1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete_from_hw - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ice_fltr_remove_all(vsi); 295 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 296 if (!ctxt) 297 return; 298 299 if (vsi->type == ICE_VSI_VF) 300 ctxt->vf_num = vsi->vf->vf_id; 301 ctxt->vsi_num = vsi->vsi_num; 302 303 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 304 305 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 306 if (status) 307 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 308 vsi->vsi_num, status); 309 310 kfree(ctxt); 311 } 312 313 /** 314 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 315 * @vsi: pointer to VSI being cleared 316 */ 317 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 318 { 319 struct ice_pf *pf = vsi->back; 320 struct device *dev; 321 322 dev = ice_pf_to_dev(pf); 323 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 /* free the ring and vector containers */ 327 devm_kfree(dev, vsi->q_vectors); 328 vsi->q_vectors = NULL; 329 devm_kfree(dev, vsi->tx_rings); 330 vsi->tx_rings = NULL; 331 devm_kfree(dev, vsi->rx_rings); 332 vsi->rx_rings = NULL; 333 devm_kfree(dev, vsi->txq_map); 334 vsi->txq_map = NULL; 335 devm_kfree(dev, vsi->rxq_map); 336 vsi->rxq_map = NULL; 337 } 338 339 /** 340 * ice_vsi_free_stats - Free the ring statistics structures 341 * @vsi: VSI pointer 342 */ 343 static void ice_vsi_free_stats(struct ice_vsi *vsi) 344 { 345 struct ice_vsi_stats *vsi_stat; 346 struct ice_pf *pf = vsi->back; 347 int i; 348 349 if (vsi->type == ICE_VSI_CHNL) 350 return; 351 if (!pf->vsi_stats) 352 return; 353 354 vsi_stat = pf->vsi_stats[vsi->idx]; 355 if (!vsi_stat) 356 return; 357 358 ice_for_each_alloc_txq(vsi, i) { 359 if (vsi_stat->tx_ring_stats[i]) { 360 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 361 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 362 } 363 } 364 365 ice_for_each_alloc_rxq(vsi, i) { 366 if (vsi_stat->rx_ring_stats[i]) { 367 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 368 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 369 } 370 } 371 372 kfree(vsi_stat->tx_ring_stats); 373 kfree(vsi_stat->rx_ring_stats); 374 kfree(vsi_stat); 375 pf->vsi_stats[vsi->idx] = NULL; 376 } 377 378 /** 379 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 380 * @vsi: VSI which is having stats allocated 381 */ 382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 383 { 384 struct ice_ring_stats **tx_ring_stats; 385 struct ice_ring_stats **rx_ring_stats; 386 struct ice_vsi_stats *vsi_stats; 387 struct ice_pf *pf = vsi->back; 388 u16 i; 389 390 vsi_stats = pf->vsi_stats[vsi->idx]; 391 tx_ring_stats = vsi_stats->tx_ring_stats; 392 rx_ring_stats = vsi_stats->rx_ring_stats; 393 394 /* Allocate Tx ring stats */ 395 ice_for_each_alloc_txq(vsi, i) { 396 struct ice_ring_stats *ring_stats; 397 struct ice_tx_ring *ring; 398 399 ring = vsi->tx_rings[i]; 400 ring_stats = tx_ring_stats[i]; 401 402 if (!ring_stats) { 403 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 404 if (!ring_stats) 405 goto err_out; 406 407 WRITE_ONCE(tx_ring_stats[i], ring_stats); 408 } 409 410 ring->ring_stats = ring_stats; 411 } 412 413 /* Allocate Rx ring stats */ 414 ice_for_each_alloc_rxq(vsi, i) { 415 struct ice_ring_stats *ring_stats; 416 struct ice_rx_ring *ring; 417 418 ring = vsi->rx_rings[i]; 419 ring_stats = rx_ring_stats[i]; 420 421 if (!ring_stats) { 422 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 423 if (!ring_stats) 424 goto err_out; 425 426 WRITE_ONCE(rx_ring_stats[i], ring_stats); 427 } 428 429 ring->ring_stats = ring_stats; 430 } 431 432 return 0; 433 434 err_out: 435 ice_vsi_free_stats(vsi); 436 return -ENOMEM; 437 } 438 439 /** 440 * ice_vsi_free - clean up and deallocate the provided VSI 441 * @vsi: pointer to VSI being cleared 442 * 443 * This deallocates the VSI's queue resources, removes it from the PF's 444 * VSI array if necessary, and deallocates the VSI 445 */ 446 static void ice_vsi_free(struct ice_vsi *vsi) 447 { 448 struct ice_pf *pf = NULL; 449 struct device *dev; 450 451 if (!vsi || !vsi->back) 452 return; 453 454 pf = vsi->back; 455 dev = ice_pf_to_dev(pf); 456 457 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 458 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 459 return; 460 } 461 462 mutex_lock(&pf->sw_mutex); 463 /* updates the PF for this cleared VSI */ 464 465 pf->vsi[vsi->idx] = NULL; 466 pf->next_vsi = vsi->idx; 467 468 ice_vsi_free_stats(vsi); 469 ice_vsi_free_arrays(vsi); 470 mutex_unlock(&pf->sw_mutex); 471 devm_kfree(dev, vsi); 472 } 473 474 void ice_vsi_delete(struct ice_vsi *vsi) 475 { 476 ice_vsi_delete_from_hw(vsi); 477 ice_vsi_free(vsi); 478 } 479 480 /** 481 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 482 * @irq: interrupt number 483 * @data: pointer to a q_vector 484 */ 485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 486 { 487 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 488 489 if (!q_vector->tx.tx_ring) 490 return IRQ_HANDLED; 491 492 #define FDIR_RX_DESC_CLEAN_BUDGET 64 493 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 494 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 495 496 return IRQ_HANDLED; 497 } 498 499 /** 500 * ice_msix_clean_rings - MSIX mode Interrupt Handler 501 * @irq: interrupt number 502 * @data: pointer to a q_vector 503 */ 504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 505 { 506 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 507 508 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 509 return IRQ_HANDLED; 510 511 q_vector->total_events++; 512 513 napi_schedule(&q_vector->napi); 514 515 return IRQ_HANDLED; 516 } 517 518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 519 { 520 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 521 struct ice_pf *pf = q_vector->vsi->back; 522 struct ice_vf *vf; 523 unsigned int bkt; 524 525 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 526 return IRQ_HANDLED; 527 528 rcu_read_lock(); 529 ice_for_each_vf_rcu(pf, bkt, vf) 530 napi_schedule(&vf->repr->q_vector->napi); 531 rcu_read_unlock(); 532 533 return IRQ_HANDLED; 534 } 535 536 /** 537 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 538 * @vsi: VSI pointer 539 */ 540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 541 { 542 struct ice_vsi_stats *vsi_stat; 543 struct ice_pf *pf = vsi->back; 544 545 if (vsi->type == ICE_VSI_CHNL) 546 return 0; 547 if (!pf->vsi_stats) 548 return -ENOENT; 549 550 if (pf->vsi_stats[vsi->idx]) 551 /* realloc will happen in rebuild path */ 552 return 0; 553 554 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 555 if (!vsi_stat) 556 return -ENOMEM; 557 558 vsi_stat->tx_ring_stats = 559 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 560 GFP_KERNEL); 561 if (!vsi_stat->tx_ring_stats) 562 goto err_alloc_tx; 563 564 vsi_stat->rx_ring_stats = 565 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 566 GFP_KERNEL); 567 if (!vsi_stat->rx_ring_stats) 568 goto err_alloc_rx; 569 570 pf->vsi_stats[vsi->idx] = vsi_stat; 571 572 return 0; 573 574 err_alloc_rx: 575 kfree(vsi_stat->rx_ring_stats); 576 err_alloc_tx: 577 kfree(vsi_stat->tx_ring_stats); 578 kfree(vsi_stat); 579 pf->vsi_stats[vsi->idx] = NULL; 580 return -ENOMEM; 581 } 582 583 /** 584 * ice_vsi_alloc_def - set default values for already allocated VSI 585 * @vsi: ptr to VSI 586 * @ch: ptr to channel 587 */ 588 static int 589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 590 { 591 if (vsi->type != ICE_VSI_CHNL) { 592 ice_vsi_set_num_qs(vsi); 593 if (ice_vsi_alloc_arrays(vsi)) 594 return -ENOMEM; 595 } 596 597 switch (vsi->type) { 598 case ICE_VSI_SWITCHDEV_CTRL: 599 /* Setup eswitch MSIX irq handler for VSI */ 600 vsi->irq_handler = ice_eswitch_msix_clean_rings; 601 break; 602 case ICE_VSI_PF: 603 /* Setup default MSIX irq handler for VSI */ 604 vsi->irq_handler = ice_msix_clean_rings; 605 break; 606 case ICE_VSI_CTRL: 607 /* Setup ctrl VSI MSIX irq handler */ 608 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 609 break; 610 case ICE_VSI_CHNL: 611 if (!ch) 612 return -EINVAL; 613 614 vsi->num_rxq = ch->num_rxq; 615 vsi->num_txq = ch->num_txq; 616 vsi->next_base_q = ch->base_q; 617 break; 618 case ICE_VSI_VF: 619 case ICE_VSI_LB: 620 break; 621 default: 622 ice_vsi_free_arrays(vsi); 623 return -EINVAL; 624 } 625 626 return 0; 627 } 628 629 /** 630 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 631 * @pf: board private structure 632 * 633 * Reserves a VSI index from the PF and allocates an empty VSI structure 634 * without a type. The VSI structure must later be initialized by calling 635 * ice_vsi_cfg(). 636 * 637 * returns a pointer to a VSI on success, NULL on failure. 638 */ 639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 640 { 641 struct device *dev = ice_pf_to_dev(pf); 642 struct ice_vsi *vsi = NULL; 643 644 /* Need to protect the allocation of the VSIs at the PF level */ 645 mutex_lock(&pf->sw_mutex); 646 647 /* If we have already allocated our maximum number of VSIs, 648 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 649 * is available to be populated 650 */ 651 if (pf->next_vsi == ICE_NO_VSI) { 652 dev_dbg(dev, "out of VSI slots!\n"); 653 goto unlock_pf; 654 } 655 656 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 657 if (!vsi) 658 goto unlock_pf; 659 660 vsi->back = pf; 661 set_bit(ICE_VSI_DOWN, vsi->state); 662 663 /* fill slot and make note of the index */ 664 vsi->idx = pf->next_vsi; 665 pf->vsi[pf->next_vsi] = vsi; 666 667 /* prepare pf->next_vsi for next use */ 668 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 669 pf->next_vsi); 670 671 unlock_pf: 672 mutex_unlock(&pf->sw_mutex); 673 return vsi; 674 } 675 676 /** 677 * ice_alloc_fd_res - Allocate FD resource for a VSI 678 * @vsi: pointer to the ice_vsi 679 * 680 * This allocates the FD resources 681 * 682 * Returns 0 on success, -EPERM on no-op or -EIO on failure 683 */ 684 static int ice_alloc_fd_res(struct ice_vsi *vsi) 685 { 686 struct ice_pf *pf = vsi->back; 687 u32 g_val, b_val; 688 689 /* Flow Director filters are only allocated/assigned to the PF VSI or 690 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 691 * add/delete filters so resources are not allocated to it 692 */ 693 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 694 return -EPERM; 695 696 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 697 vsi->type == ICE_VSI_CHNL)) 698 return -EPERM; 699 700 /* FD filters from guaranteed pool per VSI */ 701 g_val = pf->hw.func_caps.fd_fltr_guar; 702 if (!g_val) 703 return -EPERM; 704 705 /* FD filters from best effort pool */ 706 b_val = pf->hw.func_caps.fd_fltr_best_effort; 707 if (!b_val) 708 return -EPERM; 709 710 /* PF main VSI gets only 64 FD resources from guaranteed pool 711 * when ADQ is configured. 712 */ 713 #define ICE_PF_VSI_GFLTR 64 714 715 /* determine FD filter resources per VSI from shared(best effort) and 716 * dedicated pool 717 */ 718 if (vsi->type == ICE_VSI_PF) { 719 vsi->num_gfltr = g_val; 720 /* if MQPRIO is configured, main VSI doesn't get all FD 721 * resources from guaranteed pool. PF VSI gets 64 FD resources 722 */ 723 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 724 if (g_val < ICE_PF_VSI_GFLTR) 725 return -EPERM; 726 /* allow bare minimum entries for PF VSI */ 727 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 728 } 729 730 /* each VSI gets same "best_effort" quota */ 731 vsi->num_bfltr = b_val; 732 } else if (vsi->type == ICE_VSI_VF) { 733 vsi->num_gfltr = 0; 734 735 /* each VSI gets same "best_effort" quota */ 736 vsi->num_bfltr = b_val; 737 } else { 738 struct ice_vsi *main_vsi; 739 int numtc; 740 741 main_vsi = ice_get_main_vsi(pf); 742 if (!main_vsi) 743 return -EPERM; 744 745 if (!main_vsi->all_numtc) 746 return -EINVAL; 747 748 /* figure out ADQ numtc */ 749 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 750 751 /* only one TC but still asking resources for channels, 752 * invalid config 753 */ 754 if (numtc < ICE_CHNL_START_TC) 755 return -EPERM; 756 757 g_val -= ICE_PF_VSI_GFLTR; 758 /* channel VSIs gets equal share from guaranteed pool */ 759 vsi->num_gfltr = g_val / numtc; 760 761 /* each VSI gets same "best_effort" quota */ 762 vsi->num_bfltr = b_val; 763 } 764 765 return 0; 766 } 767 768 /** 769 * ice_vsi_get_qs - Assign queues from PF to VSI 770 * @vsi: the VSI to assign queues to 771 * 772 * Returns 0 on success and a negative value on error 773 */ 774 static int ice_vsi_get_qs(struct ice_vsi *vsi) 775 { 776 struct ice_pf *pf = vsi->back; 777 struct ice_qs_cfg tx_qs_cfg = { 778 .qs_mutex = &pf->avail_q_mutex, 779 .pf_map = pf->avail_txqs, 780 .pf_map_size = pf->max_pf_txqs, 781 .q_count = vsi->alloc_txq, 782 .scatter_count = ICE_MAX_SCATTER_TXQS, 783 .vsi_map = vsi->txq_map, 784 .vsi_map_offset = 0, 785 .mapping_mode = ICE_VSI_MAP_CONTIG 786 }; 787 struct ice_qs_cfg rx_qs_cfg = { 788 .qs_mutex = &pf->avail_q_mutex, 789 .pf_map = pf->avail_rxqs, 790 .pf_map_size = pf->max_pf_rxqs, 791 .q_count = vsi->alloc_rxq, 792 .scatter_count = ICE_MAX_SCATTER_RXQS, 793 .vsi_map = vsi->rxq_map, 794 .vsi_map_offset = 0, 795 .mapping_mode = ICE_VSI_MAP_CONTIG 796 }; 797 int ret; 798 799 if (vsi->type == ICE_VSI_CHNL) 800 return 0; 801 802 ret = __ice_vsi_get_qs(&tx_qs_cfg); 803 if (ret) 804 return ret; 805 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 806 807 ret = __ice_vsi_get_qs(&rx_qs_cfg); 808 if (ret) 809 return ret; 810 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 811 812 return 0; 813 } 814 815 /** 816 * ice_vsi_put_qs - Release queues from VSI to PF 817 * @vsi: the VSI that is going to release queues 818 */ 819 static void ice_vsi_put_qs(struct ice_vsi *vsi) 820 { 821 struct ice_pf *pf = vsi->back; 822 int i; 823 824 mutex_lock(&pf->avail_q_mutex); 825 826 ice_for_each_alloc_txq(vsi, i) { 827 