0; 1263 int i; 1264 1265 if (!res || index >= res->end) 1266 return -EINVAL; 1267 1268 id |= ICE_RES_VALID_BIT; 1269 for (i = index; i < res->end && res->list[i] == id; i++) { 1270 res->list[i] = 0; 1271 count++; 1272 } 1273 1274 return count; 1275 } 1276 1277 /** 1278 * ice_search_res - Search the tracker for a block of resources 1279 * @res: pointer to the resource 1280 * @needed: size of the block needed 1281 * @id: identifier to track owner 1282 * 1283 * Returns the base item index of the block, or -ENOMEM for error 1284 */ 1285 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1286 { 1287 u16 start = 0, end = 0; 1288 1289 if (needed > res->end) 1290 return -ENOMEM; 1291 1292 id |= ICE_RES_VALID_BIT; 1293 1294 do { 1295 /* skip already allocated entries */ 1296 if (res->list[end++] & ICE_RES_VALID_BIT) { 1297 start = end; 1298 if ((start + needed) > res->end) 1299 break; 1300 } 1301 1302 if (end == (start + needed)) { 1303 int i = start; 1304 1305 /* there was enough, so assign it to the requestor */ 1306 while (i != end) 1307 res->list[i++] = id; 1308 1309 return start; 1310 } 1311 } while (end < res->end); 1312 1313 return -ENOMEM; 1314 } 1315 1316 /** 1317 * ice_get_free_res_count - Get free count from a resource tracker 1318 * @res: Resource tracker instance 1319 */ 1320 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1321 { 1322 u16 i, count = 0; 1323 1324 for (i = 0; i < res->end; i++) 1325 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1326 count++; 1327 1328 return count; 1329 } 1330 1331 /** 1332 * ice_get_res - get a block of resources 1333 * @pf: board private structure 1334 * @res: pointer to the resource 1335 * @needed: size of the block needed 1336 * @id: identifier to track owner 1337 * 1338 * Returns the base item index of the block, or negative for error 1339 */ 1340 int 1341 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1342 { 1343 if (!res || !pf) 1344 return -EINVAL; 1345 1346 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1347 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1348 needed, res->num_entries, id); 1349 return -EINVAL; 1350 } 1351 1352 return ice_search_res(res, needed, id); 1353 } 1354 1355 /** 1356 * ice_get_vf_ctrl_res - Get VF control VSI resource 1357 * @pf: pointer to the PF structure 1358 * @vsi: the VSI to allocate a resource for 1359 * 1360 * Look up whether another VF has already allocated the control VSI resource. 1361 * If so, re-use this resource so that we share it among all VFs. 1362 * 1363 * Otherwise, allocate the resource and return it. 1364 */ 1365 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1366 { 1367 struct ice_vf *vf; 1368 unsigned int bkt; 1369 int base; 1370 1371 rcu_read_lock(); 1372 ice_for_each_vf_rcu(pf, bkt, vf) { 1373 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1374 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1375 rcu_read_unlock(); 1376 return base; 1377 } 1378 } 1379 rcu_read_unlock(); 1380 1381 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1382 ICE_RES_VF_CTRL_VEC_ID); 1383 } 1384 1385 /** 1386 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1387 * @vsi: ptr to the VSI 1388 * 1389 * This should only be called after ice_vsi_alloc() which allocates the 1390 * corresponding SW VSI structure and initializes num_queue_pairs for the 1391 * newly allocated VSI. 1392 * 1393 * Returns 0 on success or negative on failure 1394 */ 1395 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1396 { 1397 struct ice_pf *pf = vsi->back; 1398 struct device *dev; 1399 u16 num_q_vectors; 1400 int base; 1401 1402 dev = ice_pf_to_dev(pf); 1403 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1404 if (vsi->type == ICE_VSI_VF) 1405 return 0; 1406 if (vsi->type == ICE_VSI_CHNL) 1407 return 0; 1408 1409 if (vsi->base_vector) { 1410 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1411 vsi->vsi_num, vsi->base_vector); 1412 return -EEXIST; 1413 } 1414 1415 num_q_vectors = vsi->num_q_vectors; 1416 /* reserve slots from OS requested IRQs */ 1417 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1418 base = ice_get_vf_ctrl_res(pf, vsi); 1419 } else { 1420 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1421 vsi->idx); 1422 } 1423 1424 if (base < 0) { 1425 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1426 ice_get_free_res_count(pf->irq_tracker), 1427 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1428 return -ENOENT; 1429 } 1430 vsi->base_vector = (u16)base; 1431 pf->num_avail_sw_msix -= num_q_vectors; 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1438 * @vsi: the VSI having rings deallocated 1439 */ 1440 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1441 { 1442 int i; 1443 1444 /* Avoid stale references by clearing map from vector to ring */ 1445 if (vsi->q_vectors) { 1446 ice_for_each_q_vector(vsi, i) { 1447 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1448 1449 if (q_vector) { 1450 q_vector->tx.tx_ring = NULL; 1451 q_vector->rx.rx_ring = NULL; 1452 } 1453 } 1454 } 1455 1456 if (vsi->tx_rings) { 1457 ice_for_each_alloc_txq(vsi, i) { 1458 if (vsi->tx_rings[i]) { 1459 kfree_rcu(vsi->tx_rings[i], rcu); 1460 WRITE_ONCE(vsi->tx_rings[i], NULL); 1461 } 1462 } 1463 } 1464 if (vsi->rx_rings) { 1465 ice_for_each_alloc_rxq(vsi, i) { 1466 if (vsi->rx_rings[i]) { 1467 kfree_rcu(vsi->rx_rings[i], rcu); 1468 WRITE_ONCE(vsi->rx_rings[i], NULL); 1469 } 1470 } 1471 } 1472 } 1473 1474 /** 1475 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1476 * @vsi: VSI which is having rings allocated 1477 */ 1478 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1479 { 1480 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1481 struct ice_pf *pf = vsi->back; 1482 struct device *dev; 1483 u16 i; 1484 1485 dev = ice_pf_to_dev(pf); 1486 /* Allocate Tx rings */ 1487 ice_for_each_alloc_txq(vsi, i) { 1488 struct ice_tx_ring *ring; 1489 1490 /* allocate with kzalloc(), free with kfree_rcu() */ 1491 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1492 1493 if (!ring) 1494 goto err_out; 1495 1496 ring->q_index = i; 1497 ring->reg_idx = vsi->txq_map[i]; 1498 ring->vsi = vsi; 1499 ring->tx_tstamps = &pf->ptp.port.tx; 1500 ring->dev = dev; 1501 ring->count = vsi->num_tx_desc; 1502 ring->txq_teid = ICE_INVAL_TEID; 1503 if (dvm_ena) 1504 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1505 else 1506 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1507 WRITE_ONCE(vsi->tx_rings[i], ring); 1508 } 1509 1510 /* Allocate Rx rings */ 1511 ice_for_each_alloc_rxq(vsi, i) { 1512 struct ice_rx_ring *ring; 1513 1514 /* allocate with kzalloc(), free with kfree_rcu() */ 1515 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1516 if (!ring) 1517 goto err_out; 1518 1519 ring->q_index = i; 1520 ring->reg_idx = vsi->rxq_map[i]; 1521 ring->vsi = vsi; 1522 ring->netdev = vsi->netdev; 1523 ring->dev = dev; 1524 ring->count = vsi->num_rx_desc; 1525 WRITE_ONCE(vsi->rx_rings[i], ring); 1526 } 1527 1528 return 0; 1529 1530 err_out: 1531 ice_vsi_clear_rings(vsi); 1532 return -ENOMEM; 1533 } 1534 1535 /** 1536 * ice_vsi_manage_rss_lut - disable/enable RSS 1537 * @vsi: the VSI being changed 1538 * @ena: boolean value indicating if this is an enable or disable request 1539 * 1540 * In the event of disable request for RSS, this function will zero out RSS 1541 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1542 * LUT. 1543 */ 1544 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1545 { 1546 u8 *lut; 1547 1548 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1549 if (!lut) 1550 return; 1551 1552 if (ena) { 1553 if (vsi->rss_lut_user) 1554 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1555 else 1556 ice_fill_rss_lut(lut, vsi->rss_table_size, 1557 vsi->rss_size); 1558 } 1559 1560 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1561 kfree(lut); 1562 } 1563 1564 /** 1565 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1566 * @vsi: VSI to be configured 1567 */ 1568 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1569 { 1570 struct ice_pf *pf = vsi->back; 1571 struct device *dev; 1572 u8 *lut, *key; 1573 int err; 1574 1575 dev = ice_pf_to_dev(pf); 1576 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1577 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1578 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1579 } else { 1580 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1581 1582 /* If orig_rss_size is valid and it is less than determined 1583 * main VSI's rss_size, update main VSI's rss_size to be 1584 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1585 * RSS table gets programmed to be correct (whatever it was 1586 * to begin with (prior to setup-tc for ADQ config) 1587 */ 1588 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1589 vsi->orig_rss_size <= vsi->num_rxq) { 1590 vsi->rss_size = vsi->orig_rss_size; 1591 /* now orig_rss_size is used, reset it to zero */ 1592 vsi->orig_rss_size = 0; 1593 } 1594 } 1595 1596 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1597 if (!lut) 1598 return -ENOMEM; 1599 1600 if (vsi->rss_lut_user) 1601 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1602 else 1603 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1604 1605 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1606 if (err) { 1607 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1608 goto ice_vsi_cfg_rss_exit; 1609 } 1610 1611 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1612 if (!key) { 1613 err = -ENOMEM; 1614 goto ice_vsi_cfg_rss_exit; 1615 } 1616 1617 if (vsi->rss_hkey_user) 1618 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1619 else 1620 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1621 1622 err = ice_set_rss_key(vsi, key); 1623 if (err) 1624 dev_err(dev, "set_rss_key failed, error %d\n", err); 1625 1626 kfree(key); 1627 ice_vsi_cfg_rss_exit: 1628 kfree(lut); 1629 return err; 1630 } 1631 1632 /** 1633 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1634 * @vsi: VSI to be configured 1635 * 1636 * This function will only be called during the VF VSI setup. Upon successful 1637 * completion of package download, this function will configure default RSS 1638 * input sets for VF VSI. 1639 */ 1640 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1641 { 1642 struct ice_pf *pf = vsi->back; 1643 struct device *dev; 1644 int status; 1645 1646 dev = ice_pf_to_dev(pf); 1647 if (ice_is_safe_mode(pf)) { 1648 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1649 vsi->vsi_num); 1650 return; 1651 } 1652 1653 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1654 if (status) 1655 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1656 vsi->vsi_num, status); 1657 } 1658 1659 /** 1660 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1661 * @vsi: VSI to be configured 1662 * 1663 * This function will only be called after successful download package call 1664 * during initialization of PF. Since the downloaded package will erase the 1665 * RSS section, this function will configure RSS input sets for different 1666 * flow types. The last profile added has the highest priority, therefore 2 1667 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1668 * (i.e. IPv4 src/dst TCP src/dst port). 