1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_CHNL: 26 return "ICE_VSI_CHNL"; 27 case ICE_VSI_LB: 28 return "ICE_VSI_LB"; 29 case ICE_VSI_SWITCHDEV_CTRL: 30 return "ICE_VSI_SWITCHDEV_CTRL"; 31 default: 32 return "unknown"; 33 } 34 } 35 36 /** 37 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 38 * @vsi: the VSI being configured 39 * @ena: start or stop the Rx rings 40 * 41 * First enable/disable all of the Rx rings, flush any remaining writes, and 42 * then verify that they have all been enabled/disabled successfully. This will 43 * let all of the register writes complete when enabling/disabling the Rx rings 44 * before waiting for the change in hardware to complete. 45 */ 46 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 47 { 48 int ret = 0; 49 u16 i; 50 51 ice_for_each_rxq(vsi, i) 52 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 53 54 ice_flush(&vsi->back->hw); 55 56 ice_for_each_rxq(vsi, i) { 57 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 58 if (ret) 59 break; 60 } 61 62 return ret; 63 } 64 65 /** 66 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 67 * @vsi: VSI pointer 68 * 69 * On error: returns error code (negative) 70 * On success: returns 0 71 */ 72 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 73 { 74 struct ice_pf *pf = vsi->back; 75 struct device *dev; 76 77 dev = ice_pf_to_dev(pf); 78 if (vsi->type == ICE_VSI_CHNL) 79 return 0; 80 81 /* allocate memory for both Tx and Rx ring pointers */ 82 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 83 sizeof(*vsi->tx_rings), GFP_KERNEL); 84 if (!vsi->tx_rings) 85 return -ENOMEM; 86 87 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 88 sizeof(*vsi->rx_rings), GFP_KERNEL); 89 if (!vsi->rx_rings) 90 goto err_rings; 91 92 /* txq_map needs to have enough space to track both Tx (stack) rings 93 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 94 * so use num_possible_cpus() as we want to always provide XDP ring 95 * per CPU, regardless of queue count settings from user that might 96 * have come from ethtool's set_channels() callback; 97 */ 98 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 99 sizeof(*vsi->txq_map), GFP_KERNEL); 100 101 if (!vsi->txq_map) 102 goto err_txq_map; 103 104 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 105 sizeof(*vsi->rxq_map), GFP_KERNEL); 106 if (!vsi->rxq_map) 107 goto err_rxq_map; 108 109 /* There is no need to allocate q_vectors for a loopback VSI. */ 110 if (vsi->type == ICE_VSI_LB) 111 return 0; 112 113 /* allocate memory for q_vector pointers */ 114 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 115 sizeof(*vsi->q_vectors), GFP_KERNEL); 116 if (!vsi->q_vectors) 117 goto err_vectors; 118 119 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 120 if (!vsi->af_xdp_zc_qps) 121 goto err_zc_qps; 122 123 return 0; 124 125 err_zc_qps: 126 devm_kfree(dev, vsi->q_vectors); 127 err_vectors: 128 devm_kfree(dev, vsi->rxq_map); 129 err_rxq_map: 130 devm_kfree(dev, vsi->txq_map); 131 err_txq_map: 132 devm_kfree(dev, vsi->rx_rings); 133 err_rings: 134 devm_kfree(dev, vsi->tx_rings); 135 return -ENOMEM; 136 } 137 138 /** 139 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 140 * @vsi: the VSI being configured 141 */ 142 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 143 { 144 switch (vsi->type) { 145 case ICE_VSI_PF: 146 case ICE_VSI_SWITCHDEV_CTRL: 147 case ICE_VSI_CTRL: 148 case ICE_VSI_LB: 149 /* a user could change the values of num_[tr]x_desc using 150 * ethtool -G so we should keep those values instead of 151 * overwriting them with the defaults. 152 */ 153 if (!vsi->num_rx_desc) 154 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 155 if (!vsi->num_tx_desc) 156 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 157 break; 158 default: 159 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 160 vsi->type); 161 break; 162 } 163 } 164 165 /** 166 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 167 * @vsi: the VSI being configured 168 * @vf_id: ID of the VF being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 173 { 174 struct ice_pf *pf = vsi->back; 175 struct ice_vf *vf = NULL; 176 177 if (vsi->type == ICE_VSI_VF) 178 vsi->vf_id = vf_id; 179 else 180 vsi->vf_id = ICE_INVAL_VFID; 181 182 switch (vsi->type) { 183 case ICE_VSI_PF: 184 if (vsi->req_txq) { 185 vsi->alloc_txq = vsi->req_txq; 186 vsi->num_txq = vsi->req_txq; 187 } else { 188 vsi->alloc_txq = min3(pf->num_lan_msix, 189 ice_get_avail_txq_count(pf), 190 (u16)num_online_cpus()); 191 } 192 193 pf->num_lan_tx = vsi->alloc_txq; 194 195 /* only 1 Rx queue unless RSS is enabled */ 196 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 197 vsi->alloc_rxq = 1; 198 } else { 199 if (vsi->req_rxq) { 200 vsi->alloc_rxq = vsi->req_rxq; 201 vsi->num_rxq = vsi->req_rxq; 202 } else { 203 vsi->alloc_rxq = min3(pf->num_lan_msix, 204 ice_get_avail_rxq_count(pf), 205 (u16)num_online_cpus()); 206 } 207 } 208 209 pf->num_lan_rx = vsi->alloc_rxq; 210 211 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 212 max_t(int, vsi->alloc_rxq, 213 vsi->alloc_txq)); 214 break; 215 case ICE_VSI_SWITCHDEV_CTRL: 216 /* The number of queues for ctrl VSI is equal to number of VFs. 217 * Each ring is associated to the corresponding VF_PR netdev. 218 */ 219 vsi->alloc_txq = pf->num_alloc_vfs; 220 vsi->alloc_rxq = pf->num_alloc_vfs; 221 vsi->num_q_vectors = 1; 222 break; 223 case ICE_VSI_VF: 224 vf = &pf->vf[vsi->vf_id]; 225 if (vf->num_req_qs) 226 vf->num_vf_qs = vf->num_req_qs; 227 vsi->alloc_txq = vf->num_vf_qs; 228 vsi->alloc_rxq = vf->num_vf_qs; 229 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 230 * data queue interrupts). Since vsi->num_q_vectors is number 231 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 232 * original vector count 233 */ 234 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 235 break; 236 case ICE_VSI_CTRL: 237 vsi->alloc_txq = 1; 238 vsi->alloc_rxq = 1; 239 vsi->num_q_vectors = 1; 240 break; 241 case ICE_VSI_CHNL: 242 vsi->alloc_txq = 0; 243 vsi->alloc_rxq = 0; 244 break; 245 case ICE_VSI_LB: 246 vsi->alloc_txq = 1; 247 vsi->alloc_rxq = 1; 248 break; 249 default: 250 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 251 break; 252 } 253 254 ice_vsi_set_num_desc(vsi); 255 } 256 257 /** 258 * ice_get_free_slot - get the next non-NULL location index in array 259 * @array: array to search 260 * @size: size of the array 261 * @curr: last known occupied index to be used as a search hint 262 * 263 * void * is being used to keep the functionality generic. This lets us use this 264 * function on any array of pointers. 265 */ 266 static int ice_get_free_slot(void *array, int size, int curr) 267 { 268 int **tmp_array = (int **)array; 269 int next; 270 271 if (curr < (size - 1) && !tmp_array[curr + 1]) { 272 next = curr + 1; 273 } else { 274 int i = 0; 275 276 while ((i < size) && (tmp_array[i])) 277 i++; 278 if (i == size) 279 next = ICE_NO_VSI; 280 else 281 next = i; 282 } 283 return next; 284 } 285 286 /** 287 * ice_vsi_delete - delete a VSI from the switch 288 * @vsi: pointer to VSI being removed 289 */ 290 void ice_vsi_delete(struct ice_vsi *vsi) 291 { 292 struct ice_pf *pf = vsi->back; 293 struct ice_vsi_ctx *ctxt; 294 int status; 295 296 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 297 if (!ctxt) 298 return; 299 300 if (vsi->type == ICE_VSI_VF) 301 ctxt->vf_num = vsi->vf_id; 302 ctxt->vsi_num = vsi->vsi_num; 303 304 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 305 306 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 307 if (status) 308 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 309 vsi->vsi_num, status); 310 311 kfree(ctxt); 312 } 313 314 /** 315 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 316 * @vsi: pointer to VSI being cleared 317 */ 318 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 319 { 320 struct ice_pf *pf = vsi->back; 321 struct device *dev; 322 323 dev = ice_pf_to_dev(pf); 324 325 if (vsi->af_xdp_zc_qps) { 326 bitmap_free(vsi->af_xdp_zc_qps); 327 vsi->af_xdp_zc_qps = NULL; 328 } 329 /* free the ring and vector containers */ 330 if (vsi->q_vectors) { 331 devm_kfree(dev, vsi->q_vectors); 332 vsi->q_vectors = NULL; 333 } 334 if (vsi->tx_rings) { 335 devm_kfree(dev, vsi->tx_rings); 336 vsi->tx_rings = NULL; 337 } 338 if (vsi->rx_rings) { 339 devm_kfree(dev, vsi->rx_rings); 340 vsi->rx_rings = NULL; 341 } 342 if (vsi->txq_map) { 343 devm_kfree(dev, vsi->txq_map); 344 vsi->txq_map = NULL; 345 } 346 if (vsi->rxq_map) { 347 devm_kfree(dev, vsi->rxq_map); 348 vsi->rxq_map = NULL; 349 } 350 } 351 352 /** 353 * ice_vsi_clear - clean up and deallocate the provided VSI 354 * @vsi: pointer to VSI being cleared 355 * 356 * This deallocates the VSI's queue resources, removes it from the PF's 357 * VSI array if necessary, and deallocates the VSI 358 * 359 * Returns 0 on success, negative on failure 360 */ 361 int ice_vsi_clear(struct ice_vsi *vsi) 362 { 363 struct ice_pf *pf = NULL; 364 struct device *dev; 365 366 if (!vsi) 367 return 0; 368 369 if (!vsi->back) 370 return -EINVAL; 371 372 pf = vsi->back; 373 dev = ice_pf_to_dev(pf); 374 375 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 376 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 377 return -EINVAL; 378 } 379 380 mutex_lock(&pf->sw_mutex); 381 /* updates the PF for this cleared VSI */ 382 383 pf->vsi[vsi->idx] = NULL; 384 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 385 pf->next_vsi = vsi->idx; 386 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 387 vsi->vf_id != ICE_INVAL_VFID) 388 pf->next_vsi = vsi->idx; 389 390 ice_vsi_free_arrays(vsi); 391 mutex_unlock(&pf->sw_mutex); 392 devm_kfree(dev, vsi); 393 394 return 0; 395 } 396 397 /** 398 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 399 * @irq: interrupt number 400 * @data: pointer to a q_vector 401 */ 402 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 403 { 404 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 405 406 if (!q_vector->tx.tx_ring) 407 return IRQ_HANDLED; 408 409 #define FDIR_RX_DESC_CLEAN_BUDGET 64 410 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 411 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 412 413 return IRQ_HANDLED; 414 } 415 416 /** 417 * ice_msix_clean_rings - MSIX mode Interrupt Handler 418 * @irq: interrupt number 419 * @data: pointer to a q_vector 420 */ 421 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 422 { 423 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 424 425 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 426 return IRQ_HANDLED; 427 428 q_vector->total_events++; 429 430 napi_schedule(&q_vector->napi); 431 432 return IRQ_HANDLED; 433 } 434 435 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 436 { 437 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 438 struct ice_pf *pf = q_vector->vsi->back; 439 int i; 440 441 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 442 return IRQ_HANDLED; 443 444 ice_for_each_vf(pf, i) 445 napi_schedule(&pf->vf[i].repr->q_vector->napi); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf_id: ID of the VF being configured 456 * 457 * returns a pointer to a VSI on success, NULL on failure. 458 */ 459 static struct ice_vsi * 460 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 461 struct ice_channel *ch, u16 vf_id) 462 { 463 struct device *dev = ice_pf_to_dev(pf); 464 struct ice_vsi *vsi = NULL; 465 466 /* Need to protect the allocation of the VSIs at the PF level */ 467 mutex_lock(&pf->sw_mutex); 468 469 /* If we have already allocated our maximum number of VSIs, 470 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 471 * is available to be populated 472 */ 473 if (pf->next_vsi == ICE_NO_VSI) { 474 dev_dbg(dev, "out of VSI slots!\n"); 475 goto unlock_pf; 476 } 477 478 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 479 if (!vsi) 480 goto unlock_pf; 481 482 vsi->type = vsi_type; 483 vsi->back = pf; 484 set_bit(ICE_VSI_DOWN, vsi->state); 485 486 if (vsi_type == ICE_VSI_VF) 487 ice_vsi_set_num_qs(vsi, vf_id); 488 else if (vsi_type != ICE_VSI_CHNL) 489 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 490 491 switch (vsi->type) { 492 case ICE_VSI_SWITCHDEV_CTRL: 493 if (ice_vsi_alloc_arrays(vsi)) 494 goto err_rings; 495 496 /* Setup eswitch MSIX irq handler for VSI */ 497 vsi->irq_handler = ice_eswitch_msix_clean_rings; 498 break; 499 case ICE_VSI_PF: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup default MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_msix_clean_rings; 505 break; 506 case ICE_VSI_CTRL: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup ctrl VSI MSIX irq handler */ 511 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 512 break; 513 case ICE_VSI_VF: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 break; 517 case ICE_VSI_CHNL: 518 if (!ch) 519 goto err_rings; 520 vsi->num_rxq = ch->num_rxq; 521 vsi->num_txq = ch->num_txq; 522 vsi->next_base_q = ch->base_q; 523 break; 524 case ICE_VSI_LB: 525 if (ice_vsi_alloc_arrays(vsi)) 526 goto err_rings; 527 break; 528 default: 529 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 530 goto unlock_pf; 531 } 532 533 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 534 /* Use the last VSI slot as the index for PF control VSI */ 535 vsi->idx = pf->num_alloc_vsi - 1; 536 pf->ctrl_vsi_idx = vsi->idx; 537 pf->vsi[vsi->idx] = vsi; 538 } else { 539 /* fill slot and make note of the index */ 540 vsi->idx = pf->next_vsi; 541 pf->vsi[pf->next_vsi] = vsi; 542 543 /* prepare pf->next_vsi for next use */ 544 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 545 pf->next_vsi); 546 } 547 548 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 549 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 550 goto unlock_pf; 551 552 err_rings: 553 devm_kfree(dev, vsi); 554 vsi = NULL; 555 unlock_pf: 556 mutex_unlock(&pf->sw_mutex); 557 return vsi; 558 } 559 560 /** 561 * ice_alloc_fd_res - Allocate FD resource for a VSI 562 * @vsi: pointer to the ice_vsi 563 * 564 * This allocates the FD resources 565 * 566 * Returns 0 on success, -EPERM on no-op or -EIO on failure 567 */ 568 static int ice_alloc_fd_res(struct ice_vsi *vsi) 569 { 570 struct ice_pf *pf = vsi->back; 571 u32 g_val, b_val; 572 573 /* Flow Director filters are only allocated/assigned to the PF VSI or 574 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 575 * add/delete filters so resources are not allocated to it 576 */ 577 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 578 return -EPERM; 579 580 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 581 vsi->type == ICE_VSI_CHNL)) 582 return -EPERM; 583 584 /* FD filters from guaranteed pool per VSI */ 585 g_val = pf->hw.func_caps.fd_fltr_guar; 586 if (!g_val) 587 return -EPERM; 588 589 /* FD filters from best effort pool */ 590 b_val = pf->hw.func_caps.fd_fltr_best_effort; 591 if (!b_val) 592 return -EPERM; 593 594 /* PF main VSI gets only 64 FD resources from guaranteed pool 595 * when ADQ is configured. 