clear_bit(vsi->txq_map[i], pf->avail_txqs); 828 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 829 } 830 831 ice_for_each_alloc_rxq(vsi, i) { 832 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 833 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 834 } 835 836 mutex_unlock(&pf->avail_q_mutex); 837 } 838 839 /** 840 * ice_is_safe_mode 841 * @pf: pointer to the PF struct 842 * 843 * returns true if driver is in safe mode, false otherwise 844 */ 845 bool ice_is_safe_mode(struct ice_pf *pf) 846 { 847 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 848 } 849 850 /** 851 * ice_is_rdma_ena 852 * @pf: pointer to the PF struct 853 * 854 * returns true if RDMA is currently supported, false otherwise 855 */ 856 bool ice_is_rdma_ena(struct ice_pf *pf) 857 { 858 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 859 } 860 861 /** 862 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 863 * @vsi: the VSI being cleaned up 864 * 865 * This function deletes RSS input set for all flows that were configured 866 * for this VSI 867 */ 868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 869 { 870 struct ice_pf *pf = vsi->back; 871 int status; 872 873 if (ice_is_safe_mode(pf)) 874 return; 875 876 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 877 if (status) 878 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 879 vsi->vsi_num, status); 880 } 881 882 /** 883 * ice_rss_clean - Delete RSS related VSI structures and configuration 884 * @vsi: the VSI being removed 885 */ 886 static void ice_rss_clean(struct ice_vsi *vsi) 887 { 888 struct ice_pf *pf = vsi->back; 889 struct device *dev; 890 891 dev = ice_pf_to_dev(pf); 892 893 devm_kfree(dev, vsi->rss_hkey_user); 894 devm_kfree(dev, vsi->rss_lut_user); 895 896 ice_vsi_clean_rss_flow_fld(vsi); 897 /* remove RSS replay list */ 898 if (!ice_is_safe_mode(pf)) 899 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 900 } 901 902 /** 903 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 904 * @vsi: the VSI being configured 905 */ 906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 907 { 908 struct ice_hw_common_caps *cap; 909 struct ice_pf *pf = vsi->back; 910 u16 max_rss_size; 911 912 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 913 vsi->rss_size = 1; 914 return; 915 } 916 917 cap = &pf->hw.func_caps.common_cap; 918 max_rss_size = BIT(cap->rss_table_entry_width); 919 switch (vsi->type) { 920 case ICE_VSI_CHNL: 921 case ICE_VSI_PF: 922 /* PF VSI will inherit RSS instance of PF */ 923 vsi->rss_table_size = (u16)cap->rss_table_size; 924 if (vsi->type == ICE_VSI_CHNL) 925 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 926 else 927 vsi->rss_size = min_t(u16, num_online_cpus(), 928 max_rss_size); 929 vsi->rss_lut_type = ICE_LUT_PF; 930 break; 931 case ICE_VSI_SWITCHDEV_CTRL: 932 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 933 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 934 vsi->rss_lut_type = ICE_LUT_VSI; 935 break; 936 case ICE_VSI_VF: 937 /* VF VSI will get a small RSS table. 938 * For VSI_LUT, LUT size should be set to 64 bytes. 939 */ 940 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 941 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 942 vsi->rss_lut_type = ICE_LUT_VSI; 943 break; 944 case ICE_VSI_LB: 945 break; 946 default: 947 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 948 ice_vsi_type_str(vsi->type)); 949 break; 950 } 951 } 952 953 /** 954 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 955 * @hw: HW structure used to determine the VLAN mode of the device 956 * @ctxt: the VSI context being set 957 * 958 * This initializes a default VSI context for all sections except the Queues. 959 */ 960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 961 { 962 u32 table = 0; 963 964 memset(&ctxt->info, 0, sizeof(ctxt->info)); 965 /* VSI's should be allocated from shared pool */ 966 ctxt->alloc_from_pool = true; 967 /* Src pruning enabled by default */ 968 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 969 /* Traffic from VSI can be sent to LAN */ 970 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 971 /* allow all untagged/tagged packets by default on Tx */ 972 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 973 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 974 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 975 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 976 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 977 * 978 * DVM - leave inner VLAN in packet by default 979 */ 980 if (ice_is_dvm_ena(hw)) { 981 ctxt->info.inner_vlan_flags |= 982 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 983 ctxt->info.outer_vlan_flags = 984 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 985 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 986 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 987 ctxt->info.outer_vlan_flags |= 988 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 989 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 990 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 991 ctxt->info.outer_vlan_flags |= 992 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 993 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 994 } 995 /* Have 1:1 UP mapping for both ingress/egress tables */ 996 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 997 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 998 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 999 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1000 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1001 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1002 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1003 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1004 ctxt->info.ingress_table = cpu_to_le32(table); 1005 ctxt->info.egress_table = cpu_to_le32(table); 1006 /* Have 1:1 UP mapping for outer to inner UP table */ 1007 ctxt->info.outer_up_table = cpu_to_le32(table); 1008 /* No Outer tag support outer_tag_flags remains to zero */ 1009 } 1010 1011 /** 1012 * ice_vsi_setup_q_map - Setup a VSI queue map 1013 * @vsi: the VSI being configured 1014 * @ctxt: VSI context structure 1015 */ 1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1017 { 1018 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1019 u16 num_txq_per_tc, num_rxq_per_tc; 1020 u16 qcount_tx = vsi->alloc_txq; 1021 u16 qcount_rx = vsi->alloc_rxq; 1022 u8 netdev_tc = 0; 1023 int i; 1024 1025 if (!vsi->tc_cfg.numtc) { 1026 /* at least TC0 should be enabled by default */ 1027 vsi->tc_cfg.numtc = 1; 1028 vsi->tc_cfg.ena_tc = 1; 1029 } 1030 1031 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1032 if (!num_rxq_per_tc) 1033 num_rxq_per_tc = 1; 1034 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1035 if (!num_txq_per_tc) 1036 num_txq_per_tc = 1; 1037 1038 /* find the (rounded up) power-of-2 of qcount */ 1039 pow = (u16)order_base_2(num_rxq_per_tc); 1040 1041 /* TC mapping is a function of the number of Rx queues assigned to the 1042 * VSI for each traffic class and the offset of these queues. 1043 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1044 * queues allocated to TC0. No:of queues is a power-of-2. 1045 * 1046 * If TC is not enabled, the queue offset is set to 0, and allocate one 1047 * queue, this way, traffic for the given TC will be sent to the default 1048 * queue. 1049 * 1050 * Setup number and offset of Rx queues for all TCs for the VSI 1051 */ 1052 ice_for_each_traffic_class(i) { 1053 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1054 /* TC is not enabled */ 1055 vsi->tc_cfg.tc_info[i].qoffset = 0; 1056 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1057 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1058 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1059 ctxt->info.tc_mapping[i] = 0; 1060 continue; 1061 } 1062 1063 /* TC is enabled */ 1064 vsi->tc_cfg.tc_info[i].qoffset = offset; 1065 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1066 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1067 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1068 1069 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1070 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1071 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1072 ICE_AQ_VSI_TC_Q_NUM_M); 1073 offset += num_rxq_per_tc; 1074 tx_count += num_txq_per_tc; 1075 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1076 } 1077 1078 /* if offset is non-zero, means it is calculated correctly based on 1079 * enabled TCs for a given VSI otherwise qcount_rx will always 1080 * be correct and non-zero because it is based off - VSI's 1081 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1082 * at least 1) 1083 */ 1084 if (offset) 1085 rx_count = offset; 1086 else 1087 rx_count = num_rxq_per_tc; 1088 1089 if (rx_count > vsi->alloc_rxq) { 1090 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1091 rx_count, vsi->alloc_rxq); 1092 return -EINVAL; 1093 } 1094 1095 if (tx_count > vsi->alloc_txq) { 1096 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1097 tx_count, vsi->alloc_txq); 1098 return -EINVAL; 1099 } 1100 1101 vsi->num_txq = tx_count; 1102 vsi->num_rxq = rx_count; 1103 1104 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1105 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1106 /* since there is a chance that num_rxq could have been changed 1107 * in the above for loop, make num_txq equal to num_rxq. 1108 */ 1109 vsi->num_txq = vsi->num_rxq; 1110 } 1111 1112 /* Rx queue mapping */ 1113 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1114 /* q_mapping buffer holds the info for the first queue allocated for 1115 * this VSI in the PF space and also the number of queues associated 1116 * with this VSI. 1117 */ 1118 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1119 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1120 1121 return 0; 1122 } 1123 1124 /** 1125 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1126 * @ctxt: the VSI context being set 1127 * @vsi: the VSI being configured 1128 */ 1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1130 { 1131 u8 dflt_q_group, dflt_q_prio; 1132 u16 dflt_q, report_q, val; 1133 1134 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1135 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1136 return; 1137 1138 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1139 ctxt->info.valid_sections |= cpu_to_le16(val); 1140 dflt_q = 0; 1141 dflt_q_group = 0; 1142 report_q = 0; 1143 dflt_q_prio = 0; 1144 1145 /* enable flow director filtering/programming */ 1146 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1147 ctxt->info.fd_options = cpu_to_le16(val); 1148 /* max of allocated flow director filters */ 1149 ctxt->info.max_fd_fltr_dedicated = 1150 cpu_to_le16(vsi->num_gfltr); 1151 /* max of shared flow director filters any VSI may program */ 1152 ctxt->info.max_fd_fltr_shared = 1153 cpu_to_le16(vsi->num_bfltr); 1154 /* default queue index within the VSI of the default FD */ 1155 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1156 ICE_AQ_VSI_FD_DEF_Q_M); 1157 /* target queue or queue group to the FD filter */ 1158 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1159 ICE_AQ_VSI_FD_DEF_GRP_M); 1160 ctxt->info.fd_def_q = cpu_to_le16(val); 1161 /* queue index on which FD filter completion is reported */ 1162 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1163 ICE_AQ_VSI_FD_REPORT_Q_M); 1164 /* priority of the default qindex action */ 1165 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1166 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1167 ctxt->info.fd_report_opt = cpu_to_le16(val); 1168 } 1169 1170 /** 1171 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1172 * @ctxt: the VSI context being set 1173 * @vsi: the VSI being configured 1174 */ 1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1176 { 1177 u8 lut_type, hash_type; 1178 struct device *dev; 1179 struct ice_pf *pf; 1180 1181 pf = vsi->back; 1182 dev = ice_pf_to_dev(pf); 1183 1184 switch (vsi->type) { 1185 case ICE_VSI_CHNL: 1186 case ICE_VSI_PF: 1187 /* PF VSI will inherit RSS instance of PF */ 1188 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1189 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1190 break; 1191 case ICE_VSI_VF: 1192 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1193 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1194 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1195 break; 1196 default: 1197 dev_dbg(dev, "Unsupported VSI type %s\n", 1198 ice_vsi_type_str(vsi->type)); 1199 return; 1200 } 1201 1202 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1203 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1204 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1205 } 1206 1207 static void 1208 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1209 { 1210 struct ice_pf *pf = vsi->back; 1211 u16 qcount, qmap; 1212 u8 offset = 0; 1213 int pow; 1214 1215 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1216 1217 pow = order_base_2(qcount); 1218 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1219 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1220 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1221 ICE_AQ_VSI_TC_Q_NUM_M); 1222 1223 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1224 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1225 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1226 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1227 } 1228 1229 /** 1230 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1231 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1232 * 1233 * returns true if Rx VLAN pruning is enabled and false otherwise. 