1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 } 891 /* Have 1:1 UP mapping for both ingress/egress tables */ 892 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 893 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 894 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 895 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 896 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 897 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 898 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 899 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 900 ctxt->info.ingress_table = cpu_to_le32(table); 901 ctxt->info.egress_table = cpu_to_le32(table); 902 /* Have 1:1 UP mapping for outer to inner UP table */ 903 ctxt->info.outer_up_table = cpu_to_le32(table); 904 /* No Outer tag support outer_tag_flags remains to zero */ 905 } 906 907 /** 908 * ice_vsi_setup_q_map - Setup a VSI queue map 909 * @vsi: the VSI being configured 910 * @ctxt: VSI context structure 911 */ 912 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 913 { 914 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 915 u16 num_txq_per_tc, num_rxq_per_tc; 916 u16 qcount_tx = vsi->alloc_txq; 917 u16 qcount_rx = vsi->alloc_rxq; 918 u8 netdev_tc = 0; 919 int i; 920 921 if (!vsi->tc_cfg.numtc) { 922 /* at least TC0 should be enabled by default */ 923 vsi->tc_cfg.numtc = 1; 924 vsi->tc_cfg.ena_tc = 1; 925 } 926 927 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 928 if (!num_rxq_per_tc) 929 num_rxq_per_tc = 1; 930 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 931 if (!num_txq_per_tc) 932 num_txq_per_tc = 1; 933 934 /* find the (rounded up) power-of-2 of qcount */ 935 pow = (u16)order_base_2(num_rxq_per_tc); 936 937 /* TC mapping is a function of the number of Rx queues assigned to the 938 * VSI for each traffic class and the offset of these queues. 939 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 940 * queues allocated to TC0. No:of queues is a power-of-2. 941 * 942 * If TC is not enabled, the queue offset is set to 0, and allocate one 943 * queue, this way, traffic for the given TC will be sent to the default 944 * queue. 945 * 946 * Setup number and offset of Rx queues for all TCs for the VSI 947 */ 948 ice_for_each_traffic_class(i) { 949 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 950 /* TC is not enabled */ 951 vsi->tc_cfg.tc_info[i].qoffset = 0; 952 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 953 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 954 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 955 ctxt->info.tc_mapping[i] = 0; 956 continue; 957 } 958 959 /* TC is enabled */ 960 vsi->tc_cfg.tc_info[i].qoffset = offset; 961 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 962 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 963 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 964 965 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 966 ICE_AQ_VSI_TC_Q_OFFSET_M) | 967 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 968 ICE_AQ_VSI_TC_Q_NUM_M); 969 offset += num_rxq_per_tc; 970 tx_count += num_txq_per_tc; 971 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 972 } 973 974 /* if offset is non-zero, means it is calculated correctly based on 975 * enabled TCs for a given VSI otherwise qcount_rx will always 976 * be correct and non-zero because it is based off - VSI's 977 * allocated Rx queues which is at least 1 (hence qcount_tx will be 978 * at least 1) 979 */ 980 if (offset) 981 vsi->num_rxq = offset; 982 else 983 vsi->num_rxq = num_rxq_per_tc; 984 985 vsi->num_txq = tx_count; 986 987 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 988 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 989 /* since there is a chance that num_rxq could have been changed 990 * in the above for loop, make num_txq equal to num_rxq. 991 */ 992 vsi->num_txq = vsi->num_rxq; 993 } 994 995 /* Rx queue mapping */ 996 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 997 /* q_mapping buffer holds the info for the first queue allocated for 998 * this VSI in the PF space and also the number of queues associated 999 * with this VSI. 1000 */ 1001 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1002 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1003 } 1004 1005 /** 1006 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1007 * @ctxt: the VSI context being set 1008 * @vsi: the VSI being configured 1009 */ 1010 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1011 { 1012 u8 dflt_q_group, dflt_q_prio; 1013 u16 dflt_q, report_q, val; 1014 1015 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1016 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1017 return; 1018 1019 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1020 ctxt->info.valid_sections |= cpu_to_le16(val); 1021 dflt_q = 0; 1022 dflt_q_group = 0; 1023 report_q = 0; 1024 dflt_q_prio = 0; 1025 1026 /* enable flow director filtering/programming */ 1027 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1028 ctxt->info.fd_options = cpu_to_le16(val); 1029 /* max of allocated flow director filters */ 1030 ctxt->info.max_fd_fltr_dedicated = 1031 cpu_to_le16(vsi->num_gfltr); 1032 /* max of shared flow director filters any VSI may program */ 1033 ctxt->info.max_fd_fltr_shared = 1034 cpu_to_le16(vsi->num_bfltr); 1035 /* default queue index within the VSI of the default FD */ 1036 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1037 ICE_AQ_VSI_FD_DEF_Q_M); 1038 /* target queue or queue group to the FD filter */ 1039 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1040 ICE_AQ_VSI_FD_DEF_GRP_M); 1041 ctxt->info.fd_def_q = cpu_to_le16(val); 1042 /* queue index on which FD filter completion is reported */ 1043 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1044 ICE_AQ_VSI_FD_REPORT_Q_M); 1045 /* priority of the default qindex action */ 1046 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1047 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1048 ctxt->info.fd_report_opt = cpu_to_le16(val); 1049 } 1050 1051 /** 1052 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1053 * @ctxt: the VSI context being set 1054 * @vsi: the VSI being configured 1055 */ 1056 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1057 { 1058 u8 lut_type, hash_type; 1059 struct device *dev; 1060 struct ice_pf *pf; 1061 1062 pf = vsi->back; 1063 dev = ice_pf_to_dev(pf); 1064 1065 switch (vsi->type) { 1066 case ICE_VSI_CHNL: 1067 case ICE_VSI_PF: 1068 /* PF VSI will inherit RSS instance of PF */ 1069 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1070 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1071 break; 1072 case ICE_VSI_VF: 1073 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1074 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1075 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1076 break; 1077 default: 1078 dev_dbg(dev, "Unsupported VSI type %s\n", 1079 ice_vsi_type_str(vsi->type)); 1080 return; 1081 } 1082 1083 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1084 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1085 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1086 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1087 } 1088 1089 static void 1090 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1091 { 1092 struct ice_pf *pf = vsi->back; 1093 u16 qcount, qmap; 1094 u8 offset = 0; 1095 int pow; 1096 1097 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1098 1099 pow = order_base_2(qcount); 1100 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1101 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1102 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1103 ICE_AQ_VSI_TC_Q_NUM_M); 1104 1105 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1106 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1107 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1108 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1109 } 1110 1111 /** 1112 * ice_vsi_init - Create and initialize a VSI 1113 * @vsi: the VSI being configured 1114 * @init_vsi: is this call creating a VSI 1115 * 1116 * This initializes a VSI context depending on the VSI type to be added and 1117 * passes it down to the add_vsi aq command to create a new VSI. 1118 */ 1119 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1120 { 1121 struct ice_pf *pf = vsi->back; 1122 struct ice_hw *hw = &pf->hw; 1123 struct ice_vsi_ctx *ctxt; 1124 struct device *dev; 1125 int ret = 0; 1126 1127 dev = ice_pf_to_dev(pf); 1128 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1129 if (!ctxt) 1130 return -ENOMEM; 1131 1132 switch (vsi->type) { 1133 case ICE_VSI_CTRL: 1134 case ICE_VSI_LB: 1135 case ICE_VSI_PF: 1136 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1137 break; 1138 case ICE_VSI_SWITCHDEV_CTRL: 1139 case ICE_VSI_CHNL: 1140 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1141 break; 1142 case ICE_VSI_VF: 1143 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1144 /* VF number here is the absolute VF number (0-255) */ 1145 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1146 break; 1147 default: 1148 ret = -ENODEV; 1149 goto out; 1150 } 1151 1152 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1153 * prune enabled 1154 */ 1155 if (vsi->type == ICE_VSI_CHNL) { 1156 struct ice_vsi *main_vsi; 1157 1158 main_vsi = ice_get_main_vsi(pf); 1159 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1160 ctxt->info.sw_flags2 |= 1161 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1162 else 1163 ctxt->info.sw_flags2 &= 1164 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1165 } 1166 1167 ice_set_dflt_vsi_ctx(hw, ctxt); 1168 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1169 ice_set_fd_vsi_ctx(ctxt, vsi); 1170 /* if the switch is in VEB mode, allow VSI loopback */ 1171 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1172 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1173 1174 /* Set LUT type and HASH type if RSS is enabled */ 1175 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1176 vsi->type != ICE_VSI_CTRL) { 1177 ice_set_rss_vsi_ctx(ctxt, vsi); 1178 /* if updating VSI context, make sure to set valid_section: 1179 * to indicate which section of VSI context being updated 1180 */ 1181 if (!init_vsi) 1182 ctxt->info.valid_sections |= 1183 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1184 } 1185 1186 ctxt->info.sw_id = vsi->port_info->sw_id; 1187 if (vsi->type == ICE_VSI_CHNL) { 1188 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1189 } else { 1190 ice_vsi_setup_q_map(vsi, ctxt); 1191 if (!init_vsi) /* means VSI being updated */ 1192 /* must to indicate which section of VSI context are 1193 * being modified 1194 */ 1195 ctxt->info.valid_sections |= 1196 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1197 } 1198 1199 /* Allow control frames out of main VSI */ 1200 if (vsi->type == ICE_VSI_PF) { 1201 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1202 ctxt->info.valid_sections |= 1203 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1204 } 1205 1206 if (init_vsi) { 1207 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1208 if (ret) { 1209 dev_err(dev, "Add VSI failed, err %d\n", ret); 1210 ret = -EIO; 1211 goto out; 1212 } 1213 } else { 1214 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1215 if (ret) { 1216 dev_err(dev, "Update VSI failed, err %d\n", ret); 1217 ret = -EIO; 1218 goto out; 1219 } 1220 } 1221 1222 /* keep context for update VSI operations */ 1223 vsi->info = ctxt->info; 1224 1225 /* record VSI number returned */ 1226 vsi->vsi_num = ctxt->vsi_num; 1227 1228 out: 1229 kfree(ctxt); 1230 return ret; 1231 } 1232 1233 /** 1234 * ice_free_res - free a block of resources 1235 * @res: pointer to the resource 1236 * @index: starting index previously returned by ice_get_res 1237 * @id: identifier to track owner 1238 * 1239 * Returns number of resources freed 1240 */ 1241 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1242 { 1243 int count = 0; 1244 int i; 1245 1246 if (!res || index >= res->end) 1247 return -EINVAL; 1248 1249 id |= ICE_RES_VALID_BIT; 1250 for (i = index; i < res->end && res->list[i] == id; i++) { 1251 res->list[i] = 0; 1252 count++; 1253 } 1254 1255 return count; 1256 } 1257 1258 /** 1259 * ice_search_res - Search the tracker for a block of resources 1260 * @res: pointer to