1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  * @vf: the VF associated with this VSI, if any
170  *
171  * Return 0 on success and a negative value on error
172  */
173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174 {
175 	enum ice_vsi_type vsi_type = vsi->type;
176 	struct ice_pf *pf = vsi->back;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 void ice_vsi_delete(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 	if (!ctxt)
296 		return;
297 
298 	if (vsi->type == ICE_VSI_VF)
299 		ctxt->vf_num = vsi->vf->vf_id;
300 	ctxt->vsi_num = vsi->vsi_num;
301 
302 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303 
304 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 	if (status)
306 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 			vsi->vsi_num, status);
308 
309 	kfree(ctxt);
310 }
311 
312 /**
313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314  * @vsi: pointer to VSI being cleared
315  */
316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = vsi->back;
319 	struct device *dev;
320 
321 	dev = ice_pf_to_dev(pf);
322 
323 	if (vsi->af_xdp_zc_qps) {
324 		bitmap_free(vsi->af_xdp_zc_qps);
325 		vsi->af_xdp_zc_qps = NULL;
326 	}
327 	/* free the ring and vector containers */
328 	if (vsi->q_vectors) {
329 		devm_kfree(dev, vsi->q_vectors);
330 		vsi->q_vectors = NULL;
331 	}
332 	if (vsi->tx_rings) {
333 		devm_kfree(dev, vsi->tx_rings);
334 		vsi->tx_rings = NULL;
335 	}
336 	if (vsi->rx_rings) {
337 		devm_kfree(dev, vsi->rx_rings);
338 		vsi->rx_rings = NULL;
339 	}
340 	if (vsi->txq_map) {
341 		devm_kfree(dev, vsi->txq_map);
342 		vsi->txq_map = NULL;
343 	}
344 	if (vsi->rxq_map) {
345 		devm_kfree(dev, vsi->rxq_map);
346 		vsi->rxq_map = NULL;
347 	}
348 }
349 
350 /**
351  * ice_vsi_clear - clean up and deallocate the provided VSI
352  * @vsi: pointer to VSI being cleared
353  *
354  * This deallocates the VSI's queue resources, removes it from the PF's
355  * VSI array if necessary, and deallocates the VSI
356  *
357  * Returns 0 on success, negative on failure
358  */
359 int ice_vsi_clear(struct ice_vsi *vsi)
360 {
361 	struct ice_pf *pf = NULL;
362 	struct device *dev;
363 
364 	if (!vsi)
365 		return 0;
366 
367 	if (!vsi->back)
368 		return -EINVAL;
369 
370 	pf = vsi->back;
371 	dev = ice_pf_to_dev(pf);
372 
373 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 		return -EINVAL;
376 	}
377 
378 	mutex_lock(&pf->sw_mutex);
379 	/* updates the PF for this cleared VSI */
380 
381 	pf->vsi[vsi->idx] = NULL;
382 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 		pf->next_vsi = vsi->idx;
384 	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 		pf->next_vsi = vsi->idx;
386 
387 	ice_vsi_free_arrays(vsi);
388 	mutex_unlock(&pf->sw_mutex);
389 	devm_kfree(dev, vsi);
390 
391 	return 0;
392 }
393 
394 /**
395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396  * @irq: interrupt number
397  * @data: pointer to a q_vector
398  */
399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400 {
401 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402 
403 	if (!q_vector->tx.tx_ring)
404 		return IRQ_HANDLED;
405 
406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
407 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 /**
414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
415  * @irq: interrupt number
416  * @data: pointer to a q_vector
417  */
418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419 {
420 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421 
422 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 		return IRQ_HANDLED;
424 
425 	q_vector->total_events++;
426 
427 	napi_schedule(&q_vector->napi);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433 {
434 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 	struct ice_pf *pf = q_vector->vsi->back;
436 	struct ice_vf *vf;
437 	unsigned int bkt;
438 
439 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 		return IRQ_HANDLED;
441 
442 	rcu_read_lock();
443 	ice_for_each_vf_rcu(pf, bkt, vf)
444 		napi_schedule(&vf->repr->q_vector->napi);
445 	rcu_read_unlock();
446 
447 	return IRQ_HANDLED;
448 }
449 
450 /**
451  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
452  * @vsi: VSI pointer
453  */
454 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
455 {
456 	struct ice_vsi_stats *vsi_stat;
457 	struct ice_pf *pf = vsi->back;
458 
459 	if (vsi->type == ICE_VSI_CHNL)
460 		return 0;
461 	if (!pf->vsi_stats)
462 		return -ENOENT;
463 
464 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
465 	if (!vsi_stat)
466 		return -ENOMEM;
467 
468 	vsi_stat->tx_ring_stats =
469 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
470 			GFP_KERNEL);
471 	if (!vsi_stat->tx_ring_stats)
472 		goto err_alloc_tx;
473 
474 	vsi_stat->rx_ring_stats =
475 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
476 			GFP_KERNEL);
477 	if (!vsi_stat->rx_ring_stats)
478 		goto err_alloc_rx;
479 
480 	pf->vsi_stats[vsi->idx] = vsi_stat;
481 
482 	return 0;
483 
484 err_alloc_rx:
485 	kfree(vsi_stat->rx_ring_stats);
486 err_alloc_tx:
487 	kfree(vsi_stat->tx_ring_stats);
488 	kfree(vsi_stat);
489 	pf->vsi_stats[vsi->idx] = NULL;
490 	return -ENOMEM;
491 }
492 
493 /**
494  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
495  * @pf: board private structure
496  * @vsi_type: type of VSI
497  * @ch: ptr to channel
498  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
499  *
500  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
501  * it may be NULL in the case there is no association with a VF. For
502  * ICE_VSI_VF the VF pointer *must not* be NULL.
503  *
504  * returns a pointer to a VSI on success, NULL on failure.
505  */
506 static struct ice_vsi *
507 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
508 	      struct ice_channel *ch, struct ice_vf *vf)
509 {
510 	struct device *dev = ice_pf_to_dev(pf);
511 	struct ice_vsi *vsi = NULL;
512 
513 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
514 		return NULL;
515 
516 	/* Need to protect the allocation of the VSIs at the PF level */
517 	mutex_lock(&pf->sw_mutex);
518 
519 	/* If we have already allocated our maximum number of VSIs,
520 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
521 	 * is available to be populated
522 	 */
523 	if (pf->next_vsi == ICE_NO_VSI) {
524 		dev_dbg(dev, "out of VSI slots!\n");
525 		goto unlock_pf;
526 	}
527 
528 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
529 	if (!vsi)
530 		goto unlock_pf;
531 
532 	vsi->type = vsi_type;
533 	vsi->back = pf;
534 	set_bit(ICE_VSI_DOWN, vsi->state);
535 
536 	if (vsi_type == ICE_VSI_VF)
537 		ice_vsi_set_num_qs(vsi, vf);
538 	else if (vsi_type != ICE_VSI_CHNL)
539 		ice_vsi_set_num_qs(vsi, NULL);
540 
541 	switch (vsi->type) {
542 	case ICE_VSI_SWITCHDEV_CTRL:
543 		if (ice_vsi_alloc_arrays(vsi))
544 			goto err_rings;
545 
546 		/* Setup eswitch MSIX irq handler for VSI */
547 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
548 		break;
549 	case ICE_VSI_PF:
550 		if (ice_vsi_alloc_arrays(vsi))
551 			goto err_rings;
552 
553 		/* Setup default MSIX irq handler for VSI */
554 		vsi->irq_handler = ice_msix_clean_rings;
555 		break;
556 	case ICE_VSI_CTRL:
557 		if (ice_vsi_alloc_arrays(vsi))
558 			goto err_rings;
559 
560 		/* Setup ctrl VSI MSIX irq handler */
561 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
562 
563 		/* For the PF control VSI this is NULL, for the VF control VSI
564 		 * this will be the first VF to allocate it.
565 		 */
566 		vsi->vf = vf;
567 		break;
568 	case ICE_VSI_VF:
569 		if (ice_vsi_alloc_arrays(vsi))
570 			goto err_rings;
571 		vsi->vf = vf;
572 		break;
573 	case ICE_VSI_CHNL:
574 		if (!ch)
575 			goto err_rings;
576 		vsi->num_rxq = ch->num_rxq;
577 		vsi->num_txq = ch->num_txq;
578 		vsi->next_base_q = ch->base_q;
579 		break;
580 	case ICE_VSI_LB:
581 		if (ice_vsi_alloc_arrays(vsi))
582 			goto err_rings;
583 		break;
584 	default:
585 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
586 		goto unlock_pf;
587 	}
588 
589 	if (vsi->type == ICE_VSI_CTRL && !vf) {
590 		/* Use the last VSI slot as the index for PF control VSI */
591 		vsi->idx = pf->num_alloc_vsi - 1;
592 		pf->ctrl_vsi_idx = vsi->idx;
593 		pf->vsi[vsi->idx] = vsi;
594 	} else {
595 		/* fill slot and make note of the index */
596 		vsi->idx = pf->next_vsi;
597 		pf->vsi[pf->next_vsi] = vsi;
598 
599 		/* prepare pf->next_vsi for next use */
600 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
601 						 pf->next_vsi);
602 	}
603 
604 	if (vsi->type == ICE_VSI_CTRL && vf)
605 		vf->ctrl_vsi_idx = vsi->idx;
606 
607 	/* allocate memory for Tx/Rx ring stat pointers */
608 	if (ice_vsi_alloc_stat_arrays(vsi))
609 		goto err_rings;
610 
611 	goto unlock_pf;
612 
613 err_rings:
614 	devm_kfree(dev, vsi);
615 	vsi = NULL;
616 unlock_pf:
617 	mutex_unlock(&pf->sw_mutex);
618 	return vsi;
619 }
620 
621 /**
622  * ice_alloc_fd_res - Allocate FD resource for a VSI
623  * @vsi: pointer to the ice_vsi
624  *
625  * This allocates the FD resources
626  *
627  * Returns 0 on success, -EPERM on no-op or -EIO on failure
628  */
629 static int ice_alloc_fd_res(struct ice_vsi *vsi)
630 {
631 	struct ice_pf *pf = vsi->back;
632 	u32 g_val, b_val;
633 
634 	/* Flow Director filters are only allocated/assigned to the PF VSI or
635 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
636 	 * add/delete filters so resources are not allocated to it
637 	 */
638 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
639 		return -EPERM;
640 
641 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
642 	      vsi->type == ICE_VSI_CHNL))
643 		return -EPERM;
644 
645 	/* FD filters from guaranteed pool per VSI */
646 	g_val = pf->hw.func_caps.fd_fltr_guar;
647 	if (!g_val)
648 		return -EPERM;
649 
650 	/* FD filters from best effort pool */
651 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
652 	if (!b_val)
653 		return -EPERM;
654 
655 	/* PF main VSI gets only 64 FD resources from guaranteed pool
656 	 * when ADQ is configured.
657 	 */
658 #define ICE_PF_VSI_GFLTR	64
659 
660 	/* determine FD filter resources per VSI from shared(best effort) and
661 	 * dedicated pool
662 	 */
663 	if (vsi->type == ICE_VSI_PF) {
664 		vsi->num_gfltr = g_val;
665 		/* if MQPRIO is configured, main VSI doesn't get all FD
666 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
667 		 */
668 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
669 			if (g_val < ICE_PF_VSI_GFLTR)
670 				return -EPERM;
671 			/* allow bare minimum entries for PF VSI */
672 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
673 		}
674 
675 		/* each VSI gets same "best_effort" quota */
676 		vsi->num_bfltr = b_val;
677 	} else if (vsi->type == ICE_VSI_VF) {
678 		vsi->num_gfltr = 0;
679 
680 		/* each VSI gets same "best_effort" quota */
681 		vsi->num_bfltr = b_val;
682 	} else {
683 		struct ice_vsi *main_vsi;
684 		int numtc;
685 
686 		main_vsi = ice_get_main_vsi(pf);
687 		if (!main_vsi)
688 			return -EPERM;
689 
690 		if (!main_vsi->all_numtc)
691 			return -EINVAL;
692 
693 		/* figure out ADQ numtc */
694 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
695 
696 		/* only one TC but still asking resources for channels,
697 		 * invalid config
698 		 */
699 		if (numtc < ICE_CHNL_START_TC)
700 			return -EPERM;
701 
702 		g_val -= ICE_PF_VSI_GFLTR;
703 		/* channel VSIs gets equal share from guaranteed pool */
704 		vsi->num_gfltr = g_val / numtc;
705 
706 		/* each VSI gets same "best_effort" quota */
707 		vsi->num_bfltr = b_val;
708 	}
709 
710 	return 0;
711 }
712 
713 /**
714  * ice_vsi_get_qs - Assign queues from PF to VSI
715  * @vsi: the VSI to assign queues to
716  *
717  * Returns 0 on success and a negative value on error
718  */
719 static int ice_vsi_get_qs(struct ice_vsi *vsi)
720 {
721 	struct ice_pf *pf = vsi->back;
722 	struct ice_qs_cfg tx_qs_cfg = {
723 		.qs_mutex = &pf->avail_q_mutex,
724 		.pf_map = pf->avail_txqs,
725 		.pf_map_size = pf->max_pf_txqs,
726 		.q_count = vsi->alloc_txq,
727 		.scatter_count = ICE_MAX_SCATTER_TXQS,
728 		.vsi_map = vsi->txq_map,
729 		.vsi_map_offset = 0,
730 		.mapping_mode = ICE_VSI_MAP_CONTIG
731 	};
732 	struct ice_qs_cfg rx_qs_cfg = {
733 		.qs_mutex = &pf->avail_q_mutex,
734 		.pf_map = pf->avail_rxqs,
735 		.pf_map_size = pf->max_pf_rxqs,
736 		.q_count = vsi->alloc_rxq,
737 		.scatter_count = ICE_MAX_SCATTER_RXQS,
738 		.vsi_map = vsi->rxq_map,
739 		.vsi_map_offset = 0,
740 		.mapping_mode = ICE_VSI_MAP_CONTIG
741 	};
742 	int ret;
743 
744 	if (vsi->type == ICE_VSI_CHNL)
745 		return 0;
746 
747 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
748 	if (ret)
749 		return ret;
750 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
751 
752 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
753 	if (ret)
754 		return ret;
755 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
756 
757 	return 0;
758 }
759 
760 /**
761  * ice_vsi_put_qs - Release queues from VSI to PF
762  * @vsi: the VSI that is going to release queues
763  */
764 static void ice_vsi_put_qs(struct ice_vsi *vsi)
765 {
766 	struct ice_pf *pf = vsi->back;
767 	int i;
768 
769 	mutex_lock(&pf->avail_q_mutex);
770 
771 	ice_for_each_alloc_txq(vsi, i) {
772 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
773 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
774 	}
775 
776 	ice_for_each_alloc_rxq(vsi, i) {
777 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
778 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
779 	}
780 
781 	mutex_unlock(&pf->avail_q_mutex);
782 }
783 
784 /**
785  * ice_is_safe_mode
786  * @pf: pointer to the PF struct
787  *
788  * returns true if driver is in safe mode, false otherwise
789  */
790 bool ice_is_safe_mode(struct ice_pf *pf)
791 {
792 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
793 }
794 
795 /**
796  * ice_is_rdma_ena
797  * @pf: pointer to the PF struct
798  *
799  * returns true if RDMA is currently supported, false otherwise
800  */
801 bool ice_is_rdma_ena(struct ice_pf *pf)
802 {
803 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
804 }
805 
806 /**
807  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
808  * @vsi: the VSI being cleaned up
809  *
810  * This function deletes RSS input set for all flows that were configured
811  * for this VSI
812  */
813 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
814 {
815 	struct ice_pf *pf = vsi->back;
816 	int status;
817 
818 	if (ice_is_safe_mode(pf))
819 		return;
820 
821 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
822 	if (status)
823 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
824 			vsi->vsi_num, status);
825 }
826 
827 /**
828  * ice_rss_clean - Delete RSS related VSI structures and configuration
829  * @vsi: the VSI being removed
830  */
831 static void ice_rss_clean(struct ice_vsi *vsi)
832 {
833 	struct ice_pf *pf = vsi->back;
834 	struct device *dev;
835 
836 	dev = ice_pf_to_dev(pf);
837 
838 	if (vsi->rss_hkey_user)
839 		devm_kfree(dev, vsi->rss_hkey_user);
840 	if (vsi->rss_lut_user)
841 		devm_kfree(dev, vsi->rss_lut_user);
842 
843 	ice_vsi_clean_rss_flow_fld(vsi);
844 	/* remove RSS replay list */
845 	if (!ice_is_safe_mode(pf))
846 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
847 }
848 
849 /**
850  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
851  * @vsi: the VSI being configured
852  */
853 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
854 {
855 	struct ice_hw_common_caps *cap;
856 	struct ice_pf *pf = vsi->back;
857 
858 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
859 		vsi->rss_size = 1;
860 		return;
861 	}
862 
863 	cap = &pf->hw.func_caps.common_cap;
864 	switch (vsi->type) {
865 	case ICE_VSI_CHNL:
866 	case ICE_VSI_PF:
867 		/* PF VSI will inherit RSS instance of PF */
868 		vsi->rss_table_size = (u16)cap->rss_table_size;
869 		if (vsi->type == ICE_VSI_CHNL)
870 			vsi->rss_size = min_t(u16, vsi->num_rxq,
871 					      BIT(cap->rss_table_entry_width));
872 		else
873 			vsi->rss_size = min_t(u16, num_online_cpus(),
874 					      BIT(cap->rss_table_entry_width));
875 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
876 		break;
877 	case ICE_VSI_SWITCHDEV_CTRL:
878 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
879 		vsi->rss_size = min_t(u16, num_online_cpus(),
880 				      BIT(cap->rss_table_entry_width));
881 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
882 		break;
883 	case ICE_VSI_VF:
884 		/* VF VSI will get a small RSS table.