596 */ 597 #define ICE_PF_VSI_GFLTR 64 598 599 /* determine FD filter resources per VSI from shared(best effort) and 600 * dedicated pool 601 */ 602 if (vsi->type == ICE_VSI_PF) { 603 vsi->num_gfltr = g_val; 604 /* if MQPRIO is configured, main VSI doesn't get all FD 605 * resources from guaranteed pool. PF VSI gets 64 FD resources 606 */ 607 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 608 if (g_val < ICE_PF_VSI_GFLTR) 609 return -EPERM; 610 /* allow bare minimum entries for PF VSI */ 611 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 612 } 613 614 /* each VSI gets same "best_effort" quota */ 615 vsi->num_bfltr = b_val; 616 } else if (vsi->type == ICE_VSI_VF) { 617 vsi->num_gfltr = 0; 618 619 /* each VSI gets same "best_effort" quota */ 620 vsi->num_bfltr = b_val; 621 } else { 622 struct ice_vsi *main_vsi; 623 int numtc; 624 625 main_vsi = ice_get_main_vsi(pf); 626 if (!main_vsi) 627 return -EPERM; 628 629 if (!main_vsi->all_numtc) 630 return -EINVAL; 631 632 /* figure out ADQ numtc */ 633 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 634 635 /* only one TC but still asking resources for channels, 636 * invalid config 637 */ 638 if (numtc < ICE_CHNL_START_TC) 639 return -EPERM; 640 641 g_val -= ICE_PF_VSI_GFLTR; 642 /* channel VSIs gets equal share from guaranteed pool */ 643 vsi->num_gfltr = g_val / numtc; 644 645 /* each VSI gets same "best_effort" quota */ 646 vsi->num_bfltr = b_val; 647 } 648 649 return 0; 650 } 651 652 /** 653 * ice_vsi_get_qs - Assign queues from PF to VSI 654 * @vsi: the VSI to assign queues to 655 * 656 * Returns 0 on success and a negative value on error 657 */ 658 static int ice_vsi_get_qs(struct ice_vsi *vsi) 659 { 660 struct ice_pf *pf = vsi->back; 661 struct ice_qs_cfg tx_qs_cfg = { 662 .qs_mutex = &pf->avail_q_mutex, 663 .pf_map = pf->avail_txqs, 664 .pf_map_size = pf->max_pf_txqs, 665 .q_count = vsi->alloc_txq, 666 .scatter_count = ICE_MAX_SCATTER_TXQS, 667 .vsi_map = vsi->txq_map, 668 .vsi_map_offset = 0, 669 .mapping_mode = ICE_VSI_MAP_CONTIG 670 }; 671 struct ice_qs_cfg rx_qs_cfg = { 672 .qs_mutex = &pf->avail_q_mutex, 673 .pf_map = pf->avail_rxqs, 674 .pf_map_size = pf->max_pf_rxqs, 675 .q_count = vsi->alloc_rxq, 676 .scatter_count = ICE_MAX_SCATTER_RXQS, 677 .vsi_map = vsi->rxq_map, 678 .vsi_map_offset = 0, 679 .mapping_mode = ICE_VSI_MAP_CONTIG 680 }; 681 int ret; 682 683 if (vsi->type == ICE_VSI_CHNL) 684 return 0; 685 686 ret = __ice_vsi_get_qs(&tx_qs_cfg); 687 if (ret) 688 return ret; 689 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 690 691 ret = __ice_vsi_get_qs(&rx_qs_cfg); 692 if (ret) 693 return ret; 694 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 695 696 return 0; 697 } 698 699 /** 700 * ice_vsi_put_qs - Release queues from VSI to PF 701 * @vsi: the VSI that is going to release queues 702 */ 703 static void ice_vsi_put_qs(struct ice_vsi *vsi) 704 { 705 struct ice_pf *pf = vsi->back; 706 int i; 707 708 mutex_lock(&pf->avail_q_mutex); 709 710 ice_for_each_alloc_txq(vsi, i) { 711 clear_bit(vsi->txq_map[i], pf->avail_txqs); 712 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 713 } 714 715 ice_for_each_alloc_rxq(vsi, i) { 716 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 717 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 718 } 719 720 mutex_unlock(&pf->avail_q_mutex); 721 } 722 723 /** 724 * ice_is_safe_mode 725 * @pf: pointer to the PF struct 726 * 727 * returns true if driver is in safe mode, false otherwise 728 */ 729 bool ice_is_safe_mode(struct ice_pf *pf) 730 { 731 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 732 } 733 734 /** 735 * ice_is_aux_ena 736 * @pf: pointer to the PF struct 737 * 738 * returns true if AUX devices/drivers are supported, false otherwise 739 */ 740 bool ice_is_aux_ena(struct ice_pf *pf) 741 { 742 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 743 } 744 745 /** 746 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 747 * @vsi: the VSI being cleaned up 748 * 749 * This function deletes RSS input set for all flows that were configured 750 * for this VSI 751 */ 752 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 753 { 754 struct ice_pf *pf = vsi->back; 755 int status; 756 757 if (ice_is_safe_mode(pf)) 758 return; 759 760 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 761 if (status) 762 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 763 vsi->vsi_num, status); 764 } 765 766 /** 767 * ice_rss_clean - Delete RSS related VSI structures and configuration 768 * @vsi: the VSI being removed 769 */ 770 static void ice_rss_clean(struct ice_vsi *vsi) 771 { 772 struct ice_pf *pf = vsi->back; 773 struct device *dev; 774 775 dev = ice_pf_to_dev(pf); 776 777 if (vsi->rss_hkey_user) 778 devm_kfree(dev, vsi->rss_hkey_user); 779 if (vsi->rss_lut_user) 780 devm_kfree(dev, vsi->rss_lut_user); 781 782 ice_vsi_clean_rss_flow_fld(vsi); 783 /* remove RSS replay list */ 784 if (!ice_is_safe_mode(pf)) 785 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 786 } 787 788 /** 789 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 790 * @vsi: the VSI being configured 791 */ 792 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 793 { 794 struct ice_hw_common_caps *cap; 795 struct ice_pf *pf = vsi->back; 796 797 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 798 vsi->rss_size = 1; 799 return; 800 } 801 802 cap = &pf->hw.func_caps.common_cap; 803 switch (vsi->type) { 804 case ICE_VSI_CHNL: 805 case ICE_VSI_PF: 806 /* PF VSI will inherit RSS instance of PF */ 807 vsi->rss_table_size = (u16)cap->rss_table_size; 808 if (vsi->type == ICE_VSI_CHNL) 809 vsi->rss_size = min_t(u16, vsi->num_rxq, 810 BIT(cap->rss_table_entry_width)); 811 else 812 vsi->rss_size = min_t(u16, num_online_cpus(), 813 BIT(cap->rss_table_entry_width)); 814 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 815 break; 816 case ICE_VSI_SWITCHDEV_CTRL: 817 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 818 vsi->rss_size = min_t(u16, num_online_cpus(), 819 BIT(cap->rss_table_entry_width)); 820 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 821 break; 822 case ICE_VSI_VF: 823 /* VF VSI will get a small RSS table. 824 * For VSI_LUT, LUT size should be set to 64 bytes. 825 */ 826 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 827 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 828 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 829 break; 830 case ICE_VSI_LB: 831 break; 832 default: 833 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 834 ice_vsi_type_str(vsi->type)); 835 break; 836 } 837 } 838 839 /** 840 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 841 * @ctxt: the VSI context being set 842 * 843 * This initializes a default VSI context for all sections except the Queues. 844 */ 845 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 846 { 847 u32 table = 0; 848 849 memset(&ctxt->info, 0, sizeof(ctxt->info)); 850 /* VSI's should be allocated from shared pool */ 851 ctxt->alloc_from_pool = true; 852 /* Src pruning enabled by default */ 853 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 854 /* Traffic from VSI can be sent to LAN */ 855 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 856 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 857 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 858 * packets untagged/tagged. 859 */ 860 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 861 ICE_AQ_VSI_VLAN_MODE_M) >> 862 ICE_AQ_VSI_VLAN_MODE_S); 863 /* Have 1:1 UP mapping for both ingress/egress tables */ 864 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 865 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 866 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 867 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 868 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 869 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 870 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 871 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 872 ctxt->info.ingress_table = cpu_to_le32(table); 873 ctxt->info.egress_table = cpu_to_le32(table); 874 /* Have 1:1 UP mapping for outer to inner UP table */ 875 ctxt->info.outer_up_table = cpu_to_le32(table); 876 /* No Outer tag support outer_tag_flags remains to zero */ 877 } 878 879 /** 880 * ice_vsi_setup_q_map - Setup a VSI queue map 881 * @vsi: the VSI being configured 882 * @ctxt: VSI context structure 883 */ 884 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 885 { 886 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 887 u16 num_txq_per_tc, num_rxq_per_tc; 888 u16 qcount_tx = vsi->alloc_txq; 889 u16 qcount_rx = vsi->alloc_rxq; 890 u8 netdev_tc = 0; 891 int i; 892 893 if (!vsi->tc_cfg.numtc) { 894 /* at least TC0 should be enabled by default */ 895 vsi->tc_cfg.numtc = 1; 896 vsi->tc_cfg.ena_tc = 1; 897 } 898 899 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 900 if (!num_rxq_per_tc) 901 num_rxq_per_tc = 1; 902 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 903 if (!num_txq_per_tc) 904 num_txq_per_tc = 1; 905 906 /* find the (rounded up) power-of-2 of qcount */ 907 pow = (u16)order_base_2(num_rxq_per_tc); 908 909 /* TC mapping is a function of the number of Rx queues assigned to the 910 * VSI for each traffic class and the offset of these queues. 911 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 912 * queues allocated to TC0. No:of queues is a power-of-2. 913 * 914 * If TC is not enabled, the queue offset is set to 0, and allocate one 915 * queue, this way, traffic for the given TC will be sent to the default 916 * queue. 917 * 918 * Setup number and offset of Rx queues for all TCs for the VSI 919 */ 920 ice_for_each_traffic_class(i) { 921 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 922 /* TC is not enabled */ 923 vsi->tc_cfg.tc_info[i].qoffset = 0; 924 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 925 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 926 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 927 ctxt->info.tc_mapping[i] = 0; 928 continue; 929 } 930 931 /* TC is enabled */ 932 vsi->tc_cfg.tc_info[i].qoffset = offset; 933 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 934 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 935 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 936 937 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 938 ICE_AQ_VSI_TC_Q_OFFSET_M) | 939 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 940 ICE_AQ_VSI_TC_Q_NUM_M); 941 offset += num_rxq_per_tc; 942 tx_count += num_txq_per_tc; 943 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 944 } 945 946 /* if offset is non-zero, means it is calculated correctly based on 947 * enabled TCs for a given VSI otherwise qcount_rx will always 948 * be correct and non-zero because it is based off - VSI's 949 * allocated Rx queues which is at least 1 (hence qcount_tx will be 950 * at least 1) 951 */ 952 if (offset) 953 vsi->num_rxq = offset; 954 else 955 vsi->num_rxq = num_rxq_per_tc; 956 957 vsi->num_txq = tx_count; 958 959 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 960 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 961 /* since there is a chance that num_rxq could have been changed 962 * in the above for loop, make num_txq equal to num_rxq. 963 */ 964 vsi->num_txq = vsi->num_rxq; 965 } 966 967 /* Rx queue mapping */ 968 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 969 /* q_mapping buffer holds the info for the first queue allocated for 970 * this VSI in the PF space and also the number of queues associated 971 * with this VSI. 972 */ 973 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 974 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 975 } 976 977 /** 978 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 979 * @ctxt: the VSI context being set 980 * @vsi: the VSI being configured 981 */ 982 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 983 { 984 u8 dflt_q_group, dflt_q_prio; 985 u16 dflt_q, report_q, val; 986 987 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 988 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 989 return; 990 991 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 992 ctxt->info.valid_sections |= cpu_to_le16(val); 993 dflt_q = 0; 994 dflt_q_group = 0; 995 report_q = 0; 996 dflt_q_prio = 0; 997 998 /* enable flow director filtering/programming */ 999 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1000 ctxt->info.fd_options = cpu_to_le16(val); 1001 /* max of allocated flow director filters */ 1002 ctxt->info.max_fd_fltr_dedicated = 1003 cpu_to_le16(vsi->num_gfltr); 1004 /* max of shared flow director filters any VSI may program */ 1005 ctxt->info.max_fd_fltr_shared = 1006 cpu_to_le16(vsi->num_bfltr); 1007 /* default queue index within the VSI of the default FD */ 1008 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1009 ICE_AQ_VSI_FD_DEF_Q_M); 1010 /* target queue or queue group to the FD filter */ 1011 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1012 ICE_AQ_VSI_FD_DEF_GRP_M); 1013 ctxt->info.fd_def_q = cpu_to_le16(val); 1014 /* queue index on which FD filter completion is reported */ 1015 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1016 ICE_AQ_VSI_FD_REPORT_Q_M); 1017 /* priority of the default qindex action */ 1018 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1019 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1020 ctxt->info.fd_report_opt = cpu_to_le16(val); 1021 } 1022 1023 /** 1024 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1025 * @ctxt: the VSI context being set 1026 * @vsi: the VSI being configured 1027 */ 1028 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1029 { 1030 u8 lut_type, hash_type; 1031 struct device *dev; 1032 struct ice_pf *pf; 1033 1034 pf = vsi->back; 1035 dev = ice_pf_to_dev(pf); 1036 1037 switch (vsi->type) { 1038 case ICE_VSI_CHNL: 1039 case ICE_VSI_PF: 1040 /* PF VSI will inherit RSS instance of PF */ 1041 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1042 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1043 break; 1044 case ICE_VSI_VF: 1045 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1046 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1047 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1048 break; 1049 default: 1050 dev_dbg(dev, "Unsupported VSI type %s\n", 1051 ice_vsi_type_str(vsi->type)); 1052 return; 1053 } 1054 1055 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1056 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1057 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1058 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1059 } 1060 1061 static void 1062 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1063 { 1064 struct ice_pf *pf = vsi->back; 1065 u16 qcount, qmap; 1066 u8 offset = 0; 1067 int pow; 1068 1069 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1070 1071 pow = order_base_2(qcount); 1072 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1073 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1074 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1075 ICE_AQ_VSI_TC_Q_NUM_M); 1076 1077 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1078 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1079 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1080 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1081 } 1082 1083 /** 1084 * ice_vsi_init - Create and initialize a VSI 1085 * @vsi: the VSI being configured 1086 * @init_vsi: is this call creating a VSI 1087 * 1088 * This initializes a VSI context depending on the VSI type to be added and 1089 * passes it down to the add_vsi aq command to create a new VSI. 1090 */ 1091 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1092 { 1093 struct ice_pf *pf = vsi->back; 1094 struct