the resource 1261 * @needed: size of the block needed 1262 * @id: identifier to track owner 1263 * 1264 * Returns the base item index of the block, or -ENOMEM for error 1265 */ 1266 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1267 { 1268 u16 start = 0, end = 0; 1269 1270 if (needed > res->end) 1271 return -ENOMEM; 1272 1273 id |= ICE_RES_VALID_BIT; 1274 1275 do { 1276 /* skip already allocated entries */ 1277 if (res->list[end++] & ICE_RES_VALID_BIT) { 1278 start = end; 1279 if ((start + needed) > res->end) 1280 break; 1281 } 1282 1283 if (end == (start + needed)) { 1284 int i = start; 1285 1286 /* there was enough, so assign it to the requestor */ 1287 while (i != end) 1288 res->list[i++] = id; 1289 1290 return start; 1291 } 1292 } while (end < res->end); 1293 1294 return -ENOMEM; 1295 } 1296 1297 /** 1298 * ice_get_free_res_count - Get free count from a resource tracker 1299 * @res: Resource tracker instance 1300 */ 1301 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1302 { 1303 u16 i, count = 0; 1304 1305 for (i = 0; i < res->end; i++) 1306 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1307 count++; 1308 1309 return count; 1310 } 1311 1312 /** 1313 * ice_get_res - get a block of resources 1314 * @pf: board private structure 1315 * @res: pointer to the resource 1316 * @needed: size of the block needed 1317 * @id: identifier to track owner 1318 * 1319 * Returns the base item index of the block, or negative for error 1320 */ 1321 int 1322 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1323 { 1324 if (!res || !pf) 1325 return -EINVAL; 1326 1327 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1328 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1329 needed, res->num_entries, id); 1330 return -EINVAL; 1331 } 1332 1333 return ice_search_res(res, needed, id); 1334 } 1335 1336 /** 1337 * ice_get_vf_ctrl_res - Get VF control VSI resource 1338 * @pf: pointer to the PF structure 1339 * @vsi: the VSI to allocate a resource for 1340 * 1341 * Look up whether another VF has already allocated the control VSI resource. 1342 * If so, re-use this resource so that we share it among all VFs. 1343 * 1344 * Otherwise, allocate the resource and return it. 1345 */ 1346 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1347 { 1348 struct ice_vf *vf; 1349 unsigned int bkt; 1350 int base; 1351 1352 rcu_read_lock(); 1353 ice_for_each_vf_rcu(pf, bkt, vf) { 1354 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1355 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1356 rcu_read_unlock(); 1357 return base; 1358 } 1359 } 1360 rcu_read_unlock(); 1361 1362 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1363 ICE_RES_VF_CTRL_VEC_ID); 1364 } 1365 1366 /** 1367 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1368 * @vsi: ptr to the VSI 1369 * 1370 * This should only be called after ice_vsi_alloc() which allocates the 1371 * corresponding SW VSI structure and initializes num_queue_pairs for the 1372 * newly allocated VSI. 1373 * 1374 * Returns 0 on success or negative on failure 1375 */ 1376 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1377 { 1378 struct ice_pf *pf = vsi->back; 1379 struct device *dev; 1380 u16 num_q_vectors; 1381 int base; 1382 1383 dev = ice_pf_to_dev(pf); 1384 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1385 if (vsi->type == ICE_VSI_VF) 1386 return 0; 1387 if (vsi->type == ICE_VSI_CHNL) 1388 return 0; 1389 1390 if (vsi->base_vector) { 1391 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1392 vsi->vsi_num, vsi->base_vector); 1393 return -EEXIST; 1394 } 1395 1396 num_q_vectors = vsi->num_q_vectors; 1397 /* reserve slots from OS requested IRQs */ 1398 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1399 base = ice_get_vf_ctrl_res(pf, vsi); 1400 } else { 1401 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1402 vsi->idx); 1403 } 1404 1405 if (base < 0) { 1406 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1407 ice_get_free_res_count(pf->irq_tracker), 1408 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1409 return -ENOENT; 1410 } 1411 vsi->base_vector = (u16)base; 1412 pf->num_avail_sw_msix -= num_q_vectors; 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1419 * @vsi: the VSI having rings deallocated 1420 */ 1421 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1422 { 1423 int i; 1424 1425 /* Avoid stale references by clearing map from vector to ring */ 1426 if (vsi->q_vectors) { 1427 ice_for_each_q_vector(vsi, i) { 1428 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1429 1430 if (q_vector) { 1431 q_vector->tx.tx_ring = NULL; 1432 q_vector->rx.rx_ring = NULL; 1433 } 1434 } 1435 } 1436 1437 if (vsi->tx_rings) { 1438 ice_for_each_alloc_txq(vsi, i) { 1439 if (vsi->tx_rings[i]) { 1440 kfree_rcu(vsi->tx_rings[i], rcu); 1441 WRITE_ONCE(vsi->tx_rings[i], NULL); 1442 } 1443 } 1444 } 1445 if (vsi->rx_rings) { 1446 ice_for_each_alloc_rxq(vsi, i) { 1447 if (vsi->rx_rings[i]) { 1448 kfree_rcu(vsi->rx_rings[i], rcu); 1449 WRITE_ONCE(vsi->rx_rings[i], NULL); 1450 } 1451 } 1452 } 1453 } 1454 1455 /** 1456 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1457 * @vsi: VSI which is having rings allocated 1458 */ 1459 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1460 { 1461 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1462 struct ice_pf *pf = vsi->back; 1463 struct device *dev; 1464 u16 i; 1465 1466 dev = ice_pf_to_dev(pf); 1467 /* Allocate Tx rings */ 1468 ice_for_each_alloc_txq(vsi, i) { 1469 struct ice_tx_ring *ring; 1470 1471 /* allocate with kzalloc(), free with kfree_rcu() */ 1472 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1473 1474 if (!ring) 1475 goto err_out; 1476 1477 ring->q_index = i; 1478 ring->reg_idx = vsi->txq_map[i]; 1479 ring->vsi = vsi; 1480 ring->tx_tstamps = &pf->ptp.port.tx; 1481 ring->dev = dev; 1482 ring->count = vsi->num_tx_desc; 1483 ring->txq_teid = ICE_INVAL_TEID; 1484 if (dvm_ena) 1485 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1486 else 1487 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1488 WRITE_ONCE(vsi->tx_rings[i], ring); 1489 } 1490 1491 /* Allocate Rx rings */ 1492 ice_for_each_alloc_rxq(vsi, i) { 1493 struct ice_rx_ring *ring; 1494 1495 /* allocate with kzalloc(), free with kfree_rcu() */ 1496 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1497 if (!ring) 1498 goto err_out; 1499 1500 ring->q_index = i; 1501 ring->reg_idx = vsi->rxq_map[i]; 1502 ring->vsi = vsi; 1503 ring->netdev = vsi->netdev; 1504 ring->dev = dev; 1505 ring->count = vsi->num_rx_desc; 1506 WRITE_ONCE(vsi->rx_rings[i], ring); 1507 } 1508 1509 return 0; 1510 1511 err_out: 1512 ice_vsi_clear_rings(vsi); 1513 return -ENOMEM; 1514 } 1515 1516 /** 1517 * ice_vsi_manage_rss_lut - disable/enable RSS 1518 * @vsi: the VSI being changed 1519 * @ena: boolean value indicating if this is an enable or disable request 1520 * 1521 * In the event of disable request for RSS, this function will zero out RSS 1522 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1523 * LUT. 1524 */ 1525 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1526 { 1527 u8 *lut; 1528 1529 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1530 if (!lut) 1531 return; 1532 1533 if (ena) { 1534 if (vsi->rss_lut_user) 1535 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1536 else 1537 ice_fill_rss_lut(lut, vsi->rss_table_size, 1538 vsi->rss_size); 1539 } 1540 1541 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1542 kfree(lut); 1543 } 1544 1545 /** 1546 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1547 * @vsi: VSI to be configured 1548 */ 1549 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1550 { 1551 struct ice_pf *pf = vsi->back; 1552 struct device *dev; 1553 u8 *lut, *key; 1554 int err; 1555 1556 dev = ice_pf_to_dev(pf); 1557 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1558 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1559 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1560 } else { 1561 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1562 1563 /* If orig_rss_size is valid and it is less than determined 1564 * main VSI's rss_size, update main VSI's rss_size to be 1565 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1566 * RSS table gets programmed to be correct (whatever it was 1567 * to begin with (prior to setup-tc for ADQ config) 1568 */ 1569 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1570 vsi->orig_rss_size <= vsi->num_rxq) { 1571 vsi->rss_size = vsi->orig_rss_size; 1572 /* now orig_rss_size is used, reset it to zero */ 1573 vsi->orig_rss_size = 0; 1574 } 1575 } 1576 1577 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1578 if (!lut) 1579 return -ENOMEM; 1580 1581 if (vsi->rss_lut_user) 1582 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1583 else 1584 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1585 1586 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1587 if (err) { 1588 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1589 goto ice_vsi_cfg_rss_exit; 1590 } 1591 1592 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1593 if (!key) { 1594 err = -ENOMEM; 1595 goto ice_vsi_cfg_rss_exit; 1596 } 1597 1598 if (vsi->rss_hkey_user) 1599 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1600 else 1601 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1602 1603 err = ice_set_rss_key(vsi, key); 1604 if (err) 1605 dev_err(dev, "set_rss_key failed, error %d\n", err); 1606 1607 kfree(key); 1608 ice_vsi_cfg_rss_exit: 1609 kfree(lut); 1610 return err; 1611 } 1612 1613 /** 1614 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1615 * @vsi: VSI to be configured 1616 * 1617 * This function will only be called during the VF VSI setup. Upon successful 1618 * completion of package download, this function will configure default RSS 1619 * input sets for VF VSI. 1620 */ 1621 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1622 { 1623 struct ice_pf *pf = vsi->back; 1624 struct device *dev; 1625 int status; 1626 1627 dev = ice_pf_to_dev(pf); 1628 if (ice_is_safe_mode(pf)) { 1629 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1630 vsi->vsi_num); 1631 return; 1632 } 1633 1634 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1635 if (status) 1636 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1637 vsi->vsi_num, status); 1638 } 1639 1640 /** 1641 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1642 * @vsi: VSI to be configured 1643 * 1644 * This function will only be called after successful download package call 1645 * during initialization of PF. Since the downloaded package will erase the 1646 * RSS section, this function will configure RSS input sets for different 1647 * flow types. The last profile added has the highest priority, therefore 2 1648 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1649 * (i.e. IPv4 src/dst TCP src/dst port). 