1669 */ 1670 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1671 { 1672 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1673 struct ice_pf *pf = vsi->back; 1674 struct ice_hw *hw = &pf->hw; 1675 struct device *dev; 1676 int status; 1677 1678 dev = ice_pf_to_dev(pf); 1679 if (ice_is_safe_mode(pf)) { 1680 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1681 vsi_num); 1682 return; 1683 } 1684 /* configure RSS for IPv4 with input set IP src/dst */ 1685 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1686 ICE_FLOW_SEG_HDR_IPV4); 1687 if (status) 1688 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1689 vsi_num, status); 1690 1691 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1692 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1693 ICE_FLOW_SEG_HDR_IPV6); 1694 if (status) 1695 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1696 vsi_num, status); 1697 1698 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1699 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1700 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1701 if (status) 1702 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1703 vsi_num, status); 1704 1705 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1706 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1707 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1708 if (status) 1709 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1710 vsi_num, status); 1711 1712 /* configure RSS for sctp4 with input set IP src/dst */ 1713 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1714 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1715 if (status) 1716 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1717 vsi_num, status); 1718 1719 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1720 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1721 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1722 if (status) 1723 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1724 vsi_num, status); 1725 1726 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1727 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1728 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1729 if (status) 1730 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1731 vsi_num, status); 1732 1733 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1734 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1735 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1736 if (status) 1737 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1738 vsi_num, status); 1739 1740 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1741 ICE_FLOW_SEG_HDR_ESP); 1742 if (status) 1743 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1744 vsi_num, status); 1745 } 1746 1747 /** 1748 * ice_pf_state_is_nominal - checks the PF for nominal state 1749 * @pf: pointer to PF to check 1750 * 1751 * Check the PF's state for a collection of bits that would indicate 1752 * the PF is in a state that would inhibit normal operation for 1753 * driver functionality. 1754 * 1755 * Returns true if PF is in a nominal state, false otherwise 1756 */ 1757 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1758 { 1759 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1760 1761 if (!pf) 1762 return false; 1763 1764 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1765 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1766 return false; 1767 1768 return true; 1769 } 1770 1771 /** 1772 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1773 * @vsi: the VSI to be updated 1774 */ 1775 void ice_update_eth_stats(struct ice_vsi *vsi) 1776 { 1777 struct ice_eth_stats *prev_es, *cur_es; 1778 struct ice_hw *hw = &vsi->back->hw; 1779 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1780 1781 prev_es = &vsi->eth_stats_prev; 1782 cur_es = &vsi->eth_stats; 1783 1784 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1785 &prev_es->rx_bytes, &cur_es->rx_bytes); 1786 1787 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1788 &prev_es->rx_unicast, &cur_es->rx_unicast); 1789 1790 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1791 &prev_es->rx_multicast, &cur_es->rx_multicast); 1792 1793 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1794 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1795 1796 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1797 &prev_es->rx_discards, &cur_es->rx_discards); 1798 1799 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1800 &prev_es->tx_bytes, &cur_es->tx_bytes); 1801 1802 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1803 &prev_es->tx_unicast, &cur_es->tx_unicast); 1804 1805 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1806 &prev_es->tx_multicast, &cur_es->tx_multicast); 1807 1808 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1809 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1810 1811 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1812 &prev_es->tx_errors, &cur_es->tx_errors); 1813 1814 vsi->stat_offsets_loaded = true; 1815 } 1816 1817 /** 1818 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1819 * @vsi: VSI 1820 */ 1821 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1822 { 1823 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1824 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1825 vsi->rx_buf_len = ICE_RXBUF_2048; 1826 #if (PAGE_SIZE < 8192) 1827 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1828 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1829 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1830 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1831 #endif 1832 } else { 1833 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1834 #if (PAGE_SIZE < 8192) 1835 vsi->rx_buf_len = ICE_RXBUF_3072; 1836 #else 1837 vsi->rx_buf_len = ICE_RXBUF_2048; 1838 #endif 1839 } 1840 } 1841 1842 /** 1843 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1844 * @hw: HW pointer 1845 * @pf_q: index of the Rx queue in the PF's queue space 1846 * @rxdid: flexible descriptor RXDID 1847 * @prio: priority for the RXDID for this queue 1848 * @ena_ts: true to enable timestamp and false to disable timestamp 1849 */ 1850 void 1851 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1852 bool ena_ts) 1853 { 1854 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1855 1856 /* clear any previous values */ 1857 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1858 QRXFLXP_CNTXT_RXDID_PRIO_M | 1859 QRXFLXP_CNTXT_TS_M); 1860 1861 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1862 QRXFLXP_CNTXT_RXDID_IDX_M; 1863 1864 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1865 QRXFLXP_CNTXT_RXDID_PRIO_M; 1866 1867 if (ena_ts) 1868 /* Enable TimeSync on this queue */ 1869 regval |= QRXFLXP_CNTXT_TS_M; 1870 1871 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1872 } 1873 1874 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1875 { 1876 if (q_idx >= vsi->num_rxq) 1877 return -EINVAL; 1878 1879 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1880 } 1881 1882 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1883 { 1884 struct ice_aqc_add_tx_qgrp *qg_buf; 1885 int err; 1886 1887 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1888 return -EINVAL; 1889 1890 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1891 if (!qg_buf) 1892 return -ENOMEM; 1893 1894 qg_buf->num_txqs = 1; 1895 1896 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1897 kfree(qg_buf); 1898 return err; 1899 } 1900 1901 /** 1902 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1903 * @vsi: the VSI being configured 1904 * 1905 * Return 0 on success and a negative value on error 1906 * Configure the Rx VSI for operation. 1907 */ 1908 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1909 { 1910 u16 i; 1911 1912 if (vsi->type == ICE_VSI_VF) 1913 goto setup_rings; 1914 1915 ice_vsi_cfg_frame_size(vsi); 1916 setup_rings: 1917 /* set up individual rings */ 1918 ice_for_each_rxq(vsi, i) { 1919 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1920 1921 if (err) 1922 return err; 1923 } 1924 1925 return 0; 1926 } 1927 1928 /** 1929 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1930 * @vsi: the VSI being configured 1931 * @rings: Tx ring array to be configured 1932 * @count: number of Tx ring array elements 1933 * 1934 * Return 0 on success and a negative value on error 1935 * Configure the Tx VSI for operation. 1936 */ 1937 static int 1938 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1939 { 1940 struct ice_aqc_add_tx_qgrp *qg_buf; 1941 u16 q_idx = 0; 1942 int err = 0; 1943 1944 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1945 if (!qg_buf) 1946 return -ENOMEM; 1947 1948 qg_buf->num_txqs = 1; 1949 1950 for (q_idx = 0; q_idx < count; q_idx++) { 1951 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1952 if (err) 1953 goto err_cfg_txqs; 1954 } 1955 1956 err_cfg_txqs: 1957 kfree(qg_buf); 1958 return err; 1959 } 1960 1961 /** 1962 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1963 * @vsi: the VSI being configured 1964 * 1965 * Return 0 on success and a negative value on error 1966 * Configure the Tx VSI for operation. 1967 */ 1968 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1969 { 1970 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1971 } 1972 1973 /** 1974 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1975 * @vsi: the VSI being configured 1976 * 1977 * Return 0 on success and a negative value on error 1978 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1979 */ 1980 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1981 { 1982 int ret; 1983 int i; 1984 1985 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1986 if (ret) 1987 return ret; 1988 1989 ice_for_each_xdp_txq(vsi, i) 1990 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1991 1992 return ret; 1993 } 1994 1995 /** 1996 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1997 * @intrl: interrupt rate limit in usecs 1998 * @gran: interrupt rate limit granularity in usecs 1999 * 2000 * This function converts a decimal interrupt rate limit in usecs to the format 2001 * expected by firmware. 