1234 */ 1235 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1236 { 1237 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1238 } 1239 1240 /** 1241 * ice_vsi_init - Create and initialize a VSI 1242 * @vsi: the VSI being configured 1243 * @vsi_flags: VSI configuration flags 1244 * 1245 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1246 * reconfigure an existing context. 1247 * 1248 * This initializes a VSI context depending on the VSI type to be added and 1249 * passes it down to the add_vsi aq command to create a new VSI. 1250 */ 1251 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1252 { 1253 struct ice_pf *pf = vsi->back; 1254 struct ice_hw *hw = &pf->hw; 1255 struct ice_vsi_ctx *ctxt; 1256 struct device *dev; 1257 int ret = 0; 1258 1259 dev = ice_pf_to_dev(pf); 1260 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1261 if (!ctxt) 1262 return -ENOMEM; 1263 1264 switch (vsi->type) { 1265 case ICE_VSI_CTRL: 1266 case ICE_VSI_LB: 1267 case ICE_VSI_PF: 1268 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1269 break; 1270 case ICE_VSI_SWITCHDEV_CTRL: 1271 case ICE_VSI_CHNL: 1272 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1273 break; 1274 case ICE_VSI_VF: 1275 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1276 /* VF number here is the absolute VF number (0-255) */ 1277 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1278 break; 1279 default: 1280 ret = -ENODEV; 1281 goto out; 1282 } 1283 1284 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1285 * prune enabled 1286 */ 1287 if (vsi->type == ICE_VSI_CHNL) { 1288 struct ice_vsi *main_vsi; 1289 1290 main_vsi = ice_get_main_vsi(pf); 1291 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1292 ctxt->info.sw_flags2 |= 1293 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1294 else 1295 ctxt->info.sw_flags2 &= 1296 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1297 } 1298 1299 ice_set_dflt_vsi_ctx(hw, ctxt); 1300 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1301 ice_set_fd_vsi_ctx(ctxt, vsi); 1302 /* if the switch is in VEB mode, allow VSI loopback */ 1303 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1304 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1305 1306 /* Set LUT type and HASH type if RSS is enabled */ 1307 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1308 vsi->type != ICE_VSI_CTRL) { 1309 ice_set_rss_vsi_ctx(ctxt, vsi); 1310 /* if updating VSI context, make sure to set valid_section: 1311 * to indicate which section of VSI context being updated 1312 */ 1313 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1314 ctxt->info.valid_sections |= 1315 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1316 } 1317 1318 ctxt->info.sw_id = vsi->port_info->sw_id; 1319 if (vsi->type == ICE_VSI_CHNL) { 1320 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1321 } else { 1322 ret = ice_vsi_setup_q_map(vsi, ctxt); 1323 if (ret) 1324 goto out; 1325 1326 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1327 /* means VSI being updated */ 1328 /* must to indicate which section of VSI context are 1329 * being modified 1330 */ 1331 ctxt->info.valid_sections |= 1332 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1333 } 1334 1335 /* Allow control frames out of main VSI */ 1336 if (vsi->type == ICE_VSI_PF) { 1337 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1338 ctxt->info.valid_sections |= 1339 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1340 } 1341 1342 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1343 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1344 if (ret) { 1345 dev_err(dev, "Add VSI failed, err %d\n", ret); 1346 ret = -EIO; 1347 goto out; 1348 } 1349 } else { 1350 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1351 if (ret) { 1352 dev_err(dev, "Update VSI failed, err %d\n", ret); 1353 ret = -EIO; 1354 goto out; 1355 } 1356 } 1357 1358 /* keep context for update VSI operations */ 1359 vsi->info = ctxt->info; 1360 1361 /* record VSI number returned */ 1362 vsi->vsi_num = ctxt->vsi_num; 1363 1364 out: 1365 kfree(ctxt); 1366 return ret; 1367 } 1368 1369 /** 1370 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1371 * @vsi: the VSI having rings deallocated 1372 */ 1373 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1374 { 1375 int i; 1376 1377 /* Avoid stale references by clearing map from vector to ring */ 1378 if (vsi->q_vectors) { 1379 ice_for_each_q_vector(vsi, i) { 1380 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1381 1382 if (q_vector) { 1383 q_vector->tx.tx_ring = NULL; 1384 q_vector->rx.rx_ring = NULL; 1385 } 1386 } 1387 } 1388 1389 if (vsi->tx_rings) { 1390 ice_for_each_alloc_txq(vsi, i) { 1391 if (vsi->tx_rings[i]) { 1392 kfree_rcu(vsi->tx_rings[i], rcu); 1393 WRITE_ONCE(vsi->tx_rings[i], NULL); 1394 } 1395 } 1396 } 1397 if (vsi->rx_rings) { 1398 ice_for_each_alloc_rxq(vsi, i) { 1399 if (vsi->rx_rings[i]) { 1400 kfree_rcu(vsi->rx_rings[i], rcu); 1401 WRITE_ONCE(vsi->rx_rings[i], NULL); 1402 } 1403 } 1404 } 1405 } 1406 1407 /** 1408 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1409 * @vsi: VSI which is having rings allocated 1410 */ 1411 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1412 { 1413 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1414 struct ice_pf *pf = vsi->back; 1415 struct device *dev; 1416 u16 i; 1417 1418 dev = ice_pf_to_dev(pf); 1419 /* Allocate Tx rings */ 1420 ice_for_each_alloc_txq(vsi, i) { 1421 struct ice_tx_ring *ring; 1422 1423 /* allocate with kzalloc(), free with kfree_rcu() */ 1424 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1425 1426 if (!ring) 1427 goto err_out; 1428 1429 ring->q_index = i; 1430 ring->reg_idx = vsi->txq_map[i]; 1431 ring->vsi = vsi; 1432 ring->tx_tstamps = &pf->ptp.port.tx; 1433 ring->dev = dev; 1434 ring->count = vsi->num_tx_desc; 1435 ring->txq_teid = ICE_INVAL_TEID; 1436 if (dvm_ena) 1437 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1438 else 1439 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1440 WRITE_ONCE(vsi->tx_rings[i], ring); 1441 } 1442 1443 /* Allocate Rx rings */ 1444 ice_for_each_alloc_rxq(vsi, i) { 1445 struct ice_rx_ring *ring; 1446 1447 /* allocate with kzalloc(), free with kfree_rcu() */ 1448 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1449 if (!ring) 1450 goto err_out; 1451 1452 ring->q_index = i; 1453 ring->reg_idx = vsi->rxq_map[i]; 1454 ring->vsi = vsi; 1455 ring->netdev = vsi->netdev; 1456 ring->dev = dev; 1457 ring->count = vsi->num_rx_desc; 1458 ring->cached_phctime = pf->ptp.cached_phc_time; 1459 WRITE_ONCE(vsi->rx_rings[i], ring); 1460 } 1461 1462 return 0; 1463 1464 err_out: 1465 ice_vsi_clear_rings(vsi); 1466 return -ENOMEM; 1467 } 1468 1469 /** 1470 * ice_vsi_manage_rss_lut - disable/enable RSS 1471 * @vsi: the VSI being changed 1472 * @ena: boolean value indicating if this is an enable or disable request 1473 * 1474 * In the event of disable request for RSS, this function will zero out RSS 1475 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1476 * LUT. 1477 */ 1478 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1479 { 1480 u8 *lut; 1481 1482 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1483 if (!lut) 1484 return; 1485 1486 if (ena) { 1487 if (vsi->rss_lut_user) 1488 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1489 else 1490 ice_fill_rss_lut(lut, vsi->rss_table_size, 1491 vsi->rss_size); 1492 } 1493 1494 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1495 kfree(lut); 1496 } 1497 1498 /** 1499 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1500 * @vsi: VSI to be configured 1501 * @disable: set to true to have FCS / CRC in the frame data 1502 */ 1503 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1504 { 1505 int i; 1506 1507 ice_for_each_rxq(vsi, i) 1508 if (disable) 1509 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1510 else 1511 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1512 } 1513 1514 /** 1515 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1516 * @vsi: VSI to be configured 1517 */ 1518 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1519 { 1520 struct ice_pf *pf = vsi->back; 1521 struct device *dev; 1522 u8 *lut, *key; 1523 int err; 1524 1525 dev = ice_pf_to_dev(pf); 1526 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1527 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1528 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1529 } else { 1530 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1531 1532 /* If orig_rss_size is valid and it is less than determined 1533 * main VSI's rss_size, update main VSI's rss_size to be 1534 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1535 * RSS table gets programmed to be correct (whatever it was 1536 * to begin with (prior to setup-tc for ADQ config) 1537 */ 1538 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1539 vsi->orig_rss_size <= vsi->num_rxq) { 1540 vsi->rss_size = vsi->orig_rss_size; 1541 /* now orig_rss_size is used, reset it to zero */ 1542 vsi->orig_rss_size = 0; 1543 } 1544 } 1545 1546 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1547 if (!lut) 1548 return -ENOMEM; 1549 1550 if (vsi->rss_lut_user) 1551 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1552 else 1553 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1554 1555 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1556 if (err) { 1557 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1558 goto ice_vsi_cfg_rss_exit; 1559 } 1560 1561 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1562 if (!key) { 1563 err = -ENOMEM; 1564 goto ice_vsi_cfg_rss_exit; 1565 } 1566 1567 if (vsi->rss_hkey_user) 1568 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1569 else 1570 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1571 1572 err = ice_set_rss_key(vsi, key); 1573 if (err) 1574 dev_err(dev, "set_rss_key failed, error %d\n", err); 1575 1576 kfree(key); 1577 ice_vsi_cfg_rss_exit: 1578 kfree(lut); 1579 return err; 1580 } 1581 1582 /** 1583 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1584 * @vsi: VSI to be configured 1585 * 1586 * This function will only be called during the VF VSI setup. Upon successful 1587 * completion of package download, this function will configure default RSS 1588 * input sets for VF VSI. 1589 */ 1590 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1591 { 1592 struct ice_pf *pf = vsi->back; 1593 struct device *dev; 1594 int status; 1595 1596 dev = ice_pf_to_dev(pf); 1597 if (ice_is_safe_mode(pf)) { 1598 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1599 vsi->vsi_num); 1600 return; 1601 } 1602 1603 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1604 if (status) 1605 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1606 vsi->vsi_num, status); 1607 } 1608 1609 /** 1610 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1611 * @vsi: VSI to be configured 1612 * 1613 * This function will only be called after successful download package call 1614 * during initialization of PF. Since the downloaded package will erase the 1615 * RSS section, this function will configure RSS input sets for different 1616 * flow types. The last profile added has the highest priority, therefore 2 1617 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1618 * (i.e. IPv4 src/dst TCP src/dst port). 1619 */ 1620 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1621 { 1622 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1623 struct ice_pf *pf = vsi->back; 1624 struct ice_hw *hw = &pf->hw; 1625 struct device *dev; 1626 int status; 1627 1628 dev = ice_pf_to_dev(pf); 1629 if (ice_is_safe_mode(pf)) { 1630 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1631 vsi_num); 1632 return; 1633 } 1634 /* configure RSS for IPv4 with input set IP src/dst */ 1635 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1636 ICE_FLOW_SEG_HDR_IPV4); 1637 if (status) 1638 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1639 vsi_num, status); 1640 1641 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1642 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1643 ICE_FLOW_SEG_HDR_IPV6); 1644 if (status) 1645 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1646 vsi_num, status); 1647 1648 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1649 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1650 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1651 if (status) 1652 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1653 vsi_num, status); 1654 1655 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1656 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1657 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1658 if (status) 1659 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1660 vsi_num, status); 1661 1662 /* configure RSS for sctp4 with input set IP src/dst */ 1663 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1664 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1665 if (status) 1666 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1667 vsi_num, status); 1668 1669 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1670 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1671 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1672 if (status) 1673 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1674 vsi_num, status); 1675 1676 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1677 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1678 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1679 if (status) 1680 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1681 vsi_num, status); 1682 1683 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1684 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1685 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1686 if (status) 1687 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1688 vsi_num, status); 1689 1690 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1691 ICE_FLOW_SEG_HDR_ESP); 1692 if (status) 1693 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1694 vsi_num, status); 1695 } 1696 1697 /** 1698 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1699 * @vsi: VSI 1700 */ 1701 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1702 { 1703 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1704 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1705 vsi->rx_buf_len = ICE_RXBUF_1664; 1706 #if (PAGE_SIZE < 8192) 1707 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1708 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1709 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1710 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1711 #endif 1712 } else { 1713 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1714 vsi->rx_buf_len = ICE_RXBUF_3072; 1715 } 1716 } 1717 1718 /** 1719 * ice_pf_state_is_nominal - checks the PF for nominal state 1720 * @pf: pointer to PF to check 1721 * 1722 * Check the PF's state for a collection of bits that would indicate 1723 * the PF is in a state that would inhibit normal operation for 1724 * driver functionality. 