1650 */ 1651 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1652 { 1653 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1654 struct ice_pf *pf = vsi->back; 1655 struct ice_hw *hw = &pf->hw; 1656 struct device *dev; 1657 int status; 1658 1659 dev = ice_pf_to_dev(pf); 1660 if (ice_is_safe_mode(pf)) { 1661 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1662 vsi_num); 1663 return; 1664 } 1665 /* configure RSS for IPv4 with input set IP src/dst */ 1666 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1667 ICE_FLOW_SEG_HDR_IPV4); 1668 if (status) 1669 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1670 vsi_num, status); 1671 1672 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1673 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1674 ICE_FLOW_SEG_HDR_IPV6); 1675 if (status) 1676 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1677 vsi_num, status); 1678 1679 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1680 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1681 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1682 if (status) 1683 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1684 vsi_num, status); 1685 1686 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1687 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1688 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1689 if (status) 1690 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1691 vsi_num, status); 1692 1693 /* configure RSS for sctp4 with input set IP src/dst */ 1694 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1695 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1696 if (status) 1697 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1698 vsi_num, status); 1699 1700 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1701 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1702 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1703 if (status) 1704 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1705 vsi_num, status); 1706 1707 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1708 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1709 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1710 if (status) 1711 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1712 vsi_num, status); 1713 1714 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1715 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1716 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1717 if (status) 1718 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1719 vsi_num, status); 1720 1721 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1722 ICE_FLOW_SEG_HDR_ESP); 1723 if (status) 1724 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1725 vsi_num, status); 1726 } 1727 1728 /** 1729 * ice_pf_state_is_nominal - checks the PF for nominal state 1730 * @pf: pointer to PF to check 1731 * 1732 * Check the PF's state for a collection of bits that would indicate 1733 * the PF is in a state that would inhibit normal operation for 1734 * driver functionality. 1735 * 1736 * Returns true if PF is in a nominal state, false otherwise 1737 */ 1738 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1739 { 1740 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1741 1742 if (!pf) 1743 return false; 1744 1745 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1746 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1747 return false; 1748 1749 return true; 1750 } 1751 1752 /** 1753 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1754 * @vsi: the VSI to be updated 1755 */ 1756 void ice_update_eth_stats(struct ice_vsi *vsi) 1757 { 1758 struct ice_eth_stats *prev_es, *cur_es; 1759 struct ice_hw *hw = &vsi->back->hw; 1760 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1761 1762 prev_es = &vsi->eth_stats_prev; 1763 cur_es = &vsi->eth_stats; 1764 1765 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1766 &prev_es->rx_bytes, &cur_es->rx_bytes); 1767 1768 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1769 &prev_es->rx_unicast, &cur_es->rx_unicast); 1770 1771 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1772 &prev_es->rx_multicast, &cur_es->rx_multicast); 1773 1774 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1775 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1776 1777 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1778 &prev_es->rx_discards, &cur_es->rx_discards); 1779 1780 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1781 &prev_es->tx_bytes, &cur_es->tx_bytes); 1782 1783 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1784 &prev_es->tx_unicast, &cur_es->tx_unicast); 1785 1786 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1787 &prev_es->tx_multicast, &cur_es->tx_multicast); 1788 1789 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1790 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1791 1792 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1793 &prev_es->tx_errors, &cur_es->tx_errors); 1794 1795 vsi->stat_offsets_loaded = true; 1796 } 1797 1798 /** 1799 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1800 * @vsi: VSI 1801 */ 1802 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1803 { 1804 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1805 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1806 vsi->rx_buf_len = ICE_RXBUF_2048; 1807 #if (PAGE_SIZE < 8192) 1808 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1809 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1810 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1811 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1812 #endif 1813 } else { 1814 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1815 #if (PAGE_SIZE < 8192) 1816 vsi->rx_buf_len = ICE_RXBUF_3072; 1817 #else 1818 vsi->rx_buf_len = ICE_RXBUF_2048; 1819 #endif 1820 } 1821 } 1822 1823 /** 1824 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1825 * @hw: HW pointer 1826 * @pf_q: index of the Rx queue in the PF's queue space 1827 * @rxdid: flexible descriptor RXDID 1828 * @prio: priority for the RXDID for this queue 1829 * @ena_ts: true to enable timestamp and false to disable timestamp 1830 */ 1831 void 1832 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1833 bool ena_ts) 1834 { 1835 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1836 1837 /* clear any previous values */ 1838 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1839 QRXFLXP_CNTXT_RXDID_PRIO_M | 1840 QRXFLXP_CNTXT_TS_M); 1841 1842 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1843 QRXFLXP_CNTXT_RXDID_IDX_M; 1844 1845 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1846 QRXFLXP_CNTXT_RXDID_PRIO_M; 1847 1848 if (ena_ts) 1849 /* Enable TimeSync on this queue */ 1850 regval |= QRXFLXP_CNTXT_TS_M; 1851 1852 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1853 } 1854 1855 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1856 { 1857 if (q_idx >= vsi->num_rxq) 1858 return -EINVAL; 1859 1860 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1861 } 1862 1863 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1864 { 1865 struct ice_aqc_add_tx_qgrp *qg_buf; 1866 int err; 1867 1868 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1869 return -EINVAL; 1870 1871 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1872 if (!qg_buf) 1873 return -ENOMEM; 1874 1875 qg_buf->num_txqs = 1; 1876 1877 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1878 kfree(qg_buf); 1879 return err; 1880 } 1881 1882 /** 1883 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1884 * @vsi: the VSI being configured 1885 * 1886 * Return 0 on success and a negative value on error 1887 * Configure the Rx VSI for operation. 1888 */ 1889 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1890 { 1891 u16 i; 1892 1893 if (vsi->type == ICE_VSI_VF) 1894 goto setup_rings; 1895 1896 ice_vsi_cfg_frame_size(vsi); 1897 setup_rings: 1898 /* set up individual rings */ 1899 ice_for_each_rxq(vsi, i) { 1900 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1901 1902 if (err) 1903 return err; 1904 } 1905 1906 return 0; 1907 } 1908 1909 /** 1910 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1911 * @vsi: the VSI being configured 1912 * @rings: Tx ring array to be configured 1913 * @count: number of Tx ring array elements 1914 * 1915 * Return 0 on success and a negative value on error 1916 * Configure the Tx VSI for operation. 1917 */ 1918 static int 1919 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1920 { 1921 struct ice_aqc_add_tx_qgrp *qg_buf; 1922 u16 q_idx = 0; 1923 int err = 0; 1924 1925 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1926 if (!qg_buf) 1927 return -ENOMEM; 1928 1929 qg_buf->num_txqs = 1; 1930 1931 for (q_idx = 0; q_idx < count; q_idx++) { 1932 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1933 if (err) 1934 goto err_cfg_txqs; 1935 } 1936 1937 err_cfg_txqs: 1938 kfree(qg_buf); 1939 return err; 1940 } 1941 1942 /** 1943 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1944 * @vsi: the VSI being configured 1945 * 1946 * Return 0 on success and a negative value on error 1947 * Configure the Tx VSI for operation. 1948 */ 1949 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1950 { 1951 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1952 } 1953 1954 /** 1955 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1956 * @vsi: the VSI being configured 1957 * 1958 * Return 0 on success and a negative value on error 1959 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1960 */ 1961 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1962 { 1963 int ret; 1964 int i; 1965 1966 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1967 if (ret) 1968 return ret; 1969 1970 ice_for_each_xdp_txq(vsi, i) 1971 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1972 1973 return ret; 1974 } 1975 1976 /** 1977 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1978 * @intrl: interrupt rate limit in usecs 1979 * @gran: interrupt rate limit granularity in usecs 1980 * 1981 * This function converts a decimal interrupt rate limit in usecs to the format 1982 * expected by firmware. 1983 */ 1984 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1985 { 1986 u32 val = intrl / gran; 1987 1988 if (val) 1989 return val | GLINT_RATE_INTRL_ENA_M; 1990 return 0; 1991 } 1992 1993 /** 1994 * ice_write_intrl - write throttle rate limit to interrupt specific register 1995 * @q_vector: pointer to interrupt specific structure 1996 * @intrl: throttle rate limit in microseconds to write 1997 */ 1998 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1999 { 2000 struct ice_hw *hw = &q_vector->vsi->back->hw; 2001 2002 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2003 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2004 } 2005 2006 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2007 { 2008 switch (rc->type) { 2009 case ICE_RX_CONTAINER: 2010 if (rc->rx_ring) 2011 return rc->rx_ring->q_vector; 2012 break; 2013 case ICE_TX_CONTAINER: 2014 if (rc->tx_ring) 2015 return rc->tx_ring->q_vector; 2016 break; 2017 default: 2018 break; 2019 } 2020 2021 return NULL; 2022 } 2023 2024 /** 2025 * __ice_write_itr - write throttle rate to register 2026 * @q_vector: pointer to interrupt data structure 2027 * @rc: pointer to ring container 2028 * @itr: throttle rate in microseconds to write 2029 */ 2030 static void __ice_write_itr(struct ice_q_vector *q_vector, 2031 struct ice_ring_container *rc, u16 itr) 2032 { 2033 struct ice_hw *hw = &q_vector->vsi->back->hw; 2034 2035 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2036 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2037 } 2038 2039 /** 2040 * ice_write_itr - write throttle rate to queue specific register 2041 * @rc: pointer to ring container 2042 * @itr: throttle rate in microseconds to write 2043 */ 2044 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2045 { 2046 struct ice_q_vector *q_vector; 2047 2048 q_vector = ice_pull_qvec_from_rc(rc); 2049 if (!q_vector) 2050 return; 2051 2052 __ice_write_itr(q_vector, rc, itr); 2053 } 2054 2055 /** 2056 * ice_set_q_vector_intrl - set up interrupt rate limiting 2057 * @q_vector: the vector to be configured 2058 * 2059 * Interrupt rate limiting is local to the vector, not per-queue so we must 2060 * detect if either ring container has dynamic moderation enabled to decide 2061 * what to set the interrupt rate limit to via INTRL settings. In the case that 2062 * dynamic moderation is disabled on both, write the value with the cached 2063 * setting to make sure INTRL register matches the user visible value. 2064 */ 2065 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2066 { 2067 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2068 /* in the case of dynamic enabled, cap each vector to no more 2069 * than (4 us) 250,000 ints/sec, which allows low latency 2070 * but still less than 500,000 interrupts per second, which 2071 * reduces CPU a bit in the case of the lowest latency 2072 * setting. The 4 here is a value in microseconds. 2073 */ 2074 ice_write_intrl(q_vector, 4); 2075 } else { 2076 ice_write_intrl(q_vector, q_vector->intrl); 2077 } 2078 } 2079 2080 /** 2081 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2082 * @vsi: the VSI being configured 2083 * 2084 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2085 * for the VF VSI. 2086 */ 2087 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2088 { 2089 struct ice_pf *pf = vsi->back; 2090 struct ice_hw *hw = &pf->hw; 2091 u16 txq = 0, rxq = 0; 2092 int i, q; 2093 2094 ice_for_each_q_vector(vsi, i) { 2095 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2096 u16 reg_idx = q_vector->reg_idx; 2097 2098 ice_cfg_itr(hw, q_vector); 2099 2100 /* Both Transmit Queue Interrupt Cause Control register 2101 * and Receive Queue Interrupt Cause control register 2102 * expects MSIX_INDX field to be the vector index 2103 * within the function space and not the absolute 2104 * vector index across PF or across device. 