2002 */ 2003 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2004 { 2005 u32 val = intrl / gran; 2006 2007 if (val) 2008 return val | GLINT_RATE_INTRL_ENA_M; 2009 return 0; 2010 } 2011 2012 /** 2013 * ice_write_intrl - write throttle rate limit to interrupt specific register 2014 * @q_vector: pointer to interrupt specific structure 2015 * @intrl: throttle rate limit in microseconds to write 2016 */ 2017 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2018 { 2019 struct ice_hw *hw = &q_vector->vsi->back->hw; 2020 2021 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2022 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2023 } 2024 2025 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2026 { 2027 switch (rc->type) { 2028 case ICE_RX_CONTAINER: 2029 if (rc->rx_ring) 2030 return rc->rx_ring->q_vector; 2031 break; 2032 case ICE_TX_CONTAINER: 2033 if (rc->tx_ring) 2034 return rc->tx_ring->q_vector; 2035 break; 2036 default: 2037 break; 2038 } 2039 2040 return NULL; 2041 } 2042 2043 /** 2044 * __ice_write_itr - write throttle rate to register 2045 * @q_vector: pointer to interrupt data structure 2046 * @rc: pointer to ring container 2047 * @itr: throttle rate in microseconds to write 2048 */ 2049 static void __ice_write_itr(struct ice_q_vector *q_vector, 2050 struct ice_ring_container *rc, u16 itr) 2051 { 2052 struct ice_hw *hw = &q_vector->vsi->back->hw; 2053 2054 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2055 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2056 } 2057 2058 /** 2059 * ice_write_itr - write throttle rate to queue specific register 2060 * @rc: pointer to ring container 2061 * @itr: throttle rate in microseconds to write 2062 */ 2063 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2064 { 2065 struct ice_q_vector *q_vector; 2066 2067 q_vector = ice_pull_qvec_from_rc(rc); 2068 if (!q_vector) 2069 return; 2070 2071 __ice_write_itr(q_vector, rc, itr); 2072 } 2073 2074 /** 2075 * ice_set_q_vector_intrl - set up interrupt rate limiting 2076 * @q_vector: the vector to be configured 2077 * 2078 * Interrupt rate limiting is local to the vector, not per-queue so we must 2079 * detect if either ring container has dynamic moderation enabled to decide 2080 * what to set the interrupt rate limit to via INTRL settings. In the case that 2081 * dynamic moderation is disabled on both, write the value with the cached 2082 * setting to make sure INTRL register matches the user visible value. 2083 */ 2084 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2085 { 2086 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2087 /* in the case of dynamic enabled, cap each vector to no more 2088 * than (4 us) 250,000 ints/sec, which allows low latency 2089 * but still less than 500,000 interrupts per second, which 2090 * reduces CPU a bit in the case of the lowest latency 2091 * setting. The 4 here is a value in microseconds. 2092 */ 2093 ice_write_intrl(q_vector, 4); 2094 } else { 2095 ice_write_intrl(q_vector, q_vector->intrl); 2096 } 2097 } 2098 2099 /** 2100 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2101 * @vsi: the VSI being configured 2102 * 2103 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2104 * for the VF VSI. 2105 */ 2106 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2107 { 2108 struct ice_pf *pf = vsi->back; 2109 struct ice_hw *hw = &pf->hw; 2110 u16 txq = 0, rxq = 0; 2111 int i, q; 2112 2113 ice_for_each_q_vector(vsi, i) { 2114 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2115 u16 reg_idx = q_vector->reg_idx; 2116 2117 ice_cfg_itr(hw, q_vector); 2118 2119 /* Both Transmit Queue Interrupt Cause Control register 2120 * and Receive Queue Interrupt Cause control register 2121 * expects MSIX_INDX field to be the vector index 2122 * within the function space and not the absolute 2123 * vector index across PF or across device. 2124 * For SR-IOV VF VSIs queue vector index always starts 2125 * with 1 since first vector index(0) is used for OICR 2126 * in VF space. Since VMDq and other PF VSIs are within 2127 * the PF function space, use the vector index that is 2128 * tracked for this PF. 2129 */ 2130 for (q = 0; q < q_vector->num_ring_tx; q++) { 2131 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2132 q_vector->tx.itr_idx); 2133 txq++; 2134 } 2135 2136 for (q = 0; q < q_vector->num_ring_rx; q++) { 2137 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2138 q_vector->rx.itr_idx); 2139 rxq++; 2140 } 2141 } 2142 } 2143 2144 /** 2145 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2146 * @vsi: the VSI whose rings are to be enabled 2147 * 2148 * Returns 0 on success and a negative value on error 2149 */ 2150 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2151 { 2152 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2153 } 2154 2155 /** 2156 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2157 * @vsi: the VSI whose rings are to be disabled 2158 * 2159 * Returns 0 on success and a negative value on error 2160 */ 2161 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2162 { 2163 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2164 } 2165 2166 /** 2167 * ice_vsi_stop_tx_rings - Disable Tx rings 2168 * @vsi: the VSI being configured 2169 * @rst_src: reset source 2170 * @rel_vmvf_num: Relative ID of VF/VM 2171 * @rings: Tx ring array to be stopped 2172 * @count: number of Tx ring array elements 2173 */ 2174 static int 2175 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2176 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2177 { 2178 u16 q_idx; 2179 2180 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2181 return -EINVAL; 2182 2183 for (q_idx = 0; q_idx < count; q_idx++) { 2184 struct ice_txq_meta txq_meta = { }; 2185 int status; 2186 2187 if (!rings || !rings[q_idx]) 2188 return -EINVAL; 2189 2190 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2191 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2192 rings[q_idx], &txq_meta); 2193 2194 if (status) 2195 return status; 2196 } 2197 2198 return 0; 2199 } 2200 2201 /** 2202 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2203 * @vsi: the VSI being configured 2204 * @rst_src: reset source 2205 * @rel_vmvf_num: Relative ID of VF/VM 2206 */ 2207 int 2208 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2209 u16 rel_vmvf_num) 2210 { 2211 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2212 } 2213 2214 /** 2215 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2216 * @vsi: the VSI being configured 2217 */ 2218 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2219 { 2220 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2221 } 2222 2223 /** 2224 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2225 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2226 * 2227 * returns true if Rx VLAN pruning is enabled and false otherwise. 2228 */ 2229 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2230 { 2231 if (!vsi) 2232 return false; 2233 2234 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2235 } 2236 2237 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2238 { 2239 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2240 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2241 vsi->tc_cfg.numtc = 1; 2242 return; 2243 } 2244 2245 /* set VSI TC information based on DCB config */ 2246 ice_vsi_set_dcb_tc_cfg(vsi); 2247 } 2248 2249 /** 2250 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2251 * @vsi: VSI to set the q_vectors register index on 2252 */ 2253 static int 2254 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2255 { 2256 u16 i; 2257 2258 if (!vsi || !vsi->q_vectors) 2259 return -EINVAL; 2260 2261 ice_for_each_q_vector(vsi, i) { 2262 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2263 2264 if (!q_vector) { 2265 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2266 i, vsi->vsi_num); 2267 goto clear_reg_idx; 2268 } 2269 2270 if (vsi->type == ICE_VSI_VF) { 2271 struct ice_vf *vf = vsi->vf; 2272 2273 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2274 } else { 2275 q_vector->reg_idx = 2276 q_vector->v_idx + vsi->base_vector; 2277 } 2278 } 2279 2280 return 0; 2281 2282 clear_reg_idx: 2283 ice_for_each_q_vector(vsi, i) { 2284 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2285 2286 if (q_vector) 2287 q_vector->reg_idx = 0; 2288 } 2289 2290 return -EINVAL; 2291 } 2292 2293 /** 2294 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2295 * @vsi: the VSI being configured 2296 * @tx: bool to determine Tx or Rx rule 2297 * @create: bool to determine create or remove Rule 2298 */ 2299 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2300 { 2301 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2302 enum ice_sw_fwd_act_type act); 2303 struct ice_pf *pf = vsi->back; 2304 struct device *dev; 2305 int status; 2306 2307 dev = ice_pf_to_dev(pf); 2308 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2309 2310 if (tx) { 2311 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2312 ICE_DROP_PACKET); 2313 } else { 2314 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2315 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2316 create); 2317 } else { 2318 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2319 ICE_FWD_TO_VSI); 2320 } 2321 } 2322 2323 if (status) 2324 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2325 create ? "adding" : "removing", tx ? "TX" : "RX", 2326 vsi->vsi_num, status); 2327 } 2328 2329 /** 2330 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2331 * @vsi: pointer to the VSI 2332 * 2333 * This function will allocate new scheduler aggregator now if needed and will 2334 * move specified VSI into it. 2335 */ 2336 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2337 { 2338 struct device *dev = ice_pf_to_dev(vsi->back); 2339 struct ice_agg_node *agg_node_iter = NULL; 2340 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2341 struct ice_agg_node *agg_node = NULL; 2342 int node_offset, max_agg_nodes = 0; 2343 struct ice_port_info *port_info; 2344 struct ice_pf *pf = vsi->back; 2345 u32 agg_node_id_start = 0; 2346 int status; 2347 2348 /* create (as needed) scheduler aggregator node and move VSI into 2349 * corresponding aggregator node 2350 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2351 * - VF aggregator nodes will contain VF VSI 2352 */ 2353 port_info = pf->hw.port_info; 2354 if (!port_info) 2355 return; 2356 2357 switch (vsi->type) { 2358 case ICE_VSI_CTRL: 2359 case ICE_VSI_CHNL: 2360 case ICE_VSI_LB: 2361 case ICE_VSI_PF: 2362 case ICE_VSI_SWITCHDEV_CTRL: 2363 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2364 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2365 agg_node_iter = &pf->pf_agg_node[0]; 2366 break; 2367 case ICE_VSI_VF: 2368 /* user can create 'n' VFs on a given PF, but since max children 2369 * per aggregator node can be only 64. Following code handles 2370 * aggregator(s) for VF VSIs, either selects a agg_node which 2371 * was already created provided num_vsis < 64, otherwise 2372 * select next available node, which will be created 2373 */ 2374 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2375 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2376 