1725 * 1726 * Returns true if PF is in a nominal state, false otherwise 1727 */ 1728 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1729 { 1730 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1731 1732 if (!pf) 1733 return false; 1734 1735 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1736 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1737 return false; 1738 1739 return true; 1740 } 1741 1742 /** 1743 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1744 * @vsi: the VSI to be updated 1745 */ 1746 void ice_update_eth_stats(struct ice_vsi *vsi) 1747 { 1748 struct ice_eth_stats *prev_es, *cur_es; 1749 struct ice_hw *hw = &vsi->back->hw; 1750 struct ice_pf *pf = vsi->back; 1751 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1752 1753 prev_es = &vsi->eth_stats_prev; 1754 cur_es = &vsi->eth_stats; 1755 1756 if (ice_is_reset_in_progress(pf->state)) 1757 vsi->stat_offsets_loaded = false; 1758 1759 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1760 &prev_es->rx_bytes, &cur_es->rx_bytes); 1761 1762 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1763 &prev_es->rx_unicast, &cur_es->rx_unicast); 1764 1765 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1766 &prev_es->rx_multicast, &cur_es->rx_multicast); 1767 1768 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1769 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1770 1771 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1772 &prev_es->rx_discards, &cur_es->rx_discards); 1773 1774 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1775 &prev_es->tx_bytes, &cur_es->tx_bytes); 1776 1777 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1778 &prev_es->tx_unicast, &cur_es->tx_unicast); 1779 1780 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1781 &prev_es->tx_multicast, &cur_es->tx_multicast); 1782 1783 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1784 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1785 1786 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1787 &prev_es->tx_errors, &cur_es->tx_errors); 1788 1789 vsi->stat_offsets_loaded = true; 1790 } 1791 1792 /** 1793 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1794 * @hw: HW pointer 1795 * @pf_q: index of the Rx queue in the PF's queue space 1796 * @rxdid: flexible descriptor RXDID 1797 * @prio: priority for the RXDID for this queue 1798 * @ena_ts: true to enable timestamp and false to disable timestamp 1799 */ 1800 void 1801 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1802 bool ena_ts) 1803 { 1804 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1805 1806 /* clear any previous values */ 1807 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1808 QRXFLXP_CNTXT_RXDID_PRIO_M | 1809 QRXFLXP_CNTXT_TS_M); 1810 1811 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1812 QRXFLXP_CNTXT_RXDID_IDX_M; 1813 1814 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1815 QRXFLXP_CNTXT_RXDID_PRIO_M; 1816 1817 if (ena_ts) 1818 /* Enable TimeSync on this queue */ 1819 regval |= QRXFLXP_CNTXT_TS_M; 1820 1821 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1822 } 1823 1824 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1825 { 1826 if (q_idx >= vsi->num_rxq) 1827 return -EINVAL; 1828 1829 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1830 } 1831 1832 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1833 { 1834 struct ice_aqc_add_tx_qgrp *qg_buf; 1835 int err; 1836 1837 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1838 return -EINVAL; 1839 1840 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1841 if (!qg_buf) 1842 return -ENOMEM; 1843 1844 qg_buf->num_txqs = 1; 1845 1846 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1847 kfree(qg_buf); 1848 return err; 1849 } 1850 1851 /** 1852 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1853 * @vsi: the VSI being configured 1854 * 1855 * Return 0 on success and a negative value on error 1856 * Configure the Rx VSI for operation. 1857 */ 1858 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1859 { 1860 u16 i; 1861 1862 if (vsi->type == ICE_VSI_VF) 1863 goto setup_rings; 1864 1865 ice_vsi_cfg_frame_size(vsi); 1866 setup_rings: 1867 /* set up individual rings */ 1868 ice_for_each_rxq(vsi, i) { 1869 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1870 1871 if (err) 1872 return err; 1873 } 1874 1875 return 0; 1876 } 1877 1878 /** 1879 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1880 * @vsi: the VSI being configured 1881 * @rings: Tx ring array to be configured 1882 * @count: number of Tx ring array elements 1883 * 1884 * Return 0 on success and a negative value on error 1885 * Configure the Tx VSI for operation. 1886 */ 1887 static int 1888 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1889 { 1890 struct ice_aqc_add_tx_qgrp *qg_buf; 1891 u16 q_idx = 0; 1892 int err = 0; 1893 1894 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1895 if (!qg_buf) 1896 return -ENOMEM; 1897 1898 qg_buf->num_txqs = 1; 1899 1900 for (q_idx = 0; q_idx < count; q_idx++) { 1901 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1902 if (err) 1903 goto err_cfg_txqs; 1904 } 1905 1906 err_cfg_txqs: 1907 kfree(qg_buf); 1908 return err; 1909 } 1910 1911 /** 1912 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1913 * @vsi: the VSI being configured 1914 * 1915 * Return 0 on success and a negative value on error 1916 * Configure the Tx VSI for operation. 1917 */ 1918 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1919 { 1920 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1921 } 1922 1923 /** 1924 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1925 * @vsi: the VSI being configured 1926 * 1927 * Return 0 on success and a negative value on error 1928 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1929 */ 1930 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1931 { 1932 int ret; 1933 int i; 1934 1935 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1936 if (ret) 1937 return ret; 1938 1939 ice_for_each_rxq(vsi, i) 1940 ice_tx_xsk_pool(vsi, i); 1941 1942 return 0; 1943 } 1944 1945 /** 1946 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1947 * @intrl: interrupt rate limit in usecs 1948 * @gran: interrupt rate limit granularity in usecs 1949 * 1950 * This function converts a decimal interrupt rate limit in usecs to the format 1951 * expected by firmware. 1952 */ 1953 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1954 { 1955 u32 val = intrl / gran; 1956 1957 if (val) 1958 return val | GLINT_RATE_INTRL_ENA_M; 1959 return 0; 1960 } 1961 1962 /** 1963 * ice_write_intrl - write throttle rate limit to interrupt specific register 1964 * @q_vector: pointer to interrupt specific structure 1965 * @intrl: throttle rate limit in microseconds to write 1966 */ 1967 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1968 { 1969 struct ice_hw *hw = &q_vector->vsi->back->hw; 1970 1971 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1972 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1973 } 1974 1975 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1976 { 1977 switch (rc->type) { 1978 case ICE_RX_CONTAINER: 1979 if (rc->rx_ring) 1980 return rc->rx_ring->q_vector; 1981 break; 1982 case ICE_TX_CONTAINER: 1983 if (rc->tx_ring) 1984 return rc->tx_ring->q_vector; 1985 break; 1986 default: 1987 break; 1988 } 1989 1990 return NULL; 1991 } 1992 1993 /** 1994 * __ice_write_itr - write throttle rate to register 1995 * @q_vector: pointer to interrupt data structure 1996 * @rc: pointer to ring container 1997 * @itr: throttle rate in microseconds to write 1998 */ 1999 static void __ice_write_itr(struct ice_q_vector *q_vector, 2000 struct ice_ring_container *rc, u16 itr) 2001 { 2002 struct ice_hw *hw = &q_vector->vsi->back->hw; 2003 2004 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2005 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2006 } 2007 2008 /** 2009 * ice_write_itr - write throttle rate to queue specific register 2010 * @rc: pointer to ring container 2011 * @itr: throttle rate in microseconds to write 2012 */ 2013 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2014 { 2015 struct ice_q_vector *q_vector; 2016 2017 q_vector = ice_pull_qvec_from_rc(rc); 2018 if (!q_vector) 2019 return; 2020 2021 __ice_write_itr(q_vector, rc, itr); 2022 } 2023 2024 /** 2025 * ice_set_q_vector_intrl - set up interrupt rate limiting 2026 * @q_vector: the vector to be configured 2027 * 2028 * Interrupt rate limiting is local to the vector, not per-queue so we must 2029 * detect if either ring container has dynamic moderation enabled to decide 2030 * what to set the interrupt rate limit to via INTRL settings. In the case that 2031 * dynamic moderation is disabled on both, write the value with the cached 2032 * setting to make sure INTRL register matches the user visible value. 2033 */ 2034 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2035 { 2036 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2037 /* in the case of dynamic enabled, cap each vector to no more 2038 * than (4 us) 250,000 ints/sec, which allows low latency 2039 * but still less than 500,000 interrupts per second, which 2040 * reduces CPU a bit in the case of the lowest latency 2041 * setting. The 4 here is a value in microseconds. 2042 */ 2043 ice_write_intrl(q_vector, 4); 2044 } else { 2045 ice_write_intrl(q_vector, q_vector->intrl); 2046 } 2047 } 2048 2049 /** 2050 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2051 * @vsi: the VSI being configured 2052 * 2053 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2054 * for the VF VSI. 2055 */ 2056 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2057 { 2058 struct ice_pf *pf = vsi->back; 2059 struct ice_hw *hw = &pf->hw; 2060 u16 txq = 0, rxq = 0; 2061 int i, q; 2062 2063 ice_for_each_q_vector(vsi, i) { 2064 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2065 u16 reg_idx = q_vector->reg_idx; 2066 2067 ice_cfg_itr(hw, q_vector); 2068 2069 /* Both Transmit Queue Interrupt Cause Control register 2070 * and Receive Queue Interrupt Cause control register 2071 * expects MSIX_INDX field to be the vector index 2072 * within the function space and not the absolute 2073 * vector index across PF or across device. 2074 * For SR-IOV VF VSIs queue vector index always starts 2075 * with 1 since first vector index(0) is used for OICR 2076 * in VF space. Since VMDq and other PF VSIs are within 2077 * the PF function space, use the vector index that is 2078 * tracked for this PF. 2079 */ 2080 for (q = 0; q < q_vector->num_ring_tx; q++) { 2081 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2082 q_vector->tx.itr_idx); 2083 txq++; 2084 } 2085 2086 for (q = 0; q < q_vector->num_ring_rx; q++) { 2087 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2088 q_vector->rx.itr_idx); 2089 rxq++; 2090 } 2091 } 2092 } 2093 2094 /** 2095 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2096 * @vsi: the VSI whose rings are to be enabled 2097 * 2098 * Returns 0 on success and a negative value on error 2099 */ 2100 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2101 { 2102 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2103 } 2104 2105 /** 2106 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2107 * @vsi: the VSI whose rings are to be disabled 2108 * 2109 * Returns 0 on success and a negative value on error 2110 */ 2111 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2112 { 2113 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2114 } 2115 2116 /** 2117 * ice_vsi_stop_tx_rings - Disable Tx rings 2118 * @vsi: the VSI being configured 2119 * @rst_src: reset source 2120 * @rel_vmvf_num: Relative ID of VF/VM 2121 * @rings: Tx ring array to be stopped 2122 * @count: number of Tx ring array elements 2123 */ 2124 static int 2125 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2126 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2127 { 2128 u16 q_idx; 2129 2130 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2131 return -EINVAL; 2132 2133 for (q_idx = 0; q_idx < count; q_idx++) { 2134 struct ice_txq_meta txq_meta = { }; 2135 int status; 2136 2137 if (!rings || !rings[q_idx]) 2138 return -EINVAL; 2139 2140 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2141 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2142 rings[q_idx], &txq_meta); 2143 2144 if (status) 2145 return status; 2146 } 2147 2148 return 0; 2149 } 2150 2151 /** 2152 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2153 * @vsi: the VSI being configured 2154 * @rst_src: reset source 2155 * @rel_vmvf_num: Relative ID of VF/VM 2156 */ 2157 int 2158 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2159 u16 rel_vmvf_num) 2160 { 2161 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2162 } 2163 2164 /** 2165 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2166 * @vsi: the VSI being configured 2167 */ 2168 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2169 { 2170 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2171 } 2172 2173 /** 2174 * ice_vsi_is_rx_queue_active 2175 * @vsi: the VSI being configured 2176 * 2177 * Return true if at least one queue is active. 