885 		 * For VSI_LUT, LUT size should be set to 64 bytes.
886 		 */
887 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
888 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
889 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
890 		break;
891 	case ICE_VSI_LB:
892 		break;
893 	default:
894 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
895 			ice_vsi_type_str(vsi->type));
896 		break;
897 	}
898 }
899 
900 /**
901  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
902  * @hw: HW structure used to determine the VLAN mode of the device
903  * @ctxt: the VSI context being set
904  *
905  * This initializes a default VSI context for all sections except the Queues.
906  */
907 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
908 {
909 	u32 table = 0;
910 
911 	memset(&ctxt->info, 0, sizeof(ctxt->info));
912 	/* VSI's should be allocated from shared pool */
913 	ctxt->alloc_from_pool = true;
914 	/* Src pruning enabled by default */
915 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
916 	/* Traffic from VSI can be sent to LAN */
917 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
918 	/* allow all untagged/tagged packets by default on Tx */
919 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
920 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
921 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
922 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
923 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
924 	 *
925 	 * DVM - leave inner VLAN in packet by default
926 	 */
927 	if (ice_is_dvm_ena(hw)) {
928 		ctxt->info.inner_vlan_flags |=
929 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
930 		ctxt->info.outer_vlan_flags =
931 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
932 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
933 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
934 		ctxt->info.outer_vlan_flags |=
935 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
936 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
937 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
938 		ctxt->info.outer_vlan_flags |=
939 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
940 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
941 	}
942 	/* Have 1:1 UP mapping for both ingress/egress tables */
943 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
944 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
945 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
946 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
947 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
948 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
949 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
950 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
951 	ctxt->info.ingress_table = cpu_to_le32(table);
952 	ctxt->info.egress_table = cpu_to_le32(table);
953 	/* Have 1:1 UP mapping for outer to inner UP table */
954 	ctxt->info.outer_up_table = cpu_to_le32(table);
955 	/* No Outer tag support outer_tag_flags remains to zero */
956 }
957 
958 /**
959  * ice_vsi_setup_q_map - Setup a VSI queue map
960  * @vsi: the VSI being configured
961  * @ctxt: VSI context structure
962  */
963 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
964 {
965 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
966 	u16 num_txq_per_tc, num_rxq_per_tc;
967 	u16 qcount_tx = vsi->alloc_txq;
968 	u16 qcount_rx = vsi->alloc_rxq;
969 	u8 netdev_tc = 0;
970 	int i;
971 
972 	if (!vsi->tc_cfg.numtc) {
973 		/* at least TC0 should be enabled by default */
974 		vsi->tc_cfg.numtc = 1;
975 		vsi->tc_cfg.ena_tc = 1;
976 	}
977 
978 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
979 	if (!num_rxq_per_tc)
980 		num_rxq_per_tc = 1;
981 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
982 	if (!num_txq_per_tc)
983 		num_txq_per_tc = 1;
984 
985 	/* find the (rounded up) power-of-2 of qcount */
986 	pow = (u16)order_base_2(num_rxq_per_tc);
987 
988 	/* TC mapping is a function of the number of Rx queues assigned to the
989 	 * VSI for each traffic class and the offset of these queues.
990 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
991 	 * queues allocated to TC0. No:of queues is a power-of-2.
992 	 *
993 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
994 	 * queue, this way, traffic for the given TC will be sent to the default
995 	 * queue.
996 	 *
997 	 * Setup number and offset of Rx queues for all TCs for the VSI
998 	 */
999 	ice_for_each_traffic_class(i) {
1000 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1001 			/* TC is not enabled */
1002 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1003 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1004 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1005 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1006 			ctxt->info.tc_mapping[i] = 0;
1007 			continue;
1008 		}
1009 
1010 		/* TC is enabled */
1011 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1012 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1013 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1014 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1015 
1016 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1017 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1018 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1019 			 ICE_AQ_VSI_TC_Q_NUM_M);
1020 		offset += num_rxq_per_tc;
1021 		tx_count += num_txq_per_tc;
1022 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1023 	}
1024 
1025 	/* if offset is non-zero, means it is calculated correctly based on
1026 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1027 	 * be correct and non-zero because it is based off - VSI's
1028 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1029 	 * at least 1)
1030 	 */
1031 	if (offset)
1032 		rx_count = offset;
1033 	else
1034 		rx_count = num_rxq_per_tc;
1035 
1036 	if (rx_count > vsi->alloc_rxq) {
1037 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1038 			rx_count, vsi->alloc_rxq);
1039 		return -EINVAL;
1040 	}
1041 
1042 	if (tx_count > vsi->alloc_txq) {
1043 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1044 			tx_count, vsi->alloc_txq);
1045 		return -EINVAL;
1046 	}
1047 
1048 	vsi->num_txq = tx_count;
1049 	vsi->num_rxq = rx_count;
1050 
1051 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1052 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1053 		/* since there is a chance that num_rxq could have been changed
1054 		 * in the above for loop, make num_txq equal to num_rxq.
1055 		 */
1056 		vsi->num_txq = vsi->num_rxq;
1057 	}
1058 
1059 	/* Rx queue mapping */
1060 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1061 	/* q_mapping buffer holds the info for the first queue allocated for
1062 	 * this VSI in the PF space and also the number of queues associated
1063 	 * with this VSI.
1064 	 */
1065 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1066 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1073  * @ctxt: the VSI context being set
1074  * @vsi: the VSI being configured
1075  */
1076 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1077 {
1078 	u8 dflt_q_group, dflt_q_prio;
1079 	u16 dflt_q, report_q, val;
1080 
1081 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1082 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1083 		return;
1084 
1085 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1086 	ctxt->info.valid_sections |= cpu_to_le16(val);
1087 	dflt_q = 0;
1088 	dflt_q_group = 0;
1089 	report_q = 0;
1090 	dflt_q_prio = 0;
1091 
1092 	/* enable flow director filtering/programming */
1093 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1094 	ctxt->info.fd_options = cpu_to_le16(val);
1095 	/* max of allocated flow director filters */
1096 	ctxt->info.max_fd_fltr_dedicated =
1097 			cpu_to_le16(vsi->num_gfltr);
1098 	/* max of shared flow director filters any VSI may program */
1099 	ctxt->info.max_fd_fltr_shared =
1100 			cpu_to_le16(vsi->num_bfltr);
1101 	/* default queue index within the VSI of the default FD */
1102 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1103 	       ICE_AQ_VSI_FD_DEF_Q_M);
1104 	/* target queue or queue group to the FD filter */
1105 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1106 		ICE_AQ_VSI_FD_DEF_GRP_M);
1107 	ctxt->info.fd_def_q = cpu_to_le16(val);
1108 	/* queue index on which FD filter completion is reported */
1109 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1110 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1111 	/* priority of the default qindex action */
1112 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1113 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1114 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1115 }
1116 
1117 /**
1118  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1119  * @ctxt: the VSI context being set
1120  * @vsi: the VSI being configured
1121  */
1122 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1123 {
1124 	u8 lut_type, hash_type;
1125 	struct device *dev;
1126 	struct ice_pf *pf;
1127 
1128 	pf = vsi->back;
1129 	dev = ice_pf_to_dev(pf);
1130 
1131 	switch (vsi->type) {
1132 	case ICE_VSI_CHNL:
1133 	case ICE_VSI_PF:
1134 		/* PF VSI will inherit RSS instance of PF */
1135 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1136 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1137 		break;
1138 	case ICE_VSI_VF:
1139 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1140 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1141 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1142 		break;
1143 	default:
1144 		dev_dbg(dev, "Unsupported VSI type %s\n",
1145 			ice_vsi_type_str(vsi->type));
1146 		return;
1147 	}
1148 
1149 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1150 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1151 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1152 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1153 }
1154 
1155 static void
1156 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1157 {
1158 	struct ice_pf *pf = vsi->back;
1159 	u16 qcount, qmap;
1160 	u8 offset = 0;
1161 	int pow;
1162 
1163 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1164 
1165 	pow = order_base_2(qcount);
1166 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1167 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1168 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1169 		   ICE_AQ_VSI_TC_Q_NUM_M);
1170 
1171 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1172 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1173 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1174 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1175 }
1176 
1177 /**
1178  * ice_vsi_init - Create and initialize a VSI
1179  * @vsi: the VSI being configured
1180  * @init_vsi: is this call creating a VSI
1181  *
1182  * This initializes a VSI context depending on the VSI type to be added and
1183  * passes it down to the add_vsi aq command to create a new VSI.
1184  */
1185 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1186 {
1187 	struct ice_pf *pf = vsi->back;
1188 	struct ice_hw *hw = &pf->hw;
1189 	struct ice_vsi_ctx *ctxt;
1190 	struct device *dev;
1191 	int ret = 0;
1192 
1193 	dev = ice_pf_to_dev(pf);
1194 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1195 	if (!ctxt)
1196 		return -ENOMEM;
1197 
1198 	switch (vsi->type) {
1199 	case ICE_VSI_CTRL:
1200 	case ICE_VSI_LB:
1201 	case ICE_VSI_PF:
1202 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1203 		break;
1204 	case ICE_VSI_SWITCHDEV_CTRL:
1205 	case ICE_VSI_CHNL:
1206 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1207 		break;
1208 	case ICE_VSI_VF:
1209 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1210 		/* VF number here is the absolute VF number (0-255) */
1211 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1212 		break;
1213 	default:
1214 		ret = -ENODEV;
1215 		goto out;
1216 	}
1217 
1218 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1219 	 * prune enabled
1220 	 */
1221 	if (vsi->type == ICE_VSI_CHNL) {
1222 		struct ice_vsi *main_vsi;
1223 
1224 		main_vsi = ice_get_main_vsi(pf);
1225 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1226 			ctxt->info.sw_flags2 |=
1227 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1228 		else
1229 			ctxt->info.sw_flags2 &=
1230 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1231 	}
1232 
1233 	ice_set_dflt_vsi_ctx(hw, ctxt);
1234 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1235 		ice_set_fd_vsi_ctx(ctxt, vsi);
1236 	/* if the switch is in VEB mode, allow VSI loopback */
1237 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1238 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1239 
1240 	/* Set LUT type and HASH type if RSS is enabled */
1241 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1242 	    vsi->type != ICE_VSI_CTRL) {
1243 		ice_set_rss_vsi_ctx(ctxt, vsi);
1244 		/* if updating VSI context, make sure to set valid_section:
1245 		 * to indicate which section of VSI context being updated
1246 		 */
1247 		if (!init_vsi)
1248 			ctxt->info.valid_sections |=
1249 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1250 	}
1251 
1252 	ctxt->info.sw_id = vsi->port_info->sw_id;
1253 	if (vsi->type == ICE_VSI_CHNL) {
1254 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1255 	} else {
1256 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1257 		if (ret)
1258 			goto out;
1259 
1260 		if (!init_vsi) /* means VSI being updated */
1261 			/* must to indicate which section of VSI context are
1262 			 * being modified
1263 			 */
1264 			ctxt->info.valid_sections |=
1265 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1266 	}
1267 
1268 	/* Allow control frames out of main VSI */
1269 	if (vsi->type == ICE_VSI_PF) {
1270 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1271 		ctxt->info.valid_sections |=
1272 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1273 	}
1274 
1275 	if (init_vsi) {
1276 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1277 		if (ret) {
1278 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1279 			ret = -EIO;
1280 			goto out;
1281 		}
1282 	} else {
1283 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1284 		if (ret) {
1285 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1286 			ret = -EIO;
1287 			goto out;
1288 		}
1289 	}
1290 
1291 	/* keep context for update VSI operations */
1292 	vsi->info = ctxt->info;
1293 
1294 	/* record VSI number returned */
1295 	vsi->vsi_num = ctxt->vsi_num;
1296 
1297 out:
1298 	kfree(ctxt);
1299 	return ret;
1300 }
1301 
1302 /**
1303  * ice_free_res - free a block of resources
1304  * @res: pointer to the resource
1305  * @index: starting index previously returned by ice_get_res
1306  * @id: identifier to track owner
1307  *
1308  * Returns number of resources freed
1309  */
1310 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1311 {
1312 	int count = 0;
1313 	int i;
1314 
1315 	if (!res || index >= res->end)
1316 		return -EINVAL;
1317 
1318 	id |= ICE_RES_VALID_BIT;
1319 	for (i = index; i < res->end && res->list[i] == id; i++) {
1320 		res->list[i] = 0;
1321 		count++;
1322 	}
1323 
1324 	return count;
1325 }
1326 
1327 /**
1328  * ice_search_res - Search the tracker for a block of resources
1329  * @res: pointer to the resource
1330  * @needed: size of the block needed
1331  * @id: identifier to track owner
1332  *
1333  * Returns the base item index of the block, or -ENOMEM for error
1334  */
1335 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1336 {
1337 	u16 start = 0, end = 0;
1338 
1339 	if (needed > res->end)
1340 		return -ENOMEM;
1341 
1342 	id |= ICE_RES_VALID_BIT;
1343 
1344 	do {
1345 		/* skip already allocated entries */
1346 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1347 			start = end;
1348 			if ((start + needed) > res->end)
1349 				break;
1350 		}
1351 
1352 		if (end == (start + needed)) {
1353 			int i = start;
1354 
1355 			/* there was enough, so assign it to the requestor */
1356 			while (i != end)
1357 				res->list[i++] = id;
1358 
1359 			return start;
1360 		}
1361 	} while (end < res->end);
1362 
1363 	return -ENOMEM;
1364 }
1365 
1366 /**
1367  * ice_get_free_res_count - Get free count from a resource tracker
1368  * @res: Resource tracker instance
1369  */
1370 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1371 {
1372 	u16 i, count = 0;
1373 
1374 	for (i = 0; i < res->end; i++)
1375 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1376 			count++;
1377 
1378 	return count;
1379 }
1380 
1381 /**
1382  * ice_get_res - get a block of resources
1383  * @pf: board private structure
1384  * @res: pointer to the resource
1385  * @needed: size of the block needed
1386  * @id: identifier to track owner
1387  *
1388  * Returns the base item index of the block, or negative for error
1389  */
1390 int
1391 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1392 {
1393 	if (!res || !pf)
1394 		return -EINVAL;
1395 
1396 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1397 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1398 			needed, res->num_entries, id);
1399 		return -EINVAL;
1400 	}
1401 
1402 	return ice_search_res(res, needed, id);
1403 }
1404 
1405 /**
1406  * ice_get_vf_ctrl_res - Get VF control VSI resource
1407  * @pf: pointer to the PF structure
1408  * @vsi: the VSI to allocate a resource for
1409  *
1410  * Look up whether another VF has already allocated the control VSI resource.