agg_node_iter = &pf->vf_agg_node[0]; 2377 break; 2378 default: 2379 /* other VSI type, handle later if needed */ 2380 dev_dbg(dev, "unexpected VSI type %s\n", 2381 ice_vsi_type_str(vsi->type)); 2382 return; 2383 } 2384 2385 /* find the appropriate aggregator node */ 2386 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2387 /* see if we can find space in previously created 2388 * node if num_vsis < 64, otherwise skip 2389 */ 2390 if (agg_node_iter->num_vsis && 2391 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2392 agg_node_iter++; 2393 continue; 2394 } 2395 2396 if (agg_node_iter->valid && 2397 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2398 agg_id = agg_node_iter->agg_id; 2399 agg_node = agg_node_iter; 2400 break; 2401 } 2402 2403 /* find unclaimed agg_id */ 2404 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2405 agg_id = node_offset + agg_node_id_start; 2406 agg_node = agg_node_iter; 2407 break; 2408 } 2409 /* move to next agg_node */ 2410 agg_node_iter++; 2411 } 2412 2413 if (!agg_node) 2414 return; 2415 2416 /* if selected aggregator node was not created, create it */ 2417 if (!agg_node->valid) { 2418 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2419 (u8)vsi->tc_cfg.ena_tc); 2420 if (status) { 2421 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2422 agg_id); 2423 return; 2424 } 2425 /* aggregator node is created, store the needed info */ 2426 agg_node->valid = true; 2427 agg_node->agg_id = agg_id; 2428 } 2429 2430 /* move VSI to corresponding aggregator node */ 2431 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2432 (u8)vsi->tc_cfg.ena_tc); 2433 if (status) { 2434 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2435 vsi->idx, agg_id); 2436 return; 2437 } 2438 2439 /* keep active children count for aggregator node */ 2440 agg_node->num_vsis++; 2441 2442 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2443 * to aggregator node 2444 */ 2445 vsi->agg_node = agg_node; 2446 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2447 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2448 vsi->agg_node->num_vsis); 2449 } 2450 2451 /** 2452 * ice_vsi_setup - Set up a VSI by a given type 2453 * @pf: board private structure 2454 * @pi: pointer to the port_info instance 2455 * @vsi_type: VSI type 2456 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2457 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2458 * @ch: ptr to channel 2459 * 2460 * This allocates the sw VSI structure and its queue resources. 2461 * 2462 * Returns pointer to the successfully allocated and configured VSI sw struct on 2463 * success, NULL on failure. 2464 */ 2465 struct ice_vsi * 2466 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2467 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2468 struct ice_channel *ch) 2469 { 2470 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2471 struct device *dev = ice_pf_to_dev(pf); 2472 struct ice_vsi *vsi; 2473 int ret, i; 2474 2475 if (vsi_type == ICE_VSI_CHNL) 2476 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2477 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2478 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2479 else 2480 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2481 2482 if (!vsi) { 2483 dev_err(dev, "could not allocate VSI\n"); 2484 return NULL; 2485 } 2486 2487 vsi->port_info = pi; 2488 vsi->vsw = pf->first_sw; 2489 if (vsi->type == ICE_VSI_PF) 2490 vsi->ethtype = ETH_P_PAUSE; 2491 2492 ice_alloc_fd_res(vsi); 2493 2494 if (vsi_type != ICE_VSI_CHNL) { 2495 if (ice_vsi_get_qs(vsi)) { 2496 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2497 vsi->idx); 2498 goto unroll_vsi_alloc; 2499 } 2500 } 2501 2502 /* set RSS capabilities */ 2503 ice_vsi_set_rss_params(vsi); 2504 2505 /* set TC configuration */ 2506 ice_vsi_set_tc_cfg(vsi); 2507 2508 /* create the VSI */ 2509 ret = ice_vsi_init(vsi, true); 2510 if (ret) 2511 goto unroll_get_qs; 2512 2513 ice_vsi_init_vlan_ops(vsi); 2514 2515 switch (vsi->type) { 2516 case ICE_VSI_CTRL: 2517 case ICE_VSI_SWITCHDEV_CTRL: 2518 case ICE_VSI_PF: 2519 ret = ice_vsi_alloc_q_vectors(vsi); 2520 if (ret) 2521 goto unroll_vsi_init; 2522 2523 ret = ice_vsi_setup_vector_base(vsi); 2524 if (ret) 2525 goto unroll_alloc_q_vector; 2526 2527 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2528 if (ret) 2529 goto unroll_vector_base; 2530 2531 ret = ice_vsi_alloc_rings(vsi); 2532 if (ret) 2533 goto unroll_vector_base; 2534 2535 ice_vsi_map_rings_to_vectors(vsi); 2536 2537 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2538 if (vsi->type != ICE_VSI_CTRL) 2539 /* Do not exit if configuring RSS had an issue, at 2540 * least receive traffic on first queue. Hence no 2541 * need to capture return value 2542 */ 2543 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2544 ice_vsi_cfg_rss_lut_key(vsi); 2545 ice_vsi_set_rss_flow_fld(vsi); 2546 } 2547 ice_init_arfs(vsi); 2548 break; 2549 case ICE_VSI_CHNL: 2550 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2551 ice_vsi_cfg_rss_lut_key(vsi); 2552 ice_vsi_set_rss_flow_fld(vsi); 2553 } 2554 break; 2555 case ICE_VSI_VF: 2556 /* VF driver will take care of creating netdev for this type and 2557 * map queues to vectors through Virtchnl, PF driver only 2558 * creates a VSI and corresponding structures for bookkeeping 2559 * purpose 2560 */ 2561 ret = ice_vsi_alloc_q_vectors(vsi); 2562 if (ret) 2563 goto unroll_vsi_init; 2564 2565 ret = ice_vsi_alloc_rings(vsi); 2566 if (ret) 2567 goto unroll_alloc_q_vector; 2568 2569 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2570 if (ret) 2571 goto unroll_vector_base; 2572 2573 /* Do not exit if configuring RSS had an issue, at least 2574 * receive traffic on first queue. Hence no need to capture 2575 * return value 2576 */ 2577 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2578 ice_vsi_cfg_rss_lut_key(vsi); 2579 ice_vsi_set_vf_rss_flow_fld(vsi); 2580 } 2581 break; 2582 case ICE_VSI_LB: 2583 ret = ice_vsi_alloc_rings(vsi); 2584 if (ret) 2585 goto unroll_vsi_init; 2586 break; 2587 default: 2588 /* clean up the resources and exit */ 2589 goto unroll_vsi_init; 2590 } 2591 2592 /* configure VSI nodes based on number of queues and TC's */ 2593 ice_for_each_traffic_class(i) { 2594 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2595 continue; 2596 2597 if (vsi->type == ICE_VSI_CHNL) { 2598 if (!vsi->alloc_txq && vsi->num_txq) 2599 max_txqs[i] = vsi->num_txq; 2600 else 2601 max_txqs[i] = pf->num_lan_tx; 2602 } else { 2603 max_txqs[i] = vsi->alloc_txq; 2604 } 2605 } 2606 2607 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2608 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2609 max_txqs); 2610 if (ret) { 2611 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2612 vsi->vsi_num, ret); 2613 goto unroll_clear_rings; 2614 } 2615 2616 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2617 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2618 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2619 * The rule is added once for PF VSI in order to create appropriate 2620 * recipe, since VSI/VSI list is ignored with drop action... 2621 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2622 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2623 * settings in the HW. 2624 */ 2625 if (!ice_is_safe_mode(pf)) 2626 if (vsi->type == ICE_VSI_PF) { 2627 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2628 ICE_DROP_PACKET); 2629 ice_cfg_sw_lldp(vsi, true, true); 2630 } 2631 2632 if (!vsi->agg_node) 2633 ice_set_agg_vsi(vsi); 2634 return vsi; 2635 2636 unroll_clear_rings: 2637 ice_vsi_clear_rings(vsi); 2638 unroll_vector_base: 2639 /* reclaim SW interrupts back to the common pool */ 2640 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2641 pf->num_avail_sw_msix += vsi->num_q_vectors; 2642 unroll_alloc_q_vector: 2643 ice_vsi_free_q_vectors(vsi); 2644 unroll_vsi_init: 2645 ice_vsi_delete(vsi); 2646 unroll_get_qs: 2647 ice_vsi_put_qs(vsi); 2648 unroll_vsi_alloc: 2649 if (vsi_type == ICE_VSI_VF) 2650 ice_enable_lag(pf->lag); 2651 ice_vsi_clear(vsi); 2652 2653 return NULL; 2654 } 2655 2656 /** 2657 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2658 * @vsi: the VSI being cleaned up 2659 */ 2660 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2661 { 2662 struct ice_pf *pf = vsi->back; 2663 struct ice_hw *hw = &pf->hw; 2664 u32 txq = 0; 2665 u32 rxq = 0; 2666 int i, q; 2667 2668 ice_for_each_q_vector(vsi, i) { 2669 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2670 2671 ice_write_intrl(q_vector, 0); 2672 for (q = 0; q < q_vector->num_ring_tx; q++) { 2673 ice_write_itr(&q_vector->tx, 0); 2674 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2675 if (ice_is_xdp_ena_vsi(vsi)) { 2676 u32 xdp_txq = txq + vsi->num_xdp_txq; 2677 2678 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2679 } 2680 txq++; 2681 } 2682 2683 for (q = 0; q < q_vector->num_ring_rx; q++) { 2684 ice_write_itr(&q_vector->rx, 0); 2685 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2686 rxq++; 2687 } 2688 } 2689 2690 ice_flush(hw); 2691 } 2692 2693 /** 2694 * ice_vsi_free_irq - Free the IRQ association with the OS 2695 * @vsi: the VSI being configured 2696 */ 2697 void ice_vsi_free_irq(struct ice_vsi *vsi) 2698 { 2699 struct ice_pf *pf = vsi->back; 2700 int base = vsi->base_vector; 2701 int i; 2702 2703 if (!vsi->q_vectors || !vsi->irqs_ready) 2704 return; 2705 2706 ice_vsi_release_msix(vsi); 2707 if (vsi->type == ICE_VSI_VF) 2708 return; 2709 2710 vsi->irqs_ready = false; 2711 ice_free_cpu_rx_rmap(vsi); 2712 2713 ice_for_each_q_vector(vsi, i) { 2714 u16 vector = i + base; 2715 int irq_num; 2716 2717 irq_num = pf->msix_entries[vector].vector; 2718 2719 /* free only the irqs that were actually requested */ 2720 if (!vsi->q_vectors[i] || 2721 !