2105 * For SR-IOV VF VSIs queue vector index always starts 2106 * with 1 since first vector index(0) is used for OICR 2107 * in VF space. Since VMDq and other PF VSIs are within 2108 * the PF function space, use the vector index that is 2109 * tracked for this PF. 2110 */ 2111 for (q = 0; q < q_vector->num_ring_tx; q++) { 2112 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2113 q_vector->tx.itr_idx); 2114 txq++; 2115 } 2116 2117 for (q = 0; q < q_vector->num_ring_rx; q++) { 2118 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2119 q_vector->rx.itr_idx); 2120 rxq++; 2121 } 2122 } 2123 } 2124 2125 /** 2126 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2127 * @vsi: the VSI whose rings are to be enabled 2128 * 2129 * Returns 0 on success and a negative value on error 2130 */ 2131 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2132 { 2133 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2134 } 2135 2136 /** 2137 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2138 * @vsi: the VSI whose rings are to be disabled 2139 * 2140 * Returns 0 on success and a negative value on error 2141 */ 2142 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2143 { 2144 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2145 } 2146 2147 /** 2148 * ice_vsi_stop_tx_rings - Disable Tx rings 2149 * @vsi: the VSI being configured 2150 * @rst_src: reset source 2151 * @rel_vmvf_num: Relative ID of VF/VM 2152 * @rings: Tx ring array to be stopped 2153 * @count: number of Tx ring array elements 2154 */ 2155 static int 2156 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2157 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2158 { 2159 u16 q_idx; 2160 2161 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2162 return -EINVAL; 2163 2164 for (q_idx = 0; q_idx < count; q_idx++) { 2165 struct ice_txq_meta txq_meta = { }; 2166 int status; 2167 2168 if (!rings || !rings[q_idx]) 2169 return -EINVAL; 2170 2171 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2172 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2173 rings[q_idx], &txq_meta); 2174 2175 if (status) 2176 return status; 2177 } 2178 2179 return 0; 2180 } 2181 2182 /** 2183 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2184 * @vsi: the VSI being configured 2185 * @rst_src: reset source 2186 * @rel_vmvf_num: Relative ID of VF/VM 2187 */ 2188 int 2189 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2190 u16 rel_vmvf_num) 2191 { 2192 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2193 } 2194 2195 /** 2196 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2197 * @vsi: the VSI being configured 2198 */ 2199 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2200 { 2201 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2202 } 2203 2204 /** 2205 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2206 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2207 * 2208 * returns true if Rx VLAN pruning is enabled and false otherwise. 2209 */ 2210 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2211 { 2212 if (!vsi) 2213 return false; 2214 2215 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2216 } 2217 2218 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2219 { 2220 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2221 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2222 vsi->tc_cfg.numtc = 1; 2223 return; 2224 } 2225 2226 /* set VSI TC information based on DCB config */ 2227 ice_vsi_set_dcb_tc_cfg(vsi); 2228 } 2229 2230 /** 2231 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2232 * @vsi: VSI to set the q_vectors register index on 2233 */ 2234 static int 2235 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2236 { 2237 u16 i; 2238 2239 if (!vsi || !vsi->q_vectors) 2240 return -EINVAL; 2241 2242 ice_for_each_q_vector(vsi, i) { 2243 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2244 2245 if (!q_vector) { 2246 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2247 i, vsi->vsi_num); 2248 goto clear_reg_idx; 2249 } 2250 2251 if (vsi->type == ICE_VSI_VF) { 2252 struct ice_vf *vf = vsi->vf; 2253 2254 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2255 } else { 2256 q_vector->reg_idx = 2257 q_vector->v_idx + vsi->base_vector; 2258 } 2259 } 2260 2261 return 0; 2262 2263 clear_reg_idx: 2264 ice_for_each_q_vector(vsi, i) { 2265 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2266 2267 if (q_vector) 2268 q_vector->reg_idx = 0; 2269 } 2270 2271 return -EINVAL; 2272 } 2273 2274 /** 2275 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2276 * @vsi: the VSI being configured 2277 * @tx: bool to determine Tx or Rx rule 2278 * @create: bool to determine create or remove Rule 2279 */ 2280 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2281 { 2282 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2283 enum ice_sw_fwd_act_type act); 2284 struct ice_pf *pf = vsi->back; 2285 struct device *dev; 2286 int status; 2287 2288 dev = ice_pf_to_dev(pf); 2289 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2290 2291 if (tx) { 2292 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2293 ICE_DROP_PACKET); 2294 } else { 2295 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2296 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2297 create); 2298 } else { 2299 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2300 ICE_FWD_TO_VSI); 2301 } 2302 } 2303 2304 if (status) 2305 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2306 create ? "adding" : "removing", tx ? "TX" : "RX", 2307 vsi->vsi_num, status); 2308 } 2309 2310 /** 2311 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2312 * @vsi: pointer to the VSI 2313 * 2314 * This function will allocate new scheduler aggregator now if needed and will 2315 * move specified VSI into it. 2316 */ 2317 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2318 { 2319 struct device *dev = ice_pf_to_dev(vsi->back); 2320 struct ice_agg_node *agg_node_iter = NULL; 2321 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2322 struct ice_agg_node *agg_node = NULL; 2323 int node_offset, max_agg_nodes = 0; 2324 struct ice_port_info *port_info; 2325 struct ice_pf *pf = vsi->back; 2326 u32 agg_node_id_start = 0; 2327 int status; 2328 2329 /* create (as needed) scheduler aggregator node and move VSI into 2330 * corresponding aggregator node 2331 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2332 * - VF aggregator nodes will contain VF VSI 2333 */ 2334 port_info = pf->hw.port_info; 2335 if (!port_info) 2336 return; 2337 2338 switch (vsi->type) { 2339 case ICE_VSI_CTRL: 2340 case ICE_VSI_CHNL: 2341 case ICE_VSI_LB: 2342 case ICE_VSI_PF: 2343 case ICE_VSI_SWITCHDEV_CTRL: 2344 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2345 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2346 agg_node_iter = &pf->pf_agg_node[0]; 2347 break; 2348 case ICE_VSI_VF: 2349 /* user can create 'n' VFs on a given PF, but since max children 2350 * per aggregator node can be only 64. Following code handles 2351 * aggregator(s) for VF VSIs, either selects a agg_node which 2352 * was already created provided num_vsis < 64, otherwise 2353 * select next available node, which will be created 2354 */ 2355 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2356 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2357 agg_node_iter = &pf->vf_agg_node[0]; 2358 break; 2359 default: 2360 /* other VSI type, handle later if needed */ 2361 dev_dbg(dev, "unexpected VSI type %s\n", 2362 ice_vsi_type_str(vsi->type)); 2363 return; 2364 } 2365 2366 /* find the appropriate aggregator node */ 2367 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2368 /* see if we can find space in previously created 2369 * node if num_vsis < 64, otherwise skip 2370 */ 2371 if (agg_node_iter->num_vsis && 2372 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2373 agg_node_iter++; 2374 continue; 2375 } 2376 2377 if (agg_node_iter->valid && 2378 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2379 agg_id = agg_node_iter->agg_id; 2380 agg_node = agg_node_iter; 2381 break; 2382 } 2383 2384 /* find unclaimed agg_id */ 2385 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2386 agg_id = node_offset + agg_node_id_start; 2387 agg_node = agg_node_iter; 2388 break; 2389 } 2390 /* move to next agg_node */ 2391 agg_node_iter++; 2392 } 2393 2394 if (!agg_node) 2395 return; 2396 2397 /* if selected aggregator node was not created, create it */ 2398 if (!agg_node->valid) { 2399 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2400 (u8)vsi->tc_cfg.ena_tc); 2401 if (status) { 2402 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2403 agg_id); 2404 return; 2405 } 2406 /* aggregator node is created, store the neeeded info */ 2407 agg_node->valid = true; 2408 agg_node->agg_id = agg_id; 2409 } 2410 2411 /* move VSI to corresponding aggregator node */ 2412 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2413 (u8)vsi->tc_cfg.ena_tc); 2414 if (status) { 2415 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2416 vsi->idx, agg_id); 2417 return; 2418 } 2419 2420 /* keep active children count for aggregator node */ 2421 agg_node->num_vsis++; 2422 2423 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2424 * to aggregator node 2425 */ 2426 vsi->agg_node = agg_node; 2427 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2428 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2429 vsi->agg_node->num_vsis); 2430 } 2431 2432 /** 2433 * ice_vsi_setup - Set up a VSI by a given type 2434 * @pf: board private structure 2435 * @pi: pointer to the port_info instance 2436 * @vsi_type: VSI type 2437 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2438 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2439 * @ch: ptr to channel 2440 * 2441 * This allocates the sw VSI structure and its queue resources. 2442 * 2443 * Returns pointer to the successfully allocated and configured VSI sw struct on 2444 * success, NULL on failure. 2445 */ 2446 struct ice_vsi * 2447 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2448 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2449 struct ice_channel *ch) 2450 { 2451 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2452 struct device *dev = ice_pf_to_dev(pf); 2453 struct ice_vsi *vsi; 2454 int ret, i; 2455 2456 if (vsi_type == ICE_VSI_CHNL) 2457 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2458 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2459 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2460 else 2461 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2462 2463 if (!vsi) { 2464 dev_err(dev, "could not allocate VSI\n"); 2465 return NULL; 2466 } 2467 2468 vsi->port_info = pi; 2469 vsi->vsw = pf->first_sw; 2470 if (vsi->type == ICE_VSI_PF) 2471 vsi->ethtype = ETH_P_PAUSE; 2472 2473 ice_alloc_fd_res(vsi); 2474 2475 if (vsi_type != ICE_VSI_CHNL) { 2476 if (ice_vsi_get_qs(vsi)) { 2477 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2478 vsi->idx); 2479 goto unroll_vsi_alloc; 2480 } 2481 } 2482 2483 /* set RSS capabilities */ 2484 ice_vsi_set_rss_params(vsi); 2485 2486 /* set TC configuration */ 2487 ice_vsi_set_tc_cfg(vsi); 2488 2489 /* create the VSI */ 2490 ret = ice_vsi_init(vsi, true); 2491 if (ret) 2492 goto unroll_get_qs; 2493 2494 ice_vsi_init_vlan_ops(vsi); 2495 2496 switch (vsi->type) { 2497 case ICE_VSI_CTRL: 2498 case ICE_VSI_SWITCHDEV_CTRL: 2499 case ICE_VSI_PF: 2500 ret = ice_vsi_alloc_q_vectors(vsi); 2501 if (ret) 2502 goto unroll_vsi_init; 2503 2504 ret = ice_vsi_setup_vector_base(vsi); 2505 if (ret) 2506 goto unroll_alloc_q_vector; 2507 2508 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2509 if (ret) 2510 goto unroll_vector_base; 2511 2512 ret = ice_vsi_alloc_rings(vsi); 2513 if (ret) 2514 goto unroll_vector_base; 2515 2516 ice_vsi_map_rings_to_vectors(vsi); 2517 2518 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2519 if (vsi->type != ICE_VSI_CTRL) 2520 /* Do not exit if configuring RSS had an issue, at 2521 * least receive traffic on first queue. Hence no 2522 * need to capture return value 2523 */ 2524 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2525 ice_vsi_cfg_rss_lut_key(vsi); 2526 ice_vsi_set_rss_flow_fld(vsi); 2527 } 2528 ice_init_arfs(vsi); 2529 break; 2530 case ICE_VSI_CHNL: 