1411  * If so, re-use this resource so that we share it among all VFs.
1412  *
1413  * Otherwise, allocate the resource and return it.
1414  */
1415 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1416 {
1417 	struct ice_vf *vf;
1418 	unsigned int bkt;
1419 	int base;
1420 
1421 	rcu_read_lock();
1422 	ice_for_each_vf_rcu(pf, bkt, vf) {
1423 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1424 			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1425 			rcu_read_unlock();
1426 			return base;
1427 		}
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1432 			   ICE_RES_VF_CTRL_VEC_ID);
1433 }
1434 
1435 /**
1436  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1437  * @vsi: ptr to the VSI
1438  *
1439  * This should only be called after ice_vsi_alloc() which allocates the
1440  * corresponding SW VSI structure and initializes num_queue_pairs for the
1441  * newly allocated VSI.
1442  *
1443  * Returns 0 on success or negative on failure
1444  */
1445 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1446 {
1447 	struct ice_pf *pf = vsi->back;
1448 	struct device *dev;
1449 	u16 num_q_vectors;
1450 	int base;
1451 
1452 	dev = ice_pf_to_dev(pf);
1453 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1454 	if (vsi->type == ICE_VSI_VF)
1455 		return 0;
1456 	if (vsi->type == ICE_VSI_CHNL)
1457 		return 0;
1458 
1459 	if (vsi->base_vector) {
1460 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1461 			vsi->vsi_num, vsi->base_vector);
1462 		return -EEXIST;
1463 	}
1464 
1465 	num_q_vectors = vsi->num_q_vectors;
1466 	/* reserve slots from OS requested IRQs */
1467 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1468 		base = ice_get_vf_ctrl_res(pf, vsi);
1469 	} else {
1470 		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1471 				   vsi->idx);
1472 	}
1473 
1474 	if (base < 0) {
1475 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1476 			ice_get_free_res_count(pf->irq_tracker),
1477 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1478 		return -ENOENT;
1479 	}
1480 	vsi->base_vector = (u16)base;
1481 	pf->num_avail_sw_msix -= num_q_vectors;
1482 
1483 	return 0;
1484 }
1485 
1486 /**
1487  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1488  * @vsi: the VSI having rings deallocated
1489  */
1490 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1491 {
1492 	int i;
1493 
1494 	/* Avoid stale references by clearing map from vector to ring */
1495 	if (vsi->q_vectors) {
1496 		ice_for_each_q_vector(vsi, i) {
1497 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1498 
1499 			if (q_vector) {
1500 				q_vector->tx.tx_ring = NULL;
1501 				q_vector->rx.rx_ring = NULL;
1502 			}
1503 		}
1504 	}
1505 
1506 	if (vsi->tx_rings) {
1507 		ice_for_each_alloc_txq(vsi, i) {
1508 			if (vsi->tx_rings[i]) {
1509 				kfree_rcu(vsi->tx_rings[i], rcu);
1510 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1511 			}
1512 		}
1513 	}
1514 	if (vsi->rx_rings) {
1515 		ice_for_each_alloc_rxq(vsi, i) {
1516 			if (vsi->rx_rings[i]) {
1517 				kfree_rcu(vsi->rx_rings[i], rcu);
1518 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1519 			}
1520 		}
1521 	}
1522 }
1523 
1524 /**
1525  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1526  * @vsi: VSI which is having rings allocated
1527  */
1528 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1529 {
1530 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1531 	struct ice_pf *pf = vsi->back;
1532 	struct device *dev;
1533 	u16 i;
1534 
1535 	dev = ice_pf_to_dev(pf);
1536 	/* Allocate Tx rings */
1537 	ice_for_each_alloc_txq(vsi, i) {
1538 		struct ice_tx_ring *ring;
1539 
1540 		/* allocate with kzalloc(), free with kfree_rcu() */
1541 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1542 
1543 		if (!ring)
1544 			goto err_out;
1545 
1546 		ring->q_index = i;
1547 		ring->reg_idx = vsi->txq_map[i];
1548 		ring->vsi = vsi;
1549 		ring->tx_tstamps = &pf->ptp.port.tx;
1550 		ring->dev = dev;
1551 		ring->count = vsi->num_tx_desc;
1552 		ring->txq_teid = ICE_INVAL_TEID;
1553 		if (dvm_ena)
1554 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1555 		else
1556 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1557 		WRITE_ONCE(vsi->tx_rings[i], ring);
1558 	}
1559 
1560 	/* Allocate Rx rings */
1561 	ice_for_each_alloc_rxq(vsi, i) {
1562 		struct ice_rx_ring *ring;
1563 
1564 		/* allocate with kzalloc(), free with kfree_rcu() */
1565 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1566 		if (!ring)
1567 			goto err_out;
1568 
1569 		ring->q_index = i;
1570 		ring->reg_idx = vsi->rxq_map[i];
1571 		ring->vsi = vsi;
1572 		ring->netdev = vsi->netdev;
1573 		ring->dev = dev;
1574 		ring->count = vsi->num_rx_desc;
1575 		ring->cached_phctime = pf->ptp.cached_phc_time;
1576 		WRITE_ONCE(vsi->rx_rings[i], ring);
1577 	}
1578 
1579 	return 0;
1580 
1581 err_out:
1582 	ice_vsi_clear_rings(vsi);
1583 	return -ENOMEM;
1584 }
1585 
1586 /**
1587  * ice_vsi_free_stats - Free the ring statistics structures
1588  * @vsi: VSI pointer
1589  */
1590 static void ice_vsi_free_stats(struct ice_vsi *vsi)
1591 {
1592 	struct ice_vsi_stats *vsi_stat;
1593 	struct ice_pf *pf = vsi->back;
1594 	int i;
1595 
1596 	if (vsi->type == ICE_VSI_CHNL)
1597 		return;
1598 	if (!pf->vsi_stats)
1599 		return;
1600 
1601 	vsi_stat = pf->vsi_stats[vsi->idx];
1602 	if (!vsi_stat)
1603 		return;
1604 
1605 	ice_for_each_alloc_txq(vsi, i) {
1606 		if (vsi_stat->tx_ring_stats[i]) {
1607 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
1608 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
1609 		}
1610 	}
1611 
1612 	ice_for_each_alloc_rxq(vsi, i) {
1613 		if (vsi_stat->rx_ring_stats[i]) {
1614 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
1615 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
1616 		}
1617 	}
1618 
1619 	kfree(vsi_stat->tx_ring_stats);
1620 	kfree(vsi_stat->rx_ring_stats);
1621 	kfree(vsi_stat);
1622 	pf->vsi_stats[vsi->idx] = NULL;
1623 }
1624 
1625 /**
1626  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
1627  * @vsi: VSI which is having stats allocated
1628  */
1629 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
1630 {
1631 	struct ice_ring_stats **tx_ring_stats;
1632 	struct ice_ring_stats **rx_ring_stats;
1633 	struct ice_vsi_stats *vsi_stats;
1634 	struct ice_pf *pf = vsi->back;
1635 	u16 i;
1636 
1637 	vsi_stats = pf->vsi_stats[vsi->idx];
1638 	tx_ring_stats = vsi_stats->tx_ring_stats;
1639 	rx_ring_stats = vsi_stats->rx_ring_stats;
1640 
1641 	/* Allocate Tx ring stats */
1642 	ice_for_each_alloc_txq(vsi, i) {
1643 		struct ice_ring_stats *ring_stats;
1644 		struct ice_tx_ring *ring;
1645 
1646 		ring = vsi->tx_rings[i];
1647 		ring_stats = tx_ring_stats[i];
1648 
1649 		if (!ring_stats) {
1650 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1651 			if (!ring_stats)
1652 				goto err_out;
1653 
1654 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
1655 		}
1656 
1657 		ring->ring_stats = ring_stats;
1658 	}
1659 
1660 	/* Allocate Rx ring stats */
1661 	ice_for_each_alloc_rxq(vsi, i) {
1662 		struct ice_ring_stats *ring_stats;
1663 		struct ice_rx_ring *ring;
1664 
1665 		ring = vsi->rx_rings[i];
1666 		ring_stats = rx_ring_stats[i];
1667 
1668 		if (!ring_stats) {
1669 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1670 			if (!ring_stats)
1671 				goto err_out;
1672 
1673 			 WRITE_ONCE(rx_ring_stats[i], ring_stats);
1674 		}
1675 
1676 		ring->ring_stats = ring_stats;
1677 	}
1678 
1679 	return 0;
1680 
1681 err_out:
1682 	ice_vsi_free_stats(vsi);
1683 	return -ENOMEM;
1684 }
1685 
1686 /**
1687  * ice_vsi_manage_rss_lut - disable/enable RSS
1688  * @vsi: the VSI being changed
1689  * @ena: boolean value indicating if this is an enable or disable request
1690  *
1691  * In the event of disable request for RSS, this function will zero out RSS
1692  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1693  * LUT.
1694  */
1695 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1696 {
1697 	u8 *lut;
1698 
1699 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1700 	if (!lut)
1701 		return;
1702 
1703 	if (ena) {
1704 		if (vsi->rss_lut_user)
1705 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1706 		else
1707 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1708 					 vsi->rss_size);
1709 	}
1710 
1711 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1712 	kfree(lut);
1713 }
1714 
1715 /**
1716  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1717  * @vsi: VSI to be configured
1718  * @disable: set to true to have FCS / CRC in the frame data
1719  */
1720 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1721 {
1722 	int i;
1723 
1724 	ice_for_each_rxq(vsi, i)
1725 		if (disable)
1726 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1727 		else
1728 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1729 }
1730 
1731 /**
1732  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1733  * @vsi: VSI to be configured
1734  */
1735 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1736 {
1737 	struct ice_pf *pf = vsi->back;
1738 	struct device *dev;
1739 	u8 *lut, *key;
1740 	int err;
1741 
1742 	dev = ice_pf_to_dev(pf);
1743 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1744 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1745 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1746 	} else {
1747 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1748 
1749 		/* If orig_rss_size is valid and it is less than determined
1750 		 * main VSI's rss_size, update main VSI's rss_size to be
1751 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1752 		 * RSS table gets programmed to be correct (whatever it was
1753 		 * to begin with (prior to setup-tc for ADQ config)
1754 		 */
1755 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1756 		    vsi->orig_rss_size <= vsi->num_rxq) {
1757 			vsi->rss_size = vsi->orig_rss_size;
1758 			/* now orig_rss_size is used, reset it to zero */
1759 			vsi->orig_rss_size = 0;
1760 		}
1761 	}
1762 
1763 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1764 	if (!lut)
1765 		return -ENOMEM;
1766 
1767 	if (vsi->rss_lut_user)
1768 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1769 	else
1770 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1771 
1772 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1773 	if (err) {
1774 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1775 		goto ice_vsi_cfg_rss_exit;
1776 	}
1777 
1778 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1779 	if (!key) {
1780 		err = -ENOMEM;
1781 		goto ice_vsi_cfg_rss_exit;
1782 	}
1783 
1784 	if (vsi->rss_hkey_user)
1785 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1786 	else
1787 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1788 
1789 	err = ice_set_rss_key(vsi, key);
1790 	if (err)
1791 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1792 
1793 	kfree(key);
1794 ice_vsi_cfg_rss_exit:
1795 	kfree(lut);
1796 	return err;
1797 }
1798 
1799 /**
1800  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1801  * @vsi: VSI to be configured
1802  *
1803  * This function will only be called during the VF VSI setup. Upon successful
1804  * completion of package download, this function will configure default RSS
1805  * input sets for VF VSI.
1806  */
1807 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1808 {
1809 	struct ice_pf *pf = vsi->back;
1810 	struct device *dev;
1811 	int status;
1812 
1813 	dev = ice_pf_to_dev(pf);
1814 	if (ice_is_safe_mode(pf)) {
1815 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1816 			vsi->vsi_num);
1817 		return;
1818 	}
1819 
1820 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1821 	if (status)
1822 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1823 			vsi->vsi_num, status);
1824 }
1825 
1826 /**
1827  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1828  * @vsi: VSI to be configured
1829  *
1830  * This function will only be called after successful download package call
1831  * during initialization of PF. Since the downloaded package will erase the
1832  * RSS section, this function will configure RSS input sets for different
1833  * flow types. The last profile added has the highest priority, therefore 2
1834  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1835  * (i.e. IPv4 src/dst TCP src/dst port).