(vsi->q_vectors[i]->num_ring_tx || 2722 vsi->q_vectors[i]->num_ring_rx)) 2723 continue; 2724 2725 /* clear the affinity notifier in the IRQ descriptor */ 2726 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2727 irq_set_affinity_notifier(irq_num, NULL); 2728 2729 /* clear the affinity_mask in the IRQ descriptor */ 2730 irq_set_affinity_hint(irq_num, NULL); 2731 synchronize_irq(irq_num); 2732 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2733 } 2734 } 2735 2736 /** 2737 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2738 * @vsi: the VSI having resources freed 2739 */ 2740 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2741 { 2742 int i; 2743 2744 if (!vsi->tx_rings) 2745 return; 2746 2747 ice_for_each_txq(vsi, i) 2748 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2749 ice_free_tx_ring(vsi->tx_rings[i]); 2750 } 2751 2752 /** 2753 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2754 * @vsi: the VSI having resources freed 2755 */ 2756 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2757 { 2758 int i; 2759 2760 if (!vsi->rx_rings) 2761 return; 2762 2763 ice_for_each_rxq(vsi, i) 2764 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2765 ice_free_rx_ring(vsi->rx_rings[i]); 2766 } 2767 2768 /** 2769 * ice_vsi_close - Shut down a VSI 2770 * @vsi: the VSI being shut down 2771 */ 2772 void ice_vsi_close(struct ice_vsi *vsi) 2773 { 2774 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2775 ice_down(vsi); 2776 2777 ice_vsi_free_irq(vsi); 2778 ice_vsi_free_tx_rings(vsi); 2779 ice_vsi_free_rx_rings(vsi); 2780 } 2781 2782 /** 2783 * ice_ena_vsi - resume a VSI 2784 * @vsi: the VSI being resume 2785 * @locked: is the rtnl_lock already held 2786 */ 2787 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2788 { 2789 int err = 0; 2790 2791 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2792 return 0; 2793 2794 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2795 2796 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2797 if (netif_running(vsi->netdev)) { 2798 if (!locked) 2799 rtnl_lock(); 2800 2801 err = ice_open_internal(vsi->netdev); 2802 2803 if (!locked) 2804 rtnl_unlock(); 2805 } 2806 } else if (vsi->type == ICE_VSI_CTRL) { 2807 err = ice_vsi_open_ctrl(vsi); 2808 } 2809 2810 return err; 2811 } 2812 2813 /** 2814 * ice_dis_vsi - pause a VSI 2815 * @vsi: the VSI being paused 2816 * @locked: is the rtnl_lock already held 2817 */ 2818 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2819 { 2820 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2821 return; 2822 2823 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2824 2825 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2826 if (netif_running(vsi->netdev)) { 2827 if (!locked) 2828 rtnl_lock(); 2829 2830 ice_vsi_close(vsi); 2831 2832 if (!locked) 2833 rtnl_unlock(); 2834 } else { 2835 ice_vsi_close(vsi); 2836 } 2837 } else if (vsi->type == ICE_VSI_CTRL || 2838 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2839 ice_vsi_close(vsi); 2840 } 2841 } 2842 2843 /** 2844 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2845 * @vsi: the VSI being un-configured 2846 */ 2847 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2848 { 2849 int base = vsi->base_vector; 2850 struct ice_pf *pf = vsi->back; 2851 struct ice_hw *hw = &pf->hw; 2852 u32 val; 2853 int i; 2854 2855 /* disable interrupt causation from each queue */ 2856 if (vsi->tx_rings) { 2857 ice_for_each_txq(vsi, i) { 2858 if (vsi->tx_rings[i]) { 2859 u16 reg; 2860 2861 reg = vsi->tx_rings[i]->reg_idx; 2862 val = rd32(hw, QINT_TQCTL(reg)); 2863 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2864 wr32(hw, QINT_TQCTL(reg), val); 2865 } 2866 } 2867 } 2868 2869 if (vsi->rx_rings) { 2870 ice_for_each_rxq(vsi, i) { 2871 if (vsi->rx_rings[i]) { 2872 u16 reg; 2873 2874 reg = vsi->rx_rings[i]->reg_idx; 2875 val = rd32(hw, QINT_RQCTL(reg)); 2876 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2877 wr32(hw, QINT_RQCTL(reg), val); 2878 } 2879 } 2880 } 2881 2882 /* disable each interrupt */ 2883 ice_for_each_q_vector(vsi, i) { 2884 if (!vsi->q_vectors[i]) 2885 continue; 2886 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2887 } 2888 2889 ice_flush(hw); 2890 2891 /* don't call synchronize_irq() for VF's from the host */ 2892 if (vsi->type == ICE_VSI_VF) 2893 return; 2894 2895 ice_for_each_q_vector(vsi, i) 2896 synchronize_irq(pf->msix_entries[i + base].vector); 2897 } 2898 2899 /** 2900 * ice_napi_del - Remove NAPI handler for the VSI 2901 * @vsi: VSI for which NAPI handler is to be removed 2902 */ 2903 void ice_napi_del(struct ice_vsi *vsi) 2904 { 2905 int v_idx; 2906 2907 if (!vsi->netdev) 2908 return; 2909 2910 ice_for_each_q_vector(vsi, v_idx) 2911 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2912 } 2913 2914 /** 2915 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2916 * @pf: pointer to PF structure 2917 * @vsi: the VSI to free resources for 2918 * 2919 * Check if the VF control VSI resource is still in use. If no VF is using it 2920 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2921 * once no other VF uses it. 2922 */ 2923 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2924 { 2925 struct ice_vf *vf; 2926 unsigned int bkt; 2927 2928 rcu_read_lock(); 2929 ice_for_each_vf_rcu(pf, bkt, vf) { 2930 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2931 rcu_read_unlock(); 2932 return; 2933 } 2934 } 2935 rcu_read_unlock(); 2936 2937 /* No other VFs left that have control VSI. It is now safe to reclaim 2938 * SW interrupts back to the common pool. 2939 */ 2940 ice_free_res(pf->irq_tracker, vsi->base_vector, 2941 ICE_RES_VF_CTRL_VEC_ID); 2942 pf->num_avail_sw_msix += vsi->num_q_vectors; 2943 } 2944 2945 /** 2946 * ice_vsi_release - Delete a VSI and free its resources 2947 * @vsi: the VSI being removed 2948 * 2949 * Returns 0 on success or < 0 on error 2950 */ 2951 int ice_vsi_release(struct ice_vsi *vsi) 2952 { 2953 struct ice_pf *pf; 2954 int err; 2955 2956 if (!vsi->back) 2957 return -ENODEV; 2958 pf = vsi->back; 2959 2960 /* do not unregister while driver is in the reset recovery pending 2961 * state. Since reset/rebuild happens through PF service task workqueue, 2962 * it's not a good idea to unregister netdev that is associated to the 2963 * PF that is running the work queue items currently. This is done to 2964 * avoid check_flush_dependency() warning on this wq 2965 */ 2966 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2967 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2968 unregister_netdev(vsi->netdev); 2969 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2970 } 2971 2972 if (vsi->type == ICE_VSI_PF) 2973 ice_devlink_destroy_pf_port(pf); 2974 2975 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2976 ice_rss_clean(vsi); 2977 2978 /* Disable VSI and free resources */ 2979 if (vsi->type != ICE_VSI_LB) 2980 ice_vsi_dis_irq(vsi); 2981 ice_vsi_close(vsi); 2982 2983 /* SR-IOV determines needed MSIX resources all at once instead of per 2984 * VSI since when VFs are spawned we know how many VFs there are and how 2985 * many interrupts each VF needs. SR-IOV MSIX resources are also 2986 * cleared in the same manner. 2987 */ 2988 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2989 ice_free_vf_ctrl_res(pf, vsi); 2990 } else if (vsi->type != ICE_VSI_VF) { 2991 /* reclaim SW interrupts back to the common pool */ 2992 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2993 pf->num_avail_sw_msix += vsi->num_q_vectors; 2994 } 2995 2996 if (!ice_is_safe_mode(pf)) { 2997 if (vsi->type == ICE_VSI_PF) { 2998 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2999 ICE_DROP_PACKET); 3000 ice_cfg_sw_lldp(vsi, true, false); 3001 /* The Rx rule will only exist to remove if the LLDP FW 3002 * engine is currently stopped 3003 */ 3004 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3005 ice_cfg_sw_lldp(vsi, false, false); 3006 } 3007 } 3008 3009 if (ice_is_vsi_dflt_vsi(vsi)) 3010 ice_clear_dflt_vsi(vsi); 3011 ice_fltr_remove_all(vsi); 3012 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3013 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3014 if (err) 3015 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3016 vsi->vsi_num, err); 3017 ice_vsi_delete(vsi); 3018 ice_vsi_free_q_vectors(vsi); 3019 3020 if (vsi->netdev) { 3021 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3022 unregister_netdev(vsi->netdev); 3023 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3024 } 3025 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3026 free_netdev(vsi->netdev); 3027 vsi->netdev = NULL; 3028 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3029 } 3030 } 3031 3032 if (vsi->type == ICE_VSI_VF && 3033 vsi->agg_node && vsi->agg_node->valid) 3034 vsi->agg_node->num_vsis--; 3035 ice_vsi_clear_rings(vsi); 3036 3037 ice_vsi_put_qs(vsi); 3038 3039 /* retain SW VSI data structure since it is needed to unregister and 3040 * free VSI netdev when PF is not in reset recovery pending state,\ 3041 * for ex: during rmmod. 3042 */ 3043 if (!ice_is_reset_in_progress(pf->state)) 3044 ice_vsi_clear(vsi); 3045 3046 return 0; 3047 } 3048 3049 /** 3050 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3051 * @vsi: VSI connected with q_vectors 3052 * @coalesce: array of struct with stored coalesce 3053 * 3054 * Returns array size. 3055 */ 3056 static int 3057 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3058 struct ice_coalesce_stored *coalesce) 3059 { 3060 int i; 3061 3062 ice_for_each_q_vector(vsi, i) { 3063 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3064 3065 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3066 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3067 coalesce[i].intrl = q_vector->intrl; 3068 3069 if (i < vsi->num_txq) 3070 coalesce[i].tx_valid = true; 3071 if (i < vsi->num_rxq) 3072 coalesce[i].rx_valid = true; 3073 } 3074 3075 return vsi->num_q_vectors; 3076 } 3077 3078 /** 3079 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3080 * @vsi: VSI connected with q_vectors 3081 * @coalesce: pointer to array of struct with stored coalesce 3082 * @size: size of coalesce array 3083 * 3084 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3085 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3086 * to default value. 3087 */ 3088 static void 3089 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3090 struct ice_coalesce_stored *coalesce, int size) 3091 { 3092 struct ice_ring_container *rc; 3093 int i; 3094 3095 if ((size && !coalesce) || !vsi) 3096 return; 3097 3098 /* There are a couple of cases that have to be handled here: 3099 * 1. The case where the number of queue vectors stays the same, but 3100 * the number of Tx or Rx rings changes (the first for loop) 3101 * 2. The case where the number of queue vectors increased (the 3102 * second for loop) 3103 */ 3104 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3105 /* There are 2 cases to handle here and they are the same for 3106 * both Tx and Rx: 3107 * if the entry was valid previously (coalesce[i].[tr]x_valid 3108 * and the loop variable is less than the number of rings 3109 * allocated, then write the previous values 3110 * 3111 * if the entry was not valid previously, but the number of 3112 * rings is less than are allocated (this means the number of 3113 * rings increased from previously), then write out the 3114 * values in the first element 3115 * 3116 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3117 * as there is no harm because the dynamic algorithm 3118 * will just overwrite. 