2531 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2532 ice_vsi_cfg_rss_lut_key(vsi); 2533 ice_vsi_set_rss_flow_fld(vsi); 2534 } 2535 break; 2536 case ICE_VSI_VF: 2537 /* VF driver will take care of creating netdev for this type and 2538 * map queues to vectors through Virtchnl, PF driver only 2539 * creates a VSI and corresponding structures for bookkeeping 2540 * purpose 2541 */ 2542 ret = ice_vsi_alloc_q_vectors(vsi); 2543 if (ret) 2544 goto unroll_vsi_init; 2545 2546 ret = ice_vsi_alloc_rings(vsi); 2547 if (ret) 2548 goto unroll_alloc_q_vector; 2549 2550 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2551 if (ret) 2552 goto unroll_vector_base; 2553 2554 /* Do not exit if configuring RSS had an issue, at least 2555 * receive traffic on first queue. Hence no need to capture 2556 * return value 2557 */ 2558 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2559 ice_vsi_cfg_rss_lut_key(vsi); 2560 ice_vsi_set_vf_rss_flow_fld(vsi); 2561 } 2562 break; 2563 case ICE_VSI_LB: 2564 ret = ice_vsi_alloc_rings(vsi); 2565 if (ret) 2566 goto unroll_vsi_init; 2567 break; 2568 default: 2569 /* clean up the resources and exit */ 2570 goto unroll_vsi_init; 2571 } 2572 2573 /* configure VSI nodes based on number of queues and TC's */ 2574 ice_for_each_traffic_class(i) { 2575 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2576 continue; 2577 2578 if (vsi->type == ICE_VSI_CHNL) { 2579 if (!vsi->alloc_txq && vsi->num_txq) 2580 max_txqs[i] = vsi->num_txq; 2581 else 2582 max_txqs[i] = pf->num_lan_tx; 2583 } else { 2584 max_txqs[i] = vsi->alloc_txq; 2585 } 2586 } 2587 2588 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2589 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2590 max_txqs); 2591 if (ret) { 2592 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2593 vsi->vsi_num, ret); 2594 goto unroll_clear_rings; 2595 } 2596 2597 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2598 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2599 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2600 * The rule is added once for PF VSI in order to create appropriate 2601 * recipe, since VSI/VSI list is ignored with drop action... 2602 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2603 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2604 * settings in the HW. 2605 */ 2606 if (!ice_is_safe_mode(pf)) 2607 if (vsi->type == ICE_VSI_PF) { 2608 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2609 ICE_DROP_PACKET); 2610 ice_cfg_sw_lldp(vsi, true, true); 2611 } 2612 2613 if (!vsi->agg_node) 2614 ice_set_agg_vsi(vsi); 2615 return vsi; 2616 2617 unroll_clear_rings: 2618 ice_vsi_clear_rings(vsi); 2619 unroll_vector_base: 2620 /* reclaim SW interrupts back to the common pool */ 2621 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2622 pf->num_avail_sw_msix += vsi->num_q_vectors; 2623 unroll_alloc_q_vector: 2624 ice_vsi_free_q_vectors(vsi); 2625 unroll_vsi_init: 2626 ice_vsi_delete(vsi); 2627 unroll_get_qs: 2628 ice_vsi_put_qs(vsi); 2629 unroll_vsi_alloc: 2630 if (vsi_type == ICE_VSI_VF) 2631 ice_enable_lag(pf->lag); 2632 ice_vsi_clear(vsi); 2633 2634 return NULL; 2635 } 2636 2637 /** 2638 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2639 * @vsi: the VSI being cleaned up 2640 */ 2641 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2642 { 2643 struct ice_pf *pf = vsi->back; 2644 struct ice_hw *hw = &pf->hw; 2645 u32 txq = 0; 2646 u32 rxq = 0; 2647 int i, q; 2648 2649 ice_for_each_q_vector(vsi, i) { 2650 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2651 2652 ice_write_intrl(q_vector, 0); 2653 for (q = 0; q < q_vector->num_ring_tx; q++) { 2654 ice_write_itr(&q_vector->tx, 0); 2655 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2656 if (ice_is_xdp_ena_vsi(vsi)) { 2657 u32 xdp_txq = txq + vsi->num_xdp_txq; 2658 2659 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2660 } 2661 txq++; 2662 } 2663 2664 for (q = 0; q < q_vector->num_ring_rx; q++) { 2665 ice_write_itr(&q_vector->rx, 0); 2666 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2667 rxq++; 2668 } 2669 } 2670 2671 ice_flush(hw); 2672 } 2673 2674 /** 2675 * ice_vsi_free_irq - Free the IRQ association with the OS 2676 * @vsi: the VSI being configured 2677 */ 2678 void ice_vsi_free_irq(struct ice_vsi *vsi) 2679 { 2680 struct ice_pf *pf = vsi->back; 2681 int base = vsi->base_vector; 2682 int i; 2683 2684 if (!vsi->q_vectors || !vsi->irqs_ready) 2685 return; 2686 2687 ice_vsi_release_msix(vsi); 2688 if (vsi->type == ICE_VSI_VF) 2689 return; 2690 2691 vsi->irqs_ready = false; 2692 ice_for_each_q_vector(vsi, i) { 2693 u16 vector = i + base; 2694 int irq_num; 2695 2696 irq_num = pf->msix_entries[vector].vector; 2697 2698 /* free only the irqs that were actually requested */ 2699 if (!vsi->q_vectors[i] || 2700 !(vsi->q_vectors[i]->num_ring_tx || 2701 vsi->q_vectors[i]->num_ring_rx)) 2702 continue; 2703 2704 /* clear the affinity notifier in the IRQ descriptor */ 2705 irq_set_affinity_notifier(irq_num, NULL); 2706 2707 /* clear the affinity_mask in the IRQ descriptor */ 2708 irq_set_affinity_hint(irq_num, NULL); 2709 synchronize_irq(irq_num); 2710 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2711 } 2712 } 2713 2714 /** 2715 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2716 * @vsi: the VSI having resources freed 2717 */ 2718 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2719 { 2720 int i; 2721 2722 if (!vsi->tx_rings) 2723 return; 2724 2725 ice_for_each_txq(vsi, i) 2726 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2727 ice_free_tx_ring(vsi->tx_rings[i]); 2728 } 2729 2730 /** 2731 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2732 * @vsi: the VSI having resources freed 2733 */ 2734 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2735 { 2736 int i; 2737 2738 if (!vsi->rx_rings) 2739 return; 2740 2741 ice_for_each_rxq(vsi, i) 2742 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2743 ice_free_rx_ring(vsi->rx_rings[i]); 2744 } 2745 2746 /** 2747 * ice_vsi_close - Shut down a VSI 2748 * @vsi: the VSI being shut down 2749 */ 2750 void ice_vsi_close(struct ice_vsi *vsi) 2751 { 2752 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2753 ice_down(vsi); 2754 2755 ice_vsi_free_irq(vsi); 2756 ice_vsi_free_tx_rings(vsi); 2757 ice_vsi_free_rx_rings(vsi); 2758 } 2759 2760 /** 2761 * ice_ena_vsi - resume a VSI 2762 * @vsi: the VSI being resume 2763 * @locked: is the rtnl_lock already held 2764 */ 2765 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2766 { 2767 int err = 0; 2768 2769 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2770 return 0; 2771 2772 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2773 2774 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2775 if (netif_running(vsi->netdev)) { 2776 if (!locked) 2777 rtnl_lock(); 2778 2779 err = ice_open_internal(vsi->netdev); 2780 2781 if (!locked) 2782 rtnl_unlock(); 2783 } 2784 } else if (vsi->type == ICE_VSI_CTRL) { 2785 err = ice_vsi_open_ctrl(vsi); 2786 } 2787 2788 return err; 2789 } 2790 2791 /** 2792 * ice_dis_vsi - pause a VSI 2793 * @vsi: the VSI being paused 2794 * @locked: is the rtnl_lock already held 2795 */ 2796 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2797 { 2798 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2799 return; 2800 2801 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2802 2803 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2804 if (netif_running(vsi->netdev)) { 2805 if (!locked) 2806 rtnl_lock(); 2807 2808 ice_vsi_close(vsi); 2809 2810 if (!locked) 2811 rtnl_unlock(); 2812 } else { 2813 ice_vsi_close(vsi); 2814 } 2815 } else if (vsi->type == ICE_VSI_CTRL || 2816 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2817 ice_vsi_close(vsi); 2818 } 2819 } 2820 2821 /** 2822 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2823 * @vsi: the VSI being un-configured 2824 */ 2825 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2826 { 2827 int base = vsi->base_vector; 2828 struct ice_pf *pf = vsi->back; 2829 struct ice_hw *hw = &pf->hw; 2830 u32 val; 2831 int i; 2832 2833 /* disable interrupt causation from each queue */ 2834 if (vsi->tx_rings) { 2835 ice_for_each_txq(vsi, i) { 2836 if (vsi->tx_rings[i]) { 2837 u16 reg; 2838 2839 reg = vsi->tx_rings[i]->reg_idx; 2840 val = rd32(hw, QINT_TQCTL(reg)); 2841 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2842 wr32(hw, QINT_TQCTL(reg), val); 2843 } 2844 } 2845 } 2846 2847 if (vsi->rx_rings) { 2848 ice_for_each_rxq(vsi, i) { 2849 if (vsi->rx_rings[i]) { 2850 u16 reg; 2851 2852 reg = vsi->rx_rings[i]->reg_idx; 2853 val = rd32(hw, QINT_RQCTL(reg)); 2854 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2855 wr32(hw, QINT_RQCTL(reg), val); 2856 } 2857 } 2858 } 2859 2860 /* disable each interrupt */ 2861 ice_for_each_q_vector(vsi, i) { 2862 if (!vsi->q_vectors[i]) 2863 continue; 2864 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2865 } 2866 2867 ice_flush(hw); 2868 2869 /* don't call synchronize_irq() for VF's from the host */ 2870 if (vsi->type == ICE_VSI_VF) 2871 return; 2872 2873 ice_for_each_q_vector(vsi, i) 2874 synchronize_irq(pf->msix_entries[i + base].vector); 2875 } 2876 2877 /** 2878 * ice_napi_del - Remove NAPI handler for the VSI 2879 * @vsi: VSI for which NAPI handler is to be removed 2880 */ 2881 void ice_napi_del(struct ice_vsi *vsi) 2882 { 2883 int v_idx; 2884 2885 if (!vsi->netdev) 2886 return; 2887 2888 ice_for_each_q_vector(vsi, v_idx) 2889 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2890 } 2891 2892 /** 2893 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2894 * @pf: pointer to PF structure 2895 * @vsi: the VSI to free resources for 2896 * 2897 * Check if the VF control VSI resource is still in use. If no VF is using it 2898 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2899 * once no other VF uses it. 2900 */ 2901 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2902 { 2903 struct ice_vf *vf; 2904 unsigned int bkt; 2905 2906 rcu_read_lock(); 2907 ice_for_each_vf_rcu(pf, bkt, vf) { 2908 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2909 rcu_read_unlock(); 2910 return; 2911 } 2912 } 2913 rcu_read_unlock(); 2914 2915 /* No other VFs left that have control VSI. It is now safe to reclaim 2916 * SW interrupts back to the common pool. 2917 */ 2918 ice_free_res(pf->irq_tracker, vsi->base_vector, 2919 ICE_RES_VF_CTRL_VEC_ID); 2920 pf->num_avail_sw_msix += vsi->num_q_vectors; 2921 } 2922 2923 /** 2924 * ice_vsi_release - Delete a VSI and free its resources 2925 * @vsi: the VSI being removed 2926 * 2927 * Returns 0 on success or < 0 on error 2928 */ 2929 int ice_vsi_release(struct ice_vsi *vsi) 2930 { 2931 struct ice_pf *pf; 2932 int err; 2933 2934 if (!vsi->back) 2935 return -ENODEV; 2936 pf = vsi->back; 2937 2938 /* do not unregister while driver is in the reset recovery pending 2939 * state. Since reset/rebuild happens through PF service task workqueue, 2940 * it's not a good idea to unregister netdev that is associated to the 2941 * PF that is running the work queue items currently. This is done to 2942 * avoid check_flush_dependency() warning on this wq 2943 */ 2944 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2945 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2946 unregister_netdev(vsi->netdev); 2947 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2948 } 2949 2950 if (vsi->type == ICE_VSI_PF) 2951 ice_devlink_destroy_pf_port(pf); 2952 2953 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2954 ice_rss_clean(vsi); 2955 2956 /* Disable VSI and free resources */ 2957 if (vsi->type != ICE_VSI_LB) 2958 ice_vsi_dis_irq(vsi); 2959 ice_vsi_close(vsi); 2960 2961 /* SR-IOV determines needed MSIX resources all at once instead of per 2962 * VSI since when VFs are spawned we know how many VFs there are and how 2963 * many interrupts each VF needs. SR-IOV MSIX resources are also 2964 * cleared in the same manner. 