2178 */ 2179 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2180 { 2181 struct ice_pf *pf = vsi->back; 2182 struct ice_hw *hw = &pf->hw; 2183 int i; 2184 2185 ice_for_each_rxq(vsi, i) { 2186 u32 rx_reg; 2187 int pf_q; 2188 2189 pf_q = vsi->rxq_map[i]; 2190 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2191 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2192 return true; 2193 } 2194 2195 return false; 2196 } 2197 2198 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2199 { 2200 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2201 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2202 vsi->tc_cfg.numtc = 1; 2203 return; 2204 } 2205 2206 /* set VSI TC information based on DCB config */ 2207 ice_vsi_set_dcb_tc_cfg(vsi); 2208 } 2209 2210 /** 2211 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2212 * @vsi: the VSI being configured 2213 * @tx: bool to determine Tx or Rx rule 2214 * @create: bool to determine create or remove Rule 2215 */ 2216 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2217 { 2218 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2219 enum ice_sw_fwd_act_type act); 2220 struct ice_pf *pf = vsi->back; 2221 struct device *dev; 2222 int status; 2223 2224 dev = ice_pf_to_dev(pf); 2225 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2226 2227 if (tx) { 2228 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2229 ICE_DROP_PACKET); 2230 } else { 2231 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2232 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2233 create); 2234 } else { 2235 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2236 ICE_FWD_TO_VSI); 2237 } 2238 } 2239 2240 if (status) 2241 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2242 create ? "adding" : "removing", tx ? "TX" : "RX", 2243 vsi->vsi_num, status); 2244 } 2245 2246 /** 2247 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2248 * @vsi: pointer to the VSI 2249 * 2250 * This function will allocate new scheduler aggregator now if needed and will 2251 * move specified VSI into it. 2252 */ 2253 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2254 { 2255 struct device *dev = ice_pf_to_dev(vsi->back); 2256 struct ice_agg_node *agg_node_iter = NULL; 2257 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2258 struct ice_agg_node *agg_node = NULL; 2259 int node_offset, max_agg_nodes = 0; 2260 struct ice_port_info *port_info; 2261 struct ice_pf *pf = vsi->back; 2262 u32 agg_node_id_start = 0; 2263 int status; 2264 2265 /* create (as needed) scheduler aggregator node and move VSI into 2266 * corresponding aggregator node 2267 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2268 * - VF aggregator nodes will contain VF VSI 2269 */ 2270 port_info = pf->hw.port_info; 2271 if (!port_info) 2272 return; 2273 2274 switch (vsi->type) { 2275 case ICE_VSI_CTRL: 2276 case ICE_VSI_CHNL: 2277 case ICE_VSI_LB: 2278 case ICE_VSI_PF: 2279 case ICE_VSI_SWITCHDEV_CTRL: 2280 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2281 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2282 agg_node_iter = &pf->pf_agg_node[0]; 2283 break; 2284 case ICE_VSI_VF: 2285 /* user can create 'n' VFs on a given PF, but since max children 2286 * per aggregator node can be only 64. Following code handles 2287 * aggregator(s) for VF VSIs, either selects a agg_node which 2288 * was already created provided num_vsis < 64, otherwise 2289 * select next available node, which will be created 2290 */ 2291 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2292 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2293 agg_node_iter = &pf->vf_agg_node[0]; 2294 break; 2295 default: 2296 /* other VSI type, handle later if needed */ 2297 dev_dbg(dev, "unexpected VSI type %s\n", 2298 ice_vsi_type_str(vsi->type)); 2299 return; 2300 } 2301 2302 /* find the appropriate aggregator node */ 2303 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2304 /* see if we can find space in previously created 2305 * node if num_vsis < 64, otherwise skip 2306 */ 2307 if (agg_node_iter->num_vsis && 2308 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2309 agg_node_iter++; 2310 continue; 2311 } 2312 2313 if (agg_node_iter->valid && 2314 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2315 agg_id = agg_node_iter->agg_id; 2316 agg_node = agg_node_iter; 2317 break; 2318 } 2319 2320 /* find unclaimed agg_id */ 2321 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2322 agg_id = node_offset + agg_node_id_start; 2323 agg_node = agg_node_iter; 2324 break; 2325 } 2326 /* move to next agg_node */ 2327 agg_node_iter++; 2328 } 2329 2330 if (!agg_node) 2331 return; 2332 2333 /* if selected aggregator node was not created, create it */ 2334 if (!agg_node->valid) { 2335 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2336 (u8)vsi->tc_cfg.ena_tc); 2337 if (status) { 2338 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2339 agg_id); 2340 return; 2341 } 2342 /* aggregator node is created, store the needed info */ 2343 agg_node->valid = true; 2344 agg_node->agg_id = agg_id; 2345 } 2346 2347 /* move VSI to corresponding aggregator node */ 2348 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2349 (u8)vsi->tc_cfg.ena_tc); 2350 if (status) { 2351 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2352 vsi->idx, agg_id); 2353 return; 2354 } 2355 2356 /* keep active children count for aggregator node */ 2357 agg_node->num_vsis++; 2358 2359 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2360 * to aggregator node 2361 */ 2362 vsi->agg_node = agg_node; 2363 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2364 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2365 vsi->agg_node->num_vsis); 2366 } 2367 2368 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2369 { 2370 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2371 struct device *dev = ice_pf_to_dev(pf); 2372 int ret, i; 2373 2374 /* configure VSI nodes based on number of queues and TC's */ 2375 ice_for_each_traffic_class(i) { 2376 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2377 continue; 2378 2379 if (vsi->type == ICE_VSI_CHNL) { 2380 if (!vsi->alloc_txq && vsi->num_txq) 2381 max_txqs[i] = vsi->num_txq; 2382 else 2383 max_txqs[i] = pf->num_lan_tx; 2384 } else { 2385 max_txqs[i] = vsi->alloc_txq; 2386 } 2387 2388 if (vsi->type == ICE_VSI_PF) 2389 max_txqs[i] += vsi->num_xdp_txq; 2390 } 2391 2392 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2393 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2394 max_txqs); 2395 if (ret) { 2396 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2397 vsi->vsi_num, ret); 2398 return ret; 2399 } 2400 2401 return 0; 2402 } 2403 2404 /** 2405 * ice_vsi_cfg_def - configure default VSI based on the type 2406 * @vsi: pointer to VSI 2407 * @params: the parameters to configure this VSI with 2408 */ 2409 static int 2410 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2411 { 2412 struct device *dev = ice_pf_to_dev(vsi->back); 2413 struct ice_pf *pf = vsi->back; 2414 int ret; 2415 2416 vsi->vsw = pf->first_sw; 2417 2418 ret = ice_vsi_alloc_def(vsi, params->ch); 2419 if (ret) 2420 return ret; 2421 2422 /* allocate memory for Tx/Rx ring stat pointers */ 2423 ret = ice_vsi_alloc_stat_arrays(vsi); 2424 if (ret) 2425 goto unroll_vsi_alloc; 2426 2427 ice_alloc_fd_res(vsi); 2428 2429 ret = ice_vsi_get_qs(vsi); 2430 if (ret) { 2431 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2432 vsi->idx); 2433 goto unroll_vsi_alloc_stat; 2434 } 2435 2436 /* set RSS capabilities */ 2437 ice_vsi_set_rss_params(vsi); 2438 2439 /* set TC configuration */ 2440 ice_vsi_set_tc_cfg(vsi); 2441 2442 /* create the VSI */ 2443 ret = ice_vsi_init(vsi, params->flags); 2444 if (ret) 2445 goto unroll_get_qs; 2446 2447 ice_vsi_init_vlan_ops(vsi); 2448 2449 switch (vsi->type) { 2450 case ICE_VSI_CTRL: 2451 case ICE_VSI_SWITCHDEV_CTRL: 2452 case ICE_VSI_PF: 2453 ret = ice_vsi_alloc_q_vectors(vsi); 2454 if (ret) 2455 goto unroll_vsi_init; 2456 2457 ret = ice_vsi_alloc_rings(vsi); 2458 if (ret) 2459 goto unroll_vector_base; 2460 2461 ret = ice_vsi_alloc_ring_stats(vsi); 2462 if (ret) 2463 goto unroll_vector_base; 2464 2465 ice_vsi_map_rings_to_vectors(vsi); 2466 vsi->stat_offsets_loaded = false; 2467 2468 if (ice_is_xdp_ena_vsi(vsi)) { 2469 ret = ice_vsi_determine_xdp_res(vsi); 2470 if (ret) 2471 goto unroll_vector_base; 2472 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2473 if (ret) 2474 goto unroll_vector_base; 2475 } 2476 2477 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2478 if (vsi->type != ICE_VSI_CTRL) 2479 /* Do not exit if configuring RSS had an issue, at 2480 * least receive traffic on first queue. Hence no 2481 * need to capture return value 2482 */ 2483 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2484 ice_vsi_cfg_rss_lut_key(vsi); 2485 ice_vsi_set_rss_flow_fld(vsi); 2486 } 2487 ice_init_arfs(vsi); 2488 break; 2489 case ICE_VSI_CHNL: 2490 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2491 ice_vsi_cfg_rss_lut_key(vsi); 2492 ice_vsi_set_rss_flow_fld(vsi); 2493 } 2494 break; 2495 case ICE_VSI_VF: 2496 /* VF driver will take care of creating netdev for this type and 2497 * map queues to vectors through Virtchnl, PF driver only 2498 * creates a VSI and corresponding structures for bookkeeping 2499 * purpose 2500 */ 2501 ret = ice_vsi_alloc_q_vectors(vsi); 2502 if (ret) 2503 goto unroll_vsi_init; 2504 2505 ret = ice_vsi_alloc_rings(vsi); 2506 if (ret) 2507 goto unroll_alloc_q_vector; 2508 2509 ret = ice_vsi_alloc_ring_stats(vsi); 2510 if (ret) 2511 goto unroll_vector_base; 2512 2513 vsi->stat_offsets_loaded = false; 2514 2515 /* Do not exit if configuring RSS had an issue, at least 2516 * receive traffic on first queue. Hence no need to capture 2517 * return value 2518 */ 2519 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2520 ice_vsi_cfg_rss_lut_key(vsi); 2521 ice_vsi_set_vf_rss_flow_fld(vsi); 2522 } 2523 break; 2524 case ICE_VSI_LB: 2525 ret = ice_vsi_alloc_rings(vsi); 2526 if (ret) 2527 goto unroll_vsi_init; 2528 2529 ret = ice_vsi_alloc_ring_stats(vsi); 2530 if (ret) 2531 goto unroll_vector_base; 2532 2533 break; 2534 default: 2535 /* clean up the resources and exit */ 2536 ret = -EINVAL; 2537 goto unroll_vsi_init; 2538 } 2539 2540 return 0; 2541 2542 unroll_vector_base: 2543 /* reclaim SW interrupts back to the common pool */ 2544 unroll_alloc_q_vector: 2545 ice_vsi_free_q_vectors(vsi); 2546 unroll_vsi_init: 2547 ice_vsi_delete_from_hw(vsi); 2548 unroll_get_qs: 2549 ice_vsi_put_qs(vsi); 2550 unroll_vsi_alloc_stat: 2551 ice_vsi_free_stats(vsi); 2552 unroll_vsi_alloc: 2553 ice_vsi_free_arrays(vsi); 2554 return ret; 2555 } 2556 2557 /** 2558 * ice_vsi_cfg - configure a previously allocated VSI 2559 * @vsi: pointer to VSI 2560 * @params: parameters used to configure this VSI 2561 */ 2562 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2563 { 2564 struct ice_pf *pf = vsi->back; 2565 int ret; 2566 2567 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2568 return -EINVAL; 2569 2570 vsi->type = params->type; 2571 vsi->port_info = params->pi; 2572 2573 /* For VSIs which don't have a connected VF, this will be NULL */ 2574 vsi->vf = params->vf; 2575 2576 ret = ice_vsi_cfg_def(vsi, params); 2577 if (ret) 2578 return ret; 2579 2580 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2581 if (ret) 2582 ice_vsi_decfg(vsi); 2583 2584 if (vsi->type == ICE_VSI_CTRL) { 2585 if (vsi->vf) { 2586 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2587 vsi->vf->ctrl_vsi_idx = vsi->idx; 2588 } else { 2589 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2590 pf->ctrl_vsi_idx = vsi->idx; 2591 } 2592 } 2593 2594 return ret; 2595 } 2596 2597 /** 2598 * ice_vsi_decfg - remove all VSI configuration 2599 * @vsi: pointer to VSI 2600 */ 2601 void ice_vsi_decfg(struct ice_vsi *vsi) 2602 { 2603 struct ice_pf *pf = vsi->back; 2604 int err; 2605 2606 /* The Rx rule will only exist to remove if the LLDP FW 2607 * engine is currently stopped 2608 */ 2609 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2610 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2611 ice_cfg_sw_lldp(vsi, false, false); 2612 2613 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2614 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2615 if (err) 2616 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2617 vsi->vsi_num, err); 2618 2619 if (ice_is_xdp_ena_vsi(vsi)) 2620 /* return value check can be skipped here, it always returns 2621 * 0 if reset is in progress 2622 */ 2623 ice_destroy_xdp_rings(vsi); 2624 2625 ice_vsi_clear_rings(vsi); 2626 ice_vsi_free_q_vectors(vsi); 2627 ice_vsi_put_qs(vsi); 2628 ice_vsi_free_arrays(vsi); 2629 2630 /* SR-IOV determines needed MSIX resources all at once instead of per 2631 * VSI since when VFs are spawned we know how many VFs there are and how 2632 * many interrupts each VF needs. SR-IOV MSIX resources are also 2633 * cleared in the same manner. 2634 */ 2635 2636 if (vsi->type == ICE_VSI_VF && 2637 vsi->agg_node && vsi->agg_node->valid) 2638 vsi->agg_node->num_vsis--; 2639 } 2640 2641 /** 2642 * ice_vsi_setup - Set up a VSI by a given type 2643 * @pf: board private structure 2644 * @params: parameters to use when creating the VSI 2645 * 2646 * This allocates the sw VSI structure and its queue resources. 