3119 */ 3120 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3121 rc = &vsi->q_vectors[i]->rx; 3122 rc->itr_settings = coalesce[i].itr_rx; 3123 ice_write_itr(rc, rc->itr_setting); 3124 } else if (i < vsi->alloc_rxq) { 3125 rc = &vsi->q_vectors[i]->rx; 3126 rc->itr_settings = coalesce[0].itr_rx; 3127 ice_write_itr(rc, rc->itr_setting); 3128 } 3129 3130 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3131 rc = &vsi->q_vectors[i]->tx; 3132 rc->itr_settings = coalesce[i].itr_tx; 3133 ice_write_itr(rc, rc->itr_setting); 3134 } else if (i < vsi->alloc_txq) { 3135 rc = &vsi->q_vectors[i]->tx; 3136 rc->itr_settings = coalesce[0].itr_tx; 3137 ice_write_itr(rc, rc->itr_setting); 3138 } 3139 3140 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3141 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3142 } 3143 3144 /* the number of queue vectors increased so write whatever is in 3145 * the first element 3146 */ 3147 for (; i < vsi->num_q_vectors; i++) { 3148 /* transmit */ 3149 rc = &vsi->q_vectors[i]->tx; 3150 rc->itr_settings = coalesce[0].itr_tx; 3151 ice_write_itr(rc, rc->itr_setting); 3152 3153 /* receive */ 3154 rc = &vsi->q_vectors[i]->rx; 3155 rc->itr_settings = coalesce[0].itr_rx; 3156 ice_write_itr(rc, rc->itr_setting); 3157 3158 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3159 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3160 } 3161 } 3162 3163 /** 3164 * ice_vsi_rebuild - Rebuild VSI after reset 3165 * @vsi: VSI to be rebuild 3166 * @init_vsi: is this an initialization or a reconfigure of the VSI 3167 * 3168 * Returns 0 on success and negative value on failure 3169 */ 3170 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3171 { 3172 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3173 struct ice_coalesce_stored *coalesce; 3174 int prev_num_q_vectors = 0; 3175 enum ice_vsi_type vtype; 3176 struct ice_pf *pf; 3177 int ret, i; 3178 3179 if (!vsi) 3180 return -EINVAL; 3181 3182 pf = vsi->back; 3183 vtype = vsi->type; 3184 if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf) 3185 return -EINVAL; 3186 3187 ice_vsi_init_vlan_ops(vsi); 3188 3189 coalesce = kcalloc(vsi->num_q_vectors, 3190 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3191 if (!coalesce) 3192 return -ENOMEM; 3193 3194 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3195 3196 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3197 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3198 if (ret) 3199 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3200 vsi->vsi_num, ret); 3201 ice_vsi_free_q_vectors(vsi); 3202 3203 /* SR-IOV determines needed MSIX resources all at once instead of per 3204 * VSI since when VFs are spawned we know how many VFs there are and how 3205 * many interrupts each VF needs. SR-IOV MSIX resources are also 3206 * cleared in the same manner. 3207 */ 3208 if (vtype != ICE_VSI_VF) { 3209 /* reclaim SW interrupts back to the common pool */ 3210 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3211 pf->num_avail_sw_msix += vsi->num_q_vectors; 3212 vsi->base_vector = 0; 3213 } 3214 3215 if (ice_is_xdp_ena_vsi(vsi)) 3216 /* return value check can be skipped here, it always returns 3217 * 0 if reset is in progress 3218 */ 3219 ice_destroy_xdp_rings(vsi); 3220 ice_vsi_put_qs(vsi); 3221 ice_vsi_clear_rings(vsi); 3222 ice_vsi_free_arrays(vsi); 3223 if (vtype == ICE_VSI_VF) 3224 ice_vsi_set_num_qs(vsi, vsi->vf); 3225 else 3226 ice_vsi_set_num_qs(vsi, NULL); 3227 3228 ret = ice_vsi_alloc_arrays(vsi); 3229 if (ret < 0) 3230 goto err_vsi; 3231 3232 ice_vsi_get_qs(vsi); 3233 3234 ice_alloc_fd_res(vsi); 3235 ice_vsi_set_tc_cfg(vsi); 3236 3237 /* Initialize VSI struct elements and create VSI in FW */ 3238 ret = ice_vsi_init(vsi, init_vsi); 3239 if (ret < 0) 3240 goto err_vsi; 3241 3242 switch (vtype) { 3243 case ICE_VSI_CTRL: 3244 case ICE_VSI_SWITCHDEV_CTRL: 3245 case ICE_VSI_PF: 3246 ret = ice_vsi_alloc_q_vectors(vsi); 3247 if (ret) 3248 goto err_rings; 3249 3250 ret = ice_vsi_setup_vector_base(vsi); 3251 if (ret) 3252 goto err_vectors; 3253 3254 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3255 if (ret) 3256 goto err_vectors; 3257 3258 ret = ice_vsi_alloc_rings(vsi); 3259 if (ret) 3260 goto err_vectors; 3261 3262 ice_vsi_map_rings_to_vectors(vsi); 3263 if (ice_is_xdp_ena_vsi(vsi)) { 3264 ret = ice_vsi_determine_xdp_res(vsi); 3265 if (ret) 3266 goto err_vectors; 3267 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3268 if (ret) 3269 goto err_vectors; 3270 } 3271 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3272 if (vtype != ICE_VSI_CTRL) 3273 /* Do not exit if configuring RSS had an issue, at 3274 * least receive traffic on first queue. Hence no 3275 * need to capture return value 3276 */ 3277 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3278 ice_vsi_cfg_rss_lut_key(vsi); 3279 break; 3280 case ICE_VSI_VF: 3281 ret = ice_vsi_alloc_q_vectors(vsi); 3282 if (ret) 3283 goto err_rings; 3284 3285 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3286 if (ret) 3287 goto err_vectors; 3288 3289 ret = ice_vsi_alloc_rings(vsi); 3290 if (ret) 3291 goto err_vectors; 3292 3293 break; 3294 case ICE_VSI_CHNL: 3295 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3296 ice_vsi_cfg_rss_lut_key(vsi); 3297 ice_vsi_set_rss_flow_fld(vsi); 3298 } 3299 break; 3300 default: 3301 break; 3302 } 3303 3304 /* configure VSI nodes based on number of queues and TC's */ 3305 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3306 /* configure VSI nodes based on number of queues and TC's. 3307 * ADQ creates VSIs for each TC/Channel but doesn't 3308 * allocate queues instead it reconfigures the PF queues 3309 * as per the TC command. So max_txqs should point to the 3310 * PF Tx queues. 3311 */ 3312 if (vtype == ICE_VSI_CHNL) 3313 max_txqs[i] = pf->num_lan_tx; 3314 else 3315 max_txqs[i] = vsi->alloc_txq; 3316 3317 if (ice_is_xdp_ena_vsi(vsi)) 3318 max_txqs[i] += vsi->num_xdp_txq; 3319 } 3320 3321 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3322 /* If MQPRIO is set, means channel code path, hence for main 3323 * VSI's, use TC as 1 3324 */ 3325 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3326 else 3327 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3328 vsi->tc_cfg.ena_tc, max_txqs); 3329 3330 if (ret) { 3331 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3332 vsi->vsi_num, ret); 3333 if (init_vsi) { 3334 ret = -EIO; 3335 goto err_vectors; 3336 } else { 3337 return ice_schedule_reset(pf, ICE_RESET_PFR); 3338 } 3339 } 3340 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3341 kfree(coalesce); 3342 3343 return 0; 3344 3345 err_vectors: 3346 ice_vsi_free_q_vectors(vsi); 3347 err_rings: 3348 if (vsi->netdev) { 3349 vsi->current_netdev_flags = 0; 3350 unregister_netdev(vsi->netdev); 3351 free_netdev(vsi->netdev); 3352 vsi->netdev = NULL; 3353 } 3354 err_vsi: 3355 ice_vsi_clear(vsi); 3356 set_bit(ICE_RESET_FAILED, pf->state); 3357 kfree(coalesce); 3358 return ret; 3359 } 3360 3361 /** 3362 * ice_is_reset_in_progress - check for a reset in progress 3363 * @state: PF state field 3364 */ 3365 bool ice_is_reset_in_progress(unsigned long *state) 3366 { 3367 return test_bit(ICE_RESET_OICR_RECV, state) || 3368 test_bit(ICE_PFR_REQ, state) || 3369 test_bit(ICE_CORER_REQ, state) || 3370 test_bit(ICE_GLOBR_REQ, state); 3371 } 3372 3373 /** 3374 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3375 * @pf: pointer to the PF structure 3376 * @timeout: length of time to wait, in jiffies 3377 * 3378 * Wait (sleep) for a short time until the driver finishes cleaning up from 3379 * a device reset. The caller must be able to sleep. Use this to delay 3380 * operations that could fail while the driver is cleaning up after a device 3381 * reset. 3382 * 3383 * Returns 0 on success, -EBUSY if the reset is not finished within the 3384 * timeout, and -ERESTARTSYS if the thread was interrupted. 3385 */ 3386 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3387 { 3388 long ret; 3389 3390 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3391 !ice_is_reset_in_progress(pf->state), 3392 timeout); 3393 if (ret < 0) 3394 return ret; 3395 else if (!ret) 3396 return -EBUSY; 3397 else 3398 return 0; 3399 } 3400 3401 /** 3402 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3403 * @vsi: VSI being configured 3404 * @ctx: the context buffer returned from AQ VSI update command 3405 */ 3406 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3407 { 3408 vsi->info.mapping_flags = ctx->info.mapping_flags; 3409 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3410 sizeof(vsi->info.q_mapping)); 3411 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3412 sizeof(vsi->info.tc_mapping)); 3413 } 3414 3415 /** 3416 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3417 * @vsi: the VSI being configured 3418 * @ena_tc: TC map to be enabled 3419 */ 3420 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3421 { 3422 struct net_device *netdev = vsi->netdev; 3423 struct ice_pf *pf = vsi->back; 3424 int numtc = vsi->tc_cfg.numtc; 3425 struct ice_dcbx_cfg *dcbcfg; 3426 u8 netdev_tc; 3427 int i; 3428 3429 if (!netdev) 3430 return; 3431 3432 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3433 if (vsi->type == ICE_VSI_CHNL) 3434 return; 3435 3436 if (!ena_tc) { 3437 netdev_reset_tc(netdev); 3438 return; 3439 } 3440 3441 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3442 numtc = vsi->all_numtc; 3443 3444 if (netdev_set_num_tc(netdev, numtc)) 3445 return; 3446 3447 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3448 3449 ice_for_each_traffic_class(i) 3450 if (vsi->tc_cfg.ena_tc & BIT(i)) 3451 netdev_set_tc_queue(netdev, 3452 vsi->tc_cfg.tc_info[i].netdev_tc, 3453 vsi->tc_cfg.tc_info[i].qcount_tx, 3454 vsi->tc_cfg.tc_info[i].qoffset); 3455 /* setup TC queue map for CHNL TCs */ 3456 ice_for_each_chnl_tc(i) { 3457 if (!(vsi->all_enatc & BIT(i))) 3458 break; 3459 if (!vsi->mqprio_qopt.qopt.count[i]) 3460 break; 3461 netdev_set_tc_queue(netdev, i, 3462 vsi->mqprio_qopt.qopt.count[i], 3463 vsi->mqprio_qopt.qopt.offset[i]); 3464 } 3465 3466 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3467 return; 3468 3469 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3470 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3471 3472 /* Get the mapped netdev TC# for the UP */ 3473 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3474 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3475 } 3476 } 3477 3478 /** 3479 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3480 * @vsi: the VSI being configured, 3481 * @ctxt: VSI context structure 3482 * @ena_tc: number of traffic classes to enable 3483 * 3484 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3485 */ 3486 static int 3487 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3488 u8 ena_tc) 3489 { 3490 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3491 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3492 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3493 u8 netdev_tc = 0; 3494 int i; 3495 3496 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3497 3498 pow = order_base_2(tc0_qcount); 3499 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3500 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3501 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3502 3503 ice_for_each_traffic_class(i) { 3504 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3505 /* TC is not enabled */ 3506 vsi->tc_cfg.tc_info[i].qoffset = 0; 3507 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3508 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3509 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3510 ctxt->info.tc_mapping[i] = 0; 3511 continue; 3512 } 3513 3514 offset = vsi->mqprio_qopt.qopt.offset[i]; 3515 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3516 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3517 vsi->tc_cfg.tc_info[i].qoffset = offset; 3518 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3519 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3520 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3521 } 3522 3523 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3524 ice_for_each_chnl_tc(i) { 3525 if (!