2965 */ 2966 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2967 ice_free_vf_ctrl_res(pf, vsi); 2968 } else if (vsi->type != ICE_VSI_VF) { 2969 /* reclaim SW interrupts back to the common pool */ 2970 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2971 pf->num_avail_sw_msix += vsi->num_q_vectors; 2972 } 2973 2974 if (!ice_is_safe_mode(pf)) { 2975 if (vsi->type == ICE_VSI_PF) { 2976 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2977 ICE_DROP_PACKET); 2978 ice_cfg_sw_lldp(vsi, true, false); 2979 /* The Rx rule will only exist to remove if the LLDP FW 2980 * engine is currently stopped 2981 */ 2982 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2983 ice_cfg_sw_lldp(vsi, false, false); 2984 } 2985 } 2986 2987 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 2988 ice_clear_dflt_vsi(pf->first_sw); 2989 ice_fltr_remove_all(vsi); 2990 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2991 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2992 if (err) 2993 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2994 vsi->vsi_num, err); 2995 ice_vsi_delete(vsi); 2996 ice_vsi_free_q_vectors(vsi); 2997 2998 if (vsi->netdev) { 2999 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3000 unregister_netdev(vsi->netdev); 3001 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3002 } 3003 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3004 free_netdev(vsi->netdev); 3005 vsi->netdev = NULL; 3006 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3007 } 3008 } 3009 3010 if (vsi->type == ICE_VSI_VF && 3011 vsi->agg_node && vsi->agg_node->valid) 3012 vsi->agg_node->num_vsis--; 3013 ice_vsi_clear_rings(vsi); 3014 3015 ice_vsi_put_qs(vsi); 3016 3017 /* retain SW VSI data structure since it is needed to unregister and 3018 * free VSI netdev when PF is not in reset recovery pending state,\ 3019 * for ex: during rmmod. 3020 */ 3021 if (!ice_is_reset_in_progress(pf->state)) 3022 ice_vsi_clear(vsi); 3023 3024 return 0; 3025 } 3026 3027 /** 3028 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3029 * @vsi: VSI connected with q_vectors 3030 * @coalesce: array of struct with stored coalesce 3031 * 3032 * Returns array size. 3033 */ 3034 static int 3035 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3036 struct ice_coalesce_stored *coalesce) 3037 { 3038 int i; 3039 3040 ice_for_each_q_vector(vsi, i) { 3041 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3042 3043 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3044 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3045 coalesce[i].intrl = q_vector->intrl; 3046 3047 if (i < vsi->num_txq) 3048 coalesce[i].tx_valid = true; 3049 if (i < vsi->num_rxq) 3050 coalesce[i].rx_valid = true; 3051 } 3052 3053 return vsi->num_q_vectors; 3054 } 3055 3056 /** 3057 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3058 * @vsi: VSI connected with q_vectors 3059 * @coalesce: pointer to array of struct with stored coalesce 3060 * @size: size of coalesce array 3061 * 3062 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3063 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3064 * to default value. 3065 */ 3066 static void 3067 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3068 struct ice_coalesce_stored *coalesce, int size) 3069 { 3070 struct ice_ring_container *rc; 3071 int i; 3072 3073 if ((size && !coalesce) || !vsi) 3074 return; 3075 3076 /* There are a couple of cases that have to be handled here: 3077 * 1. The case where the number of queue vectors stays the same, but 3078 * the number of Tx or Rx rings changes (the first for loop) 3079 * 2. The case where the number of queue vectors increased (the 3080 * second for loop) 3081 */ 3082 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3083 /* There are 2 cases to handle here and they are the same for 3084 * both Tx and Rx: 3085 * if the entry was valid previously (coalesce[i].[tr]x_valid 3086 * and the loop variable is less than the number of rings 3087 * allocated, then write the previous values 3088 * 3089 * if the entry was not valid previously, but the number of 3090 * rings is less than are allocated (this means the number of 3091 * rings increased from previously), then write out the 3092 * values in the first element 3093 * 3094 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3095 * as there is no harm because the dynamic algorithm 3096 * will just overwrite. 3097 */ 3098 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3099 rc = &vsi->q_vectors[i]->rx; 3100 rc->itr_setting = coalesce[i].itr_rx; 3101 ice_write_itr(rc, rc->itr_setting); 3102 } else if (i < vsi->alloc_rxq) { 3103 rc = &vsi->q_vectors[i]->rx; 3104 rc->itr_setting = coalesce[0].itr_rx; 3105 ice_write_itr(rc, rc->itr_setting); 3106 } 3107 3108 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3109 rc = &vsi->q_vectors[i]->tx; 3110 rc->itr_setting = coalesce[i].itr_tx; 3111 ice_write_itr(rc, rc->itr_setting); 3112 } else if (i < vsi->alloc_txq) { 3113 rc = &vsi->q_vectors[i]->tx; 3114 rc->itr_setting = coalesce[0].itr_tx; 3115 ice_write_itr(rc, rc->itr_setting); 3116 } 3117 3118 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3119 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3120 } 3121 3122 /* the number of queue vectors increased so write whatever is in 3123 * the first element 3124 */ 3125 for (; i < vsi->num_q_vectors; i++) { 3126 /* transmit */ 3127 rc = &vsi->q_vectors[i]->tx; 3128 rc->itr_setting = coalesce[0].itr_tx; 3129 ice_write_itr(rc, rc->itr_setting); 3130 3131 /* receive */ 3132 rc = &vsi->q_vectors[i]->rx; 3133 rc->itr_setting = coalesce[0].itr_rx; 3134 ice_write_itr(rc, rc->itr_setting); 3135 3136 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3137 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3138 } 3139 } 3140 3141 /** 3142 * ice_vsi_rebuild - Rebuild VSI after reset 3143 * @vsi: VSI to be rebuild 3144 * @init_vsi: is this an initialization or a reconfigure of the VSI 3145 * 3146 * Returns 0 on success and negative value on failure 3147 */ 3148 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3149 { 3150 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3151 struct ice_coalesce_stored *coalesce; 3152 int prev_num_q_vectors = 0; 3153 enum ice_vsi_type vtype; 3154 struct ice_pf *pf; 3155 int ret, i; 3156 3157 if (!vsi) 3158 return -EINVAL; 3159 3160 pf = vsi->back; 3161 vtype = vsi->type; 3162 if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf) 3163 return -EINVAL; 3164 3165 ice_vsi_init_vlan_ops(vsi); 3166 3167 coalesce = kcalloc(vsi->num_q_vectors, 3168 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3169 if (!coalesce) 3170 return -ENOMEM; 3171 3172 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3173 3174 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3175 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3176 if (ret) 3177 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3178 vsi->vsi_num, ret); 3179 ice_vsi_free_q_vectors(vsi); 3180 3181 /* SR-IOV determines needed MSIX resources all at once instead of per 3182 * VSI since when VFs are spawned we know how many VFs there are and how 3183 * many interrupts each VF needs. SR-IOV MSIX resources are also 3184 * cleared in the same manner. 3185 */ 3186 if (vtype != ICE_VSI_VF) { 3187 /* reclaim SW interrupts back to the common pool */ 3188 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3189 pf->num_avail_sw_msix += vsi->num_q_vectors; 3190 vsi->base_vector = 0; 3191 } 3192 3193 if (ice_is_xdp_ena_vsi(vsi)) 3194 /* return value check can be skipped here, it always returns 3195 * 0 if reset is in progress 3196 */ 3197 ice_destroy_xdp_rings(vsi); 3198 ice_vsi_put_qs(vsi); 3199 ice_vsi_clear_rings(vsi); 3200 ice_vsi_free_arrays(vsi); 3201 if (vtype == ICE_VSI_VF) 3202 ice_vsi_set_num_qs(vsi, vsi->vf); 3203 else 3204 ice_vsi_set_num_qs(vsi, NULL); 3205 3206 ret = ice_vsi_alloc_arrays(vsi); 3207 if (ret < 0) 3208 goto err_vsi; 3209 3210 ice_vsi_get_qs(vsi); 3211 3212 ice_alloc_fd_res(vsi); 3213 ice_vsi_set_tc_cfg(vsi); 3214 3215 /* Initialize VSI struct elements and create VSI in FW */ 3216 ret = ice_vsi_init(vsi, init_vsi); 3217 if (ret < 0) 3218 goto err_vsi; 3219 3220 switch (vtype) { 3221 case ICE_VSI_CTRL: 3222 case ICE_VSI_SWITCHDEV_CTRL: 3223 case ICE_VSI_PF: 3224 ret = ice_vsi_alloc_q_vectors(vsi); 3225 if (ret) 3226 goto err_rings; 3227 3228 ret = ice_vsi_setup_vector_base(vsi); 3229 if (ret) 3230 goto err_vectors; 3231 3232 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3233 if (ret) 3234 goto err_vectors; 3235 3236 ret = ice_vsi_alloc_rings(vsi); 3237 if (ret) 3238 goto err_vectors; 3239 3240 ice_vsi_map_rings_to_vectors(vsi); 3241 if (ice_is_xdp_ena_vsi(vsi)) { 3242 ret = ice_vsi_determine_xdp_res(vsi); 3243 if (ret) 3244 goto err_vectors; 3245 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3246 if (ret) 3247 goto err_vectors; 3248 } 3249 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3250 if (vtype != ICE_VSI_CTRL) 3251 /* Do not exit if configuring RSS had an issue, at 3252 * least receive traffic on first queue. Hence no 3253 * need to capture return value 3254 */ 3255 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3256 ice_vsi_cfg_rss_lut_key(vsi); 3257 break; 3258 case ICE_VSI_VF: 3259 ret = ice_vsi_alloc_q_vectors(vsi); 3260 if (ret) 3261 goto err_rings; 3262 3263 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3264 if (ret) 3265 goto err_vectors; 3266 3267 ret = ice_vsi_alloc_rings(vsi); 3268 if (ret) 3269 goto err_vectors; 3270 3271 break; 3272 case ICE_VSI_CHNL: 3273 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3274 ice_vsi_cfg_rss_lut_key(vsi); 3275 ice_vsi_set_rss_flow_fld(vsi); 3276 } 3277 break; 3278 default: 3279 break; 3280 } 3281 3282 /* configure VSI nodes based on number of queues and TC's */ 3283 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3284 /* configure VSI nodes based on number of queues and TC's. 3285 * ADQ creates VSIs for each TC/Channel but doesn't 3286 * allocate queues instead it reconfigures the PF queues 3287 * as per the TC command. So max_txqs should point to the 3288 * PF Tx queues. 3289 */ 3290 if (vtype == ICE_VSI_CHNL) 3291 max_txqs[i] = pf->num_lan_tx; 3292 else 3293 max_txqs[i] = vsi->alloc_txq; 3294 3295 if (ice_is_xdp_ena_vsi(vsi)) 3296 max_txqs[i] += vsi->num_xdp_txq; 3297 } 3298 3299 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3300 /* If MQPRIO is set, means channel code path, hence for main 3301 * VSI's, use TC as 1 3302 */ 3303 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3304 else 3305 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3306 vsi->tc_cfg.ena_tc, max_txqs); 3307 3308 if (ret) { 3309 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3310 vsi->vsi_num, ret); 3311 if (init_vsi) { 3312 ret = -EIO; 3313 goto err_vectors; 3314 } else { 3315 return ice_schedule_reset(pf, ICE_RESET_PFR); 3316 } 3317 } 3318 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3319 kfree(coalesce); 3320 3321 return 0; 3322 3323 err_vectors: 3324 ice_vsi_free_q_vectors(vsi); 3325 err_rings: 3326 if (vsi->netdev) { 3327 vsi->current_netdev_flags = 0; 3328 unregister_netdev(vsi->netdev); 3329 free_netdev(vsi->netdev); 3330 vsi->netdev = NULL; 3331 } 3332 err_vsi: 3333 ice_vsi_clear(vsi); 3334 set_bit(ICE_RESET_FAILED, pf->state); 3335 kfree(coalesce); 3336 return ret; 3337 } 3338 3339 /** 3340 * ice_is_reset_in_progress - check for a reset in progress 3341 * @state: PF state field 3342 */ 3343 bool ice_is_reset_in_progress(unsigned long *state) 3344 { 3345 return test_bit(ICE_RESET_OICR_RECV, state) || 3346 test_bit(ICE_PFR_REQ, state) || 3347 test_bit(ICE_CORER_REQ, state) || 3348 test_bit(ICE_GLOBR_REQ, state); 3349 } 3350 3351 /** 3352 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3353 * @pf: pointer to the PF structure 3354 * @timeout: length of time to wait, in jiffies 3355 * 3356 * Wait (sleep) for a short time until the driver finishes cleaning up from 3357 * a device reset. The caller must be able to sleep. Use this to delay 3358 * operations that could fail while the driver is cleaning up after a device 3359 * reset. 3360 * 3361 * Returns 0 on success, -EBUSY if the reset is not finished within the 3362 * timeout, and -ERESTARTSYS if the thread was interrupted. 