1836  */
1837 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1838 {
1839 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1840 	struct ice_pf *pf = vsi->back;
1841 	struct ice_hw *hw = &pf->hw;
1842 	struct device *dev;
1843 	int status;
1844 
1845 	dev = ice_pf_to_dev(pf);
1846 	if (ice_is_safe_mode(pf)) {
1847 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1848 			vsi_num);
1849 		return;
1850 	}
1851 	/* configure RSS for IPv4 with input set IP src/dst */
1852 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1853 				 ICE_FLOW_SEG_HDR_IPV4);
1854 	if (status)
1855 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1856 			vsi_num, status);
1857 
1858 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1859 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1860 				 ICE_FLOW_SEG_HDR_IPV6);
1861 	if (status)
1862 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1863 			vsi_num, status);
1864 
1865 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1866 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1867 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1868 	if (status)
1869 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1870 			vsi_num, status);
1871 
1872 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1873 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1874 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1875 	if (status)
1876 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1877 			vsi_num, status);
1878 
1879 	/* configure RSS for sctp4 with input set IP src/dst */
1880 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1881 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1882 	if (status)
1883 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1884 			vsi_num, status);
1885 
1886 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1887 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1888 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1889 	if (status)
1890 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1891 			vsi_num, status);
1892 
1893 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1894 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1895 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1896 	if (status)
1897 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1898 			vsi_num, status);
1899 
1900 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1901 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1902 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1903 	if (status)
1904 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1905 			vsi_num, status);
1906 
1907 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1908 				 ICE_FLOW_SEG_HDR_ESP);
1909 	if (status)
1910 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1911 			vsi_num, status);
1912 }
1913 
1914 /**
1915  * ice_pf_state_is_nominal - checks the PF for nominal state
1916  * @pf: pointer to PF to check
1917  *
1918  * Check the PF's state for a collection of bits that would indicate
1919  * the PF is in a state that would inhibit normal operation for
1920  * driver functionality.
1921  *
1922  * Returns true if PF is in a nominal state, false otherwise
1923  */
1924 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1925 {
1926 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1927 
1928 	if (!pf)
1929 		return false;
1930 
1931 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1932 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1933 		return false;
1934 
1935 	return true;
1936 }
1937 
1938 /**
1939  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1940  * @vsi: the VSI to be updated
1941  */
1942 void ice_update_eth_stats(struct ice_vsi *vsi)
1943 {
1944 	struct ice_eth_stats *prev_es, *cur_es;
1945 	struct ice_hw *hw = &vsi->back->hw;
1946 	struct ice_pf *pf = vsi->back;
1947 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1948 
1949 	prev_es = &vsi->eth_stats_prev;
1950 	cur_es = &vsi->eth_stats;
1951 
1952 	if (ice_is_reset_in_progress(pf->state))
1953 		vsi->stat_offsets_loaded = false;
1954 
1955 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1956 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1957 
1958 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1959 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1960 
1961 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1962 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1963 
1964 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1965 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1966 
1967 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1968 			  &prev_es->rx_discards, &cur_es->rx_discards);
1969 
1970 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1971 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1972 
1973 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1974 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1975 
1976 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1977 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1978 
1979 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1980 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1981 
1982 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1983 			  &prev_es->tx_errors, &cur_es->tx_errors);
1984 
1985 	vsi->stat_offsets_loaded = true;
1986 }
1987 
1988 /**
1989  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1990  * @vsi: VSI
1991  */
1992 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1993 {
1994 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1995 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1996 		vsi->rx_buf_len = ICE_RXBUF_2048;
1997 #if (PAGE_SIZE < 8192)
1998 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1999 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
2000 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
2001 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
2002 #endif
2003 	} else {
2004 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
2005 #if (PAGE_SIZE < 8192)
2006 		vsi->rx_buf_len = ICE_RXBUF_3072;
2007 #else
2008 		vsi->rx_buf_len = ICE_RXBUF_2048;
2009 #endif
2010 	}
2011 }
2012 
2013 /**
2014  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
2015  * @hw: HW pointer
2016  * @pf_q: index of the Rx queue in the PF's queue space
2017  * @rxdid: flexible descriptor RXDID
2018  * @prio: priority for the RXDID for this queue
2019  * @ena_ts: true to enable timestamp and false to disable timestamp
2020  */
2021 void
2022 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
2023 			bool ena_ts)
2024 {
2025 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
2026 
2027 	/* clear any previous values */
2028 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
2029 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
2030 		    QRXFLXP_CNTXT_TS_M);
2031 
2032 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
2033 		QRXFLXP_CNTXT_RXDID_IDX_M;
2034 
2035 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
2036 		QRXFLXP_CNTXT_RXDID_PRIO_M;
2037 
2038 	if (ena_ts)
2039 		/* Enable TimeSync on this queue */
2040 		regval |= QRXFLXP_CNTXT_TS_M;
2041 
2042 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
2043 }
2044 
2045 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
2046 {
2047 	if (q_idx >= vsi->num_rxq)
2048 		return -EINVAL;
2049 
2050 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
2051 }
2052 
2053 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
2054 {
2055 	struct ice_aqc_add_tx_qgrp *qg_buf;
2056 	int err;
2057 
2058 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
2059 		return -EINVAL;
2060 
2061 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2062 	if (!qg_buf)
2063 		return -ENOMEM;
2064 
2065 	qg_buf->num_txqs = 1;
2066 
2067 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
2068 	kfree(qg_buf);
2069 	return err;
2070 }
2071 
2072 /**
2073  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
2074  * @vsi: the VSI being configured
2075  *
2076  * Return 0 on success and a negative value on error
2077  * Configure the Rx VSI for operation.
2078  */
2079 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
2080 {
2081 	u16 i;
2082 
2083 	if (vsi->type == ICE_VSI_VF)
2084 		goto setup_rings;
2085 
2086 	ice_vsi_cfg_frame_size(vsi);
2087 setup_rings:
2088 	/* set up individual rings */
2089 	ice_for_each_rxq(vsi, i) {
2090 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
2091 
2092 		if (err)
2093 			return err;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 /**
2100  * ice_vsi_cfg_txqs - Configure the VSI for Tx
2101  * @vsi: the VSI being configured
2102  * @rings: Tx ring array to be configured
2103  * @count: number of Tx ring array elements
2104  *
2105  * Return 0 on success and a negative value on error
2106  * Configure the Tx VSI for operation.
2107  */
2108 static int
2109 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
2110 {
2111 	struct ice_aqc_add_tx_qgrp *qg_buf;
2112 	u16 q_idx = 0;
2113 	int err = 0;
2114 
2115 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2116 	if (!qg_buf)
2117 		return -ENOMEM;
2118 
2119 	qg_buf->num_txqs = 1;
2120 
2121 	for (q_idx = 0; q_idx < count; q_idx++) {
2122 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
2123 		if (err)
2124 			goto err_cfg_txqs;
2125 	}
2126 
2127 err_cfg_txqs:
2128 	kfree(qg_buf);
2129 	return err;
2130 }
2131 
2132 /**
2133  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
2134  * @vsi: the VSI being configured
2135  *
2136  * Return 0 on success and a negative value on error
2137  * Configure the Tx VSI for operation.
2138  */
2139 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
2140 {
2141 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
2142 }
2143 
2144 /**
2145  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
2146  * @vsi: the VSI being configured
2147  *
2148  * Return 0 on success and a negative value on error
2149  * Configure the Tx queues dedicated for XDP in given VSI for operation.
2150  */
2151 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
2152 {
2153 	int ret;
2154 	int i;
2155 
2156 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
2157 	if (ret)
2158 		return ret;
2159 
2160 	ice_for_each_rxq(vsi, i)
2161 		ice_tx_xsk_pool(vsi, i);
2162 
2163 	return ret;
2164 }
2165 
2166 /**
2167  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
2168  * @intrl: interrupt rate limit in usecs
2169  * @gran: interrupt rate limit granularity in usecs
2170  *
2171  * This function converts a decimal interrupt rate limit in usecs to the format
2172  * expected by firmware.
2173  */
2174 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2175 {
2176 	u32 val = intrl / gran;
2177 
2178 	if (val)
2179 		return val | GLINT_RATE_INTRL_ENA_M;
2180 	return 0;
2181 }
2182 
2183 /**
2184  * ice_write_intrl - write throttle rate limit to interrupt specific register
2185  * @q_vector: pointer to interrupt specific structure
2186  * @intrl: throttle rate limit in microseconds to write
2187  */
2188 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2189 {
2190 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2191 
2192 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2193 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2194 }
2195 
2196 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2197 {
2198 	switch (rc->type) {
2199 	case ICE_RX_CONTAINER:
2200 		if (rc->rx_ring)
2201 			return rc->rx_ring->q_vector;
2202 		break;
2203 	case ICE_TX_CONTAINER:
2204 		if (rc->tx_ring)
2205 			return rc->tx_ring->q_vector;
2206 		break;
2207 	default:
2208 		break;
2209 	}
2210 
2211 	return NULL;
2212 }
2213 
2214 /**
2215  * __ice_write_itr - write throttle rate to register
2216  * @q_vector: pointer to interrupt data structure
2217  * @rc: pointer to ring container
2218  * @itr: throttle rate in microseconds to write
2219  */
2220 static void __ice_write_itr(struct ice_q_vector *q_vector,
2221 			    struct ice_ring_container *rc, u16 itr)
2222 {
2223 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2224 
2225 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2226 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2227 }
2228 
2229 /**
2230  * ice_write_itr - write throttle rate to queue specific register
2231  * @rc: pointer to ring container
2232  * @itr: throttle rate in microseconds to write
2233  */
2234 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2235 {
2236 	struct ice_q_vector *q_vector;
2237 
2238 	q_vector = ice_pull_qvec_from_rc(rc);
2239 	if (!q_vector)
2240 		return;
2241 
2242 	__ice_write_itr(q_vector, rc, itr);
2243 }
2244 
2245 /**
2246  * ice_set_q_vector_intrl - set up interrupt rate limiting
2247  * @q_vector: the vector to be configured
2248  *
2249  * Interrupt rate limiting is local to the vector, not per-queue so we must
2250  * detect if either ring container has dynamic moderation enabled to decide
2251  * what to set the interrupt rate limit to via INTRL settings. In the case that
2252  * dynamic moderation is disabled on both, write the value with the cached
2253  * setting to make sure INTRL register matches the user visible value.
2254  */
2255 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2256 {
2257 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2258 		/* in the case of dynamic enabled, cap each vector to no more
2259 		 * than (4 us) 250,000 ints/sec, which allows low latency
2260 		 * but still less than 500,000 interrupts per second, which
2261 		 * reduces CPU a bit in the case of the lowest latency
2262 		 * setting. The 4 here is a value in microseconds.
2263 		 */
2264 		ice_write_intrl(q_vector, 4);
2265 	} else {
2266 		ice_write_intrl(q_vector, q_vector->intrl);
2267 	}
2268 }
2269 
2270 /**
2271  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2272  * @vsi: the VSI being configured
2273  *
2274  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2275  * for the VF VSI.
2276  */
2277 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2278 {
2279 	struct ice_pf *pf = vsi->back;
2280 	struct ice_hw *hw = &pf->hw;
2281 	u16 txq = 0, rxq = 0;
2282 	int i, q;
2283 
2284 	ice_for_each_q_vector(vsi, i) {
2285 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2286 		u16 reg_idx = q_vector->reg_idx;
2287 
2288 		ice_cfg_itr(hw, q_vector);
2289 
2290 		/* Both Transmit Queue Interrupt Cause Control register
2291 		 * and Receive Queue Interrupt Cause control register
2292 		 * expects MSIX_INDX field to be the vector index
2293 		 * within the function space and not the absolute
2294 		 * vector index across PF or across device.
2295 		 * For SR-IOV VF VSIs queue vector index always starts
2296 		 * with 1 since first vector index(0) is used for OICR
2297 		 * in VF space. Since VMDq and other PF VSIs are within
2298 		 * the PF function space, use the vector index that is
2299 		 * tracked for this PF.
2300 		 */
2301 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2302 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2303 					      q_vector->tx.itr_idx);
2304 			txq++;
2305 		}
2306 
2307 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2308 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2309 					      q_vector->rx.itr_idx);
2310 			rxq++;
2311 		}
2312 	}
2313 }
2314 
2315 /**
2316  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2317  * @vsi: the VSI whose rings are to be enabled
2318  *
2319  * Returns 0 on success and a negative value on error
2320  */
2321 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2322 {
2323 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2324 }
2325 
2326 /**
2327  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2328  * @vsi: the VSI whose rings are to be disabled
2329  *
2330  * Returns 0 on success and a negative value on error
2331  */
2332 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2333 {
2334 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2335 }
2336 
2337 /**
2338  * ice_vsi_stop_tx_rings - Disable Tx rings
2339  * @vsi: the VSI being configured
2340  * @rst_src: reset source
2341  * @rel_vmvf_num: Relative ID of VF/VM
2342  * @rings: Tx ring array to be stopped
2343  * @count: number of Tx ring array elements
2344  */
2345 static int
2346 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2347 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2348 {
2349 	u16 q_idx;
2350 
2351 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2352 		return -EINVAL;
2353 
2354 	for (q_idx = 0; q_idx < count; q_idx++) {
2355 		struct ice_txq_meta txq_meta = { };
2356 		int status;
2357 
2358 		if (!rings || !rings[q_idx])
2359 			return -EINVAL;
2360 
2361 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2362 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2363 					      rings[q_idx], &txq_meta);
2364 
2365 		if (status)
2366 			return status;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 /**
2373  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2374  * @vsi: the VSI being configured
2375  * @rst_src: reset source
2376  * @rel_vmvf_num: Relative ID of VF/VM
2377  */
2378 int
2379 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2380 			  u16 rel_vmvf_num)
2381 {
2382 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2383 }
2384 
2385 /**
2386  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2387  * @vsi: the VSI being configured
2388  */
2389 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2390 {
2391 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2392 }
2393 
2394 /**
2395  * ice_vsi_is_rx_queue_active
2396  * @vsi: the VSI being configured
2397  *
2398  * Return true if at least one queue is active.
2399  */
2400 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2401 {
2402 	struct ice_pf *pf = vsi->back;
2403 	struct ice_hw *hw = &pf->hw;
2404 	int i;
2405 
2406 	ice_for_each_rxq(vsi, i) {
2407 		u32 rx_reg;
2408 		int pf_q;
2409 
2410 		pf_q = vsi->rxq_map[i];
2411 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2412 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2413 			return true;
2414 	}
2415 
2416 	return false;
2417 }
2418 
2419 /**
2420  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2421  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2422  *
2423  * returns true if Rx VLAN pruning is enabled and false otherwise.