(vsi->all_enatc & BIT(i))) 3526 continue; 3527 offset = vsi->mqprio_qopt.qopt.offset[i]; 3528 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3529 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3530 } 3531 } 3532 3533 /* Set actual Tx/Rx queue pairs */ 3534 vsi->num_txq = offset + qcount_tx; 3535 if (vsi->num_txq > vsi->alloc_txq) { 3536 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3537 vsi->num_txq, vsi->alloc_txq); 3538 return -EINVAL; 3539 } 3540 3541 vsi->num_rxq = offset + qcount_rx; 3542 if (vsi->num_rxq > vsi->alloc_rxq) { 3543 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3544 vsi->num_rxq, vsi->alloc_rxq); 3545 return -EINVAL; 3546 } 3547 3548 /* Setup queue TC[0].qmap for given VSI context */ 3549 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3550 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3551 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3552 3553 /* Find queue count available for channel VSIs and starting offset 3554 * for channel VSIs 3555 */ 3556 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3557 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3558 vsi->next_base_q = tc0_qcount; 3559 } 3560 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3561 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3562 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3563 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3564 3565 return 0; 3566 } 3567 3568 /** 3569 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3570 * @vsi: VSI to be configured 3571 * @ena_tc: TC bitmap 3572 * 3573 * VSI queues expected to be quiesced before calling this function 3574 */ 3575 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3576 { 3577 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3578 struct ice_pf *pf = vsi->back; 3579 struct ice_vsi_ctx *ctx; 3580 struct device *dev; 3581 int i, ret = 0; 3582 u8 num_tc = 0; 3583 3584 dev = ice_pf_to_dev(pf); 3585 if (vsi->tc_cfg.ena_tc == ena_tc && 3586 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3587 return ret; 3588 3589 ice_for_each_traffic_class(i) { 3590 /* build bitmap of enabled TCs */ 3591 if (ena_tc & BIT(i)) 3592 num_tc++; 3593 /* populate max_txqs per TC */ 3594 max_txqs[i] = vsi->alloc_txq; 3595 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3596 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3597 */ 3598 if (vsi->type == ICE_VSI_CHNL && 3599 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3600 max_txqs[i] = vsi->num_txq; 3601 } 3602 3603 vsi->tc_cfg.ena_tc = ena_tc; 3604 vsi->tc_cfg.numtc = num_tc; 3605 3606 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3607 if (!ctx) 3608 return -ENOMEM; 3609 3610 ctx->vf_num = 0; 3611 ctx->info = vsi->info; 3612 3613 if (vsi->type == ICE_VSI_PF && 3614 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3615 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3616 else 3617 ret = ice_vsi_setup_q_map(vsi, ctx); 3618 3619 if (ret) 3620 goto out; 3621 3622 /* must to indicate which section of VSI context are being modified */ 3623 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3624 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3625 if (ret) { 3626 dev_info(dev, "Failed VSI Update\n"); 3627 goto out; 3628 } 3629 3630 if (vsi->type == ICE_VSI_PF && 3631 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3632 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3633 else 3634 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3635 vsi->tc_cfg.ena_tc, max_txqs); 3636 3637 if (ret) { 3638 dev_err(dev, "VSI %d failed TC config, error %d\n", 3639 vsi->vsi_num, ret); 3640 goto out; 3641 } 3642 ice_vsi_update_q_map(vsi, ctx); 3643 vsi->info.valid_sections = 0; 3644 3645 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3646 out: 3647 kfree(ctx); 3648 return ret; 3649 } 3650 3651 /** 3652 * ice_update_ring_stats - Update ring statistics 3653 * @stats: stats to be updated 3654 * @pkts: number of processed packets 3655 * @bytes: number of processed bytes 3656 * 3657 * This function assumes that caller has acquired a u64_stats_sync lock. 3658 */ 3659 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3660 { 3661 stats->bytes += bytes; 3662 stats->pkts += pkts; 3663 } 3664 3665 /** 3666 * ice_update_tx_ring_stats - Update Tx ring specific counters 3667 * @tx_ring: ring to update 3668 * @pkts: number of processed packets 3669 * @bytes: number of processed bytes 3670 */ 3671 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3672 { 3673 u64_stats_update_begin(&tx_ring->syncp); 3674 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3675 u64_stats_update_end(&tx_ring->syncp); 3676 } 3677 3678 /** 3679 * ice_update_rx_ring_stats - Update Rx ring specific counters 3680 * @rx_ring: ring to update 3681 * @pkts: number of processed packets 3682 * @bytes: number of processed bytes 3683 */ 3684 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3685 { 3686 u64_stats_update_begin(&rx_ring->syncp); 3687 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3688 u64_stats_update_end(&rx_ring->syncp); 3689 } 3690 3691 /** 3692 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3693 * @pi: port info of the switch with default VSI 3694 * 3695 * Return true if the there is a single VSI in default forwarding VSI list 3696 */ 3697 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3698 { 3699 bool exists = false; 3700 3701 ice_check_if_dflt_vsi(pi, 0, &exists); 3702 return exists; 3703 } 3704 3705 /** 3706 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3707 * @vsi: VSI to compare against default forwarding VSI 3708 * 3709 * If this VSI passed in is the default forwarding VSI then return true, else 3710 * return false 3711 */ 3712 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3713 { 3714 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3715 } 3716 3717 /** 3718 * ice_set_dflt_vsi - set the default forwarding VSI 3719 * @vsi: VSI getting set as the default forwarding VSI on the switch 3720 * 3721 * If the VSI passed in is already the default VSI and it's enabled just return 3722 * success. 3723 * 3724 * Otherwise try to set the VSI passed in as the switch's default VSI and 3725 * return the result. 3726 */ 3727 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3728 { 3729 struct device *dev; 3730 int status; 3731 3732 if (!vsi) 3733 return -EINVAL; 3734 3735 dev = ice_pf_to_dev(vsi->back); 3736 3737 /* the VSI passed in is already the default VSI */ 3738 if (ice_is_vsi_dflt_vsi(vsi)) { 3739 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3740 vsi->vsi_num); 3741 return 0; 3742 } 3743 3744 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3745 if (status) { 3746 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3747 vsi->vsi_num, status); 3748 return status; 3749 } 3750 3751 return 0; 3752 } 3753 3754 /** 3755 * ice_clear_dflt_vsi - clear the default forwarding VSI 3756 * @vsi: VSI to remove from filter list 3757 * 3758 * If the switch has no default VSI or it's not enabled then return error. 3759 * 3760 * Otherwise try to clear the default VSI and return the result. 3761 */ 3762 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3763 { 3764 struct device *dev; 3765 int status; 3766 3767 if (!vsi) 3768 return -EINVAL; 3769 3770 dev = ice_pf_to_dev(vsi->back); 3771 3772 /* there is no default VSI configured */ 3773 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3774 return -ENODEV; 3775 3776 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3777 ICE_FLTR_RX); 3778 if (status) { 3779 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3780 vsi->vsi_num, status); 3781 return -EIO; 3782 } 3783 3784 return 0; 3785 } 3786 3787 /** 3788 * ice_get_link_speed_mbps - get link speed in Mbps 3789 * @vsi: the VSI whose link speed is being queried 3790 * 3791 * Return current VSI link speed and 0 if the speed is unknown. 3792 */ 3793 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3794 { 3795 switch (vsi->port_info->phy.link_info.link_speed) { 3796 case ICE_AQ_LINK_SPEED_100GB: 3797 return SPEED_100000; 3798 case ICE_AQ_LINK_SPEED_50GB: 3799 return SPEED_50000; 3800 case ICE_AQ_LINK_SPEED_40GB: 3801 return SPEED_40000; 3802 case ICE_AQ_LINK_SPEED_25GB: 3803 return SPEED_25000; 3804 case ICE_AQ_LINK_SPEED_20GB: 3805 return SPEED_20000; 3806 case ICE_AQ_LINK_SPEED_10GB: 3807 return SPEED_10000; 3808 case ICE_AQ_LINK_SPEED_5GB: 3809 return SPEED_5000; 3810 case ICE_AQ_LINK_SPEED_2500MB: 3811 return SPEED_2500; 3812 case ICE_AQ_LINK_SPEED_1000MB: 3813 return SPEED_1000; 3814 case ICE_AQ_LINK_SPEED_100MB: 3815 return SPEED_100; 3816 case ICE_AQ_LINK_SPEED_10MB: 3817 return SPEED_10; 3818 case ICE_AQ_LINK_SPEED_UNKNOWN: 3819 default: 3820 return 0; 3821 } 3822 } 3823 3824 /** 3825 * ice_get_link_speed_kbps - get link speed in Kbps 3826 * @vsi: the VSI whose link speed is being queried 3827 * 3828 * Return current VSI link speed and 0 if the speed is unknown. 3829 */ 3830 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3831 { 3832 int speed_mbps; 3833 3834 speed_mbps = ice_get_link_speed_mbps(vsi); 3835 3836 return speed_mbps * 1000; 3837 } 3838 3839 /** 3840 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3841 * @vsi: VSI to be configured 3842 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3843 * 3844 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3845 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3846 * on TC 0. 