3363 */ 3364 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3365 { 3366 long ret; 3367 3368 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3369 !ice_is_reset_in_progress(pf->state), 3370 timeout); 3371 if (ret < 0) 3372 return ret; 3373 else if (!ret) 3374 return -EBUSY; 3375 else 3376 return 0; 3377 } 3378 3379 /** 3380 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3381 * @vsi: VSI being configured 3382 * @ctx: the context buffer returned from AQ VSI update command 3383 */ 3384 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3385 { 3386 vsi->info.mapping_flags = ctx->info.mapping_flags; 3387 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3388 sizeof(vsi->info.q_mapping)); 3389 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3390 sizeof(vsi->info.tc_mapping)); 3391 } 3392 3393 /** 3394 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3395 * @vsi: the VSI being configured 3396 * @ena_tc: TC map to be enabled 3397 */ 3398 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3399 { 3400 struct net_device *netdev = vsi->netdev; 3401 struct ice_pf *pf = vsi->back; 3402 int numtc = vsi->tc_cfg.numtc; 3403 struct ice_dcbx_cfg *dcbcfg; 3404 u8 netdev_tc; 3405 int i; 3406 3407 if (!netdev) 3408 return; 3409 3410 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3411 if (vsi->type == ICE_VSI_CHNL) 3412 return; 3413 3414 if (!ena_tc) { 3415 netdev_reset_tc(netdev); 3416 return; 3417 } 3418 3419 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3420 numtc = vsi->all_numtc; 3421 3422 if (netdev_set_num_tc(netdev, numtc)) 3423 return; 3424 3425 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3426 3427 ice_for_each_traffic_class(i) 3428 if (vsi->tc_cfg.ena_tc & BIT(i)) 3429 netdev_set_tc_queue(netdev, 3430 vsi->tc_cfg.tc_info[i].netdev_tc, 3431 vsi->tc_cfg.tc_info[i].qcount_tx, 3432 vsi->tc_cfg.tc_info[i].qoffset); 3433 /* setup TC queue map for CHNL TCs */ 3434 ice_for_each_chnl_tc(i) { 3435 if (!(vsi->all_enatc & BIT(i))) 3436 break; 3437 if (!vsi->mqprio_qopt.qopt.count[i]) 3438 break; 3439 netdev_set_tc_queue(netdev, i, 3440 vsi->mqprio_qopt.qopt.count[i], 3441 vsi->mqprio_qopt.qopt.offset[i]); 3442 } 3443 3444 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3445 return; 3446 3447 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3448 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3449 3450 /* Get the mapped netdev TC# for the UP */ 3451 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3452 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3453 } 3454 } 3455 3456 /** 3457 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3458 * @vsi: the VSI being configured, 3459 * @ctxt: VSI context structure 3460 * @ena_tc: number of traffic classes to enable 3461 * 3462 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3463 */ 3464 static void 3465 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3466 u8 ena_tc) 3467 { 3468 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3469 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3470 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3471 u8 netdev_tc = 0; 3472 int i; 3473 3474 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3475 3476 pow = order_base_2(tc0_qcount); 3477 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3478 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3479 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3480 3481 ice_for_each_traffic_class(i) { 3482 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3483 /* TC is not enabled */ 3484 vsi->tc_cfg.tc_info[i].qoffset = 0; 3485 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3486 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3487 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3488 ctxt->info.tc_mapping[i] = 0; 3489 continue; 3490 } 3491 3492 offset = vsi->mqprio_qopt.qopt.offset[i]; 3493 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3494 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3495 vsi->tc_cfg.tc_info[i].qoffset = offset; 3496 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3497 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3498 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3499 } 3500 3501 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3502 ice_for_each_chnl_tc(i) { 3503 if (!(vsi->all_enatc & BIT(i))) 3504 continue; 3505 offset = vsi->mqprio_qopt.qopt.offset[i]; 3506 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3507 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3508 } 3509 } 3510 3511 /* Set actual Tx/Rx queue pairs */ 3512 vsi->num_txq = offset + qcount_tx; 3513 vsi->num_rxq = offset + qcount_rx; 3514 3515 /* Setup queue TC[0].qmap for given VSI context */ 3516 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3517 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3518 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3519 3520 /* Find queue count available for channel VSIs and starting offset 3521 * for channel VSIs 3522 */ 3523 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3524 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3525 vsi->next_base_q = tc0_qcount; 3526 } 3527 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3528 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3529 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3530 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3531 } 3532 3533 /** 3534 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3535 * @vsi: VSI to be configured 3536 * @ena_tc: TC bitmap 3537 * 3538 * VSI queues expected to be quiesced before calling this function 3539 */ 3540 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3541 { 3542 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3543 struct ice_pf *pf = vsi->back; 3544 struct ice_vsi_ctx *ctx; 3545 struct device *dev; 3546 int i, ret = 0; 3547 u8 num_tc = 0; 3548 3549 dev = ice_pf_to_dev(pf); 3550 if (vsi->tc_cfg.ena_tc == ena_tc && 3551 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3552 return ret; 3553 3554 ice_for_each_traffic_class(i) { 3555 /* build bitmap of enabled TCs */ 3556 if (ena_tc & BIT(i)) 3557 num_tc++; 3558 /* populate max_txqs per TC */ 3559 max_txqs[i] = vsi->alloc_txq; 3560 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3561 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3562 */ 3563 if (vsi->type == ICE_VSI_CHNL && 3564 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3565 max_txqs[i] = vsi->num_txq; 3566 } 3567 3568 vsi->tc_cfg.ena_tc = ena_tc; 3569 vsi->tc_cfg.numtc = num_tc; 3570 3571 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3572 if (!ctx) 3573 return -ENOMEM; 3574 3575 ctx->vf_num = 0; 3576 ctx->info = vsi->info; 3577 3578 if (vsi->type == ICE_VSI_PF && 3579 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3580 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3581 else 3582 ice_vsi_setup_q_map(vsi, ctx); 3583 3584 /* must to indicate which section of VSI context are being modified */ 3585 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3586 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3587 if (ret) { 3588 dev_info(dev, "Failed VSI Update\n"); 3589 goto out; 3590 } 3591 3592 if (vsi->type == ICE_VSI_PF && 3593 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3594 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3595 else 3596 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3597 vsi->tc_cfg.ena_tc, max_txqs); 3598 3599 if (ret) { 3600 dev_err(dev, "VSI %d failed TC config, error %d\n", 3601 vsi->vsi_num, ret); 3602 goto out; 3603 } 3604 ice_vsi_update_q_map(vsi, ctx); 3605 vsi->info.valid_sections = 0; 3606 3607 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3608 out: 3609 kfree(ctx); 3610 return ret; 3611 } 3612 3613 /** 3614 * ice_update_ring_stats - Update ring statistics 3615 * @stats: stats to be updated 3616 * @pkts: number of processed packets 3617 * @bytes: number of processed bytes 3618 * 3619 * This function assumes that caller has acquired a u64_stats_sync lock. 3620 */ 3621 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3622 { 3623 stats->bytes += bytes; 3624 stats->pkts += pkts; 3625 } 3626 3627 /** 3628 * ice_update_tx_ring_stats - Update Tx ring specific counters 3629 * @tx_ring: ring to update 3630 * @pkts: number of processed packets 3631 * @bytes: number of processed bytes 3632 */ 3633 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3634 { 3635 u64_stats_update_begin(&tx_ring->syncp); 3636 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3637 u64_stats_update_end(&tx_ring->syncp); 3638 } 3639 3640 /** 3641 * ice_update_rx_ring_stats - Update Rx ring specific counters 3642 * @rx_ring: ring to update 3643 * @pkts: number of processed packets 3644 * @bytes: number of processed bytes 3645 */ 3646 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3647 { 3648 u64_stats_update_begin(&rx_ring->syncp); 3649 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3650 u64_stats_update_end(&rx_ring->syncp); 3651 } 3652 3653 /** 3654 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3655 * @sw: switch to check if its default forwarding VSI is free 3656 * 3657 * Return true if the default forwarding VSI is already being used, else returns 3658 * false signalling that it's available to use. 3659 */ 3660 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3661 { 3662 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3663 } 3664 3665 /** 3666 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3667 * @sw: switch for the default forwarding VSI to compare against 3668 * @vsi: VSI to compare against default forwarding VSI 3669 * 3670 * If this VSI passed in is the default forwarding VSI then return true, else 3671 * return false 3672 */ 3673 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3674 { 3675 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3676 } 3677 3678 /** 3679 * ice_set_dflt_vsi - set the default forwarding VSI 3680 * @sw: switch used to assign the default forwarding VSI 3681 * @vsi: VSI getting set as the default forwarding VSI on the switch 3682 * 3683 * If the VSI passed in is already the default VSI and it's enabled just return 3684 * success. 3685 * 3686 * If there is already a default VSI on the switch and it's enabled then return 3687 * -EEXIST since there can only be one default VSI per switch. 3688 * 3689 * Otherwise try to set the VSI passed in as the switch's default VSI and 3690 * return the result. 3691 */ 3692 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3693 { 3694 struct device *dev; 3695 int status; 3696 3697 if (!sw || !vsi) 3698 return -EINVAL; 3699 3700 dev = ice_pf_to_dev(vsi->back); 3701 3702 /* the VSI passed in is already the default VSI */ 3703 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3704 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3705 vsi->vsi_num); 3706 return 0; 3707 } 3708 3709 /* another VSI is already the default VSI for this switch */ 3710 if (ice_is_dflt_vsi_in_use(sw)) { 3711 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3712 sw->dflt_vsi->vsi_num); 3713 return -EEXIST; 3714 } 3715 3716 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3717 if (status) { 3718 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3719 vsi->vsi_num, status); 3720 return status; 3721 } 3722 3723 sw->dflt_vsi = vsi; 3724 sw->dflt_vsi_ena = true; 3725 3726 return 0; 3727 } 3728 3729 /** 3730 * ice_clear_dflt_vsi - clear the default forwarding VSI 3731 * @sw: switch used to clear the default VSI 3732 * 3733 * If the switch has no default VSI or it's not enabled then return error. 3734 * 3735 * Otherwise try to clear the default VSI and return the result. 3736 */ 3737 int ice_clear_dflt_vsi(struct ice_sw *sw) 3738 { 3739 struct ice_vsi *dflt_vsi; 3740 struct device *dev; 3741 int status; 3742 3743 if (!sw) 3744 return -EINVAL; 3745 3746 dev = ice_pf_to_dev(sw->pf); 3747 3748 dflt_vsi = sw->dflt_vsi; 3749 3750 /* there is no default VSI configured */ 3751 if (!ice_is_dflt_vsi_in_use(sw)) 3752 return -ENODEV; 3753 3754 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3755 ICE_FLTR_RX); 3756 if (status) { 3757 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3758 dflt_vsi->vsi_num, status); 3759 return -EIO; 3760 } 3761 3762 sw->dflt_vsi = NULL; 3763 sw->dflt_vsi_ena = false; 3764 3765 return 0; 3766 } 3767 3768 /** 3769 * ice_get_link_speed_mbps - get link speed in Mbps 3770 * @vsi: the VSI whose link speed is being queried 3771 * 3772 * Return current VSI link speed and 0 if the speed is unknown. 