ice_hw *hw = &pf->hw; 1095 struct ice_vsi_ctx *ctxt; 1096 struct device *dev; 1097 int ret = 0; 1098 1099 dev = ice_pf_to_dev(pf); 1100 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1101 if (!ctxt) 1102 return -ENOMEM; 1103 1104 switch (vsi->type) { 1105 case ICE_VSI_CTRL: 1106 case ICE_VSI_LB: 1107 case ICE_VSI_PF: 1108 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1109 break; 1110 case ICE_VSI_SWITCHDEV_CTRL: 1111 case ICE_VSI_CHNL: 1112 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1113 break; 1114 case ICE_VSI_VF: 1115 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1116 /* VF number here is the absolute VF number (0-255) */ 1117 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1118 break; 1119 default: 1120 ret = -ENODEV; 1121 goto out; 1122 } 1123 1124 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1125 * prune enabled 1126 */ 1127 if (vsi->type == ICE_VSI_CHNL) { 1128 struct ice_vsi *main_vsi; 1129 1130 main_vsi = ice_get_main_vsi(pf); 1131 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1132 ctxt->info.sw_flags2 |= 1133 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1134 else 1135 ctxt->info.sw_flags2 &= 1136 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1137 } 1138 1139 ice_set_dflt_vsi_ctx(ctxt); 1140 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1141 ice_set_fd_vsi_ctx(ctxt, vsi); 1142 /* if the switch is in VEB mode, allow VSI loopback */ 1143 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1144 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1145 1146 /* Set LUT type and HASH type if RSS is enabled */ 1147 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1148 vsi->type != ICE_VSI_CTRL) { 1149 ice_set_rss_vsi_ctx(ctxt, vsi); 1150 /* if updating VSI context, make sure to set valid_section: 1151 * to indicate which section of VSI context being updated 1152 */ 1153 if (!init_vsi) 1154 ctxt->info.valid_sections |= 1155 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1156 } 1157 1158 ctxt->info.sw_id = vsi->port_info->sw_id; 1159 if (vsi->type == ICE_VSI_CHNL) { 1160 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1161 } else { 1162 ice_vsi_setup_q_map(vsi, ctxt); 1163 if (!init_vsi) /* means VSI being updated */ 1164 /* must to indicate which section of VSI context are 1165 * being modified 1166 */ 1167 ctxt->info.valid_sections |= 1168 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1169 } 1170 1171 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1172 * respectively 1173 */ 1174 if (vsi->type == ICE_VSI_VF) { 1175 ctxt->info.valid_sections |= 1176 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1177 if (pf->vf[vsi->vf_id].spoofchk) { 1178 ctxt->info.sec_flags |= 1179 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1180 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1181 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1182 } else { 1183 ctxt->info.sec_flags &= 1184 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1185 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1186 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1187 } 1188 } 1189 1190 /* Allow control frames out of main VSI */ 1191 if (vsi->type == ICE_VSI_PF) { 1192 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1193 ctxt->info.valid_sections |= 1194 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1195 } 1196 1197 if (init_vsi) { 1198 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1199 if (ret) { 1200 dev_err(dev, "Add VSI failed, err %d\n", ret); 1201 ret = -EIO; 1202 goto out; 1203 } 1204 } else { 1205 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1206 if (ret) { 1207 dev_err(dev, "Update VSI failed, err %d\n", ret); 1208 ret = -EIO; 1209 goto out; 1210 } 1211 } 1212 1213 /* keep context for update VSI operations */ 1214 vsi->info = ctxt->info; 1215 1216 /* record VSI number returned */ 1217 vsi->vsi_num = ctxt->vsi_num; 1218 1219 out: 1220 kfree(ctxt); 1221 return ret; 1222 } 1223 1224 /** 1225 * ice_free_res - free a block of resources 1226 * @res: pointer to the resource 1227 * @index: starting index previously returned by ice_get_res 1228 * @id: identifier to track owner 1229 * 1230 * Returns number of resources freed 1231 */ 1232 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1233 { 1234 int count = 0; 1235 int i; 1236 1237 if (!res || index >= res->end) 1238 return -EINVAL; 1239 1240 id |= ICE_RES_VALID_BIT; 1241 for (i = index; i < res->end && res->list[i] == id; i++) { 1242 res->list[i] = 0; 1243 count++; 1244 } 1245 1246 return count; 1247 } 1248 1249 /** 1250 * ice_search_res - Search the tracker for a block of resources 1251 * @res: pointer to the resource 1252 * @needed: size of the block needed 1253 * @id: identifier to track owner 1254 * 1255 * Returns the base item index of the block, or -ENOMEM for error 1256 */ 1257 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1258 { 1259 u16 start = 0, end = 0; 1260 1261 if (needed > res->end) 1262 return -ENOMEM; 1263 1264 id |= ICE_RES_VALID_BIT; 1265 1266 do { 1267 /* skip already allocated entries */ 1268 if (res->list[end++] & ICE_RES_VALID_BIT) { 1269 start = end; 1270 if ((start + needed) > res->end) 1271 break; 1272 } 1273 1274 if (end == (start + needed)) { 1275 int i = start; 1276 1277 /* there was enough, so assign it to the requestor */ 1278 while (i != end) 1279 res->list[i++] = id; 1280 1281 return start; 1282 } 1283 } while (end < res->end); 1284 1285 return -ENOMEM; 1286 } 1287 1288 /** 1289 * ice_get_free_res_count - Get free count from a resource tracker 1290 * @res: Resource tracker instance 1291 */ 1292 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1293 { 1294 u16 i, count = 0; 1295 1296 for (i = 0; i < res->end; i++) 1297 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1298 count++; 1299 1300 return count; 1301 } 1302 1303 /** 1304 * ice_get_res - get a block of resources 1305 * @pf: board private structure 1306 * @res: pointer to the resource 1307 * @needed: size of the block needed 1308 * @id: identifier to track owner 1309 * 1310 * Returns the base item index of the block, or negative for error 1311 */ 1312 int 1313 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1314 { 1315 if (!res || !pf) 1316 return -EINVAL; 1317 1318 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1319 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1320 needed, res->num_entries, id); 1321 return -EINVAL; 1322 } 1323 1324 return ice_search_res(res, needed, id); 1325 } 1326 1327 /** 1328 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1329 * @vsi: ptr to the VSI 1330 * 1331 * This should only be called after ice_vsi_alloc() which allocates the 1332 * corresponding SW VSI structure and initializes num_queue_pairs for the 1333 * newly allocated VSI. 1334 * 1335 * Returns 0 on success or negative on failure 1336 */ 1337 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1338 { 1339 struct ice_pf *pf = vsi->back; 1340 struct device *dev; 1341 u16 num_q_vectors; 1342 int base; 1343 1344 dev = ice_pf_to_dev(pf); 1345 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1346 if (vsi->type == ICE_VSI_VF) 1347 return 0; 1348 if (vsi->type == ICE_VSI_CHNL) 1349 return 0; 1350 1351 if (vsi->base_vector) { 1352 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1353 vsi->vsi_num, vsi->base_vector); 1354 return -EEXIST; 1355 } 1356 1357 num_q_vectors = vsi->num_q_vectors; 1358 /* reserve slots from OS requested IRQs */ 1359 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1360 int i; 1361 1362 ice_for_each_vf(pf, i) { 1363 struct ice_vf *vf = &pf->vf[i]; 1364 1365 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1366 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1367 break; 1368 } 1369 } 1370 if (i == pf->num_alloc_vfs) 1371 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1372 ICE_RES_VF_CTRL_VEC_ID); 1373 } else { 1374 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1375 vsi->idx); 1376 } 1377 1378 if (base < 0) { 1379 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1380 ice_get_free_res_count(pf->irq_tracker), 1381 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1382 return -ENOENT; 1383 } 1384 vsi->base_vector = (u16)base; 1385 pf->num_avail_sw_msix -= num_q_vectors; 1386 1387 return 0; 1388 } 1389 1390 /** 1391 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1392 * @vsi: the VSI having rings deallocated 1393 */ 1394 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1395 { 1396 int i; 1397 1398 /* Avoid stale references by clearing map from vector to ring */ 1399 if (vsi->q_vectors) { 1400 ice_for_each_q_vector(vsi, i) { 1401 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1402 1403 if (q_vector) { 1404 q_vector->tx.tx_ring = NULL; 1405 q_vector->rx.rx_ring = NULL; 1406 } 1407 } 1408 } 1409 1410 if (vsi->tx_rings) { 1411 ice_for_each_alloc_txq(vsi, i) { 1412 if (vsi->tx_rings[i]) { 1413 kfree_rcu(vsi->tx_rings[i], rcu); 1414 WRITE_ONCE(vsi->tx_rings[i], NULL); 1415 } 1416 } 1417 } 1418 if (vsi->rx_rings) { 1419 ice_for_each_alloc_rxq(vsi, i) { 1420 if (vsi->rx_rings[i]) { 1421 kfree_rcu(vsi->rx_rings[i], rcu); 1422 WRITE_ONCE(vsi->rx_rings[i], NULL); 1423 } 1424 } 1425 } 1426 } 1427 1428 /** 1429 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1430 * @vsi: VSI which is having rings allocated 1431 */ 1432 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1433 { 1434 struct ice_pf *pf = vsi->back; 1435 struct device *dev; 1436 u16 i; 1437 1438 dev = ice_pf_to_dev(pf); 1439 /* Allocate Tx rings */ 1440 ice_for_each_alloc_txq(vsi, i) { 1441 struct ice_tx_ring *ring; 1442 1443 /* allocate with kzalloc(), free with kfree_rcu() */ 1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1445 1446 if (!ring) 1447 goto err_out; 1448 1449 ring->q_index = i; 1450 ring->reg_idx = vsi->txq_map[i]; 1451 ring->vsi = vsi; 1452 ring->tx_tstamps = &pf->ptp.port.tx; 1453 ring->dev = dev; 1454 ring->count = vsi->num_tx_desc; 1455 WRITE_ONCE(vsi->tx_rings[i], ring); 1456 } 1457 1458 /* Allocate Rx rings */ 1459 ice_for_each_alloc_rxq(vsi, i) { 1460 struct ice_rx_ring *ring; 1461 1462 /* allocate with kzalloc(), free with kfree_rcu() */ 1463 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1464 if (!ring) 1465 goto err_out; 1466 1467 ring->q_index = i; 1468 ring->reg_idx = vsi->rxq_map[i]; 1469 ring->vsi = vsi; 1470 ring->netdev = vsi->netdev; 1471 ring->dev = dev; 1472 ring->count = vsi->num_rx_desc; 1473 WRITE_ONCE(vsi->rx_rings[i], ring); 1474 } 1475 1476 return 0; 1477 1478 err_out: 1479 ice_vsi_clear_rings(vsi); 1480 return -ENOMEM; 1481 } 1482 1483 /** 1484 * ice_vsi_manage_rss_lut - disable/enable RSS 1485 * @vsi: the VSI being changed 1486 * @ena: boolean value indicating if this is an enable or disable request 1487 * 1488 * In the event of disable request for RSS, this function will zero out RSS 1489 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1490 * LUT. 1491 */ 1492 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1493 { 1494 u8 *lut; 1495 1496 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1497 if (!lut) 1498 return; 1499 1500 if (ena) { 1501 if (vsi->rss_lut_user) 1502 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1503 else 1504 ice_fill_rss_lut(lut, vsi->rss_table_size, 1505 vsi->rss_size); 1506 } 1507 1508 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1509 kfree(lut); 1510 } 1511 1512 /** 1513 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1514 * @vsi: VSI to be configured 1515 */ 1516 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1517 { 1518 struct ice_pf *pf = vsi->back; 1519 struct device *dev; 1520 u8 *lut, *key; 1521 int err; 1522 1523 dev = ice_pf_to_dev(pf); 1524 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1525 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1527 } else { 1528 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1529 1530 /* If orig_rss_size is valid and it is less than determined 1531 * main VSI's rss_size, update main VSI's rss_size to be 1532 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1533 * RSS table gets programmed to be correct (whatever it was 1534 * to begin with (prior to setup-tc for ADQ config) 1535 */ 1536 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1537 vsi->orig_rss_size <= vsi->num_rxq) { 1538 vsi->rss_size = vsi->orig_rss_size; 1539 /* now orig_rss_size is used, reset it to zero */ 1540 vsi->orig_rss_size = 0; 1541 } 1542 } 1543 1544 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1545 if (!lut) 1546 return -ENOMEM; 1547 1548 if (vsi->rss_lut_user) 1549 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1550 else 1551 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1552 1553 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1554 if (err) { 1555 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1556 goto ice_vsi_cfg_rss_exit; 1557 } 1558 1559 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1560 if (!key) { 1561 err = -ENOMEM; 1562 goto ice_vsi_cfg_rss_exit; 1563 } 1564 1565 if (vsi->rss_hkey_user) 1566 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1567 else 1568 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1569 1570 err = ice_set_rss_key(vsi, key); 1571 if (err) 1572 dev_err(dev, "set_rss_key failed, error %d\n", err); 1573 1574 kfree(key); 1575 ice_vsi_cfg_rss_exit: 1576 kfree(lut); 1577 return err; 1578 } 1579 1580 /** 1581 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1582 * @vsi: VSI to be configured 1583 * 1584 * This function will only be called during the VF VSI setup. Upon successful 1585 * completion of package download, this function will configure default RSS 1586 * input sets for VF VSI. 1587 */ 1588 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1589 { 1590 struct ice_pf *pf = vsi->back; 1591 struct device *dev; 1592 int status; 1593 1594 dev = ice_pf_to_dev(pf); 1595 if (ice_is_safe_mode(pf)) { 1596 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1597 vsi->vsi_num); 1598 return; 1599 } 1600 1601 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1602 if (status) 1603 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1604 vsi->vsi_num, status); 1605 } 1606 1607 /** 1608 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1609 * @vsi: VSI to be configured 1610 * 1611 * This function will only be called after successful download package call 1612 * during initialization of PF. Since the downloaded package will erase the 1613 * RSS section, this function will configure RSS input sets for different 1614 * flow types. The last profile added has the highest priority, therefore 2 1615 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1616 * (i.e. IPv4 src/dst TCP src/dst port). 