3847 */ 3848 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3849 { 3850 struct ice_pf *pf = vsi->back; 3851 struct device *dev; 3852 int status; 3853 int speed; 3854 3855 dev = ice_pf_to_dev(pf); 3856 if (!vsi->port_info) { 3857 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3858 vsi->idx, vsi->type); 3859 return -EINVAL; 3860 } 3861 3862 speed = ice_get_link_speed_kbps(vsi); 3863 if (min_tx_rate > (u64)speed) { 3864 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3865 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3866 speed); 3867 return -EINVAL; 3868 } 3869 3870 /* Configure min BW for VSI limit */ 3871 if (min_tx_rate) { 3872 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3873 ICE_MIN_BW, min_tx_rate); 3874 if (status) { 3875 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3876 min_tx_rate, ice_vsi_type_str(vsi->type), 3877 vsi->idx); 3878 return status; 3879 } 3880 3881 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3882 min_tx_rate, ice_vsi_type_str(vsi->type)); 3883 } else { 3884 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3885 vsi->idx, 0, 3886 ICE_MIN_BW); 3887 if (status) { 3888 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3889 ice_vsi_type_str(vsi->type), vsi->idx); 3890 return status; 3891 } 3892 3893 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3894 ice_vsi_type_str(vsi->type), vsi->idx); 3895 } 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3902 * @vsi: VSI to be configured 3903 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3904 * 3905 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3906 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3907 * on TC 0. 3908 */ 3909 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3910 { 3911 struct ice_pf *pf = vsi->back; 3912 struct device *dev; 3913 int status; 3914 int speed; 3915 3916 dev = ice_pf_to_dev(pf); 3917 if (!vsi->port_info) { 3918 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3919 vsi->idx, vsi->type); 3920 return -EINVAL; 3921 } 3922 3923 speed = ice_get_link_speed_kbps(vsi); 3924 if (max_tx_rate > (u64)speed) { 3925 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3926 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3927 speed); 3928 return -EINVAL; 3929 } 3930 3931 /* Configure max BW for VSI limit */ 3932 if (max_tx_rate) { 3933 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3934 ICE_MAX_BW, max_tx_rate); 3935 if (status) { 3936 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3937 max_tx_rate, ice_vsi_type_str(vsi->type), 3938 vsi->idx); 3939 return status; 3940 } 3941 3942 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3943 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3944 } else { 3945 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3946 vsi->idx, 0, 3947 ICE_MAX_BW); 3948 if (status) { 3949 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3950 ice_vsi_type_str(vsi->type), vsi->idx); 3951 return status; 3952 } 3953 3954 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3955 ice_vsi_type_str(vsi->type), vsi->idx); 3956 } 3957 3958 return 0; 3959 } 3960 3961 /** 3962 * ice_set_link - turn on/off physical link 3963 * @vsi: VSI to modify physical link on 3964 * @ena: turn on/off physical link 3965 */ 3966 int ice_set_link(struct ice_vsi *vsi, bool ena) 3967 { 3968 struct device *dev = ice_pf_to_dev(vsi->back); 3969 struct ice_port_info *pi = vsi->port_info; 3970 struct ice_hw *hw = pi->hw; 3971 int status; 3972 3973 if (vsi->type != ICE_VSI_PF) 3974 return -EINVAL; 3975 3976 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3977 3978 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3979 * this is not a fatal error, so print a warning message and return 3980 * a success code. Return an error if FW returns an error code other 3981 * than ICE_AQ_RC_EMODE 3982 */ 3983 if (status == -EIO) { 3984 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3985 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3986 (ena ? "ON" : "OFF"), status, 3987 ice_aq_str(hw->adminq.sq_last_status)); 3988 } else if (status) { 3989 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3990 (ena ? "ON" : "OFF"), status, 3991 ice_aq_str(hw->adminq.sq_last_status)); 3992 return status; 3993 } 3994 3995 return 0; 3996 } 3997 3998 /** 3999 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4000 * @vsi: VSI used to add VLAN filters 4001 * 4002 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4003 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4004 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4005 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4006 * 4007 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4008 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4009 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4010 * 4011 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4012 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4013 * part of filtering. 4014 */ 4015 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4016 { 4017 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4018 struct ice_vlan vlan; 4019 int err; 4020 4021 vlan = ICE_VLAN(0, 0, 0); 4022 err = vlan_ops->add_vlan(vsi, &vlan); 4023 if (err && err != -EEXIST) 4024 return err; 4025 4026 /* in SVM both VLAN 0 filters are identical */ 4027 if (!ice_is_dvm_ena(&vsi->back->hw)) 4028 return 0; 4029 4030 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4031 err = vlan_ops->add_vlan(vsi, &vlan); 4032 if (err && err != -EEXIST) 4033 return err; 4034 4035 return 0; 4036 } 4037 4038 /** 4039 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4040 * @vsi: VSI used to add VLAN filters 4041 * 4042 * Delete the VLAN 0 filters in the same manner that they were added in 4043 * ice_vsi_add_vlan_zero. 4044 */ 4045 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4046 { 4047 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4048 struct ice_vlan vlan; 4049 int err; 4050 4051 vlan = ICE_VLAN(0, 0, 0); 4052 err = vlan_ops->del_vlan(vsi, &vlan); 4053 if (err && err != -EEXIST) 4054 return err; 4055 4056 /* in SVM both VLAN 0 filters are identical */ 4057 if (!ice_is_dvm_ena(&vsi->back->hw)) 4058 return 0; 4059 4060 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4061 err = vlan_ops->del_vlan(vsi, &vlan); 4062 if (err && err != -EEXIST) 4063 return err; 4064 4065 return 0; 4066 } 4067 4068 /** 4069 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4070 * @vsi: VSI used to get the VLAN mode 4071 * 4072 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4073 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4074 */ 4075 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4076 { 4077 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4078 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4079 /* no VLAN 0 filter is created when a port VLAN is active */ 4080 if (vsi->type == ICE_VSI_VF) { 4081 if (WARN_ON(!vsi->vf)) 4082 return 0; 4083 4084 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4085 return 0; 4086 } 4087 4088 if (ice_is_dvm_ena(&vsi->back->hw)) 4089 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4090 else 4091 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4092 } 4093 4094 /** 4095 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4096 * @vsi: VSI used to determine if any non-zero VLANs have been added 4097 */ 4098 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4099 { 4100 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4101 } 4102 4103 /** 4104 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4105 * @vsi: VSI used to get the number of non-zero VLANs added 4106 */ 4107 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4108 { 4109 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4110 } 4111 4112 /** 4113 * ice_is_feature_supported 4114 * @pf: pointer to the struct ice_pf instance 4115 * @f: feature enum to be checked 4116 * 4117 * returns true if feature is supported, false otherwise 4118 */ 4119 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4120 { 4121 if (f < 0 || f >= ICE_F_MAX) 4122 return false; 4123 4124 return test_bit(f, pf->features); 4125 } 4126 4127 /** 4128 * ice_set_feature_support 4129 * @pf: pointer to the struct ice_pf instance 4130 * @f: feature enum to set 4131 */ 4132 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4133 { 4134 if (f < 0 || f >= ICE_F_MAX) 4135 return; 4136 4137 set_bit(f, pf->features); 4138 } 4139 4140 /** 4141 * ice_clear_feature_support 4142 * @pf: pointer to the struct ice_pf instance 4143 * @f: feature enum to clear 4144 */ 4145 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4146 { 4147 if (f < 0 || f >= ICE_F_MAX) 4148 return; 4149 4150 clear_bit(f, pf->features); 4151 } 4152 4153 /** 4154 * ice_init_feature_support 4155 * @pf: pointer to the struct ice_pf instance 4156 * 4157 * called during init to setup supported feature 4158 */ 4159 void ice_init_feature_support(struct ice_pf *pf) 4160 { 4161 switch (pf->hw.device_id) { 4162 case ICE_DEV_ID_E810C_BACKPLANE: 4163 case ICE_DEV_ID_E810C_QSFP: 4164 case ICE_DEV_ID_E810C_SFP: 4165 ice_set_feature_support(pf, ICE_F_DSCP); 4166 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4167 if (ice_is_e810t(&pf->hw)) { 4168 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4169 if (ice_gnss_is_gps_present(&pf->hw)) 4170 ice_set_feature_support(pf, ICE_F_GNSS); 4171 } 4172 break; 4173 default: 4174 break; 4175 } 4176 } 4177 4178 /** 4179 * ice_vsi_update_security - update security block in VSI 4180 * @vsi: pointer to VSI structure 4181 * @fill: function pointer to fill ctx 4182 */ 4183 int 4184 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4185 { 4186 struct ice_vsi_ctx ctx = { 0 }; 4187 4188 ctx.info = vsi->info; 4189 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4190 fill(&ctx); 4191 4192 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4193 return -ENODEV; 4194 4195 vsi->info = ctx.info; 4196 return 0; 4197 } 4198 4199 /** 4200 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4201 * @ctx: pointer to VSI ctx structure 4202 */ 4203 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4204 { 4205 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4206 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4207 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4208 } 4209 4210 /** 4211 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4212 * @ctx: pointer to VSI ctx structure 4213 */ 4214 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4215 { 4216 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4217 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4218 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4219 } 4220 4221 /** 4222 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4223 * @ctx: pointer to VSI ctx structure 4224 */ 4225 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4226 { 4227 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4228 } 4229 4230 /** 4231 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4232 * @ctx: pointer to VSI ctx structure 4233 */ 4234 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4235 { 4236 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4237 } 4238