2424  */
2425 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2426 {
2427 	if (!vsi)
2428 		return false;
2429 
2430 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2431 }
2432 
2433 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2434 {
2435 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2436 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2437 		vsi->tc_cfg.numtc = 1;
2438 		return;
2439 	}
2440 
2441 	/* set VSI TC information based on DCB config */
2442 	ice_vsi_set_dcb_tc_cfg(vsi);
2443 }
2444 
2445 /**
2446  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2447  * @vsi: VSI to set the q_vectors register index on
2448  */
2449 static int
2450 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2451 {
2452 	u16 i;
2453 
2454 	if (!vsi || !vsi->q_vectors)
2455 		return -EINVAL;
2456 
2457 	ice_for_each_q_vector(vsi, i) {
2458 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2459 
2460 		if (!q_vector) {
2461 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2462 				i, vsi->vsi_num);
2463 			goto clear_reg_idx;
2464 		}
2465 
2466 		if (vsi->type == ICE_VSI_VF) {
2467 			struct ice_vf *vf = vsi->vf;
2468 
2469 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2470 		} else {
2471 			q_vector->reg_idx =
2472 				q_vector->v_idx + vsi->base_vector;
2473 		}
2474 	}
2475 
2476 	return 0;
2477 
2478 clear_reg_idx:
2479 	ice_for_each_q_vector(vsi, i) {
2480 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2481 
2482 		if (q_vector)
2483 			q_vector->reg_idx = 0;
2484 	}
2485 
2486 	return -EINVAL;
2487 }
2488 
2489 /**
2490  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2491  * @vsi: the VSI being configured
2492  * @tx: bool to determine Tx or Rx rule
2493  * @create: bool to determine create or remove Rule
2494  */
2495 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2496 {
2497 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2498 			enum ice_sw_fwd_act_type act);
2499 	struct ice_pf *pf = vsi->back;
2500 	struct device *dev;
2501 	int status;
2502 
2503 	dev = ice_pf_to_dev(pf);
2504 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2505 
2506 	if (tx) {
2507 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2508 				  ICE_DROP_PACKET);
2509 	} else {
2510 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2511 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2512 							  create);
2513 		} else {
2514 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2515 					  ICE_FWD_TO_VSI);
2516 		}
2517 	}
2518 
2519 	if (status)
2520 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2521 			create ? "adding" : "removing", tx ? "TX" : "RX",
2522 			vsi->vsi_num, status);
2523 }
2524 
2525 /**
2526  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2527  * @vsi: pointer to the VSI
2528  *
2529  * This function will allocate new scheduler aggregator now if needed and will
2530  * move specified VSI into it.
2531  */
2532 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2533 {
2534 	struct device *dev = ice_pf_to_dev(vsi->back);
2535 	struct ice_agg_node *agg_node_iter = NULL;
2536 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2537 	struct ice_agg_node *agg_node = NULL;
2538 	int node_offset, max_agg_nodes = 0;
2539 	struct ice_port_info *port_info;
2540 	struct ice_pf *pf = vsi->back;
2541 	u32 agg_node_id_start = 0;
2542 	int status;
2543 
2544 	/* create (as needed) scheduler aggregator node and move VSI into
2545 	 * corresponding aggregator node
2546 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2547 	 * - VF aggregator nodes will contain VF VSI
2548 	 */
2549 	port_info = pf->hw.port_info;
2550 	if (!port_info)
2551 		return;
2552 
2553 	switch (vsi->type) {
2554 	case ICE_VSI_CTRL:
2555 	case ICE_VSI_CHNL:
2556 	case ICE_VSI_LB:
2557 	case ICE_VSI_PF:
2558 	case ICE_VSI_SWITCHDEV_CTRL:
2559 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2560 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2561 		agg_node_iter = &pf->pf_agg_node[0];
2562 		break;
2563 	case ICE_VSI_VF:
2564 		/* user can create 'n' VFs on a given PF, but since max children
2565 		 * per aggregator node can be only 64. Following code handles
2566 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2567 		 * was already created provided num_vsis < 64, otherwise
2568 		 * select next available node, which will be created
2569 		 */
2570 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2571 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2572 		agg_node_iter = &pf->vf_agg_node[0];
2573 		break;
2574 	default:
2575 		/* other VSI type, handle later if needed */
2576 		dev_dbg(dev, "unexpected VSI type %s\n",
2577 			ice_vsi_type_str(vsi->type));
2578 		return;
2579 	}
2580 
2581 	/* find the appropriate aggregator node */
2582 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2583 		/* see if we can find space in previously created
2584 		 * node if num_vsis < 64, otherwise skip
2585 		 */
2586 		if (agg_node_iter->num_vsis &&
2587 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2588 			agg_node_iter++;
2589 			continue;
2590 		}
2591 
2592 		if (agg_node_iter->valid &&
2593 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2594 			agg_id = agg_node_iter->agg_id;
2595 			agg_node = agg_node_iter;
2596 			break;
2597 		}
2598 
2599 		/* find unclaimed agg_id */
2600 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2601 			agg_id = node_offset + agg_node_id_start;
2602 			agg_node = agg_node_iter;
2603 			break;
2604 		}
2605 		/* move to next agg_node */
2606 		agg_node_iter++;
2607 	}
2608 
2609 	if (!agg_node)
2610 		return;
2611 
2612 	/* if selected aggregator node was not created, create it */
2613 	if (!agg_node->valid) {
2614 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2615 				     (u8)vsi->tc_cfg.ena_tc);
2616 		if (status) {
2617 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2618 				agg_id);
2619 			return;
2620 		}
2621 		/* aggregator node is created, store the needed info */
2622 		agg_node->valid = true;
2623 		agg_node->agg_id = agg_id;
2624 	}
2625 
2626 	/* move VSI to corresponding aggregator node */
2627 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2628 				     (u8)vsi->tc_cfg.ena_tc);
2629 	if (status) {
2630 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2631 			vsi->idx, agg_id);
2632 		return;
2633 	}
2634 
2635 	/* keep active children count for aggregator node */
2636 	agg_node->num_vsis++;
2637 
2638 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2639 	 * to aggregator node
2640 	 */
2641 	vsi->agg_node = agg_node;
2642 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2643 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2644 		vsi->agg_node->num_vsis);
2645 }
2646 
2647 /**
2648  * ice_vsi_setup - Set up a VSI by a given type
2649  * @pf: board private structure
2650  * @pi: pointer to the port_info instance
2651  * @vsi_type: VSI type
2652  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2653  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2654  * @ch: ptr to channel
2655  *
2656  * This allocates the sw VSI structure and its queue resources.
2657  *
2658  * Returns pointer to the successfully allocated and configured VSI sw struct on
2659  * success, NULL on failure.
2660  */
2661 struct ice_vsi *
2662 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2663 	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2664 	      struct ice_channel *ch)
2665 {
2666 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2667 	struct device *dev = ice_pf_to_dev(pf);
2668 	struct ice_vsi *vsi;
2669 	int ret, i;
2670 
2671 	if (vsi_type == ICE_VSI_CHNL)
2672 		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2673 	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2674 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2675 	else
2676 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2677 
2678 	if (!vsi) {
2679 		dev_err(dev, "could not allocate VSI\n");
2680 		return NULL;
2681 	}
2682 
2683 	vsi->port_info = pi;
2684 	vsi->vsw = pf->first_sw;
2685 	if (vsi->type == ICE_VSI_PF)
2686 		vsi->ethtype = ETH_P_PAUSE;
2687 
2688 	ice_alloc_fd_res(vsi);
2689 
2690 	if (vsi_type != ICE_VSI_CHNL) {
2691 		if (ice_vsi_get_qs(vsi)) {
2692 			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2693 				vsi->idx);
2694 			goto unroll_vsi_alloc;
2695 		}
2696 	}
2697 
2698 	/* set RSS capabilities */
2699 	ice_vsi_set_rss_params(vsi);
2700 
2701 	/* set TC configuration */
2702 	ice_vsi_set_tc_cfg(vsi);
2703 
2704 	/* create the VSI */
2705 	ret = ice_vsi_init(vsi, true);
2706 	if (ret)
2707 		goto unroll_get_qs;
2708 
2709 	ice_vsi_init_vlan_ops(vsi);
2710 
2711 	switch (vsi->type) {
2712 	case ICE_VSI_CTRL:
2713 	case ICE_VSI_SWITCHDEV_CTRL:
2714 	case ICE_VSI_PF:
2715 		ret = ice_vsi_alloc_q_vectors(vsi);
2716 		if (ret)
2717 			goto unroll_vsi_init;
2718 
2719 		ret = ice_vsi_setup_vector_base(vsi);
2720 		if (ret)
2721 			goto unroll_alloc_q_vector;
2722 
2723 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2724 		if (ret)
2725 			goto unroll_vector_base;
2726 
2727 		ret = ice_vsi_alloc_rings(vsi);
2728 		if (ret)
2729 			goto unroll_vector_base;
2730 
2731 		ret = ice_vsi_alloc_ring_stats(vsi);
2732 		if (ret)
2733 			goto unroll_vector_base;
2734 
2735 		ice_vsi_map_rings_to_vectors(vsi);
2736 
2737 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2738 		if (vsi->type != ICE_VSI_CTRL)
2739 			/* Do not exit if configuring RSS had an issue, at
2740 			 * least receive traffic on first queue. Hence no
2741 			 * need to capture return value
2742 			 */
2743 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2744 				ice_vsi_cfg_rss_lut_key(vsi);
2745 				ice_vsi_set_rss_flow_fld(vsi);
2746 			}
2747 		ice_init_arfs(vsi);
2748 		break;
2749 	case ICE_VSI_CHNL:
2750 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2751 			ice_vsi_cfg_rss_lut_key(vsi);
2752 			ice_vsi_set_rss_flow_fld(vsi);
2753 		}
2754 		break;
2755 	case ICE_VSI_VF:
2756 		/* VF driver will take care of creating netdev for this type and
2757 		 * map queues to vectors through Virtchnl, PF driver only
2758 		 * creates a VSI and corresponding structures for bookkeeping
2759 		 * purpose
2760 		 */
2761 		ret = ice_vsi_alloc_q_vectors(vsi);
2762 		if (ret)
2763 			goto unroll_vsi_init;
2764 
2765 		ret = ice_vsi_alloc_rings(vsi);
2766 		if (ret)
2767 			goto unroll_alloc_q_vector;
2768 
2769 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2770 		if (ret)
2771 			goto unroll_vector_base;
2772 
2773 		ret = ice_vsi_alloc_ring_stats(vsi);
2774 		if (ret)
2775 			goto unroll_vector_base;
2776 		/* Do not exit if configuring RSS had an issue, at least
2777 		 * receive traffic on first queue. Hence no need to capture
2778 		 * return value
2779 		 */
2780 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2781 			ice_vsi_cfg_rss_lut_key(vsi);
2782 			ice_vsi_set_vf_rss_flow_fld(vsi);
2783 		}
2784 		break;
2785 	case ICE_VSI_LB:
2786 		ret = ice_vsi_alloc_rings(vsi);
2787 		if (ret)
2788 			goto unroll_vsi_init;
2789 
2790 		ret = ice_vsi_alloc_ring_stats(vsi);
2791 		if (ret)
2792 			goto unroll_vector_base;
2793 
2794 		break;
2795 	default:
2796 		/* clean up the resources and exit */
2797 		goto unroll_vsi_init;
2798 	}
2799 
2800 	/* configure VSI nodes based on number of queues and TC's */
2801 	ice_for_each_traffic_class(i) {
2802 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2803 			continue;
2804 
2805 		if (vsi->type == ICE_VSI_CHNL) {
2806 			if (!vsi->alloc_txq && vsi->num_txq)
2807 				max_txqs[i] = vsi->num_txq;
2808 			else
2809 				max_txqs[i] = pf->num_lan_tx;
2810 		} else {
2811 			max_txqs[i] = vsi->alloc_txq;
2812 		}
2813 	}
2814 
2815 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2816 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2817 			      max_txqs);
2818 	if (ret) {
2819 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2820 			vsi->vsi_num, ret);
2821 		goto unroll_clear_rings;
2822 	}
2823 
2824 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2825 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2826 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2827 	 * The rule is added once for PF VSI in order to create appropriate
2828 	 * recipe, since VSI/VSI list is ignored with drop action...
2829 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2830 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2831 	 * settings in the HW.