2647 * 2648 * Returns pointer to the successfully allocated and configured VSI sw struct on 2649 * success, NULL on failure. 2650 */ 2651 struct ice_vsi * 2652 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2653 { 2654 struct device *dev = ice_pf_to_dev(pf); 2655 struct ice_vsi *vsi; 2656 int ret; 2657 2658 /* ice_vsi_setup can only initialize a new VSI, and we must have 2659 * a port_info structure for it. 2660 */ 2661 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2662 WARN_ON(!params->pi)) 2663 return NULL; 2664 2665 vsi = ice_vsi_alloc(pf); 2666 if (!vsi) { 2667 dev_err(dev, "could not allocate VSI\n"); 2668 return NULL; 2669 } 2670 2671 ret = ice_vsi_cfg(vsi, params); 2672 if (ret) 2673 goto err_vsi_cfg; 2674 2675 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2676 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2677 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2678 * The rule is added once for PF VSI in order to create appropriate 2679 * recipe, since VSI/VSI list is ignored with drop action... 2680 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2681 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2682 * settings in the HW. 2683 */ 2684 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2685 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2686 ICE_DROP_PACKET); 2687 ice_cfg_sw_lldp(vsi, true, true); 2688 } 2689 2690 if (!vsi->agg_node) 2691 ice_set_agg_vsi(vsi); 2692 2693 return vsi; 2694 2695 err_vsi_cfg: 2696 ice_vsi_free(vsi); 2697 2698 return NULL; 2699 } 2700 2701 /** 2702 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2703 * @vsi: the VSI being cleaned up 2704 */ 2705 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2706 { 2707 struct ice_pf *pf = vsi->back; 2708 struct ice_hw *hw = &pf->hw; 2709 u32 txq = 0; 2710 u32 rxq = 0; 2711 int i, q; 2712 2713 ice_for_each_q_vector(vsi, i) { 2714 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2715 2716 ice_write_intrl(q_vector, 0); 2717 for (q = 0; q < q_vector->num_ring_tx; q++) { 2718 ice_write_itr(&q_vector->tx, 0); 2719 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2720 if (ice_is_xdp_ena_vsi(vsi)) { 2721 u32 xdp_txq = txq + vsi->num_xdp_txq; 2722 2723 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2724 } 2725 txq++; 2726 } 2727 2728 for (q = 0; q < q_vector->num_ring_rx; q++) { 2729 ice_write_itr(&q_vector->rx, 0); 2730 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2731 rxq++; 2732 } 2733 } 2734 2735 ice_flush(hw); 2736 } 2737 2738 /** 2739 * ice_vsi_free_irq - Free the IRQ association with the OS 2740 * @vsi: the VSI being configured 2741 */ 2742 void ice_vsi_free_irq(struct ice_vsi *vsi) 2743 { 2744 struct ice_pf *pf = vsi->back; 2745 int i; 2746 2747 if (!vsi->q_vectors || !vsi->irqs_ready) 2748 return; 2749 2750 ice_vsi_release_msix(vsi); 2751 if (vsi->type == ICE_VSI_VF) 2752 return; 2753 2754 vsi->irqs_ready = false; 2755 ice_free_cpu_rx_rmap(vsi); 2756 2757 ice_for_each_q_vector(vsi, i) { 2758 int irq_num; 2759 2760 irq_num = vsi->q_vectors[i]->irq.virq; 2761 2762 /* free only the irqs that were actually requested */ 2763 if (!vsi->q_vectors[i] || 2764 !(vsi->q_vectors[i]->num_ring_tx || 2765 vsi->q_vectors[i]->num_ring_rx)) 2766 continue; 2767 2768 /* clear the affinity notifier in the IRQ descriptor */ 2769 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2770 irq_set_affinity_notifier(irq_num, NULL); 2771 2772 /* clear the affinity_mask in the IRQ descriptor */ 2773 irq_set_affinity_hint(irq_num, NULL); 2774 synchronize_irq(irq_num); 2775 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2776 } 2777 } 2778 2779 /** 2780 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2781 * @vsi: the VSI having resources freed 2782 */ 2783 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2784 { 2785 int i; 2786 2787 if (!vsi->tx_rings) 2788 return; 2789 2790 ice_for_each_txq(vsi, i) 2791 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2792 ice_free_tx_ring(vsi->tx_rings[i]); 2793 } 2794 2795 /** 2796 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2797 * @vsi: the VSI having resources freed 2798 */ 2799 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2800 { 2801 int i; 2802 2803 if (!vsi->rx_rings) 2804 return; 2805 2806 ice_for_each_rxq(vsi, i) 2807 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2808 ice_free_rx_ring(vsi->rx_rings[i]); 2809 } 2810 2811 /** 2812 * ice_vsi_close - Shut down a VSI 2813 * @vsi: the VSI being shut down 2814 */ 2815 void ice_vsi_close(struct ice_vsi *vsi) 2816 { 2817 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2818 ice_down(vsi); 2819 2820 ice_vsi_free_irq(vsi); 2821 ice_vsi_free_tx_rings(vsi); 2822 ice_vsi_free_rx_rings(vsi); 2823 } 2824 2825 /** 2826 * ice_ena_vsi - resume a VSI 2827 * @vsi: the VSI being resume 2828 * @locked: is the rtnl_lock already held 2829 */ 2830 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2831 { 2832 int err = 0; 2833 2834 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2835 return 0; 2836 2837 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2838 2839 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2840 if (netif_running(vsi->netdev)) { 2841 if (!locked) 2842 rtnl_lock(); 2843 2844 err = ice_open_internal(vsi->netdev); 2845 2846 if (!locked) 2847 rtnl_unlock(); 2848 } 2849 } else if (vsi->type == ICE_VSI_CTRL) { 2850 err = ice_vsi_open_ctrl(vsi); 2851 } 2852 2853 return err; 2854 } 2855 2856 /** 2857 * ice_dis_vsi - pause a VSI 2858 * @vsi: the VSI being paused 2859 * @locked: is the rtnl_lock already held 2860 */ 2861 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2862 { 2863 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2864 return; 2865 2866 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2867 2868 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2869 if (netif_running(vsi->netdev)) { 2870 if (!locked) 2871 rtnl_lock(); 2872 2873 ice_vsi_close(vsi); 2874 2875 if (!locked) 2876 rtnl_unlock(); 2877 } else { 2878 ice_vsi_close(vsi); 2879 } 2880 } else if (vsi->type == ICE_VSI_CTRL || 2881 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2882 ice_vsi_close(vsi); 2883 } 2884 } 2885 2886 /** 2887 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2888 * @vsi: the VSI being un-configured 2889 */ 2890 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2891 { 2892 struct ice_pf *pf = vsi->back; 2893 struct ice_hw *hw = &pf->hw; 2894 u32 val; 2895 int i; 2896 2897 /* disable interrupt causation from each queue */ 2898 if (vsi->tx_rings) { 2899 ice_for_each_txq(vsi, i) { 2900 if (vsi->tx_rings[i]) { 2901 u16 reg; 2902 2903 reg = vsi->tx_rings[i]->reg_idx; 2904 val = rd32(hw, QINT_TQCTL(reg)); 2905 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2906 wr32(hw, QINT_TQCTL(reg), val); 2907 } 2908 } 2909 } 2910 2911 if (vsi->rx_rings) { 2912 ice_for_each_rxq(vsi, i) { 2913 if (vsi->rx_rings[i]) { 2914 u16 reg; 2915 2916 reg = vsi->rx_rings[i]->reg_idx; 2917 val = rd32(hw, QINT_RQCTL(reg)); 2918 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2919 wr32(hw, QINT_RQCTL(reg), val); 2920 } 2921 } 2922 } 2923 2924 /* disable each interrupt */ 2925 ice_for_each_q_vector(vsi, i) { 2926 if (!vsi->q_vectors[i]) 2927 continue; 2928 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2929 } 2930 2931 ice_flush(hw); 2932 2933 /* don't call synchronize_irq() for VF's from the host */ 2934 if (vsi->type == ICE_VSI_VF) 2935 return; 2936 2937 ice_for_each_q_vector(vsi, i) 2938 synchronize_irq(vsi->q_vectors[i]->irq.virq); 2939 } 2940 2941 /** 2942 * ice_vsi_release - Delete a VSI and free its resources 2943 * @vsi: the VSI being removed 2944 * 2945 * Returns 0 on success or < 0 on error 2946 */ 2947 int ice_vsi_release(struct ice_vsi *vsi) 2948 { 2949 struct ice_pf *pf; 2950 2951 if (!vsi->back) 2952 return -ENODEV; 2953 pf = vsi->back; 2954 2955 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2956 ice_rss_clean(vsi); 2957 2958 ice_vsi_close(vsi); 2959 ice_vsi_decfg(vsi); 2960 2961 /* retain SW VSI data structure since it is needed to unregister and 2962 * free VSI netdev when PF is not in reset recovery pending state,\ 2963 * for ex: during rmmod. 2964 */ 2965 if (!ice_is_reset_in_progress(pf->state)) 2966 ice_vsi_delete(vsi); 2967 2968 return 0; 2969 } 2970 2971 /** 2972 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2973 * @vsi: VSI connected with q_vectors 2974 * @coalesce: array of struct with stored coalesce 2975 * 2976 * Returns array size. 2977 */ 2978 static int 2979 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2980 struct ice_coalesce_stored *coalesce) 2981 { 2982 int i; 2983 2984 ice_for_each_q_vector(vsi, i) { 2985 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2986 2987 coalesce[i].itr_tx = q_vector->tx.itr_settings; 2988 coalesce[i].itr_rx = q_vector->rx.itr_settings; 2989 coalesce[i].intrl = q_vector->intrl; 2990 2991 if (i < vsi->num_txq) 2992 coalesce[i].tx_valid = true; 2993 if (i < vsi->num_rxq) 2994 coalesce[i].rx_valid = true; 2995 } 2996 2997 return vsi->num_q_vectors; 2998 } 2999 3000 /** 3001 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3002 * @vsi: VSI connected with q_vectors 3003 * @coalesce: pointer to array of struct with stored coalesce 3004 * @size: size of coalesce array 3005 * 3006 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3007 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3008 * to default value. 3009 */ 3010 static void 3011 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3012 struct ice_coalesce_stored *coalesce, int size) 3013 { 3014 struct ice_ring_container *rc; 3015 int i; 3016 3017 if ((size && !coalesce) || !vsi) 3018 return; 3019 3020 /* There are a couple of cases that have to be handled here: 3021 * 1. The case where the number of queue vectors stays the same, but 3022 * the number of Tx or Rx rings changes (the first for loop) 3023 * 2. The case where the number of queue vectors increased (the 3024 * second for loop) 3025 */ 3026 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3027 /* There are 2 cases to handle here and they are the same for 3028 * both Tx and Rx: 3029 * if the entry was valid previously (coalesce[i].[tr]x_valid 3030 * and the loop variable is less than the number of rings 3031 * allocated, then write the previous values 3032 * 3033 * if the entry was not valid previously, but the number of 3034 * rings is less than are allocated (this means the number of 3035 * rings increased from previously), then write out the 3036 * values in the first element 3037 * 3038 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3039 * as there is no harm because the dynamic algorithm 3040 * will just overwrite. 3041 */ 3042 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3043 rc = &vsi->q_vectors[i]->rx; 3044 rc->itr_settings = coalesce[i].itr_rx; 3045 ice_write_itr(rc, rc->itr_setting); 3046 } else if (i < vsi->alloc_rxq) { 3047 rc = &vsi->q_vectors[i]->rx; 3048 rc->itr_settings = coalesce[0].itr_rx; 3049 ice_write_itr(rc, rc->itr_setting); 3050 } 3051 3052 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3053 rc = &vsi->q_vectors[i]->tx; 3054 rc->itr_settings = coalesce[i].itr_tx; 3055 ice_write_itr(rc, rc->itr_setting); 3056 } else if (i < vsi->alloc_txq) { 3057 rc = &vsi->q_vectors[i]->tx; 3058 rc->itr_settings = coalesce[0].itr_tx; 3059 ice_write_itr(rc, rc->itr_setting); 3060 } 3061 3062 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3063 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3064 } 3065 3066 /* the number of queue vectors increased so write whatever is in 3067 * the first element 3068 */ 3069 for (; i < vsi->num_q_vectors; i++) { 3070 /* transmit */ 3071 rc = &vsi->q_vectors[i]->tx; 3072 rc->itr_settings = coalesce[0].itr_tx; 3073 ice_write_itr(rc, rc->itr_setting); 3074 3075 /* receive */ 3076 rc = &vsi->q_vectors[i]->rx; 3077 rc->itr_settings = coalesce[0].itr_rx; 3078 ice_write_itr(rc, rc->itr_setting); 3079 3080 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3081 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3082 } 3083 } 3084 3085 /** 3086 * ice_vsi_realloc_stat_arrays - Frees unused stat structures 3087 * @vsi: VSI pointer 3088 * @prev_txq: Number of Tx rings before ring reallocation 3089 * @prev_rxq: Number of Rx rings before ring reallocation 3090 */ 3091 static void 3092 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq) 3093 { 3094 struct ice_vsi_stats *vsi_stat; 3095 struct ice_pf *pf = vsi->back; 3096 int i; 3097 3098 if (!prev_txq || !prev_rxq) 3099 return; 3100 if (vsi->type == ICE_VSI_CHNL) 3101 return; 3102 3103 vsi_stat = pf->vsi_stats[vsi->idx]; 3104 3105 if (vsi->num_txq < prev_txq) { 3106 for (i = vsi->num_txq; i < prev_txq; i++) { 3107 if (vsi_stat->tx_ring_stats[i]) { 3108 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3109 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3110 } 3111 } 3112 } 3113 3114 if (vsi->num_rxq < prev_rxq) { 3115 for (i = vsi->num_rxq; i < prev_rxq; i++) { 3116 if (vsi_stat->rx_ring_stats[i]) { 3117 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3118 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3119 } 3120 } 3121 } 3122 } 3123 3124 /** 3125 * ice_vsi_rebuild - Rebuild VSI after reset 3126 * @vsi: VSI to be rebuild 3127 * @vsi_flags: flags used for VSI rebuild flow 3128 * 3129 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3130 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3131 * 3132 * Returns 0 on success and negative value on failure 3133 */ 3134 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3135 { 3136 struct ice_vsi_cfg_params params = {}; 3137 struct ice_coalesce_stored *coalesce; 3138 int ret, prev_txq, prev_rxq; 3139 int prev_num_q_vectors = 0; 3140 struct ice_pf *pf; 3141 3142 if (!vsi) 3143 return -EINVAL; 3144 3145 params = ice_vsi_to_params(vsi); 3146 params.flags = vsi_flags; 3147 3148 pf = vsi->back; 3149 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3150 return -EINVAL; 3151 3152 coalesce = kcalloc(vsi->num_q_vectors, 3153 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3154 if (!coalesce) 3155 return -ENOMEM; 3156 3157 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3158 3159 prev_txq = vsi->num_txq; 3160 prev_rxq = vsi->num_rxq; 3161 3162 ice_vsi_decfg(vsi); 3163 ret = ice_vsi_cfg_def(vsi, ¶ms); 3164 if (ret) 3165 goto err_vsi_cfg; 3166 3167 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3168 if (ret) { 3169 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3170 ret = -EIO; 3171 goto err_vsi_cfg_tc_lan; 3172 } 3173 3174 kfree(coalesce); 3175 return ice_schedule_reset(pf, ICE_RESET_PFR); 3176 } 3177 3178 ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq); 3179 3180 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3181 kfree(coalesce); 3182 3183 return 0; 3184 3185 err_vsi_cfg_tc_lan: 3186 ice_vsi_decfg(vsi); 3187 err_vsi_cfg: 3188 kfree(coalesce); 3189 return ret; 3190 } 3191 3192 /** 3193 * ice_is_reset_in_progress - check for a reset in progress 3194 * @state: PF state field 3195 */ 3196 bool ice_is_reset_in_progress(unsigned long *state) 3197 { 3198 return test_bit(ICE_RESET_OICR_RECV, state) || 3199 test_bit(ICE_PFR_REQ, state) || 3200 test_bit(ICE_CORER_REQ, state) || 3201 test_bit(ICE_GLOBR_REQ, state); 3202 } 3203 3204 /** 3205 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3206 * @pf: pointer to the PF structure 3207 * @timeout: length of time to wait, in jiffies 3208 * 3209 * Wait (sleep) for a short time until the driver finishes cleaning up from 3210 * a device reset. The caller must be able to sleep. Use this to delay 3211 * operations that could fail while the driver is cleaning up after a device 3212 * reset. 