1617 */ 1618 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1619 { 1620 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1621 struct ice_pf *pf = vsi->back; 1622 struct ice_hw *hw = &pf->hw; 1623 struct device *dev; 1624 int status; 1625 1626 dev = ice_pf_to_dev(pf); 1627 if (ice_is_safe_mode(pf)) { 1628 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1629 vsi_num); 1630 return; 1631 } 1632 /* configure RSS for IPv4 with input set IP src/dst */ 1633 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1634 ICE_FLOW_SEG_HDR_IPV4); 1635 if (status) 1636 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1637 vsi_num, status); 1638 1639 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1640 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1641 ICE_FLOW_SEG_HDR_IPV6); 1642 if (status) 1643 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1644 vsi_num, status); 1645 1646 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1647 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1648 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1649 if (status) 1650 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1651 vsi_num, status); 1652 1653 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1654 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1655 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1656 if (status) 1657 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1658 vsi_num, status); 1659 1660 /* configure RSS for sctp4 with input set IP src/dst */ 1661 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1662 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1663 if (status) 1664 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1665 vsi_num, status); 1666 1667 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1668 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1669 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1670 if (status) 1671 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1672 vsi_num, status); 1673 1674 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1675 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1676 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1677 if (status) 1678 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1679 vsi_num, status); 1680 1681 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1682 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1683 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1684 if (status) 1685 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1686 vsi_num, status); 1687 } 1688 1689 /** 1690 * ice_pf_state_is_nominal - checks the PF for nominal state 1691 * @pf: pointer to PF to check 1692 * 1693 * Check the PF's state for a collection of bits that would indicate 1694 * the PF is in a state that would inhibit normal operation for 1695 * driver functionality. 1696 * 1697 * Returns true if PF is in a nominal state, false otherwise 1698 */ 1699 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1700 { 1701 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1702 1703 if (!pf) 1704 return false; 1705 1706 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1707 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1708 return false; 1709 1710 return true; 1711 } 1712 1713 /** 1714 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1715 * @vsi: the VSI to be updated 1716 */ 1717 void ice_update_eth_stats(struct ice_vsi *vsi) 1718 { 1719 struct ice_eth_stats *prev_es, *cur_es; 1720 struct ice_hw *hw = &vsi->back->hw; 1721 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1722 1723 prev_es = &vsi->eth_stats_prev; 1724 cur_es = &vsi->eth_stats; 1725 1726 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1727 &prev_es->rx_bytes, &cur_es->rx_bytes); 1728 1729 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1730 &prev_es->rx_unicast, &cur_es->rx_unicast); 1731 1732 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1733 &prev_es->rx_multicast, &cur_es->rx_multicast); 1734 1735 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1736 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1737 1738 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1739 &prev_es->rx_discards, &cur_es->rx_discards); 1740 1741 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1742 &prev_es->tx_bytes, &cur_es->tx_bytes); 1743 1744 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1745 &prev_es->tx_unicast, &cur_es->tx_unicast); 1746 1747 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1748 &prev_es->tx_multicast, &cur_es->tx_multicast); 1749 1750 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1751 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1752 1753 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1754 &prev_es->tx_errors, &cur_es->tx_errors); 1755 1756 vsi->stat_offsets_loaded = true; 1757 } 1758 1759 /** 1760 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1761 * @vsi: the VSI being configured 1762 * @vid: VLAN ID to be added 1763 * @action: filter action to be performed on match 1764 */ 1765 int 1766 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1767 { 1768 struct ice_pf *pf = vsi->back; 1769 struct device *dev; 1770 int err = 0; 1771 1772 dev = ice_pf_to_dev(pf); 1773 1774 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1775 vsi->num_vlan++; 1776 } else { 1777 err = -ENODEV; 1778 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1779 vsi->vsi_num); 1780 } 1781 1782 return err; 1783 } 1784 1785 /** 1786 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1787 * @vsi: the VSI being configured 1788 * @vid: VLAN ID to be removed 1789 * 1790 * Returns 0 on success and negative on failure 1791 */ 1792 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1793 { 1794 struct ice_pf *pf = vsi->back; 1795 struct device *dev; 1796 int err; 1797 1798 dev = ice_pf_to_dev(pf); 1799 1800 err = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1801 if (!err) { 1802 vsi->num_vlan--; 1803 } else if (err == -ENOENT) { 1804 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, error: %d\n", 1805 vid, vsi->vsi_num, err); 1806 err = 0; 1807 } else { 1808 dev_err(dev, "Error removing VLAN %d on vsi %i error: %d\n", 1809 vid, vsi->vsi_num, err); 1810 } 1811 1812 return err; 1813 } 1814 1815 /** 1816 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1817 * @vsi: VSI 1818 */ 1819 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1820 { 1821 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1822 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1823 vsi->rx_buf_len = ICE_RXBUF_2048; 1824 #if (PAGE_SIZE < 8192) 1825 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1826 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1827 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1828 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1829 #endif 1830 } else { 1831 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1832 #if (PAGE_SIZE < 8192) 1833 vsi->rx_buf_len = ICE_RXBUF_3072; 1834 #else 1835 vsi->rx_buf_len = ICE_RXBUF_2048; 1836 #endif 1837 } 1838 } 1839 1840 /** 1841 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1842 * @hw: HW pointer 1843 * @pf_q: index of the Rx queue in the PF's queue space 1844 * @rxdid: flexible descriptor RXDID 1845 * @prio: priority for the RXDID for this queue 1846 * @ena_ts: true to enable timestamp and false to disable timestamp 1847 */ 1848 void 1849 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1850 bool ena_ts) 1851 { 1852 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1853 1854 /* clear any previous values */ 1855 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1856 QRXFLXP_CNTXT_RXDID_PRIO_M | 1857 QRXFLXP_CNTXT_TS_M); 1858 1859 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1860 QRXFLXP_CNTXT_RXDID_IDX_M; 1861 1862 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1863 QRXFLXP_CNTXT_RXDID_PRIO_M; 1864 1865 if (ena_ts) 1866 /* Enable TimeSync on this queue */ 1867 regval |= QRXFLXP_CNTXT_TS_M; 1868 1869 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1870 } 1871 1872 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1873 { 1874 if (q_idx >= vsi->num_rxq) 1875 return -EINVAL; 1876 1877 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1878 } 1879 1880 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1881 { 1882 struct ice_aqc_add_tx_qgrp *qg_buf; 1883 int err; 1884 1885 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1886 return -EINVAL; 1887 1888 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1889 if (!qg_buf) 1890 return -ENOMEM; 1891 1892 qg_buf->num_txqs = 1; 1893 1894 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1895 kfree(qg_buf); 1896 return err; 1897 } 1898 1899 /** 1900 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1901 * @vsi: the VSI being configured 1902 * 1903 * Return 0 on success and a negative value on error 1904 * Configure the Rx VSI for operation. 1905 */ 1906 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1907 { 1908 u16 i; 1909 1910 if (vsi->type == ICE_VSI_VF) 1911 goto setup_rings; 1912 1913 ice_vsi_cfg_frame_size(vsi); 1914 setup_rings: 1915 /* set up individual rings */ 1916 ice_for_each_rxq(vsi, i) { 1917 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1918 1919 if (err) 1920 return err; 1921 } 1922 1923 return 0; 1924 } 1925 1926 /** 1927 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1928 * @vsi: the VSI being configured 1929 * @rings: Tx ring array to be configured 1930 * @count: number of Tx ring array elements 1931 * 1932 * Return 0 on success and a negative value on error 1933 * Configure the Tx VSI for operation. 1934 */ 1935 static int 1936 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1937 { 1938 struct ice_aqc_add_tx_qgrp *qg_buf; 1939 u16 q_idx = 0; 1940 int err = 0; 1941 1942 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1943 if (!qg_buf) 1944 return -ENOMEM; 1945 1946 qg_buf->num_txqs = 1; 1947 1948 for (q_idx = 0; q_idx < count; q_idx++) { 1949 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1950 if (err) 1951 goto err_cfg_txqs; 1952 } 1953 1954 err_cfg_txqs: 1955 kfree(qg_buf); 1956 return err; 1957 } 1958 1959 /** 1960 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1961 * @vsi: the VSI being configured 1962 * 1963 * Return 0 on success and a negative value on error 1964 * Configure the Tx VSI for operation. 1965 */ 1966 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1967 { 1968 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1969 } 1970 1971 /** 1972 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1973 * @vsi: the VSI being configured 1974 * 1975 * Return 0 on success and a negative value on error 1976 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1977 */ 1978 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1979 { 1980 int ret; 1981 int i; 1982 1983 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1984 if (ret) 1985 return ret; 1986 1987 ice_for_each_xdp_txq(vsi, i) 1988 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1989 1990 return ret; 1991 } 1992 1993 /** 1994 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1995 * @intrl: interrupt rate limit in usecs 1996 * @gran: interrupt rate limit granularity in usecs 1997 * 1998 * This function converts a decimal interrupt rate limit in usecs to the format 1999 * expected by firmware. 2000 */ 2001 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2002 { 2003 u32 val = intrl / gran; 2004 2005 if (val) 2006 return val | GLINT_RATE_INTRL_ENA_M; 2007 return 0; 2008 } 2009 2010 /** 2011 * ice_write_intrl - write throttle rate limit to interrupt specific register 2012 * @q_vector: pointer to interrupt specific structure 2013 * @intrl: throttle rate limit in microseconds to write 2014 */ 2015 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2016 { 2017 struct ice_hw *hw = &q_vector->vsi->back->hw; 2018 2019 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2020 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2021 } 2022 2023 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2024 { 2025 switch (rc->type) { 2026 case ICE_RX_CONTAINER: 2027 if (rc->rx_ring) 2028 return rc->rx_ring->q_vector; 2029 break; 2030 case ICE_TX_CONTAINER: 2031 if (rc->tx_ring) 2032 return rc->tx_ring->q_vector; 2033 break; 2034 default: 2035 break; 2036 } 2037 2038 return NULL; 2039 } 2040 2041 /** 2042 * __ice_write_itr - write throttle rate to register 2043 * @q_vector: pointer to interrupt data structure 2044 * @rc: pointer to ring container 2045 * @itr: throttle rate in microseconds to write 2046 */ 2047 static void __ice_write_itr(struct ice_q_vector *q_vector, 2048 struct ice_ring_container *rc, u16 itr) 2049 { 2050 struct ice_hw *hw = &q_vector->vsi->back->hw; 2051 2052 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2053 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2054 } 2055 2056 /** 2057 * ice_write_itr - write throttle rate to queue specific register 2058 * @rc: pointer to ring container 2059 * @itr: throttle rate in microseconds to write 2060 */ 2061 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2062 { 2063 struct ice_q_vector *q_vector; 2064 2065 q_vector = ice_pull_qvec_from_rc(rc); 2066 if (!q_vector) 2067 return; 2068 2069 __ice_write_itr(q_vector, rc, itr); 2070 } 2071 2072 /** 2073 * ice_set_q_vector_intrl - set up interrupt rate limiting 2074 * @q_vector: the vector to be configured 2075 * 2076 * Interrupt rate limiting is local to the vector, not per-queue so we must 2077 * detect if either ring container has dynamic moderation enabled to decide 2078 * what to set the interrupt rate limit to via INTRL settings. In the case that 2079 * dynamic moderation is disabled on both, write the value with the cached 2080 * setting to make sure INTRL register matches the user visible value. 2081 */ 2082 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2083 { 2084 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2085 /* in the case of dynamic enabled, cap each vector to no more 2086 * than (4 us) 250,000 ints/sec, which allows low latency 2087 * but still less than 500,000 interrupts per second, which 2088 * reduces CPU a bit in the case of the lowest latency 2089 * setting. The 4 here is a value in microseconds. 2090 */ 2091 ice_write_intrl(q_vector, 4); 2092 } else { 2093 ice_write_intrl(q_vector, q_vector->intrl); 2094 } 2095 } 2096 2097 /** 2098 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2099 * @vsi: the VSI being configured 2100 * 2101 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2102 * for the VF VSI. 2103 */ 2104 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2105 { 2106 struct ice_pf *pf = vsi->back; 2107 struct ice_hw *hw = &pf->hw; 2108 u16 txq = 0, rxq = 0; 2109 int i, q; 2110 2111 ice_for_each_q_vector(vsi, i) { 2112 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2113 u16 reg_idx = q_vector->reg_idx; 2114 2115 ice_cfg_itr(hw, q_vector); 2116 2117 /* Both Transmit Queue Interrupt Cause Control register 2118 * and Receive Queue Interrupt Cause control register 2119 * expects MSIX_INDX field to be the vector index 2120 * within the function space and not the absolute 2121 * vector index across PF or across device. 