3773 */ 3774 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3775 { 3776 switch (vsi->port_info->phy.link_info.link_speed) { 3777 case ICE_AQ_LINK_SPEED_100GB: 3778 return SPEED_100000; 3779 case ICE_AQ_LINK_SPEED_50GB: 3780 return SPEED_50000; 3781 case ICE_AQ_LINK_SPEED_40GB: 3782 return SPEED_40000; 3783 case ICE_AQ_LINK_SPEED_25GB: 3784 return SPEED_25000; 3785 case ICE_AQ_LINK_SPEED_20GB: 3786 return SPEED_20000; 3787 case ICE_AQ_LINK_SPEED_10GB: 3788 return SPEED_10000; 3789 case ICE_AQ_LINK_SPEED_5GB: 3790 return SPEED_5000; 3791 case ICE_AQ_LINK_SPEED_2500MB: 3792 return SPEED_2500; 3793 case ICE_AQ_LINK_SPEED_1000MB: 3794 return SPEED_1000; 3795 case ICE_AQ_LINK_SPEED_100MB: 3796 return SPEED_100; 3797 case ICE_AQ_LINK_SPEED_10MB: 3798 return SPEED_10; 3799 case ICE_AQ_LINK_SPEED_UNKNOWN: 3800 default: 3801 return 0; 3802 } 3803 } 3804 3805 /** 3806 * ice_get_link_speed_kbps - get link speed in Kbps 3807 * @vsi: the VSI whose link speed is being queried 3808 * 3809 * Return current VSI link speed and 0 if the speed is unknown. 3810 */ 3811 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3812 { 3813 int speed_mbps; 3814 3815 speed_mbps = ice_get_link_speed_mbps(vsi); 3816 3817 return speed_mbps * 1000; 3818 } 3819 3820 /** 3821 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3822 * @vsi: VSI to be configured 3823 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3824 * 3825 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3826 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3827 * on TC 0. 3828 */ 3829 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3830 { 3831 struct ice_pf *pf = vsi->back; 3832 struct device *dev; 3833 int status; 3834 int speed; 3835 3836 dev = ice_pf_to_dev(pf); 3837 if (!vsi->port_info) { 3838 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3839 vsi->idx, vsi->type); 3840 return -EINVAL; 3841 } 3842 3843 speed = ice_get_link_speed_kbps(vsi); 3844 if (min_tx_rate > (u64)speed) { 3845 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3846 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3847 speed); 3848 return -EINVAL; 3849 } 3850 3851 /* Configure min BW for VSI limit */ 3852 if (min_tx_rate) { 3853 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3854 ICE_MIN_BW, min_tx_rate); 3855 if (status) { 3856 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3857 min_tx_rate, ice_vsi_type_str(vsi->type), 3858 vsi->idx); 3859 return status; 3860 } 3861 3862 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3863 min_tx_rate, ice_vsi_type_str(vsi->type)); 3864 } else { 3865 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3866 vsi->idx, 0, 3867 ICE_MIN_BW); 3868 if (status) { 3869 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3870 ice_vsi_type_str(vsi->type), vsi->idx); 3871 return status; 3872 } 3873 3874 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3875 ice_vsi_type_str(vsi->type), vsi->idx); 3876 } 3877 3878 return 0; 3879 } 3880 3881 /** 3882 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3883 * @vsi: VSI to be configured 3884 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3885 * 3886 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3887 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3888 * on TC 0. 3889 */ 3890 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3891 { 3892 struct ice_pf *pf = vsi->back; 3893 struct device *dev; 3894 int status; 3895 int speed; 3896 3897 dev = ice_pf_to_dev(pf); 3898 if (!vsi->port_info) { 3899 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3900 vsi->idx, vsi->type); 3901 return -EINVAL; 3902 } 3903 3904 speed = ice_get_link_speed_kbps(vsi); 3905 if (max_tx_rate > (u64)speed) { 3906 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3907 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3908 speed); 3909 return -EINVAL; 3910 } 3911 3912 /* Configure max BW for VSI limit */ 3913 if (max_tx_rate) { 3914 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3915 ICE_MAX_BW, max_tx_rate); 3916 if (status) { 3917 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3918 max_tx_rate, ice_vsi_type_str(vsi->type), 3919 vsi->idx); 3920 return status; 3921 } 3922 3923 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3924 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3925 } else { 3926 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3927 vsi->idx, 0, 3928 ICE_MAX_BW); 3929 if (status) { 3930 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3931 ice_vsi_type_str(vsi->type), vsi->idx); 3932 return status; 3933 } 3934 3935 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3936 ice_vsi_type_str(vsi->type), vsi->idx); 3937 } 3938 3939 return 0; 3940 } 3941 3942 /** 3943 * ice_set_link - turn on/off physical link 3944 * @vsi: VSI to modify physical link on 3945 * @ena: turn on/off physical link 3946 */ 3947 int ice_set_link(struct ice_vsi *vsi, bool ena) 3948 { 3949 struct device *dev = ice_pf_to_dev(vsi->back); 3950 struct ice_port_info *pi = vsi->port_info; 3951 struct ice_hw *hw = pi->hw; 3952 int status; 3953 3954 if (vsi->type != ICE_VSI_PF) 3955 return -EINVAL; 3956 3957 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3958 3959 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3960 * this is not a fatal error, so print a warning message and return 3961 * a success code. Return an error if FW returns an error code other 3962 * than ICE_AQ_RC_EMODE 3963 */ 3964 if (status == -EIO) { 3965 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3966 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3967 (ena ? "ON" : "OFF"), status, 3968 ice_aq_str(hw->adminq.sq_last_status)); 3969 } else if (status) { 3970 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3971 (ena ? "ON" : "OFF"), status, 3972 ice_aq_str(hw->adminq.sq_last_status)); 3973 return status; 3974 } 3975 3976 return 0; 3977 } 3978 3979 /** 3980 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3981 * @vsi: VSI used to add VLAN filters 3982 * 3983 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3984 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3985 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3986 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3987 * 3988 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3989 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3990 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3991 * 3992 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3993 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3994 * part of filtering. 3995 */ 3996 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3997 { 3998 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3999 struct ice_vlan vlan; 4000 int err; 4001 4002 vlan = ICE_VLAN(0, 0, 0); 4003 err = vlan_ops->add_vlan(vsi, &vlan); 4004 if (err && err != -EEXIST) 4005 return err; 4006 4007 /* in SVM both VLAN 0 filters are identical */ 4008 if (!ice_is_dvm_ena(&vsi->back->hw)) 4009 return 0; 4010 4011 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4012 err = vlan_ops->add_vlan(vsi, &vlan); 4013 if (err && err != -EEXIST) 4014 return err; 4015 4016 return 0; 4017 } 4018 4019 /** 4020 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4021 * @vsi: VSI used to add VLAN filters 4022 * 4023 * Delete the VLAN 0 filters in the same manner that they were added in 4024 * ice_vsi_add_vlan_zero. 4025 */ 4026 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4027 { 4028 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4029 struct ice_vlan vlan; 4030 int err; 4031 4032 vlan = ICE_VLAN(0, 0, 0); 4033 err = vlan_ops->del_vlan(vsi, &vlan); 4034 if (err && err != -EEXIST) 4035 return err; 4036 4037 /* in SVM both VLAN 0 filters are identical */ 4038 if (!ice_is_dvm_ena(&vsi->back->hw)) 4039 return 0; 4040 4041 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4042 err = vlan_ops->del_vlan(vsi, &vlan); 4043 if (err && err != -EEXIST) 4044 return err; 4045 4046 return 0; 4047 } 4048 4049 /** 4050 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4051 * @vsi: VSI used to get the VLAN mode 4052 * 4053 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4054 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4055 */ 4056 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4057 { 4058 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4059 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4060 /* no VLAN 0 filter is created when a port VLAN is active */ 4061 if (vsi->type == ICE_VSI_VF) { 4062 if (WARN_ON(!vsi->vf)) 4063 return 0; 4064 4065 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4066 return 0; 4067 } 4068 4069 if (ice_is_dvm_ena(&vsi->back->hw)) 4070 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4071 else 4072 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4073 } 4074 4075 /** 4076 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4077 * @vsi: VSI used to determine if any non-zero VLANs have been added 4078 */ 4079 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4080 { 4081 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4082 } 4083 4084 /** 4085 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4086 * @vsi: VSI used to get the number of non-zero VLANs added 4087 */ 4088 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4089 { 4090 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4091 } 4092 4093 /** 4094 * ice_is_feature_supported 4095 * @pf: pointer to the struct ice_pf instance 4096 * @f: feature enum to be checked 4097 * 4098 * returns true if feature is supported, false otherwise 4099 */ 4100 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4101 { 4102 if (f < 0 || f >= ICE_F_MAX) 4103 return false; 4104 4105 return test_bit(f, pf->features); 4106 } 4107 4108 /** 4109 * ice_set_feature_support 4110 * @pf: pointer to the struct ice_pf instance 4111 * @f: feature enum to set 4112 */ 4113 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4114 { 4115 if (f < 0 || f >= ICE_F_MAX) 4116 return; 4117 4118 set_bit(f, pf->features); 4119 } 4120 4121 /** 4122 * ice_clear_feature_support 4123 * @pf: pointer to the struct ice_pf instance 4124 * @f: feature enum to clear 4125 */ 4126 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4127 { 4128 if (f < 0 || f >= ICE_F_MAX) 4129 return; 4130 4131 clear_bit(f, pf->features); 4132 } 4133 4134 /** 4135 * ice_init_feature_support 4136 * @pf: pointer to the struct ice_pf instance 4137 * 4138 * called during init to setup supported feature 4139 */ 4140 void ice_init_feature_support(struct ice_pf *pf) 4141 { 4142 switch (pf->hw.device_id) { 4143 case ICE_DEV_ID_E810C_BACKPLANE: 4144 case ICE_DEV_ID_E810C_QSFP: 4145 case ICE_DEV_ID_E810C_SFP: 4146 ice_set_feature_support(pf, ICE_F_DSCP); 4147 if (ice_is_e810t(&pf->hw)) { 4148 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4149 if (ice_gnss_is_gps_present(&pf->hw)) 4150 ice_set_feature_support(pf, ICE_F_GNSS); 4151 } 4152 break; 4153 default: 4154 break; 4155 } 4156 } 4157 4158 /** 4159 * ice_vsi_update_security - update security block in VSI 4160 * @vsi: pointer to VSI structure 4161 * @fill: function pointer to fill ctx 4162 */ 4163 int 4164 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4165 { 4166 struct ice_vsi_ctx ctx = { 0 }; 4167 4168 ctx.info = vsi->info; 4169 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4170 fill(&ctx); 4171 4172 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4173 return -ENODEV; 4174 4175 vsi->info = ctx.info; 4176 return 0; 4177 } 4178 4179 /** 4180 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4181 * @ctx: pointer to VSI ctx structure 4182 */ 4183 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4184 { 4185 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4186 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4187 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4188 } 4189 4190 /** 4191 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4192 * @ctx: pointer to VSI ctx structure 4193 */ 4194 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4195 { 4196 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4197 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4198 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4199 } 4200 4201 /** 4202 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4203 * @ctx: pointer to VSI ctx structure 4204 */ 4205 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4206 { 4207 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4208 } 4209 4210 /** 4211 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4212 * @ctx: pointer to VSI ctx structure 4213 */ 4214 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4215 { 4216 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4217 } 4218