3213 * 3214 * Returns 0 on success, -EBUSY if the reset is not finished within the 3215 * timeout, and -ERESTARTSYS if the thread was interrupted. 3216 */ 3217 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3218 { 3219 long ret; 3220 3221 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3222 !ice_is_reset_in_progress(pf->state), 3223 timeout); 3224 if (ret < 0) 3225 return ret; 3226 else if (!ret) 3227 return -EBUSY; 3228 else 3229 return 0; 3230 } 3231 3232 /** 3233 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3234 * @vsi: VSI being configured 3235 * @ctx: the context buffer returned from AQ VSI update command 3236 */ 3237 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3238 { 3239 vsi->info.mapping_flags = ctx->info.mapping_flags; 3240 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3241 sizeof(vsi->info.q_mapping)); 3242 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3243 sizeof(vsi->info.tc_mapping)); 3244 } 3245 3246 /** 3247 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3248 * @vsi: the VSI being configured 3249 * @ena_tc: TC map to be enabled 3250 */ 3251 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3252 { 3253 struct net_device *netdev = vsi->netdev; 3254 struct ice_pf *pf = vsi->back; 3255 int numtc = vsi->tc_cfg.numtc; 3256 struct ice_dcbx_cfg *dcbcfg; 3257 u8 netdev_tc; 3258 int i; 3259 3260 if (!netdev) 3261 return; 3262 3263 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3264 if (vsi->type == ICE_VSI_CHNL) 3265 return; 3266 3267 if (!ena_tc) { 3268 netdev_reset_tc(netdev); 3269 return; 3270 } 3271 3272 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3273 numtc = vsi->all_numtc; 3274 3275 if (netdev_set_num_tc(netdev, numtc)) 3276 return; 3277 3278 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3279 3280 ice_for_each_traffic_class(i) 3281 if (vsi->tc_cfg.ena_tc & BIT(i)) 3282 netdev_set_tc_queue(netdev, 3283 vsi->tc_cfg.tc_info[i].netdev_tc, 3284 vsi->tc_cfg.tc_info[i].qcount_tx, 3285 vsi->tc_cfg.tc_info[i].qoffset); 3286 /* setup TC queue map for CHNL TCs */ 3287 ice_for_each_chnl_tc(i) { 3288 if (!(vsi->all_enatc & BIT(i))) 3289 break; 3290 if (!vsi->mqprio_qopt.qopt.count[i]) 3291 break; 3292 netdev_set_tc_queue(netdev, i, 3293 vsi->mqprio_qopt.qopt.count[i], 3294 vsi->mqprio_qopt.qopt.offset[i]); 3295 } 3296 3297 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3298 return; 3299 3300 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3301 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3302 3303 /* Get the mapped netdev TC# for the UP */ 3304 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3305 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3306 } 3307 } 3308 3309 /** 3310 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3311 * @vsi: the VSI being configured, 3312 * @ctxt: VSI context structure 3313 * @ena_tc: number of traffic classes to enable 3314 * 3315 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3316 */ 3317 static int 3318 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3319 u8 ena_tc) 3320 { 3321 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3322 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3323 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3324 u16 new_txq, new_rxq; 3325 u8 netdev_tc = 0; 3326 int i; 3327 3328 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3329 3330 pow = order_base_2(tc0_qcount); 3331 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3332 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3333 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3334 3335 ice_for_each_traffic_class(i) { 3336 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3337 /* TC is not enabled */ 3338 vsi->tc_cfg.tc_info[i].qoffset = 0; 3339 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3340 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3341 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3342 ctxt->info.tc_mapping[i] = 0; 3343 continue; 3344 } 3345 3346 offset = vsi->mqprio_qopt.qopt.offset[i]; 3347 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3348 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3349 vsi->tc_cfg.tc_info[i].qoffset = offset; 3350 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3351 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3352 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3353 } 3354 3355 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3356 ice_for_each_chnl_tc(i) { 3357 if (!(vsi->all_enatc & BIT(i))) 3358 continue; 3359 offset = vsi->mqprio_qopt.qopt.offset[i]; 3360 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3361 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3362 } 3363 } 3364 3365 new_txq = offset + qcount_tx; 3366 if (new_txq > vsi->alloc_txq) { 3367 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3368 new_txq, vsi->alloc_txq); 3369 return -EINVAL; 3370 } 3371 3372 new_rxq = offset + qcount_rx; 3373 if (new_rxq > vsi->alloc_rxq) { 3374 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3375 new_rxq, vsi->alloc_rxq); 3376 return -EINVAL; 3377 } 3378 3379 /* Set actual Tx/Rx queue pairs */ 3380 vsi->num_txq = new_txq; 3381 vsi->num_rxq = new_rxq; 3382 3383 /* Setup queue TC[0].qmap for given VSI context */ 3384 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3385 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3386 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3387 3388 /* Find queue count available for channel VSIs and starting offset 3389 * for channel VSIs 3390 */ 3391 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3392 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3393 vsi->next_base_q = tc0_qcount; 3394 } 3395 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3396 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3397 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3398 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3399 3400 return 0; 3401 } 3402 3403 /** 3404 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3405 * @vsi: VSI to be configured 3406 * @ena_tc: TC bitmap 3407 * 3408 * VSI queues expected to be quiesced before calling this function 3409 */ 3410 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3411 { 3412 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3413 struct ice_pf *pf = vsi->back; 3414 struct ice_tc_cfg old_tc_cfg; 3415 struct ice_vsi_ctx *ctx; 3416 struct device *dev; 3417 int i, ret = 0; 3418 u8 num_tc = 0; 3419 3420 dev = ice_pf_to_dev(pf); 3421 if (vsi->tc_cfg.ena_tc == ena_tc && 3422 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3423 return 0; 3424 3425 ice_for_each_traffic_class(i) { 3426 /* build bitmap of enabled TCs */ 3427 if (ena_tc & BIT(i)) 3428 num_tc++; 3429 /* populate max_txqs per TC */ 3430 max_txqs[i] = vsi->alloc_txq; 3431 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3432 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3433 */ 3434 if (vsi->type == ICE_VSI_CHNL && 3435 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3436 max_txqs[i] = vsi->num_txq; 3437 } 3438 3439 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3440 vsi->tc_cfg.ena_tc = ena_tc; 3441 vsi->tc_cfg.numtc = num_tc; 3442 3443 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3444 if (!ctx) 3445 return -ENOMEM; 3446 3447 ctx->vf_num = 0; 3448 ctx->info = vsi->info; 3449 3450 if (vsi->type == ICE_VSI_PF && 3451 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3452 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3453 else 3454 ret = ice_vsi_setup_q_map(vsi, ctx); 3455 3456 if (ret) { 3457 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3458 goto out; 3459 } 3460 3461 /* must to indicate which section of VSI context are being modified */ 3462 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3463 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3464 if (ret) { 3465 dev_info(dev, "Failed VSI Update\n"); 3466 goto out; 3467 } 3468 3469 if (vsi->type == ICE_VSI_PF && 3470 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3471 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3472 else 3473 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3474 vsi->tc_cfg.ena_tc, max_txqs); 3475 3476 if (ret) { 3477 dev_err(dev, "VSI %d failed TC config, error %d\n", 3478 vsi->vsi_num, ret); 3479 goto out; 3480 } 3481 ice_vsi_update_q_map(vsi, ctx); 3482 vsi->info.valid_sections = 0; 3483 3484 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3485 out: 3486 kfree(ctx); 3487 return ret; 3488 } 3489 3490 /** 3491 * ice_update_ring_stats - Update ring statistics 3492 * @stats: stats to be updated 3493 * @pkts: number of processed packets 3494 * @bytes: number of processed bytes 3495 * 3496 * This function assumes that caller has acquired a u64_stats_sync lock. 3497 */ 3498 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3499 { 3500 stats->bytes += bytes; 3501 stats->pkts += pkts; 3502 } 3503 3504 /** 3505 * ice_update_tx_ring_stats - Update Tx ring specific counters 3506 * @tx_ring: ring to update 3507 * @pkts: number of processed packets 3508 * @bytes: number of processed bytes 3509 */ 3510 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3511 { 3512 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3513 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3514 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3515 } 3516 3517 /** 3518 * ice_update_rx_ring_stats - Update Rx ring specific counters 3519 * @rx_ring: ring to update 3520 * @pkts: number of processed packets 3521 * @bytes: number of processed bytes 3522 */ 3523 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3524 { 3525 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3526 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3527 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3528 } 3529 3530 /** 3531 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3532 * @pi: port info of the switch with default VSI 3533 * 3534 * Return true if the there is a single VSI in default forwarding VSI list 3535 */ 3536 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3537 { 3538 bool exists = false; 3539 3540 ice_check_if_dflt_vsi(pi, 0, &exists); 3541 return exists; 3542 } 3543 3544 /** 3545 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3546 * @vsi: VSI to compare against default forwarding VSI 3547 * 3548 * If this VSI passed in is the default forwarding VSI then return true, else 3549 * return false 3550 */ 3551 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3552 { 3553 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3554 } 3555 3556 /** 3557 * ice_set_dflt_vsi - set the default forwarding VSI 3558 * @vsi: VSI getting set as the default forwarding VSI on the switch 3559 * 3560 * If the VSI passed in is already the default VSI and it's enabled just return 3561 * success. 3562 * 3563 * Otherwise try to set the VSI passed in as the switch's default VSI and 3564 * return the result. 3565 */ 3566 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3567 { 3568 struct device *dev; 3569 int status; 3570 3571 if (!vsi) 3572 return -EINVAL; 3573 3574 dev = ice_pf_to_dev(vsi->back); 3575 3576 if (ice_lag_is_switchdev_running(vsi->back)) { 3577 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3578 vsi->vsi_num); 3579 return 0; 3580 } 3581 3582 /* the VSI passed in is already the default VSI */ 3583 if (ice_is_vsi_dflt_vsi(vsi)) { 3584 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3585 vsi->vsi_num); 3586 return 0; 3587 } 3588 3589 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3590 if (status) { 3591 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3592 vsi->vsi_num, status); 3593 return status; 3594 } 3595 3596 return 0; 3597 } 3598 3599 /** 3600 * ice_clear_dflt_vsi - clear the default forwarding VSI 3601 * @vsi: VSI to remove from filter list 3602 * 3603 * If the switch has no default VSI or it's not enabled then return error. 3604 * 3605 * Otherwise try to clear the default VSI and return the result. 