2122 * For SR-IOV VF VSIs queue vector index always starts 2123 * with 1 since first vector index(0) is used for OICR 2124 * in VF space. Since VMDq and other PF VSIs are within 2125 * the PF function space, use the vector index that is 2126 * tracked for this PF. 2127 */ 2128 for (q = 0; q < q_vector->num_ring_tx; q++) { 2129 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2130 q_vector->tx.itr_idx); 2131 txq++; 2132 } 2133 2134 for (q = 0; q < q_vector->num_ring_rx; q++) { 2135 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2136 q_vector->rx.itr_idx); 2137 rxq++; 2138 } 2139 } 2140 } 2141 2142 /** 2143 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 2144 * @vsi: the VSI being changed 2145 */ 2146 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 2147 { 2148 struct ice_hw *hw = &vsi->back->hw; 2149 struct ice_vsi_ctx *ctxt; 2150 int ret; 2151 2152 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2153 if (!ctxt) 2154 return -ENOMEM; 2155 2156 /* Here we are configuring the VSI to let the driver add VLAN tags by 2157 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 2158 * insertion happens in the Tx hot path, in ice_tx_map. 2159 */ 2160 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 2161 2162 /* Preserve existing VLAN strip setting */ 2163 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 2164 ICE_AQ_VSI_VLAN_EMOD_M); 2165 2166 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2167 2168 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2169 if (ret) { 2170 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %d aq_err %s\n", 2171 ret, ice_aq_str(hw->adminq.sq_last_status)); 2172 goto out; 2173 } 2174 2175 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2176 out: 2177 kfree(ctxt); 2178 return ret; 2179 } 2180 2181 /** 2182 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2183 * @vsi: the VSI being changed 2184 * @ena: boolean value indicating if this is a enable or disable request 2185 */ 2186 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2187 { 2188 struct ice_hw *hw = &vsi->back->hw; 2189 struct ice_vsi_ctx *ctxt; 2190 int ret; 2191 2192 /* do not allow modifying VLAN stripping when a port VLAN is configured 2193 * on this VSI 2194 */ 2195 if (vsi->info.pvid) 2196 return 0; 2197 2198 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2199 if (!ctxt) 2200 return -ENOMEM; 2201 2202 /* Here we are configuring what the VSI should do with the VLAN tag in 2203 * the Rx packet. We can either leave the tag in the packet or put it in 2204 * the Rx descriptor. 2205 */ 2206 if (ena) 2207 /* Strip VLAN tag from Rx packet and put it in the desc */ 2208 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2209 else 2210 /* Disable stripping. Leave tag in packet */ 2211 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2212 2213 /* Allow all packets untagged/tagged */ 2214 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2215 2216 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2217 2218 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2219 if (ret) { 2220 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %d aq_err %s\n", 2221 ena, ret, ice_aq_str(hw->adminq.sq_last_status)); 2222 goto out; 2223 } 2224 2225 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2226 out: 2227 kfree(ctxt); 2228 return ret; 2229 } 2230 2231 /** 2232 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2233 * @vsi: the VSI whose rings are to be enabled 2234 * 2235 * Returns 0 on success and a negative value on error 2236 */ 2237 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2238 { 2239 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2240 } 2241 2242 /** 2243 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2244 * @vsi: the VSI whose rings are to be disabled 2245 * 2246 * Returns 0 on success and a negative value on error 2247 */ 2248 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2249 { 2250 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2251 } 2252 2253 /** 2254 * ice_vsi_stop_tx_rings - Disable Tx rings 2255 * @vsi: the VSI being configured 2256 * @rst_src: reset source 2257 * @rel_vmvf_num: Relative ID of VF/VM 2258 * @rings: Tx ring array to be stopped 2259 * @count: number of Tx ring array elements 2260 */ 2261 static int 2262 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2263 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2264 { 2265 u16 q_idx; 2266 2267 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2268 return -EINVAL; 2269 2270 for (q_idx = 0; q_idx < count; q_idx++) { 2271 struct ice_txq_meta txq_meta = { }; 2272 int status; 2273 2274 if (!rings || !rings[q_idx]) 2275 return -EINVAL; 2276 2277 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2278 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2279 rings[q_idx], &txq_meta); 2280 2281 if (status) 2282 return status; 2283 } 2284 2285 return 0; 2286 } 2287 2288 /** 2289 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2290 * @vsi: the VSI being configured 2291 * @rst_src: reset source 2292 * @rel_vmvf_num: Relative ID of VF/VM 2293 */ 2294 int 2295 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2296 u16 rel_vmvf_num) 2297 { 2298 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2299 } 2300 2301 /** 2302 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2303 * @vsi: the VSI being configured 2304 */ 2305 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2306 { 2307 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2308 } 2309 2310 /** 2311 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2312 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2313 * 2314 * returns true if Rx VLAN pruning is enabled and false otherwise. 2315 */ 2316 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2317 { 2318 if (!vsi) 2319 return false; 2320 2321 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2322 } 2323 2324 /** 2325 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2326 * @vsi: VSI to enable or disable VLAN pruning on 2327 * @ena: set to true to enable VLAN pruning and false to disable it 2328 * 2329 * returns 0 if VSI is updated, negative otherwise 2330 */ 2331 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) 2332 { 2333 struct ice_vsi_ctx *ctxt; 2334 struct ice_pf *pf; 2335 int status; 2336 2337 if (!vsi) 2338 return -EINVAL; 2339 2340 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2341 * mode. VLAN pruning will be enabled when the interface exits 2342 * promiscuous mode if any VLAN filters are active. 2343 */ 2344 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2345 return 0; 2346 2347 pf = vsi->back; 2348 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2349 if (!ctxt) 2350 return -ENOMEM; 2351 2352 ctxt->info = vsi->info; 2353 2354 if (ena) 2355 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2356 else 2357 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2358 2359 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2360 2361 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2362 if (status) { 2363 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %s\n", 2364 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2365 status, ice_aq_str(pf->hw.adminq.sq_last_status)); 2366 goto err_out; 2367 } 2368 2369 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2370 2371 kfree(ctxt); 2372 return 0; 2373 2374 err_out: 2375 kfree(ctxt); 2376 return -EIO; 2377 } 2378 2379 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2380 { 2381 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2382 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2383 vsi->tc_cfg.numtc = 1; 2384 return; 2385 } 2386 2387 /* set VSI TC information based on DCB config */ 2388 ice_vsi_set_dcb_tc_cfg(vsi); 2389 } 2390 2391 /** 2392 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2393 * @vsi: VSI to set the q_vectors register index on 2394 */ 2395 static int 2396 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2397 { 2398 u16 i; 2399 2400 if (!vsi || !vsi->q_vectors) 2401 return -EINVAL; 2402 2403 ice_for_each_q_vector(vsi, i) { 2404 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2405 2406 if (!q_vector) { 2407 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2408 i, vsi->vsi_num); 2409 goto clear_reg_idx; 2410 } 2411 2412 if (vsi->type == ICE_VSI_VF) { 2413 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2414 2415 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2416 } else { 2417 q_vector->reg_idx = 2418 q_vector->v_idx + vsi->base_vector; 2419 } 2420 } 2421 2422 return 0; 2423 2424 clear_reg_idx: 2425 ice_for_each_q_vector(vsi, i) { 2426 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2427 2428 if (q_vector) 2429 q_vector->reg_idx = 0; 2430 } 2431 2432 return -EINVAL; 2433 } 2434 2435 /** 2436 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2437 * @vsi: the VSI being configured 2438 * @tx: bool to determine Tx or Rx rule 2439 * @create: bool to determine create or remove Rule 2440 */ 2441 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2442 { 2443 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2444 enum ice_sw_fwd_act_type act); 2445 struct ice_pf *pf = vsi->back; 2446 struct device *dev; 2447 int status; 2448 2449 dev = ice_pf_to_dev(pf); 2450 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2451 2452 if (tx) { 2453 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2454 ICE_DROP_PACKET); 2455 } else { 2456 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2457 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2458 create); 2459 } else { 2460 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2461 ICE_FWD_TO_VSI); 2462 } 2463 } 2464 2465 if (status) 2466 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2467 create ? "adding" : "removing", tx ? "TX" : "RX", 2468 vsi->vsi_num, status); 2469 } 2470 2471 /** 2472 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2473 * @vsi: pointer to the VSI 2474 * 2475 * This function will allocate new scheduler aggregator now if needed and will 2476 * move specified VSI into it. 2477 */ 2478 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2479 { 2480 struct device *dev = ice_pf_to_dev(vsi->back); 2481 struct ice_agg_node *agg_node_iter = NULL; 2482 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2483 struct ice_agg_node *agg_node = NULL; 2484 int node_offset, max_agg_nodes = 0; 2485 struct ice_port_info *port_info; 2486 struct ice_pf *pf = vsi->back; 2487 u32 agg_node_id_start = 0; 2488 int status; 2489 2490 /* create (as needed) scheduler aggregator node and move VSI into 2491 * corresponding aggregator node 2492 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2493 * - VF aggregator nodes will contain VF VSI 2494 */ 2495 port_info = pf->hw.port_info; 2496 if (!port_info) 2497 return; 2498 2499 switch (vsi->type) { 2500 case ICE_VSI_CTRL: 2501 case ICE_VSI_CHNL: 2502 case ICE_VSI_LB: 2503 case ICE_VSI_PF: 2504 case ICE_VSI_SWITCHDEV_CTRL: 2505 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2506 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2507 agg_node_iter = &pf->pf_agg_node[0]; 2508 break; 2509 case ICE_VSI_VF: 2510 /* user can create 'n' VFs on a given PF, but since max children 2511 * per aggregator node can be only 64. Following code handles 2512 * aggregator(s) for VF VSIs, either selects a agg_node which 2513 * was already created provided num_vsis < 64, otherwise 2514 * select next available node, which will be created 2515 */ 2516 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2517 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2518 agg_node_iter = &pf->vf_agg_node[0]; 2519 break; 2520 default: 2521 /* other VSI type, handle later if needed */ 2522 dev_dbg(dev, "unexpected VSI type %s\n", 2523 ice_vsi_type_str(vsi->type)); 2524 return; 2525 } 2526 2527 /* find the appropriate aggregator node */ 2528 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2529 /* see if we can find space in previously created 2530 * node if num_vsis < 64, otherwise skip 2531 */ 2532 if (agg_node_iter->num_vsis && 2533 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2534 agg_node_iter++; 2535 continue; 2536 } 2537 2538 if (agg_node_iter->valid && 2539 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2540 agg_id = agg_node_iter->agg_id; 2541 agg_node = agg_node_iter; 2542 break; 2543 } 2544 2545 /* find unclaimed agg_id */ 2546 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2547 agg_id = node_offset + agg_node_id_start; 2548 agg_node = agg_node_iter; 2549 break; 2550 } 2551 /* move to next agg_node */ 2552 agg_node_iter++; 2553 } 2554 2555 if (!agg_node) 2556 return; 2557 2558 /* if selected aggregator node was not created, create it */ 2559 if (!agg_node->valid) { 2560 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2561 (u8)vsi->tc_cfg.ena_tc); 2562 if (status) { 2563 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2564 agg_id); 2565 return; 2566 } 2567 /* aggregator node is created, store the neeeded info */ 2568 agg_node->valid = true; 2569 agg_node->agg_id = agg_id; 2570 } 2571 2572 /* move VSI to corresponding aggregator node */ 2573 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2574 (u8)vsi->tc_cfg.ena_tc); 2575 if (status) { 2576 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2577 vsi->idx, agg_id); 2578 return; 2579 } 2580 2581 /* keep active children count for aggregator node */ 2582 agg_node->num_vsis++; 2583 2584 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2585 * to aggregator node 2586 */ 2587 vsi->agg_node = agg_node; 2588 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2589 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2590 vsi->agg_node->num_vsis); 2591 } 2592 2593 /** 2594 * ice_vsi_setup - Set up a VSI by a given type 2595 * @pf: board private structure 2596 * @pi: pointer to the port_info instance 2597 * @vsi_type: VSI type 2598 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2599 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2600 * fill-in ICE_INVAL_VFID as input. 2601 * @ch: ptr to channel 2602 * 2603 * This allocates the sw VSI structure and its queue resources. 2604 * 2605 * Returns pointer to the successfully allocated and configured VSI sw struct on 2606 * success, NULL on failure. 2607 */ 2608 struct ice_vsi * 2609 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2610 enum ice_vsi_type vsi_type, u16 vf_id, struct ice_channel *ch) 2611 { 2612 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2613 struct device *dev = ice_pf_to_dev(pf); 2614 struct ice_vsi *vsi; 2615 int ret, i; 2616 2617 if (vsi_type == ICE_VSI_CHNL) 2618 vsi = ice_vsi_alloc(pf, vsi_type, ch, ICE_INVAL_VFID); 2619 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2620 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf_id); 2621 else 2622 vsi = ice_vsi_alloc(pf, vsi_type, NULL, ICE_INVAL_VFID); 2623 2624 if (!vsi) { 2625 dev_err(dev, "could not allocate VSI\n"); 2626 return NULL; 2627 } 2628 2629 vsi->port_info = pi; 2630 vsi->vsw = pf->first_sw; 2631 if (vsi->type == ICE_VSI_PF) 2632 vsi->ethtype = ETH_P_PAUSE; 2633 2634 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2635 vsi->vf_id = vf_id; 2636 2637 ice_alloc_fd_res(vsi); 2638 2639 if (vsi_type != ICE_VSI_CHNL) { 2640 if (ice_vsi_get_qs(vsi)) { 2641 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2642 vsi->idx); 2643 goto unroll_vsi_alloc; 2644 } 2645 } 2646 2647 /* set RSS capabilities */ 2648 ice_vsi_set_rss_params(vsi); 2649 2650 /* set TC configuration */ 2651 ice_vsi_set_tc_cfg(vsi); 2652 2653 /* create the VSI */ 2654 ret = ice_vsi_init(vsi, true); 2655 if (ret) 2656 goto unroll_get_qs; 2657 2658 switch (vsi->type) { 2659 case ICE_VSI_CTRL: 2660 case ICE_VSI_SWITCHDEV_CTRL: 2661 case ICE_VSI_PF: 2662 ret = ice_vsi_alloc_q_vectors(vsi); 2663 if (ret) 2664 goto unroll_vsi_init; 2665 2666 ret = ice_vsi_setup_vector_base(vsi); 2667 if (ret) 2668 goto unroll_alloc_q_vector; 2669 2670 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2671 if (ret) 2672 goto unroll_vector_base; 2673 2674 ret = ice_vsi_alloc_rings(vsi); 2675 if (ret) 2676 goto unroll_vector_base; 2677 2678 /* Always add VLAN ID 0 switch rule by default. This is needed 2679 * in order to allow all untagged and 0 tagged priority traffic 2680 * if Rx VLAN pruning is enabled. Also there are cases where we 2681 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2682 * so this handles those cases (i.e. adding the PF to a bridge 2683 * without the 8021q module loaded). 