2832 	 */
2833 	if (!ice_is_safe_mode(pf))
2834 		if (vsi->type == ICE_VSI_PF) {
2835 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2836 					 ICE_DROP_PACKET);
2837 			ice_cfg_sw_lldp(vsi, true, true);
2838 		}
2839 
2840 	if (!vsi->agg_node)
2841 		ice_set_agg_vsi(vsi);
2842 	return vsi;
2843 
2844 unroll_clear_rings:
2845 	ice_vsi_clear_rings(vsi);
2846 unroll_vector_base:
2847 	/* reclaim SW interrupts back to the common pool */
2848 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2849 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2850 unroll_alloc_q_vector:
2851 	ice_vsi_free_q_vectors(vsi);
2852 unroll_vsi_init:
2853 	ice_vsi_free_stats(vsi);
2854 	ice_vsi_delete(vsi);
2855 unroll_get_qs:
2856 	ice_vsi_put_qs(vsi);
2857 unroll_vsi_alloc:
2858 	if (vsi_type == ICE_VSI_VF)
2859 		ice_enable_lag(pf->lag);
2860 	ice_vsi_clear(vsi);
2861 
2862 	return NULL;
2863 }
2864 
2865 /**
2866  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2867  * @vsi: the VSI being cleaned up
2868  */
2869 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2870 {
2871 	struct ice_pf *pf = vsi->back;
2872 	struct ice_hw *hw = &pf->hw;
2873 	u32 txq = 0;
2874 	u32 rxq = 0;
2875 	int i, q;
2876 
2877 	ice_for_each_q_vector(vsi, i) {
2878 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2879 
2880 		ice_write_intrl(q_vector, 0);
2881 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2882 			ice_write_itr(&q_vector->tx, 0);
2883 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2884 			if (ice_is_xdp_ena_vsi(vsi)) {
2885 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2886 
2887 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2888 			}
2889 			txq++;
2890 		}
2891 
2892 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2893 			ice_write_itr(&q_vector->rx, 0);
2894 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2895 			rxq++;
2896 		}
2897 	}
2898 
2899 	ice_flush(hw);
2900 }
2901 
2902 /**
2903  * ice_vsi_free_irq - Free the IRQ association with the OS
2904  * @vsi: the VSI being configured
2905  */
2906 void ice_vsi_free_irq(struct ice_vsi *vsi)
2907 {
2908 	struct ice_pf *pf = vsi->back;
2909 	int base = vsi->base_vector;
2910 	int i;
2911 
2912 	if (!vsi->q_vectors || !vsi->irqs_ready)
2913 		return;
2914 
2915 	ice_vsi_release_msix(vsi);
2916 	if (vsi->type == ICE_VSI_VF)
2917 		return;
2918 
2919 	vsi->irqs_ready = false;
2920 	ice_free_cpu_rx_rmap(vsi);
2921 
2922 	ice_for_each_q_vector(vsi, i) {
2923 		u16 vector = i + base;
2924 		int irq_num;
2925 
2926 		irq_num = pf->msix_entries[vector].vector;
2927 
2928 		/* free only the irqs that were actually requested */
2929 		if (!vsi->q_vectors[i] ||
2930 		    !(vsi->q_vectors[i]->num_ring_tx ||
2931 		      vsi->q_vectors[i]->num_ring_rx))
2932 			continue;
2933 
2934 		/* clear the affinity notifier in the IRQ descriptor */
2935 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2936 			irq_set_affinity_notifier(irq_num, NULL);
2937 
2938 		/* clear the affinity_mask in the IRQ descriptor */
2939 		irq_set_affinity_hint(irq_num, NULL);
2940 		synchronize_irq(irq_num);
2941 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2942 	}
2943 }
2944 
2945 /**
2946  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2947  * @vsi: the VSI having resources freed
2948  */
2949 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2950 {
2951 	int i;
2952 
2953 	if (!vsi->tx_rings)
2954 		return;
2955 
2956 	ice_for_each_txq(vsi, i)
2957 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2958 			ice_free_tx_ring(vsi->tx_rings[i]);
2959 }
2960 
2961 /**
2962  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2963  * @vsi: the VSI having resources freed
2964  */
2965 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2966 {
2967 	int i;
2968 
2969 	if (!vsi->rx_rings)
2970 		return;
2971 
2972 	ice_for_each_rxq(vsi, i)
2973 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2974 			ice_free_rx_ring(vsi->rx_rings[i]);
2975 }
2976 
2977 /**
2978  * ice_vsi_close - Shut down a VSI
2979  * @vsi: the VSI being shut down
2980  */
2981 void ice_vsi_close(struct ice_vsi *vsi)
2982 {
2983 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2984 		ice_down(vsi);
2985 
2986 	ice_vsi_free_irq(vsi);
2987 	ice_vsi_free_tx_rings(vsi);
2988 	ice_vsi_free_rx_rings(vsi);
2989 }
2990 
2991 /**
2992  * ice_ena_vsi - resume a VSI
2993  * @vsi: the VSI being resume
2994  * @locked: is the rtnl_lock already held
2995  */
2996 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2997 {
2998 	int err = 0;
2999 
3000 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
3001 		return 0;
3002 
3003 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3004 
3005 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3006 		if (netif_running(vsi->netdev)) {
3007 			if (!locked)
3008 				rtnl_lock();
3009 
3010 			err = ice_open_internal(vsi->netdev);
3011 
3012 			if (!locked)
3013 				rtnl_unlock();
3014 		}
3015 	} else if (vsi->type == ICE_VSI_CTRL) {
3016 		err = ice_vsi_open_ctrl(vsi);
3017 	}
3018 
3019 	return err;
3020 }
3021 
3022 /**
3023  * ice_dis_vsi - pause a VSI
3024  * @vsi: the VSI being paused
3025  * @locked: is the rtnl_lock already held
3026  */
3027 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
3028 {
3029 	if (test_bit(ICE_VSI_DOWN, vsi->state))
3030 		return;
3031 
3032 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3033 
3034 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
3035 		if (netif_running(vsi->netdev)) {
3036 			if (!locked)
3037 				rtnl_lock();
3038 
3039 			ice_vsi_close(vsi);
3040 
3041 			if (!locked)
3042 				rtnl_unlock();
3043 		} else {
3044 			ice_vsi_close(vsi);
3045 		}
3046 	} else if (vsi->type == ICE_VSI_CTRL ||
3047 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
3048 		ice_vsi_close(vsi);
3049 	}
3050 }
3051 
3052 /**
3053  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
3054  * @vsi: the VSI being un-configured
3055  */
3056 void ice_vsi_dis_irq(struct ice_vsi *vsi)
3057 {
3058 	int base = vsi->base_vector;
3059 	struct ice_pf *pf = vsi->back;
3060 	struct ice_hw *hw = &pf->hw;
3061 	u32 val;
3062 	int i;
3063 
3064 	/* disable interrupt causation from each queue */
3065 	if (vsi->tx_rings) {
3066 		ice_for_each_txq(vsi, i) {
3067 			if (vsi->tx_rings[i]) {
3068 				u16 reg;
3069 
3070 				reg = vsi->tx_rings[i]->reg_idx;
3071 				val = rd32(hw, QINT_TQCTL(reg));
3072 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
3073 				wr32(hw, QINT_TQCTL(reg), val);
3074 			}
3075 		}
3076 	}
3077 
3078 	if (vsi->rx_rings) {
3079 		ice_for_each_rxq(vsi, i) {
3080 			if (vsi->rx_rings[i]) {
3081 				u16 reg;
3082 
3083 				reg = vsi->rx_rings[i]->reg_idx;
3084 				val = rd32(hw, QINT_RQCTL(reg));
3085 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
3086 				wr32(hw, QINT_RQCTL(reg), val);
3087 			}
3088 		}
3089 	}
3090 
3091 	/* disable each interrupt */
3092 	ice_for_each_q_vector(vsi, i) {
3093 		if (!vsi->q_vectors[i])
3094 			continue;
3095 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
3096 	}
3097 
3098 	ice_flush(hw);
3099 
3100 	/* don't call synchronize_irq() for VF's from the host */
3101 	if (vsi->type == ICE_VSI_VF)
3102 		return;
3103 
3104 	ice_for_each_q_vector(vsi, i)
3105 		synchronize_irq(pf->msix_entries[i + base].vector);
3106 }
3107 
3108 /**
3109  * ice_napi_del - Remove NAPI handler for the VSI
3110  * @vsi: VSI for which NAPI handler is to be removed
3111  */
3112 void ice_napi_del(struct ice_vsi *vsi)
3113 {
3114 	int v_idx;
3115 
3116 	if (!vsi->netdev)
3117 		return;
3118 
3119 	ice_for_each_q_vector(vsi, v_idx)
3120 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
3121 }
3122 
3123 /**
3124  * ice_free_vf_ctrl_res - Free the VF control VSI resource
3125  * @pf: pointer to PF structure
3126  * @vsi: the VSI to free resources for
3127  *
3128  * Check if the VF control VSI resource is still in use. If no VF is using it
3129  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
3130  * once no other VF uses it.
3131  */
3132 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
3133 {
3134 	struct ice_vf *vf;
3135 	unsigned int bkt;
3136 
3137 	rcu_read_lock();
3138 	ice_for_each_vf_rcu(pf, bkt, vf) {
3139 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
3140 			rcu_read_unlock();
3141 			return;
3142 		}
3143 	}
3144 	rcu_read_unlock();
3145 
3146 	/* No other VFs left that have control VSI. It is now safe to reclaim
3147 	 * SW interrupts back to the common pool.
3148 	 */
3149 	ice_free_res(pf->irq_tracker, vsi->base_vector,
3150 		     ICE_RES_VF_CTRL_VEC_ID);
3151 	pf->num_avail_sw_msix += vsi->num_q_vectors;
3152 }
3153 
3154 /**
3155  * ice_vsi_release - Delete a VSI and free its resources
3156  * @vsi: the VSI being removed
3157  *
3158  * Returns 0 on success or < 0 on error
3159  */
3160 int ice_vsi_release(struct ice_vsi *vsi)
3161 {
3162 	struct ice_pf *pf;
3163 	int err;
3164 
3165 	if (!vsi->back)
3166 		return -ENODEV;
3167 	pf = vsi->back;
3168 
3169 	/* do not unregister while driver is in the reset recovery pending
3170 	 * state. Since reset/rebuild happens through PF service task workqueue,
3171 	 * it's not a good idea to unregister netdev that is associated to the
3172 	 * PF that is running the work queue items currently. This is done to
3173 	 * avoid check_flush_dependency() warning on this wq
3174 	 */
3175 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
3176 	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
3177 		unregister_netdev(vsi->netdev);
3178 		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3179 	}
3180 
3181 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3182 		ice_rss_clean(vsi);
3183 
3184 	/* Disable VSI and free resources */
3185 	if (vsi->type != ICE_VSI_LB)
3186 		ice_vsi_dis_irq(vsi);
3187 	ice_vsi_close(vsi);
3188 
3189 	/* SR-IOV determines needed MSIX resources all at once instead of per
3190 	 * VSI since when VFs are spawned we know how many VFs there are and how
3191 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3192 	 * cleared in the same manner.
3193 	 */
3194 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
3195 		ice_free_vf_ctrl_res(pf, vsi);
3196 	} else if (vsi->type != ICE_VSI_VF) {
3197 		/* reclaim SW interrupts back to the common pool */
3198 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3199 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3200 	}
3201 
3202 	if (!ice_is_safe_mode(pf)) {
3203 		if (vsi->type == ICE_VSI_PF) {
3204 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3205 					    ICE_DROP_PACKET);
3206 			ice_cfg_sw_lldp(vsi, true, false);
3207 			/* The Rx rule will only exist to remove if the LLDP FW
3208 			 * engine is currently stopped
3209 			 */
3210 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3211 				ice_cfg_sw_lldp(vsi, false, false);
3212 		}
3213 	}
3214 
3215 	if (ice_is_vsi_dflt_vsi(vsi))
3216 		ice_clear_dflt_vsi(vsi);
3217 	ice_fltr_remove_all(vsi);
3218 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3219 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3220 	if (err)
3221 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3222 			vsi->vsi_num, err);
3223 	ice_vsi_delete(vsi);
3224 	ice_vsi_free_q_vectors(vsi);
3225 
3226 	if (vsi->netdev) {
3227 		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3228 			unregister_netdev(vsi->netdev);
3229 			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3230 		}
3231 		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3232 			free_netdev(vsi->netdev);
3233 			vsi->netdev = NULL;
3234 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3235 		}
3236 	}
3237 
3238 	if (vsi->type == ICE_VSI_PF)
3239 		ice_devlink_destroy_pf_port(pf);
3240 
3241 	if (vsi->type == ICE_VSI_VF &&
3242 	    vsi->agg_node && vsi->agg_node->valid)
3243 		vsi->agg_node->num_vsis--;
3244 	ice_vsi_clear_rings(vsi);
3245 	ice_vsi_free_stats(vsi);
3246 	ice_vsi_put_qs(vsi);
3247 
3248 	/* retain SW VSI data structure since it is needed to unregister and
3249 	 * free VSI netdev when PF is not in reset recovery pending state,\
3250 	 * for ex: during rmmod.
3251 	 */
3252 	if (!ice_is_reset_in_progress(pf->state))
3253 		ice_vsi_clear(vsi);
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3260  * @vsi: VSI connected with q_vectors
3261  * @coalesce: array of struct with stored coalesce
3262  *
3263  * Returns array size.
3264  */
3265 static int
3266 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3267 			     struct ice_coalesce_stored *coalesce)
3268 {
3269 	int i;
3270 
3271 	ice_for_each_q_vector(vsi, i) {
3272 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3273 
3274 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3275 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3276 		coalesce[i].intrl = q_vector->intrl;
3277 
3278 		if (i < vsi->num_txq)
3279 			coalesce[i].tx_valid = true;
3280 		if (i < vsi->num_rxq)
3281 			coalesce[i].rx_valid = true;
3282 	}
3283 
3284 	return vsi->num_q_vectors;
3285 }
3286 
3287 /**
3288  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3289  * @vsi: VSI connected with q_vectors
3290  * @coalesce: pointer to array of struct with stored coalesce
3291  * @size: size of coalesce array
3292  *
3293  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3294  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3295  * to default value.
3296  */
3297 static void
3298 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3299 			     struct ice_coalesce_stored *coalesce, int size)
3300 {
3301 	struct ice_ring_container *rc;
3302 	int i;
3303 
3304 	if ((size && !coalesce) || !vsi)
3305 		return;
3306 
3307 	/* There are a couple of cases that have to be handled here:
3308 	 *   1. The case where the number of queue vectors stays the same, but
3309 	 *      the number of Tx or Rx rings changes (the first for loop)
3310 	 *   2. The case where the number of queue vectors increased (the
3311 	 *      second for loop)
3312 	 */
3313 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3314 		/* There are 2 cases to handle here and they are the same for
3315 		 * both Tx and Rx:
3316 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3317 		 *   and the loop variable is less than the number of rings
3318 		 *   allocated, then write the previous values
3319 		 *
3320 		 *   if the entry was not valid previously, but the number of
3321 		 *   rings is less than are allocated (this means the number of
3322 		 *   rings increased from previously), then write out the
3323 		 *   values in the first element
3324 		 *
3325 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3326 		 *   as there is no harm because the dynamic algorithm
3327 		 *   will just overwrite.
3328 		 */
3329 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3330 			rc = &vsi->q_vectors[i]->rx;
3331 			rc->itr_settings = coalesce[i].itr_rx;
3332 			ice_write_itr(rc, rc->itr_setting);
3333 		} else if (i < vsi->alloc_rxq) {
3334 			rc = &vsi->q_vectors[i]->rx;
3335 			rc->itr_settings = coalesce[0].itr_rx;
3336 			ice_write_itr(rc, rc->itr_setting);
3337 		}
3338 
3339 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3340 			rc = &vsi->q_vectors[i]->tx;
3341 			rc->itr_settings = coalesce[i].itr_tx;
3342 			ice_write_itr(rc, rc->itr_setting);
3343 		} else if (i < vsi->alloc_txq) {
3344 			rc = &vsi->q_vectors[i]->tx;
3345 			rc->itr_settings = coalesce[0].itr_tx;
3346 			ice_write_itr(rc, rc->itr_setting);
3347 		}
3348 
3349 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3350 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3351 	}
3352 
3353 	/* the number of queue vectors increased so write whatever is in
3354 	 * the first element
3355 	 */
3356 	for (; i < vsi->num_q_vectors; i++) {
3357 		/* transmit */
3358 		rc = &vsi->q_vectors[i]->tx;
3359 		rc->itr_settings = coalesce[0].itr_tx;
3360 		ice_write_itr(rc, rc->itr_setting);
3361 
3362 		/* receive */
3363 		rc = &vsi->q_vectors[i]->rx;
3364 		rc->itr_settings = coalesce[0].itr_rx;
3365 		ice_write_itr(rc, rc->itr_setting);
3366 
3367 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3368 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3369 	}
3370 }
3371 
3372 /**
3373  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3374  * @vsi: VSI pointer
3375  * @prev_txq: Number of Tx rings before ring reallocation
3376  * @prev_rxq: Number of Rx rings before ring reallocation
3377  */
3378 static int
3379 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3380 {
3381 	struct ice_vsi_stats *vsi_stat;
3382 	struct ice_pf *pf = vsi->back;
3383 	int i;
3384 
3385 	if (!prev_txq || !prev_rxq)
3386 		return 0;
3387 	if (vsi->type == ICE_VSI_CHNL)
3388 		return 0;
3389 
3390 	vsi_stat = pf->vsi_stats[vsi->idx];
3391 
3392 	if (vsi->num_txq < prev_txq) {
3393 		for (i = vsi->num_txq; i < prev_txq; i++) {
3394 			if (vsi_stat->tx_ring_stats[i]) {
3395 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3396 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3397 			}
3398 		}
3399 	}
3400 
3401 	if (vsi->num_rxq < prev_rxq) {
3402 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3403 			if (vsi_stat->rx_ring_stats[i]) {
3404 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3405 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3406 			}
3407 		}
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 /**
3414  * ice_vsi_rebuild - Rebuild VSI after reset
3415  * @vsi: VSI to be rebuild
3416  * @init_vsi: is this an initialization or a reconfigure of the VSI
3417  *
3418  * Returns 0 on success and negative value on failure
3419  */
3420 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3421 {
3422 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3423 	struct ice_coalesce_stored *coalesce;
3424 	int ret, i, prev_txq, prev_rxq;
3425 	int prev_num_q_vectors = 0;
3426 	enum ice_vsi_type vtype;
3427 	struct ice_pf *pf;
3428 
3429 	if (!vsi)
3430 		return -EINVAL;
3431 
3432 	pf = vsi->back;
3433 	vtype = vsi->type;
3434 	if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3435 		return -EINVAL;
3436 
3437 	ice_vsi_init_vlan_ops(vsi);
3438 
3439 	coalesce = kcalloc(vsi->num_q_vectors,
3440 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3441 	if (!coalesce)
3442 		return -ENOMEM;
3443 
3444 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3445 
3446 	prev_txq = vsi->num_txq;
3447 	prev_rxq = vsi->num_rxq;
3448 
3449 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3450 	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3451 	if (ret)
3452 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3453 			vsi->vsi_num, ret);
3454 	ice_vsi_free_q_vectors(vsi);
3455 
3456 	/* SR-IOV determines needed MSIX resources all at once instead of per
3457 	 * VSI since when VFs are spawned we know how many VFs there are and how
3458 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3459 	 * cleared in the same manner.