3606 */ 3607 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3608 { 3609 struct device *dev; 3610 int status; 3611 3612 if (!vsi) 3613 return -EINVAL; 3614 3615 dev = ice_pf_to_dev(vsi->back); 3616 3617 /* there is no default VSI configured */ 3618 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3619 return -ENODEV; 3620 3621 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3622 ICE_FLTR_RX); 3623 if (status) { 3624 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3625 vsi->vsi_num, status); 3626 return -EIO; 3627 } 3628 3629 return 0; 3630 } 3631 3632 /** 3633 * ice_get_link_speed_mbps - get link speed in Mbps 3634 * @vsi: the VSI whose link speed is being queried 3635 * 3636 * Return current VSI link speed and 0 if the speed is unknown. 3637 */ 3638 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3639 { 3640 unsigned int link_speed; 3641 3642 link_speed = vsi->port_info->phy.link_info.link_speed; 3643 3644 return (int)ice_get_link_speed(fls(link_speed) - 1); 3645 } 3646 3647 /** 3648 * ice_get_link_speed_kbps - get link speed in Kbps 3649 * @vsi: the VSI whose link speed is being queried 3650 * 3651 * Return current VSI link speed and 0 if the speed is unknown. 3652 */ 3653 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3654 { 3655 int speed_mbps; 3656 3657 speed_mbps = ice_get_link_speed_mbps(vsi); 3658 3659 return speed_mbps * 1000; 3660 } 3661 3662 /** 3663 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3664 * @vsi: VSI to be configured 3665 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3666 * 3667 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3668 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3669 * on TC 0. 3670 */ 3671 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3672 { 3673 struct ice_pf *pf = vsi->back; 3674 struct device *dev; 3675 int status; 3676 int speed; 3677 3678 dev = ice_pf_to_dev(pf); 3679 if (!vsi->port_info) { 3680 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3681 vsi->idx, vsi->type); 3682 return -EINVAL; 3683 } 3684 3685 speed = ice_get_link_speed_kbps(vsi); 3686 if (min_tx_rate > (u64)speed) { 3687 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3688 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3689 speed); 3690 return -EINVAL; 3691 } 3692 3693 /* Configure min BW for VSI limit */ 3694 if (min_tx_rate) { 3695 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3696 ICE_MIN_BW, min_tx_rate); 3697 if (status) { 3698 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3699 min_tx_rate, ice_vsi_type_str(vsi->type), 3700 vsi->idx); 3701 return status; 3702 } 3703 3704 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3705 min_tx_rate, ice_vsi_type_str(vsi->type)); 3706 } else { 3707 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3708 vsi->idx, 0, 3709 ICE_MIN_BW); 3710 if (status) { 3711 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3712 ice_vsi_type_str(vsi->type), vsi->idx); 3713 return status; 3714 } 3715 3716 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3717 ice_vsi_type_str(vsi->type), vsi->idx); 3718 } 3719 3720 return 0; 3721 } 3722 3723 /** 3724 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3725 * @vsi: VSI to be configured 3726 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3727 * 3728 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3729 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3730 * on TC 0. 3731 */ 3732 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3733 { 3734 struct ice_pf *pf = vsi->back; 3735 struct device *dev; 3736 int status; 3737 int speed; 3738 3739 dev = ice_pf_to_dev(pf); 3740 if (!vsi->port_info) { 3741 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3742 vsi->idx, vsi->type); 3743 return -EINVAL; 3744 } 3745 3746 speed = ice_get_link_speed_kbps(vsi); 3747 if (max_tx_rate > (u64)speed) { 3748 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3749 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3750 speed); 3751 return -EINVAL; 3752 } 3753 3754 /* Configure max BW for VSI limit */ 3755 if (max_tx_rate) { 3756 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3757 ICE_MAX_BW, max_tx_rate); 3758 if (status) { 3759 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3760 max_tx_rate, ice_vsi_type_str(vsi->type), 3761 vsi->idx); 3762 return status; 3763 } 3764 3765 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3766 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3767 } else { 3768 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3769 vsi->idx, 0, 3770 ICE_MAX_BW); 3771 if (status) { 3772 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3773 ice_vsi_type_str(vsi->type), vsi->idx); 3774 return status; 3775 } 3776 3777 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3778 ice_vsi_type_str(vsi->type), vsi->idx); 3779 } 3780 3781 return 0; 3782 } 3783 3784 /** 3785 * ice_set_link - turn on/off physical link 3786 * @vsi: VSI to modify physical link on 3787 * @ena: turn on/off physical link 3788 */ 3789 int ice_set_link(struct ice_vsi *vsi, bool ena) 3790 { 3791 struct device *dev = ice_pf_to_dev(vsi->back); 3792 struct ice_port_info *pi = vsi->port_info; 3793 struct ice_hw *hw = pi->hw; 3794 int status; 3795 3796 if (vsi->type != ICE_VSI_PF) 3797 return -EINVAL; 3798 3799 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3800 3801 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3802 * this is not a fatal error, so print a warning message and return 3803 * a success code. Return an error if FW returns an error code other 3804 * than ICE_AQ_RC_EMODE 3805 */ 3806 if (status == -EIO) { 3807 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3808 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3809 (ena ? "ON" : "OFF"), status, 3810 ice_aq_str(hw->adminq.sq_last_status)); 3811 } else if (status) { 3812 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3813 (ena ? "ON" : "OFF"), status, 3814 ice_aq_str(hw->adminq.sq_last_status)); 3815 return status; 3816 } 3817 3818 return 0; 3819 } 3820 3821 /** 3822 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3823 * @vsi: VSI used to add VLAN filters 3824 * 3825 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3826 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3827 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3828 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3829 * 3830 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3831 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3832 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3833 * 3834 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3835 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3836 * part of filtering. 3837 */ 3838 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3839 { 3840 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3841 struct ice_vlan vlan; 3842 int err; 3843 3844 vlan = ICE_VLAN(0, 0, 0); 3845 err = vlan_ops->add_vlan(vsi, &vlan); 3846 if (err && err != -EEXIST) 3847 return err; 3848 3849 /* in SVM both VLAN 0 filters are identical */ 3850 if (!ice_is_dvm_ena(&vsi->back->hw)) 3851 return 0; 3852 3853 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3854 err = vlan_ops->add_vlan(vsi, &vlan); 3855 if (err && err != -EEXIST) 3856 return err; 3857 3858 return 0; 3859 } 3860 3861 /** 3862 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3863 * @vsi: VSI used to add VLAN filters 3864 * 3865 * Delete the VLAN 0 filters in the same manner that they were added in 3866 * ice_vsi_add_vlan_zero. 3867 */ 3868 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3869 { 3870 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3871 struct ice_vlan vlan; 3872 int err; 3873 3874 vlan = ICE_VLAN(0, 0, 0); 3875 err = vlan_ops->del_vlan(vsi, &vlan); 3876 if (err && err != -EEXIST) 3877 return err; 3878 3879 /* in SVM both VLAN 0 filters are identical */ 3880 if (!ice_is_dvm_ena(&vsi->back->hw)) 3881 return 0; 3882 3883 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3884 err = vlan_ops->del_vlan(vsi, &vlan); 3885 if (err && err != -EEXIST) 3886 return err; 3887 3888 /* when deleting the last VLAN filter, make sure to disable the VLAN 3889 * promisc mode so the filter isn't left by accident 3890 */ 3891 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3892 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3893 } 3894 3895 /** 3896 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3897 * @vsi: VSI used to get the VLAN mode 3898 * 3899 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3900 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3901 */ 3902 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3903 { 3904 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3905 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3906 /* no VLAN 0 filter is created when a port VLAN is active */ 3907 if (vsi->type == ICE_VSI_VF) { 3908 if (WARN_ON(!vsi->vf)) 3909 return 0; 3910 3911 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3912 return 0; 3913 } 3914 3915 if (ice_is_dvm_ena(&vsi->back->hw)) 3916 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3917 else 3918 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3919 } 3920 3921 /** 3922 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3923 * @vsi: VSI used to determine if any non-zero VLANs have been added 3924 */ 3925 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3926 { 3927 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3928 } 3929 3930 /** 3931 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3932 * @vsi: VSI used to get the number of non-zero VLANs added 3933 */ 3934 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3935 { 3936 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3937 } 3938 3939 /** 3940 * ice_is_feature_supported 3941 * @pf: pointer to the struct ice_pf instance 3942 * @f: feature enum to be checked 3943 * 3944 * returns true if feature is supported, false otherwise 3945 */ 3946 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3947 { 3948 if (f < 0 || f >= ICE_F_MAX) 3949 return false; 3950 3951 return test_bit(f, pf->features); 3952 } 3953 3954 /** 3955 * ice_set_feature_support 3956 * @pf: pointer to the struct ice_pf instance 3957 * @f: feature enum to set 3958 */ 3959 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3960 { 3961 if (f < 0 || f >= ICE_F_MAX) 3962 return; 3963 3964 set_bit(f, pf->features); 3965 } 3966 3967 /** 3968 * ice_clear_feature_support 3969 * @pf: pointer to the struct ice_pf instance 3970 * @f: feature enum to clear 3971 */ 3972 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 3973 { 3974 if (f < 0 || f >= ICE_F_MAX) 3975 return; 3976 3977 clear_bit(f, pf->features); 3978 } 3979 3980 /** 3981 * ice_init_feature_support 3982 * @pf: pointer to the struct ice_pf instance 3983 * 3984 * called during init to setup supported feature 3985 */ 3986 void ice_init_feature_support(struct ice_pf *pf) 3987 { 3988 switch (pf->hw.device_id) { 3989 case ICE_DEV_ID_E810C_BACKPLANE: 3990 case ICE_DEV_ID_E810C_QSFP: 3991 case ICE_DEV_ID_E810C_SFP: 3992 ice_set_feature_support(pf, ICE_F_DSCP); 3993 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 3994 if (ice_is_e810t(&pf->hw)) { 3995 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 3996 if (ice_gnss_is_gps_present(&pf->hw)) 3997 ice_set_feature_support(pf, ICE_F_GNSS); 3998 } 3999 break; 4000 default: 4001 break; 4002 } 4003 } 4004 4005 /** 4006 * ice_vsi_update_security - update security block in VSI 4007 * @vsi: pointer to VSI structure 4008 * @fill: function pointer to fill ctx 4009 */ 4010 int 4011 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4012 { 4013 struct ice_vsi_ctx ctx = { 0 }; 4014 4015 ctx.info = vsi->info; 4016 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4017 fill(&ctx); 4018 4019 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4020 return -ENODEV; 4021 4022 vsi->info = ctx.info; 4023 return 0; 4024 } 4025 4026 /** 4027 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4028 * @ctx: pointer to VSI ctx structure 4029 */ 4030 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4031 { 4032 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4033 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4034 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4035 } 4036 4037 /** 4038 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4039 * @ctx: pointer to VSI ctx structure 4040 */ 4041 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4042 { 4043 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4044 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4045 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4046 } 4047 4048 /** 4049 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4050 * @ctx: pointer to VSI ctx structure 4051 */ 4052 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4053 { 4054 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4055 } 4056 4057 /** 4058 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4059 * @ctx: pointer to VSI ctx structure 4060 */ 4061 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4062 { 4063 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4064 } 4065 4066 /** 4067 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4068 * @vsi: pointer to VSI structure 4069 * @set: set or unset the bit 4070 */ 4071 int 4072 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4073 { 4074 struct ice_vsi_ctx ctx = { 4075 .info = vsi->info, 4076 }; 4077 4078 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4079 if (set) 4080 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4081 else 4082 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4083 4084 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4085 return -ENODEV; 4086 4087 vsi->info = ctx.info; 4088 return 0; 4089 } 4090