2684 */ 2685 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2686 if (ret) 2687 goto unroll_clear_rings; 2688 2689 ice_vsi_map_rings_to_vectors(vsi); 2690 2691 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2692 if (vsi->type != ICE_VSI_CTRL) 2693 /* Do not exit if configuring RSS had an issue, at 2694 * least receive traffic on first queue. Hence no 2695 * need to capture return value 2696 */ 2697 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2698 ice_vsi_cfg_rss_lut_key(vsi); 2699 ice_vsi_set_rss_flow_fld(vsi); 2700 } 2701 ice_init_arfs(vsi); 2702 break; 2703 case ICE_VSI_CHNL: 2704 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2705 ice_vsi_cfg_rss_lut_key(vsi); 2706 ice_vsi_set_rss_flow_fld(vsi); 2707 } 2708 break; 2709 case ICE_VSI_VF: 2710 /* VF driver will take care of creating netdev for this type and 2711 * map queues to vectors through Virtchnl, PF driver only 2712 * creates a VSI and corresponding structures for bookkeeping 2713 * purpose 2714 */ 2715 ret = ice_vsi_alloc_q_vectors(vsi); 2716 if (ret) 2717 goto unroll_vsi_init; 2718 2719 ret = ice_vsi_alloc_rings(vsi); 2720 if (ret) 2721 goto unroll_alloc_q_vector; 2722 2723 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2724 if (ret) 2725 goto unroll_vector_base; 2726 2727 /* Do not exit if configuring RSS had an issue, at least 2728 * receive traffic on first queue. Hence no need to capture 2729 * return value 2730 */ 2731 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2732 ice_vsi_cfg_rss_lut_key(vsi); 2733 ice_vsi_set_vf_rss_flow_fld(vsi); 2734 } 2735 break; 2736 case ICE_VSI_LB: 2737 ret = ice_vsi_alloc_rings(vsi); 2738 if (ret) 2739 goto unroll_vsi_init; 2740 break; 2741 default: 2742 /* clean up the resources and exit */ 2743 goto unroll_vsi_init; 2744 } 2745 2746 /* configure VSI nodes based on number of queues and TC's */ 2747 ice_for_each_traffic_class(i) { 2748 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2749 continue; 2750 2751 if (vsi->type == ICE_VSI_CHNL) { 2752 if (!vsi->alloc_txq && vsi->num_txq) 2753 max_txqs[i] = vsi->num_txq; 2754 else 2755 max_txqs[i] = pf->num_lan_tx; 2756 } else { 2757 max_txqs[i] = vsi->alloc_txq; 2758 } 2759 } 2760 2761 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2762 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2763 max_txqs); 2764 if (ret) { 2765 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2766 vsi->vsi_num, ret); 2767 goto unroll_clear_rings; 2768 } 2769 2770 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2771 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2772 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2773 * The rule is added once for PF VSI in order to create appropriate 2774 * recipe, since VSI/VSI list is ignored with drop action... 2775 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2776 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2777 * settings in the HW. 2778 */ 2779 if (!ice_is_safe_mode(pf)) 2780 if (vsi->type == ICE_VSI_PF) { 2781 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2782 ICE_DROP_PACKET); 2783 ice_cfg_sw_lldp(vsi, true, true); 2784 } 2785 2786 if (!vsi->agg_node) 2787 ice_set_agg_vsi(vsi); 2788 return vsi; 2789 2790 unroll_clear_rings: 2791 ice_vsi_clear_rings(vsi); 2792 unroll_vector_base: 2793 /* reclaim SW interrupts back to the common pool */ 2794 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2795 pf->num_avail_sw_msix += vsi->num_q_vectors; 2796 unroll_alloc_q_vector: 2797 ice_vsi_free_q_vectors(vsi); 2798 unroll_vsi_init: 2799 ice_vsi_delete(vsi); 2800 unroll_get_qs: 2801 ice_vsi_put_qs(vsi); 2802 unroll_vsi_alloc: 2803 if (vsi_type == ICE_VSI_VF) 2804 ice_enable_lag(pf->lag); 2805 ice_vsi_clear(vsi); 2806 2807 return NULL; 2808 } 2809 2810 /** 2811 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2812 * @vsi: the VSI being cleaned up 2813 */ 2814 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2815 { 2816 struct ice_pf *pf = vsi->back; 2817 struct ice_hw *hw = &pf->hw; 2818 u32 txq = 0; 2819 u32 rxq = 0; 2820 int i, q; 2821 2822 ice_for_each_q_vector(vsi, i) { 2823 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2824 2825 ice_write_intrl(q_vector, 0); 2826 for (q = 0; q < q_vector->num_ring_tx; q++) { 2827 ice_write_itr(&q_vector->tx, 0); 2828 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2829 if (ice_is_xdp_ena_vsi(vsi)) { 2830 u32 xdp_txq = txq + vsi->num_xdp_txq; 2831 2832 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2833 } 2834 txq++; 2835 } 2836 2837 for (q = 0; q < q_vector->num_ring_rx; q++) { 2838 ice_write_itr(&q_vector->rx, 0); 2839 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2840 rxq++; 2841 } 2842 } 2843 2844 ice_flush(hw); 2845 } 2846 2847 /** 2848 * ice_vsi_free_irq - Free the IRQ association with the OS 2849 * @vsi: the VSI being configured 2850 */ 2851 void ice_vsi_free_irq(struct ice_vsi *vsi) 2852 { 2853 struct ice_pf *pf = vsi->back; 2854 int base = vsi->base_vector; 2855 int i; 2856 2857 if (!vsi->q_vectors || !vsi->irqs_ready) 2858 return; 2859 2860 ice_vsi_release_msix(vsi); 2861 if (vsi->type == ICE_VSI_VF) 2862 return; 2863 2864 vsi->irqs_ready = false; 2865 ice_for_each_q_vector(vsi, i) { 2866 u16 vector = i + base; 2867 int irq_num; 2868 2869 irq_num = pf->msix_entries[vector].vector; 2870 2871 /* free only the irqs that were actually requested */ 2872 if (!vsi->q_vectors[i] || 2873 !(vsi->q_vectors[i]->num_ring_tx || 2874 vsi->q_vectors[i]->num_ring_rx)) 2875 continue; 2876 2877 /* clear the affinity notifier in the IRQ descriptor */ 2878 irq_set_affinity_notifier(irq_num, NULL); 2879 2880 /* clear the affinity_mask in the IRQ descriptor */ 2881 irq_set_affinity_hint(irq_num, NULL); 2882 synchronize_irq(irq_num); 2883 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2884 } 2885 } 2886 2887 /** 2888 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2889 * @vsi: the VSI having resources freed 2890 */ 2891 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2892 { 2893 int i; 2894 2895 if (!vsi->tx_rings) 2896 return; 2897 2898 ice_for_each_txq(vsi, i) 2899 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2900 ice_free_tx_ring(vsi->tx_rings[i]); 2901 } 2902 2903 /** 2904 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2905 * @vsi: the VSI having resources freed 2906 */ 2907 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2908 { 2909 int i; 2910 2911 if (!vsi->rx_rings) 2912 return; 2913 2914 ice_for_each_rxq(vsi, i) 2915 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2916 ice_free_rx_ring(vsi->rx_rings[i]); 2917 } 2918 2919 /** 2920 * ice_vsi_close - Shut down a VSI 2921 * @vsi: the VSI being shut down 2922 */ 2923 void ice_vsi_close(struct ice_vsi *vsi) 2924 { 2925 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2926 ice_down(vsi); 2927 2928 ice_vsi_free_irq(vsi); 2929 ice_vsi_free_tx_rings(vsi); 2930 ice_vsi_free_rx_rings(vsi); 2931 } 2932 2933 /** 2934 * ice_ena_vsi - resume a VSI 2935 * @vsi: the VSI being resume 2936 * @locked: is the rtnl_lock already held 2937 */ 2938 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2939 { 2940 int err = 0; 2941 2942 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2943 return 0; 2944 2945 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2946 2947 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2948 if (netif_running(vsi->netdev)) { 2949 if (!locked) 2950 rtnl_lock(); 2951 2952 err = ice_open_internal(vsi->netdev); 2953 2954 if (!locked) 2955 rtnl_unlock(); 2956 } 2957 } else if (vsi->type == ICE_VSI_CTRL) { 2958 err = ice_vsi_open_ctrl(vsi); 2959 } 2960 2961 return err; 2962 } 2963 2964 /** 2965 * ice_dis_vsi - pause a VSI 2966 * @vsi: the VSI being paused 2967 * @locked: is the rtnl_lock already held 2968 */ 2969 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2970 { 2971 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2972 return; 2973 2974 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2975 2976 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2977 if (netif_running(vsi->netdev)) { 2978 if (!locked) 2979 rtnl_lock(); 2980 2981 ice_vsi_close(vsi); 2982 2983 if (!locked) 2984 rtnl_unlock(); 2985 } else { 2986 ice_vsi_close(vsi); 2987 } 2988 } else if (vsi->type == ICE_VSI_CTRL || 2989 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2990 ice_vsi_close(vsi); 2991 } 2992 } 2993 2994 /** 2995 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2996 * @vsi: the VSI being un-configured 2997 */ 2998 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2999 { 3000 int base = vsi->base_vector; 3001 struct ice_pf *pf = vsi->back; 3002 struct ice_hw *hw = &pf->hw; 3003 u32 val; 3004 int i; 3005 3006 /* disable interrupt causation from each queue */ 3007 if (vsi->tx_rings) { 3008 ice_for_each_txq(vsi, i) { 3009 if (vsi->tx_rings[i]) { 3010 u16 reg; 3011 3012 reg = vsi->tx_rings[i]->reg_idx; 3013 val = rd32(hw, QINT_TQCTL(reg)); 3014 val &= ~QINT_TQCTL_CAUSE_ENA_M; 3015 wr32(hw, QINT_TQCTL(reg), val); 3016 } 3017 } 3018 } 3019 3020 if (vsi->rx_rings) { 3021 ice_for_each_rxq(vsi, i) { 3022 if (vsi->rx_rings[i]) { 3023 u16 reg; 3024 3025 reg = vsi->rx_rings[i]->reg_idx; 3026 val = rd32(hw, QINT_RQCTL(reg)); 3027 val &= ~QINT_RQCTL_CAUSE_ENA_M; 3028 wr32(hw, QINT_RQCTL(reg), val); 3029 } 3030 } 3031 } 3032 3033 /* disable each interrupt */ 3034 ice_for_each_q_vector(vsi, i) { 3035 if (!vsi->q_vectors[i]) 3036 continue; 3037 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3038 } 3039 3040 ice_flush(hw); 3041 3042 /* don't call synchronize_irq() for VF's from the host */ 3043 if (vsi->type == ICE_VSI_VF) 3044 return; 3045 3046 ice_for_each_q_vector(vsi, i) 3047 synchronize_irq(pf->msix_entries[i + base].vector); 3048 } 3049 3050 /** 3051 * ice_napi_del - Remove NAPI handler for the VSI 3052 * @vsi: VSI for which NAPI handler is to be removed 3053 */ 3054 void ice_napi_del(struct ice_vsi *vsi) 3055 { 3056 int v_idx; 3057 3058 if (!vsi->netdev) 3059 return; 3060 3061 ice_for_each_q_vector(vsi, v_idx) 3062 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3063 } 3064 3065 /** 3066 * ice_vsi_release - Delete a VSI and free its resources 3067 * @vsi: the VSI being removed 3068 * 3069 * Returns 0 on success or < 0 on error 3070 */ 3071 int ice_vsi_release(struct ice_vsi *vsi) 3072 { 3073 struct ice_pf *pf; 3074 int err; 3075 3076 if (!vsi->back) 3077 return -ENODEV; 3078 pf = vsi->back; 3079 3080 /* do not unregister while driver is in the reset recovery pending 3081 * state. Since reset/rebuild happens through PF service task workqueue, 3082 * it's not a good idea to unregister netdev that is associated to the 3083 * PF that is running the work queue items currently. This is done to 3084 * avoid check_flush_dependency() warning on this wq 3085 */ 3086 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3087 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3088 unregister_netdev(vsi->netdev); 3089 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3090 } 3091 3092 if (vsi->type == ICE_VSI_PF) 3093 ice_devlink_destroy_pf_port(pf); 3094 3095 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3096 ice_rss_clean(vsi); 3097 3098 /* Disable VSI and free resources */ 3099 if (vsi->type != ICE_VSI_LB) 3100 ice_vsi_dis_irq(vsi); 3101 ice_vsi_close(vsi); 3102 3103 /* SR-IOV determines needed MSIX resources all at once instead of per 3104 * VSI since when VFs are spawned we know how many VFs there are and how 3105 * many interrupts each VF needs. SR-IOV MSIX resources are also 3106 * cleared in the same manner. 3107 */ 3108 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 3109 int i; 3110 3111 ice_for_each_vf(pf, i) { 3112 struct ice_vf *vf = &pf->vf[i]; 3113 3114 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 3115 break; 3116 } 3117 if (i == pf->num_alloc_vfs) { 3118 /* No other VFs left that have control VSI, reclaim SW 3119 * interrupts back to the common pool 3120 */ 3121 ice_free_res(pf->irq_tracker, vsi->base_vector, 3122 ICE_RES_VF_CTRL_VEC_ID); 3123 pf->num_avail_sw_msix += vsi->num_q_vectors; 3124 } 3125 } else if (vsi->type != ICE_VSI_VF) { 3126 /* reclaim SW interrupts back to the common pool */ 3127 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3128 pf->num_avail_sw_msix += vsi->num_q_vectors; 3129 } 3130 3131 if (!ice_is_safe_mode(pf)) { 3132 if (vsi->type == ICE_VSI_PF) { 3133 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3134 ICE_DROP_PACKET); 3135 ice_cfg_sw_lldp(vsi, true, false); 3136 /* The Rx rule will only exist to remove if the LLDP FW 3137 * engine is currently stopped 3138 */ 3139 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3140 ice_cfg_sw_lldp(vsi, false, false); 3141 } 3142 } 3143 3144 ice_fltr_remove_all(vsi); 3145 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3146 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3147 if (err) 3148 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3149 vsi->vsi_num, err); 3150 ice_vsi_delete(vsi); 3151 ice_vsi_free_q_vectors(vsi); 3152 3153 if (vsi->netdev) { 3154 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3155 unregister_netdev(vsi->netdev); 3156 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3157 } 3158 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3159 free_netdev(vsi->netdev); 3160 vsi->netdev = NULL; 3161 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3162 } 3163 } 3164 3165 if (vsi->type == ICE_VSI_VF && 3166 vsi->agg_node && vsi->agg_node->valid) 3167 vsi->agg_node->num_vsis--; 3168 ice_vsi_clear_rings(vsi); 3169 3170 ice_vsi_put_qs(vsi); 3171 3172 /* retain SW VSI data structure since it is needed to unregister and 3173 * free VSI netdev when PF is not in reset recovery pending state,\ 3174 * for ex: during rmmod. 3175 */ 3176 if (!ice_is_reset_in_progress(pf->state)) 3177 ice_vsi_clear(vsi); 3178 3179 return 0; 3180 } 3181 3182 /** 3183 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3184 * @vsi: VSI connected with q_vectors 3185 * @coalesce: array of struct with stored coalesce 3186 * 3187 * Returns array size. 3188 */ 3189 static int 3190 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3191 struct ice_coalesce_stored *coalesce) 3192 { 3193 int i; 3194 3195 ice_for_each_q_vector(vsi, i) { 3196 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3197 3198 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3199 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3200 coalesce[i].intrl = q_vector->intrl; 3201 3202 if (i < vsi->num_txq) 3203 coalesce[i].tx_valid = true; 3204 if (i < vsi->num_rxq) 3205 coalesce[i].rx_valid = true; 3206 } 3207 3208 return vsi->num_q_vectors; 3209 } 3210 3211 /** 3212 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3213 * @vsi: VSI connected with q_vectors 3214 * @coalesce: pointer to array of struct with stored coalesce 3215 * @size: size of coalesce array 3216 * 3217 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3218 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3219 * to default value. 