3460 	 */
3461 	if (vtype != ICE_VSI_VF) {
3462 		/* reclaim SW interrupts back to the common pool */
3463 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3464 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3465 		vsi->base_vector = 0;
3466 	}
3467 
3468 	if (ice_is_xdp_ena_vsi(vsi))
3469 		/* return value check can be skipped here, it always returns
3470 		 * 0 if reset is in progress
3471 		 */
3472 		ice_destroy_xdp_rings(vsi);
3473 	ice_vsi_put_qs(vsi);
3474 	ice_vsi_clear_rings(vsi);
3475 	ice_vsi_free_arrays(vsi);
3476 	if (vtype == ICE_VSI_VF)
3477 		ice_vsi_set_num_qs(vsi, vsi->vf);
3478 	else
3479 		ice_vsi_set_num_qs(vsi, NULL);
3480 
3481 	ret = ice_vsi_alloc_arrays(vsi);
3482 	if (ret < 0)
3483 		goto err_vsi;
3484 
3485 	ice_vsi_get_qs(vsi);
3486 
3487 	ice_alloc_fd_res(vsi);
3488 	ice_vsi_set_tc_cfg(vsi);
3489 
3490 	/* Initialize VSI struct elements and create VSI in FW */
3491 	ret = ice_vsi_init(vsi, init_vsi);
3492 	if (ret < 0)
3493 		goto err_vsi;
3494 
3495 	switch (vtype) {
3496 	case ICE_VSI_CTRL:
3497 	case ICE_VSI_SWITCHDEV_CTRL:
3498 	case ICE_VSI_PF:
3499 		ret = ice_vsi_alloc_q_vectors(vsi);
3500 		if (ret)
3501 			goto err_rings;
3502 
3503 		ret = ice_vsi_setup_vector_base(vsi);
3504 		if (ret)
3505 			goto err_vectors;
3506 
3507 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3508 		if (ret)
3509 			goto err_vectors;
3510 
3511 		ret = ice_vsi_alloc_rings(vsi);
3512 		if (ret)
3513 			goto err_vectors;
3514 
3515 		ret = ice_vsi_alloc_ring_stats(vsi);
3516 		if (ret)
3517 			goto err_vectors;
3518 
3519 		ice_vsi_map_rings_to_vectors(vsi);
3520 
3521 		vsi->stat_offsets_loaded = false;
3522 		if (ice_is_xdp_ena_vsi(vsi)) {
3523 			ret = ice_vsi_determine_xdp_res(vsi);
3524 			if (ret)
3525 				goto err_vectors;
3526 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3527 			if (ret)
3528 				goto err_vectors;
3529 		}
3530 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3531 		if (vtype != ICE_VSI_CTRL)
3532 			/* Do not exit if configuring RSS had an issue, at
3533 			 * least receive traffic on first queue. Hence no
3534 			 * need to capture return value
3535 			 */
3536 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3537 				ice_vsi_cfg_rss_lut_key(vsi);
3538 
3539 		/* disable or enable CRC stripping */
3540 		if (vsi->netdev)
3541 			ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features &
3542 					      NETIF_F_RXFCS));
3543 
3544 		break;
3545 	case ICE_VSI_VF:
3546 		ret = ice_vsi_alloc_q_vectors(vsi);
3547 		if (ret)
3548 			goto err_rings;
3549 
3550 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3551 		if (ret)
3552 			goto err_vectors;
3553 
3554 		ret = ice_vsi_alloc_rings(vsi);
3555 		if (ret)
3556 			goto err_vectors;
3557 
3558 		ret = ice_vsi_alloc_ring_stats(vsi);
3559 		if (ret)
3560 			goto err_vectors;
3561 
3562 		vsi->stat_offsets_loaded = false;
3563 		break;
3564 	case ICE_VSI_CHNL:
3565 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3566 			ice_vsi_cfg_rss_lut_key(vsi);
3567 			ice_vsi_set_rss_flow_fld(vsi);
3568 		}
3569 		break;
3570 	default:
3571 		break;
3572 	}
3573 
3574 	/* configure VSI nodes based on number of queues and TC's */
3575 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3576 		/* configure VSI nodes based on number of queues and TC's.
3577 		 * ADQ creates VSIs for each TC/Channel but doesn't
3578 		 * allocate queues instead it reconfigures the PF queues
3579 		 * as per the TC command. So max_txqs should point to the
3580 		 * PF Tx queues.
3581 		 */
3582 		if (vtype == ICE_VSI_CHNL)
3583 			max_txqs[i] = pf->num_lan_tx;
3584 		else
3585 			max_txqs[i] = vsi->alloc_txq;
3586 
3587 		if (ice_is_xdp_ena_vsi(vsi))
3588 			max_txqs[i] += vsi->num_xdp_txq;
3589 	}
3590 
3591 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3592 		/* If MQPRIO is set, means channel code path, hence for main
3593 		 * VSI's, use TC as 1
3594 		 */
3595 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3596 	else
3597 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3598 				      vsi->tc_cfg.ena_tc, max_txqs);
3599 
3600 	if (ret) {
3601 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3602 			vsi->vsi_num, ret);
3603 		if (init_vsi) {
3604 			ret = -EIO;
3605 			goto err_vectors;
3606 		} else {
3607 			return ice_schedule_reset(pf, ICE_RESET_PFR);
3608 		}
3609 	}
3610 
3611 	if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq))
3612 		goto err_vectors;
3613 
3614 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3615 	kfree(coalesce);
3616 
3617 	return 0;
3618 
3619 err_vectors:
3620 	ice_vsi_free_q_vectors(vsi);
3621 err_rings:
3622 	if (vsi->netdev) {
3623 		vsi->current_netdev_flags = 0;
3624 		unregister_netdev(vsi->netdev);
3625 		free_netdev(vsi->netdev);
3626 		vsi->netdev = NULL;
3627 	}
3628 err_vsi:
3629 	ice_vsi_clear(vsi);
3630 	set_bit(ICE_RESET_FAILED, pf->state);
3631 	kfree(coalesce);
3632 	return ret;
3633 }
3634 
3635 /**
3636  * ice_is_reset_in_progress - check for a reset in progress
3637  * @state: PF state field
3638  */
3639 bool ice_is_reset_in_progress(unsigned long *state)
3640 {
3641 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3642 	       test_bit(ICE_PFR_REQ, state) ||
3643 	       test_bit(ICE_CORER_REQ, state) ||
3644 	       test_bit(ICE_GLOBR_REQ, state);
3645 }
3646 
3647 /**
3648  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3649  * @pf: pointer to the PF structure
3650  * @timeout: length of time to wait, in jiffies
3651  *
3652  * Wait (sleep) for a short time until the driver finishes cleaning up from
3653  * a device reset. The caller must be able to sleep. Use this to delay
3654  * operations that could fail while the driver is cleaning up after a device
3655  * reset.
3656  *
3657  * Returns 0 on success, -EBUSY if the reset is not finished within the
3658  * timeout, and -ERESTARTSYS if the thread was interrupted.
3659  */
3660 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3661 {
3662 	long ret;
3663 
3664 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3665 					       !ice_is_reset_in_progress(pf->state),
3666 					       timeout);
3667 	if (ret < 0)
3668 		return ret;
3669 	else if (!ret)
3670 		return -EBUSY;
3671 	else
3672 		return 0;
3673 }
3674 
3675 /**
3676  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3677  * @vsi: VSI being configured
3678  * @ctx: the context buffer returned from AQ VSI update command
3679  */
3680 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3681 {
3682 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3683 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3684 	       sizeof(vsi->info.q_mapping));
3685 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3686 	       sizeof(vsi->info.tc_mapping));
3687 }
3688 
3689 /**
3690  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3691  * @vsi: the VSI being configured
3692  * @ena_tc: TC map to be enabled
3693  */
3694 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3695 {
3696 	struct net_device *netdev = vsi->netdev;
3697 	struct ice_pf *pf = vsi->back;
3698 	int numtc = vsi->tc_cfg.numtc;
3699 	struct ice_dcbx_cfg *dcbcfg;
3700 	u8 netdev_tc;
3701 	int i;
3702 
3703 	if (!netdev)
3704 		return;
3705 
3706 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3707 	if (vsi->type == ICE_VSI_CHNL)
3708 		return;
3709 
3710 	if (!ena_tc) {
3711 		netdev_reset_tc(netdev);
3712 		return;
3713 	}
3714 
3715 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3716 		numtc = vsi->all_numtc;
3717 
3718 	if (netdev_set_num_tc(netdev, numtc))
3719 		return;
3720 
3721 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3722 
3723 	ice_for_each_traffic_class(i)
3724 		if (vsi->tc_cfg.ena_tc & BIT(i))
3725 			netdev_set_tc_queue(netdev,
3726 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3727 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3728 					    vsi->tc_cfg.tc_info[i].qoffset);
3729 	/* setup TC queue map for CHNL TCs */
3730 	ice_for_each_chnl_tc(i) {
3731 		if (!(vsi->all_enatc & BIT(i)))
3732 			break;
3733 		if (!vsi->mqprio_qopt.qopt.count[i])
3734 			break;
3735 		netdev_set_tc_queue(netdev, i,
3736 				    vsi->mqprio_qopt.qopt.count[i],
3737 				    vsi->mqprio_qopt.qopt.offset[i]);
3738 	}
3739 
3740 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3741 		return;
3742 
3743 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3744 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3745 
3746 		/* Get the mapped netdev TC# for the UP */
3747 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3748 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3749 	}
3750 }
3751 
3752 /**
3753  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3754  * @vsi: the VSI being configured,
3755  * @ctxt: VSI context structure
3756  * @ena_tc: number of traffic classes to enable
3757  *
3758  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3759  */
3760 static int
3761 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3762 			   u8 ena_tc)
3763 {
3764 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3765 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3766 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3767 	u16 new_txq, new_rxq;
3768 	u8 netdev_tc = 0;
3769 	int i;
3770 
3771 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3772 
3773 	pow = order_base_2(tc0_qcount);
3774 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3775 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3776 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3777 
3778 	ice_for_each_traffic_class(i) {
3779 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3780 			/* TC is not enabled */
3781 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3782 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3783 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3784 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3785 			ctxt->info.tc_mapping[i] = 0;
3786 			continue;
3787 		}
3788 
3789 		offset = vsi->mqprio_qopt.qopt.offset[i];
3790 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3791 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3792 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3793 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3794 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3795 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3796 	}
3797 
3798 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3799 		ice_for_each_chnl_tc(i) {
3800 			if (!(vsi->all_enatc & BIT(i)))
3801 				continue;
3802 			offset = vsi->mqprio_qopt.qopt.offset[i];
3803 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3804 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3805 		}
3806 	}
3807 
3808 	new_txq = offset + qcount_tx;
3809 	if (new_txq > vsi->alloc_txq) {
3810 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3811 			new_txq, vsi->alloc_txq);
3812 		return -EINVAL;
3813 	}
3814 
3815 	new_rxq = offset + qcount_rx;
3816 	if (new_rxq > vsi->alloc_rxq) {
3817 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3818 			new_rxq, vsi->alloc_rxq);
3819 		return -EINVAL;
3820 	}
3821 
3822 	/* Set actual Tx/Rx queue pairs */
3823 	vsi->num_txq = new_txq;
3824 	vsi->num_rxq = new_rxq;
3825 
3826 	/* Setup queue TC[0].qmap for given VSI context */
3827 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3828 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3829 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3830 
3831 	/* Find queue count available for channel VSIs and starting offset
3832 	 * for channel VSIs
3833 	 */
3834 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3835 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3836 		vsi->next_base_q = tc0_qcount;
3837 	}
3838 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3839 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3840 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3841 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3842 
3843 	return 0;
3844 }
3845 
3846 /**
3847  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3848  * @vsi: VSI to be configured
3849  * @ena_tc: TC bitmap
3850  *
3851  * VSI queues expected to be quiesced before calling this function
3852  */
3853 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3854 {
3855 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3856 	struct ice_pf *pf = vsi->back;
3857 	struct ice_tc_cfg old_tc_cfg;
3858 	struct ice_vsi_ctx *ctx;
3859 	struct device *dev;
3860 	int i, ret = 0;
3861 	u8 num_tc = 0;
3862 
3863 	dev = ice_pf_to_dev(pf);
3864 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3865 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3866 		return ret;
3867 
3868 	ice_for_each_traffic_class(i) {
3869 		/* build bitmap of enabled TCs */
3870 		if (ena_tc & BIT(i))
3871 			num_tc++;
3872 		/* populate max_txqs per TC */
3873 		max_txqs[i] = vsi->alloc_txq;
3874 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3875 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3876 		 */
3877 		if (vsi->type == ICE_VSI_CHNL &&
3878 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3879 			max_txqs[i] = vsi->num_txq;
3880 	}
3881 
3882 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3883 	vsi->tc_cfg.ena_tc = ena_tc;
3884 	vsi->tc_cfg.numtc = num_tc;
3885 
3886 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3887 	if (!ctx)
3888 		return -ENOMEM;
3889 
3890 	ctx->vf_num = 0;
3891 	ctx->info = vsi->info;
3892 
3893 	if (vsi->type == ICE_VSI_PF &&
3894 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3895 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3896 	else
3897 		ret = ice_vsi_setup_q_map(vsi, ctx);
3898 
3899 	if (ret) {
3900 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3901 		goto out;
3902 	}
3903 
3904 	/* must to indicate which section of VSI context are being modified */
3905 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3906 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3907 	if (ret) {
3908 		dev_info(dev, "Failed VSI Update\n");
3909 		goto out;
3910 	}
3911 
3912 	if (vsi->type == ICE_VSI_PF &&
3913 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3914 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3915 	else
3916 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3917 				      vsi->tc_cfg.ena_tc, max_txqs);
3918 
3919 	if (ret) {
3920 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3921 			vsi->vsi_num, ret);
3922 		goto out;
3923 	}
3924 	ice_vsi_update_q_map(vsi, ctx);
3925 	vsi->info.valid_sections = 0;
3926 
3927 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3928 out:
3929 	kfree(ctx);
3930 	return ret;
3931 }
3932 
3933 /**
3934  * ice_update_ring_stats - Update ring statistics
3935  * @stats: stats to be updated
3936  * @pkts: number of processed packets
3937  * @bytes: number of processed bytes
3938  *
3939  * This function assumes that caller has acquired a u64_stats_sync lock.