3220 */ 3221 static void 3222 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3223 struct ice_coalesce_stored *coalesce, int size) 3224 { 3225 struct ice_ring_container *rc; 3226 int i; 3227 3228 if ((size && !coalesce) || !vsi) 3229 return; 3230 3231 /* There are a couple of cases that have to be handled here: 3232 * 1. The case where the number of queue vectors stays the same, but 3233 * the number of Tx or Rx rings changes (the first for loop) 3234 * 2. The case where the number of queue vectors increased (the 3235 * second for loop) 3236 */ 3237 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3238 /* There are 2 cases to handle here and they are the same for 3239 * both Tx and Rx: 3240 * if the entry was valid previously (coalesce[i].[tr]x_valid 3241 * and the loop variable is less than the number of rings 3242 * allocated, then write the previous values 3243 * 3244 * if the entry was not valid previously, but the number of 3245 * rings is less than are allocated (this means the number of 3246 * rings increased from previously), then write out the 3247 * values in the first element 3248 * 3249 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3250 * as there is no harm because the dynamic algorithm 3251 * will just overwrite. 3252 */ 3253 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3254 rc = &vsi->q_vectors[i]->rx; 3255 rc->itr_setting = coalesce[i].itr_rx; 3256 ice_write_itr(rc, rc->itr_setting); 3257 } else if (i < vsi->alloc_rxq) { 3258 rc = &vsi->q_vectors[i]->rx; 3259 rc->itr_setting = coalesce[0].itr_rx; 3260 ice_write_itr(rc, rc->itr_setting); 3261 } 3262 3263 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3264 rc = &vsi->q_vectors[i]->tx; 3265 rc->itr_setting = coalesce[i].itr_tx; 3266 ice_write_itr(rc, rc->itr_setting); 3267 } else if (i < vsi->alloc_txq) { 3268 rc = &vsi->q_vectors[i]->tx; 3269 rc->itr_setting = coalesce[0].itr_tx; 3270 ice_write_itr(rc, rc->itr_setting); 3271 } 3272 3273 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3274 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3275 } 3276 3277 /* the number of queue vectors increased so write whatever is in 3278 * the first element 3279 */ 3280 for (; i < vsi->num_q_vectors; i++) { 3281 /* transmit */ 3282 rc = &vsi->q_vectors[i]->tx; 3283 rc->itr_setting = coalesce[0].itr_tx; 3284 ice_write_itr(rc, rc->itr_setting); 3285 3286 /* receive */ 3287 rc = &vsi->q_vectors[i]->rx; 3288 rc->itr_setting = coalesce[0].itr_rx; 3289 ice_write_itr(rc, rc->itr_setting); 3290 3291 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3292 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3293 } 3294 } 3295 3296 /** 3297 * ice_vsi_rebuild - Rebuild VSI after reset 3298 * @vsi: VSI to be rebuild 3299 * @init_vsi: is this an initialization or a reconfigure of the VSI 3300 * 3301 * Returns 0 on success and negative value on failure 3302 */ 3303 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3304 { 3305 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3306 struct ice_coalesce_stored *coalesce; 3307 int prev_num_q_vectors = 0; 3308 struct ice_vf *vf = NULL; 3309 enum ice_vsi_type vtype; 3310 struct ice_pf *pf; 3311 int ret, i; 3312 3313 if (!vsi) 3314 return -EINVAL; 3315 3316 pf = vsi->back; 3317 vtype = vsi->type; 3318 if (vtype == ICE_VSI_VF) 3319 vf = &pf->vf[vsi->vf_id]; 3320 3321 coalesce = kcalloc(vsi->num_q_vectors, 3322 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3323 if (!coalesce) 3324 return -ENOMEM; 3325 3326 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3327 3328 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3329 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3330 if (ret) 3331 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3332 vsi->vsi_num, ret); 3333 ice_vsi_free_q_vectors(vsi); 3334 3335 /* SR-IOV determines needed MSIX resources all at once instead of per 3336 * VSI since when VFs are spawned we know how many VFs there are and how 3337 * many interrupts each VF needs. SR-IOV MSIX resources are also 3338 * cleared in the same manner. 3339 */ 3340 if (vtype != ICE_VSI_VF) { 3341 /* reclaim SW interrupts back to the common pool */ 3342 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3343 pf->num_avail_sw_msix += vsi->num_q_vectors; 3344 vsi->base_vector = 0; 3345 } 3346 3347 if (ice_is_xdp_ena_vsi(vsi)) 3348 /* return value check can be skipped here, it always returns 3349 * 0 if reset is in progress 3350 */ 3351 ice_destroy_xdp_rings(vsi); 3352 ice_vsi_put_qs(vsi); 3353 ice_vsi_clear_rings(vsi); 3354 ice_vsi_free_arrays(vsi); 3355 if (vtype == ICE_VSI_VF) 3356 ice_vsi_set_num_qs(vsi, vf->vf_id); 3357 else 3358 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3359 3360 ret = ice_vsi_alloc_arrays(vsi); 3361 if (ret < 0) 3362 goto err_vsi; 3363 3364 ice_vsi_get_qs(vsi); 3365 3366 ice_alloc_fd_res(vsi); 3367 ice_vsi_set_tc_cfg(vsi); 3368 3369 /* Initialize VSI struct elements and create VSI in FW */ 3370 ret = ice_vsi_init(vsi, init_vsi); 3371 if (ret < 0) 3372 goto err_vsi; 3373 3374 switch (vtype) { 3375 case ICE_VSI_CTRL: 3376 case ICE_VSI_SWITCHDEV_CTRL: 3377 case ICE_VSI_PF: 3378 ret = ice_vsi_alloc_q_vectors(vsi); 3379 if (ret) 3380 goto err_rings; 3381 3382 ret = ice_vsi_setup_vector_base(vsi); 3383 if (ret) 3384 goto err_vectors; 3385 3386 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3387 if (ret) 3388 goto err_vectors; 3389 3390 ret = ice_vsi_alloc_rings(vsi); 3391 if (ret) 3392 goto err_vectors; 3393 3394 ice_vsi_map_rings_to_vectors(vsi); 3395 if (ice_is_xdp_ena_vsi(vsi)) { 3396 ret = ice_vsi_determine_xdp_res(vsi); 3397 if (ret) 3398 goto err_vectors; 3399 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3400 if (ret) 3401 goto err_vectors; 3402 } 3403 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3404 if (vtype != ICE_VSI_CTRL) 3405 /* Do not exit if configuring RSS had an issue, at 3406 * least receive traffic on first queue. Hence no 3407 * need to capture return value 3408 */ 3409 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3410 ice_vsi_cfg_rss_lut_key(vsi); 3411 break; 3412 case ICE_VSI_VF: 3413 ret = ice_vsi_alloc_q_vectors(vsi); 3414 if (ret) 3415 goto err_rings; 3416 3417 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3418 if (ret) 3419 goto err_vectors; 3420 3421 ret = ice_vsi_alloc_rings(vsi); 3422 if (ret) 3423 goto err_vectors; 3424 3425 break; 3426 case ICE_VSI_CHNL: 3427 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3428 ice_vsi_cfg_rss_lut_key(vsi); 3429 ice_vsi_set_rss_flow_fld(vsi); 3430 } 3431 break; 3432 default: 3433 break; 3434 } 3435 3436 /* configure VSI nodes based on number of queues and TC's */ 3437 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3438 /* configure VSI nodes based on number of queues and TC's. 3439 * ADQ creates VSIs for each TC/Channel but doesn't 3440 * allocate queues instead it reconfigures the PF queues 3441 * as per the TC command. So max_txqs should point to the 3442 * PF Tx queues. 3443 */ 3444 if (vtype == ICE_VSI_CHNL) 3445 max_txqs[i] = pf->num_lan_tx; 3446 else 3447 max_txqs[i] = vsi->alloc_txq; 3448 3449 if (ice_is_xdp_ena_vsi(vsi)) 3450 max_txqs[i] += vsi->num_xdp_txq; 3451 } 3452 3453 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3454 /* If MQPRIO is set, means channel code path, hence for main 3455 * VSI's, use TC as 1 3456 */ 3457 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3458 else 3459 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3460 vsi->tc_cfg.ena_tc, max_txqs); 3461 3462 if (ret) { 3463 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3464 vsi->vsi_num, ret); 3465 if (init_vsi) { 3466 ret = -EIO; 3467 goto err_vectors; 3468 } else { 3469 return ice_schedule_reset(pf, ICE_RESET_PFR); 3470 } 3471 } 3472 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3473 kfree(coalesce); 3474 3475 return 0; 3476 3477 err_vectors: 3478 ice_vsi_free_q_vectors(vsi); 3479 err_rings: 3480 if (vsi->netdev) { 3481 vsi->current_netdev_flags = 0; 3482 unregister_netdev(vsi->netdev); 3483 free_netdev(vsi->netdev); 3484 vsi->netdev = NULL; 3485 } 3486 err_vsi: 3487 ice_vsi_clear(vsi); 3488 set_bit(ICE_RESET_FAILED, pf->state); 3489 kfree(coalesce); 3490 return ret; 3491 } 3492 3493 /** 3494 * ice_is_reset_in_progress - check for a reset in progress 3495 * @state: PF state field 3496 */ 3497 bool ice_is_reset_in_progress(unsigned long *state) 3498 { 3499 return test_bit(ICE_RESET_OICR_RECV, state) || 3500 test_bit(ICE_PFR_REQ, state) || 3501 test_bit(ICE_CORER_REQ, state) || 3502 test_bit(ICE_GLOBR_REQ, state); 3503 } 3504 3505 /** 3506 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3507 * @pf: pointer to the PF structure 3508 * @timeout: length of time to wait, in jiffies 3509 * 3510 * Wait (sleep) for a short time until the driver finishes cleaning up from 3511 * a device reset. The caller must be able to sleep. Use this to delay 3512 * operations that could fail while the driver is cleaning up after a device 3513 * reset. 3514 * 3515 * Returns 0 on success, -EBUSY if the reset is not finished within the 3516 * timeout, and -ERESTARTSYS if the thread was interrupted. 3517 */ 3518 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3519 { 3520 long ret; 3521 3522 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3523 !ice_is_reset_in_progress(pf->state), 3524 timeout); 3525 if (ret < 0) 3526 return ret; 3527 else if (!ret) 3528 return -EBUSY; 3529 else 3530 return 0; 3531 } 3532 3533 /** 3534 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3535 * @vsi: VSI being configured 3536 * @ctx: the context buffer returned from AQ VSI update command 3537 */ 3538 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3539 { 3540 vsi->info.mapping_flags = ctx->info.mapping_flags; 3541 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3542 sizeof(vsi->info.q_mapping)); 3543 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3544 sizeof(vsi->info.tc_mapping)); 3545 } 3546 3547 /** 3548 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3549 * @vsi: the VSI being configured 3550 * @ena_tc: TC map to be enabled 3551 */ 3552 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3553 { 3554 struct net_device *netdev = vsi->netdev; 3555 struct ice_pf *pf = vsi->back; 3556 int numtc = vsi->tc_cfg.numtc; 3557 struct ice_dcbx_cfg *dcbcfg; 3558 u8 netdev_tc; 3559 int i; 3560 3561 if (!netdev) 3562 return; 3563 3564 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3565 if (vsi->type == ICE_VSI_CHNL) 3566 return; 3567 3568 if (!ena_tc) { 3569 netdev_reset_tc(netdev); 3570 return; 3571 } 3572 3573 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3574 numtc = vsi->all_numtc; 3575 3576 if (netdev_set_num_tc(netdev, numtc)) 3577 return; 3578 3579 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3580 3581 ice_for_each_traffic_class(i) 3582 if (vsi->tc_cfg.ena_tc & BIT(i)) 3583 netdev_set_tc_queue(netdev, 3584 vsi->tc_cfg.tc_info[i].netdev_tc, 3585 vsi->tc_cfg.tc_info[i].qcount_tx, 3586 vsi->tc_cfg.tc_info[i].qoffset); 3587 /* setup TC queue map for CHNL TCs */ 3588 ice_for_each_chnl_tc(i) { 3589 if (!(vsi->all_enatc & BIT(i))) 3590 break; 3591 if (!vsi->mqprio_qopt.qopt.count[i]) 3592 break; 3593 netdev_set_tc_queue(netdev, i, 3594 vsi->mqprio_qopt.qopt.count[i], 3595 vsi->mqprio_qopt.qopt.offset[i]); 3596 } 3597 3598 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3599 return; 3600 3601 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3602 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3603 3604 /* Get the mapped netdev TC# for the UP */ 3605 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3606 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3607 } 3608 } 3609 3610 /** 3611 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3612 * @vsi: the VSI being configured, 3613 * @ctxt: VSI context structure 3614 * @ena_tc: number of traffic classes to enable 3615 * 3616 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3617 */ 3618 static void 3619 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3620 u8 ena_tc) 3621 { 3622 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3623 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3624 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3625 u8 netdev_tc = 0; 3626 int i; 3627 3628 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3629 3630 pow = order_base_2(tc0_qcount); 3631 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3632 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3633 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3634 3635 ice_for_each_traffic_class(i) { 3636 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3637 /* TC is not enabled */ 3638 vsi->tc_cfg.tc_info[i].qoffset = 0; 3639 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3640 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3641 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3642 ctxt->info.tc_mapping[i] = 0; 3643 continue; 3644 } 3645 3646 offset = vsi->mqprio_qopt.qopt.offset[i]; 3647 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3648 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3649 vsi->tc_cfg.tc_info[i].qoffset = offset; 3650 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3651 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3652 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3653 } 3654 3655 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3656 ice_for_each_chnl_tc(i) { 3657 if (!(vsi->all_enatc & BIT(i))) 3658 continue; 3659 offset = vsi->mqprio_qopt.qopt.offset[i]; 3660 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3661 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3662 } 3663 } 3664 3665 /* Set actual Tx/Rx queue pairs */ 3666 vsi->num_txq = offset + qcount_tx; 3667 vsi->num_rxq = offset + qcount_rx; 3668 3669 /* Setup queue TC[0].qmap for given VSI context */ 3670 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3671 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3672 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3673 3674 /* Find queue count available for channel VSIs and starting offset 3675 * for channel VSIs 3676 */ 3677 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3678 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3679 vsi->next_base_q = tc0_qcount; 3680 } 3681 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3682 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3683 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3684 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3685 } 3686 3687 /** 3688 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3689 * @vsi: VSI to be configured 3690 * @ena_tc: TC bitmap 3691 * 3692 * VSI queues expected to be quiesced before calling this function 3693 */ 3694 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3695 { 3696 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3697 struct ice_pf *pf = vsi->back; 3698 struct ice_vsi_ctx *ctx; 3699 struct device *dev; 3700 int i, ret = 0; 3701 u8 num_tc = 0; 3702 3703 dev = ice_pf_to_dev(pf); 3704 if (vsi->tc_cfg.ena_tc == ena_tc && 3705 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3706 return ret; 3707 3708 ice_for_each_traffic_class(i) { 3709 /* build bitmap of enabled TCs */ 3710 if (ena_tc & BIT(i)) 3711 num_tc++; 3712 /* populate max_txqs per TC */ 3713 max_txqs[i] = vsi->alloc_txq; 3714 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3715 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3716 */ 3717 if (vsi->type == ICE_VSI_CHNL && 3718 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3719 max_txqs[i] = vsi->num_txq; 3720 } 3721 3722 vsi->tc_cfg.ena_tc = ena_tc; 3723 vsi->tc_cfg.numtc = num_tc; 3724 3725 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3726 if (!ctx) 3727 return -ENOMEM; 3728 3729 ctx->vf_num = 0; 3730 ctx->info = vsi->info; 3731 3732 if (vsi->type == ICE_VSI_PF && 3733 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3734 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3735 else 3736 ice_vsi_setup_q_map(vsi, ctx); 3737 3738 /* must to indicate which section of VSI context are being modified */ 3739 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3740 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3741 if (ret) { 3742 dev_info(dev, "Failed VSI Update\n"); 3743 goto out; 3744 } 3745 3746 if (vsi->type == ICE_VSI_PF && 3747 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3748 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3749 else 3750 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3751 vsi->tc_cfg.ena_tc, max_txqs); 3752 3753 if (ret) { 3754 dev_err(dev, "VSI %d failed TC config, error %d\n", 3755 vsi->vsi_num, ret); 3756 goto out; 3757 } 3758 ice_vsi_update_q_map(vsi, ctx); 3759 vsi->info.valid_sections = 0; 3760 3761 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3762 out: 3763 kfree(ctx); 3764 return ret; 3765 } 3766 3767 /** 3768 * ice_update_ring_stats - Update ring statistics 3769 * @stats: stats to be updated 3770 * @pkts: number of processed packets 3771 * @bytes: number of processed bytes 3772 * 3773 * This function assumes that caller has acquired a u64_stats_sync lock. 3774 */ 3775 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3776 { 3777 stats->bytes += bytes; 3778 stats->pkts += pkts; 3779 } 3780 3781 /** 3782 * ice_update_tx_ring_stats - Update Tx ring specific counters 3783 * @tx_ring: ring to update 3784 * @pkts: number of processed packets 3785 * @bytes: number of processed bytes 3786 */ 3787 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3788 { 3789 u64_stats_update_begin(&tx_ring->syncp); 3790 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3791 u64_stats_update_end(&tx_ring->syncp); 3792 } 3793 3794 /** 3795 * ice_update_rx_ring_stats - Update Rx ring specific counters 3796 * @rx_ring: ring to update 3797 * @pkts: number of processed packets 3798 * @bytes: number of processed bytes 3799 */ 3800 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3801 { 3802 u64_stats_update_begin(&rx_ring->syncp); 3803 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3804 u64_stats_update_end(&rx_ring->syncp); 3805 } 3806 3807 /** 3808 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3809 * @sw: switch to check if its default forwarding VSI is free 3810 * 3811 * Return true if the default forwarding VSI is already being used, else returns 3812 * false signalling that it's available to use. 3813 */ 3814 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3815 { 3816 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3817 } 3818 3819 /** 3820 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3821 * @sw: switch for the default forwarding VSI to compare against 3822 * @vsi: VSI to compare against default forwarding VSI 3823 * 3824 * If this VSI passed in is the default forwarding VSI then return true, else 3825 * return false 3826 */ 3827 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3828 { 3829 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3830 } 3831 3832 /** 3833 * ice_set_dflt_vsi - set the default forwarding VSI 3834 * @sw: switch used to assign the default forwarding VSI 3835 * @vsi: VSI getting set as the default forwarding VSI on the switch 3836 * 3837 * If the VSI passed in is already the default VSI and it's enabled just return 3838 * success. 3839 * 3840 * If there is already a default VSI on the switch and it's enabled then return 3841 * -EEXIST since there can only be one default VSI per switch. 3842 * 3843 * Otherwise try to set the VSI passed in as the switch's default VSI and 3844 * return the result. 3845 */ 3846 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3847 { 3848 struct device *dev; 3849 int status; 3850 3851 if (!sw || !vsi) 3852 return -EINVAL; 3853 3854 dev = ice_pf_to_dev(vsi->back); 3855 3856 /* the VSI passed in is already the default VSI */ 3857 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3858 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3859 vsi->vsi_num); 3860 return 0; 3861 } 3862 3863 /* another VSI is already the default VSI for this switch */ 3864 if (ice_is_dflt_vsi_in_use(sw)) { 3865 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3866 sw->dflt_vsi->vsi_num); 3867 return -EEXIST; 3868 } 3869 3870 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3871 if (status) { 3872 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3873 vsi->vsi_num, status); 3874 return status; 3875 } 3876 3877 sw->dflt_vsi = vsi; 3878 sw->dflt_vsi_ena = true; 3879 3880 return 0; 3881 } 3882 3883 /** 3884 * ice_clear_dflt_vsi - clear the default forwarding VSI 3885 * @sw: switch used to clear the default VSI 3886 * 3887 * If the switch has no default VSI or it's not enabled then return error. 3888 * 3889 * Otherwise try to clear the default VSI and return the result. 3890 */ 3891 int ice_clear_dflt_vsi(struct ice_sw *sw) 3892 { 3893 struct ice_vsi *dflt_vsi; 3894 struct device *dev; 3895 int status; 3896 3897 if (!sw) 3898 return -EINVAL; 3899 3900 dev = ice_pf_to_dev(sw->pf); 3901 3902 dflt_vsi = sw->dflt_vsi; 3903 3904 /* there is no default VSI configured */ 3905 if (!ice_is_dflt_vsi_in_use(sw)) 3906 return -ENODEV; 3907 3908 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3909 ICE_FLTR_RX); 3910 if (status) { 3911 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3912 dflt_vsi->vsi_num, status); 3913 return -EIO; 3914 } 3915 3916 sw->dflt_vsi = NULL; 3917 sw->dflt_vsi_ena = false; 3918 3919 return 0; 3920 } 3921 3922 /** 3923 * ice_get_link_speed_mbps - get link speed in Mbps 3924 * @vsi: the VSI whose link speed is being queried 3925 * 3926 * Return current VSI link speed and 0 if the speed is unknown. 3927 */ 3928 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3929 { 3930 switch (vsi->port_info->phy.link_info.link_speed) { 3931 case ICE_AQ_LINK_SPEED_100GB: 3932 return SPEED_100000; 3933 case ICE_AQ_LINK_SPEED_50GB: 3934 return SPEED_50000; 3935 case ICE_AQ_LINK_SPEED_40GB: 3936 return SPEED_40000; 3937 case ICE_AQ_LINK_SPEED_25GB: 3938 return SPEED_25000; 3939 case ICE_AQ_LINK_SPEED_20GB: 3940 return SPEED_20000; 3941 case ICE_AQ_LINK_SPEED_10GB: 3942 return SPEED_10000; 3943 case ICE_AQ_LINK_SPEED_5GB: 3944 return SPEED_5000; 3945 case ICE_AQ_LINK_SPEED_2500MB: 3946 return SPEED_2500; 3947 case ICE_AQ_LINK_SPEED_1000MB: 3948 return SPEED_1000; 3949 case ICE_AQ_LINK_SPEED_100MB: 3950 return SPEED_100; 3951 case ICE_AQ_LINK_SPEED_10MB: 3952 return SPEED_10; 3953 case ICE_AQ_LINK_SPEED_UNKNOWN: 3954 default: 3955 return 0; 3956 } 3957 } 3958 3959 /** 3960 * ice_get_link_speed_kbps - get link speed in Kbps 3961 * @vsi: the VSI whose link speed is being queried 3962 * 3963 * Return current VSI link speed and 0 if the speed is unknown. 3964 */ 3965 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3966 { 3967 int speed_mbps; 3968 3969 speed_mbps = ice_get_link_speed_mbps(vsi); 3970 3971 return speed_mbps * 1000; 3972 } 3973 3974 /** 3975 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3976 * @vsi: VSI to be configured 3977 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3978 * 3979 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3980 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3981 * on TC 0. 3982 */ 3983 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3984 { 3985 struct ice_pf *pf = vsi->back; 3986 struct device *dev; 3987 int status; 3988 int speed; 3989 3990 dev = ice_pf_to_dev(pf); 3991 if (!vsi->port_info) { 3992 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3993 vsi->idx, vsi->type); 3994 return -EINVAL; 3995 } 3996 3997 speed = ice_get_link_speed_kbps(vsi); 3998 if (min_tx_rate > (u64)speed) { 3999 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4000 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4001 speed); 4002 return -EINVAL; 4003 } 4004 4005 /* Configure min BW for VSI limit */ 4006 if (min_tx_rate) { 4007 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4008 ICE_MIN_BW, min_tx_rate); 4009 if (status) { 4010 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4011 min_tx_rate, ice_vsi_type_str(vsi->type), 4012 vsi->idx); 4013 return status; 4014 } 4015 4016 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4017 min_tx_rate, ice_vsi_type_str(vsi->type)); 4018 } else { 4019 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4020 vsi->idx, 0, 4021 ICE_MIN_BW); 4022 if (status) { 4023 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4024 ice_vsi_type_str(vsi->type), vsi->idx); 4025 return status; 4026 } 4027 4028 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4029 ice_vsi_type_str(vsi->type), vsi->idx); 4030 } 4031 4032 return 0; 4033 } 4034 4035 /** 4036 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4037 * @vsi: VSI to be configured 4038 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4039 * 4040 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4041 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4042 * on TC 0. 4043 */ 4044 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4045 { 4046 struct ice_pf *pf = vsi->back; 4047 struct device *dev; 4048 int status; 4049 int speed; 4050 4051 dev = ice_pf_to_dev(pf); 4052 if (!vsi->port_info) { 4053 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4054 vsi->idx, vsi->type); 4055 return -EINVAL; 4056 } 4057 4058 speed = ice_get_link_speed_kbps(vsi); 4059 if (max_tx_rate > (u64)speed) { 4060 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4061 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4062 speed); 4063 return -EINVAL; 4064 } 4065 4066 /* Configure max BW for VSI limit */ 4067 if (max_tx_rate) { 4068 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4069 ICE_MAX_BW, max_tx_rate); 4070 if (status) { 4071 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4072 max_tx_rate, ice_vsi_type_str(vsi->type), 4073 vsi->idx); 4074 return status; 4075 } 4076 4077 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4078 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4079 } else { 4080 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4081 vsi->idx, 0, 4082 ICE_MAX_BW); 4083 if (status) { 4084 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4085 ice_vsi_type_str(vsi->type), vsi->idx); 4086 return status; 4087 } 4088 4089 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4090 ice_vsi_type_str(vsi->type), vsi->idx); 4091 } 4092 4093 return 0; 4094 } 4095 4096 /** 4097 * ice_set_link - turn on/off physical link 4098 * @vsi: VSI to modify physical link on 4099 * @ena: turn on/off physical link 4100 */ 4101 int ice_set_link(struct ice_vsi *vsi, bool ena) 4102 { 4103 struct device *dev = ice_pf_to_dev(vsi->back); 4104 struct ice_port_info *pi = vsi->port_info; 4105 struct ice_hw *hw = pi->hw; 4106 int status; 4107 4108 if (vsi->type != ICE_VSI_PF) 4109 return -EINVAL; 4110 4111 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4112 4113 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4114 * this is not a fatal error, so print a warning message and return 4115 * a success code. Return an error if FW returns an error code other 4116 * than ICE_AQ_RC_EMODE 4117 */ 4118 if (status == -EIO) { 4119 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4120 dev_warn(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4121 (ena ? "ON" : "OFF"), status, 4122 ice_aq_str(hw->adminq.sq_last_status)); 4123 } else if (status) { 4124 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4125 (ena ? "ON" : "OFF"), status, 4126 ice_aq_str(hw->adminq.sq_last_status)); 4127 return status; 4128 } 4129 4130 return 0; 4131 } 4132 4133 /** 4134 * ice_is_feature_supported 4135 * @pf: pointer to the struct ice_pf instance 4136 * @f: feature enum to be checked 4137 * 4138 * returns true if feature is supported, false otherwise 4139 */ 4140 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4141 { 4142 if (f < 0 || f >= ICE_F_MAX) 4143 return false; 4144 4145 return test_bit(f, pf->features); 4146 } 4147 4148 /** 4149 * ice_set_feature_support 4150 * @pf: pointer to the struct ice_pf instance 4151 * @f: feature enum to set 4152 */ 4153 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4154 { 4155 if (f < 0 || f >= ICE_F_MAX) 4156 return; 4157 4158 set_bit(f, pf->features); 4159 } 4160 4161 /** 4162 * ice_clear_feature_support 4163 * @pf: pointer to the struct ice_pf instance 4164 * @f: feature enum to clear 4165 */ 4166 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4167 { 4168 if (f < 0 || f >= ICE_F_MAX) 4169 return; 4170 4171 clear_bit(f, pf->features); 4172 } 4173 4174 /** 4175 * ice_init_feature_support 4176 * @pf: pointer to the struct ice_pf instance 4177 * 4178 * called during init to setup supported feature 4179 */ 4180 void ice_init_feature_support(struct ice_pf *pf) 4181 { 4182 switch (pf->hw.device_id) { 4183 case ICE_DEV_ID_E810C_BACKPLANE: 4184 case ICE_DEV_ID_E810C_QSFP: 4185 case ICE_DEV_ID_E810C_SFP: 4186 ice_set_feature_support(pf, ICE_F_DSCP); 4187 if (ice_is_e810t(&pf->hw)) 4188 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4189 break; 4190 default: 4191 break; 4192 } 4193 } 4194 4195 /** 4196 * ice_vsi_update_security - update security block in VSI 4197 * @vsi: pointer to VSI structure 4198 * @fill: function pointer to fill ctx 4199 */ 4200 int 4201 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4202 { 4203 struct ice_vsi_ctx ctx = { 0 }; 4204 4205 ctx.info = vsi->info; 4206 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4207 fill(&ctx); 4208 4209 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4210 return -ENODEV; 4211 4212 vsi->info = ctx.info; 4213 return 0; 4214 } 4215 4216 /** 4217 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4218 * @ctx: pointer to VSI ctx structure 4219 */ 4220 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4221 { 4222 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4223 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4224 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4225 } 4226 4227 /** 4228 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4229 * @ctx: pointer to VSI ctx structure 4230 */ 4231 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4232 { 4233 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4234 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4235 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4236 } 4237 4238 /** 4239 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4240 * @ctx: pointer to VSI ctx structure 4241 */ 4242 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4243 { 4244 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4245 } 4246 4247 /** 4248 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4249 * @ctx: pointer to VSI ctx structure 4250 */ 4251 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4252 { 4253 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4254 } 4255