3940  */
3941 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3942 {
3943 	stats->bytes += bytes;
3944 	stats->pkts += pkts;
3945 }
3946 
3947 /**
3948  * ice_update_tx_ring_stats - Update Tx ring specific counters
3949  * @tx_ring: ring to update
3950  * @pkts: number of processed packets
3951  * @bytes: number of processed bytes
3952  */
3953 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3954 {
3955 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3956 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3957 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3958 }
3959 
3960 /**
3961  * ice_update_rx_ring_stats - Update Rx ring specific counters
3962  * @rx_ring: ring to update
3963  * @pkts: number of processed packets
3964  * @bytes: number of processed bytes
3965  */
3966 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3967 {
3968 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3969 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3970 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3971 }
3972 
3973 /**
3974  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3975  * @pi: port info of the switch with default VSI
3976  *
3977  * Return true if the there is a single VSI in default forwarding VSI list
3978  */
3979 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3980 {
3981 	bool exists = false;
3982 
3983 	ice_check_if_dflt_vsi(pi, 0, &exists);
3984 	return exists;
3985 }
3986 
3987 /**
3988  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3989  * @vsi: VSI to compare against default forwarding VSI
3990  *
3991  * If this VSI passed in is the default forwarding VSI then return true, else
3992  * return false
3993  */
3994 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3995 {
3996 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3997 }
3998 
3999 /**
4000  * ice_set_dflt_vsi - set the default forwarding VSI
4001  * @vsi: VSI getting set as the default forwarding VSI on the switch
4002  *
4003  * If the VSI passed in is already the default VSI and it's enabled just return
4004  * success.
4005  *
4006  * Otherwise try to set the VSI passed in as the switch's default VSI and
4007  * return the result.
4008  */
4009 int ice_set_dflt_vsi(struct ice_vsi *vsi)
4010 {
4011 	struct device *dev;
4012 	int status;
4013 
4014 	if (!vsi)
4015 		return -EINVAL;
4016 
4017 	dev = ice_pf_to_dev(vsi->back);
4018 
4019 	/* the VSI passed in is already the default VSI */
4020 	if (ice_is_vsi_dflt_vsi(vsi)) {
4021 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
4022 			vsi->vsi_num);
4023 		return 0;
4024 	}
4025 
4026 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
4027 	if (status) {
4028 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
4029 			vsi->vsi_num, status);
4030 		return status;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 /**
4037  * ice_clear_dflt_vsi - clear the default forwarding VSI
4038  * @vsi: VSI to remove from filter list
4039  *
4040  * If the switch has no default VSI or it's not enabled then return error.
4041  *
4042  * Otherwise try to clear the default VSI and return the result.
4043  */
4044 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
4045 {
4046 	struct device *dev;
4047 	int status;
4048 
4049 	if (!vsi)
4050 		return -EINVAL;
4051 
4052 	dev = ice_pf_to_dev(vsi->back);
4053 
4054 	/* there is no default VSI configured */
4055 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
4056 		return -ENODEV;
4057 
4058 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
4059 				  ICE_FLTR_RX);
4060 	if (status) {
4061 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
4062 			vsi->vsi_num, status);
4063 		return -EIO;
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 /**
4070  * ice_get_link_speed_mbps - get link speed in Mbps
4071  * @vsi: the VSI whose link speed is being queried
4072  *
4073  * Return current VSI link speed and 0 if the speed is unknown.
4074  */
4075 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
4076 {
4077 	unsigned int link_speed;
4078 
4079 	link_speed = vsi->port_info->phy.link_info.link_speed;
4080 
4081 	return (int)ice_get_link_speed(fls(link_speed) - 1);
4082 }
4083 
4084 /**
4085  * ice_get_link_speed_kbps - get link speed in Kbps
4086  * @vsi: the VSI whose link speed is being queried
4087  *
4088  * Return current VSI link speed and 0 if the speed is unknown.
4089  */
4090 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
4091 {
4092 	int speed_mbps;
4093 
4094 	speed_mbps = ice_get_link_speed_mbps(vsi);
4095 
4096 	return speed_mbps * 1000;
4097 }
4098 
4099 /**
4100  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
4101  * @vsi: VSI to be configured
4102  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
4103  *
4104  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
4105  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
4106  * on TC 0.
4107  */
4108 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
4109 {
4110 	struct ice_pf *pf = vsi->back;
4111 	struct device *dev;
4112 	int status;
4113 	int speed;
4114 
4115 	dev = ice_pf_to_dev(pf);
4116 	if (!vsi->port_info) {
4117 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4118 			vsi->idx, vsi->type);
4119 		return -EINVAL;
4120 	}
4121 
4122 	speed = ice_get_link_speed_kbps(vsi);
4123 	if (min_tx_rate > (u64)speed) {
4124 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4125 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4126 			speed);
4127 		return -EINVAL;
4128 	}
4129 
4130 	/* Configure min BW for VSI limit */
4131 	if (min_tx_rate) {
4132 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4133 						   ICE_MIN_BW, min_tx_rate);
4134 		if (status) {
4135 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
4136 				min_tx_rate, ice_vsi_type_str(vsi->type),
4137 				vsi->idx);
4138 			return status;
4139 		}
4140 
4141 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
4142 			min_tx_rate, ice_vsi_type_str(vsi->type));
4143 	} else {
4144 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4145 							vsi->idx, 0,
4146 							ICE_MIN_BW);
4147 		if (status) {
4148 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
4149 				ice_vsi_type_str(vsi->type), vsi->idx);
4150 			return status;
4151 		}
4152 
4153 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
4154 			ice_vsi_type_str(vsi->type), vsi->idx);
4155 	}
4156 
4157 	return 0;
4158 }
4159 
4160 /**
4161  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
4162  * @vsi: VSI to be configured
4163  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
4164  *
4165  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
4166  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
4167  * on TC 0.
4168  */
4169 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
4170 {
4171 	struct ice_pf *pf = vsi->back;
4172 	struct device *dev;
4173 	int status;
4174 	int speed;
4175 
4176 	dev = ice_pf_to_dev(pf);
4177 	if (!vsi->port_info) {
4178 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4179 			vsi->idx, vsi->type);
4180 		return -EINVAL;
4181 	}
4182 
4183 	speed = ice_get_link_speed_kbps(vsi);
4184 	if (max_tx_rate > (u64)speed) {
4185 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4186 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4187 			speed);
4188 		return -EINVAL;
4189 	}
4190 
4191 	/* Configure max BW for VSI limit */
4192 	if (max_tx_rate) {
4193 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4194 						   ICE_MAX_BW, max_tx_rate);
4195 		if (status) {
4196 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
4197 				max_tx_rate, ice_vsi_type_str(vsi->type),
4198 				vsi->idx);
4199 			return status;
4200 		}
4201 
4202 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
4203 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
4204 	} else {
4205 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4206 							vsi->idx, 0,
4207 							ICE_MAX_BW);
4208 		if (status) {
4209 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
4210 				ice_vsi_type_str(vsi->type), vsi->idx);
4211 			return status;
4212 		}
4213 
4214 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
4215 			ice_vsi_type_str(vsi->type), vsi->idx);
4216 	}
4217 
4218 	return 0;
4219 }
4220 
4221 /**
4222  * ice_set_link - turn on/off physical link
4223  * @vsi: VSI to modify physical link on
4224  * @ena: turn on/off physical link
4225  */
4226 int ice_set_link(struct ice_vsi *vsi, bool ena)
4227 {
4228 	struct device *dev = ice_pf_to_dev(vsi->back);
4229 	struct ice_port_info *pi = vsi->port_info;
4230 	struct ice_hw *hw = pi->hw;
4231 	int status;
4232 
4233 	if (vsi->type != ICE_VSI_PF)
4234 		return -EINVAL;
4235 
4236 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
4237 
4238 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
4239 	 * this is not a fatal error, so print a warning message and return
4240 	 * a success code. Return an error if FW returns an error code other
4241 	 * than ICE_AQ_RC_EMODE
4242 	 */
4243 	if (status == -EIO) {
4244 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4245 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4246 				(ena ? "ON" : "OFF"), status,
4247 				ice_aq_str(hw->adminq.sq_last_status));
4248 	} else if (status) {
4249 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4250 			(ena ? "ON" : "OFF"), status,
4251 			ice_aq_str(hw->adminq.sq_last_status));
4252 		return status;
4253 	}
4254 
4255 	return 0;
4256 }
4257 
4258 /**
4259  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4260  * @vsi: VSI used to add VLAN filters
4261  *
4262  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4263  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4264  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4265  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4266  *
4267  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4268  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4269  * traffic in SVM, since the VLAN TPID isn't part of filtering.
4270  *
4271  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4272  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4273  * part of filtering.
4274  */
4275 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4276 {
4277 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4278 	struct ice_vlan vlan;
4279 	int err;
4280 
4281 	vlan = ICE_VLAN(0, 0, 0);
4282 	err = vlan_ops->add_vlan(vsi, &vlan);
4283 	if (err && err != -EEXIST)
4284 		return err;
4285 
4286 	/* in SVM both VLAN 0 filters are identical */
4287 	if (!ice_is_dvm_ena(&vsi->back->hw))
4288 		return 0;
4289 
4290 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4291 	err = vlan_ops->add_vlan(vsi, &vlan);
4292 	if (err && err != -EEXIST)
4293 		return err;
4294 
4295 	return 0;
4296 }
4297 
4298 /**
4299  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4300  * @vsi: VSI used to add VLAN filters
4301  *
4302  * Delete the VLAN 0 filters in the same manner that they were added in
4303  * ice_vsi_add_vlan_zero.
4304  */
4305 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4306 {
4307 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4308 	struct ice_vlan vlan;
4309 	int err;
4310 
4311 	vlan = ICE_VLAN(0, 0, 0);
4312 	err = vlan_ops->del_vlan(vsi, &vlan);
4313 	if (err && err != -EEXIST)
4314 		return err;
4315 
4316 	/* in SVM both VLAN 0 filters are identical */
4317 	if (!ice_is_dvm_ena(&vsi->back->hw))
4318 		return 0;
4319 
4320 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4321 	err = vlan_ops->del_vlan(vsi, &vlan);
4322 	if (err && err != -EEXIST)
4323 		return err;
4324 
4325 	/* when deleting the last VLAN filter, make sure to disable the VLAN
4326 	 * promisc mode so the filter isn't left by accident
4327 	 */
4328 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4329 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
4330 }
4331 
4332 /**
4333  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4334  * @vsi: VSI used to get the VLAN mode
4335  *
4336  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4337  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4338  */
4339 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4340 {
4341 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4342 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4343 	/* no VLAN 0 filter is created when a port VLAN is active */
4344 	if (vsi->type == ICE_VSI_VF) {
4345 		if (WARN_ON(!vsi->vf))
4346 			return 0;
4347 
4348 		if (ice_vf_is_port_vlan_ena(vsi->vf))
4349 			return 0;
4350 	}
4351 
4352 	if (ice_is_dvm_ena(&vsi->back->hw))
4353 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4354 	else
4355 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4356 }
4357 
4358 /**
4359  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4360  * @vsi: VSI used to determine if any non-zero VLANs have been added
4361  */
4362 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4363 {
4364 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4365 }
4366 
4367 /**
4368  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4369  * @vsi: VSI used to get the number of non-zero VLANs added
4370  */
4371 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4372 {
4373 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4374 }
4375 
4376 /**
4377  * ice_is_feature_supported
4378  * @pf: pointer to the struct ice_pf instance
4379  * @f: feature enum to be checked
4380  *
4381  * returns true if feature is supported, false otherwise
4382  */
4383 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4384 {
4385 	if (f < 0 || f >= ICE_F_MAX)
4386 		return false;
4387 
4388 	return test_bit(f, pf->features);
4389 }
4390 
4391 /**
4392  * ice_set_feature_support
4393  * @pf: pointer to the struct ice_pf instance
4394  * @f: feature enum to set
4395  */
4396 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4397 {
4398 	if (f < 0 || f >= ICE_F_MAX)
4399 		return;
4400 
4401 	set_bit(f, pf->features);
4402 }
4403 
4404 /**
4405  * ice_clear_feature_support
4406  * @pf: pointer to the struct ice_pf instance
4407  * @f: feature enum to clear
4408  */
4409 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4410 {
4411 	if (f < 0 || f >= ICE_F_MAX)
4412 		return;
4413 
4414 	clear_bit(f, pf->features);
4415 }
4416 
4417 /**
4418  * ice_init_feature_support
4419  * @pf: pointer to the struct ice_pf instance
4420  *
4421  * called during init to setup supported feature
4422  */
4423 void ice_init_feature_support(struct ice_pf *pf)
4424 {
4425 	switch (pf->hw.device_id) {
4426 	case ICE_DEV_ID_E810C_BACKPLANE:
4427 	case ICE_DEV_ID_E810C_QSFP:
4428 	case ICE_DEV_ID_E810C_SFP:
4429 		ice_set_feature_support(pf, ICE_F_DSCP);
4430 		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4431 		if (ice_is_e810t(&pf->hw)) {
4432 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4433 			if (ice_gnss_is_gps_present(&pf->hw))
4434 				ice_set_feature_support(pf, ICE_F_GNSS);
4435 		}
4436 		break;
4437 	default:
4438 		break;
4439 	}
4440 }
4441 
4442 /**
4443  * ice_vsi_update_security - update security block in VSI
4444  * @vsi: pointer to VSI structure
4445  * @fill: function pointer to fill ctx
4446  */
4447 int
4448 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4449 {
4450 	struct ice_vsi_ctx ctx = { 0 };
4451 
4452 	ctx.info = vsi->info;
4453 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4454 	fill(&ctx);
4455 
4456 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4457 		return -ENODEV;
4458 
4459 	vsi->info = ctx.info;
4460 	return 0;
4461 }
4462 
4463 /**
4464  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4465  * @ctx: pointer to VSI ctx structure
4466  */
4467 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4468 {
4469 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4470 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4471 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4472 }
4473 
4474 /**
4475  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4476  * @ctx: pointer to VSI ctx structure
4477  */
4478 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4479 {
4480 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4481 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4482 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4483 }
4484 
4485 /**
4486  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4487  * @ctx: pointer to VSI ctx structure
4488  */
4489 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4490 {
4491 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4492 }
4493 
4494 /**
4495  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4496  * @ctx: pointer to VSI ctx structure
4497  */
4498 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4499 {
4500 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4501 }
4502